
Detect Tracking Behavior Among
Trajectory Data

Jianqiu Xu(B) and Jiangang Zhou

Nanjing University of Aeronautics and Astronautics, Nanjing, China
{jianqiu,jiangangzhou}@nuaa.edu.cn

Abstract. Due to the continuing improvements in location acquisi-
tion technology, a large population of GPS-equipped moving objects are
tracked in a server. In emergency applications, users may want to detect
whether a target is tracked by another object. We formulate the tracking
behavior by continuous distance queries in trajectory databases. Index
structures are developed to improve the query performance. Using real
trajectories, we demonstrate answering continuous distance queries in
a database system and animating moving objects fulfilling the distance
condition in the user interface. The result benefits mining the interesting
behavior among trajectory data and answering distance join queries.

1 Introduction

The rise of GPS-equipped mobile devices has led to the emergence of big trajec-
tory data. A large amount of historical trajectory data has become available for
emerging applications such as traffic monitor and location-based services. Real
time tracking has been studied to efficiently track an object’s trajectory in real-
time [12]. However, so far little attention has been paid to detect the tracking
behavior over historical movement. That is, given a query trajectory oq and a
distance threshold d, we aim to find whether there is any object keeping some
distance to oq at each time point of oq. We formulate the problem by continuous
distance queries over trajectory data in which users define a threshold to return
objects within a distance (e.g., 500 m) to the query.

Consider an example in Fig. 1. There are five trajectories {o1, o2, o3, o4, o5}
and the task is to find whether o3 is tracked by another object during [t1, t2].
Suppose that a short distance d is defined, e.g., 500 m. In the example, we will
find o4 following o3. Other objects are within the distance to o3 but only for
a short time period. This will not be treated as tracking behavior. To find the
tracker, we need to compute the time-dependent distance between trajectories
and determine whether the period fulfilling the distance condition contains each
time point of the query trajectory. This is not a simple task because the precise
distance needs to be determined. One may think of using the continuous nearest
neighbor query to find the tracking behavior, but such a query will return objects
with small distances at each piece of time. We need to figure out the precise
distance and find whether there are objects that always keep a certain distance
to the target rather than only at a short period.
c© Springer International Publishing AG 2017
G. Cong et al. (Eds.): ADMA 2017, LNAI 10604, pp. 872–878, 2017.
https://doi.org/10.1007/978-3-319-69179-4_64



Detect Tracking Behavior Among Trajectory Data 873

Fig. 1. Detect tracking behavior

In the literature, a lot of effort has gone to process k nearest neighbor queries
in which a distance function is defined to return k objects with the smallest dis-
tance to the target. Due to diverse spatial environments, e.g., free space [8], road
network [13] and obstacle space [5], different distance functions are used. The dis-
tance is a static value if a time point is considered and becomes a time-dependent
function if the continuous query over a time period is considered. The latter
is non-trivial because the distance varies over time such that returned objects
change at certain points. In some special applications, the tracking behavior is
helpful to find interesting objects that cannot be discovered by nearest neighbor
queries. For example, to look for the tracker or travelers with common routes, we
would like to search the object that always keeps a certain distance to the target
rather than the nearest object at certain time points. On one hand, the nearest
object to the target may change at some points or places. On the other hand,
the nearest object is usually not the tracker because of being easily exposed.

In the demo, we detect the tracking behavior by using continuous distance
queries. To be general, the query is of three forms in terms of distance para-
meters. We are able to search objects within or out of a certain distance to the
target. To efficiently answer the query, several trajectory indexes are provided in
the system such as 3D R-tree and TB-tree. We propose a novel index structure
that combines the grid index and R-tree. Given a query trajectory, one quickly
calculates the cells within the query distance. During the R-tree traversal, we
make use of the index structure to prune the space that cannot contribute to
the result. Real datasets are used in the demonstration scenario for continuous
distance queries and distance join queries.

The rest of the paper is organized as follows. We review the related work in
Sect. 2, formulate the problem and introduce the solution in Sect. 3, demonstrate
continuous distance queries in Sect. 4, followed by conclusions in Sect. 5.

2 Related Work

In the literature, tremendous efforts have been made on querying trajecto-
ries including nearest neighbors [6,8], similarity search [4,17] and pattern



874 J. Xu and J. Zhou

discovery [10,14]. Those works focus on searching some targets close to the
query, but do not consider a precise distance function to evaluate the query.
Calibrating trajectory data is studied in [17], the goal of which is to transform
heterogeneous trajectories to one with unified sampling strategies. Discoverying
convoys in trajectory databases is to return groups of objects such that each
group consists of a set of density-connected objects which should satisfy the
distance requirement over a certain time period. Trajectory clustering [9,11,15]
also aims to form groups such that (i) points within the same group are close
to each other, and (ii) points from different groups are far apart. However, the
distance in convoy and cluster queries is calculated at each time point but not
a time-dependent function as we use for processing continuous queries. In addi-
tion, discovery of convoys and clusters in trajectory database shows the behavior
for a group of objects. In contrast, we aim to find whether a target is tracked by
another object, which is an individual behavior.

The closest-point-of-approach join is studied in [2,18], the task of which is
to return all object pairs. Each pair of trajectories has the distance less than a
threshold at some point in time. This is not a continuous query and cannot be
used to detect the tracking behavior. Two objects close to each other at some
point in time do not mean that one is tracked by another. Probably this is treated
as passby or overtaken. We generalize the distance query by considering a time
interval such that the distance between two trajectories is less than a certain
value at each time point during the query.

3 The Framework

3.1 Problem Definition

Let the database O be a set of trajectories, each of which consists of a sequence
of temporal units. Each unit represents the movement over a time interval by
recording start and end locations. Locations between them are estimated by
interpolation. Given two trajectories o1, o2 ∈ O, we let dist(o1, o2, t) return the
distance between o1 and o2 at time point t.

Definition 1 (Tracking behavior). Let T (o)(o ∈ O) return the time period of
a trajectory. Given a query trajectory oq ∈ O and a distance d, we define oq’s
tracker by

Tracker(oq) ∈ O : ∀t ∈ T (oq), dist(oq,Tracker(oq), t) < d

We generalize the query by defining a distance range, i.e., d = [d1, d2]. If
d1 = 0 and d2 > 0, this is used to find the tracking behavior. If 0 < d1 < d2, we
can return objects between d1 and d2 to the target which may also be trackers.
If d1 > 0 and d2 = ∞, objects that are further than a certain distance to the
target are found and can be used to exclude suspicious objects.



Detect Tracking Behavior Among Trajectory Data 875

3.2 The Solution

An outline of the solution is provided in Fig. 2. To efficiently find trajectories
within a certain distance to the target, an index structure is essentially needed.
We have implemented well established trajectory indexes including TB-tree [16],
3D R-tree and Grid index [3]. We perform a traversal on the indexes to retrieve
trajectories that approximately belong to the result and then do the exact dis-
tance computation. The distance function over a time period is represented by
a parabola function. We will receive pieces of distance functions and split tra-
jectories at certain points to restrict the movement fulling the query condition.
The method is able to find the tracking behavior but can be further optimized.

Fig. 2. An overview

To enhance the performance, we propose an index structure that combines the
grid index and R-tree, as shown in Fig. 3. The 2D space is partitioned into a set of
equal-size cells and trajectories are decomposed according to cells. That is, each
trajectory is split into pieces and each piece is limited to a cell. We sort trajectory
pieces by cell id, time and the spatial box. Each leaf R-tree node only contains
trajectories from the same cell. The query procedure will make use of the cells to
prune the search space. We first determine the cells in which the query trajectory
is located. Since cells have the same size, we can quickly calculate target cells which
are within the specified distance to the query trajectory.Target cells will be used to

Fig. 3. Grid R-tree



876 J. Xu and J. Zhou

prune R-tree nodes that do not cover target cells because only trajectories located
in target cells will contribute to the result.

4 Demonstration

The implementation is developed in an extensible database system SEC-
ONDO [7] and program in C/C++. We use real datasets from a data company
DataTang [1] including 1,675,667 GPS records of Beijing taxis. There are 22,269
trajectories in total.

In the demonstration, we randomly select a trajectory from the dataset
and search trajectories keeping the specified distance to the query during its
whole life time. Two distance parameters are defined: (i) d = [0 m, 5000 m]; and
(ii) d = [5000 m, 20000 m] and the results colored by green are displayed in Fig. 4.
We are able to animate moving objects in the java interface such that one can
observe how returned objects change over time. If an object always keeps the
distance to the query, then it is the tracker.

(a) within 5km (b) between 5km and 20km

Fig. 4. Continuous distance queries (Color figure online)

Distance join queries. We also demonstrate distance join queries over trajecto-
ries, as illustrated in Fig. 5. The result is a set of pairs of trajectories such that
each pair colored by green and red has the period of the intersection time more
than a certain value (e.g., 15 min) and the distance always less than a thresh-
old during the period. This would help finding common traveling routes among
different travelers and discovering potential relationships such as neighbor and
colleague.

Index performance. By scaling the distance parameter d = {[0, 5 km], [0, 10 km],
[0, 20 km]}, we compare the query performance of methods using different index
structures, as reported in Fig. 6. One can see that 3D R-tree and TB-tree out-
perform the grid index up to an order of magnitude.



Detect Tracking Behavior Among Trajectory Data 877

Fig. 5. Distance join queries (Color
figure online)

Fig. 6. Performance comparison

5 Conclusions

We study detecting the tracking behavior over trajectory data and formulate
the problem by continuous distance queries. The framework of processing the
queries is introduced including partitioning the data, building index structures,
developing query algorithms and animating moving objects in the user interface.
We demonstrate answering continuous distance and distance join queries in a
prototype database system.

The future work is to evaluate the system performance by using big trajectory
data and flexibly visualize a large number of trajectories in the user interface.

Acknowledgment. This work is supported by NSFC under grant numbers 61300052
and the Fundamental Research Funds for the Central Universities NO. NZ2013306.

References

1. http://factory.datatang.com/en/ (2006)
2. Arumugam, S., Jermaine, C.: Closest-point-of-approach join for moving object his-

tories. In: ICDE, p. 86 (2006)
3. Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with

SETI. In: CIDR (2003)
4. Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object

trajectories. In: SIGMOD, pp. 491–502 (2005)
5. Gao, Y., Zheng, B.: Continuous obstructed nearest neighbor queries in spatial

databases. In: ACM SIGMOD, pp. 577–590 (2009)
6. Gao, Y., Zheng, B., Chen, G., Li, Q.: Algorithms for constrained k-nearest neighbor

queries over moving object trajectories. GeoInformatica 14(2), 241–276 (2010)
7. Güting, R.H., Behr, T., Düntgen, C.: SECONDO: a platform for moving objects

database research and for publishing and integrating research implementations.
IEEE Data Eng. Bull. 33(2), 56–63 (2010)

8. Güting, R.H., Behr, T., Xu, J.: Efficient k-nearest neighbor search on moving object
trajectories. VLDB J. 19(5), 687–714 (2010)

http://factory.datatang.com/en/


878 J. Xu and J. Zhou

9. Hung, C.C., Peng, W.C., Lee, W.C.: Clustering and aggregating clues of trajecto-
ries for mining trajectory patterns and routes. VLDB J. 24(2), 169–192 (2015)

10. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. PVLDB 1(1), 1068–1080 (2008)

11. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-
temporal data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD
2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005). doi:10.1007/
11535331 21

12. Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB
J. 20(5), 671–694 (2011)

13. Li, Y., Li, J., Shu, L., Li, Q., Li, G., Yang, F.: Searching continuous nearest neigh-
bors in road networks on the air. Inf. Syst. 42, 177–194 (2014)

14. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object
clusters. PVLDB 3(1), 723–734 (2010)

15. Pelekis, N., Tampakis, P., Vodas, M., Panagiotakis, C., Theodoridis, Y.: In-DBMS
sampling-based sub-trajectory clustering. In: EDBT 2017, pp. 632–643 (2017)

16. Pfoser, D., Jensen, C.S.: Novel approaches in query processing for moving object
trajectories. In: VLDB, pp. 395–406 (2000)

17. Su, H., Zheng, K., Wang, H., Huang, J., Zhou, X.: Calibrating trajectory data for
similarity-based analysis. In: SIGMOD, pp. 833–844 (2013)

18. Zhou, P., Zhang, D., Salzberg, B., Cooperman, G., Kollios, G.: Close pair queries
in moving object databases. In: ACM-GIS, pp. 2–11 (2005)

http://dx.doi.org/10.1007/11535331_21
http://dx.doi.org/10.1007/11535331_21

	Detect Tracking Behavior Among Trajectory Data
	1 Introduction
	2 Related Work
	3 The Framework
	3.1 Problem Definition
	3.2 The Solution

	4 Demonstration
	5 Conclusions
	References




