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Abstract A consistent quantization of two-dimensional (2D) massless light-front
fields (scalar and fermion) is formulated. Their two-point functions exactly repro-
duce the massless limit of the two-point functions of the corresponding massive
fields. The novel formalism incorporates bosonization in a natural way and also
provides us with elements needed for an independent light-front (LF) study of the
exactly solvable models (the Thirring or Thirring-Wess model, e.g.). Moreover, it
displays closeness of the 2D massless LF quantum fields to conformal field theory
(CFT). We calculate a few correlators including those between the components of
the LF energy-momentum tensor and derive the Virasoro algebra in the LF opera-
tor form. Going over to the euclidean time, we can direcly transform all calculated
quantities to the (anti)holomorphic form, in agreement with those from CFT.

1 Introduction

The light front (LF) form of quantum field theory (QFT) has been praised for its
potential for decades. Its features that are superior to the conventional (”space-like”
- SL) form of QFT, include the minimal number (3) of dynamical Poincaré genera-
tors [1], the status of the vacuum state, and a reduced number of independent field
components. The most fundamental aspect is the equality of the physical vacuum
state (= the lowest energy eigenstate of the full generic Hamiltonian) to the Fock
vacuum (= state without field quanta). This property follows from the positivity and
conservation of the LF momentum p+. Only the field zero modes, carrying p+ = 0,
and a narrow set of (symmetry) operators [2,3], depending on the details of the spe-
cific dynamics, can transform the LF Fock vacuum into a more complex object. The
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latter will however be much simpler than its SL counterpart, which in principle has
to be obtained by (unrealistically complicated) dynamical calculations.

Availability of the consistent Fock expansion based on the LF vacuum, with the
amplitudes having direct probabilistic interpretaion makes the LF approach attrac-
tive from the point of view of phenomenological applications. On the other hand,
proliferation of the non-dynamical field variables complicates the theory by the need
to invert operator constraint equations. There still exist some concerns pertaining to
the validity of the LF theory. The typical question is how the LF scheme can cope
with the isue of vacuum condensates and the symmetry breaking with underlying
vacuum degeneracies, given its greatly simplified, structureless, ground state.

What is then the relation between the SL and LF theory? Could it be that the LF
version conceptually as well as technically simplifies the structure of QFT while still
maintaining potential for reliable predictions? The area of 2D solvable relativistic
models represents a very suitable environment to study these questions [4].

Surprisingly however, the 2D massless LF fields, being the essential elements
for exact operator solutions of the models, have not been understood and correctly
quantized until nowadays. Not even the simplest (and prototypic) gauge theory, the
massless Schwinger model, has been solved in the LF version of the theory [5].

Recently, a simple and natural way of quantizing the two-dimensional massless
LF fields has been suggested [6]. In our contribution, we shall first give a brief ex-
position of this quantization scheme. Its validity will be demonstrated by by the LF
bosonization of the massless fermion field. In the second part, the closeness of the
massless LF quantum fields to conformal field theory (CFT) will be demonstrated
by calculating several correlation functions of elementary and composite operators.
Going over to the euclidean time, one immediately reproduces the CFT results.
Virasoro algebra is also obtained directly in the LF operator formalism.

Throughout this paper, we will use the following LF notation: xµ = (x+,x−) =
(x0 + x1,x0− x1). The momentum is designed as kµ (or pµ ), kµ = (k+,k−),

∂± =
∂

∂x±
, k̂ · x = 1

2
k+x−+

1
2

k̂−x+, k2 = µ
2⇒ k̂− =

µ2

k+
. (1)

k̂− is the on-shell LF energy. in the LF form. Both k+,k− can be taken positive.

2 Quantization of free massless light-front fields in 2D

Our quantization of the massless LF scalar field starts from the massive field. Its
Lagrangian and the field equation takes in terms of the LF variables the form

L = 2∂+φ∂−φ − 1
2

µ
2
φ

2,
(
4∂+∂−+µ

2)
φ(x) = 0. (2)

The solution of the field equation (2) is expressed in terms of Fock operators as
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φ(x) =

+∞ˆ

0

dk+√
4πk+

[
a(k+)e−

i
2 k+x−− i

2
µ2

k+
x+ + a†(k+)e

i
2 k+x−+ i

2
µ2

k+
x+], (3)

[
a(k+),a†(l+)

]
= δ (k+− l+), a(k+)|0〉 = 0. The LF Hamiltonian and momentum

operator is given in terms of densities T++ = 4 : ∂−φ∂−φ :, T+− = µ2 : φ 2 :,

Pν =
1
2

+∞ˆ

−∞

dx−T+ν(x) =

+∞ˆ

0

dk+k̂ν a†(k+)a(k+), k̂ν = (
µ2

k+
,k+). (4)

From (3) we calculate the conjugate momentum π(x) = 2∂−φ(x) and the time
derivative θ(x) = 2∂+φ(x). In the following, we shall need the correlation functions

D(+)
0 (z) = 〈0|φ(x)φ(y)|0〉, D(+)

1 (z) = 〈0|φ(x)π(y)|0〉, D(+)
2 (z) = 〈0|φ(x)θ(y)|0〉,

(5)

D(+)
i (z) = i

∞̂

0

dk+

4π
fi(k+)e

− i
2 k+(z−−iε−)− i

2
µ2

k+
(z+−iε+), z = x− y. (6)

Here f0(k+) = − i
k+ , f1(k+) = 1, f2(k+) =

µ2

k+2 . The small imaginary parts in the
exponents are necessary for the existence of the integrals, which are evaluated in
terms of the (modified) Bessel functions Jν(z),Nν(z),Kν(z),ν = 0,1:

D(+)
1 (z) = −θ

(
z2)µ

4

√
z+

z−
i
[
J1
(
µ

√
z2
)
− i sgn(z+)N1

(
µ

√
z2
)]

+ (7)

− θ
(
− z2)sgn(z+)

µ

4π

√
− z+

z−
K1
(
µ

√
−z2

)
, D(+)

2 = D(+)
1 (x+↔ x−).

Now, one observes that both D(+)
1 and D(+)

2 have a non-vanishing massless limit,

D(+)
1 (z; µ

2 = 0) =
1

2π

1
(z−− iε−)

, D(+)
2 (z; µ

2 = 0) =
1

2π

1
(z+− iε+)

. (8)

Technically, this is due to the behaviour of the Bessel function K1(z) ∼ 1
z for the

small value of z. These results suggest that there must exist massless analogs of the
fields φ(x),π(x),θ(x) reproducing (8). Indeed, from the LF massless Klein-Gordon
equation ∂+∂−φ̃(x) = 0, one expects a general solution of the form

φ̃(x) = φ̃(x+)+ φ̃(x−). (9)

Since the integration measure of the LF field is mass-independent [7], the massless
limit (µ = 0 in the plane-wave factors) of the massive solution (3) gives just φ̃(x−).
The piece φ̃(x+) can be recovered from (3) by the change of variables (done more
correctly at the classical level) k+ = µ2

k− . x+ and x− interchange their places in (3),
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and the Fock operators in terms of the new variable should satisfy [6][
µ

k−
a
(µ2

k−
)
,

µ

l−
a†(µ2

l−
)]

=
µ2

k−l−
δ
(µ2

k−
− µ2

l−
)
= δ (k−− l−). (10)

The rhs of (10) survives the massless limit, hence limµ→0
µ

k− a
(

µ2

k−
)
≡ ã(k−) 6= 0,

with the commutators
[
ã(k−), ã†(l−)

]
= δ (k−− l−),

[
ã(k+), ã†(l−)

]
= 0. After the

change of variables, the massless limit in (3) yields

φ̃(x+) =

+∞ˆ

0

dk−√
4πk−

[
ã(k−)e−

i
2 k−x+ + ã†(k−)e

i
2 k−x+], (11)

and similarly for θ(x+) and π(x−). The basic field commutators are consequently[
φ̃(x−), φ̃(y−)

]
=− i

4
ε(x−− y−),

[
φ̃(x+), φ̃(y+)

]
=− i

4
ε(x+− y+). (12)

The variables k+ and k− actually coincide, in complete analogy with the SL case
k0 = |k1|. Also, one verifies that the two-point functions calculated from the mass-
less fields coincide with the massless limits (8) of the massive functions. Using
similar reasoning and the above Fock commutators, the operators

P+ =

+∞ˆ

0

dk+k+a†(k+)a(k+), P− =

+∞ˆ

0

dk+k−a†(k−)a(k−) (13)

are shown to generate the correct Heisenberg equations 2i∂±φ(x±) =−[P∓,φ(x±)].
The same procedure can be applied to the light front fermion field. The massive

(two-dimensional Dirac) field equation i�µ ∂µ ψ(x) = mψ(x) decomposes as

2i∂+ψ2(x) = mψ1(x), 2i∂−ψ1(x) = mψ2(x) (14)
⇒ ψ2(x) = ψ̃2(x−), ψ1(x) = ψ̃1(x+), if m = 0. (15)

For the correct quantization, we again start from the two components of the mas-
sive field in the momentum representation that solve the field equations (14):

ψ2(x) =

+∞ˆ

0

d p+

4π

[
b(p+)e

− i
2 p+x−− i

2
m2
p+

x+
+d†(p+)e

i
2 p+x−+ i

2
m2
p+

x+]
, (16)

ψ1(x) =

+∞ˆ

0

d p+

4π

m
p+

[
b(p+)e

− i
2 p+x−− i

2
m2
p+

x+ −d†(p+)e
i
2 p+x−+ i

2
m2
p+

x+
]
, (17)

where {b(p+),b†(q+)}= {d(p+),d†(q+)}= δ (p+−q+), and study their massless
limit. For ψ2, this again is straightforward. The limits of the fermion two-point func-
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tions S11(z),S22(z) coincide up to the factor (−i) with that of D(+)
1 and D(+)

2 . Hence
we change the variables for ψ1(x) and repeat all the steps from the scalar-field case.
This results in the massless field expansions and their Fock algebra:

ψ̃2(x−) =

+∞ˆ

0

d p+√
4π

[
b̃(p+)e−

i
2 p+x− + d̃†(p+)e

i
2 p+x−],

ψ̃1(x+) =

+∞ˆ

0

d p−√
4π

[
b̃(p−)e−

i
2 p−x+ − d̃†(p−)e

i
2 p−x+], (18)

{b̃(p+), d̃†(q+)}= δ (p+−q+), {b̃(p−), b̃†(q−)}= δ (p−−q−). (19)

The d̃-operators satisfy the same anticommutation relations. As a consequence,{
ψ̃1(x+), ψ̃1

†(y+)
}
= δ (x+− y+),

{
ψ̃2(x−), ψ̃2

†(y−)
}
= δ (x−− y−). (20)

The two kinds of modes decouple: {b̃(p−), b̃†(q+)}= {b̃→ d̃}= 0. The two-point
function of the massless ψ̃1(x+) coincides with the massless limit of the massive 2-
point function. From the expansions (18), one constructs the bilinear operators (the
current jµ = (: ψ̃1

†
ψ̃1 :, : ψ̃2

†
ψ̃2 :) and the scalar densities ψ̃2

†
ψ̃1± ψ̃1

†
ψ̃2).

Thus, the quantum theory of the massless LF fermion field has been established.
The necessary information is contained in the original massive solutions. Since solv-
able models are based on free Heisenberg fields, the above derivation opens the road
to the genuine LF solution of the class of models with massless fermions [8].

Consistency of the scheme is further confirmed by LF bosonization. Bosoniza-
tion is a remarkable property of the 2D field theory: fermion fields can be repre-
sented in terms of boson variables [9, 10]. Our derivation of its LF version is based
on the natural decomposition of the massless φ(x) and ψ(x) fields (9),(15).

Consider first ψ̃2(x−). Assume that it can be represented as

ϕ2(x−) =C : eiαφ(x−) : =Ceiαφ (−)(x−)eiαφ (+)(x−). (21)

The constants C and α can be adjusted in such a way that two ϕ2 with different argu-
ments anticommute and ϕ2(x−), ϕ

†
2 (y
−) satisfy the anticommutation relation (20).

The first condition fixes α to the value α̂ = 2
√

π . The second determines the con-
stant C as Ĉ =

(
λe�E

4π

)1/2 (λ is the infrared cutoff associated with the massless D(+)
0

function [6] and �E is the Euler’s constant). It follows that the operators ϕ̂(x−)
and the analogously obtained ϕ̂(x+) represent the bosonized form of the fields
ψ̃2(x−) and ψ̃1(x+). Forming their appropriate point-split products, the bosonized
vector current is found to be ĵ+(x−) = 2π−1/2∂−φ(x−), ĵ−(x+) = 2π−1/2∂+φ(x+).
It correctly reproduces the Schwinger term in the current-current commutators,[

ĵ∓(x±), ĵ∓(y±)
]
= iπ−1∂xδ (x±− y±). Similarly, for the scalar densities, one gets

ψ(x)ψ(x) =
λe�E

4π
cos
(
2
√

πφ(x)
)
, ψ(x)�5

ψ(x) = i
λe�E

4π
sin
(
2
√

πφ(x)
)
.(22)
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Thus the LF version of bosonization yields the results known from the SL theory.

3 Conformal properties of the 2D massless LF fields

The massless 2D fields exhibit conformal symmetry, whose (anti)holomorphic for-
mulation was developed in [11]. Here we shall show that after switching to the
euclidean time, our formalism generates results in agreement with CFT.

The Hamiltonian density T+−(x) of the free massless scalar field vanishes, as
required by conformal symmetry (the massless limit (13) of the massive P− 6= 0,
however). The other components of the energy-momentum tensor are nonvanishing:

T++(x−) =: π(x−)π(x−) :, T−−(x+) =: θ(x+)θ(x+) : . (23)

Note that the LF Hamiltonian (13) can also be obtained as the x+-integral of the
density T−−(x+), analogously to P+ which is the x−-integral of T++(x−).

We compute a few additional correlation functions (z± = x±− y±),

〈0|θ(x+)θ(y+)|0〉= π−1

(z+− iδ+)2 ,〈0|π(x
−)π(y−)|0〉= π−1

(z−− iδ−)2 , (24)

as well as those between components of the energy-momentum tensor,

〈0|T±±(x∓)T±±(y∓)|0〉= 2
π2

1
(x∓− y∓− iδ∓)4 . (25)

In the holomorphic form of 2D CFT [11,12], the Laurent expansion in the variables

z = e
2π
L ζ , z̄ = e

2π
L ζ̄ , where ζ = τ− ix, ζ̄ = τ + ix, (26)

is commonly used. It is based on radial quantization with the euclidean time τ ,
t →−iτ . We need to reformulate our results for φ(x) in the form of infinite series
to conform with the discrete picture of [11]. Thus, we consider the massive field
in a finite box of length 2L in x− or 2T in x+ with periodic boundary conditions
φ(x+,x− = −L) = φ(x+,x− = L), φ(x+ = −T,x−) = φ(x+ = T,x−). Performing
the change of variables and the massless limit as before, we arrive at

φ(x−) =
∞

∑
n=1

1√
2Lk+n

[
ane−

i
2 k+n x− +H.c.

]
=

1√
4π

∑
n=±1,...

1√
|n|

ane−i π
L nx− , (27)

φ(x+) = φ0 +
∞

∑
n=1

1√
2Lk−n

[
āne−

i
2 k−n x+ +H.c.

]
=

1√
4π

∑
n=±1,...

1√
|n|

āne−i π
L nx+

(28)
with

[
am,a†

n
]
=
[
ām, ā†

n
]
= δm,n,

[
ām,a†

n
]
= 0 and a−n ≡ a†

n, ā−n ≡ ā†
n.
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Since µ = 0, φ0 can be non-zero. It is however just a constant whose conjugate
momentums vanishes. The 2-point functions D(+)

0 are evaluated for L >> 1 as

D(+)
0 (z±) = 〈0|φ(x±)φ(y±)|0〉= 1

4π

∞

∑
n=1

1
n

e−i π
L n(z−−iε) ≈ 1

4π
ln
[ iπ

L
(z−− iε)

]
.

(29)
L plays the role of the infared regularization parameter. It also introduces the neces-
sary dimension to (29). L drops out of all the other correlation functions (due to the
derivatives present). The results match the continuum results (24–25).

The components of the energy-momentum tensor in the discrete form read

T++(x−) = K ∑
m,n

ε(m)ε(n)
√
|m||n| : aman : e−i π

L (n+m)x− , (30)

T−−(x+) = K ∑
m,n

ε(m)ε(n)
√
|m||n| : āmān : e−i π

L (n+m)x+ , K =− π

L2 .

They can be transformed to a “Virasoro form” by simply taking a Fourier transform.
Indeed, assume that T++(x−) can be represented as

T++(x−) =
1

4L2 ∑
l=0,±1,...

Lle−i π
L lx− ,Ll = 2L

+Lˆ

−L

dx−ei π
L lx−T++(x−). (31)

Inserting T++(x−) in the Fock form (30) into (31) gives (L0 = 4LP+),

Ln =−4π ∑
k=±1,...

ε(k)ε(n− k)
√
|k||n− k|akan−k. (32)

A calculation based on the commutators below Eq.(28) yields the LF version of the
Virasoro algebra, including the c-number term, not present at the classical level:[

Ln,Lm
]
= (n−m)Ln+m +

c
12

n(n2−1)δn+m,0, c = 1, (33)

where c is the “central charge”. Taking T−−(x+) in (31) instead of T++ generates
the algebra (33) with Ln→ L̄n. It follows from

[
an, ām

]
= 0 that

[
Ln, L̄m

]
= 0.

To give a few details of these calculations, we switch back to the “a,a†” picture:

Ln =−
n−1

∑
k=1

√
k(n− k)akan−k +2

∞

∑
k=n+1

√
k(k−n)a†

k−nak, L†
n = L−|n|. (34)

The “anomaly” comes from the commutator between the first terms:
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∑
l=1

√
l(m− l)alam−l ,

n−1

∑
k=1

√
k(n− k)a†

ka†
n−k

]
=

m−1

∑
l=1

√
l(m− l)

n−1

∑
k=1

√
k(n− k)×

×
{

δm−l,kδl,n−k +δl,kδm−l,n−k
}
= 2δm,n

m−1

∑
l=1

l(m− l) =
1
3

m(m2−1)δm,n. (35)

This agrees with the CFT result after taking into account the different normalization.
All the LF results can be easily transformed into the conformal ((anti)holomorphic)

form by switching to the euclidean time and defining the variables ζ and ζ̄ (26).
With the conventional CFT normalization (factor 2π in the definition of the

energy-momentum tensor instead of 4 in the LF case), we get (cf. Eq.(24)):

〈0|π(ζ )π(ζ ′)|0〉=− 1
(ζ −ζ ′)2 , 〈0|T (ζ )T (ζ

′)|0〉= c
2

1
(ζ −ζ ′)4 , c = 1. (36)

Our field expansions (28,27) read (φ(ζ̄ ) = φ(ζ ) with (ζ ,z,an)→ (ζ̄ , z̄, ān))

φ(ζ ) =
1√
4π

∑
n=±1,±2,...

1√
|n|

anzn, [am,an] = δm+n,0. (37)

It is analogous to the transition [12] to the conformal field in the conventional treat-
ment. A completely parallel LF analysis can be given for the fermion field.

4 Conclusions

We have formulated the quantum theory of two-dimensional massless light-front
fields as a unique limit of the corresponding massive fields. Its consistency is proved
by the equality of the two-point functions calculated from the massless fields to the
massless limit of the massive two-point functions. Our quantization scheme leads to
the LF form of bosonization and to the genuine LF operator solutions of a few ex-
actly solvable models (like the Thirring and Thirring-Wess models). The developed
LF operator formalism also reproduces known results of conformal field theory.

Acknowledgements This work was in part done in collaboration with P. Grangé. The author
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