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Abstract. Due to its simplicity and good performance, Random For-
est attains much interest from the research community. The splitting
attribute at each node of a decision tree for Random Forest is determined
from a predefined number of randomly selected attributes (a subset of
the entire attribute set). The size of an attribute subset (subspace) is
one of the most important factors that stems multitude of influences
over Random Forest. In this paper, we propose a new technique that
dynamically determines the size of subspaces based on the relative size
of the current data segment to the entire data set. In order to assess the
effects of the proposed technique, we conduct experiments involving five
widely used data set from the UCI Machine Learning Repository. The
experimental results indicate the capability of the proposed technique on
improving the ensemble accuracy of Random Forest.

Keywords: Decision tree · Decision forest · Random forest

1 Introduction

Data mining has entered into our day to day life; we now predict the diag-
noses of patients, credit approvals/denials and even elections. These predictions
are carried out by classifier(s) based on previously known information. Like-
wise, classifiers are used in business, science, education, security and many other
arena. As classifiers enter such influential and sensitive ambit, the importance
of improving their efficiency is paramount.

A classifier is a function that maps a set of non-class attributes m =
{A1, A2, ..., Am} to a predefined class attribute C from an existing data set D .
A data set generally contains two types of attributes such as numerical (e.g. Age)
and categorical (e.g. Gender). Among categorical attributes, one is chosen to be
the “class” attribute. All other attributes are termed as “non-class” attributes. A
classifier is built from an existing data set (i.e. training data set) where the values
of the class attribute are present and then the classifier is applied on unseen/test
records to predict their class values.

There are different types of classifiers in literature such as Artificial
Neural Networks [25,51,52], Bayesian Classifiers [14,37], Nearest-Neighbor clas-
sifiers [26,46], Support Vector Machines [18] and Decision Trees [17,40,41]. Some
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classifiers such as Artificial Neural Network and Support Vector Machines work
similar to a “black box” where they only give predictive results without providing
any reasoning for the results [27,32]. On the other hand, a decision tree expresses
the patterns that exist in a data set into a flow-chart like representation that
closely resembles human reasoning. Each path of the flow-chart represents a logic
rule which can be used for knowledge discovery as well as predicting unlabeled
records. In this way, decision trees avoid the knowledge discovery bottleneck and
thus very popular to the real-world users [38,39].

It is worth to mention that decision trees require no domain knowledge for
any parameter setting and therefore more appropriate for exploratory knowledge
discovery [21]; and unlike some classifiers (such as Artificial Neural Networks,
Nearest-Neighbor Classifiers and Support Vector Machines) decision trees are
readily applicable on both categorical and numerical data that further increases
their application domain. In addition, decision trees are able to deal with high
dimensional, redundant as well as correlated attributes [11,21,33].

Hunt’s Concept Learning System (CLS) [23] can be credited as the pioneer-
ing work for inducing top-down decision trees. According to CLS, the induction
of a decision tree starts by selecting a non-class attribute Ai to split a training
data set D into a disjoint set of horizontal partitions [24,40,46]. The purpose
of this splitting is to create a purer distribution of class values in the succeed-
ing partitions than the distribution in D . The purity of class distribution in
succeeding partitions is checked for all contending non-class attributes and the
attribute that gives purer class distribution than others is selected as the splitting
attribute. The process of selecting the splitting attribute continues recursively in
each subsequent partition D i until either every partition gets the “purest class
distribution” or a stopping criterion is satisfied. By “purest class distribution”
we mean the presence of a single class value for all records. A stopping criterion
can be the minimum number of records that a partition must contain; meaning
that if an splitting event creates one or more succeeding partitions with less than
the minimum number of records, the splitting is not considered.

A decision tree consists of nodes (denoted by rectangles) and leaves (denoted
by ovals) as shown in Fig. 1. The node of a decision tree symbolizes a splitting
event where the splitting attribute (label of the node) partitions a data set
according to its domain values. As a result, a disjoint set of horizontal segments
of the data set are generated and each segment contains one set of domain
values of the splitting attribute. For example, in Fig. 1 “Trouble Remembering” is
selected as the splitting attribute in the root node. “Trouble Remembering” has
two domain values: “Y” and “N” and thus it splits the data set into two disjoint
horizontal segments in such as way that the records of one segment contain “Y”
value for “Trouble Remembering” attribute and the records of another segment
contain “N” value. The domain values of the splitting attribute designated for
the respective horizontal segments are represented by the labels of edges leaving
the node.

The use of an ensemble of classifiers is a comparatively newer area of research
[3–7,20,42]. Interestingly, an ensemble of classifiers is found to be more effective
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Fig. 1. Decision Tree

for unstable classifiers such as decision trees [46,49]. Decision trees are considered
to be an unstable classifier as slight change(s) in a training data set can cause
significant differences between the resulting decision trees obtained from the
original and modified data sets. A decision forest is an ensemble of decision
trees where an individual decision tree acts as a base classifier. The ensemble
classification is performed by taking a vote based on the predictions made by
each decision tree of the forest [46].

In order to achieve better ensemble accuracy, decision trees to be voted should
be as different/diverse as possible; otherwise if they were identical, there could be
little or no improvement from the ensemble [44]. Hence, diversity is considered
as the cornerstone of ensemble systems and this is the reason why unstable
classifiers are good for ensembles. However, to establish the scope of generating
too diverse decision trees may be the cause of generating less accurate decision
trees as optimization on the two conflicting objectives can be difficult to attain
simultaneously [22]. In literature, we find a considerable study on the accuracy-
diversity trade-off and find that individual accuracy should not be ignored for
diversity [8,28,47].

Several decision forest algorithms exist aiming to generate more diverse as
well as accurate decision trees by manipulating the training data set. We explain
some of the renowned algorithms as follows.

Bagging : Bagging [15] generates a new training data set D i where the records of
D i are selected randomly from the original training data set D . A new training
data set D i contains the same number of records as in D . Thus, some records
of D can be selected multiple times and some records may not be selected at
all. This approach of generating a new training data set is known as bootstrap
sampling. Approximately, 63.2% of the original records are selected in a boot-
strap sample and the remaining 36.8% records are repeated [21]. In Bagging,
a predefined number (|T |) of bootstrap samples D1,D2, ...,D |T | are generated
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using the above mentioned approach. A decision tree induction algorithm is then
applied on each bootstrap sample D i (i = 1, 2, . . . , |T |) in order to generate |T |
number of trees for the forest.

Random Subspace : The Random Subspace algorithm [22] algorithm randomly
draws a subset of attributes (subspace) f from the entire attribute space m . f
can be drawn either at the tree level or at the node level. When selected at the
tree level, attributes in f remains the same for each node of a tree; on the other
hand attributes in f may differ from one node to another in a tree when selected
at the node level. The best attribute in f is determined to be the splitting
attribute for the associated node. The Random Subspace algorithm is applied
on the original training data set (not on bootstrap samples) for building decision
trees.

Random Forest : Random Forest [16] is regarded as a state-of-the-art decision
forest building algorithm [12,13] which is technically a combination of Bag-
ging and Random Subspace algorithms. In the simplest form of Random Forest,
attributes in f is randomly selected at the node level and the size of f is chosen
to be int(log2|m |) + 1 [16] (popularly known as the hyperparameter [13]).

Since its inception in 2001, Random Forest attains much interest from the
research community and thereby numerous enhancements have been proposed in
recent years [2–5,9,12,45,53]. In particular, the selection of more suitable sub-
space (f ) invites much attention [13,19,20,36,43,48,50]. In Forest-RK [13], the
authors proposed for random selection of |f | between 1 to |m | while in Extremely
Randomized Trees [20], |f | is chosen to be

√|m | for the classification problem.
The Extremely Randomized Trees algorithm improvises more randomness for
numerical attributes by selecting the cut-points fully at random while ensuring
a minimum number of records in either sides of a cut-point. Another algorithm
[19] suggested setting the cut point midway between two training records that
had been picked randomly.

In [50], the authors applied the stratified sampling of attributes for Ran-
dom Forest to deal with high dimensional data set. The key idea behind the
stratified sampling is to divide the attributes m into two groups. One group
will contain the good attributes mG and the other group will contain the bad
attributes mB . The attributes having the informativeness capacity higher than
the average informativeness capacity are placed in the group of good attributes
mG and all other attributes are placed in the group of bad attributes mB. Then
int(log2|m |) + 1 number of attributes are selected randomly from each group in
proportion to the size of the groups.

We understand that with the traversal from the root node down the tree, the
number of records in data segments become smaller and smaller as a result of the
recursive partitioning [1,24,46]. A data segment is partitioned according to its
splitting attributes domain values and thus the resultant partitions tend to have
very weak relationship with the same attribute (specially when the attribute is
a categorical attribute). As shown earlier, in Fig. 1 “Trouble Remembering” is
selected as the splitting attribute in the root node. “Trouble Remembering” has
two domain values: “Y” and “N” and thus it splits the data set into two disjoint
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horizontal segments in such as way that the records of one segment contain “Y”
value for “Trouble Remembering” attribute and the records of another segment
contain “N” value. Hence, any of the two disjoint horizontal segments can not be
split further by the “Trouble Remembering” attribute. As a consequence, fewer
attributes become relevant for a data segment that has been generated through
a number of partitioning involving different splitting attributes and hence the
probability of drawing relevant attributes in f becomes progressively lower down
the tree.

We now understand that if this problem of Random Forest is not addressed
accordingly, poor-quality splitting attributes may be selected down the tree from
which poor-quality partitions may generated. This may decrease individual accu-
racies of trees in a forest which in turn may affect the ensemble accuracy neg-
atively. Yet, none of the above mentioned variants on subspacing of Random
Forest addresses this issue. In this paper, we propose a new technique that
dynamically increases the size of f down the tree based on the relative size of
the current data segment to the entire training data set so that the probability
of drawing relevant attributes in f does not get decreased.

The remainder of this paper is organized as follows: In Sect. 2 we explain
the proposed technique. Section 3 discusses the experimental results in detail.
Finally, we offer some concluding remarks in Sect. 4.

2 Our Technique

In the proposed technique, the number of attributes in f is dynamically increased
with the decrease of records in the current data segment according to Eq. 1:

int(log2(|m | × |D |
|D i| )) + 1 (1)

Here, |D i| denotes the number of records present in the current data segment
and |D | denotes the number of records present in the entire training data set.
The term ( |D|

|Di| ) dynamically increases the number of attributes in f with the
relative decrease of records in D i to D . For example, let D = 1000 with m = 16
and let D i = 50. Conventionally, |f | will remain as 5 for the D i with 50 records
in Random Forest even if the D i is a result of a number of partitioning involving
several splitting attributes. However, according to the proposed technique |f | is
increased to 9 in this case.

Random Forest is modified through the proposed technique and its new form
is presented in the following.

for (i = 1 to |T |) do /* |T | is the number of trees in Random Forest */
Step 1 : Generate a bootstrap sample from the training data set.
Step 2 : Generate a decision tree from the bootstrap sample with sub-

spaces generated from the proposed technique.
end for .
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3 Experimental Results

We conduct the experimentation on five well known data sets that are publicly
available from the UCI Machine Learning Repository [31]. We already know,
when a data segment is partitioned by the splitting attribute, the resultant par-
titions tend to have very weak relationship with the splitting attribute specially
when the attribute is categorical. Hence, in order to exhibit the effectiveness of
the proposed technique we select all five data sets with all-categorical attributes.
The data sets are listed in Table 1.

Table 1. Description of the data sets

Data Set name (DS) Non-Class
attributes

Records Distinct class
Values

Car Evaluation (CE) 06 1728 4

Chess (CHS) 36 3196 2

Hayes-Roth (HR) 04 132 3

Nursery (NUR) 08 12960 5

Tic-Tac-Toe Endgame
(TTT)

09 958 2

We implement Random Forest (RF) and the Modified Random Forest (MRF)
maintaining the following settings. We use Gini Index as a measure of classifi-
cation capacity in accordance with RF. The minimum Gini Index value is set
to 0.01 for any attribute to qualify for splitting a node. Each leaf node of a tree
requires at least two records and no further post-pruning is applied. We apply
majority voting in order to aggregate results for the forests. The entire exper-
imentation is conducted by a single machine with Intel(R) 3.4 GHz processor
and 4 GB Main Memory (RAM) running under 64-bit Windows 8.1 Operating
System. All the results reported in this paper are obtained using 10-fold-cross-
validation (10-CV) [10,29,30] for every data set.

In 10-CV, at first a data set is randomly divided into 10 horizontal seg-
ments/partitions. The segments are mutually exclusive meaning that they do
not have any overlapping records. Each segment in turn is considered to be the
testing data set (out of bag samples) while for the same turn the remaining nine
segments are considered to be the training data set. Thus, we get 10 training data
sets and 10 corresponding testing data sets. A classifier is then built from each
training data set and its performance indicator (such as prediction accuracy) is
tested on each corresponding testing data set. The average result obtained from
all 10 testing data sets is termed to be 10-CV. The best results reported in this
chapter are stressed through bold-face.

Ensemble Accuracy (EA) is one of the most important performance indica-
tors for any decision forest algorithm [2,3,6]. In Table 2, we present the EA (in
percent) of RF and MRF for all data sets considered.
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Table 2. EA

DS RF MRF

CE 92.8 93.9

CHS 94.9 97.0

HR 71.1 74.2

NUR 95.0 97.4

TTT 84.5 90.6

Avg. 87.7 90.6

From Table 2, we see that MRF provides the best EA for all data sets consid-
ered. We know, EA of a decision forest mainly depends on two factors: individual
tree accuracy and diversity among the trees. Hence, in order to explain reasons
behind the improvement, we first compute individual accuracy (in percent) of
each tree in a forest to compute the Average Individual Accuracy (AIA) for the
forest as was done in literature [3–5,9].

Margineantu and Dietterich [34] proposed a visualization method for clas-
sifier ensembles called Kappa that has been used extensively as a measure of
diversity in literature [9,29,35,42,53]. Kappa typically estimates the diversity
between two trees Ti and Tj . Diversity among more than two trees is computed
by first computing the Kappa (K) value of a single tree Ti with the ensemble
of trees except the tree in consideration (i.e. with T − Ti where T is the set
of all trees in the forest) [9]. The combined prediction of the forest (computed
through the majority voting) can be regarded as a single tree Tj . Then Kappa is
computed between Ti and Tj as shown in Eq. 2, where Pr(a) is the probability
of the observed agreement between two classifiers Ti and Tj , and Pr(e) is the
probability of the random agreement between Ti and Tj . Once the Kappa for
every single tree Ti of a decision forest is computed we then compute the Average
Individual Kappa (AIK) for the forest.

K =
Pr(a) − Pr(e)

1 − Pr(e)
(2)

According to Eq. 2, when K = 1 two trees agree on every example. When
K = 0 they disagree on every examples except agreements by chance. Rarely, K
can be negative when two trees disagree in most examples suppressing agreements
by chance. Thus, the lower the Kappa (K)/AIK value, the higher the diversity.
The results related to AIA and AIK are reported in Table 3.

From Table 3, we observe that MRF achieves higher AIA for all data sets
considered. This indicates that trees generated by MRF are individually more
accurate; and we understand that this is due to the fact that MRF can effort
better-quality splitting down the tree.
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Table 3. AIA and AIK

AIA AIK

DS RF MRF RF MRF

CE 83.5 88.9 0.68 0.82

CHS 68.0 71.9 0.49 0.56

HR 55.3 56.2 0.33 0.34

NUR 71.6 80.8 0.65 0.79

TTT 54.9 59.4 0.32 0.38

Avg. 66.6 71.4 0.49 0.58

4 Conclusion

In this paper, we propose a novel technique that dynamically increases the size of
subspaces down the tree based on the relative size of the current data segment to
the entire training data set so that the probability of drawing relevant attributes
in subspaces does not get decreased. Aided by the proposed technique, Random
Forest is able to generate better-quality trees (individually more accurate). This
in turn helps Random Forest to attain higher ensemble accuracy. In future, we
plan to apply the proposed technique on other decision forest algorithms.
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