
Discovering Group Skylines with Constraints
by Early Candidate Pruning

Ming-Yen Lin1, Yueh-Lin Lin1, and Sue-Chen Hsueh2(&)

1 Feng Chia University, Taichung 40724, Taiwan
2 Chaoyang University of Technology, Taichung 41349, Taiwan

schsueh@cyut.edu.tw

Abstract. Skyline query has been an important issue in the database commu-
nity. Many applications nowadays request the skyline after grouping tuples, such
as fantasy sports, so that the group skyline problem becomes the research focus.
Most previous algorithms intended to quickly sift through the numerous com-
binations but fail to address the problem of constraints. In practice, nearly all
groupings are specified with constrains, which demand solutions of constrained
group skyline. In this paper, we propose an algorithm called CGSky to efficiently
solve the problem. CGSky utilizes a pre-processing method to exclude the
unnecessary tuples and generate candidate groups incrementally. A pruning
mechanism is devised in the algorithm to prevent non-qualifying candidates from
the skyline computation. Our experimental results show that CGSky improves an
order of magnitude over previous algorithms in average. It also shows that
CGSky has good scale-up capability on different data distributions.

Keywords: Skyline query � Group skyline � Constraint � Constrained skyline

1 Introduction

Skyline is a query operator that helps users to retrieve interesting tuples from databases
[5, 8, 9]. These tuples are not dominated by any other tuples. A typical example is that
in a hotel relation having price and distance-to-beach attributes. A user is likely to ask
for hotels that are both cheap and close to the beach. If the price of a hotel h is higher
than that of a hotel h′ and the distance-to-beach of h is not shorter than that of h′, h is
dominated by h′, written as h′ � h, and h can be excluded from the query result.
Skyline queries return the sets of tuples that are not dominated by any other tuples.
Typically, a user may specify some constraints on certain attributes, such as price, so
that constrained skyline [2, 13, 15, 21] might be more common in practice. For
example, the skyline query for best web-portal advertising plan might be constrained
by ‘cost � 6000’. Skyline query and constrained skyline query thus are used in many
multi-criteria decision support applications.

Although (constrained) skyline query may retrieve non-dominated tuples, inter-
esting groups generated from combinations of single tuples can be more desirable in
some applications. For example, to increase visibility of new products, a company may
advertise on more than one web portal so that the skyline result contains combinations
of portals, which combinations are not dominated by other ones, considering the total

© Springer International Publishing AG 2017
G. Cong et al. (Eds.): ADMA 2017, LNAI 10604, pp. 49–62, 2017.
https://doi.org/10.1007/978-3-319-69179-4_4

‘cost’ and the total ‘number-of-visitors’ (#visitors) attributes. Given a number of
portals, a user may specify that a group is composed of 2 portals. The problem of group
skyline [17] is to find the groups, considering all the combinations of 2 portals, which
are not dominated by other groups. The attribute-values of the group thus are
aggregate-values (e.g. sum) of the 2 portals. Applications querying the skylines of
groups are commonplace, such as baseball teams of 9 persons as a group, fantasy
basketball of 5 persons as a group, Hackathon of 3 persons as a group, etc. The
cardinality of a group (9 in baseball, 5 in basketball, etc.) is specified by users, which is
called the group cardinality, denoted by k. In addition, the aggregate-function is also
specified by users, which can be sum(), min(), max(), and so on. Because group skyline
has to consider all the combinations of certain cardinality, the problem is more com-
plicated than traditional skyline problems.

Nevertheless, no previous studies have discussed group skylines with constraints.
A common scenario is that not all combinations are acceptable due to certain con-
straints. For example, advertising web-portals may subject to a limited total budget,
which means the total cost (by summing cost of the portals in the combination) cannot
exceed certain amount. Given a query of investment portfolios for stocks, the investors
may have a budget limit of 10000 for the non-dominated portfolio of 3 stocks (k = 3).
Also, NBA league rules that every NBA team cannot exceed a certain amount of team
salary, which means the total salary is constrained. The result of the group skyline
would be groups of players having good (aggregated) scoring/defense capability while
satisfying the total salary constraint.

However, finding group skylines with constraints is complicated. In Table 1, tuples
t1, t4, and t6 are skyline tuples since t1 ≻ t2, t1 ≻ t3, and t6 ≻ t5, when smaller ‘cost’
and larger ‘#visitors’ are preferred in web-portal advertising plans. Using the 6 tuples
for groups of cardinality k = 3, there are total 20 groups as listed in Table 2. Although
t3 is not a skyline tuple in Table 1, group G5 having t1, t3 and t4 is a group skyline tuple.
Similarly, tuple t5, dominated by t6 in Table 1, becomes the member of the group
skyline tuple G20. That is, both combinations of skyline tuples and that of non-skyline
tuples have to be considered in the group skyline finding process. The number of
combinations can be very huge. For example, assume that a dataset contains 500 tuples
and group cardinality k = 5, about C(500, 5) = 2.6 � 1011 candidate groups will be
generated in total. To compute such a huge amount of combinations is a serious
challenge. Furthermore, the constraint can only be considered after groups are formed

Table 1. An example of web portals datasets.

Tuple Web Portal Cost #Visitors Skyline

t1 Facebook 3 4 ˅
t2 Google 10 4
t3 Yahoo 5 1
t4 Apple Daily 7 10 ˅
t5 Mobile01 8 6
t6 PChome 6 7 ˅

50 M.-Y. Lin et al.

because the constraint is specified against the aggregated attribute-value. This restricts
effective pruning of candidate groups and is more time-consuming, comparing to
specifying constraint on single tuples of a typical skyline query. Constrained skyline
may exclude tuples that do not satisfy the constraint a priori to reduce the computation
but constrained group skyline needs to generate all candidate groups to exclude the
groups unsatisfying the constraint. Therefore, the discovery of the group skyline with
constraints is much more difficult than that of both skyline with constraints and group
skyline without constraints.

The problem of finding group skyline with constraint is defined as follows. Given a
database of n tuples D = {t1, t2, …, tn} of m numeric attributes, user-specified group
cardinality k (k > 1), and a constraint c, the objective is to find the set of group skyline
tuples satisfying c. A tuple ti is represented as (ti[A1], ti[A2], …, ti[Am]). Tuple tx
dominates tuple ty, denoted by tx � ty, if 8 i (1 � i � m), tx[Ai] � ty[Ai], and 9 j (1 �
j � m), tx[Aj] [ty[Aj]. The operators ‘>’ and ‘� ’ can be replaced by ‘<’ and ‘� ’
when smaller values are preferred, such as the smaller ‘cost’ and the larger
‘number-of-visitors’ the example of Table 1. A group tuple Gx = {t1′, t2′, …, tk′} is a
combination of k distinct tuples in D, where tp′ 2 D 81 � p � k. Gx also has
m attributes and the attribute value of Gx[Ai] =

Pk
p¼1 t

0
p½Ai� (1 � i � m) if sum() is the

Table 2. Enumerated groups of cardinality 3 for the dataset in Table 1.

Group Members Cost #Visitors Skyline

G1 t1, t2, t3 18 9
G2 t1, t2, t4 20 18
G3 t1, t2, t5 21 14
G4 t1, t2, t6 19 15
G5 t1, t3, t4 15 15 ˅
G6 t1, t3, t5 16 11
G7 t1, t3, t6 14 12 ˅
G8 t1, t4, t5 18 20
G9 t1, t4, t6 16 21 ˅
G10 t1, t5, t6 17 17
G11 t2, t3, t4 22 15
G12 t2, t3, t5 23 11
G13 t2, t3, t6 21 12
G14 t2, t4, t5 25 20
G15 t2, t4, t6 23 21
G16 t2, t5, t6 24 17
G17 t3, t4, t5 20 17
G18 t3, t4, t6 18 18
G19 t3, t5, t6 19 14
G20 t4, t5, t6 21 23 ˅

Discovering Group Skylines with Constraints 51

preferred aggregate-function. The Gx is also called a k-tuple group since it has k tuples.
A group tuple Gx satisfying constraint c is denoted by Gc

x. A group Gc
x is said to

dominate group Gc
y, denoted by Gc

x �G Gc
y, if and only if 8 i (1 � i � m), Gc

x[Ai] �
Gc

y[Ai], and 9 j (1 � j � m), Gc
x[Aj] [Gc

y[Aj]. Gc
x is a group skyline tuple satisfying

c if there exists no Gc
y such that Gc

y �G Gc
x. The objective is to find the set of all the

group skyline tuples satisfying c.
For example, given dataset D in Table 1, group cardinality k = 3, and constraint

c = ‘Cost < 19’, all the 20 combinations are listed in Table 2. When constraint c is not
considered, the group skyline tuples are G5, G7, G9, and G20. The group skyline
tuples satisfying c are Gc

5, G
c
7, and Gc

9 because G20 does not satisfy ‘Cost < 19’
constraint. Alternatively, we said that the three group tuples are constrained group
skyline tuples.

In this paper, we present a novel algorithm called CGSky (Constrained Group
Skyline), for solving troblem of computing group skyline with constraints. In the fol-
lowing context, the group skyline tuples satisfying the constraint are simply called the
group skyline tuples, or collectively named the group skyline.

The rest of the paper is as follows. Section 2 briefly reviews the related work. The
proposed CGSky algorithm is presented in Sect. 3. Section 4 describes the experi-
mental results. Finally, Sect. 5 concludes the paper.

2 Related Work

The skyline operator was first introduced in [1] and many algorithms have been pro-
posed. These algorithms can be categorized into generic and index-based types.
Generic skyline algorithms do not need pre-computation, such as BNL [1], D&C [1],
SFS [4], SSPL [10], etc. Index-based skyline algorithms utilize the pre-processing data
structures to avoid scanning the entire dataset, such as NN [12], BBS [18], Bitmap [20],
etc. Generic skyline algorithms usually incur high I/O cost, while the efficiency of
index-based ones will decrease as the number of attributes increases.

Constrained skyline was proposed on the extension of the BBS algorithm [6]. The
main idea of constrained skyline is to compute the results satisfying user preferences.
Two types of constraint problems were described. The constrained skyline problem [2]
uses the constraint to filter out tuples first, then computes the results using the
remaining tuples. The skyline with constraints problem is to computing the skyline
first, then using the constraint to filter out the results dis-qualifying the constraint.

Computing the group skyline is a complicated task. GDynamic [11] algorithm
utilizes an incremental method to overcome the bottleneck, which is the number of

candidate groups. There are
n
c

� �
possible combinations for n tuples and group car-

dinality of c. The Improved Decomposition Algorithm (IDA) [6] is a combinatorial
skyline algorithm. The dynamic programing algorithm based on order-specific property
(OSM) [22] is also a group skyline algorithm. While the G-Skyline [14] is a group
skyline algorithm without using aggregate function as the foundation of group domi-
nance relation. Among these algorithms, the IDA algorithm utilizes a pre-processing

52 M.-Y. Lin et al.

method to compute the number of dominating numbers for each tuple. Moreover, the
pre-processing result will output a dominance table for speeding up the formation of
groups. However, all these algorithms ignore that the group skyline might incorporate
the need of certain constrains. The focus of the study is to push constraints into the
computation process so that the skyline finding process can be greatly accelerated. As
indicated in the experimental results, the proposed algorithm successfully improve the
discovering process.

3 Proposed Algorithm

The proposed CGSky algorithm, inspired by the IDA algorithm [6], computes the
constrained group skyline in three phases: early tuple-pruning, candidate-group gen-
eration, and group-dominance checking. Figure 1 is an overview of the CGSky algo-
rithm. The dominance relationships among tuples are computed and tuples cannot
become members of group skyline tuples are pruned in the phase of early tuple-pruning.
The remaining tuples are sorted in ascending order of the constraint attribute in this
phase. The sorted tuples are used to generate candidate groups recursively in the phase
of candidate-group generation. Finally, the resulting group skyline tuples satisfying the
constraint are found by applying any (single-tuple) skyline algorithm, such as SFS [4],
on the candidate groups in the phase of group-dominance checking.

3.1 Phase One: Dominance-Table Computation

First, Phase one of the CGSky algorithm reduces the number of candidate groups by
pruning tuples that cannot become members of the final group skyline tuples. In this
phase, the CGSky algorithm first computes the dominance relationships among tuples
in D. For each tuple t, the number of tuples dominating t is accumulated. The number is
referred to as the dominating number of t, denoted by dom(t). Once a tuple’s domi-
nating number is larger than the group cardinality k, the tuple is pruned and no

Early tuple-pruning

Candidate-group
generation

Group-dominance
checking

Phase 1

Phase 2

Phase 3

Fig. 1. An overview of the CGSky algorithm.

Discovering Group Skylines with Constraints 53

candidate group will include this tuple as a member. Any group formed by these
eliminated tuples is impossible to be a skyline group tuple, as proved in Theorem 1.
That is, if dom(t) � k, then tuple t is eliminated from the generation of candidate
groups of cardinality k. For convenience, we use ‘t�k	1 Gx’ to represent the group
tuple formed by a (k-1)-tuple group Gx and tuple t. CGSky then sorts tuples by
ascending order of the constraint attribute. Sorting tuples by the constraint attribute is
beneficial to the generation of candidate groups, as presented in Sect. 3.2

Theorem 1. Tuple t with dom(t) � k cannot form a skyline group tuple for group
cardinality of k.

Proof. Tuple t is dominated by at least k tuples in dataset D since dom(t) � k. Assume t
is included in a group tuple G ¼ t � k	1 Gx, we will show that there exists a group tuple
G′, which is formed by t′� k	1Gx and G′ �G G. (i) Let the set of tuples dominating t be
H = {t1′, t2′, …, tk′} if dom(t) = k. When H \ k−1Gx = /, there exists t′ 2 H, G′ = t′
� k	1Gx �G G ¼ t� k	1Gx since t′ � t. Let H \ k−1Gx =

pGy (1 � p � k-1) and H
′ = H - pGy, thus there are (k-p) tuples in H′ dominating t. Then there exists t′ 2 H′, G
′ = t′ �ðpGy � k	p	1 GzÞ �G t � ðpGy � k	p	1 GzÞ since t′ � t. (ii) If dom(t) > k then
we just pick k tuples from the set dominating t to constitute H = {t1′, t2′,…, tk′}, the rest
of the proof is the same as (i). Thus, any group having t must be dominated by some
other group. Tuple t with dom(t) � k cannot form a skyline group tuple and can be
safely eliminated from the generation of candidate groups. h

For example, tuples in Table 1 are processed in this phase and the dominating
number of each tuple is obtained, as shown in Table 3. In addition, tuples are sorted in
ascending order of Cost, which is the constraint attribute. Tuple t2 is not engaged in the
generation of candidate groups in phase two since its dom(t2) > k for group cardinality
k = 3. The exclusion can be illustrated as follows. A group G formed by including t2
will be dominated by a group G′, by replacing t2 with any one of the four dominating
tuples {t1, t6, t4, t5}. Only two tuples at most will be used to form G for k = 3 so that
there are always two remaining tuples to be picked to form G′. Obviously, G′ domi-
nates G. Consequently, t2 cannot produce any ‘potential’ group skyline tuple and can
be eliminated from the candidate generation.

Table 3. Dominating numbers for Table 1 (sorted by Cost).

Tuple Cost #Visitors dom(ti)

t1 3 4 0
t3 5 1 1
t6 6 7 0
t4 7 10 0
t5 8 6 2
t2 10 4 4

54 M.-Y. Lin et al.

3.2 Phase Two: Candidate-Group Generation

Figure 2 presents the pseudo-code of the candidate-group generation. The CGSky
algorithm invokes GenCandidate with parameters (D[1, n], k, limit), where D[1, n] is
the dataset after the early pruning in phase one, k is the group cardinality, and limit is
the upper bound of the constraint value. The subroutine generates all the candidate
groups of cardinality k satisfying the constraint (limit). The principle of this phase is as
follows.

Given the sorted list of tuples [tp, tp+1,…, ti, ti+1,…, tq], if tuple ti with
constraint-attribute value ti[Ac] will constitute a k-tuple group with a (k-1)-tuple group
Gx, then the aggregate-value of Gx[Ac] must be less than (limit′ = limit-ti[Ac]). In
addition, the Gx is constructed from potential combinations of (k-1) tuples from list
[ti+1,…, tq]. Recursively, if tuple ti+1 with constraint-attribute value ti+1[Ac] will con-
stitute a (k-1)-tuple group with a (k-2)-tuple group Gx′, then the aggregate-value of Gx′
[Ac] must be less than (limit′-ti+1[Ac]). The Gx′ is constructed from potential combi-
nations of (k-2) tuples from list [ti+2,…, tq]. The recursion eventually would reach the
formation of 1-tuple group from list [tp′, tp′+1,…, tq], constrained by certain upper
bound limitz. When some tuple ts in the list having ts[Ac] � limitz is unqualified, all the

Subroutine GenCandidate
Input: D[p,q] – list of tuples tp, tp+1, …, tq

k – group cardinality
limit – constraint limit // constraint attribute Ac

Output: A = set of candidate group tuples
1. A = φ ;
2. if (k=1)
3. for i = p to q do
4. if (ti[Ac] ≥ limit) break ;
5. add {ti} to A ;
6. endfor
7. return A ;
8. endif
9. for i = p to q-(k-1)
10. if (ti[Ac] ≥ limit) break ;
11. A’ = GenCandidate(D[i+1,q], k-1, limit-ti[Ac]) ;
12. if (A’= φ) break ;
13. for each set S in A’
14. Add ti to S ;
15. Add S to A ;
16. endfor
17. endfor
18. return A;

Fig. 2. Pseudo-code of the candidate-group generation.

Discovering Group Skylines with Constraints 55

rest of tuples are impossible to satisfy the bound since tuples are sorted in ascending
order of constraint value (lines 2–8). Therefore, we may prevent a large number of
“unqualified” candidate groups from generation. Furthermore, when no combination is
generated during the construction of certain group tuple, assume that such combina-
tions are to be used with th, then no tuples after th in the list may generate a qualified
group (lines 9–17).

For example, let the CGSky algorithm invoke GenCandidate(D[t1, t3, t6, t4, t5],
k = 3, limit = 19) in Table 3. Tuple t1 can only form qualified candidates with 2-tuple
groups, generated from D[t3, t6, t4, t5] and constrained by (2-tuple group) limit of 19-
t1[Cost] = 16. This will invoke GenCandidate(D[t3, t6, t4, t5], k = 2, limit = 16). The
call with t3 can only form qualified candidates with 1-tuple groups, generated from D
[t6, t4, t5] and constrained by limit of 16-t3[Cost] = 11. GenCandidate(D[t6, t4, t5],
k = 1, limit = 11) returns {t6}, {t4} and {t5} so that {t3, t6}, {t3, t4} and {t3, t5} are
returned. The three will be collected for t1 to form 3-tuple groups {t1, t3, t6}, {t1, t3, t4}
and {t1, t3, t5} later. The GenCandidate(D[t3, t6, t4, t5], k = 2, limit = 16) continues
with t6. This call with t6 can only form qualified candidates with 1-tuple groups,
generated from D[t4, t5] and constrained by limit of 16-t6[Cost] = 10. GenCandidate
(D[t4, t5], k = 1, limit = 10) returns {t4} and {t5} so that {t6, t4} and {t6, t5} are
returned. The two will be collected for t1 to form 3-tuple groups {t1, t6, t4} and {t1, t6,
t5} later. The GenCandidate(D[t3, t6, t4, t5], k = 2, limit = 16) continues with t4. This
call with t4 can only form qualified candidates with 1-tuple groups, generated from D
[t5] and constrained by limit of 16-t4[Cost] = 9. GenCandidate(D[t5], k = 1, limit = 9)
returns {t5} so that {t4, t5} is returned. This one will be collected for t1 to form a 3-tuple
group {t1, t4, t5} later. The call with t1 now stops.

Next, GenCandidate(D[t1, t3, t6, t4, t5], k = 3, limit = 19) continues with tuple t3.
Tuple t3 can only form qualified candidates with 2-tuple groups, generated from D[t6,
t4, t5] and constrained by (2-tuple group) limit of 19-t3[Cost] = 14. This will invoke
GenCandidate(D[t6, t4, t5], k = 2, limit = 14). The call with t6 can only form qualified
candidates with 1-tuple groups, generated from D[t4, t5] and constrained by limit of 14-
t6[Cost] = 8. GenCandidate(D[t4, t5], k = 1, limit = 8) returns {t4} so that {t6, t4} is
returned. The {t6, t4} will be used with t3 to form 3-tuple groups {t3, t6, t4} later.

Subsequently, GenCandidate(D[t1, t3, t6, t4, t5], k = 3, limit = 19) continues with
tuple t6. Tuple t6 can only form qualified candidates with 2-tuple groups, generated
from D[t4, t5] and constrained by (2-tuple group) limit of 19-t6[Cost] = 13. This will
invoke GenCandidate(D[t4, t5], k = 2, limit = 13). The call with t4 can only form
qualified candidates with 1-tuple groups, generated from D[t5] and constrained by limit
of 13-t4[Cost] = 6. GenCandidate(D[t5], k = 1, limit = 6) returns empty so that the call
with t4, invoked by the call with t6 are stopped. Any invocation after t6 cannot generate
valid 3-tuple groups so the recursion ends. The candidate 3-tuple groups are {t1, t3, t6},
{t1, t3, t4}, {t1, t3, t5}, {t1, t6, t4}, {t1, t6, t5}, {t1, t4, t5}, and {t3, t6, t4}.

3.3 Phase Three: Group-Dominance Checking

The resulting group skyline tuples satisfying the constraint are found by applying any
common skyline algorithm, such as the BNL algorithm [1], on the candidate groups.
The final group skyline with constraints includes {t1, t3, t6}, {t1, t3, t4}, and {t1, t6, t4}.

56 M.-Y. Lin et al.

Note that only 8 candidates, rather than 20 candidates, are generated by the CGSky
algorithm. The number of candidates required for dominance checking using common
skyline algorithms is greatly reduced.

4 Experimental Results

Comprehensive experiments were executed to assess the performance of the proposed
algorithm. All the algorithms were executed on a Windows 7 PC, with Intel(R) Core
(TM) i5-4460 3.2 GHz, 16 GB RAM and 1 TB hard disk. A modified IDA algorithm
[6], called IDA*, and CGSKY were compared in the experiments. Both were imple-
mented in Java. The IDA algorithm [6] is one of the representative group skyline
algorithms up-to-date. The IDA* algorithm extends IDA with an additional phase of
selecting the groups satisfying the constraints. Both synthetic datasets and a real dataset
were used in the experiments. Here, we report the results on anti-correlated datasets, the
results on independent and correlated datasets were similar.

Similar to most skyline algorithms, the synthetic datasets include distributions of
correlated, anti-correlated and independent data. Distinct datasets were generated using
different parameters including data size n, group cardinality k, number of attributes m,
and constraint (limit) c. The used parameters are summarized in Table 4. The default
setting was n = 500, k = 3, m = 3, and c < 120. The range of values for each attribute
was uniformly distributed from 0 to 100. All the attribute values were independently
generated in the independent dataset. For a correlated dataset, if the value of the first
attribute is x, the values of the rest attributes range from x*0.95 to x*1.05. For an
anti-correlated dataset, if the value of the first attribute is x, the values of the rest
attributes range from 100-x*0.95 to 100-x*1.05.

Figure 3 shows the results of executions on anti-correlated datasets of k = 3,
m = 3, and c < 120, by varying the data size n from 100 to 900. The results on
independent datasets and correlated datasets were similar. As the data size increases,
both the number of candidate groups and the number of constrained group skyline
tuples increase. In average, CGSky runs four times faster than IDA*. Table 5 lists the
number of candidate tuples, that of candidate groups, and that of group skyline tuples
with respect to the algorithms. For example, in Table 5 with n = 100, both algorithms
eliminated 60 tuples having dominating number larger than the group cardinality. This
leaves C(40, 3) = 4980 candidate groups generated for IDA* while CGS generated

Table 4. Parameter values used in the synthetic datasets.

Parameter Used value Default

Data Size n 100, 300, 500, 700, 900 500
Group cardinality k 2, 3, 4, 5 3
Attribute m 2, 3, 4, 5 3
Constraint c 80, 120, 160, 200, 240 120

Discovering Group Skylines with Constraints 57

only 2013 candidates by incorporating the constraint during candidate generation. The
number of (constrained) group skyline tuples was the same for both algorithms.

Figure 4 shows the results of executions on anti-correlated datasets of n = 500,
k = 3, and c < 120, by varying the number of attributes m from 2 to 5. In average,
CGSky runs 11.1 times faster than IDA*. IDA* spent 1400 s to compute the answer
when m = 5. As listed in Table 6, the number of candidate groups for IDA* is 5.6
times for CGSky when m = 4. The increase in the number of attributes has a great
impact on the total execution time since the number of “incomparable” tuples increases
exponentially.

Fig. 3. Results on varying data size n.

Table 5. Number of candidate tuples and candidate-groups w.r.t. n.

n Candidate tuples IDA* CGSky

100 40 9880 2013
300 66 45760 15693
500 90 117480 41971
700 119 273819 94130
900 133 383306 124480

Fig. 4. Results on varying number of attributes m.

58 M.-Y. Lin et al.

Next, we investigated the results of varying group cardinality, which was varied
from 2 to 5, with n = 500, m = 3, and c < 120. In average, CGSky runs 5.2 times faster
than IDA*, as shown in Fig. 5. When k = 5, IDA* spent 8000 s and CGSky spent
3196 s for the computation. Table 7 indicates that CGSky effectively eliminated a large
number of candidate groups. IDA* had to process 3.6 times of candidate groups than
CGSky did. That is why CGSky outperforms IDA* for about 11 faster with group
cardinality k = 4.

The next experiment was varying constraint c from 80 to 240 on anti-correlated
datasets, with n = 500, m = 3, and k = 3. The execution time of the IDA* algorithm
stayed nearly constant of 4.7 s since the time-consuming process of finding group
skyline tuples took the same time, and the constraint is used only to retrieve groups
passing the threshold. The execution time of the CGSky algorithm increased as the
constraint value increased, because the number of candidates increased. The CGSky
algorithm finished less than 1 s for ‘c < 80’, increased to 1.7 s for ‘c < 120’, but kept

Table 6. Number of candidates, candidate-groups, and group-skyline tuples w.r.t. m.

m Candidate tuples IDA* CGSky

2 31 4495 3121
3 90 117480 41971
4 182 988260 174493
5 272 3317040 421015

0.1

4.7

441.2

0.1 1.8 37.1

0

100

200

300

400

500

2 3 4

E
xe

cu
tio

n
T

im
e

(s
ec

.)

Group Cardinality

IDA*

CGSky

Fig. 5. Results of varying group cardinality k.

Table 7. Number of candidates, candidate-groups, and group-skyline tuples w.r.t. k.

k Candidate tuples IDA* CGSky

2 71 2485 1452
3 91 121485 30918
4 111 5989005 1675519
5 127 254231775 21450113

Discovering Group Skylines with Constraints 59

less than 4 s for ‘c < 240’. Note that the constraint can be useless when the constraint
value is close to 300 for k = 3.

The experiments continued with the read-world dataset, from http://tw.global.nba.
com/statistics/ with the NBA 2015-2016 regular season data. This data contains 412
players with five attributes: salary, points, rebounds, assists, and steals. The salary
attribute is the constraint attribute. The salary constraint of 70 million is set for 12
players by NBA league so the default salary constraint used in the experiment was
about 30 million for group cardinality k = 5. The number of attributes was varied from
2 to 5 and the result is shown in Fig. 6. The experimental results of varying k and
varying c are similar.

Figure 6 shows the effect of varying the number of attributes m from 2 to 5. Again,
the CGSky algorithm runs 3 times faster than the IDA* algorithm. This confirms that
the early pruning and the candidate group generation are very effective in reducing the
number of candidate groups.

5 Conclusion

In this paper, we propose the CGSky algorithm for discovering constrained group
skylines. The CGSky algorithm features in the reduction of candidate groups and
pruning impossible candidate combinations from applying the constraints. The com-
prehensive experiments comprising synthetic and real datasets confirm that the CGSky
algorithm outperform the well-known IDA algorithm by an order of magnitude faster in
average. Future extension of the study could be finding the group skyline where group
members are formed with specified characteristics, or finding group skylines with
constraints in distributed computing platforms [3, 7, 16, 19].

Acknowledgements. The authors appreciate the valuable comments from the reviewers. This
research was supported partly by the Ministry of Science and Technology, R.O.C. under grant
MOST 105-2634-E-004-001.

0

50

100

150

200

250

300

2 3 4 5

Ex
ec

u
on

 T
im

e
(s

ec
.)

Number of Attributes

CGSky

IDA*

Fig. 6. Results on NBA real-datasets by varying m.

60 M.-Y. Lin et al.

http://tw.global.nba.com/statistics/
http://tw.global.nba.com/statistics/

References

1. Borzsonyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th
International Conference on Data Engineering, pp. 421–430 (2001)

2. Chen, L., Cui, B., Lu, H.: Constrained skyline query processing against distributed data sites.
IEEE Trans. Knowl. Data Eng. (TKDE) 23(2), 204–217 (2011)

3. Chen, L., Hwang, K., Wu, J.: MapReduce skyline query processing with a new angular
partitioning approach. In: 26th IEEE International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, pp. 2262–2270 (2012)

4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceedings of
the 19th International Conference on Data Engineering, pp. 717–719 (2003)

5. Chomicki, J., Ciaccia, P.,Meneghetti, N.: Skyline queries, front and back. SIGMODRec. 42(3),
6–18 (2013)

6. Chung, Y.C., Su, I.F., Lee, C.: Efficient computation of combinatorial skyline queries. Inf.
Syst. 38(3), 369–387 (2013)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: 6th
Symposium on Operating System Design and Implementation (OSDI), pp. 137–150 (2004)

8. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: Proceedings of the
33rd International Conference on Very Large Data Bases, pp. 291–302 (2007)

9. Endres, M., Roocks, P., Kießling, W.: Scalagon: An Efficient Skyline Algorithm for All
Seasons. In: Renz, M., Shahabi, C., Zhou, X., Cheema, M.A. (eds.) DASFAA 2015. LNCS,
vol. 9050, pp. 292–308. Springer, Cham (2015). doi:10.1007/978-3-319-18123-3_18

10. Han, X., Li, J., Yang, D., Wang, J.: Efficient skyline computation on big data. IEEE Trans.
Knowl. Data Eng. (TKDE) 25(11), 2521–2535 (2013)

11. Im, H., Park, S.: Group skyline computation. Inf. Syst. 188, 151–169 (2012)
12. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for

skyline queries. In: Proceedings of 28th International Conference on Very Large Data Bases,
pp. 275–286 (2002)

13. Lee, J., Hwang, S.W.: Toward efficient multidimensional subspace skyline computation.
VLDB J. 23(1), 129–145 (2014)

14. Liu, J., Xiong, L., Pei, J., Luo, J., Zhang, H.: Finding pareto optimal groups: group-based
skyline. Proc. VLDB Endowment 8(13), 2086–2097 (2015)

15. Mortensen, M.L., Chester, S., Assent, I., Magnani, M.: Efficient caching for constrained
skyline queries. In: Proceedings of the 18th International Conference on Extending Database
Technology (EDBT), pp. 337–348 (2015)

16. Mullesgaard, K., Pedersen, J.L., Lu, H., Zhou, Y.: Efficient skyline computation in
MapReduce. In: Proceedings of the 17th International Conference on Extending Database
Technology (EDBT), pp. 37–48 (2014)

17. Magnani, M., Assent, I.: From stars to galaxies: skyline queries on aggregate data. In:
Proceedings of the 16th International Conference on Extending Database Technology
(EDBT), pp. 477–488 (2013)

18. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 467–478 (2003)

19. Park, Y., Min, J.K., Shim, K.: Parallel computation of skyline and reverse skyline queries
using MapReduce. Proceedings of the VLDB Endowment 6(14), 2002–2013 (2013)

Discovering Group Skylines with Constraints 61

http://dx.doi.org/10.1007/978-3-319-18123-3_18

20. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In: Proceedings
of 27th International Conference on Very Large Data Bases, pp. 301–310 (2001)

21. Zhang, M., Alhajj, R.: Skyline queries with constraints: integrating skyline and traditional
query operators. Data Knowl. Eng. 69(1), 153–168 (2010)

22. Zhang, N., Li, C., Hassan, N., Rajasekaran, S., Das, G.: On skyline groups. IEEE Trans.
Knowl. Data Eng. (TKDE) 26(4), 942–956 (2014)

62 M.-Y. Lin et al.

	Discovering Group Skylines with Constraints by Early Candidate Pruning
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Algorithm
	3.1 Phase One: Dominance-Table Computation
	3.2 Phase Two: Candidate-Group Generation
	3.3 Phase Three: Group-Dominance Checking

	4 Experimental Results
	5 Conclusion
	Acknowledgements
	References

