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Abstract. Matrix factorization (MF) is one of the most efficient meth-
ods for performing collaborative filtering. An MF-based method repre-
sents users and items by latent feature vectors that are obtained by
decomposing the rating matrix of users to items. However, MF-based
methods suffer from the cold-start problem: if no rating data are available
for an item, the model cannot find a latent feature vector for that item,
and thus cannot make a recommendation for it. In this paper, we present
a hierarchical Bayesian model that can infer the latent feature vectors of
items directly from the implicit feedback (e.g., clicks, views, purchases)
when they cannot be obtained from the rating data. We infer the full pos-
terior distributions of these parameters using a Gibbs sampling method.
We show that the proposed method is strong with overfitting even if the
model is very complex or the data are very sparse. Our experiments on
real-world datasets demonstrate that our proposed method significantly
outperforms competing methods on rating prediction tasks, especially
for very sparse datasets.

Keywords: Collaborative filtering · Item embedding · Implicit
feedback · Explicit feedback · Matrix factorization

1 Introduction

With the emergence of big data, recommender systems have become a core part
of online services. The goal of a recommender system is to model user pref-
erences by analyzing their history data and providing them with personalized
recommendations. Collaborative filtering (CF) is an efficient approach for rec-
ommender systems that aims at predicting the rating of a user for an item given
the past rating history of the users. Among various CF-based methods, matrix
factorization (MF) is one of the most powerful approaches [2,11].

MF-based algorithms represent user preferences and item attributes by latent
feature vectors in a shared latent space. Typically, an MF-based algorithm
finds the latent feature vectors of users and items by fitting the model with
the observed ratings given in the user–item rating matrix [2,11,12,15]. How-
ever, because each user can only rate a limited number of items, the rating
c© Springer International Publishing AG 2017
G. Cong et al. (Eds.): ADMA 2017, LNAI 10604, pp. 104–118, 2017.
https://doi.org/10.1007/978-3-319-69179-4_8



A Hierarchical Bayesian Factorization Model 105

matrix is usually extremely sparse. Therefore, the performance of rating predic-
tion declines if an item has too few ratings; or in an extreme case, if an item
has no prior ratings, the system cannot learn its latent feature vector, and thus
cannot recommend it to any user. This problem is referred to as the cold-start
problem.

To address this problem, a common approach is to exploit other informa-
tion about users and items, known as side information or auxiliary information.
There are various types of side information, depending on the item being recom-
mended (e.g., the genres of movies or text content of books). Such side informa-
tion is successfully combined with traditional CF-based algorithms to alleviate
the cold-start problem. For instance, in [1,14,16], text content was exploited for
article recommendations; music content for song recommendations [9], or text
content and category information for movie recommendations [10]. One limita-
tion of these models is that such side information is not always available, or,
in many cases, that information is available, but less informative for describing
items (e.g., some items are described by a few keywords or very short texts).

This work focuses on exploiting another kind of feedback known as implicit
feedback (e.g., clicks, views, purchases) as the auxiliary data. The advantage of
using implicit feedback is that it is abundant and easily collected during the
interactions of users with the system without requiring users to provide further
interactions.

Related Work. In [2], the authors proposed SVD++ which exploits implicit
feedback to boost the performance of the original probabilistic matrix factor-
ization (PMF) model [11]. However, in SVD++, implicit feedback is a binary
matrix that indicates “who rates what”, obtained by binarizing the rating data,
an item has implicit feedback if and only if it has rating data; therefore, this
model cannot model an item if it has no ratings.

Co-rating [5] combines explicit and implicit feedback in a unified framework.
In the model, the explicit feedback are normalized into the range [0, 1] and added
to the implicit feedback matrix to form a unique matrix. This matrix is then
factorized to obtain the latent feature vectors of users and items. In this way, the
feature vector of an item can be inferred even if it does not have any rating data.
The limitation of this method is that, after forming the final matrix, implicit
and explicit feedback cannot be distinguished; therefore, this model cannot take
into account the uncertainty of the implicit feedback.

In [13], the authors proposed a method for combining implicit and explicit
feedback using expectation maximization (EM). To predict ratings for an item
for which rating data are not available, the rating is inferred from ratings of its
neighbors in terms of click data. However, the algorithm is based on an iterative
EM-based algorithm in which the E-phase is a matrix factorization model. In
other words, matrix factorization is performed multiple times and is therefore
computationally expensive.

In [8], the authors proposed a probabilistic model for combining explicit
and implicit feedback for making recommendations. In this model, the latent
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feature vector of an item for which rating data are not available can be learned
directly from the implicit feedback data. This is a combination of PMF [11]
and an item embedding model; the model learns latent feature vectors for an
item from the implicit feedback. In detail, the model consists of simultaneously
factorizing the rating matrix and the positive point-wise mutual information
(PPMI) matrix that is constructed from the click data. The item vectors are
obtained by the factorization of the PPMI matrix and are then adjusted by
the rating matrix. Although this model successfully combines implicit feedback
data in learning latent feature vectors of items, it is prone to overfitting if the
hyperparameters (i.e., the regularization parameters) are not tuned carefully.
Usually, the hyperparameter tuning is very costly, especially when there are
many hyperparameters, or when the data are large.

Present Work. In this paper, we propose a fully hierarchical Bayesian treat-
ment for the model proposed by Nguyen et al. [8]. In this model, instead of
finding a point estimate for the model parameters, our method infers the full
posterior distribution of these model parameters to capture their uncertainty.
The missing ratings are predicted by integrating out the latent feature vectors
of users and items. To this end, we place the Gaussian inverse Wishart priors on
the mean vectors and covariance matrices of the latent feature vectors for the
rating matrix and PPMI matrix [8]. We develop a Markov chain Monte Carlo
(MCMC)-based method for inferring the full posterior distribution.

2 Preliminary

Suppose we have N users and M items. For each user–item pair (u, i), there
can be two types of feedback: explicit feedback (also known as rating data) and
implicit feedback (also known as click data). The rating data are represented by
matrix R ∈ R

N×M , in which element rui is the rating of user u for item i. rui

can be a real number or a binary value (e.g., like/dislike). The click data are
represented by a binary matrix P ∈ {0, 1}N×M , where pui = 1 indicates that
user u has clicked i at least once, and pui = 0 otherwise.

Generally, the rating matrix R is extremely sparse with many missing values
(i.e., rui is not observed). We are interested in predicting these missing ratings.

2.1 Item Embedding Model According to Implicit Feedback Data

Word embedding techniques have shown their success in many natural language
processing tasks [3,6]. By viewing each item in a recommender system as a word,
the same assumptions that underlie word embedding models can be applied to
modeling items. In [8], the authors proposed a method for an item embedding
model based on implicit feedback data, i.e., a model that captures the relation-
ship between items that are clicked by the same users.
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In this item embedding model, item i is represented by two vectors: an item
vector wi and a context vector zi. The vectors have different roles: the item
vector describes the distribution of the item, and the context vector describes
the distribution of the co-occurrence of an item with other items in its context.

In [8], the authors proposed an item-embedding scheme in which the item
vector and the context vector are obtained by factorizing the PPMI matrix cor-
responding to the click data [8]:

PPMI(i, j) = w�
i zi (1)

The PPMI matrix is obtained by replacing the negative values by zeros in the
point-wise mutual information (PMI) matrix. The elements of the PMI matrix
are correlation measures for the co-occurrence of two items. Empirically, the
PMI of items i and j can be approximated using the observed data:

PMI(i, j) = log
#(i, j)|D|
#(i)#(j)

, (2)

where #(i) and #(j) are the numbers of times items i and j are clicked, respec-
tively. D is the set of item pairs that appear in the combined click history of all
users. #(i, j) is the number of users who clicked both i and j.

2.2 Probabilistic Model for Implicit and Explicit Feedback Data

After producing the item embedding model according to implicit feedback,
Nguyen et al. [8] proposed a model that combines implicit and explicit feed-
back in a unified framework (PIE). PIE is a combination of the item-embedding
model (described in Sect. 2.1) and the matrix factorization for rating data. In
PIE, the latent feature vector yi of item i is obtained by adding a small deviation
ti to the item vector zi. The graphical model of PIE is shown in Fig. 1a.

The main drawback of this model is that the parameter learning is a point
estimation (MAP estimate), which is prone to overfitting when applying the
trained model to unseen data. To avoid overfitting, we must tune the hyperpa-
rameters carefully. One approach is grid-search: we form a set of appropriate
configurations of hyperparameters and train the model with these configura-
tions. The configuration that produces the best performance on the validation
set will be selected. However, in general, grid search is very costly, especially for
large-scale data, or when the number of hyperparameters is large.

A straightforward way to avoid hyperparameter tuning is to introduce priors
to the hyperparameters and optimize the log-posterior over both model parame-
ters and hyperparameters. In this way, the hyperparameters will be learned from
the data instead of tuned manually. However, this solution does not significantly
improve the generalization of the model because it is still a point estimation and
cannot capture the uncertainty of the model parameters.
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3 Proposed Method

To address drawbacks described above, we propose a hierarchical, fully Bayesian
model (HBFM) that can capture the uncertainty of the model parameters.
Instead of approximating the posterior by its mode (the MAP estimate), we
approximate the full posterior distributions of model parameters.

3.1 The Model

We place the Gaussian inverse Wishart priors on the mean vectors and covariance
matrices of the latent feature vectors. The graphical model is shown in Fig. 1b.
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Fig. 1. Graphical models of PIE [8] and HPMF (this paper). Because of space limita-
tions, we omit the bias terms.

We assume that rui and sij are Gaussian distributions as follows:

p(rui|xu,yi, θu, ρi, σ
2
R) = N (rui|x�

u yi + ηui, σ
2
R) (3)

p(sui|wi, zj , σ
2
S) = N (sij |w�

i zj , σ
2
S), (4)

where θu and ρi are the biases of user u and item i, respectively; yi = ti + wi;
ηui = μ + θu + ρi; and μ is the global mean of the ratings.

The prior distributions of the latent feature vectors are assumed to be mul-
tivariate Gaussian distributions:

p(X|ΘX) =
N∏

u=1

N (xu|μX ,ΣX), p(T|ΘT ) =
M∏

i=1

N (ti|μT ,ΣT )

p(W|ΘW ) =
M∏

i=1

N (wi|μW ,ΣW ), p(Z|ΘZ) =
M∏

j=1

N (zu|μZ ,ΣZ)

(5)
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where μX , μT , μW , and μZ are the mean vectors and ΣX , ΣY , ΣW , and ΣZ

are the covariance matrices of xu, yi, wi, and zj , respectively; ΘX = {μX , ΣX},
ΘT = {μT , ΣT }, ΘW = {μW , ΣW }, and ΘZ = {μZ , ΣZ}.

To model the uncertainty of the latent feature vectors, we do not treat them
as distributions of fixed hyperparameters. Instead, we further place Gaussian-
inverse Wishart priors on ΘX , ΘT , ΘW , and ΘZ :

p(ΘX |ΦX0) = N (μX |μX0 ,ΣX/γX0)W−1(ΣX |WX0 , νX0) (6)

p(ΘT |ΦT0) = N (μT |μT0 ,ΣT /γT0)W−1(ΣT |WT0 , νT0) (7)

p(ΘW |ΦW0) = N (μW |μW0 ,ΣW /γW0)W−1(ΣW |WW0 , νW0) (8)

p(ΘZ |ΦZ0) = N (μZ |μZ0 ,ΣZ/γZ0)W−1(ΣZ |WZ0 , νZ0), (9)

where: ΦX0 = {μX0 , γX0 ,WX0 , νX0}, ΦT0 = {μT0 , γT0 ,WT0 , νT0}, ΦW0 = {μW0 ,
γW0 ,WW0 , νW0}, and ΦZ0 = {μZ0 , γZ0 ,WZ0 , νZ0}.

Here, W−1 is the inverse Wishart distribution with ν0 degrees of freedom
and a d × d scaling matrix W0:

W−1(Σ|W0, ν0) =
1
C

|Σ|−(ν0−d−1)/2 exp(−1
2
Tr(W0Σ−1)), (10)

where C is a normalizing constant and Tr(.) is the trace of a matrix.
The Gaussian inverse Wishart prior is adopted because it is the conjugate

prior of the multivariate Gaussian distribution. This selection of the prior allows
the conditional distributions derived from the posterior distributions to be sam-
pled easily. Similarly, we place inverse Gamma priors [17] on the variance σ2

R:

p(σ2
R|αR, βR) = IG(σ2

R|αR, βR), (11)

where IG(.) is the inverse Gamma distribution [17]:

IG(x|α, β) =
βα

Γ (α)
x−α−1exp(−β

x
) (12)

Choosing the inverse Gamma distribution, which is the conjugate prior of the
variance of a Gaussian distribution, makes it easy to sample from the posterior
distribution. Indeed, this distribution has also been proven to model the unknown
variance of a Gaussian distribution effectively [17].

We place Gaussian priors over the bias terms as follows.

p(θu|σ2
θ) = N (θu|0, σ2

θ), p(ρi|σ2
ρ) = N (ρi|0, σ2

ρ), (13)

where, σ2
θ and σ2

ρ are inverse Gamma distributions [17]:

p(σ2
θ |αθ, βθ) = IG(σ2

θ |αθ, βθ), p(σ2
ρ|αρ, βρ) = IG(σ2

ρ|αρ, βρ) (14)

We place an inverse Gamma [17] prior on the variance of σ2
S of rij :

p(σ2
S |αS , βS) = IG(σ2

S |αS , βS) (15)
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3.2 Posterior Inference

Our goal is to find the posterior distribution of the model parameters. The
posterior distribution is analytically intractable, so we employ MCMC-based
methods, which are widely used for approximating distributions [7]. The key
idea of these methods is to construct a Markov chain that converges to the
posterior distribution of the model. Each state of the Markov chain is a set of
model parameters. The posterior distribution is characterized by the samples
from that Markov chain. In this paper, we use Gibbs sampling [7], a kind of
MCMC that alternatively samples each variable conditioned on the remaining
variables.

Sampling xu , ti wi , and zj . The conditional distribution over the user latent
feature vector xu, conditioned on the observed ratings, the latent feature vectors
of items, and the hyperparameters, is Gaussian:

p(xu|R,Y,μX ,θ,ρ,ΣX) = N (xu|μ∗
Xu

,Σ∗
Xu

)

∝ p(xu|μX ,ΣX)
∏

i∈Ru

N (rui|x�
u yi + ηui, σ

2
R), (16)

where ηui = θu + ρi + μ, θ = {θu}N
u=1, ρ = {ρi}M

i=1, and

Σ∗
Xu

=
(
Σ−1

X +
1

σ2
R

∑

i∈Ru

yiy�
i

)−1

(17)

μ∗
Xu

= Σ∗
Xu

[
Σ−1

X μX +
1

σ2
R

∑

i∈Ru

(rui − ηui)yi

]
. (18)

Similarly, we can obtain the posterior distribution of ti, wi and zj .

Sampling ΘX = {μX ,ΣX}, ΘT = {μT ,ΣT }, ΘW = {μW ,ΣW }, and ΘZ =
{μZ ,ΣZ}. The posterior distribution over ΘX = {μX ,ΣX} conditioned on user
latent feature vectors and ΦX0 = {μX0 , γX0 ,WX0 , νX0} is a Gaussian inverse
Wishart distribution:

p(μX ,ΣX |X,ΦX0) = N (μX |μ∗
X0

,ΣX/γ∗
X0

)W−1(ΣX |W∗
X0

, ν∗
X0

) (19)
∝ p(X|μX ,ΣX)p(μX ,ΣX |ΦX0), (20)

where:

μ∗
X0

=
γX0μX0 + N x̄

γX0 + N
, γ∗

X0
= γX0 + N, ν∗

X0
= νX0 + N (21)

W∗
X0

= WX0 + N S̄ +
γX0N

γX0 + N
(μX0 − x̄)(μX0 − x̄)� (22)

x̄ =
1
N

N∑

u=1

xu, S̄ =
1
N

N∑

u=1

xux�
u (23)

Similarly, we can obtain the posterior distributions over ΘT , ΘW , and ΘZ

using exactly the same form.
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Sampling bias terms θu and ρi. The posterior distribution over the user bias
term θu is Gaussian:

p(θu|R,X,Y,ρ, σ2
R) = N (θu|ξ∗

u, (σ∗
θu

)2

∝ p(R|X,Y,ρ, σ2
R)p(θu|σ2

θ),
(24)

where:

(σ∗
θu

)2 =
( 1

σ2
θ

+
|Ru|
σ2

R

)−1

, ξ∗
u =

(σ∗
θu

σR

)2 ∑

i∈Ru

[
rui − (μ + ρi + x�

u yi)
]

(25)

The posterior distribution over the ρi can be obtained using the same form.

Sampling σ2
R and σ2

S. The posterior distribution over σ2
R, conditioned on the

rating data, user latent factor matrix X, item latent factor matrix Y, and bias
matrices θ, ρ, is given as:

p(σ2
R|R,X,Y, αR, βR) = IG(σ2

R|α∗
R, β∗

R)

∝ p(R|X,Y,θ,ρ, σ2
R)p(σ2

R|αR, βR)
(26)

where:

α∗
R = αR +

|R|
2

, β∗
R = βR +

1
2

∑

(i,j)∈R

[
rui − (x�

u yi + ηui)
]2

(27)

The conditional distribution over σ2
S can be obtained using the same form.

Sampling σ2
θ and σ2

ρ . The conditional distribution over σ2
θ conditioned on the

bias terms of users is an inverse Gamma distribution:

p(σ2
θ |θ, αθ, βθ) = IG(σ2

θ |α∗
θ, β

∗
θ ) ∝ p(θ|σ2

θ)p(σ2
θ |αθ, βθ), (28)

where:

α∗
θ = αθ +

N

2
, β∗

θ = βθ +
1
2

N∑

u=1

θ2u (29)

The conditional distribution over σ2
ρ conditioned on the bias terms of items

can be obtained using the same form.

Computational Complexity. From the formulas for posterior distribution
sampling, we can observe that the most expensive computations lie in the sam-
pling of the latent feature vectors (xu, ti, wi and zj), which require computing
the inverses of matrices. It is easy to show that in each iteration, the complexity
for sampling the latent feature vectors of N users (matrix X) is O(d2|R|+d3N).
Similarly, the complexities for sampling matrix T, W, and Z are O(d2|R|+d3N),
O(d2|S| + d3M), and O(d2|S| + d3M), respectively, where |R| and |S| are the
numbers of observed ratings and observed clicks, respectively. However, note that
the posterior distribution of xu does not depend on other users; therefore, the
sampling of matrix X can be performed efficiently in parallel. Similarly, sampling
T, W, and Z can also be sped up by performing them in parallel.
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3.3 Rating Prediction

The posterior predictive distribution of the unseen rating value r̂ui of item i by
user u is obtained by integrating out the model parameters and hyperparameters:

p(r̂ui|O) =
∫

. . .

∫
p(r̂ui|Ω)p(Ω)d{Ω}, (30)

where O is the observed data and Ω is the set of all parameters.
The above posterior predictive distribution is analytically intractable, so we

approximate it by sampling the parameters using the Gibbs sampling described
in Sect. 3.2. The predicted rating value can be approximated as follows:

p(r̂ui|O) ≈ 1
K

K∑

k=1

p(r̂ui|x(k)
u ,y(k)

i , θ(k)u , ρ
(k)
i , (σ2

R)(k))

=
1
K

K∑

k=1

N
(
r̂ui|η(k)

ui + x(k)
u

�
y(k)

i , (σ2
R)(k)

)
,

(31)

where K is the number of samples taken from the posterior distribution, (.)(k)

is the kth sample, and η
(k)
ui = μ + θ

(k)
u + ρ

(k)
i .

We consider two rating prediction tasks: (i) in-matrix prediction: predict
the rating by user u of item i, where i has not been rated by u but has been
rated by at least one other user (i.e., i appears at least once in the training set
of the rating data); and (ii) out-matrix prediction: predict the rating by user
u of item i, where i has not been rated by any user (i.e., i does not appear in
the training set of the rating data).

In Eq. 31, y(k)
i = w(k)

i + t(k)i for the in-matrix prediction task; y(k)
i = w(k)

i

and η
(k)
ui = μ + θ

(k)
u for the out-matrix prediction task.

4 Empirical Study

4.1 Datasets

Data Description. We used three public datasets of different domains with
varying sizes. (1) MovieLens 1M (ML-1m): a dataset of user-movie ratings
collected from MovieLens, an online film service. It contains 1 million ratings
in the range 1–5 of 4000 movies by 6000 users. This dataset is available at
GroupLens1. (2) MovieLens 20M (ML-20m): another dataset of user-movie
ratings collected from MovieLens. It contains 20 million ratings in the range
1–5 of 27,000 movies by 138,000 users. This dataset is available at GroupLens2.
(3) Bookcrossing: A dataset collected in August and September 2004 from the

1 https://grouplens.org/datasets/movielens/1m/.
2 https://grouplens.org/datasets/movielens/20m/.

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/20m/
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Book-Crossing website3. This dataset contains 278,858 users (anonymized but
with demographic information) providing 1,149,780 ratings (explicit/implicit) of
271,379 books. We removed users and items that had no explicit feedback.

The MovieLens datasets contain only rating data, so we employed a pre-
process phase to obtain the click data. We binarized the original rating data and
interpreted it as click data. Furthermore, because rating data are only a small
part of the click data, we randomly selected from original ratings with different
percentages, assuming that only these amounts of ratings were available. Details
of these datasets after preprocessing are shown in Table 1.

Table 1. Datasets obtained by selecting ratings from the original ratings of MovieLens
datasets with different percentages

Picked from ML1-20 Picked from ML20-20

Dataset % rating picked Density of rating
matrix (%)

Dataset % rating
picked

Density of rating
matrix (%)

ML1-10 10 0.3561 ML20-10 10 0.0836

ML1-20 20 0.6675 ML20-20 20 0.1001

ML1-50 50 1.6022 ML20-50 50 0.2108

4.2 Experimental Protocol

We used the click data and 80% of the rating data to train the model; the
remaining 20% of the rating data was used as the test data to evaluate the model.
In evaluating the in-matrix prediction task, when splitting data, we made sure
that every item in the test set appeared at least once in the training set. In
evaluating the out-matrix prediction task, we made sure that none of the items
in the test set appeared in the training set (to ensure that none of the items in
the test set had any previous ratings).

Evaluation Metric. We used Root Mean Square Error (RMSE) as the met-
ric to measure the performance of the models. RMSE measures the deviation
between the rating predicted by the model and the true rating (given by the test
set), and is defined as follows.

RMSE =

√√√√ 1
|Test|

∑

(u,i)∈Test

(rui − r̂ui)2, (32)

where |Test| is the size of the test set.

3 http://www.bookcrossing.com/.

http://www.bookcrossing.com/
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Competing Methods. For the in-matrix prediction task, we compared our
method with the following baseline methods:

1. PMF [11]: a state-of-the-art method for rating predictions
2. BPMF [12]: the Bayesian treatment of PMF [11]
3. NMF (non-negative matrix factorization) [4]: a matrix factorization method

which requires the components of user and item factors to be non-negative
4. PIE [8]: the model described in Sect. 2.2
5. SVD++ [2]: a factor model that exploits both explicit and implicit feedback

in rating predictions

For the out-matrix prediction task, we compared our proposed method with
PIE [8], which is described in Sect. 2.2.

Parameter Settings. We varied the dimension of the latent space (d =
20, 30, 50, 100) to study the performance of the models with respect to the dimen-
sionality of the latent feature vectors.

For PMF, NMF and SVD++, we used grid search to find the optimal values
of the hyperparameters that produced the best performance on a validation set.
For the PIE model [8], we fixed λ = 1 and used grid search to find the optimal
values of the remaining parameters that gave good performance on the validation
set. For BPMF [12], hyperparameters were set following the original paper.

Regarding our proposed method, HBFM, for simplicity, we set the parameters
as follows: WF = Id, νF0 = d, γF0 = 1, and μF0 = 0 (F = {X,T,W,Z}).
We adopted uninformative priors for the noise variances; therefore, we set the
hyperparameters for the inverse Gamma distributions as follows: αR = αS =
αθ = αρ = 0 and βR = βS = βθ = βρ = 0. For the Gibbs sampling process,
we ignored the first 1000 samples as “burn-in”. The following 100 samples were
selected to approximate the posterior distributions.

4.3 Results

We report the RMSEs on the test datasets for the in-matrix and out-matrix
prediction tasks in Tables 2 and 3, respectively. We can see that HBFM outper-
formed the competing methods for all values of d.

For small values of d (e.g., d = 20, 50), PIE and HP-PIE perform better than
the other methods, indicating the effectiveness of exploiting click data in boosting
the performance of rating predictions. When d exceeds 150, the test RMSEs
for PMF, NMF, SVD++, and PIE tend to increase, whereas those for BPMF
and HBFM continue to decrease. This is because when d increases, the number
of parameters increases and the models become more complex. PMF, NMF,
SVD++, and PIE do not handle the complexity of the model well; therefore,
they tend to overfit. By contrast, BPMF and HBFM, which can manage the
complexity of the models well, continue improving the test RMSEs. This shows
that the full Bayesian model that can manage the uncertainty of the model
parameters is an effective approach for avoiding overfitting.
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Table 2. Test RMSEs for different numbers of latent features

(a) ML1-20 dataset

Methods # of latent features d

20 50 100 150 200

PMF 1.0053 0.9941 0.9574 0.9628 0.9715

NMF 0.9971 0.9734 0.9571 0.9605 0.9711

SVD++ 0.9464 0.9342 0.9023 0.9148 0.9235

BPMF 0.9339 0.9191 0.8971 0.8824 0.8731

PIE 0.9218 0.9021 0.8911 0.9013 0.9125

HBFM 0.9012 0.8834 0.8617 0.8594 0.8512

(b) ML20-20 dataset

Methods # of latent features d

20 50 100 150 200

PMF 0.9627 0.9098 0.8832 0.8901 0.9015

NMF 0.8988 0.8927 0.8856 0.8942 0.9031

SVD++ 0.8947 0.8655 0.8532 0.8598 0.8641

BPMF 0.8804 0.8576 0.8462 0.8397 0.8301

PIE 0.8788 0.8532 0.8474 0.8501 0.8602

HBFM 0.8521 0.8401 0.8325 0.8245 0.8189

(c) Bookcrossing dataset

Methods # of latent features d

20 50 100 150 200

PMF 2.0231 2.0105 1.9834 1.9921 1.9989

NMF 1.9477 1.9132 1.9092 1.9132 1.9198

SVD++ 1.8090 1.7968 1.7729 1.7823 1.7891

BPMF 1.7941 1.7873 1.7728 1.7693 1.7601

PIE 1.6704 1.6501 1.6341 1.6401 1.6487

HBFM 1.6623 1.6431 1.6028 1.5931 1.5867

Table 3. Test RMSEs for the out-matrix prediction task

# of features ML1-20 ML20-20 Bookcrossing

PIE HBFM PIE HBFM PIE HBFM

20 1.0066 0.9902 0.9686 0.9523 1.7257 1.7028

50 1.0062 0.9811 0.9436 0.9357 1.6484 1.6245

100 1.0044 0.9801 0.9374 0.9211 1.6398 1.6201

150 1.0089 0.9758 0.9403 0.9188 1.6405 1.6178

200 1.0132 0.9695 0.9489 0.9101 1.6497 1.6102
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Impact of the Sparsity of the Dataset on the Methods. We studied the
effectiveness of the proposed method for datasets with different levels of sparsity
by training models with the ML1-10, ML1-20, ML1-50, ML20-10, ML20-20 and
ML20-50 datasets. The test RMSEs are shown in Table 4.

Table 4. Test RMSEs for datasets with different levels of sparsity. The dimensionality
of feature vectors is fixed: d = 20

(a) In-matrix prediction

Method ML1m ML20m

ML1-10 ML1-20 ML1-50 ML20-10 ML20-20 ML20-50

PMF 1.0471 0.9941 0.9574 0.9627 0.9098 0.8532

NMF 1.0179 0.9734 0.9571 0.8988 0.8927 0.8856

SVD++ 0.9757 0.9342 0.9023 0.8947 0.8655 0.8489

BPMF 0.9364 0.9191 0.8971 0.8804 0.8576 0.8362

PIE 0.9318 0.9021 0.8801 0.8788 0.8532 0.8474

HBFM 0.9012 0.8834 0.8617 0.8521 0.8401 0.8325

(b) Out-matrix prediction

Method ML1m ML20m

ML1-10 ML1-20 ML1-50 ML20-10 ML20-20 ML20-50

PIE 1.0376 1.0066 0.9961 0.9762 0.9686 0.9601

HBFM 1.0231 0.9913 0.9728 0.9634 0.9521 0.9489

We can observe that denser rating data improved test RMSE values for all
methods. This is reasonable because when more rating data are available for
training, the prediction is more accurate. When the data are extremely sparse
(e.g., ML1-10 or ML20-10), although managing the complexity of the model for
sparse data is a challenging task, PIE and HBFM perform better than the other
methods because they leverage the sparsity of rating data by the click data. For
all settings, HBFM outperforms the competing methods. These results clearly
show the effectiveness of exploiting click data and managing the complexity of
sparse datasets.

Performance for Different Segmentations of Users. We further test the
effectiveness of our method with different segments of users. We divided users
into three segments based on the number of items for which they had provided
ratings, and compared the performances of the methods for each group. These
segments are: (i) low : users who provide fewer than 20 ratings; (ii) medium: users
who provide fewer than 50 and more than 20 ratings; and (iii) high: users who
provide 50 or more ratings.

The test RMSEs in Fig. 2 show that our method (HBFM) outperforms all
competing methods for all user segments for the three datasets. From the results,
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(a) ML1-20 dataset (b) ML20-20 dataset (c) Bookcrossing dataset

Fig. 2. Test RMSEs for different segmentations of users

we can also see that all the methods perform better when more explicit feedback
is provided. This is reasonable because explicit feedback is much more reliable
than implicit feedback for inferring users’ preferences.

5 Discussion and Future Work

In this paper, we have proposed HBFM, a fully Bayesian model that combines
explicit and implicit feedback to address the cold-start problem in collaborative
filtering. This is a Bayesian treatment of the PIE model [8], in which priors are
placed on the hyperparameters such as the covariance matrix of latent feature
vectors or the variance of rating data. We developed a Gibbs sampling-based
method to approximate the posterior distributions over latent feature vectors of
users and items. The experiments show that HBFM provides good control over
the capacity, and can be applied to models with large numbers of parameters
and very sparse data.

Several future directions are possible. One is to make the model more flexible
by developing a nonparametric algorithm that can efficiently find the appropriate
dimensionality of latent feature vectors instead of empirically tuning the method.
Another direction is to generalize the model to adopt different types of explicit
feedback. In the present model, we assumed that the rating data were random
variables with Gaussian distributions. This model may not work well when the
data are binary feedback (e.g., like/dislike, purchase/not purchase); in that case,
a Bernoulli distribution model may be more suitable.
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