
The Schrödinger equation in rotating frames by
using the stochastic variational method

Tomoi Koide, Kazuo Tsushima and Takeshi Kodama

Abstract We give a pedagogical introduction of the stochastic variational method
by considering the quantization of a non-inertial particle system. We show that the
effects of fictitious forces are represented in the forms of vector fields which be-
have analogously to gauge fields in the electromagnetic interaction. We further dis-
cuss that the operator expressions for observables can be defined by applying the
stochastic Noether theorem.

1 Introduction

The variational approach conceptually plays a fundamental role in elucidating the
structure of classical mechanics, clarifying the origin of dynamics and the relation
between symmetries and conservation laws. On the other hand, its operations in
classical and quantum systems lack coherence. In fact, in classical mechanics the
Lagrangian is usually given by T −V , where T and V are kinetic and potential
terms, respectively, but in quantum mechanics the Lagrangian which is needed to
derive Schrödinger’s equation does not have such structure. That is, any clear and
direct correspondence between classical and quantum mechanics does not seem to
exist in the variational point of view.

However, if we extend the idea of the variational principle to the stochastic
variable, it can describe classical and quantum behaviors in a unified way. This
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method is called the stochastic variational method (SVM), and was first proposed
by Yasue [1–5] in order to reformulate Nelson’s stochastic quantization [6]. This
framework is, however, based on special techniques attributed to stochastic calcu-
lus, which is not familiar to physicists.

In this paper, we introduce this method by applying it to the quantization of
a non-inertial particle system, which is still controversial. The appearance of the
nontrivial interference effect of wave functions on a rotating non-inertial frame was
experimentally observed in 1979 [7]. Later Sakurai pointed out that such an effect
can be understood in thinking of the similarity between the Coriolis force and the
Lorentz force [8]. So far, there are various approaches to derive the Schrödinger
equation in a non-inertial frame [9–13].

2 Classical equations in non-inertial frames

Let us introduce a non-inertial frame in which the position is denoted by q. Ex-
pressing the position in an inertial frame by r . The transformation of these vectors
is defined by

q = R(t)r+ c(t), (1)

where c(t) is a time-dependent translation, and R(t) is a general 3×3 rotation matrix
satisfying RT (t)R(t) = 1 . Both of r and q are given by the Cartesian coordinate.

We usually consider a one particle system in the inertial frame. Applying the
coordinate transformation (1), the same system observed in the non-inertial frame
is characterized by the following Lagrangian:

L =
M
2
(q̇+A(q, t)+B(t))2−V (q), (2)

where V is the potential and

A(q, t) = RṘT (q− c), B(t) =−ċ (3)

are vector fields we have introduced. The equations of motion obtained from this
Lagrangian are given by

p = M (q̇+A(q, t)+B(t)) , (4)
∂tpi = (RṘT ) jip j−∂iV (q). (5)

3 The stochastic variational method

The discussion in this section follows the pedagogical introduction of SVM given
by Ref. [14]. For a review on SVM with an alternative quantization scheme, see
Ref. [15].
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In the variational principle for stochastic variables, a particle trajectory is no
longer smooth and is seen as given by a zig-zag path in general. Consequently,
the evolution of a particle trajectory is defined by the following forward stochastic
differential equation (SDE),

dq(t) =
(

p(q(t), t)
M

−A(q, t)−B(t)
)

dt +
√

2νdWt (dt > 0). (6)

Here p(x, t) is an unknown field determined by the stochastic variation. Note that
in what follows x is used to denote the spatial position in a non-inertial frame. The
last term in Eq. (6) is the origin of the zig-zag motion and is called the noise term.
The parameter ν characterizes the strength of this noise term. The property of Wt
is given by the standard Wiener process, which is characterized by the following
correlation properties:

E[dWt ] = 0, E[(dW i
t )(dW j

t )] = |dt|δ i j, (i, j = x,y,z), (7)

E[W i
t dW j

t ′ ] = 0 for (t ≤ t ′), (8)

where E[ ] indicates the average of stochastic events.
The probabilistic nature of the particle distribution described by Eq. (6) is eas-

ily characterized by introducing the probability distribution defined by ρ(q, t) =´
d3qi ρI(qi)E[δ (3)(q−q(t))], where q(t) (more exactly q(t;qi)) is the solution of

Eq. (6) and ρI(qi) is the initial particle distribution at an initial time ti. As is well-
known, the evolution equation of ρ(q, t) is derived from the SDE (6) and is called
the Fokker-Planck equation,

∂tρ(x, t) = ∇ ·
{
−
(

p(x, t)
M
−A(x, t)−B(t)

)
+ν∇

}
ρ(x, t). (9)

If the probability distribution evolves from ρI(q) to ρF(q)≡ ρ(q(t f ), t f ) at a final
time t f following Eq. (9), the corresponding time-reversed process should describe
the evolution from ρF to ρI . Suppose that this process is described by the backward
SDE,

dq(t) =
(

p̃(q(t), t)
M

−A(q, t)−B(t)
)

dt +
√

2νdWt , (dt < 0). (10)

To reproduce Eq. (9) from the backward SDE, we find that the following consistency
condition should be satisfied, p(x, t) = p̃(x, t)+2ν∇ lnρ(x, t).

We should stress that the usual definition of the particle velocity is not applicable,
because dr̂/dt is not well defined in the vanishing limit of dt due to the singular be-
havior of Wt . The possible time differential in such a case was studied by Nelson [6]
and it is known that there are two possibilities: One is the mean forward derivative

Dq(t) = lim
dt→0+

E
[

q(t +dt)−q(t)
dt

∣∣∣Pt

]
, (11)
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and the other is the mean backward derivative,

D̃q(t) = lim
dt→0−

E
[

q(t +dt)−q(t)
dt

∣∣∣Ft

]
. (12)

These expectations are conditional averages, where Pt (resp. Ft ) indicates fixing
the values of r(t ′) for t ′ ≤ t (resp. t ′ ≥ t). For the σ -algebra of all measurable
events of r(t), {Pt} and {Ft} represent, respectively, increasing and decreasing
families of sub-σ -algebras. Using these derivatives in Eqs. (6) and (10), we obtain,
respectively,

Dq(t) =
p(q, t)

M
−A(q, t)−B(t), D̃q(t) =

p̃(q, t)
M
−A(q, t)−B(t). (13)

4 Quantization in non-inertial frames

Let us apply the stochastic variation to the system given by the Lagrangian (2).
Then the particle trajectory in Eq. (2) should be replaced by the stochastic one, as
was discussed in the previous section. Due to the existence of two different time-
derivatives D and D̃, there is an ambiguity when replacing the kinetic term. In this
work, we adopt the following replacement,

L(q,Dq, D̃q) =
m
2

[
(Dq(t)+A+B)2 +(D̃q(t)+A+B)2

2

]
−V (q(t)). (14)

See Ref. [16] for a more precise discussion of this replacement.
The stochastic variation of the particle Lagrangian leads to the stochastic Euler-

Lagrange equation

D̃
∂L

∂ (Dq(t))
+D

∂L
∂ (D̃q(t))

− ∂L
∂q(t)

∣∣∣∣
q(t)=x

= 0. (15)

Here q(t) is replaced by the position parameter x at the last step of the calculation.
Substituting Eq. (14), we obtain(

∂t +
(pm

M
−A−B

)
·∇
)

pm−2Mν
2
∇ρ
−1/2

∆
√

ρ = pm ·∇iA−∇iV, (16)

where pm = (p+ p̃)/2.
The result of this variation can be re-expressed in the form of the Schrödinger

equation by introducing the wave function defined by Ψ(x, t) =
√

ρ(x, t)eiθ(x,t).
Here ρ(x, t) is the probability distribution introduced above Eq. (9), and the phase
θ(x, t) is defined by pm = 2Mν∇θ(x, t). Then we find that the evolution equation
of the wave function is given by the following Schrödinger equation
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ih̄∂tΨ(x, t) =

[
1

2M

(
− ih̄∇−M

(
A(x, t)+B(t)

))2

(17)

−M
2

(
A(x, t)+B(t)

)2

+V (x)

]
Ψ(x, t).

Here we choose ν = h̄/(2M). One can see that the effect of the non-inertial forces
appears in the vector fields A(x, t) and B(t) which behave like the gauge field in the
electromagnetic interaction.

5 Observables

The dynamics described by the above Schrödinger equation satisfies Eherenfest’s
theorem. In fact, the time evolution of the expectation value of the operator −h̄∇ is
given by

∂t〈−ih̄∂i〉= 〈(RṘT ) ji(−ih̄∂ j)〉−〈∂iV 〉. (18)

One can see that if we can interpret p̂ = −ih̄∇, the above equation corresponds to
Eq. (5).

However, to be precise, it is non-trivial as to whether we can interpret −h̄∇ as
the momentum operator even in the non-inertial frame. In SVM, the operator repre-
sentations of observables are defined through the conservation laws obtained from
the stochastic Lagrangian (14).

For the sake of simplicity, let us consider the rotation around the z-axis, where

R(t) =

 cosφ(t) sinφ(t) 0
−sinφ(t) cosφ(t) 0

0 0 1

 , c(t) = 0. (19)

This non-inertial system still holds the invariance for the rotation if V (x) = V (|x|).
Then from the invariance of the stochastic action, we can obtain the angular momen-
tum conservation of the present non-inertial system. For the infinitesimal rotation,
q(t) is transformed as q(t)−→ q(t)+A(φ(t)), where A(φ(t)) = δ φ̇(−y,x,0).

On the other hand, if the action is invariant for the above rotation, we can show
that the following quantity is conserved by applying the stochastic Noether theorem
[17, 18],

Q = E
[

q(t)×
(

∂L
∂ (Dq(t))

+
∂L

∂ (D̃q(t))

)]
. (20)

Here× denotes the vector product. Substituting the result of the stochastic variation,
the above equation is now expressed as

Q =

ˆ
d3x Ψ(x, t)LzΨ(x, t), (21)
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where the angular momentum operator is introduced, Lz = −ih̄(x∂y − y∂x). This
result means that −ih̄∇ can be interpreted as the momentum operator even in the
non-inertial system.

6 Concluding remarks

We gave a brief summary of the stochastic variational method and showed that this
is applicable to the quantization of the non-inertial particle system. Then we found
that the Eherenfest’s theorem is still satisfied even for the Schrödinger equation in
the non-inertial frame, and thus the result is consistent with those in Refs. [9–11],
but different from Refs. [12, 13].

The advantage of the present approach compared to Refs. [9–11] is that the op-
erator representations for observables are systematically obtained by applying the
stochastic Noether theorem.

Although the framework of SVM was originally proposed to reformulate Nel-
son’s stochastic quantization, its applicability is not restricted to quantization. The
derivation of the classical dissipative dynamics can be cast into the form of SVM:
the Navier-Stokes-Fourier equation is obtained by employing the stochastic varia-
tion to the classical action of the Euler (ideal fluid) equation. See Refs. [18, 19] for
details.
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