
Efficient Revenue Maximization for Viral
Marketing in Social Networks

Yuan Su1(B), Xi Zhang1, Sihong Xie2, Philip S. Yu3,4, and Binxing Fang1

1 Beijing University of Posts and Telecommunications, Beijing, China
{timsu,zhangx,fangbx}@bupt.edu.cn

2 Lehigh University, Bethlehem, PA, USA
sxie@cse.lehigh.edu

3 University of Illinois at Chicago, Chicago, IL, USA
psyu@cs.uic.edu

4 Institute for Data Science, Tsinghua University, Beijing, China

Abstract. In social networks, the problem of revenue maximization
aims at maximizing the overall revenue from the purchasing behaviors of
users under the influence propagations. Previous studies use a number of
simulations on influence cascades to obtain the maximum revenue. How-
ever, these simulation-based methods are time-consuming and can’t be
applied to large-scale networks. Instead, we propose calculation-based
algorithms for revenue maximization, which gains the maximum rev-
enue through fast approximate calculations within local acyclic graphs
instead of the slow simulations across the global network. Furthermore,
a max-Heap updating scheme is proposed to prune unnecessary calcula-
tions. These algorithms are designed for both the scenarios of unlimited
and constrained commodity supply. Experiments on both the synthetic
and real-world datasets demonstrate the efficiency and effectiveness of
our proposals, that is, our algorithms run in orders of magnitude faster
than the state-of-art baselines, and meanwhile, the maximum revenue
achieved is nearly not affected.

Keywords: Revenue maximization · Social networks · Viral marketing

1 Introduction

Revenue maximization [1,10,14,20,23,25] is the problem of devising the mar-
keting strategy to obtain the optimal revenue in social networks, by determining
the price of a commodity and identifying a small set of influential vertices to give
out commodities for free. In contrast to influence maximization [5–8,13,18,19],
revenue maximization takes into account the impact of prices on adopting com-
modities, and quantifies the revenue obtained from the adoption after the infor-
mation diffusion process.

In networks, one user’s valuation towards a commodity often exhibits pos-
itive network externalities [2,4,12,17,21,23,24], i.e., a user’s valuation will be
positively influenced by other users who have already purchased the commodity.
c© Springer International Publishing AG 2017
G. Cong et al. (Eds.): ADMA 2017, LNAI 10604, pp. 209–224, 2017.
https://doi.org/10.1007/978-3-319-69179-4_15

210 Y. Su et al.

Hoping to increase the future revenue, in networks, a seller can give out some
commodities for free to some individuals to drive up the demands of the com-
modities. We study the seller’s marketing strategy as follows: the seller selects
a set S of consumers and gives each of them a commodity for free, and then
sets a unified price λ for the other consumers to buy the commodity, such that
the expected revenue is maximized. Different from the influence maximization
problem, there exists a challenge in revenue maximization when optimizing the
price λ. Specifically, lowering the price λ increases the number of purchasers
but may not improve the total revenue, while raising the price loses potential
purchases and may not improve the total revenue as well. Such a complex rela-
tionship is an inherent and challenging problem in revenue maximization.

We consider two scenarios of commodity supply, the unlimited supply and the
constrained supply. The unlimited supply means that a commodity is with nearly
zero marginal cost of manufacturing and the seller supply is unrestricted [23],
e.g., the number of SIM cards released by a telecommunication company can be
considered to be unlimited. The constrained supply suits that a seller has limited
production or service capacity, e.g., the tickets of a cinema are restricted. For
the scenario of unlimited supply, a randomized algorithm using a large number
of simulations on influence cascades for revenue estimation is proposed in [23],
which is time-consuming and can’t be applied to large-scale networks. Moreover,
it does not consider the “awareness” of a commodity in the dynamic process of
commodity adoptions. In the dynamic process, a user won’t be “aware” of a
commodity until one of her in-degree neighbors adopted it. Thus, awareness
should be the premise of the purchasing behavior and need to be incorporated
into the dynamic process. For the scenario of constrained supply, a heuristic
algorithm is proposed in [25], which, however, is only suitable to the situation
that each user’s inherent valuation of a commodity is known. This is a strong
assumption that commonly does not hold in the real-world viral marketing,
where a consumer’s inherent estimation is usually unknown to the sellers.

To address the aforementioned problems, we consider the awareness of a
commodity as the premise of a user’s purchase, and generalize the revenue max-
imization problem by setting each user’s inherent valuation as unknown. We then
propose efficient and effective algorithms for both the scenarios of the unlim-
ited supply and the constrained supply. Firstly, a fast method of approximate
revenue calculation using local acyclic graphs is proposed to replace the time-
consuming simulations on influence cascades. The intuition is to restrict the
influence spreading to a vertex within its local acyclic graph, and the activation
probability of this vertex can be calculated approximately in its local acyclic
graph instead of the original large network. Based on this method, for the sce-
nario of unlimited supply, we propose an efficient algorithm, i.e., the Calculation-
based Randomized (CR) algorithm, in which the revenues are approximately cal-
culated based on local acyclic graphs. For the scenario of constrained supply, we
develop an efficient algorithm called the Calculation-based max-Heap updating
Greedy (CHG) algorithm. The main idea of this algorithm contains two crucial
parts: (1) fast approximate revenue calculation based on the local acyclic graphs;

Efficient Revenue Maximization for Viral Marketing in Social Networks 211

(2) max-Heap updating scheme, which relies on the submodularity of the objec-
tive function of the revenue maximization problem. We conduct extensive exper-
iments on both the synthetic and real-world networks. The results indicate that
the proposed algorithms can achieve almost the same revenue while running in
orders of magnitude faster than the baselines.

The contributions of this paper are summarized as below:

– We address the problem of revenue maximization for both the cases that
the commodity supply is unlimited and constrained, and propose a fast and
general method to approximately calculate the revenue.

– For unlimited commodity supply, an efficient algorithm CR is proposed based
on the approximate revenue calculations; for constrained commodity supply,
an efficient algorithm CHG is proposed based both on the approximate rev-
enue calculations and max-Heap updating scheme.

– The results of experiments demonstrate the efficiency and effectiveness of CR
algorithm and CHG algorithm, which can run orders of magnitude faster than
the state-of-art baselines while gaining almost the same revenue.

2 Revenue Maximization Problem

In this section, we first describe the price-sensitive dynamic process in social
networks, and then formally present the problem of revenue maximization.

The social network. Given a commodity, a social network is represented as a
weighted graph G = (V,E), where V is the set of potential consumers, and E is
the set of edges. For each vertex v ∈ V , her inherent valuation of the commodity
χv ∈ [0, 1] is selected uniformly at random in [0, 1], under the assumption that
her inherent valuation is unknown. If the purchase by one vertex u will directly
encourage the desire of another vertex v for the commodity, there exists an edge
eu,v ∈ E from u to v, and the influence weight on edge eu,v is represented by
wu,v > 0. If there is no edge between vertices u and v, then wu,v = 0. The
non-negative and non-decreasing function F : R+ → R

+ transforms the edge
weight into the valuation increment. Given a set of vertices S which can directly
influence the purchase decision of v, then v’s valuation will be χv+F (Σu∈Swu,v).

The price-sensitive dynamic process. The activation of a vertex by a com-
modity has two important factors [16,20]: awareness and purchase. For the
awareness, if one vertex is activated by the commodity, she makes her out-
degree neighbors aware of the commodity, which means that these neighbors
are exposed to the commodity and know about it. In other words, a vertex is
aware of the commodity in condition that at least one of her in-degree neighbors
is activated by the commodity. For the purchase, if some vertices are activated
by the commodity in the network, they will exert influences on their out-degree
neighbors, while the influence strength is denoted by the edge weights. Then
the valuations of the out-degree neighbors towards the commodity will be incre-
mented. A vertex who is aware of the commodity will purchase it if her valuation

212 Y. Su et al.

outweighs the price. A vertex is activated by a commodity if it is aware of the
commodity and purchase that commodity.

The diffusion proceeds in discrete steps. Initially at step t = 0, all the vertices
in seed set S0 are activated, and the seller sets a fixed price λ ∈ Λ for the
commodity. Here Λ is the price set. At each step t ≥ 1, for each vertex v, if some
of v’s in-degree neighbors are activated by the commodity, v becomes aware of the
commodity, and then v’s valuation will be updated by χt

v = χv +F (Σi∈St−1wi,v),
where St−1 ⊆ V is the set of vertices activated after time t−1. In this paper, we
set F (x) = x for convenience, following the same setting as in [23,25]. If χt

v ≥ λ,
then v will purchase the commodity. This process continues and the dynamic
process propagates until no more vertices are activated. If the commodity supply
is constrained, when the activated number achieved is larger than the quantity
Q of the commodity, the dynamic process terminates. For any vertex, if it has
purchased the commodity, it will stay activated. Different from Linear Threshold
Model [18] adopted in influence maximization problem where the commodity
price is not considered, in revenue maximization problem, it is obvious that λ
will affect the number of infected nodes: the higher the price, the fewer vertices
will be activated; while the lower the price, the more vertices will be activated.

In our setting, a vertex is activated by the commodity in the propagation of
social influence if and only if (1) the vertex is in the seed set, or (2) at least one
of v’s in-degree neighbors are activated by the commodity, i.e., v is aware of the
commodity, and v’s current valuation is no less than the price of the commodity.

In this paper, we set Σuwu,v ≤ λ, specifically, Σuwu,v ∈ [0, α] and λ ∈
[α, 1] where α ∈ [0, 1]. Please note that if all the in-degree neighbors of vertex
v are activated, as χv ∈ [0, 1] is selected uniformly at random, v’s valuation
χv+Σuwu,v (u ∈ v’s in-degree neighbors) will be selected in [Σuwu,v, 1+Σuwu,v]
uniformly at random. Then the activation probability that χv+Σuwu,v ≥ λ is 1−
λ+Σuwu,v. This probability is exactly guaranteed in [0, 1] as Σuwu,v ∈ [0, α] and
λ ∈ [α, 1]. Besides, in the case that not all the in-degree neighbors are activated,
we can get the same conclusion. These settings can make price-sensitive dynamic
process have better probability characteristics for mathematical calculations.

Revenue maximization problem. The seller selects a set of vertices S as
seeds and gives them the commodity for free. After the diffusion process, the
number of activated vertices σ(S, λ) is obtained, while the revenue comes from
the number of activated vertices except the seeds, that is, σ(S, λ)−|S|. We define
the revenue function as π : 2V × Λ → R. Then π(S, λ) = λ(σ(S, λ) − |S|).

Formally, we define Revenue Maximization Problem as follows: given a com-
modity and a graph G = (V,E), the problem is to determine the optimal price
λ for this commodity and identify a seed set S to be the initial consumers, such
that the expected revenue π(S, λ) is maximized.

Efficient Revenue Maximization for Viral Marketing in Social Networks 213

3 Approximate Revenue Calculation

In order to solve the revenue maximization problem efficiently, we provide a
method for approximate revenue calculation based on local acyclic graph con-
structions, which is the basis for the proposed heuristic algorithms.

Activation Probability Calculation. In general directed graphs, there exists
loops, and the expected social influence spread from the seed set is difficult to
compute. But if the directed graphs are acyclic, the computation of the expected
social influence can be conducted. For an acyclic graph GA, given a seed set
S ⊆ V and the price λ, let apλ(S, v) be the activation probability of vertex v.

We first topologically sort [15] all the vertices into a linear order {v1, v2, ...vn},
where n is the number of vertices, with the seeds at the beginning of this order,
and then compute apλ(S, vi) (1 ≤ i ≤ n) for all vi following this order. The
influence on a vertex vi comes from the vertices in front of vi in this topological
order, but not comes from the vertices behind, with the reason that the graph
GA is acyclic. In other words, the valuation of vi is influenced by the vertices in
front of it in the order. Suppose the number of seed set S is k. The first k vertices
in this topological order {v1, v2, ...vk} are the seeds, so that apλ(S, vi) = 1(i ≤ k)
as they have already been activated. For the vertex vk+1, the influence of her
valuation comes from the set {v1, v2, ...vk}. If some of her in-degree neighbors
are from the seed set, vk+1’s valuation will increase to χvk+1 +

∑
vi∈S wvi,vk+1 .

Because χvk+1 ∈ [0, 1] is selected uniformly at random, χvk+1 +
∑

vi∈S wvi,vk+1

will be selected in [
∑

vi∈S wvi,vk+1 , 1 +
∑

vi∈S wvi,vk+1] uniformly at random.
If χvk+1 +

∑
vi∈S wi,vk+1 ≥ λ, then vk+1 will adopt the commodity. Thus, the

probability of vk+1’s adoption is apλ(S, vk+1) = 1 − λ +
∑

vi∈S wvi,vk+1 . As
S = {v1, v2, ...vk} and apλ(S, vi) = 1(i ≤ k), then we got apλ(S, vk+1) = 1 − λ +∑

vi∈{v1,v2,...vk} apλ(S, vi)wvi,vk+1 . Similarly, for the vertex vk+2, the influence
on her valuation comes from {v1, v2, ...vk+1}. Her valuation will become χvk+2 +∑

i∈{v1,v2,...vk+1} apλ(S, vi)wvi,vk+2 . Then the probability of vk+2’s adoption is
apλ(S, vk+2) = 1 − λ +

∑
vi∈{v1,v2,...vk+1} apλ(S, vi)wvi,vk+2 . For vertex vi(i >

k +2), the probability of adoption can be computed in the similar way. Suppose
the set of vertices in front of vertex vi in the topological order is Cvi

. In general,
for each vertex vi(i > k), it can be derived that the activation probability is

apλ(S, vi) = 1 − λ +
∑

u∈Cvi

apλ(S, u)wu,vi (1)

The activation probability of vertex vi is computed according to that of the
vertices in front of vi in the topological order. When computing the activation
probability of vi, all the activation probability of vi’s in-neighbors have been
computed. Equation (1) shows that the activation probability of all the vertices
can be calculated linear to the number of edges of an acyclic graph.

However, real-world social networks are not acyclic, so we cannot use Eq. (1)
directly. To address this problem, we construct a local acyclic graph for every
vertex v, and then use the activation probability of v in its local acyclic graph to
approximate that in the original network. For each price λ, vertex v is associated

214 Y. Su et al.

Algorithm 1. LAλ(v) construction
1: Initialize LAλ(v) ← v, set v newly added and infLAλ(v)(v, v) = 1

2: for every added vertex x ∈ LAλ(v) do
3: for every in-neighbor u (u /∈ LAλ(v)) of x do
4: if u is first check then
5: infLAλ(v)(u, v) = wu,x × infLAλ(v)(x, v)

6: else
7: infLAλ(v)(u, v)+ = wu,x × infLAλ(v)(x, v)

8: if infLAλ(v)(u, v) ≥ θ then

9: Add u into LAλ(v)
10: Add all eu,y (y in LAλ(v)) into LAλ(v)

11: Output LAλ(v)

with a local acyclic graph LAλ(v), which denotes a subgraph of G rooted at v.
We need to find LAλ(v) that covers a significant portion of influence from other
vertices to v and ignores the others. Given a seed set S, we assume that the
influence from S to v is only propagated within LAλ(v).

Influence Calculation. The influence to v propagated from u in an acyclic
graph GA, defined as infGA

(u, v), is v’s incremental activation probability, in
the case that u is activated relative to that u is not activated. We topologically
sort [15] all the vertices that can reach v in GA into a sequence, and then reverse
this sequence into a new order. Initially, infGA

(v, v) = 1. Then for each node
u �= v according to the order

infGA(u, v) =
∑

x∈V \{v}
wu,xinfGA(x, v) (2)

In an acyclic graph GA, supposing that the item price is λ and the seed
set is S, the incremental activation probability of v contributed from u is (1 −
apλ(S, u))infGA

(u, v), which can be derived by repeatedly expanding apλ(S, v)
using Eq. (1), where infGA

(u, v) is calculated according to Eq. (2).

Local Acyclic Graph Construction. According to Eq. (2), the influence
infLAλ(v)(u, v) from u to v can be calculated in constructing an acyclic graph
LAλ(v). Algorithm 1 shows how to construct the local acyclic graph of each
vertex v and calculate the influences from other vertices to v. Let θ ∈ [0, 1] be
a threshold, and we need to make sure that infLAλ(v)(u, v) ≥ θ for each vertex
u in LAλ(v). The intuition behind is that we need to find LAλ(v) that covers
a significant portion of influences from other vertices to v and ignores the ver-
tices that have only little influence to v. Initially vertex v is added into LAλ(v).
Then in each iteration, for every newly added vertex x ∈ LAλ(v), for every in-
neighbor u of x, we calculate infLAλ(v)(u, v) and select every vertex u satisfying
infLAλ(v)(u, v) ≥ θ, and then add these vertices into LAλ(v) together with all
the corresponding edges. The process continues until there is a vertex u with
infLAλ(v)(u, v) < θ. The runtime of constructing each LAλ(v) is linear to |E|.
Total Revenue Calculation. For each price λ, vertex v is associated with a
local acyclic graph LAλ(v). We use the activation probability of v in its local

Efficient Revenue Maximization for Viral Marketing in Social Networks 215

acyclic graph to approximate that in the original network. Given a seed set S,
we assume that the influence from S to v is only propagated within LAλ(v). The
activated number σ(S, λ) is

∑
v apλ(S, v), then the expected revenue π(S, λ) is

π(S, λ) = λ(
∑

v∈V

apλ(S, v) − |S|) (3)

Marginal Revenue Calculation. Suppose the current seed set is S, if a vertex
u is selected as a seed, the incremental influence that u imposes on the activation
probability of v, i.e., apλ(S∪{u}, v)−apλ(S, v), is (1−apλ(S, u))infLAλ(v)(u, v).
We define the incremental marginal revenue from u as π(u|S, λ). Applying
Eq. (3),

Algorithm 2. CR Algorithm
1: for every price λ do

2: for each vertex v ∈ V do

3: LAλ(v) construction

4: Initialize X0 ← ∅, Y0 ← V , n ← |V |
5: for i = 1 to n do

6: ai ← π(ui|Xi−1, λ) according to

Eq. (4)

7: bi ← π(u−
i |Yi−1, λ) according to

Eq. (5)

8: a′
i ← max{ai, 0}, b′

i ← max{bi, 0}
9: with probability a′

i/(a
′
i + b′

i) do:

10: Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1

11: else (with probability b′
i/(a

′
i +

b′
i)) do:

12: Xi ← Xi−1, Yi ← Yi−1\{ui}
13: S ← Xn (or equivalently Yn)

14: Calculate π(S, λ) according to Eq. (3)

15: Output λ and S with the maximum π(S, λ)

16: * If a′
i = b′

i = 0, we assume a′
i/(a

′
i +b′

i) = 1

Algorithm 3. CG Algorithm
1: for every price λ do

2: for each vertex v ∈ V do

3: LAλ(v) construction

4: Initialize S0 ← ∅
5: for i = 1 to Q do

6: if (σ(Si−1, λ) =
∑

v apλ(Si−1, v)) ≥
Q then

7: break

8: for each vertex v ∈ V \Si−1 do

9: Calculate π(v|Si−1, λ) according

to Eq. (4)

10: u = argmaxv∈V \Si−1π(v|Si−1, λ)

11: if π(u|Si−1, λ) ≤ 0 then

12: break

13: Si ← Si−1 ∪ {u}
14: For price λ, the seed set is Si

15: Calculate π(Si, λ) according to Eq. (3)

16: Output λ and Si with the maximum

π(Si, λ)

π(u|S, λ) = π(S ∪ {u}, λ) − π(S, λ) = λ(−1 + (1 − apλ(S, u))
∑

v∈V

infLAλ(v)(u, v))

(4)

Similarly, if u ∈ S is removed from S, the decreased marginal revenue is

π(u−|S, λ) = λ(1 + (apλ(S\{u}, u) − 1)
∑

v∈V

infLAλ(v)(u, v)) (5)

The local acyclic graph constructions as well as the total and marginal rev-
enue calculations are the basis for the proposed heuristic algorithms.

4 The Proposed Algorithms

We propose two efficient algorithms: (1) the Calculation-based Randomized (CR)
algorithm for unlimited commodity supply; (2) the Calculation-based max-Heap
updating Greedy (CHG) algorithm for constrained commodity supply.

216 Y. Su et al.

4.1 CR Algorithm

For unlimited commodity supply, instead of time-consuming simulations in [23],
we calculate the approximate marginal and total revenue.

Algorithm 2 shows CR. In the main loop of lines 1–14, we pick a price in
each round and identify the corresponding seed set. Lines 2–3 are the preparation
phase for each price, in which each LAλ(v) is generated, and infLAλ(v)(u, v) for
all u ∈ LAλ(v) are gained as well. Lines 5–12 identify whether a vertex is selected
as a seed. Instead of using a large number of simulations to get the marginal
revenue, line 6 calculates the incremental marginal revenue from vertex ui when
the seed set is Xi−1, and line 7 calculates the decreased marginal revenue from
vertex ui when the seed set is Yi−1. Lines 9–12 give the probability of vertex ui

being selected as a seed or the probability being not selected as a seed. Line 13
gives the seed set at the predetermined price, and line 14 calculates the total
revenue of this seed set and the predetermined price. Finally, in line 15, we choose
the price and the corresponding seed set achieving the maximum revenue. The
time complexity of CR is O(|Λ||V ||E|).

4.2 CHG Algorithm

For the scenario of constrained commodity supply, we propose CG and CHG.
A vertex with greater influence should be regarded as more important, so that
greedily selecting the individuals with greatest influence as seeds can lead to a
feasible solution. To make the algorithm more efficient, in CG and CHG, we
approximately calculate the revenue within the local acyclic graphs. Compared
with CG, CHG uses a max-Heap updating scheme to reduce unnecessary calcu-
lations to achieve better efficiency.

Algorithm 3 shows CG. In the main loop of lines 1–15, we select a price
λ in each round and identify the seed set at λ. Lines 2–3 are the preparation
phase for each price, in which each LAλ(v) is generated, and infLAλ(v)(u, v) for
all u ∈ LAλ(v) are obtained as well. In the seed selecting process for price λ,
we iteratively select a seed with the maximum marginal revenue (lines 5–13),
where the marginal revenue can be calculated as Eq. 4. The iteration process
can be terminated in two cases: (1) the number of the activated vertices exceeds
the quantity of the commodity Q (lines 6–7); (2) the examined seed’s marginal
revenue is negative (lines 11–12). The seed set at each price λ is obtained in
line 14. Finally, we choose the price and the corresponding seed set achieving
the maximum revenue (line 16). In CG, the marginal revenue from one vertex
(line 9), the activated number of a seed set (line 6), the total revenue by setting a
price and a seed set (line 15) are all calculated based on the local acyclic graphs.
The time complexity of CG is O(Q|Λ||V ||E|).

However, there is still a limitation of CG. To identify the seed with the max-
imum marginal revenue, given the current seed set Si−1, we have to enumerate
all candidate vertices to obtain the one with the maximum marginal revenue.
Actually, for some of the vertices, the computations for their marginal revenue

Efficient Revenue Maximization for Viral Marketing in Social Networks 217

Algorithm 4. CHG Algorithm
1: for every price λ do
2: for each vertex v ∈ V do
3: LAλ(v) construction

4: Initialize S0 ← ∅, and initialize a hash map Mλ

5: Build max-Heap Hλ with π({v}|∅, λ) of all v ∈ V
6: for i = 1 to Q do
7: if (σ(Si−1.λ) =

∑
v apλ(Si−1, v)) ≥ Q then

8: break
9: Clear hash map Mλ

10: while the i’th seed not obtained do
11: v = Hλ.pop()
12: if v /∈ Mλ (unchecked) then
13: Calculate π({v}|Si−1, λ) based on Eq. (4)
14: Add 〈v, π({v}|Si−1, λ)〉 into Hλ

15: Put 〈v, calculated〉 into Mλ (set checked)
16: continue
17: if v ∈ Mλ (checked) then
18: Si ← Si−1 ∪ {v}
19: if π({v}|Si−1, λ) ≤ 0 then
20: Remove v from Si

21: break
22: For price λ, the seed set is Si

23: Calculate π(Si, λ) according to Eq. (3)

24: Output λ and Si with the maximum π(Si, λ)

can be avoided. The intuition behind is that revenue functions follow the sub-
modular property, i.e., the marginal revenue from a vertex decreases as the seed
set grows. It has been proved that the revenue function π(S, λ) is non-negative
submodular [3,9,23] if the commodity supply is unlimited, and it is obvious that
the property also holds when the commodity supply is constrained, for the quan-
tity constraint will not break this property. Then we propose the CHG algorithm
using a max-Heap updating scheme to prune unnecessary calculations.

In CHG algorithm, the process to identify seeds at price λ is as follows.
Firstly we calculate the marginal revenue π(v|∅, λ) for each vertex v ∈ V , and
build a max-Heap Hλ with the initial marginal revenue π(v|∅, λ) of every vertex.
Obviously, the top vertex on the max-Heap is the first seed selected for price λ,
denoted by u. We pop u, add u into S0, adjust the heap, and set all the vertices
in the max-Heap unchecked. Then we keep updating this heap to select the rest
seeds. Specifically, in the following iterations, we pop the top vertex v in the
max-Heap, and deal with v in two cases: (1) if v’s marginal revenue π(v|Si−1, λ)
is unchecked, we calculate π(v|Si−1, λ), add 〈v, π(v|Si−1, λ)〉 into the max-Heap
Hλ, and set it checked; (2) if v’s marginal revenue is already checked, v will be
chosen as a seed, and thus the current iteration will be terminated and all the
vertices in the max-Heap is set unchecked. A hash map Mλ is used to maintain
whether a vertex is checked or not. According to the submodular property, if
the marginal revenues of some vertices obtained in previous iterations is less
than the marginal revenue from another vertex in the current iteration, it’s not
possible for those vertices to be selected as seeds in the current iteration. Con-
sequently, unnecessary computations can be pruned. Algorithm 4 shows CHG.
The marginal revenue from one vertex (line 13), the activated number of a seed

218 Y. Su et al.

set (line 7), and the total revenue by setting a price and a seed set (line 23) are
all calculated based on the local acyclic graphs. In the seed selecting process for
price λ, we first build a max-Heap (line 5), and then iteratively select a seed
with the maximum marginal revenue from the heap (lines 6–21). The time com-
plexity of CHG algorithm is O(Q|Λ||V ||E|). With regard to the effectiveness,
the maximum revenue obtained by CHG is the same as that of CG.

5 Evaluation

In this section, we conduct experiments on both synthetic networks and real-
world networks to demonstrate the efficiency and effectiveness of the proposed
algorithms CR and CHG. All the algorithms are implemented in JAVA, and
performed on Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz.

5.1 Experimental Setup

Datasets. We do experiments in synthetic networks and real-world networks.
Synthetic networks are power-law graphs generated by NetworkX 1 with various
sizes, which will be introduced in details in Sect. 5.2. We use four real-world
networks: (a) Residence Hall Friendship (RHF) network [11] with 217 vertices
and 2,672 edges; (b) Ego-Facebook (EgoFB) network [22] with 4,039 vertices and
88,234 edges; (c) NetHEPT network [5] with 15,233 vertices and 58,891 edges;
and (d) NetPHY network [5] with 37,154 vertices and 231,584 edges.

For each network, we need to generate the weights on all edges with a random
method, that is, the weight of each edge is firstly generated uniformly at random
in the range [0, α]. To meet Σuwu,v ≤ α, the weights of all in-neighbor edges
of a vertex v are divided by the number of v’s in-neighbor edges. Here we set
α = 0.5 in the experiment. For each network, we repeated this process for 10
times, and the results (including the running time, the maximum revenue and the
corresponding price) for evaluations are the mean value of the results obtained
each time. When constructing acyclic graphs, the threshold θ is set to 0.01. In
the experiments, we set the prices of a commodity as a set Λ of input parameters
[0.50, 0.52, 0.54, ..., 0.70], and λ ∈ Λ.

Baselines. We compare our algorithms with three baselines described as follows.

Randomized Algorithm . It is the algorithm proposed in [23], and we compare
CR with it for unlimited supply of commodities.

Greedy Algorithm . It is the variant of CG, in which the marginal and the total
revenue are gained by simulations but bot by calculations. It is compared with
CG and CHG for constrained supply of commodities.

PRUB+IF Algorithm . It is proposed in [25] for constrained supply of com-
modities, which is compared with CG and CHG. Please note that this algorithm

1 https://networkx.github.io/.

https://networkx.github.io/

Efficient Revenue Maximization for Viral Marketing in Social Networks 219

only suites the cases that each user’s inherent valuation is known by the seller,
which is a strong assumption that does not hold in real-world scenarios. To
address this issue, we generalize this algorithm by setting each user’s inherent
valuation as random variables. Specifically, in the process of obtaining the upper
bound of the maximum revenue, each user’s valuation is set as the average of
1,000 random values in the range [0, 1].

All the baselines and proposed algorithms are run in the price-sensitive
dynamics process described in Sect. 2. For the baselines, 2000 simulations are
executed to estimate the revenue for each candidate price and seed set. In each
simulation, the valuation of each user is generated at random. This number of
simulations is chosen to make the estimates accurate while considering the poor
efficiency of the baselines. As the running time of the baselines are linear to
the number of simulations, if our proposed algorithms are much faster than the
baselines with 2000 simulations, then we can conclude that they would be more
efficient than the baselines conducting a larger number of simulations. For the
evaluations of effectiveness, in each algorithm of CR, CG, CHG and the baselines,

100 200 500 1000
0.01

0.1

1

10

100

1000

10000

100000

1.3m

0.10s

6.2m

0.15s

51.0m

0.52s

3.5h

1.43s

|V|

R
un

ni
ng

 T
im

e
(s

)

Randomized
CR

(a)

100 200 500 1000
0.01

0.1

1

10

100

1000

10000

100000

2.0m

2.3s

0.09s
0.04s

11.0m

8.7s

0.37s

0.11s

2.4h

51.5s

2.71s

0.42s

19.1h

4.0m

15.81s

1.08s

|V|

R
u

n
n

in
g

 T
im

e
(s

)

Greedy
PRUB+IF
CG
CHG

(b)

Fig. 1. The running time (in log scale) on synthetic networks for: (a) unlimited com-
modity supply; (b) constrained commodity supply where Q/|V | = 60%.

30% 40% 50% 60% 70% 80% 90%
0.1

1

10

100

1000

5.3s

0.88s

7.3s

0.91s

1.0m

0.99s

4.0m

1.08s

10.3m

1.41s

16.9m

1.47s

21.4m

1.51s

Q/|V|

R
u

n
n

in
g

 T
im

e
(s

)

PRUB+IF
CHG

Fig. 2. The running time (in log scale)
in a network (1,000 vertices, 3,000
edges) as the quantity of the commod-
ity varies.

Table 1. The running time of CR and
CHG (Q/|V | = 60%) on a network (500
vertices) when the density varies.

|E| 1500 3000 4500 6000 7500

CR 0.52 s 0.62 s 0.65 s 1.03 s 1.26 s

CHG 0.42 s 0.55 s 0.88 s 1.30 s 1.49 s

220 Y. Su et al.

after selecting λ and S, we use the average revenue by 2000 simulations as the
result to compare. To make fair comparisons, we use the same settings in the
baselines as our work.

5.2 Results on Synthetic Networks

We generate different scales of synthetic power-law graphs with 100, 200, 500 and
1,000 vertices, each with 300, 600, 1,500 and 3,000 edges respectively to evaluate
the algorithms. Please note that as the baseline algorithms are not scalable, we
can only use small datasets to conduct the comparisons. Later we will evaluate
our methods on large-scale real-world networks to show the scalability.

Figure 1(a) shows the running time in log scale for the Randomized algorithm
and CR algorithm, which demonstrates that, when the quantity of the com-
modities is unlimited, the Randomized algorithm runs much slower than CR.
For example, when |V | is 1000, CR achieves a speedup of 3 orders of magnitude
against the Randomized algorithm. Note that as the runtime of the Randomized
algorithm is linear to the number of simulations, even if the number of simu-
lations in the Randomized algorithm decreases from 2,000 to 20, CR can still
achieve a speedup of 1 order of magnitude. It can also be observed that with
the increase of the scale of a network, the runtime of CR grows slower than
that of the Randomized algorithms, which shows that CR has better scalability.
Figure 1(b) shows the running time in log scale for Greedy, PRUB+IF, CG and
CHG algorithm, which demonstrates that CG and CHG runs much faster than
the baselines for constrained commodity supply. When |V | =1000, compared
to Greedy and PRUB+IF, CHG achieves speedups of 4 orders of magnitude
and 2 orders of magnitude respectively. CHG still runs faster than Greedy and
PRUB+IF even if the number of simulations decreases from 2,000 to 200. It can
also be observed that CHG runs faster than CG, with the reason that the scheme
of max-Heap updating adopted in CHG can help to prune a significant portion
of the calculations. Figure 2 shows the running time in log scale of PRUB+IF
and CHG on a network with 1,000 vertices and 3,000 edges, as the quantity
of the commodities varies. As the quantity becomes larger, the running time
of PRUB+IF increases much more than that of CHG, which also demonstrates
the efficiency of CHG. In Table 1 we do sensitivity analysis when the density of
the graph varies. It can be observed that the running time of CR and CHG are
almost linear to the number of edges when the number of the vertices is fixed.

Figure 3 shows the maximum revenues obtained by different algorithms. It
can be observed that the results of CR can consistently match the results of
the Randomized algorithm for the scenario of unlimited supply, and the results
of CHG and other baselines also match each other very well for the scenario of
constrained supply. Thus it can be summarized that, compared to the baselines,
the maximum revenues obtained by CR and CHG are almost not impacted, with
a much better efficiency.

Efficient Revenue Maximization for Viral Marketing in Social Networks 221

100 200 500 1000
0

50

100

150

200

250

300

350

|V|

M
ax

 R
ev

en
ue

Randomized
CR

(a)

100 200 500 1000
0

50

100

150

200

250

300

350

|V|

M
ax

 R
ev

en
ue

Greedy
PRUB+IF
CG
CHG

(b)

Fig. 3. The maximum revenues on synthetic networks for: (a) unlimited commodity
supply; (b) constrained commodity supply where Q/|V | = 60%.

Table 2. The running time on real-
world networks.

Datasets RHF EgoFB NetHEPT NetPHY

Unlimited commodity supply

Randomized 1359.8 s N/A N/A N/A

CR 0.7 s 31.7 s 161.3 s 2790.3 s

Constrained commodity supply

Greedy 584.3 s N/A N/A N/A

PRUB+IF 35.5 s 18123.9 s N/A N/A

CG 0.6 s 363.1 s 43633.9 s N/A

CHG 0.5 s 24.3 s 363.3 s 13640.2 s

Table 3. The maximum revenues on
real-world networks.

Datasets RHF EgoFB NetHEPT NetPHY

Unlimited commodity supply

Randomized 71.8 N/A N/A N/A

CR 71.5 1392.2 4636.2 11557.5

Constrained commodity supply

Greedy 70.6 N/A N/A N/A

PRUB+IF 70.6 1376.3 N/A N/A

CG 70.2 1296.5 4631.6 N/A

CHG 70.2 1296.5 4631.6 11448.3

5.3 Results on Real-World Networks

In this section, we conduct experiments on real-world networks. Please note that
in these experiments, if the running time of an algorithm exceeds 24 h, we just
stop running this algorithm and discard its results of the running time and the
maximum revenue, and mark them as “N/A” in the corresponding table.

Table 2 shows the runtime of the baselines and the proposed algorithms. For
unlimited commodity supply, it can be observed that CR algorithm runs much
faster than the Randomized algorithm. For the residence hall friendship dataset,
CR achieves a speedup of 4 orders of magnitude against the Randomized algo-
rithm. As the runtime of the Randomized algorithm is linear to the number
of simulations, even if the number of simulations in the Randomized algorithm
decreases from 2,000 to 20, CR can still achieve a speedup of 2 orders of magni-
tude. For the other three datasets which have larger size than the residence hall
friendship dataset, the Randomized algorithm runs over 24 h, but CR is quite
efficient. For the dataset NetPHY that has the largest size, CR runs less than
an hour. For the scenario of constrained commodity supply, it is shown that CG
and CHG runs much faster than the baselines. For the residence hall friend-
ship dataset, compared to Greedy and PRUB+IF, CHG achieves speedups of

222 Y. Su et al.

Table 4. The prices at achieving the maximum revenue on Ego-Facebook.

CR 0.52

Q/|V | 30% 40% 50% 60% 70% 80% 90%

CHG 0.70 0.70 0.62 0.54 0.52 0.52 0.52

3 orders of magnitude and 2 orders of magnitude respectively. CHG still
runs faster than Greedy and PRUB+IF even if the number of simulations
decreases from 2,000 to 200. For datasets of NetHEPT and NetPHY, Greedy
and PRUB+IF run over 24 h, while CHG runs quite fast. It can also be observed
that CHG runs faster than CG, with the reason that the scheme of max-Heap
updating adopted in CHG works well, which can help to prune a significant
portion of the calculations. According to Table 2, it can be concluded that the
baselines are constrained in efficiency, while the proposed algorithms show good
scalability and would be feasible solutions for real-world scenarios.

Table 3 shows the maximum revenues. It can be observed that the results
of CR match those of the Randomized algorithm, and the results of CHG and
other baselines also match each other very well. Thus it can be summarized that,
compared with the baselines, CR and CHG can successfully obtain almost the
same maximum revenue with superiority in efficiency.

We also study the chosen price at the maximum revenue from CR and CHG.
It is shown in Table 4 that in Ego-Facebook network, for unlimited commodity
supply, the selected price is a lower value within the range, 0.52 in our case, which
reveals a good strategy should focus on the number of activated vertices when the
differences among the candidate prices are not large. For constrained commodity
supply, when the quantity of the commodity is small, the selected price should
be high. The possible reason is that both the higher and lower price can result
in a significant number of activated vertices relative to the small quantity of
the commodities, and thus the higher price can bring in more revenue. We can
also see that the chosen price decreases as the amount of the commodity grows
larger. The possible reason is that as the quantity of the commodity grows, the
higher price can no longer make the number of the activated vertices approach
to the quantity of the commodity. As a result, we have to lower the price to
increase the number of the activated vertices. It is consistent with the marketing
strategies in real-world applications.

6 Conclusion

In this paper, two efficient revenue maximization algorithms CR and CHG are
proposed for both the scenarios of unlimited and constrained commodity supply
respectively. In these algorithms, local acyclic graphs are constructed which help
to gain the revenue through fast calculation. Furthermore, a max-Heap updating
scheme is proposed to prune unnecessary calculations in CHG. Experiments on

Efficient Revenue Maximization for Viral Marketing in Social Networks 223

both the synthetic networks and real-world networks demonstrate the efficiency
and effectiveness of the proposed algorithms.

Acknowledgments. This work is supported in part by the State Key Development
Program of Basic Research of China (No. 2013CB329605), the National Key Research
and Development Program of China (No. 2016QY03D0605), the Natural Science Foun-
dation of China (No. 61300014, 61372191, 61672313), NSF through grants IIS-1526499,
and CNS-1626432.

References

1. Akhlaghpour, H., Ghodsi, M., Haghpanah, N., Mirrokni, V.S., Mahini, H., Nikzad,
A.: Optimal iterative pricing over social networks (Extended abstract). In: Saberi,
A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 415–423. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17572-5 34

2. Bensaid, B., Lesne, J.P.: Dynamic monopoly pricing with network externalities.
Int. J. Ind. Organ. 14(6), 837–855 (1996)

3. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015)

4. Cabral, L.M.B., Salant, D.J., Woroch, G.A.: Monopoly pricing with network exter-
nalities. Int. J. Ind. Organ. 17(2), 199–214 (1999)

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: KDD, pp. 199–208 (2009)

6. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks
under the linear threshold model. In: ICDM, pp. 88–97 (2010)

7. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maxi-
mization and computation: Scaling up with guarantees. In: CIKM, pp. 629–638
(2014)

8. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,
pp. 57–66 (2001)

9. Feige, U., Mirrokni, V.S., Vondrak, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

10. Fotakis, D., Siminelakis, P.: On the efficiency of influence-and-exploit strategies
for revenue maximization under positive externalities. Theor. Comput. Sci. 539,
68–86 (2014)

11. Freeman, L., Webster, C., Kirke, D.: Exploring social structure using dynamic
three-dimensional color images. Soc. Netw. 20(2), 109–118 (1998)

12. Fromlet, H.: Predictability of financial crises: lessons from Sweden for other coun-
tries. Bus. Econ. 47(4), 262–272 (2012)

13. Goyal, A., Lu, W., Lakshmanan, L.V.S.: SIMPATH: an efficient algorithm for
influence maximization under the linear threshold model. In: ICDM, pp. 211–220
(2011)

14. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: WWW, pp. 189–198 (2008)

15. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(1962)

16. Kalish, S.: A new product adoption model with price, advertising, and uncertainty.
Manag. Sci. 31(12), 1569–1585 (1985)

http://dx.doi.org/10.1007/978-3-642-17572-5_34

224 Y. Su et al.

17. Katz, M., Shapiro, C.: Network externalities, competition, and compatibility. Am.
Econ. Rev. 75(3), 424–440 (1985)

18. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

19. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: KDD, pp. 420–429 (2007)

20. Lu, W., Lakshmanan, L.V.S.: Profit maximization over social networks. In: ICDM,
pp. 479–488 (2012)

21. Mason, R.: Network externalities and the coase conjecture. Eur. Econ. Rev. 44(10),
1981–1992 (2000)

22. McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In:
NIPS, pp. 539–547 (2012)

23. Mirrokni, V.S., Roch, S., Sundararajan, M.: On fixed-price marketing for
goods with positive network externalities. In: Goldberg, P.W. (ed.) WINE
2012. LNCS, vol. 7695, pp. 532–538. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35311-6 43

24. Sundararajan, A.: Local network effects and complex network structure. BE J.
Theor. Econ. 7(1) (2007)

25. Teng, Y., Tai, C., Yu, P.S., Chen, M.: An effective marketing strategy for revenue
maximization with a quantity constraint. In: KDD, pp. 1175–1184 (2015)

http://dx.doi.org/10.1007/978-3-642-35311-6_43
http://dx.doi.org/10.1007/978-3-642-35311-6_43

	Efficient Revenue Maximization for Viral Marketing in Social Networks
	1 Introduction
	2 Revenue Maximization Problem
	3 Approximate Revenue Calculation
	4 The Proposed Algorithms
	4.1 CR Algorithm
	4.2 CHG Algorithm

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results on Synthetic Networks
	5.3 Results on Real-World Networks

	6 Conclusion
	References

