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Abstract. With the advent of large string datasets in several scientific
and business applications, there is a growing need to perform ad-hoc
analysis on strings. Currently, strings are stored, managed, and queried
using procedural codes. This limits users to certain operations supported
by existing procedural applications and requires manual query planning
with limited tuning opportunities. This paper presents StarQL, a generic
and declarative query language for strings. StarQL is based on a native
string data model that allows StarQL to support a large variety of string
operations and provide semantic-based query optimization. String ana-
lytic queries are too intricate to be solved on one machine. Therefore,
we propose a scalable and efficient data structure that allows StarQL
implementations to handle large sets of strings and utilize large comput-
ing infrastructures. Our evaluation shows that StarQL is able to express
workloads of application-specific tools, such as BLAST and KAT in bioin-
formatics, and to mine Wikipedia text for interesting patterns using
declarative queries. Furthermore, the StarQL query optimizer shows an
order of magnitude reduction in query execution time.

1 Introduction

Strings are sequences of symbols. Textual content on the Internet and genomic
sequences are examples of important strings [16]. Textual content holds informa-
tion critical for corporations to understand consumer behaviour, banking firms to
identify fraudulent activities, and governmental agencies to find criminal groups.
Generally, string analysis involves a single long string (e.g., the human genome
or the Wikipedia text) or large collections of short strings (e.g., DNA reads or
words in a Wikipedia article). More strings are being produced and propagated
due to technological advances [17] and information sharing [7]. For example, the
National Center for Biotechnology Information1 (NCBI) reported that the size
of the genomic sequences stored in the GenBank repository has doubled approx-
imately every 18 months. Ambitious projects that require large string analysis
include the Cancer Genome Atlas2 and the Square Kilometre Array Telescope3.
1 ftp://ftp.ncbi.nih.gov/genbank/gbrel.txt.
2 http://cancergenome.nih.gov.
3 https://www.skatelescope.org.
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Fig. 1. Example string S over DNA alphabet Σ = {A, C, G, T}. Matches for GGTGC are
indicated, allowing one mismatch and overlapping matches.

In string analysis, multiple operations are executed to extract information.
One of the most basic string operations is pattern matching. It is a core operation
used in most string algorithms. However, even this core and basic operation can
be simple, as in the case of exact matching; or more involved, as in approximate
matching. Counting pattern matches leads to the problem of identifying frequent
patterns, which in turn leads to the motif extraction problem. String operations
have different semantics when dealing with a single string as opposed to multiple
strings. For instance, matches within a single string provide insights different
from those of a single match in several strings.

One could map a string to a relation and its symbols to attributes to ana-
lyze strings using SQL. However, strings are usually large and vary in size, and
the order of their symbols matters. Alternatively, considering a whole string as
a single attribute is not a feasible solution because string operations require
primitives not served by SQL’s LIKE operator, such as repeated patterns and
common substrings. Attempts to extend SQL with string operations do not pro-
vide native and generic string support because they are limited by their original
data models [13,27].

Hence, procedural codes are currently used to analyze string datasets. For
example, BLAST [1] is used for matching, where it finds regions of local similar-
ity between biological sequences. Another example is KAT4, a k-mer counting
tool used to analyze substring frequency spectra [15]. To analyze strings, users
manually move data and run different applications or use pipeline systems to
automate this process.

This paper presents a declarative query language for strings, called StarQL.
StarQL provides native support for string operations and generic primitives that
cover users’ needs in different applications. While StarQL is generic and works for
any string and application, examples use DNA sequences for ease of exposition.

Example 1. Suppose we have a DNA sequence S and we need to know if GGTGC
is frequent in S or not. Assume a pattern is frequent if it appears 5 times or
more in the string and that matches need not be exact as shown in Fig. 1.

SQL can be used to count matches of a candidate pattern but matches are limited
to the capabilities of the LIKE operator. Using weighted scoring matrices in the
case of DNA sequence similarity is not an option. Using procedural code, we can
implement a string scanner and a distance function to find and count matches.
However, hard-coded queries contradict with the essence of ad-hoc analysis.

4 http://www.tgac.ac.uk/KAT/.
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In StarQL, finding out the number of matches for GGTGC in S is achieved by the
following query.

(1) SELECT COUNT(MATCH(dna, "GGTGC", user dist(2)));

Finding out if a pattern is frequent or not is a simple task. A more involved
and realistic task is to extract all frequent patterns in a string. Such patterns are
referred to as motifs and they require counting the matches for a large number of
candidate motifs. SQL cannot handle candidate motifs generation so users need
procedural code that implements Apriori-based or pattern-growth algorithms
to extract motifs. However, extracting motifs in StarQL is equivalent to the
following simple and customizable query.

(2) SELECT RMOTIFS(dna, freq=100, minlen=3, maxlen=9, edit(2));

The StarQL language is based on a simple and native string model. Con-
sidering strings as sequences of symbols and sets of related strings as collec-
tions allows the support of a large variety of string operations and is extensible
to support application-specific operators. To escape the procedural code trap,
StarQL supports user-defined functions. For instance, matching is a universal
string operation but different applications use different matching criteria. In
Example 1, user dist is a user-defined distance function used when matching
DNA sequences given a weighted scoring matrix. Moreover, the native string
model allows StarQL queries to be smartly rewritten based on their operation
semantics to reduce execution time. The paper also proposes a scalable and effi-
cient data structure suitable for parallel query processing and handling large
strings.

In summary, our contributions are the following.

– We develop StarQL, a declarative query language for strings and provide a
semantic-based optimization for StarQL queries.

– We propose StarIN, a scalable and efficient data structure for implementing
StarQL that avoids the limitation of traditional string indexing techniques.

– We conduct comprehensive experiments on real datasets from Wikipedia and
the Human genome DNA sequence and run on a supercomputer.

The rest of this paper is organized as follows. Section 2 summarizes the related
work. In Sect. 3, we introduce the syntax and semantics of StarQL, our query
language. Section 4 presents our StarIN data structure. We then evaluate our
language in Sect. 5 and conclude the paper in Sect. 6.

2 Related Work

Several string data models and languages are theoretically sound but impractical
to implement [13]. Richardsons introduced one of the early declarative query
language for strings [19]. In his model, a string starts with a symbol and the
every symbol is considered the next instance of the symbol to its left. However,
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it is known that temporal logic modalities have limited support for recursion or
iteration [28], both needed for string queries.

Currently, string analytics require running multiple standalone applications.
Users need to move data between applications that use different formats and
have different requirements in order to draw conclusions. This gave rise to string
analysis pipeline systems (e.g., SeqWare Pipeline [18]) for users to define the
steps and order of execution.

Attempts for native string support in databases exist, but most cases take
an application-specific approach. SRS is an information indexing and retrieval
system [8]. It targets flat files and makes use of the internal structure of their
formats. SRS only allows users to draw links between different files using atomic
non-sequence fields [9]. For example, SRS users can only query the descrip-
tion fields of FASTA-formatted and EMBL-formatted nucleotide and peptide
sequences. SEQ is a string database system based on distinct domains for string
elements and their underlying order type [24]. This is beneficial if users need
to compute moving averages on time series. However, SEQ model limits parsing
tasks, such as matching.

Relational databases deal with strings as atomic entities and queries over
their internal structure are limited to the LIKE construct in the de facto query
language, SQL. Simple extensions build on the rich and well-established data
management literature and systems by introducing strings as relational domains
[6]. Works of this type include extensions to the relational calculus [4,11,12,14].
Periscope/SQ [27] extended PostgreSQL with matching operations over biolog-
ical sequences and reported simple matching queries over sequences of 5,000
symbols only. It is challenging to express common string queries, such as motifs
and k-mers, with only matching operations.

Most relational databases support a limited number of data types. To handle
strings as first-class types, researchers moved to object-oriented databases [3,13].
Nevertheless, support of string operations in object-oriented databases does not
provide an ultimate solution as meta data overhead grows. Generally, extentions
of existing databases are limited by their original data models and are undesired
as they require the modification of mature systems [25].

3 A Declarative Strings Query Language

We consider strings as sequences of symbols from a certain alphabet, grouped
into collections. A string of zero symbols is an empty string, and a collection
of zero non-empty strings is an empty collection. Depending on how string col-
lections are generated, they could consist of several long strings or many short
strings. A collection of strings has a certain alphabet. For example, the DNA
alphabet consists of the four characters {A, C, G, T}. Evidently, string queries
have one or more strings as input and may produce one or more strings as
output.
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In StarQL, queries are categorized according to their applicability and results
to administrative and analytic queries. Administrative queries are used to man-
age the string database and its string collections. Analytic queries are used to
extract information. StarQL provides novel query optimizations based on the
query semantics and operations.

StarQL adopts a declarative SQL-like syntax, which is easy to understand.
Figure 2 shows an abstract BNF of some of the StarQL constructs. Complex
string analysis can be performed by easily nesting different constructs to form
queries. Next, we discuss StarQL constructs, grouped according to functionality,
and give examples of their usage.

<query> := <query> | <import> ; | <select> ; |

<delete> ; | <aggregate> ;

<identifier> := $PATH$ | $ID$

<delete> := DELETE <identifier>

<dist> := HAMMING($int$) | EDIT($int$) | USER($int$)

<length> := MINLEN $int$ MAXLEN $int$ | LEN $int$

<motif-type> := RMOTIFS | CMOTIFS

<motif-ops> := FREQ $int$ <length> <dist>

<slct-cls> := <identifier> | <generator> | <extractor>

<motifs> := <motif-type>(<slct-cls> <motif-ops>)

<kmers> := KMERS(<slct-cls> <length>)

<generator> := <motifs> | <kmers>

<type> := ALL | ANY

<matches> := EXACT(<slct-cls> <type> <slct-cls>) |

EXACT(<slct-cls> "$PATTERN$") |

REGEX(<slct-cls> <type> <slct-cls>) |

REGEX(<slct-cls> "$PATTERN$") |

APPROX(<slct-cls> <type> <slct-cls> <dist>) |

APPROX(<slct-cls> "$PATTERN$" <dist>)

<range> := RANGE(<slct-cls> FROM $pos1$ TO $pos2$)

<prefixes> := PREFIXES(<slct-cls> <length>)

<suffixes> := SUFFIXES(<slct-cls> <length>)

<extractor> := <prefixes> | <suffixes> | <range> | <matches>

<prefix> := PREFIX(<slct-cls> <slct-cls> <dist>) |

PREFIX(<slct-cls> "$PATTERN$" <dist>) |

<suffix> := SUFFIX(<slct-cls> <slct-cls> <dist>) |

SUFFIX(<slct-cls> "$PATTERN$" <dist>) |

<substring> := SUBSTR(<slct-cls> <slct-cls> <dist>) |

SUBSTR(<slct-cls> "$PATTERN$" <dist>) |

<filter> := <prefix> | <suffix> | <substring> | <matches> | <metadata>

<sort> := ORDER BY <metadata>

<whr-cls> := <whr-cls> | <filter> | LIMIT $int$ | <sort>

<select> := SELECT <slct-cls> [AS <identifier>] [WHERE <whr-cls>]

<import> := IMPORT <identifier> AS <identifier> |

IMPORT <select> AS <identifier>

Fig. 2. Abstract BNF for StarQL.

3.1 Query Constructs

Administration. The IMPORT and DELETE utilities provide simple ways for
users to load, index, and purge string collections. Strings can be imported from
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the file system or from query results. The newly created collection is named
and given a unique ID. The number of strings and the total length of all the
strings are saved as collection properties. For example, a user imports a dataset
of human DNA shotgun reads from disk by running the following query.
(3) IMPORT "/datasets/shotgun/human" AS hdna;

Matching. The EXACT matching command finds exact matches of a pattern in
a collection. The output is either a collection of one string, the matched pattern
along with the number of exact matches, or an empty collection if no matches
are found. To find matches within a certain distance threshold, the APPROXIMATE
matching command is used. The result is a collection of as many unique sub-
strings that match with their respective counts in the original collection. The
capabilities of a regular expression matching command are vital for several string
applications. The REGEX matching command finds substrings that match a reg-
ular expression pattern. For example, assume a user needs to find matches of
the regex expression “AC..CA” in the previously imported collection hdna. The
query to find and save the results is written as follows.
(4) IMPORT (SELECT REGEX(hdna, "AC..CA")) AS re;

Extraction. The PREFIXES extraction command extracts all the unique prefixes
in a collection of strings. The input is a collection along with the desired prefix
length range. The output is a collection of all unique prefixes within required
length range. The SUFFIXES extraction command is similar to PREFIXES but for
suffixes. The RANGE extraction command extracts all the unique substrings that
exist at a specific position in a collection of strings. In our running example, a
user may be interested in the different substrings of length 2 that exist between
a pair of “AC”. If re consisted of {ACCCAC, ACGTAC, ACTTAC, ACATAC}, then
the output would be {CC, GT, TT, AT} and the query is written as follows.
(5) SELECT RANGE(re, FROM 2 TO 3);

Generation. The following commands generate new strings from existing col-
lections. The RMOTIFS command finds all the repeated motifs supported by at
least one string in the collection operated on. The input is a collection along
with the desired motif properties; namely, minimum length, maximum length,
and frequency threshold. The CMOTIFS command finds all the common motifs
supported by a user specified number of strings in a certain collection. The
input is a collection along with the desired motif properties. The K-MERS gen-
eration command finds all the unique k-mers in a collection of strings. The
input is a collection along with the desired substring length k. The output is
a collection of the unique k-mers from all the strings in the collection. For
example, the k-mers of length 3 from the previously saved collection re are
{AAC, CCC, CCA, CAC, ACG, CGT, GTA, TAC, ACT, CTT, TTA, ACA, CAT, ATA}. To
generate these k-mers, the following query is used.
(6) SELECT KMERS(er, LEN = 3);
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Filtering. Existing collections can be filtered according to matches or metadata
properties. The PREFIX filtering command finds the strings that share a certain
prefix; either exactly or approximately. The input is a collection of strings, a pre-
fix pattern, and a distance function and threshold. The output is a collection of
strings with matching prefixes. The SUFFIX filtering command works similarly for
suffixes. The SUBSTRING filtering command finds the strings that share a certain
substring; either exactly or approximately. The LENGTH filtering command finds
strings of a certain length range. Continuing our running example, assume the
user is interested in the k-mers of length 3 that include the 2 characters between
the pair of “AC” in the regular expression matches, r = {CC, GT, TT, AT}. The
resulting filtered k-mers are {CCC, CCA, CGT, GTA, CTT, TTA, CAT, ATA}. This is
accomplished using the following query.
(7) SELECT KMERS(er, LEN = 3) AS k WHERE SUBSTRING(k, r);

3.2 User-Defined Functions

StarQL supports user-defined functions to add new operations or introduce
application-specific logic using routines executed by other functions. For exam-
ple, one of the main routines used in string operations is the distance function.
A distance function accepts two strings as input and outputs a scalar value indi-
cating the dissimilarity of these strings. Biologists can augment StarQL with
weighted matrices to measure distances between DNA sequences.

3.3 String Query Optimizations

It is not always straightforward to optimize string queries because the order
of executing string operations could change the final results. We can optimize
string queries not only based on the cost of each string operation but also based
on the semantics of these operations. To start, we find an execution order that
preserves the query logic while generating less intermediate data. For exam-
ple, if a query involves multiple matching operations, one of which is against
the longest common substring, then finding the longest common substring first
reduces intermediate results and the search space for subsequent matching
operations.

To ensure correctness, we use the syntax of StarQL to determine the seman-
tics. In particular, the final output is always a subset of the operation after a
SELECT keyword. Conditions after a WHERE keyword are interpreted from left
to right, but not necessarily executed in this order. Using this convention, how
StarQL interprets queries is clear to users. Only valid plans are compared inter-
nally to optimize efficiency. For instance, the following nested query extracts
suffixes of length 3 from the repeated motifs found in Wikipedia.
(8) SELECT SUFFIXES(RMOTIFS(wiki, MAXLEN = 20, FREQ = 1000), LEN = 3);

StarQL’s query plans are based on the categories of StarQL operations, where
execution plans start with operations that generate or extract strings, then apply
operations that filter, limit or sort these strings. Furthermore, StarQL enables
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Algorithm 1. StarQL Query Optimizer Algorithm

1: procedure optimize(Q)

2: T ← tokenize(Q)
3: T.initial = Q.first token

4: while T.initial NOT collection id do
5: T ← tokenize(T.initial)
6: end while

7: T.filters ← Q.last token

8: if T.filters in MATCH || EXTRACT then
9: push down(T.filters)

10: end if

11: S ← detect semantics(T )
12: P ← S.optimal plan

13: return P

14: end procedure

semantic-based optimizations, where query operations can be rewritten using
other operations. While maintaining query logic, semantic-based optimizations
reduce computational complexity, intermediate results, and execution time.

Algorithm 1 describes the StarQL query optimizer. First, a query is tokenized
and tokens are assigned to categories. Then, operations that can be reordered
to minimize intermediate results without affecting semantics are shuffled. For
instance, we do not push filter operations into generate operations to keep seman-
tics intact. Finally, StarQL re-writes query operations based on their semantics.
This is possible because some StarQL operations can be expressed in terms of
other operations. The optimizer takes advantage of such cases to find an equiv-
alent set of operations with less cost given the data and the user parameters.

Table 1. An example for a schema-based optimization in StarQL.

SELECT RMOTIFS(wiki, freq=500, len=9, HAMMING(1)) as m WHERE EXACT(m, "australia");

PLAN A (näıve) PLAN B (optimized)

Consider for example, a user query that checks if the string “australia” is a
repeated pattern in a Wikipedia collection. A näıve plan starts by generating
the repeated motifs. Then the intermediate results will be filtered by the string
“australia”. The StarQL optimizer will rewrite this query in terms of counting
approximate matches for the pattern we filter at the end. Table 1 shows the two
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plans. Plan A uses more resources and generates excessive intermediate results
whereas Plan B eliminates the expensive repeated motifs operator and replaces
it with a count of approximate matches.

4 A Scalable Data Structure

This section introduces a scalable and efficient data structure that supports the
efficient implementation and parallel execution of StarQL operations.

4.1 StarIN: A Scalable Index for Strings

It is accepted that a suffix tree is space-efficient because it is a compressed
trie. Nevertheless, long common labels are less expected in large collections of
strings as the probability of having different combinations from a fixed alphabet
increases with string length and collection size. Consequently, the construction
complexity added for compacting path labels is unjustifiable given the expected
space saving. In cases where most suffix tree labels are single characters, a trie
is superior in both space requirement and access time.

We argue that parallel computation should be used with more basic data
structures to support scalable and efficient string operations. StarIN is a novel
suffix trie index that indexes all suffixes of all strings and retains the frequency
of every path label. Because we are targeting large collections of strings; each
node stores a single character, avoiding the need to reference strings to retrieve
path labels. The path label frequency is used to answer and optimize many
string operations without the need to access strings. StarIN is constructed in
linear time by traversing the trie from the root using the suffixes. When a suffix
exists, node counts are incremented. Otherwise, new nodes are created for the
newly added suffix with initial count of 1. StarIN also eliminates the need for
different terminating symbols or maintaining string identifiers and compacting
path labels. Some information that would have been readily available in a GST
requires extra computation in StarIN. However, such information is efficiently
generated when needed in a distributed fashion.

Figure 3 shows an example StarIN index. When exact positions or counts
within each string are required, we utilize well-known string algorithms to effi-
ciently extract this information in parallel. StarIN balances preprocessing time,
index size, and execution efficiency. For instance, Boyer-Moore search algorithm
is run in parallel to find original strings that satisfy a certain filter query after
pruning the search space using the suffix trie and an External R-Way merge sort
algorithm is used to eliminate duplicate results after a pattern extraction query
is executed.

4.2 Parallel Support for StarQL Operations

StarIN supports StarQL primitives, which include complex operations that
require parallelization in order to finish in reasonable time. Tuning problem
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Fig. 3. Example proposed index as opposed to the generalized suffix tree.

decomposition depends on the number of available workers and the load of the
query. Given our StarIN data structure, a collection is decomposed into sub-
collections and assigned to workers. The StarIN footprint of each sub-collection
fits in memory. Complex query operators are solved in parallel by utilizing the
underlying infrastructure and the decomposed data structure. Next we show by
example how we utilize parallel computation to extract information that is not
stored in our StarIN data structure.

Assume a user was interested in finding the positions where “EST” appears
in S. Using StarIN, we would know from traversing the trie that “EST” appears
three times. To find the exact positions, a parallel search is executed where the
strings in S are distributed among workers to search for the three occurrences.
This search is feasible because it is a bounded exact search and the cost is
distributed between workers.

To extract the longest common substring in S, we run LCS(S) which first
extracts the longest substrings that appear at least |S| = 3 times then verify
that they exist in every string at least once. In the first step, the candidate
solutions are ordered according to their length, {EST, ST, E, T}. In order to
stop short, if possible, verification starts from the longest candidate. An exact
parallel search is used to verify that “EST” appears in every string, which is
the case in this example and the result is {EST}. Finally, to generate 3-mers of
S, KMERS(S, LEN = 3), the suffix trie branches of length three are simply spelled
out {ATE, BES, TES, TAT, EST, STA}.
Example 2. Consider a user needs to find text that appears frequently in
Wikipedia. The user has to work around spelling mistake and simple differ-
ences such as noun plurals and verb tenses. First, the Wikipedia archive is
imported into the string database using the IMPORT StarQL construct. The data-
base indexes the dataset using StarIN and may partition or replicate indexes
depending on size and available resources.

To find all frequent patterns, a query to generate motifs is used. Motifs are
patterns that appear frequently but not necessarily exactly [21,22]. StarQL sup-
ports different distance functions for approximate matching. Running on 480
cores, the motifs search space (a combinatorial tree over the English alphabet)
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is partitioned to thousands of tasks. The workload is balanced by dynamically
assigning tasks and the results are gathered and returned to the user.

The user may decide to filter out motifs of length 4 or less as they correspond
to common short words, such as articles and prepositions. The user allows an edit
distance of 2 characters so words like “fishes” and “fishy” count as occurrences
for the motif “fish”. The length and approximate matching parameters are readily
available in StarQL. The user in our example may form and submit the following
StarQL query.

(9) SELECT RMOTIFS(wiki, FREQ = 1000, MINLEN = 4, MAXLEN = 10, \
EDIT(3)) AS wikipats;

We indexed the Wikipedia archive using StarIN. Our system executes first the
repeated motifs operation in parallel. Since the motifs search space is a combina-
torial tree, it is logically partitioned into many sub-trees. In analytics workload,
the number of sub-trees affects the utilization of the computing resources [20].
On a supercomputer, the StarQL optimizer estimates the query workload using
a sampling technique and determines that 2,048 cores can be fully utilized. The
original archive is not accessed because StarIN is annotated with counts. The
resulting repeated motifs are also in the form of a suffix trie. Therefore, further
operations to extract the common suffixes, for example, are quickly executed on
the resulting collection, wikipats.

5 Experimental Evaluation

This section presents different aspects of evaluating our StarQL language: the
expressiveness power, the StarQL query optimizer, the scalability of StarIN, and
the overall performance of using StarQL. We implemented StarQL in a strings
database system using C/C++ and MPI based on StarQL and StarIN. The
system was demonstrated using large datasets and different varieties of queries
[23]. The implementation uses a master/worker architecture. As an MPI-based
system, it can be used in workstations, clusters, or supercomputers. Our large-
scale string database system is available for download5.

5.1 StarQL Expressiveness

StarQL expresses queries in a natural and readable way. Consider the simple
query of finding exact matches of EEK in a collection of protein sequences R.
Table 2 shows this query in PiQL and StarQL. While StarQL is more readable,
PiQL [26] is also limited to matching biological sequences. For instance, PiQL
cannot express a simple query over a text archive like the following StarQL
query, which returns the unique words of lengths 5 to 7 from Wikipedia prefixes.

SELECT PREFIXES(Wiki, minlen = 5, maxlen = 7);
BLAST is the widely used bioinformatics tool. We can express a BLAST

script in StarQL to efficiently execute in our implementation. The BLAST
5 http://cloud.kaust.edu.sa/Pages/stardb.aspx.

http://cloud.kaust.edu.sa/Pages/stardb.aspx
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Table 2. Expressing the same simple query using PiQL and StarQL syntax.

Language Query

PiQL SELECT * FROM MATCH(R, p, "EEK", EXACT, 3)

StarQL SELECT EXACT(R, "EEK");

workload was generated using the human and mouse immunoglobulin vari-
able region dataset from NCBI6. This dataset is composed of 141,465 DNA
sequences of lengths that range between 97 and 3,177,340. We invoked BLAST
version 2.0 with the default parameters for the tool blastn and the query string
ACCGTTCAGTT. To our surprise, BLAST returns one match that represents a suffi-
ciently high-scoring ungapped alignment. However, its heuristics imply that the
same BLAST command could yield different results between different runs.

We imported the dataset in our implementation and issued the following
StarQL query. Since we implemented exact algorithms, our StarQL query finds
all results. Firstly, we find two exact matches of the query string. Moreover,
we find 35 approximately matching substrings that appear in the dataset 451
times. From here, using StarQL we can further process these results to analyze
the dataset by running other operators without the need to move data between
systems and without running other procedural tools.
(10) SELECT APPROX(igSeqNt, "ACCGTTCAGTT", USER(1));

Furthermore, we compare our implementation capabilities against the follow-
ing state-of-the-art procedural repeated motif extractors: PSMILE [5], FLAME
[10], and VARUN [2]. Although the procedural codes are specialized, our imple-
mentation generates the same output up to 3 orders of magnitude faster. For
example, for a certain exact-length motif query, FLAME runs for 4 h while our
implementation finishes serially in 1 h and using 12 cores in 7 min. our implemen-
tation is able to handle 3 order of magnitude larger strings and scaled efficiently
on a supercomputer whereas the only parallel motif extractor [5] reported scaling
to 4 cores.

5.2 The StarQL Query Optimizer

In this experiment, we show the benefit of our semantic-based query optimiza-
tion. In StarQL, string operators could result in large string collections so query
plans with small intermediate results and less complex operations are favoured.
Figure 4 shows the size of intermediate results and execution times for the query
plans discussed in Table 1 of Sect. 3.3. The gain in memory footprint and exe-
cution time from semantic-based optimization is significant. Note that the opti-
mized query executes more operations but (i) they are lightweight as the aggre-
gate and filter operations answers are readily available in the data structure of
StarQL model, and (ii) they result in less data access and intermediate results.
Fewer intermediate results consumes less memory and requires less instructions
to build and use in further steps.

6 ftp://ftp.ncbi.nih.gov/blast/db/FASTA/igSeqNt.gz.

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/igSeqNt.gz
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Fig. 4. Semantic-based optimizations of StarQL queries dramatically decreases inter-
mediate results and reduce serial execution time by replacing operations while main-
taining semantics. Plan A and Plan B are shown in Table 1.

5.3 Scalability and Parallel Support

For time-consuming string queries, scaling out to finish in reasonable time is
essential for online analysis of strings. The parallelization of string operations
supported by StarQL’s data model and proposed data structures effectively
achieves this goal. For a StarQL query that involves generating all motifs, the
efficient representation of StarIN reduced the serial execution time from 4 h to
less than an hour and a half on the same hardware. This query is executed by
our implementation in less than a minute when scaling out to 256 cores. Table 3
shows our implementation using a supercomputer to execute a more complex
query in seconds instead of hours.

Due to the flexibility of StarIN, we are able to find the best problem decom-
position and determine the degree of parallelism to highly utilize resources with
minimal overhead. Therefore, our implementation automatically tunes the exe-
cution parameters (i.e., problem decomposition and number of cores to use) to
achieve the near optimal resource utilization. Because we can generate many
small tasks, we utilize our automatic tuning framework [20] to find the best
decomposition (i.e., maximum number of tasks with minimal parallel overhead)

Table 3. StarQL implementation scalability on a Blue Gene/P supercomputer. Query
load is increased by increasing the allowed hamming distance to 4. The serial execution
time of the query is 5.2 h. Speedup efficiency is the ratio of speedup to number of cores
with an optimal value of 1.

SELECT RMOTIFS(dna, freq=10000, len=12, hamming(4));

Cores Time (sec) Speedup Efficiency

512 38 0.97
1024 19 0.97
2048 10 0.97
4096 5 0.92
8192 3 0.76
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Table 4. Automatic tuning enhances execution using the same number of cores by
determining the best problem decomposition. Moreover, the utilization of resources is
enhanced dramatically as indicated by measured speedup efficiency (SE).

SELECT RMOTIFS(dna, freq=10000, minlen=12, hamming(3));

Cores
w/o Auto Tuning with Auto Tuning

Execution time SE Execution time SE

1 1.6 days 1.00 1.6 days 1.00
16 2.7 hours 1.00 2.7 hours 1.00

1,024 2.5 minutes 0.96 2.4 minutes 0.99
2,048 1.5 minutes 0.79 1.2 minutes 0.98
4,096 53 seconds 0.67 39 seconds 0.91

and estimate the serial and parallel runtimes to predict utilization. Table 4 shows
the gain in time and utilization by automatically tuning the execution of the
same query on the supercomputer.

6 Conclusion

We need to deal with large strings that may not fit on a single machine. Similarly,
some string queries are computationally demanding and require parallel execu-
tion to finish in reasonable times. This paper proposed StarQL, a declarative
query language for strings; and StarIN, a scalable and efficient data structure.
We demonstrated the expressiveness of StarQL and the scalability of StarIN by
utilizing a supercomputer to process string queries on large real datasets.
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