
Comparing MapReduce-Based k-NN Similarity
Joins on Hadoop for High-Dimensional Data

Přemysl Čech1(B), Jakub Maroušek1, Jakub Lokoč1, Yasin N. Silva2,
and Jeremy Starks2

1 SIRET Research Group, Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

{cech,lokoc}@ksi.mff.cuni.cz, marousej@artax.karlin.mff.cuni.cz
2 Arizona State University, Tempe, USA

{ysilva,Jeremy.Starks}@asu.edu

Abstract. Similarity joins represent a useful operator for data mining,
data analysis and data exploration applications. With the exponential
growth of data to be analyzed, distributed approaches like MapReduce
are required. So far, the state-of-the-art similarity join approaches based
on MapReduce mainly focused on the processing of vector data with less
than one hundred dimensions. In this paper, we revisit and investigate the
performance of different MapReduce-based approximate k-NN similarity
join approaches on Apache Hadoop for large volumes of high-dimensional
vector data.

Keywords: Hadoop · MapReduce · k-NN · Approximate similarity
join · HTTPS data

1 Introduction

The k-NN similarity joins serve as a powerful tool in many domains. In the
data mining and machine learning context, k-NN joins can be employed as
a preprocessing step for classification or cluster analysis. In data exploration
and information retrieval, similarity joins provide a similarity graph with the
most relevant entities for each object in the database. Their applications can be
found for example in the image and video retrieval domain [6,7], and in network
communication analysis and malware detection frameworks [2,10]. Because data
volumes are often too large to be processed on a single machine (especially for
high-dimensional data), we study the use of the distributed MapReduce environ-
ment [5] on Hadoop1. Hadoop MapReduce is a widely adopted technology and
considered an efficient and scalable solution for distributed big data processing.

Related papers [8,14,15] have deeply analyzed advantages, disadvantages and
bottlenecks of distributed MapReduce systems Hadoop and Spark2. [21]. In this

1 http://hadoop.apache.org/.
2 http://spark.apache.org/.
c© Springer International Publishing AG 2017
G. Cong et al. (Eds.): ADMA 2017, LNAI 10604, pp. 63–75, 2017.
https://doi.org/10.1007/978-3-319-69179-4_5

http://hadoop.apache.org/
http://spark.apache.org/

64 P. Čech et al.

paper, we study similarity join algorithms that were designed and implemented
on Apache Hadoop. The comparison considers methods employing data organiza-
tion/replication strategies initialized randomly as they enable convenient appli-
cation and usage on different domains. Although a study tackling similarity joins
have been previously published for Hadoop [18], the study focused just on two-
dimensional data. The need of effective and efficient high-dimensional-data k-NN
similarity joins led us to revise available MapReduce algorithms and integrate
further adaptations. In the paper, we study three different approaches which
offer diverse ways of approximate query processing with a promising trade-off
between error and computation time (when compared to exact k-NN similarity
joins).

The main contribution of this paper is a revision of similarity join algorithms
and their comparison. Particularly, we report findings for high-dimensional
data (200, 512 and 1000 dimensions) and show the benefits of the pivot-based
approach.

The paper is structured in the following order. In Sect. 2, all essential defin-
itions are presented. Section 3 summarizes all investigated k-NN similarity join
algorithms with revisions. In Sect. 4, we examine the presented approaches in
multiples experimental evaluations and discuss the results, and finally, in Sect. 5,
we conclude the paper.

2 Preliminaries

In this section, we present fundamental concepts and basic definitions related
to approximate k-NN similarity joins. All the definitions use the standard nota-
tions [18,22].

2.1 Similarity Model and k-NN Joins

In this paper we address the efficiency of k-NN similarity joins of objects oi
modeled by high-dimensional vectors voi ∈ R

n. In the following text, a shorter
notation vi will be used instead of voi . In connection with a metric distance
function δ : R

n × R
n → R

+
0 , the tuple M = (Rn, δ) forms a metric space that

serves as a similarity model for retrieval (low distance means high similarity and
vice versa)3.

Let us suppose two sets of objects in a metric space M : database (train)
objects S ⊆ R

n and query (test) objects R ⊆ R
n. The similarity join task is

to find the k nearest neighbors for each query object q ∈ R from the set S
employing a metric function δ. Usually, the Euclidean (L2) metric is employed.
Formally:

kNN(q, S) = {X ⊂ S; |X| = k ∧ ∀xi ∈ X,∀y ∈ S − X : δ(q, xi) ≤ δ(q, y)}

3 Note that the effectiveness of the distance function and feature extraction mapping
from oi to vi is the subject of similarity modeling.

Hadoop MapReduce k-NN Joins for High-Dimensional Data 65

The k-NN similarity join is defined as:

R �� S = {(q, s)|q ∈ R, s ∈ kNN(q, S)}.

Because of the high computational complexity of similarity joins, we focus on
approximations of joins which can significantly reduce computation costs while
keeping reasonable precision. Formally an approximate k-NN query for an object
q ∈ R is labeled as kNNa(q) and defined as ε-approximation of exact k-NN:

kNNa(q, S) = {X ⊂ S; |X| = k∧
max

xi∈kNN(q,S)
δ(q, xi) ≤ max

xi∈X
δ(q, xi) ≤ ε · max

xi∈kNN(q,S)
δ(q, xi)}

where ε ≥ 1 is an approximation constant. The corresponding approximate
k-NN similarity join is defined as:

R ��a S = {(q, s)|q ∈ R, s ∈ kNNa(q, S)},

For high-dimensional vector representations, all the pairwise distances
between dataset vectors tend to be similar and high with respect to the maximal
distance (the effect of high intrinsic dimensionality [22]). The ε constant for such
datasets and given k would have to be small to guarantee a meaningful precision
with respect to exact search. At the same time, filtering methods considering
small ε would often result in inefficient (i.e., too expensive) approximate kNN
query processing. Therefore, in this work we do not consider such guarantees for
the compared methods (theoretical limitations of the guarantees are out of the
scope of this paper). In the experiments, we focus just on the error of the sim-
ilarity join approximation. The k-NN query approximation precision (or recall
with respect to the exact k-NN search) is defined as:

precision(k, q, S) =
|kNN(q, S) ∩ kNNa(q, S)|

k

2.2 MapReduce Environment

Since data volumes are significantly increasing every day, centralized solutions
are often intractable for large data processing. Therefore, the need for effective
distributed data processing is emerging. In this paper, we have adopted the
MapReduce [5] paradigm that is often used for parallel processing of big datasets.
The algorithms described in Sect. 3 are implemented in the Hadoop MapReduce
environment which consists of several components. Datasets are stored in the
Hadoop distributed file system (HDFS), which is designed to form a big virtual
file space to contain data in one place. Data files are physically stored on different
data nodes across the cluster and are replicated in multiple copies (protection
against a hardware failure or a data node disconnection). Name nodes manage
access to data according to the distance from a request source to a data node
(it finds the closest data node to a request).

66 P. Čech et al.

In Hadoop, every program is composed of one or more MapReduce jobs. Each
job consists of three main phases: a map phase, a shuffle phase and a reduce
phase. In the map phase, data are loaded from the HDFS file system, split into
fractions and sent to mappers where a fraction of data is parsed, transformed and
prepared for further processing. The output of the map phase are <key, value>
pairs. In the shuffle phase, all <key, value> pairs are grouped and sorted by
the key attribute and all values for a specific key are sent to a target reducer.
Ideally, each reducer receives the same (or similar) number of groups to equally
balance a workload of the job. In the reduce phase all reducers process values
for an obtained key (or multiple keys) and usually perform the main execution
part of the whole job. Finally, all computed results from the reduce phase are
written back to the HDFS.

3 Related k-NN Similarity Joins

In this paper we study a pivot-based approach for general metric spaces and two
vector space approaches - space-filling Z-curve and locality sensitive hashing.

3.1 Pivot-Based Approach

The original version of this approximate k-NN join algorithm [2] utilizes pivot
space partitioning based on a set of preselected global pivots pi ∈ P ⊂ S.
This approach was inspired by the Lu et al. work [11], which focused on exact
similarity joins. The algorithm is composed of two main phases: the preprocessing
phase and the actual k-NN join computation phase.

In the preprocessing phase, both sets of database and query objects (S and
R) are distributed into Voronoi cells Ci using the Voronoi space partitioning
algorithm according to the preselected pivots P (a cell Ci is determined by the
pivot pi ∈ P). The set of all created cells is denoted as C. Next, all distances dji
from objects oj ∈ S ∪ R to all pivots pi (dji = δ(oj , pi)) have to be computed,
and for every object oj the nearest pivot pn with the distance djn is stored within
the oj data record. Also, global statistics are evaluated for every Voronoi cell Ci

such as the covering radius, number of objects oj and total size of all objects oj
in the particular cell Ci. At the end of the preprocessing phase, the Voronoi cells
Ci are clustered into bigger groups Gl. Every group Gl should contain objects
of a similar total size to properly balance further parallel k-NN join workload.

The second phase performs k-NN join of two sets S and R in a parallel
MapReduce environment (one MapReduce job). Every computing unit (one
reducer redl) receives a subset Sl ⊂ S of database objects and Rl ⊂ R of
query objects corresponding to a group Gl precomputed in the previous phase.
Because not all nearest neighbors for query objects ql ∈ Rl may be present in
a group Gl (especially for query objects near Gl space boundaries), a replica-
tion heuristic is employed. Specifically, every database object located in each cell
Cj ∈ C is replicated to groups Gm ⊂ G (and corresponding nearest cells) con-
taining pivots pi that are within ReplicationThreshold nearest pivots to pivot pj .

Hadoop MapReduce k-NN Joins for High-Dimensional Data 67

At each reducer, metric filtering rules and additional approximate filtering (only
the closest cells to the query are considered) are employed to speed up the query
processing. Additional details of this algorithm can be found in the original
paper [2]. The output of a reducer redl is a set of the k nearest neighbors for
every query object ql ∈ Rl. An overview of the space partitioning and replication
algorithm is depicted in Fig. 1a.

Fig. 1. An example of the Voronoi space partitioning and replication of database
objects on ∈ S. The first part (a) depicts the replication based on distances between
pivots pi. For the ReplicationThreshold = 2 only the object o3 is replicated to the
other group G1, whereas o1 and o2 have the closest pivot to the corresponding pivot
pi (in the cell ci) in the same group. In the (b) scenario, for the MaxRecDepth = 2
all three objects on near groups boundaries are replicated to the other group because
the second closest pivot to the objects on lies in the other group.

Algorithm Revision. In this paper, we use a slightly modified version of the
previously described algorithm. The main difference is the utilization of a repet-
itive (recursive) Voronoi partitioning inspired by indexing techniques in metric
spaces such as M-Index [16]. Basically, every object oj is identified by a pivot
permutation [3] determined by a set of closest pivots instead of a single clos-
est pivot. The modification influences mainly the preprocessing phase and also
the database objects replication heuristic. An example of the use of the revised
algorithm is represented in Fig. 1b.

We define a new parameter MaxRecDepth which sets a threshold for the
maximum depth of the Voronoi space partitioning. In the preprocessing phase,
for every object oj (oj ∈ S ∪R) the distances to all pivots are evaluated and the
ordered list of the MaxRecDepth nearest pivots Pj ⊂ P is stored (in the form
of pivot IDs) with object oj .

The replication heuristic in the beginning of the second phase utilizes directly
the stored lists of nearest pivots. Specifically, every database object oj located
in a cell Cj ∈ C is replicated to groups Gi ⊂ G that contain cells determined by
pivots from Pj .

68 P. Čech et al.

3.2 Space-Filling Curve Approach

A space-filling curve is a bijection which maps an object from an n-dimensional
space to a one-dimensional value, trying to preserve the locality of objects with
high probability. For example, the z-order curve creates values (referenced as
z-values) that can be computed easily by interleaving the binary representa-
tion of coordinate values. Z-curves can be used to efficiently approximate kNN
search [20]. When querying the database, the z-value of the query object is cal-
culated and k database objects with nearest z-values are returned. To reach a
more precise results, c independent copies of the database are created in the
preprocessing phase, each of them shifted by a random vector vi ∈ R

n. For each
database copy Ci, z-values of modified objects are computed and sorted in a
list Li. When querying the database, the query object is shifted by each vi as
well, producing a vector of c z-values zi. Each zi is used to query list Li for 2 · k
objects with the k nearest lower and k nearest higher z-values. Thus, up to 2 ·c ·k
distinct candidates are collected in total, their distance to the query object is
computed and the resulting k nearest candidates are returned.

The centralized solution has been adapted for the MapReduce frame-
work [23]. To distribute the work among the nodes, the objects in each copy
Ci are split in n partitions, depending on their z-value. Inside each partition,
each present query object is used to find 2 ·k nearest database object candidates
using z-values4 and also the distances to the candidates are evaluated. Each
partition is processed by a separate reducer. Using a suitable number of parti-
tions and having data equally distributed, the portion of data for each reducer is
small enough to be stored in a node memory. Finally, the nearest objects for each
query are detected by merging the candidate results obtained from all copies Ci.
We have modified the original source code [23] to keep the partition objects in
memory and to optimize the serialization of z-values.

3.3 Locality Sensitive Hashing Approach

Locality Sensitive Hashing (LSH) [4] is another technique that can be used in the
context of k-NN Similarity Join algorithms. Specifically, Stupar et al. proposed
RankReduce [19], a MapReduce-based approximate algorithm to simultaneously
process a small number of k-NN search queries in a single MapReduce job using
LSH. The key idea behind RankReduce is to use hashing to build an index
that assigns similar records to the same hash table buckets. Unlike the original
RankReduce method, our implementation compares only database and query
objects from the same bucket. Our method is composed of two MapReduce jobs:
a hashing job including k-NN evaluation and a merging job. During the map
phase of the hashing job, both database S and query objects R are hashed using
a set of l hash tables each containing j hash functions of the form ha,B(v) =
�(a ·v+B)/W
, where W is a parameter. For every input record v ∈ S ∪R a set

4 The presence of k lower and k higher z-values of database objects is ensured during
the partitioning phase by replication.

Hadoop MapReduce k-NN Joins for High-Dimensional Data 69

of output keys (buckets) keyl is evaluated. One keyl represents a unique string
formed from j hash functions corresponding to the hash table l. The map phase
emits pairs of the form (keyl, v). In the reduce phase of the hashing job, local
k-NN candidates are computed for a subset of queries and database objects in
every bucket identified by the key keyl. In the second MapReduce job, all partial
results are loaded, grouped by the query object IDs and global k-NN results for
all queries are produced.

3.4 Exact k-NN Similarity Join Approach

In order to be able to evaluate the performance of approximate methods, an
exact k-NN similarity join was also implemented. We used the pivot space app-
roach (Subsect. 3.1) with ReplicationThreshold parameter set to the number of
pivots (thus, all database objects were replicated to all reducers) and the filter
parameter explained in the original paper [2] was set to the value 1 (meaning all
Voronoi cells Ci are processed on each reducer).

4 Experimental Evaluation

In this section, we experimentally evaluate and compare the presented MapRe-
duce k-NN similarity join algorithms. Main emphasis is put on scalability, preci-
sion and the overall similarity join time of all solutions for high-dimensional data.
First, we describe the test datasets and the evaluation platform, then we inves-
tigate parameters for all the methods and, finally, we compare the performance
of all the approaches in multiple testing scenarios.

4.1 Description of Datasets and Test Platform

In the experiments, we perform k-NN similarity joins on three vector datasets
with various number of dimensions: 200, 512 and 1000. The 200 and 1000-
dimensional datasets contain histogram vectors which were formed from a few
key features located in HTTPS proxy logs collected by the Cisco cloud. Fea-
tures were transformed into vectors using two techniques. The dataset with 200
dimensions was created by uniform feature mapping into a 4-dimensional hyper-
cube [9]. In the dataset with 1000 dimensions, each HTTPS communication
feature was assigned to the closest pre-trained Gaussian utilizing a well known
density estimation technique called Gaussian Mixture Model (GMM) [12]. The
resulting vectors are histograms of occurrences of each Gaussian. These fea-
ture extraction algorithms are also implemented in the MapReduce framework.
Our implementation is inspired by works [2,9,13]. The algorithm processes all
HTTPS communication features in parallel, groups them by a given key and
applies a specific feature transformation strategy to produce final descriptors
(vectors).

The last dataset consists of 335944 officially provided key frames from the
TRECVid IACC.3 video dataset [1]. The descriptors for each key frame were

70 P. Čech et al.

extracted from the last fully connected layer of the pretrained VGG deep neural
network [17] and further reduced to 512 dimensions using PCA.

All datasets are divided into the database S and query points R. The number
of database objects ranges from about |S| =150 000 to 450 000 objects. The size
of the query part ranges from about |R| =180 000 to 320 000 objects in every
dataset. Every object contains an ID and a vector of values stored in the space
saving format presented in the paper [2]. The size of datasets vary according to
the number of dimensions from 0.5GB to 3GB of data in the sparse text format.
We employ the Euclidean (L2) distance metric as the similarity measure.

The experiments ran on a virtualized Hadoop 2.6.0 cluster with 20 worker
nodes, each having 6GB RAM and 2 core CPU (Intel(R) Xeon(R) running at
2.20GHz) and were implemented in Java 1.7.

4.2 Fine Tuning of Experimental Methods

In this subsection, we investigate parameters for every tested algorithm. Note
that all time values include not only the running time of the k-NN similarity
join but also the preprocessing time. The parameter tuning tests ran on the
1000-dimensional dataset and the k value was set to 5.

1.5 2.0 2.5 3.0

70
75

80
85

90
95

10
0

time [sec*1000]

pr
ec

is
io

n
[%

]

1

3

10
20

5

50

3
5

10
20

50

1

Recursion depth
Replication threshold

Fig. 2. Pivot-based app-
roach parameters tuning

2 4 6 8 10

30
35

40
45

50

time [sec*1000]

pr
ec

is
io

n
[%

]

Number of shifts

3

6

9

12

Fig. 3. Z-curve approach
number of shifts tuning

0 2 4 6 8 10 12

20
30

40
50

60

time [sec*1000]

pr
ec

is
io

n
[%

]

W param, hash tables = 10
W param, hash tables = 5

10

20
30 40

Fig. 4. LSH approach W
parameter tuning

In Fig. 2, we compare the ReplicationThreshold and MaxRecDepth para-
meters for related and revised pivot-based (Voronoi) approaches described in
Sect. 3.1. Although lower parameter values run faster, they do not achieve con-
vincing accuracy. For the rest of the experiments, we fixed MaxRecDepth para-
meter to the value 10 which promises a competitive precision and running time
trade off. In the following experiments, we do not consider the original version
with ReplicationThreshold. In general, the Voronoi space partitioning approach
used 2000 randomly preselected pivots, Voronoi cells Ci were grouped into 18
distinct groups Gl and the filter parameter explained in the original paper [2]
was set to the value 0.05.

You may notice that the total running time for some lower parameter values
is longer than for following higher values, e.g. ReplicationThreshold = 3 and 5

Hadoop MapReduce k-NN Joins for High-Dimensional Data 71

or MaxRecDepth = 1 and 3. Despite more replications, a shorter k-NN evalua-
tion time is caused by the efficient candidate processing in the actual algorithm
evaluation on each reducer where parent filtering and lower bound filtering tech-
niques in a metric space are utilized [2,22]. Note that closer k objects to many
queries appear in their group and so the ranges of k-NN queries get tighter.
Hence, more candidates are filtered out by the triangle inequality and the total
number of actual distance computations is lower.

Figure 3 displays the precision and overall time for the Z-curve approach for
growing number of random vector shifts presented in Sect. 3.2. We may observe
that more shifts slightly increases approximation precision, but running time is
prolonged significantly. In other experiments, we fixed the number of shifts to
value 5. We used 40 partitions, in order to fit the number of reducers. The Z-curve
parameter ε was set to 0.128 which provided reasonably balanced size of parti-
tions while keeping shorter pre-processing time. Notice that in the paper [23],
different ε values did not affect the precision.

In Fig. 4, we examine the influence of the parameter W on the performance
of the LSH method described in Sect. 3.3. With growing W , both precision and
time increase substantially. Longer running time for higher W values is mainly
caused by hashing objects into bigger buckets (more objects fall into the same
bucket). However, this parameter heavily depends on the specific dataset. For
other experiments, we fixed W = 1 for the 200-dimensional dataset, W = 100
for the 512-dimensional TrecVid dataset and W = 20 for the 1000-dimensional
dataset. Generally, we used 10 hash tables each containing 20 hash functions.

4.3 Comparison of Methods

We propose multiple testing scenarios designed to test the main aspects of each
k-NN approximate similarity join algorithm.

Size-Dependent Computation. Each of the datasets, both train and test
vectors, were sampled in order to create subsets containing 1

4 , 1
2 , 3

4 and all of
the original data. The methods were tested on each sample. The graphs 5, 6
and 7 show that the running time generally increases with higher dimensionality
and dataset size. Surprisingly, the Z-curve method is sometimes slower than the
exact algorithm, due to the high index initialization costs. The revised pivot
space method shows to have the best approximation precision/speed tradeoff
across all datasets.

As we can see in the Figs. 8, 9 and 10, the approximation precision of the
methods does not significantly change with the size when each dataset is con-
sidered separately. In all cases, the precision of the pivot space method is clearly
the highest, ranging from 73% for the 200-dimensional dataset up to 88% for the
1000-dimensional dataset.

72 P. Čech et al.

0.
5

1.
0

1.
5

2.
0

2.
5

dataset size

tim
e

[s
ec

*1
00

0]

Exact
Z−curve
LSH
Pivot

0.25 0.50 0.75 1.00

Fig. 5. 200-dimensional
dataset: computation
time

1
2

3
4

5
6

dataset size
tim

e
[s

ec
*1

00
0]

Exact
Z−curve
Pivot
LSH

0.25 0.50 0.75 1.00

Fig. 6. 512-dimensional
dataset: computation
time

5
10

15

dataset size

tim
e

[s
ec

*1
00

0]

Exact
Z−curve
Pivot
LSH

0.25 0.50 0.75 1.00

Fig. 7. 1000-dimensional
dataset: computation
time

20
60

10
0

dataset size

pr
ec

is
io

n
[%

]

Pivot
Z−curve
LSH

0.25 0.50 0.75 1.00

Fig. 8. 200-dimensional
dataset: precision

20
60

10
0

dataset size

pr
ec

is
io

n
[%

]

Pivot
LSH
Z−curve

0.25 0.50 0.75 1.00

Fig. 9. 512-dimensional
dataset: precision

20
60

10
0

dataset size

pr
ec

is
io

n
[%

]

Pivot
Z−curve
LSH

0.25 0.50 0.75 1.00

Fig. 10. 1000-dimensional
dataset: precision

K-Dependent Computation. In the graphs 11 and 12, we investigate the
influence of increasing the parameter k (from the k nearest neighbors) on the
precision and total similarity join time. All the presented experiments were per-
formed on the 1000-dimensional dataset. The precision stays the same or slowly
decreases for the pivot space and LSH methods, whereas time complexity is
gradually increasing, but the difference is only marginal. On the other hand, the
growing k increases the precision and time complexity for the Z-curve approach.
This observation could be explained by more database objects replications to
neighboring partitions caused by higher k (this property comes from the orig-
inal distributed Z-curve design described in the paper [23]). The results of all
the methods follow trends identified in the previous graphs. The pivot space
approach outperforms other algorithms in the precision/speed tradeoff.

Hadoop MapReduce k-NN Joins for High-Dimensional Data 73

20
40

60
80

K

pr
ec

is
io

n
[%

]

Pivot
Z−curve
LSH

2 4 8 16 32 64 128

Fig. 11. k-dependent computation:
precision

2
4

6
8

K

tim
e

[s
ec

*1
00

0] Z−curve
Pivot
LSH

2 4 8 16 32 64 128

Fig. 12. k-dependent computation: time

4.4 Discussion

In the experiments, three related approximate MapReduce-based k-NN similar-
ity joins on Hadoop were investigated using settings recommended in the original
papers. Note that the Z-curve and LSH (RankReduce) related methods used pri-
marily low-dimensional datasets during the design of the approaches (30 dimen-
sions in [23], 32 an 64 dimensions in [19]). In the experiments, the pivot-based
approach using the repetitive Voronoi partitioning significantly outperformed
the other two methods in the precision/efficiency tradeoff. Our hypothesis is
that for high-dimensional data the Z-curve and LSH methods suffer from the
random shifts and hash functions that do not reflect data distributions. We ver-
ified this hypothesis on our synthetic 10-dimensional dataset in which all three
methods provided expected behavior, as presented in the original papers. Note
that specific subsets of the dataset could potentially reside in low-dimensional
manifolds. Hence, finetuning specific parameters of the two methods (number of
shifts in Fig. 3 and W in Fig. 4) do not provide a significant performance boost.

On the other hand, the pivot-based approach uses representatives from the
data distribution and employs pairwise distances to determine data replication
strategies. As demonstrated also by metric access methods for k-NN search
[16,22], it seems that the distance-based approach can be also directly used
as a robust and intuitive method for approximate k-NN similarity joins in high-
dimensional spaces.

5 Conclusions

In this paper, we focused on approximate k-NN similarity joins in the MapRe-
duce environment on Hadoop. Although comparative studies have been proposed
for the considered approaches, the studies focused mainly on data with less than
one hundred dimensions. According to our findings, the dimensionality affects
the conclusions about the compared approaches. Two out of three methods pre-
viously tested for low-dimensional data did not perform well under their original
recommended design and settings.

In the future, we plan to thoroughly analyze and track the bottlenecks of
all the methods and try to provide a theoretically sound explanation about

74 P. Čech et al.

the performance limits and approximation errors of all the tested approaches.
For similarity joins, we plan to employ other approaches for MapReduce based
approximate kNN search using LSH, for example [24] that performed well on 128
dimensional data. We also plan to consider implementing algorithms in other
MapReduce frameworks such as Spark and study performance differences. Find-
ings in a very recent paper [8] promise improvements.

Acknowledgments. This project was supported by the GAČR 15-08916S and GAUK
201515 grants.

References

1. Awad, G., Fiscus, J., Michel, M., Joy, D., Kraaij, W., Smeaton, A.F., Quénot,
G., Eskevich, M., Aly, R., Jones, G.J.F., Ordelman, R., Huet, B., Larson, M.:
TRECVID 2016: evaluating video search, video event detection, localization, and
hyperlinking. In: Proceedings of TRECVID 2016. NIST, USA (2016)

2. Čech, P., Kohout, J., Lokoč, J., Komárek, T., Maroušek, J., Pevný, T.: Feature
extraction and malware detection on large HTTPS data using MapReduce. In:
Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp.
311–324. Springer, Cham (2016). doi:10.1007/978-3-319-46759-7_24

3. Chavez Gonzalez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by
ordering permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658
(2008)

4. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG 2004, NY, USA, pp. 253–262. ACM,
New York (2004)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. Ferhatosmanoglu, H., Tuncel, E., Agrawal, D., Abbadi, A.E.: Approximate nearest
neighbor searching in multimedia databases. In: Proceedings 17th International
Conference on Data Engineering, pp. 503–511 (2001)

7. Giacinto, G.: A nearest-neighbor approach to relevance feedback in content based
image retrieval. In: Proceedings of the 6th ACM International Conference on Image
and Video Retrieval, CIVR 2007, NY, USA, pp. 456–463. ACM, New York (2007)

8. Gu mundsson, G. ., Amsaleg, L., Jónsson, B. ., Franklin, M.J.: Towards engi-
neering a web-scale multimedia service: a case study using spark. In: Proceedings
of the 8th ACM on Multimedia Systems Conference, MMSys 2017, Taipei, Taiwan,
pp. 1–12, 20–23 June 2017 (2017)

9. Kohout, J., Pevny, T.: Unsupervised detection of malware in persistent web traffic.
In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2015)

10. Lokoč, J., Kohout, J., Čech, P., Skopal, T., Pevný, T.: k-NN classification of mal-
ware in HTTPS traffic using the metric space approach. In: Chau, M., Wang, G.A.,
Chen, H. (eds.) PAISI 2016. LNCS, vol. 9650, pp. 131–145. Springer, Cham (2016).
doi:10.1007/978-3-319-31863-9_10

11. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k nearest neighbor
joins using mapreduce. Proc. VLDB Endow. 5(10), 1016–1027 (2012)

http://dx.doi.org/10.1007/978-3-319-46759-7_24
http://dx.doi.org/10.1007/978-3-319-31863-9_10

Hadoop MapReduce k-NN Joins for High-Dimensional Data 75

12. Marin, J.M., Mengersen, K., Robert, C.P.: Bayesian modelling and inference on
mixtures of distributions. In: Dey, D., Rao, C. (eds.) Bayesian Thinking: Modeling
and Computation, Handbook of Statistics, vol. 25, pp. 459–507. Elsevier, Amster-
dam (2005)

13. Mera, D., Batko, M., Zezula, P.: Towards fast multimedia feature extraction:
Hadoop or storm. In: 2014 IEEE International Symposium on Multimedia, pp.
106–109, December 2014

14. Moise, D., Shestakov, D., Gudmundsson, G., Amsaleg, L.: Indexing and search-
ing 100m images with Map-Reduce. In: International Conference on Multimedia
Retrieval, ICMR 2013, Dallas, TX, USA, 16–19 April 2013, pp. 17–24 (2013)

15. Moise, D., Shestakov, D., Gudmundsson, G., Amsaleg, L.: Terabyte-scale image
similarity search: experience and best practice. In: Proceedings of the 2013 IEEE
International Conference on Big Data, 6–9 October 2013, Santa Clara, CA, USA,
pp. 674–682 (2013)

16. Novak, D., Batko, M.: Metric index: an efficient and scalable solution for similarity
search. In: Proceedings of the 2009 Second International Workshop on Similarity
Search and Applications, pp. 65–73. IEEE, Washington, DC (2009)

17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

18. Song, G., Rochas, J., Huet, F., Magoulès, F.: Solutions for processing k nearest
neighbor joins for massive data on MapReduce. In: 2015 23rd Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing, pp.
279–287, March 2015

19. Stupar, A., Michel, S., Schenkel, R.: RankReduce - processing k-nearest neighbor
queries on top of MapReduce. In: LSDS-IR (2010)

20. Yao, B., Li, F., Kumar, P.: K nearest neighbor queries and kNN-joins in large
relational databases (almost) for free. In: ICDE (2010)

21. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM
59(11), 56–65 (2016)

22. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems. Springer, Boston (2006). doi:10.1007/
0-387-29151-2

23. Zhang, C., Li, F., Jestes, J.: Efficient parallel kNN joins for large data in MapRe-
duce. In: Proceedings of the 15th International Conference on Extending Database
Technology, EDBT 2012, NY, USA, pp. 38–49. ACM, New York (2012)

24. Zhu, P., Zhan, X., Qiu, W.: Efficient k-nearest neighbors search in high dimensions
using MapReduce. In: 2015 IEEE Fifth International Conference on Big Data and
Cloud Computing, pp. 23–30, August 2015

http://dx.doi.org/10.1007/0-387-29151-2
http://dx.doi.org/10.1007/0-387-29151-2

	Comparing MapReduce-Based k-NN Similarity Joins on Hadoop for High-Dimensional Data
	1 Introduction
	2 Preliminaries
	2.1 Similarity Model and k-NN Joins
	2.2 MapReduce Environment

	3 Related k-NN Similarity Joins
	3.1 Pivot-Based Approach
	3.2 Space-Filling Curve Approach
	3.3 Locality Sensitive Hashing Approach
	3.4 Exact k-NN Similarity Join Approach

	4 Experimental Evaluation
	4.1 Description of Datasets and Test Platform
	4.2 Fine Tuning of Experimental Methods
	4.3 Comparison of Methods
	4.4 Discussion

	5 Conclusions
	References

