
A Framework for Clustering and Dynamic
Maintenance of XML Documents

Ahmed Al-Shammari(B), Chengfei Liu, Mehdi Naseriparsa, Bao Quoc Vo,
Tarique Anwar, and Rui Zhou

Swinburne University of Technology, Melbourne, VIC 3122, Australia
{aalshammari,cliu,mnaseriparsa,bvo,tanwar,rzhou}@swin.edu.au

Abstract. Web data clustering has been widely studied in the data min-
ing communities. However, dynamic maintenance of the web data clusters
is still a challenging task. In this paper, we propose a novel framework
called XClusterMaint which serves for both clustering and maintenance
of the XML documents. For clustering, we take both structure and con-
tent into account and propose an efficient solution for grouping the doc-
uments based on the combination of structure and content similarity.
For maintenance, we propose an incremental approach for maintaining
the existing clusters dynamically when we receive new incoming XML
documents. Since the dynamic maintenance of the clusters is computa-
tionally expensive, we also propose an improved approach which uses
a lazy maintenance scheme to improve the performance of the clusters
maintenance. The experimental results on real datasets verify the effi-
ciency of the proposed clustering and maintenance model.

Keywords: Clustering · XML documents · Structure and content sim-
ilarity · Dynamic maintenance

1 Introduction

XML has become a standard data exchange format these days, which provides
interoperability and simplicity among Web-based services such as financial trans-
actions, transportation, and healthcare services [10]. In general, these services
are required to meet the minimum response time for transferring large amounts
of XML data between users and the application providers. Therefore, identifying
groups of users with similar requests can potentially reduce the required response
time. Clustering is one of the most crucial techniques for organising the dissem-
inated documents into groups based on their similarities [7,14]. Several studies
have proposed different XML clustering models to support the compression and
aggregation techniques in reducing the latency and bandwidth over the Web
services [1,2]. For clustering XML documents, the similarities between them are
computed and the measures are used to group them into clusters. When the
new documents arrive, the existing clusters are to be updated and maintained
dynamically in an efficient manner. For the dynamic maintenance, some clus-
tering techniques such as the partitioning-based are inapplicable in the dynamic
c© Springer International Publishing AG 2017
G. Cong et al. (Eds.): ADMA 2017, LNAI 10604, pp. 399–412, 2017.
https://doi.org/10.1007/978-3-319-69179-4_28

400 A. Al-Shammari et al.

environment [11]. There are two reasons behind this. Firstly, these approaches
assume a fixed number of clusters. However, in the dynamic environment the
number of clusters may change frequently over a period of time. Secondly, the
partitioning-based approach completely recalculates the cluster properties to
update the clusters each time with the new XML documents. This complete
re-calculation approach is inefficient. Conversely, the agglomerative (bottom-up)
clustering method does not require a predefined number of clusters [4,5]. There
has not been much works on developing methods for efficient maintenance of
XML document clusters in a dynamic environment. Some studies have proposed
clustering models for XML documents based on the structure and content sim-
ilarity [12]. These models are inefficient for clustering XML documents because
they require a long execution time to calculate the pairwise distance between
the documents. For instance, fractal clustering models [2] use a fractal similarity
method that needs to calculate the scale and offset factors to find the similarity
between the XML documents. To address the above limitations, we introduce a
novel framework for clustering and maintenance of the XML documents called
XClusterMaint. The XClusterMaint framework includes the followings: (1) clus-
tering, and (2) the clusters maintenance. The main contributions of this paper
are summarised as follows:

– We propose a fast clustering model for the XML documents based on a com-
bination of the structure and content similarity. The proposed model requires
a low computational cost in comparison with the existing clustering models.

– We introduce an incremental approach for the dynamic maintenance of exist-
ing clusters when new documents arrive. The maintenance includes adding the
new documents to their closest cluster, and updating the cluster properties.

– We further improve the performance of the dynamic maintenance of clusters
by proposing a lazy maintenance scheme. It keeps track only of the unstable
cluster spaces to minimize the computations.

– We validate the proposed framework with extensive experiments on real-world
datasets and demonstrate the efficiency of our clustering and maintenance
approaches.

The rest of the paper is organised as follows. Section 2 presents the related
work, which is followed by the problem definition in Sect. 3, and a high-level
solution sketch in Sect. 4. Thereafter, we present the initial clustering of XML
documents in Sect. 5, and the dynamic cluster maintenance in Sect. 6. The exper-
imental results are presented in Sect. 7, and the paper is finally concluded in
Sect. 8.

2 Related Work

This section highlights the basic findings and gaps in the studies related to clus-
tering methods. Many studies have addressed the problem of XML document
clustering. XML document includes two main features: structure and content.
However, most current XML clustering algorithms do not concentrate on both of

A Framework for Clustering and Dynamic Maintenance of XML Documents 401

these features due to their demand of more processing time and computational
storage. Clustering of static XML documents based on the similarity/distance
measure has attracted a great deal of attention. Static clustering approaches can
be generally separated into the following categories: content-based approaches,
structure-based approaches, and hybrid approaches. Clustering XML by struc-
ture and content features is more efficient and useful whenever XML documents
share overlapping [6]. In addition, in a heterogeneous environment clustering by
both features achieves a high performance in comparison with other approaches
using content/structure only [12,15]. We focus on the clustering XML documents
algorithms by considering both structure and content similarity since there is no
work done on the dynamic maintenance of the XML documents clustering in the
literature.

Yongming et al. (2008) [15] introduced a clustering technique for XML doc-
uments based on similarity measures which exploits both the structure and con-
tent features of XML data. The leaf path and nested elements of XML data
are the major features forming the vector-based dataset before the clustering
process is performed. Experiments showed that the performance of the extended
vector space model is greater than the basic VSM, showing higher purity and
lower entropy. Al-Shammary and Khalil (2011) [2] proposed Fractal clustering
algorithms by structure and content similarity. These models do not require a
pre-defined number of clusters. In the pre-processing, XML is transformed as a
vector by using the tf.idf weighting scheme. Then, Fractal coefficient is used to
find the similarity among vectors and finally group them based on minimum frac-
tal mean square error. The experimental results have shown better performance
of the proposed self-similarity model than other clustering techniques such as
k-means and PCA combined with k-means.

However, partitioning-based clustering algorithms are inapplicable in the
dynamic environment. The main reason is that the proposed algorithms assume
a fixed number of clusters [11]. On the other hand, clustering algorithms [2,6]
have also shown some drawbacks such as the lack of incremental maintenance
for the existing clusters and disregard the content similarity of XML documents.
Therefore, our work focuses on proposing a framework for both clustering and
maintenance of the clusters over XML documents.

3 Problem Statement

Suppose we have a given set of XML documents D = {d1, d2, d3, ..., d|D|}. We
use two aspects to reflect an XML document: (a) data structure, and (b) data
content. Therefore for a document di ∈ D, we generate two vectors called �vs

i

and �vc
i to represent the document structure and content properties respectively.

Then, we combine these vectors to generate the XML vector that represents
the corresponding XML document. The first problem that we address in this
paper is defined as grouping these documents D based on their structure and
content similarity to generate the initial set of clusters C = {c1, ..., c|C|}. These
clusters contain the summarised information of the documents. To assign the

402 A. Al-Shammari et al.

XML vectors into their proper clusters, we have to measure the distance between
these vectors.

Definition 1 (Vector distance). For two XML vectors �v1 and �v2, the vector
distance (dist) is defined as their Euclidean distance presented in Eq. 1

dist(�v1, �v2) =

√
√
√
√

n∑

i=1

(

�v1.wi − �v2.wi

)2

(1)

Here wi is the weight of the ith entry in the XML vector. After measuring the
distance between the XML vectors, we group these vectors into a set of clusters
based on their distance measure.

Definition 2 (Cluster). A cluster c ∈ C contains a set of XML vectors, and
has the following properties: (a) the centroid mc which is defined as the central
mean vector of the c which is presented in Eq. 2, (b) the radius r1c which is
required a pre-defined to the set of clusters C.

�mc =
∑|c|

i=1 �vi
|c| (2)

The second problem is incrementally maintaining the generated clusters when
the new incoming documents arrive. Given a set of clusters C and an incoming
document dnew, maintenance of the existing clusters defined as a set of updates
for the cluster properties with tracking the affected XML vectors. In the tracking
process, we may assign the affected XML vectors to the nearest clusters or we
may initialise new clusters for these vectors. However, dynamic maintenance
of the clusters incurs high computational costs. Therefore, there is a need for
an efficient maintenance approach to improve the performance of the clusters
maintenance.

4 The Solution Sketch

Figure 1 shows our proposed framework called XClusterMaint. Technically,
XClusterMaint that takes care of both the clustering and the clusters main-
tenance. In the clustering, we start with traversing the order labelled XML tree,
and then we generate the XML vector which is a combination of the structure and
content vectors respectively. Technically, the term frequency-inverse document
frequency (tf.idf) weighting scheme [8] is used to assign the weights to the terms
of XML document, and the weights are stored in a vector matrix. Afterwards,
Euclidean distance [3] is used for the similarity measurement by computing the
minimum distance between the XML vectors. Then, the similar XML vectors
are distributed into the clusters based on the agglomerative clustering model.
The steps of clustering are presented in Sect. 5. In the clusters maintenance, an
incremental approach is proposed for maintaining the properties of the existing
clusters when the new incoming document arrives. Finally, we improve the effi-
ciency of the clusters maintenance based on lazy maintenance scheme. The steps
of clusters maintenance are presented in Sect. 6.

A Framework for Clustering and Dynamic Maintenance of XML Documents 403

5 Clustering of XML Documents

In this section we focus on the main steps of the clustering of XML documents.
The steps are as follows: (a) generating the vectors for the XML documents, (b)
computing the similarity of the documents using their vectors, and (c) allocating
the documents to their proper clusters.

5.1 Generating the XML Vectors

Any XML document in the dataset is modelled as a rooted tree. The XML tree
has two kinds of nodes: (a) structure node and (b) content node. The structure
refers to the nested tags (elements) that organise the content information while
the content refers to the data values of the elements. We use depth-first search
algorithm for traversing and indexing XML nodes level by level since all the
nodes obtain a unique number as their index. To generate the XML vectors, we
firstly generate the structure vector �vs and content vector �vc.

Definition 3 (XML vector). An XML document di ∈ D represented as a
vector �vi = (�vs

i .w1, �v
s
i .w2, ..., �v

s
i .wm, �vc

i .wm+1, ..., �v
c
i .wn) where �vs

i .wj reflects the
weight (total frequency) of the XML term j in the structure vector (1 ≤ j ≤ m)
and �vc

i .wm+k reflects the weight of the XML term k in the content vector (1 ≤
k ≤ n − m)1.

We select m terms for the structure vector and n−m for the content vector,
where m and n are usually application dependent and constrained by storage.
For each term t in the structure or content vector, we use the tf.idf scheme
to calculate the weight. The tf measures the frequency of the term t in the
document denoted by tf(t, d) while the idf measures the importance of the term

XML Web
Documents

Cluster n+1

Clustering

Maintenance of Clusters

XML vectors distribution

Generating XML
vectors

Similarity measurement

Cluster 1

Cluster n

Cluster 2

Generating new XML
vectors

Calculating distance
vector and clusters

Updating the clusters
properties

Tracking the clusters
merge/new

Adjusting the clusters
properties

Fig. 1. The main components of XClusterMaint framework

1 For simplicity, in this paper, we set m = n
2
.

404 A. Al-Shammari et al.

in the entire set of documents denoted by idf(t) = log N
df(t) where df(t) presents

the number of documents that contain t in the dataset and N is the total number
of XML documents in the dataset. Formula 3 presents the tf.idf formula for a
term t in the document d.

wt,d = tf(t, d) × idf(t) (3)

After generating �vs and �vc, we combine these vectors to generate the XML
vector of a document. This vector is used to measure the similarity score between
the documents. The Eq. 4 presents the combination formula where α is the tuning
parameter which trades off between the importance of the structure and content
terms of the document.

�v = (α × �vs, (1 − α) × �vc) (4)

For example purpose, assume we have 6 documents in the dataset. The XML
vector for each document is generated by applying the combination formula
presented in Eq. 4 using the tuning parameter α = 0.6. For each vector, there
are 3 weights for the structural terms and 3 weights for the content terms.
Figure 1 presents the vectors for these documents.

Table 1. Vectors generation

Vectors Structure Content Generating the vectors

wt1 wt2 wt3 wt1 wt2 wt3

v1 0.3 0.6 0.2 0.4 0.9 0.3 (0.18,0.36,0.12,0.16,0.36,0.12)

v2 0.2 0.3 0.3 0.6 0.3 0.2 (0.12,0.18,0.18,0.24,0.12,0.08)

v3 0.3 0.6 0.2 0.6 0.9 0.3 (0.18,0.36,0.12,0.24,0.36,0.12)

v4 0.3 0.6 0.4 0.4 0.9 0.3 (0.18,0.36,0.24,0.16,0.36,0.12)

v5 0.2 0.2 0.3 0.6 0.3 0.2 (0.12,0.12,0.18,0.24,0.12,0.08)

v6 0.2 0.5 0.2 0.3 0.8 0.3 (0.12,0.30,0.12,0.12,0.32,0.12)

5.2 Similarity Measurement

We use the data vectors to measure the similarity degree between their corre-
sponding documents. The Euclidean distance measures the similarity between
vectors that has several advantages in data clustering, such as simplicity and
accuracy. Therefore, we use Eq. 1 to calculate the Euclidean distance between a
pair of XML vectors, for instance �v1 and �v2. In order to find the similar docu-
ments, we measure the distance between all the XML vector pairs. The output
of this step is the similarity score for each vector with all other vectors.

Example 1. The distance between the XML vectors in Table 1 are as follows:
dist(�v2,�v5) = 0.06, dist(�v1,�v3) = 0.08, dist(�v1,�v6) = 0.1019,dist(�v1,�v4) = 0.12,dist
(�v3,�v4) = 0.1442,dist(�v3,�v6) = 0.1523,dist(�v4,�v6) = 0.1574, dist(�v5,�v6) = 0.2049,
dist(�v2,�v6) = 0.2720,dist(�v2,�v3) = 0.3143, dist(�v1,�v2) = 0.3243, dist(�v3,�v5) =
0.3521,dist(�v1,�v5) = 0.3611.

A Framework for Clustering and Dynamic Maintenance of XML Documents 405

5.3 XML Vectors Distribution

After measuring the pairwise similarity between the XML vectors, we initialize
the clusters for these vectors. To initialize the clusters, we start with sorting
the pairwise distance between every two vectors, as shown in Example 1. The
pair with the minimum distance is first checked whether it is less than a given
threshold δ. The two vectors of this pair are merged into a cluster if it is true. This
process is carried out to all the other vector pairs (�vi,�vj) for which dist(�vi,�vj) <
δ, in the order of increasing pairwise distance. After this first round, the pairwise
distance between the centroids of every two clusters are computed and sorted in
increasing order. Following the same process as the first round, the clusters are
merged if their distance is less than δ. These rounds are continued until all the
pairs satisfying the pairwise distance condition have been processed. Considering
Example 1 and δ = 0.21055, the distance between �v1 and �v3, �v6, and �v4 is less
than δ. While, the distance between �v1 and �v2, �v1 and �v5 is greater than δ. As a
result, �v2 and �v5 have a high similarity and they will assign to the first clusterc1.
While, �v1 �v3, �v6, and �v4 will assign to the second cluster c2.

6 Maintenance of the Clusters

As we mentioned earlier, the existing clustering algorithms are inapplicable for
the dynamic maintenance of the clusters. Therefore, we propose two approaches
for the incremental maintenance: (1) Baseline approach, and (2) Improved app-
roach. When new XML documents arrive, these approaches maintain the prop-
erties of the existing clusters incrementally. The first approach uses an Eager
Maintenance scheme of the Clusters (EMC) that tracks the entire XML vectors
in the cluster. The second approach uses a Lazy Maintenance scheme of the
Clusters (LMC) which tracks only a part of the XML vectors. The technical
details for the proposed approaches are presented in Sects. 6.1 and 6.2 respec-
tively. Maintenance of the clusters starts with the generating new XML vectors.
Then, a decision is made to either assign the new XML vector �v to the near-
est cluster c ∈ C by calculating the minimum distance between the new vector
and the existing clusters or initialise new cluster. Once the new XML vector
is assigned to its nearest cluster, the new cluster centroid will be adjusted. The
process of adjusting the new cluster centroid is performed incrementally by using
the following formula:

�mcnew
=

|c| × �mc + �v

|c| + 1
(5)

Where |c| is the cluster size before adding the new XML vectors.

406 A. Al-Shammari et al.

6.1 Baseline Maintenance Approach

We first present the baseline maintenance approach which is implemented based
on EMC. We introduce a second yet smaller radius r2c , such that (r2c < r1c)

2 to
divide a cluster c ∈ C into two spaces as followings:

– Stable space (S): This space contains the XML vectors that reside in the
second radius of a cluster r2c . The distance between these vectors and their
centroid is less than or equal the second radius, where dist(�v, �mc) ≤ r2c .

– Boundary space (B): This space contains the XML vectors that reside out
of the second radius r2c but in the first radius r1c , i.e., r2c < dist(�v, �mc) ≤ r1c .
These vectors may be unstable and should be considered in the cluster main-
tenance. For instance, when the new centroid moves to a specific side, some
of these vectors may be outside of the cluster boundary since the distance
between these vectors and the new centroid is bigger than r1c as shown in
Fig. 2.

Basically, EMC uses two sets of maintenance operations as follows:

– moveOut(�v, S, c) this operation moves the XML vector �v from the stable space
to the boundary space of the cluster c.

– moveIn(�v, S, c) this operation moves the XML vector �v from the boundary
space to the stable space of the cluster c.

– moveOut(�v,B, c) this operation moves the XML vector �v from the boundary
space to the outside of the cluster c.

– moveIn(�v′, B, c) this operation receives the XML vector �v′ from the outside
of the cluster to the boundary space of the cluster c.

Fig. 2. Maintenance of the cluster

The EMC maintains the existing clusters by tracking the XML vectors in the
stable and unstable spaces in the maintenance process. It includes two checking
conditions: (1) cluster merge and (2) cluster initialisation. Firstly, a decision is
2 r2c is usually a fraction of r1c , i.e. r2c = λr1c , λ ∈ (0, 1). In the paper, we find λ = 0.8

is fairly good.

A Framework for Clustering and Dynamic Maintenance of XML Documents 407

made to merge the vectors that are located outside of the first cluster boundary
to the nearest cluster. Secondly, a decision is made to initialise a new cluster if
the minimum distance between the vector and the existing centroids is bigger
than a distance threshold θ such that min(dist(�v, �mci , 1 ≤ i ≤ |C|)) > θ.

6.2 Improved Maintenance Approach

The improved maintenance approach uses the Lazy Maintenance of the Clusters
scheme (LMC) for maintaining the existing set of the clusters efficiently. LMC
scheme only tracks the XML vectors in the unstable space. Therefore, this app-
roach does not require to check the XML vectors in the stable space of a cluster,
which cause it to accelerate the process of the cluster maintenance (see Fig. 2).
The EMC and LMC tracking spaces are presented in Fig. 2. Clearly, the EMC
works on both spaces while the LMC only works on the boundary space. Accord-
ing to this approach, we guarantee that the entire XML vectors do not require
an adjustment in the stable space of the cluster. LMC uses a set of maintenance
operations are as follows:

– moveOut(�v,B, cnew) this operation moves the XML vectors from the bound-
ary space to the outside of the cluster.

– moveIn(�v′, B, cnew) this operation receives the XML vectors from the outside
of the cluster to the boundary space.

Theorem 1. Let c and cnew denote the cluster before and after adding the new
incoming documents respectively. Then r1c -r

2
c denote the boundary threshold δ,

and �mc is the old cluster centroid. There is no adjustment required for the stable
space of the cluster cnew if the distance between the centroids dist(�mc, �mcnew

)
≤ δ.

Proof. Assume �v is a vector that resides in the stable space of the cluster c
such that dist(�v, �mc) = r2c . Then if the distance of �v with the new cluster cnew
is dist(�v, �mcnew

) > r1c , thus �v is out of cluster cnew. We prove that this can
never happen. Since the new centroid mcnew

is moved within the distance of
(r1c -r

2
c), the maximum distance for the new vector �v will be dist(�v, �mcnew

) =
r2c + (r1c − r2c) = r1c which means in the worst case it resides in the boundary of
cnew. As a result, the distance of �v in the new cluster cnew is dist(�v, �mcnew

) ≤ r1c .
Therefore, the primary assumption is not true and the vectors of the stable space
will never move out of the cnew; thus, no adjustment required.

Basically, there are two possibilities might be happened after adjusting a
new cluster centroid. Firstly, the new centroid of the cluster might be changed
slightly. Secondly, The new centroid of the first cluster might be changed dramat-
ically (it takes a sudden jump). For the first possibility, we proposed incremental
maintenance of clusters is capable of maintaining the accumulated clusters incre-
mentally. Secondly, recalculation for centroid is required if the distance between
old and new centroids is bigger than the boundary threshold δ. Therefore, we
propose a local re-calculation approach to recalculate the cluster properties. In

408 A. Al-Shammari et al.

particular, this approach is performed locally for a part of clusters. The distance
between a pair of cluster centroids is calculated based on the vector distance
formula 1.

Algorithm 1. Improved Maintenance
Input : C = {c1, c2,c3,...,c|C|}, new document dnew, minimum distance

threshold θ, tuning Parameter α
Output: Updated set of clusters Cnew

1 �vnew ←createV ector(dnew, α)
2 cnear ←findNearestCluster(�vnew,C)
3 if dist(�vnew, �mcnear) ≥ θ then
4 Initialize a new cluster and assign �vnew to the new cluster cnew

5 Cnew ←C ∪ cnew

6 else
7 cnew ←cnear

8 Assign vector �vnew to cnew

9 Update(�mcnew)
10 for each �vi in cnew do
11 if dist(�vi, �mcnew) > r1c then
12 moveOut(�vi, B, cnew)

13 for each vector �v′ near to cluster c do
14 if dist(�v′, �mcnew) <= r1c then
15 moveIn(�v′, B, cnew)

16 δ ←Determine the boundary threshold r1c -r
2
c

17 if dist(�mcnear , �mcnew) > δ then
18 Recalculate the properties of the cluster cnew

19 Cnew ←cnew ∪ (C \ cnear)
20 return Cnew

Algorithm 1 presents the maintenance steps for the proposed framework using
the improved maintenance approach. In lines 1–2, we do the preparation for the
maintenance. Lines 3–5 check the distance between the XML vectors and the
centroid. If the distance is bigger than the distance threshold θ, we initialize a
new cluster. In lines 7–9, we assign the XML vectors to the nearest cluster cnear.
In lines 10–15, we track the XML vectors in the boundary space by using a set
of maintenance operations. Lines 16–18 verify the distance between the old and
new cluster centroids. If the distance is bigger than the boundary threshold δ,
we do the local recalculation for the cluster.

7 Experimental Results

This section highlights the experimental results for the XClusterMaint frame-
work. The comparison analysis between the clustering models is discussed in

A Framework for Clustering and Dynamic Maintenance of XML Documents 409

Sect. 7.1. For the effectiveness test, we prove the correctness of the incre-
mental maintenance approaches based on the cluster radius. Therefore, this
paper addresses the efficiency of the clusters maintenance which is presented in
Sect. 7.2. The experiments are implemented with Visual Basic 2012 and executed
by a processor Intel, Core (i5)-3570 CPU 3.40 GHz. We conducted experiments
on the real datasets. Specifically, we use four datasets that include 16,000 doc-
uments. These documents contain the information of the scheduled flights [9].
The datasets have the following sizes: 400 MB, 980 MB, 920 MB, and 640 MB.

7.1 Comparison with Fractal Clustering Model

We quantify the effects of the proposed clustering model according to the exe-
cution time in comparison with the fractal clustering model which is discussed
in the literature 2. The execution time is the actual processing time that covers
the entire processes for the clustering. It is an essential indicator to verify the
efficiency of the proposed framework. The results show that our clustering model
requires less execution time for clustering 4000 XML documents in comparison
with fractal clustering model as shown in Fig. 3. Technically, both clustering
models use tf.idf formula to represent the structure and content of XML doc-
uments as vectors. However, the main reason behind this difference is that the
fractal clustering model needs further execution time to capture the similar vec-
tors by computing the offset and scale factors of fractal similarity to determine
the similar vectors.

300

500

700

1 2 3 4

Ex
ec

ut
io

n
Ti

m
e

in

Se
co

nd
s

Datasets

The Clustering Model

 Fractal Clustering Model

Fig. 3. Comparison of the execution time for the XML clustering models

7.2 Efficiency of the Clusters Maintenance

Figure 4 shows the execution time of our proposed approaches by varying the
number of inserted XML documents in the experimented datasets. We note that
both datasets 2 and 3 require a long execution time in comparison with datasets
1 and 4. When the number of XML documents is set from 1000 to 4000 with
an increase of 500 documents at each iteration. We set the radius r1c = 0.682
and r2c = 0.547 respectively. The value of the first cluster radius r1c is predefined
depending on the maximum distance between the centroid �mc and the con-
tained XML vectors in each cluster. While the value of the second cluster radius

410 A. Al-Shammari et al.

r2c is determined depending on the average of the minimum and maximum dis-
tances. Based on the Euclidean distance, the maximum distance is 0.682 and the
minimum distance is 0.413. We note that the improved maintenance approach
requires a less execution time for maintaining the clusters in comparison with
the baseline maintenance approach.

20

160

300

440

1k 1.5k 2k 2.5k 3k 3.5k 4k

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Number of XML Documents

Baseline

Improved

(a) Dataset 1

50

200

350

500

650

1k 1.5k 2k 2.5k 3k 3.5k 4k

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Number of XML Documents

Baseline

Improved

(b) Dataset 2

40

180

320

460

600

1k 1.5k 2k 2.5k 3k 3.5k 4k

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Number of XML Documents

Baseline

Improved

(c) Dataset 3

40

160

280

400

520

1k 1.5k 2k 2.5k 3k 3.5k 4kEx
ec

u
on

 T
im

e
in

Se

co
nd

s

Number of XML Documents

Baseline

Improved

(d) Dataset 4

Fig. 4. Execution time for the baseline and improved maintenance approaches

The main reason is that the lazy maintenance scheme tracks only the XML
vectors inside the boundary space of the clusters. While the baseline approach
depends on the eager maintenance scheme which tracks the XML vectors inside
the stable space and the boundary space of the clusters. We also examine the
effect of the varying r1c and r2c on the efficiency of the cluster maintenance as
shown in Fig. 5. The first and second experimented datasets are used in the test
of varying the cluster radius.

Figures 5a and c present the effect of varying r1c on the maintenance perfor-
mance in two datasets. We set the value of the first radius and the second radius
as r1c = 0.506, 0.612, 0.718 and 0.824; and r2c = 0.412, 0.515, 0.618 and 0.721
respectively. We note that when the value of r1c increases, the execution time
decreases for both maintenance approaches on both datasets. That’s because
when the value of the r1c gets bigger, the number of generated clusters is smaller.
Therefore, most XML vectors are assigned to the small set of the existing clus-
ters without having to initialize the new clusters. Figures 5b and d present the
effect of varying of the second radius r2c on the maintenance performance. We
fix r1c = 0.824, and vary r2c = 0.412, 0.515, 0.618 and 0.721. Clearly, varying r2c
has almost no effect on the performance of the baseline maintenance approach.
That’s because the baseline approach works on all the vectors in the stable and
boundary spaces for maintenance. In the improved approach; however, by vary-
ing r2c to a smaller value, the number of vectors in the stable space decreases
which leads to bigger execution time. Conversely, by setting r2c to a bigger value,

A Framework for Clustering and Dynamic Maintenance of XML Documents 411

10

40

70

100

0.506 0.612 0.718 0.824

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Varying of the first radius

Baseline

Improved

(a) Dataset 1

10

40

70

100

0.412 0.515 0.618 0.721

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Varying of the second radius

Baseline

Improved

(b) Dataset 1

20

65

110

155

200

0.506 0.612 0.718 0.824

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Varying of the first radius

Baseline

Improved

(c) Dataset 2

20

60

100

140

0.412 0.515 0.618 0.721

Ex
ec

u
on

 T
im

e
in

Se

co
nd

s

Varying of the second radius

Baseline

Improved

(d) Dataset 2

Fig. 5. Execution time for the baseline and improved maintenance approaches with
varying the values of r1c and r2c

the number of vectors inside the stable space increases. As a result, only small
number of vectors in the boundary space are checked for the maintenance which
leads to improving the performance on both datasets.

8 Conclusion

In this paper, we introduce a novel framework called XClusterMaint that serves
both the clustering and the clusters maintenance of XML documents. For clus-
tering, we generate a set of initial clusters for the XML documents based on
the combination of structure and content similarity. For maintenance, we main-
tain the properties of the existing clusters dynamically by using two incremen-
tal approaches for the clusters maintenance: (1) Baseline approach, and (2)
Improved approach. In the first approach, we use the Eager Maintenance scheme
of the Cluster (EMC) which tracks the XML vectors that reside in the stable
and boundary spaces by using two sets of maintenance operations. In the sec-
ond approach, we use the Lazy Maintenance scheme of the Cluster (LMC) to
improve the performance of the cluster maintenance. The LMC scheme tracks
only the XML vectors that reside in the boundary space by using a set of main-
tenance operations. Our experiments verify that the proposed LMC scheme is
more efficient than EMC scheme. The resultant development for the clustering
and maintenance of XML documents would be capable of improving the per-
formance of real world applications by reducing the required response time. For
future work, we will consider further extensions for the XML documents clus-
tering as well as the clusters maintenance to be more effective in the dynamic
environment.

412 A. Al-Shammari et al.

Acknowledgements. This work was partially supported by the ARC Discovery
Project under Grant No. DP170104747 and the Iraqi Ministry of Higher Education
and Scientific Research.

References

1. Abbas, A.M., Bakar, A.A., Ahmad, M.Z.: Fast dynamic clustering SOAP mes-
sages based compression and aggregation model for enhanced performance of web
services. J. Netw. Comput. Appl. 41, 80–88 (2014)

2. Al-Shammary, D., Khalil, I.: Dynamic fractal clustering technique for SOAP web
messages. In: IEEE International Conference on Services Computing (SCC), pp.
96–103 (2011)

3. Cha, S.H.: Comprehensive survey on distance/similarity measures between proba-
bility density functions. Int. J. Math. Models Methods Appl. Sci. 1(2), 1 (2007)

4. Cheng, W., Zhang, X., Pan, F., Wang, W.: HICC: an entropy splitting-based frame-
work for hierarchical co-clustering. Knowl. Inf. Syst. 46(2), 343–367 (2016)

5. Cochez, M., Mou, H.: Twister tries: approximate hierarchical agglomerative cluster-
ing for average distance in linear time. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 505–517 (2015)

6. Costa, G., Manco, G., Ortale, R., Ritacco, E.: Hierarchical clustering of XML
documents focused on structural components. Data Knowl. Eng. 84, 26–46 (2013)

7. Ding, R., Wang, Q., Dang, Y., Fu, Q., Zhang, H., Zhang, D.: Yading: fast clustering
of large-scale time series data. Proc. VLDB Endow. 8(5), 473–484 (2015)

8. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, New York (1983)

9. OpenFlights, 15 December 2016. https://datahub.io/dataset/open-flights
10. Phan, K.A., Tari, Z., Bertok, P.: Similarity-based soap multicast protocol to reduce

bandwidth and latency in web services. IEEE Trans. Serv. Comput. 1(2), 88–103
(2008)

11. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C., Gama, J.:
Data stream clustering: a survey. ACM Comput. Surv. (CSUR) 46(1), 13 (2013)

12. Tran, T., Nayak, R., Bruza, P.: Combining structure and content similarities for
XML document clustering. In: Proceedings of the 7th Australasian Data Mining
Conference, vol. 87, pp. 219–225 (2008)

13. Wang, D., Li, T.: Document update summarization using incremental hierarchical
clustering. In Proceedings of the 19th ACM International Conference on Informa-
tion and Knowledge Management, pp. 279–288 (2010)

14. Yan, J., Cheng, D., Zong, M., Deng, Z.: Improved spectral clustering algorithm
based on similarity measure. In: International Conference on Advanced Data Min-
ing and Applications, pp. 641–654 (2014)

15. Yongming, G., Dehua, C., Jiajin, L.: Clustering XML documents by combining
content and structure. In: International Symposium on Information Science and
Engineering, ISISE 2008, vol. 1, pp. 583–587 (2008)

https://datahub.io/dataset/open-flights

	A Framework for Clustering and Dynamic Maintenance of XML Documents
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 The Solution Sketch
	5 Clustering of XML Documents
	5.1 Generating the XML Vectors
	5.2 Similarity Measurement
	5.3 XML Vectors Distribution

	6 Maintenance of the Clusters
	6.1 Baseline Maintenance Approach
	6.2 Improved Maintenance Approach

	7 Experimental Results
	7.1 Comparison with Fractal Clustering Model
	7.2 Efficiency of the Clusters Maintenance

	8 Conclusion
	References

