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Abstract. Scale of data and scale of computation infrastructures
together enable the current deep learning renaissance. However, training
large-scale deep architectures demands both algorithmic improvement
and careful system configuration. In this paper, we focus on employing
the system approach to speed up large-scale training. Taking both the
algorithmic and system aspects into consideration, we develop a proce-
dure for setting mini-batch size and choosing computation algorithms.
We also derive lemmas for determining the quantity of key components
such as the number of GPUs and parameter servers. Experiments and
examples show that these guidelines help effectively speed up large-scale
deep learning training.
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1 Introduction

In the last five years, neural networks and deep architectures have been proven
very effective in application areas such as computer vision, speech recognition,
and machine translation. The convincing factor that makes deep learning shine
is scale, in both data volume and computation resources. Large network and
large scale of training data demands scalable computation. However, scaling up
computation is not merely throwing in an infinite number of CPUs and GPUs.
As Amdahl’s law [2] states, the non-parallelizable portion of a computation task
may cap computation speedup. Non-parallelizable overheads in deep learning
frameworks should be carefully mitigated to speed up training process.

Several open-source projects (e.g., Caffe [25], MXNet [7], TensorFlow [1], and
Torch [9]) have been devoted to speeding up training deep networks. They can be
summarized into two approaches: deep-learning algorithm optimization and algo-
rithm parallelization. The former includes using faster convolution algorithms,
improving stochastic gradient decent with faster methods, employing compres-
sion/quantization, and tuning the learning rate with advanced optimization tech-
niques. Indeed, most open-source libraries have quickly adopted available state-
of-the-art optimizations. However, most users in academia and industry do not
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know how to set parameters, algorithmic and system, to conduct cost-effective
training. Researchers and professionals face at least the following questions in
three levels, which are intra-GPU, inter-GPU, and inter-machine:

1. With X amount of data, what is the size of each mini-batch (Xmini) and how
to maximize GPU utilization?

2. How many GPUs (G) should be employed, and how should such a system be
configured?

3. How many parameter servers (Nps) should be deployed when building a dis-
tributed system?

In this work, we identify computation bottlenecks of representative frame-
works and aim to answer the above questions by providing system configu-
ration guidelines given the characteristics of the training data and hardware
parameters.

1.1 Related Work

Since deep-learning training is time-consuming, many previous studies devoted
to improve the training performance. These prior contributions can be divided
into two approaches: algorithmic and system. The algorithmic approach acceler-
ates the training algorithm, whereas the system approach focuses on employing
improved resources to achieve parallel training. To ensure scalability, the system
approach may require enhancing the training algorithm to take full advantage
of the increased resources.

Algorithmic Approach. Stochastic gradient descent (SGD) is the de facto
optimization algorithm for training a deep architecture. Many SGD techniques
have been developed for achieving faster convergence to the global minimum. The
settings of hyper-parameters such as learning rate and mini-batch size are crucial
to the training performance. Hinton and Bengio [4,21] provide recommendations
on setting hyper-parameters commonly used in gradient-based training. Batch
renormalization can be an effective strategy to train a network with small or
non-i.i.d mini-batches [23].

More efficient algorithms can improve speed. Some FFT-based convolution
schemes were proposed [31] to achieve speedup. Additionally, Firas et al. pro-
posed three matrix layout schemes using lowering operations [19]. Caffe con Troll
implemented a CPU-GPU hybrid system that contains several lowering opera-
tions, and at the same time, employs a simple automatic optimizer to select the
best lowering. Some compression algorithms [15] were developed for both good
compression ratios and fast decompression speed to enable block-wise uncom-
pressed operations, such as matrix multiplication are executed directly on the
compressed representations.
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System Approach. Convolution and matrix multiplication are two common
arithmetic operations used in a deep learning computation task. A GPU is well-
suited for speeding up such operations since these operations are parallelizable.
To achieve further speedup, the next logical step is to employ multiple GPUs,
and to configure a distributed clusters of CPUs and GPUs. The computation
time can be largely reduced via data parallelism and/or model parallelism. Many
projects have proven parallelism to be helpful [8,13,22,26,34,38].

According to Amdahl’s law, the peak performance of a parallel architecture
is capped by the overhead portion of the computation task. In the context of
deep learning, its training overhead includes synchronization between distributed
threads, disk I/O, communication I/O, and memory access. To reduce synchro-
nization delay, Zinkevich et al. [40] proposed an asynchronous distributed SGD
algorithm to guarantee parallel acceleration without tight latency constraints.
Chen et al. [6] proposed adding backup workers in synchronous SGD algorithm
to mitigate the bottleneck. To reduce the impact of I/O on the overall speedup,
most open-source frameworks attempt to conceal I/O behind computation via
the pipeline approach proposed in [30]. Such approach requires a computation
unit to be sufficiently long so as to hide I/O overheads as much as possible.
The pipeline approach, however, demands carefully setting up the unit size of
computation (or mini-batch size) and the number of parameter servers. We will
propose how to best estimate these configuration parameters in Sect. 3.

Computation Frameworks. There have been several deep learning open-
source efforts. Representative frameworks are CNTK [12], Theano [24], Caffe
[25], MXNet [7], TensorFlow [1], and Torch [9]. Among these frameworks, MXNet
and TensorFlow are built-in distributed training frameworks. Users can easily
develop algorithms running on computing clusters with thousands of CPUs or
GPUs. Several works are proposed to give users a glimpse on the factors that
they must take into consideration. Bahrampour et al. [3] provided a comparative
study on different frameworks with respect to extensibility, hardware utilization,
and performance. Shi et al. [35] conducted studies on performance of selected
frameworks. These works offer practitioners a high-level guideline to select an
appropriate framework. Given a selected framework, our work aims to provide
further configuration guidelines to make training both fast and cost-effective.

1.2 Contribution Summary

In summary, this work makes the following contributions:

1. Identifying computation bottlenecks and devising their remedies.
2. Quantifying remedies into an optimization model. We formulate our remedies

into an optimization model to determine the optimal mini-batch size and
carefully balance memory and speed trade-offs so as to employ the fastest
algorithms given the memory constraint.

3. Recommending distributed configuration involving multiple GPUs and para-
meter servers.
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2 Training Process and Setup

Figure 1 depicts a general architecture of deep-learning training and data flow. A
worker is basically a commodity computer equipped with G GPUs. When aiming
to improve parallelism via a distributed architecture, a worker and a parameter
server can be replicated into multiple copies connected by a network. The train-
ing samples are divided into mini-batches. The mini-batch processing pipeline
in the training process consists of seven steps. After the model parameters W
and the data processing pipeline is initialized, the training process repeats until
an approximate minimum is obtained.

Fig. 1. Deep learning system architecture. The batch processing pipeline in the general
training process can be divided into seven steps.

1. Parameter refresh. In distributed training, the latest copy of model parame-
ters W is pulled from parameter servers at the beginning of each mini-batch
processing. W is then loaded onto GPU memory. A distributed environment
consists of Nw workers and Nps parameter servers for managing shared para-
meters.

2. Data loading. A subset of the X training instances called mini-batch of size
Xmini is loaded from the persistent storage to the main memory.

3. Data preparation. Xmini instances are transformed into the required input
format. These instances may be augmented to mitigate the over-fitting prob-
lem and enrich sample diversity.

4. Host to GPU transfer. The mini-batch is loaded onto the memory of a GPU.
If G GPUs are employed, G different mini-batches are loaded onto G GPUs.

5. GPU processing. Required computations including matrix multiplication and
convolution are performed on G GPUs for the gradients against the given
mini-batch.

6. Parameter update. The delta ΔW is derived from the gradients and applied
to the previous version of W in main or GPU memory.

7. Distributed update. The parameter updates are sent to parameter servers
when distributed machines are configured.
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Among the seven steps, step 5 performs computation, and the other steps
that cannot be hidden behind step 5 are considered as overheads. The larger frac-
tion of the time which those overhead steps take, the less effective parallelism can
achieve. Therefore, our tasks are minimizing overhead time and hiding overheads
via pipelining as much as possible. The remainder of this paper is to demonstrate
how the following parameters can be carefully tuned to achieve such goals, orga-
nized into three sections. In Sect. 3.1, we provide a procedure to recommend a
mini-batch size that leads to maximum training performance. Section 3.2 pro-
vides an in-depth analysis on training in a multi-GPU environment. We provide
a lemma to estimate the number of GPUs G for a desired factor of speedup. In
Sect. 3.3, we address issues involving distributed workers. The communication
between training hosts and parameter servers is an overhead that could seri-
ously degrade training speedup. We propose a scheme to estimate the number
of parameter servers Nps, whose network capacity is Bps.

We set up our evaluation environment with Elastic Compute Cloud (EC2)
of Amazon Web Services (AWS)1. All experiments run on EC2 P2 instances
equipped with NVIDIA Tesla K80 Accelerators which contain a pair of NVIDIA
GK210 GPUs. Each GPU provides 12 GB memory and 2, 496 parallel processing
cores. The CPU is a customized version of Intel Broadwell processor running at
2.7 GHz. To avoid unexpected GPU clock rate adjustment in our experiments,
we disable GPU autoboost function.

We perform experiments and demonstrate our ideas with MXNet and Tensor-
Flow. Virtual machines are launched from Amazon deep learning AMI (Amazon
Machine Image) v2.1 preloaded with NVIDIA CUDA toolkit v7.5 and cuDNN
v5.1. We conduct experiments on the ILSVRC-2012 dataset, the subset of Ima-
geNet [14] containing 1, 000 categories and 1.2 million images on SSD. The other
set containing 50, 000 labeled images is used as validation data.

3 Configuration of High Performance Training System

We study configurations in three incremental steps, starting from a single GPU
(Sect. 3.1), then expanding our benchmarking to multiple GPUs (Sect. 3.2), and
finally to distributed nodes where each node consists of multi-GPUs (Sect. 3.3).
Each of these three steps focuses on analyzing one system configuration.

3.1 Training on Single GPU Instance

In this section, we first point out the common performance pitfalls in developing
neural networks. We illustrate that the setting of mini-batch size is the primary
factor that determines training speed. We then formulate selecting the mini-
batch size Xmini as an optimization problem and provide a procedure to solve
for Xmini that can achieve fastest training speed.

1 GPU instances on Google Compute Engine (GCE) do not support GPU peer-to-peer
access, and hence we will defer our GCE experiments till such support is available.
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Identifying System Issues. Most neural networks are initially designed
according to some heuristics. Researchers may not have the full picture about
their model’s feasibility, convergence quality, and prediction quality unless
they conducted some experiments. During the experimental process, various
hyper-parameter values may be tested exhaustively by a trial-and-error process.
According to our own experience, it is typically unknown at the beginning to
know how long it would take to run a round of training job, let alone configure
a cost-effective system that can maximize training speed. A suboptimal system
configuration can lead to excessive execution time because of encountering the
following issues:

– Shortage of GPU memory space. A GPU cannot start computation without the
data and metadata being loaded into GPU memory. A neural network designed
without system knowledge may require more memory capacity than available
memory. This excessive memory use may cause unnecessary thrashing and
prolong training time.

– Ineffective trade-off between speed and memory. Deep learning frameworks
may execute operations of a training task in different algorithms, which have
different speed and memory-use trade-offs. The selection of using which algo-
rithm is a layer-dependent decision. The selection factors include input data
size, layer parameters, mini-batch size, and available GPU memory space. Con-
sider the convolution operation as an example. An FFT-based implementation
runs faster than a GEMM-based one but it requires more memory. The train-
ing speed may be degraded when a large Xmini exhausts memory capacity in
order to run a faster FFT-based algorithm. Thus, when tuning factors men-
tioned above, we should consider the impact on memory consumption because
the memory budget affects the selection of algorithm.

Selecting a good mini-batch size, one must examine from both the algorithmic
and system aspects. From the algorithmic aspect, the mini-batch size is suggested
to be larger than the number of output classes and a mini-batch contains at least
one sample from each class [21]. The diversified training data leads to more stable
convergence. From the system aspect, a proper mini-batch size helps to improve
the parallelism inside GPU and enables the faster implementation of an operator.
Based on the suggested mini-batch size considering the algorithmic aspect, we
introduce the system aspect into deciding Xmini.

Choosing Convolution Algorithms. Speeding up convolution involves GPU
memory and computation speed trade-off. There are different algorithms for
implementing the convolution operation. GEMM-based implementations con-
verts convolution to a matrix multiplication, which can be slow but the up side
is that it requires less memory space. FFT-based implementations run faster
than the GEMM-based by using efficient matrix multiplication and reducing
the number of floating point operations. However, FFT-based implementations
demand substantially more memory as the filters are padded to be the same
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size as the input. In addition, FFT-based implementations require extra mem-
ory space for feature mapping on domain transformation. Take AlexNet as an
example, the memory space required by the first layer with FFT is 11.6 times of
that with GEMM given mini-batch size 128.

To further understand the impact of Xmini, we experimented with MXNet
and TensorFlow, and plot system throughput (y-axis) versus Xmini (x-axis) in
Fig. 2(a). Although different frameworks may yield different throughputs, the
trend remains the same, that is, the system throughput degrades once after
Xmini reaches a threshold. The reason why the throughput drops is that MXNet
and TensorFlow run a slower version of convolution due to the constrained
free memory caused by the increased Xmini. How to determine the optimal
Xmini? We next formulate the problem of determining Xmini as an optimization
problem.

(a) Throughts vs. mini-batch sizes. (b) Learning curves vs. mini-batch sizes.

Fig. 2. Dual impact of mini-batch size

Optimizing Mini-batch Size. In order to formulate the problem of deter-
mining Xmini, we first define a memory constraint Mbound, which is built into
the later optimization formulas for Xmini. During our formulation, most of the
symbols follow in the same fashion of [11].

Deriving Mbound.
We assume that a CNN such as AlexNet [27] consists of two major com-

ponents: feature extraction and classification. Further, we assume that the fea-
ture extraction part comprises of n layers where stacked convolution layers are
optionally followed by pooling layers, and the classification part consists of m
fully-connected layers. We use Bi × Hi × Di and Bi+1 × Hi+1 × Di+1 where
i ∈ {0, 1, . . . , n} to represent the sizes of inputs and outputs of convolution layers
(or pooling layers), respectively. In particular, the size B0 × H0 × D0 represents
the size of input data. If we take training AlexNet on the ImageNet [14] as the
example, B0 × H0 × D0 is equal to 224 × 224 × 3. For the ith layer of con-
volution and pooling layers, we denote its spatial extent (i.e. the size of filters)
as Fi, its stride as Si, its amount of padding as Pi, and its number of filters as
Ki. Please note that if the ith layer is a pooling layer, its Ki is equal to zero, i.e.
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Ki = 0. Thus, the inputs and outputs in the feature extraction part have the
following relations:

Bi+1 = (Bi − Fi+1 + 2Pi+1)/Si+1 + 1,

Hi+1 = (Hi − Fi+1 + 2Pi+1)/Si+1 + 1, and

Di+1 =

{
Ki+1, if (i + 1)th layer is convolution layer

Di, if (i + 1)th layer is pooling layer
.

(1)

The memory allocated for the feature extraction part of CNNs includes the
input data, outputs (i.e. feature maps) of all the layers, model parameters, and
gradients. We assume that all the values are stored by using single precision
floating point (32 bits). Based on the aforementioned notations and Eq. (1),
the memory usage for the input data and outputs of all layers in the feature
extraction part can be calculated as follows:

MFM =
n∑

i=0

Bi × Hi × Di × Xmini × 32 . (2)

Regarding the model parameters, there are two kinds of parameters: weights
and biases. Though the biases are often omitted for simplicity in the literature,
we take them into account here in order to estimate the memory usage precisely.
Besides, we assume that the size of the gradients is twice as the size of the model
parameters2. Thus, we can derive the memory usage for the model parameters
and their related gradients by the following equation:

MMP =

n∑
i=1

Fi × Fi × Di−1 × Ki × 3 × 32 (weights)

+
n∑

i=1

Ki × 3 × 32 (biases).

(3)

Furthermore, the memory allocated for the classification part of CNNs con-
tains the outputs of all neurons and model parameters. We use Lj where
j ∈ {1, . . . , m} to denote the number of neurons at jth layer. Again, we make the
same assumption that the size of the gradients is twice as the size of the model
parameters. Therefore, the memory usage for the classification part of CNNs is
as follows:

MC =
m∑

j=1

Lj × 32 (outputs)

+

m−1∑
j=1

Lj × Lj+1 × 3 × 32 (weights)

+ (m − 1) × 3 × 32 (biases).

(4)

2 For each training instance, we need to store the gradients of all model parameters.
The aggregated gradients of all model parameters are also required for a specific
batch.
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According to Eqs. (2) to (4), the memory constraint Mbound can be approxi-
mately determined by the following equation:

Mbound = MGPU − MFM − MMP − MC , (5)

where MGPU is the total memory of a GPU in terms of bits.

Deriving Xmini.
Assuming that there are p kinds of convolution algorithms, and q layers in

the CNN. (In the case that we have illustrated so far, p = 2. Other choices of
convolution algorithms can be Winograd minimal convolution algorithm [28],
Strassen algorithm [10], fbfft [37], etc.) The parameter xk,l ∈ {0, 1} represents
whether the kth layer uses the lth convolution algorithm or not. When xk,l is
evaluated to 1, it means that the kth layer uses the lth algorithm to compute
convolution. The value Tk,l is the time consumption at the kth layer for the lth

algorithm. The value Mk,l is the memory consumption at the kth layer for the
lth algorithm. Thus, the problem of determining Xmini can be formulated an
optimization problem as follows:

min

q∑
k=1

p∑
l=1

xk,l × Tk,l

s.t.

q∑
k=1

p∑
l=1

xk,l × Mk,l ≤ Mbound & ∀k
p∑

l=1

xk,l = 1,

(6)

where the Mbound is derived from Equation (mem:bound).
Obviously, Eq. (6) is an integer linear programming (ILP) problem [32],

which is NP-hard. However, there are several off-the-shelf heuristic methods and
libraries (e.g. GLPK [17]) for solving ILP problems. Given a range of mini-batch
sizes that can attain good accuracy, we can derive the estimated training time
for each mini-batch size by solving Eq. (6). The mini-batch size which leads to
the minimal training time is then the suggested Xmini.

This far, we assume that a CNN model is given to determine Xmini and layer-
dependent convolution algorithms to maximize training speed. We can make two
further adjustments:

– Permit Xmini reduction. The researchers may need to compromise on smaller
mini-batch size if the target one is not feasible or does not deliver acceptable
performance under the constraint of GPU memory size. Ghadimi et al. [16]
shows that the convergence rate of SGD on a non-convex function is bounded
by O(1/

√
K), where K is the number of samples seen, i.e., mini-batch size. It

can be interpreted that a range of mini-batch sizes can deliver similar con-
vergence quality. In Fig. 2(b), the x-axis depicts the epoch number and the
y-axis depicts the top-5 validation error rate3. The figure shows that indeed

3 AlexNet achieved 18.2% top-5 error rate in in the ILSVRC-2012 competition,
whereas we obtained 21% in our experiments. This is because we did not perform all
the tricks for data augmentation and fine-tuning. We choose 25% as the termination
criterion to demonstrate convergence behavior when mini-batch sizes are different.
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a range of mini-batch sizes enjoy similar convergence quality. Therefore, we
could reduce Xmini to increase Mbound to permit more memory space to run
a faster convolution execution to achieve overall speedup.

– Permit model adjustment. Suppose that the constrained space of memory pre-
vents us from running a faster algorithm. We could adjust the CNN model
to free up some memory. For instance, if the ith layer can be sped up ten
times and the jth only twice. To accommodate running a faster algorithm
for the ith layer, we could adjust both layers to e.g., use a larger stride or
memory-efficient filters.

3.2 Scale with Multiple GPUs

When one GPU cannot handle the training task timely, employing multiple
GPUs is the next logical step to share the workload and achieve speedup. When
G GPUs are used and the maximal 100% efficiency is achieved, the speedup is
G times. Let α denote the system efficiency between 0% and 100%. Lemma 1
provides the estimated efficiency given G GPUs.

Lemma 1. Let T denote the total training time, where T can be divided into
computation time TC and overhead TO. Let RO denote the ratio of overhead or
RO = TO/TC . Suppose the desired efficiency of the system is α, where α ≤ 100%.
The efficiency can be estimated as

α =
1 + RO

1 + GRO
.

Proof. Details of the proof is documented in the extended version of this
paper [41].

Lemma 1 can be used to estimate system efficiency given RO and G, and also
can be used to estimate the acceptable RO given α and G. For example, given
four GPUs and target efficiency α = 80%, the ratio of overhead that cannot be
hidden behind computation must not exceed 9%.

To estimate RO, a practitioner can quickly profile the training program for
a couple of epochs. Some frameworks such as MXNet and TensorFlow provide
the capability to visualize the execution of a training task, which can be used to
derive RO. If a computation framework is not equipped with a profiling tool, one
can visualize program execution using nvprof4. Suppose a practitioner is asked
to make 3x speedup of a training task, and she measures RO = 10%. According
to the lemma, she can configure a 4 GPU system to achieve the performance
objective.

To evaluate Lemma 1, we conduct the training on four neural networks to
compare the estimated speedup with actual speedup. Though the estimated RO

is a constant and in real-time overheads could be stochastic, Fig. 3 shows that
in all cases the estimated speedup matches the the actual speedup. Therefore,

4 nvprof only profiles GPU activities, so the CPU activities cannot be analyzed.
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Fig. 3. Comparison of speedup (dotted-line: estimated, solid-line: actual)

the lemma can be used to estimate the performance gain of using G GPUs and
devise a cost-effective training plan including system configuration and parame-
ter settings.

The overall speedup can be improved by reducing computation overheads.
We conclude this subsection by providing two overhead reduction suggestions.

– Data transfer pipelining. Low throughput of feeding training data is a major
bottleneck that degrades the multi-GPU training performance as the demand
for bus bandwidth for loading data grows with the number of GPUs. Pipelin-
ing data loading (I/O) with computation is the effective way to reduce the
overhead brought by data preparation. The impact of disk I/O can be fur-
ther alleviated by using better disk or reducing expensive file operations like
seek. Modern frameworks such as TensorFlow and MXNet provide the way
to rearrange training samples so that the data can be read in sequentially.
The load for decoding and augmenting training data may cause extreme high
CPU usage and drags the performance of data provision. The computation
intensive jobs should be avoided on CPUs.

– Peer-to-peer parameter updates. Synchronizing parameter updates among
GPUs, as indicated in step 6 in Fig. 1, is another common bottleneck in multi-
GPU training environment. A naive implementation is to keep the latest model
at main memory, transfer the latest copy to GPUs at the beginning of batch
processing, and aggregate updates from all GPUs. It leads to bus contention
and huge data load between main memory and GPUs under CUDA program-
ming model. To alleviate the hot spot issue, the weight updates can be com-
pleted via GPU high-speed DMA if GPU supports peer-to-peer transfer.

If multiple GPUs with low computing overhead still cannot meet the desired
performance, distributed training is the option you can consider. We’ll discuss
the topic in the next section.

3.3 Distributed Training

Distributed training has become increasingly important because of the growth of
dataset size and model complexity. To effectively orchestrate multiple machines
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for a training task, the system must provide a way to manage the globally shared
model parameters. The parameter server architecture, i.e., a cluster of machines
to manage parameters, is widely-used to reduce I/O latency for handling para-
meter updates [29,30]. As shown in Fig. 1, parameter servers maintain latest
parameter values and serve all workers. The workers retrieve updated parame-
ters from the cluster, complete computation, and then push updates back to the
cluster of parameter servers.

Parameter updates can be performed either synchronously or asynchronously.
Employing synchronous updates ensures consistency but suffers from the perfor-
mance dragger issue. Updating parameters asynchronously gains training speed
and may not significantly affect training accuracy according to prior studies [13].
When I/Os can be performed asynchronously, fetching and updating parame-
ters can be hidden behind computation and hence computation overhead can be
mitigated. We assume that an asynchronous update policy is employed.

Let Nps denote the number of parameter servers. How many parameter
servers should be configured to hide the computation overhead? We select Nps

when Nps + 1 can no longer speed up the training task. Before we prove our
lemma that derives the most effective Nps, we enumerate two desired subgoals
or conditions.

The first subgoal is that the computation duration of a worker should be
longer than its communication time with the parameter cluster. In other words,
the I/O time between a worker thread and its designated parameter servers is
shorter than the computation time of that worker. This condition allows para-
meters being pre-fetched before a new round of computation commences. There-
fore, the I/O overhead can be hidden behind computation. The second subgoal
is to distribute parameter-update workload evenly among parameter servers. We
assume a dynamic load-balancing policy (e.g., [5]) can be employed to distribute
parameter retrieval and update workload almost evenly among Nps servers.

Lemma 2. Given a round of GPU computation time TC on a worker, number of
workers Nw, and parameter size Sp, the minimum number of parameter servers
Nps, whose network capacity is Bps, required to mask communication I/Os is

Nps �
⌈

2SPNw

BpsTC

⌉
.

Proof. Details of the proof is documented in the extended version of this
paper [41].

Lemma 2 suggests a back-of-the-envelop estimate on Nps given two ideal
conditions. When the conditions do not hold, more parameter servers should be
employed to be able to mask I/O overhead. Three measures are recommended:

1. Increase TC . When workload cannot be evenly distributed, the computation
time should be longer to mask most I/Os. Therefore, a good strategy is to
maintain a large TC . In other words, having a larger mini-batch size when the
memory capacity permits is helpful. Goyal et al. [18] proposed a scheme to use
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a larger mini-batch size without loss of accuracy. Besides, a larger mini-batch
leads to less number of parameter updates and improves overall performance.

2. Improve Bps. Increasing channel bandwidth can reduce time for push-
ing/pulling parameters. Insufficient bandwidth of the communication channel
may throttle the training performance. Thus, high speed networking is highly
recommended when applying distributed training.

3. Balance workload. Prior works [5,30] propose effective data placement meth-
ods to balance dynamic workload. Such load balancing schemes can avoid I/O
bottlenecks, and lead to overall overhead reduction.

4 Concluding Remarks

AlphaGo showed that more training data can only be helpful towards improving
machine intelligence and competitiveness. Recently, Residual Neural Networks
[20,36] shows that in both theory and practice, more layers of neural networks
correlates to a higher achieved accuracy by a trained classifier. At a 2016 machine
learning workshop [33], Andrew Ng presented that the traditional biases and
variance trade-off have not appeared in training large-scale deep architectures.
In other words, the larger the scale, the better suited the architecture is for
improving the intelligence of a “machine”.

This “larger the better” conjecture certainly demands that database and
machine learning communities devise data management and data mining sys-
tems that can handle an ever increasing workload. We foresee that not only will
algorithmic research continue flourishing, but system research and development
will as well. Already we have seen that GPU vendors are enhancing distributed
GPU implementations. Advances in interconnected technology and implemen-
tation will help reduce both I/O overhead in data loading and in parameter
updates.

In this work, we provided practical guidelines to facilitate practitioners the
configuration of a system to speed up training performance. Our future work
will focus on effectively managing such large-scale training systems to achieve
both high accuracy and cost-effectiveness in three specific areas:

– Flexibility. Prior work [39] provided a flexibility to work with any compatible
open-source frameworks. For example, we expect to simultaneously work with
multiple frameworks such as MXNet and TensorFlow to complete a large-scale
training task running on Azure, AWS, GCE, and other available commercial
clouds.

– Scalability and elasticity. In addition to the parameter estimation performed in
this work, we will research dynamic schemes to adjust allocation and schedul-
ing parameters according to the dynamic workload nature of distributed sys-
tems.

– Ease of management. We plan to devise tools with the good user experience
for monitoring and managing the training system.
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