
Physical and 
Mathematical 
Aspects of 
Symmetries

Sergio Duarte · Jean-Pierre Gazeau  
Sofiane Faci · Tobias Micklitz 
Ricardo Scherer · Francesco Toppan  
Editors

Proceedings of the 31st International  
Colloquium in Group Theoretical
Methods in Physics



Physical and Mathematical Aspects of Symmetries 



Sergio Duarte • Jean-Pierre Gazeau • Sofiane Faci 
Tobias Micklitz • Ricardo Scherer
Francesco Toppan 
Editors 

Physical and Mathematical 
Aspects of Symmetries 
Proceedings of the 31st International 
Colloquium in Group Theoretical  
Methods in Physics 



Centro Brasileiro de Pesquisas Físicas 
Jean-Pierre Gazeau 
Laboratoire APC 
Paris Diderot University 
Paris, France 

Sofiane Faci 
Centro Brasileiro de Pesquisas Físicas Tobias Micklitz 

Centro Brasileiro de Pesquisas Físicas 

Ricardo Scherer 
Universidade Federal Rural 

Seropédica, Rio de Janeiro, Brazil 

Francesco Toppan 
Centro Brasileiro de Pesquisas Físicas 

Sergio Duarte 
Editors

do Rio de Janeiro 

ISBN 978-3-319-69163-3  ISBN 978-3-319-69164-0 (eBook) 

 
Library of Congress Control Number: 
 
Mathematics Subject Classification (2010): 20G42, 20-06, 37K20, 37N20, 65H17, 70S15, 81Q60
 
© Springer International Publishing AG 2017 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed.  
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use.  
The publisher, the authors and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the 
authors or the editors give a warranty, express or implied, with respect to the material contained herein 
or for any errors or omissions that may have been made. The publisher remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.  
 
Printed on acid-free paper 

2017957055

Rio de Janeiro, Rio de Janeiro, Brazil 

Rio de Janeiro, Rio de Janeiro, Brazil 
Rio de Janeiro, Rio de Janeiro, Brazil 

Rio de Janeiro, Rio de Janeiro, Brazil 

 

https://doi.org/10.1007/978-3-319-69164-0 

This Springer imprint is published by Springer Nature 
The registered company is Springer International Publishing AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 



Dedication to Bertram Kostant

Bertram Kostant, Professor Emeritus of Mathematics at MIT, died at the Hebrew
Senior Rehabilitation Center in Roslindale on Thursday February 2 at the age of 88.

He was a Professor of Mathematics at MIT from 1962 until 1993 when he of-
ficially retired yet continued his active life in research, traveling and lecturing at
various universities and conferences around the world. Kostant’s legacy spans well
over five decades, highlighting his originality and creativity in 107 published papers.
His remarkable ability to connect seemingly diverse ideas led to brilliant results that
formed the cornerstone of rich and fruitful theories both in mathematics and theo-
retical physics. It has been said, “Bert’s gift to the world showed a deep passion for
truth, for understanding, and for beauty, and an unshakeable faith that these things
are woven together.”

Bertram Kostant was born on May 24, 1928 in Brooklyn, New York. He gradu-
ated from Peter Stuyvesant High School in 1945. After studying chemistry for two
years at Purdue University, he switched to mathematics having fallen in love with
the subject in the classes of Arthur Rosenthal and Michael Golomb, who were recent
immigrants from Germany. In 1950 he earned a bachelor’s degree with distinction
in mathematics.

Kostant was awarded an Atomic Energy Commission Fellowship for graduate
studies at the University of Chicago. There he found a stimulating environment.
The various influences on him included Marshall Stone, Adrian Albert, Shing Shen
Chern, Paul Halmos, Irving Kaplansky, Irving Segal, but above all, via André Weil
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he was exposed to the French Revolution led by the Bourbaki group with their stun-
ning innovations in thinking about and writing down mathematics. Ed Spanier’s
course on Group Theory used Chevalley’s text—a treasure in Kostant’s library. It
marked a turning point in his life, and as he often said, “the sheer beauty of it all
resonated with me.” And it was indeed Kostant’s entrée into Lie groups for the next
sixty-five years. His fundamental and varied mathematical work entailed many as-
pects of Lie theory, which pervades almost all of mathematics, and is marked by
simplicity and elegance. Notable among the Lie areas touched upon are the follow-
ing: algebraic groups and invariant theory, the geometry of homogeneous spaces,
representation theory, geometric quantization and symplectic geometry, Lie algebra
cohomology, Hamiltonian mechanics, modular forms, and much more.

Kostant received an M.S. degree in Mathematics in 1951, and in 1954 his Ph.D.
under Irving Segal. His thesis was on “Representations of a Lie algebra and its
enveloping algebra on a Hilbert space.”

Between 1953 and 1956 Kostant was a Member at the Institute for Advanced
Study in Princeton. In 1955-56 he was a Higgins Lecturer at Princeton Univer-
sity. In Princeton, his lifelong passion for Lie groups—the continuous families of
symmetries at the core of great parts of geometry, mathematical physics, and even
algebra—began to blossom. He investigated the “holonomy groups” arising in dif-
ferential geometry, and at the same time worked to deepen our understanding of
the structure of the (deceptively named!) simple Lie algebras. From 1956 to 1962
Kostant was a faculty member at the University of California at Berkeley, where he
became a full professor in 1962. He was a Member of the Miller Institute for Basic
Research, 1958-59.

In 1962 in he joined the faculty at MIT, where he remained for the rest of his life.
Early on, Norman Levinson urged him to build the MIT Department in Represen-
tation Theory. Kostant eagerly welcomed the task, attracting new graduate students
and excellent mathematicians to come to MIT. He was devoted to his weekly Lie
Seminars, with both colleagues and graduate students in attendance; over the years
he had encouraged more than twenty Ph.D. students. He also served as a mentor to
many postdocs and young faculty members.

In the early 1960s, Kostant began to develop the “method of coadjoint orbits”
and “geometric quantization” (GQ 1965) relating symplectic geometry to infinite-
dimensional representation theory. Geometric quantization “provided a way to pass
between the geometric pictures of Hamiltonian mechanics and the Hilbert spaces
of quantum mechanics. These deep and complicated subjects with their profound
connections have been at the heart of several very different mathematical disciplines
ever since.” Kostant’s great contribution was also to relate such complex ideas to
much simpler mathematics. Again and again he was able to make powerful use of
these relationships. For example, in the early 1960s he proved a purely algebraic
result about “tridiagonal” matrices. In the 1970s, he used that result and the ideas
of geometric quantization to study Whittaker models (which are at the heart of the
theory of automorphic forms) and the Toda lattice (a widely studied model for one-
dimensional crystals).
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Kostant received many awards and honors. He was a Guggenheim Fellow in
1959-60 (in Paris), and a Sloan Fellow in 1961-63. In 1962 he was elected to the
American Academy of Arts and Sciences, and in 1978 to the National Academy of
Sciences. In 1982 he was a Fellow of the Sackler Institute for Advanced Studies
at Tel Aviv University. In 1990 he was awarded the Steele Prize of the American
Mathematical Society, in recognition of his 1975 paper, “On the existence and irre-
ducibility of certain series of representations.”

In 2001, he was the Chern Lecturer in Berkeley. In 1989, the University of Cor-
doba, Argentina named him Honorary Professore. In 1992, the University of Sala-
manca in Spain named him Doctor Honoris Causa; in 1997, Purdue University gave
him an honorary Doctor of Science degree. Purdue cited Kostant for his fundamen-
tal contributions to mathematics and the inspiration he and his work have provided
to generations of researchers.

In May 2008, the Pacific Institute for Mathematical Sciences hosted a confer-
ence: “Lie Theory and Geometry: the Mathematical Legacy of Bertram Kostant,” at
the University of British Columbia, celebrating the life and work of Kostant in his
80th year. In 2012 he was elected to the inaugural class of Fellows of the American
Mathematical Society.

In June 2016 Kostant traveled to Rio for the Colloquium on Group Theoreti-
cal Methods in Physics, where he received the prestigious Wigner Medal, “for his
fundamental contributions to representation theory that led to new branches of math-
ematics and physics.” Michio Jimbo of Rikkyo University, Tokyo, Chair of the Se-
lection Committee said: “the lifelong achievements of Bertram Kostant have had a
profound impact in pure mathematics”. At the same time, his work miraculously
has been finding its way to physics. Kostant’s winning the award perfectly suits the
spirit of Wigner who coined the famous phrase, “the unreasonable effectiveness of
mathematics in the physical sciences.”

Professor Kostant is survived by his wife Ann of 49 years; children Abbe Kostant
Smerling of Lexington, Massachusetts; Steven Kostant of Chevy Chase, Maryland;
Elizabeth Loew of Stoughton, Massachusetts; David Amiel of Glendale, Califor-
nia; Shoshanna Kostant of Boston, Massachusetts; and nine grandchildren and two
great-grandchildren.

The MIT Mathematics Department held a memorial event on May 11 at 3:30
in the MIT Chapel. Further information will be posted on the MIT Mathematics
Department website: math.mit.edu.



Preface

The 31st International Colloquium on Group Theoretical Methods in Physics (also
shortened as “Group 31”) was held in Rio de Janeiro, Brazil, from June 19 to June
25, 2016. This was the first time that a colloquium of the prestigious and nowadays
traditional ICGTMP series, which started in 1972 in Marseille, France, took place
in South America.

The aim of the ICGTMP Colloquia is to provide a forum for physicists, mathe-
maticians, and scientists of related disciplines who either develop or apply methods
in group theory (further information on the history of the Colloquia and its recent
development is found at the ICGTMP homepage http://icgtmp.blogs.uva.es/ ).

The Group 31 Colloquium was hosted by the Centro Brasileiro de Pesquisas
Fı́sicas (CBPF), a Federal Research Institute which, since its creation in 1949, has
been essential for Brazilian science in promoting research and scientific interchange.
The Group 31 Colloquium, consisted of three venues, was located in different areas
of Rio de Janeiro. The main activity (registration, parallel and poster sessions) took
place at CBPF in the Urca neighborhood, while plenary sessions were held at the
Auditorium of the Fundação Casa de Rui Barbosa in Botafogo. The Award Cer-
emony for the Wigner Medal and the Weyl Prize was held on June 22 in the new
landmark of Rio de Janeiro, the Museu do Amanhã science museum, next to the
waterfront of Pier Mauá. The last day of the colloquium a general public event was
also held at Museu do Amanhã.

In recent years Brazil experienced a scientific boost (measured, e.g., by the num-
ber of scientific publications and their impact) which has been unparalleled in its
history. To be sure, the group theoretical community was both a beneficiary and a
promoter of this scientific rise. One of the motivations to organize the Group Theo-
retical Colloquium in Brazil was indeed to offer a unique opportunity to the growing,
although scattered on a vast subcontinental nation and not yet fully organized, com-
munity of researchers working in the country (and profiting, as well, researchers
from other South American nations). In this respect the colloquium was a great suc-
cess, with more than 140 participants, equally split into Brazilians and foreigners. It
is particularly remarkable that all continents were represented, this is a sign of the
relevance of this scientific topic and of the world-wide esteem that the colloquium
is held by our colleagues. This success was made possible, in particular, by grants
received by TWAS, supporting participation of scientists from developing countries,
and ICTP, supporting participants from Latin American countries outside of Brazil.
The main sponsor of the event has been the CAPES Federal Agency which offered a
substantial contribution to the Local Organizing Committee. Important logistic sup-
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port with free use of the facilities was provided by CBPF, Fundação Casa de Rui
Barbosa, and Museu do Amanhã.

The scientific program of Group 31 was particularly rich, with eleven plenary
talks, thirteen parallel sessions with both oral and poster presentations, two laudatio
speeches in honor of, respectively, the Wigner Medalist and the Weyl Prize win-
ner, and two memorial talks. The memorial talks were held to honor renowned col-
leagues Laurence Boyle and Syed Twareque Ali, members of the ICGTMP Standing
Committee, who sadly passed away.

Before the Colloquium, as a parallel program, a two-day Satellite Workshop on
Mathematical Physics was organized on June 16 and 17 in S. Paulo by ICTP-SAIFR
(the International Center for Theoretical Physics-South American Institute for Fun-
damental Research).

At the Inauguration of the colloquium welcome speeches were given by Mar-
iano del Olmo, Chairman of the ICGTMP Standing Committee, Ronald Shellard,
Director of the CBPF and Luiz Davidovich, President of the Brazilian Academy of
Science.

A distinctive innovation of Group 31, with respect to previous colloquia, was
the creation of a special prize reserved for the most interesting posters presented
by Master and Ph.D. students, with the aim of promoting active participation of the
new generation.

The nowadays traditional Wigner Medal and Weyl Prize Award Ceremony, held
in the splendid and prestigious frame of Museu do Amanhã, was the highlight of
the Colloquium. The Wigner Medal, established in 1978 and administered by The
Group Theory and Fundamental Physics Foundation located at the University of
Texas at Austin and represented by Arno R. Bohm, recognizes and awards out-
standing contributions through group theoretical and representation methods. The
2016 Wigner Medal was awarded to Bertram Kostant. Quoting Michio Jimbo of
Rikkyo University, Tokyo, chair of the selection committee, the lifelong achieve-
ments of Bertram Kostant have had profound impact in pure mathematics. At the
same time his work miraculously has been finding his way to physics, suiting the
spirit of Wigner who coined the famous phrase “the unreasonable effectiveness of
mathematics in the physical sciences”.

During his time as chairman (1994-2008), Heinz-Dietrich Dœbner convinced the
Standing Committee of the International Colloquium on Group Theoretical Meth-
ods in Physics that it would be necessary for the future development of our field
to acknowledge young researchers who presented outstanding work and to moti-
vate them to continue and diversify their activity. Hence, the Weyl prize, established
in 2002 by the Standing Committee, is awarded to young scientists who have per-
formed original work in understanding physics through symmetries. A Selection
Committee, chaired by Edward Frenkel of the University of California, Berkeley,
awarded the 2016 Hermann Weyl Prize to Vasily Pestun of l’Institut des Hautes
Études Scientifiques for his groundbreaking results in the study of supersymmetric
gauge theories.

Francesco Toppan
Chairman of the Local Organizing Committee
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Organization of the volume

This volume contains contributions to the 31st International Colloquium on Group
Theoretical Methods in Physics held on June 19–25, 2016 in Rio de Janeiro, Brazil.

Following the spirit of previous years, the colloquium covered a broad range of
current topics from the fields of mathematical and theoretical physics. The variety
of themes, joined by a common conceptual rather than a research theme, reflects
well in the plenary talks given during the colloquium and range from cosmological
problems to “the problem of life”.

Two prestigious prizes were awarded during the colloquium: Bertram Kostant
was honored with the “Wigner Medal”, and Vasily Pestun received the “Hermann
Weyl prize”. A short description of the awardees and exposés of the Laudatios open
the volume.

A selection of the plenary talks is presented in the first section of the volume.
The contributions are organized in alphabetical order and were not subjected to size
restrictions or to a refereeing process.

Regular talks given during the colloquium are found in the following section
of longer papers. During the event, these talks were grouped into mathematics-
and physics-oriented contributions, each further organized into one of five parallel
sessions. While such a division has obvious advantages for the organization of the
colloquium, we opted for an alphabetical presentation in order to facilitate their
localization. Longer contributions were restricted to a maximum of 10 pages. They
have undergone an independent refereeing process and editorial decisions, as a result
of which most, but not all of them have been included.

Poster clips presented during the event resulted in shorter paper contributions,
which make up the third section of the volume. Shorter papers, restricted to a max-
imum of two pages, underwent the same refereeing process as longer papers, and
also appear in alphabetical order.

During the event a best poster prize was awarded to three young researchers. The
first prize went to Grace Akinwande Itunuoluwa (AIMS, Senegal) for her poster
“Finding a dictionary between Tensor Models and GEM crystallization manifolds”.
The second prize went to Diego Vidal (UNAM, Mexico) for the poster “Grav-
ity from quantum space-time”. The third and final awardee was Florencia Benitez
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Martinez (U. de la República, Uruguay) for her poster “Primordial tensor modes of
the early Universe”. The Judging Committee was formed by Sylvie Paycha (Post-
dam, Germany), Sebastião Alves Dias (CBPF, Brazil) and José A. Helayël-Neto
(CBPF, Brazil).

The Editors
Sergio Duarte, Sofiane Faci, Jean-Pierre Gazeau

Tobias Micklitz, Ricardo Scherer, Francesco Toppan
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Tobias Micklitz (CBPF - Rio de Janeiro)
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Part I
Laudatios: Wigner Medal and Weyl Prize



2016 Wigner Medal is attributed to Bertram Kostant. Ceremony at the Museu do
Amanã, Rio de Janeiro. From left to right: Olivier Fudym, Francesco Toppan,
Shoshanna Kostant, Arno Bohm, Ann Kostant, Gerald Goldin, Bertram Kostant,
Piotr Kielanowski, Abbe Kostant Smerling, Michelle Vergne, Jean-Pierre Gazeau,
Mariano Del Olmo and Vasily Pestun. Image by Alvaro Farias.

2016 Weyl Prize is attributed to Vasily Pestun (left) by Mariano Del Olmo (right).
Ceremony at the Museu do Amanã, Rio de Janeiro. Image by Alvaro Farias.



Laudatio of Bertram Kostant

Michèle Vergne
with Anthony Joseph and Shrawan Kumar

The 2016 Wigner Medal has been awarded to Bertram Kostant of the Massachusetts
Institute of Technology (USA) for his fundamental contributions to the representa-
tion theory of Lie algebraic systems. Many of his results have led to new develop-
ments both in Mathematics and, as emphasized here, in Theoretical Physics.

For this occasion, let me highlight some of the themes in Kostant’s work directly
related to particle physics: Geometric quantization, convexity, and completely in-
tegrable systems. This brief account has been prepared with the help of Anthony
Joseph and Shrawan Kumar.

The fundamental problem of quantum mechanics, as inaugurated by Dirac, is
the passage from Hamiltonian mechanics to unitary representations of the symme-
try group. Quantum mechanics should explain why some states of some physical
systems take discrete values, and was directly motivated by the quantum theory of
matter—at the time new—since it is the unitary transformations that preserve the all
important probability density.

Valentine Bargmann and Eugene Wigner, the first recipients in 1978 of the
Wigner medal, would have been delighted by the choice of the new laureate. In-
deed, in his fundamental paper Quantization and Unitary representations (1970) B.
Kostant showed that only those Hamiltonian manifolds admitting a prequantum line
bundle, now called the Kostant line bundle, are candidates for giving rise to unitary
representations of the symmetry group. Applied to the Poincaré group, this provided
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a clear theoretical understanding as to why a massive elementary particle must have
a discrete spin.

Convexity theorems are important in determining the domain where experiments
should be done.

For completely integrable systems, the Hamiltonian equation is solvable in an
explicit fashion, the classical example being that of the Kepler laws of planetary mo-
tion. The Toda lattice, originally introduced as a simple model for a one-dimensional
crystal, was generalized by Kostant into a multi-dimensional completely integrable
system defined for any semisimple Lie algebra. A very simple and brilliant idea of
Kostant produces a maximal algebra of Poisson commuting functions. Furthermore,
the representation theory of semisimple groups allows us to compute the evolution
law of the system.

Let me comment in more detail on Geometric Quantization, its history and its
recent developments along the lines of Kostant’s theory. There were many ways,
apparently very different, to construct unitary representations of Lie groups. For ex-
ample, the unitary representation of the Heisenberg group in the Bargmann-Fock
space of holomorphic functions on the n-dimensional complex vector space, the
Borel-Weil-Bott construction of the irreducible representations of a compact Lie
group K on the ∂ cohomology of flag manifolds with line bundles, Kirillov’s con-
struction of unitary representations of unipotent Lie groups by polarizing coadjoint
orbits, Harish-Chandra’s construction of unitary representations of real semisimple
Lie groups based on differential equations and induction. Kostant saw that all these
constructions are part of the unique scheme of quantum mechanics: passing from a
classical phase space to a Hilbert space. Kostant realized the fundamental fact that
any coadjoint orbit of a Lie group gives a Hamiltonian system. These systems are the
most basic ones: any Hamiltonian manifold with a transitive action of a Lie group
covers a coadjoint orbit, and those that are quantizable cover an orbit satisfying
some discrete integrality conditions.

Furthermore, Kostant explained quantum conditions in terms of Chern classes
of line bundles: a quantizable manifold is a symplectic manifold equipped with a
prequantum line bundle, now called the Kostant line bundle. It could be “quantized”
as a unitary representation of the underlying Lie group of symmetry if a suitable
“polarization” could be found. This separates (removes) one half of the variables of
phase space, a process that encapsulated Dirac’s original insight.

Building on the Bargmann-Fock realization of representations of the Heisen-
berg group and of the quantum harmonic oscillator, Kostant considered complex
polarizations, and the notion that the corresponding Hilbert space of sections is to
be found among holomorphic sections, or going into cohomological constructions
among solutions of a Dirac operator.

As a first successful use of geometric quantization, Kostant (with Auslander)
classified the unitary representations of real class 1 simply-connected solvable Lie
groups. Geometric quantization greatly generalizes provided one allows for coho-
mological methods and the study of the complex structure associated to a polariza-
tion.
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Kostant’s study of the homology of certain nilpotent Lie algebras encompasses
the Borel-Weil-Bott theorem for compact Lie groups, and is used as a fundamental
tool in constructing unitary representations for any real semisimple Lie group. Fi-
nally, as shown by Duflo, and also following the deep work of many authors, notably
Schmid on the discrete series, geometric quantization of admissible coadjoint orbits
of maximum dimension produces most (but not all) unitary representations of any
real Lie group.

Geometric quantization applies to any Hamiltonian manifold. The main intrin-
sic object is the Kostant line bundle, together with its connection. This provides a
moment map, and a notion of reduction. The most basic pieces of geometric quan-
tization theory are quantization of coadjoint orbits. It was shown by Meinrenken-
Sjamaar how to associate to any Kostant line bundle on a manifold with a compact
group of symmetry a quantum model made up of these basic pieces and reflecting
the semi-classical properties obtained at the asymptotic limit.

Severe difficulties may arise in quantizing a general Hamiltonian manifold with
an arbitrary symmetry group, involving the absence of a suitable polarization and
the verification of unitarity. The quantization of “small” coadjoint orbits or real
semisimple Lie groups are of particular interest because they lead to many relations
outside of those of the Lie algebra which are often just those of a physical system.
The quantization of those orbits is difficult to construct. It may seem paradoxical
that it is more difficult to quantize small coadjoint orbits than orbits of maximal
dimensions. This is because they are small dimensional manifolds, but with a large
group of symmetries and it may not be possible to integrate the full group of symme-
tries with a group of symmetries of the quantized space. If the Hamiltonian space
is just one point with a trivial line bundle, then the quantization is just the trivial
representation of the group G.

Models of quantization are usually produced by producing several models with
different groups of symmetry, and then piecing these models together. This is the
way that the metaplectic representation, a representation of the full group of symme-
tries of the simplest phase space T ∗Rn, was constructed by Segal-Shale-Weil using
the uniqueness of the canonical commutation relation. The following is one of the
most fundamental representations, namely, the quantization of the minimal orbit of
the symplectic group. With R. Brylinski, Kostant constructed uniform Fock space
models for quantizing minimal orbits. Kostant showed that the smallest non-trivial
orbit (for a semisimple Lie algebra) is defined by quadratic relations, thereby giving
rise to a so-called quadratic algebra. This result is of great importance. In partic-
ular, this quadratic algebra was shown to be Koszul, which meant that it could be
rather readily quantized — Gerstenhaber’s ghastly infinite set of quantization con-
ditions thereby reduces to just three. Imitating this, symplectic reflection algebras
were defined and have proved to be central to the understanding of several physi-
cal systems, notably the Knizhnik-Zamolodchikov equations arising in the study of
quantum many-body problems.

Pursuing the work of Valentine Bargmann on the complementary series, Kostant
computed a remarkable determinant (for real Lie groups) whose description still
provides one of the best tests for unitarity of the complementary series. The Kostant
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determinant had many other generalizations, notably by Parthasarathy-Ranga Rao-
Varadarajan, Shapovalev, Jantzen and Kac. These have been used many times as a
criteria for irreducibility and unitarity, and even for some infinite dimensional Lie
groups.

Kostant’s work on Lie algebra cohomology is an essential tool in representation
theory. It was for example influential on Vogan’s algebraic approach to the classifi-
cation of irreducible representations of semisimple Lie groups, in particular in the
success of the Atlas team in finding all unitary representations of the split form of
E8. Let us quote Bert: “Dealing with E8 is like looking at a diamond...from one di-
rection, one sees 2s all over the place, from another direction, one sees 3s, from a
third direction, one sees 5s,... it is magnificent, it is a symphony in the numbers 2,3
and 5”.

Let us recall at this point that the classification of all irreducible unitary repre-
sentations of a real Lie semisimple Lie group is still an open problem.

Can “everything” be quantized? Yes, if one abandons the idea of unitarity. De-
formation quantization is in some sense an infinitesimal version of geometric quan-
tization, and it might not be possible to integrate the symmetries. Using the pow-
erful techniques of Feynman graphs, Kontsevich showed that deformation quan-
tization allows us to produce a quantization of the commutation relations of any
Poisson manifold as a formal series. This striking result of Kontsevich relies in
part on the fundamental Hochschild-Kostant-Rosenberg theorem identifying the
Hochschild homology of an affine regular algebra.

One important object of quantization is the study of the spectra of matrices. The
simplest case of representation theory is to study the decomposition of a Hermitian
space under the action of a Hermitian matrix. Horn-Schur showed that the diag-
onal of a Hermitian matrix with prescribed spectrum always lies in some convex
polytope, the vertices being obtained when the matrix itself is diagonal. Convexity
results are important notably in studying measurements related to quantum com-
puters. Kostant generalizes convexity results for linear projections, and also in the
context of the Iwasawa decomposition G = KAN of a real Lie group. It led to a fur-
ther decomposition G = KNK of the latter. Moreover it provided a generalization
of the Golden-Thompson rule which was widely used in the C∗ algebra approach to
quantum field theory.

Let us now discuss completely integrable systems. One of Kostant’s most influ-
ential articles is his paper on the Toda Lattice in 1978. The fact that the solution
of the Toda lattice problem can be solved by the representation theory of the corre-
sponding semisimple Lie algebra is a result of atonishing beauty and significance.
It was the ingenuity of Kostant who could see at the time the interplay between
coadjoint orbits of the Borel subgroup, a Hamiltonian manifold with a solvable Lie
group of symmetry, and invariant polynomials of the corresponding semisimple Lie
algebra, two of Kostant’s favorite subjects. As is the case with several of Kostant’s
ideas, it is a brilliant, surprising, yet very simple idea.

The Toda lattice, originally introduced as a simple model for a one-dimensional
crystal, was transformed by Kostant into a multi-dimensional completely integrable
system defined for any semisimple Lie algebra. The quantization of a transversal
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slice, first undertaken by Kostant in the regular case and leading to the Whittaker
model, was further developed by many in greater generality. This eventually al-
lowed researchers (Premet, Losev, and others) to show that any nilpotent orbit could
be quantized. When applied to Kac-Moody infinite dimensional Lie algebras, the
Drinfeld-Sokolov generalization of the Toda system leads to W -algebras, the latter
being important in the study of conformal field theory.

In this short talk, it is impossible to mention Kostant’s various contributions to
Pure Mathematics. Kostant is counted as one of the most remarkable mathemati-
cians of the latter half of the last century in Lie Theory. Every paper by Kostant
has a life of its own, being the precursor of many developments in representation
theory of semisimple Lie groups and quantum groups, some developments being
completely unexpected. His works and ideas have inspired innumerable mathemati-
cians.

Each of the papers is a bright star in the dark sky of our knowledge. And, over
the years, it has formed a beautiful constellation.

Thank you, Bert, for all this beautiful mathematics.



Reflecting on mathematics and mathematical
physics

Bertram Kostant

Let me begin by expressing my appreciation to the Scientific Committee for award-
ing me the 2016 Wigner Medal, and to those on the Organizing Committee who have
made it possible for me to be here tonight as well as all of you who are sharing with
me in this great honor. The carefully chosen wording on this beautiful medal —“For
fundamental work in representation theory that led to new branches of mathemat-
ics and physics” — resonates deeply with me, and captures the spirit of Wigner’s
phrase, “the unreasonable effectiveness of mathematics in the physical sciences.”

I want to thank Michèle Vergne, distinguished member of the French Academy
of Sciences, my colleague at MIT, and longtime friend for coming to Rio to give the
Laudatio and speak about my work.

And I thank my wife Ann and two of my daughters, Abbe and Shoshanna, for
coming with me to this memorable event. I would not have made it quite so easily
without them. And they too insisted on being here.

I’d now like to go down memory lane with some unforgettable meetings related
to mathematical physics.

I met Wigner many years ago in Princeton. Among the topics of conversation
were the representation theory of the Lorenz group and the Poincaré group. I had
discussions with Bargmann as well on a variety of subjects. Back in the 70s and 80s
Bleuler and Doebner and so many colleagues from around the world regularly in-
vited me to conferences in Group Theoretical Methods in Physics, which became an
important part of my life, as I often recall those unforgettable meetings in Switzer-
land, Clausthal, and Salamanca, among others.

So, how did I get involved with group theory and Lie Groups in particular? It
all began at the University of Chicago back in the late 40s and early 50s when I
was a graduate student in mathematics. This was an historic time, exciting years for
mathematics and physics. I met and spoke with Fermi and other physicists, and in
mathematics, this period has been called the Stone Age, named for Marshall Stone
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who built an outstanding mathematics department. Those years became a turning
point in my life.

André Weil also played a key role.
He was among the many French math-
ematicians who led another French rev-
olution, this time in mathematics, and
brought critical ideas to the US. Weil
spread the Bourbaki way of writing down
and thinking about mathematics, and the
sheer beauty of it all resonated with
me immediately. I took a course with
Ed Spanier who used Chevalley’s book,
which I marked up and still treasure—
and that was my initiation into Lie the-
ory.

At Princeton after Chicago, I had con-
versations with Oppenheimer, Hermann
Weyl, Von Neumann, and many others,
and I often think back to Von Neumann
whose engaging personality and warmth
towards me was especially gratifying, as
was the time he gave me to deal with
some of my questions.

Fast forward to 1955, on one unfor-
gettable day, a week before he died, I
met Einstein at the Institute. I’ll tell you a
short story about my encounter with him.
It was on a Good Friday. Einstein real-
ized that his driver had the day off. I was

at the Institute and offered to drive him home. (In our conversation Einstein admit-
ted his lack of mathematical knowledge.) We talked about a lot of different things
and then he asked me what I was interested in. I told him I was interested in Lie
Theory. Einstein looked at me, raised a shaking finger, nodded, and said “That will
be very important some day.”

Years later, I had stimulating conversations with Dirac in Florida. Dirac had in-
vented a square root of the wave operator, and as a first-order operator it later gave
rise by others to the theory of anti-particles. I was pleased to hear him tell me that
the motivation for the operator was that it was mathematically beautiful.

This is but a very short glimpse into some of my enduring memories, which
I’ve been privileged to share with you. Again, I want to thank the Scientific and
Organizing Committees for this great honor.



Laudatio of Vasily Pestun

Luc Vinet

Dear colleagues and distinguished guests,
The Hermann Weyl Prize was established by the Standing Committee of the In-

ternational Colloquium on Group Theoretical Methods in Physics in 2002 and is
awarded every two years to recognize young scientists who have performed original
work of significant scientific quality in the area of understanding physics through
symmetries. To be eligible for the Weyl Prize, the candidate should be either un-
der thirty-five years of age, or be within five years of having received the doctoral
degree, at the time of the deadline of the application.

This year the members of the selection committee were:

• Edward Frenkel, UC Berkeley (Chair)
• Gitta Kutyniok, Berlin
• Neli Stoilova, Sofia
• Francesco Toppan, Rio de Janeiro
• Luc Vinet, Montreal

The Chair of our committe could not be here today and has asked me to introduce
the 2016 winner of the prize which I am delighted to do.

It should first be said that the committee had a rather difficult task since there was
a number of outstanding nominees that were all deserving to receive the prize. It is
thus quite telling that in the end the members of the committee unanimously agreed
to choose Vasily Pestun as the winner.

Vasily Pestun is currently a permanent professor at the IHS in Paris. Prior to this
appointment he obtained his PhD in Physics from Princeton University under the
supervision of Edward Witten; he has been a Junior Fellow at Harvard University
and a member of the Institute for Advanced Study in Princeton. He has also received
many awards including an ERC starting grant.
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Vasily Pestun is without doubt a leading mathematical physicist. His field of re-
search is quantum field theory, its symmetries, and the use of symmetries in finding
exact solutions of quantum field theory.

The groundbreaking result of Vasily Pestun is the computation of partition func-
tion of N=4 super-Yang-Mills theory on the four dimensional sphere. By an inge-
nious use of supersymmetric localization, he showed that this partition function,
as well as the expectation values of the great circle supersymmetric Wilson loop,
can be cast in the form of the correlation function of a two dimensional conformal
field theory. This result led to tremendous activity in the field of BPS/CFT corre-
spondence, with major discoveries in both two dimensional and four dimensional
quantum field theories.

Let me now quote from the letter of recommendation of Nikita Nekrasov, himself
a Weyl prize winner. Nikita writes:

Perhaps the most important consequence of Dr. Pestun’s work was its impact on the theo-
retical physics community. More than to 700 papers were written following up his work,
extending it in various direction here I had to change Nekrasovs text because the number of
citations has grown by more than a hundred in the last 6 months. Continuing with Nikitas
comments : people found that the localization approach used by Pestun for the theories
on spheres can be extended to the theories on ellipsoids, giving additional parameters to
the partition functions one can play with. The structure of the partition function found by V.
Pestun led to the discovery of the four-dimensional version of the tt-fusion found by Cecotti
and Vafa in 1992, which was resisting generalizations for almost 15 years!

More recently Pestun has given a complete and definite treatment of the ordi-
nary and quantized Seiberg-Witten geometry of 4- and 5-dimensional quiver gauge
theory. The quantized Seiberg-Witten geometry and a connection with quantum in-
tegrable systems arise in the Nekrasov-Shatashvili limit. Pestun and collaborators
have developed a very elegant and powerful way of untangling the complexities
of this limit. It is based on the idea of q-characters that goes back to Frenkel and
Reshetikhin almost 20 years ago, and is now rapidly gaining importance and appre-
ciation in the mathematical physics community.

Furthermore with Kimura, Pestun has defined a general notion of deformed W-
algebra, which makes sense for any quiver and specialized it to the algebra consid-
ered by Frenkel and Reshetikhin for ADE quiver. He then connected the conjectural
formulas for the generating fields to the geometry of the corresponding Nakajima
variety and also to the notion of qq-characters investigated by Nekrasov in recent
years.

Commenting on these results of Pestun the Fields medallist Sacha Okounkov
wrote:

This beautiful construction completes a very important circle of ideas and represents very
important progress in understanding the structure of the deformed W-algebras and in apply-
ing it to solve important problems in mathematical physics.

Okunkov concludes his recommendation letter by the following:

Vasily Pestun is a highly original, exceptionally gifted, and very successful researcher work-
ing on the interface of supersymmetric gauge theories and what you may call geometric rep-
resentation theory. Both of these topics obviously relate to symmetries, but from very differ-
ent perspectives and in very different ways. The way in which they become intertwined in
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Pestun’s work is really beautiful and innovative, I therefore consider him an exceptionally
fitting candidate for the Hermann Weyl Prize.

In the official award statement, Edward Frenkel the Chair of the committe had
these words:

Vasily Pestun’s original contributions opened new opportunities for fruitful interaction be-
tween mathematics and quantum physics. It is quite fitting that his work is honored by the
prize named after Hermann Weyl, a pioneer in both of these fields who used to say that in
his research, he always tried to unite the true and the beautiful.

Ladies and Gentlemen, please welcome the 2016 Weyl prize winner Vasily Pes-
tun.
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Phenomenology of neutrinos and macroscopic
bodies in non-commutative spacetime

Giovanni Amelino-Camelia

Abstract Over the last decade the efforts in quantum-gravity phenomenology have
been intensified significantly, and spacetime noncommutativity has inspired quite a
few of the relevant proposals. I here focus on two recent developments for quantum-
gravity phenomenology inspired by spacetime noncommutativity, which concern
neutrino observations and the description of the total momentum of a macroscopic
body.

1 Introduction

The field of quantum-gravity phenomenology [3] has experienced strong growth
over the last decade. Several proposals have been put forward for types of experi-
ments and observations which might have the peculiar qualities needed to be sen-
sitive to the minute quantum-gravity-scale effects. Among the formalisms which
proved most fruitful in inspiring some of these phenomenological avenues a promi-
nent role is played by theories with spacetime noncommutativity and the associated
description of relativistic symmetries [1], which can be given in particular by Hopf
algebras [5, 14, 16] (quantum groups). I here want to focus on two projects of this
type, inspired by spacetime noncommutativity, which kept me busy recently and
might have rather broad implications.

I have written elsewhere (see, e.g., Ref. [3] and references therein) about a phe-
nomenology focused on propagation of photons in a quantum spacetime, for which
indeed certain spacetime-noncommutativity models have provided a good part of
the inspiration [5]. We are now starting to open a new window on the Universe. The
first cosmological high-energy neutrinos have been observed. I here offer a short
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summary of (and perspective on) the first steps which have been taken for analyzing
data from the perspective of neutrino propagation in a quantum spacetime.

Besides writing about neutrino phenomenology I shall also offer some observa-
tions on the description of the total momentum of a macroscopic body in a quantum
spacetime. When there are nonlinearities in momentum space the description of
macroscopic bodies can be pathologic: the same nonlinearities producing minute
effects for microscopic particles (totally or for the most part not observable for us)
could produce, if applicable, a picture of macroscopic bodies in sizable conflict with
what is observed. Some spacetime-noncommutativity models do produce nonlinear-
ities in momentum space, but, as I shall here show, these nonlinearities do not affect
the total momentum of a macroscopic body.

2 Neutrino phenomenology

In-vacuo dispersion has been discussed extensively in the context of some much-
studied models of spacetime quantization (see, e.g., [1,3,6,7,11,12] and references
therein), and particularly spacetime noncommutativity [5]. These results can inspire
the hypothesis that the time needed for a ultrarelativistic particle to travel from a
given source to a given detector receives a quantum-spacetime correction, here de-
noted with ∆ t. I here follow Ref. [10], so I focus on the class of scenarios whose
predictions for ∆ t can all be described, for corresponding choices of the parameters
η and δ , in terms of the formula (working in units with the speed-of-light scale “c”
set to 1)

∆ t = η
E

MP
D(z)±δ

E
MP

D(z) . (1)

Here the redshift- (z-)dependent D(z) carries the information on the distance be-
tween source and detector, for which it is customary to take exploratively the form
[12]

D(z) =
ˆ z

0
dζ

(1+ζ )

H0
√

ΩΛ +(1+ζ )3Ωm
, (2)

where ΩΛ , H0 and Ω0 denote, as usual, respectively the cosmological constant,
the Hubble parameter and the matter fraction. MP denotes the Planck scale ('
1.2 ·1028eV ) while the values of the parameters η and δ in (1) characterize the
specific scenario one intends to study. The notation “±δ” reflects the fact that δ

parametrizes the size of quantum-uncertainty (fuzziness) effects.
The parameters η and δ are expected to take values somewhere in a neighbor-

hood of 1, but values as large as 103 are plausible if the solution to the quantum-
gravity problem is somehow connected with the unification of non-gravitational
forces while values significantly smaller than 1 find support in some renormalization-
group arguments. In general, η and δ can take different values for different parti-
cles [3] and in particular, one should allow for a dependence of η and δ on the
helicity [3] of the neutrino.
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The relevant phenomenology could be particularly powerful [10] for neutri-
nos produced by GRBs (gamma-ray bursts). For the analysis of candidate GRB
neutrinos possibly affected by in-vacuo dispersion it is convenient to introduce a
“distance-rescaled time delay” ∆ t∗ defined as

∆ t∗ ≡ ∆ t
D(1)
D(z)

(3)

so that (1) can be rewritten as

∆ t∗ = η
E

MP
D(1)±δ

E
MP

D(1) . (4)

If one measures a certain ∆ t for a candidate GRB neutrino and the redshift z of the
relevant GRB is well known, then one gets a firm determination of ∆ t∗ by simply
rescaling the measured ∆ t by the factor D(1)/D(z). When the redshift of the relevant
GRB is not known accurately one will be able to convert a measured ∆ t into a
determined ∆ t∗ with accuracy governed by how much one is able to still assume
about the redshift of the relevant GRB.

In order to select some GRB-neutrino candidates one needs [9, 10] a tempo-
ral window and criteria of directional selection. The analysis of Ref. [10] focuses
on neutrinos with energies between 60 TeV and 500 TeV, allowing for a temporal
window of 3 days, and the directional criteria for the selection of GRB-neutrino
candidates on the signal direction PDF depending on the space angle difference be-
tween GRB and neutrino: P(ν ,GRB) = (2πσ2)−1 exp(− |xν−xGRB|2

2σ2 ), a two dimen-

sional circular Gaussian whose standard deviation is σ =
√

σ2
GRB +σ2

ν , denoting of
course with σGRB and σν respectively the uncertainties in the direction of observa-
tion of the GRB and of the neutrino. One then requests [10] that a GRB-neutrino
candidate should be such that the pair composed by the neutrino and the GRB is at
angular distance compatible within a 2σ region.

Evidently whenever η and/or δ do not vanish one should expect on the basis of
(4) a correlation between the |∆ t∗| and the energy of the candidate GRB neutrinos.

Ref. [10] considered four years of operation of IceCube, from June 2010 to May
2014. Since the determination of the energy of the neutrino plays such a crucial role
in the analysis one focuses only on IceCube “shower events”. There are 21 such
events within our 60-500 TeV energy window, and 9 of them fit the requirements
of Ref. [10] for candidate GRB neutrinos. For some of these 9 candidates the selec-
tion criteria produce multiple GRB-neutrino candidates, which one can handle by
focusing on the case that provides the highest correlation.

For the majority of GRBs relevant for the analysis the redshift was not measured.
For the rather rare cases of short GRBs this can be handled [10] by assuming the
redshift of 0.6. For long GRBs one typically will have some in the relevant sample
for which the redshift is known, and as argued in Ref. [10] one can use those known
values of redshift for obtaining at least a rough estimate of the redshift of long GRBs
for which the redshift is unknown.
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Following these prescriptions one finds a correlation of 0.951 between |∆ t∗| and
energy, for the 9 GRB-neutrino candidates found in Ref. [10]. This is a strikingly
high value of correlation, which invites one to ask [10] how likely it would be to have
accidentally data with such good agreement with the expectations of the quantum-
spacetime models here contemplated. Ref. [10] proposed that one needs to estimate
how often a sample composed exclusively of background neutrinos would produce
accidentally 9 or more GRB-neutrino candidates with correlation comparable to (or
greater than) those found in data. This estimate was performed in Ref. [10] find-
ing that background neutrinos could produce accidentally 9 or more GRB-neutrino
candidates with correlation ≥ 0.951 only in 0.03% of cases.

These numbers are somewhat impressive but of course we should assess them
prudently. These numbers already take into account the fact that the analysis in-
volves only a few neutrinos, but somehow I still feel that because this is all about
just a few neutrinos we should be more cautious than the numbers appear to suggest.
There is no reason to rush to any conclusions, since more data is being gathered by
IceCube and will soon be reported. Still, it is interesting to take for a moment as a
working assumption that indeed these results are a true manifestation of in-vacuo
dispersion. In that hypothesis what would most surprise me is that our tentative
formulas provide such a good match. In particular, most results on in-vacuo dis-
persion, including those based on spacetime noncommutativity, were obtained for
flat/non-expanding spacetimes, while of course these data analyses require to factor
in the Universe expansion. The formula given above for D(z) is our best guess so
far of how the effects of in-vacuo dispersion interface with spacetime expansion.
For contexts where the universe is expanding at an accelerating rate we have some
theory support for this D(z) (at least as one among a few possibilities [8]) by rather
compelling arguments applicable to de Sitter expansion. However, at high redshifts,
according to the current picture of cosmology, the Universe should be described by
a phase of decelerating expansion, and we have no solid result on which to anchor
our description of in-vacuo dispersion. For the case of decelerating expansion one
still assumes the validity of D(z) without any support from theory. I feel that we
urgently need studies of in-vacuo dispersion applicable to cases in which spacetime
is in decelerated expansion.

3 On the description of macroscopic bodies in a
non-commutative spacetime

An emerging characteristic of quantum-gravity research over the last decade has
been a gradual shift of focus toward manifestations of the Planck scale on mo-
mentum space, particularly pronounced in some approaches to quantum gravity.
In particular for some research lines based on spacetime noncommutativity sev-
eral momentum-space structures have been in focus, including the possibility of
deformed laws of composition of momenta. There has been growing interest in the
conceptual implications and possible phenomenological implications [3] of nonlin-
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ear laws on momentum space and particularly nonlinear laws of composition of
momenta. However, this interest is being tempered by concerns that a nonlinear law
of addition of momenta might produce a pathological description of the total mo-
mentum of a macroscopic body (see, e.g., Refs. [2,13,15]). This issue has been often
labelled as the “soccer-ball problem” [2]: the quantum-gravity pictures lead one to
expect nonlinearities of the law of composition of momenta which are suppressed
by the Planck scale (∼ 1028eV ) and would be unobservably small for particles at
energies we presently can access, but in the analysis of a macroscopic body, such
as a soccer ball, one might have to add up very many of such minute nonlinearities,
potentially producing a conflict with experimentally-established facts.

I here show that previous discussions of this soccer-ball problem failed to appre-
ciate the differences between two roles for laws of composition of momentum in
physics. Previous results supporting a nonlinear law of addition of momenta relied
exclusively on the role of a law of momentum composition in the description of
spacetime locality. The notion of total momentum of a multi-particle system is not
a manifestation of locality, but rather reflects translational invariance in interacting
theories. After being myself confused about these issues for quite some time [2] I
feel I am now in a position to address them. For definiteness I do this focusing here
on a specific simple model affected by nonlinearities for a law of composition of
momenta, a 2+1-dimensional model with pure-spatial κ-Minkowski noncommuta-
tivity [14, 16], so that the time coordinate is left unaffected by the deformation and
the two spatial coordinates, x1 and x2, are governed by

[x1,x2] = i`x1 (5)

(with the deformation scale ` expected to be of the order of the inverse of the Planck
scale).

3.1 Soccer-ball problem and sum of momenta from locality

The ingredients needed for seeing a nonlinear law of composition of momenta
emerging from noncommutativity of type (5) are very simple. Essentially one needs
only to rely on results establishing that functions of coordinates governed by (5) still
admit a rather standard Fourier expansion

Φ(x) =
ˆ

d4k Φ̃(k) eikµ xµ

and that the notion of integration on such a noncommutative space preserves many
of the standard properties, including

ˆ
d4x eikµ xµ

= (2π)4
δ
(4)(k) . (6)
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It is a rather standard exercise for practitioners of spacetime noncommutativity to
use these tools in order to enforce locality within actions describing classical fields.
For example, one might want to introduce in the action the product of three (pos-
sibly identical, but in general different) fields, Φ , Ψ , ϒ , insisting on locality in
the sense that the three fields be evaluated “at the same quantum point x”, i.e.,
Φ(x)Ψ(x)ϒ (x). There is still no consensus on how one should formulate the more
interesting quantum-field version of such theories, and it remains unclear to which
extent and in which way our ordinary notion of locality is generalized by the re-
quirement of evaluating “at the same quantum point x” fields intervening in a prod-
uct such as Φ(x)Ψ(x)ϒ (x). Nonetheless for the classical-field case there is a sizable
literature consistently adopting this prescription for locality. Important for my pur-
poses here is the fact that, with such a prescription, locality inevitably leads to a
nonlinear law of composition of momenta, as I show explicitly in the following
example:

ˆ
d4x̂ Φ(x̂)Ψ(x̂)ϒ (x̂) = (7)

=

ˆ
d4x̂
ˆ

d4k
ˆ

d4 p
ˆ

d4qΦ̃(k)Ψ̃(p)ϒ̃ (q)eikµ x̂µ

eipν x̂ν

eiqρ x̂ρ

=

ˆ
d4x̂
ˆ

d4k
ˆ

d4 p
ˆ

d4qΦ̃(k) Ψ̃(p) ϒ̃ (q)ei(k⊕p⊕q)µ x̂µ

= (2π)4
ˆ

d4k
ˆ

d4 p
ˆ

d4q Φ̃(k) Ψ̃(p) ϒ̃ (q)δ
(4)(k⊕ p⊕q)

where ⊕ is such that
(k⊕ p)0 = k0 + p0 (8)

(k⊕ p)2 = k2 + p2 (9)

(k⊕ p)1=
k2 + p2

1− e`(k2+p2)

[
1− e`k2

k2e`p2
k1 +

1− e`p2

p2
p1

]
. (10)

This result is rooted in one of the most studied aspects of such noncommutative
spacetimes, which is their “generalized star product” [4]. This is essentially a char-
acterization of the properties of products of exponentials induced by rules of non-
commutativity of type (5). Specifically, one easily arrives at (7) (with ⊕ such that,
in particular, (10) holds) by just observing that from the defining commutator (5) it
follows that

log [exp(ik2x̂2 + ik1x̂1)exp(ip2x̂2 + ip1x̂1)] = (11)

= ix̂2(p2 + k2)+ ix̂1
k2 + p2

1− e`(k2+p2)

(
1− e`k2

k2e`p2
k1 +

1− e`p2

p2
p1

)
.

The so-called soccer-ball problem concerns the acceptability of laws of composi-
tion of type (10). Since one assumes that the deformation scale ` is of the order of
the inverse of the Planck scale, applying (10) to microscopic/fundamental particles
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has no sizable consequences: of course (10) gives us back to good approximation
(k⊕ p)1 ' k1 + p1 whenever |`k2| � 1 and |`p2| � 1. But if a law of composition
such as (10) should be used also when we add very many microparticle momenta in
obtaining the total momentum of a multiparticle system (such as a soccer ball) then
the final result could be pathological even when each microparticle in the system
has momentum much smaller than 1/`.

3.2 Sum of momenta from translational invariance

As clarified in the brief review of known results given in the previous subsection, a
nonlinear law of composition of momenta arises in characterizations of locality, as
a direct consequence of the form of some star products. My main point here is that a
different law of composition of momenta is produced by the analysis of translational
invariance, and it is this other law of composition of momenta which is relevant for
the characterization of the total momentum of a multi-particle system. Here too I
shall just use known facts about the peculiarities of translation transformations in
certain noncommutative spacetimes, but exploit them for obtaining results relevant
for the description of the total momentum of a multi-particle system.

A first hint that translation transformations should be modified in certain non-
commutative spacetimes comes from noticing that (5) is incompatible with the stan-
dard Heisenberg relations [p j,xk] = iδ jk. Indeed, if one adopts (5) and [p j,xk] = iδ jk
one then easily finds that some Jacobi identities are not satisfied. The relevant Jacobi
identities are satisfied if one allows for a modification of the Heisenberg relations
which balances the noncommutativity of the coordinates:

[p1,x1] = i , [p1,x2] = 0 , [p2,x2] = i , (12)
[p1,x2] =−i`p1 . (13)

One easily finds that combining (5), (12) and (13) all Jacobi identities are satisfied.
Additional intuition for these nonstandard properties of the momenta p j comes

from actually looking at which formulation of translation transformations preserves
the form of the noncommutativity of coordinates (5). Evidently the standard de-
scription

x2→ x′2 = x2 +a2 , x1→ x′1 = x1 +a1

is not a symmetry of (5):

[x′1,x
′
2] = [x1 +a1,x2 +a2] = i`x1 = i`(x′1−a1). (14)

Unsurprisingly what does work is the description of translation transformations us-
ing as generators the p j of (12)-(13), which as stressed above satisfy the Jacobi-
identity criterion. These deformed translation transformations take the form
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x′1 = x1− ia1[p1,x1]− ia2[p2,x1] = x1 +a1 ,

x′2 = x2− ia1[p1,x2]− ia2[p2,x2] = x2 +a2− `a1 p1 , (15)

and indeed are symmetries of the commutation rules (5):

[x′1,x
′
2] = [x1 +a1,x2 +a2− `a1 p1] =

= i`x1− `a1[x1, p1] = i`(x1 +a1) = i`x′1 . (16)

My main observation is that in order for us to be able to even contemplate the total
momentum of a multiparticle system, we must be dealing with a case where trans-
lational invariance is ensured: total momentum is the conserved charge for a trans-
lationally invariant multi-particle system. Surely the introduction of translationally
invariant multi-particle systems must involve some subtleties due to the noncom-
mutativity of coordinates, and these subtleties are directly connected to the new
properties of translation transformations (13), but they are not directly connected
to the properties of the star product (11) and the associated law of composition of
momenta (10). For my purposes, it is best to show the implications of this point
very simply and explicitly, focusing on a system of two particles interacting via a
harmonic potential.

I start by noticing that evidently one does not achieve translational invariance
through a description of the form

Hnon−transl =
(pA

1 )
2 +(pA

2 )
2 +(pB

1 )
2 +(pB

2 )
2

2m
+

ρ

2
[(xA

1 − xB
1 )

2 +(xA
2 − xB

2 )
2]

where indices A and B label the two particles involved in the interaction via the
harmonic potential. As stressed above, translation transformations consistent with
the coordinate noncommutativity (5), must be such that (see (15)) x1 → x1 + a1
and x2 → x2 + a2− `a1 p1, and as a result by writing the harmonic potential with
(xA

1 − xB
1 )

2 +(xA
2 − xB

2 )
2 one does not achieve translational invariance.

One does get translational invariance by adopting instead

H =
(pA

1 )
2 +(pA

2 )
2 +(pB

1 )
2 +(pB

2 )
2

2m
+

ρ

2
[(xA

1 − xB
1 )

2 +(xA
2 + `xA

1 pA
1 − xB

2 − `xB
1 pB

1 )
2].

This is trivially invariant under translations generated by p2, which simply produce
x1 → x1 and x2 → x2 + a2. And it is also invariant under translations generated by
p1, since they produce x1→ x1 +a1 and x2→ x2− `a1 p1, so that x2 + `x1 p1 is left
unchanged:

x2 + `x1 p1→ x2− `a1 p1 + `(x1 +a1)p1 = x2 + `x1 p1.

It is interesting for my purposes to see which conserved charge is associated with
this invariance under translations of the hamiltonian H . This conserved charge will
describe the total momentum of the two-particle system governed by H , i.e., the
center-of-mass momentum. It is easy to see that this conserved charge is just the
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standard pA +pB. For the second component one trivially finds that indeed

[pA
2 + pB

2 ,H ] = 0

and the same result also applies to the first component:

[pA
1 + pB

1 ,H ] ∝ [pA
1 + pB

1 ,(x
A
1 − xB

1 )
2]+

+[pA
1 + pB

1 ,(x
A
2 + `xA

1 pA
1 − xB

2 − `xB
1 pB

1 )
2] =

= [pA
1 + pB

1 ,(x
A
2 + `xA

1 pA
1 − xB

2 − `xB
1 pB

1 )
2] ∝

∝ [pA
1 + pB

1 ,x
A
2 + `xA

1 pA
1 − xB

2 − `xB
1 pB

1 ]

=−i`pA
1 + i`pA

1 + i`pB
1 − i`pB

1 = 0 (17)

where the only non-trivial observation I have used is that (5) leads to
[p1,x2 + `x1 p1] =−i`p1 + i`p1 = 0.

The result (17) shows that indeed pA+pB is the momentum of the center of mass
of my translationally-invariant two-particle system, i.e., it is the total momentum of
the system.

The concerns about total momentum that had been voiced in discussions of the
Planck-scale soccer-ball problem were rooted in the different sum of momenta rel-
evant for locality, the ⊕ sum discussed in the previous section. It was feared that
one should obtain the total momentum by combining single-particle momenta with
the nonlinear ⊕ sum. The result (17) shows that this expectation was incorrect.
One can also directly verify that indeed pA⊕pB is not a conserved charge for my
translationally-invariant two-particle system, and specifically, taking into account
(10), one finds that

[(pA⊕pB)1,H ] 6= 0.

4 Outlook

The results I here summarized for candidate GRB neutrinos are evidently intriguing
and set the stage for a very active research line, considering that IceCube will take
much more data and other neutrino telescopes (such as KM3NeT) are at advanced
stage of scheduling. By 2019 IceCube alone should put this sort of analyses in po-
sition to work with more than twice the amount of data so far available. In general I
expect that the new opportunities provided by the birth of neutrino astrophysics will
affect fundamental physics very strongly.

The description of macroscopic bodies in a quantum spacetime has been a very
active area of study, to which I here contributed novel results for the description of
total momentum. The “soccerball problem” fades away. From a conceptual perspec-
tive it is also interesting that the analysis I here reported makes us appreciate how our
current theories are built on a non-trivial correspondence between the momentum-
space manifestations of locality and translational invariance. I hope future studies
will allow us to understand more in depth the subtleties of this correspondence,
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which were here only preliminarily exposed. This might be achieved by also taking
as guidance the fact that in Galilean relativity all laws of composition of momenta
and velocities are linear, and there is a linear relationship between velocity and mo-
mentum. Within Galilean-relativistic theories one could choose to never speak of
momentum, and work exclusively in terms of velocities, with apparently a single
linear law of composition of velocities. In our current post-Galilean theories, the
relationship between momentum and velocity is non-linear (and velocities are com-
posed non-linearly, while the laws of composition of momenta remain linear) and
we then manage to better appreciate the differences between the logical roles of the
composition law for momenta and those of the composition law for velocities.
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The dynamical evolution in quantum physics
and its semi-group

Arno Bohm

Abstract Experiments on quantum systems are usually divided into preparation of
states and the registration of observables. Using the traditional mathematical meth-
ods (the Hilbert space or the Schwartz space of distribution theory), it is not possible
to distinguish mathematically between observables and states. The Hilbert space
boundary conditions for the dynamical equation lead by mathematical theorems
(Stone-von-Neumann) to unitary group evolution with −∞ < t < +∞. In contrast,
the set-up of a scattering experiments calls for time-asymmetric boundary condi-
tions. Therefore, a new axiom of quantum theory is needed. This is the Hardy space
axiom, which uses a pair of Hardy spaces, one of them for states (defined by the
experimental preparation procedure), and the other for observables (defined by de-
tectors). The Paley-Wiener theorem for Hardy spaces then leads to semi-groups and
time asymmetry. It introduces a finite beginning of time t0 for a time asymmetric
quantum theory, which can be observed by an ensemble of onset times t(i)0 of dark
periods in Dehmelt’s quantum jump experiments with single ions [1].

1 Time symmetric quantum theory

Time in quantum theory is usually assumed to extend over −∞ < t <+∞.
Time Asymmetric Quantum Theory [2] is a quantum theory in which:

• the time t has a preferred direction: t0 = 0≤ t < ∞

• the energy E (eigenvalue of the “essentially” selfadjoint
Hamiltonian H) can take (discrete and continuous) values
in the complex energy planes: E→ z ∈ C±

(1)
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The conventional mathematical theory for quantum physics [3]: is time-symmetric

• the time t extends over −∞ < t <+∞

• the energy E is real (spectrum of selfadjoint Hamiltonian H) and it is bounded
from below (“stability of matter”): 0 = E0 ≤ E < ∞.

This is a consequence of the choice of the boundary conditions for the dynamical
equations

ih̄
∂

∂ t
ψ =−Hψ (2a) or ih̄

∂

∂ t
φ = Hφ (2b)

the Heisenberg eq. for observables |ψ〉〈ψ | and Schrödinger eq. for states φ .
To find the solutions of differential equations one needs Boundary Conditions

(B.C.). In Standard Quantum Mechanics these B.C. are usually chosen to be given
by the
Hilbert Space Axiom:

set of states {φ}=set of observables {ψ}= H = Hilbert space (norm-complete)
(3)

This means energy wave functions 〈E|φ〉 = φ(E), 〈E |ψ〉 = ψ(E) are Lebesgue
square integrable functions of energy, i.e., to one state φ does not correspond one
wave function φ(E) but infinitely many that differ from each other on a set of mea-
sure zero, e.g., at all rational numbers E.

To avoid these complications one uses in quantum physics only smooth Schwartz
space functions φ(E) and ψ(E) and the convergence is defined not by one norm, but
by a countable number of norms, e.g. for the harmonic oscillator by the definition
of norms:

(φ ,ψ)n = (φ ,(H +E0)
n
ψ), n = 0,1,2,3 . . . , (4)

where H is the energy operator or the Nelson operator for the quantum system.
In the Dirac formulation one uses the Schwartz space Φ with countable norms,

as e.g., defined by (4):

1) The solutions of both the Heisenberg equation as well as the solutions of the
Schrödinger equation (observable and state) have a Dirac basis vector expansion
for processes with continuous E:

φ = ∑
j, j3,η

ˆ
dE |E, j, j3,η〉〈E, j, j3,η |φ〉=

ˆ
dE |E〉〈E |φ〉, (5)

(an analogue of x =
3

∑
i=1

eixi).

The basis vectors |E, j, j3,η〉 are “eigenkets” of the energy operator H (and a
complete system of commuting operators H, J2, J3, ηop), using angular momen-
tum j, j3 and possibly other quantum numbers η :

〈φ | H |E, j, j3,η〉= E〈φ |E, j, j3,η〉 for all vectors φ , ψ ∈Φ , |E〉 ∈Φ×.
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To each vector φ corresponds then one function 〈E |φ〉 = φ(E) of E (and addi-
tional quantum numbers, like j, j3).

2) The components of φ , i.e. the bra-kets 〈E |φ〉 = φ(E) are smooth, rapidly de-
creasing functions of E (“Schwartz function” ∈SR+), and

one has a triplet of function spaces {φ(E)}= S ⊂ L2 ⊂S ×

and a triplet of abstract vector spaces {φ}= Φ ⊂H ⊂Φ
× (6a)

called a Gelfand Triplet or Rigged Hilbert Space (RHS) [4]. In the Dirac formal-
ism one uses the same RHS Φ ⊂H ⊂Φ× for the state vectors φ as well as for
the observables |ψ〉〈ψ |:

{φ}= {ψ}= Φ = abstract Schwartz space. (6b)

Is there a physical reason that the solutions of the dynamical (Schrödinger or
Heisenberg) equation which fulfill the Hilbert space boundary condition (3), as well
as those fulfilling the Schwartz space boundary condition, φ ∈Φ , ψ ∈Φ , are given
by the two time evolution groups?:

φ(t) = e−iHt
φ(0), ψ(t) = eiHt

ψ(0), −∞ < t <+∞. (7)

The conclusion is: For standard quantum mechanics, even when amended with
the Dirac formalism in a Schwartz-Rigged Hilbert Space, the time extends over
−∞ < t <+∞ and there is no finite beginning of time t0 >−∞, as required for time
asymmetric quantum theory in condition (1) of Sect. 1. Therefore, the dynamical
equations (2b) for the state vectors φ(t) and the dynamical equation (2a) for the ob-
servable (i.e., the solution of the Heisenberg equation (2a)) obey the unitary group
evolution (1).

The question is: Could there be for quantum theory other boundary conditions of
the dynamical equation, that do not lead to the unitary group evolution like (1), but
to a quantum theory with a preferred direction of time, starting at a finite t0 < t < ∞,
which our Universe seems to posses as the big bang time t0?

2 Dynamical equations of states and observables
The two fundamental entities of quantum theory are states (denoted by φ+ or by op-
erator ρ) and observables (denoted by operator A or vector ψ−). The time evolution
is expressed using two contrasting pictures:
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In the Schrödinger picture In the Heisenberg picture
One solves

The Schrödinger equation

ih̄
∂φ+(t)

∂ t
= H φ

+(t) (8)

for the state vector φ+(t),
or

the von Neumann equation for
the state operator (“density op-
erator”) ρ(t)

ih̄
∂ρ(t)

∂ t
= [H,ρ(t)]. (9)

The Heisenberg equation

ih̄
∂A(t)

∂ t
=−[H,A(t)] (10)

for the observables A(t),
or

the Heisenberg equation for spe-
cial case Aψ− =|ψ−(t)〉〈ψ−(t) |
for the vector observable ψ−

ih̄
∂

∂ t
ψ
−(t) =−Hψ

−(t). (11)

The Schrödinger equation (1) is the special case of the von Neumann equation (1)
for the case: ρ(t) =|φ+(t)〉〈φ+(t) |.

The Heisenberg equation (4) is the special case of the Heisenberg equation (2)
for the “observable vector” ψ−(t) in the special case Aψ− = |ψ−(t)〉〈ψ−(t) |.

State operator ρ or the state vector φ+, as well as the observable (-operators) A or
the observable vector ψ−, represent physical apparatuses in laboratory experiments.

The theoretical predictions which need to be compared with the experimental
data are the Born probabilities:

Pρ(A(t))≡ Tr(A(t) ρ) = Tr(A ρ(t)). (12)

In the special case that A is the projection operator A =|ψ−〉〈ψ− | onto the
1-dimensional subspace spanned by |ψ−〉 and ρ(t) =|φ(t)〉〈φ(t) |, one gets

Pφ+(ψ−(t)) = Tr(|ψ−(t)〉〈ψ−(t) ||φ+〉〈φ+ |= |〈ψ−|φ+(t)〉|2, (13)

which represents the probability of the observable ψ−(t) in the state φ+.

3 Meaning of states ρ or φ+, and of observable A or ψ−

States and observables are associated with two different aspects of scattering exper-
iments. Scattering experiments test the structure of micro physical systems.

States: are described in the theory by “density operators” ρ or by state vectors φ+

for pure states ρ =|φ+〉〈φ+ |.
Observables: are described by operators A=A†, or also by “observable vectors” ψ−

(i.e., vectors that obey the Heisenberg equation (4)).
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In the experiment [5]:

1. States ρ (or the pure in-states
φ+ of scattering experiment)

are defined
experimentally

by the preparation appa-
ratus (e.g., accelerator).

Preparation of a state |φ+〉〈φ+ | or ρ

T
+φ (t)

φin
(t)

Accelerator

 p
π in

Fig. 1: Accelerator and target T define the in-state.

Due to interaction of beam and target T, the in-state φ+ becomes an “uncontrolled
out-state” φ+(t)→ φ out outside the interaction region

φ
out

 (t)

φ
out

 (t)

φ
out

 (t)

φ
out

 (t)

φ
out

 (t)

T

in(t)φ

Accelerator

+ (t)φ

+ (t)φ
 0K

π in

Fig. 2: The preparation of the uncontrolled out-state: φ out = Sφ in

States fulfill the Schrödinger equation.
2. Observables A, |ψ−〉〈ψ− | (out-

observable, often mis-
leadingly called “out-state”)

are defined experi-
mentally

by registration appara-
tus (e.g. detector)

Example: Preparation and decay of K0
s in the reaction [6] (“formation” of a “reso-

nance” or of an unstable state K0
s )

π
− p→ΛK0

S , K0
S → π

+
π
−, π

0
π

0

Registration of an observable |ψ−〉〈ψ− | or A



32 Arno Bohm

 (t)

T

outψ

+π π− detector

Fig. 3: The detector is built according to what it needs to register (e.g, a π+π−-
detector registers or “counts” the observable A =|ψ−(t)〉〈ψ−(t) |→|ψout〉〈ψout |=|
π+π−〉〈π+π− | = two π’s (usually the objects π+ and π− are detected at different
places (scattering angles)).

3. The scattering experiment combines the preparation apparatus in Fig. 1 (accel-
erator) with a registration apparatus (detector) to count the clicks at the detector
|ψout〉〈ψout |.

+ (t)φ

out (t)φ

out (t)φ+ (t)φ
 0K

 −(t)ψ

out (t)φ

out (t)φ

+π −π

π

+π−π

in(t)φ
T

out (t)φ  out   (t)ψ number N(t) of

Accelerator

in

Fig. 4: Combining the preparation of the state φ and the registration of an observ-
able ψ in a scattering experiment: One places the detector of Fig. 3 behind the target
in Fig. 2 and counts the number N(t) = N(t;∆Ω , Eout) of π+, π− at the time t into
the solid angle ∆Ω .

Observables fulfill the Heisenberg equation
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4 Theoretical description of states and observables

4.1 Born probabilities

As exhibited in the Figures 1, 2, 3 and 3, there are two different kinds of quantum
theoretical entities associated to the two different kinds of physical apparatuses:

States ρ (in-states vectors φ+) are prepared by the preparation apparatus,
(Figs. 1, 2) and governed by the
Schrödinger Eq. (1).

Observables A (or ψ−) are registered by the detector and governed by
Heisenberg Eq. (4)

Experimental (observed)
quantities are the proba-
bilities for observable A in
state ρ .

They are calculated in the
theory as Born Proba-
bilities solving dynamic
equations (1) or (4)
and (1) or (2).

They are measured as ra-
tios of large number of
detector counts (“relative
frequencies”) N(t)/N.

Pρ(A(t))≡ Tr(A(t) ρ0) = Tr(A0 ρ(t))≈ N(t)/N. (14a)

In the special case of an observable |ψ−〉〈ψ− | in the pure state φ+(t) the probability
of the observable ψ− in the state φ+ is:

Pφ+(ψ−(t))≡ |〈ψ−(t)|φ+〉|2 = |〈ψ−|φ+(t)〉〈φ+(t)|ψ−〉 (14b)

in Heisenberg’s picture in Schrödinger’s picture

The agreement of theory Pρ(A(t)) with the experimental counting rate N(t) of
Fig. 3 is given by

Pρ(A(t)) or |〈ψ−(t) |φ+〉|2≈ N(t)
N

. (15)

The theory-calculated probabilities Pρ(A(t)) must agree ≈ with the registered de-
tector counts N(t)/N; this must hold for an ensemble of N detector counts, where N
are “large” numbers.

To make a comparison of experimental counting rates N(t)
N and the theoretical

probabilities |〈ψ−(t)|φ+〉|2, one needs to solve either the Heisenberg equation (4)
for the out observable ψ−(t) or one needs to solve the Schrödinger equation (1)
for the in-state φ+(t) and then calculate the Born probabilities: Tr(A(t) |φ+〉〈φ+ |)
= |〈ψ−(t)|φ+〉|2 = |〈ψ−|φ+(t)〉|2 using the solution of Heisenberg eq. (4), or the
solution of Schrödinger eq. (1), respectively.
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4.2 Solutions of the dynamical equations and their boundary
conditions

To solve a differential equation (Schrödinger Eq. (1) and (1) or Heisenberg Eq. (2)
and (4)), requires the choice of Boundary Conditions. This means one has to
choose the mathematical spaces, to which the solutions of equations (1) and of
equations (4) need to belong.

The right choice of a Boundary Condition is most important for quantum physics.
The boundary condition will make the difference for the prediction of the theory and
thus it is our choice of the Boundary Conditions, which will determine the theory of
our choice. In the historical development of quantum theory, the following boundary
conditions were used for the solutions of the dynamical equations (1) and (4) or (2)
and (1):

1. Hilbert space boundary condition of von Neumann (called “Hilbert space ax-
iom”): 1

Set of state vectors {φ}= Set of observables {ψ}+H = Hilbert space (16a)

2. Schwartz space boundary condition of the Dirac formalism chooses the Schwartz
space for the states as well as the observables:

Set of state vectors {φ}= Set of observables {ψ}+Φ = Schwartz space (16b)

From the standard boundary condition (16a) as well as (16b) follows by the Stone-
von Neumann theorem, for Hilbert space and by a similar theorem for the Schwartz
space, the (unitary) group evolution (1); (10) and (17b).

The solutions of the Schrödinger equation under the condition φ ∈H as well as
under φ ∈Φ are given by

φ(t) =U†(t)φ = e−iHt/h̄
φ , with −∞ < t <+∞ for φ ∈H and φ ∈Φ . (17a)

The same holds for the Schwartz space boundary condition φ ∈Φ :

φ(t) =U†
Φ
(t) φ = e−iHt/h̄

φ with −∞ < t,+∞ for φ ∈Φ ,

where U†
Φ
(t) =U†(t) |Φ is the restriction of U† to the subspace Φ ⊂H .

Similar results hold for the solutions of the Heisenberg equation under these bound-
ary conditions:

ψ(t) =U(t) ψ = eiHt/h̄
ψ, with −∞ < t <+∞ for ψ ∈H , (17b)

and ψ(t) =UΦ(t) ψ = eiHt/h̄ψ for ψ ∈Φ .

1 “Complete” Hilbert space of von Neumann means the integrals which define the scalar product
are Lebesgue integrals and not just Riemann integrals, but physicists do not want to deal with
Lebesgue integrals anyway.
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This result (10) and (17b) has been well known (Stone-von Neumann theo-
rem [3, 7]) for the Hilbert space boundary condition and it can also be proven for
the Schwartz space boundary condition ψ , φ ∈Φ .

From this, follows that a theory which uses the Hilbert space boundary condi-
tion (16a) or the theory based on the Schwartz space boundary condition (16b) (i.e.,
the mathematical version of the Dirac formalism), “predict” the Born probabilities

Pρ(A(t)) =|〈ψ−(t) |φ+〉|2 to detect an observable A(t) =|ψ−(t)〉〈ψ−(t) | in
the state φ+ for all t: −∞ < t <+∞;
This would mean it predicts the probabilities, also for times t < t0, before the
state φ+ will be prepared by the accelerator and target T at a time t0. This
would, however violates causality, because:

The detector in Fig. 3 cannot detect anything relevant to the scattering process be-
fore the times t0, at which the Accelerator will be turned on.

Thus, a theory that makes predictions for −∞ < t <+∞ cannot be “quite” right.
It would violate the causality principle of quantum physics, which asserts [8]:

A state φ+ needs to be prepared first, by a time t0, before an observable
|ψ−(t)〉〈ψ−(t) | can be measured in that state φ+ at times t ≥ t0 by the detec-
tor counts, N(t)/N. There cannot be any K0

S → π+ π− counted in the detector
of Fig. 3 before the accelerator has been turned on and π in has hit the target T.

Thus the experimental result, as well as our intuitive feeling of causality suggests
that the Born probabilities of the observable A(t) =|ψ−(t)〉〈ψ−(t) | in the prepared
state φ+:

Pφ+(A(t)) = Tr(A(t) |φ+〉〈φ+ |) = Pφ+(|ψ−(t)〉〈ψ−(t) |)
=|〈ψ−(t) |φ+(t0)〉|2=|〈ψ−(t) |φ+〉|2 ,

make physical sense only for times t later than t0, i.e., for t > t0 .

(18)

Here the time t0(= 0) is the time at which the state φ+ is prepared, and only after
this time t0 can the observable ψ− be registered in the state for t > t0.

Since a quantum state represents an ensemble of (large number of) micro systems
in the lab, this beginning of time t0 represents usually also an ensemble of finite
times, t0 ↔

{
t(i)0

}
, where the t(i)0 are in general different times on a clock in the

lab. (Such t(i)0 for single particles have been observed as the onset times of the dark
periods in Dehmelt’s quantum jump experiments with single ions in a Paul traps).

Comparison with the quantum jump experiments means that t0 represents the
ensemble

{
t(i)0

}
of beginnings of time for the i-th individual quantum particles.

All this suggest that one must not solve the dynamical differential equation under
the standard Hilbert space or under the standard Schwartz space boundary condi-
tions which lead to (10), (17b), but under new boundary conditions which lead to
“beginnings of time” t0, and thus to the semi-group time evolution like

ψ
−(t) = U (t− t0) ψ(t0) with the finite beginning of time t0 ≤ t <+∞, (19)
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where t0 is an ensemble of finite times (generally different times t(i)0 on the clocks
in the lab.). The solution of the dynamical equations under Hardy Space Bound-
ary Condition leads to semigroup evolution of the dynamical euqations of quantum
physics.

4.3 New Hardy space boundary conditions

New boundary condition means that one chooses in place of the historical Hilbert
space H or in place of the Schwartz space Φ , a new space for state vectors {φ+}
representing the preparation apparatus (e.g., the accelerator of Fig. 3) and another
new space for the observables {ψ−} representing the registration apparatus (e.g.,
the detector in Fig. 3).

These new spaces must NOT be given:

by the Hilbert space axiom:

{φ}= {ψ}+H of von Neumann, (L2-integrable). (20H)
And they must also not be given by the Schwartz space axiom:

{φ}= {ψ}+Φ of the Dirac formulation (20Φ)
which would lead to the Schwartz Rigged Hilbert Space:

Φ ⊂H ⊂Φ
× of Sec. 1.

Thus a new mathematical Axiom is needed for quantum physics; this new axiom
will be based on a pair of mathematical spaces, one for the prepared states in Figs. 1
and 2 and the other for the detected observables in Figs. 3 and 3.

There is no reason that the set of accelerator prepared states {φ+}, as well as
the set of detector registerd observables {ψ−}, should both be represented by the
same mathematical space (e.g., by the Schwartz space Φ , or by the Hilbert space
H ). Thus, rather than using one and the same representation space, H or Φ for the
in-state vectors φ+, as well as for the out-observable vectors ψ−, as done in (20H)
and similar for the Dirac formulation in (20Φ), it would be much more natural
to represent the accelerator prepared states (Fig. 1 and Fig. 2) and the detected
observables (Fig. 3 and Fig. 3) by two different mathematical representation spaces.

The new boundary conditions for the two differential equations (Schrödinger or
Heisenberg) of quantum mechanics need to be given by two different spaces, one
for the states φ+ and the other for the observables ψ−. For these two spaces one can
choose the Hardy space boundary conditions as the new Axiom for the fundamental
dynamical equations (1), (4), or (1), (2) of quantum mechanics.

There are two different Hardy spaces [9] that are conjugate to each other. This
suggests the following new axiom which allows us to distinguish mathematically
the prepared states from the observables, using the pair of Hardy spaces:
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The space of state vectors {φ+} representing the accelerator-prepared states
of Fig. 1 and 2, is the Hardy space Φ− of the lower complex energy plane
(2nd sheet of the analytic S-matrix):

prepared in-states {φ+}+ Φ− Hardy space solutions of the Schrödinger eq.
(21.1-)

The space of observable vectors {ψ−} representing the detector-registered
observables is the Hardy space Φ+ of the upper complex energy plane (2nd
sheet of the analytic S-matrix):

detected out-observables {ψ−}+ Φ+ Hardy space solutions
of the Heisenberg eq. (21.1+)

The amusing miss-match in the notation for the physical vectors and their mathe-
matical representation spaces:

φ
+ ∈Φ− (lower complex plane), (21.2-)

ψ
− ∈Φ+ (upper complex plane), (21.2+)

has its origin in the two different conventions used for the Hardy spaces in mathe-
matics, and for the state vectors in physics:
Mathematicians notation of
Hardy spaces

Hardy space Φ− = {φ+} is realized
by the smooth Hardy function φ

+(E) =
〈+E |φ+〉 ∈ (H 2

− ∩S)R+ on C−, i.e., on
the lower complex plane 2nd sheet of
the S-matrix.

Physicists notation for the vectors of the
scattering theory

{φ+} represents the acceler-
ator prepared states and thus
the Lippmann-Schwinger kets
|E+〉 ∈Φ

×
− .

(21.3-)

Hardy space Φ+ = {ψ−} is realized
by the smooth Hardy function ψ

−(E) =
〈−E |ψ−〉 ∈ (H 2

+ ∩ S)R+ on C+
2, i.e.,

on the upper complex plane 2nd sheet
of the S-matrix.

{ψ−} represents the detec-
tor registered observables
|ψ−〉〈ψ− | and thus the
Lippmann-Schwinger kets
are |E−〉 ∈Φ

×
+ , the dual space of Φ+

(21.3+)

Both, the state vectors φ+ and the observable vectors ψ−, represent two entirely
different physical aspects of the experimental apparatus as displayed by the com-
parison of Figs. 1 and 2 with Figs. 3 and 3. Therefore we have no reason to suspect
that the vectors {φ+} representing states and the vectors {ψ−} representing ob-
servables, should be described by the same mathematical spaces, namely both by
the Hilbert space or both by the Schwartz space, as is usually done.

2 For the Hardy space we consider only the spaces, which can be realized by the “smooth Hardy
functions” H±∩S, i.e., Hardy class intersected with Schwartz function spaces.
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The Lippmann-Schwinger kets had been postulated in analogy to the Dirac
kets (5) as the in-plane wave “states” and the out-plane wave “states” |E+〉 and
|E−〉 , H |E±〉 = E |E±〉, K |E〉 = E |E〉 which fulfill the Lippmann-Schwinger
equations [10]:

|E±〉= |E〉+ 1
E−K± iε

V |E±〉 H = K +V. (22)

In analogy to the Dirac basis vector expansion (5) of Section 1 for the Schwartz
space, the nuclear spectral theorem [4] of the topological vector space for in-state
vectors φ+ (representing the preparation apparatus, e.g., an accelerator in the scat-
tering experiment of Fig. 3) would then be given by

φ
+ = ∑

j, j3,η

ˆ
∞

0
dE|E, j, j3,η+〉〈+E, j, j3,η |φ+〉

=

ˆ
∞

0
dE|E+〉〈+E|φ+〉=

ˆ
dE |E+〉φ+(E), (23-)

j, j3 denote the angular momentum and η denotes some additional (species) quan-
tum numbers.

The |E−〉 = |E, j, j3,η−〉 are taken as basis systems for out-vectors (represent-
ing the observables |ψ−〉〈ψ− | registered by the detector); thus for the observables
|ψ−〉〈ψ− | of Figs. 3 and 3 one would then have the basis vector expansion:

ψ
− = ∑

j, j3,η

ˆ
∞

0
dE ′|E ′, j, j3,η−〉〈−E ′, j, j3,η |ψ−〉

=

ˆ
∞

0
dE ′|E ′−〉〈−E ′|ψ−〉=

ˆ
dE ′ |E ′−〉ψ−(E ′). (23+)

This is done in perfect analogy to the Dirac basis vector expansion justified by the
“nuclear spectral theorem” for Schwartz space: for every φ or ψ ∈Φ :

φ =
´

dE |E〉〈E |φ〉 ,
ψ =
´

dE |E〉〈E |ψ〉 ,
The Dirac |E〉 are mathematically defined as continuous
antilinear functional of Φ : |E〉 ∈Φ×.

The shortcoming of the Schwartz space axiom is that the set of states {φ} of
Figs. 1 and 2, and the set of observables {ψ} of Figs. 3 and 3 cannot be mathe-
matically distinguished from each other if one uses just the one Schwartz space (or
one H ).

The new idea suggested by the Lippmann-Schwinger kets (20), which is also
dictated by the Gamow vector, is to associate the set of physical states φ+ (defined
by the preparation apparatus, Figs. 1 and 2) with the mathematical Hardy space,
which is called Φ−. Thus the new physical axiom of scattering theory is

set of state vectors {φ+} + Φ− = Hardy on C− (2nd sheet of the S-matrix).
(24-)
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And similarly for the set of observables ψ−,

set of {ψ−} + Φ+ = Hardy on C+ (2nd sheet of the S-matrix). (24+)

This new Hardy space axiom (24±) is an enormous step forward, because com-
paring this Hardy space axiom (24±) with Figs. 1 and 2 for the states and with
Figs. 3 and 3 for the observables, the Schwartz space axiom (6b) and the Hilbert
space axiom (3) do not feel right, because one should also distinguish mathemati-
cally between the prepared states {φ+} and registered observables {ψ−}.

Since ψ− is the observable (defined by the detector, Figs. 3 and 3), and φ+

represents the state (defined by the accelerator, Figs. 1 and 2), the matrix element
(ψ−|φ+) is the probability amplitude to detect the observable |ψ−〉〈ψ− | in the state
|φ+〉〈φ+ | and therfore,

| (ψ−|φ+) |2 is the probability to detect the observable |ψ−(t)〉〈ψ−(t) | in the
state φ+, which according to standard quantum theory (6), (14a), (14b) and (15)
is:

|(ψ−(t)|φ+)|2∼ N(t)
N

(is measured by the detector counts) ≥ 0 for t > t0 (25)

as stated in (6) or for the general case in (5).
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Algebraic structures on the moduli spaces in
gauge theories

Vasily Pestun

Abstract The partition function of a four-dimensional supersymmetric gauge theory
on a four-sphere is factorizable in holomorphic and antiholomorphic blocks similar
to the correlation functions of the two-dimensional conformal field theories. The
holomorphic blocks are controlled by the geometry of the moduli spaces of vacua in
4d supersymmetric gauge theory, and this reveals a deep connection with algebraic
structures of quantum integrable systems, two-dimensional conformal field theories
and their q-deformations.

1 Introduction

Some of the pressing questions in the studies of quantum gauge theories are: what
can we do beyond perturbation theory, are there hidden algebraic structures, what
are the exactly computable quantities?

In the remarkable work of Belavin, Polyakov and Zamolochikov [1] the corre-
lation functions of some operators Oi in two-dimensional conformal field theories
have been shown to have the factorizable form, schematically

〈∏
i

Oi〉=
ˆ

µ(a)Z(a)Z(a) (1)

where the variable a labels the primary fields of the theory, the µ(a) is a certain inte-
gration measure determined by the physical content of the theory, whereas functions
Z(a), called conformal blocks are determined by the Virasoro symmetry algebra of
the 2d conformal field theory.
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Since then the algebraic approach to the two-dimensional conformal field theo-
ries and their relatives, such as massive deformations and 2d lattice integrable mod-
els, turned out to be very powerful with many mathematical and physical results that
are not possible to survey in this lecture.

Some of the key mathematical structures that have been encountered on the way
are:

• conserved quantities
• holomorphic factorization
• conformal block and operator product expansion
• affine Kac-Moody Lie algebras, W -algebras (generalization of Virasoro)
• quantum groups, R-matrix

Recently, many of these facets of solvable models have been detected in two
current programs to access gauge theories beyond the perturbation theory;

1. large N (planar) limit of Yang-Mills gauge theory, specifically N = 4 super
Yang-Mills,

2. vacuum or BPS sector of N = 2 supersymmetric gauge theories.

The large N approach is based on the gauge-string duality [2] [3] [4] [5] under
which computation in large N gauge theory is mapped to the computation in the
two-dimensional sigma model on the world-sheet of confining string, and further
the two-dimensional sigma-model is solved using the 2d integrability tools.

The vacuum or BPS approach [6] [7] [8] is based on the analysis of the su-
persymmetry implications on the geometry of the vacua in supersymmetric gauge
theories.

The focus of this lecture is on the geometrical and algebraic structures arising
from the BPS approach also known as localization.

2 The structures of 4d N = 2 theories

By now the following features of 4d N = 2 theories have been understood relatively
well:

• vacua sector = complex algebraic integrable system
• holomorphic factorization
• emergence of quantum algebras:

1. CFT type (Virasoro, W -algebra, Kac-Moody)
2. Lattice model type (R-matrix, spin-chains, quantum groups).
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2.1 Vacua sector = complex algebraic integrable system

In [6] [9] [10] [11] it was shown that the Coulomb branch MR3×S1 of the moduli
space of vacua of 4d N = 2 theory on R3×S1 is fibered over the Coulomb branch
of vacua MR4 of the same N = 2 gauge theory on R4,

MR3×S1 →MR4 . (2)

Moreover, the space MR3×S1 has dimension twice that of the base space MR4 .
It is holomorphic symplectic and the fibers of the fibration (2) are holomorphic
Lagrangian abelian varieties. The holomorphic symplectic structure on MR3×S1 is
determined from the hyperKähler structure at a certain point on the twistor sphere
of complex structures usually called complex structure I.

2.2 Holomorphic factorization

In [12] using supersymmetric path integral version of the localization formula of
Atiyah-Bott [13] and Berline-Vergne [14] it was shown that the partition function of
N = 2 gauge theory on four-sphere is computed by the finite-dimensional integral
over the Cartan of the Lie algebra of the gauge group

ZS4 =

ˆ
µ(a)Z(a)Z(a) (3)

where µ(a) is a certain measure computed from the Atiyah-Singer index theorem for
transversally elliptic operators [15]. This result established that the partition func-
tions of the N = 2 supersymmetric gauge theories on a four-sphere have factor-
ization property similar to the partition functions of the two-dimensional conformal
field theories. The holomorphic or chiral block Z(a) was identified with Nekrasov’s
partition function of the equivariant topological Donaldson-Witten gauge theory,
also called gauge theory in the Ω -background [8]. This function Z(a) can be found
by the cohomological computation on the moduli space of the BPS configurations
of the gauge theory called instantons [16], [17], [7], [8], [18] [19].

For the review of supersymmetric localization in gauge theories in different di-
mensions leading to the result similar in spirit to the factorization equation (3), see
the review of collected papers [20]

The factorization (3) suggests that Z(a) is like a conformal block of some algebra
of symmetries of the 2d conformal field theory. What is this algebra exactly and
where does it come from?
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3 Quantum algebras

3.1 Quantum algebras: CFT type

For certain N = 2 gauge theories, the answer to the last question of the previous
paragraph has been discovered in a beautiful paper by Alday-Gaiotto-Tachikawa
[21].

Namely, for the 4d N = 2 gauge theories of the class named S(C,g), AGT iden-
tified the holomorphic block (Nekrasov’s partition function) Z(a) in the four-sphere
partition function (3) with the conformal block in the correlation function (1) for a
certain operator in two-dimensional conformal field theory of Toda for Lie algebra
g on the Riemann surface C. The 4d N = 2 supersymmetric gauge theory S(C,g)
is defined as a quantum field theory obtained by the compactification of the (0,2)
supersymmetric self-dual 6d tensor theory of ADE type g on the Riemann surface
C, possibly with punctures and certain data at the punctures [22].

The integrable system (2) which corresponds to the supersymmetric gauge the-
ories of class S(g,C) is Hitchin system [23] on C for the Lie algebra g. The phase
space MR3×S1 is identified with the moduli space MHit(C,g) of G-Higgs bundles
on C, and the base MR4 is the space of action variables, or in other words, it is the
space where Hitchin Hamiltonians are taking values.

The function Z(a) is a conformal block of the algebra called W (g)-algebra
which is a generalization of the Virasoro symmetry algebra to higher rank, so that
W (sl2) = Vir.

Consequently, the relation between the gauge theory of class S(C,g), the inte-
grable system and the conformal theory can be summarized by the diagram

4d QFT: MR3×S1 for S(C,g)

MHit(C,g) W (g)-algebra on C

(4)

The link between MHit(C,g) and the W (g) algebra is understood after Drinfeld-
Sokolov [24], Feigin-Frenkel [25], Nekrasov-Witten [26], Teschner [27]. Namely,
the W -algebra that emerges is the quantized algebra on the space of opers. The space
of opers is obtained by Poisson reduction from a hyperplane in a coadjoint Kac-
Moody Lie algebra by the loop nilpotent algebra, while that hyperplane is identified
with the space of GC-flat connections ∂z+A on a punctured disc, see E. Frenkel 2002
lecture [28]. The space of GC-flat connection as a complex variety is isomorphic to
MHit(C,g) for a different choice of the complex structure on the twistor sphere,
usually called J in contrast to the complex structure I in which MHit(C,g) has the
geometry of the algebraic integrable system

What replaces the W (g)-algebra for the moduli space of vacua MR3×S1 for
generic N = 2 gauge theory, of not necessarily class S?
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3.2 Quantum algebras: generic proposition

Proposition. To the generic hyperKähler moduli space of vacua M ≡MR3×S1
R

there
is associated the two-parametric W -algebra Wε1,ε2(M) which is defined as the ε1-
quantized algebra of holomorphic functions on space M in the complex structure
ζ = Rε2 where ζ ∈ CP1 is the twistor parameter of the twistor sphere of complex
structures on the hyperKähler manifold M in the limit R→ 0.

Besides previously mentioned papers, this proposition links to the works of
Kontsevich-Soibelman [29], Gukov-Witten [30], Kapustin-Witten [31], Gaiotto-
Moore-Neitzke [32], Fock-Goncharov [33], Gaiotto [34], Cecotti-Neitzke-Vafa [35].

In particular, the point ζ = 0 is the complex structure I in which M is the com-
plex phase space of an integrable system.

The global holomorphic sections of the quantized algebra of holomorphic func-
tions M are identified with the quantum commuting Hamiltonians of the quan-
tum integrable system with quantum Planck constant h̄ = ε1 [36]. The non-zero
ε2-parameter deforms the commutative algebra of quantum Hamiltonians of an in-
tegrable system into an associative algebra of quantum integrals of motion of auxil-
iary low-dimensional quantum field theory: W -algebra. For the 4d gauge theory of
class S(C,g), this low-dimensional theory is two-dimensional quantum Toda field
theory.

3.3 Quantum algebras: lattice model type

The generic proposition of Section 3.2 can be tested more precisely in the different
class of theories rather than class S(C,g), namely in the class N = 2 gauge theories
called quiver gauge theories [37].

The quiver gauge theory is defined by a graph Γ with some data assigned to the
nodes and edges. To each node i we assign a positive integer ni, which is a rank of
the factor of the gauge group U(ni) associated to this node, and a complex number
qi with |qi| < 1 which is the exponentiated coupling constant for the given gauge
group factor U(ni). To each edge e : i→ j we assign a complex number me which is
a mass of the hypermultiplet in the bi-fundamental representation (n̄i,n j) between
the nodes i and j.

Using arguments from string theory and brane dualities, the phase space of
the integrable system underlying this class of theories was identified by Kapustin-
Cherkis [38] as the moduli space of the GΓ monopoles on R2× S1. The derivation
of this result from the BPS-style localization computations on the moduli space of
quiver instantons was found in [19].

Here GΓ is the Lie group with the simply-laced (ADE) Dynkin graph isomoprhic
to Γ .
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For a Riemann surface C, the moduli space of monopoles on C× S1 can be
thought of as a moduli space of group version of the moduli space of Higgs bundles
on C [39].

Namely, one defines this space similar to Hitchin as the space of pairs (holomor-
phic G-bundle on C, Higgs field g(x)), except that now the Higgs field g(x) is taken
to be a meromorphic Lie group valued field, a section of AdG, rather than a Lie
algebra valued field φ(x), a section of adg⊗KC in the usual Hitchin case. (Here x
denotes a complex coordinate on C.)

In the case of the usual Lie algebra valued Hitchin system, the ring of the com-
muting Hamiltonians is generated by the global sections of polynomial adjoint in-
variant functions on the Lie algebra g evaluated on the Lie algebra valued Higgs
field φ(x). The ring of the adjoint invariant functions is generated by the fundamen-
tal invariants of degrees mi +1 where mi are the Coxeter exponents of G.

In the case of the group valued Hitchin system the ring of the commuting Hamil-
tonians is generated by the global sections of polynomial adjoint invariant functions
on the Lie group G evaluated on the group valued Higgs field g(x). The ring of
adjoint invariant functions on the group is generated by the characters χi = trRI of
the fundamental representations Ri, that is highest weight irreducible representation
with the highest weight given by a fundamental weight.

In the case of C = C ' R2 with no punctures, the global holomorphic sections
of trRi g(x) are polynomials of degrees ni defined by the ranks of the gauge group
factors U(ni) of the N = 2 4d gauge theory

trRi g(x) = xni +ui,1xni−1 + . . .ui,ni , i ∈ nodes of Γ . (5)

The coefficients (ui,1, . . . ,ui,ni)i are the Poisson commuting Hamiltonian func-
tions on the complex phase space of an integrable system: the moduli space of
monopoles on C×S1.

Moreover, the phase space of monopole integrable system can be identified with
a symplectic leaf in the Poisson-Lie loop group {g(x)} [40]. The Poisson structure
on this Poisson-Lie group is of quasi-triangular type defined either by a classical
rational type r-matrix if C ' C is the complex affine line, or by a trigonometric r-
matrix if C 'C× 'C/Z is a cylinder, or by an elliptic r-matrix if C 'C/(Z+ τZ)
is an elliptic curve.

The quantization of such a Poisson-Lie group produces the famous quantum
groups of Drinfeld [41] and Jimbo [42] which are the quasi-triangular Hopf algebras
(with quantum R-matrix) underlying the solvability of the quantum spin chains of
various types and the Bethe ansatz [43]. The commuting Hamiltonians, as opera-
tors of the quantum group in a representation on a physical Hilbert space W , can
be constructed by taking the trace of R-matrix trV RV,W over an auxiliary space V .
Their commutativity is implied by the Yang-Baxter equation which is satisfied by
the R-matrix.

The explicit algebraic objects that replace the characters χi = trRi after the quan-
tization have been constructed by Frenkel-Reshetikhin [44] and were called q-
characters for affine quantum algebra Uq(ĝ) associated to the Poisson-Lie group
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of trigonometric type for C =C×. Here the parameter q = exp(ε1) is the exponenti-
ated Planck constant. At the same time, the commutative algebra of the q-characters
was identified by Frenkel-Reshetikhin with the q-deformation of the classical W -
algebra [44]. The polynomiality conjecture of q-characters of [44] has been proven
in [45].

On the other hand, the same algebraic objects, the q-characters, were obtained
from the study of the equivariant cohomology of instanton moduli spaces in quiver
gauge theories on Cq1,q2 in [46] in the limit q2 = 1, which justifies the q-version of
the triangle relation analogous to (4):

4d QFT: MR3×S1 for
Γ -quiver gauge theory

MMonopoles(C×S1,gΓ ) Wq1,q2(gΓ )-algebra on C
(6)

Furthermore, following the approach in [19, 46], the two-parametric q1,q2-
deformation of the characters, called q1,q2-characters were obtained from the ge-
ometry of the quiver instanton moduli spaces in [47], and in [48] it was shown
that gauge-theory construction of q1,q2-characters is isomorphic to the Frenkel-
Reshetikhin definition [49] of q-deformed W -algebras Wq1,q2(g). This supports the
two-parametric (q1,q2) relation (6).

While the geometric Langlands program can be embedded into the context of the
diagram (4) [50], [31], [26] relating to the quantization of the Hitchin system, differ-
ential equations and conformal field theories, the quantum field theory context for
the q-geometric Langlands program [49] relating to the quantization of the system
of periodic monopoles, difference equations and lattice models is provided by the
diagram (6).

The horizontal arrow in (6) denotes that Wq1,q2(gΓ ) is obtained by a quantization
of the Poisson algebra of functions on the space of q-opers [51, 52], and that the
Poisson structure on the space of q-opers naturally arises from the Poisson structure
on the moduli space of monopoles on the twisted product C×q S1 for C ' C×. In
turn, the symplectic structure on the monopole moduli space on the twisted prod-
uct C×q S1 comes from the hyperKäler rotation on the P1-twistor sphere of com-
plex structures on the monopole moduli space on the direct product space C× S1.
This justifies the generic Proposition 3.2 in the context of quiver gauge theories
and monopoles integrable systems on C× S1. Also, the construction of Wq1,q2(gΓ )
algebras from quiver gauge theories on C2

q1,q2
gives a natural q2-deformation of

the commutative K-theory ring of the representation theory of Uq1(Lg), obtained
in a geometrical way by Nakajima from the quiver variety associated to the same
quiver [53], into an associative non-commutative algebra. The representation theory
meaning of this algebra remains to be clarified.
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Statistical mechanics for complex systems: On
the structure of q-triplets

Constantino Tsallis

Abstract A plethora of natural, artificial and social complex systems exists which
violate the basic hypothesis (e.g., ergodicity) of Boltzmann-Gibbs (BG) statistical
mechanics. Many of such cases can be satisfactorily handled by introducing non-

additive entropic functionals, such as Sq ≡ k 1−∑
W
i=1 pq

i
q−1

(
q ∈ R; ∑

W
i=1 pi = 1

)
, with

S1 = SBG≡−k ∑
W
i=1 pi ln pi. Each class of such systems can be characterized by a set

of values {q}, directly corresponding to its various physical/dynamical/geometrical
properties. A most important subset is usually referred to as the q-triplet, namely
(qsensitivity,qrelaxation,qstationarystate), defined in the body of this paper. In the BG limit
we have qsensitivity = qrelaxation = qstationarystate = 1. For a given class of complex sys-
tems, the set {q} contains only a few independent values of q, all the others being
functions of those few. An illustration of this structure was given in 2005 [Tsallis,
Gell-Mann and Sato, Proc. Natl. Acad. Sc. USA 102, 15377; TGS]. This illustra-
tion enabled a satisfactory analysis of the Voyager 1 data on the solar wind. But the
general form of these structures still is an open question. This is so, for instance, for
the challenging q-triplet associated with the edge of chaos of the logistic map. We
introduce here a transformation which sensibly generalizes the TGS one, and which
might constitute an important step towards the general solution.

1 Introduction

The pillars of contemporary theoretical physics may be considered to be Newtonian,
quantum and relativistic mechanics, Maxwell electromagnetism, and Boltzmann-
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Gibbs (BG) statistical mechanics (microscopic theory consistent with thermody-
namics). Statistical mechanics is in turn grounded in electromechanics (meaning
by this the set of all mechanics and electromagnetism) and in the theory of prob-
abilities. The BG theory can be formally constructed by adopting the BG entropic
functional SBG = −k ∑

W
i=1 pi ln pi, with ∑

W
i=1 pi = 1, k being a conventional positive

constant (usually taken to be the Boltzmann constant kB). This hypothesis is known
to be fully satisfactory for dynamical systems satisfying simple properties such as
ergodicity.

For more complex systems, the BG entropy can be inadequate, even plainly mis-
leading. When this happens, must we abandon the statistical mechanical approach?
It was advanced in 1988 [1] that this is not necessary. Indeed, it suffices to con-
sider entropic functionals different from SBG, and reconstruct statistical mechanics
on more general grounds. The so-called nonextensive statistical mechanics follows

along this path, based on the entropy Sq = k 1−∑
W
i=1 pq

i
q−1 (q ∈ R; S1 = SBG). It can

be easily verified that, if A and B are any two probabilistically independent systems
(i.e., pA+B

i j = pA
i pB

j ), then Sq(A+B)
k =

Sq(A)
k +

Sq(B)
k +(1−q) Sq(A)

k
Sq(B)

k . In other words,
Sq is nonadditive for q 6= 1, in contrast with SBG which is additive.

The optimization of Sq under appropriate constraints yields distributions such as
the q-exponential one pq(x) ∝ [1− (1−q)βx]1/(1−q) ≡ e−βx

q or the q-Gaussian one

pq(x) ∝ e−βx2

q (see [2] for an introductory text). This and similar generalizations of
the BG statistical mechanics have been shown to provide uncountable predictions,
verifications, and applications in natural, artificial and social complex systems. A
regularly updated bibliography as well as selected theoretical, experimental, obser-
vational, and computational papers can be seen at http://tsallis.cat.cbpf.br/biblio.htm
Among recent applications we mention the experimental validation [3] (accom-
plished in granular matter) of a 20-year-old prediction, the emergence of neat q-
statistical behavior in high-energy collisions at LHC/CERN along 14 experimental
decades (see [4] for instance), a notable numerical discovery in the celebrated stan-
dard map [5], and the connection with networks (see [6] for instance).

2 q-triplets

The solution of the differential equation

dy
dx

= a1y (y(0) = 1) (1)

is given by y = ea1x. The solution of the more general equation

dy
dx

= aqyq (y(0) = 1) (2)

http://tsallis.cat.cbpf.br/biblio.htm
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is given by y = eaqx
q . These facts in the realm of nonextensive statistical mechanics

suggested a conjecture in 2004 [7], namely that there could exist in nature q-triplets
as indicated in Table 1 and [8]. The first verification of the conjecture was done in
2005 by NASA researchers Burlaga and Vinas in the solar wind [9].

x a y(x)

Stationary state distribution Ei −β Zqstationarystate p(Ei)

= e
−βqstationarystate Ei
qstationarystate

Sensitivity to the initial conditions t λqsensitivity ξ (t) = e
λqsensitivity t
qsensitivity

Typical relaxation of observable O t −1/τqrelaxation Ω(t)≡ O(t)−O(∞)
O(0)−O(∞)

= e
−t/τqrelaxation
qrelaxation

Table 1: Three possible physical interpretations of Eq. (2) within nonextensive sta-
tistical mechanics. In the BG limit we have qsensitivity = qrelaxation = qstationarystate = 1.
For one dimensional dynamical systems it is qentropyproduction = qsensitivity, where
qentropyproduction denotes the index q for which Sq increases linearly with time t.
From [8].

Since then a plethora of q-triplets and directly related quantities have been found
in solar plasma [10–13], the ozone layer [14], El Niño/Southern Oscillations [15],
geological faults [16], finance [17, 18], DNA sequence [19], logistic map (see [20–
31]), and elsewhere [32, 33].

3 Connections between q-indices

Some very basic points can be addressed at this stage: How many indices q can
be systematically defined? How many of them are independent? Through what rela-
tions can all the others be calculated? To what specific physical/mathematical/proba-
bilistic/dynamical property is each of them associated?

As we shall see, there are many more than three relevant q-indices. Nevertheless,
the q-triplet plays a kind of guiding role in questions such as what is the correct
entropy to be used, at what rhythm does it relax to a stationary state, and how can
this stationary state be characterized. Consistently, in the BG limit all the indices q
are expected to be equal among them and equal to unity.
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Inspired by the specific values for the q-triplet observed by NASA [9], a path was
developed in [34]. Two self-dual transformations admitting q = 1 as a fixed point
were introduced, namely the additive duality q→ 2−q and the multiplicative duality
q→ 1/q. These simple transformations had already appeared in various contexts
in nonextensive statistical mechanics (see [2] and references therein). The novelty
in [34] is that they were used to systematically construct a mathematical structure,
which we describe in what follows. We first define the transformations µ and ν :

µ → q2(q) = 2−q → 1
1−q2(q)

=
1

q−1
, (3)

ν → q0(q) =
1
q
→ 1

1−q0(q)
=

1
q−1

+1 . (4)

The subindices 2 and 0 will become clear soon. We straightforwardly verify µ2 =
ν2 = 1, νµ = (µν)−1. Also, we can analogously define (µν)m and (νµ)n with
integer numbers(m,n). This set of transformations enables (see [2,34]) the definition
of a simple structure (hereafter referred to as the TGS structure). The NASA q-triplet
for the solar wind found an elegant description within this structure, as shown later
on in this paper. Not so the logistic-map edge-of-chaos q-triplet, and others. As
a possible way out of this limitation, a generalization of the TGS structure was
proposed in [8], which we review now.

Let us consider the following transformation:

qa(q) =
(a+2)−aq
a− (a−2)q

(a ∈R) , (5)

or, equivalently,
1

1−qa(q)
=

1
q−1

+1− a
2
, (6)

or, even
2

2−a
1

1−qa(q)
=

2
2−a

1
q−1

+1 . (7)

We straightforwardly verify that q2 = 2− q (additive duality) and q0 = 1/q
(multiplicative duality) [2, 34, 38, 39]. Also, we generically verify selfduality, i.e.,
qa(qa(q)) = q ,∀(a,q), as well as the BG fixed point, i.e., qa(1) = 1 ,∀a: See the
figure in [8]. The duality (5) is in fact a quite general ratio of linear functions of q
which satisfies these two important properties (selfduality and BG fixed point). It
transforms biunivocally the interval [1,−∞) into the interval [1, a

a−2 ]. Moreover, for
a = 3 and a = 5 we recover respectively q3 =

5−3q
3−q [35] and q5 =

7−5q
5−3q [36].

Let us combine now two1 transformations of the type (5) (or, equivalently, (6)):

µ → qa(q) =
(a+2)−aq
a− (a−2)q

→ 1
1−qa(q)

=
1

q−1
+1− a

2
, (8)

1 Of course, it is also possible to combine, along similar lines, three or more such transformations.
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and

ν → qb(q) =
(b+2)−bq
b− (b−2)q

→ 1
1−qb(q)

=
1

q−1
+1− b

2
, (9)

with b 6= a. It follows that

µν → qa(qb(q)) =
(b−a)− (b−a−2)q
(b−a+2)− (b−a)q

→ 1
1−qa(qb(q))

=
1

1−q
+

b−a
2

,

(10)
and

νµ → qb(qa(q)) =
(a−b)− (a−b−2)q
(a−b+2)− (a−b)q

→ 1
1−qb(qa(q))

=
1

1−q
+

a−b
2

,

(11)
with µ2 = ν2 = 1, νµ = (µν)−1, and qa(qa(q)) = q ,∀(a,q).

For integer values of m and n, we can straightforwardly establish

(µν)m → q(m)
a,b (q)≡ qa(qb(qa(qb(...)))) =

m(b−a)− [m(b−a)−2]q
[m(b−a)+2]−m(b−a)q

(12)

→ 1

1−q(m)
a,b (q)

=
1

1−qa(qb(qa(qb(...))))
=

1
1−q

+m
b−a

2
, (13)

and

(νµ)n → q(n)b,a(q)≡ qb(qa(qb(qa(...)))) =
n(a−b)− [n(a−b)−2]q
[n(a−b)+2]−n(a−b)q

(14)

→ 1

1−q(n)b,a(q)
=

1
1−qb(qa(qb(qa(...))))

=
1

1−q
+n

a−b
2

. (15)

As we see, q(1)a,b = qa(qb(q)) and q(1)b,a = qb(qa(q)).
For a 6= b and any integer values for (m,n), the above general relations can be

conveniently rewritten as follows:

2
b−a

1

1−q(m)
a,b (q)

=
2

b−a
1

1−q
+m (m = 0,±1,±2, ...) , (16)

and

2
a−b

1

1−q(n)b,a(q)
=

2
a−b

1
1−q

+n (n = 0,±1,±2, ...) . (17)

For m = n = 1 and (a,b) = (2,0) we recover the simple transformations q(1)2,0 = 2− 1
q

(see Eq. (7) in [37], and footnote on page 15378 of [34]) and q(1)0,2 =
1

2−q .
We can also check that with m = 0,±1,±2, ..., (µν)mµ and ν(µν)m correspond

respectively to
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2
b−a

1

1−q(m,µ)
a,b (q)

− 2−a
2(b−a)

=−
[ 2

b−a
1

1−q
− 2−a

2(b−a)

]
−m , (18)

and

2
b−a

1

1−q(ν ,m)
a,b (q)

− 2−b
2(b−a)

=−
[ 2

b−a
1

1−q
− 2−b

2(b−a)

]
+m . (19)

Analogously we can check that with n = 0,±1,±2, ..., (νµ)nν and µ(νµ)n cor-
respond respectively to

2
a−b

1

1−q(n,ν)b,a (q)
− 2−b

2(a−b)
=−

[ 2
a−b

1
1−q

− 2−b
2(a−b)

]
−n , (20)

and

2
a−b

1

1−q(µ,n)b,a (q)
− 2−a

2(a−b)
=−

[ 2
b−a

1
1−q

− 2−a
2(a−b)

]
+n . (21)

As we see, the structures that are involved exhibit some degree of complexity.
Let us therefore summarize the frame within which we are working. If we have
an unique parameter (noted a) to play with, we can only transform q through Eq.
(5). If we have two parameters (noted a and b) to play with, we can transform q in
several ways, namely through Eqs. (13), (15), (18), (19), (20) and (21), with m =
0,±1,±2, ... and n = 0,±1,±2, ...; the cases m = 0 and n = 0 recover respectively
Eqs. (8) and (9). The particular choice (a,b) = (2,0) recovers the TGS structure
introduced in [2, 34, 38, 39]. Also, the particular choice (a,b) = (−1,0) within the
transformation (10) recovers the transformation q→ 1+q

3−q , which plays a crucial role
in the q-generalized Central Limit Theorem [40]; coincidentally (or not), the relation
b−a = 1 recovers the γ = 1/2 case of Eq. (32) of [8] (see also [41–43]).

To make the approach introduced in [8] even more powerful, we may introduce
now the most general self-dual ratio of linear functions of q, which has the q = 1
fixed point. It is given by

qa1,a2(q) =
a1−a2q

a2− (2a2−a1)q
(a1 ∈R; a2 ∈R) , (22)

or, equivalently,
1

1−qa1,a2(q)
=

1
q−1

+1+
a2

a2−a1
, (23)

or, even,
a2−a1

2a2−a1

1
1−qa1,a2(q)

=
a2−a1

2a2−a1

1
q−1

+1 . (24)

The particular case
(a1,a2) = (a+2,a) (25)
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recovers the transformation introduced in Eq. (5) [8]. All the steps from Eq. (8) to
Eq. (21) can easily be generalized, involving now four parameters, (a1,a2,b1,b2),
instead of only two, (a,b). It becomes clear that the 4-parameter structure that can
be constructed with the transformation (24) remains isomorphic to the set Z of in-
teger numbers. Of course, to go from the 4-parameter structure to the 2-parameter
structure we need to assume also, analogously to Eq. (25), that (b1,b2) = (b+2,b).

4 Some final remarks

Essentially, we reproduce here the final remarks in [8]. The data observed in [9] for
the solar wind are consistent with the q-triplet [34]:
(qsensitivity,qstationarystate,qrelaxation) = (−0.5,7/4,4).

If we identify, in Eq. (10), (q,q(1)a,b) ≡ (qsensitivity,qrelaxation) we can verify that,
for a− b = 2, the data are consistently recovered. Moreover, if we use once again
Eq. (10) and a−b= 2, but identifying now (q,q(1)a,b)≡ (qrelaxation,qstationarystate), once
again the data are consistently recovered. The particular case (a,b) = (2,0) was first
proposed in [34]. In other words, it is possible to consider this q-triplet as having
only one independent value, say qsensitivity; from this value we can calculate qrelaxation
by using Eq. (10); and from qrelaxation we can calculate qstationarystate by using once
again Eq. (10). This discussion can be summarized as follows:

1
1−qsensitivity

− 1
1−qrelaxation

=
1

1−qrelaxation
− 1

1−qstationarystate
=

a−b
2

=1 . (26)

It is occasionally convenient to use the ε-triplet defined as (εsensitivity,
εstationarystate,εrelaxation) = (1−qsensitivity,1−qstationarystate,1−qrelaxation). Let us men-
tion that an amazing set of relations was found among these by [44], namely

εstationarystate =
εsensitivity + εrelaxation

2
, (27)

εsensitivity =
√

εstationarystate εrelaxation , (28)

ε
−1
relaxation =

ε
−1
sensitivity + ε

−1
stationarystate

2
. (29)

The emergence of the three Pythagorean means in this specific q-triplet remains
still today enigmatic. One could advance that these relations hide some unexpected
symmetry, but its nature remains today completely unrevealed.

Let us now focus on a different system, namely the well-known logistic map at its
edge of chaos (also referred to as the Feigenbaum point). The numerical data for this
map yield the q-triplet (qsensitivity,qstationarystate,qrelaxation) = (0.244487701...,1.65±
0.05,2.249784109...) [21, 28, 46–48].

An heuristic relation has been found [45] between these three values, namely
(using ε ≡ 1−q):
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εsensitivity + εrelaxation = εsensitivity εstationarystate . (30)

Indeed, this relation straightforwardly implies

qstationarystate =
qrelaxation−1
1−qsensitivity

. (31)

Through this relation we obtain qstationarystate = 1.65424... which is perfectly com-
patible with 1.65± 0.05. In the generalized structure that we have developed here
above, we have five free parameters (q,a1,a2,b1,b2) (or only three free parame-
ters (q,a,b) in the more restricted version presented in [8]) in addition to the in-
teger numbers (m,n). It is therefore trivial to make analytical identifications with
(qsensitivity,qstationarystate,qrelaxation) such that Eq. (30) is satisfied.

The real challenge, however, is to find a general theoretical frame within which
such identifications (and, through the freedom associated with (m,n), infinitely
many more, related to physical quantities) become established on a clear basis,
and not only through conjectural possibilities; as a simple illustration of such
q indices being associated to specific properties, we may mention the relation
[49–51] qstationarystate = τ+2

τ
, hence qstationarystate − 1 = 2(qavalanchesize − 1) with

τ ≡ 1/(qavalanchesize− 1). Such a frame of systematic identifications remains up to
now elusive and certainly constitutes a most interesting open question. Along this
line, a connection that might reveal promising is that if we assume that q is a com-
plex number (see, for instance, [52, 53]), then Eq. (5) corresponds to nonsingular
[with (a+2)(a−2)−a2 = −4 6= 0 ,∀a] Moebius transformations, which form the
Moebius group, defining an automorphism of the Riemann sphere.
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Unconventional supersymmetry: Local SUSY
without SUGRA

Jorge Zanelli

Eugene Wigner defined particle physics as a study of group representations. As-
suming spacetime to be essentially flat and therefore invariant under global (rigid)
Poincaré transformations, it was Wigner’s genius to observe that elementary par-
ticle states must correspond to irreducible representations of the Poincaré group.
Hence, the intrinsic particle properties mass and spin (M, J) should correspond to
the eigenvalues of the Casimir operators that classify those representations.

In the Standard Model, fundamental interactions result from locally realized in-
ternal symmetries (gauge groups). It has been a long-sought idea that spacetime and
internal symmetries could be combined in a natural way through a “super” symme-
try. The simplest implementation of supersymmetry (SUSY) has two fundamental
weaknesses:

a) It predicts for each fermionic matter field a bosonic one in the same gauge repre-
sentation and with the same mass, and vice-versa;

b) In spite of decades of intensive search, no experimental evidence of SUSY has
been found yet.

The fact that no trace of SUSY has been observed so far has been excused by
saying that it is a broken symmetry at experimentally accessible energies, but it
must be unbroken at sufficiently high energy. A statement of this sort can never be
falsified because it can always be said that the energy range for SUSY restoration
is such high energy that it remains unobserved, which puts SUSY on a doubtful
scientific basis.

In this work, we consider a gauge theory based on a superalgebra that includes
an internal gauge symmetry, the local Lorentz invariance and supersymmetry gen-
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erators. The important distinctive features between this theory and standard super-
symmetry are:

• The number of fermionic and bosonic states are not necessarily equal.
• There are no fermionic superpartners of gauge bosons (bosoninos), or bosonic

partners of matter (s-leptons).
• Although this supersymmetry originates in a local gauge theory and gravity is

included, there are no gravitini.
• Fermions acquire mass from the coupling to the background while bosons remain

massless.

The existence of bosonic SUSY-invariant vacua depends on the existence of glob-
ally defined Killing spinors. Hence the fact that supersymmetry is not manifest in
a given situation might be understood as a consequence of the absence of Killing
spinors, a contingent phenomenon rather than a mysterious breaking of a local sym-
metry.
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Analysis of the production of exotic
bottomonium-like resonances via heavy-meson
effective theory

L. M. Abreu

Abstract We analyze the production of exotic bottomonium-like resonances in the
processes involving initial bottomed meson states B̄(∗)B(∗), by using effective La-
grangians taking as guiding principles heavy quark symmetries. In this scenario,
we consider the Zb(10610) and Z′b(10650) as bound states of (B̄0B∗++B+B̄∗0) and
(B∗+B̄∗0) channels, respectively, and obtain the amplitudes of relevant processes.

1 Introduction

About five years ago, Belle Collaboration discovered two charged exotic states
Z±b (10610) and Z′±b (10650) (denoted henceforth as Z±b and Z′±b ), in ϒ (5S) →
ϒ (nS)π+π− (n = 1,2,3) and ϒ (5S)→ hb(mS)π−π− (m = 1,2) decays [1,2]. Their
favored quantum numbers are IG(JP) = 1+(1+). The masses averaged over the
five channels are mZ±b

= 10607.2± 2.0 MeV and mZ′±b
= 10652.21.5 MeV [6],

being close to the BB̄∗ and B∗B̄∗ thresholds, respectively. Also, the charge neu-
tral partner of Zb(10610) Belle Collaboration has found in Dalitz plot analysis of
ϒ (5S)→ϒ (2S)π0π0, with mass being mZ0

b
= 10609± 6 MeV, suggesting that the

three sets of Zb resonances might form isospin triplets and need at least four quarks
as minimal constituents. Besides, Belle reported the observation of these two Z(′)

b in
ϒ (5S)→ (BB̄∗+ c.c.)π and ϒ (5S)→ B∗B̄∗π decays [4].

Many interesting theoretical discussions concerning the structure and properties
of Zb states have been made. In this sense, in the present work we are interested
in analyzing the hadronic effects on the production of Z(′)

b resonances. The inspira-
tion relies on previous works, in which it is discussed the interaction between the
exotic X(3872) state and light hadrons, since it can be absorbed by the comoving
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light mesons or produced from the interaction between heavy mesons [5–12]. Thus,
here we investigate the processes B̄B→ πZb, B̄∗B→ πZ(′)

b and B̄∗B∗→ πZ(′)
b within

the framework of Heavy-Meson Effective Theory (HMET), i.e.,, with effective La-
grangians constructed, taking as guiding principles heavy quark symmetries. The
leading-order amplitudes are determined and discussed.

2 Formalism

Here we introduce the effective theory known as Heavy-Meson Effective Theory
(HMET). It is characterized by effective Lagrangians respecting chiral, heavy-quark
spin, Lorentz, parity and charge conjugation symmetries, being given by

L = LM +LZ(′) . (1)

In Eq. (1), LM is the lowest-order effective Lagrangian carrying the kinetic terms
and couplings between light- and heavy-meson fields [13–20],

LM = −i Tr
[
H̄(Q)bv ·Da

b H(Q)
a

]
− i Tr

[
H(Q̄)bv ·Da

b H̄(Q̄)
a

]
+ig Tr

[
H̄(Q)bH(Q)

a γ
µ

γ
5
]
(Aµ)

a
b + ig Tr

[
H(Q̄)bH̄(Q̄)

a γ
µ

γ
5
]
(Aµ)

a
b, (2)

where we have introduced the superfields:

H(Q)
a =

(
1+ vµ γµ

2

)(
P∗(Q)

aµ γ
µ −P(Q)

a γ
5
)
,

H(Q̄)a =
(

P∗(Q̄)a
µ γ

µ −P(Q̄)a
γ

5
)(1− vµ γµ

2

)
,

H̄(Q)a = γ
0H(Q)†

a γ
0, H̄(Q̄)

a = γ
0H(Q̄)†a

γ
0, (3)

with Q= c,b being the index with respect to the heavy-quark flavor group SU(2)HF ;
v the velocity parameter; a the triplet index of the SU(3)V group; and P(Q/Q̄)

a and
P∗(Q/Q̄)

aµ the pseudoscalar and vector heavy-meson fields forming a 2̄ representation
of isospin group, i.e.,

P(b)
a =

(
B−, B̄0) , P(b̄)

a =
(
B+,B0) , (4)

for the bottomed pseudoscalar meson field, and analogously for the vector case. The
heavy vector meson fields obey the transversality conditions: v ·P∗(Q/Q̄)

a = 0.
Also, in Eq. (1) we have defined
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(Dµ)
a
b =

[
∂µ +

1
2
(
ξ

†
∂µ ξ +ξ ∂µ ξ

†)]a

b
, (Aµ)

a
b =

1
2
(
ξ

†
∂µ ξ −ξ ∂µ ξ

†)a
b ,

ξ = e
i
f M, M =

(
π0√

2
π+

π− − π0√
2

)
. (5)

In Eq. (5), M represents the light meson fields, with the ξ -field transforming as
LξU† = Uξ R† under chiral transformations; g and f are coupling and pion decay
constants, respectively.

The term LM in Eq. (1) is the lowest-order effective Lagrangian coupling the
Z(′)µ fields to B(∗)-mesons:

LZ(′) = −i
z(′)

2
Tr
[
Z

(′)a
b µ

H̄(Q̄)
a γ

µ H̄(Q)a
]
+ c.c., (6)

where z(′) is the coupling constant; Z
(′)

µ is the superfield representing Zb and Z′b
states [18, 20, 21],

Z
(′)

µ =

(
1+ vρ γρ

2

)
Z(′)

µ γ
5
(

1− vσ γσ

2

)
, (7)

with Z(′)µ being a 2×2 matrix representing quantized fields associated to the Z(′)µ

state:

Z(′)
µ =

(
1√
2
Z(′)0

µ Z(′)+
µ

Z(′)−
µ − 1√

2
Z(′)0

µ

)
. (8)

In Table 1 we outline transformation properties of the superfields under the rele-
vant symmetries.

Now we can determine scattering amplitudes of the processes B̄(∗)B(∗)→ πZ(′)
b .

Following Ref. [21], we assume that Zb couples to the components (B̄0B∗+ +
B+B̄∗0), while Z′b couples only to the channel (B∗+B̄∗0). In this sense, there is no
contribution to B̄B→ πZ′b, since we do not consider the BB̄∗Z′b vertex.

Then, based on the effective Lagrangians introduced above, we determine the
leading-order amplitudes, i.e., the amplitudes associated to processes represented
by one-heavy meson exchange diagrams. We fix the velocity parameter to be
vµ = (1,0), which in the present formalism means the transition to a non-relativistic
approach. Also, we approximate the sum over the polarizations to ∑ε iε∗ j ∼ δ i j.
Therefore, with these assumptions, the squared transition amplitudes, averaged over
the spins and isospins of the particles in the initial and final states, can be written as:
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Table 1: Transformations of the superfields under chiral, heavy-quark spin, Lorentz,
parity and charge conjugation symmetries. U is a matrix acting on unbroken SU(2)V
group; S(Q) is a rotation matrix acting on heavy-quark spin (HQS); S(Q̄) is a rotation
matrix acting on heavy-antiquark spin; D = D(Λ) is the spinor representation of
Lorentz transformation Λ ; C = iγ2γ0 is the charge conjugation matrix. The negative
charge conjugation for the Z field holds for neutral components.

Transformation / field H(Q)
a H̄(Q)a H(Q̄)a H̄(Q̄)

a Z(′)
µ ab

Chiral H(Q)
b U†

ba UabH̄(Q)b UabH(Q̄)b H̄(Q̄)
b U†

ba UacZ(′)
µ cdU†

db

HQS S(Q)H(Q)
a H̄(Q)aS(Q)† H(Q̄)aS(Q̄)† S(Q̄)H(Q̄)a S(Q)Z(′)

µ abS(Q̄)†

Lorentz DH(Q)
a D−1 DH̄(Q)aD−1 DH(Q̄)aD−1 DH̄(Q̄)

a D−1 Λ ν
µ DZ(′)

ν abD−1

Parity −H(Q)
a −H̄(Q)a −H(Q̄)a −H̄(Q̄)

a −Z(′)µ

ab

Charge Conjugation CH(Q̄)aTC CH̄(Q̄)T
a C CH(Q)T

a C CH̄(Q)aTC −CZ(′)µ

ab C =−Z(′)µ

ab

∣∣∣M (B̄B→πZb)
1

∣∣∣2 =
1
4

g2z2

f 2
|pπ |2(

ẼB∗ −Eπ −∆
)2 ,∣∣∣M (B̄∗B→πZb)

2

∣∣∣2 =
1
16

g2z2

f 2
|pπ |2(

ẼB∗ −Eπ

)2 ,∣∣∣M (B̄∗B∗→πZb)
3

∣∣∣2 =
5
72

g2z2

f 2 |pπ |2
|pπ |2(

ẼB∗ −Eπ +∆
)2 ,∣∣∣M (B̄∗B→πZ′b)

4

∣∣∣2 =
1
16

g2z′2

f 2
|pπ |2(

ẼB−Eπ −∆
)2 ,∣∣∣M (B̄∗B∗→πZ′b)

5

∣∣∣2 =
7
72

g2z′2

f 2 |pπ |2
|pπ |2(

ẼB∗ −Eπ

)2 . (9)

In Eq. (9), pπ and Eπ =
√

m2
π + |pπ |2 are the tri-momentum and energy of the pion,

ẼB(∗) = p2
B(∗)/2mB(∗) is the kinetic energy of incoming particle 1 for every respective

reaction and ∆ = mB∗ −mB.
Taking the isospin-spin averaged squared transition amplitudes of the processes

discussed above in CM frame, the four-vectors associated to the incoming bottomed
mesons are p1 = (E1,p), p2 = (E2,−p); and to outgoing particles are p3 = (Eπ ,pπ)
and p4 = (EZ ,−pπ). The total energy of incoming particles can be approximated to
E1 +E2 ≈m1 +m2 +ECM , where ECM = |p|2/2µ12 is the collision energy, with µ12
being the reduced mass of incoming bottomed mesons [5]. Making use of conserva-
tion of energy, the pion momentum can be written as function of collision energy:
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|pπ | ≈ {[m1+m2−mZ +ECM]2−m2
π}

1
2 . Thus, using these definitions in CM frame,

Eq. (9) can be given properly as function of ECM .

3 Results

In order to analyze the Z(′)
b -production in Eq. (9) as function of collision energy ECM ,

we use the following values for physical quantities and coupling constants [6,21,22]:
mπ = 137.3 MeV; mB = 5279.45 MeV; mB∗ = 5324.83 MeV; mZ = 10607.2 MeV;
mZ′ = 10652.2 MeV; g = 0.6; f = 92.2 MeV.

Focusing on z and z′ coupling constants, the values considered here are those
obtained in Ref. [21] for original coupling constants with dimensions of E−

1
2 within

the HMET approach: 0.79 GeV−
1
2 and 0.62 GeV−

1
2 , respectively. Nonetheless, we

notice that the squared amplitudes shown in Eq. (9) must be multiplied by the factor√
8mB(∗)mB(∗)mZ(′) to account for the non-relativistic normalization of the heavy-

meson and Z fields [17]. Then we incorporate this factor in the definition of the z
and z′ couplings, yielding values with dimensions of E1.

In addition, it is important to delimit the region of validity of the present ap-
proach. Since the relevant scales for HMET are the heavy scale M (M being the
mass of the heavy meson) and the physical scale Λχ = 4π fπ ∼ 1 GeV, pπ is re-
quested to be much less than Λχ , which safely occurs considering pπ . 200 MeV.
Thus, taking the threshold and the upper bound of the pion momentum, we can es-
timate the allowed ranges of validity for the Zb production processes: 185.6 MeV
≤ E(1)

CM . 300 MeV, 140.2 MeV ≤ E(2)
CM . 250 MeV and 94.8 MeV ≤ E(3)

CM . 200
MeV for each respective reaction; while for the Z′b production processes we have:
185.2 MeV ≤ E(4)

CM . 300 MeV, 139.8 MeV ≤ E(5)
CM . 250 MeV.

The squared transition amplitudes in Eq. (9) are plotted in Fig. 1 as function
of collision energy ECM . In the case of Zb-production, it can be noticed that all
processes have magnitudes of the same order with respect to the allowed range of
ECM , but the B̄B→ πZb acquires the greatest magnitude in greater values of collision
energy. Taking the upper limits of collision energy ECM for each respective reaction
(i.e., considering |pπ | ' 200 MeV), the B̄B channel yields the biggest magnitude by
a factor about 3 and 1.5 with respect to other reactions B̄∗B and B̄∗B∗, respectively.

In the case of Z′b production (right panel in Fig. 1), the process B̄∗B∗ has the
greatest magnitude in respective allowed range of ECM when compared to B̄∗B pro-
cess (we remind that B̄B→ πZ′b has a vanishing magnitude). Working with the upper
limits of ECM for each respective reaction (engendering |pπ | ' 200 MeV), the B̄∗B∗

process yields the biggest values by a factor about 2 with respect to B̄∗B channel.
Also, we see that the squared magnitudes associated to the Zb production ac-

quires larger values with respect to the allowed range of ECM with respect to the Z′b
production. In particular, at |pπ | ' 200 MeV (taking the upper limits of collision
energy ECM of each reaction), the ratio between the Zb and Z′b production squared
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Fig. 1: Left panel: squared transition amplitudes |M1|2, |M2|2 and |M3|2 (solid,
dashed and dotted lines, respectively), defined Eq. (9), as a function of collision
energy. Right panel: squared transition amplitudes |M4|2 and |M5|2 (dashed and
dotted lines, respectively), defined in Eq. (9), as a function of collision energy.

amplitudes is about 2, due to the different magnitudes of coupling constants and
multiplicative factors in amplitudes given in Eq. (9).

Acknowledgements This work has been partially funded by Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico (Brazil), Grant No. 308890/2014-0.

References

1. M. Bondar et al. (Belle Collaboration), Phys. Rev. Lett. 108, 122001 (2012); P. Krokovny et
al. (Belle Collaboration), Phys. Rev. D 88, 052016 (2013).

2. A. Hosaka et al., PTEP 2016, 062C01 (2016).
3. K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014).
4. I. Adachi et al., BELLE-CONF-1272 report, e-Print: arXiv:1209.6450 [hep-ex].
5. E. Braaten, H.-W. Hammer and T. Mehen, Phys. Rev. D 82, 034018 (2010).
6. P. Artoisenet and E. Braaten, Phys. Rev. D 83, 014019 (2011).
7. A. Esposito, F. Piccinini, A. Pilloni and A. D. Polosa, J. Mod. Phys. 4, 1569 (2013).
8. S. Cho and S. H. Lee, Phys. Rev. C 88, 054901 (2013) (arXiv:1302.6381 [hep-ph]).
9. A. L. Guerrieri, F. Piccinini, A. Pilloni and A. D. Polosa, Phys. Rev. D 90, 034003 (2014).

10. A. Martinez Torres, K. P. Khemchandani, F. S. Navarra, M. Nielsen and L. M. Abreu, Phys.
Rev. D 90, 114023 (2014) (arXiv:1405.7583 [hep-ph]).

11. A. Martinez Torres, K. P. Khemchandani, F. S. Navarra, M. Nielsen and L. M. Abreu, Acta
Phys. Pol. B Proc. Supp. 8, 247 (2015).

12. L. M. Abreu, Prog. Theor. Exp. Phys. 2016, 103B01 (2016).
13. N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989); Phys. Lett. B 237, 527 (1990).
14. E. Eichten and B. Hill, Phys. Lett. B 234, 511 (1990).
15. H. Georgi, Phys. Lett. B 240, 447 (1990).
16. H. Grinstein, Nucl. Phys. B 339, 253 (1990).



Analysis of production of exotic bottomonium-like resonances 71

17. A. V. Manohar and M. B. Wise, Heavy quark physics, Cambridge Monographs on Particle
Physics, Nuclear Physics, and Cosmology (Cambridge: Cambridge University Press, 2000).

18. R. Casalbuoni et al., Phys. Rept. 281, 145 (1997) (arXiv:hep-ph/9605342).
19. L. M. Abreu, Nucl. Phys. A 940, 1 (2015); J. Phys. Conf. Ser. 706, 042012 (2016).
20. A. Esposito et al., Phys. Lett. B 746, 194 (2015).
21. M. Cleven et al., Phys. Rev. D 87, 074006 (2013).
22. S. Ohkoda, S. Yasui, and A. Hosaka Phys. Rev. D 89, 074029 (2014).



An alternative construction for the Type-II
defect matrix for the sshG

A.R. Aguirre, J.F. Gomes, A.L. Retore, N.I. Spano, and A.H. Zimerman

Abstract In this paper we construct a Type-II defect (super) matrix for the super-
symmetric sinh-Gordon model as a product of two Type-I defect (super) matrices.
We also show that the resulting defect matrix corresponds to a fused defect.

1 Introduction

Integrable classical field theories with defects and its connection with Type-I and
Type-II Bäcklund transformations (BT) has been widely studied in recent years by
using mainly the Lagrangian formalism and the defect matrix approach [1]– [7].
The classical integrability is ensured by the derivation of modified higher order
conserved quantities, which requires explicit solutions for the corresponding defect
matrices.

On the other hand, the supersymmetric extensions for Liouville and sinh-Gordon
(sshG) models with Type-I and Type-II defects has been also discussed in [12]– [15],
and their associated defect matrices constructed.

More recently, it has been proposed in [18] that Type-II defect matrices could be
constructed as a product of two Type-I defect matrices. This proposal was checked
for the bosonic case of the mKdV hierarchy.

The aim of this paper is to verify this proposal for the sshG model and show that
the resulting defect matrix corresponds to a fused defect.
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Instituto de Fı́sica Teórica - IFT/UNESP, Rua Dr. Bento Teobaldo Ferraz 271, Bloco II, 01140-
070, São Paulo, Brasil. e-mail: jfg@ift.unesp.br,retore@ift.unesp.br,natyspano@unesp.
br,zimerman@ift.unesp.br

73© Springer International Publishing AG 2017 
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries, 
https://doi.org/10.1007/978-3-319-69164-0_10 

mailto:alexis.roaaguirre@unifei.edu.br
mailto:jfg@ift.unesp.br, retore@ift.unesp.br, natyspano@unesp.br, zimerman@ift.unesp.br
mailto:jfg@ift.unesp.br, retore@ift.unesp.br, natyspano@unesp.br, zimerman@ift.unesp.br


74 A.R. Aguirre, J.F. Gomes, A.L. Retore, N.I. Spano, and A.H. Zimerman

2 Type-I and Type II defect formulation

The Lagrangian density describing the N = 1 sshG model with Type-I defects lo-
cated at x = x1 can be written as follows:

L = θ(x1− x)L1 +δ (x− x1)LD1 +θ(x− x1)L0, (1)

with

Lp =
1
2
(∂xφp)

2− 1
2
(∂tφp)

2 + iψp(∂x +∂t)ψp− iψ̄p(∂x−∂t)ψ̄p

+4 [cosh(2φp)−1]−8iψ̄pψp coshφp, (2)

LD1 =
1
2
(φ0∂tφ1−φ1∂tφ0)− iψ1ψ0− iψ̄1ψ̄0 +2ig1∂tg1 +B(1)

0 +B(1)
1 , (3)

where φp is a real scalar field, and ψp, ψ̄p are the components of a Majorana spinor
field in the regions x> x1 (p= 0) and x< x1 (p= 1) respectively, and g1 an auxiliary
fermionic field defined at the defect point. The defect potentials are given by,

B(1)
0 = 2σ1 cosh(φ0 +φ1)+

2
σ1

cosh(φ0−φ1), (4)

B(1)
1 = 2i

√
2g1

[√
σ1 cosh

(
φ0 +φ1

2

)
(ψ̄0 + ψ̄1)+

1√
σ1

cosh
(

φ0−φ1

2

)
(ψ0−ψ1)

]
.

where σ1 represent the Bäcklund parameter. Besides the bulk field equations, we get
the following defect equations at x = x1:

∂tφ0−∂xφ1 = 2σ1 sinh(φ0 +φ1)−
2

σ1
sinh(φ0−φ1) (5)

+
√

2σ1ig1

[
sinh

(
φ0 +φ1

2

)
(ψ̄0 + ψ̄1)−

1
σ1

sinh
(

φ0−φ1

2

)
(ψ0−ψ1)

]
,

∂xφ0−∂tφ1 = 2σ1 sinh(φ0 +φ1)+
2

σ1
sinh(φ0−φ1) (6)

+
√

2σ1ig1

[
sinh

(
φ0 +φ1

2

)
(ψ̄0 + ψ̄1)+

1
σ1

sinh
(

φ0−φ1

2

)
(ψ0−ψ1)

]
,

ψ0 +ψ1 = 2

√
2

σ1
cosh

(
φ0−φ1

2

)
g1, (7)

ψ̄0− ψ̄1 = −2
√

2σ1 cosh
(

φ0 +φ1

2

)
g1, (8)

∂tg1 =

√
σ1

2

[ 1
σ1

cosh
(

φ0−φ1

2

)
(ψ1−ψ0)− cosh

(
φ0 +φ1

2

)
(ψ̄0 + ψ̄1)

]
. (9)

These defect conditions preserve the integrability of the system after considering
defect contributions to the conserved quantities [14]. The generating function for an
infinite set of modified conserved quantities depends on the existence of the defect
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matrix K1 connecting two field configurations, namely Ψ (0) = K1Ψ
(1), satisfying

the following equations:

∂±K1 = K1A(1)
± −A(0)

± K1, (10)

where ∂± = 1
2 (∂x± ∂t), l is a spectral parameter, and Ψ (p) are vector-valued fields

satisfying the associated auxiliary linear problem, ∂±Ψ (p) = −A(p)
± Ψ (p). The Lax

pair A(p)
± are 3× 3 graded matrices valued in the sl(2,1) Lie superalgebra, which

can be written in the following form:

A(p)
+ =


λ 1/2−∂+φp −1

√
iφ̄p

−λ λ 1/2 +∂+φp l1/2
√

iφ̄p

l1/2
√

iφ̄p
√

iφ̄p 2λ 1/2

 , (11)

A(p)
− =


λ−1/2 −l−1e2φp l−1/2

√
iψp eφp

−e−2φp l−1/2
√

iψp e−φp

−
√

iψp e−φp −
√

il−1/2ψp eφp 2l−1/2

 . (12)

Therefore, we find that a suitable solution for the type-I defect matrix K can be
written in the following explicit form [14]:

K1 = c1l1/2


1 σ1

l eφ1+φ0 −
√

2iσ1
l e

φ1+φ0
2 g1

σ1 e−(φ1+φ0) 1 −√2iσ1e−
(φ1+φ0)

2 g1

√
2iσ1e−

(φ1+φ0)
2 g1

√
2iσ1

l e
(φ1+φ0)

2 g1 1− σ1
l1/2

 , (13)

where c1 is a free constant parameter.
Now, the Type-II defect for the N = 1 sshG model can be constructed by con-

sidering initially a two-defects system of Type-I at different points, and then fusing
them to the same point by taking a limit in the Lagrangian density [15]– [17]. Let us
consider one of the defects placed at x = x1 and the other at x = x2. The Lagrangian
density for this system can be written as,

L = θ(x1− x)L1 +δ (x− x1)LD1 +θ(x− x1)θ(x2− x)L0

+δ (x− x2)LD2 +θ(x− x2)L2, (14)

where Lp, with p = 0,1,2, is given by eq. (2), and the two type-I defect Lagrangian
densities at x = xk, k = 1,2, are given by eq. (3). Now, we have two auxiliary
fermionic fields gk, and two free parameters σk, with k = 1,2, defined at the de-
fect positions, respectively. At the Lagrangian level, the fusing of defects can be
performed by taking the limit x2→ x1. After some manipulations, it was shown that
the fused defect is equivalent to a type-II defect [15], and takes the following form:
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LD = φ−∂t l0−
1
2

φ−∂tφ++
i
2
(ψ̄+ψ̄−−ψ+ψ−)+ i f1∂t f1 + i f̃1∂t f̃1 +B, (15)

with φ± = φ1± φ2, ψ± = ψ1±ψ2, and B = B(+)
0 +B(−)

0 +B(+)
1 +B(−)

1 the defect
potentials,

B(+)
0 = mσ

[
e(φ+−l0)+ e−(φ+−l0)

(
sinh2

(
φ−
2

)
+ cosh2

τ

)]
, (16)

B(−)
0 =

m
σ

[
e−l0 + el0

(
sinh2

(
φ−
2

)
+ cosh2

τ

)]
, (17)

B(+)
1 = −i

√
mσ

[(
e
(φ+−l0)

2 + e−
(φ+−l0)

2 coshτ

)
ψ̄+ f1 + e−

(φ+−l0)
2 sinh

(
φ−
2

)
ψ̄+ f̃1

]
+imσ

(
1+ e−(φ+−l0) coshτ

)
cosh

(
φ−
2

)
f1 f̃1, (18)

B(−)
1 = −i

√
m
σ

[(
e−

l0
2 + e

l0
2 coshτ

)
ψ+ f̃1− e

l0
2 sinh

(
φ−
2

)
ψ+ f1

]
+

im
σ

(
1+ el0 coshτ

)
cosh

(
φ−
2

)
f1 f̃1, (19)

where it has been used σ1 = σe−τ ,σ2 = σ eτ , and the reparametrizations

φ0 → −l0 +
φ+

2
− ln

[
cosh

(
φ−
2
− τ

)]
− i

2
sech

(
φ−
2
− τ

)
f1 f̃1, (20)

f1 = µ+g2 +µ−g1, f̃1 = µ−g2−µ+g1, µ± =

[
1+ e±(φ−−2τ)

2

]− 1
2

. (21)

From the above defect Lagrangian we can write the defect conditions at x1 = x2,

(∂x−∂t)φ+ = ∂t l0−m
[

σ e−(φ+−l0)+
1
σ

el0

]
sinhφ−− im

(
σ +

1
σ

)
sinh

(
φ−
2

)
f1 f̃1

+i
√

mσ e−
(φ+−l0)

2 cosh
(

φ−
2

)
ψ̄+ f̃1− i

√
m
σ

e
l0
2 cosh

(
φ−
2

)
ψ+ f1

−im
[

σ e−(φ+−l0)+
1
σ

el0

]
coshτ sinh

(
φ−
2

)
f1 f̃1, (22)

(∂x +∂t)φ− = 2mσ

[
e−(φ+−l0)

(
sinh2

(
φ−
2

)
+ cosh2

τ

)
− e(φ+−l0)

]
+i
√

mσ

(
e
(φ+−l0)

2 − e−
(φ+−l0)

2 coshτ

)
ψ̄+ f1

−i
√

mσ e−
(φ+−l0)

2 sinh
(

φ−
2

)
ψ̄+ f̃1

+2imσ e−(φ+−l0) coshτ cosh
(

φ−
2

)
f1 f̃1, (23)
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(∂x−∂t)φ− =
2m
σ

[
e−l0 − el0

(
sinh2

(
φ−
2

)
+ cosh2

τ

)]
−i
√

m
σ

[(
e−

l0
2 − e

l0
2 coshτ

)
ψ+ f̃1 + e

l0
2 sinh

(
φ−
2

)
ψ+ f1

]
−2im

σ
el0 coshτ cosh

(
φ−
2

)
f1 f̃1, (24)

ψ− =

√
m
σ

[
e

l0
2 sinh

(
φ−
2

)
f1−

(
e−

l0
2 + e

l0
2 coshτ

)
f̃1

]
, (25)

ψ̄− =
√

mσ

[(
e
(φ+−l0)

2 + e−
(φ+−l0)

2 coshτ

)
f1 + e−

(φ+−l0)
2 sinh

(
φ−
2

)
f̃1

]
, (26)

∂t f1 = −
√

mσ

2

(
e
(φ+−l0)

2 + e−
(φ+−l0)

2 coshτ

)
ψ̄++

1
2

√
m
σ

e
l0
2 sinh

(
φ−
2

)
ψ+

−m
2

[(
σ +

1
σ

)
+
(

σe−(φ+−l0)+
1
σ

el0
)

coshτ

]
cosh

(
φ−
2

)
f̃1, (27)

∂t f̃1 = −
√

mσ

2
e−

(φ+−l0)
2 sinh

(
φ−
2

)
ψ̄+−

1
2

√
m
σ

(
e−

l0
2 + e

l0
2 coshτ

)
ψ+

+
m
2

[(
σ +

1
σ

)
+
(

σe−(φ+−l0)+
1
σ

el0
)

coshτ

]
cosh

(
φ−
2

)
f1. (28)

In order to derive the associated Type-II defect super-matrix for the model, we pro-
pose [18] to construct it as a product of two Type-I defect matrices, such that

Ψ
(2) = K1(σ2)Ψ

(0) = K1(σ2)K1(σ1)Ψ
(1) = K2(σ ,τ)Ψ (1), (29)

where K2(σ ,τ) = K1(σ2)K1(σ1). Therefore, by a direct computation we find that
the components ki j of the fused defect matrix K2 are given by:

k11 = c
(

l +σ
2e−φ− +2iσ e−

φ−
2 (g1g2)l1/2

)
, (30)

k12 = cσ eφ0
(

e(φ1−τ)+ e(φ2+τ)+2i e
φ+
2 (g1g2)

)
, (31)

k13 = −cσ
√

2iσ e
φ0
2

(
eφ2− (φ1−τ)

2 g1− e
(φ2−τ)

2 g2

)
(32)

−c
√

2iσ l1/2 e
φ0
2

(
e
(φ1−τ)

2 g1 + e
(φ2+τ)

2 g2

)
(33)

k21 = cσ e−φ0
(

e−(φ1+τ)+ e−(φ2−τ)+2i e−
φ+
2 g1g2

)
, (34)

k22 = c
(

l +σ
2eφ− +2iσ e−

φ−
2 g1g2

)
, (35)

k23 = −c
√

2iσ l e−
φ0
2

(
g1e−

(φ1+τ)
2 + g2e−

(φ2−τ)
2

)
+cσ
√

2iσ l1/2 e−
φ0
2

(
g2e−

(φ2+τ)
2 − g1e

(φ1+τ)
2 −φ2

)
, (36)
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k31 = c
√

2iσ l e−
φ0
2

(
g1e−

(φ1+τ)
2 +g2e−

(φ2−τ)
2

)
+cσ
√

2iσ l1/2 e−
φ0
2

(
g2 e

(φ2−τ)
2 −φ1 −g1 e

(φ1+τ)
2

)
, (37)

k32 = cσ
√

2iσ e
φ0
2

(
g2 e−

(φ2+τ)
2 +φ1 −g1 e

(φ1+τ)
2

)
+c
√

2iσ l1/2 e
φ0
2

(
e
(φ1−τ)

2 g1 + e
(φ2+τ)

2 g2

)
, (38)

k33 = c
(

l +σ
2−2σ l1/2

(
cosh(τ)−2ig1g2 cosh

(
φ−
2

))
, (39)

where c = c1c2. By straightforward comparison with eq. (A.80)–(A.89) in [15], it is
not difficult to see that the fused defect matrix derived as product of two type-I defect
matrices is equivalent (up to l1/2) to the type-II defect matrix previously found in
[15], after reparametrazing the auxiliary fields given as in eqs. (20) and (21).
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Generalized supersymmetry and the
Lévy-Leblond equation

N. Aizawa, Z. Kuznetsova, H. Tanaka and F. Toppan

Abstract Symmetries of the Lévy-Leblond equation are investigated beyond the
standard Lie framework. It is shown that the equation has two remarkable symme-
tries. One is given by the super Schrödinger algebra and the other by a Z2×Z2
graded Lie algebra. The Z2×Z2 graded Lie algebra is achieved by transforming
bosonic into fermionic operators in the super Schrödinger algebra and introducing
second order differential operators as generators of symmetry.

1 Introduction

The purpose of the present work is to show that a Z2×Z2 graded Lie algebra is a
symmetry of a simple equation of physics, the Lévy-Leblond equation (LLE), which
is a non-relativistic wave equation of a spin 1/2 particle [9]. In the process to prove
the Z2×Z2 symmetry we also show that LLE has a supersymmetry given by the
N = 1 super Schrödinger algebra (see [3] and references therein).

Z2×Z2 graded Lie algebras (introduced in [12, 13], see also [14]) are natural
generalizations of Lie superalgebras. We present their definition: Let g be a vector
space over C or R with a Z2×Z2 grading structure, namely g is the direct sum of
four distinct subspaces labelled by an element of the Z2×Z2 group:
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g= g(0,0)+g(0,1)+g(1,0)+g(1,1). (1)

For two elements a = (a1,a2), b = (b1,b2) ∈ Z2×Z2, we define

a+b = (a1 +b1,a2 +b2) (mod(2,2)), a ·b = a1b1 +a2b2 (2)

Definition 1. If g admits a bilinear form J , K : g× g→ g satisfying the following
three relations, then g is called a Z2×Z2 graded Lie algebra:

1. Jga,gbK⊆ ga+b,
2. JXa,XbK =−(−1)a·bJXb,XaK,
3. JXa,JXb,XKK = JJXa,Xb,K,XK+(−1)a·bJXb,JXa,XKK,

where Xa ∈ ga.

Two sub superalgebras exist (they are g(0,0) + g(0,1) and g(0,0) + g(1,0)). This fact
plays a crucial role when the symmetry of the LLE is identified with a Z2 ×Z2
graded Lie algebra.

In contrast to ordinary Lie algebras and superalgebras, the number of papers in
the literature discussing physical applications of Z2 ×Z2 graded Lie algebras is
limited [8, 10, 15, 17, 18]. The equation discussed in this work is both simple and
fundamental. Even so, we naturally encountered this unusual algebraic structure.
This would suggest that Z2×Z2 graded Lie algebras are natural objects in the in-
vestigation of symmetries.

The plan of this paper is as follows. In the next section we introduce the LLE and
present its symmetries. We show that the LLE has a super Schrödinger symmetry.
In §3 the supersymmetry is enhanced to a Z2×Z2 graded Lie symmetry.

2 LLE and its (super)symmetries

The LLE here considered is a non-relativistic wave equation for a spin 1/2 free par-
ticle in 3D space. The wavefunction is a four-component spinor,

ψ(x) = T (ϕ1(x),ϕ2(x)),

where ϕa is a SU(2) spinor and x = (t,x1,x2,x3). We use the following form of
LLE [4]:

Ωψ(x) = 0, Ω =−2iα∂t + iγ j∂x j +2mβ , (3)

where the sum over the repeated index j = 1,2,3 is understood; γµ ,α,β are 4× 4
Dirac γ-matrices defined by

{γµ ,γν}= 2gµν , (gµν) = diag(+,−,−,−), µ,ν = 0,1,2,3 (4)

and
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α =
1
2
(γ0 + γ4), β =

1
2
(γ0− γ4), γ4 = γ0γ1γ2γ3. (5)

One may take any four-dimensional representation of the γ-matrices. We do not dis-
tinguish upper and lower indices since we are working in a non-relativistic setting.
LLE is the square root of the free Schrödinger equation, namely Ω 2 gives the free
particle Schrödinger operator:

Ω
2 =−4im∂t +∂x2

j . (6)

We introduce now the symmetries of LLE. According to [4] we define them in
terms of symmetry operators [4]:

Definition 2. Let A be an operator acting on the solution space of LLE. Namely,
A maps a solution of LLE into another one:

Ωψ = 0 =⇒ Ω(A ψ)
∣∣∣
Ωψ=0

= 0. (7)

In this case A is called a symmetry operator.

In this definition A can be any kind of operator such as multiplication, differential,
integral, etc. The traditional Lie point symmetry group of differential equations is
generated by a subset of symmetry operators which is closed under commutations.
Similarly, if a subset of symmetry operators forms a superalgebra or a Z2 ×Z2
graded Lie algebra, then the set generates a graded group of transformations in the
solution space of LLE.

We restrict now A to a differential operator of finite order. In this case a sufficient
condition of symmetry is given as follows. If A satisfies either the condition

[Ω ,A ] = ΛA (x)Ω (8)

or
{Ω ,A }= ΓA (x)Ω , (9)

where ΛA (x) or ΓA (x) is a 4× 4 matrix depending on the spacetime coordinates,
then A is a symmetry operator.

We are looking for symmetry operators given by a first order differential operator.
The results are summarized in the following two propositions:

Proposition 1. The operators below are LLE symmetry operators satisfying the con-
dition (8):
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Pj = ∂x j , G j = t∂x j +2imx j +αγ j, M = 2im,

H = ∂t , D = 2t∂t + x j∂x j +2− 1
2

γ0γ4,

K = tD− t2
∂t + imx jx j +αx jγ j,

J jk = x j∂xk − xk∂x j −
1
2

γ jγk,

X̃ j = −ε jkn

(
[α,γk]∂xn +

im
2
[γk,γn]

)
. (10)

The only two non-vanishing ΛA (x) matrices are ΛD = 1, ΛK = t. For convenience
the 4×4 unit matrix 14 is not explicitly indicated ( e.g., Pj = 14 ∂x j ≡ ∂x j).

Apart from the X̃ j’s, the remaining symmetry operators close a Lie algebra. h(3) =
〈 Pj,G j,M 〉 is the three-dimensional Heisenberg Lie algebra with M as a central
element. We have the non-relativistic conformal algebra sl(2,R) = 〈 H,D,K 〉 and
the spatial rotation so(3) = 〈 J jk 〉. Combining together these three Lie algebras we
get the Schrödinger algebra, whose structure is given by

(sl(2,R)⊕ so(3))⊃+ h(3),

with⊃+ a semidirect sum of Lie algebras. We thus see that the Schrödinger group is a
symmetry of LLE. This fact is already known in the literature. In [4] the Schrödinger
algebra is presented as the maximal Lie symmetry of LLE. If the symmetry oper-
ators X̃ j are included we are no longer able to close a Lie algebra. Their addition
leads to a Z2×Z2 graded Lie algebra. Before addressing the Z2×Z2 structure we
look at the LLE’s supersymmetry.

Proposition 2. The operators below are LLE symmetry operators satisfying the con-
dition (9):

Q =
1√
−im

α∂t +
√
−imβ ,

S =
1√
−im

α

(
t∂t + x j∂x j +

3
2

)
+
√
−im(tβ + x jγ j),

X j =
1√
−im

α∂x j +
√
−imγ j, (11)

with only one non-vanishing ΓA (x) matrix given by ΓS =−α/
√
−im.

The physical meaning of these symmetry operators becomes clear when computing
their anticommutators:

{Q,Q}= 2H, {S,S}= 2K, {X j,Xk}= δ jkM,

{Q,S}= D, {Q,X j}= Pj, {S,X j}= G j. (12)

It follows that Q,S are, respectively, a supercharge and a conformal supercharge,
with X j a fermionic counterpart of h(3). Indeed, the Schrödinger algebra of Propo-
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sition 1 and 〈 Q,S,X j 〉 close the N = 1 super Schrödinger algebra. This is verified
by direct computation of the (anti)commutation relations. The operator Q is already
found in [4] without recognizing it as a supercharge. One may also show (we omit
the proof for space reasons), that there exists no other supercharge Q satisfying

{Q,Q} = 2H, {Q,Q}= 0, {Q,Ω}= ΓQ(x)Ω ,

[D,Q] = −Q, [J jk,Q] = 0. (13)

We thus have the theorem:

Theorem 1. The N = 1 super Schrödinger algebra generates a symmetry super-
group of LLE and N = 1 is the maximal supersymmetry.

The supersymmetry of LLE was conjectured many years ago in the study of the
worldline supersymmetry of the spinning particle [5]. If the symmetry is defined
according to Definition 2, then the conjecture is true. We mention here two other
previous works on supersymmetry of LLE. In [6] it was shown that LLE coupled
with an arbitrary static magnetic field has a super Schrödinger symmetry. In [7] the
Dirac equation and the Deser-Jackiw-Templeton equation in a (2+1) dimensional
spacetime are unified in a single multiplet of osp(1|2). It is shown that the non-
relativistic limit of this system carries an N = 2 super Schrödinger symmetry.

3 The Z2×Z2 graded symmetry of LLE

In this section we consider the symmetry of LLE with the X̃ j operators. There
are two key observations: (i) the X̃ j’s are obtained from the commutators of the
fermionic generators X j, X̃ j =

1
2 ε jkn[Xk,Xn]; (ii) each pair (Q,S),(Pj,G j) is a

sl(2,R)-doublet under the adjoint action. The observation (i) implies that we need
to give up the super Schrödinger structure, while (ii) implies that we may regard
(Pj,G j) as fermionic since this treats all sl(2,R) doublets on equal footing [16].
Therefore we introduce, from the anticommutators, the new operators

P̃jk = {Pj,Pk}, G̃ jk = {G j,Gk}, Wjk = {Pj,Gk},
XP

jk = {Pj,Xk}, XG
jk = {G j,Xk}. (14)

They are second order differential operators; it is easy to verify that they are sym-
metry operators of LLE. Surprisingly, these second-order operators, together with
the first-order operators in the super Schrödinger algebra, close a Z2×Z2 graded
Lie algebra GZ2×Z2 . This means their (anti)commutators never produce higher order
differential operators. The assignment of the grading is given by
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g00 = 〈 H, D, K, J jk, X̃ j,Wjk, P̃jk, G̃ jk 〉,
g01 = 〈 Pj, G j 〉,
g10 = 〈 Q, S, XP

jk, XG
jk 〉,

g11 = 〈 X j 〉. (15)

One may verify, by direct but cumbersome computation of the (anti)commutators,
that the algebra (15) satisfies Definition 1. We remark that the multiplication opera-
tor M has dropped out from this Z2×Z2 graded Lie algebra.

Theorem 2. The Z2×Z2 graded Lie algebra defined by the operators in (15) gen-
erates a symmetry group of LLE.

We have shown, in summary, that LLE has a N = 1 super Schrödinger symmetry
and a Z2×Z2 graded symmetry given by (15). The super Schrödinger algebra is not
a subalgebra of the Z2×Z2 graded algebra, although they share the same symmetry
operators. As a continuation of the present work, one may investigate symmetries
of LLE with a potential, since it is known that Schrödinger equation with linear or
quadratic potential has the same symmetry as the free equation [2, 11]. It is also an
interesting problem to study symmetries of a LLE for an arbitrary space dimension.
This would be done systematically by making use of the representation theory of
Clifford algebra. These works are in progress. Part of these results are reported
in [1].
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Investigating the effect of cognitive stress on
cardiorespiratory synchronization

Maia Angelova, Philip Holloway and Laurie Rauch

Abstract Synchrograms have been used to investigate the effects of cognitive stress,
induced by the Stroop test, on the phase synchronization of the cardiac and respira-
tory systems. The cardiorespiratory interactions have been investigated during a rest
and cognitive stressful task, namely the Stroop test, and found that cardiorespiratory
synchronization decreased during cognitive stress. Synchrogram techniques and the
Hilbert transform have been used to analyse phase syncronization. Our results sup-
port the hypothesis that respiration is key for improving the feedback between the
cardiac and respiratory systems.

1 Introduction

The cardiac and respiratory systems are known to be coupled by several mecha-
nisms [4]. The interaction between these two systems involves a large number of
feedback and feedforward mechanisms. In healthy subjects, the heart rate increases
during inspirations and decreases with expiration – a well known, and well stud-
ied phenomenon [1], known as respiratory sinus arrhythmia (RSA). Although this
arrhythmia is termed respiratory it is important to note that the variations in heart
rate are not directly caused by respiration itself. The modulation of the heart rate is
thought to be a result of several influences, most notably the results of a reflection
of the blood pressure waves via the baroreceptor feedback loop in the heart rate [7].
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Along with RSA, another phenomena rapidly gaining interest is that of cardiores-
piratory synchronizations. Earlier studies support its existence [2, 16, 21, 28]. As
shown in [3] cardiorespiratory synchronization and RSA represent different aspects
of the interaction between the cardiac and respiratory systems.

Cognitive stress is known to affect the physiological functioning of the cardio-
vascular system suppressing heart rate variability (HRV) [6, 9, 27]. In physiology,
HRV is the variation in the time interval between heartbeats, measured by the vari-
ation in the beat-to-beat interval [10]. Raschke et al. suggested that synchronization
between the cardiac and respiratory systems would be at its strongest during states
of relaxation and stated that this coordination was easily disturbed under conditions
of stress or disease [19]. However, there is little knowledge on the effect of cogni-
tive stress on cardiorespiratory synchronizations. In this study, the participants were
asked to complete a Stroop test in order to impose stress and draw attention away
from consciously controlling one’s breathing and instead focus on completing the
task. The expectation is to see an increase in synchronizations during periods of
control – whether it be forced deep breathing or during unconscious control. In both
scenarios the cardiorespiratory systems are trying to maintain homeostasis.

The paper is organised as follows. Section 2 introduces the experimental data
and data collection methods. Section 3 considers the analysis techniques applied,
followed by the results in Section 4 and final conclusions in Section 5.

2 Data

The study was undertaken with 15 healthy participants, age 24 to 58. It investigated
the effect of cognitive stress with measurements before and during the Stroop test.
ECG and respiration signals were recorded from all participants during a period of
normal breathing where no restrictions or conditions were enforced and the subject
was instructed to breathe at a rate comfortable to them. After 5 minutes of resting,
the subjects were asked to complete a Stroop test. The scores from these Stroop
tests were recorded. ECG was measured via 3 electrodes – placed in Einthoven’s
triangle configuration – and was recorded at 1000Hz. The respiratory signal was
recorded via a force transducer fixed to a belt around the chest. Subjects were asked
to expel air from their lungs as the transducer was first fit, and then were instructed
to breathe normally. ECG and respiratory signals were recorded simultaneously for
ten minutes – five minutes prior to a Stroop test and five minutes during the test,
using AcqKnowledge software (version 2). The resultant time series were noisy and
strongly non-stationary.

The Stroop test [25] was used to investigate the participants psychological ca-
pacities. Essentially, participants are given the name of a colour, for example red,
which may or may not be written in the same colour ink. They are then asked to
state the colour of a word rather than read the word, for example, if the colour red
is written in blue ink the subject would be required to answer blue.
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3 Methods

Synchronization is a basic phenomenon in nature [13, 20]. Through the detection
of synchronous states one may be able to achieve a better understanding of physio-
logical functioning. There are different types of synchronizations such as amplitude
synchronizations or frequency synchronizations. Pikovsky et al. suggested that the
properties associated with phase synchronization in chaotic oscillators are very sim-
ilar to noise in noisy oscillators [17], therefore analysis of phase synchronizations
would allow studying both chaotic and noisy signals, such as respiration or ECG,
under one common framework.

In the case of physiological signals, detecting phase-locking is not a simple task;
moreover, recording such signals via non-invasive means can result in synchronic-
ities being hidden by considerable background noise. Therefore, an adapted defini-
tion is used here to investigate phase-locking synchronizations:

φn,m = |nΦh−mΦr|∼=const, (1)

where the heart beats n times in m respiratory cycles, and h and r denote heart
and respiration phase respectively. In these cases, the m : n phase-locking manifests
itself as a variation of φn,m around a horizontal plateau [26]. The phase φ(t) can be
easily estimated from any mono-component time series, however, a problem arises if
the signal contains multiple component or time-varying spectra, thus making phase
estimation difficult.

To study the phase synchronization of the cardiorespiratory system, we use the
Hilbert transform (HT). It is far superior than Fourier-based methods, which are the
simplest and most popular methods of decomposing a signal into energy-frequency
distributions. However, these methods lose track of time-localised events and are
proven ineffective when analysing physiological systems with non-stationary pro-
cesses. The HT, yi, can be written for any function xi as follows:

yi(t) =
1
π

P
ˆ

∞

−∞

xi(t
′
)

t− t ′
dt
′
, (2)

where P indicates the Cauchy principal value. Gabor et al. determined that an ana-
lytical function can be formed with the HT pair [8],

zi(t) = xi(t)+ iyi(t)≡ Ai(t)eiφi(t), (3)

with amplitude Ai(t) and instantaneous phase φi(t),

Ai(t) =
√

x2
i (t)+ y2

i (t), φi(t) = tan−1
(yi(t)

xi(t)

)
. (4)

The instantaneous frequency can be written as the time derivative of the phase [11],

ω =
dφi(t)

dt
. (5)
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One of the main advantages of the HT is that it can find the phase of a single
oscillation directly. In estimating the instantaneous phase, an assumption is made
that the system studied can be modelled as weakly-coupled oscillators. This im-
plies that the relative phase of the oscillators changes slowly with respect to their
motion around the limit cycle, resulting in a slow convergence to a steady state
phase-locking [18, 24]. We also assume that their interactions can be investigated
by analysing such phases [14]. We should note that the HT is not the only method
to estimate phase relationships; this can also be done by using wavelet transform or
marked events methods [5, 15, 24].

In 1998, Schafer et al. developed the cardiorespiratory synchrogram in order to
analyse n : m synchronizations in the cardiorespiratory systems, in which the heart
beats n times in m respiratory cycles [22, 23]. The synchrogram analysis is very
effective to study phase synchronization between a point process (heartbeat) and
a continuous signal (respiration). The HT was used to calculate the instantaneous
phase of the respiration signal Φnr from (4). We then regarded the respiratory phase
at times tk – the r-peak of the kth heartbeat. The cardiorespiratory synchrogram can
be constructed by observing the phase of the respiration at each tk, and wrapping
the phase into a [0,2πm] interval. In the simplest case of n : 1 synchronization, there
are n heartbeats in each respiratory cycle. Plotting these relative phases Ψn,1 as a
function of time against tk, we observe n horizontal lines (representing the number
of heartbeats) in one respiratory cycle. The relative phase is given by

Ψn,m(tk) =
1

2π
[Φnr(tk)mod2πm]. (6)

4 Results

ECG and respiratory signals were recorded simultaneously for ten minutes, five
minutes prior to a Stroop test and five minutes during the test. Figure 1 illustrates the
results gained from such recordings for one participant. Initially, (t < 60 sec), there
is no synchronization as the participant is getting settled. From 60 sec to 300 sec
pronounced regions of 6:1 synchronization can be seen with total length of 160 sec.
During the Stroop test (t >300 sec), virtually no areas of coordination are present,
which may explain the high number of Stroop mistakes (40) for this individual.
All participants (except one) displayed longer regions of synchronization during the
rest stage (t < 300 sec) with some regions lasting over 3 minutes. For the majority
of participants, most prominent synchronizations were 4:1 (average 95, stdev 48)
and 5:1 (average 99, stdev 72). 3:1 locking (average 75; stdev 15) was observed
for three individuals and 6:1 (average 100, stdev 60) for two. During the Stroop
test (t > 300 sec) synchronizations between the cardiorespiratory systems declined.
Seven participants displayed shorter areas of synchronization: 3:1 (average 68, stdev
40), 4:1 (average 54, stdev 30), two showed prolonged 5:1 locking (average 105,
stdev 15). Synchronizations were not observed for six individuals. The length of
the regions of synchronization in this stage was found to correlate with the subjects
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performance in the Stroop test, with stronger synchronizations seen in those who
performed better (R-sq =76%, p-value=0.00).

5 Conclusion

In this work we investigated the effect of cognitive stress induced via the Stroop
test on cardiorespiratory synchronization using synchrograms and HT. Our anal-
ysis showed that synchronizations exist during the resting stage to some extent
for each individual. Some individuals displayed considerably more synchronization
than others, possibly a result of a multitude of factors; from general health to better
command of their respiration and deep breathing. On the whole, synchronization
between the cardiorespiratory systems declined during the Stroop test. Therefore,
we conclude that cognitive stress causes a decrease or in some cases a loss of syn-
chronization of the cardiorespiratory systems. This, however, varied from individual
to individual with some participants still displaying prolonged periods of synchro-
nization during the Stroop test. The length of synchronization present was found
to correlate with the subjects performance in the Stroop test with stronger synchro-
nizations seen in those who made a small number of mistakes.

Fig. 1: Cardiorespiratory synchrogram illustrating results for one participant. In the
rest stage pronounced regions of 6:1 locking can be seen for 60 < t < 300 sec,
however in the latter half of the signal (the Stroop) all synchronizations have been
lost.
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The study confirmed that finding phase-locking regions with synchrograms and
HT is an effective way to investigate cardiorespiratory dynamics. Respiration has
been shown to be the driving force behind cardiorespiratory coupling [12]. Our re-
sults support the hypothesis that control over one’s respiration is essential for im-
proving the feedback between the cardiac and respiratory systems and possibly for
improving physiological function.
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Generalization of conserved charges for Toda
models

Rita C. Anjos

Abstract The soliton solutions to Toda models receive a zero curvature representa-
tion of their equations of motion, i.e. there exist potentials, (Aµ), that are functionals
of the fields of the theory and which belong to a Kac-Moody algebra G such that
the zero curvature condition is equivalent to the equations of motion. For the con-
struction of the soliton solutions and conserved charges it is required an integer
gradation of the Kac-Moody algebra and a “vacuum solution”, such that the poten-
tials evaluated on it belong to an Abelian subalgebra. The conserved charges are
then constructed using the dressing method.

1 Introduction

Several methods have been used to calculate solutions of Toda models and hence
obtain the conserved charges [1–3]. The soliton solutions to the affine Toda equation
of motion using Hirota’s method can be derived by an ansatz. A large number of
authors have obtained soliton solutions using τ-functions [4, 5].

The aim of this article is to give an explicit expression of conserved charges to
the affine Toda model sl(3) and sl(N) following the construction given in [6,7]. We
calculate the charges for Toda model sl(3) and generalized for Toda model sl(N)
for N-soliton [7].
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2 Dressing method

Dressing transformations are zero curvature symmetries, symmetries of non-linear
1+1 dimension differential equations. The zero curvature condition or Lax-Zakahov-
Shabat equation is given by

Fµν ≡ ∂µ Aν −∂φ Aµ +[Aµ ,Aν ] = 0, (1)

where Aµ is a Lie algebra valued vector field. This equation constitutes the conser-
vation laws in 1+1 dimensions. Gradation of the algebra ensures that potentials can
de decomposed:

Ĝ =
⊕

n Ĝn [Gn,Gm]⊂ Gn+m. (2)

The equation (1) is invariant under gauge transformations generated by element of
group g:

Ah
µ → Aµ = gAµ g−1−∂µ gg−1, (3)

where g is an element of the Lie group associated with Aµ . The general idea of the
method is to consider the problem as a factorization problem. From equation

Avac
µ =−∂µ ψvacψ

−1
vac, (4)

with
ψvac = ex+E1e−x−E−1 , (5)

we consider a constant group element h, obtained by exponentiating the generators
of the sl(3) Kac-Moody algebra [8], which admit the Gauss decomposition

ψvachψ
−1
vac = G−1

− G0G+, (6)

where G−, G0 and G+ are group elements obtained by exponentiating the generators
of the negative, zero and positive grades, respectively [6,7]. In addition, it introduces
the variables:

ψh ≡ G0G−ψvach = G+ψvac (7)

ψ̄h ≡ G−ψvach = G−1
0 G+ψvac (8)

and the corresponding potentials

Ah
µ =−∂µ ψhψ

−1
h (9)

Āh
µ =−∂µ ψ̄hψ̄h

−1. (10)

The potentials Ah
µ and Aµ are connected by two gauge transformations, which con-

tain only elements with non-negative and non-positive grades that preserve the gra-
dation structure.
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2.1 Conserved charges for Toda model sl(3)

The affine Toda theories are integrable relativistic models in two dimensions. The
models can be obtained by reduction from the Wess-Zumino-Novikov-Witten model
[4]. The Conformal affine Toda model is constructed by adding the two extras fields
in the Affine Toda models. The potentials for Toda model sl(3) are

A+ =− eη

3 [F1
1 (e

2ϕ1−ϕ2 + γ2e2ϕ2−ϕ1 + γe−ϕ1−ϕ2)+

+F2
1 (e

2ϕ1−ϕ2 + γe2ϕ2−ϕ1 + γ2e−ϕ1−ϕ2)+

+E1(e2ϕ1−ϕ2 + e2ϕ2−ϕ1 + e−ϕ1−ϕ2)]

(11)

and

A−=−∂−[
1
3

F1
0 (ϕ1+γ

2
ϕ2)+

1
3

F2
0 (ϕ1+γϕ2)+(

1
3

ϕ1+
1
3

ϕ2+ν+β )C+ηQ]+E−1,

(12)
where F0, F1, E1 and C are generators of the sl(3) Kac-Moody algebra [8]. When
A± are evaluated from vacuum solutions they become

Avac
+ =−E1 (13)

Avac
− = E1−∂−β

vacC. (14)

with β vac =−x+x−. If the potentials are flat, we can write

Avac
µ =−∂µ ψvacψ

−1
vac (15)

with
ψvac = ex+E1e−x−E−1 . (16)

The dressing transformation is done when we consider a constant h of the group,
written in terms of exponentiating the generators of the Kac-Moody algebra sl(3)
and we write the Gauss decomposition (6). The potential Ah

µ defined in 9 becomes

Ah
µ = G+Avac

µ G−1
+ −∂µ G+G−1

+ (17)

= G0(G−Avac
µ G−1

− −∂µ G−G−1
− )G−1

0 −∂µ G0G−1
0 . (18)

When we compare the grade zero component (Ah
− =−∂−G0G−1

0 −∂−βC) with the
potential (12) with η = 0, we find G0

G0 = e
1
3 (ϕ1+γ2ϕ2)F1

0 +
1
3 (ϕ1+γϕ2)F2

0 +( 1
3 ϕ1+

1
3 ϕ2+ν)C. (19)

Using relations of the Kac-Moody algebra sl(3) and the highest weight states of
representations of the Kac-Moody algebra sl(3) that are annihilated by positive and
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negative grade generators operators, respectively G+|λi >= |λi >, < λi|G− =< λi|,
i = 0,1,2, we find Hirota’s tau functions:

τ0 ≡ < λ0|ψvachψ
−1
vac|λ0 >=< λ0|G−1

0 |λ0 >= e−ν (20)

τ1 ≡ < λ1|ψvachψ
−1
vac|λ1 >=< λ1|G−1

0 |λ1 >= e−(ϕ1+ν) (21)

τ2 ≡ < λ2|ψvachψ
−1
vac|λ2 >=< λ2|G−1

0 |λ2 >= e−(ϕ2+ν) (22)

and expressions for the fields: ϕ1 = log τ0
τ1

, ϕ2 = log τ0
τ2

and ν = β − logτ0. The
variables τ0, τ1 and τ2 are called Hirota’s tau functions. Replacing the fields (ϕ1, ϕ2
and ν) into equations of motion of the Toda model sl(3), what we get are Hirota’s
tau functions

τi∂+∂−τi−∂+τi∂−τi = τi−1τi+1− τ
2
i (23)

with i = 0,1,2, τ−1 = τ2 e τ3 = τ0. The group elements G± are written as follows:

g±,E = exp[
∞

∑
n=1

(ξ
(±)
1,3n+1E3n+1 +ξ

(±)
2,3n+2E3n+2)] (24)

g±,F = exp[
∞

∑
n=1

(ζ (±,1)F1
±n +ζ

(±,2)F2
±n)]. (25)

Rewriting the relations (17) as

g+,F Ah
µ g−1

+,F −∂µ g+,F g−1
+,F = g+,EAvac

µ g−1
+,E −∂µ g+,Eg−1

+,E ≡ a+µ (26)

g−,F Āh
µ g−1
−,F −∂µ g−,F g−1

−,F = g−,EAvac
µ g−1

−,E −∂µ g−,Eg−1
−,E ≡ a−µ , (27)

which are used as definitions of the potentials a+µ and a−µ . The potentials Āh
µ are

written as
Āh

µ ≡ G−1
0 Ah

µ G0−∂µ G−1
0 G0, (28)

where we used G± = g−1
±,F g±,E and the settings (24)-(25). Using the potentials ob-

tained by gauge transformations (Āh
µ ), vertex operators, and the discussion given

in [7], the infinite number of conserved charges for the Toda model is derived. The
conserved charges obtained for the 1-soliton are

Ω
(±)
(3n+1) =±

√
3
(

1+v
1−v

)±( 3n+1
2 )

(29)

Ω
(±)
(3n+2) =±

√
3
(

1+v
1−v

)±( 3n+2
2 )

. (30)

For 2-solitons the conserved charges have the form:
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Ω
(±)
(3n+1) =±

√
3

[(
1+v1

1−v1

)±( 3n+1
2 )

+

(
1+v2

1−v2

)±( 3n+1
2 )
]

(31)

Ω
(±)
(3n+2) =±

√
3

[(
1+v1

1−v1

)±( 3n+2
2 )

+

(
1+v2

1−v2

)±( 3n+2
2 )
]
, (32)

where n = 0,1,2.. and v is the velocity of the soliton.

2.2 Conserved charges for Toda model sl(N)

The potential for the Toda model sl(N) are

A+ = −BΛ+B−1 (33)

A− = −∂−BB−1 +Λ−, (34)

where B has the expression:

B = e∑
a
i=1 ϕaHa+νC+ηQ (35)

with Λ+ = ∑
r
i=0 ei, Λ− = ∑

r
i=0 vi fi, where ei and fi are generators of the Lie algebra

and vi is a vector in the algebra and ν =−x+x−. The field B has a vacuum solution
given by ϕ = 0 and η = 0 as

B(vac) = e−x+x−C. (36)

The vacuum potentials become

A(vac)
+ =−Λ+ (37)

A(vac)
− =−∂−(e−x+x−C)ex+x−C +Λ− =−x+C+Λ−. (38)

These potentials satisfy the condition of zero curvature and then we define the po-
tential A(vac)

µ :

A(vac)
µ =−∂µ w0w−1

0 (39)

where w0 = ex+Λ+e−x−Λ− .
From the decomposition of Gauss we have

G = w0hw−1
0 = ex+Λ+e−x−Λ−hex−Λ−e−x+Λ+ = G−G0G+, (40)

which can be rewritten as

G = w0hw−1
0 = G−G0G+ = G−ε

(1)
ε
(2)G+ (41)
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where we consider a decomposition of the generator of grade zero, G0 = ε
(1)
0 ε

(2)
0 .

In this case G0 is the most general because it consists of a fragmentation between
Θ+ and Θ−. The gauge potential transformed, (Ah

µ = θ±Avac
µ θ

−1
± −∂µ θ±θ

−1
± ), with

θ+ = ε
(1)
0 G+ and θ− = ε

(2)−1

0 G−1
− has the same structure as the original potential.

With the states of highest weight representations of Kac-Moody algebra sl(N), ver-
tex operators and the discussion given in [7], we obtain the expressions for the con-
served charges. The general expression for charges of 1-soliton:

Ω
(±)
a,n =±κN

(
1+v
1−v

)±( n+a
2 )

(42)

where a = 1, ...,r and r is the rank of the algebra, v is the velocity of the soliton and
κN is a constant.

3 Conclusion

We emphasize the elegance and extent of the method to obtain conserved charges of
sl(3) and sl(N) Toda models evaluated on the solutions to the orbit of the vacuum.
The method is based in the representation of the equations of motion of the model
in terms of the zero curvature and properties of the dressing method. For all details
of calculations, see [7].

Acknowledgements The author would like to express her sincere thanks to Luis Agostinho
Ferreira and Carlos H. Coimbra-Araújo.
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7. R. C. Anjos, Teorias de campos integráveis e sólitons [doi:10.11606/D.76.2009.tde-

06082009-162020]. São Carlos : Instituto de Fı́sica de São Carlos, Universidade de São Paulo,
2009. Dissertação de Mestrado em Fı́sica Básica. [acesso 2016-12-12].

8. V. G. Kac, Infinite Dimensional Lie Algebras, (Camdridge U. Press, Cambridge), (1985).



On supersymmetric eigenvectors of the 5D
discrete Fourier transform

M. K. Atakishiyeva and N. M. Atakishiyev

Abstract An explicit form of a discrete analogue of the quantum number operator,
constructed in terms of the lowering and raising difference operators that govern
eigenvectors of the 5D discrete (finite) Fourier transform Φ (5) has been explored.
This discrete number operator N (5) has distinct eigenvalues which are employed to
systematically classify eigenvectors of the Φ (5), thus avoiding the ambiguity caused
by the well-known degeneracy of the eigenvalues of the latter operator. In addition,
we show that the hidden symmetry of the discrete number operator N (5) manifests
itself in the form of the unitary Lie superalgebra psl(5|5).

We begin by recalling first a few well-known facts about the discrete Fourier
transform (DFT). The discrete Fourier transform Φ (N) is based on N points and
represented by the N×N unitary symmetric matrix with elements

Φ
(N)
m,n =

1√
N

exp

(
2πi
N

mn

)
≡ 1√

N
qmn , (1)

where q := e
2πi
N and m, n ∈ {0,1, . . . ,N−1}. Given a vector v with components

{vk}N−1
k=0 , one can compute another vector u with components

um =
N−1

∑
n=0

Φ
(N)
m,n vn ,
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62210 Cuernavaca, Morelos, México
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referred to as the discrete (finite) Fourier transform of the vector v. Those vectors
fk, which are solutions of the standard equations

N−1

∑
n=0

Φ
(N)
m,n

(
fk

)
n
= λk

(
fk

)
m
, k ∈ {0,1, . . . ,N−1} , (2)

then represent eigenvectors of the DFT operator Φ (N), associated with the eigen-
values λk. Since the fourth power of Φ (N) is the unit matrix, the only four distinct
eigenvalues among λk’s are the same as in the continuous case ±1 and ± i.

Although there exists a plethora of discussion in the literature on eigenvectors
of the DFT (see, for example [1]- [9] and the relevant references quoted there), the
problem of deriving eigenvectors of DFT analytically still remains to be solved.
Recently, we proposed in [10] a strategy for resolving this problem by constructing
a self-adjoint difference operator N (N) (with distinct nonnegative eigenvalues) in
terms of the lowering and raising difference operators bN and bT

N , which are defined
by the intertwining relations

bN Φ
(N) = iΦ

(N) bN , bT
N Φ

(N) =− iΦ
(N) bT

N . (3)

The ability to solve a difference equation for eigenvectors of this discrete number
operator N (N), which commutes with the DFT operator Φ (N), then enables one to
define an analytical form of the desired set of eigenvectors for the latter operator.

This presentation contains a refined account of the particular dimension N = 5 for
the general discrete Fourier transform Φ (N) which includes new results not found
in our earlier paper [11]. We hope that this study will deepen our understanding of
the case with an arbitrary N-dimensional discrete Fourier transform and help us to
provide some rigorous proofs, still needed for the generic dimensions N > 5.

The 5D lowering b5 and raising bT
5 difference operators for eigenvectors of the

DFT operator Φ (5) satisfy intertwining relations (2) with N = 5 and are explicitly
given as

b5 := c
[
S+

1
2

(
T(+)−T(−)

)]
, bT

5 := c
[
S− 1

2

(
T(+)−T(−)

)]
, (4)

where c =
√

5
4π

, the operator S represents the diagonal matrix with elements Skl :=

sin(kθ)δkl , θ := 2π/5, 0≤ k, l ≤ 4 and a pair of the shift operators T(±) are defined
as T (±)

kl := δk±1,l with δ−1,l ≡ δ4,l and δ5,l ≡ δ0,l .
Let us draw attention here to the intertwining relations (2) with N = 5, which

evidently imply that if a vector fk is the eigenvector of the DFT operator Φ (5), as-
sociated with the eigenvalue ik, 0 ≤ k ≤ 3, then the vectors bT

5 fk and b5 fk are also
the eigenvectors of the same operator Φ (5), associated with the eigenvalues ik+1 and
ik−1, respectively.

It proves convenient to parametrize the operators b5 and bT
5 in terms of the golden

ratio τ := (
√

5+1)/2 =−2cos2θ and its conjugate τ−1 := (
√

5−1)/2 = 2cosθ =
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τ−1 :

(
b5

)
m,m′

=
c
2


0 1 0 0 −1
−1 κτ1/2 1 0 0
0 −1 κτ−1/2 1 0
0 0 −1 −κτ−1/2 1
1 0 0 −1 −κτ1/2

 , (5)

(
bT

5

)
m,m′

=
c
2


0 −1 0 0 1
1 κτ1/2 −1 0 0
0 1 κτ−1/2 −1 0
0 0 1 −κτ−1/2 −1
−1 0 0 1 −κτ1/2

 , (6)

where κ := (5)1/4. The ‘cyclic’ properties of the operators b5 and bT
5 are revealed

by the identities(
b5

)5
+ 5

( c
2

)4
τ b5 = 0 ,

(
bT

5

)5
+ 5

( c
2

)4
τ bT

5 = 0 . (7)

The matrix elements of the discrete number operator N (5) := bT
5b5 are defined

as

(
N (5)

)
m,m′

=
c2

4


2 −κτ1/2 −1 −1 −κτ1/2

−κτ1/2 4+ τ κτ−3/2 −1 −1
−1 κτ−3/2 5− τ 2κτ−1/2 −1
−1 −1 2κτ−1/2 5− τ κτ−3/2

−κτ1/2 −1 −1 κτ−3/2 4+ τ

 . (8)

As a product of a matrix and its transpose, the defining matrix in (4) is symmetric
and all of its eigenvalues are nonnegative. Moreover, since the determinant of the
matrix (4) is equal to zero, at least one of the eigenvalues should have zero value
as well; but this lowest eigenvalue turns out to be unique and all eigenvalues of the
matrix (4) are actually distinct. The explicit analytical form of the spectrum of the
discrete number operator N (5) can be represented as

λk = c2
[
5(1−δk0)+4

(
(τ−1)sinkθ + coskθ

)
sin2kθ

]
, 0≤ k ≤ 4. (9)

Orthonormal eigenvectors fk of the number operator N (5), associated with these
eigenvalues λk, have the following components:(

f0

)4

k=0
=

c2

4
√

λ2λ4

{
2τ +κτ

1/2, 1+κτ
−1/2, 1, 1, 1+κτ

−1/2
}
,

(
f1

)4

k=0
=

c
4

√
τ

λ2

{
0, κ + τ

1/2, τ
−1/2,−τ

−1/2,−κ− τ
1/2
}
,

(
f2

)4

k=0
=

√
τ

2κ

{
2(1− τ), 1, 1, 1, 1

}
,
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f3

)4

k=0
=

c
4

√
τ

λ3

{
0, τ

1/2−κ, τ
−1/2,−τ

−1/2, κ− τ
1/2
}
,

(
f4

)4

k=0
=

c2

8
√

λ2λ4

{
2,−

(
τ +2κτ

1/2
)
, 2κτ

1/2 +3τ−2, III, II
}
, (10)

where III and II in the last line mean that the last two components of f4 coincide
with the third and second components, respectively.

Recall that the existence of an explicit solution of the spectrum problem for all
known exactly solvable models in quantum mechanics always indicates that there
is some type of underlying hidden symmetry of the Hamiltonian, associated with
each particular case [12, 13]. Since the discrete number operator N (5) and its 5D
eigenvectors fn can be considered as a discrete exactly solvable model version of
the linear harmonic oscillator in quantum mechanics, some hidden symmetry of
the N (5) must exist in this case as well. It turns out that this hidden symmetry of
the discrete number operator N (5) manifests itself in the form of the unitary Lie
superalgebra psl(5|5). This can be established in the following way.

The supersymmetric partner N
(5)

S = bb† of the 5D discrete number operator
N (5), obtained by reversing the order of b and b† in the definition of N (5), is
represented by a matrix

c2

4


2 κτ1/2 −1 −1 κτ1/2

κτ1/2 4+ τ −κτ−3/2 −1 −1
−1 −κτ−3/2 5− τ −2κτ−1/2 −1
−1 −1 −2κτ−1/2 5− τ −κτ−3/2

κτ1/2 −1 −1 −κτ−3/2 4+ τ

 . (11)

Let C5 denote a 5-dimensional complex vector space, spanned by the eigenvectors
of the N (5). Then the 10D supersymmetric (SUSY) difference operator N (10),
which is built over two operators N (5) and N

(5)
S , and acts on 10-dimensional com-

plex vector superspace C5 ⊕ C5, can be written as a block matrix

N (10) :=

(
N (5) 05

05 N
(5)

S

)
, (12)

where 05 represents 5× 5 zero matrix. The next natural step is to construct 10D
discrete analogs of the SUSY generators (in supersymmetric theories they are called
SUSY charges) of the form

Q
(10)
1 =

1√
2

(
bΣ−+ b†

Σ+

)
=

1√
2

(
05 b†

b 05

)
,

Q
(10)
2 =

i√
2

(
bΣ−−b†

Σ+

)
=

1√
2

(
05 −ib†

ib 05

)
, (13)
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where 10× 10 matrices Σ± are defined as Σ+ =

(
05 I5
05 05

)
and Σ− =

(
05 05
I5 05

)
,

whereas I5 represents a 5×5 identity matrix. Then it is not hard to check that both of
the SUSY generators Q

(10)
1 and Q

(10)
2 do commute with the SUSY discrete number

operator (7), and they anti-commute among themselves:{
Q

(10)
1 ,Q

(10)
2

}
:= Q

(10)
1 Q

(10)
2 +Q

(10)
2 Q

(10)
1 = 0 . (14)

Finally, it turns out that (
Q

(10)
1

)2
=
(
Q

(10)
2

)2
=

1
2

N (10) (15)

and, consequently,

N (10) =
(
Q

(10)
1

)2
+
(
Q

(10)
2

)2
, (16)

which parallels one of the central features of globally SUSY theories: the hamilto-
nian is the sum of the squares of the supersymmetric charges. Thus, the three SUSY
operators N (10), Q

(10)
1 and Q

(10)
2 form an algebra, which closes under a combina-

tion of commutation and anti-commutation relations.
Perhaps it is worthwhile to recall at this point a few well-known facts about ma-

trix realizations of the classical Lie superalgebras [14]- [16]. The Lie superalgebra
l(m,n) is spanned by matrices of the form

M =

(
A B
C D

)
, (17)

where A and D are gl(m) and gl(n) matrices, B and C are m×n and n×m rectangular
matrices. The supertrace function, denoted by str, is defined on l(m,n) as

str(M) = tr(A)− tr(D). (18)

The unitary superalgebra sl(m|n) is then defined as the superalgebra of matrices
M ∈ l(m,n) satisfying the supertrace condition str(M) = 0. In the case of m = n,
sl(n|n) contains a one-dimensional ideal I generated by the identity operator I2n
and one sets sl(n|n)/I = psl(n|n).

It remains only to add that our case corresponds to m = n = 5 in (17) and all three
matrices N (10), Q

(10)
1 and Q

(10)
2 do satisfy the supertrace condition str

(
N (10)

)
=

0 (notice in particular that from (4) and (11) it is evident that the operators N (5)

and N
(5)

S have identical traces). Therefore the three SUSY operators N (10), Q
(10)
1

and Q
(10)
2 are embedded in a matrix realization of the unitary Lie superalgebra (or

Z2-graded Lie algebra) psl(5|5).
It may be emphasized that this method of deriving an explicit form of the under-

lying supersymmetry can be readily extended to the generic dimensions N > 5.
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To summarize, we have discussed in detail an explicit form of a difference ana-
logue of the quantum number operator in terms of the raising and lowering operators
that govern eigenvectors of the 5D discrete (finite) Fourier transform. The main al-
gebraic properties of this operator have been examined. In particular, we have shown
that the hidden symmetry of the 5D discrete number operator manifests itself in the
form of the unitary Lie superalgebra psl(5|5).

We are grateful to Naruhiko Aizawa, Vladimir Matveev and Joris Van der Jeugt
for illuminating discussions and thank Fernando González for the computation of
the eigenvalues (5) and eigenvectors (4) with the aid of Mathematica. The parti-
cipation of MKA in this work has been partially supported by the SEP-CONACyT
project 168104 “Operadores integrales y pseudodiferenciales en problemas de fı́sica
matemática”. NMA has been partially supported by the PAPIIT project IN-101115
“Óptica Matemática”.
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Remarks on Berezin quantization on the
Siegel-Jacobi ball

Stefan Berceanu

Abstract Using recent results on Berezin quantization of homogeneous Kähler
manifolds, we emphasize some geometric aspects of Berezin quantization of the
Siegel-Jacobi ball.

1 Introduction

The Jacobi group is defined as GJ
n =HnoSp(n,R)C, where Hn denotes the (2n+1)-

dimensional Heisenberg group [5, 6, 32]. The Jacobi group is an interesting object
in mathematics [16, 22] and has many important applications in several branches of
physics, see references in [8, 10].

The Siegel-Jacobi ball, denoted DJ
n [5], is the homogeneous manifold associated

with the Jacobi group GJ
n, whose points are in Cn×Dn, where Dn denotes the Siegel

ball Sp(n,R)C/U(n). The homogenous metric on the partially bounded domain DJ
n

[3,5,6] was studied [8] as a balanced metric [1,21]. Recently there have been results
obtained on Berezin quantization [13–15] on homogenous bounded domains [26]
and homogeneous Kähler manifolds [27]. Using these results, we shall emphasize
several geometric aspects of Berezin quantization on the Siegel-Jacobi ball. More
details are given in [8, 9].

The paper is organized as follows. Section 3 sumarizes the notion of balanced
metric in the context of Berezin quantization via coherent states. Section 3 contains
a description of the balanced metric on the Siegel-Jacobi ball. The new results of
this paper are contained in Remark 2 and Proposition 1 of Section 4.
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2 Coherent states, Berezin quantization, and balanced metric

Let ωM be a G-invariant Kähler two-form

ωM(z) = i
n

∑
α,β=1

h
αβ̄

(z)dzα ∧d z̄β , h
αβ̄

= h̄βᾱ = h
β̄α

, (1)

on the 2n-dimensional homogeneous manifold M = G/H, derived from the Kähler
potential f (z, z̄), i.e., h

αβ̄
= ∂ 2 f

∂ zα ∂ z̄β
.

The homogeneous hermitian metric on the Siegel-Jacobi ball determined in [4–7]
is in fact a balanced metric, because it corresponds to the Kähler potential calculated
as the scalar product of two coherent states (CS) vectors ez̄ ∈H, z∈M in the Hillbert
space H of the representation of G [30],

f (z, z̄) = lnKM(z, z̄), KM(z, z̄) = (ez̄,ez̄). (2)

We consider Berezin’s approach to quantization on Kähler manifolds with the su-
percomplete set of vectors verifying the Parceval overcompletness identity [13–15]:

(ψ1,ψ2)FK =

ˆ
M
(ψ1,ez̄)(ez̄,ψ2)dνM(z, z̄), ψ1,ψ2 ∈ H, (3)

dνM(z, z̄) =
ΩM(z, z̄)
(ez̄,ez̄)

; ΩM :=
1
n!

ωM ∧ . . .∧ωM︸ ︷︷ ︸
n times

. (4)

On the other side, it is introduced a weighted Hilbert space H f of square inte-
grable holomorphic functions on M, with weight e− f [23]:

H f =

{
φ ∈ hol(M)|

ˆ
M

e− f |φ |2ΩM < ∞

}
. (5)

In order to identify the Hilbert space H f defined by (5) with the Hilbert space
FK with the scalar product (3), it is considered the ε-function [17, 18, 31]:

ε(z) = e− f (z) KM(z, z̄). (6)

If the Kähler metric on the complex manifold M is obtained from the Kähler poten-
tial via (1) and (2) is such that ε(z) is a positive constant, then the metric is called
balanced [1, 21, 26].

Berezin’s quantization via coherent states was globalized and extended to non-
homogeneous manifolds [31] in the context of geometric quantization [25]. To the
Kähler manifold (M,ωM), it is also attached the triple σ = (L ,h,∇), where L is a
holomorphic (pre-quantum) line bundle on M, h is the hermitian metric on L and ∇

is a connection compatible with metric and the Kähler structure [12]. The manifold
is called quantizable if the curvature of the connection [20] F(X ,Y ) = ∇X ∇Y −
∇Y ∇X −∇[X ,Y ] has the property that F =− iωM . Then ωM is integral, i.e., c1[L ] =
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[ωM]. The reproducing (weighted Bergman) kernel admits the series expansion

KM(z, w̄)≡ (ez̄,ew̄) =
∞

∑
i=0

ϕi(z)ϕ̄i(w). (7)

Φ = (ϕ0,ϕ1, . . . ,) is an orthonormal base with respect to the scalar product (3).
We denote the normalized Bergman kernel of M (see also [2, 12]) by

κM(z, z̄′) :=
KM(z, z̄′)√

KM(z)KM(z′)
. (8)

The set Σz := {z′ ∈ M|κM(z, z̄′) = 0} was called polar divisor relative to z ∈ M
[2, 12], while a manifold for which Σz = /0,∀z ∈M was called in [7] a Lu Qi-Keng
manifold, extending to manifolds a denomination introduced for bounded domains
in Cn [28]. Note that for a particular class of compact homogeneous manifolds that
includes the hermitian symmetric spaces, Σz is equal to the cut locus relative to
z ∈M (see the definition of the cut locus, e.g., at p. 100 in [24]), and Σz is a divisor
in the sense of algebraic geometry [2, 12].

3 Balanced metric on the Siegel-Jacobi ball

The Jacobi algebra is the the semi-direct sum gJ
n := hn o sp(n,R)C, where the

Heisenberg algebra hn is generated by the boson creation (respectively, annihila-
tion) operators a†

i (ai), i = 1, . . . ,n, and the generators of the sp(R)C-algebra are
K±,0i j [3, 5, 6]. Perelomov’s CS vectors [30], associated to the group GJ

n with the Ja-
cobi algebra gJ

n, and based on the complex Siegel-Jacobi ball DJ
n , have been defined

as [5, 6],

ez,W = exp(X)e0, X :=
√

µ

n

∑
i=1

zia
†
i +

n

∑
i, j=1

wi jK+
i j , z ∈ Cn;W ∈Dn. (9)

The Siegel ball admits a matrix realization as a bounded homogeneous domain:

Dn := {W ∈M(n,C) : W =W t ,N > 0,N := 1n−WW̄}. (10)

If µ ∈R+ indexes the Heisenberg group and k/4 is an eigenvalue of K0
i j, then the

reproducing kernel K(z,W ) = (ez,W ,ez,W ), z ∈ Cn,W ∈Dn is [5, 6]:

K(z,W ) = det(M)
k
2 exp µF, M = (1n−WW̄ )−1, (11a)

2F = 2z̄tMz+ ztW̄Mz+ z̄tMWz̄, (11b)
2F = 2η̄

t
η−η

tW̄η− η̄
tW η̄ , (11c)

η = M(z+Wz̄); z = η−W η̄ . (11d)
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If g ∈ Sp(n,R)C has the form

g =

(
p q
q̄ p̄

)
, (12)

and α ∈Cn, then the action (g,α)× (W,z) = (W1,z1) of the Jacobi group GJ
n on the

Siegel-Jacobi ball DJ
n is given by the formulae [5]:

W1 = (pW +q)(q̄W + p̄)−1 = (Wq∗+ p∗)−1(qt +W pt), (13a)

z1 = (Wq∗+ p∗)−1(z+α−W ᾱ). (13b)

We use the following notation for the matrix of the hermitian metric on DJ
n :

h =

(
hi j̄ hip̄q̄
hpqī hpqūv̄

)
∈M(n(n+3)/2,C), i, j = 1, . . . ,n; 1≤ p≤ q,u≤ v≤ n. (14)

In [8] we have proved

Theorem 1. The Kähler two-form ωDJ
n
, associated with the balanced metric of the

Siegel-Jacobi ball DJ
n , GJ

n-invariant to the action (13), has the expression

− iωDJ
n
(z,W )= k

2 Tr(B∧ B̄)+µTr(A tM̄∧ ¯A ), A = dz+dW η̄ ,

B = M dW, M =(1n−WW̄ )−1.
(15)

The matrix (14) of the hermitian metric on DJ
n has the matrix elements (16):

hi j̄ = µM̄i j, (16a)

hip̄q̄ = µ(ηqM̄ip +ηpM̄iq) fpq, fpq := 1− 1
2

δpq; (16b)

hpqī = µ(η̄qM̄pi + η̄pM̄qi) fpq, (16c)

hpqm̄n̄ =
k
2

hk
pqm̄n̄ +µhµ

pqm̄n̄, (16d)

hk
pqm̄n̄ = 2MmpMnqdpq +2MmqMnpdmn +M2

mpδpqδmn, dpq := 1−δpq; (16e)

hµ

pqm̄n̄ = [η̄p(ηnM̄qm +ηmM̄qn)+ η̄q(ηnM̄pm +ηmM̄pn)] fpq fmn. (16f)

The determinant of the metric matrix h is

GDJ
n
(z,W ) := dethDJ

n
(z,W ) = (

k
2
)

n(n+1)
2 µ

n det(1n−WW̄ )−(n+2). (17)

Remark 1. If ε(z) is constant on M, then the balanced Hermitian metric on M is the
pullback

ds2
M(z) = ι

∗
M ds2

FS(z) = ds2
FS(ιM(z)) (18)

of the Fubini-Study metric via the embedding

ιM : M ↪→ CP∞, ιM(z) = [ϕ0(z) : ϕ1(z) : . . . ]. (19)
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4 Quantization of the Siegel-Jacobi ball

Recently, some remarkable results [26, 27] about Berezin quantization, reproduced
below, have been proved . We shall use these results in order to characterize Berezin
quantization on the Siegel-Jacobi ball.

Theorem 2. Let (M,ω) be a simply-connected homogeneous Kähler manifold such
that the associated Kähler form ω is integral. Then there exists a constant µ0 > 0
such that M equipped with µ0ω is projectively induced.

Theorem 3. Let (M,ω) be a homogeneous Kähler manifold. Then the following are
equivalent:
a) M is contractible.
b) (M,ω) admits a global Kähler potential.
c) (M,ω) admits a global diastasis DM : M×M→ R.
d) (M,ω) admits a Berezin quantization.

As a consequence of Theorem 2, the following can be proven.

Remark 2. Let M = G/H be a simply-connected homogeneous Kähler manifold.
Then the following assertions are equivalent:
A) M is a quantizable Kähler manifold.
B) M admits a balanced metric.
C) M is a CS-type manifold and G is a CS-type group.
D) M is projectively induced and we have (18), (19).

The notion of diastasis was introduced in [19]. The notion of CS-group is explained
in [29].

Putting together Theorems 1, 2, 3, Remark 2, and Proposition 4 in [8], it follows
in the particular case of the Jacobi group:

Proposition 1. i) The Jacobi group GJ
n is an unimodular, non-reductive, algebraic

group of Harish-Chandra type.
ii) The Siegel-Jacobi domain DJ

n is a homogeneous reductive, non-symmetric mani-
fold associated to the Jacobi group GJ

n by the generalized Harish-Chandra embed-
ding.
iii) The homogeneous Kähler manifold DJ

n is contractible.
iv) The Kähler potential of the Siegel-Jacobi ball is global. DJ

n is a Lu Qi-Keng
manifold, with nowhere vanishing diastasis.
v) The manifold DJ

n is a quantizable Kähler manifold.
vi) The manifold DJ

n is projectively induced, and the Jacobi group GJ
n is a CS-type

group.
vii) The Siegel-Jacobi ball DJ

n is not an Einstein manifold with respect to the bal-
anced metric attached to the Kähler two-form (15), but it is one with respect to the
Bergman metric corresponding to the Bergman Kähler two-form i∂ ∂̄ lnGDJ

n
.

ix) The scalar curvature is constant and negative.

The Harish-Chandra embedding of the Siegel-Jacobi ball is explained in [11].
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The good, the bad and the ugly coherent states
through polynomial Heisenberg algebras

Miguel Castillo-Celeita and David J. Fernández C.

Abstract Second degree polynomial Heisenberg algebras are realized through the
harmonic oscillator Hamiltonian, together with two deformed ladder operators cho-
sen as the third powers of the standard annihilation and creation operators. The cor-
responding solutions to the Painlevé IV equation are easily found. Moreover, three
different sets of eigenstates of the deformed annihilation operator are constructed,
called the good, the bad and the ugly coherent states. Some physical properties of
such states will be studied as well.

1 Introduction

Polynomial Heisenberg algebras (PHA) of second degree are interesting deforma-
tions of the Heisenberg-Weyl algebra. In a differential representation they can be
realized by one-dimensional Schrödinger Hamiltonians, together with a pair of third
order ladder operators. In fact, when looking for the most general Hamiltonian ruled
by such an algebraic structure, it turns out that the potential depends on solutions to
a non-linear second-order ordinary differential equation called Painlevé IV (PIV).
Reciprocally, if one has Hamiltonians with third-order differential ladder operators,
then it is possible to design a simple algorithm for generating solutions to such an
equation, by identifying just the associated extremal states [1, 2].

On the other hand, it is important to look for the simplest systems ruled by second
degree PHA, such that the corresponding extremal states satisfy the boundary con-
ditions for being eigenfunctions of the Hamiltonian [3, 4]. This is the main subject
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to be addressed in this work. Indeed, it will be shown that the harmonic oscillator
Hamiltonian, together with deformed ladder operators which are the third powers of
the standard annihilation and creation operators, will define a second degree PHA
with such properties (Section 3). The three solutions of the PIV equation associated
to this deformed algebra will be derived in the same section. The corresponding
coherent states (CS) as well as their properties, will be studied in Section 3, while
Section 4 will contain our conclusions.

2 Second degree PHA for the harmonic oscillator

There are several ways to realize the second degree PHA through the harmonic os-
cillator. Here, we look for realizations such that the three extremal states are eigen-
functions of H and, thus, we can generate from them three infinite ladders of eigen-
functions and eigenvalues [3]. Let us consider then the deformed ladder operators,

ag = a3, a+g = (a+)3. (1)

The operator set {H,ag,a+g } gives place to a second degree PHA, since

[H,ag] =−3ag, [H,a+g ] = 3a+g , [ag,a+g ] = N(H +3)−N(H), (2)

where the analogue of the number operator reads:

N(H) = a+g ag =
(
H− 1

2

)(
H− 3

2

)(
H− 5

2

)
. (3)

Three extremal state energies are identified, E j = E j−1 = j− 1
2 , j = 1,2,3, with

eigenvectors given by

|ψE j〉 ≡ |ψ
j

0〉= | j−1〉, j = 1,2,3, (4)

where | j−1〉, j = 1,2,3 are the first three energy eigenstates of the harmonic oscil-
lator in Fock notation. Departing from them, by acting a+g iteratively, we can con-
struct three independent ladders of energy eigenstates. The eigenvalues associated
to the j-th ladder are E j

n = E j +3n, n = 0,1, . . . , j = 1,2,3, and the corresponding
eigenstates become

|ψ j
n〉= |3n+ j−1〉=

√
( j−1)!

(3n+ j−1)! (a
+
g )

n| j−1〉, j = 1,2,3. (5)

The spectrum of H thus takes the form

Sp(H) = {E 1
0 ,E

1
1 , . . .}∪{E 2

0 ,E
2
1 , . . .}∪{E 3

0 ,E
3
1 , . . .}, (6)

which is the harmonic oscillator spectrum seen from a new viewpoint: the Hilbert
space is the direct sum of three orthogonal supplementary subspaces,
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H = H0⊕H1⊕H2, each of them containing one ladder, which is represented
in Figure 1.

Fig. 1 The three independent
ladders (with spacing ∆E = 3)
for the second degree PHA of
Eq. (2). They produce glob-
ally the harmonic oscillator
spectrum with the standard
spacing ∆E = 1.
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Since {H,ag,a+g } generate a second degree PHA, there is a link with the PIV
equation [1, 2]:

d2g
dy2 =

1
2g

(
dg
dy

)2

+
3
2

g3 +4yg2 +2(y2−a)g+
b
g
, (7)

which allows us to find some of its solutions. We just need to supply the three
extremal states and their associated energies, in our case ψE j(x) = 〈x| j− 1〉, E j =
j−1/2, j = 1,2,3. The PIV solution and its parameters turn out to be given by

g(y) =−y− d
dy

[lnφ1(y)] , a = Ẽ2 + Ẽ3 +2Ẽ1−1, b =−2
(
Ẽ2− Ẽ3

)2
, (8)

where φ1(y) is the first extremal state for the previous ordering (the ground state),
and y =

√
3x, Ẽ j = E j/3, j = 1,2,3 are the changes required to fit the spacing of

levels of our system (∆E = 3) with the standard spacing (∆E = 1) used in [1, 2].
Since the first label can be asigned to any extremal state, we can find indeed three
PIV solutions, whose explicit expressions and corresponding parameters become

g(y) =−2y/3, a = 0, b =−2/9, (9)
g(y) =−2y/3−1/y, a =−1, b =−8/9, (10)

g(y) =−2y/3−4y/(2y2−3), a =−2, b =−2/9. (11)
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3 Coherent states

Let us consider now the CS as eigenstates of the deformed annihilation operator:

ag|α〉 j = α|α〉 j, j = 0,1,2, (12)

with |α〉 j =
∞

∑
n=0

Cn|3n+ j〉. Following a standard procedure, we arrive at

|α〉 j =
1√

∞

∑
n=0

|α|2n
(3n+ j)!

∞

∑
n=0

αn√
(3n+ j)!

|3n+ j〉. (13)

Several important quantities for the CS |α〉 j can be obtained straightforwardly:

〈x〉 j = 〈p〉 j = 0, 〈x2〉 j = 〈p2〉 j = (∆x) j(∆ p) j = 〈H〉 j = |a|α〉 j|2 + 1
2 , (14)

where

|a|α〉 j|2 =



1
∞

∑
r=0

|α|2r
(3r)!

∞

∑
n=0

|α|2n+2

(3n+2)! f or j=0,

1
∞

∑
r=0

|α|2r
(3r+1)!

∞

∑
n=0

|α|2n

(3n)! f or j=1,

1
∞

∑
r=0

|α|2r
(3r+2)!

∞

∑
n=0

|α|2n

(3n+1)! f or j=2.

(15)

Plots of the uncertainty products (∆x) j(∆ p) j for j = 0,1,2 are shown in Figure 2.

Fig. 2: Uncertainty products (∆x) j(∆ p) j; the minima are 1
2 , 3

2 and 5
2 for j = 0,1,2,

respectively.
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It is important to explore the completeness relation in each subspace H j:
´
|α〉 j j〈α|dµ j(α) = I j, j = 0,1,2, (16)

where I j is the identity operator on H j and

dµ j(α) = 1
π|α|

(
∞

∑
r=0

|α|2r

(3r+ j)!

)
f j(|α|2)d|α|dϕ. (17)

If f j(x) satisfies
´

∞

0 xn−1 f j(x)dx = Γ (3n+ j+ 1), thus any state vector can be de-
composed in terms of our CS.

Finally, the time evolution of a coherent state is quite simple, U(t)|α〉 j =

e−i( j+ 1
2 )t |α(t)〉 j, α(t) = α e−3it .

Fig. 3 Probability densities
(in position and time axis)
for the good, the bad and the
ugly CS (left, right, down
respectively).
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Let us consider next the non-normalized coherent states:

|z〉=
∞

∑
n=0

zn
√

n!
|n〉, |z〉 j =

∞

∑
n=0

z3n+ j√
(3n+ j)!

|3n+ j〉, α = z3. (18)

The first state in Eq. (18) is a standard CS while the second one stands for the good,
the bad and the ugly CS, also named three-photon CS [5]. Equation (16) ensures
that |zei2π j/3〉 can be written in terms of |z〉 j, j = 0,1,2 [3]. Reciprocally, we can
express |z〉 j in terms of |zei2π j/3〉, j = 0,1,2:

|z〉0 = N0

(
|z〉+ |ei2π/3z〉+ |ei4π/3z〉

)
, (19)

|z〉1 = N1

(
|z〉− eiπ/3|ei2π/3z〉+ ei2π/3|ei4π/3z〉

)
, (20)

|z〉2 = N2

(
|z〉+ ei2π/3|ei2π/3z〉+ ei4π/3|ei4π/3z〉

)
, (21)

i.e., the good, the bad and the ugly CS are superpositions of standard CS with com-
plex labels zei2π j/3 defining an equilateral triangle on the complex plane. Expres-
sions (19-21) are used to build the wave packets associated to |z(t)〉 j, j = 0,1,2,
whose probability densities as functions of x and t are shown in Figure 3 [3].

As we can see, the probability densities are periodic in time, with a period (2π/3)
equal to one third of the period for a classical motion for the oscillator. This implies
that the good, the bad and the ugly CS cannot describe semi-classical situations, i.e.,
they are intrinsically quantum states. It is worth noticing the existence of some other
states which are strongly quantum, e.g., the even and odd CS [4–7].

4 Conclusions

We have explored a realization of the second degree PHA in which the generators
are the harmonic oscillator Hamiltonian and the ladder operators ag = a3, a+g =

(a+)3. The three associated extremal states become physical eigenstates of H, and
the ladders generated from them are of infinite length. In addition, these extremal
states supply some solutions to the PIV equation. The search of the eigenstates of
ag leads to three different sets, which here have been called the good, the bad and
the ugly CS. Their period turns out to be a fraction (1/3) of the original period (2π)
for the oscillator, indicating the strong quantum nature of such states. They could
be important to describe the kind of interaction matter-radiation appearing in the
so-called multiphoton quantum optics [8].
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Generation and dynamics of crystallised-type
states of light within the Tavis-Cummings model

O. Castaños, S. Cordero, E. Nahmad-Achar, and R. López-Peña

Abstract A generation of superpositions of photon number operator states within
the generalized Tavis-Cummings model (GTC) is proposed, which is independent
of the dipolar strengths and of the considered number of atoms. These are obtained
by considering a linear combination of states, with total number of excitations M1
and M2, whose corresponding Husimi function for the electromagnetic field ex-
hibits a cyclic point group symmetry Cn, with n = |M2−M1|, that is, describes a
crystallised-type state. Finally we establish that these superpositions under evolu-
tion with respect to the GTC Hamiltonian yields a Husimi function that preserves
the cyclic point group symmetry.

1 Introduction

We know that spontaneous emission must occur if matter and radiation are to
achieve thermal equilibrium. However, if the atoms are placed between mirrors in a
cavity, the spontaneous emission can be controlled and manipulated. QED in cavi-
ties explores the measurement and control of atoms interacting with quantised radi-
ation. The Dicke model studies a system of Na non-interacting two-level atoms or
molecules confined in a small container compared with the radiation wavelength. A
dipolar interaction between the electromagnetic field and two-level atoms is consid-
ered in this model [1]. The Na = 1 case, called the Jaynes-Cummings model (JCM)
is exactly soluble with and without the rotating wave approximation (RWA) [2, 3].
The case of Na two-level atoms or molecules in the RWA, the Tavis-Cummings
model (TCM), has been also solved analytically under resonant conditions [4].

Schrodinger cat states [5, 6], even and odd coherent states [7], and squeezed¨
states [8–11] describe non-classical states of light because they have different sta-

O. Castaños et al.
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
Apartado Postal 70-543, 04510 Mexico City, Mexico, e-mail: ocasta@nucleares.unam.mx

119© Springer International Publishing AG 2017 
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries, 
https://doi.org/10.1007/978-3-319-69164-0_17 

mailto:ocasta@nucleares.unam.mx


120 O. Castaños, S. Cordero, E. Nahmad-Achar, and R. López-Peña

tistical properties than the coherent states, which are usually called classical states
of light [12–14]. More recently, the statistical properties of macroscopic superposi-
tions of coherent states that carry irreducible representations of a finite group have
been studied, together with their dynamic behaviour under evolution with respect
to quadratic Hamiltonians in the quadratures of the electromagnetic field; these are
called crystallised Schrödinger cats [15, 16]. The proposals to generate this type of
states can be grouped as follows: (i) non-linear processes [6,17], (ii) non-demolition
measurements [18, 19], and (iii) field-atom interactions [20–22].

In this contribution we propose generating superpositions of photon-number-
operator states within the GTC model for any number of particles and values of
the matter-field coupling constants. Section 2 the GTC model is introduced together
with the discussion of the one particle case, which can be solved analytically. In Sec-
tion 3 we study the evolution of initial states with a definite value of the total number
of excitations M and that of a superposition of states with M1 and M2 values. We
determine the matter-field entanglement properties, and show that the Husimi func-
tion for the electromagnetic field exhibits a cyclic point group symmetry Cn, with
n = |M2−M1|. The conclusions of this work are presented in Section 4.

2 The generalized Tavis-Cummings model

The TCM model describes many two-level atoms or molecules interacting dipo-
larly with a one-mode electromagnetic field in the RWA which can be solved ex-
actly under resonant conditions [4]. In this work, models describing many-level
atoms or molecules interacting with a one-mode radiation field are called gener-
alised Tavis-Cummings models (GTC) [23]. The Hamiltonian for the 3-level case
takes the form [23, 24]

HGTC = h̄Ω a†a+ h̄
3

∑
j=1

ω jA j j−
1√
Na

3

∑
i< j=2

µi j(a
†Ai j +aA ji) , (1)

with the convention ω1 ≤ ω2 ≤ ω3. A j j denotes the number operator of particles
in level j, and Ω the frequency of the creation and annihilation photon operators
(a†,a). The raising and lowering operators of the unitary algebra in 3 dimensions
can be realised in terms of bosonic operatorsA jk = b

†
j bk and µ jk is the matter-field

coupling parameter between levels ω j and ωk. It is straightforward to check that the
operator of the total number of excitations

MX = a†a+λ2A22 +λ3A33 (2)

is a constant of motion. The parameter X indicates the atomic configuration: Ξ , V ,
and Λ , each with (λ2,λ3) = {(1,2),(1,1),(0,1)}, respectively.

Basis states are constructed in terms of the tensorial product of a Fock state |ν〉,
associated to the number of photons, and the totally symmetric Gelfand-Tsetlin state
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of Na particles |Na qr〉, i.e.,

|ν ;Na qr〉= |ν〉⊗ 1√
(Na−q)!(q− r)!r!

ANa−q
31 Aq−r

21 |Na,Na,Na〉 , (3)

where the state with all the atoms in their lowest energy level is determined by the
expressionA jk|Na,Na,Na〉= 0, for all k > 1. Here, r denotes the eigenvalue ofA11,
i.e., the population of the lowest level ω1, and q denotes the sum of populations
of the two lowest levels. In this basis state, one constructs the Hamiltonian matrix
whose dimension d depends only on the number of particles d =(Na+1)(Na+2)/2,
when M ≥ λ3 Na [25].

One particle case. For Na = 1 one has a 3× 3 Hamiltonian matrix for each value
of the total number of excitations. The energy spectrum is then an infinite ladder of
3-level steps, each step determined by E± = MX +∆X/2±EX and E0 = MX , with

EX =
√
(∆X/2)2 +Ω 2

X . Here ∆X denotes a detuning value ∆i j, depending on the
configuration and levels in question:

Ξ : ω21 = Ω +∆12 , V : ω21 = Ω +∆12 , Λ : ω31 = Ω +∆13 .

The resonant case is obtained by considering the detuning parameters ∆i j equal to
zero. The frequencies ΩX are given by

ΩΞ =
√

MΞ µ2
12 +(MΞ −1)µ2

23 , ΩV =

√
MV

(
µ2

12 +µ2
13

)
, ΩΛ =

√
MΛ

(
µ2

13 +µ2
23

)
.

The dressed states can be determined in analytic form as they involve the di-
agonalisation of a 3× 3 matrix for any number of total excitations. Thus they are
combinations of the basis states introduced before. For the Ξ configuration these are
given by

|ψ0〉Ξ = −
√

MΞ µ12

ΩΞ

|MΞ −2,100〉+
√

MΞ −1 µ23

ΩΞ

|MΞ ,111〉 ,

|ψ±〉Ξ =
1

EΞ

(
2± ∆12

EΞ

)1/2

{√
MΞ −1 µ23|MΞ −2,100〉+

√
MΞ µ12 |MΞ ,111〉

−
(

∆12/2±EΞ

)
|MΞ −1,110〉

}
. (4)

Similar expressions can be obtained for the V - and Λ -configurations.

3 Husimi function for the electromagnetic field

We first consider one atom in its ground state inside a cavity prepared in a Fock state
with M photons, and study the evolution of an initial state |M;111〉. The state at an
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arbitrary time τ , in units of the frequency of the electromagnetic field, is given by

|ψ(τ)〉M = UM(τ)13 |M−λ3;100〉+UM(τ)23 |M−λ2;110〉
+ UM(τ)33 |M;111〉 , (5)

where UM(τ)i j are given in the appendix for different atomic configurations.
This state yields the reduced density matrix for the radiation field

ρ
(M)
F (τ) = PM−λ3(τ) |M−λ3〉〈M−λ3|+PM−λ2(τ) |M−λ2〉〈M−λ2|

+ PM(τ) |M〉〈M| , (6)

where the time-dependent probabilities of finding M−λ3, M−λ2, and M photons,
respectively, are

PM−λ3(τ) = |UM(t)13|2 , PM−λ2(τ) = |UM(τ)23|2 , PM(τ) = |UM(τ)33|2 . (7)

These probabilities depend on the considered atomic configuration through the ex-
pression for the evolution matrix UM(t), which is given in the appendix. The Husimi
function depends only on the magnitude of the parameter α = ρeiφ of the coherent
state |α〉,

Q(M)
H (ρ,τ)=

e−ρ2
ρ2M−2λ3

2π M!

(
M!PM−λ3(τ)

(M−λ3)!
+

M!PM−λ2(τ)

(M−λ2)!
ρ

2(λ3−λ2)+PM(τ)ρ2λ3

)
.

The QM
H has a volcano shape as a function of (ρ, φ), whose radius at the top

of the crater oscillates between
√

2(M−λ3 Na) and
√

2M, with Na = 1. This be-
haviour is also valid for any number of particles, and can be proved analytically and
corroborated numerically.

To generate the initial state one can use the experimental result that Fock states
can be prepared in a cavity. This has emerged from the interest in applications of
quantum information theory, as for example secure quantum communication and
quantum cryptography [26]. If instead of having the atom in the cavity, we send it
through the cavity, we will have a similar behaviour for the electromagnetic sector as
indicated in the Husimi function. Then we can properly select the traveling time of
the atom through the cavity in order for it to leave the latter in a linear combination
of two Fock states.

Without loss of generality, then one can consider a resonant cavity in a superpo-
sition of two Fock states. We then consider the evolution of a linear combination of
eigenstates of two values of the total number excitations

|Φ(0)〉= (cosθ |M1〉+ sinθ |M2〉)×|111〉 . (8)

It is straightforward to determine the reduced density matrix of the field and its
expectation value with respect to the coherent states of light leads to
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QH(ρ,φ ,ξ ) =
e−ρ2

2π

(
cos2

θ
ρ2M1

M1!
+ sin2

θ
ρ2M2

M2!
+ρ

M1+M2
sin2θ√
M1!M2!

cos [(M1−M2)φ ]
)
.

This Husimi function is an invariant under the transformation φ → φ + 2π

M1−M2
, dis-

playing a cyclic point symmetry C|M1−M2|. This is shown in Fig. 3 for the Ξ atomic
configuration with M1 = 5 and M2 = 2. The form of the function is qualitatively
similar for different strengths of the matter-field coupling parameters.

By a similar procedure than in the previous case, its dynamics is obtained through
the evolution operator; then the reduced density matrix of the field and its expecta-
tion value with respect to the coherent state are calculated as follows:

QH(θ ,ρ,φ , t) = cos2
θ QM1

H (ρ, t)+ sin2
θ QM2

H (ρ, t)+ sin2θ
e−ρ2

ρM1+M2−2λ3

2π
√

M1!M2!

× cos{(M1−M2)(t +φ)}
(√

M1!M2!
(M1−λ3)!(M2−λ3)!

PM1−λ3 (t)PM2−λ3 (t)

+ ρ
λ3−λ2

√
M1!M2!

(M1−λ2)!(M2−λ2)!
PM1−λ2 (t)PM2−λ2 (t)+ρ

2λ3

√
PM1 (t)PM2 (t)

)
.

The QH is invariant under the transformation φ → φ + 2π

M1−M2
, proving analytically

its symmetry under transformations of the cyclic group C|M1−M2|, again the result is
independent of the number of particles.

Fig. 1: Husimi function of the crystallized-type cat state with point symmetry C3. A
contour plot (left) and the corresponding 3-dimensional plot (right) are shown. We
have taken M1 = 5, M2 = 2, θ = π

4 , µ12 = 1, µ23 =
√

2, and q =
√

2ρ cosφ and
p =
√

2ρ sinφ .
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4 Conclusions

We have obtained analytic expressions for the one-particle case of the GTC model.
The energy spectrum is an infinite ladder of three-level steps, each of them with a
definite value for the total number of excitations M, together with the corresponding
dressed states. A construction of crystallised-type Schrödinger states were exhib-
ited for arbitrary dipolar strengths and whether or not the system is under resonant
conditions with the field. The cyclic point symmetry group associated to the Husimi
function of the electromagnetic field depends only on |M1−M2|. It is important to
mention that the results presented here can be extended to any number of particles,
and to situations out of resonance. These extensions have been proved numerically
by considering the evolution of a linear combination of states with M1 and M2 total
number of excitations and by constructing the corresponding Husimi function [27].
Additionally, we conjecture that it can be generalised to n-level atoms.

Acknowledgements This work was partially supported by CONACyT-México (under Project
No. 238494), and DGAPA-UNAM (under Projects No. IN101614 and No. IN110114).

Appendix

The evolution operator associated to the Hamiltonian (1) can be obtained in analytic
form for the different atomic configurations. It has the form U(t) = e−iMt UI(t) with
the last factor denoting the evolution operator in the interaction picture. The matrix
elements needed in Eq. (7) are given by

UMΞ
(t)13 =−

√
MΞ (MΞ −1)µ12 µ23

1− cosΩΞ t
Ω 2

Ξ

,

UMΞ
(t)23 =−i

√
MΞ µ12

sinΩΞ t
ΩΞ

, UMΞ
(t)33 =

(MΞ −1)µ2
23 +MΞ µ2

12 cosΩΞ t
Ω 2

Ξ

,

UMV (t)13 =
−i µ13 sinΩV t√

µ2
12 +µ2

13

, UMV (t)23 =
−i µ12 sinΩV t√

µ2
12 +µ2

13

, UMV (t)33 = cosΩV t .

UMΛ
(t)13 =

i µ13 sinΩΛ t√
µ2

13 +µ2
23

, UMΛ
(t)23 =

−µ13 µ23 (1− cosΩΛ t)
µ2

13 +µ2
23

,

UMΛ
(t)33 =

µ2
23 +µ2

13 cosΩΛ t
µ2

13 +µ2
23

.

Note that for the V - and Λ -configurations the dependence in the total number of
excitations appears only in the argument of the trigonometric functions.
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Immanants of unitary matrices and their
submatrices

Dylan Spivak and Hubert de Guise

Abstract Motivated by recent experiments, we discuss the connection between im-
manants of an arbitrary m×m unitary matrix U and group functions D of U . This
connection also applies to submatrices of U and can be expanded with modifications
to cases where U carries a representation of SU(m) that is not the defining represen-
tation. Early results on the connections to twisted immanants are also included.

1 Introduction and motivation

In this paper we discuss the connection between immanants of matrices and sub-
matrices and group functions D that occur in the representation theory of the uni-
tary groups. Our work is motivated by recent experiments where controllable dis-
tinguishability of pulses was shown to be related to permutation properties of these
pulses, and through Schur-Weyl duality to immanants of submatrices of the scatter-
ing matrix describing the interferometer in which the pulses propagate. We extend
previously published work [1] to observations where multiple pulses can enter in-
put channels of the interferometer and show that immanants of some specific non-
unitary matrices are nevertheless connected with unitary group functions. Finally,
we include a short discussion of twisted immanants and their connections to unitary
group functions.

Littlewood [2] has defined the immanant using characters of an irreducible rep-
resentation (irrep) {λ} of the permutation group. For a 3× 3 matrix, the relevant
permutation group is S3 and an immanant is given by
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Imm{λ}(U) = ∑
σ

χ
{λ}
σ U1σ(1)U2σ(2)U3σ(3) = ∑

σ

χ
{λ}
σ P(σ) [U11U22U33] . (1)

conjugacy class {1,1,1} {2,1} {3}
1 1 1
2 0 −1

1 −1 1

Table 1: The character table of S3.

From the character table above and Eq.(1) one rapidly finds that in addition to

the fully antisymmetric determinant Det(U) := Imm (U), we also have a perma-
nent Per(U) = Imm (U) given by ∑σ∈S3

U1σ(1)U2σ(2)U3σ(3) and a generic im-
manant Imm (U) = 2U11U22U33−U12U23U31−U13U21U32. Unlike the permanent
or the determinant, which are associated with 1-dimensional irreps of the permuta-
tion group, Imm (U) does not transform into a multiple of itself under permuta-
tions of row or columns.

If the matrix U is the fundamental representation of a group, say the irrep (1,0)
of SU(3) with Young diagram for example, Ui j is the group function

Ui j = 〈i|U | j〉 := D(1,0)
i j (U) = Di j(U) (2)

where {| j〉, j = 1,2,3} is a basis for this irrep. It is appropriate at this point to
introduce basis states for a general SU(3) irrep labelled by the non-negative integers
(p,q): |(p,q)ν1ν2ν3; I23〉. These states can be conveniently realized as harmonic
oscillator states [3]. The weight of the state |(p,q)ν1ν2ν3; I23〉 is [ν1− ν2,ν2− ν3]
and I23 labels states with the same weight but transforming differently under the
SU(2)⊂ SU(3) subgroup which mixes ν2 and ν3.

In this notation an immanant is then a sum of products of D(1,0) functions:

Imm (U) = 2D11(U)D22(U)D33(U)

−D12(U)D23(U)D31(U)−D13(U)D21(U)D32(U) , (3)

which can be rewritten in a D-function-like notation

Imm{λ}(U) = 1〈(1,0)100|⊗ 2〈(1,0)100|⊗ 3〈(1,0)100|U

×
[
∑
σ

χ
{λ}
σ Pσ

]
|(1,0)100〉1⊗|(1,0)010〉2⊗|(1,0)001〉3 (4)

provided we supply a recipe for the action of the permutation group. Indeed there
are two such actions: a right action

P123|1〉1|2〉2|3〉3 = |2〉1|3〉2|(1〉3 , (5)
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and a left action (by the inverse element) P̄132|1〉1|2〉2|3〉3 = |1〉3|2〉1|3〉2.
Products like D11(U)D22(U)D33(U) can be expanded in a sum of group func-

tions in the decompositon (1,0)⊗ (1,0)⊗ (1,0) = (3,0)⊕ 2(1,1)⊕ (0,0), but
the operator Π̂ {λ} := ∑σ χ

{λ}
σ Pσ is nothing but a projection on the irrep {λ} =

{λ1,λ2,λ3} of S3 corresponding to irrep (λ ) := (λ1−λ2,λ2−λ3). In view of this
one can write for instance the general expression

Imm (U) = α11D
(111)1;(111)1(U)+α10D

(111)1;(111)0(U)

+α01D
(111)0;(111)1(U)+α00D

(111)0;(111)0(U) , (6)

D
(111)I23;(111)I′23

(U) := D(1,1)
(111)I23;(111)I′23

(U) = 〈(1,1)111; I23|U |(1,1)111; I′23〉.

The general form of Eq.(6) is correct. Indeed, from a corollary of a theorem due to
Kostant [4], we find: α11 = α00 = 1 and α10 = α01 = 0. We can extend this result to
states with non-zero weights by looking at a 3×3 submatrix

Ū =


· · · ·
· U22 U23 U24
· U32 U33 U34
· U42 U43 U44

 , (7)

obtained from Ū by removing the first line and first row, to find a form very similar
to the same result for the 3×3 matrix [5]:

Imm (Ū) = D
(0111)1;(0111)1(Ū)+D

(0111)0;(0111)0(Ū) . (8)

Symmetry restricts the terms in Eq.(6) as Imm{λ} is invariant under conjugation
by permutations: Imm{λ} = P−1

τ Imm{λ}Pτ . We note that states |(λ )ν ; I = 0〉 are
I = 0 singlets so antisymmetric w/r to P23, while the states |(λ )ν ; I = 1〉 are in I = 1
triplets so symmetric w/r to P23. Thus for instance 〈(λ )ν ′;1|P−1

23 U P23|(λ )ν ;0〉 =
−D{λ}

(ν ′)1;(ν)0(U), from which α01 = α10 = 0 follows.
When the submatrix is not principal diagonal, the proof of [5] or the previous

line of argument does not apply but we nevertheless find a similar result:

Imm (U234;134) = D
(0111)1;(1011)1/2(U)+D

(0111)0;(1011)1/2(U) ,

= Imm (U234;P12(234)) . (9)

It is conjectured in [5] that the result on submatrices holds for generic submatrices
with suitable minor changes.

Finally, suppose the matrix U is not the fundamental representation. For instance,
consider the 4× 4 irrep of SU(2) (J = 3/2). The irrep {2,2} of S4 has dim=2 and
can be expanded in terms of SU(2) Wigner DJ

mm′ functions. One can verify that,

Imm (U) = 26
35 D4

00(U)+ 6
7 D2

00(U)+ 2
5 D0

00(U) . (10)
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The values J = 4,2,0 are those that occur in the (outer) plethysm (3/2)⊗℘{2,2}.
The sum 26

35 +
6
7 +

2
5 = 2 = dim( ). More complicated cases, i.e., immanants of the

6-dimensional irrep (2,0) of SU(3) also have similar expressions [5]. We have no
good way of analytically obtaining the coefficients in the expansion of the D’s.

2 Application to interferometry

Imagine a scenario in which a 2-channel linear interferometer is injected with si-
multaneous three photon pulses in one port and a pair of simultaneous pulses in the
other port. The relative delay between the pulses entering different input ports can
be adjusted by an experimentalist. What is the rate P(τ) as a function of the relative
delay τ at which triples of photon pulses come out at one of the two output ports
and pairs of pulses at the other?

The rate P(τ) can be expressed [1] in a scalar product-like form P(τ) = v† · R(τ) ·
v. The vector v is a polynomial in the entries Ui j, i, j = 1,2 of the 2×2 unitary matrix
describing the scattering of individual pulses.

We approach this problem by first considering the action of S5 on the permuta-
tions of (1,1,1,2,2). There are 10 possible permutations (or words), one such word
is (1,2,1,1,2). If the final word is (a,b,c,d,e), we identify with it the polynomial
U1aU1bU1cU2dU2e as one entry in the vector v. As there are 10 distinct words to be
constructed from (1,1,1,2,2), we obtain a 10× 10 rate matrix R(τ) which is re-
ducible under S5 as the partitions of 5 with at most 2 parts: ⊕ ⊕ .
One can obtain the rates and the rate matrix starting from the the 10×10 matrix Ū
constructed by repeating the 2×2 scattering matrix U :

Ū =

U U U U U
...

...
...

...
...

U U U U U

 . (11)

The matrix Ū is neither unitary nor invertible; nevertheless Per(Ū)= Imm (Ū)=
14400D5

00(U) is related to an SU(2) D-function for J = 5; the coincidence rate P(0)
when all bosons are indistinguishable is proportional to the modulus square of this
permanent.

3 Fermionic version

Suppose now we consider the interference of fermions in the simple case where
three fermions enter an interferometer by different channels and output also by dif-
ferent channels. In the matrix R(τ) we insert a − sign in row U1σ(1)U2σ(2)U3σ(3)
and column U1σ ′(1)U2σ ′(2)U3σ ′(3) if σ ·σ ′ is a product of an odd number of transpo-
sitions. The final rate is an expression of the form
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R(τ) = 1l6×6−ρ12e−(τ1−τ2)
2−ρ13e−(τ1−τ3)

2−ρ23e−(τ2−τ3)
2

+(ρ123 +ρ132)e−
1
2 (τ1−τ2)

2− 1
2 (τ1−τ3)

2− 1
2 (τ2−τ3)

2
, (12)

where ρi j and ρi jk are 6×6 matrices that carry the regular representation of S3. For
bosons, ρ12 = ρ13 = ρ23 =+1 but the anticommutative nature of fermion leads to a
sign that is the character of σ in alternating representation Γ .

The regular representation of S3 decomposes into Γ reg. = Γ ⊕2Γ ⊕Γ . The
effect of anticommutativity, encoded in Γ , is to transform every irrep into its con-
jugate since ⊗ = , ⊗ = , ⊗ = . As a result, what corresponds to a
permanent for bosons now corresponds to a determinant for fermions etc., and some
features of the landscapes are reversed, as illustrated in Fig.(1):

Fig. 1: Comparing a bosonic coincidence landscape (left) with a fermionic coinci-
dence landscape (right) for the same 3× 3 scattering matrix. The two axes of the
landscape correspond to variable relative delays (τ1,τ3) between the first and sec-
ond, and second and third pulses respectively.

Itoh [6] introduced the concept of twisted immanant for self-conjugate irreps. For
instance, we have for :

Imm? (U) = i
√

3U12U23U31− i
√

3U13U21U32 ,

= i
√

3([even 3-cycle]− [odd 3-cycle]) . (13)

(Here, even and odd refer to the inversion number of the cycle.)
The self-conjugate irreps of Sn split in two irreps under the alternating subgroup

An ⊂ Sn. More generally Imm?{λ}(U) picks up a sign under conjugation by odd
elements:

Pσ−1 Imm?{λ}(U)Pσ =

{
+Imm?{λ}(U) if σ ∈ An ,

−Imm?{λ}(U) if σ /∈ An .
(14)

One can express twisted immanants in terms of SU(3) D-functions:
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Imm? (U) =−i
(

D
(111)0;(111)1(U)−D

(111)1;(111)0(U)
)
. (15)

A similar expression holds in SU(4): Imm? (U)∝ D
(1111)1;(1111)0−D

(1111)0;(1111)1.
The antisymmetry of Eq.(14) implies that the twisted immanants will have a D-

function expansion where the input and output states are conjugate. We can visualize
this by constructing states that are labelled by Sk states, and by duality, associate
them with SU(k) states. For the SU(5) states in the self-conjugate irrep , we have

=


↓

↓ ↓ := |1〉
↓

{
↓ := |2〉
↓ := |3〉

↓

↓
{
↓ := |4〉
↓ := |5〉

↓ ↓ := |6〉

The requirements of antisymmetry under transposition now dictate that we consider

Imm? = α16D1;6 +α61D6;1 +α25D2;5 +α52D5;2 +α34D3;4 +α43D4;3 . (16)

Indeed we find α16 = α61 = α25 = α52 = α34 = α43 = 1.
What of rates in fermion interferometry? The boson rates are proportional to

modulus squared of linear combinations of immanants. The fermion rates are pro-
portional to modulus squared of linear combinations of twisted immanants when
self-conjugate irreps occur. The linear combos of twisted immanants are also linear
combos of regular immanants. As a result, there seems to be nothing fundamentally
new in the fermionic rates, unless we find a scheme where only one immanant (or
twisted immanant) occurs in the expression of the rates.

4 Conclusion

We note the deep connection between group functions, immanants, twisted im-
manants and multiphoton interferometry. This appears to be a subset of relations
within the Schur-Weyl duality for irreps of U(m) and the permutation group Sn.
This work was supported by NSERC of Canada, and by Lakehead University.

References

1. de Guise H, et al., Phys Rev A 89 (2014), 063819; Tillmann M, et al., Phys Rev X 5 (2015),
041015; Tan S-H, et al., Phys Rev Let. 110 (2013), 113603.

2. Littlewood D E, The theory of group characters and matrix representations of groups Vol.
357. American Mathematical Soc., 1950.

3. Rowe D J, Sanders B C , and de Guise H, J Math Phys 40 (1999), 3604–3615.
4. Kostant B, Immanant inequalities and 0-weight spaces, J Am Math Soc 8 (1995), 181–186.
5. de Guise H, et al., J Phys A: Math Theo 49 (2016), 09LT01.
6. Itoh M, Linear and Multilinear Algebra 64 (2016), 1637–1653.



Group theoretical aspects of L2(R+), L2(R2) and
associated Laguerre polynomials

Enrico Celeghini and Mariano A. del Olmo

Abstract A ladder algebraic structure for L2(R+) which closes the Lie algebra
h(1)⊕ h(1), where h(1) is the Heisenberg-Weyl algebra, is presented in terms
of a basis of associated Laguerre polynomials. Using the Schwinger method, the
quadratic generators that span the alternative Lie algebras so(3), so(2,1) and so(3,2)
are also constructed. These families of (pseudo) orthogonal algebras also allow us
to obtain unitary irreducible representations in L2(R2) similar to those in spherical
harmonics.

1 Introduction

The associated Laguerre polynomials (ALP) [1], L(α)
n (x) (x ∈ [0,∞), n = 0,1,2, . . .

and α real fixed parameter, continuous and > −1), are defined by the 2nd order
differential equation (DE)[

x
d2

dx2 +(1+α− x)
d
dx

+n
]

L(α)
n (x) = 0 . (1)

The ALPs reduce to the Laguerre polynomials for α = 0. From the many recurrence
relations that they verify [1, 1, 2], we start from the following:[
− d

dx
+1
]

L(α)
n (x) = L(α+1)

n (x) ,
[

x
d
dx

+α

]
L(α)

n (x) = (n+α)L(α−1)
n (x) . (2)
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For α >−1 and fixed, the ALP L(α)
n (r) are orthogonal in the label n with respect

to the weight measure dµ(x) = xα e−x dx
ˆ

∞

0
dx xα e−x L(α)

n (x) L(α)
n′ (x) =

Γ (n+α +1)
n!

δnn′ .

For an integer α such that 0≤ α ≤ n , we have the generalization [1] L(−α)
n (x) :=

Γ (n−α+1)
Γ (n+1) (−x)α L(α)

n−α(x) . Hereafter we assume here n ∈ N, α ∈ Z , n−α ∈ N, and
we consider α as a label, like n, and not a parameter fixed at the beginning.

Following the approach of previous works [4–7], we introduce now a set of al-
ternative functions including also the weight measure in such a way as to obtain the
orthonormal bases we are used to in quantum mechanics:

M(α)
n (x) :=

√
Γ (n+1)

Γ (n+α +1)
xα/2 e−x/2 L(α)

n (x) .

For each fixed value of α ≥−n and n ∈ N, the set of M(α)
n (x), is a basis of L2(R+)

ˆ
∞

0
M(α)

n (x) M(α)
m (x) dx = δnm ,

∞

∑
n=0

M(α)
n (x) M(α)

n (x′) = δ (x− x′) .

2 The symmetry algebra h(1)n⊕h(1)p

The eqs. (2) rewritten in terms of M(α)
n take the form[

−√x
d
dx

+
1

2
√

x
(α + x)

]
M(α)

n (x) =
√

n+α +1 M(α+1)
n (x) ,[√

x
d
dx

+
1

2
√

x
(α + x)

]
M(α)

n (x) =
√

n+α M(α−1)
n (x) ,

(3)

where p := n+α plays, for n fixed, the role of eigenvalue of the number opera-
tor in a Heisenberg-Weyl algebra, h(1), realized on the space of functions Mα

n (x).
It is indeed a positive integer like n, so that we can define the new functions
Mn,p(x) := M(p−n)

n (x), which by inspection are symmetric in the interchange n⇔ p,
i.e., Mn,p(x) = (−1)p−n Mp,n(x) . The previous recurrence relations (3) can thus be
rewritten as[

−√x
d
dx

+

√
x

2
+

p−n
2
√

x

]
Mn,p(x) =

√
p+1 Mn,p+1(x) ,[√

x
d
dx

+

√
x

2
+

p−n
2
√

x

]
Mn,p(x) =

√
p Mn,p−1(x) .

(4)
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To construct the operatorial structure corresponding to the recurrence relations
we define now four operators X , Dx, N and P:

X Mn,p(x) = x Mn,p(x) , Dx Mn,p(x) =
dMn,p(x)

dx ,

N Mn,p(x) = n Mn,p(x) , P Mn,p(x) = p Mn,p(x) .

Then, the second order DE (1) becomes

E Mn,p(x) = 0 , (5)

where
E := XD2

x +Dx +
N +P+1

2
− 1

4X
(P−N)2− X

4
.

Moreover from (4) we get the differential operators (DOs),

b± :=∓
√

XDx +

√
X

2
+

1
2
√

X
(P−N) , (6)

that act on the functions Mn,p(x) in such a way that ∆n = 0 and ∆ p = ±1.
Since [b−,b+] = I , they close an h(1) algebra, (h(1)p) with quadratic Casimir
Cp = {b−,b+}−2(P+1/2) verifying Cp Mn,p(x) =−2EMn,p(x) = 0 .

Now taking into account the symmetry under the interchange n⇔ p of Mn,p(x),
we can define the operators a±(N,P) := −b±(P,N) that change the labels of
Mn,p(x) as ∆ p = 0 and ∆n =±1. Their explicit action on Mn,p(x) is indeed

a+ Mn,p(x) =
√

n+1 Mn+1,p(x) , a− Mn,p(x) =
√

n Mn−1,p(x) .

The two operators a± determine thus another HW algebra, h(1)n. Since these
bosonic operators a± and b± commute we have obtained in this way the global
algebra h(1)n⊕h(1)p.

Moreover inside the Universal Enveloping Algebra UEA [h(1)n⊕h(1)p] other
algebras preserving the parity of n+ p can be found by the Schwinger procedure [8]
as we will do in the next section.

3 so(3), so(2,1) and so(3,2) symmetries

so(3) symmetry

We start from J± := a±b∓, obtaining second order DOs which, taking into account
eq. (5), can be rewritten in the space {Mn,p(x)} as first order DOs:

J± =∓Dx (N−P±1)+
1

2X
(N−P±1)(N−P)− 1

2
(N +P+1) . (7)
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Defining J3 := (a− a+−b−b+)/2 ≡ (N−P)/2 we see that {J±,J3} closes a su(2)
algebra in the space {Mn,p(x)} since [J+,J−] = 2J3− 8

X J3E. The action of J± is

J+ Mn,p(x) =
√
(n+1) p Mn+1,p−1(x) , J−Mn,p(x) =

√
n(p+1)Mn−1,p+1(x) .

Also the Casimir of su(2), Csu(2) = J2
3 +

1
2{J+,J−} is closely related to eq. (5) as

Csu(2) = J(J+1)+ 1
X (4J2

3 +1)E, where J is the diagonal operator J := (N +P)/2.

so(2,1) symmetry

In a similar way we can define the operators K± := a±b±, such as in the case of the
operators J±, we find in the space {Mn,p(x)}

K+ = X Dx +
1
2
(N +P+2−X) , K− =−X Dx +

1
2
(N +P−X) . (8)

Both operators together with K3 := (a− a++b+ b−)/2 ≡ (N +P+1)/2 determine
a su(1,1) algebra

[K3,K±] =±K± , [K+,K−] =−2K3 ,

since the action on the functions Mn,p(x) is

K+ Mn,p(x)=
√
(n+1)(p+1)Mn+1,p+1(x) , K−Mn,p(x)=

√
n p Mn−1,p−1(x) .

The Casimir of su(1,1), Csu(1,1) = K2
3 − 1

2{K+,K−}, is also connected with eq. (5)
as Csu(1,1) = (M2− 1

4 )+X E, where M = J3 := (N−P)/2.

More so(2,1) symmetries

The commutators of J± and K± give the new operators

R± :=±[J±,K±] , S± :=±[J∓,K±] .

Provided that we define R3 := J +M + 1/2 and S3 := J−M + 1/2, they close two
so(2,1) algebras with commutators

[R+,R−] =−4R3 , [R3,R±] =±2R± ,

and Casimir CR = R2
3 − 1

2{R+,R−} = − 3
4 + 1

X (1 + (X + 2M)2)E, similarly for
{S±,S3}. Note that under the interchange m↔−m we have {R±,R3}↔ {S±,S3}.
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so(3,2) symmetry

All the operators {K±,L±,R±,S±,J,M} can be written on the space {Mn,p(x)} as
first order DOs. All together they determine on {Mn,p(x)} the representation of the
Lie algebra so(3,2) with Cso(3,2)

2 =−5/4 .

4 Representations of so(3), so(2,1) and so(3,2) on the plane

We introduce now the operators directly related to so(3), J := (N +P)/2 and J3 ≡
M := (N−P)/2, and we define

L m
j (x) := M j+m, j−m(x) =

√
( j+m)!
( j−m)!

x−m e−x/2 L(−2m)
j+m (x) .

The operators J3 and J± (7), rewritten in terms of J and M, act on {L m
j (x)} as

J3 L m
j (x) = m L m

j (x) , J± L m
j (x) =

√
( j∓m)( j±m+1) L m±1

j (x) .

So, {L m
j (x)} with j ∈ N and |m| ≤ j supports the representation D j of so(3).

Similar results can be obtained for the other algebras so(2,1) and so(3,2). For
instance, for the so(2,1) spanned by {K±,K3}, {L m

j (x)} supports the irreducible
representation of the discrete series with Casimir Csu(1,1) := m2− 1

4 with m fixed
and j ≥ |m|.

On the other hand, in general these representations are not faithful because
L m

j (x) = L −m
j (x). The same difficulty is also present in the spherical harmonic

where the associated Legendre polynomial Pm
l is related to P−m

l . There the degen-
eration was removed by introducing an angle variable. Here we follow the same
procedure by considering the new functions,

Z m
j (r,φ) := eimφ L m

j (r
2) , φ ∈ R ,−π ≤ φ < π .

Under the change of variable x→ r2 the DE (5) becomes[
d2

dr2 +
1
r

d
dr
− 4m2

r2 − r2 +4( j+
1
2
)

]
Z m

j (r,φ) = 0 .

Normalization and orthogonality of the Z m
j (r,φ) are similar to those of Y m

j (θ ,φ)

1
2π

ˆ
π

−π

dφ

ˆ
∞

0
2r dr Z m

j (r,φ)∗ Z m′
j′ (r,φ) = δ j, j′ δm,m′ ,

∑
j,m

Z m
j (r,φ)∗ Z m

j (r′,φ ′) =
π

r
δ (r− r′) δ (φ −φ

′) .
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This means that the set {Z m
j (r,φ)} is a basis in the space of square integrable func-

tions defined on the plane L2(R2), as {Y m
j (Ω)} is a basis of L2(S2).

Moreover, with a convenient introduction of phases we can define the operators
J± := e±iφ J± and J3 := J3, in the finite dimensional space {Z m

j (r,φ)} wih fixed j

J± Z m
j (r,φ) =

√
( j∓m)( j±m+1) Z m±1

j (r,φ) , J3 Z m
j (r,φ) = m Z m

j (r,φ) ,

and analogously for the remaining operators. So {Z m
j (r,φ)} support irreducible

representations of so(3), so(2,1) and so(3,2) on the plane as {Y m
j (θ ,φ)} are on the

sphere. For more details see [7, 9, 10].
From the physical point of view, in spite of the analogy with the angular momen-

tum, J± and J3 can be related to a one-dimensional Morse system, where m and j
are connected with the potential [9].

Conclusions

A relationship between Lie algebras and square integrable functions has been found.
Indeed we need to restrict ourselves to L2(R+) and L2(R2), where E is identically
zero, to obtain differential representations of the Lie algebras in the spaces of func-
tions defined in R+ and R2 .
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Galilean complex Sine-Gordon equation:
symmetries, soliton solutions and gauge coupling

Genilson de Melo, Marc de Montigny, James Pinfold, Jack Tuszynski

Abstract We use the Galilean covariance formalism to obtain the Galilean com-
plex Sine-Gordon equation in 1+1 dimensions, Ψxx (1−Ψ ∗Ψ)+2imΨt +Ψ ∗Ψ 2

x −
Ψ (1−Ψ ∗Ψ)2 = 0. We determine its Lie point symmetries, discuss some group-
invariant solutions, and examine some soliton solutions. We also discuss the coupling
of this field with Galilean electromagnetism. This work is motivated in part by re-
cent applications of the relativistic complex Sine-Gordon equation to the dynamics
of Q-balls.

1 Galilean covariance

The objectives of the presentation given at the Group-31 conference were to sum-
marize our recent paper [5], in which a Galilean complex Sine-Gordon (GCSG)
equation [7, 10] was formulated with Galilean covariance [12, 13], and to extend it
by adding couplings of the GCSG field to the Galilean electromagnetic field inves-
tigated in Ref. [6, 8].

The Galilean covariant approach is based on Galilean 5-vectors, such as [12, 13]
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xµ = (x1,x2,x3,x4,x5) = (r, t,s)

which transforms under a Galilean boost as

r′ = r−vt,
t ′ = t,
s′ = s− r ·v+ 1

2 v2t.

This transformation leaves invariant (r, t,s) · (r′, t ′,s′)≡ r · r′− ts′− t ′s, which sug-
gests the introduction of a ‘Galilean metric’:

gµν =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

 .

If, for instance, we consider a wave-function such that Ψ(x) = e−imsψ(x, t) so that
∂sΨ = −imΨ , then the Klein-Gordon equation in 5D, ∂µ ∂ µΨ(x) = 0 implies that
∇2Ψ−2∂t∂sΨ = e−ims(∇2ψ+2mi∂tψ)= 0 is reduced to the free Schrödinger equa-
tion in 4D: i∂tψ = − 1

2m ∇2ψ. Ref. [6] shows that this 5-dimensional approach al-
lows one to obtain the Lévy-Leblond equation [9] which is a Galilean version of
the Dirac equation that was discussed at Group-31 [2], as well as the equations of
Galilean electromagnetism [8], to which we shall return in the last section.

2 Q-balls and the complex Sine-Gordon equation

The MoEDAL experiment will investigate highly-ionizing electrically charges par-
ticles, such as the multiparticle excitations called ‘Q-balls’ [1]. A Q-ball refers to a
type of non-topological soliton, thus a stable localized field configuration that car-
ries a conserved Noether charge [4]. Bowcock et al performed an analytical study of
the dynamics and interactions of relativistic Q-balls in 1+ 1 dimensions [3]. They
described the interactions and perturbations of Q-balls in non-integrable theories by
using an integrable model: the (relativistic) complex Sine-Gordon equation [7, 10]:
L = 1

1−|Ψ |2 ∂µΨ ∗∂ µΨ −U (|Ψ |) . Hereafter we consider

L =
∂µΨ ∗∂ µΨ

1−|Ψ |2 + |Ψ |2,

which leads to the equation of motion

(1−Ψ
∗
Ψ)∂

µ
∂µΨ +Ψ

∗
∂µΨ∂

µ
Ψ −Ψ (1−Ψ

∗
Ψ)2 = 0.
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With the Galilean covariance prescription, an equation in 1+ 1 dimensions is ob-
tained from a model formulated with the Galilean 2+1 metric,

gµν =

1 0 0
0 0 −1
0 −1 0


which is then projected onto 1+1 dimensions with the restriction:

Ψ(x) = e−ims
ψ(x, t)→ ∂sΨ =−imΨ .

The equation of motion becomes

(Ψxx−2Ψst)(1−Ψ
∗
Ψ)+Ψ

∗ (
Ψ

2
x −2ΨsΨt

)
−Ψ (1−Ψ

∗
Ψ)2 = 0,

which reduces to the central equation of this paper, the GCSG equation:

ψxx (1−ψ
∗
ψ)+2imψt +ψ

∗
ψ

2
x −ψ (1−ψ

∗
ψ)2 = 0. (1)

Hereafter, we will find the Lie point symmetries and determine one-soliton solutions
of this equation.

If we express the function ψ(x, t) as

ψ(x, t) = ρ(x, t)exp(iφ(x, t)) ,

then the CGSG equation (1) leads to

ρxx
(
1−ρ

2)−ρφ
2
x +ρρ

2
x −2mρφt −ρ

(
1−ρ

2)2
= 0 (2)

and
2ρxφx +ρ

(
1−ρ

2)
φxx +2mρt = 0 (3)

We find that the Lie-point symmetries (see Ref. [11] for an introduction) generated
by four vector fields: space-translations v1 = ∂x, time-translation v2 = ∂t , field-shift
v3 = ∂φ and a Galilean-like boost v4 = mx∂φ + t∂x.

Let us consider the group-invariant solutions for the subgroup generated by
∂t + c∂x, which admits the invariant w = x− ct. Then the equations (2) and (3)
respectively become

ρww
(
1−ρ

2)−ρφ
2
w +ρρ

2
w +2mcρφw−ρ

(
1−ρ

2)2
= 0

and
2ρwφw +ρ

(
1−ρ

2)
φww−2mcρw = 0.

We impose an ansatz suggested by the two terms dependent of φ in the first equation:

−φ
2
w +2mcφw = constant, φw = mc.
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By substitution, multiplying by ρw
1−ρ2 and integrating, we find that

ρ
2
w =−ρ

4 +ρ
2 (1− k)+ k−m2c2. (4)

The discriminant of the quartic polynomial in this equation is

(k+1)2− (2mc)2 = (k+1+2mc)(k+1−2mc) .

We find localized solutions by setting the discriminant of this equation equal to zero,
so that k =±2mc−1. If we keep the + sign, we find that

ρ
2
w =−ρ

4 +2ρ
2 (1−mc)+2mc−1−m2c2 =−

[
ρ

2 +(mc−1)2
]2

,

which leads to dρ

dw =±i
(
ρ2 +λ 2

)
with λ 2 = mc−1. If we restrict ourselves again

to the + sign, we find that ρ(w) = i
√

mc−1 tanh
[√

mc−1(w−w0)
]
, so that the

probability density is

|Ψ(x, t)|2 = (mc−1) tanh2
[√

mc−1(x− ct−w0)
]
.

This shows that one must have mc > 1, otherwise the density function contains
infinite singularities; i.e. the speed of propagation admits a minimal value c > 1

m .
Eq. (4) also leads to a soliton solution if we choose k = m2c2. Then Eq. (4)

reduces to ρ2
w = ρ2

(
1−ρ2−m2c2

)
with roots ρ = 0 and ρ2 = 1−m2c2, which

leads to w−w0 =
´ dρ

ρ

√
1−ρ2−m2c2

. If we define ρ = acosθ ,where a2 = 1−m2c2,

then this integral becomes
´ dθ

cosθ
= 2tanh−1 (tan θ

2

)
. From the trig identity tan θ

2 =
1−cosθ

sinθ
=
√

a−ρ

a+ρ
, we find that tanh2 [ a

2 (w0−w)
]
= a−ρ

a+ρ
. If we solve for ρ , we obtain

ρ (x, t) =
√

1−m2c2
1− tanh2

[
1
2

√
1−m2c2 (w0− x+ ct)

]
1+ tanh2

[
1
2

√
1−m2c2 (w0− x+ ct)

] ,
which can be simplified as

ρ (x, t) =
√

1−m2c2 sech(
√

1−m2c2 (x− ct)).

Then the complete solution is of soliton-type,

Ψ(x, t) =
√

1−m2c2 sech(
√

1−m2c2 (x− ct))eimc(x−ct),

and the density of probability is given by

|Ψ(x, t)|2 = (1−m2c2)sech2(
√

1−m2c2 (x− ct)), (5)

which is shown in Fig. 2 for 0≤ t ≤ 10, with parameters m = 1 and c = 0.5.
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3 Coupling with the Galilean electromagnetic field

The content of this section was not in Ref. [5]. We couple the field ψ to a Galilean
electromagnetic field via the covariant derivative ∂µ → Dµ ≡ ∂µ + iqAµ . As dis-
cussed in Ref. [6], we must consider two Galilean limits, called the ‘electric limit’
and the ‘magnetic limit’. The Lagrangian becomes

L =
DµΨ∗DµΨ

1−Ψ∗Ψ +Ψ ∗Ψ + 1
4 Fµν Fµν

= 1
1−Ψ∗Ψ

(
∂µΨ ∗− iqAµΨ ∗

)
(∂ µΨ + iqAµΨ)+Ψ ∗Ψ + 1

4 Fµν Fµν .

The Euler-Lagrange equation with respect to Ψ ∗ leads to

(1−Ψ ∗Ψ)∂ µ ∂µΨ +Ψ ∗∂µΨ∂ µΨ −Ψ (1−Ψ ∗Ψ)2 +2iqAµ ∂µΨ

−q2Aµ AµΨ + iq
(
∂µ Aµ

)
Ψ − iq

(
∂µ Aµ

)
Ψ 2Ψ ∗ = 0,

and with respect to Aµ , we obtain

∂ν ∂
ν Aµ −∂µ ∂ν Aν − iq

(
Ψ
∗
∂µΨ −Ψ∂µΨ

∗)+2q2AµΨ
∗
Ψ = 0.

The two Galilean limits are found by setting At = −φm and As = −φe alternately
equal to zero [6]. As for the Sine-Gordon field, we use ∂sΨ =−imΨ , as before.

Magnetic limit: We obtain this limit by setting φe = 0 so that φm is the scalar poten-
tial. Then the equation for ψ reads

(1−ψ∗ψ)
(
∇2ψ +2mi∂tψ

)
+ψ∗ (∇ψ ·∇ψ +2miψ∂tψ)−ψ (1−ψ∗ψ)2

+2iqA ·∇ψ +2mqφmψ−q2A ·Aψ + iqψ (∇ ·A+∂sφm)(1−ψ∗ψ) = 0.

Fig. 1 Graph of |Ψ(x, t)|2
in Eq. (5) with m = 1 and
c = 0.5, for 0≤ t ≤ 10.
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The equations of motion for the gauge field read

∇2A−2∂s∂tA−∇(∇ ·A+∂sφm)+ iq(ψ∗∇ψ−ψ∇ψ∗)−2q2Aψ∗ψ = 0,
2∂s∂tφm−∇2φm−∂t (∇ ·A+∂sφm)+ iq(ψ∗∂tψ−ψ∂tψ

∗)+2q2φmψ∗ψ = 0,
∂s∇ ·A+∂ssφm−2mqψ∗ψ = 0.

Electric limit This limit corresponds to φm = 0 and φe becomes the scalar potential.
The equation for ψ reads

(1−ψ∗ψ)
(
∇2ψ +2mi∂tψ

)
+ψ∗ (∇ψ ·∇ψ +2miψ∂tψ)ψ (1−ψ∗ψ)2

+2iqA ·∇ψ +2iqφe∂tψ−q2A ·Aψ + iqψ (∇ ·A+∂tφe)(1−ψ∗ψ) = 0.

The equations for the gauge field are

∇2A−2∂s∂tA−∇(∇ ·A+∂tφe)+ iq(ψ∗∇ψ−ψ∇ψ∗)−2q2Aψ∗ψ = 0,
−∂t (∇ ·A+∂tφe)+ iq(ψ∗∂tψ− (∂tψ

∗)ψ) = 0,
2∂s∂tφe−∇2φe−∂s (∇ ·A+∂tφe)+2mqψ∗ψ +2q2φeψ∗ψ = 0.
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On completeness of coherent states in
noncommutative spaces with the generalised
uncertainty principle

Sanjib Dey

Abstract Coherent states are required to form a complete set of vectors in the
Hilbert space by providing the resolution of identity. We study the completeness
of coherent states for two different models in a noncommutative space associated
with the generalised uncertainty relation by finding the resolution of unity with a
positive definite weight function. The weight function, which is sometimes known
as the Borel measure, is obtained through explicit analytic solutions of the Stielt-
jes and Hausdorff moment problem with the help of the standard techniques of the
inverse Mellin transform.

1 Introduction

It is well known that the coherent states are useful in different areas of modern
science including quantum optics, atomic and molecular physics, mathematical
physics, quantum gravity, quantum cosmology, etc, for further informations; see,
for instance [1, 2]. Various generalisations of the Glauber coherent states have also
become very popular in recent days giving rise to the possibility of constructing
many new coherent states arising from various sophisticated mathematical back-
grounds [3–7]. One of such prominent examples is the noncommutative space-time
structure in the framework of generalised uncertainty principle, from which the ex-
istence of minimal length appears naturally [8–11]. There have been plenty of inves-
tigations behind the applications and usefulness of coherent states emerging out of
the models on the noncommutative space [12–14]. Furthermore, based on these co-
herent states, various nonclassical states have been constructed; such as, squeezed
states [15], Schrödinger cat states [16, 17], photon added coherent states [18] and
their squeezing and entanglement properties have been studied. However, the math-
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ematical completeness of such coherent states have not been studied before, which is
important particularly to understand whether the coherent states are mathematically
well-defined and can be utilized for describing concrete physical systems.

The purpose of this article is to fill in this gap by finding the exact analytical
expression for the positive definite Borel measure, such that the coherent states sat-
isfy the required condition of resolution of identity. For this purpose, we mainly
follow [19–21] to associate our problem with the existing techniques of Stieltjes
and Hausdorff moment problem, and compute the inverse Mellin transforms corre-
sponding to our systems, which yield the precise expressions of the Borel measure.
The article is organised as follows: In Sect. 3, we introduce basic notions of the
generalised and nonlinear coherent states, as well as the moment problem associ-
ated with them to identify the resolution of identity. In Sect. 3, we implement the
existing framework as described in Sect. 3 to study the completeness relation for
coherent states in the noncommutative space for two different models, namely, the
harmonic oscillator and the Pöschl-Teller. Our conclusions are stated in Sect. 4.

2 Nonlinear coherent states and resolution of identity

We commence by revisiting the basic notions of nonlinear coherent states for the
purpose of referencing. Nonlinear coherent states for Hamiltonians H with discrete
bounded below and nondegenerate eigenvalues, En = h̄ωen = h̄ωn f 2(n̂), are defined
as follows [5, 6, 22]:

|α, f 〉= 1√
N (α, f )

∞

∑
n=0

αn
√

ρn
|n〉, ρn =

n

∏
k=1

ek = n! f 2(n̂)!, ρ0 = 1, (1)

where α ∈C and the normalisation constant can be computed from the requirement
〈α, f |α, f 〉= 1 as given by

N (α, f ) =
∞

∑
n=0

|α|2n

ρn
. (2)

The terminology nonlinear is not associated with the mathematical nonlinearity
anyway, but it follows from the convention introduced in the articles [5,6,22]. More
precisely, such coherent states (1) are one of the generalised versions of the Glauber
coherent states [23] for models corresponding to the generic function of the number
operator f (n̂). In [24], the authors have introduced an interesting alternative to the
so-called nonlinear generalisation by considering the coherent states to be eigen-
functions of a generalised exponential function. Nevertheless, the vectors |α, f 〉 in
(1) are mathematically well defined in the domain D of allowed |α|2 for which the
series (2) converges. The range of |α|2, 0 ≤ |α|2 < R, is determined by the radius
of convergence R = limn→∞

√
ρn, which may be finite or infinite depending on the

behaviour of ρn for large n. Therefore, a family of such coherent states (1) is an over-
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complete set of vectors in a Hilbert space H , labelled by a continuous parameter α

which belongs to a complex domain D (some domain in C. For R = ∞, D = C). To
be more precise, since |n〉 forms an orthonormal basis in the Hilbert space H and,
letting en be an infinite sequence of positive numbers, with e0 = 0, then the vectors
|α, f 〉 must satisfy the resolution of identity (completeness relation) with a weight
function Ω

ˆ ˆ
D

N (α, f )
π

|α, f 〉〈α, f | Ω(|α|2) d2
α = IH . (3)

By considering α = reiθ , the left-hand side of (3) turns out to be

∞

∑
m,n=0

1
2π
√

ρmρn

ˆ R

0
rm+n

Ω(r2)d(r2)

ˆ 2π

0
eiθ(m−n)dθ |m〉〈n| (4)

=
∞

∑
n=0

1
ρn

ˆ R

0
tn

Ω(t)dt |n〉〈n|, (5)

such that one ends up with an infinite set of constraints

ˆ R

0
tn

Ω(t)dt = ρn, 0 < R≤ ∞, (6)

for which the completeness relation (3) holds. Therefore, one can construct the co-
herent states (1) for any models corresponding to a known f (n), provided that there
exists a measure Ω(t) which satisfies (6). The explicit expression of the measure can
be found first by associating (6) with the classical moment problem, where ρ(n)> 0
are the power moments of the unknown function Ω(t)> 0 and, subsequently, by car-
rying out the integration using the standard techniques of the Mellin transforms [25].
For more details in this context, we refer the readers to [19,21,26–28]. For Glauber
coherent states, i.e., for f (n) = 1, ρn = n!, the moment problem (6) becomes

ˆ
∞

0
tn

Ω(t)dt = n!, n = 0,1,2, ....., (7)

so that one can easily identify the measure, Ω(t) = e−t . For SU(1,1) discrete series
coherent states [3], ρ(n) = n!Γ (2 j)/Γ (2 j+n) and, the corresponding measure is
given by

Ω(t) = (2 j−1)(1− t)2 j−2, (8)

where Ω(t) is supported in the range (0,1), with j = 1,1/2,2,3/2,3.... In the case
of the Barut Girardello coherent states [29], ρ(n) = n!Γ (2 j + n)/Γ (2 j) and, the
associated measure is given by the modified Bessel function of the second kind as
follows

Ω(t) =
2

Γ (2 j)
t

2 j−1
2 K2 j−1(2

√
t), (9)
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where Ω(t) is supported in the interval (0,∞). For more examples of different types
of coherent states, see, [19, 30].

3 Resolution of unity for coherent states in noncommutative
space

In this section, we will construct the coherent states arising from the noncommuta-
tive space [9,10], in which the standard set of commutation relations for the canon-
ical coordinates are replaced by noncommutative versions, such as

[X ,P] = ih̄(1+ τ̌P2), X = (1+ τ̌ p2)x, P = p, (10)

where the noncommutative observables X ,P are represented in terms of the standard
canonical variables x, p satisfying [x, p] = ih̄. Here, τ̌ = τ/(mω h̄) has the dimension
of inverse squared momentum and τ is dimensionless. Since here we study a one-
dimensional problem, it may not be so obvious to the readers how commutation re-
lation (10) becomes a part of noncommutative systems. Actually, it is a reduced ver-
sion of a three-dimensional noncommutative space originating from a q-deformed
oscillator algebra, which was studied in [10] by the author and his collaborators.
The given framework (10) is fascinating by itself, because it leads to the generalised
version of Heisenberg’s uncertainty relation [8] followed by the existence of mini-
mal lengths [9,10], which are one of the major findings of string theory. Let us now
discuss some concrete models in the given structure.

3.1 Noncommutative harmonic oscillator

We consider a one-dimensional harmonic oscillator

H =
P2

2m
+

mω2

2
X2− h̄ω

(
1
2
+

τ

4

)
, (11)

defined on the noncommutative space satisfying (10). Here, ground state energy
is conventionally shifted to allow for a factorisation of the energy. Obviously, the
Hamiltonian H is non-Hermitian with respect to the standard inner product. How-
ever, we consider the Hamiltonian H to be pseudo-Hermitian and, thus by follow-
ing the standard results in the literature [31, 32] we transform the non-Hermitian
Hamiltonian H to a Hermitian Hamiltonian h by taking a similarity transformation
h = ηHη−1 with respect to a positive definite metric η . Consequently, the energy
eigenvalues of H and h turn out to be real, as computed in [8, 10] by following the
standard techniques of Rayleigh-Schrödinger perturbation theory to the lowest order
as follows:
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En = h̄ωn f 2(n) = h̄ωn
[
1+

τ

2
(1+n)

]
+O(τ2). (12)

Correspondingly, by following (1) the nonlinear coherent states are computed as

|α, f 〉ncho =
1√

N (α, f )

∞

∑
n=0

αn
√

ρn
|n〉, ρn = n! f 2(n)! =

(
τ

2

)n n!(n+ 2
τ
+1)!

(1+ 2
τ
)!

.

(13)
In order to verify that the states (13) are mathematically complete and well de-

fined in the Hilbert space, one needs to find out the existence of the positive definite
Borel measure Ω(t) satisfying constraint (6) as follows:

ˆ
∞

0
tn

Ω(t)dt = ρn =
(

τ

2

)n Γ (n+µ +1)Γ (n+β +1)
Γ (1+β )

=
A(n)B(n)
Γ (1+β )

, (14)

with A(n) = (τ/2)n,B(n) = Γ (n+µ +1)Γ (n+β +1) and µ = 0,β = 1+2/τ . For
the purpose of computing Ω(t) from (14) let us now briefly discuss some technical-
ities. First, we find the inverse Mellin transforms of the two functions A(n) and B(n)
separately, i.e.,

A(n) =
(

τ

2

)n
=

ˆ
∞

0

( t
2

)n
δ (t− τ)dt =

ˆ
∞

0
xnC(x)dx, (15)

B(n) = Γ (n+µ +1)Γ (n+β +1) =
ˆ

∞

0
xnD(x)dx, (16)

with

C(x) = 2δ (2x− τ), D(x) = 2x
µ+β

2 Kµ−β (2
√

x), (17)

where Kµ(x) denotes the modified Bessel function of the second kind. Then, we
utilize the composition formula [20] to find the inverse Mellin transform for the
composite system as given by

A(n)B(n) =
ˆ

∞

0
xn

λ (x)dx, λ (x) =
ˆ

∞

0
C(u)D

( x
u

) du
u
, (18)

which when replaced in (14), we obtain the accurate expression of the Borel measure
Ω(t) as follows:

Ω(t) =
1

Γ (1+β )

ˆ
∞

0
C(t)D

( t
u

) du
u

(19)

=
1

Γ (1+β )

ˆ
∞

0

4
u

( t
u

) µ+β

2
Kµ−β (2

√
t
u
)δ (2u− τ)du (20)

=
2

1
2 (4+µ+β )

τΓ (1+β )

( t
τ

) µ+β

2
Kµ−β (2

√
2t
τ
). (21)
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3.2 A Pöschl-Teller model in noncommutative space

Let us now consider another interesting Hamiltonian based on the noncommutative
space satisfying (10):

HPT =
ε

2m
P2 +

h̄ωγ

2τ̌
P−2 +

mω2

2
X2 +

h̄ωγ

2
+

ε

2mτ̌
, γ,ε ∈ R. (22)

Although the model (22) does not belong to a familiar class of models, however,
it is very interesting as it leads to the well-known Pöschl-Teller potential when
the noncommutative observables are represented in terms of the standard canonical
variables by using (10). Therefore, one can describe the model as a noncommutative
version of the Pöschl-Teller model, although the Hamiltonian (22) cannot be viewed
as a deformation of a model on standard commutative space in the sense that it does
not reduce to the usual Pöschl-Teller model in the commutative limit τ → 0. For
further details on the model, see [11], where the eigenvalues of the corresponding
Hamiltonian were computed in an exact manner as given below:

En =
h̄ωτ

2
(1+2n+a+b)2, a =

1
2

√
1+

4γ

τ
, b =

1
2

√
1+

4ε

τ
. (23)

The corresponding nonlinear coherent states can be computed by following (1)
with

ρn = 2n
τ

n Γ (n+ν)2

Γ (ν)2 , ν =
3+a+b

2
. (24)

Note that the form of ρn in (24) is very similar to the case of the harmonic oscillator
as in (13) and, thus we follow the similar procedure as discussed in the previous
section to calculate the explicit expression of the measure

Ω(t) =
τ−ν

Γ (ν)2

( t
2

)ν−1
K0(

√
2t
τ
) . (25)

Numerically, we check that the measures (19) and (25) are positive definite for τ ∈
R+. However, the exact analytical treatment of this problem may be more involved.
The interesting aspect of the moment problem in our case is that the moments (14)
and (24) satisfy the Carleman condition

∞

∑
n=1

1

ρ
1/2n
n

=+∞, (26)

which implies that the obtained measures in both of the cases are unique.
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4 Conclusions

Coherent states in noncommutative spaces related to the generalised uncertainty
relation have been found to be interesting and useful for many different purposes
[12–18]. However, it was necessary to find out their resolution of identity by com-
puting the weight functions associated with them to show the mathematical com-
pleteness of the corresponding models. In this article we study the missing link by
finding the completeness relations of coherent states for the harmonic oscillator and
the Pöschl-Teller model based on the noncommutative structure. We compute exact
analytical expressions for the weight functions through good solutions of Stieltjes
and Hausdorff moment problem for the two cases and show that the coherent states
in noncommutative space are indeed mathematically well defined and form a com-
plete set of vectors in the Hilbert space.

Evidently, there are many interesting open challenges left which will directly fol-
low our results. By utilizing the Hankel determinant method, or any other existing
mechanism in the literature [27,30,33,34], one may study the orthogonal polynomi-
als, that are associated with our coherent states. The investigation may end up with
some known orthogonal polynomials, or some fascinating q-orthogonal polynomi-
als. However, because of our sophisticated structure, the outcome may bring more
exciting possibilities for constructing some new orthogonal polynomials out of our
systems.
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Majorana neutrinos in an effective field theory
approach

Lucı́a Duarte and Oscar A. Sampayo

Abstract The discovery of neutrino oscillations and non-vanishing neutrino masses
is one of the key recent advances made in particle physics. Tiny neutrino masses
are very difficult to generate in a natural way in the Standard Model, based in the
SU(3)C× SU(2)L×U(1)Y gauge group. Standard Yukawa interactions cannot ex-
plain the huge mass difference between the neutrinos and other fermions, and a very
attractive scheme is the seesaw mechanism, incorporating right-handed Majorana
neutrino species that allow for the lepton number violation. However, in typical see-
saw scenarios, the couplings between the Majorana neutrinos and the light neutrinos
must be vanishingly small in order to obtain tiny observed masses, leading to the de-
coupling of the former, and thus their detection (e.g., via lepton number violating
processes) would be a signal of physics beyond the minimal seesaw framework.
Here we consider a model independent scenario with one Majorana neutrino N with
negligible mixing with the standard νL, introducing its interactions via an effective
Lagrangian involving N and the standard fields and preserving SM symmetry. This
leads to a very rich N phenomenology, and we have studied its decay, production,
and detection mechanisms in present and future collider experiments.

1 Introduction

As is well known, in the Standard Model, the charged leptons acquire their masses
after the electroweak symmetry breaking (EWSB) by the vacuum expectation value
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of the Higgs field 〈ΦT 〉= (0,v/
√

2)T leading to the Yukawa lagrangian term, where
the left-handed SU(2)L doublet of flavor i Li T = (ν i, `i)T

L combines with the right-
handed singlet ` j

R: LYukawa ⊃ Y i j
` LiΦ` j

R → Y i j
` v/
√

2`i
L`

j
R. A right-handed neutrino

component could be added ‘by hand’ to have a Yukawa term generating a Dirac mass
for the neutrinos. However, to get sub-eV left-handed neutrino masses (as known
from current neutrino data [16]) one would need extremely tiny Yukawa couplings
of order . 10−12. As there is no theoretical justification for such small neutrino
Yukawa couplings, a new viewpoint is taken considering other new physics to be
responsible for the observed smallness of neutrino masses.

It seems natural to invoke some new physics beyond the SM at a higher scale Λ

to explain the neutrino masses: this is done by means of the dimension 5 Weinberg
operator [18]: LνSM ⊃ − λi j

2Λ
LiL jΦΦ , leading to neutrino masses after the EWSB

LνSM ⊃−mi j
2 νiν j with mi j/2 = λi j

v2

Λ
. If Λ � v, then neutrino masses can be made

much smaller than those of the charged leptons. This operator has only 3 renor-
malizable tree-level realizations: the most popular is the Type-I seesaw mechanism,
where Φ and Li combine into an SU(2)L scalar. This needs the addition of new ‘ster-
ile’ SU(2)L singlet neutrinos NR as intermediate particles, identified as right-handed
Majorana neutrinos. The origin of the bare Majorana mass terms responsible for the
explicit violation of the B−L (Baryon-Lepton numbers) symmetry can be under-
stood from natural implementations of the seesaw mechanism in specific ultra-violet
complete theories. In the conventional seesaw scenarios, the light neutrino masses
are inversely proportional to a large lepton-number breaking scale (and hence the
name seesaw) [13].

In this context the ‘vanilla’ seesaw is implemented adding 3 SM singlets NR, and
writing the most general renormalizable lagrangian:

Lν = LSM−YαiLα Φ̃NRi−
3

∑
i, j=1

MNi j

2
Nc

iLN jR +h.c.,

with Dirac and Majorana mass terms for the neutrinos. In the flavor basis these terms
give the following mass matrix, diagonalized by a unitary matrix U:

1
2
(νL Nc

L)

(
O mD

mT
D MN

)(
νc

R
NR

)
, UT

(
O mD

mT
D MN

)
U'

(
−mDM−1

N mT
D 0

0 MN

)

with entries U'
(

1 A
−A† 1

)
, and A† = M−1

N mT
D.

In this way, left-handed neutrinos of flavor ` ν`L can be written in terms of mass
states as ν`L = U`mνm +U`NN: the νL−N mixings U`N take values U`N ' mD

MN
=√

mν

MN
, and the νL−νm mixing describes the oscillation phenomena. This gives light

neutrinos ν with masses mν = mDM−1
N mT

D. As the Dirac mass mD comes from the
Yukawa term YαiLα Φ̃NRi and takes values mD = Y v√

2
, in order to accommodate

neutrino masses mν ' 0.001eV'Y 2 v2

2MN
the Yukawa couplings need to be Y ' 10−7
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for MN ' 100GeV . Then the νL−N mixing would be U`N ' mD
MN
/ 10−6

√
100GeV

MN
.

As this mixing weighs the coupling between Majorana neutrinos and the standard
bosons in the lagrangian terms:

L ⊃− g√
2

U`NNc
γ

µ PLlW+
µ −

g
2cθW

ν`γ
µU`NPLNZµ +h.c.,

the experimental observation of the lepton number violation in this scenario depends
only on the tiny νL−N mixing, making it very difficult to find in current collider
searches.

2 Effective field theory with Majorana neutrinos

While most of the recent work has been focused on the study of heavy Majorana
neutrinos that mix with SM light neutrinos in the framework of Type-I seesaw sce-
narios [3, 4], the aim of our approach is to investigate the possible contribution of a
heavy Majorana neutrino with negligible mixing to the SM νL [6].

Thus we consider an effective lagrangian in which we include a relatively light
right-handed Majorana neutrino N as one of the observable degrees of freedom. The
effects of the new physics involving one heavy sterile neutrino and the SM fields are
parameterized by a set of effective operators OJ constructed with the standard model
and the Majorana neutrino fields and satisfying SU(2)L⊗U(1)Y gauge symmetry.

The effect of these operators is suppressed by inverse powers of the new physics
scale Λ , for which we take the value Λ = 1 TeV . The total lagrangian is organized
as follows:

L = LSM +
∞

∑
n=6

1
Λ n−4 ∑

J
αJO

(n)
J , (1)

where n is the mass dimension of O
(n)
J .

The dominating effects come from dimension 6 operators that can be generated at
tree level in the unknown underlying renormalizable theory. Following [6], we start
with a rather general effective lagrangian density for the interaction of right-handed
Majorana neutrinos N with leptons and quarks, including dimension 6 operators.
The first subset includes operators with scalar and vector bosons (SVB),

OLNφ = (φ †
φ)(L̄iNφ̃),ONNφ = i(φ †Dµ φ)(N̄γ

µ N),ONeφ = i(φ T
εDµ φ)(N̄γ

µ ei), (2)

and a second subset includes the baryon-number conserving four fermion contact
terms:
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OduNe = (d̄γ
µ u)(N̄γµ l), O f NN = ( f̄ γ

µ f )(N̄γµ N), OLNLe = (L̄N)ε(L̄l),

OLNQd = (L̄N)ε(Q̄d), OQuNL = (Q̄u)(N̄L), OQNLd = (Q̄N)ε(L̄d),

OLN = |N̄L|2 and OQN = |Q̄N|2, (3)

where ei, ui, di and Li, Qi denote, for the family labeled i, the right-handed SU(2)
singlet and the left-handed SU(2) doublets, respectively.

One can also consider operators generated at one-loop level in the underlying full
theory, whose coefficients are naturally suppressed by a factor of 1/16π2:

O
(5)
NNB = N̄σ

µν NcBµν ,

ONB = (L̄σ
µν N)φ̃Bµν , ONW = (L̄σ

µν
τ

IN)φ̃W I
µν ,

ODN = (L̄Dµ N)Dµ
φ̃ , OD̄N = (Dµ L̄N)Dµ

φ̃ . (4)

The effective couplings αJ in (1) can be bounded exploiting the existing con-
straints on the different processes mediated by their associated operators. In general
phenomenological approaches, recent reviews [7, 8] summarize the existing exper-
imental bounds considering low scale minimal seesaw models parameterized by a
single heavy neutrino mass scale MN and a light-heavy mixing UlN . In previous
works [10, 11], we have presented in detail the way in which we take into account
existing constraints on processes like neutrinoless double beta decay (0νββ ), elec-
troweak precision data (EWPD), LNV rare meson decays, as well as direct collider
searches, including Z decays. We consider the existing experimental constraints on
sterile-active neutrino mixings, relating the UlN mixings in Type-I seesaw models

[3, 4] with our effective couplings by the relation U2
lN '

(
αv2

2Λ 2

)2
. For the couplings

involving the first fermion family, the most stringent are the 0νββ -decay bounds
obtained by the KamLAND-Zen collaboration [12]. Following the treatment made
in [7,15], they give us an upper limit αbound

0νββ
≤ 3.2×10−2

( mN
100 GeV

)1/2. Concerning
the second fermion family, for sterile neutrino masses 2 GeV . mN . 10 GeV the
upper limits come from the DELPHI collaboration [2]. Considering Ωll′ =UlNUl′N
as in [4], we obtain the bound αbound

DELPHI . 2.3. The Belle [14] and LHCb [1] col-
laborations also find competitive upper limits in the 2 GeV . mN . 5 GeV region.
The bound from Belle is still the most stringent, giving a value αbound

Belle . 0.3. For
higher masses, in the range mW . mN , the upper limits come from EWPD as the
radiative lepton flavor violating (LFV) decays as µ → eγ [5, 17] giving a bound
αbound

EWPD ≤ 0.32.
In order to simplify the discussion, for numerical calculations we only consider

the most stringent bounds, taking the couplings associated to the operators that con-
tribute to the 0νββ -decay for the first family as restricted by the αbound

0νββ
, and the

other couplings to the value αbound ≤ 0.3.
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Fig. 1: Decay width [11] and branching ratios [10] for the Majorana neutrino N.

3 Majorana neutrino phenomenology

We have studied the Majorana neutrino phenomenology, searching for its production
in ep colliders [9] and calculated its decay channels for low mN < mW [10] and high
masses mN < 1TeV [11].

For the low mN region, the neutrino plus photon decay channel is found to be
dominant respective to the pure-leptonic or the N → lūd modes. This decay mode
is driven by the tensorial one-loop generated operators ONB and ONW in (4), and
leads to an interesting phenomenology regarding different neutrino anomalies, as
discussed in [10]. In Figure 3 we show the total decay width and the branching
ratios for the N.

In our work [9] we studied the N production in the ep→ l+N → l+ + 3 jets
channel, which is a clear signature of the Majorana character of the intermediate
N due to the lepton number violation. We found the future Large Hadron electron
Collider (LHeC) could be able to discover Majorana neutrinos with mN < 700 and
mN < 1300 GeV for electron beams settings of Ee = 50 and Ee = 150 GeV respec-
tively, as shown in Figure 2.

We are currently investigating the N production and decay in the LHC, exploiting
the fact that for low mN ' a few GeV the Majorana neutrinos behave as long-lived
neutral particles that can be searched using displaced vertices techniques.

Acknowledgements We thank CONICET (Argentina) and Universidad Nacional de Mar del Plata
(Argentina); PEDECIBA, ANII, and CSIC-UdelaR (Uruguay); and the ICTP and the Group31
organizing committee for their financial supports.
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Feynman-Dyson propagators for neutral
particles (local or non-local?)

Valeriy V. Dvoeglazov

Abstract An analog of the S = 1/2 Feynman-Dyson propagator is presented in
the framework of S = 1 Weinberg’s theory. The basis for this construction is the
concept of the Weinberg field as a system of four field functions differing by parity
and dual transformations. Next, we analyze the controversy in the definitions of the
Feynman-Dyson propagator for the field operator containing the S = 1/2 self/anti-
self charge conjugate states in the papers by D. Ahluwalia et al. and by W. Rodrigues
Jr. et al. The solution of this mathematical controversy is obvious. It is related to
the necessary doubling of the Fock Space (as in the Barut and Ziino works), thus
extending the corresponding Clifford algebra. However, the logical interrelations
of different mathematical foundations with the physical interpretations are not so
obvious (Physics should choose only one correct formalism: it is not clear, why two
correct mathematical formalisms , which are based on the same postulates, lead to
different physical results.)

1 Weinberg propagators

According to the Feynman-Dyson-Stueckelberg ideas, a causal propagator has to be
constructed using the formula in Ref. [1, p.91]. In the S = 1/2 Dirac theory it results
in

SF(x) =
ˆ

d4k
(2π)4 e−ikx k̂+m

k2−m2 + iε
, (1)

provided that k̂ = kµ γµ , the constant a and b are determined by imposing (i∂̂2−
m)SF(x2,x1) = δ (4)(x2− x1) in [1, p.91], ∂̂2 =

∂

∂xµ

2
γµ , namely, a =−b = 1/i .
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e-mail: valeri@fisica.uaz.edu.mx

159© Springer International Publishing AG 2017 
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries, 
https://doi.org/10.1007/978-3-319-69164-0_23

mailto:valeri@fisica.uaz.edu.mx


160 Valeriy V. Dvoeglazov

However, attempts to construct the covariant propagator in this way have failed
in the framework of Weinberg’s theory, Ref. [2]. It is a generalization of the Dirac
ideas to higher spins. For instance, on page B1324 of Ref. [2] Weinberg writes:
“Unfortunately, the propagator arising from Wick’s theorem is NOT equal to the
covariant propagator except for S = 0 and S = 1/2. The trouble is that the deriva-
tives act on the ε(x) = θ(x)−θ(−x) in ∆C(x) as well as on the functions1 ∆ and
∆1. This gives rise to extra terms proportional to equal-time δ functions and their
derivatives. . . The cure is well known: . . . compute the vertex factors using only the
original covariant part of the Hamiltonian H ; do not use the Wick propagator for
internal lines; instead use the covariant propagator.” The propagator proposed in
Ref. [3] is the causal propagator. However, the old problem persists: the Feynman-
Dyson propagator is not the Green function of the Weinberg equation. As men-
tioned, the covariant propagator proposed by Weinberg propagates kinematically
spurious solutions [3].

The aim of my paper is to consider the problem of constructing the propagator in
the framework of the model given in [4]. The concept of the Weinberg field ‘doubles’
has been proposed there. It is based on the equivalence between the Weinberg field
and the antisymmetric tensor field, which can be described by both Fµν and its
dual F̃µν . These field operators may be used to form a parity doublet. An essential
ingredient of my consideration is the idea of combining the Lorentz and the dual
transformation. The set of four equations has been proposed in Ref. [4].

The simple calculations give

u(1)1 u(1)1 =
1
2

(
m2 Sp⊗Sp

Sp⊗Sp m2

)
,u(1)2 u(1)2 =

1
2

(
−m2 Sp⊗Sp

Sp⊗Sp −m2

)
, (2)

u(2)1 u(2)1 =
1
2

(
−m2 Sp⊗Sp

Sp⊗Sp −m2

)
,u(2)2 u(2)2 =

1
2

(
m2 Sp⊗Sp

Sp⊗Sp m2

)
, (3)

where

Sp = m+(S ·p)+ (S ·p)2

E +m
, Sp = m− (S ·p)+ (S ·p)2

E +m
, (4)

and u− are 6-component objects for spin 1, which are solutions of the Weinberg
“double” equations in the momentum space. One can conclude: the generalization
of the notion of causal propagators is admitted using ‘Wick’s formula’ for the time-
ordered particle operators provided that a = b = 1/4im2. It is necessary to consider
all four equations. Obviously, this is related to the 12-component formalism, which
I presented in [4].

The S = 1 analogues of the formula (1) for the Weinberg propagators follow
immediately. In the Euclidean metrics they are

1 In the cited paper ∆1(x) ≡ i [∆+(x)+∆+(−x)] and ∆(x) ≡ ∆+(x)−∆+(−x) have been used.
i∆+(x)≡ 1

(2π)3

´ d3 p
2Ep

exp(ipx) is the particle Green function.
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S(1)F (p)∼− 1
i(2π)4(p2 +m2− iε)

[
γµν pµ pν −m2] , (5)

S(2)F (p)∼− 1
i(2π)4(p2 +m2− iε)

[
γµν pµ pν +m2] , (6)

S(3)F (p)∼− 1
i(2π)4(p2 +m2− iε)

[
γ̃µν pµ pν +m2] , (7)

S(4)F (p)∼− 1
i(2π)4(p2 +m2− iε)

[
γ̃µν pµ pν −m2] . (8)

γµν are the covariantly defined 6× 6 matrices of the (1,0)⊕ (0,1) representation,
γ̃µν = γ44γµν γ44.

We should use the obtained set of Weinberg propagators (5,6,7,8) in the pertur-
bation calculus of scattering amplitudes. In Ref. [6] the amplitude for the interaction
of two 2(2S+1) bosons has been obtained on the basis of the use of one field only
and it is obviously incomplete, see also Ref. [5]. But, it is interesting that the spin
structure was proved there to be the same, regardless of whether we consider the
two-Dirac-fermion interaction or the two-Weinberg(S = 1)-boson interaction. How-
ever, the denominator slightly differs in the cited papers [6] from fermion-fermion
case. More accurate considerations of the fermion-boson and boson-boson interac-
tions in the framework of the Weinberg theory has been reported elsewhere [7].

2 The self/anti-self charge conjugate construct in the
(1/2,0)⊕(0,1/2) representation

The first formulations with doubling solutions of the Dirac equations have been
presented in Refs. [11], and [12]. The group-theoretical basis for such doubling has
been given in the papers by Gelfand, Tsetlin and Sokolik [13], who first presented
the theory in the 2-dimensional representation of the inversion group in 1956 (later
called ‘the Bargmann-Wightman-Wigner-type quantum field theory’ in 1993). M.
Markov wrote long ago two Dirac equations with the opposite signs at the mass
term [11]: [

iγµ
∂µ −m

]
Ψ1(x) = 0 , (9)[

iγµ
∂µ +m

]
Ψ2(x) = 0 . (10)

In fact, he studied all properties of this relativistic quantum model (while he did not
yet know the quantum field theory in 1937). Next, he added and subtracted these
equations. What did he obtain?

iγµ
∂µ ϕ(x)−mχ(x) = 0, iγµ

∂µ χ(x)−mϕ(x) = 0 . (11)
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Thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-
spinors u− and v−. These equations, of course, can be identified with equations
for the Majorana-like λ− and ρ− spinors, which we presented in Ref. [8, 9]. The
equations can be written in the 8-component form as follows:[

iΓ µ
∂µ −m

]
Ψ

(+)
(x) = 0 , ,

[
iΓ µ

∂µ +m
]
Ψ

(−)(x) = 0 . (12)

The signs at the mass terms depend on how do we choose the “positive”- and
“negative”- energy solutions. For instance,

Ψ(+)(x) =
(

ρA(x)
λ S(x)

)
,Ψ(−)(x) =

(
ρS(x)
λ A(x)

)
, Γ

µ =

(
0 γµ

γµ 0

)
. (13)

It is easy to find the corresponding projection operators, and the Feynman-Dyson-
Stueckelberg propagator.

You may say that all of this is just related to the spin-parity basis rotation (unitary
transformations). However, in previous papers I explained: the connection with the
Dirac spinors has been found [9, 13], provided that the 4-spinors have the same
physical dimension. Thus, we can see that the two 4-spinor systems are connected
by the unitary transformations, and this represents itself the rotation of the spin-
parity basis. However, it is usually assumed that the λ− and ρ− spinors describe the
neutral particles, and meanwhile u− and v− spinors describe the charged particles.
Kirchbach [13] found the amplitudes for neutrinoless double beta decay (00νβ ) in
this scheme. It is obvious from that connections that there are some additional terms
comparing with the standard formulation.

Barut and Ziino [12] proposed yet another model. They considered γ5 opera-
tor as the operator of the charge conjugation. The concept of the doubling of the
Fock space has been developed in the Ziino works (cf. [4, 13]) in the framework
of quantum field theory. In their case the self/anti-self charge conjugate states are
simultaneously the eigenstates of the chirality. Next, our formulation with the λ−
and ρ− spinors naturally lead to the Ziino-Barut scheme of massive chiral fields.

3 The controversy

I cite Ahluwalia et al., Ref. [14]: “To study the locality structure of the fields Λ(x)
and λ (x), we observe that field momenta are

Π(x) =
∂L Λ

∂Λ̇
=

∂

∂ t
¬
Λ (x), (14)

and similarly π(x) = ∂

∂ t

¬
λ (x). The calculational details for the two fields now differ

significantly. We begin with the evaluation of the equal time anticommutator for
Λ(x) and its conjugate momentum
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{Λ(x, t), Π(x′, t)}= i
ˆ

d3 p
(2π)3

1
2m

eip·(x−x′)

×∑
α

[
ξα(p)

¬
ξ α

(p)−ζα(−p)
¬
ζ α

(−p)
]

︸ ︷︷ ︸
=2m[I+G (p)]

.

The term containing G (p) vanishes only when x− x′ lies along the ze axis (see
Eq. (24) [therein], and discussion of this integral in Ref. [15])

x−x′ along ze : {Λ(x, t), Π(x′, t)}= iδ 3(x−x′)I (15)

The anticommutators for the particle/antiparticle annihilation and creation opera-
tors suffice to yield the remaining locality conditions,

{Λ(x, t), Λ(x′, t)}= O, {Π(x, t), Π(x′, t)}= O. (16)

The set of anticommutators contained in Eqs. (15) and (16) establish that Λ(x) be-
comes local along the ze axis. For this reason we call ze as the dark axis of locality.”

Next, I cite Rodrigues et al., Ref. [16]: “We have shown through explicitly and
detailed calculation that the integral of G (p) appearing in Eq.(42) of [14] is null for
x−x′ lying in three orthonormal spatial directions in the rest frame of an arbitrary
inertial frame e0 = ∂/∂ t.

This shows that the existence of elko spinor fields does not imply any breakdown
of locality concerning the anticommutator of {Λ(x,t),Π(x′, t} and moreover does
not imply any preferred spacelike direction field in Minkowski spacetime.”

Who is right? In 2013 W. Rodrigues [17] changed a bit his opinion. He wrote:
“When ∆z 6= 0, Ĝ (x−x′) is null the anticommutator is local and thus there exists in
the elko theory as constructed in [14] an infinity number of ‘locality directions’. On
the other hand Ĝ (x−x′) is a distribution with support in ∆z = 0. So, the directions
∆ = (∆x,∆y,0) are nonlocal in each arbitrary inertial reference frame e0 chosen
to evaluate Ĝ (x−x′)”, thus accepting the Ahluwalia et al. viewpoint. See the cited
papers for the notation.

Meanwhile, I suggest using the 8-component formalism (see Section 2) in the
similarity with the 12-component formalism of Section 1. If we calculate

S(+,−)
F (x2,x1) =

ˆ
d3k
(2π)3

m
Ek

∑
σ

[
θ(t2− t1)a Ψ

σ
+ (k)⊗Ψ

σ

+(k)e
−ikx+

+ θ(t1− t2)b Ψ
σ
− (k)⊗Ψ

σ

−(k)e
ikx
]
=

=

ˆ
d4k
(2π)4 e−ikx (k̂±m)⊗ I2

k2−m2 + iε
, (17)

we easily come to the result that the corresponding Feynman-Dyson propagators
are local in the sense: [iΓµ ∂

µ

2 ∓m]S(+,−)
F (x2− x1) = δ (4)(x2− x1). The constants a

and b are defined as in Ref. [1]. However, again: Physics should choose only one
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correct formalism. It is not clear, why two correct mathematical formalisms lead to
different physical results?

Acknowledgements I acknowledge discussions with Prof. W. Rodrigues, Jr. and Prof. Z. Oziewicz.
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Generalized equations and their solutions in the
(S,0)⊕(0,S) representations of the Lorentz group

Valeriy V. Dvoeglazov

Abstract In this paper I present three explicit examples of generalizations in rel-
ativistic quantum mechanics. First of all, I discuss the generalized spin-1/2 equa-
tions for neutrinos. They have been obtained by means of the Gersten-Sakurai
method for derivations of arbitrary-spin relativistic equations. Possible physical
consequences are discussed. Next, it is easy to check that both Dirac algebraic
equation Det(p̂−m) = 0 and Det(p̂+m) = 0 for u− and v− 4-spinors have so-
lutions with p0 = ±Ep = ±

√
p2 +m2. The same is true for higher-spin equations.

Meanwhile, every book considers the equality p0 = Ep for both u− and v− spinors
of the (1/2,0)⊕ (0,1/2)) representation only, thus applying the Dirac-Feynman-
Stueckelberg procedure for eliminating negative-energy solutions. The recent Zi-
ino works (and, independently, the articles of several others) show that the Fock
space can be doubled. We re-consider this possibility on the quantum field level for
both S = 1/2 and higher spin particles. The third example is: we postulate the non-
commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation.
The applications are discussed.

1 Generalized neutrino equations

A. Gersten [1] proposed a method for derivations of massless equations of arbitrary-
spin particles. In fact, his method is related to the van der Waerden-Sakurai [2] pro-
cedure for the derivation of the massive Dirac equation. I commented on the deriva-
tion of the Maxwell equations in [3]. Then, I showed that the method is rather ambi-
gious because instead of free-space Maxwell equations, one can obtain generalized
S = 1 equations, which connect the antisymmetric tensor field with additional scalar
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fields. The problem of physical significance of additional scalar chi-fields should be
solved of course by experiment.

In the present paper I apply the van der Waerden-Sakurai-Gersten procedure to
spin-1/2 fields. As a result one obtains equations which generalize the well-known
Weyl equations. However, these equations are known for a long time [4]. Raspini [5,
6] analyzed them again in detail. I add some comments on physical contents of
the generalized spin-1/2 equations. The generalized equation can be written in the
covariant form. [

iγµ
∂µ −

m2
2c

m1h̄
(1− γ5)

2
− m1c

h̄
(1+ γ5)

2

]
Ψ = 0 . (1)

The standard representation of γµ matrices has been used here. If m1 = m2 we can
recover the standard Dirac equation. As noted in [4b] this procedure can be viewed
as the simple change of the representation of γµ matrices. However, this is valid
unless m2 6= 0. Otherwise, entries in the transformation matrix become singular.
Furthermore, one can either repeat a similar procedure (the modified Sakurai proce-
dure) starting from the massless equation (4) of [1a] or put m2 = 0 in eq. (1). The
massless equation is [

iγµ
∂µ −

m1c
h̄

(1+ γ5)

2

]
Ψ = 0 . (2)

It is necesary to stress that the term ‘massless’ is used in the sense that pµ pµ = 0.
Then we may have different physical consequences following from (2) comparing
with those which follow from the Weyl equation. The mathematical reason of such
a possibility of different massless limits is that the corresponding change of rep-
resentation of γµ matrices involves mass parameters m1 and m2 themselves. It is
interesting to note that we can also repeat this procedure for other definitions, which
gives us yet another equation in the massless limit (m4→ 0):[

iγµ
∂µ −

m3c
h̄

(1− γ5)

2

]
Ψ̃ = 0 , (3)

differing in the sign at the γ5 term.
The above procedure can be generalized to any Lorentz group representations,

i.e., to any spins. Is the physical content of the generalized S = 1/2 massless equa-
tions the same as that of the Weyl equation? Our answer is ‘no’. The excellent dis-
cussion can be found in [4a,b]. First of all, the theory does not have chiral invariance.
Those authors call the additional parameters as measures of the degree of chirality.
Apart from this, Tokuoka introduced the concept of gauge transformations (not to
be confuses with phase transformations) for the 4-spinor fields. He also found some
strange properties of the anti-commutation relations (see Sec. 3 in [4a] and cf. [8]).
And finally, the equation (2) describes four states, two of which answer for the pos-
itive energy E = |p|, and two others answer for the negative energy E =−|p|.
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I just want to add the following to the discussion. The operator of the chiral-
helicity η̂ = (α · p̂) (in the spinorial representation) used in [4b] does not commute,
e.g., with the Hamiltonian of the equation (2). Do not confuse with the Dirac Hamil-
tonian!

[H ,α · p̂]− = 2
m1c

h̄
1− γ5

2
(γ · p̂) . (4)

For eigenstates of the chiral-helicity the system of corresponding equations can be
read (η =↑,↓)

iγµ
∂µΨη −

m1c
h̄

1+ γ5

2
Ψ−η = 0 . (5)

The conjugated eigenstates of the Hamiltonian |Ψ↑+Ψ↓ > and |Ψ↑−Ψ↓ > are con-
nected, in fact, by γ5 transformationΨ→ γ5Ψ ∼ (α · p̂)Ψ (or m1→−m1). However,
the γ5 transformation is related to the PT (t→−t only) transformation [4b], which,
in its turn, can be interpreted as E → −E, if one accepts the Stueckelberg idea
about antiparticles. We associate |Ψ↑ +Ψ↓ > with the positive-energy eigenvalue
of the Hamiltonian E = |p| and |Ψ↑−Ψ↓ >, with the negative-energy eigenvalue
of the Hamiltonian (E = −|p|). Thus, the free chiral-helicity massless eigenstates
may oscillate to one another with the frequency ω = E/h̄ (as the massive chiral-
helicity eigenstates, see [7a] for details). Moreover, a special kind of interaction
which is not symmetric with respect to the chiral-helicity states (for instance, if the
left chiral-helicity eigenstates interact with the matter only) may induce changes in
the oscillation frequency, like in the Wolfenstein (MSW) formalism.

2 Negative energies in the Dirac equation

The general scheme for constructing the field operator has been presented in [9].
During the calculations above we had to represent 1 = θ(p0)+θ(−p0) in order to
get positive- and negative-frequency parts. Moreover, during these calculations we
did not yet assume which equation this field operator (namely, the u− spinor) does
satisfy, with negative- or positive- mass? In general we should transform uh(−p)
to the v(p). The procedure is the following; see [10]. In the Dirac case we should
assume the following relation in the field operator:

∑
h

vh(p)b†
h(p) = ∑

h
uh(−p)ah(−p) . (6)

By direct calculations, we find that

−mb†
(µ)

(p) = ∑
λ

Λ(µ)(λ )(p)a(λ )(−p) . (7)

Hence, Λ(µ)(λ ) =−im(σ ·n)(µ)(λ ), n = p/|p|, and
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b†
(µ)

(p) = i∑
λ

(σ ·n)(µ)(λ )a(λ )(−p) . (8)

However, other ways of thinking are possible. Unless the unitary transformations do
not change the physical content, we have that the negative-energy spinors γ5γ0u−

satisfy the accustomed “positive-energy” Dirac equation. We should then expect the
same physical content. Their explicite forms γ5γ0u− are different from the textbook
“positive-energy” Dirac spinors. They are the following

ũ(p) =
N√

2m(−Ep +m)


−p++m
−pr

p−−m
−pr

 , (9)

˜̃u(p) =
N√

2m(−Ep +m)


−pl

−p−+m
−pl

p+−m

 . (10)

Ep =
√

p2 +m2 > 0, p0 =±Ep, p± = E± pz, pr,l = px± ipy. Their normalization
is to (−2N2). Similar formulations have been presented in Refs. [11], and [12]. The
group-theoretical basis for such doubling has been given in the papers of Gelfand,
Tsetlin and Sokolik [13], who first presented the theory in the 2-dimensional repre-
sentation of the inversion group in 1956 (later called as “the Bargmann-Wightman-
Wigner-type quantum field theory” in 1993). The Markov equations, of course, can
be identified with equations for the Majorana-like λ− and ρ−, which we presented
in Ref. [7]. Neither of them can be regarded as the Dirac equation. However, they
can be written in the 8-component form as follows:[

iΓ µ
∂µ −m

]
Ψ

(+)
(x) = 0 , (11)[

iΓ µ
∂µ +m

]
Ψ

(−)(x) = 0 . (12)

One can also re-write the above equations into two-component forms. Thus, one
obtains the Feynman-Gell-Mann [14] equations. As Markov wrote himself, he was
expecting “new physics” from these equations. Barut and Ziino [12] proposed yet
another model. They considered γ5 operator as the operator of the charge conjuga-
tion. Thus, the charge-conjugated Dirac equation has a different sign in comparison
with the ordinary formulation, and the so-defined charge conjugation applies to the
whole system, fermion + electromagnetic field, e→−e in the covariant derivative.
Superpositions of the ΨBZ and Ψ c

BZ also give us the “doubled Dirac equation”, as the
equations for λ− and ρ− spinors. The concept of the doubling of the Fock space
has been developed in the Ziino works (cf. [13, 15]) in the framework of quantum
field theory. In their case the self/anti-self charge conjugate states are simultane-
ously the eigenstates of the chirality. Finally, I would like to mention that in general,
in the Weyl basis, the γ− matrices are not Hermitian, γµ†

= γ0γµ γ0. So, γ i† =−γ i,
i = 1,2,3, the pseudo-Hermitian matrix. The energy-momentum operator i∂µ is ob-
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viously Hermitian. So, the question is whether the eigenvalues of the Dirac opera-
tor iγµ ∂µ (the mass, in fact) would be always real? The question of the complete
system of the eigenvectors of the non-Hermitian operator deserve careful consid-
eration [16]. Bogoliubov and Shirkov [9, p.55-56] used the scheme to construct a
complete set of solutions of the relativistic equations, fixing the sign of p0 =+Ep.

The main points of this section are: there are “negative-energy solutions” in that
is previously considered as “positive-energy solutions” of relativistic wave equa-
tions, and vice versa. Their explicit forms have been presented in the case of spin-
1/2. Next, relations to previous works have been found. For instance, the doubling
of the Fock space and the corresponding solutions of the Dirac equation obtained
additional mathematical bases. Similar conclusion can be deduced for higher-spin
equations.

3 Non-commutativity in the Dirac equation

The non-commutativity [17, 18] exibits interesting peculiarities in the Dirac case.
We analyzed Sakurai-van der Waerden method of derivations of the Dirac (and
higher-spins too) equation [19]. We can start from

(EI(4)+α ·p+mβ )(EI(4)−α ·p−mβ )Ψ(4) = 0 . (13)

Obviously, the inverse operators of the Dirac operators of the positive- and negative-
masses exist in the non-commutative case. We postulate the non-commutativity re-
lations for the components of 4-momenta: [E,pi]− = Θ 0i = θ i as usual. Thus, we
come to {

E2−p2−m2− (α ·θ)
}

Ψ(4) = 0 . (14)

However, let us apply the unitary transformation. It is known [7, 20] that one can

U1(σ ·a)U−1
1 = σ3|a| . (15)

The explicit form of the U1 matrix can be found in [19, 20].
Let us apply the second unitary transformation:

U2α3U
†

2 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

α3


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (16)

The final equation is

[E2−p2−m2− γ
5
chiral |θ|]Ψ ′(4) = 0 . (17)
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In the physical sense this implies the mass splitting for a Dirac particle over the
non-commutative space m1,2 = ±

√
m2±θ . This procedure may be attractive for

explaining the mass creation and mass splitting for fermions.

Acknowledgements I greatly appreciate old discussions with Prof. A. Raspini and useful infor-
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Quantum cosmology with k-Essence theory

C.R. Almeida, J.C. Fabris, F. Sbisá, Y. Tavakoli

Abstract A class of k-Essence cosmological models, with a power law kinetic term,
is quantised in the mini-superspace. It is shown that for a specific configuration,
corresponding to a pressureless fluid, a Schrödinger-type equation is obtained with
the scalar field playing the role of time. The resulting quantum scenario reveals a
bounce, the classical behaviour being recovered asymptotically.

1 Introduction

One of the main problems in the canonical quantisation of the Einstein-Hilbert La-
grangian [1–4] is the absence of a clear time coordinate [5, 6]. There are many
approaches to deal with this problem. One of them is to identify an internal pa-
rameter that can play the role of time, a procedure called deparametrisation [7].
Another one, is to introduce matter fields such that they can be identified with the
time coordinate. One example of the last procedure is to introduce a fluid with
internal degrees of freedom using, e.g., Schutz’s variables [8, 9]. In this case, the
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quantisation of the Einstein-Hilbert action coupled to a fluid in the mini-superspace
leads to a Schrödinger-like equation, where the time coordinate is related to the
conjugated momentum of the fluid variables, which appears linearly in the Hamilto-
nian [10–13]. The connection of the fluid variables with a time coordinate through
Schutz’s variable has been studied extensively in the literature. One interesting re-
sult is that the initial cosmological singularity is replaced by a bounce, and classical
solutions are recovered asymptotically [12, 13]. This scenario is consistent with the
general belief that quantum effects must be important in the primordial universe,
while our present universe is essentially classical.

Among the different proposals found in the literature to describe an accelerated
phase of expansion of the universe, the k-Essence theories [14–16] have a very
particular position. Conceived initially to describe the inflationary universe, the k-
Essence theories have been used also to describe the present phase of accelerated
expansion. This class of theories considers a non-canonical kinetic term instead of
a self-interacting scalar field. In some cases, the k-essence behaviour can be recov-
ered from an effective string action, as it happens with the DBI action [17]. In a
cosmological context, one of the characteristics of these theories is that, under some
hypothesis, they can reproduce a fluid dynamics at the background and perturbative
levels [18,19]. This is particularly true for the a kinetic power law expression, which
can reproduce a linear relation between pressure and density p = ωρ , and the speed
of sound for the adiabatic perturbations of the fluid.

In this paper we will investigate the possibility of obtaining a time variable, in
a way similar to the employment of Schutz’s variables, using a power law non-
canonical kinetic term. We will show that this is possible in a very special circum-
stance, which corresponds to a pressureless fluid. We will obtain a Schrödinger type
equation, which will allow us to compute the expectation value for the scale factor,
which reveals a bouncing universe in the same way as it occurs using the Schutz
variables.

2 A k-Essence quantum model

The general k-Essence action can be written as1

S =

ˆ
dx4√−g

{
R− f (X)+V (φ)

}
, (1)

where g = detgµν , and f (X) is an arbitrary function of the kinetic term X = φ;ρ φ ;ρ

and V (φ) is a potential term. If f (X) = X , the usual minimally coupled system
gravity-self interacting scalar field is recovered.

In what follows we will concentrate on the power law k-Essence model, for which
f (X) = εXn, where n is a real number, and ε = ±1. With the introduction of ε the

1 We use the signature (+−−−) and the following convention for the Ricci tensor: Rµν = ∂ρΓ
ρ

µν−
∂νΓ

ρ

µρ +Γ
ρ

µνΓ σ
σρ −Γ

ρ

µσ Γ σ
νρ .
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possibility of a phantom configuration is taken into account. The usual gravity-scalar
field system corresponds to n = 1, ε = 1. Moreover, we will consider V (φ) = 0. In
this case, a cosmological fluid scenario with p=ωρ and ω = constant is reproduced
by the k-Essence model provided that

ω =
1

2n−1
. (2)

This particular k-Essence class of theories has been recently investigated in the con-
text of static spherically symmetric configurations, revealing some very peculiar
new structures [20].

Let us consider the flat, homogenous and isotropic Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) metric defined by

ds2 = N(t)2dt2−a(t)2[dx2 +dy2 +dz2], (3)

where N(t) is the lapse function. With this metric, the action (1), after integrating
by parts and discarding total derivatives, reduces to

S =

ˆ
dt
{

6
N

ȧ2a− εa3N1−2n
φ̇

2n
}
. (4)

In order to have analyticity, we will consider φ̇ positive, but it is possible to extend
the results for the whole real line. The corresponding conjugate momenta for the
scale factor a and the field φ are

πa =
12
N

aȧ , πφ =−2nεa3N1−2n
φ̇

2n−1. (5)

In expressing φ̇ in terms of πφ we must invert the relation above. For n = 2k, k is
a natural number such that k 6= 0, the radicand must be positive (ε = −1); for n =
2k+1, the radicand does not need to be positive, but analyticity is lost at the origin
πφ = 0. In spite of this, we will proceed in a general way since the configurations
that interest us imply different conditions on n. The Hamiltonian reads H = NH ,
where

H =
1

24
π2

a
+(2n−1)(−εa3)−

1
2n−1

(
πφ

2n

) 2n
2n−1

. (6)

If n→ ∞, the conjugated momentum associated to φ appears linearly in the Hamil-
tonian, so that φ can play the role of time.

3 The case n→ ∞

In the limit n→ ∞, the Hamiltonian takes the form
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H =
1
24

π2
a

a
+πφ . (7)

A very important remark is that even if the Hamiltonian is well defined in the limit
n→ ∞, the Lagrangian is not well defined. After the redefinition φ

24 → φ , the corre-
sponding Schrödinger equation, with h̄ = 1, reads

−∂
2
aΨ − q

a
∂aΨ = ai∂φΨ , (8)

where we have introduced a factor ordering q. This is essentially the same equation
found in reference [13] with the Schutz formalism. In what follows we will consider
q = 1. In this case, it is possible to show that the effective Hamiltonian is self-
adjoint [21]. Other choices for q could be used without changing in an essential way
the final results.

The effective Hamiltonian represented by the terms on the left-hand side of (8)
is symmetric (or, hermitian) if a non-trivial measure is introduced in computing the
scalar product:

(φ ,ψ) =

ˆ
∞

0
φ
∗

ψ a2 da. (9)

Let us consider a stationary state, such that Ψ(a,φ) = Φ(a)e−iEφ . Then, the
Schrödinger equation (8) takes the form

∂
2
a Φ +

1
a

∂aΦ +aEΦ = 0. (10)

It is not difficult to show, using a non-trivial measure of the scalar product, that
the energy is positive, E > 0, which is important for the stability of the system.
Changing to the variable x = a

3
2 and identifying 4

9 E → E, we end up with Bessel’s
equation, with the solution

Ψ(a,φ) = A(E)J0(E a
3
2 )e−iEφ , (11)

where A(E) is a weight factor, and we have discarded the second solution of the
Bessel equation, corresponding to the Neumann function, since it is divergent at the
origin.

The solution (11) may lead to a non-singular cosmological scenario as in ref-
erence [13]. In fact, let us consider the wavepacket constructed with the following
superposition [22]:

Ψφ (a) =

ˆ
∞

0
ye−αy2

J0(ya
3
2 )dy =

1
2(γ + iφ)

e−
a3

4(γ+iφ) , (12)

where y =
√

E and α = γ + iφ , with γ > 0. Now, we can calculate the expectation
value for the scale factor, considering φ as the corresponding time variable. The
expectation value is
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〈a〉φ =

ˆ
∞

0
Ψ
∗aΨa2 da = C(γ2 +φ

2)
1
3 , (13)

where C > 0 is a constant. This implies a bouncing universe, with no singularity,
since 〈a〉φ ≥ Cγ2/3. Furthermore, asymptotically (that is when φ → ∞) we have
〈a〉φ ∝ φ

2
3 .

We can easily verify that the corresponding classical cosmological scenario is
recovered asymptotically. Using the FLRW, we find the differential equations (by
fixing the cosmic time, such that N = 1):(

ȧ
a

)2

=
(2n−1)

6
εφ̇

2n , φ̇
2n−1 = Ka−3, (14)

where K is an integration constant. Hence, we have the following equation for the
scale factor:

3
(

ȧ
a

)2

= K̄a−
6n

2n−1 =: ρφ , (15)

where K̄ is a combination of the previous constants. A general solution can be easily
obtained:

a ∝ t
2n−1

3n , φ ∝ t
n−1

n . (16)

In the limit n→ ∞, the solutions read

a ∝ t
2
3 , φ ∝ t. (17)

The last relation confirms the previous statement that φ plays essentially the role of
time in the limit n→∞. Moreover, in this limit, the scale factor behaves as in a dust
dominated universe. We have classically the relation a ∝ φ

2
3 , which agrees with

the relation found asymptotically in the quantum model.

4 Conclusions

In this paper we have studied a quantum model in the mini-superspace from a class
of k-Essence cosmology based on a power law kinetic term Xn, where X is the usual
expression for the kinetic term of a scalar field. We found that the momentum for
the scalar field appears linearly in the Hamiltonian in the limit n→ ∞. In this case,
the scalar field may play the role of a time variable. The corresponding quantum
scenario has been worked out, leading to a bounce universe, which recovers clas-
sical behaviour asymptotically. The case n→ ∞ leads, at the classical level, to a
cosmological model equivalent to that obtained by a pressureless fluid matter com-
ponent, with a ∝ t

2
3 . A clear identification of the scalar field as the time component
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is possible only in this special case. The canonical transformation allowing the iden-
tification of scalar field as a time component seems only well defined for that limit,
otherwise we must face problems with fractional derivatives which may imply loos-
ing the notion of locality. The fact that only the case corresponding to a pressureless
fluid leads to a possible identification of the scalar field with a time variable evokes
previous proposals that a pressureless fluid may allow recovery of the notion of a
time variable in cosmology [23, 24].

It must be remarked, however, that strictly speaking, a pressureless fluid is an
idealisation, since no real fluid has zero pressure exactly. In some sense, maybe
such an aspect of the problem is related to the curious properties of the original k-
Essence model developed here in the limit n→∞, with a well-defined Hamiltonian,
but with no Lagrangian. The possible deep meaning of such a limit process remains
an open problem.
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Troubles with the radiation reaction in
electrodynamics

Sofiane Faci, José A. Helayel-Neto and V. H. Satheeshkumar

Abstract The dynamics of a radiating charge is one of the oldest unsettled prob-
lems in classical physics. The standard Lorentz-Abraham-Dirac (LAD) equation of
motion is known to suffer from several pathologies and ambiguities. This paper
briefly reviews these issues, and reports on a new model that fixes these difficulties
in a natural way. This model is based on a hypothesis that there is an infinitesimal
time delay between action and reaction. This can be related to Feynman’s regu-
larization scheme, leading to a quasi-local QED with a natural UV cutoff, hence
without the need for renormalization as the divergences are absent. Besides leading
to a pathology-free equation of motion, the new model predicts a modification of
the Larmor formula that is testable with current and near future ultra-intense lasers.

1 Introduction

The problem of electromagnetic radiation reaction goes back to the end of the nine-
teenth century [1]. This history is long, rich and also particularly surprising given
the simplicity of the problem at first sight. The standard Lorentz-invariant equa-
tion of motion of a radiating charged particle is given by the LAD equation. It is
well-known that this equation is plagued by several pathologies and ambiguities.
Although these have cast doubt on the foundations of classical electrodynamics,
they were long considered harmless for all practical purposes. However, the recent
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advances in ultra-intense laser technology [2–4] and related sophisticated numerical
simulations [5, 6] have renewed interest in this problem.

The LAD equation reads

mz̈µ = Fµ

ext +Fµ

rad , (1)

where Fµ

ext is the exterior Lorentz force, and Fµ

rad is the radiation damping force
given by

Fµ

rad = mε(˙̇ ˙z µ + z̈2 żµ), (2)

with ε = 2e2

3m and z̈µ = d2

dτ2 zµ being the acceleration; zµ = zµ(τ) are the coordinates
of the charge given as functions of the proper time τ . We use units c = k = h̄ = 1 (k
is Coulomb’s constant) and the spacetime is flat with signature (+,−−−). The first
term on the r.h.s. of the Eq. (2) is the so-called Schott term, and the second is the
Larmor term. This is because Larmor’s formula for the radiated four-momentum is
given by

δPµ

Larmor =−mε z̈2 żµ . (3)

Up to the current experimental precision, this formula correctly describes the ob-
served radiated energy not only in everyday devices like cellphones and WiFi spots,
but also in sophisticated cyclotrons and synchrotrons.

2 LAD equation: pathologies and ambiguities

In this section, we give a brief review of the two pathologies and three ambiguities
of the LAD equation.

Self-acceleration or runaway. This pathology can be inferred from the non-
relativistic limit of the LAD equation, ma = f+mε ȧ. For simplicity let us consider
f = 0; the solution reads a(t) = ao exp(εt), which is divergent for non-vanishing
initial acceleration. There have been several attempts to fix this pathology, among
which the most notable is certainly the Landau-Lifshitz equation [7]. This involves
rewriting LAD equation (1) in a perturbative way and linking explicitly the radiation
force (2) to the external forces; this is known as order reduction. Its non-relativistic
limit reads ma = fext + ε ˙fext + higher orders. This equation is obviously free of
runaway solutions but suffers from the remaining problems of the LAD equation.
Moreover, since the perturbation parameter is given by ḟ/ f , the Landau-Lifshitz
model is limited to slowly varying external forces. One can also mention the simi-
lar and familiar equation of Ford and O’Connell where no divergencies appear [8].
Another attempt came from Rohrlich whose solution has the peculiarity of worsen-
ing the pre-acceleration behaviour since the charge needs to know the whole future
history of the external force to adapt its acceleration [9].

Pre-acceleration. The charge’s acceleration always precedes the external force,
ma(t − ε) ≈ f(t), leading to causality violation. There have been not many at-
tempts at fixing this pathology. Since it is characterised by the infinitesimal time
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ε ≈ 10−23s, it is believed that there could be no classical resolution. Quantum me-
chanics is required to go further even though it is not well suited to describe motion1.
The first to implement this program were Moniz and Sharp who used the Heisen-
berg picture and standard perturbative theory [11]. The pre-acceleration pathology
is avoided by introducing a cutoff that corresponds to the Compton scale, λ = 137ε

(recall that c = 1). This comes as no surprise since the cutoff is much bigger than
the pathology typical scale. More recent developments include the work of Higuchi
and Martin who take into consideration the full relativistic QED [12]. Unfortunately
they recover the LAD equation and its associated pathologies in the classical limit.

Time-reversible or not. One might argue that the time-irreversible character of
the LAD equation is obvious due to the presence of the Schott term, ∝ ˙̇ ˙z µ , in-
deed, every odd-order time-derivative of the position being irreversible. However,
some authors believe that classical electrodynamics should be time reversible and
sometimes prefer to rewrite the radiation force (2) in an integro-differential form to
hide the Schott term [13]. Rohrlich has argued that the LAD equation is reversible
provided that the retarded fields are replaced with advanced ones [14], but the ra-
diation process, as a whole, is irreversible for nature preferring retarded instead of
advanced fields [15]. Rovelli refuted the argument stating that time reversal should
also interchange cause and effect [16].

Uniform acceleration. The problems with the LAD equation become evident
when considering uniform acceleration. Instead of leading to trivial results, as one
would expect, it raises more questions. Indeed it is not clear why there is no radiation
damping and the very origin of the radiated energy is mysterious in this case [17].
In addition, this might give rise to a conflict with the Equivalence Principle which
locally equates acceleration and gravitational field. A free (unbound) charge on earth
would emit energy forever, which does not seem to happen. This is so troublesome
that Feynman claimed there could be no radiation in this case and commented that
the dependence of Larmor’s formula on the acceleration (instead of its variation) has
led us astray [18]. Since then an intense work has been devoted to this problem, see
[19] and references therein. The accepted resolution, due to Boulware [20], asserts
that a uniformly accelerated charge does radiate, but such a radiation cannot be
detected by a comoving observer because it falls outside of his (or her) future cone.

Energy balance paradox. There is a systematic energy balance discrepancy in
the LAD equation. Indeed, it is not possible to relate the work done against the radi-
ation reaction force and the radiated energy-momentum. In other words, the Larmor
formula cannot be recovered from the LAD equation. This is evident for uniform ac-
celeration, as discussed in the previous paragraph, but is not limited to this particular
case. This energy balance paradox was recently revealed in [21] where it was also
shown that the widely accepted treatment based on the bound field technique cannot
fix this discrepancy. The underlying reason is that the momentum defined by Schott
and later by Teitelboim is not a legitimate four-momentum for being indefinite and
non-conserved.
1 It is possible to infer the equation of motion from non-relativistic QM as a limit for averaged
operators using the Ehrenfest theorem but we do not know exactly how to describe the motion of
radiating charges in this framework [10].
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3 Time-delayed electrodynamics

In this section, we discuss a recently proposed model for the motion of a classical
charge which appears to fix the above difficulties [25]. This model is based on the
hypothesis of an infinitesimal time-delay between the action of an external elec-
tromagnetic field and the inertial reaction of elementary charges. The time-delay is
given by ε = 2e2/(3m) which is of order 10−23s for an electron2. This corresponds
to 2/3 the time that it takes light to cross the classical radius of the electron. The
infinitesimal delay parameter ε should be seen as a scalar with dimension of time
(or distance if multiplied by c). Hence ε is Lorentz-invariant and is thus observer-
independent. Note that no particular assumptions are required with respect to the
structure, shape or size of the electron. In particular the problems related to the rigid
spherical electron do not apply to this model. The new equation of motion reads

fµ(τ)−mz̈µ(τ) = m
∣∣∣δ z̈(τ,ε)⊥µ

∣∣∣= m

∣∣∣∣∣ ∞

∑
n=1

εn

n!
z(n+2)⊥

µ (τ)

∣∣∣∣∣ , (4)

where δ z̈(τ,ε)= z̈(τ+ε)− z̈(τ),
∣∣δ z̈(τ,ε)⊥µ

∣∣= s δ z̈(τ,ε)⊥µ , with s= sign(δ z̈(τ,ε)⊥o ).
This guarantees that energy flux goes from the external force f to the kinetic sec-
tor z̈ when the acceleration is positive and the opposite for negative acceleration.
The projector on the hyperplane Σ(τ) orthogonal to the charge worldline (i.e.,
to żµ ) at instant τ is denoted ⊥µν= ηµν− ‖µν with ‖µν= żµ żν being the paral-
lel projector on the worldline. This is needed for consistency since fµ(τ) ∈ Σ(τ)
while z̈µ(τ + ε) ∈ Σ(τ + ε), the two hyperplanes being not parallel, except for in-
ertial motion. It is important to remark that δ z̈(τ,ε) can be equivalently replaced
by δ f (τ,ε) = f (τ)− f (τ − ε) in this equation (and throughout the text) provided
the external field is far below the Schwinger critical limit, Ec =

m2

e (linear electro-
dynamics) and the frequency under the limit ε−1 (electron-positron pair creation).
Both limits are far above current experimental capabilities [24]. Within these limits,
and up to the first-order expansion in terms of ε , equation (4) reduces to

mz̈µ(τ) = fµ(τ)− smε ˙̇ ˙z⊥µ +o(ε2), (5)

with now s = sign(˙̇ ˙z⊥o ). This is the LAD equation (1) when ˙̇ ˙z⊥o < 0, implying
s = −1, which corresponds for example to circular motion (cyclotron and syn-
chrotron). For ˙̇ ˙z⊥o > 0 the radiation force has an opposite sign in comparison with
the LAD equation and this, in principle, is experimentally testable. That is, the pre-
acceleration behaviour appears only when ˙̇ ˙z⊥o < 0, and one has a post-acceleration

2 This is comparable to the observed time delay in the photoelectric effect by atoms and molecules.
Indeed, the recent advances in the so-called attosecond chronoscopy have raised fundamental
questions and generated an intense theoretical and experimental activity. This was predicted by
Wigner [23] and confirmed by direct observations. Time scales vary around 10−18s for small atoms
and molecules. A recent proposal has demonstrated the technical possibility of reaching precision
of 10−21s by using high harmonic x-ray pulses generated with midinfrared lasers [22]. Hence the
time shift attributed to the electron will be soon within the range of experimental capabilities.
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for ˙̇ ˙z⊥o > 0. Hence pre-acceleration is not systematic and consequently not prob-
lematic. Note also that the time-irreversal character of equation (4) is evident since
even and odd high-order terms in the expansion series do not transform equally un-
der time reversal. As for the radiated energy-momentum, it is given by the parallel
projection

δPµ

rad = mδ z̈(τ,ε)‖ = m
∞

∑
n=1

εn

n!
z(n+2)‖

µ (τ). (6)

Like the equation of motion (1), this formula is clearly time-irreversible. The first
term of the expansion corresponds to Larmor formula (3). The higher-order terms
are new and might drastically change the behaviour of radiating charges in the
case of rapidly changing external forces, as in high-frequency lasers experiments.
The acceleration vector being spacelike, the Larmor term is evidently positive.
The odd higher-order terms are shown to be positive in [25]. The even derivative
terms have an indefinite sign and are time-reversible. However, within the valid-
ity limit of the model, the dominant term is the Larmor term and so the radi-
ated momentum is always positive and forward oriented. In addition, performing
a motion back and forth results in a null momentum coming from even terms.
Furthermore, using the identity δ z̈(τ,ε)2 = (δ z̈(τ,ε)⊥)2 + (δ z̈(τ,ε)‖)2, together
with equations (4) and (6), defining the total momentum flux (between the in-
stants τ and τ + ε) as δPµ

tot(τ) = mδ z̈(τ,ε) and the internal momentum flux as
δPµ

int(τ) = f µ(τ)−mz̈µ(τ), one obtains

δP2
tot = δP2

int +δP2
rad . (7)

This formula stands for energy-momentum conservation. It says that the total mo-
mentum, δPtot is split into an internal flux δPint , which flows between the kinetic
and potential sectors, and an external flux δPrad , which is dissipated. Moreover since
it involves scalar quantities, the relation (7) is frame-independent.

Let us now apply the above formula to a simple and testable example related to
the ultra-high intense laser experiments. In particular, we consider a nonrelativistic
electron interacting with a monochromatic plane wave laser of frequency ω and
intensity I = 1

4π
E2

o , where Eo stands for the mean value of the electric field. The
equation of motion is given by (5) with s = −1 (this is a cyclic motion) while the
radiated power (6) yields

δPrad = δPLarmor[1+
1
6
(εω)2 +o(εω)4], (8)

where δPLarmor = mεa2 = 4πe2

m Iε comes out of Larmor’s formula (3). Hence the
new formula predicts a higher amount of radiated energy. The excess radiated power
depends linearly on the intensity of the laser I, and non-linearly on its frequency, ω .
Consequently one can remain well below the Schwinger and ε−1 limits (which limit
the validity of the present model) while the experimental conditions for testing the
predicted deviation from Larmor’s formula are guaranteed, which is more easily
attained by increasing the laser frequency.
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4 Summary
In this paper, we have attempted to fix many pathologies of the LAD equation de-
scribing the motion of a radiating charge. Our model is based on a hypothesis of
an infinitesimal time delay between action and reaction. Accordingly, the force and
acceleration vectors do not live on the same hyperplane orthogonal to the worldline.
The orthogonal projection of the delayed force leads to the equation of motion, a dis-
crete delay differential equation [26] whose expansion reduces to the LAD equation
at the first-order and for cyclic motion. The radiated four-momentum is extracted
from the parallel projection on the worldline of the charge, which exactly reduces to
Larmor formula at the first-order. The higher-order terms are new and experimen-
tally testable, thanks to recent advances in laser technology. One practical example
we have outlined has precise and explicit predictions. Finally, we would like to men-
tion that the time-delay ε yields a quasi-local QED exhibiting a natural UV cutoff.
This might be related to Feynman’s regularization scheme [27] but with no need for
renormalization since no divergencies need to be cured.
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Gravitational “seesaw” and light bending in
higher-derivative gravity

Antonio Accioly, Breno L. Giacchini and Ilya L. Shapiro

Abstract Local gravitational theories with more than four derivatives have remark-
able quantum properties, e.g., they are super-renormalizable and may be unitary in
the Lee-Wick sense. Therefore, it is important to explore also the IR limit of these
theories and identify observable signatures of the higher derivatives. In the present
work we study the scattering of a photon by a classical external gravitational field in
the sixth-derivative model whose propagator contains only real, simple poles. Also,
we discuss the possibility of a gravitational seesaw-like mechanism, which could
allow the makeup of a relatively small physical mass from the huge massive param-
eters of the action. If possible, this mechanism would be a way out of the Planck
suppression, affecting the gravitational deflection of low energy photons. It turns
out that the mechanism which actually occurs works only to shift heavier masses to
the further UV region. This fact may be favourable for protecting the theory from
instabilities, but makes experimental detection of higher derivatives more difficult.

1 Introduction

The idea of including higher-derivative terms in the Einstein-Hilbert action was pro-
posed still in the early years of general relativity, and was considered more seriously
during the 1960’s and 1970’s driven by quantum theoretical considerations. Indeed,
the renormalization of quantum fields on curved space-time requires the introduc-
tion of curvature-squared terms [12]; also, it was shown that the fourth-derivative

Antonio Accioly, Breno L. Giacchini
Centro Brasileiro de Pesquisas Fı́sicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de
Janeiro, RJ, Brazil, e-mail: accioly@cbpf.br,breno@cbpf.br

Ilya L. Shapiro
Departamento de Fı́sica, ICE, Universidade Federal de Juiz de Fora, Campus Universitário - Juiz
de Fora, 36036-330, MG, Brazil; Tomsk State Pedagogical University and Tomsk State University,
Tomsk, Russia, e-mail: shapiro@fisica.ufjf.br

183© Springer International Publishing AG 2017 
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries, 
https://doi.org/10.1007/978-3-319-69164-0_27 

mailto:accioly@cbpf.br, breno@cbpf.br
mailto:shapiro@fisica.ufjf.br


184 Antonio Accioly, Breno L. Giacchini and Ilya L. Shapiro

gravity is renormalizable, in opposition to the Einsteinian theory [11]. As it is widely
known, this type of theory usually suffers from Ostrogradsky instabilities at the
classical level and have negative-norm states when quantized; notwithstanding, in
absence of a straight road to quantum gravity, the role played by higher-derivative
terms should be investigated. In this spirit, it was recently shown that gravity the-
ories with more than four derivatives are super-renormalizable [4], and may yield
a unitary S-matrix in the Lee-Wick sense if all the massive poles in the propagator
are complex [9]. Some other recent studies on general super-renormalizable theories
can be found in Refs. [1, 2, 5, 8].

In the present work we study the bending of light in the most simple super-
renormalizable gravity theory, i.e., the sixth-derivative model described by the ac-
tion

S = Sgrav +

ˆ
d4x
√−gLm , (1)

Sgrav =

ˆ
d4x
√−g

{
2

κ2 R+
α

2
R2 +

β

2
R2

µν +
A
2

R�R+
B
2

Rµν�Rµν

}
, (2)

where an additional matter action was introduced. Here α , β , A and B are free pa-
rameters; the first two are dimensionless while A and B carry dimension of (mass)−2.
The notation κ2/2= 16πG=M−2

P is conventional in the quantum gravity literature;
here MP is the Planck mass.

In Section 2 we discuss the deflection of light caused by a static massive body
within the semi-classical framework, while in Section 3 we analyse the possibility
of avoiding Planck suppression effects to this phenomenon due to a specific seesaw-
like mechanism. Our conclusions are summarized in Section 4. We note that further
consideration of the issues presented in this work can be found in [1, 2].

Our sign convention follows from the definitions ηµν = diag(1,−1,−1,−1),
Rρ

λ µν = ∂µΓ ρ
λν + · · · and Rµν = Rρ

µνρ . Also, we set h̄ = c = 1.

2 Light bending in the sixth-order gravity

In the weak field regime we consider the metric to be a fluctuation around the flat-
space, gµν = ηµν + κhµν , with |κhµν | � 1. Then, it is possible to show that the
field generated by a static point-like mass, has non-zero components given by [2]:

h00 =
Mκ

16π

(
− 1

r
+

4
3

F2−
1
3

F0

)
,

h11 = h22 = h33 =
Mκ

16π

(
− 1

r
+

2
3

F2 +
1
3

F0

)
, (3)

where

Fk =
m2

k+

m2
k+−m2

k−

e−mk−r

r
+

m2
k−

m2
k−−m2

k+

e−mk+r

r
.
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Here k = 0,2 labels the spin of the particles, whose masses are defined by the
positions of the poles of the propagator,

m2
2± =

β ±
√

β 2 + 16
κ2 B

2B
, m2

0± =
σ1±

√
σ2

1 − 8σ2
κ2

2σ2
, σ1 = 3α +β , σ2 = 3A+B .

(4)
As mentioned above, in this work we assume that the parameters α,β ,A and B
are such that mk± ∈ R and mk+ 6= mk− (for the most general scenario see [2]). In
particular, it must hold that β ,B < 0. It is possible to show that m2+ and m0+ are
ghost modes, while the others are healthy excitations [8].

The deflection of light due to a weak gravitational field can be evaluated within
the semi-classical approach by considering the photon to be a quantum particle
which interacts with the classical external field (3). At tree-level the only diagram
contributing to the scattering is the one depicted in Fig. 1, which produces the vertex
function

Vµν(p, p′) =
κ

2
hλρ

ext (k)
[
−ηµν ηλρ p · p′+ηλρ p′µ pν (5)

+ 2
(

ηµν pλ p′ρ −ηνρ pλ p′µ −ηµλ pν p′ρ +ηµλ ηνρ p · p′
)]

.

Neglecting energy exchange between the photon and gravitational field and as-
suming that the bending angle is small, it is possible to show that the unpolarized
cross section for this process reads [1]:

dσ

dΩ
= 16G2M2

[
1

θ 2 +
E2

m2
2−−m2

2+

( m2
2+

E2θ 2 +m2
2−
− m2

2−
E2θ 2 +m2

2+

)]2

, (6)

where E = E ′ is the energy of the photon and θ is the deflection angle, i.e., the angle
encompassed by p and p′.

From the previous expression it is possible to conclude that

i. light deflection does not depend on m0±, and thus on the sectors R2 and R�R.
This happens because these sectors can be regarded as conformal transformations
on the metric [2].

Fig. 1 Photon scattering by
an external gravitational field.
Here |p| ≈ |p′|.

k

p

p′

µ

ν
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ii. Light deflects less than in general relativity. In fact, the ghost m2+ gives opposite-
sign effect compared to the healthy massive mode m2− and the graviton, and

m2− > m2+ =⇒ m2
2−E2

E2θ 2 +m2
2+

>
m2

2+E2

E2θ 2 +m2
2−

=⇒
(

dσ

dΩ

)
E
>

dσ

dΩ
> 0,

(7)
where (dσ/dΩ)E = (4GM/θ 2)2 is the cross-section for general relativity.

iii.The scattering is dispersive – more energetic photons undergo less deflection. In
fact, the second relation in (7) shows that among the dispersive interactions, the
repulsive one is stronger. Therefore, since all the photons are equally attracted by
the R-sector, the more energetic ones are more repelled and thus less scattered.

In order to evaluate the deflection undergone by a photon with energy E and
impact parameter b, we can compare the previous expression to the classical cross-
section formula dσ/dΩ = −bθ−1db/dθ , which yields

1
θ 2

E
=

1
θ 2 +

E2

(m2
2−−m2

2+)
2

(
m4

2−
E2θ 2 +m2

2+
+

m4
2+

E2θ 2 +m2
2−

)

+
2E2

m2
2−−m2

2+

[
m2

2−
m2

2+
ln

(
E2θ 2

E2θ 2 +m2
2+

)
− m2

2+

m2
2−

ln

(
E2θ 2

E2θ 2 +m2
2−

)

− m2
2−m2

2+

(m2
2−−m2

2+)
2 ln

(
E2θ 2 +m2

2−
E2θ 2 +m2

2+

)]
, (8)

where θE = 4GM/b is the scattering angle in Einstein’s gravity.
The effect of both massive modes is related to the ratio E/m2±, in such a manner

that photons with transplanckian energies would not be deflected at all,1 while suf-
ficiently low-energetic photons are scattered just like as in general relativity. Only
at an intermediate scale of energy is there a non-trivial scattering.

In particular, it is possible to conceive a scenario in which the hierarchy between
the masses is so strong, i.e., m2− ∼ MP � m2+, that the effect of higher deriva-
tives could be perceived even for the energy scale currently measured, emitted by
astrophysical sources. (At the same time, the influence of the healthy massive mode
is negligible.) Due to the analogy with the seesaw mechanism of neutrino physics
– in which large-mass parameters combine to yield physical masses with strong
hierarchy, we shall call this possibility the gravitational seesaw. Under these cir-
cumstances, the equation for the deflection angle (8) reduces to

1
θ 2

E
=

1
θ 2 +

E2

E2θ 2 +m2
2+

+
2E2

m2
2+

ln
E2θ 2

E2θ 2 +m2
2+

, (9)

which is the same expression that occurs in the fourth-derivative gravity [3].

1 This conclusion follows, for example, from the cross-section formula (6), which tends to zero as
E/m2± −→ ∞.
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3 On the gravitational seesaw

From Eq. (4) it is straightforward to derive the seesaw condition for the masses m2±:

16|B| � κ
2
β

2. (10)

If this condition is satisfied, the masses m2± can be approximated by

m2
2+ ≈

4
κ2|β | � m2

2− ≈
β

B
. (11)

As in the original neutrino seesaw mechanism one of the masses depends,
roughly, on only one parameter, while the other depends on both. There is, how-
ever, a remarkable difference with respect to the neutrino case: while there it works
to make the lightest mass even lighter, in gravity the effect is to shift the largest
mass further to the UV region, according to Eq. (4). In fact, if the lighter mass is
reduced, then the larger mass is augmented. This happens because of the parameter
B which occurs in the denominator of Eq. (4); indeed, it easy to verify that m2+ is
a decreasing function on B. Thus, the only form of reducing the lightest mass by
changing the sixth-derivative parameter is to make it tend to zero (remember that
B < 0); this procedure makes the ghost mode to approach the mass of the fourth-
derivative gravity tensor excitation [11] as shown in Eq. (4). As a consequence, in
order to have m2+� m2− ∼MP one must have β � 1.

In this spirit, now focusing our attention on the healthy mode, there are two
possible ways of having m2− of the order of the Planck mass: to have a small |B|
or a large |β |. The former is the standard choice, since it prescribes that β ∼ 1 and
B ∼ M−2

P so as to have all the masses of the order of MP. The latter relies on the
seesaw mechanism, allowing one to have |B| �M−2

P and still have m2− ∼MP. Of
course, having a large |B| which yields a large mass can only be achieved through
the ghost mass reduction with a parameter β � 1.

Therefore, the much lighter mass of the first ghost depends only on the second-
and fourth-derivative terms; and the higher-order ones cannot produce an efficient
seesaw mechanism working as in the case of the neutrino mass. Only a “weak see-
saw” is possible, i.e., the reduction of the lightest mass by having a huge dimension-
less parameter β . (See [2] for a discussion of this result in the complex poles case;
and [1] for the generalization to the case of arbitrary-order local models.)

Let us now return to the deflection angle equation (9) in the presence of the
“weak seesaw”. We notice that the energy of the photon and the quantity m2+ always
appear through the ratio m2+/E. Thus, one can fix the scattering angle at a slightly
different figure from that of general relativity – this could be, e.g., the experimental
accuracy of a set of detectors, say θ = θE −∆θ – and solve the equation for the
aforementioned ratio. For example, if we set θ = 1.65” = θE − 0.10” for a photon
just grazing the sun, then Eq. (9) yields

m2
2+

E2 = 4.30×10−9 , (12)



188 Antonio Accioly, Breno L. Giacchini and Ilya L. Shapiro

which relates the energy of the photon and the mass of the particle necessary to cause
a shift of 0.1” from general relativity’s prediction. Considering, e.g., that this is the
accuracy of the measurements done in the visible spectrum during solar eclipses [7,
10], it follows the bound m2+ & 10−13 GeV. (See [6] for the comparison to other
experimental bounds.) This limit is still very far from the Planck scale, and only with
much higher frequencies is it expected that the massive modes could be detected.

4 Conclusions

We have described the bending of light in the sixth-derivative super-renormalizable
gravity theory, in the particular case that the propagator has only real, simple poles.
Among the main conclusions of this semi-classical analysis we mention the fact that
light is less scattered than in general relativity, and that more energetic photons un-
dergo less deflection. A seesaw-like mechanism which could, in principle, avoid the
Planck suppression to one of the masses was also proposed. We showed, however,
that differently from the neutrino, the gravitational seesaw can only work to make
the largest mass even larger, on account of the reduction of the smallest one. There-
fore, the only possibility of having a small physical mass (while the other is of the
order of MP) is to have a huge β . The impossibility of an efficient seesaw mech-
anism makes the experimental detection of higher-derivatives more difficult, but is
favourable for protecting the theory from instabilities related to a much lighter ghost.
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History of particles in the early universe from
contracting the Standard Model

N. A. Gromov

Abstract The high-temperature limit of the Standard Model generated by the con-
tractions of gauge groups is discussed. Contraction parameters of gauge groups
SU(2) of the Electroweak Model and SU(3) of Quantum Chromodynamics are
taken to be identical and tending to zero when temperature increase. Properties of
the elementary particles change drastically at the infinite temperature limit: all par-
ticles lose masses, all quarks are monochromatic. Electroweak interactions become
long-range and are mediated by the neutral currents. Particles of different kind do
not interact. It looks like some stratification with only one type of particle in each
stratum. The Standard Model passes in this limit through several stages, which are
distinguished by the powers of contraction parameters. The developed approach de-
scribes the evolution of the Standard Model in the early universe from the Big Bang
up to the end of several nanoseconds.

1 Introduction

Modern knowledge of the particle world is concentrated in the Standard Model
(SM). This theory consist of the Electroweak Model (EWM), which unified elec-
tromagnetic and weak interactions, as well as Quantum Chromodynamics (QCD),
describing their strong interactions. The Standard Model is a gauge theory with
SU(3)×SU(2)×U(1) gauge group, which is the direct product of a simple groups.
The operation of group contraction [4] transforms a simple group to a non-semisimple
one. For a symmetric physical system the contraction of its symmetry group means
a transition to some limit state. In the case of a complicated physical system the in-
vestigation of its limit states under the limit values of some of its parameters enables
to better understand the system behavior.
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In this paper we investigate the high-temperature limit of the Standard Model
generated by contraction of the gauge groups SU(2) and SU(3). Similar very high
temperatures can exist in the early universe after inflation and reheating during the
first stages of the Hot Big Bang [2]. At these times the elementary particles demon-
strate rather unusual properties. As far as the temperature in the hot universe is
connected with its age, then moving forward in time, i.e., back to high-temperature
contraction, we conclude that after the universe creation elementary particles and
their interactions pass a number of stages in their evolution from the Planck temper-
ature state up to the SM state.

2 EWM at high temperature

The Electroweak Model is gauge theory with the gauge group SU(2)×U(1) acting
in boson, lepton and quark sectors [5, 6]. Its Lagrangian L is taken to be invariant
with respect to the action of the gauge group in the space of the fundamental rep-
resentation C2. Leptons and quarks are described by SU(2)-doublets (or vectors),
whereas gauge bosons are SU(2)-singlets (or scalars).

We consider a model where the contracted gauge group SU(2; j)×U(1). The
contracted group SU(2; j) is obtained [3] by the consistent rescaling of the funda-
mental representation of SU(2) and the space C2:

z′(ε) =
(

z′1
εz′2

)
=

(
α εβ

−εβ̄ ᾱ

)(
z1

εz2

)
= u(ε)z(ε),

detu(ε) = |α|2 + ε
2|β |2 = 1, u(ε)u†(ε) = 1, (1)

when the real contraction parameter tends to zero ε → 0. In the contraction scheme
(1) the standard boson fields and left lepton and quark fields are transformed as
follows:

W±µ → εW±µ , Zµ → Zµ , Aµ → Aµ .

el → εel , dl → εdl , νl → νl , ul → ul . (2)

The next reason for inequality of the first and second doublet components is the spe-
cial mechanism of spontaneous symmetry breaking, which is used to generate mass
of vector bosons and other elementary particles of the model. In this mechanism one

of Lagrangian ground states φ vac =

(
0
v

)
is taken as the vacuum of the model and

then small field excitations v+ χ(x) with respect to this vacuum are regarded. So
the Higgs boson field χ and constant v are multiplied by ε . As far as the masses of
all particles being proportionate to v, we obtain the following transformation rule:

χ → εχ, v→ εv, mp→ εmp, p = χ,W,Z,e,u,d. (3)
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After transformations (5),(3) the complete Lagrangian of the modified model can
be written in the form

L(ε) = L∞ + εL1 + ε
2L2 + ε

3L3 + ε
4L4 (4)

with the exact expressions for each Lk. The contraction parameter is the monotonous
function ε(T ) of the temperature with the property ε(T )→ 0 for T → ∞. Similarly,
very high temperatures can have existed in the very early universe.

In the infinite temperature limit (ε = 0) Lagrangian (4) is equal to

L∞ =−1
4
Z 2

µν −
1
4
F 2

µν +ν
†
l iτ̃µ ∂µ νl +u†

l iτ̃µ ∂µ ul+

+ e†
r iτµ ∂µ er +d†

r iτµ ∂µ dr +u†
r iτµ ∂µ ur +Lint

∞ (Aµ ,Zµ), (5)

where
Lint

∞ (Aµ ,Zµ) =
g

2cosθw
ν

†
l τ̃µ Zµ νl +

2e
3

u†
l τ̃µ Aµ ul+

+g′ sinθwe†
r τµ Zµ er +

g
cosθw

(
1
2
− 2

3
sin2

θw

)
u†

l τ̃µ Zµ ul−g′ cosθwe†
r τµ Aµ er−

−1
3

g′ cosθwd†
r τµ Aµ dr +

1
3

g′ sinθwd†
r τµ Zµ dr+

+
2
3

g′ cosθwu†
r τµ Aµ ur−

2
3

g′ sinθwu†
r τµ Zµ ur. (6)

We can conclude that the limit model includes only massless particles: photons Aµ

and neutral bosons Zµ , left quarks ul and neutrinos νl , right electrons er and quarks
ur,dr. This phenomenon has a simple physical explanation: the temperature is so
high that the particle mass becomes a negligible quantity as compared to its kinetic
energy. The electroweak interactions become long-range because they are mediated
by the massless neutral Z-bosons and photons. Let us note that W±µ -boson fields are
absent in the limit Lagrangian L∞ (5).

From the explicit form of the interaction part Lint
∞ (Aµ ,Zµ) it follows that there are

no interactions between particles of different kinds; for example neutrinos interact
with each other by neutral currents. All other particles are charged and do only in-
teract with particles of the same kind by massless Zµ -bosons and photons. Particles
of different kinds do not interact. It looks like some stratification of the Electroweak
Model with only one kind of particles in each stratum.

3 QCD with contracted gauge group

Strong interactions of quarks are described by QCD. Like the Electroweak Model,
QCD is a gauge theory based on the local color degrees of freedom [1]. The QCD
gauge group is SU(3), acting in three-dimensional complex space C3 of color quark
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states. The SU(3) gauge bosons are called gluons. There are eight gluons in total,
which are the force carrier of the theory between quarks. The QCD Lagrangian is
taken in the form

L = ∑
q

q̄i(iγµ)(Dµ)i jq j− 1
4

8

∑
α=1

Fα
µν Fµν α , (7)

where Dµ q are covariant derivatives of the quark fields q = u,d,s,c,b, t,

Dµ q =

(
∂µ − igs

(
λ α

2

)
Aα

µ

)
q, q =

q1
q2
q3

≡
 qR

qG
qB

 ∈ C3, (8)

gS is the strong coupling constant, ta = λ a/2 are generators of SU(3), λ a are Gell-
Mann’s matrices and Fα

µν = ∂µ Aα
ν −∂ν Aα

µ +gs f αβγ Aβ

µ Aγ

ν is the gluon stress tensor.
The contracted special unitary group SU(3;ε) is defined by the action

q′(ε) =

 q′1
εq′2
ε2q′3

=

 u11 εu12 ε2u13
εu21 u22 εu23
ε2u31 εu32 u33

 q1
εq2
ε2q3

=

=U(ε)q(ε), detU(ε) = 1, U(ε)U†(ε) = 1 (9)

on the complex space C3(ε) when the contraction parameter tends to zero: ε → 0.
Transition from the classical group SU(3) and space C3 to the group SU(3;ε) and
space C3(ε) is given by the substitution

q1→ q1, q2→ εq2, q3→ ε
2q3,

AGR
µ → εAGR

µ , ABG
µ → εABG

µ , ABR
µ → ε

2ABR
µ , (10)

the diagonal gauge fields ARR
µ ,AGG

µ ,ABB
µ remain unchanged.

Substituting (10) in Lagrangian (7), we obtain the quark part Lq(ε) and gluon
part Lgl(ε) in the form

Lq(ε) = L∞
q + ε

2L(2)
q + ε

4L(4)
q ,

Lgl(ε) = L∞
gl + ε

2L(2)
gl + ε

4L(4)
gl + ε

6L(6)
gl + ε

8L(8)
gl . (11)

In the infinite temperature limit ε → 0, we can write out the QCD Lagrangian
explicitly

L∞ = L∞
q +L∞

gl =∑
q

{
iq̄Rγ

µ
∂µ qR +

gs

2
|qR|2 γ

µ ARR
µ

}
− 1

4
(
FRR

µν

)2− 1
4
(
FGG

µν

)2− 1
4

FRR
µν FGG

µν . (12)
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From L∞ we conclude that only the dynamic terms for the first color component of
massless quarks survive under infinite temperature, which means that the quarks are
monochromatic, and the terms also survive, which describe the interactions of these
components with R-gluons.

4 Estimation of boundary temperatures

The contraction of the QCD gauge group gives us an opportunity to order in time
different stages of its development, but does not make it possible to bear their ab-
solute date. Let us try to estimate this date with the help of additional assumptions.
The equality of the contraction parameters for QCD and the EWM is one of these
assumptions.

Then we use the fact that the electroweak epoch starts at the temperature T4 =
100GeV (1GeV = 1013K) and the QCD epoch begins at T8 = 0,2GeV . Let us
denote by ∆ the cutoff level for εk, k = 1,2,4,6,8, i.e., for εk < ∆ all the terms
proportionate to εk are negligible quantities in the Lagrangian. At last we suppose
that the contraction parameter depends inversely on the temperature

ε(T ) =
A
T
, (13)

where A is constant.
As far as the minimal terms in the QCD Lagrangian are proportional to ε8 and

QCD is completely reconstructed at T8 = 0,2GeV , we have the equation ε8(T8) =
A8T−8

8 = ∆ and obtain A = T8∆ 1/8 = 0,2∆ 1/8 GeV . The minimal terms in the EWM
Lagrangian are proportional to ε4 and it is reconstructed at T4 = 100GeV , so we
have ε4(T4) = A4T−4

4 = ∆ , i.e., T4 = A∆−1/4 = T8∆ 1/8∆−1/4 = T8∆−1/8 and we ob-
tain the cutoff level ∆ = (T8T−1

4 )8 = (0,2 ·10−2)8 ≈ 10−22, which is consistent with
the typical energies of the Standard Model. From the equation εk(Tk) = AkT−k

k = ∆

we obtain

Tk =
A

∆ 1/k =
T8∆ 1/8

∆ 1/k = T8∆
k−8
8k ≈ 10

88−15k
4k GeV. (14)

Simple calculations give the following estimations for the boundary values of the
temperature in the early universe (GeV ): T1 = 1018, T2 = 107, T3 = 103, T4 =
102, T6 = 1, T8 = 2 ·10−1. The resulting estimation for the temperature at ”infinity”
T1 ≈ 1018 GeV is comparable with the Planck energy ≈ 1019 GeV , at which scale
the gravitation effects are important. So the developed evolution of the elementary
particles does not exceed the range of the problems described by electroweak and
strong interactions.
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5 Conclusion

We have investigated the high-temperature limit of the SM which was obtained from
the first principles of the gauge theory as contraction of its gauge group. The SM
passes in this limit through several stages, which are distinguished by the powers
of the contraction parameters, which gives us the opportunity to classify them in
time from earlier to later. To determine the absolute date of these stages, additional
assumptions were used, namely, the inverse dependence of ε on the temperature and
the cutoff level ∆ on εk. Unknown parameters are determined with the help of the
QCD and EWM typical energies.

At the infinite temperature limit (T > 1018 GeV ) all particles including vector
bosons lose their masses and electroweak interactions become long-range.

From exact expressions for the respective Lagrangians at any stage in the SM
evolution [3] it is possible already at the level of classical gauge fields to give some
conclusions on the appearance of elementary particle masses at different stages of
evolution of the universe. In particular we can conclude that half of the quarks
(≈ ε, 1018 GeV > T > 107 GeV ) restore their masses first. Then the Z-bosons, elec-
trons and other quarks become massive (≈ ε2, 107 GeV > T > 103 GeV ). Finally
the Higgs boson χ and the charged W±-bosons are the last to restore their masses
because these are multiplied by ε4 (T < 102 GeV ). In a similar way it is possible to
describe the evolution of particle interactions.

The evolution of elementary particles and their interactions in the early universe
obtained with the help of contractions of gauge groups of the SM does not contradict
the canonical one [2], according to which the QCD phase transitions take place later
than the electroweak phase transitions. The developed evolution of the SM present
the basis for a more detailed analysis of different phases in the formation of leptons
and quark-gluon plasma.
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Ternary Z6-graded algebras

Richard Kerner

Abstract We investigate the possibility of combining the usual Grassmann alge-
bras with their ternary Z3-graded counterpart, thus creating a more general algebra
with coexisting quadratic and cubic constitutive relations. We study a particular case
of algebras generated by two types of variables, ξ a and θ A, satisfying quadratic
and cubic relations respectively, ξ a ξ b = −ξ bξ a and θ Aθ BθC = j θ BθCθ A and
θ̄ Ȧθ̄ Ḃθ̄ Ċ = j2 θ̄ Ḃθ̄ Ċθ̄ Ȧ, with j = e

2πi
3 . We show how one can combine the Z2 and

the Z3 gradings of those binary and ternary algebras and merge them into a common
Z6-graded algebra.

1 Generalized Z2×Z3-graded ternary algebra

Ternary analogs of the Grassman algebras, satisfying cubic constitutive relations,
were first proposed in ( [1], [2]) and in ( [3]), and developed later generalizing
the supersymmetric spaces and algebras in ( [4]), [5]). These papers explored the
consequences of replacing the usual Z2 grading by the Z3 grading, more suited to be
applied in the case of ternary algebras with cubic constitutive relations.

Here we consider agebras on which both gradings can operate at the same time,
and how these gradings can be merged into one common Z6 grading.

Let us suppose that we have binary and ternary skew-symmetric products defined
by corresponding structure constants:

ξ
α

ξ
β =−ξ

β
ξ

α (1)

θ
A

θ
B

θ
C = j θ

B
θ

C
θ

A and θ̄
Ȧ

θ̄
Ḃ

θ̄
Ċ = j2

θ̄
Ḃ

θ̄
Ċ

θ̄
Ȧ, θ

A
θ̄

Ḃ =− j θ̄
Ḃ

θ
A. (2)
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The unifying ternary relation should take into account the full S3 permutation group:

X iXmXk +XmXkX i +XkX iXm +XkXmX i +XmX iXk +X iXkXm = 0. (3)

It is obviously satisfied by both types of variables; the θ A’s and θ̄ Ḃ’s by definition of
the product, for which at this stage the associativity property can be yet undecided;
on the contrary, the product of grassmannian ξ α variables (1) should be associative
in order to make the formula (3) applicable.

It can be added that the cubic constitutive relation (2) satisfies a simpler condition
with cyclic permutations only,

θ
A

θ
B

θ
C +θ

B
θ

C
θ

A +θ
C

θ
A

θ
B = 0,

but the cubic products of grassmannian variables are invariant under even (cyclic)
permutations, so that only the combination of all six permutations of ξ α ξ β ξ γ , as in
(3) does vanish.

Now, if we want to merge the two algebras into a common one, we must impose a
general condition (3) on the mixed cubic products. These are of two types: θ Aξ α θ B

and ξ α θ Bξ β , with two θ ’s and one ξ , or with two ξ ’s and one θ . These identities, all
like (3) should follow from binary constitutive relations imposed on the associative
products between one θ and one ξ variable. Let us suppose that one has

ξ
α

θ
B = ω θ

B
ξ

α and consequently θ
A

ξ
β = ω

−1
ξ

β
θ

A. (4)

A simple exercise leads to the conclusion that in order to satisfy the general con-
dition (3), the unknown factor ω must verify the equation ω + ω−1 + 1 = 0, or
equivalently, ω +ω2 +ω3 = 0. Indeed, we have, assuming the associativity,

θ
A

ξ
α

θ
B = ω

−1
ξ

α
θ

A
θ

B = ω θ
A

θ
B

ξ
α ,

θ
B

ξ
α

θ
A = ω

−1
ξ

α
θ

B
θ

A = ω θ
B

θ
A

ξ
α .

From this, by transforming all the six products so that ξ α should appear always in
front of the monomials, we get:

θ
A

ξ
α

θ
B = ω

−1
ξ

α
θ

A
θ

B, θ
A

θ
B

ξ
α = ω

−2
ξ

α
θ

A
θ

B,

θ
B

ξ
α

θ
A = ω

−1
ξ

α
θ

B
θ

A, θ
B

θ
A

ξ
α = ω

−2
ξ

α
θ

B
θ

A.

Adding up all permutations, even (cyclic) and odd alike, we get the following result:

θ
A

ξ
α

θ
B +ξ

α
θ

B
θ

A +θ
B

θ
A

ξ
α +θ

B
ξ

α
θ

A +ξ
α

θ
A

θ
B +θ

A
θ

B
ξ

α

= (1+ω +ω
−1) ξ

α
θ

A
θ

B +(1+ω +ω
−1) ξ

α
θ

B
θ

A. (5)

The expression in (5) will identically vanish if ω = j = e
2πi
3 (or j2, which satisfies

the same relation j+ j2 +1 = 0.
The second type of cubic monomials ξ α θ Bξ β satisfies the identity
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ξ
α

θ
B

ξ
δ +θ

B
ξ

δ
ξ

α +ξ
δ

ξ
α

θ
B +ξ

δ
θ

B
ξ

α +θ
B

ξ
α

ξ
δ +ξ

α
ξ

δ
θ

B = 0 (6)

no matter what the value of ω is chosen in the constitutive relation (4), the antisym-
metry of the product of two ξ ’s suffices. Assuming ξ α ξ δ =−ξ δ ξ α in the formula
(6), the second term cancels the fifth term, and the third term is cancelled by the
sixth one. What remains is the sum of the first and fourth terms:

ξ
α

θ
B

ξ
δ +ξ

δ
θ

B
ξ

α .

Now we can transform both terms so as to put the factor θ in front; this will give

ξ
α

θ
B

ξ
δ +ξ

δ
θ

B
ξ

α = ωθ
B

ξ
α

ξ
δ +ωθ

B
ξ

δ
ξ

α = 0 (7)

because of the anti-symmetry of the product between the two ξ ’s. This completes
the construction of the Z3×Z2-graded extension of the Grassman algebra.

The existence of two cubic roots of unity j and j2 suggests that one can ex-
tend the above algebraic construction by introducing a set of conjugate generators,
denoted for convenience with a bar and with dotted indices, satisfying conjugate
ternary constitutive relations. The unifying condition, that is the vanishing of the
sum of all permutations will be automatically satisfied.

But now we have to extend this condition to the triple products of the type
θ Aθ̄ ḂθC and θ̄ Ȧθ Bθ̄ Ċ. This will be achieved if we impose the obvious condition,
similar to the one proposed already for binary combinations ξ θ :

θ
A

θ̄
Ḃ = jθ̄ Ḃ

θ
A, θ̄

Ḃ
θ

A = j2
θ

A
θ̄

Ḃ. (8)

The proof of the validity of the condition (3) for the above combinations is exactly
the same as for the triple products ξ α θ Bξ γ and θ Aξ δ θ B.

We have also to impose commutation relations on the mixed products of the type
(see [8]):

ξ
α

θ̄
Ḃ

ξ
β and θ̄

Ḃ
ξ

β
θ̄

Ċ.

It is easy to see that as in the former case, it is enough to impose the commutation
rule similar to the former one with θ ’s, namely,

ξ
α

θ̄
Ḃ = j2

θ̄
Ḃ

ξ
α . (9)

Although we could stop at this point the extension of our algebra, for the sake of
symmetry it seems useful to introduce a new set of conjugate variables ξ̄ α̇ of the Z2-
graded type. We shall suppose that they anti-commute, like the ξ β ’s, and not only
between themselves, but also with their conjugates, which means that we assume

ξ̄
α̇

ξ̄
β̇ =−ξ̄

β̇
ξ̄

α̇ , ξ
α

ξ̄
β̇ =−ξ̄

β̇
ξ

α . (10)

This ensures that condition (3) will be satisfied by any ternary combination of the
Z2-graded generators, including the mixed ones like
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ξ̄
α̇

ξ
β

ξ̄
δ̇ or ξ

β
ξ̄

α̇
ξ

γ .

The dimensions of classical Grassmann algebras with n generators are well known:
they are equal to 2n, with subspaces spanned by the products of k generators having
the dimension Cn

k = n!/(n− k)!k!. With 2n anticommuting generators ξ α and ξ̄ β̇ ,
we shall have the dimension of the corresponding Grassmann algebra equal to 22n.

It is also quite easy to determine the dimension of the Z3-graded generaliza-
tions of Grassmann algebras constructed above (see, e.g., in [2], [4], [5] ). The Z3-
graded algebra with N generators θ A has the total dimension N+N2+(N3−N)/3=
(N3 +N2 +2N)/3. The conjugate algebra, with the same number of generators, has
the identical dimension. However, the dimension of the extended algebra unifying
both these algebras is not equal to the square of the dimension of one of them be-
cause of the extra conditions on the mixed products between the generators and their
conjugates, θ Aθ̄ Ḃ = θ̄ Ḃθ A.

2 Two distinct gradings: Z3×Z2 versus Z6

In the case of ternary algebras presented above, the grade 1 is attributed to the gen-
erators θ A and the grade 2 to the conjugate generators θ̄ Ḃ. Consequently, their prod-
ucts acquire the grade which is the sum of grades of the factors modulo 3. When
we consider an algebra including a ternary Z3-graded subalgebra and a binary Z2-
graded one, we can introduce a combination of the two gradings considered as a pair
of two numbers, say (a,λ ), with a = 0,1,2 representing the Z3-grade, and λ = 0,1
representing the Z2 grade, λ = 0,1. The first grades add up modulo 3, the second
grades add up modulo 2. The six possible combined grades are then

(0,0), (1,0), (2,0), (0,1), (1,1) and (2,1). (11)

To add up two of the combined grades amounts to adding up their first entries mod-
ulo 3, and their second entries modulo 2. Thus, we have

(2,1)+(1,1) = (3,2)' (0,0), or ((2,1)+(1,0) = (3,1)' (0,1), and so forth.

It is well known that the cartesian product of two cyclic groups ZN ×Zn, N and n
being two prime numbers is the cyclic group ZNn corresponding to the product of
those prime numbers. This means that there is an isomorphism between the cyclic
group Z6, generated by the sixth primitive root of unity q6 = 1, satisfying

q+q2 +q3 +q4 +q5 +q6 = 0.

The elements of the group Z6 represented by complex numbers multiply modulo
6, e. g. q4 · q5 = q9 ' q3, etc. The six elements of Z6 can be put in one-to-one
correspondence with the pairs defining six elements of Z3 × Z2 according to the
following scheme:
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(0,0)' q0 = 1, (2,1)' q, (1,0)' q2, (0,1)' q3, (2,0)' q4, (1,1)' q5. (12)

The same result can be obtained directly using the representations of Z3 and Z2 in
the complex plane. Taken separately, each of these cyclic groups is generated by one
non-trivial element, the third root of unity j = e

2πi
3 for Z3 and −1 = eπi for Z2. It is

enough to multiply these complex numbers and take their different powers in order
to get all the six elements of the cyclic group Z6. One then easily identifies

− j2 = q, j = q2, −1 = q3, j2 = q4, − j = q5, 1 = q6.

This group can be represented on the complex plane, with q = e
2πi
6 , as shown on

the diagram below:

Fig. 1: Representation of the cyclic group Z6 in the complex plane with three colors and three
“anti-colors” attributed to even and odd powers of q, accordingly with colors attributed in Quantum
Chromodynamics to quarks and anti-quarks.

The colors attributed to the powers of the complex generator q can be used
to model the exclusion principle used in Quantum Chromodynamics, where ex-
clusively “white” combinations of three quarks and three anti-quarks, as well as
“white” quark-anti-quark pairs are declared observable. Replacing the word “white”
by 0, we see that there are two vanishing linear combinations of three powers of q,
and three pairs of powers of q that are also equal to zero. Indeed, we have

q2 +q4 +q6 = j+ j2 +1 = 0, and q+q3 +q5 =− j2−1− j = 0, (13)

as well as q+q4 = 0, q2 +q5 = 0, q3 +q6 = 0. (14)

The Z6-grading should unite both Z2 and Z3 gradings, reproducing their essential
properties. Obviously, the Z3 subgroup is formed by the elements 1, q2 and q4,
while the Z2 subgroup is formed by the elements 1 and q3 = −1. In what follows,
we shall see that the associativity imposes many restrictions which can be postponed
in the case of non-associative ternary structures ( [9]).

For the Z3-graded algebra with cubic relations we attribute grade 1 to the gen-
erators θ A, and grade 2 to their conjugates θ̄ Ḃ. All other expressions formed by
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products and powers of those got the well-defined grade, the sum of the grades of
factors modulo 3. In a simple Cartesian product of two algebras, a Z3-graded with a
Z2-graded one, the generators of the latter will be given grade 1, and their products
will get automatically the grade which is the sum of the grades of factors modulo
2, which means that all products and powers of generators ξ α will acquire grade 1
or 0 according to the number and character of factors involved. The mixed products
of the type θ Aξ β , ξ β θ BθC, etc. can be given the double Z3×Z2 grade according
to (11). According to the isomorphism defined by (12), this is equivalent to a Z6-
grading of the product algebra.

As long as the algebra is supposed to be homogeneous in the sense that all the
constitutive relations contain exclusively terms of one and the same type, as in the
extension of the Grassmann algebra discussed above, the supposed associativity
does not impose any particular restrictions. However, this is not the case if we con-
sider the possibility of non-homogeneous constitutive equations, including terms of
a different nature, but with the same Z6-grade. The grading defined by (12) suggests
the possibility of extending the constitutive relations by comparing terms of the type
θ Aθ BθC, whose Z6-grade is 3, to the generators ξ α having the same Z6-grade. This
will lead to the following constitutive relations:

θ
A

θ
B

θ
C = ρ

ABC
α ξ

α and θ̄
Ȧ

θ̄
Ḃ

θ̄
Ċ = ρ̄

ȦḂĊ
α̇ ξ̄

α̇ (15)

with the coefficients (structure constants) ρABC
α and ρ̄ ȦḂĊ

α̇
displaying obvious sym-

metry properties mimicking the properties of ternary products of θ -generators with
respect to cyclic permutations:

ρ
ABC

α = j ρ
BCA

α = j2
ρ

CAB
α and ρ̄

ȦḂĊ
α̇ = j2

ρ̄
ḂĊȦ

α̇ = j ρ̄
ĊȦḂ

α̇ . (16)

If all products are supposed to be associative, then we see immediately that the
products between θ and ξ generators, as well as those between θ̄ and ξ̄ generators
must vanish identically, because of the vanishing of quartic products θθθθ = 0 and
θ̄ θ̄ θ̄ θ̄ = 0. This means that we must set

θ
A

ξ
β = 0, ξ

β
θ

A = 0, as well as θ̄
Ḃ

ξ̄
α̇ = 0, ξ̄

α̇
θ̄

Ḃ = 0. (17)

But now we want to unite the two gradings into a unique common one. Let us
start by defining a ternary product of generators, not necessarily derived from an
ordinary associative algebra. We shall just suppose the existence of a ternary product
of generators, displaying the j-skew symmetry property:

{θ A,θ B,θC}= j{θ B,θC,θ A}= j2{θC,θ A,θ B}. (18)

and similarly, for the conjugate generators,

{θ̄ Ȧ, θ̄ Ḃ, θ̄ Ċ}= j2 {θ̄ Ḃ, θ̄ Ċ, θ̄ Ȧ}= j {θ̄ Ċ, θ̄ Ȧ, θ̄ Ḃ}. (19)
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Let us attribute the Z6-grade 1 to the generators θ A. Then it is logical to attribute the
Z6 grade 5 to the conjugate generators θ̄ Ḃ, so that mixed products θ Aθ̄ Ḃ would be of
Z6 grade 0. Ternary products (18) are of grade 3, and ternary products of conjugate
generators (19) are also of grade 3, because 5+5+5= 15, and 15 modulo 6= 3. But
we have also q3 =−1, which is the generator of the Z2-subalgebra of Z6. Therefore
we should attribute the Z6-grade 3 to both types of anti-commuting variables, ξ α

and ξ̄ β̇ , because we can write their constitutive relations using the root q as follows:

ξ
α

ξ
β =−ξ

β
ξ

α = q3
ξ

β
ξ

α , ξ̄
α̇

ξ̄
β̇ =−ξ̄

β̇
ξ̄

α̇ , ξ
α

ξ̄
β̇ =−ξ̄

β̇
ξ

α . (20)

On the other hand, the expressions containing products of θ with ξ̄ and θ̄ with ξ

are
θ

A
ξ̄

α̇ and θ̄
Ḃ

ξ
β

The first expression has the Z6-grade 1+ 3 = 4, and the second product has the
Z6-grade 5+3 = 8 modulo 6 = 2. Other products endowed with the same grade in
our associative Z6-graded algebra are θ̄ Ȧ θ̄ Ḃ This suggests that the following non-
homogeneous constitutive relations can be proposed:

θ
A

ξ̄
α̇ = f Aα̇

ĊḊ θ̄
Ċ

θ̄
Ḋ, and θ̄

Ȧ
ξ

α = f̄ Ȧα
CD θ

C
θ

D, (21)

where the coefficients should display the symmetry properties contravariant to those
of the generators themselves, which means that we should have

f Aα̇

ĊḊ = j2 f α̇A
ĊḊ and f̄ Ȧα

CD = j f̄ αȦ
CD. (22)

More details can be found in ( [6], [7]).
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The zeta function approach applied to Casimir
effects in a stack of conductive planes

Nail Khusnutdinov, Rashid Kashapov and Lilia M. Woods

Abstract We consider the zeta-regularization approach for vacuum energy and cal-
culate Casimir and Casimir-Polder effects in systems with stacked equally spaced
conductive planes. In the framework of the zeta approach, we obtained explicit
forms of the Casimir energy of the stack and the Van der Waals/Casimir-Polder
energy of a microparticle interacting with this stack at zero as well as non-zero
temperatures.

1 Zeta-regularization approach

The zeta function of an operator is a vast subject in mathematical physics (see, for
example books [1–4] and review [5]). It closely connects with the electromagnetic
eigenvalue problem with appropriate boundary conditions. The inverse problem,
identified by M. Kac [6] as ”Can one hear the shape of a drum?”, tries to find the
shape of the boundary, taking into account the spectrum of an operator. The powerful
application of the zeta function is related to the Atiyah-Patodi-Singer index theorem
[7], which establishes a relation between the index of an operator and some local
variables (such as heat kernel coefficients). The index of an operator gives us local
expressions for the topological invariants of manifolds. Topological insulators have
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a very close relation with the index theorem and different topological invariants of
the manifold, and they have become a popular and interesting field of research [8].

The zeta-regularization approach in quantum field theory was first suggested by
Dowker and Critchley [9] and independently by Hawking [10]. In the framework of
this approach, the energy is represented as an analytical function which is renormal-
ized using three (in D = 3+1) first heat kernel coefficients of the corresponding op-
erator. This approach was applied in calculating the Casimir effect by Blau, Visser,
and Wipf in Ref. [11], who have shown that the main problem is obtaining the
spectrum of the underlying operator for appropriate boundary conditions in closed
form. Useful modifications of the zeta-regularization approach were suggested in
Ref. [12] and the subsequent developments of this approach are collected in books
as well [4,13]. In this approach the regularized energy per unit are of a system with
planar symmetry reads as

E (s) =−h̄cµ
2s cosπs

2π

ˆ
d2k⊥
(2π)2

ˆ
∞

0
dλλ

1−2s ∂

∂λ
lnΨ(iλc), (1)

where the relation Ψ(ω) = 0 defines the spectrum of the energy.
The zeta-regularization method has broadened its applications in light of the im-

portance of Casimir phenomena and Van der Waals/Casimir-Polder attraction (ad-
hesion) effects at the nanoscale (see, for example, book [13] and the recent review
[14]). Such fluctuation induced phenomena are also important in chemistry and bi-
ology [15], with the Gecko effect being one of the most striking examples. Graphene
related systems also have unusual Casimir/Van der Waals effects which need to be
considered for possible applications (see, for example, [16]). The graphene prop-
erty of relevance here is the existence of a universal conductivity for a relatively
large domain of frequencies. Furthermore, Van der Waals/Casimir interactions in
multilayer structures are also of great interest [15]. Recent progress in this field was
made by Sernelius in Ref. [17], who obtained recurrent relations for these systems.
An outstanding problem for Casimir interactions in multilayered systems is an ef-
fective way to treat the number of layers explicitly. Here we demonstrate a solution
to this problem using the zeta function formalism for Casimir and Casimir-Polder
energies at zero and non-zero temperatures.

2 Layered system at zero temperature

Let us consider a layered system consisting of a stack of N conductive equally
spaced parallel and infinitely thin planes with surface conductivity σ(ω). The N
parallel planes are located at points z = a,a+ d,a+ 2d,a+ 3d, . . . ,a+(N − 1)d.
The half-space z≤ 0 is filled by dielectric media with permeability ε(ω). To calcu-
late the Casimir energy, we set ε = 1. To calculate the Casimir-Polder interaction, we
take advantage of the idea developed by Lifshitz [18] relying on media rarefication.
Specifically, we take the half space at z< 0 to be described as ε(ω) = 1+4πNα(ω),
where N is the amount of atoms per unit volume and α is the polarizability of single
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atom in this material. In the limit of N→ 0, we obtain the energy E(N ) per atom at
a distance a:

E(N )(s) =− lim
N→0

1
N

∂E (N )(s)
∂a

, (2)

where E (N )(s) is the zeta-regularized energy for configuring N planes and the
dielectric medium.

The electromagnetic field excitations supported by a system with planar sym-
metry can be separated into two modes: transverse magnetic (TM) and transvesre
electric (TE) modes. The respective boundary conditions are

TM :
[
e′z
]

z=a+ jd = 0, [ez]z=a+ jd =−4πiσ
ω

e′z,
[
e′z
]

z=0 = 0, [εez]z=0 = 0,

TE : [hz]z=a+ jd = 0,
[
h′z
]

z=a+ jd = 4πiσωhz,
[
h′z
]

z=0 = 0, [µhz]z=0 = 0,

where [ f ]z = f (z−0)− f (z+0) and j = 0,N −1.
Thus, there are 2N +2 coupled equations, whose main determinant can be writ-

ten on the imaginary axis ω = iλ in the following form:

4TM =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Z1 B0 0 . . . 0 0
0 A0 B1 . . . 0 0
0 0 A1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . AN −2 BN −1
Z2 0 0 . . . 0 AN −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This (N +1)× (N +1) determinant is in a block-diagonal form with elements

Bl =

(
e(l−1)p −e−(l−1)p

e(l−1)p e−(l−1)p

)
,B0 =

(
e−ap −eap

e−ap eap

)
, Z1 =

(
−κε

κ
0

−ε 0

)
,

A j =

(
−e jp e− jp

(− 2πσ

c −1)e jp ( 2πσ

c −1)e− jp

)
,Z2 =

(
0 −e−(N −1)p

0 e−(N −1)p

)
,

where l = 1,N −1, p = dκ, a = a
d , κε =

√
k2
⊥+ εµλ 2, and κ =

√
k2
⊥+λ 2.

The Casimir-Polder energy
Taking into account Eqs. (1) and (2), we obtain the following expressions for the

Casimir-Polder energy (see details in Ref. [19])

E(N )
TM =

ˆ
∞

0
dy
ˆ 1

0
dxα(

xy
d
)ΓN

(
1
x

η(
xy
d
)

)
(2− x2),

E(N )
TE =

ˆ
∞

0
dy
ˆ 1

0
dxα(

xy
d
)ΓN

(
xη(

xy
d
)
)

x2.

The two contributions have a common function



206 Nail Khusnutdinov, Rashid Kashapov and Lilia M. Woods

ΓN (t) = − h̄c
2πd4

y3te−
2a
d y

1+ t− e−yΠ
N −1
N

,

f = q+
√

q2−1, q = coshy+ t sinhy,

where function η = 2πσ/c is the dimensionless conductivity and the arguments of
α and η are xy/d. Here

Π
N −1
N = f

1− f 2(N −1)

1− f 2N
=

sinh((N −1)u)
sinh(N u)

, (3)

where u = arccosh(q). The function Π
N −1
N is the ratio PN −2(q)

QN −1(q)
of two polynomials

of order N −2 and N −1 and for an infinite number of planes it becomes irrational.
Particular cases of function (3) are given in Eq. (4).

Π
0
1 = 0, Π

2
1 =

1
2q

, Π
3
2 =

2q
4q2−1

,Π 4
3 =

4q2−1
4q(2q2−1)

, Π∞ =
1√

q2−1+q
. (4)

The Casimir energy
In the same way (see details in Refs. [20, 21]), the Casimir energy E (N) per unit

area stored in the stack can be represented as

E
(N)
TM =

ˆ
∞

0
y2dy
ˆ 1

0
dx lnΦN

(
1
x

η

)
, E

(N)
TE =

ˆ
∞

0
y2dy
ˆ 1

0
dx lnΦN (xη) ,

where the integrand function reads as

ΦN (t) =
h̄c

2π2d3
e−y(N −1)ΠN

1
(1+ t)N

(
1+ t− e−y

Π
N −1
N

)
.

In the framework of this approach we obtain the force, A (m,N ), acting on the
plane m in the stack of N planes:

A
(m,N )
TM =

ˆ
∞

0
y2dy
ˆ 1

0
dxΘm,N

(
1
x

η

)
, A

(m,N )
TE =

ˆ
∞

0
y2dy
ˆ 1

0
dxΘm,N (xη) ,

where

Θm,N (t) =
h̄c

π2d4

e−yyt2Π
N −2m−1
N

1+ t− e−yΠ
N −1
N

.

3 Layered system at non-zero temperature

In the case of non-zero temperature, the following replacement is made
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ˆ
∞

0
g(λ )dλ ⇒ ξ1

∞

∑
n=0

′g(ξn), ξn =
2πnkBT

h̄c
= nξ1,

where the prime means that a factor 1
2 multiplies the zero term (n = 0) and ξn are

the Matsubara wavelengths.

The Casimir-Polder free energy
Taking into account Eq. (2), we obtain the following expressions for the Casimir-

Polder free energy:

FTM =
∞

∑
n=0

′
α(ξn)

ˆ
∞

1
Ψn,N (xη(ξn))

(
2x2−1

)
dx,

FTE =
∞

∑
n=0

′
α(ξn)

ˆ
∞

1
Ψn,N

(
1
x

η(ξn)

)
dx,

where

Ψn,N (t) =−kBT χ3

a3
n3te−2nχx

1+ t− e−nτxΠ
N −1
N

,

and τ = ξ1d,χ = ξ1a, and Π
N −1
N = Π

N −1
N (t,nτx).

The Casimir free energy
The temperature dependent Casimir free energy can also be obtained via the

following expressions:

FTM =
∞

∑
n=0

′
ˆ

∞

1
Σn,N (xη(ξn))dx,

FTE =
∞

∑
n=0

′
ˆ

∞

1
Σn,N

(
1
x

η(ξn)

)
dx,

where

Σn,N (t) =
kBT χ2

2πa2
n2e−2nχxΠ

N −1
1

(1+ t)N

(
1+ t− e−nτx

Π
N −1
N

)
,

and τ = ξ1d,χ = ξ1a, and Π
N −1
N = Π

N −1
N (t,nτx).

4 Conclusion
In the paper we considered the Casimir and Casimir-Polder energies for a layered
system in the framework of the zeta function approach. The temperature effects are
also taken into account via the Matsubara wavelengths. The expressions obtained
can be applied to arbitrary models of the layers conductivity and arbitrary micropar-
ticles.
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Rephasing invariant monomials of the
Cabibbo-Kobayashi-Maskawa matrix

Piotr Kielanowski and S. Rebeca Juárez W.

Abstract We consider monomials, built from elements of the Cabibbo-Kobayashi-
Maskawa matrix, that are invariant upon phase transformation of the quark fields.
We obtain a general form of such monomials and demonstrate that they can be ex-
pressed as a product of a small number of fundamental rephasing invariant mono-
mials. The results of this paper can lead to a simplification of the renormalization
group equations and be helpful in calculations of cross sections and Feynman dia-
grams in the Standard Model.

1 Introduction

The Standard Model (SM) [2] of Elementary Particles, based on gauge invariant
field theory with the gauge group U(1)× SU(2)L× SU(3), has had an impressive
phenomenological success [6], leading to the discovery of all the particles that were
predicted by the model. Despite this success SM has some drawbacks, like, e.g., the
massive neutrino problem or relatively large number of free parameters. For these
reasons the SM and its extensions are extensively studied in order to remove incon-
sistencies and to eliminate deficiencies in its description of elementary particles.

The generation of masses in the fermion sector of SM (quarks and leptons) arises
through the Yukawa interactions with the Higgs doublet using the mechanism of
spontaneous symmetry breaking. The description of Yukawa interactions requires
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13 parameters out of a total 18 parameters of the SM. A good understanding of this
sector is crucial for progress in the theory of elementary particles.

Yukawa interactions are described by three complex 3× 3 matrices for the
up and down quarks and charged leptons. The charged lepton matrix is diagonal
with matrix elements proportional to the lepton masses. The matrices of the quark
Yukawa couplings are not diagonal and 18 complex matrix elements are described
by only 10 phenomenological parameters: 6 quark masses and 4 parameters of the
Cabibbo-Kobayashi-Maskawa matrix [4]. One of the reasons for such a reduction
in the number of parameters is the freedom of choice of the phases of the quark
fields (rephasing freedom); therefore all the observables related to the Cabibbo-
Kobayashi-Maskawa matrix must be rephasing invariant. In this paper we discuss
and obtain general monomials constructed from the matrix elements of the Cabibbo-
Kobayashi-Maskawa matrix.

2 Yukawa couplings and rephasing invariants

The SM is defined by its Lagrangian. The part of the Lagrangian that corresponds
to the quark Yukawa interactions has the following form:

yuuR(φ
+uL)+ yddR(φdL)+h.c. (1)

Here yu and yd are the Yukawa couplings for up and down quarks, φ is the Higgs
field, and uL,R, dL,R are the quark fields. The yu and yd are 3× 3 complex matrices
and they are not observables in SM. The yu and yd can be diagonalized by biunitary
transformations (Y u,d

i being their eigenvalues),

diag(Y u
1 ,Y

u
2 ,Y

u
3 ) =Uu

RyuUu
L

†, diag(Y d
1 ,Y

d
2 ,Y

d
3 ) =Ud

R ydUd
L

†
(2)

and the quark fields are transformed by the unitary transformations Uu,d
L,R . Upon this

transformation and after spontaneous symmetry breaking, the terms of the Yukawa
Lagrangian (1) are transformed into the quark mass terms with the quark masses
equal to mu,d

i = Y u,d
i v/

√
2 1 and the charged current ceases to be diagonal; instead

it is described by the Cabibbo-Kobayashi-Maskawa (CKM) V ,

V =Uu
LUd

L
†
. (3)

The matrices Uu,d
L,R in Eq. (2) are different for the up and down quarks and, because

of that, there is a rephasing freedom for the CKM matrix [1, 5]. The quark masses
(or Y u,d

i ) and the elements of the CKM matrix are measured observables in the SM.
In calculating cross sections in the SM, the typical terms related to the Yukawa

couplings have the following form:

1 v is the Higgs field vacuum expectation value.
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Tr((y†
uyu)

l1(y†
dyd)

l2(y†
uyu)

l3 · · ·(y†
dyd)

l4) (4)

and consequently they are expressed by the observables built from the CKM matrix
and the eigenvalues Y u,d

i . For example, we have

Tr(y†
uyu) =

3

∑
i=1

(Y u
i )

2, Tr(y†
uyuy†

dyd) =
3

∑
i, j=1

(Y u
i Y d

j )
2|Vi j|2,

Tr((y†
uyu)

2(y†
dyd)

2y†
uyuy†

dyd) =
3

∑
i, j,k,l=1

((Y u
i )

2(Y d
j )

2Y u
k Y d

l )
2VikVjlVilVjk.

(5)

All the terms on the right-hand side of Eqs. (5) are rephasing invariant. The eigen-
values Y u,d

i are clearly rephasing invariant, but more interesting are the terms built
from the CKM matrix elements Vi j. We will discuss the general form of the rephas-
ing invariant monomials that are built from the elements of the CKM matrix Vi j.

3 Rephasing invariant monomials

Let us consider the most general monomial built from the matrix elements of the
CKM matrix Vi j and its conjugates V ∗kl ,

P(m,n) = ∏
i, j
(Vi j)

mi j ∏
k,l
(V ∗kl)

nkl . (6)

Here m and n are 3×3 matrices2. It is easy to show the following:

Theorem 1. The monomial in Eq. (6) is rephasing invariant if the matrices m
and n fulfill the following conditions:

3

∑
j=1

mi j =
3

∑
j=1

ni j,
3

∑
i=1

mi j =
3

∑
i=1

ni j, i, j = 1,2,3. (7)

We thus see that the general rephasing invariant monomials are parameterised by
two 3×3 matrices. For example, the matrices m and n for monomial V 2

11V22V ∗11V ∗12V ∗21
are equal:

m =

2 0 0
0 1 0
0 0 0

 , n =

1 1 0
1 0 0
0 0 0

 · (8)

2 We will assume the matrix elements of m and n are positive integers, but this is not necessary for
the rephasing invariance.
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The monomial in Eq. (8) is equal to

V 2
11V22V ∗11V ∗12V ∗21 = |V11|2V11V22V ∗12V ∗21, (9)

and we see that it factorizes into |V11|2 and the remaining part. The term |V11|2
does not carry any information about the phases of the CKM matrix elements and is
clearly rephasing invariant; for this reason we consider rephasing invariants mono-
mials that do not contain terms of type |Vi j|2 and introduce the notion of the pure
rephasing invariant monomials.

Definition 1. The rephasing invariant monomial of the CKM matrix which
cannot be factored out into the product of the absolute values of the elements
of the CKM matrix and other invariant is called the Pure Rephasing Invariant
Monomial (PRIM).

General rephasing invariant monomials in Eq. (1) were parameterised by two
matrices m and n and PRIMs can also be parameterised by two matrices, but there
exists parameterisation by one 3×3 matrix p with elements which are positive and
negative and the sum of the elements of each row and column is equal to zero:

p→Πpi j>0(Vi j)
pi j ·Πpkl<0(V ∗kl)

−pkl . (10)

One can show that the monomial defined in Eq. (10) is indeed a pure rephasing
invariant monomial.

Following the definition of PRIMs it is easy to see that there is an infinite num-
ber of such monomials. However, it can be demonstrated that any PRIM can be ex-
pressed by a finite number of Fundamental Rephasing Invariant Monomials, which
are defined as follows.

Definition 2. The Fundamental Rephasing Invariant Monomial (FRIM) is
such a pure rephasing invariant monomial that is the product of 4 or 6 CKM
matrix elements and its complex conjugates.

There are 18 FRIMs of 4-th order,
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J1 =V11V22V ∗12V ∗21, J5 =V11V33V ∗13V ∗31,

J2 =V11V23V ∗13V ∗21, J6 =V12V33V ∗13V ∗32,

J3 =V12V23V ∗13V ∗22, J7 =V21V32V ∗22V ∗31,

J4 =V11V32V ∗12V ∗31, J8 =V21V33V ∗23V ∗31,

J9 =V22V33V ∗23V ∗32

J9+i = (Ji)
∗, i = 1, . . . ,9.

(11)

and 12 FRIMs of 6-th order,

I1 =V11V22V33V ∗13V ∗21V ∗32, I4 =V11V23V32V ∗13V ∗22V ∗31,

I2 =V11V22V33V ∗12V ∗23V ∗31, I5 =V12V23V31V ∗13V ∗21V ∗32,

I3 =V11V23V32V ∗12V ∗21V ∗33, I6 =V12V21V33V ∗13V ∗22V ∗31

I6+i = (Ii)
∗, i = 1, . . . ,6.

(12)

4 General form of the rephasing invariant monomials

The notions introduced of PRIMs and FRIMs allow us to demonstrate the following
two theorems:

Theorem 2. Any pure rephasing invariant monomial for 3 generations can
be expressed in a unique way as the product of positive powers of at most
4 fundamental rephasing invariants monomials. Not more than one of these
invariants can be from the set (11) and the remaining are from the set (10).

Theorem 3 (Main Theorem for the Rephasing Invariants). Any rephasing
invariant monomial of the CKM matrix for 3 generations can be expressed
in a unique way as the product of no more than 5 factors: 4 fundamental
rephasing invariants taken to positive powers and the product of the squares of
the absolute values of the CKM matrix elements also taken to positive powers.
Not more than one fundamental invariant can be from the set (11).

The proof of these theorems is algebraic [7]. One first demonstrates Theorem 2,
using the parameterisation given in Eq. (10) and show that only 7 types of matrix p
are possible. Next, for each type one shows that Theorem 2 is fulfilled. Theorem 3
follows from Theorem 2, because a general rephasing invariant monomial is equal
to a pure rephasing invariant monomial multiplied by the product of the squares of
the absolute values of elements of the CKM matrix.
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Until now we were assuming only rephasing invariance, but the CKM matrix is
unitary, and this fact has important consequences for properties of the fundamental
rephasing invariant monomials. For the FRIMs of the 4-th order given in Eq. (10),
one can show that the imaginary part of all Ji’s are related to Jarlskog invariant [3]:

| Im(VikVjlV
∗
il V
∗
jk)|= J. (13)

One can also show that the 6-th order FRIMs can be expressed by the 4-th order
FRIMs multiplied by the squares of the absolute vales of the CKM matrix elements,
e.g.,

V11V22V33V ∗13V ∗21V ∗32 =−|V22|2V12V33V ∗13V ∗32−|V13|2V22V33V ∗23V ∗32. (14)

From Eqs. (12) and (13) it follows that the imaginary part of any rephasing invariant
monomial is proportional to the Jarlskog invariant J (12) or is equal to 0.

5 Conclusions

We have analyzed and classified the rephasing invariant monomials. The most im-
portant results are given in Theorems 2 and 3. This result is mathematically interest-
ing, and physically it can simplify calculations of the cross sections and Feynman
diagrams containing loops in the Standard Model by expressing the final result in
terms of a relatively small number of rephasing invariant monomials. The results of
this paper may also lead to significant simplifications of the renormalization group
equations in the Standard Model.
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The Schrödinger equation in rotating frames by
using the stochastic variational method

Tomoi Koide, Kazuo Tsushima and Takeshi Kodama

Abstract We give a pedagogical introduction of the stochastic variational method
by considering the quantization of a non-inertial particle system. We show that the
effects of fictitious forces are represented in the forms of vector fields which be-
have analogously to gauge fields in the electromagnetic interaction. We further dis-
cuss that the operator expressions for observables can be defined by applying the
stochastic Noether theorem.

1 Introduction

The variational approach conceptually plays a fundamental role in elucidating the
structure of classical mechanics, clarifying the origin of dynamics and the relation
between symmetries and conservation laws. On the other hand, its operations in
classical and quantum systems lack coherence. In fact, in classical mechanics the
Lagrangian is usually given by T −V , where T and V are kinetic and potential
terms, respectively, but in quantum mechanics the Lagrangian which is needed to
derive Schrödinger’s equation does not have such structure. That is, any clear and
direct correspondence between classical and quantum mechanics does not seem to
exist in the variational point of view.

However, if we extend the idea of the variational principle to the stochastic
variable, it can describe classical and quantum behaviors in a unified way. This
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method is called the stochastic variational method (SVM), and was first proposed
by Yasue [1–5] in order to reformulate Nelson’s stochastic quantization [6]. This
framework is, however, based on special techniques attributed to stochastic calcu-
lus, which is not familiar to physicists.

In this paper, we introduce this method by applying it to the quantization of
a non-inertial particle system, which is still controversial. The appearance of the
nontrivial interference effect of wave functions on a rotating non-inertial frame was
experimentally observed in 1979 [7]. Later Sakurai pointed out that such an effect
can be understood in thinking of the similarity between the Coriolis force and the
Lorentz force [8]. So far, there are various approaches to derive the Schrödinger
equation in a non-inertial frame [9–13].

2 Classical equations in non-inertial frames

Let us introduce a non-inertial frame in which the position is denoted by q. Ex-
pressing the position in an inertial frame by r . The transformation of these vectors
is defined by

q = R(t)r+ c(t), (1)

where c(t) is a time-dependent translation, and R(t) is a general 3×3 rotation matrix
satisfying RT (t)R(t) = 1 . Both of r and q are given by the Cartesian coordinate.

We usually consider a one particle system in the inertial frame. Applying the
coordinate transformation (1), the same system observed in the non-inertial frame
is characterized by the following Lagrangian:

L =
M
2
(q̇+A(q, t)+B(t))2−V (q), (2)

where V is the potential and

A(q, t) = RṘT (q− c), B(t) =−ċ (3)

are vector fields we have introduced. The equations of motion obtained from this
Lagrangian are given by

p = M (q̇+A(q, t)+B(t)) , (4)
∂tpi = (RṘT ) jip j−∂iV (q). (5)

3 The stochastic variational method

The discussion in this section follows the pedagogical introduction of SVM given
by Ref. [14]. For a review on SVM with an alternative quantization scheme, see
Ref. [15].
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In the variational principle for stochastic variables, a particle trajectory is no
longer smooth and is seen as given by a zig-zag path in general. Consequently,
the evolution of a particle trajectory is defined by the following forward stochastic
differential equation (SDE),

dq(t) =
(

p(q(t), t)
M

−A(q, t)−B(t)
)

dt +
√

2νdWt (dt > 0). (6)

Here p(x, t) is an unknown field determined by the stochastic variation. Note that
in what follows x is used to denote the spatial position in a non-inertial frame. The
last term in Eq. (6) is the origin of the zig-zag motion and is called the noise term.
The parameter ν characterizes the strength of this noise term. The property of Wt
is given by the standard Wiener process, which is characterized by the following
correlation properties:

E[dWt ] = 0, E[(dW i
t )(dW j

t )] = |dt|δ i j, (i, j = x,y,z), (7)

E[W i
t dW j

t ′ ] = 0 for (t ≤ t ′), (8)

where E[ ] indicates the average of stochastic events.
The probabilistic nature of the particle distribution described by Eq. (6) is eas-

ily characterized by introducing the probability distribution defined by ρ(q, t) =´
d3qi ρI(qi)E[δ (3)(q−q(t))], where q(t) (more exactly q(t;qi)) is the solution of

Eq. (6) and ρI(qi) is the initial particle distribution at an initial time ti. As is well-
known, the evolution equation of ρ(q, t) is derived from the SDE (6) and is called
the Fokker-Planck equation,

∂tρ(x, t) = ∇ ·
{
−
(

p(x, t)
M
−A(x, t)−B(t)

)
+ν∇

}
ρ(x, t). (9)

If the probability distribution evolves from ρI(q) to ρF(q)≡ ρ(q(t f ), t f ) at a final
time t f following Eq. (9), the corresponding time-reversed process should describe
the evolution from ρF to ρI . Suppose that this process is described by the backward
SDE,

dq(t) =
(

p̃(q(t), t)
M

−A(q, t)−B(t)
)

dt +
√

2νdWt , (dt < 0). (10)

To reproduce Eq. (9) from the backward SDE, we find that the following consistency
condition should be satisfied, p(x, t) = p̃(x, t)+2ν∇ lnρ(x, t).

We should stress that the usual definition of the particle velocity is not applicable,
because dr̂/dt is not well defined in the vanishing limit of dt due to the singular be-
havior of Wt . The possible time differential in such a case was studied by Nelson [6]
and it is known that there are two possibilities: One is the mean forward derivative

Dq(t) = lim
dt→0+

E
[

q(t +dt)−q(t)
dt

∣∣∣Pt

]
, (11)
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and the other is the mean backward derivative,

D̃q(t) = lim
dt→0−

E
[

q(t +dt)−q(t)
dt

∣∣∣Ft

]
. (12)

These expectations are conditional averages, where Pt (resp. Ft ) indicates fixing
the values of r(t ′) for t ′ ≤ t (resp. t ′ ≥ t). For the σ -algebra of all measurable
events of r(t), {Pt} and {Ft} represent, respectively, increasing and decreasing
families of sub-σ -algebras. Using these derivatives in Eqs. (6) and (10), we obtain,
respectively,

Dq(t) =
p(q, t)

M
−A(q, t)−B(t), D̃q(t) =

p̃(q, t)
M
−A(q, t)−B(t). (13)

4 Quantization in non-inertial frames

Let us apply the stochastic variation to the system given by the Lagrangian (2).
Then the particle trajectory in Eq. (2) should be replaced by the stochastic one, as
was discussed in the previous section. Due to the existence of two different time-
derivatives D and D̃, there is an ambiguity when replacing the kinetic term. In this
work, we adopt the following replacement,

L(q,Dq, D̃q) =
m
2

[
(Dq(t)+A+B)2 +(D̃q(t)+A+B)2

2

]
−V (q(t)). (14)

See Ref. [16] for a more precise discussion of this replacement.
The stochastic variation of the particle Lagrangian leads to the stochastic Euler-

Lagrange equation

D̃
∂L

∂ (Dq(t))
+D

∂L
∂ (D̃q(t))

− ∂L
∂q(t)

∣∣∣∣
q(t)=x

= 0. (15)

Here q(t) is replaced by the position parameter x at the last step of the calculation.
Substituting Eq. (14), we obtain(

∂t +
(pm

M
−A−B

)
·∇
)

pm−2Mν
2
∇ρ
−1/2

∆
√

ρ = pm ·∇iA−∇iV, (16)

where pm = (p+ p̃)/2.
The result of this variation can be re-expressed in the form of the Schrödinger

equation by introducing the wave function defined by Ψ(x, t) =
√

ρ(x, t)eiθ(x,t).
Here ρ(x, t) is the probability distribution introduced above Eq. (9), and the phase
θ(x, t) is defined by pm = 2Mν∇θ(x, t). Then we find that the evolution equation
of the wave function is given by the following Schrödinger equation
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ih̄∂tΨ(x, t) =

[
1

2M

(
− ih̄∇−M

(
A(x, t)+B(t)

))2

(17)

−M
2

(
A(x, t)+B(t)

)2

+V (x)

]
Ψ(x, t).

Here we choose ν = h̄/(2M). One can see that the effect of the non-inertial forces
appears in the vector fields A(x, t) and B(t) which behave like the gauge field in the
electromagnetic interaction.

5 Observables

The dynamics described by the above Schrödinger equation satisfies Eherenfest’s
theorem. In fact, the time evolution of the expectation value of the operator −h̄∇ is
given by

∂t〈−ih̄∂i〉= 〈(RṘT ) ji(−ih̄∂ j)〉−〈∂iV 〉. (18)

One can see that if we can interpret p̂ = −ih̄∇, the above equation corresponds to
Eq. (5).

However, to be precise, it is non-trivial as to whether we can interpret −h̄∇ as
the momentum operator even in the non-inertial frame. In SVM, the operator repre-
sentations of observables are defined through the conservation laws obtained from
the stochastic Lagrangian (14).

For the sake of simplicity, let us consider the rotation around the z-axis, where

R(t) =

 cosφ(t) sinφ(t) 0
−sinφ(t) cosφ(t) 0

0 0 1

 , c(t) = 0. (19)

This non-inertial system still holds the invariance for the rotation if V (x) = V (|x|).
Then from the invariance of the stochastic action, we can obtain the angular momen-
tum conservation of the present non-inertial system. For the infinitesimal rotation,
q(t) is transformed as q(t)−→ q(t)+A(φ(t)), where A(φ(t)) = δ φ̇(−y,x,0).

On the other hand, if the action is invariant for the above rotation, we can show
that the following quantity is conserved by applying the stochastic Noether theorem
[17, 18],

Q = E
[

q(t)×
(

∂L
∂ (Dq(t))

+
∂L

∂ (D̃q(t))

)]
. (20)

Here× denotes the vector product. Substituting the result of the stochastic variation,
the above equation is now expressed as

Q =

ˆ
d3x Ψ(x, t)LzΨ(x, t), (21)
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where the angular momentum operator is introduced, Lz = −ih̄(x∂y − y∂x). This
result means that −ih̄∇ can be interpreted as the momentum operator even in the
non-inertial system.

6 Concluding remarks

We gave a brief summary of the stochastic variational method and showed that this
is applicable to the quantization of the non-inertial particle system. Then we found
that the Eherenfest’s theorem is still satisfied even for the Schrödinger equation in
the non-inertial frame, and thus the result is consistent with those in Refs. [9–11],
but different from Refs. [12, 13].

The advantage of the present approach compared to Refs. [9–11] is that the op-
erator representations for observables are systematically obtained by applying the
stochastic Noether theorem.

Although the framework of SVM was originally proposed to reformulate Nel-
son’s stochastic quantization, its applicability is not restricted to quantization. The
derivation of the classical dissipative dynamics can be cast into the form of SVM:
the Navier-Stokes-Fourier equation is obtained by employing the stochastic varia-
tion to the classical action of the Euler (ideal fluid) equation. See Refs. [18, 19] for
details.
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Perturbation of the Malliavin Calculus of
Bismut type for a large order on a Lie group

Rémi Léandre

Abstract Roughly speaking, in the qualitative theory of an elliptic operator, only
the main term (which is given by its principal symbol) plays a role. We show that
this statement is true for the Malliavin Calculus of Bismut type for a large order on
a Lie group.

1 Introduction

Let us consider an elliptic operator of order r on a compact manifold M. If we
perturb it by a strictly lower order operator Lp, by the theory of a pseudo-differential
operator (which is given by the role of the principal symbol of an elliptic operator)
the result is that the qualitative behaviour (hypoellipticity) is the same as that of
L+Lp. See [3-6] for various textbooks in analysis about this problem.

Recently, we introduced an elliptic operator of order 4 L0 = ∑e4
i , where ei is

an orthonormal basis of the Lie algebra of a compact Lie group G of dimension m
with generic element g. We have established the Malliavin Calculus [11] of Bismut
type for L [1]. For a semigroup Pt on a manifold M, a natural question is to know if
the semigroup has a heat kernel Pt f (x) =

´
M f (y)pt(x,y)dy for any test function f .

There are 3 approaches for this:

• Harmonic analysis which uses functional inequalities,
• Micro-local analysis which uses Fourier transform as a tool,
• The Malliavin Calculus, which is valid only for Markov semigroups represented

by stochastic processes.

Bismut’s approach to the Malliavin Calculus allows for an integration by parts
using a cascade system of stochastic differential equations, it is therefore a system
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of Markovian semigroup in cascade. For non-Markovian semigroups (i.e., with no
associated stochastic process), it is possible to adapt this system of stochastic dif-
ferential equations in cascade in order to get the integration by parts of Malliavin
type for a system of enlarged (non-Markovian) semigroups, in which the Malliavin
matrix plays a key role. We begin by a simple case.

The goal of this paper is to define an abstract version of the Malliavin Calculus
that would be valid for a large class of elliptic operators, where a system of en-
larged (non-Markovian) semigroups would play a big role. If we consider an elliptic
operator and if we perturb it by a lower order operator, the behaviour of the two
semigroups are more or less the same. We would like to extend this strategy for the
Malliavin Calculus.

We consider a polynomial Q of degree strictly smaller than 4 in the vector fields
ei with constant components. For the perturbed semigroup and the non-perturbed
semigroup, abstract formulas are the same and the formulas for the enlarged semi-
groups are the same. We consider the total operator

L = L0 +Q. (1)

We also aim to prove the following theorem, using a small interpretation of [9]1.

Theorem 1. The semigroup generated by L has a heat kernel.

Remark It should be possible to establish the same theorem using Malliavin
Calculus techniques for the operator

L = ∑e2k
i +Q, (2)

where Q is a polynomial with constant components in the ei of degree strictly
smaller than the integer 2k.

Remark It should be possible in this situation to adapt the result of [10] getting
rough logarithmic estimates of the density of the generator where we consider a
small parameter in its definition. Let us stress that we have examined the stochastic
analysis for a non-Markovian generator in [8].

2 The theorem of Malliavin for a perturbated operator of order
four

We consider the elliptic operator on G×R

Q+
m

∑
i

e4
i +∑hi,tei

∂

∂u
+

∂ 4

∂u4 = L̃h
t . (3)

1 Note that we have translated the Malliavin Calculus for diffusions into the language of semigroup
theory, [7].
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It generates by the elliptic theory a semigroup P̃h
t on Cb(G× R), the space of a

bounded continuous function on G×R endowed with the uniform norm.

Theorem 2. (Elementary integration by parts formula).We have if f is smooth
with compact support

ˆ t

0
Pt−s ∑hs,ieiPs[ f ]ds = P̃h

t [u f ](.,0). (4)

Proof. It is the same proof as that of Theorem 3 of [9]

Remark It is the same abstract integration by parts formula as in the above
formula if we remove Q in (3) and it is the same enlargement mechanism.

Let V = G×Mm. Mm is the space of symmetric matrices on LieG ((x,v) ∈ V ),
the Lie algebra of G. Here the Lie algebra of G is considered as the tangent space of
G at the identity, unlike the definition of L where the elements of the Lie algebra of
G are considered as vector fields. v is called the Malliavin matrix. We consider

X̂0 = (0,∑ < g−1ei, . >
2). (5)

We consider the Malliavin generator

L̂ = ∑e4
i − X̂0 +Q. (6)

Theorem 3. L̂ spans a semigroup P̂t called the Malliavin semigroup on Cb(V ).

Proof. It is the same proof of Theorem 4 of [9] since Q is a polynomial with constant
components in the ei and L generates a Cb(G) semigroup.

Remark The formula for the Malliavin matrix is the same as for L0 and depends
only on the main part of L. Formulas in the proof, where we use Volterra expansion,
are abstractly the same as for L0. Estimates in the Volterra expansion are the same,
because the global behaviour for the semigroup Pt for bounded time is the same as
the non-perturbed semigroup generated by L0.

We consider the generator

Lλ = ∑e4
i −λ ∑ < φ(g),ht >

i ei +Q. (7)

It generates by the elliptic theory a semigroup on Cb(G) which depends smoothly
on λ . We denote it by Pλ

t . We suppose that g→< φ(g),ht > is a smooth function in
g ∈ G with values in Rm which depends continuously on λ .

We consider
X̃0 = (0,∑g−1ei < φ(g),ht >

i). (8)

We consider the operator on G×TeG

L̃ = L− X̃0. (9)
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As the Malliavin operator, it is not the perturbation of an elliptic operator on G×
TeG. But we can redefine it as we did for the Malliavin semigroup P̂t , redefining it
by its associated semigroup P̃t .

This allows to show

Proposition 1. We have if f is smooth with compact support

∂

∂λ
P0

t [ f ](g0) = P̃t [< D f ,gu >](g0,0). (10)

Proof. It is the same proof as for the Proposition 5 of [9]. The only problem is
that u is not bounded. We perform the Davies gauge transform [2] associated with
h(u) = |u2|+1. We get

L̃d = h−1L̃(h.) = L̃+h−1 < X̃0,h >= L̃+V. (11)

But the potential V is bounded. By Volterra expansion, L̃d generates a semigroup
on Cb(G×TeG) wich is equal to h−1P̃t [h.]. The results arise because L̃ generates a
continuous semigroup on Cb(G×TeG).

We have the main theorem of this paper:

Theorem 4. (Malliavin) If the Malliavin condition holds, then

|P̂t ][v−p](g,0)< ∞ (12)

for all positive integers p, Pt has a heat kernel.

Proof. It is the same proof as in the beginning of the proof of Theorem 6 of [9].
Under the Malliavin assumption, we can optimize the elementary integration by part
of Theorem 2, in order to get, according the framework of the Malliavin Calculus,
the inequality for any smooth function f on G:

|Pt [< d f ,ei >]| ≤C‖ f‖∞. (13)

By this inequality, we deduce according to the framework of the Malliavin Calculus
that

Pt [ f ](g) =
ˆ

G
f (g′)pt(g,g′)dg′ (14)

for a non strictly positive heat kernel pt (dg′ denotes the normalized Haar mesure
on G).

3 Inversion of the Malliavin matrix

Theorem 5. Under the previous elliptic assumptions,

|P̂t |[|v−p|]](g0,0)< ∞ if t > 0. (15)
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Proof. It is the same proof as the proof of Theorem 8 of [6].

Remark For diffusion, this means for operators governed by the second order
operator ∑

m
i=1 X2

i +X0 and if we are in the elliptic case (the vector fields Xi, i > 0
span the whole space), the strategy to invert the Malliavin matrix is the same whether
the drift appears or not. It is the same in this case.

Proof of theorem 1 This comes from Theorem 4 and Theorem 5.
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Shift operators and recurrence relations for
individual Lamé polynomials

Eugenio Ley-Koo and Ricardo Méndez Fragoso

Abstract Our contribution to Gr31 “Review of the development and application of
spheroconal theory of angular momentum” included a mention of our current work
on individual Lamé polynomials. This written version reports original results on
shift operators and recurrence relations connecting a Lamé polynomial with angu-
lar momentum `, species [A] and excitation n, with neighbouring polynomials with
`′ = `± 1, species [A′] where the prime indicates a derivative, and excitations n′

in their different possibilities, for the derivative operator. Other operators involve
multiplication by another Lamé polynomial, starting with the singularity removing
factors Ai = 1, sn, cn, dn, sncn, sndn, cndn, sncndn as monomials. The succes-
sive and complementary use of these operators for Lamé polynomials in their two
respective degrees of freedom connects with the ladder and shift operator actions
of cartesian components of the angular momentum and linear momentum on the
product of those polynomials as rotational eigenstates. The identification of the op-
erators for individual Lamé polynomials fills a gap in the study of their properties
and connections.

1 Introduction

This section contains a written enumeration of specific results in our contributions
to the development of the spheroconal theory of angular momentum, complemen-
tary to those presented orally and visually at Gr31. Reference [9] includes orig-
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inal works on which we comment next. In [2], matrix evaluation of the sphero-
conal harmonics in the basis of spherical harmonics provides the transformation
coefficients between both sets for any asymmetry of the molecules. Both sets share
the same generating function, the inverse of the distance between two points, and
its expansion in the spheroconal basis was obtained. The analysis and evaluations
in [3] were implemented using only spheroconal coordinates in their Jacobi ellip-
tic integral representations, motivating us to develop the alternate theory of angu-
lar momentum. The plane wave as a generating function of spherical waves, via
its Rayleigh expansion, also has its alternate expansion in spheroconal waves. The
superintegrability of the hydrogen atom allowed us to identify and construct a gen-
erating function for its eigenfunctions in spherical, parabolic, prolate spheroidal,
and spheroconal coordinates, and its respective expansions [1]. Three sets of lad-
der operators connecting spheroconal harmonics were also identified [8]: the carte-
sian components of the linear momentum connect states of neighbouring angular
momentum `′ = `±1, different parities and different species; the cartesian compo-
nents of the angular momentum connects states of the same angular momentum and
parity, and different species; the rotational eigenstates as products of Lamé poly-
nomials in the respective degrees of freedom for a given angular momentum and
species [AB] are matched by their complementary increasing and decreasing excita-
tions and eigenvalues: n1 +n2 = `−nAB and hn1 +hn2 = `(`+1), where nAB counts
the number of cartesian plane nodes and n1 and n2 the respective number of ellipti-
cal cone nodes. Spheroconal harmonics are alternatives to the spherical harmonics:
for the Schrödinger equation with isotropic potentials, as applied to the free particle
confined in a sphere and the isotropic harmonic oscillator [6], and for the equa-
tions of magnetostatics [4]. The rotations of the hydrogen atom [5] and asymmetric
molecules [6, 7] confined in elliptical cones have also been investigated.

The main body of this contribution contains in Section 2, the ordinary Lamé
differential equation and its eigenfunctions, in terms of Jacobi elliptic functions; in
Section 3 the identification of new shift operators in the form of derivatives and mul-
tiplications of such functions, leading to linear superposition of other eigenfunctions
with other values of angular momentum, different species and different excitations;
and in Section 4, a discussion of these results and their applications.

2 Lamé Ordinary Differential Equation and its Eigenfunctions

The Appendix in [9] contains details about the spheroconal coordinates, x =
rdn(χ1|k2

1)sn(χ2|k2
2), y = rcn(χ1|k2

1)cn(χ2|k2
2), z = rsn(χ1|k2

1)dn(χ2|k2
2), and the si-

multaneous solution of eigenvalue problems for the square of the angular momen-
tum and asymmetry-distribution Hamiltonians, leading to Lamé ordinary differen-
tial equation [10], in the respective variables and parameters, for i = 1,2:(

d2

dχ2
i
− `(`+1)k2

i sn2(χi|k2
i )+hi

)
Λ(χi) = 0 . (1)
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Here we recall linear relationships among the squares of the Jacobi elliptic func-
tions:

cn2(χi|k2
i ) = 1− sn2(χi|k2

i ) , dn2(χi|k2
i ) = 1− k2

i sn2(χi|k2
i ) (2)

as well as their derivatives:

d
dχi

sn(χi|k2
i ) = cn(χi|k2

i )dn(χi|k2
i ) ,

d
dχi

cn(χi|k2
i ) =−sn(χi|k2

i )dn(χi|k2
i ) (3)

d
dχi

dn(χi|k2
i ) = −k2

i sn(χi|k2
i )cn(χi|k2

i ) . (4)

The latter allows for identifying the singularity removing factors in the solutions of
Eq. (1), A(χi) = [1,s,c,d,cd,sd,cs,scd].

Also notice the invariance of the differential equation under χ → −χ which
implies eigenfunctions of a definite parity, determined by the respective factors
A(χi). Correspondingly, the other factor can be written as a series in the squares
of sn2(χi|k2

i ), so that the solution of Eq. (1) takes the form

Λ
`[A]
ni (χi) = A(χi)

Nmax

∑
t=0

atsn2t(χi|k2
i ) . (5)

The series become polynomials of degrees `−nA, where nA = 0,1,2,3 according to
the number of Jacobi elliptic factors in the respective singularity removing factors.
Going back to the cartesian coordinates, products of the matching removing factor
for each degree of freedom [A(χ1)][B(χ2)] = [1,x,y,z,xy,xz,yz,xyz] allows for the
identification and classification of the complete spheroconal harmonics according to
their parities and number of nodal planes. The index ni in Eq. (5) counts the number
of nodal elliptical cones, coming in pairs. For the matching Lamé polynomials in
the respective variables to be multiplied to form the spheroconal harmonics, their
respective number of nodes and eigenvalues are restricted by n1 + n2 + nAB = `
and h`[A]n1 + h`[B]n2 = `(`+ 1), counting the common total number of nodes, and
also the common square of the angular momentum, respectively. Notice that all the
polynomials in Eq. (5) are of degree `−nA, and ni = 0,2, ..., `−nA.

3 Shift operators and recurrence relations for individual Lamé
polynomials

In this section, the shifting action of the derivative of a Lamé polynomial connect-
ing it with its neighbors with angular momentum differing by one, of different parity
species and excitations, is illustrated and proven by mathematical induction. We do
likewise for the product of two Lamé polynomials. The connection between mono-
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mials is direct from `= 1 to `= 2:

d
dχ

Λ
1[s]
0

Λ
1[c]
0

Λ
1[d]
0

=

 cd
−sd
−k2sc

=

 Λ
2[cd]
0

−Λ
2[sd]
0

−k2Λ
2[sc]
0

 . (6)

The connection between the binomials 2[1] and the monomial 3[scd] is also direct.

d
dχ


Λ

2[1]
n

Λ
2[cd]
0

Λ
2[sd]
0

Λ
2[sc]
0

=


2an

1scd
−s(d2 + k2c2)
c(d2− k2s2)
d(c2− s2)

=


2an

1Λ
3[scd]
0

Rs
0Λ

3[s]
0 +Rs

2Λ
3[s]
2

Rc
0Λ

3[c]
0 +Rc

2Λ
3[c]
2

Rd
0Λ

3[d]
0 +Rd

2Λ
3[d]
2

 . (7)

However, the connections between the monomials 2[e jek] and the binomials 3[ei]
require the identification of the raising coefficients Rei

n for n = 0,2 by comparing the
respective coefficients of s2t in the last equalities. There are also superpositions of
the lowering and raising combinations:

Lei
0 Λ

1[ei]
0 +Rei

n Λ
3[ei]
2 for n = 0,2. (8)

The generalization and proof by mathematical induction of the shifting action of the
derivative operator on the Lamé polynomials from ` = 2N to ` = 2N + 1 and from
`= 2N +1 to `= 2N +2 is sketched as follows:

d
dχ


Λ

2N[1]
n

Λ
2N[cd]
n

Λ
2N[sd]
n

Λ
2N[cs]
n

=


scd ∑
t

2tats2(t−1)

sc2d2
∑
t

2tats2(t−1)− s(d2 + k2c2)∑
t

ats2t

s2cd2
∑
t

2tats2(t−1)+ c(d2− k2s2)∑
t

ats2t

s2c2d ∑
t

2tats2(t−1)+d(c2− s2)∑
t

ats2t

=


∑
n′

Rn′Λ
2N+1[scd]
n′

∑
n′

Rn′Λ
2N+1[s]
n′

∑
n′

Rn′Λ
2N+1[c]
n′

∑
n′

Rn′Λ
2N+1[d]
n′



d
dχ


Λ

2N+1[scd]
n

Λ
2N+1[s]
n

Λ
2N+1[c]
n

Λ
2N+1[d]
n

=


(c2d2− s2d2− k2s2c2)∑

t
ats2(t−1)

s2cd ∑
t

2tats2(t−1)+ cd ∑
t

ats2t

sc2d ∑
t

2tats2(t−1)− sd ∑
t

ats2t

scd2
∑
t

2tats2(t−1)− k2sc∑
t

ats2t

=



∑
n′

Rn′Λ
2N+2[1]
n′

∑
n′

Rn′Λ
2N+2[cd]
n′

∑
n′

Rn′Λ
2N+2[sd]
n′

∑
n′

Rn′Λ
2N+2[sc]
n′


.

In the first case, the polynomial of species [1] is of degree `
2 = N in sn2, while

its companions [eie j] have polynomials of degree `
2 − 1. Their respective deriva-

tives of species [scd] and [ek] have polynomials of degrees `
2 − 1 = (2N+1)−3

2 and
`
2 = (2N+1)−1

2 , allowing for identifying the superposition of the corresponding Lamé
polynomials with the value ` = 2N + 1. In the second case, the polynomials of
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species [scd] are of degree (2N+1)−3
2 , and their companions of species [ei] have

polynomials of degree (2N+1)−1
2 . Their respective derivatives of species [1] and

[eie j] have polynomials of degree (2N+1)−3
2 +2 = 2N+2

2 and 2N
2 = (2N+2)−2

2 , allow-
ing for identifying the superposition of Lamé polynomials with the common value
`= 2N +2 for all species.

As for multiplying two Lamé polynomials, we start with those of lower degrees:

Λ
1[ei]
0 Λ

1[e j ]
0 = Λ

2[eie j ]
0 , (9)

Λ
1[ei]
0 Λ

1[ei]
0 = e2

i = Rei
0 Λ

2[1]
0 +Rei

2 Λ
2[1]
2 = Lei

0 Λ
0[1]
0 +Rei

n Λ
2[1]
n , (10)

Λ
2[eie j ]
0 Λ

2[eie j ]
0 = e2

i e2
j = ∑

n′=0,2,4
Rn′Λ

4[1]
n′ , (11)

Λ
1[ei]
0 Λ

3[eie jek]
0 = e2

i e jek = ∑
n′=0,2

Rn′Λ
4[e jek]

n′ , (12)

Λ
2[eie j ]
0 Λ

3[eie jek]
0 = e2

i e2
jek = ∑

n′
Rn′Λ

5[ek]
n′ , (13)

Λ
1[ei]
0 Λ

4[1]
n = ∑

n′=0,2,4
Rn′Λ

5[ei]
n′ , (14)

Λ
3[scd]
0 Λ

3[scd]
0 = s2c2d2 = ∑

n′=0,2,4,6
Rn′Λ

6[1]
n′ . (15)

The last example is interpreted in terms of a superposition of Lamé polynomials of
angular momentum `= 6, species [1], and the excitations n= 0,2,4,6. However, just
as we did in going from Eqs. (7) to (8), we recognize other alternatives involving
superpositions of one or more of the above examples with other states of the same
species and lower values of `= 0,2,4. By using the ket notation, the orthogonality
and completeness of the individual Lamé polynomials, we write the product of any
two of them as a superposition of the connected states allowed by the addition of
their angular momenta:

|`1[A1]n1〉 |`2[A2]n2〉= ∑
`3,[A3],n3

|`3[A3]n3〉〈`3[A3]n3 | `1[A1]n1`2[A2]n2〉 , (16)

where the overlap integrals are the coefficients of the superposition, directly iden-
tifiable by comparing their singularity removing factors and coefficients of equal
powers of sn2.

The same idea is applicable for the derivative operation involving the addition
⇀

` i +
⇀

1 =
⇀

` f .
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4 Discussion and conclusions

In the previous sections we provided a succinct review of our recent contributions to
the development and application of the spheroconal theory of angular momentum;
a description of the Lamé ordinary differential equation with the classification and
characterization of its solutions and eigenvalues on the basis of their parities and
species; and the identification of the derivative and multiplication of Lamé poly-
nomials as operations changing their angular momentum, species and excitations.
Now, we proceed to make some concluding remarks about the latter in (i) the domain
of the individual Lamépolynomials, and (ii) the domain of the rotational eigenstates
of asymmetric molecules, constructed as the product of individual Lamé polynomi-
als in the two different and complementary degrees of freedom.

An immediate application of the general result expressed in Eq. (16) is the evalu-
ation of the integrals of the product of three Lamé polynomials, including the selec-
tion rules that limit the third factor on the left-hand side to those in the superposition
on the right-hand side. This is the counterpart of the familiar result for Legendre
polynomials.

The cartesian components of the linear and angular momentum operators involve
derivatives with respect to the spheroconal coordinates χ1 and χ2, multiplied by the
components of their unit vectors along the respective cartesian axes, as described
in the appendix in [9]. We have started to reexamine their actions on the rotational
states, as the products of complementary Lamépolynomials in the respective sphe-
roconal coordinates, in light of the results of the derivative and multiplication opera-
tions on the individual polynomials. Equation (16) also suggests that we are ready to
tackle the problem of the addition of angular momenta for the complete spheroconal
eigenstates.

In conclusion, the availability of these operators and their related recurrence re-
lations place the Lamé polynomials more on a par with their spherical counterparts.

Acknowledgements The authors acknowledge the support from the grant PAPIIT IA-105516.
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Shift operators and recurrence relations for
Legendre polynomials with noninteger
associativity and definite parity

Eugenio Ley-Koo and Salvador A. Cruz

Abstract This is the written version of new results reported at Gr31 in our contri-
bution “O(2) Symmetry Breaking in Dihedrally Confined Atoms and Consequent
Modifications of the Periodic Table”. It is focused on identifying new shift opera-
tors and recurrence relations for Legendre polynomials with noninteger asociativ-
ities and definite parities, due to the dihedral confinement and its O(2) symmetry
breaking. Recurrence relations play a key role in evaluating the two-electron ma-
trix elements of their Coulomb repulsion multipole components in the Hartree-Fock
calculations for the confined atoms.

1 Introduction

Our previous work on the hydrogen atom confined by dihedral angles [3] led us
to recognize its O(2) symmetry breaking as manifested by the noninteger values,
µ = nφ π/φ0, of the eigenvalues of the component of the orbital angular momentum
along the edge of the dihedral angle, of magnitude φ0, for nφ = 1,2,3, .... Figure
1.1 in that reference illustrates the atomic orbitals sin µφ for the ground state as
polar graphs vanishing at the planes defining the dihedral angle, to be compared
with circles for the free atom. Some of the consequences of the symmetry breaking
consists of the atom: (1) acquiring an electric dipole moment (Sect. 1.3.2), because
the center of charge does not coincide with the position of the nucleus; (2) the Fermi
contact interaction in the hyperfine structure vanishes because the probability of
finding the electron at the position of the nucleus also vanishes (Sect. 1.3.4); (3)
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the Zeeman effect is suppressed in first order perturbation theory because matrix
elements of the z-component of angular momentum

〈
n′φ
∣∣ l̂z ∣∣nφ

〉
vanish for n′

φ
±

nφ even, and are nonvanishing for n′
φ
± nφ odd. On the other hand, (4) Table 1.1

illustrates the order of the energy levels Enr nθ nφ
(φ0) and their degeneracies D for

different openings of the confining angle. They are definitely different from those of
the free atom. Additionally, (5) in Section 1.4.2 the filling of shells in multielectron
atoms in the same situation of confinement based on those degeneracies suggest
substantial changes in the periodicities of the elements in the periodic table.

The quantitative answer to point (5) requires Hartree-Fock calculations for atoms
with nuclear charge Z, and Z and (Z− 1) electrons. The key ingredient for such
calculations is the matrix elements of the electron-electron Coulomb repulsion mul-
tipole components in the basis of two-electron hydrogen-like confined orbitals, to
be explained in Section 2. This led us to identifying new shift operators and recur-
rence relations for the Legendre polynomials with non-integer associativities and
definite parities, to be presented in Section 3; the recursive use of these relations is
also needed for evaluating the polar angle matrix elements. Section 4 summarizes
the new results and their application to implement the Hartree-Fock calculations.

2 Evaluation of matrix elements

The dihedrally confined hydrogen orbitals are the novelty elements in the matrix
elements to be evaluated.

The azimuthal eigenfunctions of the square of the z-component of the angular
momentum vanishing at the angles φ =∓φ0/2 and noninteger values of µ:

|µ〉=
√

2
φ0

{
sin µφ (µ = 2nφ π/φ0 ; nφ = 1,2,3, . . .)
cos µφ (µ = (2nφ +1)π/φ0 ; nφ = 0,1,2, . . .). (1)

The polar angle eigenfunctions in the variable η = cos θ with noninteger asso-
ciativity and definite parity are

|nθ ,µ〉= Nnθ ,µ (1−η
2)µ/2 F±nθ ,µ

(η) (2)

where

F±nθ ,µ
(η) =

1
2

[
2F1

(
−nθ ,nθ +2µ +1; µ +1;

1−η

2

)
+

+(−1)nθ 2F1

(
−nθ ,nθ +2µ +1; µ +1;

1+η

2

)]
. (3)

Notice the difference from the familiar Legendre polynomials Pm
nθ+m(η) which

in their usual hypergeometric representations have a definite parity only for integer
values of m. The O(2) symmetry breaking for non integer values µ is manifested
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by Pµ

nθ+µ(η) containing even and odd powers of η . The combination in F±nθ ,µ
(η)

restores the parity as originally discussed in [4] and [3].
The electron-electron Coulomb repulsion in its multipole expansion is written in

a form appropriate to connect the confined orbitals with definite parities:

1
r12

= 4π ∑
`,m

N2
lm

2l +1
r`<

r`+1
>

Pm
l (η1)Pm

l (η2)(2−δm,0) cos m(φ2−φ1). (4)

The general form of its matrix elements is〈
c n′1θ µ

′
1
∣∣〈d n′2θ µ

′
2
∣∣ 1

r12
|a n1θ µ1〉 |b n2θ µ2〉

= 4π ∑
`,m

N2
`m(2−δm,0)

2`+1
I`12(cd;ab) I`m1θ (n

′
1θ ,µ

′
1;n1θ ,µ1)× (5)

× I`m2θ (n
′
2θ ,µ

′
2;n2θ ,µ2) Im

1φ (µ
′
1,µ1) · Im

2φ (µ
′
2,µ2)

The factorizability of the orbitals and the Coulomb repulsion components into
their radial, polar angle and azimuthal parts for each electron lead to integrals of the
same type for each degree of freedom, differing in their respective quantum labels.
Accordingly, the radial, azimuthal and polar matrix elements are defined by

I`12 =

ˆ ˆ
Rc(r1)Rd(r2)

r`<
r`+1
>

Ra(r1)Rb(r2)r2
1dr1r2

2dr2 (6)

Im
jφ =

{
Im+

jφ =
〈

µ
′
j

∣∣∣cos mφ j
∣∣µ j
〉
, Im−

jφ =
〈

µ
′
j

∣∣∣sin mφ j
∣∣µ j
〉}

(7)

I`mjθ =
〈

n′ jθ µ
′
j

∣∣∣Pm
l (η j)

∣∣n jθ µ j
〉

(8)

where j = 1,2 in the last two expressions denote electron 1 and 2, respectively.
While for the free atoms, the evaluation of the φ dependent integrals is reduced

to the selection rules δm2,m+m1 , in the present case only the integrals with an even
number of sine functions survive:〈

cos µ
′
φ j
∣∣ cos mφ j

∣∣cos µφ j
〉
= A+

µ+µ ′ +A−
µ+µ ′ +A+

µ ′−µ
+A−

µ ′−µ
, (9)〈

sin µ
′
φ j
∣∣ sin mφ j

∣∣cos µφ j
〉
= A−

µ+µ ′ −A+
µ+µ ′ +A−

µ ′−µ
−A+

µ ′−µ
, (10)〈

cos µ
′
φ j
∣∣ sin mφ j

∣∣sin µφ j
〉
= A−

µ+µ ′ −A+
µ+µ ′ −A−

µ ′−µ
+A+

µ ′−µ
, (11)〈

sin µ
′
φ j
∣∣ cos mφ j

∣∣sin µφ j
〉
= A+

µ ′−µ
+A−

µ ′−µ
−A+

µ+µ ′ −A−
µ+µ ′ , (12)

where the following definition holds :

A±γ =
sin[(γ±m)φ0/2]

2(γ±m)
. (13)
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The polar angle integrals can be written using the explicit polynomial form of
the associated Legendre polynomials,

I`mjθ =
〈

n′ jθ µ
′
j

∣∣∣Pm
` (η)

∣∣n jθ µ j
〉
=

`−m

∑
s=0(1)

as

〈
n′ jθ µ

′
j

∣∣∣(1−η
2)m/2

η
s ∣∣n jθ µ j

〉
, (14)

recognizing that we need to evaluate the matrix elements of the product of powers
of the removing singularity factor and of the η-variable: (1−η2)m/2ηs. Section 3
addresses this evaluation.

The radial integrals I`12, involving variational radial functions Ra(r j), are of the
same type as those for free atoms.

3 Shift operators and recurrence relations for Legendre
polynomials with noninteger associativity and definite parity

Our work in Ref. [4] identified the recurrence relations of Eqs. (20-30) using mul-
tiplications by η , η2 and derivative operators to connect neighbouring Legendre
polynomials of the same associativity and opposite parities as the counterparts of
Eqs. (8.5.2) and (8.5.4) of the Legendre functions in [1]. The reader should note the
differences in the coefficients of the respective relations, especially those in Eqs.
(31-32) of [4]. The identification was made by mathematical induction using the
polynomials in Table 4 of [4]. Eliminating the derivative terms in Eqs. (29-30) lead
to the simple relationship between polynomials of the same associativity:

η |nθ µ〉
Nnθ ,µ

=
nθ

2nθ +2µ +1
|nθ −1 µ〉
Nnθ−1,µ

+
nθ +2µ +1
2nθ +2µ +1

|nθ +1 µ〉
Nnθ+1,µ

(15)

involving the factor only. This recurrence relation and its recursive use proved useful
for us in our investigation of the hydrogen molecular ion confined in a dihedral
angle [2].

Evaluating the polar angle integrals I`mjθ for m 6= 0 requires constructing shift op-
erators and recurrence relations connecting polynomials with different associativi-
ties µ ′ 6= µ . Taking the same structure of Eqs. (8.5.1) and (8.5.5) of [1] and using
mathematical induction, we have identified the following relationships:

(1−η
2)1/2 |nθ −1 µ +1〉

Nnθ−1,µ+1
=

2(µ +1)
2µ +nθ +1

[ |nθ −1 µ〉
Nnθ−1,µ

−η
|nθ µ〉
Nnθ ,µ

]
(16)

(1−η
2)1/2 |nθ +1 µ−1〉

Nnθ+1,µ−1
=

(2µ +nθ +1)(2µ +nθ )

2µ (2µ +2nθ +1)
|nθ +1 µ〉
Nnθ+1,µ

−

− nθ (nθ +1)
2µ (2µ +2nθ +1)

|nθ −1 µ〉
Nnθ−1,µ

. (17)
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We also include their initial recursions.

η2 |nθ µ〉
Nnθ ,µ

= nθ (nθ−1)
(2nθ+2µ+1)(2nθ+2µ−1)

|nθ−2 µ〉
Nnθ−2,µ

+

+
[

nθ (nθ+2µ)
(2nθ+2µ+1)(2nθ+2µ−1) +

(nθ+2µ+1)(nθ+1)
(2nθ+2µ+1)(2nθ+2µ+3)

]
|nθ µ〉
Nnθ ,µ

+

+ (nθ+2µ+2)(nθ+2µ+1)
(2nθ+2µ+3)(2nθ+2µ+1)

|nθ+2 µ〉
Nnθ +2,µ

(18)

η3 |nθ µ〉
Nnθ ,µ

= nθ (nθ−1)(nθ−2)
(2nθ+2µ+1)(2nθ+2µ−1)(2nθ+2µ−3)

|nθ−3 µ〉
Nnθ−3,µ

+

+

[
(nθ+2µ−1)nθ (nθ−1)

2nθ+2µ−3)(2nθ+2µ−1) +
n2

θ
(nθ+2µ)

(2nθ+2µ−1)(2nθ+2µ+1)2 +

+ (nθ+2µ+1)nθ (nθ+1)
(2nθ+2µ+1)2(2nθ+2µ+3)

]
|nθ−1 µ〉
Nnθ−1,µ

+

+
[

nθ (nθ+2µ)(nθ+2µ+1)
(2nθ+2µ−1)(2nθ+2µ+1)2 + (nθ+2µ+1)2(nθ+1)

(2nθ+2µ+3)(2nθ+2µ+1)2 +

+ (nθ+2µ+1)(nθ+2µ+2)(nθ+2)
(2nθ+2µ+1)(2nθ+2µ+3)(2nθ+2µ+5)

]
|nθ+1 µ〉
Nnθ +1,µ

+

+ (nθ+2µ+1)(nθ+2µ+2)(nθ+2µ+3)
(2nθ+2µ+1)(2nθ+2µ+3)(2nθ+2µ+5)

|nθ+3 µ〉
Nnθ +3,µ

(19)

(1−η2) |nθ−1 µ+1〉
Nnθ−1,µ+1

= 2µ(2µ+1)
2µ+nθ+1

[
1

2µ+nθ−1
|nθ−1 µ−1〉
Nnθ−1,µ−1

−
−η

(
1

2µ+nθ−1 +
1

2µ+nθ

)
|nθ µ−1〉
Nnθ ,µ−1

+η2 1
2µ+nθ

|nθ+1 µ−1〉
Nnθ +1,µ−1

] (20)

(1−η2) |nθ+1 µ−1〉
Nnθ +1,µ−1

=

(2µ+nθ+3)(2µ+nθ+2)(2µ+nθ+1)(2µ+nθ )
2(µ+1)(2µ)(2µ+2nθ+3)(2µ+2nθ+1)

|nθ+1 µ+1〉
Nnθ +1,µ+1

−
− (2µ+nθ+1)(2µ+nθ )nθ (nθ+1)

2(µ+1)(2µ)(2µ+2nθ+1)

(
1

2µ+2nθ+3 +
1

2µ+2nθ−1

)
|nθ−1 µ+1〉
Nnθ−1,µ+1

+

+ (nθ+1)nθ (nθ−1)(nθ−2)
2(µ+1)(2µ)(2µ+2nθ+1)(2µ+2nθ−1)

|nθ−3 µ+1〉
Nnθ−3,µ+1

.

(21)

4 Discussion

Some comparative remarks on Eqs. (15–17) are appropriate. In (15), the operation
of multiplying the ket on the lhs by η leads to the superposition of the kets on the
rhs, with the same associativity, and polar excitations one unit below and above,
respectively. In the other two cases, multiplication by (1−η)1/2 leads in (16) to the
superposition of kets with associativities one unit below the original one, and the
polar excitation is the same for the first term, and one unit above for the second one
which is additionally multiplied by η ; and in (17) the associativities are one unit
above the original one, and their polar excitations are the same and two units below,
respectively.

The initial recursive forms of Eqs. (19–21) illustrate the effects of multiplying
twice by the respective factors, obtaining the superpositions of three sets of kets
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with increased differences in their associativities and polar excitations; notice the
two terms for the intermediate ket. The addition of another factor leads to the super-
position of four kets with one, three, three and one term coefficients. The multiplica-
tion by N factors leads to the superposition of N+1 kets with coefficients involving
numbers of terms counted by the binomial coefficients, associated with the number
of paths connecting the initial ket with the ones in the superposition.

The recursive relations (15–17) may also be used recursively in different combi-
nations, leading to other linear of superpositions of other kets. For those using (15)
and/or (16) some of the kets are also multiplied by successive powers of η .

In short, these extended recurrence relations allow for the evaluation of the polar
matrix elements described in Section 2 for any associativity m and power s in the
Coulomb electron repulsion multipole components, via the multiplication with the
bra 〈n′θ µ ′|, projecting the states in the linear superpositions, compatible with the
conservation of angular momentum and parity, taking into account O(2) symmetry
breaking.

The coefficients in the recurrence relations and their combinations in their re-
cursive combinations lend themselves to computational programming. This is an
important tool for the Hartree-Fock calculations of dihedrally confined atoms.
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On completeness of Bethe Ansatz solutions for
sl(2) Richardson–Gaudin systems

Jon Links

Abstract The Bethe Ansatz solution for the class of rational, sl(2) Richardson–
Gaudin systems is presented. Completeness of this solution is discussed for the case
where all operators are realised in terms of the spin-1/2 representation. This discus-
sion is based on a set of operator identities. Next, a generalised system with broken
u(1)-symmetry is introduced, which admits an analogous set of operator identities.
Analysis of this generalised system shows that the Bethe Ansatz solution for it is
also complete. The prospects for extending this approach to higher spin systems are
mentioned.

1 Introduction

The names of Richardson and Gaudin have become associated with a class of in-
tegrable quantum systems affording applications to a wide range of physical prob-
lems. See e.g., [1–4]. These systems possess an exact solution in the sense of the
Bethe Ansatz method. As with other Bethe Ansatz solved models, it is natural to
ask whether the exact solution of a given model is complete [5–8]. Recently, this
problem was investigated for the case of the spin-1/2, rational, Richardson–Gaudin
system [9]. The method adopted there relied on the existence of a set of operator
identities. This example will be summarised below. Then an extended analysis will
be presented for a generalised system with broken u(1)-symmetry. This system also
admits a set of operator identities. Following the approach of [9], it will be shown
that the Bethe Ansatz solution for the generalised system is complete. The route
forward for extensions to higher spin systems will be discussed in the concluding
remarks.
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2 The rational, sl(2) Richardson-Gaudin system

This integrable system is described in terms of a collection of sl(2) spins, labelled
by j = 1, ...,L, satisfying the canonical commutation relations

[Sz
j, S±k ] =±δ jkS±j , [S+j , S−k ] = 2δ jkSz

j.

Each spin is assigned a representation with highest weight s j. Let α be a real pa-
rameter, and let (ε1,ε2, ...,εL) denote an L-tuple of pairwise-distinct real parameters.
The operators

Tj = 2αSz
j +

L

∑
k 6= j

θ jk−2s jskI
ε j− εk

, (1)

where I denotes the identity operator and θ jk = S+j S−k +S−j S+k +2Sz
jS

z
k, are mutually

commuting, i.e.,
[Tj, Tk] = 0, ∀ j,k = 1, ...,L.

The spectrum of these operators is given by way of a Bethe Ansatz solution. The
eigenvalues are expressed as

µ j =

(
2α−

M

∑
m=1

2
ε j−wm

)
s j, j = 1, ...,L (2)

where

2α +
L

∑
j=1

2s j

wm− ε j
=

M

∑
n6=m

2
wm−wn

, m = 1, ...,M. (3)

The eigenstate associated with each such solution is one with a z-component of spin
sz given by

sz =
L

∑
j=1

s j−M

which is the eigenvalue of

Sz =
L

∑
j=1

Sz
j =

1
2α

L

∑
j=1

Tj.

As a result, the system is seen to have u(1)-symmetry with invariant sectors deter-
mine by sz. Defining the polynomials

P(u) =
L

∏
j=1

(u− ε j)
2s j ,

Q(u) =
M

∏
m=1

(u−wm),
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the previous relations (2,3) may be equivalently expressed as

µ j = 2
(

α− Q′(ε j)

Q(ε j)

)
s j, (4)

Q′′(wm)P(wm) = 2αQ′(wm)P(wm)+Q′(wm)P′(wm). (5)

To show that the solution is complete, it is necessary to show that it is possible
to parametrise the µ j as (1) subject to (2). In the case where all representations
are spin-1/2, it was shown in [9] that the conserved operators satisfy the quadratic
identities

T 2
j = α

2I−
L

∑
k 6= j

Tj−Tk

ε j− εk
, j = 1, ...,L. (6)

It follows that the eigenvalues observe analogous relations

µ
2
j = α

2−
L

∑
k 6= j

µ j−µk

ε j− εk
, j = 1, ...,L (7)

and that these are necessarily complete. The relations (7) first appeared in the studies
of Babelon and Talalaev [10]. In that work it was shown that (7) follows from (2).
The objective of [9] was to construct the inverse mapping. This led to the conclusion
that the Bethe Ansatz equations could be considered to be complete, except the
method did not include instances where root multiplicities occur in the Bethe Ansatz
equations. Below, an extension of this approach will be described for a generalised
system in a manner which accommodates root multiplicities.

3 A generalised system with broken u(1)-symmetry

Maintaining the assignment s j = 1/2, ∀ j = 1, ...,L, the generalised operators depend
on an additional parameter γ which leads to the breaking of u(1)-symmetry. In terms
of a real variable α and an L-tuple of pairwise-distinct, non-zero, real parameters
(z1,z2, ...,zL), the conserved operators read [11]:

T j = 2αSz
j +2γz jSx

j +
L

∑
k 6= j

(
z2

j

z2
j − z2

k
(4Sz

jS
z
k− I)+

2z jzk

z2
j − z2

k
(S+j S−k +S−j S+k )

)
(8)

which are again mutually commuting. However, the operators (8) do not commute
with Sz. The quadratic identities

T 2
j = α

2I + γ
2z2

j I−2z2
j

L

∑
k 6= j

1
z2

j − z2
k
(T j−Tk), (9)

satisfied by the generalised set of operators were given in [12].
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To show the connection to the operators (1), introduce a real parameter η and
make the following replacements in (8):

α 7→ α/η ,

γ 7→ 0,
z j 7→ exp(ηε j).

Then
Tj = lim

η→0
ηT j.

Letting λ j denote the eigenvalues of T j, it follows from (9) that

λ
2
j = α

2 + γ
2z2

j −2z2
j

L

∑
k 6= j

λ j−λk

z2
j − z2

k
(10)

which are necessarily complete. For each λ j define Q(u) to be a polynomial of order
not greater than L, satisfying

2z2
jQ
′(z2

j)+(λ j−α)Q(z2
j) = 0, j = 1, ...,L. (11)

This linear system admits a non-trivial solution. Set

Q(u) =
M

∏
k=1

(u− vk)
mk ,

with mk denoting the multiplicity of the root vk, such that

M

∑
k=1

mk ≤ L.

Then for k = 1, ...,M, the following generalisation of (2) holds [11]

(vkQ′′(vk)+(1−α)Q′(vk))P(vk)− vkQ′(vk)P′(vk) =−
γ2

4
[P(vk)]

2 , (12)

where now

P(u) =
L

∏
j=1

(u− z2
j).

That is, associated to every eigenstate of the system, there exists a solution of the
system of equations (12). A derivation of (12) will be outlined below, following the
techniques described in [13].

Note that if Q(z2
j) = 0, it follows from (11) that Q′(z2

j) = 0. In such a case, (12)
holds for vk = z2

j . Now, provided Q(z2
j) 6= 0 for all j = 1, ...,L, then from (10)
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λ 2
j = α

2 + γ
2z2

j −2z2
j

L

∑
k 6= j

λ j−λk

z2
j − z2

k

= α
2 + γ

2z2
j +4z2

j

M

∑
l=1

L

∑
k 6= j

mlvl

(z2
k− vl)(vl− z2

j)

= α
2 + γ

2z2
j +4z2

j

M

∑
l=1

mlvl

z2
j − vl

P′(vl)

P(vl)
+4z2

j

M

∑
l=1

mlz2
j

(vl− z2
j)

2 +4z2
j

M

∑
l=1

ml

vl− z2
j

= α
2 + γ

2z2
j +4z2

j

M

∑
l=1

mlvl

z2
j − vl

P′(vl)

P(vl)
+4z4

j

M

∑
l=1

ml

(vl− z2
j)

2 −4z2
j
Q′(z2

j)

Q(z2
j)
. (13)

On the other hand,

λ 2
j = α

2−4αz2
j
Q′(z2

j)

Q(z2
j)

+4z4
j

(
Q′(z2

j)

Q(z2
j)

)2

= α
2−4αz2

j
Q′(z2

j)

Q(z2
j)

+4z4
j

M

∑
k=1

mk

(z2
j − vk)2 +4z4

j
Q′′(z2

j)

Q(z2
j)

. (14)

For equality of expressions (13) and (14) it is required that

γ2

4
+

L

∑
l=1

mlvl

z2
j − vl

P′(vl)

P(vl)
= (1−α)

Q′(z2
j)

Q(z2
j)

+ z2
j
Q′′(z2

j)

Q(z2
j)

. (15)

Set

S(u) = uQ′′(u)+(1−α)Q′(u)−
(

γ2

4
+

L

∑
j=1

m jv j

u− v j

P′(v j)

P(v j)

)
Q(u) (16)

which is a polynomial of order M. It follows from (15) that

S(z2
j) = 0, j = 1, ...,L

which, along with the consideration of the asymptotic behaviour of (16) as u→ ∞,
establishes that

S(u) =−γ2

4
P(u) (17)

and M = L for γ 6= 0. Evaluating S(vk) through (16) and (17) and equating these
expressions then yields the Bethe Ansatz equations (12). Note that if mk ≥ 1, then
Q′(vk) = 0. In this case the associated Bethe Ansatz equation from (16) and (17)
becomes

vkQ′′(vk) =−
γ2

4
P(vk),

which is consistent with (12). When γ = 0 the above equation admits vk = 0 as a
solution. This is a known example for which multiplicities do occur [14].
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4 Conclusion

This work examined some properties of the Bethe Ansatz solution for a generali-
sation of the rational Richardson-Gaudin system in the spin-1/2 case. Based on a
set of quadratic operator identities reported in [12], a set of Bethe Ansatz equations
were derived. The same equations were previously obtained in [11,12] using differ-
ent methods. It was argued that the Bethe Ansatz solution is complete, supported by
calculations accommodating instances where root multiplicities occur.

Extending these results to higher-spin models requires the identification of
higher-order polynomial operator identities generalising (6) and (9). In the spin-1
case, the required identities are cubic. The identities are obtained through a tensor
product procedure following [13]. These results will be reported at a later date [15].

Acknowledgements This work was supported by the Australian Research Council through Dis-
covery Project DP150101294.
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Nonadiabatic bounce in quantum cosmology

Przemysław Małkiewicz

Abstract We quantize and analyze the dynamics of the closed homogeneous and
anisotropic universe, the so-called Bianchi type IX model. The isotropic part of the
geometry is encoded in the phase space which is the half-plane, and its underly-
ing symmetry is the affine group rather than the Weyl-Heisenberg group. We make
use of affine coherent states first to quantize the half-plane and next to give a semi-
classical portrait to the respective quantum dynamics. The anisotropic part of the
geometry is encoded in the usual R2-phase space and is quantized canonically. In
order to solve the quantum dynamics we employ both adiabatic and nonadiabatic
methods known from molecular physics. We find that the big bang singularity of the
classical dynamics is replaced by a smooth bounce at the quantum level. Moreover,
in the adiabatic regime, the oscillations of the anisotropic geometry are suppressed
and the universe contracts smoothly. In the nonadiabatic regime, the bounce breaks
the adiabatic evolution and triggers an extended post-bounce inflationary phase ac-
companied by production of quanta of the anisotropic geometry.

1 Introduction

General relativity notoriously suffers from singularities. The most relevant ones are
the spacelike (or, cosmological) singularities which reside inside black holes or in
the beginning of the universe. The understanding of a generic dynamics of the grav-
itational field approaching the singularity is due to Belinskii, Khalatnikov and Lif-
shitz. They discovered that asymptotically the dynamics becomes ultralocal and that
at each spatial point, it converges to the dynamics of a spatially homogenous config-
uration of the field. Among the homogenous configurations, the so-called Bianchi
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type IX model is the most generic one and it is believed to play a pivotal role in
generic spacelike singularities.

The Bianchi type IX model with regular matter describes a spherical universe
which contracts to the singular state of vanishing volume and blowing-up contrac-
tion rate. On the way to the singularity it undergoes an infinite number of oscilla-
tions of aspherical deformations. The oscillatory part of its geometry can be viewed
as two modes of a non-linear gravitational wave whose energy grows rapidly as the
universe contracts and it eventually dominates all regular forms of matter fueling a
strong singularity.

The most commonly studied closed Friedmann-Robertson-Walker (FRW) uni-
verse is obtained in the limit of vanishing of the gravitational wave, in which the
evolution becomes purely isotropic and terminates in a significantly weaker sin-
gularity. Thus, extending the configuration space of the gravitational field by the
anisotropic degrees of freedom brings a substantial change in the asymptotic dy-
namics at the classical level and, as we will shortly see, at the quantum level as
well.

2 Classical model

The line element of the diagonal Bianchi type IX universe reads:

ds2 =−N2(t)dt2 +∑
i

qi(t)ω i⊗ω
i,

where dω i = 1
2 εi jkω j ∧ωk are SO(3)-invariant basis dual vectors, N is the lapse

function. We assume that the evolving metric remains diagonal with respect to
the one-forms ω i. We follow closely the Arnowitt-Deser-Misner formulation of the
Hamiltonian formalism in which the dynamics of the gravitational field resembles
the dynamics of a particle on a certain spacetime and in a potential. The poten-
tial is due to the non-vanishing intrinsic curvature. In our case, the dynamical vari-
ables can be divided into isotropic and anisotropic ones. The isotropic variables
describe the evolution of the volume of the universe and they form the half-plane,
(q, p) ∈ R∗+×R. The anisotropic variables describe aspherical, volume-preserving
deformations of the universe and they form two planes, (β±, p±) ∈R2. The dynam-
ics is governed by the following Hamiltonian constraint [3]:

H = p2 +Lq2/3−Hani
q

where p2 is the kinetic energy of the isotropic motion, the potential Lq2/3 (L is a
constant) comes from the isotropic part of the intrinsic curvature and Hani

q is the
anisotropic Hamiltonian:

Hani
q :=

p2
++ p2

−
q2 +q2/3V (β±)
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in which q−2 p2
± describes the kinetic energy of the anisotropic motion and the po-

tential V (β±) represent the anisotropic part of the intrinsic curvature. It is confining
and leads to the oscillatory behaviour of the anisotropic deformations (see Fig. 1).

Fig. 1 The anisotropy po-
tential V (β±) of the Bianchi
IX model. Around its visible
minimum the harmonic ap-
proximation can be assumed.
Away from the minimum the
potential is usually approxi-
mated by an infinite triangular
wall [3].
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3 Quantization

We first introduce the affine coherent states. The term coherent states was origi-
nally assigned to the eigenvectors of the annihilation operator whose spectrum is
the complex plane: â|z〉 = z|z〉. They can be constructed with the Weyl-Heisenberg
representation as |z〉 = D(z)|0〉, where D(z) is the displacement operator and |0〉
is the ground state of the harmonic oscillator. This construction can be generalised
by (i) replacing the Weyl-Heisenberg representation by any unitary irreducible and
integrable representation of a phase space symmetry and (ii) replacing the ground
state |0〉 by an (almost) arbitrary normalized vector in a given Hilbert space. We note
that the isotropic sector of the phase space is the half-plane which is symmetric with
respect to the action of the affine group defined as (q′, p′) ·(q, p) = (q′q,q′−1 p+ p′).
This group has a unique (up to irrelevant sign) integrable UIR, which we denote as
U(q, p) in L2(R∗+,dx). Then the affine coherent states are defined as [5, 6]:

|q, p〉=U(q, p)|ψ0〉,

where |ψ0〉 is the so-called fiducial vector that satisfies
´
R+
|ψ0(x)|2x−1dx < ∞.

We quantize the classical theory by combining canonical quantization of anisotropic
variables (β±, p±) and the so-called coherent state (CS) quantization (a generalisa-
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tion of the Berezin-Klauder-Toeplitz quantization) of the isotropic pair (q, p). The
latter is defined as follows:

f (q, p) 7→ A f :=
ˆ

dqdp
2πc

f (q, p)|q, p〉〈q, p|,

where c is a normalization constant. We find [3, 4]:

Ĥ = p̂2 +
h̄2K1

q̂2 +LK3q̂2/3− Ĥ(ani)
q̂ , Ĥ(ani)

q̂ = K2
p̂2
++ p̂2

−
q̂2 +K3q̂2/3V (β̂±)

where the values of the constants Ki depend on the particular choice of the fiducial
vector. We note the isotropic repulsive potential, h̄2K1

q̂2 , which is issued from the CS
quantization and which regularizes the singularity q = 0.

For the sake of simplicity we make the harmonic approximation to V (β±) '
const · (β 2

++β 2
−)+o(β 2

±). We note that the anisotropic Hamiltonian describes now
a q̂-dependent harmonic oscillator and can be analytically decomposed with respect
to its q̂-dependent eigenvectors, i.e., Ĥ(ani)

q̂ = ∑n En(q̂)|en(q̂)〉〈en(q̂)|. The quantum
evolution of the isotropic geometry will be approximated by means of semiclassical
trajectories in the phase space that capture the most essential quantum corrections
to the classical motion. The trajectories in (q, p) are generated by the semiclassical
Hamiltonian, Ȟ:

Ȟ = 〈q, p|Ĥ|q, p〉
which is still a linear operator acting in the Hilbert space of the anisotropic geometry
and depends on classical variables (q, p).

4 Adiabatic approximation

The Born-Oppenheimer (BO) approximation applies to the case when the isotropic
evolution is very slow relative to the anisotropic oscillations. It assumes that the
wave remains in a fixed eigenstate and the isotropic motion couples only to the
energy of the wave. The wavefunction is approximated by |Ψ〉 ≈ |q, p〉⊗|en(q)〉 for
a fixed n. The Hamiltonian which now reads [3]:

Ĥ = p̂2 +
h̄2K1

q̂2 +LK3q̂2/3−En(q̂) ,

after contracting with the affine coherent states becomes completely semiclassical:

Ȟn(q, p) = p2 +
Kh̄2

q2 +Lq
2
3 −En(q),

where K is a constant (see Fig. 2 for the respective dynamics).
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The Born-Huang approximation additionally assumes that the isotropic evolution
can be affected by the motion of the anisotropic geometry apart from its energy.
The gravitational wave remains in a fixed eigenstate. It is convenient to work in a
unitarily transformed Hamiltonian in which an extra correction to the BO scheme
becomes apparent:

U(q̂)†ĤU(q̂) = (p̂− Â(q̂))2 +
h̄2K1

q̂2 +LK3q̂2/3−En(q̂),

where U(q̂) := |en(q̂)〉〈en| is a unitary operator which relates the q̂-dependent
anisotropy eigenstates with q̂-independent elements of any fixed orthonormal ba-
sis in H , and Â(q̂) = ih̄ dU

dq̂ U† is the corrective term coupling the isotropic and
anisotropic motions. In this scheme, the total wavefunction of the transformed
Hamiltonian is |Ψ〉 ≈ |q, p〉⊗ |en〉.

Fig. 2 Semiclassical portrait
of the quantum adiabatic
evolution of the Bianchi IX
universe corresponds to the
closed Friedmann universe
with an extra source term due
to the non-vanishing vacuum
energy of the gravitational
wave and with a repulsive
potential that removes the
singularity [4].
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5 Nonadiabatic approximation

In the regime where the adiabatic approximation breaks down, one has at his dis-
posal a powerful method called the vibronic approach. The basic feature of the vi-
bronic approach is that it allows for transitions between the anisotropy eigenstates
and therefore, the anisotropy is assumed in a general state denoted by |φ (ani)〉. The
isotropic evolution is described with semiclassical variables and thus, the total wave-
function (of the transformed Hamiltonian) is assumed |Ψ〉 ≈ |q, p〉⊗|φ (ani)〉. Let us
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introduce Hsem(q, p) := 〈q, p|U(q)†ĤU(q)|q, p〉, which is a (q, p)-dependent oper-
ator acting in the anisotropic sector of H . Based on it, we derive the following
set of coupled equations for the semiclassical motion of the isotropic geometry, the
quantum motion of the anisotropic geometry and the semiclassical constraint equa-
tion [2]:

q̇ = N 〈φ (ani)|∂p Hsem |φ (ani)〉, ṗ =−N 〈φ (ani)|∂q Hsem |φ (ani)〉

−ih̄∂t |φ (ani)〉= N Hsem |φ (ani)〉, 〈φ (ani)| Hsem |φ (ani)〉= 0.

The above set of equations is self-consistent and time-reparametrization invariant.
It leads to, at least in all the numerically studied examples, a nonsingular dynamics
with a bounce. If the initial state |φ (ani)

0 〉 is a fixed anisotropy eigenstate, then the
universe follows the adiabatic trajectory at least till the bounce. At the bounce, in
general the adiabatic condition breaks down and the initial eigenstate gets excited,
and the produced anisotropic energy in turn backreacts on the isotropic post-bounce
expansion by accelerating it (see Fig. 3). A rough estimate suggests that in a real-
istic cosmological scenario, one should expect a huge production of the anisotropic
energy and a lasting extended phase of accelerated expansion should follow the
bounce [1].

6 Conclusions

We have studied the Bianchi type IX dynamics. A crucial role in the quantization
and the subsequent analysis was played by the affine coherent states. We obtained
significant insights into the quantum dynamics thanks to molecular physics approx-
imations. Specifically, we have found that the quantum model contains both FRW-
like and less symmetric solutions. The former and the latter are associated with re-
spectively the adiabatic and nonadiabatic dynamical regimes. The possibility of the
breakdown of FRW-like dynamics due to a nonadiabatic bounce is contrary to the
classical dynamics in which the symmetries once imposed hold forever. The non-
adiabatic bounce induces a subsequent extended inflationary phase. Our next steps
include removing the harmonic approximation, exploring the dynamics for states of
large anisotropy and incorporating linear perturbations to homogeneity.

Acknowledgements The author was supported by the MNiSW fellowship Mobilność Plus.
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Fig. 3: Slightly nonadiabatic evolution of coupled isotropic and anisotropic vari-
ables in conformal time starting from |φ (ani)

0 〉= |e2〉 away from the bounce. The top
panel shows the increase of the initial population, n = 2, to the final one, n≈ 5. The
bottom panel shows the backreaction of the excited anisotropy state on the isotropic
geometry which results in a slightly non-symmetric bounce [2].
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Two-dimensional massless light-front fields and
conformal field theory

L’ubomı́r Martinovic̆

Abstract A consistent quantization of two-dimensional (2D) massless light-front
fields (scalar and fermion) is formulated. Their two-point functions exactly repro-
duce the massless limit of the two-point functions of the corresponding massive
fields. The novel formalism incorporates bosonization in a natural way and also
provides us with elements needed for an independent light-front (LF) study of the
exactly solvable models (the Thirring or Thirring-Wess model, e.g.). Moreover, it
displays closeness of the 2D massless LF quantum fields to conformal field theory
(CFT). We calculate a few correlators including those between the components of
the LF energy-momentum tensor and derive the Virasoro algebra in the LF opera-
tor form. Going over to the euclidean time, we can direcly transform all calculated
quantities to the (anti)holomorphic form, in agreement with those from CFT.

1 Introduction

The light front (LF) form of quantum field theory (QFT) has been praised for its
potential for decades. Its features that are superior to the conventional (”space-like”
- SL) form of QFT, include the minimal number (3) of dynamical Poincaré genera-
tors [1], the status of the vacuum state, and a reduced number of independent field
components. The most fundamental aspect is the equality of the physical vacuum
state (= the lowest energy eigenstate of the full generic Hamiltonian) to the Fock
vacuum (= state without field quanta). This property follows from the positivity and
conservation of the LF momentum p+. Only the field zero modes, carrying p+ = 0,
and a narrow set of (symmetry) operators [2,3], depending on the details of the spe-
cific dynamics, can transform the LF Fock vacuum into a more complex object. The
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latter will however be much simpler than its SL counterpart, which in principle has
to be obtained by (unrealistically complicated) dynamical calculations.

Availability of the consistent Fock expansion based on the LF vacuum, with the
amplitudes having direct probabilistic interpretaion makes the LF approach attrac-
tive from the point of view of phenomenological applications. On the other hand,
proliferation of the non-dynamical field variables complicates the theory by the need
to invert operator constraint equations. There still exist some concerns pertaining to
the validity of the LF theory. The typical question is how the LF scheme can cope
with the isue of vacuum condensates and the symmetry breaking with underlying
vacuum degeneracies, given its greatly simplified, structureless, ground state.

What is then the relation between the SL and LF theory? Could it be that the LF
version conceptually as well as technically simplifies the structure of QFT while still
maintaining potential for reliable predictions? The area of 2D solvable relativistic
models represents a very suitable environment to study these questions [4].

Surprisingly however, the 2D massless LF fields, being the essential elements
for exact operator solutions of the models, have not been understood and correctly
quantized until nowadays. Not even the simplest (and prototypic) gauge theory, the
massless Schwinger model, has been solved in the LF version of the theory [5].

Recently, a simple and natural way of quantizing the two-dimensional massless
LF fields has been suggested [6]. In our contribution, we shall first give a brief ex-
position of this quantization scheme. Its validity will be demonstrated by by the LF
bosonization of the massless fermion field. In the second part, the closeness of the
massless LF quantum fields to conformal field theory (CFT) will be demonstrated
by calculating several correlation functions of elementary and composite operators.
Going over to the euclidean time, one immediately reproduces the CFT results.
Virasoro algebra is also obtained directly in the LF operator formalism.

Throughout this paper, we will use the following LF notation: xµ = (x+,x−) =
(x0 + x1,x0− x1). The momentum is designed as kµ (or pµ ), kµ = (k+,k−),

∂± =
∂

∂x±
, k̂ · x = 1

2
k+x−+

1
2

k̂−x+, k2 = µ
2⇒ k̂− =

µ2

k+
. (1)

k̂− is the on-shell LF energy. in the LF form. Both k+,k− can be taken positive.

2 Quantization of free massless light-front fields in 2D

Our quantization of the massless LF scalar field starts from the massive field. Its
Lagrangian and the field equation takes in terms of the LF variables the form

L = 2∂+φ∂−φ − 1
2

µ
2
φ

2,
(
4∂+∂−+µ

2)
φ(x) = 0. (2)

The solution of the field equation (2) is expressed in terms of Fock operators as
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φ(x) =

+∞ˆ

0

dk+√
4πk+

[
a(k+)e−

i
2 k+x−− i

2
µ2

k+
x+ + a†(k+)e

i
2 k+x−+ i

2
µ2

k+
x+], (3)

[
a(k+),a†(l+)

]
= δ (k+− l+), a(k+)|0〉 = 0. The LF Hamiltonian and momentum

operator is given in terms of densities T++ = 4 : ∂−φ∂−φ :, T+− = µ2 : φ 2 :,

Pν =
1
2

+∞ˆ

−∞

dx−T+ν(x) =

+∞ˆ

0

dk+k̂ν a†(k+)a(k+), k̂ν = (
µ2

k+
,k+). (4)

From (3) we calculate the conjugate momentum π(x) = 2∂−φ(x) and the time
derivative θ(x) = 2∂+φ(x). In the following, we shall need the correlation functions

D(+)
0 (z) = 〈0|φ(x)φ(y)|0〉, D(+)

1 (z) = 〈0|φ(x)π(y)|0〉, D(+)
2 (z) = 〈0|φ(x)θ(y)|0〉,

(5)

D(+)
i (z) = i

∞̂

0

dk+

4π
fi(k+)e

− i
2 k+(z−−iε−)− i

2
µ2

k+
(z+−iε+), z = x− y. (6)

Here f0(k+) = − i
k+ , f1(k+) = 1, f2(k+) =

µ2

k+2 . The small imaginary parts in the
exponents are necessary for the existence of the integrals, which are evaluated in
terms of the (modified) Bessel functions Jν(z),Nν(z),Kν(z),ν = 0,1:

D(+)
1 (z) = −θ

(
z2)µ

4

√
z+

z−
i
[
J1
(
µ

√
z2
)
− i sgn(z+)N1

(
µ

√
z2
)]

+ (7)

− θ
(
− z2)sgn(z+)

µ

4π

√
− z+

z−
K1
(
µ

√
−z2

)
, D(+)

2 = D(+)
1 (x+↔ x−).

Now, one observes that both D(+)
1 and D(+)

2 have a non-vanishing massless limit,

D(+)
1 (z; µ

2 = 0) =
1

2π

1
(z−− iε−)

, D(+)
2 (z; µ

2 = 0) =
1

2π

1
(z+− iε+)

. (8)

Technically, this is due to the behaviour of the Bessel function K1(z) ∼ 1
z for the

small value of z. These results suggest that there must exist massless analogs of the
fields φ(x),π(x),θ(x) reproducing (8). Indeed, from the LF massless Klein-Gordon
equation ∂+∂−φ̃(x) = 0, one expects a general solution of the form

φ̃(x) = φ̃(x+)+ φ̃(x−). (9)

Since the integration measure of the LF field is mass-independent [7], the massless
limit (µ = 0 in the plane-wave factors) of the massive solution (3) gives just φ̃(x−).
The piece φ̃(x+) can be recovered from (3) by the change of variables (done more
correctly at the classical level) k+ = µ2

k− . x+ and x− interchange their places in (3),
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and the Fock operators in terms of the new variable should satisfy [6][
µ

k−
a
(µ2

k−
)
,

µ

l−
a†(µ2

l−
)]

=
µ2

k−l−
δ
(µ2

k−
− µ2

l−
)
= δ (k−− l−). (10)

The rhs of (10) survives the massless limit, hence limµ→0
µ

k− a
(

µ2

k−
)
≡ ã(k−) 6= 0,

with the commutators
[
ã(k−), ã†(l−)

]
= δ (k−− l−),

[
ã(k+), ã†(l−)

]
= 0. After the

change of variables, the massless limit in (3) yields

φ̃(x+) =

+∞ˆ

0

dk−√
4πk−

[
ã(k−)e−

i
2 k−x+ + ã†(k−)e

i
2 k−x+], (11)

and similarly for θ(x+) and π(x−). The basic field commutators are consequently[
φ̃(x−), φ̃(y−)

]
=− i

4
ε(x−− y−),

[
φ̃(x+), φ̃(y+)

]
=− i

4
ε(x+− y+). (12)

The variables k+ and k− actually coincide, in complete analogy with the SL case
k0 = |k1|. Also, one verifies that the two-point functions calculated from the mass-
less fields coincide with the massless limits (8) of the massive functions. Using
similar reasoning and the above Fock commutators, the operators

P+ =

+∞ˆ

0

dk+k+a†(k+)a(k+), P− =

+∞ˆ

0

dk+k−a†(k−)a(k−) (13)

are shown to generate the correct Heisenberg equations 2i∂±φ(x±) =−[P∓,φ(x±)].
The same procedure can be applied to the light front fermion field. The massive

(two-dimensional Dirac) field equation i�µ ∂µ ψ(x) = mψ(x) decomposes as

2i∂+ψ2(x) = mψ1(x), 2i∂−ψ1(x) = mψ2(x) (14)
⇒ ψ2(x) = ψ̃2(x−), ψ1(x) = ψ̃1(x+), if m = 0. (15)

For the correct quantization, we again start from the two components of the mas-
sive field in the momentum representation that solve the field equations (14):

ψ2(x) =

+∞ˆ

0

d p+

4π

[
b(p+)e

− i
2 p+x−− i

2
m2
p+

x+
+d†(p+)e

i
2 p+x−+ i

2
m2
p+

x+]
, (16)

ψ1(x) =

+∞ˆ

0

d p+

4π

m
p+

[
b(p+)e

− i
2 p+x−− i

2
m2
p+

x+ −d†(p+)e
i
2 p+x−+ i

2
m2
p+

x+
]
, (17)

where {b(p+),b†(q+)}= {d(p+),d†(q+)}= δ (p+−q+), and study their massless
limit. For ψ2, this again is straightforward. The limits of the fermion two-point func-
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tions S11(z),S22(z) coincide up to the factor (−i) with that of D(+)
1 and D(+)

2 . Hence
we change the variables for ψ1(x) and repeat all the steps from the scalar-field case.
This results in the massless field expansions and their Fock algebra:

ψ̃2(x−) =

+∞ˆ

0

d p+√
4π

[
b̃(p+)e−

i
2 p+x− + d̃†(p+)e

i
2 p+x−],

ψ̃1(x+) =

+∞ˆ

0

d p−√
4π

[
b̃(p−)e−

i
2 p−x+ − d̃†(p−)e

i
2 p−x+], (18)

{b̃(p+), d̃†(q+)}= δ (p+−q+), {b̃(p−), b̃†(q−)}= δ (p−−q−). (19)

The d̃-operators satisfy the same anticommutation relations. As a consequence,{
ψ̃1(x+), ψ̃1

†(y+)
}
= δ (x+− y+),

{
ψ̃2(x−), ψ̃2

†(y−)
}
= δ (x−− y−). (20)

The two kinds of modes decouple: {b̃(p−), b̃†(q+)}= {b̃→ d̃}= 0. The two-point
function of the massless ψ̃1(x+) coincides with the massless limit of the massive 2-
point function. From the expansions (18), one constructs the bilinear operators (the
current jµ = (: ψ̃1

†
ψ̃1 :, : ψ̃2

†
ψ̃2 :) and the scalar densities ψ̃2

†
ψ̃1± ψ̃1

†
ψ̃2).

Thus, the quantum theory of the massless LF fermion field has been established.
The necessary information is contained in the original massive solutions. Since solv-
able models are based on free Heisenberg fields, the above derivation opens the road
to the genuine LF solution of the class of models with massless fermions [8].

Consistency of the scheme is further confirmed by LF bosonization. Bosoniza-
tion is a remarkable property of the 2D field theory: fermion fields can be repre-
sented in terms of boson variables [9, 10]. Our derivation of its LF version is based
on the natural decomposition of the massless φ(x) and ψ(x) fields (9),(15).

Consider first ψ̃2(x−). Assume that it can be represented as

ϕ2(x−) =C : eiαφ(x−) : =Ceiαφ (−)(x−)eiαφ (+)(x−). (21)

The constants C and α can be adjusted in such a way that two ϕ2 with different argu-
ments anticommute and ϕ2(x−), ϕ

†
2 (y
−) satisfy the anticommutation relation (20).

The first condition fixes α to the value α̂ = 2
√

π . The second determines the con-
stant C as Ĉ =

(
λe�E

4π

)1/2 (λ is the infrared cutoff associated with the massless D(+)
0

function [6] and �E is the Euler’s constant). It follows that the operators ϕ̂(x−)
and the analogously obtained ϕ̂(x+) represent the bosonized form of the fields
ψ̃2(x−) and ψ̃1(x+). Forming their appropriate point-split products, the bosonized
vector current is found to be ĵ+(x−) = 2π−1/2∂−φ(x−), ĵ−(x+) = 2π−1/2∂+φ(x+).
It correctly reproduces the Schwinger term in the current-current commutators,[

ĵ∓(x±), ĵ∓(y±)
]
= iπ−1∂xδ (x±− y±). Similarly, for the scalar densities, one gets

ψ(x)ψ(x) =
λe�E

4π
cos
(
2
√

πφ(x)
)
, ψ(x)�5

ψ(x) = i
λe�E

4π
sin
(
2
√

πφ(x)
)
.(22)
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Thus the LF version of bosonization yields the results known from the SL theory.

3 Conformal properties of the 2D massless LF fields

The massless 2D fields exhibit conformal symmetry, whose (anti)holomorphic for-
mulation was developed in [11]. Here we shall show that after switching to the
euclidean time, our formalism generates results in agreement with CFT.

The Hamiltonian density T+−(x) of the free massless scalar field vanishes, as
required by conformal symmetry (the massless limit (13) of the massive P− 6= 0,
however). The other components of the energy-momentum tensor are nonvanishing:

T++(x−) =: π(x−)π(x−) :, T−−(x+) =: θ(x+)θ(x+) : . (23)

Note that the LF Hamiltonian (13) can also be obtained as the x+-integral of the
density T−−(x+), analogously to P+ which is the x−-integral of T++(x−).

We compute a few additional correlation functions (z± = x±− y±),

〈0|θ(x+)θ(y+)|0〉= π−1

(z+− iδ+)2 ,〈0|π(x
−)π(y−)|0〉= π−1

(z−− iδ−)2 , (24)

as well as those between components of the energy-momentum tensor,

〈0|T±±(x∓)T±±(y∓)|0〉= 2
π2

1
(x∓− y∓− iδ∓)4 . (25)

In the holomorphic form of 2D CFT [11,12], the Laurent expansion in the variables

z = e
2π
L ζ , z̄ = e

2π
L ζ̄ , where ζ = τ− ix, ζ̄ = τ + ix, (26)

is commonly used. It is based on radial quantization with the euclidean time τ ,
t →−iτ . We need to reformulate our results for φ(x) in the form of infinite series
to conform with the discrete picture of [11]. Thus, we consider the massive field
in a finite box of length 2L in x− or 2T in x+ with periodic boundary conditions
φ(x+,x− = −L) = φ(x+,x− = L), φ(x+ = −T,x−) = φ(x+ = T,x−). Performing
the change of variables and the massless limit as before, we arrive at

φ(x−) =
∞

∑
n=1

1√
2Lk+n

[
ane−

i
2 k+n x− +H.c.

]
=

1√
4π

∑
n=±1,...

1√
|n|

ane−i π
L nx− , (27)

φ(x+) = φ0 +
∞

∑
n=1

1√
2Lk−n

[
āne−

i
2 k−n x+ +H.c.

]
=

1√
4π

∑
n=±1,...

1√
|n|

āne−i π
L nx+

(28)
with

[
am,a†

n
]
=
[
ām, ā†

n
]
= δm,n,

[
ām,a†

n
]
= 0 and a−n ≡ a†

n, ā−n ≡ ā†
n.
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Since µ = 0, φ0 can be non-zero. It is however just a constant whose conjugate
momentums vanishes. The 2-point functions D(+)

0 are evaluated for L >> 1 as

D(+)
0 (z±) = 〈0|φ(x±)φ(y±)|0〉= 1

4π

∞

∑
n=1

1
n

e−i π
L n(z−−iε) ≈ 1

4π
ln
[ iπ

L
(z−− iε)

]
.

(29)
L plays the role of the infared regularization parameter. It also introduces the neces-
sary dimension to (29). L drops out of all the other correlation functions (due to the
derivatives present). The results match the continuum results (24–25).

The components of the energy-momentum tensor in the discrete form read

T++(x−) = K ∑
m,n

ε(m)ε(n)
√
|m||n| : aman : e−i π

L (n+m)x− , (30)

T−−(x+) = K ∑
m,n

ε(m)ε(n)
√
|m||n| : āmān : e−i π

L (n+m)x+ , K =− π

L2 .

They can be transformed to a “Virasoro form” by simply taking a Fourier transform.
Indeed, assume that T++(x−) can be represented as

T++(x−) =
1

4L2 ∑
l=0,±1,...

Lle−i π
L lx− ,Ll = 2L

+Lˆ

−L

dx−ei π
L lx−T++(x−). (31)

Inserting T++(x−) in the Fock form (30) into (31) gives (L0 = 4LP+),

Ln =−4π ∑
k=±1,...

ε(k)ε(n− k)
√
|k||n− k|akan−k. (32)

A calculation based on the commutators below Eq.(28) yields the LF version of the
Virasoro algebra, including the c-number term, not present at the classical level:[

Ln,Lm
]
= (n−m)Ln+m +

c
12

n(n2−1)δn+m,0, c = 1, (33)

where c is the “central charge”. Taking T−−(x+) in (31) instead of T++ generates
the algebra (33) with Ln→ L̄n. It follows from

[
an, ām

]
= 0 that

[
Ln, L̄m

]
= 0.

To give a few details of these calculations, we switch back to the “a,a†” picture:

Ln =−
n−1

∑
k=1

√
k(n− k)akan−k +2

∞

∑
k=n+1

√
k(k−n)a†

k−nak, L†
n = L−|n|. (34)

The “anomaly” comes from the commutator between the first terms:
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∑
l=1

√
l(m− l)alam−l ,

n−1

∑
k=1

√
k(n− k)a†

ka†
n−k

]
=

m−1

∑
l=1

√
l(m− l)

n−1

∑
k=1

√
k(n− k)×

×
{

δm−l,kδl,n−k +δl,kδm−l,n−k
}
= 2δm,n

m−1

∑
l=1

l(m− l) =
1
3

m(m2−1)δm,n. (35)

This agrees with the CFT result after taking into account the different normalization.
All the LF results can be easily transformed into the conformal ((anti)holomorphic)

form by switching to the euclidean time and defining the variables ζ and ζ̄ (26).
With the conventional CFT normalization (factor 2π in the definition of the

energy-momentum tensor instead of 4 in the LF case), we get (cf. Eq.(24)):

〈0|π(ζ )π(ζ ′)|0〉=− 1
(ζ −ζ ′)2 , 〈0|T (ζ )T (ζ

′)|0〉= c
2

1
(ζ −ζ ′)4 , c = 1. (36)

Our field expansions (28,27) read (φ(ζ̄ ) = φ(ζ ) with (ζ ,z,an)→ (ζ̄ , z̄, ān))

φ(ζ ) =
1√
4π

∑
n=±1,±2,...

1√
|n|

anzn, [am,an] = δm+n,0. (37)

It is analogous to the transition [12] to the conformal field in the conventional treat-
ment. A completely parallel LF analysis can be given for the fermion field.

4 Conclusions

We have formulated the quantum theory of two-dimensional massless light-front
fields as a unique limit of the corresponding massive fields. Its consistency is proved
by the equality of the two-point functions calculated from the massless fields to the
massless limit of the massive two-point functions. Our quantization scheme leads to
the LF form of bosonization and to the genuine LF operator solutions of a few ex-
actly solvable models (like the Thirring and Thirring-Wess models). The developed
LF operator formalism also reproduces known results of conformal field theory.
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Pattern recognition of amino acids via a Poisson
statistical approach

R.P. Mondaini and S.C. de Albuquerque Neto

Abstract A Poisson statistical approach is derived from a master equation in order
to introduce a pattern recognition of amino acids in protein families. Probability
distribution functions of two variables are then obtained and their level curves are
associated to the occurrences of each amino acid.

1 Introduction

The statistical modelling of formation and evolution of proteins is supposed to be
very useful for understanding the protein folding dynamics. The information con-
tained fin the intermediary stagesf, which are supposed to guarantee the folding
process [1]f, would be unveiled by studying the fcollection of proteins into families.
We assume that nature is playing a game of allocating in families of proteins, the
amino acids built at the Ribosome [2, 3]. We then start by introducing the sample
space of this statistical approach with the selection of amino acid blocks of m rows
(domains) and n columns (amino acids).

2 The statistical sample space

The m× n blocks are organized by specifying a number of n columns on a protein
domain which is obtained from m proteins. Each domain has nr amino acids, r =
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1,2, . . . ,m. We then discard all domains such that nr < n, and we also discard the last
(nr−n) amino acids in the remaining domains. The protein families should contain
at least one of these blocks. In Fig.1, an example of a m× n block from the Pfam
database [4, 5] is given according to these requirements.

Fig. 1: A block of m = 100×n = 200 amino acids from the Pfam database.

The Pfam database version 27.0 [4, 5] has 4563 protein families classified into
515 Clans. 1441 of these families can be represented by (m= 100×n= 200) blocks.
We work with blocks of this size in the present work.

In order to describe the probabilistic space, we introduce the probability of oc-
currence vectors

pj =
(

p j(a1), p j(a2), . . . , p j(a20)
)T

, j = 1,2, . . . ,n, (1)

where a = a1,a2, . . . ,a20 stand for the twenty amino acids written in one letter code,
a = A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y.

The components of the vectors (7) are given by

p j(a) =
n j(a)

m
(2)

where n j(a) is the number of occurrences of the a-amino acid in the j-th column of
the (m×n) block.

We have
∑
a

n j(a) = m ⇒ ∑
a

p j(a) = 1 ∀ j. (3)
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3 The master equation approach for probability evolution and
Poisson distribution

A very convenient scheme for modelling the temporal evolution of random variables
is provided by the master equation approach. We should use it here [6] for a fixed
number of amino acids m on each row of the (m×n) block.

Let p
(
n j
(
t(a)

))
be the probability of occurrence of the generic a-amino acid

in the j-th column of the block. If σ
(
t(a)

)
is the transition probability by unit time

between the ( j−1)-th and j-th column, the probability of occurrence of the a-amino
acid at a time t(a)+∆ t will be given by

p
(
n j
(
t(a)+∆ t

))
= σ

(
t(a)

)
∆ t p

(
n j−1

(
t(a)

))
+
(
1−σ

(
t(a)

))
∆ t p

(
n j
(
t(a)

))
. (4)

We now consider that at an extra column j = 0, there is a “universal amino acid
factory”, the Ribosome, where all amino acids are already present at time t0(a), or,

p
(
n0
(
t0(a)

))
= 1 , ∀a. (5)

This also means that there are no amino acids in columns j 6= 0, or

p
(
n j
(
t0(a)

))
= 0 , j 6= 0 , ∀a. (6)

At the limit ∆ t→ 0, we get from eq. (4),

∂ p
∂ t(a)

(
n j
(
t(a)

))
= σ

(
t(a)

)(
p
(
n j−1

(
t(a)

))
− p

(
n j
(
t(a)

)))
, j 6= 0 (7)

and
∂ p

∂ t(a)

(
n0
(
t(a)

))
=−σ

(
t(a)

)
p
(
n0
(
t(a)

))
. (8)

From eqs. (5)-(8), we can write

p
(
n0
(
t(a)

))
= e−ν

(
t(a)
)
, (9)

p
(
n1
(
t(a)

))
= e−ν

(
t(a)
)

ν
(
t(a)

)
, (10)

p
(
n2
(
t(a)

))
= e−ν

(
t(a)
)

ν2
(
t(a)

)
2

, (11)

where

ν
(
t(a)

)
=

ˆ t(a)

t0(a)
σ
(
t ′(a)

)
dt ′(a). (12)

The Poisson distribution will follow by finite induction as

p
(
n j
(
t(a)

))
= e−ν

(
t(a)
)

ν j
(
t(a)

)
j!

, ∀ j, a. (13)
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4 Two examples of statistical distributions for describing amino
acid occurrences

We associate the marginal probability distribution associated to eq. (13), in order to
derive distributions which are adequate to describe the occurrences of amino acids
in the columns of the (m×n) blocks. We have

p j
(
t(a)

)
=

ˆ t(a)

t0(a)
p
(
n j
(
t ′(a)

))
dt ′(a) (14)

From eq. (13), we can write

p j
(
t(a)

)
=

(−1) j

j!
lim
α→1

∂ j

∂α j

ˆ t(a)

t0(a)
e−αν

(
t ′(a)
)

dt ′(a). (15)

Two cases should be emphasized:

1. A linear approximation [7] for ν
(
t(a)

)
, σ
(
t(a)

)
= σ(a):

ν
(
t(a)

)
= σ(a)

(
t(a)− t0(a)

)
. (16)

From eq. (15), we have

p j
(
t(a)

)
=

(−1) j+1

j!σ(a)
lim
α→1

∂ j

∂α j

(
e−α σ(a)(t(a)−t0(a))−1

α

)
. (17)

fWe now write
t j(a)≡ t0(a)+ j∆(a) , j = 1,2, . . . ,n, (18)

where t j(a) is the time in which the a-amino acid is seen to occur at the j-th
column of the (m×n) block and ∆(a) is the time interval for the transition of the
a-amino acid between consecutive columns:

∆(a) = t j(a)− t j−1(a) , j = 1,2, . . . ,n, (19)

where σ(a),∆(a) is a couple of variables of the statistical distribution for this
case.
We can then write

p j
(
σ(a),∆(a)

)
= 1

σ(a)

(
1− e− j σ(a)∆(a)

j
∑

m=0

(
j σ(a)∆(a)

)m

m!

)
. (20)

2. A saddle-point approximation [8, 9]:
The integral of eq. (15) for α > 0 is determined by values of ν

(
t(a)

)
on the

neighbourhood of the minimum tm(a), ν ′
(
tm(a)

)
= 0,
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ν
(
t(a)

)
≈ ν

(
tm(a)

)
+

ν ′′
(
tm(a)

)
2

(
t(a)− tm(a)

)2
. (21)

We then have from eq. (15),

p j
(
t(a)

)
≈ (−1) j

j!

(
2π

ν ′′
(
tm(a)

)) 1
2

lim
α→1

∂ j

∂α j

(
α
−1/2e−α ν

(
tm(a)

))
, (22)

and the statistical distribution for this second case will be written as

p j
(
x(a),y(a)

)
≈ 1

j!

(
2π

y(a)

) 1
2

e−x(a)
(

x j(a)+ 1
2

j−1
∑

m=0

( j
m+1

)
(2m+1)!! x j−m−1(a)

2m

)
(23)

where
x(a)≡ v

(
tm(a)

)
, y(a)≡ v′′

(
tm(a)

)
and

(2m+1)!! = 1 ·3 ·5 · . . . · (2m−1) · (2m+1)

stands for the double factorial.

5 Histograms and level curves

In this section we intend to show the advantage of the information obtained from
the analysis of level curves of the surfaces p j

(
σ(a),∆(a)

)
and p j

(
x(a),y(a)

)
as

compared to fthose of the corresponding histograms. First of all, we present in the
1st column of Table 1 the probabilities of occurrence for the a = A amino acid of
the PF03399 family obtained from a (m = 100×n = 200) block. These probability
values correspond to j-value partitions of the set of j-values, j = 1,2, . . . ,200 and
they will define the level curves, according to

p j∈Js = M j∈Js =
n j∈Js(A)

100
(24)

The histogram of the data of Table 1 is represented in
The corresponding level curves of the two surfaces, eqs. (20,23), are presented

in Fig. 3. The 2-dimensional domains of the variables σ(a),∆(a) and x(a),y(a) are
obtained from an exhaustive numerical analysis of maxima and minima of the level
curves [7, 10].
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Table 1: The j ∈ Js values of the subset Js for defining level curves of the surface
p j∈Js . Data obtained from a (100× 200) block as a representative of the PF03399
protein family a = A amino acid.

M j∈Js Js

0 7,8,9,14,15,18,20,21,82,96,150
1/100 10,24,25,38,48,53,55,102,106,107
2/100 11,23,28,44,47,51,54,90,98,100,101,115
3/100 4,35,39,40,42,49,50,65,71,75,79,91,93,105,108,117,158,172,182
4/100 6,29,31,43,69,86,87,103,110,113,123,125,133,134,147,149,154,156,174,

175,176,177,194,197
5/100 5,19,22,36,80,83,92,95,97,99,104,118,129,140,141,146,165,180
6/100 32,52,57,73,78,81,89,126,136,142,143,153,164,166,170,171,199
7/100 3,27,30,41,61,84,85,94,109,119,122,127,131,132,139
8/100 16,26,33,37,46,56,68,70,74,88,111,112,124,145,151,159,173,188,195,200
9/100 1,17,58,60,62,114,116,137,138,169,187,190,191,193
10/100 34,45,59,77,161,185,189
11/100 66,72,121,128,152,155,168,178,179,198
12/100 13,148,162,183,196
13/100 120,167
14/100 12,67,76,130,135,163
15/100 2,64,181,186
16/100 63,160,184,192
17/100 144
18/100 157

Fig. 2 The histogram corre-
sponding to Table 1. a = A
amino acid, Protein family
PF03399.

6 Concluding remarks

In the present work, we introduced statistical modelling of the evolution of pro-
tein families and two proposals fregarding probability distributions fthat are de-
rived from a master equation approach. An exhaustive application of these meth-
ods to protein families of the Pfam database is now in progress. An essential
step of this application is the comparison of the level curves of the surfaces
p
(
σ(a),∆(a)

)
, p
(
x(a),y(a)

)
with the corresponding histograms. A careful choice
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Fig. 3: a = A amino acid from Protein family PF03399. The level curves of the
surface p j

(
σ(a),∆(a)

)
- linear approximation (left). The level curves of the surface

p j
(
x(a),y(a)

)
- saddle-point approximation (right).

of the 2-dimensional domains of variables is also essential for the success of the
pattern recognition process [7,10]. It seems that a conformal transformation of vari-
ables could provide a better layout of level curves for the saddle-point approxima-
tion case. However, a new method of representation in terms of the loci of Steiner
points as arcs of circles whose centers and diameters are given by the domains of
the variables will lead to a more efficient representation [11]. The fundamental part
of these developments is now concluded and will be published elsewhere.
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Real pseudo-orthogonal groups and the
canonical commutation relations

Patrick Moylan

Abstract Let Wn(R) be the Weyl algebra of index n over R and let D̃(so(2,1))
be a certain extension of the skew field of fractions of U(so(2,1)), the universal
enveloping algebra of so(2,1). In a previous work we have established a skew field
isomorphism between D̃(so(2,1)) and D(1,1)(R) where D1,1(R) is the fraction field
of W1,1(R)'W1(R)⊗R(y) with R(y) being the ring of polynomials over R in the
indeterminate y. Using this isomorphism, we were able to construct, out of unitary
and irreducible representations of the universal covering group of SO0(2,1), repre-
sentations of W1(R) with all of the desired properties required by physics, includ-
ing hermicity of the momentum and position operators. Thus, we have obtained the
canonical commutation relations and acceptable representations of them out of the
so(2,1) symmetry. In this work we investigate generalizations of the above results
to higher dimensions. In particular, we describe generalizations with D̃(so(2,1))
replaced by D̃(so(p,q)) and D1,1(R) replaced by Dp+q−2,1(R). As in the so(2,1)
case, we make use of our results to obtain applications to representations.

1 Introduction

Noncommutative localization is used in both mathematics and physics to relate
different, i.e., non-isomorphic, algebraic structures by embedding them into larger
structures which may be related to one another by isomorphism. One of the most
famous examples in mathematics, and which is very much related to what we do in
this paper, is the Gelfand-Kirillov conjecture [3].

A brief description of this famous conjecture is the following. Let K be an alge-
braically closed field. Given a Lie algebra L over K, we denote by U(L) the universal
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enveloping algebra of L. Since U(L) is a Noetherian domain, it admits a field of frac-
tions which we shall denote by D(L). Let Wn(K) denote the Weyl algebra of index
n over the field K. It is generated over K by 2n generators p1, . . . , pn,q1, . . . ,qn sub-
ject to the relations [pi, p j] = [qi,q j] = 0 and [pi,q j] = δi j for all i, j ≤ n. Given a
collection of free variables y1, . . . ,ys, we define

Wn,s(K) := Wn(K)⊗K[y1, . . . ,ys].

Being a Noetherian domain, the algebra Wn,s(K) also admits a field of fractions
denoted by Dn,s(K). In [3] Gelfand and Kirillov put forth the following conjecture:

Gelfand–Kirillov conjecture. If char(K) = 0 and L is the Lie algebra of an alge-
braic K-group, then D(L) ∼= Dn,s(K) for some n,s depending on L.

A major breathrough for the case in which L is simple occurred in 2010 when
Alexander Premet proved that the conjecture fails for simple Lie algebras of type
Bn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8 or F4 leaving the conjecture unsettled only for
the remaining case of Cn [12]. The conjecture also makes sense over fields that are
not algebraically closed. Clearly, if D(L) ∼= Dn,s(F) over a field F (where D(L)
now means the Lie field of the Lie algebra L over the field F), then D(L⊗FK) ∼=
Dn,s(K) where L⊗FK is a Lie algebra over a field extension K of F. Thus, at least
for certain cases, we can reduce the case of a non-algebraically closed field F to
its respective algebraic closure. In particular, this implies that the Gelfand-Kirillov
conjecture itself fails for any real form of a complex Lie algebra of type Bn (n≥ 3),
Dn (n ≥ 4), E6, E7, E8 or F4. It is interesting that the physically important cases of
SO0(2,3) and SO0(1,4) are still unsettled. This is so because Premet’s results for
Bn hold only for n≥ 3 and, since B2 ' C2, the validity of the conjecture for B2 and
its real forms is still unknown. For the status of the conjecture in the general case
(i.e., for L not simple) we refer to [1].

One of the reasons why localization is important to physics is for understanding
the structure of the observables and invariants of a quantum physical system associ-
ated with a given Lie algebra and their relationship to observables associated with
the Weyl algebras, such as position and momentum. Surely such physical consid-
erations must have played an important role in motivating Gelfand and Kirillov to
formulate their conjecture. The Gelfand-Kirillov conjecture demonstrates that for
Lie algebras L for which it is true, the Lie field of L is no more complicated than
that of the Lie field associated with the corresponding extension of the Weyl alge-
bra, and, in this sense, the Heisenberg canonical commutation relations follow from
and exist as relations in the Lie field D(L) when the two algebras have isomorphic
Lie fields.
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2 Line bundles over M

Let n = p+q (q > 1) and consider M(p,q) = Rn with the quadratic form

Q(x) = x2
0+x2

1+ . . .+x2
p−1−x2

p− . . .−x2
p+q−1 (x = (x0,x1, . . . ,xp+q−1)∈Rn). (1)

Let K∗ be the cone {x ∈ Rm|Q(x) = 0,x 6= 0}, and let M bet the quotient of K∗
with respect to the equivalence relation x ∼ λx. M is naturally diffeomorphic to
(Sp−1×Sq−1)/Z2 where the Z2 action is the product of antipodal maps on Sp−1 and
Sq−1. We denote Sp−1×Sq−1 by M̄.

Define the line bundle Lσ (M) over M associated with the character λ → |λ |−σ

of R∗ as the bundle whose fibre over [x]∈M is the set of all pairs (λx, |λ |σ ) ∈ K × C,
(σ ∈ C). Denote by Γ σ (M) the space of smooth sections of Lσ (M). There is a
unique isomorphism between Γ σ (M) and the space of smooth functions f : K∗ −→
C that satisfy the homogeneity condition [5], [6]

f (λx) = |λ |−σ f (x) . (2)

Γ σ (M) is an SO0(p,q)-module with respect to the representation πσ (G) (G =
SO0(p,q)), defined by (πσ (g) f )(x) = f (g−1x), where f ∈Γ σ (M), g ∈ SO0(p,q),
x ∈ K∗, and g−1 x denotes the action of g−1 on x ∈ K∗. We denote the associ-
ated representation of the Lie algebra g = so(p,q) by dπσ (g). Since any function
f ∈C∞(K∗) satisfying Eq. (2) is completely determined by its values on M and lifts
to an even function on M̄ = Sp−1× Sq−1, we can use the homogeneity condition,
Eq. (2), to obtain the following parallelized form of the representation:

π
σ (g)φ(ξ ) = |(g−1

ξ )|σ φ(ḡ−1
ξ ) (3)

where φ ∈C∞(Sp−1×Sq−1), φ(−ξ ) = φ(ξ ), ξ ∈ Sp−1×Sq−1 and

|x|=
√

x2
0 + x2

1 + . . . + x2
p−1 =

√
x2

p + x2
p+1 + . . + x2

p+q−1 (4)

for x = (x0,x1, . . + xp−1,xp, . . + xp+q−1) ∈ K∗ and ḡ−1ξ ∈ Sp−1× Sq−1 is the
image of ξ under the action for g−1 ∈ G on Sp−1× Sq−1. We call this parallelized
form of the representation πσ (G) the “curved parallelization”.

Now consider the subset of K∗ defined by V = {x ∈ K∗|x0 + xp+q−1 = 1}. Let
S = {x ∈K∗|x0 +xp+q−1 = 0} and let p be the map p : M̄\{S}→V 'Rp+q−2 with

p(ξ0,ξ1, . . ξp, . . ξp+q−1)=
(

ξ0
ξ0+ξp+q−1

, ξ1
ξ0+ξp+q−1

, . .
ξp

ξ0+ξp+q−1
, . .

ξp+q−1
ξ0+ξp+q−1

)
. Let

xi =
2ξi

ξ0+ξp+q−1
(i = 1,2, . . p+ q− 2). The inverse map p−1 : V → M̄\{S} is ξ0 =

F
(F2+x2

1+ . .+x2
p−1)

1/2 , ξi =
xi

(F2+x2
1+ . .+x2

p−1)
1/2 , ξp+q−1 =

D
(F2+x2

1+ . .+x2
p−1)

1/2 with F =

1− x2

4 , D = 1+ x2

4 and x2 = x2
1 + x2

2 + . . + x2
p−1 − x2

p − . . + x2
p+q−2. We now

introduce the “flat parallelization” for the representation πσ . It is specified by the
equation
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C∞(M̄) 3 φ(ξ )→ φ̃(ξ (xi)) = |(F2 + x2
1 + . . + x2

p−1|σ/2
φ(ξ ) ∈C∞(Rp+q−2). (5)

Using this equation we determine the parallelized actions of the infinitesimal gen-
erators of G = SO0(p,q) in the representation πσ (G). Our results are compiled in
Table I. (Compare the su(2,2) ' so(2,4) case treated in [11] which is somewhat
prototypical of the general case considered here. Definitions and notation for our in-
finitesmal generators are straightforward generalizations to SO0(p,q) of those given
in [11] which were taken from [13].)

Table 1: Actions of infinitesimal generators of SO0(p,q) for the representation
πσ (SO0(p,q)) in the flat parallizationa.

infinitesmal generator action on C∞(Rp+q−2)

L0,q+p−1 S+σ

Li,q+p−1 (1≤ i≤ p−1) −D∂i +
1
2 xi(S+σ)

L j+p−1,q+p−1 (1≤ j ≤ q−1) −D∂ j+p−1− 1
2 x j+p−1(S+σ)

L0,i (1≤ i≤ p−1) −F∂i− 1
2 xi(S+σ)

L0, j+p−1 (1≤ j ≤ q−1) −F∂ j+p−1 +
1
2 x j+p−1(S+σ)

Li, j+p−1 (1≤ i≤ p−1,1≤ j ≤ q−1) −(xi∂ j+p−1 + x j+p−1∂i)
Li,k (1≤ i,k ≤ p−1) −(xi∂k− xk∂i)
L j+p−1,`+p−1 (1≤ j, `≤ q−1) x j+p−1∂`+p−1− x`+p−1∂ j+p−1

a S = x1∂1 + x2∂2 + . . .+ xp−1∂p−1 + xp∂p + . . .+ xp+q−2∂p+q−2 and ∂i =
∂

∂xi . (For p = 1 the
2nd, 4th, 6th and 7th rows of the Table are vacuous.)

3 The isomorphism d̃(so(p,q))'Dp+q−2,1(R)

We use the table to construct an isomorphism between dp+q−2,1(R) and an alge-
braic extension d̃(so(p,q)) of the Lie field d(so(p,q)) of so(p,q), the Lie algebra
of SO0(p,q). We start with Wp+q−2,1(R)'Wp+q−2⊗R[Y ] and let dp+q−2,1(R) be
its quotient field. Based on the results of the table, we define p+ q− 2 translation
generators and p+q−2 position operators as follows:

Pi :=−1
2
(L0,i +Li,q+p−1), (6)

Qi :=

{
p+q−2

∑
k=1

Li,kPk +(L0,q+p−1−Y )Pi

}
2−1 , (7)

where i takes values from 1 to p+q−2, Y commutes with the Li j and

2= P2
1 +P2

2 + . . .+P2
p−1−P2

p−P2
p+1− . . .−P2

p+q−2 . (8)
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The quadratic Casimir operator of SO0(p,q) is C2 =
1
2 ∑

p+q−1
i, j=0 Li j L ji. The real Lie

algebra so(p,q) has a natural involutive automorphism given by L†
i j = −Li j which

extends to an involution on the whole Lie field d(so(p,q)).

Theorem 1. Let Y be such that C2 = {Y (Y − (p+ q− 2)} · I. Then the Pi and Q j
satisfy

[Pi,Q j] = δi j, [Pi,P j] = 0, [Qi,Q j] = 0 . (9)

Define τ such that τ(pi) = Pi, τ(qi) = Qi and τ(Y ) = Y . τ can be extended by lin-
earity to all of Dp+q+2,1(R) to give an isomorphism of Lie fields Dp+q+2,1(R) '
d̃(so(p,q)) where d̃(so(p,q)) is D(so(p,q))[Y ]/R[Y ] with R[Y ] being the maximal
ideal in D(so(p,q))[Y ] generated by the relation C2−{Y (Y − (p+q−2)} · I. Fur-
ther let Y satisfy

Y +Y † = (p+q−2)} · I ; (10)

then the Pi and Q j are skew-symmetric translation generators and symmetric posi-
tion operators, respectively.

The most difficult part of the proof is in establishing the commutativity of the
Qi defined by Eq. (7). It involves lengthy computations for which we do not have
sufficient space here, and the proof of the theorem will be published elsewhere. Note
that the part of the proof establishing that τ is an isomorphism follows easily from
the fact that Wp+q−2(R) is simple.

4 Applications

Let τ|Wp+q−2(R) denote the mapping τ restricted to Wp+q−2(R). Then τ|Wp+q−2(R)

gives an isomorphism from Wp+q−2(R) onto its image in d̃(so(p,q)) such that
τ(pi) = Pi and τ(q j) = Q j. In order to construct representations of Wp+q−2(R)
out of representations of U(so(p,q)) by using τ , we need the following lemma [2]:

Lemma 1. Suppose f : R −→ R1 is a ring homomorphism and Q is a left (resp.
right) quotient ring of R with respect to S. If f (s) is a unit in R1 for every s ∈ S, then
there exists a (unique) ring homomorphism g : Q−→ R1 which extends f .

( f (s) is a unit in R1 means that f (s) is both left and right invertible i.e.,
∃c ∈ R1(resp. b ∈ R1) such that c f (s) = IR1(resp. f (s)b = IR1).)) For us this means
that for a given representation dπ of U(so(p,q)), zero should lie in the resolvent set

of dπ(2). Since −2=−
p+q−2

∑
i=1

PiPi is the square of the mass operator, this implies

that the spectrum of the mass operator in the representation should be one-sided and
bounded from above or below by zero. Likely candidates for such representations
of so(p,q) are thus positive energy ones. Since positive energy representations of
a Lie algebra are associated with invariant cones of positivity in the Lie algebra,
we should consider so(p,q)’s which contain non-trivial invariant cones. A corollary
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of a well-known theorem of Kostant is the following: there exists a non-trivial in-
variant causal cone in a simple Lie algebra g if g is an hermitian symmetric Lie
algebra [10]. A list of simple hermitian symmetric Lie algebras is given in Hel-
gason [4]. They include: so(2,n)(n > 3), sp(n,R) and su(p,q) (p ≥ q ≥ 1). Since
so(2,1)' sp(1,R) and so(2,3)' sp(2,R), so(p,q)’s which are simple and hermi-
tian symmetric are so(2,1) and so(2,q) with q≥ 3.

The so(2,1) case is treated in detail in [9]. There we show that it is necessary
to go to the four-fold covering group of SO0(2,1) in order to find representations
which satisfy all of the conditions of Theorem 1 and also of Lemma 1, so that on
those representation spaces we obtain representations of W1(R) with the desired
symmetricity properties for the position and momentum operators.

We now describe some analogous results for so(2,q) (q ≥ 3) involving the rep-
resentations dπσ . Let V σ denote the representation space of the representation
dπσ (so(2,q)) introduced in Section 2. A study of the action of SO(2,q) on the
K = SO(2)× SO(q)-types shows that V σ is irreducible, except when p+ q even,
q > p = 2 and σ = (p+q−2)/2 = q/2 [7], [14]. If V σ is irreducible, then zero can-
not be in the resolvent set of dπσ (2), so we consider only V σ for which q > p = 2,
p+q even and σ = (p+q−2)/2 = q/2. For such σ , we have that V σ decomposes
into the direct sum of three irreducible SO0(2,q) invariant subspaces [7]:

V σ =V+⊕V 0⊕V−.

V+ and V− are positive and negative energy subspaces of V σ and V 0 is the tachy-
onic subpace (i.e., on V 0 the spectrum of the square of the mass operator is negative).
We claim that on V+ and V− all of the conditions of Theorem 1 and Lemma 1 are
satisfied, so that as in the so(2,1) case, we have on V+ and V− representations of
Wq(R) with skew-symmetric translation generators and symmetric position opera-
tors. To see this, we first verify the condition dπσ (Y +Y †) = dπσ (Y )+dπσ (Y )† =
(p + q− 2) · I. (dπσ (Y )† is the adjoint of the operator dπσ (Y ).) Now Y is de-
fined by C2 = −{Y (Y − (p+ q− 2)} · I and for the representation dπσ (so(2,q))
with σ = q/2, we have dπσ (C2) = q2/4 [14]. From this we obtain the equation
dπσ (Y 2−qY + q2

4 ) = 0 with solutions dπσ (Y ) = ± q
2 · I. So, in order to satisfy the

above condition on Y , we take dπσ (Y ) = + q
2 · I = dπσ (Y )†.

Finally we must show that on V+ and V− the spectrum for the mass operator
in dπ

q
2 (so(2,q)) does not include zero and is bounded from above and below by

zero, respectively. For simplicity, we consider the case of q = 4 which is completely
representative of the general case. For q = 4, we have K = SO(2)× SO(4) and the
decomposition of V σ=2 into K irreducibles is as follows. Working in the curved
parallelization, we introduce a basis of C∞ functions on M̄, called the K-finite basis.
Denote elements of this basis by |k`mn > with k, `,m and n all integers such that
k, `≥ 0 and −`≤ m≤ `. Let Hn,p = linear span all of |k`mn > with k+ `= p and
where n = p mod 2 must be satisfied [11]. Then V σ=2 =V+⊕V 0⊕V− with [11]

V+ = ∑
n>p

Hn,p, V 0 = ∑
|n|≤p

Hn,p, V− = ∑
n<−p

Hn,p.
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Since the spectrum of i∂τ , where ∂τ is the SO(2) generator, is n, we see that the
spectrum of i∂τ is strictly greater than one for V+ and strictly less than minus one for
V−. The desired conclusion follows from this along with fact that (ψ,dπσ (P0)ψ)≥
(ψ,dπσ (i∂τ),ψ) on V+ and (ψ,dπσ (P0)ψ) ≤ (ψ,dπσ (i∂τ)ψ) on V− [8] where
( ·, · ) is the inner product in the Hilbert space completion of C∞(M̄).
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Quantum isometry groups and Born reciprocity
in 3d gravity

Prince K. Osei

Abstract Born reciprocity (or semidualisation) is an algebraic operation defined us-
ing quantum group (Lie bialgebra) methods. It is shown that this map provides a
way of relating quantum groups that emerge in the application of the combinatorial
quantisation programme to the Chern-Simons formulation of 3d gravity. It leads to
the interpretation of the semiduality relation bewtween pairs of quantum groups aris-
ing from the same classical action as a physical equivalence of associated quantum
theories after a suitable exchange of position and momentum degrees of freedom.

1 Introduction

Gravity in three dimensions [8] has become a large research subject area as it pro-
vides a fertile testing ground for ideas about quantum gravity in the more physical
four dimensions. In particular, it provides a perfect setting for exploring the pro-
posed connection between quantum gravity and noncommutative geometry [10].
Noncommutative spacetime in 3d quantum gravity has been studied in different ap-
proaches, see for example [4, 12, 14, 16, 19, 31] and [30] for a recent account. Any
deformation of either the geometry into a noncommutative version or of the isome-
try group into a Hopf algebra are equivalent. Our focus here is to explore the role of
Hopf algebras as tools that one can easily use in this framework.

The first aim of this talk is to give an account of the various physical and mathe-
matical interpretations of Born reciprocity applied to Hopf algebras (Lie bialgebras)
in the context of 3d gravity [17, 25, 26]. It turns out that it provides an equivalence
relation between quantum groups that arise in the combinatorial quantisation of the
Chern-Simons formulation of 3d gravity.
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2 Classical 3d gravity and geometric structures

The solutions to Einstein equations in 3d are locally isometric to certain model
spacetimes which are completely determined by the signature of spacetime and the
sign (or vanishing) of the cosmological constant Λ . The isometry groups of these
model spacetimes are local isometries of 3d gravity. The structures of the corre-
sponding isometry groups Gλ for the various values of Λ are summarised in Table
1. The family of Lie algebras that arise as isometry Lie algebras in 3d gravity is

Table 1: Local isometry groups in 3d gravity.

Λ Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 ISO(3) = SU(2).<R3 ISO(2,1) = SU(1,1).<R3

Λ > 0 SO(4)∼= (SU(2)×SU(2))
Z2

SO(3,1)∼= SL(2,C)/Z2

Λ < 0 SO(3,1)∼= SL(2,C)
Z2

SO(2,2)∼= (SL(2,R)×SL(2,R))

Z2

denoted by gλ . The Lie bracket of gλ is

[Ja,Jb] = εabcJc, [Ja,Pb] = εabcPc, [Pa,Pb] = λεabcJc, (1)

where Ja, a = 0,1,2 are the generators of the Lie algebra g of so(3) or so(2,1) and
the metric ηab = ηab, is the Euclidean metric diag(1,1,1) or the Lorentzian metric
diag(1,−1,−1) with ε012 = ε012 = 1. The Lie algebra gλ admits a two-parameter
family of symmetric Ad-invariant bilinear non-degenerate forms [22, 23, 32]. The
most general such inner product is given by the linear combination

(·, ·)τ = α(·, ·)s +β (·, ·)t , (2)

in terms of two real parameters α,β . The form (2) is non-degenerate provided ττ̄ =
α2 − λβ 2 6= 0, where τ = α + θβ ∈ Rλ , θ 2 = λ and Rλ is a commutative ring
obtained from R2 with the usual addition and λ -dependent multiplication law [23].

3 Chern-Simons formulation of 3d gravity and combinatorial
quantisation

Our interest here is the Chern-Simons action with the most general inner product (2)
[5, 23, 24]. Consider a three 3d manifold M3 of the product topology R×Σ , where
Σ is an oriented two dimensional manifold, possibly with handles and punctures
(Physically, Σ represents ‘space’ and the puncture particles). The gauge field of
Chern-Simons theory is locally a one-form A on the spacetime with values in the
Lie algebra gλ . In terms of the generators Ja and Pa, it is given by A = ωaJa +eaPa,
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where ω = ωaJa is the spin connection on the frame bundle and the one-form ea as
a dreibein. The curvature of this connection combines the Riemann curvature R, the
torsion T and a cosmological term, see [23] for details.

The Chern-Simons action for the gauge field A is

Iτ(A) =
ˆ

M
(A∧dA)

τ
+

1
3
(A∧ [A,A])τ . (3)

The equations of motion which follow from the general action is the flatness condi-
tion for the Cartan connection,

F = dA+A∧A = 0. (4)

Integrating by parts and ignoring boundary terms, we identify the term proportional
to α as the usual Einstein-Hilbert action for 3d gravity with a cosmological constant
and the β term as a non-gravitational term dual to the gravitational one. One can
make contact with the physical constants of 3d gravity via the identification α =

1
16πG ,λ = −c2Λ , where G is Newton’s constant in 2+1 dimensions, c is the speed
of light and taken to be imaginary in the case of Euclidean signature.

The flatness condition (4) implies that the phase space of 3d gravity on M3 in the
Chern-Simons framework can be characterised by the space of flat Gλ -connections
on M3, modulo gauge transformations. Indeed, the phase space is the moduli space
of flat Gλ -connections on Σ equipped with the so called Atiyah-Bott symplectic
structure defined in terms of (2) [32]. The application of the combinatorial quanti-
sation programme to the Chern-Simons formulation of 3d gravity [1–3,7,20,21,28]
has provided a systematic way of studying the role of quantum groups and noncom-
mutative geometry in 3d quantum gravity. The starting and most crucial point of this
construction is a description of the Poisson structure on an extended classical phase
space in terms of a classical r-matrix (a solution of the classical Yang-Baxter equa-
tion(CYBE)) [9,15]. This description, originally formulated by Fock and Rosly [11],
requires that the r-matrix contain the information of the inner product used in defin-
ing the Chern-Simons action in a compatible way. More precisely, an r-matrix is
compatible with a Chern-Simons action if it satisfies the CYBE and if its symmetric
part is equal to the Casimir associated to the Ad-invariant, non-degenerate symmet-
ric bilinear form (2) used in defining the Chern-Simons action. These r-matrices are
also known to be the classical limit of universal quantum R-matrices associated to
certain quantum groups [29]. These quantum groups are deformations of the classi-
cal isometry groups and thus natural candidates for the quantum isometry groups of
3d quantum gravity. Classical r-matrices therefore provide a bridge between Chern-
Simons theory and Hopf algebras allowing the Hopf algebras to emerge in a natural
way.

The resulting quantum picture is a deformation of the model spacetimes into
non-commutative spaces, a replacement of the local isometry groups with quantum
isometry groups (QIGs). Table 2 gives the list of relevant QIGs. Again, we refer
to the review [29] for a detailed discussion and further references on the precise
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Table 2: Quantum isometry groups in 3d gravity.

Λ Euclidean (c2 < 0) Lorentzian (c2 > 0)

Λ = 0 D(U(su(2))) D(U(su(1,1)))
Λ > 0 D(Uq(su(2))), q root of unity D(Uq(su(1,1))) q ∈ R
Λ < 0 D(Uq(su(2))), q ∈ R D(Uq(sl(2,R))), q ∈U(1)

description of the classical phase space, the construction of the physical Hilbert
space and the role of the QIGs.

The compatibility requirement of Fock and Rosly’s described above does not
uniquely specify the classical r-matrices. Other solutions are possible and known. If
one takes the relevant Casimir operator for the ‘gravitational’ bilinear form α(·, ·)s
Kt = α−1(Ja⊗Pa +Pa⊗ Ja), it is known that [22, 28], the class of compatible r-
matrices whose associated quantum groups are displayed in Table 2 (except for the
case Λ > 0) is given by

rD = 2α
−1(Pa⊗ Ja + εabcnaJb⊗ Jc), nana =−λ . (5)

This equips the Lie algebra gλ with the structure of the classical double or double
cross sum. However, in the Lorentzian case with vanishing cosmological constant
for example, besides the double r-matrix which comes from the family (5), there is
also the r-matrix [22, 23],

rB0 = 2α
−1
(

1
2
(Pa⊗ Ja + Ja⊗Pa)+ εabcma(Pb⊗ Jc + Jb⊗Pc)

)
, m2 =−1.

(6)
This endows the Lie algebra g with a bicross sum structure. The associated quantum
group for the double r-matrix in this case is the quantum double D(U(su(1,1)))
while that of (6) is the bicrossproduct or κ-Poincaré quantum group

C[AN(2)]I/sU(sl(2,R)).

Consequently for each classical r-matrix which satisfies Fock-Rosly compatibil-
ity requirement, the associated quantum group is an equally valid candidate and,
therefore, the associated quantum groups are equally valid contenders for the role
of quantum isometry groups. For a detailed and general construction of the most
general r-matrix compatible with the generalised Casimir Kτ associated to the inner
product (2), we refer the reader to a forthcoming paper [27].

The big picture here is to understand the set of all possible QIGs which arise in
in 3d gravity via the combinatorial quantisation procedure and how they are math-
ematically and physically related. A key observation made in [25] is that the class
of compatible r-matrices are related by twisting. The combinatorial quantisation
procedure can therefore be viewed as defining an equivalence class of QIGs, with
equivalence essentially given by twisting.
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4 Born reciprocity in 3d gravity

A profound feature of the quantum groups in the family of quantum doubles and
bicrossproduct quantum groups associated with 3d quantum gravity turns out to
be related by a map called semidualisation or Born reciprocity. In physical terms,
this map can be interpreted as the exchange of position and momentum degrees
of freedom. This was discovered in [17] in the Euclidean setting and elaborated and
extended to the Lorentzian setting in [25]. It was also studied at the infinitesimal Lie
bialgebra level in [26]. A mathematically precise version of these ideas is contained
in the book [15]. Majid’s approach is in turn stimulated by Born’s proposal of a
reciprocity between momenta and positions [6].

Consider a Hopf algebra H which factorizes into two sub-Hopf algebras built
on H1⊗H2 as a vector space and viewed as a double crossproduct Hopf algebra
H1./H2. This induced the actions . : H2⊗H1 → H1 and / : H2⊗H1 → H2 of
each Hopf algebra on the vector space of the other. We say that one has a matched
pair of interacting Hopf algebras. On the other hand, given such a matched pair
(H1,H2), one can reconstruct the associated double crossproduct H1./H2 from these
actions. There is a canonical covariant left action of H1./H2 on H∗2 (the dual of H2)
as an algebra. The Drinfeld quantum double D(H) = H./H∗op can be seen as an ex-
ample of a double crossproduct. The semidual of the associated matched pair data
is obtained by dualising the data containing H2 to give the bicrossproduct Hopf al-
gebra H∗2I/H1 which covariantly acts on H2 from the right as an algebra. Again, we
refer to the book [15] for a comprehensive treatment. Observe that both the quantum
double and the bicrossproduct quantum group can be obtained by semidualising two
different sets of matched pair data resulting from factors of the same Hopf algebra.

Physically, for a quantum group built from factors (in our context momentum
and rotations) acting on some space (position space), the semidual of the data can
then thought of as a map which exchanges the position and momentum degrees of
freedom. For example, in the semidual of the universal enveloping algebra of the
Euclidean Lie algebra U(su(2)).<R3, one keeps the angular momentum generators
and replaces momenta (which generate translations in space) by position coordinates
(which generate translations in momentum space) to obtain the bicrossproduct Hopf
algebra (R∗)3>/U(su(2)). Another interpretation of semiduality at the Hopf alge-
bra level is to interpret both the original and the semidual generators in the same
way, but to think of semiduality as a map between different regimes.

Consider now Table 3 which provides a list of the local isometry groups aris-
ing in 3d gravity with some corresponding matched pairs of right crossproducts
or double crossproducts. In Table 4 we list the corresponding semiduals of the
universal enveloping algebras of the Lie algebras for the groups and factorisa-
tion given in Table 3. For example, in the Lorentzian case and with λ > 0, semi-
dualisation of U(sl(2,R).<U(sl(2,R)) gives the quantum double D(U(sl(2,R)))=
C(SL(2,R))>/U(sl(2,R)). The notation I/s, I/l and I/t for the left-right bi-
crossproducts with spacelike, lightlike and timelike deformations respectively. We
refer to [25] for further details.
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Table 3: Local isometry groups in 3d gravity and their factorisations.

Euclidean (c2 < 0) Lorentzian (c2 > 0)

λ = 0 Ẽ3 = SU(2).<R3 P̃3 =

{
SL(2,R).<R3

SL(2,R)./lAN(2)

λ > 0 S̃O(4) = SU(2).<SU(2) S̃O(2,2) =
{

SL(2,R).<SL(2,R)
SL(2,R)./sAN(2)

λ < 0 SL(2,C) = SU(2)./AN(2) SL(2,C) = SL(2,R)./t AN(2)

Table 4: Semiduals of local isometry groups in 3d gravity.

Euclidean (c2 < 0) Lorentzian (c2 > 0)

λ = 0 (R∗)3>/U(su(2)) (R∗)3>/U(sl(2,R))
C(AN(2))I/lU(sl(2,R))

λ > 0 D(U(su(2))) D(U(sl(2,R)))
C(AN(2))I/sU(sl(2,R))

λ < 0 C(AN(2))I/U(su(2)) C(AN(2))I/tU(sl(2,R))

Semidualisation is defined for Lie bialgebras which are double cross sums g ./m,
where m,g are Lie bialgebras with m being a left g-module Lie algebra and g a
right m-module Lie coalgebra obeying certain compatibility conditions. In the semi-
dual Lie bialgebra, the Lie bialgebra m is replaced by its m∗ and leads to the bicross
sum m∗I/g. At this infinitesimal Lie bialgebra level, the interpretation of semid-
ualisation is essentially the exchange of degrees of freedom discussed above. The
bicross sum m∗I/g is coboundary and its classical r-matrix can easily be obtained.
We refer to [15] for details.

The application to double cross sum decompositions of the local isometry Lie
algebras arising in 3d gravity, semidualisation yields the main class of non-trivial r-
matrices for the Euclidean and Poincaré group in three dimensions. In addition, the
construction links the r-matrices with the Bianchi classification of three dimensional
real Lie algebras [26].

5 Conclusion and prospects

It remains a substantial and significant challenge to flush out the detailed picture
sketched here and to clarify the quantisation ambiguities in the application of the
combinatorial quantisation procedure. A starting point would be to understand the
structure of all possible QIGs that can arise in this construction and how they are
related. To the best of our knowledge, the quantum groups that emerge are either
quantum doubles or bicrossproducts and these semiduals of one another. Thus pre-
cise relation between any pair of quantum groups associated to the same action (and
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thus to the same set of physical parameters) is provided by Born reciprocity. One
could therefore give the interpretation that semiduality relations between different
quantum groups can generally be interpreted as a physical equivalence of associated
quantum theories after a suitable exchange of position and momentum degrees of
freedom. It turns out that in the context of 3d gravity, the bicrossproduct quantum
group and the quantum double are indeed mathematically related by a Drinfel’d
twist [18]. Thus, the combinatorial quantisation procedure does not define the QIGs
uniquely but rather, it defines an equivalence class of quantum groups, with equiv-
alence essentially given by Drinfel’d and module algebra twist. We refer to a forth
coming paper [18] for further details.

Note also that in the application of semiduality to the local isometry groups, we
start off with match pairs whose factorisation depends on the cosmological con-
stant. However, after semidualisation the cosmological constant becomes a defor-
mation parameter which is related to Planck mass. This leads to the interpretation of
semiduality as the exchange of the cosmological length scale and the Planck mass
in the context of 3d quantum gravity. In order to see the cosmological constant in
the semidual regime, one has to q-deform the universal enveloping algebras of the
isometry Lie algebras before applying the Born reciprocity map. We refer to [17,25]
for details. At the infinithesimal Lie bialgebra level, it is conceivable that the semi-
duality could be used to classify of 6-dimensional Lie algebras.

Acknowledgements I thank the Perimeter Institute and the Fields Institute for funding this re-
search. I am also grateful to the University of Ghana for their support.
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A new procedure for constructing basis vectors
of irreducible representations of SU(3) under the
SU(3)⊃SO(3) basis

Feng Pan, K. D. Launey, and J. P. Draayer

Abstract An effective algebraic angular momentum projection procedure for con-
structing basis vectors of an irreducible representation of the Lie group SU(3) under
the non-canonical SU(3)⊃SO(3)⊃SO(2) basis from those of the canonical U(3)⊃
U(2)⊃U(1) basis is outlined. The expansion coefficients are components of the null-
space vectors of a projection matrix with, in general, four nonzero elements in each
row, where the projection matrix is derived from known matrix elements of the U(3)
generators in the canonical basis. The advantage of the new procedure lies in the
fact that the Hill-Wheeler integral involved in Elliott’s projection operator method
used previously is avoided, thereby achieving faster numerical calculations with im-
proved accuracy. However, the Gram-Schmidt orthonormalization is still needed in
order to provide orthonormalized basis vectors.

1 Introduction

The non-canonical group chain SU(3)⊃ SO(3)⊃ SO(2) has been useful in nuclear
shell-model calculations since the pioneering work of Elliott [1, 2]. In
Elliott’s model, the essential rotational features of the Bohr-Mottelson collective
model can be well reproduced in a shell-model framework by introducing the
quadrupole-quadrupole interaction within a three-dimensional harmonic oscilla-
tor mean-field [1, 2], where the quadrupole operators are generators of SU(3),
while the angular momentum operators are generators of its subgroup SO(3). The
SU(3)⊃SO(3) basis has been adopted in many studies due to its importance [4–6].
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SU(3) and other unitary groups are also useful in quantum interferometry [3]. In
both nuclear shell-model calculations and quantum interferometry, the dimension
of an irreducible representation (irrep) of SU(3) can be huge and may approach the
classical asymptotic limits. In [1, 2], the basis vectors of SU(3)⊃SO(3)⊃SO(2) are
projected from a specific (extremal) SU(3)⊃SU(2)⊗U(1) state by using the angu-
lar momentum projection, which are often called the Elliott states [7]. Based on
these studies, the practical algorithm for calculating various coupling coefficients
of SU(3), including those of SU(3)⊃SO(3), has been formulated [8]. An optimized
code for generating Clebsch-Gordan (CG) coefficients of SU(3)⊃SO(3) based on
vector coherent state theory [9] has also been developed [10]. In the above men-
tioned codes, the original Elliott-Harvey angular momentum projection is adopted.
The main complexities in practical calculations are two-fold. One of them lies in
the fact that these calculations use a projection operator constructed by integration
of the product of the rotational group element and its matrix element (Wigner’s D-
function) of a given angular momentum over the Euler angles. While the projection
formalism can be straightforwardly implemented in computer codes, it needs to ad-
dress challenges related to the accuracy and computing time for evaluating coupling
coefficients of SU(3)⊃SO(3), because of the use of the Hill-Wheeler integral [11].
The other difficulty is related to the fact that the Elliott states are non-orthogonal,
and to calculate overlaps of the Elliott states needed in many cases is also time
consuming.

Very recently, we proposed a simple and effective angular momentum projec-
tion procedure [12] to construct the non-canonical O(5)⊃O(3) basis vectors of an
irrep from the basis vectors of O(5)⊃O1(3)⊗U(1). We observe that the canonical
U(3)⊃U(2)⊃U(1) basis plays a similar role of U(5)⊃U(3)⊗U(2) used to construct
the basis vectors of an irrep of O(5)⊃O(3). Thus, it should also be possible to con-
struct SU(3)⊃SO(3)⊃SO(2) basis vectors of an irrep directly from those of the irrep
under the U(3)⊃U(2)⊃U(1) basis with a similar simpler algebraic formalism.

2 Canonical and non-canonical bases of SU(3)

The generators of U(N) can be denoted by {Ei j} (1 ≤ i, j ≤ N) satisfying the fol-
lowing commutation and Hermitian conjugation relations:

[Ei j, Elk] = δ jlEik−δikEl j, (Ei j)
† = E ji. (1)

There is an obvious subgroup U(N-1) of U(N) generated by {Ei j} (1≤ i, j≤N−1).
Thus, one gets the canonical chain of U(N) with U(N)⊃U(N-1)⊃ ·· · ⊃U(2)⊃U(1),
for which basis vectors of an irrep were constructed first by Gel’fand and Zetlin [13],
and then discussed by many others in various ways [14]. The reduction U(N)↓U(N-1)
for any N≥ 2 is multiplicity-free. By removing the first order algebraic invariant
(Casimir operator), C1(U(N)) = ∑

N
i=1 Eii, which is obviously commutative with all

generators {Ei j} (1 ≤ i, j ≤ N) of U(N), the remaining N2 − 1 generators gen-
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erate SU(N). Let [ν1,ν2, . . . ,νN ], where ν1,ν2, . . . ,νN are positive integers obey-
ing ν1 ≥ ν2 ≥ . . . ≥ νN , be an irrep of U(N). It is well known that an irrep
[ν1 +m,ν2 +m, . . . ,νN +m], where m≥−νN is an integer, and [ν1,ν2, . . . ,νN ] have
the same dimension and the representation matrices of any element of U(N) for
these two irreps differ only by an overall phase factor. Therefore, for the SU(3)
case, an irrep can be denoted by [n′13,n

′
23,n

′
33]≡ [n13 = n′13−n′33,n23 = n′23−n′33,0],

where [n′13,n
′
23,n

′
33] is used to label the corresponding irrep of U(3), where ni3 are

zero or integers obeying the betweenness condition n13 ≥ n23 ≥ 0. Incidentally,
for the (λ ,µ) labels of an SU(3) irrep used in the Elliott model, the relation is
(λ ,µ) = (n13− n23,n23) = (n′13− n′23,n

′
23− n′33). Therefore, the irrep denoted as

[n13, n23] of SU(3) is also the irrep [n13, n23,0] of U(3). The general (canonical)
basis vectors of the irrep [n13,n23,n33] of U(3) under the basis U(3)⊃U(2)⊃U(1)
may be denoted by [13], ∣∣∣∣∣∣

[n13,n23,n33]
[n12, n22]

n11

〉
, (2)

with the betweenness conditions: n13 ≥ n12 ≥ n23 ≥ n22 ≥ n33, n12 ≥ n11 ≥ n22.
The matrix representations of U(N) in the canonical basis are well-known [13].

It can be observed that the matrix elements of the generators {Ei j} (1≤ i, j≤ 3) are
all given in functions of two-number differences among the six quantum numbers
ni j (1≤ i≤ j ≤ 3) satisfying the betweenness conditions of (2). One can check that
there is an exact correspondence between the basis vectors of U(3)⊃U(2)⊃U(1):∣∣∣∣∣∣

[n13,n23,n33]
[n12, n22]

n11

〉
=

∣∣∣∣∣∣
[n13−n33, n23−n33, 0]
[n12−n33, n22−n33]

n11−n33

〉
, (3)

under which the matrix representations of U(3) are the same.
After a linear transformation, the generators of SU(3) can also be expressed in

its non-canonical basis, i.e., in the SU(3)⊃SO(3) basis, with generators given by

L0 = E11−E22, L+ =
√

2(E13 +E32), L− = (L+)
† =
√

2(E31 +E23),

Q2 = E12, Q1 =
√

1
2 (E32−E13), Q0 =

√
1
6 (E11 +E22−2E33),

Q−1 =−(Q1)
† =

√
1
2 (E31−E23), Q−2 = (Q2)

† = E21, (4)

where {L+,L−,L0} are generators of the subgroup SO(3), which may be identified
as the angular momentum operators satisfying the usual commutation relations:

[L0, L±] =±L±, [L+, L−] = 2L0, (5)

and Qu (u = 2,1, . . . ,−2) are quadrupole (moment) operators realized in the Elliott
model for nuclei.



290 Feng Pan, K. D. Launey, and J. P. Draayer

3 Basis vectors of an irrep of SU(3) under the SU(3)⊃SO(3) basis

The basis vector (2) is also an eigenstate of L0 with eigenvalue M = 2n11−n12−n22.
For a given irrep [n13,n23,0] of U(3) [or SU(3)], all possible basis vectors of it under
the U(3)⊃U(2)⊃U(1) basis shown in (2) restricted by the betweenness conditions
form a complete set. Therefore, the SU(3)⊃SO(3)⊃SO(2) basis vectors can be ex-
panded in terms of the basis vectors of U(3)⊃U(2)⊃U(1) with the restriction on the
SO(2) quantum number M = 2n11− n12− n22. In order to find all basis vectors of
U(3)⊃U(2)⊃U(1) of the irrep [n13,n23] of SU(3) with fixed M, it suffices to consider
all possible irreps [n12,n22] of U(2) embedded in the canonical chain satisfying the
betweenness conditions of (2) for this case. Practically, we only need to construct
the highest weight state of SO(3) with M = L.

According to the restriction M = 2n11−n12−n22 and the betweenness conditions
of (2), we find that all possible basis vectors within the U(3) irrep [n13,n23,0] and
with M = k ≥ 0 are given as follows:∣∣∣∣∣∣

[n13,n23,0]
[k+2q− t, t]

k+q

〉
, (6)

where
0≤ k ≤ n13, 0≤ t ≤ n23,

Max
[
t, IntM[ 1

2 (t− k+n23)]
]
≤ q≤ Int[ 1

2 (n13− k+ t)],
(7)

in which Int[x] is the integer part of x, and IntM[x] is the largest integer closest to x
defined by

IntM[x] =
{

Int[x]+1 if x− Int[x]> 0,
Int[x] if x− Int[x] = 0. (8)

The basis vector of SU(3)⊃SO(3)⊃SO(2) for the SO(3) highest-weight state may
be expanded in terms of (6) as

∣∣∣∣ [n13,n23]
ζ L = M = k

〉
=

n23

∑
t=0

Int[ 1
2 (n13−k+t)]

∑
q=Max[t,IntM[ 1

2 (t−k+n23)]]

c(ζ )qt ([n13,n23,0],L)

∣∣∣∣∣∣
[n13,n23,0]
[k+2q− t, t]

k+q

〉
, (9)

where L is the angular momentum quantum number, ζ is the multiplicity label
needed in the reduction [n13,n23] ↓ L, and {c(ζ )qt ≡ c(ζ )qt ([n13,n23,0],L)} are the ex-
pansion coefficients, which must satisfy√

1
2

L+

∣∣∣∣ [n13,n23]
ζ L = M = k

〉
= (E13 +E32)

∣∣∣∣ [n13,n23]
ζ L = M = k

〉
= 0. (10)

By using the explicit matrix elements shown in [13], Eq. (10) can be written as√
1
2 L+

∣∣∣∣ [n13,n23]
ζ L = M = k

〉
=
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= ∑ t, q

{
c(ζ )q, t

[
(k+q−t+1)(n13−k−2q+t)(k+2q−t−n23+1)(k+2q−t+2)

(k+2q−2t+1)(k+2q−2t+2)

] 1
2
+

+c(ζ )q+1, t

[
(q−t+1)(n13−k−2q+t−1)(k+2q−t−n23+2)(k+2q−t+3)

(k+2q−2t+2)(k+2q−2t+3)

] 1
2
+

+c(ζ )q+1, t+1

[
(k+q−t+1)(n13−t+1)(n23−t)(t+1)

(k+2q−2t+1)(k+2q−2t+2)

] 1
2 − (11)

− c(ζ )q, t−1

[
(q−t+1)(n13−t+2)(n23−t+1)t
(k+2q−2t+2)(k+2q−2t+3)

] 1
2
}∣∣∣∣∣∣

[n13,n23,0]
[k+2q− t +1, t]

k+q+1

〉
= 0,

which, thus, leads to the following four-term relation to determine the expansion
coefficients {c(ζ )q,t }:

0 = c(ζ )q, t

[
(k+q−t+1)(n13−k−2q+t)(k+2q−t−n23+1)(k+2q−t+2)

k+2q−2t+1

] 1
2
+

+c(ζ )q+1, t

[
(q−t+1)(n13−k−2q+t−1)(k+2q−t−n23+2)(k+2q−t+3)

k+2q−2t+3

] 1
2
+ (12)

+c(ζ )q+1, t+1

[
(k+q−t+1)(n13−t+1)(n23−t)(t+1)

k+2q−2t+1

] 1
2−c(ζ )q, t−1

[
(q−t+1)(n13−t+2)(n23−t+1)t

k+2q−2t+3

] 1
2
.

One can thus construct a matrix equation of (12) with

P([n13,n23],k)c(ζ ) = Λc(ζ ), (13)

where c(ζ ) ≡ c(ζ )([n13,n23],k). Entries of the matrix P([n13,n23],k) can easily be
read from Eq. (12), which will be called the projection matrix. The components
of the eigenvector c(ζ ) corresponding to Λ = 0 provide the expansion coefficients
{c(ζ )q,t } of (9). Once the matrix P([n13,n23],k) is constructed, it can be verified that
the number of Λ = 0 solutions of Eq. (13) for sufficiently large n13 equals exactly to
the number of rows of P([n13,n23],k) with all entries zero. However, some entries
of P([n13,n23],k) will be zero or become complex for some specific values of n13

and n23. In such cases, a nonzero solution of {c(ζ )q,t ([n13,n23],k)} does not exist. Ac-
tually, the eigenvectors c(ζ )([n13,n23],k) belong to the null space of P([n13,n23],k).
Namely, components of the ζ -th vector in the null space of P([n13,n23],k) deter-
mined by (13) are the corresponding expansion coefficients c(ζ )([n13,n23],k) of the
basis vector of SU(3)⊃SO(3)⊃SO(2) with L = k in terms of the basis vectors of
the canonical chain of U(3) needed in (9). Since there are many ways currently
available to find null-space vectors of a matrix, to find solutions of Eq. (13) with
Λ = 0 becomes practically easy. Furthermore, the SU(3)⊃SO(3)⊃SO(2) basis vec-
tors (9) constructed from the expansion coefficients obtained according to (12) are
also non-orthogonal with respect to the multiplicity label ζ . The Gram-Schmidt
process may be adopted in order to construct orthonormalized basis vectors of
SU(3)⊃SO(3)⊃SO(2). Thus, the multiplicity of L = k for the given irrep [n13,n23]
is given by the number of linearly independent null space vectors of P([n13,n23],k).
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4 Summary

In this paper, an effective angular momentum projection to construct basis vectors
of an irrep of SU(3) under the SU(3)⊃SO(3)⊃SO(2) basis from those of the canon-
ical U(3)⊃U(2)⊃ U(1) basis is outlined. We show that the expansion coefficients
can be obtained as components of the null-space vectors of a projection matrix, for
which, in general, there are only four nonzero elements in each row. There are cur-
rently available well-optimized algorithms for computing the null-space vectors of a
matrix. Hence, to evaluate the expansion coefficients for the SU(3)⊃SO(3)⊃SO(2)
basis in terms of the basis of the canonical chain becomes more practical than
Elliott’s projection operator method. Since the expansion coefficients are compo-
nents of null-space vectors of the projection matrix, there is always arbitrariness in
choosing these vectors [12]. Therefore, the null-space vectors are not orthogonal
in general. The Gram-Schmidt orthonormalization is still needed in order to ob-
tain orthonormalized basis vectors. It will be our next work to compile a code for
calculating SO(3)-reduced matrix elements of the SU(3) generators and coupling
coefficients of SU(3)⊃SO(3) according to the new projection method proposed in
this paper. We can then check the runtime and compare it with other existing codes
using Elliott’s projection operator method, from which the efficiency of the new
method can then be actually revealed.
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Massive Dirac field in 3D and induced equations
for higher spin fields

L. Bonora, M. Cvitan, P. Dominis Prester, S. Giaccari, B. Lima de Souza
and T. Štemberga

Abstract On the example of the free massive Dirac in flat three-dimensional space-
time, we show how the linearised equations of motion for higher spin fields can be
obtained from the induced action by coupling higher spin fields to conserved cur-
rents. The result is important because a classical analysis leads to many different
formulations of free higher spin equations, and not all of them are expected to be a
good starting point for introduction of interactions. Our result breaks the degener-
acy. We express the results by using a metric-like description for higher spin fields,
in which the equations of motion can be elegantly written in generic form that is
valid for all spins.
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1 Introduction

Constructing interacting QFT’s with fundamental massless higher spin (HS) fields
(with spin s > 2) in D ≥ 4 spacetime dimensions presents an interesting challenge.
On the one hand, we know how to construct free QFT’s with such fields, and we
know that free QFT’s of lower-spin fields contain conserved HS currents which
simply beg to be coupled with corresponding HS fields. On the other hand, there
are obstacles and stringent constraints, some of them in the form of no-go theo-
rems, which, however, can be by-passed, e.g., by going to (A)dS spacetime or us-
ing higher-derivative couplings. Knowing that lower integer spin cases describe the
known fundamental forces (s = 1 electroweak and strong, and s = 2 gravitation) the
challenge could be of utmost importance.

The uncertainty about how to couple the HS field ϕ to matter fields ψ (fields
with s < 2) already starts from the choice of the equation of motion (EOM) for free
HS fields. The standard approach, which is a straightforward generalisation of the
lower spin cases, is Fronsdal’s formulation [1] in which free spin-s higher spin field
ϕµ1···µs(x) is the symmetric rank-s tensor satisfying the Fronsdal equation1

F ≡2ϕ−∂ ∂ ·ϕ +∂
2
ϕ
′ = 0 (1)

where prime on the HS field denotes a single trace (contraction of one pair of space-
time indices). The Fronsdal equation is invariant under the gauge transformations

δϕµ1···µs = s∂(µ1 Λµ2···µs) (2)

if Λ is traceless. In Fronsdal’s formulation the field ϕ propagates only free massless
spin-s excitations.

Let us also mention the Maxwell-like formulation in which the EOM is

M ≡2ϕ−∂ ∂ ·ϕ = 0 (3)

where gauge symmetry is constrained by the condition ∂ ·Λ = 0. In the Maxwell-
like formulation, the field ϕ propagates excitations of spins s,s−2,s−4, . . ..

Before starting to construct interacting theories with HS fields, one should take
the following observations, related to the linearised theory, into account. (i) We have
seen that in both formulations mentioned above, the gauge group is restricted, in the
sense that the gauge parameter field is constrained in some way. This happens in all
formulations of free HS fields with equations which are 2nd order in derivatives. As
restricting the gauge group is not something we like to do, because it usually leads
to problems after quantisation, it is more promising to formulate the free theory such
that it obeys the unconstrained gauge symmetry (2). In fact, one can achieve this by
introducing compensator fields in the equations of motion, but with the consequence
of making the equations either higher-order in derivatives, or nonlocal [2]. Eqs. (1)
and (3) can be recovered by gauge fixing. (ii) The spin 1 and 2 cases strongly suggest

1 We shall focus here on higher spin fields with integer spin.
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that the expressions may be complicated and in the form of infinite series, without
using a covariant formulation (which in the spin-2 case is the Riemann geometry).
We do not know the full covariant formulation, which reflects the fact that we do
not have a satisfactory understanding of the HS gauge structure. However, there is a
promising linearised covariant, metric-like, description developed in [3–5], which is
a rather straightforward generalisation of the spin 1 and 2 cases. Using the metric-
like description, the EOMs in Fronsdal’s and Maxwell-like formulations, with a
special choice for compensator fields α and D, can be written as [6]:

R′µs−2νs = 0 =⇒ F = ∂
3
α (4)

∂ ·Rµs−1νs = 0 =⇒ M = 2∂
2D, (5)

where R is the rank-2s tensor field, of s-th order in derivatives, known as a linearised
spin-s Riemann tensor. By taking the trace and gradient of the equations above, one
arrives at alternative formulations of free HS theories, adding to degeneracy [6]. (iii)
As we already noted, there are many different formulations of the free higher spin
field EOM, presumably not all giving a good starting point for introducing interac-
tions. For example, in the spin-2 case, Fronsdal equation (1) is the linearisation of
the equation Rµν = 0, so it is a better starting point than (3). We need a method, or
at least a hint, which we can use to make a correct choice. (iv) For spin s ≥ 2, one
can anticipate, based on the s = 2 example, that the full (nonlinear) gauge structure
is non-abelian. However, in the lowest order we expect that the coupling to matter
is accomplished by linearly coupling to the current in a way that does not introduce
spurious excitations, which typically means that the current should be conserved,
∂ · J = 0. This forces a condition on the linearised HS field EOM, which is not sat-
isfied by the metric-like EOM’s (4) and (5).2 In the spin-2 case, we know the way
out: instead of using Rµν = 0 as a free EOM, one should use Gµν = 0, where Gµν

is the linearised Einstein tensor, which is divergence-free at the linearised level. The
idea is to generalise this to HS fields.

In the rest of the paper we show how induced action may resolve these issues.

2 Induced action

The method we use is to couple HS fields, as background fields, to conserved HS
currents in free QFT with “normal” matter (spin 0 and 1), and calculate the quantum
effective action (i.e., the induced action) in the IR region. We assume that as is the
case for spins 1 and 2, all relevant structures of the HS theories, should appear in
the induced action. We performed calculations in d = 3 spacetime dimensions, but
we believe that the result can be straightforwardly generalised to d ≥ 4.

2 Candidates of HS EOM which allow linearised coupling to the matter were constructed in [7].
However, the construction is rather involved and leaves a lot of degeneracy.
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We shall demonstrate our method by using as a matter field two-component mas-
sive Dirac field ψ(x) in the flat three dimensional spacetime, which we assume to
be quantised. The free field Lagrangian is3

S0 =

ˆ
d3x ψ̄(x)(iγµ

∂µ −m)ψ(x). (6)

This theory possess conserved currents of any spin. They are given by (integer spins)

J(0)µ1···µs = is−1
ψ̄ γµ

[ s−1
2 ]

∑
j=0

(uµ − vµ)
s−2 j−1 (2wηµµ −4uµ vµ)

j

(2 j+1)!(s−2 j−1)!
ψ (7)

where
uµ ≡

→
∂ µ , vµ ≡

←
∂ µ , w≡ uµ vµ −m2. (8)

For spin-1, one gets U(1) current, and for spin-2, the energy-momentum tensor.
The existence of the conserved currents suggests the possibility of coupling the

Dirac field to the background HS field. Our goal is to calculate a corresponding
effective (or induced) action and EOM for HS field. Now, we do not know the exact
way how to consistently construct such a coupling, but if we are interested only in
the linearised induced EOM (LIEOM), then it is given by4

〈〈J(s)µ1···µs(x)〉〉lin = i
ˆ

ddy〈0|T
{

J(s)µ1···µs(x)J
(s)
ν1···νs(y)

}
|0〉d.f. ϕν1···νs(y), (9)

where “d.f” denotes divergence-free part of the 2-point correlator. We have calcu-
lated this 2-point correlator, using dimensional regularisation, up to s = 10, and the
detailed results will be presented in [10].

3 Spin-3 case

The spin-3 current 2-point correlator was calculated in [8]. By using this result in
(9), one obtains in the IR region

〈〈Jµµµ(x)〉〉lin = |m|
[

∞

∑
r=0

ar

( 2

m2

)r
]

∂
α Fαµµµ

+
1
|m|

[
∞

∑
r=0

cr

( 2

m2

)r
]
(ηµµ2−∂µ ∂µ)∂

α Fαµ (10)

+m|m|
[

∞

∑
r=0

br

( 2

m2

)r
]

Gµµµ +
m
|m|

[
∞

∑
r=0

dr

( 2

m2

)r
]

Cµµµ ,

3 This theory is not parity invariant, as parity changes the sign of the mass term.
4 For even spins there are also “cosmological constant” contributions, which we ignore here.
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where ar, br, cr, dr are some numerical coefficients (which are all nonvanishing
for r = 0) and the symmetrisation in µ indices is understood. The tensor Fαµνρ is
obtained from the spin-3 Ricci tensors (tracings of spin-3 Riemann tensor)

Fαµνρ ≡ R′
α(µνρ)−

1
2

R′′
α(µ ηνρ) = ∂[α

(
F(µ]νρ)−

1
2
F(µ]ηνρ)

)
, (11)

and has the following properties:

∂
µ

∂
α Fαµνρ = 0 , Fα

ανρ = 0, (12)

which is prompting us to call it the spin-3 field strength tensor. The tensor Gµνρ is
the ”dual” of the Riemann tensor, while Cµνρ is the generalised Cotton tensor. Both
tensors are symmetric and divergence-free, and the Cotton tensor is also traceless.

The parity-even sector of (10), which consists of the first two terms, is 4th-order
and higher in derivatives, while the parity-odd sector, is 3rd-order and higher. Note
that the parity-odd sector now also contains two tensorially independent terms.

In the IR limit (lowest-derivative order) one gets

〈〈Jµνρ(x)〉〉linIR = a0 |m|∂ α Fαµνρ +b0 m|m|Gµνρ (13)

The form is similar to the spin-1 case, however, there are important differences some
of which we have already noted above. The parity even part has the structure of the
traced covariantised Maxwell-like formulation (5) (where replacing the Ricci tensor
R′αµνρ by Fαµνρ guarantees conservation). In the parity-odd sector, the leading term
is not the Cotton tensor, which in the spin 1 and 2 cases follows from a Chern-
Simons Lagrangian term, but the Gµνρ tensor which is not conformal. In the spin 1
and 3 cases, there is only one tensorially independent parity-odd term, which then
trivially must be the Cotton tensor.

4 General spin

We have calculated the HS current 2-point correlators up to s = 10, and full results
will be presented in [10]. There are [s/2]+1 independent tensorial structures in the
parity-even sector, and [(s+1)/2] in the parity-odd sector. The IR limit, in symbolic
notation, is given by

J̃(IR)µ1...µsν1...νs(k) = ias |m|2b
s
2c−1k2d s

2e(π2
µν −πµµ πνν)

b s
2cπs mod 2

µν

+bs m|m|2d s
2e−3k2d s−1

2 e(π2
µν −πµµ πνν)

b s−1
2 cπ(s−1) mod 2

µν (k · ε)
µν

where as and bs are some numerical coefficients. The first term is parity-even and
the second is parity-odd. We used the standard projector πµν(k)≡ ηµν − kµ kν/k2.

Plugging this into (9), and expressing the result in the metric-like formulation,
one gets for the IR limit of LIEOM
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〈〈Jµ1···µs〉〉linIR = as |m|s−2
∂

ν
ενρ(µ1 Gρ

µ2···µs)+bs m|m|s−2 Gµ1···µs (s odd) (14)

〈〈Jµ1···µs〉〉linIR = as |m|s−1 Gµ1···µs +bs m|m|s−3
∂

ν
ενρ(µ1 Gρ

µ2···µs) (s even) (15)

where Gµ1···µs is the symmetric divergence-free “dual” of the Riemann tensor

Gµ1···µs ≡ εµ1ν1ρ1 · · ·εµsνsρs Rν1ρ1···νsρs , ∂
µ1 Gµ1···µs = 0. (16)

We see that LIEOM, in the metric-like formulation, has the same form for all
spins, but that parity-odd and even sectors get interchanged when passing from odd
to even spins. The parity-even part for odd spins is similar to the (multiply traced)
Maxwell-like formulation (5), while for even spins, it is similar to the (multiply
traced) Ricci-like formulation (4). The conserved tensor G for even spins plays the
role of the Einstein tensor, while for odd spins it contributes to the parity-odd sector.

5 Conclusion and outlook

The idea we put forward is that induced action can be a useful tool for construct-
ing higher-spin actions. We have shown that by assuming a standard minimal linear
coupling of the background higher-spin field to the conserved current in a free QFT,
the induced action gives us the form of the linearised equations of motion for higher
spin fields, and thus resolves the degeneracy found in the literature. This suggests
that by going to higher order (i.e., higher-point correlators), one may gain an im-
portant understanding about the nonlinear higher-spin structure, or find anomalies
forbidding such couplings.
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Current algebra for a generalized two-sites
Bose-Hubbard model

Gilberto N. Santos Filho

Abstract I present a current algebra for a generalized two-sites Bose-Hubbard
model and use it to get the quantum dynamics of the currents. Different choices
of the Hamiltonian parameters yield different dynamics. The current algebra is iso-
morphic to the SO(3)-algebra of the angular momentum. Using the wave functions
I discuss the symmetries of the system. The Hamiltonian has one conserved quan-
tity, the total number of atoms N, that is related to its global U(1) gauge symmetry.
The Z2 symmetry is associated with the parity of the wave function and is related to
the parity of N. I generalize the Heisenberg equation of motion to write the second
time derivative of any operator.

1 Introduction

Since the first experimental verification of the Bose-Einstein condensation (BEC)
[1–3] occurred more than seven decades after its theoretical prediction [4, 5], a
great deal of progress has been made in the theoretical and experimental study of
this many-body physical phenomenon [6, 7]. Looking in this direction, a laser was
used in an experiment to divide a BEC into two parts to study the interference phe-
nomenon between two BECs [8,9]. These two BECs can be coupled by Josephson’s
tunnelling [10, 11] with atoms transiting between the condensates in the same way
Cooper’s pairs go through a Josephson junction in a superconductor. This system
is equivalent to a two-wells system with the particles tunnelling across a barrier
between the wells. To study this system a model, known as the canonical Joseph-
son Hamiltonian, was proposed by Leggett [7]. Since then many models have been
used to study the BECs such as the quantum dynamics of the tunnelling of atoms
between the two condensates, the entanglement, the quantum phase transitions and
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the quantum metrology [12–16]. The algebraic Bethe ansatz method has been used
to solve and study some of these models [17–22]. I will consider here a generalized
issue of the models [7, 20] by introducing on-well energies and leaving free choice
for the interaction parameters that also permits the study of the tunnelling between
two condensates with atoms of different species (different chemical elements) or
atoms in different states in each condensate. The on-well energies are determined as
the internal states of atoms in the condensates, by the kinetic energies and interac-
tion of the atoms and/or the external potentials. I will study in this work the current
algebra and the quantum dynamics of the currents for this model using a generaliza-
tion of the Heisenberg equation of motion that makes it possible to write the second
time derivative of the current operators. The generalized model is described by the
Hamiltonian

Ĥ =
2

∑
i, j=1

Ki jN̂iN̂ j−
2

∑
i=1

(Ui−µi)N̂i−
2

∑
i, j=1
i6= j

Ωi jâ
†
i â j, (1)

where â†
i (âi) denote the single-particle creation (annihilation) operators and N̂i =

â†
i âi are the corresponding boson number operators in each condensate. The boson

operator total number of particles, N̂ = N̂1 + N̂2, is a conserved quantity, [Ĥ, N̂] = 0.
The couplings Ki j, with Ki j = K ji (i 6= j), provides the interaction strength between
the bosons and they are proportional to the s-wave scattering length, Ωi j are the
amplitude of tunnelling, µi are the external potentials and Ui = Kii−κi are the on-
well energies per particle, with κi the kinetic energies in each condensate.

2 Symmetries

The Hamiltonian (1) is invariant under the Z2 mirror transformation â j→−â j, â
†
j→

−â†
j , and under the global U(1) gauge transformation â j → eiα â j, where α is an

arbitrary c-number and â†
j → e−iα â†

j , j = 1,2. For α = π , we get again the Z2

symmetry. The global U(1) gauge invariance is associated with the conservation of
the total number of atoms N̂ = N̂1 + N̂2 and the Z2 symmetry is associated with the
parity of the wave function by the relation P̂ |Ψ〉= (−1)N |Ψ〉, where P̂ is the parity
operator, [Ĥ, P̂] = 0, and

|Ψ〉=
N

∑
n=0

Cn,N−n
(â†

1)
n

√
n!

(â†
2)

N−n√
(N−n)!

|0,0〉. (2)

There is also the permutation symmetry of the atoms of the two wells if we have
U1−µ1 =U2−µ2 and Ω12 = Ω21. When we have U1−µ1 6=U2−µ2 or Ω12 6= Ω21
we break the symmetry. The wave function (2) is symmetric under this permutation
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P̂ |Ψ〉=
N

∑
n=0

CN−n,n
(â†

1)
N−n√

(N−n)!

(â†
2)

n
√

n!
|0,0〉= |Ψ〉, (3)

where P̂ is the permutation operator and [Ĥ,P̂] = 0 if ∆U = ∆ µ and Ω12 = Ω21.

3 Current algebra

The quantum dynamics of any operator Ô in the Heisenberg picture is determined
by the Heisenberg equation of motion

dÔ
dt

=
i
h̄
[Ĥ, Ô]. (4)

The boson operator total number of particles, N̂ = N̂1 + N̂2, is a conserved quan-
tity, [Ĥ, N̂] = 0, and it is commutable compatible operator (CCO) with the number
operators of bosons in each well, [N̂, N̂1] = [N̂, N̂2] = [N̂1, N̂2] = 0. These, in addi-
tion, do not commute with the Hamiltonian and their time evolution is determined
by the Josephson tunnelling current operator,

Ĵ =
1
2i
(â†

1â2− â†
2â1), (5)

in coherent opposite phases because of the conservancy of N̂, with

[Ĥ, N̂1] = +2iΩĴ , [Ĥ, N̂2] =−2iΩĴ , (6)

and

N̂1(t) = N̂1(t0)−2
Ω

h̄

ˆ t

t0
Ĵ (τ) dτ, N̂2(t) = N̂2(t0)+2

Ω

h̄

ˆ t

t0
Ĵ (τ) dτ. (7)

Hereafter and in the Eqs. (6) and (7) above, we will consider Ω12 = Ω21 = Ω .
The tunnelling current Ĵ together with the imbalance current operator

Î =
1
2
(N̂1− N̂2), (8)

and the coherent correlation tunnelling current operator

T̂ =
1
2
(â†

1â2 + â†
2â1), (9)

generate the current algebra

[T̂ ,Ĵ ] = +iÎ , [T̂ ,Î ] =−iĴ , [Ĵ ,Î ] = +iT̂ . (10)
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With the identification L̂x ≡ h̄T̂ , L̂y ≡ h̄Ĵ and L̂z ≡ h̄Î we can write it in the
standard compact way of the angular momentum

[L̂k, L̂l ] = ih̄εklmL̂m, (11)

where εklm is the antisymmetric Levi-Civita tensor with k, l,m= x,y,z and εxyz =+1.
We have two Casimir operators for this current algebra. One of them is the total

number of particles, Ĉ1 = N̂, related to the U(1) symmetry and the other is related
to the angular momentum algebra and the O(3) symmetry, Ĉ2 = T̂ 2 + Î 2 +Ĵ 2.

We can show that Ĉ2 is just a function of Ĉ1,

Ĉ2 =
Ĉ1

2

(
Ĉ1

2
+1

)
. (12)

The Casimir operators Ĉ1 and Ĉ2, the boson number of particles in each well N̂1,
N̂2, and the imbalance current operator, Î , are CCO and so they have the same set
of eigenfunctions and can simultaneously have well defined values

Ĉ2|n1,n2〉=
N
2

(
N
2
+1
)
|n1,n2〉 and Î |n1,n2〉=

1
2
(n1−n2) |n1,n2〉. (13)

We also can use the realization of the SU(2) algebra

L̂± =
1
h̄
(L̂x± iL̂y), L̂z =

1
h̄

L̂z, (14)

with the commutation relations

[L̂z,L̂±] =±L̂±, [L̂+,L̂−] = 2L̂z, (15)

that we can write as

[L̂k,L̂l ] = εkl−L̂++ εkl+L̂−+2εzklL̂z, (16)

with k, l = z,+,− and εz+− =+1.
The SU(2) algebra has three Casimr operators, Ĉ1, Ĉ3 and Ĉ4, with

Ĉ3 = L̂+L̂−+ L̂ 2
z − L̂z and Ĉ4 = L̂−L̂++ L̂ 2

z + L̂z. (17)

We can show that these Casimir operators are equal to Ĉ2. In the deformed SU(2)
and O(3) algebras they are different [23].

Using the commutation relations of the currents (10), it is easy to calculate the
anticommutators

[T̂ ,Î ]+ = 2Î T̂ − iĴ , [T̂ ,Ĵ ]+ = 2Ĵ T̂ + iÎ , [Ĵ ,Î ]+ = 2Î Ĵ + iT̂ .
(18)
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We will use these anticommutators together with the commutators (10) in calculat-
ing quantum dynamics of the currents.

4 Quantum dynamics of currents

We can rewrite the Hamiltonian (1) using those currents operators

Ĥ = αÎ 2 +β Ĉ1Î −2Ω T̂ +
Ĉ1

2

(
Ĉ1

2
ρ +ξ

)
, (19)

where
α = K11−2K12 +K22, β = K11−K22,

ρ = K11 +2K12 +K22, ξ = 2(µ1−U1).

The quantum dynamics of the currents (5), (8) and (9) is determined by the cur-
rent algebra, their commutation relations with the Hamiltonian and the parameters.
We can use the Heisenberg equation of motion (4) to write the second time deriva-
tive of any operator Ô in the Heisenberg picture as

d2Ô
dt2 =

(
i
h̄

)2

[Ĥ, [Ĥ, Ô]] or
d2Ô
dt2 =

i
h̄
[Ĥ,

dÔ
dt

]. (20)

Using any of the Eqs. (20), we found the following equations for the quantum
dynamics of the currents

d2Î

dt2 +4
Ω 2

h̄2 Î = −4
Ωα

h̄2 Î T̂ +2i
Ωα

h̄2 Ĵ −2
Ωβ

h̄2 Ĉ1T̂ , (21)

d2Ĵ

dt2 +
1
h̄2

[
α

2 +β
2Ĉ 2

1 +4Ω
2]Ĵ = −4

α2

h̄2 Î 2Ĵ −2i
α2

h̄2 Î T̂ −2
αβ

h̄2 Ĉ1Î Ĵ

− 4
αΩ

h̄2 Ĵ T̂ −2i
αβ

h̄2 Ĉ1T̂ −2i
αΩ

h̄2 Î , (22)

d2T̂

dt2 +
1
h̄2

(
α

2 +β
2Ĉ 2

1
)
T̂ = −4

α2

h̄2 Î Î T̂ +4i
α2

h̄2 Î Ĵ −4
αβ

h̄2 Ĉ1Î T̂

+ 2i
αβ

h̄2 Ĉ1Ĵ −4
Ωα

h̄2 (Î 2−Ĵ 2)

− 2
Ωβ

h̄2 Ĉ1Î . (23)
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5 Summary

I showed that a current algebra appears when we calculate the quantum dynamics of
the tunnelling of the atoms between two condensates. I generalized the Heisenberg
equation of motion to write the second time derivative of any operator. Then I cal-
culated the quantum dynamics of these currents and showed that different dynamics
appear when we consider different choices of the parameters of the Hamiltonian.
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The role of “escort fields” in the relation between
massless and massive vector (tensor) mesons

Bert Schroer

Abstract The relation between massive and massless vector potentials is reviewed
in light of recent progress concerning positivity-preserving renormalizable interac-
tions and the ensuing weakening of localization. One obtains new insights beyond
those which were extracted from the standard gauge theoretic setting.

1 Positivity preserving relation between massive potentials and
their massless counterpart

Since a systematic presentation of an ongoing new development in QFT within a
conference talk is hardly possible, the chosen alternative will be to present some of
the relevant new ideas by starting from a simple concrete observation and leaving
details to published papers [1] [9].

A massless point-local (pl) positivity-obeying vector potential does not exist1

but one may encode the unitary (m = 0,h = 1) Wigner representation into a unique
string-local (sl) covariant field which transforms under the Lorentz group as a
(1/2,1/2) vector potential. It acts in the same Wigner-Fock space

Bert Schroer
CBPF, Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brazil. Permanent address: Institut für
Theoretische Physik FU-Berlin, Arnimallee 14, 14195 Berlin, Germany.

1 A fact which probably was already known to Wigner since there exists no (1/2,1/2) spinorial
representation which corresponds to the unique (m = 0,h = 1) Wigner unitary representation [2].
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Aµ(x,e) =
ˆ

∞

0
dλFµν(x+λe)eν , Fµν := ∂µ AP

v −∂ν AP
µ (1)

〈
Aµ(x,e)Aν(x′,e′)

〉
=

1
(2π)3/2

ˆ
e−ip(x−x′)Mµν(p;e,e′)

d3 p
2p0

(2)

Mµν(p;e,e′) =−gµν +
pµ pν

p · eiε p · e′−iε
+

pµ eν

p · eiε
+

pν e′µ
p · e′−iε

where the denominators p · e±iε = limε→±0 p · e+ iε indicate that the Fourier trans-
form is the distribution valued boundary limit of the Heavyside function. Hence
the field fluctuates in the spacelike string direction e, e2 = −1 as it does in x, and
as a consequence coalescent string directions require using Wick-ordering just as
coinciding x′s.

This line integral leads to a well-defined operator-valued distribution in the mas-
sive as well as in the massless case. Although the associated Wigner representations
are inequivalent, the massive correlation functions pass smoothly to their massless
counterparts.

In fact in the massive case, one may start from a Proca potential and use the re-
sulting field strength for the construction of associated covariant sl potentials which
acts in the same Hilbert space and are relatively Einstein-causal, i.e., both potentials
are members of the same sl local equivalence (“Borchers”) class [4]. This construc-
tion suggests that there may be an interesting role to play for another this time scalar
sl field φ in this equivalence class,

φ(x,e) =
ˆ

∞

0
dλAP

ν(x+λe)eν (3)

Aµ(x,e) = AP
µ(x)+∂µ φ(x,e). (4)

Such massive covariant scalar sl fields appeared first as “theoretical toys” in [6];
later it became clear that they play an important role in a linear relation between
pl and sl potentials (4). Both vector potentials are one-forms which the Poincaré
Lemma associates to the Fµν two-form.

The proof uses the representation of free Proca potential in terms of an u intertwiner
functions [2]

AP
µ(x) =

1
(2π)3/2

ˆ
eipx

∑
s3

uµ,s3(p)a∗(p,s3)+h.c.

The φ and Aµ are linear combinations of the same s = 1 creation/annihilation oper-
ators and their intertwiners us3(p,e) uµ,s3(p,e) can be read off from the definition
of the two fields (3, 4). The last step is to verify that the intertwiner of Aµ agrees
with that obtained from (1). For reasons which will become clear later, the scalar sl
field φ will be referred to as an escort field.

There is a similar formula in gauge theory [8] in which φ is the scalar negative
metric pl Stueckelberg field whose two-point function differs from that of a scalar
pl free field by a minus sign. Instead of maintaining the degrees of freedom of the
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s = 1 Wigner representation, it increases them by adding unphysical s = 0 degrees
of freedom2. In the presence of interactions (e.g., “massive QED”) the BRST gauge
formalism requires a further increase in terms of ghost degrees of freedom.

It will be shown that the use of sl potentials permits staying with only physi-
cal degrees of freedom; or to use a metaphor, the string-local quantum field theory
(SLFT) is the result of applying Ockham’s razor to gauge theory. Considering the
historical origin of the standard pl formulation from Lagrangian quantization, we
are accustomed to consider sl fields as somewhat artificial objects which one may
introduce after the renormalized perturbation calculations of interacting pl fields
have been done, but which are not to be directly used in renormalized perturbation
theory. But this viewpoint ignores the conceptual autonomy of QFT; there is noth-
ing natural about that parallelism to classical field theory in the form of Lagrangian
quantization and the sl fields are certainly not “Euler-Lagrange”.

All massive free fields exist as pl fields and are uniquely fixed in terms of their
physical spin and their covariance3, but there are no positivity-obeying renormal-
ized interacting pl fields in case the interaction involves s ≥ 1 fields; such pl inter-
actions are only renormalizable in an indefinite metric setting. The use of positivity-
preserving sl fields as well as that of pl gauge fields leads to a lowering of short
distance dimensions but there is a huge physical difference. The sl fields achieve
this by relieving the dsd = s+ 1 pl fluctuations in x and allowing part of them to
convert into directional fluctuations (whereas in gauge theory this results from brute
force compensation of part of pl physical with unphysical degrees of freedom).

By repeated integrations along e, one can lower the dsd to zero [9], but we will
see that what one needs for renormalizable sl perturbation theory is dsd = 1. Gauge
theory achieves this by brute force compensation between part of the positive with
negative metric degrees of freedom at the price of losing the physical causal local-
ization (apart from local observables)

To obtain a wider conceptual orientation which does not refer to quantization, it
is helpful to take notice of a powerful theorem of algebraic QFT (AQFT) [11]. Re-
converting its physical content into the setting of covariant fields instead of Haag’s
LQP nets of operator algebras, it says that in a theory with local observables and
a mass gap, the superselected charge-carrying fields can always be assumed sl4.
These physical sl fields are the mediators (“interpolating fields”) between the ab-
stract causality principles of QFT and the observed world of particles.

The B-F theorem secures their existence in any theory with a mass gap. The
Hilbert space of such a theory has the form of a Wigner-Fock particle space (the
problem of asymptotic completeness does not exist in perturbation theory). As ex-
pected the theorem shows that all on-shell objects as particles and the S-matrix are
e-independent; the main purpose of lessening the tightness of point-like localization

2 This gauge theoretic version of (4) facilitates the understanding as to why in the passing to the
unitary gauge [9] one encounters polynomially unbounded pl matter fields.
3 Positivity obeying massless pl vector potentials and their tensorial counterparts do not exist.
4 The semi-infinite spacelike strings are the cores of causally closed spacelike cones as points of
pl fields are the cores of arbitrarily small causally closed double cones.
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is better control of the vacuum polarization clouds which are responsible for the
unbounded momentum space increase of pl s≥ 1 nonrenormalizable models.

The theorem does not reveal for which (positivity-maintaining) interactions one
is forced to use sl fields. Here renormalized perturbation theory leads to a clear
answer; pl fields must be used for interactions between s < 1 fields, whereas inter-
actions involving s ≥ 1 fields require using sl fields. Before commenting on inter-
actions, it is helpful to present properties that are rather direct consequences of the
above relations.

From the definition of the sl vector potential (1, 2), it follows that they have a
massless limit whereas AP

µ and φ (3, 4) have mass divergencies which mutually
compensate on the right-hand side of (4). The sl two-point function (2) contains
in addition to the Gupta-Bleuler (Feynman gauge) −gµν contribution rational in
p terms whose presence is the price for maintaining positivity while improving the
short distance behavior from dP

sd = 2 to 1. The massless sl potential is the unique
positivity maintaining covariant vector potential of Wigner’s unitary helicity h = 1
representation.

Saying that the massive s= 1 sl field converges to the massless helicity h= 1 field
does not mean that the operators converge but rather refers to the convergence of
the correlation functions. The operator representations remain unitarily inequivalent
but they can be reconstructed from the correlation function (the GNS reconstruction
[7]); for free fields one only needs the 2-point-function [4].

This is particularly important in the presence of interactions since only massive
s≥ 1 fields permit an operator formulation in a particle Wigner-Fock Hilbert space,
whereas the operator formulation of the massless limit has to be reconstructed from
the zero mass limits of the correlation functions. This is not a shortcoming of the
perturbative approach but rather reflects the fact that important parts of our under-
standing of interactions involving massless s ≥ 1 fields as infraparticles and con-
finement are still missing.

The Coulomb (radiation) potential is obtained from the sl potential by integrating
over the spacelike directions e within the t = 0 hypersurface; the result is the unique
rotation invariant vector potential. Note that both potentials live in the same Hilbert
space and cannot be related by a gauge transformation. Gauge symmetry and gauge-
related potentials only exist in a description with additional unphysical (indefinite
metric) degrees of freedom. Replacing in the degrees of freedom conserving sl escort
φ field in (4) by the scalar indefinite metric degrees of freedom-carrying Stueckel-
berg field one obtains instead of the physical sl potential the positivity-violating
scalar Gupta-Bleuler potential (the Feynman gauge) [8]. In the presence of interac-
tions, one has to introduce additional unphysical “ghost” degrees of freedom.

Massless s≥ 1 potentials share a curious topological property which has no mas-
sive counterpart; they violate Haag duality (HD) for multiply-connected localization
regions. HD is violated if there exists operators which commute with all operators
that are localized in the causal complement O ′ of a region O , but which fail to be
localized in O [7]. Such a violation is still consistent with Einstein causality (EC).
The simplest illustration is provided by a magnetic flux through a toroidal region
T (a thickend Wilson loop in terms of Aµ(x,e)) [11].
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The quantum field theoretical Aharonov-Bohm effect is closely related to this
phenomenon; in that case the torus is closed at spacelike conformal infinity [9].
The use of the pl indefinite metric potential does not permit distinguishing between
HD and EC because (in contrast to its field strength) it does not account for the
correct causal localization. The somewhat eerie feeling concerning the A-B effect
with respect to Einstein causality has its origin in that one’s heuristic understanding
is inclined to identify Haag duality with Einstein causality.

The deviation from physical localization increases in the presence of interactions
and there seems to be agreement that the more than 5 decades old problems of a
spacetime understanding of infrared and confinement phenomena (which depend on
the correct long distance localization of fields) cannot be understood in gauge theory.
Attempts to amend this in terms of using a different topology in state space [13] or
by recovering physical fields as formally gauge invariant composites [14] seem to
be no replacement for the positivity- and physical localization-preserving SLFT.

Another more tangible application of sl fields is related to the problem of mass-
less conserved currents. The simplest case is the conserved current of a complex
vector field Bν . The pl definition jµ = B∗ν

←→
∂µ Bν admits no massless limit but us-

ing the sl Bν(x,e) one obtains a conserved sl current jµ(x,e) with a well-defined
global charge. In the massive case, there are two conserved currents. The pl and
its sl counterpart lead to the same global charge. In the massless limit, only the sl
current survives.

This zero mass situation has a much richer analog for the conserved energy-
momentum tensor. In that case the problem with zero mass starts at s = 2 since
the s = 1 tensor can still be expressed in terms of the massless field strength. The
Weinberg-Witten No-Go theorem [15] excludes pl E-M tensors, however sl tensors
which lead to the same global charges continue to exist. Without going into details
[16], I mention the extension of (3) to arbitrary high spin s which leads to a linear
relation in which the derivative of s escort fields of tensor degree from zero to s−1
appear [1].

Fields such as the escort fields, which maintain the cardinality of degrees of
freedom (but whose introduction as separate entities is nevertheless necessary) are
quite common in quantum mechanical many-body problems when, as the possible
result of phase transitions, the basic degrees of freedom reorganize themselves and
change the physical properties.

An illustration5 is provided by the bosonic two-electron Cooper pairs in the mi-
croscopic BCS description of superconductivity which among other things account
for the short range nature of London’s screened (short range) vector potentials inside
a superconductor.

In QFT there is a smooth passage from massless photons described in terms of
a positivity obeying long range sl vector potential to a short range massive pl Proca
counterpart, but in order to achieve this, one needs the intervention of the scalar
sl escort φ . As will be seen in the next section, this is independent of what kind

5 For a rigorous illustration of such composites, see Haag’s presentation of the role of the Cooper
pairs in the BCS model [12]..
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of matter field one couples to the massive vector meson, be it complex spinor ψ ,
complex scalar ϕ , or scalar Hermitian H matter6. The escort fields play precisely
that role which in the metaphoric presentation of the Higgs mechanism (“fattening
of the photons by swallowing Goldstones”) is incorrectly attributed to the H.

The correct understanding of the “fattening” is very important because it clears
the head for its real raison d’être in models involving massive self-interacting vector
mesons.

2 Lowest order perturbation theory using sl s = 1 fields

The previous mainly kinematic observations would remain an academic exercise if
the escort fields were not to play an essential dynamic role in the renormalization
theory of interactions involving s≥ 1 fields. The simplest model which reveals this
role is “massive QED”. In this case the pl interaction density7 LP can be rewritten
with the help of (4) and the use of the current conservation as

LP = AP
µ jµ = L−∂

µVµ(x,e) with L = Aµ(x,e) jµ(x), Vµ := φ(x,e) jµ (5)
de(L−∂

µVµ(x,e)) = 0 = deL−∂
µ Qµ(x,e) with Qµ = deVµ . (6)

We will refer to this requirement as the L,Vµ (or L,Qµ ) pair condition. It pre-
serves the heuristic physical content of LP in the adiabatic S-matrix limit, in lowest
order,

S(1) =
ˆ

LP =

ˆ
L. (7)

In this way the dint
sd = 5 (3 from the jµ and 2 from AP) of LP is lowered to dint

sd = 4
of L at the expense of the occurrence of the dint

sd (∂V ) = 5 divergence term. But in
models with a mass gap, this term does not contribute to the first order adiabatic
S-matrix limit (7).

Note that the pair condition has no analog for s < 1; linear relations as (4) be-
tween pl and their lower dsd sl kinsmen only exist for s ≥ 1, and attempts to use sl
L′s for s < 1 would end in total delocalization.

At this point a short interlude may be helpful. Recently it had been claimed that
a free s = 1/2 and dsd = 3/2 Dirac fermion field can be transformed into an “Elko”
field with dsd = 1 (formula (100) in [18]). But a pl field whose two-point func-
tion agrees with that of a 4-component free dsd = 1 scalar field is really a four-
component scalar field (and not a camouflaged s = 1/2 field); this is the content of
a well-known theorem (the Jost-Schroer theorem in [4] page 163). The existence of

6 A significant difference is that the H coupling disappears in the Maxwell limit; this accounts for
the fact that it was for a long time overlooked.
7 Renormalized perturbation theory does not require the Euler-Lagrange quantization setting but
only an interaction density L in terms of free fields [17].
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an “Elko fermion” would contradict facts about QFT which were already known in
the 60s; in particular it would clash with the spin-statistics theorem. It also would
be in contradiction with Weinberg’s complete classification of all pl fields for any
spin.

The short distance dimension of a pl field can only be lowered by integrating it
along a spacelike half-line as in (3); starting from a pl dsd = 3/2 Dirac field, one
obtains a sl dsd = 1/2 Dirac field. But this cannot be used to convert the nonrenor-
malizable 4-Fermi coupling into a renormalizable interaction since the above pair
condition can only be fulfilled for spins s≥ 1. For more details on the use of sl fields
in renormalization theory, we refer to [19].

The fact that divergence operations as in ∂ µ TVµ L′ cannot be taken inside the
T -products means that the second order validity of the pair requirement

(de +de′)T LL′−∂
µ T Qµ L′−∂

′µ T LQ′µ = 0 (8)

hence (de +de′)S
(2) = 0 (9)

is a normalization condition (which has no counterpart in s < 1 renormalization the-
ory). Whereas in massive spinor QED, this (and all higher perturbative extensions)
is automatically fulfilled, its fulfillment in scalar QED induces the expected A ·A |ϕ|2
term [8] [9]. In contrast to gauge theory where this contribution is induced by im-
posing BRST gauge invariance on S, in the present SLFT setting the e-independence
of S is a consequence of the causal localization principles.

One expects that this perturbation theory of the S-matrix works for all orders.
One also hopes that the extension of this adiabatic equivalence also works for the
construction of correlation functions of sl fields. Formally speaking this corresponds
to the independence from internal e′s in suitable sums of Feynman graphs after
having integrated over inner x′s. Second order calculations of sl fields have been
started in [21].

This short presentation is not the place to present calculational details for which
we refer to the above references and forthcoming work. However it may be of inter-
est to mention those points for which the SLFT formulation leads to a very different
physical interpretation of the Higgs model.

1. Instead of postulating a Mexican hat potential, the SLFT construction starts from
a point-local AAH interaction between a massive vector potential and a Hermi-
tian scalar field. The split into a string-local L and the divergence of a vector
field V leads to an L which also depends on the escort field. The required e-
independence of the second order S-matrix induces a four-order self-interaction
which is of the same form as that derived from the postulated spontaneous sym-
metry breaking Mexican hat potential. For details see [8, 9].

2. Massive self-interacting vector mesons lead to a new physical phenomenon. The
L,Qµ pair condition can be satisfied but there is a hitch; the second order con-
tains an induced renormalizability violating dsd = 5 contribution which, if left
uncompensated, would wreck the existence of the model. The only way to save
this situation is to introduce a coupling to a lower spin H field so that the second
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order H-contraction produces a dsd = 5 compensating term. Such compensations
one expected from different spin components of a supersymmetric coupling but
the present situation is different in that the dsd = 5 compensation is not a fringe
benefit of a higher symmetry but rather the raison d’être for the H-particle.

3. The model of A-selfinteractions shows another lesser understood phenomenon in
that the interaction requires the A self-coupling parameters to obey the symmetry
of a Lie algebra without any symmetry requirement. Whereas in the BRST gauge
formalism one can blame that on the quantization of a classical fibre bundle
gauge theory, the SLFT formulation is solely built on causally localized quan-
tum matter.

4. Any interaction involving higher spin s ≥ 2 fields which passes the first order
L,Qµ requirement will have Q′µ s with dsd ≥ 2 which inevitably lead to second
order dsd > 5 contribution and hence needs the compensation with lower spin
contributions. It would be interesting to know from what s on the compensatory
mechanism breaks down. Such spin s fields will be inert in that they only exist in
the form of free fields but may (through their energy momentum tensor) interact
with classical gravitational fields.

Acknowledgements I share this project with Jens Mund; its beginnings can be traced back to [6].
I also acknowledge many fruitful discussions and exchange of ideas with José Gracia-Bondia and
Joseph Várilly.
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Poincaré, Phys. théor. (Vol. 19, No. 3, pp. 211-295).
18. D. V. Ahluwalia, A story of phases, duals, and adjoints for a local Lorentz covariant theory of

mass dimension one fermions, arXiv;160103188. Unpublished.
19. Schroer, B., 2016. Rudolf Haag’s legacy of Local Quantum Physics and reminiscences about

a cherished teacher and friend, arXiv:1612.00003. Unpublished.
20. B. Schroer, Peculiarities of massive vector mesons and their zero mass limits, Eur. Phys. J. C

75 (2015) 365.
21. J. Mund and F. Pedrosa, String-local Dirac fields in massive QED, in preparation.



String-localized infinite spin fields and inert
matter

Bert Schroer

Abstract Positive energy ray representations of the Poincaré group are naturally
subdivided into three classes according to their mass and spin content: m>0, m=0
finite helicity and m=0 infinite spin. Whereas the intrinsic noncompact localization
accounts for its inertness, the possible existence of finite spin s ≥ 2 inert matter is
less clear.

1 Wigner’s infinite spin representation and string-localization

Wigner’s famous 1939 theory of unitary representations of the Poincaré group P
was the first systematic and successful attempt to classify relativistic particles ac-
cording to the intrinsic principles of relativistic quantum theory [1]. As we know
nowadays, his massive and massless spin/helicity class of positive energy ray rep-
resentations of P does not only cover all known particles, but their “covariantiza-
tion” [2] leads also to a complete description of all covariant point-local free fields,
except that point-local (pl) fields are not available for the infinite spin class. In view
of its still insufficiently understood physical properties, we will refer to this matter
as the “Wigner stuff” (WS).

The problem with WS is that the standard method of associating local fields
through covariantization in terms of u(p,s3) intertwiners [2] (which convert the
unitary Wigner representation into the covariant transformation law of a free field
which acts in a Wigner-Fock Hilbert space) is not available. Although there have
been constructions of covariant wave functions ever since Wigner’s 1939 classifica-
tion (for a recent covariantization, see [3]), the causal localization properties of WS
require addressing the problem of localization in a more intrinsic way.
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The oldest result in this direction was a No-Go theorem by Yngvason [4] which
excluded a description in terms of pl (Wightman) fields. The application of the
concept of modular localization to Wigner’s irreducible representation spaces sup-
ported the idea that the tightest localized subspaces are associated to arbitrary nar-
row spacelike cones [5], which in turn led to modular construction of string-local
(sl) fields whose strings are cores of such cones [6]. The issue of WS localization
was finally closed by a theorem which excludes compact localization [7].

The solution of the WS localization problem in [6] begged the question whether
the improvement of short distance behavior by relaxing the tightness of localization
from pl to sl could improve the renormalizability properties. It is well-kown that
as a result of the increase of short distance dimensions of pl fields with spin dsd =
s+1 interactions involving s≥ 1 lead to nonrenormalizable pl interaction densities1

dsd(LP)> 4.
The makeshift solution for preserving s = 1 renormalizability has been to yield

on the positivity requirement of quantum theory. This leads to Gauge Theory (GT)
which is an incomplete QFT since only the restricted set of gauge invariant operators
possesses a physical content. The work on sl free fields in [6] suggested that there
should also exist a physical way which maintains and achieves renormalizability by
using the better short distance properties of sl fields.

The result has been described in several publications and may be summed
up as follows, see [8–10]. The nonrenormalizable pl LP(x) corresponds to a pair
L(x,e),Vµ(x,e) with

LP = L−∂
µVµ , de(L−∂

µVµ) = 0 (1)

S(1) =
ˆ

LP =

ˆ
L

where the second equation is the L,Vµ pair condition in the de differential calculus
on the d = 1+ 2 dimensional de Sitter space of spacelike string directions e, e2 =
−1. This condition has the immediate consequence that the lowest order S-matrix
inherits the best of the two worlds, the e-independence from LP and the dsd ≤ 4
power counting bound (pcb) from L, since ∂ µVµ divergence terms do not contribute
to the adiabatic limit in models with a mass gap.

The origin of the pair property are linear relations between massive spin s≥ 1 pl
potentials with dsd = s+1 and their dsd = 1 sl counterparts. For s = 1, this relations
has the form

Aµ(x,e) = AP
µ(x)+∂µ φ(x,e) (2)

where the scalar sl “escort” field φ(x,e) is just as the two other two free fields, a
linear combination of the three s = 1 Wigner creation/annihilation operators; the
difference lies in their different intertwiner functions Replacing the AP in LP =
AP

µ jµ by A−∂V , one obtains (1).

1 The short distance dimension of a field is defined in terms of the short distance scaling behavior
of its 2-point function.
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For massive scalar QED jµ(x) = ϕ∗
←→
∂ µ ϕ , the implementation of the second or-

der L,Vµ pair condition induces the expected quadratic second order term A ·A |ϕ|2 .
Different from counterterms, induced terms do not introduce new parameters. In-
duction of interaction terms is an epiphenomenon of s≥ 1 sl renormalization theory
which requires the L,V pair condition; it has no counterpart in s < 1 pl interactions.
Renormalization counterterms which come with new coupling parameters appear
in both cases. Induction means in particular that there is no need to impose the
∂µ → ∂µ − iAµ rule from classical fibre bundles, since it is a consequence of the
principles of local quantum physics (LQP) namely causal localization + (Hilbert
space) positivity which are its defining properties.

Passing from interactions between a vector meson with complex matter to
couplings with scalar Hermitian matter H in the form of a A ·AH interaction, the
higher order induction becomes much richer; in addition to the expected A ·AHH
and AAφφ terms, there are now induced cubic and quartic H, φ self-interactions
which have been mistakenly attributed to spontaneous symmetry breaking [9] [10].
For self-interacting massive vector potentials, there is a new phenomenon. Whereas
a L,Vµ pair exists, second order induction leads to a renormalizability violating the
dsd = 5 term. The only way the model can be saved is to introduce an additional
coupling to a scalar Hermitian field H whose second order compensates this pcb-
violating term. This, and not SSB, is the raison d’être for the H.

2 Inert higher spin fields

Perturbative interactions which are pl nonrenormalizable may turn out to be per-
fectly renormalizable in the SLFT setting. On the other hand, there are good reasons
to believe that interactions which are not sl renormalizable do not correspond to a
model of QFT. This view receives support from a powerful structural theorem of al-
gebraic QFT [11] (AQFT). Converting its content into the standard setting of QFT,
it states that in s≥ 1 models with a mass gap, each particle possesses interpolating
sl fields (fields related to the particle by large time LSZ scattering theory).

Fields which cannot interact with other fields or themselves, and therefore only
exist in the form of free fields, will be referred to as “inert”. In contrast to massless
finite spin s sl free fields which can be constructed as m→ 0 limits of massive
ds = 1 sl fields (for fermions dsd = 3/2), it is not possible to represent the sl fields
associated to WS in this way. This is the reason why their presence in an interaction
turns out to be inconsistent with the pair property.

The result at the end of the previous section implies that s = 1 fields are fully re-
active both with respect to lower spin fields and in the form of self-interactions. But
without additional nontrivial calculations it is not clear whether s= 2 fields are reac-
tive or inert. What is easy to see is that dsd(Vµ)> 4 and that dsd(Vµ) increases with
s, so that increasing spin requires an increasing number of second order compen-
sating terms which are second order contributions from interactions of the highest
spin with lower spin fields. According to this qualitative observation, the problem of
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second order compensatory preservation of renormalizability for interactions which
fulfill the first order L,Vµ pair condition increases with s, so that one expects the
existence of a maximal s beyond which fields will be inert.

Inert matter is highly desirable in connection with the problem of astrophysical
darkness. Since free fields of any spin possess an energy-momentum tensor, they
couple to classical gravity and contribute to gravitational backreaction. However in-
ertness seems to lead to a “catch 22 situation” since a complete absence of reactivity
gets into conflict with the standard model of cosmology according to which all mat-
ter originated in a (very reactive) big bang. But since dark matter surrounds us in
abundance, the failure to register its reactivity in underground experiments would
confront us with a similar problem.
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Toeplitz quantization of the quantum
group SUq(2)

Stephen Bruce Sontz

Abstract After a brief review of the general theory of Toeplitz quantization in a
non-commutative setting, we present an example with the symbol space being the
quantum group SUq(2). This includes creation and annihilation operators as well as
their commutation relations. The general way for introducing Planck’s constant into
this theory is also presented in the example. This seems to be the first example of a
quantization of a quantum group.

1 Toeplitz operators: the general theory

The idea is to start with a complex vector space S , which has this extra structure: a
multiplication and a conjugation. So, S is a ∗-algebra, called the symbol space. We
also suppose that we have P ⊂S , where P is closed under all these operations:
sum, scalar product, and multiplication (but not necessarily conjugation). So, P
is a sub-algebra, though not necessarily a sub-∗-algebra. The particular symbol P
was chosen, since it could represent a sub-algebra of non-commuting ‘holomorphic
polynomials’. If that is the case, then H can be interpreted as a generalized Segal-
Bargmann space of ‘holomorphic functions’.

In mathematics, the elements of S are typically functions with values in C, and
so the multiplication in S is commutative. But for us, the interesting case will be
when the multiplication in S is not commutative, that is, S is a non-commutative
algebra. As physicists we can think of S as representing the ‘functions’ defined on
some (non-existent!) phase space. Next, we assume that there is a (linear) projection
map P : S →P , that is, P restricted to P is the identity function.

Now we take an element (or symbol) f ∈ S and use it to define a linear map
Tf : P →P by
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Tf (ψ) := P(ψ f ) for all ψ ∈P.

We say that Tf is the (right) Toeplitz operator with symbol f . Left Toeplitz operators
are similarly defined, in which case the symbol multiplies from the left. Their very
similar theory is not discussed here.

2 Toeplitz quantization

Since we want to relate this to quantum mechanics, we must introduce a complex
Hilbert space H . As far as I am aware, a Hilbert space is absolutely necessary in
order to develop any quantum theory in physics. Therefore H has an inner product,
that is, for all φ1,φ2 ∈H we have a complex number 〈φ1,φ2〉, linear in φ2 and
conjugate linear in φ1.

Question: How do we relate a Hilbert space to Toeplitz operators?
Answer: We assume that P is a dense subspace of a Hilbert space H . Then the

Toeplitz operator Tf : P→P is a densely defined linear operator acting in H (but
not on H ). If Tf is self-adjoint, then it is a quantum mechanical observable. Let
L (P) := {A : P →P | A is linear} be the set of all linear maps of P to itself.
The linear map T : S →L (P) given by f 7→ Tf is called the Toeplitz quantization
of the symbol space S . As seen later on, T is not necessarily ∗-linear.

This is called a quantization in part because it conforms to this maxim: Quan-
tization is operators in place of ‘functions’. This Toeplitz quantization is a type of
second quantization, that is, it quantizes a theory that is already quantum in the sense
of its already being non-commutative. Unlike many other quantization schemes, this
Toeplitz quantization does not use a measure or a generalized integral.

At this point one can continue to develop this into a general theory of Toeplitz
quantization. (See [3] and [4].) This includes creation and annihilation operators,
their canonical commutation relations and Planck’s constant h̄ > 0.

Instead, in this note I will present an example of the general theory. This is the
latest example of several which I have developed. Due to the required brevity of this
paper, proofs will be given in a paper [4] to be published later.

3 The quantum group SUq(2)

One of the earliest and most basic quantum groups is SUq(2). (See [5].) We define
this as the universal ∗-algebra over the complex field C generated by two elements,
say a and c, that satisfy these relations where 0 6= q ∈ R:

ac = qca ac∗ = qc∗a cc∗ = c∗c

a∗a+ c∗c = 1 aa∗+q2c∗c = 1.
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In this example the symbol space S is SUq(2). This algebra is commutative if and
only if q = 1.

We can think of a and c as being ‘holomorphic’ elements, while a∗ and c∗ are
then ‘anti-holomorphic’ elements. Using this intuition, we now define the algebra
of ‘holomorphic polynomials’ to be

P := algebra{a,c}= Free{a,c}/〈ac−qca〉, (1)

the sub-algebra of SUq(2) generated by the elements a and c. It turns out that as an
algebra, P is the Manin quantum plane (with parameter q).

For k ∈ Z and l,m ∈ N we define

εklm :=

ak cl (c∗)m = qkm (c∗)m ak cl for k ≥ 0,

(a∗)−k cl (c∗)m = (a∗)−k (c∗)m cl for k < 0.
(2)

Then it is known that the set {εklm | k ∈ Z, l,m ∈ N} is a vector space basis of
SUq(2). We also define a sesquilinear form on S = SUq(2). We first define this on
pairs of basis vectors and then extend to the unique sesquilinear form on SUq(2). We
use the convention that sesquilinear means anti-linear in the first entry and linear in
the second. So for k,r ∈ Z and l,m,s, t ∈ N we define

〈εklm,εrst〉S := w(l + t)δk,r δl+t,m+s. (3)

Here w : N→ (0,∞) is any strictly positive, real function whose values are called
weights. Also, we are using the standard notation δi, j for the Kronecker delta. The
motivation for this type of sesquilinear form can be found in my paper [2], though
it is already implicit in Bargmann’s paper [1].

We consider the restriction of the sesquilinear form to the sub-algebra P . So for
k, l,r,s ∈ N, we have

〈akcl ,arcs〉S = 〈εk,l,0,εr,s,0〉S = w(l)δk,r δl,s = w(s)δk,r δl,s. (4)

This shows that the inner product restricted to P is positive definite. So, for k, l ≥ 0
we define

ϕkl := (w(l))−1/2
εk,l,0 = (w(l))−1/2akcl . (5)

Then Φ := {ϕk,l | k, l ∈ N} is an orthonormal, vector space (Hamel) basis of P .
This turns P into a pre-Hilbert space whose completion with respect to this positive
definite inner product is denoted by H , a Hilbert space.

4 Toeplitz operators and quantization

Define the projection operator P : SUq(2)→P for all f ∈S = SUq(2) by
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P f := ∑
i, j≥0
〈ϕi, j, f 〉S ϕi, j. (6)

We note that only finitely many of the terms in the sum on the right side of this
equation are non-zero. So, this infinite sum converges and gives a result in P .

Moreover, the Toeplitz operator associated to the symbol g∈ SUq(2) is Tg = PMg
as in the general theory. Here Mg is the operator of multiplication on the right by the
symbol g. Also, Tg : P →P , that is, it linearly maps the Manin quantum plane to
itself, and so is a densely defined linear operator in the Hilbert space H . Finally, the
map SUq(2)→L (P) given by g 7→ Tg is a Toeplitz quantization of the quantum
group SUq(2). We do not claim that this is the only possible Toeplitz quantization
of SUq(2). Far from it! Other choices could be made for the sub-algebra P , for the
projection P and for the sesquilinear form. I fully expect that all the quantum group
deformations of the classical Lie groups have many Toeplitz quantizations.

5 Creation and annihilation operators

Creation operators are Toeplitz operators of the form Tg where the symbol g is a
holomorphic symbol, that is, g ∈P .

The creation operators associated to a,c∈P are Ta =PMa =Ma and Tc =PMc =
Mc. (Recall P acts as the identity on P .) Explicit calculations on the basis elements
give for i, j ≥ 0 that

Ta(ϕi, j) = q− j
ϕi+1, j and Tc(ϕi, j) =

(
w( j+1)

w( j)

)1/2

ϕi, j+1. (7)

Both Ta and Tc raise the total degree by 1, though Ta has bi-degree (1,0) while for
Tc the bi-degree is (0,1).

These identities in turn immediately imply, as the reader can readily check, this
q-commutation relation:

[Tc,Ta]q ≡ TcTa−qTaTc = 0. (8)

Annihilation operators are Toeplitz operators of the form Tg where the symbol
g is an anti-holomorphic symbol, that is, g∗ ∈P or, equivalently, g ∈P∗. The
annihilation operators for a∗ and c∗ are respectively Ta∗ = PMa∗ and Tc∗ = PMc∗ .
Explicit formulas on the basis elements for i, j ≥ 0 can be readily calculated to be

Ta∗(ϕi, j) = q j
(

1−q2 w( j+1)
w( j)

)
ϕi−1, j,

Tc∗(ϕi, j) =

(
w( j)

w( j−1)

)1/2

ϕi, j−1,

where the right side of either identity is taken to be 0 if one of the sub-indices is−1.
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6 Commutation relations, Planck’s constant

First, here are some curious facts about the relation of the ∗-operation in SUq(2) and
the adjoint operation of operators: T ∗c = Tc∗ , but T ∗a 6= Ta∗ . Hence this quantization
is not ∗-linear. Those and the remaining results in this section are straightforward,
though possibly tedious, calculations.

Here are some more commutation and q-commutation relations:

[T ∗a ,Ta] = 0, [Tc,T ∗a ]q = 0, [Ta,T ∗c ]q = 0, [T ∗c ,Tc]q = K, (CCR)

where K is the bi-degree (0,0) map defined by

K ϕi, j :=
(w( j+1)

w( j)
−q

w( j)
w( j−1)

)
ϕi, j. (9)

The first three CCR’s are classical commutation relations, that is, the result is
zero. The last CCR is a quantum commutation relation, that is, the result is (in
general) non-zero.

The full quantized version of [T ∗c ,Tc]q = K is actually [T ∗c ,Tc]q = h̄α K, where
h̄> 0 is Planck’s constant. The power α is determined by dimensional analysis. This
is the way that Planck’s constant is introduced in general into this theory, namely, as
the appropriate factor required in the quantum commutation relations in order that
they be dimensionally correct. In this example α depends on the dimensions given
to the element c. Note that for theoretical physics (where one takes h̄ = 1) this is not
a relevant matter, but in mathematical physics one is interested in the semi-classical
limit h̄→ 0. I also wish to emphasize that this method for introducing Planck’s
constant into this theory differs sharply from that used in deformation quantization.

7 Concluding remarks

One principal goal of this research program is to introduce new ideas and meth-
ods from analysis and quantization into the study of non-commutative geometry
and mathematical physics. In this regard, I have not only developed this theory of
Toeplitz quantization for a general class of non-commutative algebras with auxil-
iary structures (as presented here), but also for some other exotic kinds of ‘quantum
spaces’ that are not even algebras and might not necessarily have an inner prod-
uct. However, a conjugation (also known as a ∗-operation) seems to be an essential
structure. See [3] and references therein for details plus more examples of Toeplitz
quantization in some other non-commutative settings.

Acknowledgements I am grateful to the organizers of Group 31, held in June 2016 in Rio de
Janeiro, for the opportunity to present these results to an interested and interesting audience.
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The sinh-Gordon defect matrix generalized for
n defects

N.I. Spano, A.L. Retore, J.F. Gomes, A.R. Aguirre and A.H. Zimerman

Abstract In this paper we obtain a general expression for the n-defect matrix for the
sinh-Gordon model. This in turn generates general Bäcklund transformations (BT)
for a system with n type-I defects through a gauge transformation.

1 Introduction

Integrable models are known to be characterized by an infinite number of con-
servation laws which are responsible for the stability of soliton solutions. In fact,
these conservation laws may be regarded as hamiltonians generating time evolu-
tions within a multi-time space. Each of these time evolutions are associated to a
non-linear equation of motion and henceforth constitute an integrable hierarchy of
equations with common conservation laws. Another peculiar feature of integrable
models is the existence of Bäcklund transformations which relate two different field
configurations of certain non-linear differential equation.

Bäcklund transformations (BT), among other applications, generate an infinite
sequence of soliton solutions from a non-linear superposition principle (see [1]).
These transformations have also been employed to describe integrable defects [2]
in the sense that two solutions of an integrable model may be interpolated by a
defect at certain spatial position. A BT connecting two-field configurations is the
key ingredient to preserve the integrability of the system. Therefore, its systematic
construction is important for the classification of integrable defects.
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The first type of Bäcklund transformation only involves the fields of the bulk
theory, and is named type I. However, there exist integrable models for which such
type of Bäcklund transformation are not allowed. This is the case of the Tzitzeica
model where additional auxiliary fields are required [2–6]. These are called type II
and consist of a new class of Bäcklund transformations. For the sine(sinh)-Gordon
model, where a type I Bäcklund transformation exists, the type II Bäcklund trans-
formation is shown to be constructed from the composition of two type I defects.

The novelty presented in this paper is to extend the composition of several con-
secutive Gauge-Bäcklund transformations for the sinh-Gordon model. This provides
the generalization to the case of n defects by constructing the general defect matrix,
as well as the corresponding general BT. This is a powerful method since the defect
matrix appears to be universal and can be used as a generator of BT for all equations
within a hierarchy [7]. Finally, we will present some solutions for such composite
BT.

2 Gauge-Bäcklund transformation and defect matrices

The Lax pair for the sinh-Gordon model is given by

A+(φi) =

 ∂+φi 1

λ −∂+φi

 , A−(φi) =

 0 e−2φi
λ

e2φi 0

 , (1)

where we denote φ0 and φ1 to be solutions for x < 0 and x > 0 regions, respec-
tively. The defect is placed at x = 0 and connects the two solutions by Bäcklund
transformation. We assume the Lax pairs to be related by gauge transformation, i.e.,

K(φ0,φ1)A±(φ1) = A±(φ0)K(φ0,φ1)+∂±K(φ0,φ1) (2)

where the defect matrix describing the transition from solutions φ0 to φ1 is given by

Ki ≡ K(φi−1,φi) =

(
1 −σi

λ
e−(φi−1+φi)

−σie(φi−1+φi) 1

)
, (3)

and σi is the corresponding Bäcklund parameter. The gauge transformation (2) holds
provided the following first order equations are satisfied:

∂+(φ0−φ1) =−2σ1 sinh(φ0+φ1), and ∂−(φ0+φ1) =−
2

σ1
sinh(φ0−φ1), (4)

where ∂± = 1
2 (∂x± ∂t). Equations (4) are type I Bäcklund transformations for the

sinh-Gordon model.
Let us now consider the composition of two Bäcklund-gauge transformations

K(2)(φ0,φ2) = K(φ1,φ2)K(φ0,φ1). From expression (3) we find
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K(2) =

 1+ σ1σ2
λ

ep1−p2 − 1
λ
(σ1e−p1 +σ2e−p2)

−σ1ep1 −σ2ep2 1+ σ1σ2
λ

e−p1+p2

 . (5)

Denoting η =
σ2

1+σ2
2

σ1σ2
, σ2 =− 1

σ1σ2
and defining

Λ =−φ1− ln
(
2σ2e−φ0 +2σ1e−φ2

)
− ln

σ

4
, (6)

we obtain the type II Bäcklund transformations proposed in [5, 8], namely,

K(2)(p,q,Λ) =

1− 1
σ2λ

eq eΛ−p

2lσ (eq + e−q +η)

− 2
σ

ep−Λ 1− 1
λσ2 e−q

 , (7)

where q = φ0−φ2, p = φ0 +φ2.
Now we consider a system with n Type-I defects, each with a different parameter

σi as showing in the following the diagram,

3
σ

1
σ

2
σ

n
σ

0
Φ

1
Φ 2

Φ nΦ

Fig. 1: Generalization for n type-I defects.

By defining K(n) in the following form,

K(n) = KnKn−1...K2K1 =

K(n)
11 K(n)

12

K(n)
21 K(n)

22

 , (8)

we find for even n:

K11 = 1+

[
nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
n/2

∑
r=1

1
λ r

2r

∏
j=1

σi j e
(−1) j+1 pi j

]
,

K12 = −
[

nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
(n−2)/2

∑
r=0

1
λ r+1

2r+1

∏
j=1

σi j e
(−1) j pi j

]
,

K21 = −
[

nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
(n−2)/2

∑
r=0

1
λ r

2r+1

∏
j=1

σi j e
(−1) j+1 pi j

]
,

K22 = 1+

[
nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
n/2

∑
r=1

1
λ r

2r

∏
j=1

σi j e
(−1) j pi j

]
, (9)
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and for odd n:

K11 = 1+

[
nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
(n−1)/2

∑
r=1

1
λ r

2r

∏
j=1

σi j e
(−1) j+1 pi j

]
,

K12 = −
[

nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
(n−1)/2

∑
r=0

1
λ r+1

2r+1

∏
j=1

σi j e
(−1) j pi j

]
,

K21 = −
[

nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
(n−1)/2

∑
r=0

1
λ r

2r+1

∏
j=1

σi j e
(−1) j+1 pi j

]
,

K22 = 1+

[
nσ

∏
a=1

(
n−(nσ−a)

∑
ia=a

)][
(n−1)/2

∑
r=1

1
λ r

2r

∏
j=1

σi j e
(−1) j pi j

]
, (10)

where nσ is the number of parameters σi j associated with each defect such that
i1 < i2 < i3 < ... < in, and pi j = φi j +φi j−1.

The next step is to derive a general expression for the BT corresponding to this
K(n) defect matrix. In order to obtain Bäcklund transformations for n defects, we
will assume K(n) to be the generator of the gauge transformation (2), leading to

∂+(φ0−φn) = −2
n

∑
i=1

σi sinh pi

∂−(φ0− (−1)n
φn) = 2

n

∑
i=1

(−1)n

σi
sinhqi

∂+qi = −2σi sinh pi

∂−pi = −
2
σi

sinhqi (11)

with pi = φi−1 +φi, qi = φi−1−φi, and i = 1, ...,n.

3 Bäcklund solutions

In this section we will consider some solutions of the sinh-Gordon model in the
presence of two and three defects.

n = 2
Consider now the fields φ0 and φ2 on each side of the defect with an intermediary

field φ1,
Vacuum→ One Soliton→ Vacuum Solution. First, we consider the following

solution:

φ0 = 0, φ2 = 0, φ1 = ln
(

1+ρ1

1−ρ1

)
, ρ1 = exp

(
2k1x++

2
k1

x−

)
, (12)
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which satisfy the Bäcklund equations (11) with n = 2 and the following conditions:

σ1 = k1, σ2 =−k1. (13)

Vacuum→ One Soliton→ Two Soliton Solution. Another possible solution is

φ0 = 0, φ1 = ln
(

1+ρ1

1−ρ1

)
, φ2 = ln

(
1+b1ρ1 +b2ρ2 +α12b1b2ρ1ρ2

1−b1ρ1−b2ρ2 +α12b1b2ρ1ρ2

)
,

ρ j = exp
(

2k jx++
2
k j

x−

)
, j = 1,2, (14)

where one must have α12 =
(

k1−k2
k1+k2

)2
in the φ2 component. Analogously, we get the

following Bäcklund conditions:

σ1 = k1, σ2 = k2, b1 =
k1 + k2

k1− k2
. (15)

n = 3
Finally putting a third defect at the same point as the others, we have the fields

φ0 and φ3 on each side of the defects and two intermediary fields φ1 and φ2 at the
defect points.

Vacuum→ One Soliton→ Vacuum→ One Soliton Solution. Now taking into
account the solutions:

φ0 = 0, φ2 = 0, φ1 = ln
(

1+ρ1

1−ρ1

)
, φ3 = ln

(
1+ρ2

1−ρ2

)
. (16)

The Bäcklund conditions in order to satisfy Type-II BT are: σ1 = k1, σ2 =−k1, σ3 =
k2.

Vacuum→ One Soliton→ Two Soliton→ Three Soliton Solution. Lastly, we
assume:

φ0 = 0, φ1 = ln
(

1+ρ1

1−ρ1

)
, φ2 = ln

(
1+b1ρ1 +b2ρ2 +α12b1b2ρ1ρ2

1−b1ρ1−b2ρ2 +α12b1b2ρ1ρ2

)
,

φ3 = ln
(

1+R1 +R2 +R3 +α12R1R2 +α13R1R3 +α23R2R3 +α123R1R2R3

1−R1−R2−R3 +α12R1R2 +α13R1R3 +α23R2R3−α123R1R2R3

)
,

ρ j = exp
(

2k jx++
2
k j

x−

)
, R j = a jρ j, j = 1,2,3, (17)

where one must have α123 = α12α13α23, with

α12 =

(
k1− k2

k1 + k2

)2

, α23 =

(
k2− k3

k2 + k3

)2

, α13 =

(
k1− k3

k1 + k3

)2

,

in order to ensure that φ2 and φ3 satisfy the sinh-Gordon equation. In this case the
Bäcklund conditions are σ1 = k1,σ2 = k2,σ3 = k3,b1 =

k1+k2
k1−k2

, a1 =
(

k1+k3
k1−k3

)
b1 and
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a2 =
(

k2+k3
k2−k3

)
b2, where b2 is a free parameter. It is worth mentioning that the BT

and their solutions for a four-defect system have been also computed, and the results
have shown the expected behaviour.

4 Conclusion

In this paper we considered the sinh-Gordon model and provided general formulas
for the defect matrix when n defects are considered. Our construction involves the
product of n Type-I defect matrices. In addition, we have calculated their respec-
tive BT in a general way through gauge transformations and provided a few simple
examples for n = 2,3.

It is important to point out that since the BT are constructed as gauge transforma-
tions, they preserve the zero curvature representation. The later describes a hierarchy
of integrable equations based upon a universal Lax operator. These two facts induce
the idea of the universality of the Bäcklund-Gauge transformation within the hier-
archy. We have verified [9, 10] that the constructed defect matrix indeed gives the
correct BT for the mKdV equation. It provides a systematic construction of BT for
all higher grade evolution equations within the mKdV hierarchy. Several examples
were verified for KdV hierarchies [7] as well.
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Higher-genus amplitudes and resurgence in
SUSY double-well matrix model for 2D IIA
superstrings

Fumihiko Sugino

Abstract We compute higher-genus one-point functions of non-SUSY operators in
a SUSY double-well matrix model which has been discussed to correspond with
2D type IIA superstring theory on a nontrivial Ramond-Ramond background. We
discuss the validity of resurgence theory in the model by comparing resurgent string
perturbation series with instanton contributions.

1 Supersymmetric double-well matrix model

We start with a simple matrix model given by the action [1]

S = Ntr
[

1
2

B2 + iB(φ 2−µ
2)+ ψ̄(φψ +ψφ)

]
. (1)

B and φ are N ×N hermitian matrices, and ψ and ψ̄ are N ×N matrices whose
components are Grassmann numbers. The action S is invariant under SUSY trans-
formations generated by Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ =−iB, QB = 0, (2)
Q̄φ =−ψ̄, Q̄ψ̄ = 0, Q̄ψ =−iB, Q̄B = 0, (3)

from which one can see the nilpotency: Q2 = Q̄2 = {Q, Q̄} = 0. After integrating
out B, we have a scalar potential of a double-well shape, 1

2 (φ
2−µ2)2. In the case of

µ2 > 2, a large-N saddle point solution for the eigenvalue distribution of the matrix
φ : ρ(λ )≡ 1

N trδ (λ −φ) is given by

Fumihiko Sugino
Okayama Institute for Quantum Physics, Furugyocho 1-7-36, Naka-ku, Okayama 703-8278, Japan
(From September in 2016: Fields, Gravity and Strings Group, Center for Theoretical Physics of
the Universe, Institute for Basic Science, 501 dong, Graduate Research Center, Seoul National
University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea) e-mail: fusugino@gmail.com

331© Springer International Publishing AG 2017 
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries, 
https://doi.org/10.1007/978-3-319-69164-0_49 

mailto:fusugino@gmail.com


332 Fumihiko Sugino

ρ(λ ) =

{
ν+
π

λ
√

(λ 2−a2)(b2−λ 2) (a < λ < b)
ν−
π
|λ |
√
(λ 2−a2)(b2−λ 2) (−b < λ <−a),

(4)

where a=
√

µ2−2 and b=
√

µ2 +2. The filling fractions (ν+,ν−) satisfying ν++
ν− = 1 indicate that ν+N (ν−N) eigenvalues are around the right (left) minimum of
the double-well. The large-N free energy and the expectation values

〈 1
N trBn

〉
(n =

1,2, . . .) evaluated at the solution turn out to all vanish [1]. This strongly suggests
that the solution preserves SUSY. Thus, we conclude that the SUSY minima are
infinitely degenerate and parametrized by (ν+,ν−) at large N. On the other hand,
in case of µ2 < 2, a non SUSY saddle point solution is obtained [2]. Transition
between the SUSY phase (µ2 > 2) and the SUSY broken phase (µ2 < 2) is of the
third order.

The partition function after B, ψ and ψ̄ are integrated out is expressed as a Gaus-
sian one-matrix model by the Nicolai mapping H = φ 2, where the H-integration
is over the positive definite hermitian matrices, not over all the hermitian matrices.
Refs. [3, 4] discuss that the difference of the integration region only affects nonper-
turbative quantities in 1/N, and the model can be regarded as the standard Gaussian
matrix model at each order of genus expansion.

The Nicolai mapping changes the SUSY operators 1
N trφ 2n (n = 1,2, . . .) to reg-

ular operators 1
N trHn. Hence, the behavior of their correlators is expected to be de-

scribed by the Gaussian one-matrix model (the c =−2 topological gravity) at least
perturbatively in 1/N. However, the non-SUSY operators 1

N trφ 2n+1 (n = 0,1,2, . . .)
are mapped to ± 1

N trHn+1/2 that are singular at the origin. They are not observ-
ables in the c = −2 topological gravity, while they are natural observables as well
as 1

N trφ 2n in the original setting (1). Correlation functions among operators

1
N

trφ
2n+1,

1
N

trψ
2n+1,

1
N

tr ψ̄
2n+1 (n = 0,1,2, . . .) (5)

at the solution (4) exhibit logarithmic singular behavior of powers of ln(µ2−2) [5].
In Ref. [5], it has been discussed that the matrix model corresponds to two-

dimensional type IIA superstring theory [6, 7] on an nontrivial Ramond-Ramond
background from the points of view of symmetry and spectrum. Furthermore, in
Ref. [8], it has been confirmed at the tree level by performing the explicit compu-
tations of correlation functions in both sides. In Ref. [9], nonperturbative instanton
computations have been carried out in the matrix model. The instantons induce dy-
namical SUSY breaking, and the breaking survives after taking the double scaling
limit. This suggests that the target-space SUSY in the two-dimensional superstring
theory is also spontaneously broken due to nonperturbative dynamics. The double
scaling limit defined as

N→ ∞, µ
2→ 2 with s≡ N2/3(µ2−2) fixed (6)

gives the correspondence of the matrix model to two-dimensional superstring the-
ory beyond the tree level. In its weakly coupled region (s: large), instanton effects
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can be seen in the matrix model which are nonperturbative in 1/N. Although such
effects are typically of the order e−N and vanish in the simple large-N limit, inter-
estingly they remain after taking the double scaling limit (6). In Ref. [10], the exact
expression of the nonperturbative free energy is given by a solution of the Painlevé
II differential equation using the technique of random matrix theory [11].

This matrix model is simple but exhibits quite interesting features as correspon-
dence with two-dimensional type IIA superstring theory on an nontrivial Ramond-
Ramond background, nonperturbative spontaneous SUSY breaking, and so on. It
should be worth being explored to get deep insights into issues of the Ramond-
Ramond background and nonperturbative aspects of superstring theory.

2 Higher-genus amplitudes in the matrix model

In this section, we calculate the one-point function of φ2k+1 to all orders in the string
perturbation theory. Since the operators are not protected by SUSY, nontrivial large-
order behavior is expected here. As discussed in [5], the one-point function at the
(ν+,ν−) filling fraction is simply related to that at the (1,0) filling fraction by〈

1
N

trφ2k+1

〉(ν+,ν−)

= (ν+−ν−)
〈

1
N

trφ2k+1

〉(1,0)

. (7)

So, it is sufficient to consider the sector of the (1,0) filling fraction alone. The object
is recast in the contour integral of the resolvent of φ 2 as〈

1
N

trφ2k+1

〉(1,0)

=

˛
[a,b]

dz
2πi

z2k+1 ·2z
〈

1
N

tr
1

z2−φ 2

〉(1,0)

+ . . . , (8)

where the integration contour surrounds the support of the eigenvalue distribution
[a,b]. “. . .” stands for nonuniversal analytic terms in s which we will ignore below.
Notice that the resolvent is protected by SUSY because φ 2 is essentially equivalent
with the auxiliary variable B. The resolvent can be explicitly computed at each order
of the 1/N expansion using the result of the Gaussian matrix model [12]. After tak-
ing the double scaling limit (6), we end up with the following genus expansion [13]:

N
2
3 (k+2)

〈
1
N

trφ
2k+1

〉(1,0)

=
1

2π3/2 Γ

(
k+

3
2

) [ k+2
3 ]

∑
h=0

(
− 1

12

)h sk−3h+2

h!(k−3h+2)!
lns

+
(−1)k+1

2π3/2 Γ

(
k+

3
2

)
∞

∑
h=[ k+2

3 ]+1

(3h− k−3)!
h!

sk+2−3h

12h .

(9)

The infinite series in the second line is divergent and not Borel summable. In fact,
as a result of the Borel resummation, we have
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(2nd line) ' 1
4π

1
3k+5/2

sk+2

(k+ 3
2 )(k+

5
2 )

ˆ
∞

0
dz
(

1− z2

z2
0

)k+5/2

e−z

+(less singular) (10)

with z0 ≡ 4
3 s3/2. The integrand has a branch cut singularity at z = z0 which sits on

the integration contour. The result of the integral changes depends on avoiding the
singularity upwards or downwards. The difference gives the amount of the nonper-
turbative ambiguity:

i(−1)k+1 Γ (k+ 3
2 )

2π ·3k+5/2

sk+2

(k+ 3
2 )(k+

5
2 )

ˆ
∞

z0

dz
(

z2

z2
0
−1
)k+5/2

e−z, (11)

that is of the order e−
4
3 s3/2

, coinciding with the leading instanton contribution [9,10].

3 Resurgence in the matrix model

Recently, resurgence theory has been discussed in quantum mechanical systems and
matrix models, which tells us that ambiguity from large-order behavior of perturba-
tion series should cancel with ambiguity from instanton contributions so that the
total expression is well-defined (for example, see [14, 15]). It is interesting to com-
pute instanton effects of the one-point function and check whether the resurgence
program works in our case.

The one-point function can be expressed in terms of orthogonal polynomials as〈
1
N

trφ 2k+1
〉(1,0)

=
1
N

N−1

∑
n=0

ˆ
µ2

−∞

dxe−
N
2 x2

(µ2− x)k+1/2 Pn(x)2, (12)

where Pn(x) is a monic polynomial of x of the degree n and normalized by

ˆ
µ2

−∞

dxe−
N
2 x2

Pn(x)Pm(x) = hnδn,m. (13)

Note that Pn(x) is not identical with the orthogonal polynomial of the standard Gaus-
sian matrix model P(H)

n (x) given by the Hermite polynomial, because the integration
region of (13) is different from the case of the standard Gaussian matrix model, i.e.,
whole real line. However, the difference only affects the nonperturbative contribu-
tion, and the perturbative expansion (9) can be reproduced by replacing Pn(x) with
P(H)

n (x) and evaluating the integral with the integration region being x ∈ (−∞, 2] 1.

1 Relevant eigenvalues to perturbative contributions in the sector of the (1,0) filling fraction,
a < λ (< b) in (4), correspond to (−2 <) x < 2 in (12) due to the Nicolai mapping x = µ2−λ 2.
In the double scaling limit, a significant contribution comes from the neighborhood of x = 2.
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Let us consider the integral (12) with the region [2, µ2], which is the outside
of perturbative eigenvalue distribution and is expected to give nonperturbative con-
tribution. We magnify the region around x = 2 by introducing a new variable ξ

as x = 2+N−2/3ξ . As far as considering the lowest order of nonperturbative ef-
fects, i.e., one-instanton contribution, we may replace Pn(x) in the integrand with
Pn (H)(x). Then, we have

N
2
3 (k+2)

〈
1
N

trφ
2k+1

〉(1,0)
∣∣∣∣∣
1−inst.

∼
ˆ s

u
dξ

e−
4
3 ξ 3/2

8πξ
(s−ξ )k+1/2

[
1+O(ξ−3/2)

]
(14)

with u being the O(1) cutoff. The integrand is valid for ξ large as the symbol “∼”
means, and we compute the integral around the saddle point ξ = ξ∗ = O(s). Note
that expansion by the instanton number is good for s large. The saddle point is given
as

ξ∗ = s+
2k+1

4
s−1/2 +O(s−2). (15)

In order for the Gaussian integral around ξ∗ to be reliable in the integral region [u, s],
we first take k as being large and negative, since s�−k� 1. The steepest descent
paths are ξ − ξ∗ = ±ix (x ∈ R) corresponding to s→ se±iε . After performing the
integral, we eventually rotate back k to positive. The final result we arrive at is

N
2
3 (k+2)

〈
1
N

trφ
2k+1

〉(1,0)
∣∣∣∣∣
1−inst.

' (±i)(−1)k+1 1
2k+4
√

π

e−
4
3 s3/2

s
1
2 k+ 7

4
e−k−1/2

(
k+

1
2

)k+1 [
1+O(s−3/2)

]
(16)

for s→ se±iε .
Note that avoiding the singularity onwards or downwards in (10) corresponds

to s → se−iε or se+iε , respectively. Hence, we can see that the ambiguity from
the one-instanton contribution (16) cancels with the leading ambiguity from the
Borel resummed perturbation series (11), when k is large and the use of the Stirling
formula for Γ (k+ 3

2 ) is allowed.

4 Summary and discussion

We have computed the one-point functions of the non-SUSY operators 1
N tr φ2k+1

(k = 0,1,2, . . .) in the SUSY double-well matrix model to all orders of genus expan-
sion. The series is divergent and not Borel summable. We have explicitly checked
that the leading ambiguity arising from the Borel resummation procedure cancels
with that from the one-instanton contribution as the resurgence theory suggests as
far as k is large. It is extremely interesting to investigate the instanton contribution
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for the case of k not large, and to examine whether the resurgence theory works or
not.

In addition, the resurgence theory suggests that subleading ambiguities from the
Borel resumed series should be canceled with ambiguities from contributions of
higher instanton numbers. Checking these cases is also worth pursuing.
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3D Higher spin gravity and the fractional
quantum Hall effect

Mauricio Valenzuela

Abstract This article is based on the talk “Fractional Spin Gravity” presented at the
31st International Colloquium on Group Theoretical Methods in Physics, Rio de
Janeiro 19-25 June 2016. There we emphasised a direct implication of the works by
N. Boulanger, P. Sundell and the author on fractional spin extensions of 3D higher
spin gravity [1,2]. This is that higher spin gravity may govern interactions of anyons
in the fractional quantum Hall effect. More generally we suggest here also that frac-
tional spin states of matter in 2 + 1 interact with their background geometry by
means of higher spin gravity.

1 Introduction: The fractional quantum Hall effect

The fractional quantum Hall effect (FQHE) occurs in a planar electric conductor
when a perpendicular strong magnetic field yields the condensation of an elec-
tron gas. The vacuum of this system consists of a quantum condensate of electrons
trapped in Landau levels which form a new state of matter [3]. The phases of the
condensate are characterized by the value of the Landau level filling factor, ν , i.e.,
the number of Landau levels that are filled to maximal capacity. The Hall conduc-
tance, σH , is induced by Lorentz forces on charges in a perpendicular direction to
the current. Remarkably enough, σH exhibits rational quantization. Its experimental
values at FQHE conditions remain approximately constant, with respect to varia-
tions of the external magnetic field (B) in certain intervals, at a rational number
of times the fundamental unit of conductivity (e2/h); these are the Hall plateaux.
Thus at FQHE conditions, the Hall conductance reads σH = νe2/h, where e is the
electron charge, h the Planck constant, and ν ∈ Q is a rational number. The inte-
ger quantum Hall effect refers to the cases of the ν integer. It is well understood in
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terms of Landau level quantization without many-body electron interactions. It was
predicted in [4] and then experimentally observed in [5] for which Von Klitzing was
awarded a Nobel Prize. It was not expected however that the filling factors would be
quantized at values ν < 1, until it was experimentally observed [3]. A Nobel Prize
went to Tsui and Stormer for this discovery, and to Laughlin for his explanation [6].
ν = p/q represents the ratio of the number of electronic charges (p) to the number
(q = B/φ0) of units of magnetic flux quanta φ0 := hc/e. When the magnetic field
varies an integer number of times the field quanta φ0, a phase transition must occur,
meaning that some charges should either abandon a complete Landau level, jumping
to the next excited state, or, otherwise decay to a lower Landau level. This is why
the occurrence of values ν < 1 are counterintuitive, as it means that there might be
less than one unit of electric charge per magnetic field quanta, i.e., that exited states
(and holes) have fractional charge.

To explain this odd experimental fact, the Coulomb many-body electron-electron
interaction should be taken into account [6]. Indeed, the Coulomb interaction of
electrons lowers the gaps between Landau levels, breaking them into fractions. As
a consequence, the excitations of the many-electron problem appear to have frac-
tional charge and angular momentum. From variational principles Laughling [6]
was able to guess an ansatz for the wave function of that problem, which was ac-
tually accurate. Laughlin imposed Wigner lattice symmetries on the many-electron
configuration, as electrons repel each other, maximizing their distance inside a given
Landau level. The anzats for the ground states and excited states are dubbed “Laugh-
lin’s” wave functions. He showed that they carry fractional charge; later on it was
shown that they also carry fractional spin and statistics [7–9]. The excitated states
behave as free particles, and they are known as “anyons”. Anyons have been ob-
served experimentally [10–14]. Anyons are frequently presented as bound states
of fractional charges and magnetic fluxes, i.e., magnetic instantons in the plane at-
tached to charges (see e.g., [8, 15, 16]). The braided statistics of anyons can be in-
terpreted as result of the braiding of magnetic fluxes attached to rotating fractional
charges.

The existence of anyons was predicted theoretically before the experiments. In
fact, based on the analysis of the topology of the configuration space of identical
particles in 2+ 1 dimensions and given that the fundamental group of the rotation
group in the spatial plane is Z (and not Z2 as for higher dimensions), Leinaas and
Myrheim [17] argued in 1977 the existence of generalized braid statistics, gener-
alizing bosonic and fermionic. Their article was considered an academic curiosity,
the existence of statistics different from the bosonic and fermionic, but in spite of
their mathematical possibility, it was too radical to be believed. Anyons appear also
from group representation theory. Indeed, the Poincaré group, which is the isom-
etry group of flat space-time, has also real-valued (s ∈ R) spin representations in
2+1 dimensions (for a review see [18]). Wigner’s view on the existence of particles
(fields) as carrying representations of the space-time isometries, together with Frad-
kin’s belief that “all that is consistent is possible, and all that is possible happens”
(in the 89’s Dirac Medal ceremony) are validated by the fractional quantum Hall
effect: anyons do exist.
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The Hall setup can be imagined as a “toy universe” which passes through topo-
logical phase-transitions when the magnetic field (or the magnetic length `B =√

h̄/eB which is the typical scale at FQHE conditions) overpasses some critical
values, but it stays stable for small variations. In particular, in FQHE phases the
anyons make their appearance playing the role of fundamental particles. It is natu-
ral therefore to try to describe them by using equations of motion, in the same way
that Dirac’s equation describes spin 1/2 massive/massless fields. Some examples of
anyon wave equations were given by Jackiw and Nair in [19], and by Cortes and
Plyushchay in [20]. The interested reader may consult reference [18] for a review of
these and other anyon wave equations.

In [2] a topological (massless) first order non-linear action principle for real-
valued spin fields coupled to gauge gravity interactions was proposed, and which
can be reduced to a Chern-Simons model. In the latter reference, one of the remark-
able results is that the gravitational interaction of fractional spin fields are indeed
of the higher spin (HS) gravity type [21, 22]. It is therefore very suggestive that
higher-spin gravity might describe the gravitational interactions of fractional spin
fields having FQHE conditions. We shall argue below on theoretical grounds that
gravitating anyons must couple to infinite-dimensional extensions of the Lorentz
connection, which can be described using the tools of HS gravity [23–26]. Quot-
ing Wigner’s and Fradkin’s ideas, we would expect that a systematic study of the
interactions of anyons based on HS gravity should be consistent with their phe-
nomenology in the FQHE.

2 Fractional higher spin gravity

In an arbitrary 2+ 1D curved background, the description of fractional spin fields
requires the introduction of a Lorentz connection taking values in a discrete serie
representation [27, 28], which are infinite dimensional, and so, the fractional spin
fields must also have infinite components. The formulation of a Chern-Simons ac-
tion principle, which make use of traces of product of Lorentz generators, might be
inconsistent when (infinite) matrix representations are used since traces may either
diverge or converge to wrong (Lorentz symmetry broken) values. These problems
can be fixed using Vasiliev’s HS gravity technology that depends on regularized (su-
per) trace definitions (see e.g., [25]). In doing this we were able in reference [2] to
write down an action principle for fractional spin gravity. As we will see, there is
a technical need suggesting we look at HS gravity in order to construct a consis-
tent framework of gauge gravity interactions of fractional spin fields. From another
point of view, since fractional spin fields must transform under an infinite dimen-
sional (discrete) representations of the Lorentz algebra, they will also admit the
action of the universal enveloping algebra of the Lorentz algebra. The latter alge-
bra defines also the gauge algebra of HS Chern-Simons gravity [21,22]; therefore it
becomes natural to promote the whole HS algebra, not only the Lorentz generators,
to gauge fields mediating the interaction between fractional spin fields. By doing
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this the spin-2 gravity interactions of fractional spin fields are extended by infinite
many fields with arbitrary (half-)integer spins. Thus, as pointed out, HS gravity pro-
vides natural interactions for fractional spin fields. Let us write down the equations
of motion of the fractional spin gravity theory [1, 2] in order to observe this more
explicitly. These are:

dW +W W +Ψ Ψ = 0 , dU +U U +Ψ Ψ = 0 , (1)
dΨ +W Ψ +Ψ U = 0 , dΨ +Ψ W +U Ψ = 0 , (2)

which are more succinctly expressed as the vanishing of the gauge curvature,

dA+A2 = 0 , A=

[
W Ψ

Ψ U

]
, (3)

where A contains the fusion of HS gravity connection (W ), a fractional spin one
forms (ψ), and a U ∈U(∞)⊗U(∞) non-abelian internal field. As shown in [1,2], the
ψ fields are valued in a non-polynomial class of functions of universal enveloping
algebra generators. Thus the density Ψ Ψ , when they are Taylor expanded, is source
of the field strength (dW +W W ) of HS gravity for all spins. The same is valid
for the non-abelian curvature dU +U U . Thus non-trivial anyon distributions are
the sources of higher-spin gravity and non-abelian interactions. When Ψ = 0 = U
the system (1) is equivalent to the Chern-Simons HS gravity [21, 22]. For definite-
ness and simplicity let us choose W -valued in a representation of the HS algebra
Aqe

+(2; µ) [22], up-to tensor-product extensions. W has an expansion of the type

W = ∑
a=0,1,2;n=0,1,...,∞

dxI 1
n!

W a1a2...an
I Ja1a2...an , (4)

up-to-supersymmetric extensions by fermionic (spinor) components, and idempo-
tent generators. dxI are line elements and Ja1a2...an are symmetric tensors belonging
to the universal enveloping algebra of the Lorentz algebra generated by elements
Ja. Hence Ja1a2...an = J(a1 · · ·Jan) consists of symmetric products with spin n. The
parameter µ in Aqe

+(2; µ) determines the lowest spin of the anyons [1, 2],

s = 1+µ

4 . (5)

It was noticed in [1, 2] that for critical values, µ =−(2`+1), `= 0,1,2, ..., anyons
become bosons or fermions since s = − `

2 , and the Aqe
+(2;ν) algebra is truncated

to a matrix algebra Mat`+1(C) [22], while the u(∞) algebra is truncated to u(`).
With suitable reality conditions, W and U will take values respectively in the alge-
bras sl(`+1,R) and u(`) (up-to-tensor products), while the boson/fermion (before
anyon) Ψ and Ψ̄ transform under the one-sided action of these algebras (cf. (1)-(2))
of spin s. Thus the model (1) contains SL(`)-type of HS gravities.

Though HS gravity interactions in a setup such as the Hall effect are expected to
be weak, because of their topological nature, it does not mean that they are trivial.
Indeed the braided statistics of anyons is yield by Chern-Simons interactions [8].
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Thus, even if HS gravity fields do not propagate, non-trivial topological configura-
tions might be reflected in bulk-edge effects, as the Hall conductance for instance.
However, one needs further research to find out which effects of HS gravity can be
measured. Our goal here has been to point out that HS gravity may be predictive in
FQHE and similar experiments.

3 Conclusions

We have argued that the effects of higher spin gravity [1, 2] may be observed in
the FQHE and similar experiments. Consider for instance the statistical phases of
anyons in the Quantum Hall effect, given in terms of the filling factor by exp(iπν),
and the statistical phases exp(−i2πs) (see (5)) in the models [1,2]. Comparing both
statistical phases, we obtain that the filling factor of the FQHE

ν = 2s = 1+µ

4 , (6)

is related to the µ-parameter of the fractional spin algebra (1)-(2). On the one hand,
for critical values, µ = −(2`+ 1), the model [1, 2] is reduced to SL(`)⊗ SL(`)
(matrix) Chern-Simons HS gravity and the spin of the fractional spin fields become
bosonic/fermionic |s|= `

2 . Thus SL(`)⊗SL(`) HS gravities may be related to gravity
interactions of the fundamental excitations/holes in the integer quantum Hall effect
(ν = `). More generally, for non-critical values of the HS algebra parameter µ , and
the related non-integer filling factor (6), we would expect that their interactions
will be described by the fractional spin gravity model (1)-(2) or extensions of it.
In this way, we expect that fractional spin gravity [1, 2] will contribute to a better
comprehension of the FQHE and related phenomena (e.g., [30–32]).

Acknowledgements I would like to thank to N. Boulanger and P. Sundell for their enlightening
comments and their collaboration in this project.
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The “odd” Gelfand-Zetlin basis for
representations of general linear Lie
superalgebras

J. Van der Jeugt and N.I. Stoilova

Abstract We introduce a new Gelfand-Zetlin (GZ) basis for covariant representa-
tions of gl(n|n). The patterns in this basis are fixed according to a chain of subal-
gebras, all of which are Lie superalgebras themselves. The basic generators consist
of odd elements only. This GZ basis is interesting because the limit when n goes
to infinity becomes clear. This could be used in the description of systems with an
infinite number of parabosons and parafermions.

1 Introduction and motivation

The generalization of bosons and fermions to so-called parabosons and parafermions
was initiated by Green in 1953 [1]. In this process, the (anti-)commutation relations
for the boson and fermion operators were replaced by certain triple relations [1, 2].
This allows for more freedom when it comes to representations: where the standard
bosons and fermions (with certain conditions such as a unique vacuum vector) al-
low only one irreducible unitary representation (namely the Fock space), parabosons
and parafermions allow several such representations each characterized by a num-
ber p, the order of statistics. For the case p = 1, the relations for parabosons and
parafermions reduce to those for standard bosons and fermions.

The above generalization is especially interesting because of the underlying
mathematical structure. A system consisting of k parafermions f±j ( j = 1, . . . ,k)
is known to correspond to the defining relations of the Lie algebra so(2k+1) [3,4].
Similarly, a system consisting of n parabosons b±j ( j = 1, . . . ,n) corresponds to the
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defining relations of the Lie superalgebra osp(1|2n) [5]. When it comes to a com-
bined system of k parafermions and n parabosons (referred to as the parastatistics
operators), there is some choice for the mixed triple relations [2]. The most natural
choice implies that such a combined system corresponds to the defining relations of
the Lie superalgebra osp(2k+1|2n) [6].

The construction of the corresponding parastatistics Fock space of order p, which
corresponds to an infinite-dimensional unitary representation of osp(2k+ 1|2n), is
far from trivial. This construction, including the explicit action of the parastatistics
operators in an appropriate basis, was completed only recently [7].

For people working in quantum field theory, the main interest is in such systems
with an infinite degree of freedom, i.e., where k,n→ ∞. In order to consider this,
recall that the main ingredient in the construction of the parastatistics Fock space of
order p is the branching osp(2k+ 1|2n) ⊃ gl(k|n), and the use of Gel’fand-Zetlin
(GZ) patterns of covariant representations of gl(k|n) to label the states of this Fock
space. The GZ-basis for covariant representations of gl(k|n) was constructed in [8],
and proceeds according to the subalgebra chain

gl(k|n)⊃ gl(k|n−1)⊃ ·· · ⊃ gl(k|1)⊃ gl(k)⊃ gl(k−1)⊃ ·· · ⊃ gl(2)⊃ gl(1).
The labels of the GZ-basis vectors for gl(k|n) follow similar rules as those of the
classical GZ-basis for the Lie algebra gl(n) [9]. For example, a basis vector for a
covariant representation of gl(4|3) is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ17 µ27 µ37 µ47 µ57 µ67 µ77
µ16 µ26 µ36 µ46 µ56 µ66
µ15 µ25 µ35 µ45 µ55
µ14 µ24 µ34 µ44
µ13 µ23 µ33
µ12 µ22
µ11


.

In such a µ-triangle, all µi j ∈ Z+, satisfy conditions such as

• betweenness conditions (1≤ i≤ j ≤ k−1 or k+1≤ i≤ j ≤ k+n−1)
µi, j+1 ≥ µi j ≥ µi+1, j+1

• θ -conditions or 0-1-conditions (1≤ i≤ k, k+1≤ s≤ k+n)
µis−µi,s−1 ≡ θi,s−1 ∈ {0,1}.

For a complete description of the conditions, see [8]. Note also that the top row of
the above µ-triangle corresponds to the highest weight of the covariant represen-
tation. A GZ-basis also includes the explicit action of a set of generators on the
basis vectors: for the standard GZ-basis given above; this set consists of the Cheval-
ley generators of gl(k|n) [8, Theorem 7] (corresponding to the distinguished set of
simple roots).

Although this GZ-basis is perfectly well suited for the finite rank case of gl(k|n),
the problem is that it cannot be extended to a class of irreducible representations
(irreps) of the infinite rank Lie superalgebra gl(∞|∞). In order to solve this, one
needs to use a different GZ-basis according to a different chain of subalgebras:
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gl(n|n) ⊃ gl(n|n− 1) ⊃ gl(n− 1|n− 1) ⊃ gl(n− 1|n− 2) ⊃ ·· · ⊃ gl(1|1) ⊃ gl(1).
This can then be “reversed” in order to give a GZ-basis for gl(∞|∞):
gl(1) = gl(1|0)⊂ gl(1|1)⊂ gl(2|1)⊂ gl(2|2)⊂ gl(3|2)⊂ gl(3|3)⊂ ·· · ⊂ gl(∞|∞).
Thus, first we need to construct a new GZ-basis (the “odd” GZ-basis) for gl(n|n)
according to the above subalgebra chain. A striking property is that the generators
for which the action takes its simplest form is now different: they are the (positive
and negative) root vectors corresponding to a non-distinguished simple root system
of gl(n|n) consisting of odd roots only (justifying the name “odd” GZ-basis).

All results of the current proceedings contribution have been given in [10]. Here
we shortly review the problem and list some additional properties and remarks.

2 Overview of the main results

The Lie superalgebra g= gl(k|n) is defined by [11]:

gl(k|n) = {x =
(

A B
C D

)
},

with A ∈Mk×k, B ∈Mk×n, C ∈Mn×k and D ∈Mn×n. The even subalgebra gl(k|n)0̄
has B= 0 and C = 0; the odd subspace gl(k|n)1̄ has A= 0 and D= 0. It is convenient
to use the ordered set {−k, . . . ,−2,−1;1,2, . . .n} as the index set for the rows and
columns of the above matrices. The Weyl basis is given by elements Ei j (i, j =
−k, . . . ,−2,−1;1,2, . . . ,n), with Lie superalgebra bracket

JEab,EcdK = δbcEad− (−1)deg(Eab)deg(Ecd)δadEcb.
The Cartan subalgebra h of g is span(E j j) with j =−k, . . . ,−2,−1; 1,2, . . . ,n. The
dual space h∗ (or weight space) is spanned by the forms εi (i = −k, . . . ,−2,−1;
1,2, . . . ,n). For Λ ∈ h∗,

Λ = ∑
n
i=−k (i6=0) mirεi,

the components are written as (r = k+n)
[m]r = [m−k,r, . . . ,m−2,r,m−1,r;m1r,m2r, . . . ,mnr].

The roots of gl(k|n) are the elements εi−ε j (i 6= j); the positive roots consist of εi−
ε j (i< j), and the positive odd roots of εi−ε j with i< 0 and j > 0. The distinguished
set of simple roots [11] is

ε−k− ε−k+1, ε−k+1− ε−k+2, . . . ,ε−1− ε1,ε1− ε2, . . . ,εn−1− εn.
In general, an integral dominant weight Λ corresponds to a finite-dimensional

irrep V (Λ) and vice versa. Here, we are only dealing with covariant representations:
these are labelled by a partition λ = (λ1,λ2, . . . ,λ`) such that λ is inside the (k,n)-
hook: λk+1 ≤ n [12]. The corresponding highest weight: Λ λ ≡ [m]r is determined
by [13]

mir = λk+i+1, −k ≤ i≤−1,
mir = max{0,λ ′i − k}, 1≤ i≤ n,

where λ ′ is the partition conjugate to λ . Conversely, if [m]r is integral dominant and
m−1,r ≥ #{i : mir > 0, 1≤ i≤ n}, then this corresponds to the covariant module with
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λi = mi−k−1,r, 1≤ i≤ k,

λk+i = #{ j : m jr ≤ i, 1≤ j ≤ n}, 1≤ i≤ n.

The main property of covariant representations is that their character is known to be
a supersymmetric Schur function [12]. With xi = eεi (i≤−1) and yi = eεi (1≤ i),

char V ([Λ λ ]) = sλ (xk̄, . . . ,x2̄,x1̄|y1,y2, . . . ,yn).

(For convenience, we sometimes write j̄ instead of − j, as in the indices of the x’s).
Using properties of these supersymmetric Schur functions [14], one can “peel

off” a variable yn or a variable xk̄. This allows the decomposition of a covariant
representation of gl(n|n) according to the subalgebra chain gl(n|n)⊃ gl(n|n−1)⊃
gl(n−1|n−1). Labelling the highest weights of the respective covariant represen-
tations as follows:

gl(n|n) ↔ [m]r = [m−n,r, . . . ,m−2,r,m−1,r;m1r,m2r, . . . ,mnr]

gl(n|n−1) ↔ [m]r−1 = [m−n,r−1, . . . ,m−1,r−1;m1,r−1, . . . ,mn−1,r−1]

gl(n−1|n−1) ↔ [m]r−2=[m−n+1,r−2,. . . ,m−1,r−2;m1,r−2,. . . ,mn−1,r−2],

the decompositions gl(n|n)→ gl(n|n− 1) and gl(n|n− 1)→ gl(n− 1|n− 1) are
given by, respectively,

V ([m]r) =
⊕

k

Vk([m]r−1), V ([m]r−1) =
⊕

k

Vk([m]r−2)

according to the rules

(1) mir−mi,r−1 = θi,r−1 ∈ {0,1} (−n≤ i≤−1)
(2) mir−mi,r−1 and mi,r−1−mi+1,r ∈ Z+ (1≤ i≤ n−1)
(3) mi,r−2−mi,r−1 = θi,r−2 ∈ {0,1} (1≤ i≤ n−1)
(4) mi,r−1−mi+1,r−2 and mi+1,r−2−mi+1,r−1 ∈ Z+ (−n≤ i≤−2).

This process can now be repeated, and thus one obtains a new GZ-basis for covariant
representations V ([m]r) of gl(n|n). The m-patterns of these vectors take the form

|m)r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mn̄r mn−1,r · · · m2̄r m1̄r m1r m2r · · · mn−2,r mn−1,r mnr

mn̄,r−1 mn−1,r−1 · · · m2̄,r−1 m1̄,r−1 m1,r−1 m2,r−1 · · · mn−2,r−1 mn−1,r−1

mn−1,r−2 · · · m2̄,r−2 m1̄,r−2 m1,r−2 m2,r−2 · · · mn−2,r−2 mn−1,r−2

mn−1,r−3 · · · m2̄,r−3 m1̄,r−3 m1,r−3 m2,r−3 · · · mn−2,r−3
. . .

...
...

...
... . .

.

m2̄4 m1̄4 m14 m24
m2̄3 m1̄3 m13

m1̄2 m12
m1̄1


,
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where the inbetweenness conditions and θ -conditions to be satisfied for the integers
mi j follow from the above rules (1)-(4), and we have followed the same notational
convention as before: j̄ stands for − j. The set of all vectors |m)r satisfying these
conditions constitute a basis in V ([m]r) [10].

Recall that in the standard GZ-basis the action of the Lie superalgebra is deter-
mined by the (diagonal) action of the Cartan subalgebra elements Eii and the explicit
action of the Chevalley generators, i.e., the root vectors

E−n,−n+1, . . . ,E−2,−1,E−1,1,E1,2, . . . ,En−1,n,

corresponding to the simple roots (in the distinguished basis) and those correspond-
ing to the negatives of the simple roots. In this distinguished choice for the simple
roots, there is only one odd simple root, depicted by a cross in the Dynkin diagram:

◦—–◦— · · ·—◦—–⊗—–◦— · · ·—◦—–◦ .
In the “odd” GZ-basis, the situation is different. For the GZ-patterns |m)r, one

can again give the (diagonal) action of the Cartan subalgebra elements Eii. The set of
positive root vectors for which an explicit action can be computed is now different
and given by

E−1,1,E−2,1,E−2,2,E−3,2,E−3,3, . . . ,E−n,n−1,E−n,n,

consisting of odd roots only. (Similarly, there is the action of the corresponding set
of negative root vectors.) Thus the root vectors E±α correspond to the following
choice of simple roots (with only odd roots):

ε−1− ε1,ε1− ε−2,ε−2− ε2,ε2− ε−3, . . . ,ε−n+1− εn−1,εn−1− ε−n,ε−n− εn

with a Dynkin diagram of the form

⊗—–⊗—–⊗—–⊗—–⊗— · · ·—⊗—–⊗—–⊗ .

The main result of [10] is the determination of the explicit action of the above gen-
erators on the new GZ basis vectors. We shall not repeat these formulae here, but
just note that the action of the Eii is a simple diagonal action on |m)r, whereas the
action of the remaining generators takes the form

E−i,i|m)r =
−1

∑
k=−i

Aik|m)r
+(k,2i−1)+

i−1

∑
k=1

Aik|m)r
+(k,2i−1)

E−i−1,i|m)r =
−1

∑
k=−i

Bik|m)r
−(k,2i)+

i

∑
k=1

Bik|m)r
−(k,2i)

Ei,−i|m)r =
−1

∑
k=−i

Cik|m)r
−(k,2i−1)+

i−1

∑
k=1

Cik|m)r
−(k,2i−1)

Ei,−i−1|m)r =
−1

∑
k=−i

Dik|m)r
+(k,2i)+

i

∑
k=1

Dik|m)r
+(k,2i).
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Herein, |m)r
±(i j) is the pattern obtained from |m)r by replacing the entry mi j by

mi j±1; the actual expressions for the matrix elements Aik,Bik,Cik,Dik can be found
in [10, Theorem 4]. Observe that the action of a generator makes changes in only
one row of the pattern of |m)r.

The major advantage is that the “odd” GZ basis for gl(n|n) can easily be ex-
tended to the infinite rank Lie superalgebra gl(∞|∞), defined as the set of matrices
with index set {. . . ,−3,−2,−1;1,2,3, . . .}=Z∗≡Z\{0}with only a finite number
of nonzero elements, and with the appropriate bracket. A highest weight is an infi-
nite sequence [m]≡ [. . . ,m−k, . . . ,m−2,m−1;m1,m2, . . . ,mk, . . .], and provided these
numbers satisfy certain conditions, the corresponding highest weight representation
V ([m]) is a covariant representation. The basis vectors of V ([m]) consist of “infinite
GZ-patterns”: similar to those of gl(n|n), but with the above sequence as top row
and consisting of an infinite set of rows in a triangular pattern. These GZ-patterns
should – apart from inbetweenness conditions and θ -conditions – also satisfy a sta-
bility condition. The set of infinite stable GZ-patterns |m) form a basis of the irre-
ducible representation V ([m]), and the transformation of the basis under the action
of the gl(∞|∞) generators is easily obtained from the finite rank case [10].
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Bannai–Ito algebras
and the osp(1,2) superalgebra

Hendrik De Bie, Vincent X. Genest, Wouter van de Vijver, and Luc Vinet

Abstract The Bannai–Ito algebra B(n) of rank (n−2) is defined as the algebra gen-
erated by the Casimir operators arising in the n-fold tensor product of the osp(1,2)
superalgebra. The structure relations are presented and representations in bases de-
termined by maximal Abelian subalgebras are discussed. Comments on realizations
as symmetry algebras of physical models are offered.

1 Introduction

The Bannai–Ito (BI) algebra B(3) of rank one is the associative algebra with three
generators Γ12,Γ13,Γ23 obeying the relations

{Γ12,Γ23}= Γ13 +ω13, {Γ12,Γ13}= Γ23 +ω23, {Γ13,Γ23}= Γ12 +ω12, (1)

where {A,B}= AB+BA and ω12,ω13,ω23 are central. It has been introduced in [10]
to encode the bispectrality of the BI polynomials. Indeed, the Dunkl shift opera-
tors of which the BI polynomials are eigenfunctions, the spectrum variable of the
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recurrence relation, and the anticommutator of these two operators satisfy (1), up
to affine transformations. This algebra is also isomorphic to a degeneration of the
double affine Hecke algebra of type (C∨1 ,C1) [8] and has appeared in a variety of
contexts. For a review, see [3].

Interestingly, the algebra (1) arises in the context of the representation theory
of the Lie superalgebra osp(1,2), more specifically in the recoupling schemes for
the tensor product of three irreducible representations. In this framework, the BI
polynomials are seen to be essentially the Racah coefficients of osp(1,2), that is the
elements of the matrices relating the bases associated to the coupling of the first two
factors of the three-fold product to the basis corresponding to the situation where the
last two factors are initially regrouped. This connection of B(3) to osp(1,2) extends
to n-fold tensor products and leads to the BI algebra B(n) of arbitrary rank.

This will be presented in the following. We shall also give indications of how
representations of B(n) can be constructed in bases associated to maximal Abelian
subalgebras. We shall conclude by mentioning some applications of B(n).

2 osp(1,2) and the Bannai–Ito algebra

The osp(1,2) superalgebra can be presented as follows. It is generated by two odd
elements J± and one even element J0 that obey

[J0,J±] =±J±, {J+,J−}= 2J0,

with [a,b] = ab−ba. The Z2 grading can be accounted for by introducing the grade
involution P and including the relations

[J0,P] = 0, {J±,P}= 0, P2 = 1.

The Casimir operator in the universal enveloping algebra U (osp(1,2))

Γ =
1
2
([J−,J+]−1)P = J0P− J+J−P−P/2, (2)

is found to commute with all generators. There is an algebra morphism ∆ : osp(1,2)→
osp(1,2)⊗osp(1,2) called comultiplication that acts as follows on the generators:

∆(J0) = J0⊗1+1⊗ J0, ∆(J±) = J±⊗P+1⊗ J±, ∆(P) = P⊗P,

and is coassociative, i.e., (∆ ⊗ 1)∆ = ∆(1⊗ ∆). The coproduct can be iterated
to form higher tensor powers of osp(1,2). For a positive integer n, define ∆ (n) :
osp(1,2)→ osp(1,2)⊗n as ∆ (n) = (1⊗(n−2)⊗∆)◦∆ (d−1), with ∆ (1) = Id.

Let [n] = {1, . . . ,n} and let A= {a1, . . . ,ak} be an ordered k-subset of [n]. For 1≤
k ≤ n, one has a realization of osp(1,2) in osp(1,2)⊗n for any A. This realization,
denoted by ospA(1,2), has generators
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JA
± = ∑

ai∈A
J(ai)
±

ak

∏
j=ai+1

P( j), JS
0 = ∑

ai∈A
J(ai)

0 , PA = ∏
ai∈A

P(ai),

where J(i)± , J(i)0 , P(i) denote the generators of the ith factor of osp(1,2) in osp(1,2)⊗n.
We can now define the following elements in U (osp(1,2)⊗n):

ΓA = JA
0 PA− JA

+JA
−PA−PA/2. (3)

Clearly Γ{i}, i = 1, . . . ,n, are the Casimir elements corresponding to each of the
factors in osp(1,2)⊗n; these are constant multiples, say λi, if one considers products
of irreducible representations. Γ [n] is the total Casimir operator of osp(1,2)⊗n. It
will be convenient to take Γ/0 =−1/2. We define the Bannai–Ito algebra B(n) as the
algebra generated by the elements ΓA with A⊂ [n].

Let us now determine the structure relations. Consider first the case n = 3. There
are seven generators in this instance: Γ{i} ≡ Γi, i = 1,2,3, Γ{i, j} ≡ Γi j for {i, j} =
{1,2},{1,3},{2,3}, and Γ[3] ≡ Γ123. Here, Γ1, Γ2, Γ3 and Γ123 are central. A direct
calculation shows that

{Γi j,Γjk}= Γik +2ΓjΓi jk +2ΓiΓk, i 6= j 6= k,

which coincides with the B(3) defining relations (1) when the central ωik are identi-
fied as ωik = 2ΓjΓi jk+2ΓiΓk. This is the result obtained in [6]. The structure relations
for the higher rank extension are obtained from this result using the following argu-
ment. Take any triple of pairwise disjoint subsets of [n] called K, L, and M. There is
an obvious isomorphism

ospK(1,2)⊗ospL(1,2)⊗ospM(1,2)∼= osp(1,2)⊗osp(1,2)⊗osp(1,2),

which leads to an embedding of B(3) into B(n). Indeed, in view of this isomorphism,
the Casimir elements ΓK , ΓL, ΓM , ΓK∪L, ΓK∪M , ΓL∪M , and ΓK∪L∪M will generate B(3)
and we shall have for instance

{ΓK∪L,ΓL∪M}= ΓK∪M +2ΓLΓK∪L∪M +2ΓKΓM. (4)

We wish to know {ΓA,ΓB} for any two subsets A and B of [n]. To that end, take
K = A\B, L = A∩B, M = B\A and make the corresponding Casimir operators in
U (osp(1,2)⊗n) using (3). The relation (4) becomes

{ΓA,ΓB}= Γ(A∪B)\(A∩B)+2ΓA∩BΓA∪B +2ΓA\(A∩B)ΓB\(A∩B). (5)

This provides the desired structure relations for B(n), namely the relations obeyed
by the Casimir elements ΓA labeled by subsets A of [n] [1].
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3 Maximal Abelian subalgebras, representation bases, and
connection coefficients

We wish to indicate here how representations of B(n) can be obtained from the
knowledge of representations of B(3). To that end, we shall first introduce bases for
representation spaces that are associated to maximal Abelian subalgebras of B(n).

3.1 Maximal Abelian subalgebras

We readily see from (5) that [ΓA,ΓB] = 0 if A ⊂ B, B ⊂ A or A∩B = /0; recall that
Γ/0 = −1/2. It follows that Yn = 〈Γ[2],Γ[3], . . . ,Γ[n−1]〉 forms an Abelian subalgebra
(AS) of B(n) that is readily seen to be maximal. Note that Γ/0, Γ[1] and Γ[n] are not
included in Yn as they are central in B(n). Other such maximal AS can be obtained
by applying a permutation and taking πYn = 〈Γπ[2],Γπ[3], . . . ,Γπ[n−1]〉.

3.2 Bases for representation spaces

Bases for representations spaces can now be obtained by taking their elements to be
joint eigenvectors of the operators (hereafter denoted by the same symbols) repre-
senting the generators of the various maximal AS. Given one such basis, one would
wish to provide the action of the generators in the complement of the AS in order
to construct the representation of B(n). We shall indicate how this can be accom-
plished from knowledge of the connection coefficients between bases associated to
different maximal AS. With this understood, we shall complete the picture with a
characterization of the connection coefficients.

Suppose that a basis has been picked and that we want to give the action of
a generator Γ on the elements of this basis. It is easy to see that every generator
of B(n) belongs to a maximal AS. There is a thus another basis, call it prime, in
which Γ is diagonal. Now if the connection coefficients between the elements of
the original bases and those of the prime basis are known, it follows from linear
algebra that the action of Γ in the original basis can be written down. This applies
to any generator. Hence if all bases associated to maximal AS can be connected,
the action of all generators in a single basis can be obtained with the help of the
connection coefficients.
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3.3 Connection coefficients

Irreducible representations of B(3) have been constructed, and as a result the con-
nection coefficients (CCs) between the bases associated to the AS generated re-
spectively by Γ12, Γ13 and Γ23 are known; see [1, 4, 6, 10]. We shall simply set the
notation and recall the main features. Consider an irreducible representation of B(3)
and let 〈φk〉 be a set of basis vectors on which Γ12 acts diagonally, say Γ12φk = µkφk.
The central elements are multiples of the identity: Γiφk = λiφk, Γ123φk = λ123φk for
i = 1,2,3. It has been found that Γ13 and Γ23 act in a tridiagonal fashion in the basis
〈φk〉 and one has for instance Γ23φk = ak,k−1φk−1 +ak,kφk +ak,k+1φk+1. The coeffi-
cients ak,k, ak,k±1 have been explicitly determined from the properties of B(3). Now
if 〈ψk〉 denotes the basis in which Γ23 is diagonal, the CCs defined by

ψk = ∑
s

Bks(λ1,λ2,λ3,λ123)φs,

are nothing but the Racah coefficients of osp(1,2). Knowing the action of Γ23 in
both bases 〈φk〉 and 〈ψk〉, one finds that Bks satisfies a three-term recurrence relation
which shows that these CCs can be expressed in terms of BI polynomials.

Let us now discuss the rank two case B(4) to illustrate how one bootstraps from
rank one to higher ranks. First consider the CCs between two bases associated to two
maximal AS that differ by only one generator. An example is (Γ12,Γ123), (Γ12,Γ124).
Γ123 and Γ124 will preserve the eigenspaces of the common generator Γ12. Now note
that Γ123 and Γ124 are also generators of a rank one BI algebra. Indeed, let K = {1,2},
L = {3}, M = {4}, ΓK∪L = Γ123, ΓK∪M = Γ124, ΓL∪M = Γ34 provide an embedding of
B(3) into B(4). These generators all commute with Γ12 and the basis vectors with
fixed eigenvalues of Γ12 will support representations of B(3). The representation
theory of the rank one BI algebra tells us that the CCs will again be BI polynomials.
Thus since 〈φ j1, j2〉 and 〈ψ j1, j2〉 are the bases diagonalizing the maximal AS of our
example with Γ12φ j1, j2 = µ12

j1 φ j1, j2 and Γ12ψ j1, j2 = µ12
j1, j2ψ j1, j2 , we have

ψ j1, j2 = ∑
k

Wj2k(µ
12
j1 ,λ3,λ4,λ1234)φ j1,k.

This then allows us to obtain the actions of Γ124 and Γ34 on the basis vectors φ j1, j2 .
To find the action of other generators, one must consider the relations of the basis
〈φ j1, j2〉 with other subalgebra-type bases. It can be seen that there is always a path
between any given basis to all the others that is made out of intermediary segments
where the corresponding AS only differ by one element. The CCs between any two
bases are then obtained by iterating for each of those segments the procedure just
described when only one generator is different. The resulting CCs will hence be
given by a product of BI polynomials. Furthermore, since all generators are part of
maximal AS and are diagonal in the corresponding bases, knowing the CCs allows
us to obtain the action of all generators in a chosen basis. These considerations
extend from B(4) to B(n) and it follows that the representations of B(n) in a fixed
subalgebra-type basis can be fully characterized.



354 De Bie, Genest, Van de Vijver, and Vinet

4 Conclusion

We conclude by mentioning that the Bannai–Ito algebra B(n) has arisen in various
systems. These models are obtained from particular realizations of osp(1,2):

• The Dunkl Laplacian when Dunkl operators are used [7];
• The Dirac–Dunkl equation when Clifford algebras are introduced [1, 4];
• The superintegrable model with reflections governed by the Hamiltonian

H = ∑
1≤i< j≤n

J2
i j +

n

∑
k=1

µk(µk− rk)

x2
k

with rk f (x1, . . . ,xk, . . . ,xn)= f (x1, . . . ,−xk, . . . ,xn) and Ji j = i(x j∂xi−xi∂x j) when
gauge-transformed parabosonic operators are called upon [2, 5]. In this connec-
tion, see [9, 11, 12]

All these models have the Bannai–Ito algebra as a symmetry algebra. We may sus-
pect that B(n) and its representations will keep appearing in different guises.
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Exact state revival in a spin chain with
next-to-nearest neighbour interactions

Matthias Christandl, Luc Vinet and Alexei Zhedanov

Abstract An extension with next-to-nearest neighbour interactions of the simplest
XX spin chain with perfect state transfer (PST) is presented. The conditions for PST
and entanglement generation (balanced fractional revival) can be obtained exactly
and are discussed.

1 Introduction

Certain spin chains have been known to model advantageously devices that effect
perfectly the transfer of quantum states between locations [1, 2, 3]. Calling upon
their dynamics to realize the transport has the merit of minimizing the need for ex-
ternal interventions and of protecting coherence. Analytic models have been found
for which the ocurrence of this perfect state transfer (PST) is demonstrated from
an exact analysis. As a rule, the couplings between spins must be non-uniform. The
simplest such spin chain is of the XX type with parabolic couplings only between its
nearest neighbours [4]. It is referred to as the Krawtchouk model in view of the fam-
ily of orthogonal polynomials that emerge in its description. This model is proving
quite useful not only as a paradigm example but also as a test bed for experimen-
talists. As it turns out, these spin models have a translation in terms of arrays of
optical waveguides in view of the mathematical equivalence of the single excitation
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dynamics of spin chains with the coupled mode theory of optical lattices. Recent
experimental implementations [5, 6] have in fact been carried in this framework
using the Kratwchouk model. Restricting to nearest-neighbour (NN) interactions is
obviously an approximation in this context and it becomes relevant to examine, ex-
actly if possible, the situation beyond this restriction. It is with this perspective that
we present in Sect. 2 an analytic extension of the NN Krawtchouk model that in-
cludes next-to-nearest neighbour (NNN) couplings. The conditions for PST along
that chain can again be found exactly and will be given in Sect. 3.

There is another phenomenon of importance for quantum information that can be
realized in spin chains, namely entanglement generation. This is obtained by end-
to-end balanced fractional revival whereby a wavepacket initially at one end is re-
produced simultaneously (with half the intensity) at both ends. The NN Krawtchouk
model does not exhibit this effect but it proves possible when NNN interactions are
included. This will be covered in Sect. 4. A summary and remarks on experiments
that this analysis suggests will form the concluding section.

2 The model

We shall condier a spin chain with the following Hamiltonian of type XX on(
C2
)⊗(N+1) where each of the (N + 1) spins interacts with its nearest and next-

to-nearest neighbours on the left and on the right:

H =
1
2

N−1

∑
`=0

[
J(1)`+1

(
σ

x
` σ

x
`+1 +σ

y
` σ

y
`+1

)
+ J(2)`+2

(
σ

x
` σ

x
`+2 +σ

y
` σ

y
`+2

)]
+

1
2

N

∑
`=0

B`

(
σ

z
` +1

)
.

(1)
As usual, σ x

` , σ
y
` , σ

z
` stand for the Pauli matrices with the index ` indicating on which

of the C2 factors they act. The nearest-neighbours couplings are taken to be the same
as those of the Krawtchouk model: J(1)n = βJn with Jn =

1
2

√
n(N−n+1) and β a

parameter. The next-to-nearest neighbour couplings are given by J(2)n = αJn−1Jn
with α another parameter and the local magnetic fields are Bn = α

(
J2

n + J2
n+1
)
.

Note that when α = 0, the NN Krawtchouk model with no magnetic fields is re-
covered. Owing to rotational symmetry about the z-axis, H preserves the num-
ber of spins that are up over the chain, i.e., the number of eigenstates of σ

z
` with

eigenvalue +1. In the following, we shall only need to consider chain states that
have a single spin up. A natural basis for that subspace is given by the vectors
|n〉 = (0,0, · · · ,0,1,0, · · · ,0)ᵀ , n = 0, . . . ,N, with only 1 in the nth position corre-
sponding to the only spin up at the nth site. The action of H on those states is given by
H|n〉 = J(2)n+2|n+2〉+J(1)n+1|n+1〉+Bn|n〉+J(1)n |n−1〉+J(2)n |n−2〉 . Now consider
the operator J that acts as follows on the vectors |n〉 : J|n〉 = Jn+1|n+1〉+Jn|n−1〉 .
It follows that J2|n〉 = Jn+1Jn+2|n+ 2〉 +

(
J2

n+1 + J2
n
)
|n〉 + JnJn−1|n− 2〉 . We thus

observe that
H|n〉 =

(
αJ2 +βJ

)
|n〉 . (2)
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Let |xs〉 be the eigenstates of J with eigenvalues xs: J|xs〉 = xs|xs〉 . In view of Eq. (2),
these will be eigenstates of H with eigenvalues Es = αx2

s +βxs. As it turns out, the
eigenvalues and eigenvectors of J can be obtained from angular momentum theory.
Let Lz and L± be the su(2) generators represented in the standard fashion by

Lz|`,m〉 = m|`,m〉 , L±|`,m〉 =
√
(`∓m)(`±m+1)|`,m±1〉 (3)

on the usual angular momentum states |`,m〉 , −`≤ m≤ `.
Identify |`,m〉 = |N2 ,n− N

2 〉 ≡ |n〉 , n= 0,1, · · · ,N. Then Lx|n〉 = 1
2 (L++L−) |n〉

= Jn+1|n + 1〉 + Jn|n− 1〉 and the action of Lx is seen to be that of J. Since

Lx = e−i π

2 LyLze
i π

2 Ly , the spectrum of Lx = J is the same as the spectrum of Lz, thus
xs = s− N

2 . Now consider the expansion of the eigenstates |xs〉 on the vectors of the
occupational basis

|xs〉 = e−i π

2 Ly |s〉 =
N

∑
n=0
〈n|e−i π

2 Ly |s〉 |n〉 =
N

∑
n=0

√
ωsχn(xs)|n〉 . (4)

At this point, either from the 3-term recurrence relation Jn+1χn+1(x)+Jnχn−1(x) =
xχn(x) that follows from J|xs〉 = xs|xs〉 or the knowledge of the Wigner D functions,
we find that the expansion coefficients are given by the normalized Krawtchouk
polyomials which are defined as follows:

χn(x) = (−1)n

√(
N
n

)
2F1

(−n,−s
−N

∣∣∣∣2) (5)

with the hypergeometric series given by

2F1

(
a,b
c

∣∣∣∣z)=
∞

∑
k=0

(a)k (b)k

(c)k

zk

k!
(6)

and (a)k = a(a+1) · · ·(a+ k−1). These polyomials are orthogonal with respect to

the binomial distribution: ωs =
N!

s!(N−s)!

( 1
2

)N
. Since 〈n|e−i π

2 Ly |s〉 =√ωsχn(xs) are
elements of an orthogonal matrix, we also have the inverse expansion

|n〉 =
N

∑
s=0

√
ωsχn(xs)|xs〉 . (7)

For later purposes, observe that when n = N:

χN(xs) = (−1)N
N

∑
k=0

(−s)k
2k

k!
= (−1)N

N

∑
k=0

s!
(s− k)!

(−2)k

k!
= (−1)N+s. (8)
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3 Perfect state transfer

Let us examine the conditions for PST, that is the transfer with probability one, after
time T , of a spin up from one end of the chain to the other. This will happen if

e−iT H |0〉 = eiφ |N〉 , (9)

where φ is some phase. In order to analyze this condition, use the expansion in
Eq. (7) in terms of the eigenstates of H with eigenvalues Es = αx2

s + βxs to find
that Eq. (9) amounts to e−iφ e−iT Es = χN(xs) = (−1)N+s in view of Eq. (8). This last
equation can be rewritten as follows in terms of the exponents:

T Es =−φ +π (N + s+2Ls) , s = 0,1, . . . ,N, (10)

where Ls are arbitrary integers that may depend on s. Let us consider first the NN
model, with α = 0, and verify that PST occurs. In this case Es = β

(
s− N

2

)
, and one

has
T β
(
s− N

2

)
=−φ +π (N + s+2Ls) . (11)

This shows that the integer numbers Ls must depend linearly on s and take the form
Ls = `s+m with ` and m integers. With φ appropriately chosen to take care of
the constant terms, Eq. (11) reveals that PST will be achieved at times T given by
T = π

β
(2`+1), `= 0,1, . . . with the minimal time for PST in the NN model being

T = π

β
.

Can PST be maintained in the presence of NNN interactions? The answer is in
the affirmative provided certains conditions are verified by the parameters α and β .
When α 6= 0, the eigenvalues Es of H are given by Es = α

(
s− N

2

)2
+β

(
s− N

2

)
and

condition (10) reads

T
[
α
(
s− N

2

)2
+β

(
s− N

2

)]
=−φ +πN +πs+2πLs. (12)

Although more involved, the analysis of this equation proceeds in a way analogous
to that of Eq. (11). The reader will find the details in [7]. The upshot is the following.
As distinct from the NN model, PST does not always occur. It will happen in the
model with NNN interactions if α

β
is rational, in other words if α

β
= p

q , with p and q
co-prime integers. The minimal PST time is T = π

β
q. Moreover if p is odd, q and N

must be either both odd or both even.

4 Fractional revival

We discuss next the possibility of observing fractional revival (FR) at the two ends
of the chain. This FR phenomenon will occur after time τ if
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e−iHτ |0〉 = µ|0〉 +ν |N〉 (13)

with |µ|2 + |ν |2 = 1. Note that PST is a special case of FR with µ = 0 (|ν | = 1).
Furthermore, it is readily recognized that when |µ|= |ν |= 1√

2
, the state obtained at

time τ is maximally entangled as a balanced coherent sum of |0〉 = | ↑↓↓ · · · ↓〉 and
|N〉 = | ↓↓ · · · ↓↑〉 . Now upon using expansion (7), condition (13) is translated into
e−iτEs = eiφ

(
µ ′+ν ′(−1)N+s

)
, µ = eiφ µ ′, ν = eiφ ν ′ and µ ′ is chosen real without

loss of generality. Taking the modulus on both sides, we see that Re(µ ′ν ′) = 0.
Given that µ ′ is real, ν ′ must thus be imaginary. We shall write µ ′ = cosθ , ν ′ =
isinθ which makes the FR condition become

e−iEsτ = eiφ (cosθ + i(−1)N+s sinθ
)
. (14)

In this parametrization, up to integer multiples of π , θ = π

2 corresponds to PST. The
conditions for FR at two sites in NN spin chains of type XX have been thoroughly
analyzed in [8]. Let us first examine here if FR can be found in the NN Krawtchouk
model. For Es = β

(
s− N

2

)
, (14) splits into the following two Eqs. according to the

parity of s:

βτ
(
2s+ j− N

2

)
=−φ − (−1)N+ j

θ +2πL( j)
s , (15)

where L( j)
s , j = 0,1, are two independent sequences of integers that must be of the

form L( j)
s = γ js+ δ j, with γ j and δ j integers. It follows from (15) that γ0 = γ1 =

1,2, . . . and that τ = π
γ0
β

. Moreover, apart from a relation determining the phase φ

in terms of the parameters, one finds that θ = (−1)N
[

γ0
2 +(δ0−δ1)

]
π . Therefore,

up to sign and integer multiples of π , θ can only take the values 0 and π

2 . This means
that only PST and perfect return are possible. We thus reach the conclusion that FR
at two sites cannot happen in the NN Krawtchouk model. Let us now turn to the
NNN extension. In this case, the FR condition (14) yields relations analogous to (15)
with the l.h.s replaced by

[
α
(
2s+ j− N

2

)2
+β

(
2s+ j− N

2

)]
τ and the sequences

of integers L( j)
s having instead a quadratic form: L( j)

s = ξ js2 +η js+ ζ j, j = 0,1,
where for each j, independently, ξ j and η j can be simultaneously integer or half-
integer while ζ j is integer. Once again, we refer the reader to [7] for the detailed
analysis of what these equations entail. The findings are as follows. FR can happen
in NNN spin chains that have α

β
= p

q with p and q co-prime integers and p odd;
again, q and N must have the same parity. When these conditions are met θ ' π

4 ,
entanglement generation or balanced FR will be realized and its first occurrence will
be observed at time τ = q π

2β
.

The picture with respect to FR is thus as follows. While it does not occur in
the NN Krawtchouk spin chain, the presence of additional NNN interactions allows
this phenomenon to take place under the circumstances that we have spelled out.
However, the only form of FR at sites 0 and N that can be realized is of the balanced
type which corresponds to the generation of maximally entangled state.
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5 Conclusion

Summing up, we have provided an analytic model with NNN interactions that ex-
tends the simplest XX spin chain with PST, namely the NN Krawtchouk model.
This extended model involves two parameters α and β . The NN model is recovered
when α = 0. When α 6= 0, for PST to occur, we must have α

β
= p

q where p and q
are co-prime integers. If FR is to happen, it can only be of the balanced type and p
must be odd and in that case N must be of the same parity as q.

It would now be quite interesting to obtain an experimental validation of these
results. Discussions are underway regarding the design of an optical array in which
entanglement generation would be observed as per the predictions and specifications
of the analysis that we have described here.
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A triality between weak mutually unbiased
bases, zeros of their analytic representations,
and finite geometries

T. Olupitan, C. Lei, A. Vourdas

Abstract Quantum systems with variables in Z(d) are considered, and three dif-
ferent structures are studied. We show that there is a correspondence (triality) be-
tween (1) weak mutually unbiased bases; (2) their analytic representation in the
complex plane based on Theta functions, and their zeros; (3) finite geometries in the
Z(d)×Z(d) phase space

1 Introduction

There has been much work on mutually unbiased bases in systems Σ(d) with vari-
ables in Z(d). Two bases |B1;n〉 and |B2;m〉 (where n,m ∈ Z(d)) are mutually un-
biased [1] if

|〈B1;n|B2;m〉|= 1√
d
. (1)

In the case that d = p (where p is a prime number), Z(p) is a field, and it is
known that there are d + 1 such bases. Related is the result that there are d + 1
mutually unbiased bases, in systems with variables in the Galois field GF(pe). It is
a very difficult problem to find the number of mutually unbiased bases in the general
case that Z(d) is a ring.

From this we might conjecture that the concept of mutually unbiased bases is
tailored for fields, and another revised concept is needed for rings. Refs [2, 3] have
introduced the concept of weak mutually unbiased bases, and have shown that it fits
naturally to the concept of rings. For simplicity we discuss the case where d = p1 p2,
where p1, p2 are prime numbers. Then the Z(d) factorizes as Z(p1)×Z(p2), and
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consequently the quantum system Σ(d) factorizes in terms of two ‘factor systems’
Σ(p1) and Σ(p2) (there are bijective maps that relate the states in Σ(d) to tensor
products of states in the Σ(p1) and Σ(p2)). The weak mutually unbiased bases
(WMUB) are tensor products of mutually unbiased bases in the factor systems
Σ(p1) and Σ(p2), which both have prime dimension. An alternative, equivalent def-
inition of weak mutually unbiased bases is

|〈B1;n|B2;m〉|= 1√
f

; or 0; f |d. (2)

It has been shown in ref [3] that there is a duality (correspondence) between
mutually unbiased bases, and the finite geometry in the Z(d)×Z(d) phase space.
This geometry is very interesting, because it is an example of a non-near-linear
geometry. Near-linear geometries [4, 5] are based on the axiom that two lines have
at most one point in common. The geometries studied here violate this axiom and
this is intimately related to the fact that Z(d) is a ring.

In ref [6], we studied another aspect of these systems. We considered an analytic
representation based on Theta functions, and its zeros. We then showed that there
is a triality (correspondence) between this analytic representation and its zeros, the
finite geometry in the Z(d)×Z(d) phase space, and the weak mutually unbiased
bases.

Here we review briefly this work, with a minimum of mathematical formulas.
The emphasis is on the overall physical picture and how this can evolve in future
work, rather than the mathematical proofs of the various statements (which have
been given in ref [6]). The proofs use a factorization of the WMUB, their analytic
representation, and the lines in Z(d)×Z(d), which is based on the Chinese remain-
der theorem.

2 Lines and sublines in Z(d)×Z(d)

Z(d)×Z(d) is a non-near-linear geometry. Straight lines in it do not obey the axiom
that two lines have at most one point in common. Two lines can have a ‘subline’ in
common. This is related to the fact that the additive group Z(d) with d = p1 p2,
has non-trivial subgroups (the Z(p1) and Z(p2)). In this case two lines in Z(d)×
Z(d) might have in common a ‘subline’ in Z(p1)×Z(p1) or in Z(p2)×Z(p2). The
concept of ‘subline’ is intimately related to the fact that d has non-trivial divisors,
and consequently Z(d) is a ring but it is not a field. There is a partial order that
relates the finite geometry in Z(d)×Z(d) and its sub-geometries (based on non-
trivial subgroups of Z(d)), which has been studied in ref [10].

A line through the origin in Z(d)×Z(d) is defined as

L (ν ,µ) = {(να,µα) | α ∈ Z(d)}.
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The number of points in L (ν ,µ) is d/G(ν ,µ,d) (where G(ν ,µ,d) is the greatest
common divisor of these integers). If G(ν ,µ,d) = 1, the corresponding line is max-
imal line with d points. If G(ν ,µ,d) > 1, the corresponding line is a subline, and
the number of points is a divisor of d. In the case of prime d, there are no sublines.
There are ψ(d) = (p1+1)(p2+1) (Dedekind psi) maximal lines through the origin.

As an example, we consider the case with d = 15. Then L (2,3) is a maximal
line with 15 points, and the

L (6,9) = {(6,9),(12,3),(3,12),(9,6),(0,0)} ⊂L (2,3)
L (10,0) = {(10,0),(5,0),(0,0)} ⊂L (2,3) (3)

are sublines. Fig.1 shows the lines L (1,13) (circles), and L (1,7) (crosses), in the
case d = 15. The two lines have in common the three points (0,0), (5,5), (10,10).
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Fig. 1: The lines L (1,13) (circles), and L (1,7) (crosses), in the case d = 15. The
two lines have in common the three points (0,0), (5,5), (10,10).

3 Quantum systems with variables in Z(d) and analytic
representations with Theta functions

We consider quantum systems with variables in Z(d) [7–9]. We also consider the
position basis |X ;m〉, where m ∈ Z(d) (odd d), and the momentum basis |P;m〉:
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|P;n〉= F |X ;n〉; F = d−1/2
∑
m,n

ωd(mn)|X ;m〉〈X ;n|

ωd(m) = exp
(

i
2πm

d

)
. (4)

We define an analytic representation, in which an arbitrary state

|g〉= ∑
m

gm|X ;m〉; ∑
m
|gm|2 = 1 (5)

is represented by

G(z) = π
−1/4

d−1

∑
m=0

g∗m Θ3

[
πm
d
− z

π

d
;

i
d

]
. (6)

This is defined on a cell S= [0,d]× [0,d], because

G(z+d) = G(z)

G(z+ id) = G(z)exp(−πd−2iπz) . (7)

The scalar product is given by

〈g2|g∗1〉 =
√

2π

d5/2

ˆ
S

dzRdzI exp
(−2π

d
z2

I

)
G1(z)G2(z∗),

G(z) has exactly d zeros ζr in each cell, with sum

d

∑
r=1

ζr =
d2

2
(1+ i).

Therefore in each cell d−1 zeros are independent.

4 Duality between weak mutually unbiased bases and lines in
Z(d)×Z(d)

The weak mutually unbiased bases are tensor products of mutually unbiased bases
in the factor systems of prime dimension. An alternative, equivalent definition is
given in Eq.(2).

There is a duality between weak mutually unbiased bases and lines in Z(d)×
Z(d), as follows. A pair of maximal lines through the origin, belongs to one of the
following three categories:

• They have only the origin as the common point. There are dψ(d)/2 such pairs
of maximal lines.
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• They have p2 points in common. There are p1ψ(d)/2 such pairs of maximal
lines.

• They have p1 points in common. There are p2ψ(d)/2 such pairs of maximal
lines.

This corresponds to a pair of weak mutually unbiased bases, with absolute value of
the overlap equal to

• d−1/2. There are dψ(d)/2 such pairs of bases,
• p−1/2

1 . There are p1ψ(d)/2 such pairs of bases,
• p−1/2

2 . There are p2ψ(d)/2 such pairs of bases.

5 Triality between weak mutually unbiased bases, zeros of their
analytic representations, and finite geometries

The duality of the previous section is extended to include the lines of zeros that
represent the vectors in WMUB. The vectors in a WMUB are represented with
analytic functions, whose zeros have the following properties:

• The d zeros of any vector in a WMUB are on a straight line.
• The d vectors in a WMUB have zeros on parallel straight lines. The slope labels

the WMUB.
• The d vectors in a WMUB have a total of d2 zeros. The set of these zeros is the

same for all WMUB.

In Fig.2 we show the lines of zeros of the WMUB corresponding to the lines in
Fig.1. There are d parallel lines of zeros for each WMUB, and only a representative
is shown. Comparison of the figures 1, 2 shows the correspondence between the
lines in Z(d)×Z(d) and the lines of zeros representing the vectors of WMUB. The
precise mathematical formalism is given in ref [6].

6 Discussion

In the general context of finite quantum systems with variables in Z(d), we con-
sidered three different structures. The first is weak mutually unbiased bases. The
second is their analytic representation in Eq.(6) and in particular the zeros of ana-
lytic functions that represent the vectors in WMUB. The third is the Z(d)×Z(d) as
non-near-linear finite geometry. We have shown that there is a triality between these
three structures.

This can be interpreted as an indication that the WMUB are more suitable con-
cept than the MUB, for the case that d is a non-prime number and Z(d) is a ring
(which is not a field).
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Fig. 2: The lines of zeros of the two WMUB corresponding to the lines in Fig.1.
There are d parallel lines of zeros corresponding to the d vectors in a given WMUB,
and only a representative one is shown. It is seen that this figure is a ‘shifted version’
of Fig.1.
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The U(2) Fourier group for rectangular
pixellated images

Alejandro R. Urzúa and Kurt Bernardo Wolf

Abstract We study the model of optics in which images are two-dimensional pixel-
lated arrays of values on a screen, and in particular the unitary transformations that
have direct correspondence with those in the paraxial geometric and wave optical
models. This correspondence is established for the U(2) Fourier group that consists
of rotations, gyrations, and two-dimensional Fourier transformations.

1 Introduction

The finite model of optics regards images as matrices f = ‖ f (qx,qy)‖ with gener-
ally complex elements f (qx,qy), whose columns and rows are seen as integer co-
ordinates qx| jx− jx , qy| jy− jy that count the Nx×Ny = (2 jx + 1)× (2 jy + 1) pixels in a
generally rectangular screen. We shall consider Nx, Ny to be odd integers so as to
have a pixel at the center of the screen and to simplify our computations by having
jx, jy integers as SO(3) irreducible representation labels. Unitary transformations of
these images will be represented by NxNy×NxNy matrices that will be elements of
the Fourier group U(2)F to be defined below.

In the paraxial geometric optical model with 2D screens (which is isomorphic
to 2D classical mechanics) where positions q = (qx,qy) and momenta p = (px, py)
are continuous and form a 4D phase space, the Fourier group U(2)F [6] consists of
rotations between the x–y components, gyrations in the (qx, py) and (qy, px) planes
jointly, and fractional Fourier transformations that rotate the (qx, px) and (qy, py)
planes independently. In the wave optical model (isomorphic to 2D quantum me-
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368 Alejandro R. Urzúa and Kurt Bernardo Wolf

chanics), the images on a 2D screen are given by functions f (qx,qy) where U(2)F is
given by integral linear canonical transforms [3–5]. We are particularly interested in
gyrations which, in the wave model, relate cartesian Hermite-Gauss with Laguerre-
Gauss modes of angular momentum.

In previous works on the discrete model and its transformations [1, 9, 10] only
square N ×N screens were considered, where discrete angular momentum states
have a relatively clear analogy with the wave model counterparts. Their definition
on rectangular screens Nx 6= Ny is not immediately obvious; the thrust in this con-
tribution is to extend it to the generic case.

2 The model of discrete optics

Since this work has appeared in extended version in Ref. [8], we shall dispense with
its lengthy recount of the one-dimensional quantum harmonic oscillator dynami-
cal algebra osc1, generated by position and momentum operators Q, P, 1 and the
Hamiltonian H = 1

2 (P
2
+Q2

).1 To build the discrete model of optics, with pixel-
lated screens, we pre-contract this Lie algebra osc1 to su(2), which is well known
to group theorists.

To start with, we assign to the three generators of su(2) the following roles:

position Q≡ J1, momentum P≡−J2, mode H− j1≡ J3, (1)

in the representation j, where the Casimir operator has eigenvalue j( j+1), and
whose dimension is 2 j + 1 –the number of pixels in our one-dimensional screen,
where we sense the image ‘wavefunctions’ f (q), on the discrete eigenvalues q| j− j of
Q. The commutators [Ji,J j] = iJk, with i, j, k cyclic, thus become

[H,Q] =−iP, [H,P] = iQ, [Q,P] = iH. (2)

The first two expressions are the geometric and dynamical Hamilton equations re-
spectively, and the last determines the model to be that of discrete, finite optics.
Furthermore, as is known, when the density and number of pixels j→ ∞, su(2) can
be contracted to osc1 [1], so the discrete model limits smoothly to the continuous
model.

In two dimensions quite naturally we build su(2)x⊕ su(2)y with two mutually
commuting sets of generators, Qi, Pi, Hi, i ∈ {x,y}. In the continuous model of osc2
one further builds the real symplectic Lie algebra sp(4,R) with the ten symmetric
quadratic products Qi Q j, Pi P j and 1

2{Qi,P j}+, which generates all linear transfor-
mations in the classical and quantum models of osc2 that preserve this algebra. Now,
this sp(4,R) algebra contains a maximal compact subalgebra u(2) that generates the
Fourier group U(2)F, whose center is the fractional isotropic Fourier transform (FT).

1 We use the overbars to indicate that the symbols refer to the continuous model of paraxial wave
optics, as they do for quantum mechanics.
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We define and name the following four quadratic operators,

symmetric FT L0 := 1
4 (P

2
x+P2

y+Q2
x+Q2

y−21) = 1
2 (Hx+Hy), (3)

antisymmetric FT L1 := 1
4 (P

2
x−P2

y+Q2
x−Q2

y) =
1
2 (Hx−Hy), (4)

gyration L2 := 1
2 (PxPy +QxQy), (5)

rotation L3 := 1
2 (QxPy−QyPx) =: 1

2 M, (6)

where M = 2L3 is the ‘physical’ angular momentum operator, and whose commu-
tation relations are those of u(2),

[L0,Lk] = 0, [Li, L j] = iLk. (7)

This structure will be imported [2] to the discrete model, below.

3 Discrete bases for discrete optics

Consider now a one-dimensional pixellated ‘screen’ of N = 2 j+1 pixels, and the
space of all ‘images’ f (q), q ∈ {− j, . . . , j−1, j}. Evidently we have a ‘pixel basis’
with Kronecker deltas, δq?(q) = δ (q−q?), which consists of ‘black’ zeros and 1 on
the pixel q?, determined by the eigenvalues of Q = J1 in (1), in the representation
j of su(2). Similarly, we can build the mode eigenbasis Ψ

( j)
n (q) of H using that of

J3 = H− j1. Since Q = J1 and J3 are related through a 1
2 π rotation generated by J2,

their images on the screen will be related by a Wigner ‘little-d’ function, so

Ψ
( j)

n (q) := d j
n− j,q(

1
2 π) =

(−1)n

2 j

√(2 j
n

)( 2 j
j+q

)
Kn( j+q; 1

2 , 2 j), (8)

where Kn(s; 1
2 ,2 j) = 2F1(−n,−s;−2 j;2) = Ks(n; 1

2 ,2 j) is the symmetric Kravchuk
polynomial, n|2 j

0 , q| j− j, s|2 j
0 , and which forms an su(2) multiplet of 2 j+1 functions.

In generally two-dimensional, rectangular pixellated screens of Nx×Ny pixels,
we build the cartesian mode real eigenbasis with an evident notation

Ψ
( jx, jy)

nx,ny (qx,qy) :=Ψ
( jx)

nx (qx)Ψ
( jy)

ny (qy). (9)

All images f (qx,qy) on the screen can be expanded as

f (qx,qy) = ∑
nx,ny

fnx,nyΨ
( jx, jy)

nx,ny (qx,qy), fnx,ny = ∑
qx,qy

f (qx,qy)Ψ
( jx, jy)

nx,ny (qx,qy), (10)

because the basis is orthonormal and complete. The two fractional Fourier-Krachuk
transforms of the mode eigenbasis (9) are generated by L0 := 1

2 (Hx+Hy) and L1 :=
1
2 (Hx−Hy), in direct correspondence with (3) and (4),
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Kiso(φ) : Ψ
( jx, jy)

nx,ny (qx,qy) = e−i 1
2 φ(nx+ny)Ψ

( jx, jy)
nx,ny (qx,qy),

Kaniso(α) : Ψ
( jx, jy)

nx,ny (qx,qy) = e−i 1
2 α(nx−ny)Ψ

( jx, jy)
nx,ny (qx,qy).

(11)

where Kiso(φ) := exp(−2iφL0) and Kaniso(α) := exp(−2iαL1). These transforma-
tions are domestic to the finite model.

4 Importation of U(2)F transformations

Now we shall import the transformations generated by L2 and L3 in (5) and (6), as
gyration and rotation, using the same ‘little-d’ Wigner coefficients and phases that
describe rotations around the 2- and 3-axis for any U(2) group realization. Out of
the nx, ny mode numbers we posit that n := nx +ny yields their total mode (energy),
while µ := 1

2 (nx−ny) is their angular momentum within multiplets of spin λ (n).
Gyrations and rotations of the cartesian basis (9) are then defined respectively as

G (γ) : Ψ
( jx, jy)

nx,ny (qx,qy) = e−iπ(nx−ny)/4
∑

n′x+n′y=n
eiπ(n′x−n′y)/4dλ (n)

µ,µ ′ (2γ)Ψ
( jx, jy)

n′x,n′y
(qx,qy), (12)

R(θ) : Ψ
( jx, jy)

nx,ny (qx,qy) = ∑
n′x+n′y=n

dλ (n)
µ,µ ′ (2θ)Ψ

( jx, jy)
n′x,n′y

(qx,qy), (13)

where G (γ) = exp(−2iγL2) and R(θ) = exp(−2iθL3). The relations between
µ, λ (n) and nx, ny, in a rectangle Nx ≥ Ny, are given in Ref. [8] and take three
forms depending on whether 0 ≤ n ≤ 2 jy, 2 jy < n < 2 jx, or 2 jx ≤ 2( jx+ jy), be-
longing to the lower, middle and top sections of the cartesian multiplet shown in
Fig. 1 (left). Importantly, we note that the domestic Fourier-Kravchuk transforms
and the imported gyrations and rotations compose as all U(2) transformations do,
and that they are unitary in the vector space of images f (qx,qy) ∈ RNxNy under the
usual sesquilinear inner product.

Importantly, the gyration G ( 1
4 π) transforms —in the continuous model— from

Hermite-Gauss to Laguerre-Gauss beams. We use the same transformation to define
the modes of ‘rectangular angular momentum,’ or Laguerre-Kravchuk modes:

Λ
( jx, jy)
n,m (qx,qy) := G ( 1

4 π) : Ψ
( jx, jy)

nx,ny (qx,qy) (14)

= e−iπ(nx−ny)/4
∑

n′x+n′y=n
eiπ(n′x−n′y)/4dλ (n)

µ,µ ′ (
1
4 π)Ψ

( jx, jy)
n′x,n′y

(qx,qy). (15)

These are shown in Fig. 1 (right); they are complex: Λ
( jx, jy)
n,m (qx,qy)=Λ

( jx, jy)
n,−m (qx,qy)

∗,
as the Laguerre-Gauss modes are, and are orthogonal and complete in the ordinary
sesquilinear RNxNy inner product. Since R(θ) = Kaniso(− 1

4 π)G (θ)Kaniso(
1
4 π), un-

der rotations these modes are only multiplied by a phase e−imθ .
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Fig. 1: Left: The 77 cartesian modes in (9) for Nx = 11 and Ny = 7, ( jx, jy) = (5,3),
referred to the diagonal axes nx|10

0 , ny|60, and to total mode n = nx +ny and ‘angular
momentum’ m = nx−ny. Right: The 77 ‘Laguerre-Kravchuk modes’ in (15), with
n|18

0 and ‘rectangular angular momentum’ m|λ (n)−λ (n), λ (n)≤ 3. Note the three regions
(lower and upper triangles, and the intermediate rhomboid of states) correspond in
both multiplets. Each ‘screen’ has 11×7 pixels.

5 Rotation of rectangular pixellated images

Heretofore we had examined rotations only for square pixellated screens Nx = Ny,
which could also be unitarily transformed to circular, polar-pixellated screens. In
the present work we generalize the cartesian pixellation to rectangular shape with
a plausible definition of angular momentum states. Rotation in rectangular screens
of generic images f (qx,qy) can be effected either expanding it in the Ψ

( jx, jy)
nx,ny (qx,qy)

or in the Λ
( jx, jy)
n,m (qx,qy) bases. The latter contains complex elements, so we have

preferred the former because it is real as in (10), and rotate through,

R(θ) : f (qx,qy) = ∑
nx,ny

f (θ)nx,ny Ψ
( jx, jy)

nx,ny (qx,qy), (16)

f (θ)nx,ny = ∑
qx,qy

f (qx,qy)R(θ) : Ψ
( jx, jy)

nx,ny (qx,qy)

= ∑
qx,qy

∑
n′x,n′y

f (qx,qy)dλ (n)
µ,µ ′ (2θ)Ψ

( jx, jy)
n′x,n′y

(qx,qy). (17)
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Fig. 2: Successive rotations of a 0−to−1 image “B” on a 61×37 pixellated screen
( jx, jy) = (30,18), by angles 0, 1

6 π , 1
3 π , 1

2 π , and π . We chose to cut the bottom and
upper graylevels of the intermediate rotations to give better visual information. The
cut levels are: all values below −0.30 are black; all values above 1.30 are white.

In Fig. 2 we show a sample of succesive rotations of an image, on which we can
give a few observations.

Rotations by 1
2 π will exchange the long and short dimensions of the rectangle,

so we expect —and see— that Gibbs-like oscillations take place which in a few
pixels overshoot the maximum initial values of the original image. The same occurs
for any other rotation, except for multiples of π , where the initial image is repro-
duced. The Gibbs phenomenon is unavoidable when unitarity is preserved, as we
know from discrete and finite Fourier analysis. Rotation algorithms provided by in-
terpolation algorithms loose information and cannot be inverted or concatenated as
unitary transformations do.

Questions further afield are the possibility of generalizing image preservation
through a change of the pixel coordinates. A map to polar pixellation of annular
screens was postulated, as they can be built with the same number of pixels; this
map was computed and tested [7], but the essential quality of image recognizability
fades rapidly with |Nx−Ny|. On the other hand, screens with some kind of elliptic
equal-area pixellation have not been found. Yet we can underline that our present
work has achieved to find the correct analogue of the action of the geometric and
wave 4-parameter Fourier group U(2)F on generic images on rectangular pixellated
screens.
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Finding a dictionary between tensor models and
crystallization theory

Grace Itunuoluwa Akinwande

Abstract Crystallization theory has been useful in representing piecewise-linear
(PL) manifolds in any dimension as D-regular edge-colored bipartite graphs. PL
manifolds are of increasing interest to theoretical physicists as a tool to explore dis-
cretized versions of geometry in quantum gravity. We provide here a dictionary and
compare quantities which have appeared in two contexts: in the so-called crystal-
lization theory of simplicial manifolds (mathematics) and in colored tensor models
which are simplicial models in view of providing a quantum version of general rel-
ativity (physics).

1 Crystallization Theory and the Regular Genus

The representation of PL manifolds has been difficult beyond dimension 4. But crys-
tallization theory [2] has been very useful in representing compact PL manifolds of
any dimension making use of a class of edge-colored graphs.

A (D + 1)-colored graph, G, is a graph that has an edge-coloration of D + 1
colors, with the color set ∆D = {0,1, . . . ,D}, such that each pair of adjacent edges
does not have the same color.

A graph encoded manifold also called gem is a (D+ 1)-colored graph, G, that
represents a D-dimensional manifold MD, that is, the pseudocomplex associated to
G is homeomorphic to MD. A crystallization is a contracted gem.

A simplicial manifold is obtained by gluing the facets of D-simplices according
to certain rules (see [2]). On the other hand, Pezzana’s existence theorem states that
every closed connected manifold admits a crystallization [5, 6].

A regular embedding of a colored graph on a surface is such that each region
in the embedding is bounded either by a cycle or by an open path of the (D+ 1)-
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colored graph, G, with edges alternatively colored by ε j and ε j+1, j ∈ ZD+1, where
ε =(ε0,ε1, . . . ,εD). These embeddings are 1

2 D! up-to-uniqueness. The regular genus
of G is given as ρ(G) = minε{ρε(G)}, where ρε(G) is the genus of the embedding
ε . Furthermore, the regular genus of a manifold M is defined as

G (M) = min{ρ(G) | G represents M}.

2 From tensor models to simplicial manifolds

Tensor models generalize matrix models [3]. To make contact with PL manifolds
and crystallization theory, we will focus on the colored version of tensor models [4].
The partition function of a colored tensor model of rank D is given by

ZN(λ , λ̄ ) =

ˆ
dψ̄dψe

−(∑D
i=0 ∑−→n ψ̄ i−→n i

ψ i−→n i
+λ ∑−→n ∏

D
i=0 ψ i−→n i

+λ̄ ∑−→n ∏
D
i=0 ψ̄ i−→n i

)
,

where ψ i−→n i
is a rank D complex tensor. At the perturbative level, they naturally give

rise to Feynman graphs which are bipartite (D+ 1)-colored graphs. The d-bubbles
of the graph are maximally connected subgraphs consisting of edges with exactly d
colors, d ∈ ∆D. The sets that are indexed by these bubbles give rise to a simplicial
manifold (see Figure 1).

Fig. 1 A Feynman graph in a
rank 3 tensor model which is
a gluing of two tetrahedra.

Another important ingredient in colored tensor models is the notion of jackets. A
jacket is a ribbon graph determined by a (D+1)-permutation cycle, namely τ , such
that each of its faces is given by (τk(0),τk+1(0)), k ∈ ∆D. It should be noted that the
notion of jacket coincides with the notion of regular embedding in crystallization
theory.

The Gurau degree, ω(G), of a (D+1)-colored graph, G, is defined as

ω(G) = ∑
J

gJ ,

where the sum is performed over all jackets and gJ is the genus of a jacket J .
Thus, ρ(G)≤ ω(G), and the two quantities coincide in dimension 2.



Finding a dictionary between tensor models and crystallization theory 379

3 Conclusion

There are many quantities and notions in crystallization theory which match with
notions in colored tensor models. In [1], we discuss and show the following table:

Table 1: Comparison of notions and quantities in both theories (SM: Simplicial man-
ifold).

Crystallization theory Colored tensor models
D-residue D-bubble
SM: attaching simplices to vertices SM: indexing D-bubbles by all bubbles
h-dipole cancellation h-dipole contraction
h-dipole insertion h-dipole creation
Regular embedding, Fε Jacket, J
Heegaard surface, Σ Jacket, J

The Gurau degree is related to the number of faces, and hence to a discrete ver-
sion of the integral of the curvature. One could possibly make this statement more
precise. Finally, if we define ω(M) = min{ω(G) | G represents M} for a manifold
M, one could ask if this quantity ω(M) coincides, or at least can be compared with
the notion of scalar curvature.
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Quantum cosmology of scalar-tensor theories
and self-adjointness

Carla R. Almeida

Abstract Self-adjointness of the Hamiltonian operator obtained from quantizing
the classical Brans-Dicke action with a non-minimally coupled scalar field in mini-
superspace is addressed. The matter field plays the role of time, introduced by
Schultz’s formalism by means of a perfect fluid. We determine the conditions for
self-adjointness of the Hamiltonian operator.

1 Introduction

We canonically quantise the classical Brans-Dicke theory with a non-minimally
coupled scalar-field having a matter component. Considering a FLRW metric and a
change of coordinates, the Wheeler-DeWitt equation gives us the following Hamil-
tonian operator:

Ĥ =− b3α

ϕ
3α
2

{
ϕ

1
2

b

[
∂

2
b +

p
b

∂b

]
−ϖ

ϕ
3
2

b3

[
ϕ∂

2
ϕ +q∂ϕ

]}
, (1)

where b is related with the scalar factor, α is the matter constant of the EoS, ϖ is
a constant, and p,q are the ordering factors. This operator is symmetric only if we
consider the measure

〈ψ,φ〉=
ˆ

ψ̄φbp−3α+1
ϕ

q+ (3α+5)
2 dbdϕ. (2)

Notice that it depends on the ordering factors.
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2 Self-adjointness

To verify the self-adjointness of an operator or the existence of self-adjoint oper-
ators, we have to determine the number of linearly independent solutions of the
eigenvalue equation Ĥ∗Ψ = ±iΨ . For our case, the von Neumann theorem assures
us that the Hamiltonian operator is (essentially) self-adjoint or has self-adjoint ex-
tensions for every kind of matter chosen. However, the eigenvalue equation is only
separable for α = 1/3 (radiative matter) and α = 1 (stiff matter). For α = 1/3, the
eigenvalue equation becomes a system of differential equations:(

−∂
2
b −

p
b

∂b +
k2

b2

)
X(b) = 0; ϖ

(
ϕ

2
∂

2
ϕ +qϕ∂ϕ

)
Y (ϕ) = k2Y (ϕ), (3)

where k is the constant of separation. We proceed with the von Neumann method
showing that there are square-integrable solutions, that is, the Hamiltonian has self-
adjoint extensions, only if ϖ < 0, q = 1 and p <−1 or p > 3. Therefore, we have:

(i) For ϖ < 0, q = 1 and p <−1 or p > 3, the operator has self-adjoint extensions.
(ii)For every other case, the operator is already self-adjoint.

For ϖ < 0 the Hamiltonian operator Ĥ is positive and bounded from below; then we
can chose a unique extension, called Friedrich’s extension, which always preserves
the ground state. A similar analysis and similar results can be obtained for the case
of stiff matter α = 1.

2.0.1 Conclusion

In this work [1], we quantized the Hamiltonian of the classical Brans-Dicke theory
and determined the conditions for its self-adjointness. As expected, we were able
to reproduce the results obtained in [2] for a conformal matter field (α = 1/3),
showing the equivalence of the Einstein and Jordan frames.
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Luminosity of ultrahigh energy cosmic rays as a
probe of black strings

Rita C. Anjos, Carlos H. Coimbra-Araújo

Abstract Ultrahigh energy cosmic rays (UHECRs) can originate from extragalactic
sources as Active Galactic Nuclei. We propose a mechanism to calculate bounds on
the upper limits of the AGN luminosity fraction that can be converted into UHECRs.
This result comes from the mechanism powered by central black holes to produce
the AGN luminosity and observation of UHECRs and gamma-rays from experi-
ments to reconstruct proton and iron luminosities of a given AGN source.

1 Introduction

This contribution provides a better understanding of the effects of luminosities from
shower, AGN mechanisms and braneworld AGN corrections, and provides a back-
ground model for considering UHECR luminosity. We investigate the bolometric
luminosity that comes from the accretion mechanism. We argue that the jet contri-
bution comes as a quantity that is proportional to the bolometric luminosity, i.e.,
a fraction of such luminosity, assuming that any geometrically thick or hot inner
region of an accretion disk produces powerful jets [1–3]. The method connects an
upper limit on the integral GeV-TeV gamma-ray flux and upper limit on the UHECR
luminosity through the cascading process that takes place during propagation of the
cosmic rays in background radiation fields. The simulated spectra were normalized
with an upper limit on the energy spectrum measured by the Pierre Auger Observa-
tory [4, 5]
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2 Luminosity of black strings and cosmic rays

The luminosity Lacc of AGNs due to black hoke (BH) accretion is given by equation

LT heory
acc =

GMṀ
6R−

, (1)

where Ṁ denotes the accretion rate and depends on some specific model of ac-
crection, R− = Rbrane, R+kerr and R+kerbrane are the horizons of BHs which are,
respectively, static with extra dimension corrections, rotating, without and with, ex-
tra dimension corrections. The luminosity of AGNs are produced essentially by the
accretion mechanism of supermassive black holes [3]. We can consider that the jet
contribution comes as a proportional quantity to the bolometric luminosity (LT heory

acc ),
namely, a fraction (ηCR), assuming that any geometrically thick or hot inner region
of an accretion flow can advance magnetic field fluctuations to produce powerful
jets. We can write the fraction of the total luminosity going into UHECR as

LT heory
CR = ηCRLT heory

acc . (2)

The luminosity decreases for some cases when extra dimension effects are taken
into consideration [1].

3 Conclusion

We calculated the luminosity due to accretion of nine sources. The luminosities cal-
culated based on theory were compared to an upper limit on the UHECR luminosity.
The comparison resulted in being able to determine upper limits on the energy con-
version from accretion to UHECR. The theoretical estimations of this conversion
efficiency represents important information about the energy balance in BH [1].
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About nonlinear coherent states in graphene

Erik Dı́az-Bautista, David J. Fernández C.

Abstract We analyze the nonlinear coherent states for electrons in graphene inter-
acting with a homogeneus magnetic field which is orthogonal to the layer surface.
We also evaluate the corresponding Heisenberg uncertainty relation.

1 Introduction

Graphene is a single layer of carbon atoms arranged in a hexagonal honeycomb
lattice whose conduction and valence bands meet at the Dirac points, six locations
in momentum space on the edge of the first Brillouin zone [1]. Around the Dirac
points, low energy electrons interacting with a magnetic field B, which is orthogonal
to the layer surface, are ruled by the Dirac-Weyl equation [2, 3]:

vF σ · (p+ eA/c)Ψ(x,y) = EΨ(x,y), (1)

where vF ∼ 0.003c is the Fermi velocity, σ is the vector of Pauli matrices, Ψ(r) =
(ψ+(r), ψ−(r))T, E is the energy, −e is the electron charge and A = B(x)êy. For
a constant magnetic field B = B0êz, B0 > 0, its solutions are given by the following
eigenvalues with their related normalized eigenvectors:

En =±h̄ vF
√

nω, Ψn(x,y) =
(
ψ

+
n−1(x), ψ

−
n (x)

)T eiky/
√

2, n = 0,1,2, . . . , (2)

where Ψ0(x,y) ≡
(
0, ψ

−
0 (x)

)T eiky and ψ±n (x) = ψ±n (z(x)) are the standard har-
monic oscillator eigenfunctions with z =

√
ω/2(x+2k/ω), ω = 2eB0/ch̄.
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Fig. 1: Heisenberg uncertainty relation (σz)
2
α(σp)

2
α as a function of α for some

choices of g(N̂).

2 Annihilation operator

The annihilation operator is not unique. We will choose Â−= diag ( f (N̂)ϑ̂−, g(N̂+

1̂)ϑ̂−), since Â−Ψn =
√

n g(n)Ψn−1, where f (N̂) =
√

N̂ + 2̂g(N̂ + 2̂)/
√

N̂ + 1̂,
ϑ̂± = (z∓∂z)/

√
2 and N̂ = ϑ̂+ϑ̂−. The coherent states (CS) Ψα are built as eigen-

states of Â− with eigenvalue α ∈ C. Explicit forms of Ψα appear for simple g-
choices:

Ψα =



1√
2 0F1(1; |α|2)−1

[
Ψ0 +

∞

∑
n=1

√
2αn

n!
Ψn

]
, if g(N̂) =

√
N̂, (3)

e−|α|
2/2

∞

∑
n=0

αn
√

n!
Ψn+1, if g(N̂ + 1̂) =

√
N̂√

N̂+1̂
, (4)

1√
0F2(1,2; |α|2)

∞

∑
n=0

αn

n!
√
(n+1)!

Ψn+2, if g(N̂ + 2̂) = N̂
√

N̂+1̂√
N̂+2̂

. (5)
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3 Conclusions

For graphene in a constant magnetic field, we have identified annihilation and cre-
ation operators Â± and built its CS as eigenstates of Â−. Due to the non-uniqueness
of Â−, we can find different sets of CS and the Heisenberg uncertainty relation for
each one is calculated. It achieves a minimum, equal to 1/4, for the CS of Eq. (3),
and it reaches a maximum for those of Eqs. (4) and (5), depending on which is the
lowest energy of the excited states involved in their linear combination (see Fig. 1).
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Painlevé IV solutions from systems with a
harmonic oscillator gapped spectrum

MI Estrada-Delgado and David J. Fernández C.

Abstract Supersymmetry transformations of order k are applied to the harmonic
oscillator for generating potentials V j

k whose spectra have a gap of thickness k+ 1
with respect to the initial spectrum. The system’s extremal states are identified and,
since the conditions ensuring that the Hamiltonian has third order ladder operators
and thus it is connected with the PIV equation are satisfied, solutions to this equa-
tion can be found. An alternative supersymmetry transformation is applied to the
harmonic oscillator by adding the levels needed to reproduce the spectrum of V j

k , up
to a constant energy displacement. The three new extremal states are as well iden-
tified and we get the corresponding solutions to the PIV equation. Finally, the PIV
solutions found through both transformations are analysed.

1 Supersymmetric quantum mechanics

In the k-th order intertwining technique k + 1 Hamiltonians H j and 2k first order
operators A±l given by

H j =−
1
2

d2

dx2 +Vj(x), A±l =
1√
2

(
∓ d

dx
+αl(x,εl)

)
, j∈N0≤ k, l ∈N≤ k, (1)

are intertwined in the way HiA+
i = A+

i Hi−1 with i ∈ N≤ k.
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With the substitution of α1(x,εl) = u′l/ul , it turns out that we require k solu-
tions ul of the initial stationary Schrödinger equation associated to εl . Moreover, the
SUSY partners generated from the harmonic oscillator through connected seed so-
lutions become associated with the PIV equation, allowing us to generate solutions
to such equation in a simple way [1].

2 Equivalent SUSY transformations

Choosing as factorization energy ε1 =− 5
2 (k = 1), the potential will be non-singular

if ν ∈ (−1,1), as proved in [1]. In particular, for ν = 0 we denote the potential as
V−3

1 . On the other hand, a second-order transformation which employs the first two
excited states leads to the SUSY partner potential V 1

2 . Plots of these potentials and
the associated spectra are shown in Figure 1a and 1b.
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Fig. 1: (a) Plot of three potentials of the family of SUSY partners of the oscillator generated
by adding a new level at − 5

2 for different ν’s, in particular, the one for ν = 0 is called V−3
1 ; (b)

Spectrum associated to these SUSY partner potentials, which is the same for V 1
2 but displaced

down by 3; (c) Solutions to the PIV equation associated to V 1
2 and V−3

1 .

The eigenfunctions for both potentials turn out to be the same and, after iden-
tifying and sorting the extremal states, the PIV solutions are calculated (see Fig.
1c).
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Interior solution for a translating cylinder of
matter

Pedro Henrique Meert Ferreira and Maria de Fátima Alves da Silva

Abstract Solutions to Einstein’s Field Equations with cylindrical symmetry have
drawn much attention because they are significantly different from what the New-
tonian picture predicts. Solutions of this kind are widely known and many cases
have been studied. In particular, Van Stockum spacetime describes the interior of a
cylinder with rotating dust; this solution is known to satisfy junction conditions with
Lewis spacetime, which is the solution to the exterior part, i.e., gravitational field
produced in vacuum by a rotating cylinder. We notice that the Van Stockum line
element has a symmetry between its axial and angular coordinates; such a metric
allows us to study a cylinder with a fluid moving along the axis of symmetry. We
are currently studying this solution, and here we present some consequences such
as the equation of state that the fluid should satisfy as well as energy conditions.

1 Outline and discussion of the problem

From a work of 1937, W. J. van Stockum showed that solutions for axisymmetric
distributions of matter exist; his own solution is for dust rotating around an axis of
symmetry [1], i.e., a cylinder of matter. We notice that van Stockum’s original solu-
tion is symmetric under the change z↔ ϕ (within a multiplicative factor to correct
dimensions); we associate this solution to an infinitely long cylinder of matter trans-
lating along the z axis. We are motivated to do so in order to verify whether there is
a frame dragging effect, which is known to occur in solutions associated to rotating
sources. Once we have a source for such a spacetime, we can calculate quantities
associated to the exterior geometry, namely, Lewis spacetime with translation. Af-
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ter performing the interchange of coordinates, we are faced with the following line
element, written in geometric units 8πG = c = 1:

ds2 =−dt2 + e−α2r2 (
λdϕ

2 +dr2)+ r2
(
1−α2r2

)
λ

dz2 +
αr2
√

λ
(dtdz+dzdt) , (1)

where we adopted the conventional cylindrical coordinates {0,1,2,3} 7→ {t,r,z,ϕ}.
The parameter α is a constant related to angular momentum density in the original
solution in which particles are rotating; by analogy we presume that this parameter
is related to linear momentum density. λ is a real positive constant factor which
asserts that the line element has the correct dimensions, thus λ ∼ [length]2.

We use the anisotropic energy-momentum tensor

Tµν = (ρ + pz)uµ uν + pzgµν +
(

pϕ − pz
)

Pµ Pν +(pr− pz)Sµ Sν , (2)

where pi stand for the pressure in the ith component. uµ is the covariant four velocity
which satisfies the normalization condition uµ uµ =−1, and Pµ ,Sµ are orthonormal
space-like four vectors. Using (1) and (2) we solve Einstein’s equation, Gµν = kTµν ,
for the energy density, ρ , pressure components, pi, and the velocity along de z axis
which we call v.

By solving Einstein’s equations for the most general case, one obtains

ρ =
4Fα2eα2r2

G2

1−

(
α2r4− H2

G2

)(
G2

F −1
)

H2

G2 +
r2

λ
(1−α2r2)

 , pz =
4α2eα2r2

(
α2r4− H2

G2

)
H2

G2 +
r2

λ
(1−α2r2)

,

where we defined the following functions: F(v) = 1− αr2√
λ

v+ r2(1−α2r2)
λ

v2, G(v) =

−1+ αr2√
λ

v and H(v) = αr2√
λ
+ r2(1−α2r2)

λ
v. The only solution for v that does not re-

quire α,λ , or both parameters to be complex or imaginary is the solution of a co-
moving reference frame, i.e., v = 0. Setting this value for v, we find from Einstein’s
equation that λ = 1 and from this result one can see that pz = 0 and ρ ∝ eα2r2

,
which means that we have a cylinder of dust with rigid translation along the axis
of symmetry. It is interesting to notice that although we claim that α is related to
linear momentum density –we are not able to prove it, the only possibility is v = 0.
We expect this solution to be related to the static spacetime by a boost, as it happens
to be in a newtonian theory, in which the potential is the same independent of any
translation or rotational motion of the source. Also, the so-called frame dragging
is not present in this simple case. We expect to find it in the case of differential
translation, as suggested by [2], which we are currently investigating.
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A classical calculation of the W-boson magnetic
moment

Alexandre Hefren de Vasconcelos Júnior

Abstract We aim to calculate the electromagnetic correction for the magnetic mo-
ment of an electric-charged massive elementary particle of spin-1, the intermediate
vector W-boson of the weak interaction. It is a classical (or semi-classical) calcula-
tion, which is not based on diagrams. Our purpose is not to substitute the standard
calculation, but to highlight the notion of extended fields. Is it possible to simulate
quantum effects by using a notion of extended field? Interestingly, there is a concept
in the algebraic approach to QFT called modular localization [1] that makes use of
string instead of pointlike localization.

1 Introduction

The giromagnetic adimensional factor of elementary particles provides us with the
most successful result in the history of science. That is because the agreement be-
tween theoretical calculations and experimental data is astonishingly precise [2].

The theory behind this calculations is quantum field theory (QFT); the first result
was derived by Schwinger [3] in 1948. It was about the leptonic magnetic moment
of the electron calculated using Feynman diagrams. The result is extremely famous
in terms of the anomaly ae =α/2π . The pertubative approach based on quantization
of classical interactions and gauge theory is very fruitful. Nevertheless, the Standard
Model (SM) is not settled as a mathematically complete quantum field theory. Fol-
lowing the idea presented in [4], we give special status to the Compton wavelength
and work the bosonic case.
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2 The calculations

From the electroweak sector of the SM, the lagrangian for the W-boson is

L =−1
4

Fµν Fµν − 1
2

W ?
µνW µν +m2W ?W + ieqFµνW ?µW ν . (1)

Noether’s second theorem gives us the off-shell current which, in the Lorenz gauge,
reads

∂ν Fνµ =2Aµ = Jµ =−2eqIm [Wν(∂
µW ?ν)+W ?ν(∂ νW µ)]+2e2q2W ?νWν Aµ

−e2q2 [W ?µWν+W µW ?
ν ]A

ν−ieq∂ν(W νW ?µ−W ?νW µ). (2)

For the magnetic sector, µ = i, the Ampère-Maxwell is given by

−∇
2Ai +2e2q2(W? ·W)Ai− e2q2 (W i?W ·A+W iW? ·A

)
=+2eqIm

[
W ·∂ iW?−W? ·∂W i]− ieq∂ j

(
W jW i?−W j?W i) . (3)

Thinking about corrections for the magnetic moment in O(e2q2), we define the (fac-
tored) total current J̃ by Jµ ≡ eqJ̃µ . In the Lorenz gauge with static approximation,
the potential associated with J̃ is

A =
eq
4π

ˆ
J̃(x′)d3x′

|r− r′| . (4)

For simplicity, we consider the non-relativistic limit and ignore the back-reaction
effect, so the subsidiary condition is W 0 = 0. The convective term of the current,
related to the massive boson, is therefore absent. Let us define the pure electromag-
netic spin current

˜̃Ji
=−i∂ j

(
W jW i?−W j?W i)=−i∂ j

[
W+W ?

+

(
ε
?
+i

ε+ j − ε+iε
?
+ j

)]
, (5)

and the associated particle density ρpart
m = 2W? ·W. Choosing a particular polariza-

tion for the W boson, ε+µ = 1√
2
(0,1, i,0), the spin current takes the form

˜̃Ji
=− i

2m
∂ j

[
ρpart

(
ε
?
+i

ε+ j − ε+iε
?
+ j

)]
. (6)

Going back to the general expression of the current,

˜̃Ji(r) = J̃i−
(

2e2q2

4π

)ˆ
J̃i(r′)W ν?Wν d3r′

|r− r′|

+

(
e2q2

4π

)ˆ J̃ j(r′)
[
W i?Wj +W iW ?

j

]
d3r′

|r− r′| .

(7)
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Now, we can express the total current in terms of the spin current by

˜̃Ji
= J̃i

(
1− e2q2

16π2

)
, (8)

where we used the main heuristic consideration of taking |r−r′| ≡ λ as a fixed dis-
tance related to the Compton wavelength associated with the W-boson. Therefore,
mλ = 2π appears immediately. Also, there was a delta “function” associated to the
particle’s density inside the integrals.

For the magnetic moment, the famous classical expression is

µ =
1
2

ˆ
r×
(

eqJ̃
)

d3r′, (9)

which can be expressed as

µ =
eq
2m

(
1+

α

4π

)−1
2
ˆ ((

ε
?
+Sε+

) ρpart

2

)
d3r′=

eq
2m

2
(

1− α

4π

)−1
s, (10)

with the spin vector related to the euclidean rotation generator s=
´ ρpart

2

(
ε?+Sε+

)
d3r′.

Finally, for α � 1, one gets

µ =
eq
2m

2
(

1+
α

4π

)
s. (11)

The experimental result from 2001 [5] gives us the value of the magnetic moment
of the W-boson, µW

(
2M
eq

)
= 2.22+0.20

−0.19.

The electromagnetic corrections are small compared to the contributions of the
others interactions for the magnetic moment of the W-boson and this goes to the
boson being very massive. Nevertheless, the electromagnetic corrections scale as
expected, i.e., as α/π .
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Quantum angle from E(2) coherent states
quantization of motion on the circle

Diego Noguera

Abstract Covariant integral quantisation using coherent states for the Euclidean
Group E(2) is applied to construct quantum observables for the motion on the circle.
An important issue of our approach is a self-adjoint angle operator with excellent
localisation properties.

1 Introduction

A crucial property of coherent states (CS) in view of integral quantisation is the
resolution of the identity. Our construction of CS is based on unitary irreducible
representations of the Euclidean group E(2) = R2 o SO(2), and it is strongly in-
fluenced by the seminal paper by De Bièvre [1] and Chapter 9 of the book [2]. An
interesting and original outcome of our approach is a self-adjoint angle operator
showing satisfying localisation on the circle. Details are given in [3].

2 E(2) coherent states

The existence of our coherent states is encapsulated in the following result (proof is
given in [3]).

Theorem 1. Let κ = (κ cosγ,κ sinγ) ∈ R2, λ = (λ cosζ ,λ sinζ ) ∈ R2, and η ∈
L2(S1,dα). The vectors ηp,q(α) = ei[κ pcos(q−α+γ)+λ cos(q−α+ζ )]η(α − q) form a
family of CS for E(2), which resolves the identity on L2(S1,dα) if η is admissible
in the following sense:
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IL2(S1,dα) =

ˆ
R×S1

dpdq
cη

|ηp,q 〉〈ηp,q |, 0 < cη :=
2π

|κ|

ˆ
S1

|η(q)|2dq
|sin(argκ−q)| < ∞, (1)

where suppη is an interval excluding the roots of |sin(argκ−q)|.
Consequently, the covariant integral quantization [2] of a function f is defined by

A f =
1

cη

ˆ
R×S1

dpdq f (p,q)|ηp,q 〉〈ηp,q | . (2)

3 Quantum angle operator

For the 2π periodic angle function a(α) defined by a(α) = α for α ∈ [0,2π), the
angle operator computed from (2) is the multiplication operator

Aaψ(α) =
(
Eη ;γ ∗a

)
(α)ψ(α) where Eη ;γ(α) :=

2π

κcη

|η(α)|2
|sin(γ−α)| . (3)

With the conditions on suppη given in Th. 1, the convolution Eη ;γ ∗a becomes

(
Eη ;γ ∗a

)
(α) =

ˆ
α+π−γ

α−γ

dqEη ;γ(α−q)a(q) , (4)

which corresponds to the spectrum of Aa. As an example, for γ = π/2 and a =
κcη/2π , the expresssion (4) yields to

(
Eη , π

2
∗a
)
(α) =α−

ˆ π
2

− π
2

dx
x|η(x)|2
acos(x)

−



´
α
π
2

dx 2π|η(x)|2
acos(x) 06 α < π

2 ,

0 π

2 6 α < 3π

2 ,

´
α−2π

− π
2

dx 2π|η(x)|2
acos(x)

3π

2 6 α < 2π.

(5)

A further analysis of Aa, the quantisation of many other relevant obsevables, and
the study of their semi-classical analysis are found in [3].

4 Conclusions

The coherent states given in Th. 1 allow us to map the angle function a to the
bounded self-adjoint multiplication operator Aa on L2(S1,dα). Its spectrum is
given by the periodic function (4), where the additional term to α can be made
arbitrarily small almost everywhere through suitable choices of the function η(α).
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Free-energy formalism for inhomogeneous
nonlinear Fokker-Planck equations

Peter Rapčan, Gabriele Sicuro and Constantino Tsallis

Abstract We extend the free-energy formalism recently introduced for homo-
geneous Fokker–Planck equations to a wide class of inhomogeneous nonlinear
Fokker–Planck equations, providing sufficient conditions for the equation coeffi-
cients to obtain a free-energy that does not increase with time. Some properties of
the stationary solutions of these Fokker–Planck equations are discussed.

Consider a Fokker-Planck equation (FPE) in (1+1) dimensions, i.e., a continuity
equation for the probability density ρ(x, t)

∂ρ(x, t)
∂ t

=−∂J[x,ρ(x, t)]
∂x

, (1)

with a probability-current density given by

J[x,ρ(x, t)] := A(x)Ψ [ρ(x, t)]−D(x)Ω [ρ(x, t)]
∂ρ(x, t)

∂x
. (2)

We assume the following boundary conditions ∀t ≥ 0:

lim
x→±∞

ρ(x, t) = lim
x→±∞

∂ρ(x, t)
∂x

= lim
x→±∞

J[x,ρ] = 0. (3)
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Moreover, we assume that ∀x ∈ R, 0 < D(x)< ∞ and Ω [ρ]> 0 almost everywhere.
We search therefore for a trace-form free-energy-like functional

F(t) :=
ˆ

∞

−∞

f [x,ρ(x, t)]dx (4)

f [x,ρ(x, t)] := ϕ(x)ρ(x, t)−Θs[ρ(x, t)], (5)

where f is a free-energy density, ϕ is an effective potential, s is an entropy density
such that s[0] = s[1] = 0, and Θ > 0 is a parameter that plays the role of a tempera-
ture. Evaluating the time derivative of F , and imposing Eq. (1), we obtain

dF(t)
dt

= −
ˆ

∞

−∞

ΘD(x)Ψ(x)
[
−A(x)

D(x)
+

Ω [ρ]

Ψ [ρ]

∂ρ(x, t)
∂x

]
×
[

1
Θ

∂ϕ(x)
∂x

− d2s[y]
dy2

∣∣∣∣
y=ρ(x,t)

∂ρ(x, t)
∂x

]
dx.

We assume, without loss of generality, that Ψ [ρ] is positive. The integrand is non-
negative, i.e., the free energy is non-increasing along the entire time evolution, if

1
Θ

dϕ(x)
dx

=−A(x)
D(x)

,
d2s[ρ]
dρ2 =−Ω [ρ]

Ψ [ρ]
. (6)

The relations above have been obtained for the first time in Refs. [1, 2] for the ho-
mogenous case D(x)≡ D = constant.

One may wonder whether the structure of J presented in Eq. (2) and adopted in
Eq. (1), might be substituted by a more general structure like

J[x,ρ(x, t)] = Ψ̃ [x,ρ(x, t)]− Ω̃ [x,ρ(x, t)]
∂ρ(x, t)

∂x
. (7)

It turns out that the structure of our free-energy functional as defined in Eqs. (4) and
(5) is not compatible with the structure of the above probability-current density un-
less Ψ̃ [x,ρ(x, t)] = A(x)Ψ [ρ(x, t)] and Ω̃ [x,ρ(x, t)] = D(x)Ω [ρ(x, t)]. If we instead
do not specify the structure of f [x,ρ], we can still write down a set of equations
such that dF(t)

dt ≤ 0 which, in turn, constrain the pair Ψ̃ ,Ω̃ as follows:

∂ 2 f [x,ρ]
∂x∂ρ

= Ψ̃ [x,ρ]
∂ 2 f [x,ρ]

∂ρ2 = Ω̃ [x,ρ]

⇒ ∂Ψ̃ [x,ρ]
∂ρ

=
∂Ω̃ [x,ρ]

∂x
, (8)

where the implied condition is not satisfied a priori.
Let us now come back to the factorized probability-current density in Eq. (2). It

can be shown [3] that if a stationary distribution of Eq. (1), ρst(x), exists, then it is
unique, coinciding with the limit distribution ρst(x) = limt→∞ ρ(x, t), and it can be
written in the form

ρst(x) = exps[−Θ
−1

ϕ(x)+ c], (9)
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where, given g(ρ) := ds(ρ)
dρ

, exps(x) := g−1(−x) is a deformed exponential asso-
ciated with the (generalized) entropy density s and c is a normalization constant.
Hence, even for a fixed entropic form, one can obtain a wide class of stationary
distributions by an appropriate choice of the argument of the deformed exponential,
and in particular of D(x).

Observe that (A,Ψ ,D,Ω) and (γA,γ−1Ψ ,δD,δ−1Ω), with γ,δ 6= 0, lead to the
same FPE. Therefore the quantities Θ−1∂xϕ and s are given up to a common mul-
tiplicative constant, unless additional information is available. In particular, the pa-
rameter Θ can be only fixed on the basis of the specific properties of the model under
consideration. Supposing ϕ fixed in this way, and evaluating the second moment of
the stationary distribution

´
∞

−∞
x2ρst(x)dx, the following identity can be written

Θ =
−
´

∞

−∞
x3 dϕ(x)

dx

(
d2s[z]
dz2 |z=ρst (x)

)−1
dx

3
´

∞

−∞
x2ρst(x)dx

. (10)

Summarizing, we have extended the free-energy formalism introduced in [1, 2],
to a wide class of inhomogeneous nonlinear Fokker–Planck equations. The connec-
tion with q-statistics (and its associated nonadditive entropy Sq) can be straightfor-
wardly obtained as a particular case. A more complete analysis of the formalism, ad-
dressing properties of the free-energy functional, entropy production in the process
of relaxation towards the equilibrium, derivation of the stationary solution, accom-
panied by a proof of the existence of a unique limit distribution, is being published
elsewhere [3].
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2. V. Schwämmle, F. D. Nobre, and E. M. F. Curado. Consequences of the H theorem from
nonlinear Fokker–Planck equations. Physical Review E, 76:041123, 2007.
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Relativistic deformation of Helmholtz wavefields

Cristina Salto-Alegre, Amalia Torre, and Kurt Bernardo Wolf

We investigate the aberration of images on a plane screen produced by a three-
dimensional Helmholtz wavefield when the sphere of plane wave directions is sub-
ject to relativistic deformation. This aberration was originally studied in the geo-
metric optics model in Refs. [1, 2] and [3, Sect. 5.7], and for the wave model
in [1](II), albeit with simplifications. Here we apply the relativistic deformation to
the monochromatic wave model provided by solutions of the Helmholtz equation,
(∂ 2

x + ∂ 2
y + ∂ 2

z + k2) f (x,y,z) = 0, which can be written equivalently in evolution
form as a 2×2 matrix operator equation,

Hf = ∂zf, H :=
(

0 1
−∆k 0

)
, f :=

(
f (r,z)
fz(r,z)

)
, (1)

where r= (x,y), k is a wavenumber, and ∆k := ∂ 2
x +∂ 2

y +k2. The wavefield is f (r,z)
and fz(r,z) = ∂z f (r,z) is its normal derivative at a z = constant plane.

The operator H generates translations of (1)in the z-direction from the standard
screen: f(r,z) = exp(zH) f(r), where f(r) := f(r,z)|z=0. Solutions to the Helmholtz
equation are a superposition of plane waves whose directions lie on the sphere. We
can imagine being in a space vehicle; at relativistic speeds, the sphere of stars will
be deformed so that they will apparently crowd towards the direction of motion,
the angles to it will map as tan 1

2 θ 7→ tan 1
2 θ ′ = e−χ tan 1

2 θ . One can deform the
Euclidean symmetry algebra of translations and rotations that accompanies (1) into
a Lorentz algebra [1](II) to translate the boost map as generated by

Br =
1
k

(
(D̂+1)∂r + k2r 0

0 (D̂+2)∂r + k2r

)
, Bz =

1
k

(
0 0

k2− (D̂+2)∆k 0

)
, (2)

where D̂ := r ·∂r and Ĉ := k2− (D̂+2)∆k. The relativistic deformation of functions
on the screen is f(r) 7→ fγ(r) = exp(iγ ω ·B) f(r), with the 3-vector ω of directions
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on the sphere and B = (Br,Bz); for finite boosts γ in the z direction, the operator is

k
2π3/2

 (
∑
+∞

n=0
(−1)n

(2n)! (
γ

k )
2n(D̂Ĉ)n

)
sinc(k|r− r0|)

iγ
k

(
∑
+∞

n=0
(−1)n

(2n+1)! (
γ

k )
2n(ĈD̂)n

)
Ĉ sinc(k|r− r0|)

 . (3)

The function of minimal width in a Helmholtz field is a spherical Bessel function
j0(r), which is expressible as a trigonometric function: ψ(r− ro) = (k/2π3/2)×
sinc(k|r− r0|), with zero normal derivative ψz(r− ro) = 0. In Fig. ?? we show the
series (3) succesively computed up to the terms n = 0, 1, . . . , 5. Previous work [1](II)
presented results for n≤ 2 on a Gaussian —which is not properly a Helmholtz field.

Fig. 1: The relativistic coma aberration of the Helmholtz wavefield ψ(r− ro) as
given by the n first terms in the series (3), for n = 0, 1, . . . , 5, γ =−2, and centered
on ro = (3,0) —marked in the second row; color range is (0,1). Note that the apex
maximum is displaced to the right while there are increasing ∼ n oscillations that
form the coma with the characteristic ∼ 60◦ opening angle.

Acknowledgements We thank the support of the Universidad Nacional Autónoma de México
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Part V
Memorials: S. T. Ali and L. Boyle



Syad Twareque Ali

Jean-Pierre Antoine and Jean-Pierre Gazeau

Nitya kaaler utshab taba
Bishyer-i-dipaalika

Aami shudhu tar-i-mateer pradeep
Jaalao tahaar shikhaa 1

– Tagore

Fig. 1: Excursion on the Ganges river during the Bose School and Conference on
Current Topics in Physics, held in Dakha, Bangladesh, December 15–21, 2007:
Twareque Ali with two participants.
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1 Thine is an eternal celebration ... – A cosmic Festival of Lights! ... Therein I am a mere flicker of
a wicker lamp ... O kindle its flame, (my Master!); from the preface of AAG.
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The career of Twareque exhibits several contrasting features. First, he is one of
the few people we know who had FOUR successive nationalities. Born a citizen
of the British Empire, he became a Pakistani in 1947, a Bangladeshi in 1971, and
finally a Canadian.

Actually Twareque travelled a lot professionally. After a MSc in Dhaka, Bangla-
desh, in 1966, and a PhD in Rochester, USA, in 1973, he occupied positions suc-
cessively at ICTP, Trieste (Italy), U. of Toronto, U. of Prince Edward Island, TU
Clausthal (Germany), finally Concordia U., Montréal. In addition, he has been in-
vited professor at uncountably many foreign universities throughout the world and
invited speaker at as many conferences.

During his whole life, his scientific worldline was fully coherent. Indeed his en-
tire career can be summarized in those keywords which were his favorite topics:
phase space, positive operator valued measures, reproducing kernels, quantization,
coherent states, orthogonal polynomials ... Throughout these years, Twareque has
relentlessly preached mathematical rigor in the field of coherent states, too often
left to the rather sloppy treatment of quantum optics fans (in Wikipedia, for instance
!).

Let us be more specific. In the 1970s and 1980s, he devoted much time to mea-
surement problems in (fuzzy) phase space and stochastic, Galilean and Eisteinian,
quantum mechanics, mostly with E. Prugovečki, in Toronto (which led to a mem-
orable and lasting dispute with Gerald Kaiser), G. Emch in Rochester and H.-D.
Doebner in Clausthal. His 1985 monumental review paper [1] is a pedagogical land-
mark for the domain. Then he gradually focused on coherent states for the Galileo
group, the Poincaré group, and other semi-direct product groups. These were the
topics on which we started our collaboration at the end of the eighties and con-
tinued up to the end. Along the way, eleven joint papers were written (plus four
with JPA alone and ten with JPG), three books edited (Białowieża proceedings),
two more written as co-authors [2, 3] and a special issue of J. Phys.A [4] was pub-
lished. A notable result of the joint enterprise was the extension of square inte-
grability of group representations to homogeneous spaces [5] and the introduction
of continuous frames in Hilbert spaces — the key to many applications, including
wavelets [6]. Then he started to be interested in quantization, mostly Berezin or
coherent states quantization, and in the mathematics of signal processing. A partic-
ularly nice achievement was his review paper with M. Engliš [7]. In the last years,
he studied noncommutative quantum mechanics, quaternionic Hilbert spaces and
complex orthogonal polynomials.

An important part of Twareque’s life is the organization of meetings. Two series
are notable. First, the Białowieża Workshops on Geometric Methods in Physics,
famous for the wild forest, bisons, vodka, Russian mathematicians of the highest
caliber and, of course, their charismatic chief organizer, Anatol Odzijewicz. From
1992 on, the XIth meeting, Twareque was instrumental in transforming a small local
workshop into a full-fledged international event, still going strong — the last edition
was Nr.XXXV, last July.

Another remarkable achievement is the series of workshops in Havana, Cuba,
organized jointly by Concordia U. and the University of Havana. Here again,



Syad Twareque Ali 411

Twareque was one of the “chevilles ouvrières” of the meeting, who succeeded in
attracting a number of recurrent distinguished participants to these beautiful sur-
roundings and almost singlehandedly took care of the proceedings. More recently
Twareque has also become a faithful participant in the school and workshops on
mathematical physics (COPROMAPH) organized in Cotonou, Bénin, by Norbert
Hounkonnou.

To conclude, being more explicit about numerous (around 150) Twareque’s con-
tributions listed by “order of importance” would be illusory because there are so
many different, even contradictory, classification criteria. We would like just to
stress the fact that Twareque had a very deep and subtle knowledge and understand-
ing of Quantum Physics, in its foundations as well as in its working mathematical
tools. And, above all, he never showed arrogance for that. It was always extremely
pleasant to work with him because of his intelligence and extreme tolerance for
the ideas advanced by others. Open-mindedness was one of his great qualities. His
clean, polished mathematical style is a pleasure to read, even if his papers are some-
times dense and compact. His nonscientific writings have the same quality, even
poetry — we still remember a memorable poem composed by him in Białowieża!
His talks, of which we attended quite a number, were always extremely clear and
pedagogical. His ideas were often thought provoking. Altogether we feel fortunate
to have been able to work with him for so long, and so do surely all his other col-
laborators.
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Laurence Boyle - In Memoriam

Maia Angelova

Fig. 1: LL Boyle born 15th May 1942 in Oxford and died 6th October 2015 in Kent

Lewis Laurence Boyle, always known as Laurence, was born in Oxford on 15
May 1942. He was brought up the eldest of a large family, seven children, broth-
ers and sisters, of Catherine and Donald Boyle on the outskirts of Oxford, near
the village of Iffley. Laurence’s early years were in many ways typical of a child
brought up during the years of austerity, and with the national housing shortage,
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the Boyle family lived with their maternal grandparents until Laurence was thirteen.
This was a stimulating environment for the obviously bright little boy, where educa-
tion was highly regarded. With the shortage of toys, even paper being rationed until
1953, Laurence collected what was available, especially tickets, both train and bus,
timetables and stamps. Meccano and Dinky toys were treats.

Laurence attended Notre Dame Prep School in Oxford, where he rapidly proved
his abilities, particularly in Mathematics, and he went on to secondary school when
he was only ten years of age. Rather small, a year younger than his classmates and
with poor eyesight, Laurence was not a born sportsman, but the Salesian College
in Cowley provided a good range of interesting activities and clubs, and it was at
school there that he developed what were to be three life-long interests, geology,
chess and languages, especially Spanish.

Laurence was very adept with timetables, and from an early age was organising
the family holidays by train. Aged 12 he was trusted by his parents to arrange the
travel for by then the parents and four children to Southport, including finding the
most economical method, (mid-week tickets), purchasing the tickets with money
from his mother, and even taking the luggage in advance to Littlemore station by
pram. The trips, including several to Ireland, went very smoothly, with no parental
input other than the arrangement of accommodation.

Aged 16, Laurence went on his own to Spain to spend a month with the rela-
tions of a Spanish priest who was a friend of his grandparents. Again, all the travel
arrangements were done by Laurence himself, (and Spain was certainly not a hol-
iday destination at that time!) The travel went well, but the family he stayed with
spoke only Basque, so Laurence returned home with a basic knowledge of that lan-
guage rather than improved Spanish. The ease with which Laurence had learned
basic Basque gave him the confidence to learn many languages, and he eventually
spoke about twelve, being able to give scientific lectures in a number of them.

Laurence was actively involved with the local geology group since age of 14. He
was one of the founding members of the Oxford Geology Group.

When he was sixteen, Laurence sat the Oxford University entrance exam ”for
practice” and was awarded a place at Christ Church, Oxford. At that time, the uni-
versity regulations prohibited a student starting before he or she was eighteen, so
Laurence stayed on at school, eventually attaining eight A levels, before reading
Chemistry as his first degree.

He graduated from Oxford University with the degrees:BA (Hons) (1963) in
Chemistry with supplementary Mineralogy and BSc (1965) in Chemistry and Math-
ematics and an MA (1966) (Figures 2 and 3). He obtained a DPhil in Theoretical
Chemistry in 1966 under the supervision firstly of Professor A.D. Buckingham, FRS
who left to take up a post in Princeton, and secondly under Professor C.A. Coulson,
FRS in the Mathematical Institute at Oxford.

Laurence was appointed as an Assistant Lecturer in Chemistry at the University
of Kent at Canterbury in October 1966 at the age of 24, being one of the second
cohort of academic staff after the University first opened a year earlier. He did not
undertake a period of post-doctoral work, and his tenured post at Kent was his first
and only ever job! He retired in 2009 [1].
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At the University of Kent, Laurence was involved in teaching, research and ad-
ministration. He taught a very wide range of courses, including Spectroscopy, Elec-
tron Paramagnetic Resonance, Quantum Chemistry, Advanced Ligand Field The-
ory, Bonding, Crystal Structures, Theoretical Organic Chemistry, Geochemistry for
Chemists and for Environmental Physical Scientists, and Rocks and Minerals. As
part of the Environmental Physical Sciences degree course, his geology teaching in-
volved organising and running single-handedly annual week-long field trips during
the summer vacation to Scotland, as well as day trips to Boulogne. He gave many
‘outreach’ lectures on symmetry in chemistry for visiting sixth-form students.

He was a College Tutor and Natural Sciences Faculty Senior Tutor for eight
years, and a Convenor for the very successful Chemical Physics degree. This course,
which ran for many years and attracted some very bright students, was essentially
unique among UK undergraduate degree programmes [1]. Laurence’s role involved
co-ordinating all the teaching arrangements and organising the examinations, in-
cluding setting the papers and dealing with the external examiners. He was Chem-
istry Library Purchasing Officer in which role he was able to exploit his love of
books. In particular, he assembled a very impressive array of back-runs of many
major scientific journals, which he procured on the second-hand market as library
collections elsewhere were being disbanded. Sadly, because of storage space re-
quirements and associated costs, this legacy of Laurence has now largely disap-
peared [1].

Fig. 2: Lewis Laurence Boyle
BSc, MA, DPhil

Fig. 3: LL Boyle in Christ Church, Oxford with
his tutor, Dr Paul W Kent, on the right and
friends.

By 1994 he had supervised 13 PhD students and 4 MSc (by research) students.
He had received 13 post-doctoral workers from abroad: six Spaniards, one Pole,
three Bulgarians, one Indian, one Iranian and one Ukrainian. He had lectured in
20 different countries in, to use his own words, “the most appropriate of five lan-
guages”. He had a constant stream of professors, mainly from Eastern Europe, who
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visited and worked with him during his time at Kent [1]. He published with his PhD
students, his post-doctoral students and his collaborators (see examples [2-4].)

Laurence specialized in Applications of Group Theory to Chemistry, Spec-
troscopy and Crystallography. He published about 80 papers, the latest one in 2014,
in scientific journals and proceedings of international conferences. He was most
proud of his paper with Kerie Green (Figure 4, right-hand side) on the complete
derivation of the representation groups and projective representations of the classical
point groups [2]. He was considered a leading expert on symmetries of vibrational
spectroscopy and crystallographic space groups (for example [3]).

Laurence was a very keen editor of academic work. His last editorial work was of
AJ Ceuleman’s Group Theory Applied to Chemistry published by Springer in 2013.
In the Acknowledgements of the book AJ Ceulemans wrote: “I am very grateful
to L. Laurence Boyle for the critical reading of the entire manuscript, taking out
remaining mistakes and inconsistencies.”

I met Laurence in the summer of 1987 in Varna, where we attended the 16th
International Colloquium on Group-Theoretical Methods in Physics (ICGTMP), or-
ganised by Chavdar Palev and Vladimir Dobrev. I had just completed my PhD from
the University of Sofia under the supervision of Dr. Josef Kotzev. I worked with
Laurence for a year in 1988 as a Visiting Research Fellow at the University of Kent,
funded by The British Council. The project was on co-representations of magnetic
space groups. I had two shorter visits to Kent in 1990 and 1991, after which I moved
to Oxford University and Somerville College and continued to work with Laurence
until the end of 1996. We wrote several papers together (see for example [4]).

Fig. 4: Left: Ms Miriam Lewis Laurence’s long term partner; right: Dr. Kerie Green,
a former PhD student of L L Boyle with whom he published [2] and who is now a
Senior lecturer in Mathematics at the University of South Wales.
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Laurence was appointed to the Standing Committee in 1979 in anticipation of
his organizing the Xth International Colloquium on Group-Theoretical Methods in
Physics (ICGTMP) in Canterbury in 1981 with Arthur Cracknell (Dundee). The
chairman at the time was Aloysio Janner (Nijmegen) and Laurence was appointed
Honorary Secretary, a post which he held for 29 years. When I and Wojtek Za-
krzewski (Durham) organised the 28th ICGTMP in Newcastle upon Tyne in the
summer of 2010, Laurence helped with many useful suggestions.

Laurence organised a number of large international conferences, undertook a
Royal Society Study Visit to South Korea, and was a member of numerous ex-
ternal committees. He organised the 3rd Wigner Symposium (Oxford, 1993) with
Allan Solomon (Open University) and Maia Angelova (then Somerville College,
Oxford), The 24th Quantum Theory Conference (Guernsey,1993) and two smaller
conferences in a stately home near Canterbury in fulfilment of a contract with the
European Commission. He was actively involved in the establishment of the series
of symposia on Quantum Theory and Symmetries and was a member of its Interna-
tional Board (Figure 5).

Fig. 5: Laurence Boyle with Reidun Twarock
and Vladimir Dobrev in Prague from the
Quantum Theory and Symmetry QTS7 con-
ference in 2011.

Fig. 6: Laurence Boyle with his sis-
ter Julia in Downing Street.

He loved books, geology, antique furniture and the challenges of travelling. He
enjoyed dining out. He spoke several languages fluently. Laurence was a valued
member of our community (Figures 6), was an excellent researcher and teacher, and
a very good organiser of academic events. He had many close friends (Figure 4) and
loved his family (Figure 7). He will remain in our hearts.
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Fig. 7: XXVIII ICGTMP Goup28 Newcastle upon Tyne July 2010, organised by M
Angelova and W Zakrzewski
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Colloquium group photo at the campus of UFRJ, nearby CBPF where parallel ses-
sions were hold. Image by Alvaro Farias (2016).
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Gonçalves, Hilario A. R.
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