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Abstract. Robust learning of mixture models in high dimensions
remains an open challenge and especially so in current big data era. This
paper investigates twelve variants of hybrid mixture models that combine
the G-means clustering, Gaussian, and Student t-distribution mixture
models for high-dimensional predictive modeling and anomaly detec-
tion. High-dimensional data is first reduced to lower-dimensional sub-
space using whitened principal component analysis. For real-time data
processing in batch mode, a technique based on Gram-Schmidt orthogo-
nalization process is proposed and demonstrated to update the reduced
dimensions to remain relevant in fulfilling the task objectives. In addi-
tion, a model-adaptation technique is proposed and demonstrated for big
data incremental learning by statistically matching the mixture compo-
nents’ mean and variance vectors; the adapted parameters are computed
based on weighted average that takes into account the sample size of
new and older statistics with a parameter to scale down the influence of
older statistics in each iterative computation. The hybrid models’ per-
formance are evaluated using simulation and empirical studies. Results
show that simple hybrid models without the Expectation-Maximization
training step can achieve equally high performance in high dimensions
that is comparable to the more sophisticated models. For unsupervised
anomaly detection, the hybrid models achieve detection rate � 90% with
injected anomalies from 1% to 60% using the KDD Cup 1999 network
intrusion dataset.

Keywords: Mixture models · Coarse filtering · Model adaptation ·
Parameter rating · Dimensionality reduction · Incremental learning ·
Diffusion map

1 Introduction

Mixture models have been widely used in many applications such as speaker
verification, background subtraction for real-time tracking, and biological appli-
cations. Efficient algorithm to learn mixture of Gaussians in high dimensions
with small error bound has recently been demonstrated [6]. However, practical
algorithms for robust and adaptive learning of high-dimensional mixture models
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is still an open challenge [13]. This paper extends the work of a robust subspace
mixture model initially developed by [2] for anomaly detection to predictive mod-
eling in high dimensions. High-dimensional data is reduced to lower dimensional
subspace using whitened principal component analysis. Diffusion Map (DM)-
based coarse-filtering technique is robust to noise perturbation [5] and Student-t
distribution Mixture Model (SMM) is robust to outliers [10], both provide a
robust statistics of the model developed by [2]. The estimated SMM parameters
are then used to form a Gaussian Mixture Model (GMM) statistics for predictive
density estimation to ensure robustness and sensitivity to outliers. This paper
aims to further investigate and improve the model performance and computing
efficiency for high-dimensional predictive modeling and anomaly detection. The
contributions of this paper are as follow1.

– Twelve variants of hybrid mixture models that combine G-means cluster-
ing or K-Means clustering using Gaussian algorithm (KM) developed by [7],
GMM, and SMM have been compared for predictive modeling and anomaly
detection. Results show that simple hybrid models without the Expectation-
Maximization (EM) step can achieve equally high prediction accuracy and
anomaly detection rates comparable to the sophisticated models.

– For unsupervised anomaly detection, the noise can be removed by a DM-based
coarse-filtering technique developed by [2]. However, without the coarse filter-
ing, the hybrid models achieve detection rate � 90% with injected anomalies
from 1% to 60% in the KDD Cup 1999 network intrusion dataset. The top-
down approach produces results that do not fluctuate with data sampling
in contrast to the models using the DM-based coarse-filtering technique that
process data in smaller chunks.

– For real-time batch data processing, a technique based on Gram-Schmidt
orthogonalization process is proposed and demonstrated to update the
reduced dimensions to remain relevant in fulfilling the task objectives. Exist-
ing work usually assumes same reduced dimensions for each batch of data or
assumes spherical-Gaussian covariance so that the covariance remains con-
served after re-projection from one set of dimension vectors to another.

– A model-adaptation technique is proposed and tested for incremental learn-
ing of GMM and SMM model parameters. This technique is different from
previous [2,11,12] in that the adapted model parameters are computed by
taking account the data size of new and older statistics, and a parameter is
introduced in the technique to scale down the influence of older statistics in
each iterative computation.

– Application of the parameter rating technique developed by [2] is demon-
strated using KDD Cup 1999 network intrusion dataset (10% subset); the
parameter ratings may be used to suggest mitigating actions for the different
intrusion types or to label the data.

The organization of this paper is as follows. Data pre-processing for dimension-
ality reduction and coarse filtering are provided in Sect. 2. The data processing
1 For reproducibility, the Matlab scripts to run the simulation and experimental stud-

ies in this paper are obtainable from https://github.com/jennbing/hybrid-models.

https://github.com/jennbing/hybrid-models
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to form the hybrid mixture models, model adaptation, and the parameter rating
techniques are covered in Sect. 3. Section 4 evaluates the model performance by
simulation/experimental studies and Sect. 5 concludes the work.

2 Data Pre-processing

2.1 Dimensionality Reduction Using Whitened PCA

Principal component analysis (PCA) is a linear mapping from a high-dimensional
space to a subspace that captures the most variability in the data specified by a
set of orthogonal/principal components (PCs). To extract the relevant compo-
nents from different datasets, different number of PCs with the highest eigenval-
ues are tested to find the minimum required for better model performance. For
batch processing, it is important to ensure that these minimum number of PCs
are sufficient for each batch of data to fulfill particular objective; e.g., predic-
tive modeling or anomaly detection. Suppose there exists additional PCs in new
batch of data which are not spanned by the older set of PCs, the new dimen-
sions can be appended by using the Gram-Schmidt orthogonalization process to
remove the projections on older set of PCs. On the other hand, older PC may
be discarded if the absolute value of the Pearson correlation with the set of new
PCs is low (<0.5). The threshold can be determined from empirical experiments
to ensure good model performance. The reason this updating technique is pro-
posed because the projection of non-spherical Gaussian covariance from a set of
orthonormal vectors to another is not conserved, therefore the PCs can only be
appended or discarded, but not re-projected, during the updating process.

2.2 Coarse Filtering Using Technique Based on Diffusion Map

Diffusion Map (DM) is a non-linear technique that helps to discover the under-
lying manifold of high-dimensional data [5]. Given a set of d-dimensional data
X, the similarity measure between two data points is defined as

χ(xi, xj) = exp
(

−||xi − xj ||2
ε

)
(1)

where || • || is the Euclidean distance of the vectors in the ambient space R
d.

The scaling parameter is computed by the average smallest neighbouring dis-
tance [9]. The transition probability between two data points can be computed
by normalizing Eq. 1. The diffusion distance is small if there are many short paths
connecting two data points, which implies large transition probability between
the two points. DM provides a representation in which the data points are clus-
tered according to their connectivity, which is robust to noise perturbations [5].
In the diffusion space, inliers are expected to be clustered together, whereas out-
liers might be spread between several small clusters or scattered randomly. The
inliers can then be identified by discovering the biggest connected component in
the diffusion space using technique proposed in [2].
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3 Hybrid Mixture Models

This section explains the methods to estimate the hybrid models’ parameters,
some of the algorithms can be found in [2]. Table 1 tabulates the sequence of data
processing of the hybrid mixture models. The acronym for each hybrid model
follows the sequence of data processing. For example, the sequence of KEG
model is (1) KM (2) EM (3) GMM. For anomaly detection, the data is first
coarse-filtered with a technique based on diffusion map described in Sect. 2.2
to remove anomalies before model training. GMM and SMM parameters are
estimated using the EM algorithms described in [3] and [10] respectively. The
EM initialization is provided by the K-means clustering using Gaussian algo-
rithm (KM) developed by [7] that repeatedly splits every clusters until each
approximates the Gaussian distribution statistically. The statistical test, which
is based on the one-dimensional Anderson-Darling statistics, is valid for multi-
dimensional Gaussian distribution. In addition, the mixture model parameters
can also be learnt using KM directly and is theoretically shown to require near-
optimal sample requirement with well-separated mixture components [4]. The
reason this simple model is explored because EM algorithm often converges to
local minimum in high dimensions. For computing efficiency, variance vectors are
used in the mixture modeling instead of full covariance matrices. For KESG, the
estimated SMM parameters are used to form GMM statistics; while for KEGS,
the estimated GMM parameters form the SMM statistics assuming the degree
of freedom is 1, this is justifiable because real data usually spreads out. Similar
applies to other models. In addition, a model-adaptation technique is introduced
for incremental learning of big data and the computation of a parameter rating

Table 1. Sequence of data processing of the proposed hybrid mixture models. The
acronym for each hybrid model follows the sequence of data processing. For example,
the sequence for DKEGS model is (1) DM (2) KM (3) EM (4) GMM (5) SMM.

Models DM KM EM GMM SMM Remark

KG 1 2 Prediction

KS 1 2

KEG 1 2 3

KES 1 2 3

KESG 1 2 4 3

KEGS 1 2 3 4

DKG 1 2 3 Anomaly detection

DKS 1 2 3

DKEG 1 2 3 4

DKES 1 2 3 4

DKESG 1 2 3 5 4

DKEGS 1 2 3 4 5
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technique developed by [2] is presented here in order to examine the source of
anomalies occurrences in the original feature space.

3.1 Model Adaptation

Box’s M test is used to statistically compare the sample variance from new and
older statistics. After finding a match of a pair of mixture components’ vari-
ance, Hotelling’s T 2 test is used to compare and match the corresponding sam-
ple mean. The adapted parameters are estimated using Maximum A-Posteriori
(MAP) estimation. Similar model adaptation technique has been developed for
GMM by [12]. Our proposed technique differs from previous [2,11,12] in that the
adapted parameters are computed by taking account the sample size of new and
older statistics, and a parameter fρ(c) is introduced in the technique to scale
down the influence of older statistics in the iterative computation. Equation 2
summarizes the model adaptation for both GMM and SMM. Although Box’s M
test and Hotelling’s T 2 test assume the pair of mixture components are mul-
tidimensional Gaussian-distributed, short of other alternatives, these statistical
tests provide a more stringent criteria for matching SMM mixture components.
Additionally, the EM algorithm to estimate the mixture model parameters does
not guarantee to find a global optimum since the problem is non-convex and the
final solutions depend on the initial parameter values. Therefore, a technique to
combine the statistics of a mixture of parametric models for predictive density
estimation is proposed in [2]. The technique can be easily parallelized in the
expense of computational resources due to model independence [2]. Our model-
adaptation technique can also be used to merge the model parameters estimated
from multiple trial estimation on a given dataset, this saves the memory space
from storing duplicate parameters from different trials.

Mixing coefficient : ω̃i =
(
αω

i ωnew
i + (1 − αω

i )ωi

)
γ

Sample mean : μ̃i = αμ
i μnew

i + (1 − αμ
i )μi

Sample variance : σ̃2
i = ασ

i

(
(σnew

i )2 + (μnew
i )2

)
+ (1 − ασ

i )(σ2
i + μ2

i ) − μ̃2

Degree of freedom : ṽi = αv
i vnew

i + (1 − αv
i )vi

(2)

where γ is a normalization factor which ensures the adapted weights sum to
unity, αρ

i is the data-dependent adaptation coefficient that are computed by
αρ

i = nnew
i

nnew
i +fρ(c)ni

, where ρ ∈ {ω, μ, σ, v}, nnew
i = Nnewωnew

i and ni = Nωi

is the sample size estimates of the i-th mixture component, fρ(c) is a function
of the context ranges from 0 to 1 that characterizes the decay of the influence
of older statistics in the iterative computation. The sample mean and variance
vectors have been matched statistically between a pair of mixture components
before adaptation, therefore fρ(c) has a larger impact on the mixing coefficients
and degree of freedom than the sample mean and variance. Additionally, the
weights of unmatched components may be scaled down appropriately, one way
to do this is by applying the normalization factor on the unmatched components
but keeping the weights of the matched components unchanged.
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3.2 Parameter Rating

To understand the source of anomaly occurrences in the original feature space,
a technique was developed by [2] for parameter rating from the learnt subspace.
An anomaly is detected when its logarithmic probability is extremely low. Let
za be the observed anomaly in the projected subspace span by the PCs, the
associated mixture component of the anomaly is given by

i∗ � argmax
i

{qK̃
i (za)|1 � i � M} (3)

qK̃
i (zj) =

ωiN(zj ;μi, Σi)
K̃∑

k̃=1

ωiN(zk̃;μi, Σi)

(4)

where N(zk̃;μi, Σi) is the probability density of a Gaussian mixture component,
M is the number of mixture components, and K̃ is the number of samples.
The explanatory vector, which represents the parameters that account for the
anomaly, is computed by

x̄a = φi∗(xa) � σ
− 1

2

qK̃
i∗

[S]
∣∣∣xa − E

qK̃
i∗

[S]
∣∣∣ (5)

E
qK̃

i∗
[S] =

K̃∑
k̃=1

qK̃
i∗ (zk̃)xk̃

σ
qK̃

i∗
[S] =

K̃∑
k̃=1

qK̃
i∗ (zk̃)(xk̃ − E

qK̃
i∗

)2

(6)

x̄a represents the scaled geometric difference vector between the anomaly and
the sample mean associated with the mixture component i∗. The parameters are
rated by their responsibility for the anomaly occurrence by sorting the entries
in x̄a in a descending order. In cases that a low confidence in the responsibility
of a specific mixture component for an observed anomaly, Eq. 7 presents a soft
parameter rating technique proposed by [2] that takes into account the deviation
from all the mixture components.

qM
i (zj) =

ωiN(zj ;μi, Σi)
M∑

m=1
ωmN(zj ;μm, Σm)

x̄a = Eq[φ(xa)] =
M∑
i=1

qM
i (za)(φi(xa))

(7)

Both soft and hard parameter rating techniques can be applied when the SMM
statistics is used, in this case, N(zk̃;μi, Σi) should be replaced by SMM distri-
bution. The soft parameter rating technique (Eq. 7) is more computing-efficient
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than the hard one (Eq. 6) because there is no need to search for the associated
mixture component for each anomaly. Notice that Eq. 4 is modified from Eq. 3
in [2]; the summation in the denominator is over the sample points instead of
the mixture components as in [2], this makes more sense in computing the mean
and variance in Eq. 6.

4 Experimental Evaluation

4.1 Simulation Studies

Figure 1(a) shows two simulated multidimensional Gaussian-distributed centers
with white noise added. The noise constitutes one-third of the sample size. Two
hybrid models for anomaly detection (see Table 1) are used to remove the white
noise, the models differ in sophistication and therefore computing efficiency.
Although KG is less sophisticated and hence more computing-efficient compared
to DKESG, both models perform equally well in removing the white noise with
appropriate logarithmic-probability threshold to identify the outliers. It will be

Fig. 1. (a) Top: Simulated multidimensional Gaussian-distributed data with two
mixture components (left) and injected white noise (right). The first and second
dimensions are plotted here and the distribution centers are μ1 = (1, 2, ..., 10) and
μ2 = (11, 12, ..., 20) respectively with variance σ2 = (1, 1.5, ..., 5.5). The white noise
comes from a uniform distribution within the range 0 to 20 in all dimensions. Bottom:
Two hybrid models are used to remove the noise, DKESG is more sophisticated and
hence less computing-efficient compared to KG but both models perform equally well
in removing the noise. (b) Top: Two datasets with a common but slightly shifted mul-
tidimensional Gaussian-distributed center. The distribution centers are marked as red
cross. Bottom: The predictive density of KS model after adaptation of the two datasets
with the decay of influence of the older statistics, fρ(c) set as 1 and 0.5 respectively.
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shown later using empirical data that even without the EM step, simple hybrid
model like KS shows high performance in anomaly detection. The model adap-
tation is demonstrated in Fig. 1(b) with two datasets sharing a common but
slightly deviated multidimensional Gaussian-distributed center between the two
datasets; the common distribution centers are (11, 20) and (11.5, 20.5) respec-
tively. Each dataset also includes another non-colocated centers, which are (1, 3)
and (1.5, 10.5) respectively. The standard deviation of all the distributions are
set to 3. With high confidence level (p � 0.0001) during the matching of model
mean and variance vectors using statistical methods, the results show that the
proposed model-adaptation technique in Sect. 3.1 provides reasonable predictive
density estimation with slight variation near the center of the common distribu-
tion between using parameter fρ(c) = 1 and 0.5 to scale down the older statistics
in model adaptation (see Sect. 3.1).

Fig. 2. First column from left: The first and second dimensions (top) and fifth and
sixth dimensions (bottom) of simulated 10 dimensional data with two multidimensional
Gaussian-distributed centers and two anomalies marked as red star. The two anomalies
are x1 = (5, 5, ...., 5) and x2 = (2, 15, 15, ..., 15) respectively, which overlap with the
distributions at about the 5th dimension but deviate at other dimensions. Remaining
plots are the parameter rating using selected hybrid models. The blue lines correspond
to the soft parameter rating using Eq. 7 and red circles are hard parameter rating using
Eq. 6. (Color figure online)

Figure 2 simulates the data with the same multidimensional Gaussian dis-
tributions as in Fig. 1(a) top left plot, but with two anomalies inserted into
the dataset to evaluate the parameter rating technique. All the selected hybrid
models perform equally well by showing high parameter rating at the dimensions
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where deviation from the Gaussian distributions occur. However, large sample
size is required to form a reliable judgement of the parameter ratings because
the EM algorithm is sensitive to initial parameter values and better statistics
with higher confidence level can be obtained with larger sample size.

4.2 Empirical Studies

Table 2 tabulates the prediction accuracy of the hybrid mixture models on five
popular datasets obtained from UCI Machine Learning Repository [1]. Train-
ing and testing on Adult dataset are conducted on two different given datasets
(train: 32561, test: 16281), prediction accuracy on other datasets are com-
puted using 10-fold cross validation on a single dataset. The highest prediction
accuracy recorded in the repository are Adult (Forward Sequential Selection
Naive-Bayes: 85.95%), Wine (Regularized Discriminant Analysis: 100%), and
Breast Cancer (separating plane: 97.5%). For KDD Cup 1999 dataset, different
prediction accuracy for different network intrusion types were reported using
genetic algorithm [8]; i.e., normal (69.5%), probe (71.1%), denial of service
(99.4%), user to root attacks (18.9%), and remote to user attacks (5.4%). On
average, 88.2% detection rate is achieved in [8]. Overall, the proposed hybrid
models perform reasonably well compared to other techniques especially in high-
dimensional regime. It is also observed that without the EM step, KG and KS
perform equally well compared to the sophisticated models for predictive mod-
eling. To show that the algorithm is scalable, the full KDD Cup 1999 dataset
with 41 attributes and close to 5 million instances is used to train and test the
hybrid models for large-scale prediction in batch mode of 105 instances. The
mixture components are adapted using the proposed model-adaptation tech-
nique described in Sect. 3.1. However, the variance vectors were not matched here
because they are several orders of magnitude smaller than the mean and fluc-
tuate wildly, i.e., only the mean vectors are matched in the adaptation process.
The results are shown in Fig. 3, the highest prediction accuracy is observed when
all the PCs are used. The EM algorithm to estimate GMM converges even with
reduced dimensions � 40 and produce higher prediction accuracy compared
to the ones without the EM step (compare KEG and KEGS to KG and KS).

Table 2. Prediction accuracy of the hybrid mixture models using different datasets
obtained from UCI Machine Learning Repository [1].

Dataset KG KS KEG KES KEGS KESG

Iris (Instances: 150, Attributes: 4) 0.97 0.97 0.97 0.97 0.97 0.97

Wine (178, 13) 0.94 0.94 0.94 0.93 0.94 0.93

Adult (48842, 14) 0.81 0.81 0.81 0.80 0.81 0.80

Wisconsin Diagnostic Breast Cancer (569, 32) 0.96 0.96 0.96 0.94 0.96 0.94

KDD Cup 1999 (10% subset: 494020, 41) 0.90 0.90 0.86 N/A 0.86 N/A
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The prediction accuracy fluctuates with the data sampling, this is likely a char-
acteristic of the dataset which contains both predictable and less-predictable
events. New PCs not spanned by the older set of PCs are appended using
the Gram-Schmidt orthogonalization process described in Sect. 2.1, the unused
PCs are not discarded in the updating process. It is observed that the SMM-
based hybrid models (KS, KES, and KESG) do not perform well in reduced
dimensions � 30.

Fig. 3. Prediction accuracy of the hybrid models for batches of 105 instances using
KDD Cup 1999 network intrusion dataset (a) with same number of PCs and
(b) changing number of PCs for each batch of data.

Table 3 tabulates the detection rate and false positive rate of the hybrid
mixture models using the KDD Cup 1999 dataset (10% subset). Normal-type
network data of 95000 instances are extracted from the dataset and injected
with different percentages of injected anomalies. The number of PCs required
for anomaly detection is lesser compared to predictive modeling, in particular,
only seven PCs were used here. The data is coarse-filtered with the technique
based on diffusion map described in Sect. 2.2 to remove the anomalies before
model training. The logarithmic-probability threshold for anomaly detection is
set as the percentile of injected anomalies. It is observed that �80% detection
rate is possible with 1% to 60% injected anomalies with coarse-filtering tech-
nique based on DM. Higher percentage of injected anomalies biases the training
model and lower percentage increases the false positive rate, hence present differ-
ent challenges to unsupervised anomaly detection. However, the detection rates
fluctuate with the data-sampling process because the DM-based coarse-filtering
technique processes limited amount of data points at one time due to the need to
compute the similarity distance between each pair of data points (see Sect. 2.2).
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Table 3. Model performance in anomaly detection using KDD Cup 1999 computer
network intrusion dataset (10% subset) with different percentages of injected anomalies.
The dataset contains “normal” and “attack” data. The “normal” data is first extracted
from the dataset and “attack” data is then artificially injected. The percentages of
injected anomalies are calculated based on the ratio of artificially injected “intrusion”
data into the extracted “normal” data.

Anomalies KS DKG DKS DKEG DKES DKEGS DKESG

60% DR 0.93 0.94 0.77 0.94 0.47 0.77 0.46

FP 0.10 0.086 0.35 0.086 0.80 0.35 0.81

50% DR 0.93 0.96 0.95 0.96 0.50 0.95 0.51

FP 0.073 0.045 0.048 0.045 0.50 0.048 0.49

40% DR 0.93 0.93 0.94 0.93 0.84 0.94 0.80

FP 0.047 0.047 0.041 0.047 0.11 0.041 0.13

30% DR 0.90 0.84 0.82 0.85 0.78 0.84 0.72

FP 0.043 0.067 0.075 0.062 0.094 0.067 0.12

20% DR 0.92 0.85 0.85 0.85 0.32 0.85 0.36

FP 0.020 0.037 0.037 0.037 0.17 0.037 0.16

10% DR 0.93 0.93 0.93 0.93 0.11 0.93 0.90

FP 0.0079 0.0073 0.0079 0.0073 0.017 0.0079 0.011

5% DR 0.91 0.81 0.80 0.81 0.16 0.80 0.17

FP 0.0050 0.0099 0.011 0.0099 0.044 0.011 0.014

1% DR 0.89 0.92 0.92 0.92 0.00 0.92 0.00

FP 0.0012 0.00085 0.00075 0.00085 0.010 0.00075 0.010

Without coarse filtering, KS detection rate achieves �90% and because of the
top-down approach, the measured detection rates are robust to data sampling
process.

Figure 4 shows the soft parameter rating for different network intrusion types
using KDD Cup 1999 dataset (10% subset). The model is trained with normal-
type network data and the KS statistics is used to compute the parameter rating.
This is because KG statistics is too sparse due to the rapidly-decaying GMM tail
distribution. For large number of anomalies, the soft parameter rating technique
(Eq. 7) is more computing-efficient than the hard one (Eq. 6) because there is no
need to search for the associated mixture component for each anomaly. Results
show that there is overlap between the sources of anomaly occurrences from
different network intrusion types; the parameter rating may be used to suggest
mitigating actions for each intrusion type.
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Fig. 4. Parameter rating of each network intrusion type of KDD Cup 1999 dataset (10%
subset). The ratings are normalized to the range [0, 1]. Results show that majority of
the sources of anomaly occurrences come from dimensions � 20 and may be used to
suggest mitigating actions.
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5 Conclusion

Twelve variants of hybrid mixture models have been assessed in terms of model
performance and computing efficiency. In particular, KG and KS hybrid models
are recommended for high-dimensional predictive modeling and anomaly detec-
tion respectively. This has implication for big-data applications because the EM
algorithm may not be required to estimate mixture model parameters for high-
dimensional data, which saves the computing cost. However, it is also found
that whitened PCA reduces the dimensions and scales the subspace to a smaller
one, which allows the EM algorithm to converge even with reduced dimensions
� 10. For real-time batch data processing, the proposed PC-updating technique
based on Gram-Schmidt orthogonalization process is demonstrated; this tech-
nique can be used even if new dimensions are added in the original feature
space. KS statistics is used to compute the parameter rating because GMM sta-
tistics is too sparse due to the rapidly-decaying tail distribution. Soft parameter
rating is more computing-efficient than the hard one because there is no need
to search for the associated mixture component for each anomaly. For anom-
aly detection, the detection rates measured from a bottom-up approach using
DM-based coarse-filtering technique to remove the anomalies tend to fluctuate
with the data sampling process. On the other hand, a top-down approach using
KS statistics is demonstrated to achieve � 90% detection rate from 1% to 60%
of injected anomalies in the KDD Cup 1999 network intrusion dataset and this
approach is more robust to the data sampling process.
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