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Abstract. The estimation of the quantiles is pertinent when one is
mining data streams. However, the complexity of quantile estimation
is much higher than the corresponding estimation of the mean and vari-
ance, and this increased complexity is more relevant as the size of the
data increases. Clearly, in the context of “infinite” data streams, a com-
putational and space complexity that is linear in the size of the data
is definitely not affordable. In order to alleviate the problem complex-
ity, recently, a very limited number of studies have devised incremental
quantile estimators [7,12]. Estimators within this class resort to updating
the quantile estimates based on the most recent observation(s), and this
yields updating schemes with a very small computational footprint –
a constant-time (i.e., O(1)) complexity. In this article, we pursue this
research direction and present an estimator that we refer to as a Higher-
Fidelity Frugal [7] quantile estimator. Firstly, it guarantees a substantial
advancement of the family of Frugal estimators introduced in [7]. The
highlight of the present scheme is that it works in the discretized space,
and it is thus a pioneering algorithm within the theory of discretized
algorithms (The fact that discretized Learning Automata schemes are
superior to their continuous counterparts has been clearly demonstrated
in the literature. This is the first paper, to our knowledge, that proves the
advantages of discretization within the domain of quantile estimation).
Comprehensive simulation results show that our estimator outperforms
the original Frugal algorithm in terms of accuracy.

Keywords: Quantile estimation · Stochastic Point Location · Dis-
cretized estimation

1 Introduction

Estimation is probably the most fundamental and central problem in many areas
of engineering and computer science. The entire training phase of classification
deals with estimation in one way or the other. While solutions to estimating
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the mean (and central or non-central moments) of a distribution have been well
established for centuries, we consider the problem of estimating the quantiles of
a distribution with minimal time and space requirements.

Apart from the phenomenon of estimation, there are three rather distinct
computational paradigms that have emerged within the general area of compu-
tational intelligence listed below:

1. The first of these involves the Stochastic Point Location SPL problem [8]
where the Learning Mechanism (LM) attempts to learn a point on the “line”
when all that it receives are signals from a random environment, i.e., whether
it is to the “Left” or “Right” of the unknown point. This point that the LM
attempts to learn may be, for example, a parameter of a control system.

2. The second of these involves the concept of discretization. Unlike learning
in a continuous probability space, it has been shown that in the field of
Learning Automata (LA), it is advantageous to discretize the probability
space. Discretized LA are, generally speaking, both faster and more accurate
than their corresponding continuous counterparts.

3. The third of these are the unique issues encountered when one seeks to esti-
mate the quantiles of a distribution rather than the mean or central/non-
central moments of a distribution in an incremental manner.

Conceptually, the fundamental contribution of this paper is to present a single
solution that represents the confluence of these three distinct paradigms.

2 On Enhancing the Frugal Estimator

Since our contribution falls into the family of Incremental Quantile Estimators,
we now present an overview of this class of estimators.

2.1 Incremental Quantile Estimators

An incremental estimator, by definition, resorts to the last observation(s) in
order to update its estimate. The research on developing incremental quantile
estimators is sparse. Probably, one of the outstanding early and unique examples
of incremental quantile estimators is due to Tierney, proposed in 1983 [10], and
which resorted to the theory of stochastic approximation. Applications of Tier-
ney’s algorithm to network monitoring can be found in [4]. The shortcoming of
Tierney estimator [10] is that it requires the incremental constructions of local
approximations of the distribution function in the neighborhood of the quan-
tiles, and this increases the complexity of the algorithm. Our goal is to present
an algorithm that does not involve any local approximations of the distribution
function. Recently, a generalization of the Tierney’s [10] algorithm was proposed
by the authors of [5], where the authors proposed a batch update of the quantile,
where the quantile is updated every M ≥ 1 observations.
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In the same context of incremental estimators, Ma, Muthukrishnan and San-
dler [7] recently devised an innovative incremental quantile estimator1 called the
Frugal scheme, that follows randomized rules of updates. The first algorithm
presented in the manuscript of Ma, Muthukrishnan and Sandler [7] is a Frugal
approach for estimating the median. The procedure for estimating the median
is simple but also “surprising”: One increments the estimate of the median by a
fixed amount Δ (Δ > 0) whenever the observation from the data stream is larger
than the median, and decrements the estimate of the median by Δ whenever the
observation is smaller than the corresponding estimate. Nevertheless, the Frugal
algorithm presented later in the same manuscript in order to tackle any quantile
estimate (apart from the median), is not a generalization of the median case.
In fact, according to the general update equations, if we are attempting to find
the 50% quantile (median) of the data stream, we need to increment up ran-
domly with 50% probability (for observations larger than the median estimate)
and decrement down randomly with 50% probability (for observations smaller
than the median estimate). Thus, intuitively, the Frugal [7] algorithm fails to
generalize the median case as we observe that the randomization is unnecessary
for estimating the median. Moreover, we can intuitively infer that the Frugal
algorithm will suffer also from the “unnecessary” randomization for quantile
estimates that fall in neighborhood of 50%.

In [12], Yazidi and Hammer devised a truly multiplicative incremental quan-
tile estimation algorithm. The main difference between that and the current work
is that the latter algorithm operates on a continuous space, while this present
work is in a discretized space.

When it comes to memory efficient methods that require a small storage
footprint, histogram based methods form an important class. Viewed from this
perspective, a representative work is due to Schmeiser and Deutsch [9] who
proposed the use of equidistant bins, where the boundaries are adjusted online.
Arandjelovic et al. [1] used a different idea than equidistant bins by attempting
to maintain bins in a manner that maximizes the entropy of the corresponding
estimate of the historical data distribution, and where the bin boundaries were
adjusted in an online manner.

In [6], Jain et al. resorted to five markers so as to track the quantile, where
the markers corresponded to different quantiles and the min and max of the
observations. Their concept was similar to the notion of histograms, where each
marker had two measurements, its height and its position. By definition, each
marker had some ideal position, and some adjustments were made so as to keep
it in its ideal position by counting the number of samples that exceeded the
marker. Thus, for example, if the marker corresponded to the 80% quantile, its
ideal position would be around the point corresponding to the 80% of the data
points below the marker. Subsequently, based on the positions of the markers,
the quantiles were computed by modeling it such that the curve passing through

1 With some insight, one sees that this elegant median estimation procedure is similar
to the Boyer and Moore algorithm [2] for computing the majority item in a stream,
using only a single pass.



A Higher-Fidelity Frugal Quantile Estimator 79

three adjacent markers was parabolic, and by using piecewise parabolic predic-
tion functions2.

Finally, it is worth mentioning that an important research direction that has
received little attention in the literature revolves around updating the quantile
estimates under the assumption that portions of the data are deleted. Such
an assumption is realistic in many real-life settings where data needs to be
deleted due to the occurrence of errors, or because they are out-of-date and
thus should be replaced. The deletion triggered a re-computation of the quantile
[3], which is considered a complex operation. The case of deleted data is more
challenging than the case of insertion of new data, because data insertion can be
handled easily using either sequential or batch updates, while quantile update
upon deletion requires more complex update operations.

2.2 The Higher-Fidelity Frugal Estimator

To motivate our work, we concur with Arandjelovic et al. [1] who remark that
most quantile estimation algorithms are not single-pass algorithms and are, thus,
not applicable for streaming data. On the other hand, the single pass algorithms
are concerned with the exact computation of the quantile and thus require a
storage space of the order of the size of the data which is clearly an unfeasible
condition in the context of “Big Data” streams. Thus, the work on quantile
estimation using more than one pass, or storage of the same order of the size of
the observations seen so far, is not relevant in the context of this paper. We also
affirm the need for storage-constrained and single-pass algorithms.

In this article, we extend the results from Frugal [7] and present a Higher-
Fidelity Frugal (H-FF) scheme where the median can be seen as an instantiation
of our algorithm and not as exceptional case that requires a different set of rules.
In addition, our H-FF scheme is shown to be faster and more accurate than the
original Frugal scheme [7]. For the rest of the paper, in order to avoid confusion,
we will refer to the original Frugal algorithm due to Ma, Muthukrishnan and
Sandler [7], as the Original Frugal (OF). As mentioned earlier, our H-FF algo-
rithm is based on the theory of Stochastic Point Location [8], and although the
latter theory has found applications within discretized binomial and multinomial
estimation in [13], as we shall see, its application here is unique. In addition, one
can observe that the binomial/multinomial discretized estimators proposed by
Yazidi et al. in [11,14] and Frugal [7] are similar. In fact, if we use the same
update equations as in [11,14] with the “binary” observation being whether the
current estimate sample is larger than the current estimate, then, interestingly,
we obtain the OF scheme [7]!

2 Clearly, though, such an approach would not be able to handle the case of non-
stationary quantile estimation as the positions of the markers would be affected by
stale data points.



80 A. Yazidi et al.

Let Qi = a + i. (b−a)
N and suppose that we are estimating the quantile in the

interval3 [a, b]. Note Q0 = a and QN = b. Let Δ be (b−a)
N . Further, we suppose

that the estimate at each time instant ̂Q(n) takes values from the N +1 possible
values, i.e., Qi = a + i.Δ, where 0 ≤ i ≤ N .

For the sake of completeness, we will give the update equations for the OF
algorithm introduced in [7]. Please note that the equations are slightly modified
so as to obtain estimates within [a, b]. In addition, the step size Δ has a general
form and is not limited to unity as done in [7].

̂Q(n + 1) ← Min( ̂Q(n) + Δ, b), If ̂Q(n) ≤ x(n) and rand() ≤ q, (1)
̂Q(n + 1) ← Max( ̂Q(n) − Δ, a), If ̂Q(n) > x(n) and rand() ≤ 1 − q, (2)
̂Q(n + 1) ← ̂Q(n), Otherwise, (3)

where Max(., .) and Min(., .) denote the max and min operator of two real
numbers while rand() is a random number generated in [0, 1].

Our H-FF algorithm has two different update equations depending on
whether the quantile we are estimating is larger or smaller than the median.

Update equation for q ≤ 0.5:

̂Q(n + 1) ← Min( ̂Q(n) + Δ, b), If ̂Q(n) ≤ x(n) and rand() ≤ q

1 − q
, (4)

̂Q(n + 1) ← Max( ̂Q(n) − Δ, a), If ̂Q(n) > x(n), (5)
̂Q(n + 1) ← ̂Q(n), Otherwise. (6)

Update equations for q > 0.5:

̂Q(n + 1) ← Min( ̂Q(n) + Δ, b), If ̂Q(n) ≤ x(n), (7)

̂Q(n + 1) ← Max( ̂Q(n) − Δ, a), If ̂Q(n) > x(n) and rand() ≤ 1 − q

q
, (8)

̂Q(n + 1) ← ̂Q(n), Otherwise. (9)

Theorem 1. Let us assume that we are estimating the q-th quantile of the
distribution, i.e., Q∗ = FX

−1(q). Then, applying the updating rules given by
Eqs. (4)–(6) for the case when q ≤ 0.5, and Eqs. (7)–(9) when q > 0.5 yields:
limN→∞ limn→∞ E( ̂Q(n)) = Q∗.

The proof of theorem is quite involved and is omitted here for the sake of brevity.
The proof can be found in a unabridged version of this article [15].

3 Throughout this paper, there is an implicit assumption that the true quantile lies
in [a, b]. However, this is not a limitation of our scheme; the proof is valid for any
bounded and probably non-bounded function.
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2.3 Salient Differences Between the H-FF, SPL and OF

It is pertinent to mention that there are some fundamental differences between
the H-FF and the SPL, both with regard to their computational paradigms and
with regard to their respective analyses. There are also some fundamental dif-
ferences between the H-FF and the OF schemes. We state them briefly below.

2.3.1 Differences Between the Paradigms of the H-FF and SPL
The following are the differences between the paradigms of the H-FF and SPL:

– Although the rationale for updating in the H-FF is apparently similar to that
of the SPL algorithm [8], there are some fundamental differences. First, we
emphasize that the SPL has a significant advantage. Indeed, the SPL assumes
the existence of an “Oracle”, the presence of which is, unarguably, a “bonus”.
In our case, since there is no “Oracle”, the H-FF scheme has to simulate such
an entity. Or more precisely, it has to infer the behavior of a fictitious “Oracle”
from the incoming samples.

– Further, unlike the SPL, the H-FF has no specific LM either. The learning
properties of the LM must now be encapsulated into the estimation procedure.

2.3.2 Differences Between the Analyses of the H-FF and SPL
The following are the differences between the analyses of the H-FF and SPL:

– From a cursory perspective, it could appear as if the Markov Chain that we
have presented, and its analysis, are rather identical to those presented in [8].
However, although the similarities are few, the differences are more vital. The
main differences are the following:
1. First of all, unlike the original SPL, there is a non zero probability that

in our present updating scheme, the estimate remains unchanged at the
next time instant.

2. As opposed to original SPL, in our case, the scheme never stays at the
same state at the next time instant, except at the end states. Rather, the
environment (our simulated “Oracle”) directs the simulated LM to move
to the right or to the left, or to stay at the same position.

– Unlike the work of [8], the probability that the “Oracle” suggests the move
in the correct direction, is not constant over the states of the estimator’s
state space. This is quite a significant difference, since it renders our model
to be characterized by a Markov Chain with state-dependent transition
probabilities.

– A major advantage of this estimator and SPL-based estimators, in general,
is that they are, by design, adequate to dynamic environments. In fact, the
estimator is memory-less, and this is a consequence of the Markovian property.
Thus, whenever a change takes place in the unknown underlying value of
the target quantile to be tracked, our H-FF will instantly change its search
direction since the properties of transition probabilities of the underlying
random walk, change too.
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2.3.3 Other Salient Differences Between the H-FF and OF

– Our H-FF is “semi-randomized” in the sense that only one direction of the
updates is randomized and not both directions as in the case of the OF algo-
rithm. In fact, whenever q ≤ 0.5, we observe that the randomization is only
applied for moving to the left (decrementing the estimate with probability
q

1−q which is less than unity). Similarly, when estimating a quantile q such
that q > 0.5, the randomization is only applied for moving to the right (incre-
menting the estimate with probability 1−q

q , which is again strictly less than
unity).

– A fundamental observation is that for the median case, i.e., when q = 05, we
obtain the Frugal update proposed as a exceptional case that deviates from
the main scheme in [7] since q

1−q = 1. Formally, the median is estimated as
follows:

̂Q(n + 1) ← Min( ̂Q(n) + Δ, b) if ̂Q(n) ≤ x(n), (10)
̂Q(n + 1) ← Max( ̂Q(n) − Δ, a) if ̂Q(n) > x(n). (11)

3 Experimental Results

In order to demonstrate the strength of our scheme (denoted as H-FF), we have
rigorously tested it and compared it to the OF estimator proposed in [7] for dif-
ferent distributions, under different resolution parameters, and in both dynamic
and stationary environments. The results we have obtained are conclusive and
demonstrate that the convergence of the algorithms conforms to the theoretical
results, and proves the superiority of our design to the OF algorithm [7]. To do
this, we have used data originating from different distributions, namely:

– Uniform in [0, 1],
– Normal N(0, 1),
– Exponential distribution with mean 1 and variance 1, and
– Chi-square distribution with mean 1 and variance 2.

In all the experiments, we chose a to be −8 and b to 8. Note that whenever the
resolution was N , the estimate was moving with either an additive or subtractive
step size equal to b−a

N . Thus, a larger value of the resolution parameter, N ,
implied a smaller step size, while a lower value of the resolution parameter, N ,
led to smaller step sizes. Initially, at time 0, the estimates were set to the value
Q�∗�N

2
. The reader should also note that an additional aim of the experiments

was to demonstrate the H-FF’s salient properties as a novel quantile estimator
using only finite memory.

In this set of experiments, we examined various stationary environments. We
used different resolutions, and as mentioned previously, we set [a, b] = [−8, 8].
In each case, we ran an ensemble of 1,000 experiments, each consisting of 500
iterations.
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In Tables 1, 2, 3 and 4, we report the estimation error for the OF and H-FF
for different values of the resolutions, N , for the Uniform, Normal, Exponential
and Chi-squared distributions respectively. We catalogue the results for different
values of the quantile being estimated, namely, q: 0.1, 0.3, 0.499, 0.7 and 0.9.
From these tables we observe that the H-FF outperformed the OF in almost all
the cases, i.e., for different distributions and for different resolutions. A general
observation is that the error for both schemes diminished as we increased the
resolution. For example, from Table 1, we see that the error for q = 0.1 decreased
from 0.144 to 0.044 as the resolution increased from 50 to 500.

Table 1. The estimation error for the OF and H-FF algorithms for the Uniform dis-
tribution and for different values of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,144 0,144 0,197 0,198 0,245 0,246 0,220 0,220 0,176 0,175

100 0,104 0,103 0,146 0,146 0,160 0,161 0,157 0,159 0,122 0,122

150 0,074 0,075 0,121 0,122 0,135 0,137 0,128 0,131 0,100 0,101

200 0,069 0,068 0,106 0,107 0,117 0,120 0,113 0,115 0,088 0,089

250 0,063 0,063 0,096 0,097 0,106 0,109 0,102 0,106 0,081 0,083

300 0,055 0,056 0,089 0,090 0,098 0,104 0,096 0,102 0,080 0,082

350 0,051 0,052 0,083 0,085 0,091 0,097 0,094 0,099 0,081 0,084

400 0,050 0,050 0,078 0,081 0,088 0,095 0,091 0,098 0,082 0,086

450 0,046 0,047 0,075 0,077 0,083 0,091 0,089 0,098 0,083 0,087

500 0,044 0,044 0,072 0,075 0,082 0,091 0,088 0,097 0,084 0,089

A very intriguing characteristic of our estimator is that as the resolution
increased, the estimation error diminished (asymptotically). In fact, the limited
memory of the estimator did not permit us to achieve zero error, i.e., 100%
accuracy. As noted in the theoretical results, the convergence centred around the
smallest interval [zΔ, (z+1)Δ] containing the true quantile. Informally speaking,
a higher resolution increased the accuracy while a low resolution decreased the
accuracy.

Another interesting remark is that both the OF and H-FF seemed to perform
almost equally well for extreme quantiles, i.e., quantiles that are close to 0 or
close to 1. However, as the true value of the quantile to be estimated became
closer to 0.5, i.e., median, the H-FF had a markedly clearer superiority when
compared to the OF.

The reader should note that the choice of 0.499 instead of 0.5 was deliberate
in order to “avoid” using the exceptional rules presented with regard to the
OF in [7], and that coincide with the rules of H-FF for the median. Thus, the
estimation of the quantile for the value 0.499 was performed using the OF rules
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Table 2. The estimation error for the OF and H-FF algorithms for the Normal distri-
bution and for different values of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,341 0,339 0,376 0,377 0,361 0,358 0,377 0,376 0,956 0,956

100 0,259 0,259 0,258 0,260 0,251 0,250 0,259 0,258 1,030 1,042

150 0,235 0,239 0,210 0,213 0,205 0,203 0,212 0,212 1,082 1,096

200 0,229 0,236 0,188 0,192 0,176 0,175 0,190 0,191 1,122 1,133

250 0,233 0,244 0,171 0,175 0,157 0,156 0,170 0,175 1,154 1,170

300 0,242 0,258 0,161 0,165 0,144 0,142 0,160 0,168 1,187 1,204

350 0,254 0,272 0,152 0,162 0,133 0,129 0,152 0,159 1,216 1,237

400 0,273 0,293 0,148 0,155 0,124 0,120 0,148 0,158 1,245 1,273

450 0,290 0,310 0,143 0,155 0,116 0,113 0,144 0,154 1,277 1,302

500 0,305 0,329 0,142 0,154 0,112 0,109 0,142 0,152 1,303 1,332

Table 3. The estimation error for the OF and H-FF algorithms for the Exponential
distribution and for different values of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,159 0,158 0,253 0,254 0,335 0,332 0,399 0,401 0,473 0,464

100 0,109 0,109 0,181 0,182 0,235 0,237 0,285 0,290 0,378 0,385

150 0,078 0,078 0,149 0,148 0,193 0,198 0,237 0,247 0,370 0,381

200 0,074 0,073 0,129 0,130 0,169 0,174 0,215 0,227 0,386 0,404

250 0,066 0,066 0,116 0,117 0,153 0,160 0,204 0,219 0,416 0,442

300 0,057 0,058 0,107 0,109 0,141 0,152 0,200 0,218 0,459 0,489

350 0,056 0,056 0,099 0,102 0,134 0,147 0,195 0,219 0,501 0,540

400 0,053 0,053 0,095 0,097 0,130 0,144 0,197 0,223 0,544 0,587

450 0,048 0,048 0,090 0,094 0,125 0,142 0,199 0,228 0,598 0,639

500 0,047 0,048 0,088 0,091 0,122 0,142 0,203 0,237 0,638 0,687

as per Eqs. (1)–(3) to avoid the unnecessary randomization of the OF around
the median that could lead to higher errors, which was the earlier-mentioned
shortcoming of the OF scheme.

Please note too that for the target values of the quantiles that were close to
the initial point 0, the error was smaller than for those that are far away from
initial point. Thus, for example, in Table 1, the error was lowest for the 10%
quantile which is 0.1, which in this case, is closer to 0 than any other quantile
in the the table, namely, 0.3 0.499, 0.7 and 0.9.
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Table 4. The estimation error for the OF and H-FF algorithms for the Chi-squared
distribution and for different values of the resolutions N and target quantiles.

q 0.1 0.3 0.499 0.7 0.9

N H-FF OF H-FF OF H-FF F H-FF OF H-FF OF

50 0,088 0,088 0,254 0,254 0,348 0,345 0,453 0,454 0,600 0,606

100 0,063 0,063 0,149 0,149 0,234 0,231 0,322 0,326 0,519 0,525

150 0,051 0,052 0,126 0,125 0,192 0,192 0,270 0,272 0,535 0,567

200 0,045 0,045 0,105 0,104 0,167 0,170 0,245 0,253 0,597 0,638

250 0,040 0,040 0,094 0,095 0,150 0,153 0,227 0,243 0,686 0,731

300 0,037 0,036 0,085 0,085 0,139 0,142 0,220 0,238 0,765 0,822

350 0,033 0,033 0,079 0,079 0,129 0,136 0,218 0,239 0,842 0,915

400 0,031 0,031 0,074 0,075 0,122 0,128 0,220 0,244 0,933 0,987

450 0,029 0,029 0,070 0,070 0,118 0,125 0,218 0,254 1,003 1,062

500 0,027 0,027 0,067 0,068 0,113 0,121 0,222 0,258 1,073 1,134

4 Conclusion

This paper describes a scheme which is a confluence of three paradigms, namely,
working with the foundations of Stochastic Point Location (SPL), the discretized
world, and estimation of the quantiles in an incremental manner. We present a
new quantile estimator which merges all these three concepts, and which we refer
to as a Higher-Fidelity Frugal [7] (H-FF) quantile estimator. We have shown
that the H-FF represents a substantial advancement of the family of Frugal
estimators introduced in [7], and in particular to the so-called Original Frugal
(OF) estimator.

Simulation results show that our estimator outperforms the OF algorithm in
terms of accuracy.
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