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Dedication to Bertram Kostant

1928-2017

Bertram Kostant, Professor Emeritus of Mathematics at MIT, died at the Hebrew
Senior Rehabilitation Center in Roslindale on Thursday February 2 at the age of 88.

He was a Professor of Mathematics at MIT from 1962 until 1993 when he of-
ficially retired yet continued his active life in research, traveling and lecturing at
various universities and conferences around the world. Kostant’s legacy spans well
over five decades, highlighting his originality and creativity in 107 published papers.
His remarkable ability to connect seemingly diverse ideas led to brilliant results that
formed the cornerstone of rich and fruitful theories both in mathematics and theo-
retical physics. It has been said, “Bert’s gift to the world showed a deep passion for
truth, for understanding, and for beauty, and an unshakeable faith that these things
are woven together.”

Bertram Kostant was born on May 24, 1928 in Brooklyn, New York. He gradu-
ated from Peter Stuyvesant High School in 1945. After studying chemistry for two
years at Purdue University, he switched to mathematics having fallen in love with
the subject in the classes of Arthur Rosenthal and Michael Golomb, who were recent
immigrants from Germany. In 1950 he earned a bachelor’s degree with distinction
in mathematics.

Kostant was awarded an Atomic Energy Commission Fellowship for graduate
studies at the University of Chicago. There he found a stimulating environment.
The various influences on him included Marshall Stone, Adrian Albert, Shing Shen
Chern, Paul Halmos, Irving Kaplansky, Irving Segal, but above all, via André Weil
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he was exposed to the French Revolution led by the Bourbaki group with their stun-
ning innovations in thinking about and writing down mathematics. Ed Spanier’s
course on Group Theory used Chevalley’s text—a treasure in Kostant’s library. It
marked a turning point in his life, and as he often said, “the sheer beauty of it all
resonated with me.” And it was indeed Kostant’s entrée into Lie groups for the next
sixty-five years. His fundamental and varied mathematical work entailed many as-
pects of Lie theory, which pervades almost all of mathematics, and is marked by
simplicity and elegance. Notable among the Lie areas touched upon are the follow-
ing: algebraic groups and invariant theory, the geometry of homogeneous spaces,
representation theory, geometric quantization and symplectic geometry, Lie algebra
cohomology, Hamiltonian mechanics, modular forms, and much more.

Kostant received an M.S. degree in Mathematics in 1951, and in 1954 his Ph.D.
under Irving Segal. His thesis was on “Representations of a Lie algebra and its
enveloping algebra on a Hilbert space.”

Between 1953 and 1956 Kostant was a Member at the Institute for Advanced
Study in Princeton. In 1955-56 he was a Higgins Lecturer at Princeton Univer-
sity. In Princeton, his lifelong passion for Lie groups—the continuous families of
symmetries at the core of great parts of geometry, mathematical physics, and even
algebra—began to blossom. He investigated the “holonomy groups” arising in dif-
ferential geometry, and at the same time worked to deepen our understanding of
the structure of the (deceptively named!) simple Lie algebras. From 1956 to 1962
Kostant was a faculty member at the University of California at Berkeley, where he
became a full professor in 1962. He was a Member of the Miller Institute for Basic
Research, 1958-59.

In 1962 in he joined the faculty at MIT, where he remained for the rest of his life.
Early on, Norman Levinson urged him to build the MIT Department in Represen-
tation Theory. Kostant eagerly welcomed the task, attracting new graduate students
and excellent mathematicians to come to MIT. He was devoted to his weekly Lie
Seminars, with both colleagues and graduate students in attendance; over the years
he had encouraged more than twenty Ph.D. students. He also served as a mentor to
many postdocs and young faculty members.

In the early 1960s, Kostant began to develop the “method of coadjoint orbits”
and “geometric quantization” (GQ 1965) relating symplectic geometry to infinite-
dimensional representation theory. Geometric quantization “provided a way to pass
between the geometric pictures of Hamiltonian mechanics and the Hilbert spaces
of quantum mechanics. These deep and complicated subjects with their profound
connections have been at the heart of several very different mathematical disciplines
ever since.” Kostant’s great contribution was also to relate such complex ideas to
much simpler mathematics. Again and again he was able to make powerful use of
these relationships. For example, in the early 1960s he proved a purely algebraic
result about “tridiagonal” matrices. In the 1970s, he used that result and the ideas
of geometric quantization to study Whittaker models (which are at the heart of the
theory of automorphic forms) and the Toda lattice (a widely studied model for one-
dimensional crystals).
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Kostant received many awards and honors. He was a Guggenheim Fellow in
1959-60 (in Paris), and a Sloan Fellow in 1961-63. In 1962 he was elected to the
American Academy of Arts and Sciences, and in 1978 to the National Academy of
Sciences. In 1982 he was a Fellow of the Sackler Institute for Advanced Studies
at Tel Aviv University. In 1990 he was awarded the Steele Prize of the American
Mathematical Society, in recognition of his 1975 paper, “On the existence and irre-
ducibility of certain series of representations.”

In 2001, he was the Chern Lecturer in Berkeley. In 1989, the University of Cor-
doba, Argentina named him Honorary Professore. In 1992, the University of Sala-
manca in Spain named him Doctor Honoris Causa; in 1997, Purdue University gave
him an honorary Doctor of Science degree. Purdue cited Kostant for his fundamen-
tal contributions to mathematics and the inspiration he and his work have provided
to generations of researchers.

In May 2008, the Pacific Institute for Mathematical Sciences hosted a confer-
ence: “Lie Theory and Geometry: the Mathematical Legacy of Bertram Kostant,” at
the University of British Columbia, celebrating the life and work of Kostant in his
80th year. In 2012 he was elected to the inaugural class of Fellows of the American
Mathematical Society.

In June 2016 Kostant traveled to Rio for the Colloquium on Group Theoreti-
cal Methods in Physics, where he received the prestigious Wigner Medal, “for his
fundamental contributions to representation theory that led to new branches of math-
ematics and physics.” Michio Jimbo of Rikkyo University, Tokyo, Chair of the Se-
lection Committee said: “the lifelong achievements of Bertram Kostant have had a
profound impact in pure mathematics”. At the same time, his work miraculously
has been finding its way to physics. Kostant’s winning the award perfectly suits the
spirit of Wigner who coined the famous phrase, “the unreasonable effectiveness of
mathematics in the physical sciences.”

Professor Kostant is survived by his wife Ann of 49 years; children Abbe Kostant
Smerling of Lexington, Massachusetts; Steven Kostant of Chevy Chase, Maryland;
Elizabeth Loew of Stoughton, Massachusetts; David Amiel of Glendale, Califor-
nia; Shoshanna Kostant of Boston, Massachusetts; and nine grandchildren and two
great-grandchildren.

The MIT Mathematics Department held a memorial event on May 11 at 3:30
in the MIT Chapel. Further information will be posted on the MIT Mathematics
Department website: math.mit.edu.



Preface

The 31% International Colloquium on Group Theoretical Methods in Physics (also
shortened as “Group 31”") was held in Rio de Janeiro, Brazil, from June 19 to June
25, 2016. This was the first time that a colloquium of the prestigious and nowadays
traditional ICGTMP series, which started in 1972 in Marseille, France, took place
in South America.

The aim of the ICGTMP Colloquia is to provide a forum for physicists, mathe-
maticians, and scientists of related disciplines who either develop or apply methods
in group theory (further information on the history of the Colloquia and its recent
development is found at the ICGTMP homepage http://icgtmp.blogs.uva.es/ ).

The Group 31 Colloquium was hosted by the Centro Brasileiro de Pesquisas
Fisicas (CBPF), a Federal Research Institute which, since its creation in 1949, has
been essential for Brazilian science in promoting research and scientific interchange.
The Group 31 Colloquium, consisted of three venues, was located in different areas
of Rio de Janeiro. The main activity (registration, parallel and poster sessions) took
place at CBPF in the Urca neighborhood, while plenary sessions were held at the
Auditorium of the Fundagdo Casa de Rui Barbosa in Botafogo. The Award Cer-
emony for the Wigner Medal and the Weyl Prize was held on June 22 in the new
landmark of Rio de Janeiro, the Museu do Amanhd science museum, next to the
waterfront of Pier Maud. The last day of the colloquium a general public event was
also held at Museu do Amanha.

In recent years Brazil experienced a scientific boost (measured, e.g., by the num-
ber of scientific publications and their impact) which has been unparalleled in its
history. To be sure, the group theoretical community was both a beneficiary and a
promoter of this scientific rise. One of the motivations to organize the Group Theo-
retical Colloquium in Brazil was indeed to offer a unique opportunity to the growing,
although scattered on a vast subcontinental nation and not yet fully organized, com-
munity of researchers working in the country (and profiting, as well, researchers
from other South American nations). In this respect the colloquium was a great suc-
cess, with more than 140 participants, equally split into Brazilians and foreigners. It
is particularly remarkable that all continents were represented, this is a sign of the
relevance of this scientific topic and of the world-wide esteem that the colloquium
is held by our colleagues. This success was made possible, in particular, by grants
received by TWAS, supporting participation of scientists from developing countries,
and ICTP, supporting participants from Latin American countries outside of Brazil.
The main sponsor of the event has been the CAPES Federal Agency which offered a
substantial contribution to the Local Organizing Committee. Important logistic sup-
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port with free use of the facilities was provided by CBPF, Fundagdo Casa de Rui
Barbosa, and Museu do Amanha.

The scientific program of Group 31 was particularly rich, with eleven plenary
talks, thirteen parallel sessions with both oral and poster presentations, two laudatio
speeches in honor of, respectively, the Wigner Medalist and the Weyl Prize win-
ner, and two memorial talks. The memorial talks were held to honor renowned col-
leagues Laurence Boyle and Syed Twareque Ali, members of the ICGTMP Standing
Committee, who sadly passed away.

Before the Colloquium, as a parallel program, a two-day Satellite Workshop on
Mathematical Physics was organized on June 16 and 17 in S. Paulo by ICTP-SAIFR
(the International Center for Theoretical Physics-South American Institute for Fun-
damental Research).

At the Inauguration of the colloquium welcome speeches were given by Mar-
iano del Olmo, Chairman of the ICGTMP Standing Committee, Ronald Shellard,
Director of the CBPF and Luiz Davidovich, President of the Brazilian Academy of
Science.

A distinctive innovation of Group 31, with respect to previous colloquia, was
the creation of a special prize reserved for the most interesting posters presented
by Master and Ph.D. students, with the aim of promoting active participation of the
new generation.

The nowadays traditional Wigner Medal and Weyl Prize Award Ceremony, held
in the splendid and prestigious frame of Museu do Amanhd, was the highlight of
the Colloquium. The Wigner Medal, established in 1978 and administered by The
Group Theory and Fundamental Physics Foundation located at the University of
Texas at Austin and represented by Arno R. Bohm, recognizes and awards out-
standing contributions through group theoretical and representation methods. The
2016 Wigner Medal was awarded to Bertram Kostant. Quoting Michio Jimbo of
Rikkyo University, Tokyo, chair of the selection committee, the lifelong achieve-
ments of Bertram Kostant have had profound impact in pure mathematics. At the
same time his work miraculously has been finding his way to physics, suiting the
spirit of Wigner who coined the famous phrase “the unreasonable effectiveness of
mathematics in the physical sciences”.

During his time as chairman (1994-2008), Heinz-Dietrich Deebner convinced the
Standing Committee of the International Colloquium on Group Theoretical Meth-
ods in Physics that it would be necessary for the future development of our field
to acknowledge young researchers who presented outstanding work and to moti-
vate them to continue and diversify their activity. Hence, the Weyl prize, established
in 2002 by the Standing Committee, is awarded to young scientists who have per-
formed original work in understanding physics through symmetries. A Selection
Committee, chaired by Edward Frenkel of the University of California, Berkeley,
awarded the 2016 Hermann Weyl Prize to Vasily Pestun of I'Institut des Hautes
Etudes Scientifiques for his groundbreaking results in the study of supersymmetric
gauge theories.

Francesco Toppan
Chairman of the Local Organizing Committee
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Organization of the volume

This volume contains contributions to the 3% International Colloquium on Group
Theoretical Methods in Physics held on June 19-25, 2016 in Rio de Janeiro, Brazil.

Following the spirit of previous years, the colloquium covered a broad range of
current topics from the fields of mathematical and theoretical physics. The variety
of themes, joined by a common conceptual rather than a research theme, reflects
well in the plenary talks given during the colloquium and range from cosmological
problems to “the problem of life”.

Two prestigious prizes were awarded during the colloquium: Bertram Kostant
was honored with the “Wigner Medal”, and Vasily Pestun received the “Hermann
Weyl prize”. A short description of the awardees and exposés of the Laudatios open
the volume.

A selection of the plenary talks is presented in the first section of the volume.
The contributions are organized in alphabetical order and were not subjected to size
restrictions or to a refereeing process.

Regular talks given during the colloquium are found in the following section
of longer papers. During the event, these talks were grouped into mathematics-
and physics-oriented contributions, each further organized into one of five parallel
sessions. While such a division has obvious advantages for the organization of the
colloquium, we opted for an alphabetical presentation in order to facilitate their
localization. Longer contributions were restricted to a maximum of 10 pages. They
have undergone an independent refereeing process and editorial decisions, as a result
of which most, but not all of them have been included.

Poster clips presented during the event resulted in shorter paper contributions,
which make up the third section of the volume. Shorter papers, restricted to a max-
imum of two pages, underwent the same refereeing process as longer papers, and
also appear in alphabetical order.

During the event a best poster prize was awarded to three young researchers. The
first prize went to Grace Akinwande Itunuoluwa (AIMS, Senegal) for her poster
“Finding a dictionary between Tensor Models and GEM crystallization manifolds”.
The second prize went to Diego Vidal (UNAM, Mexico) for the poster “Grav-
ity from quantum space-time”. The third and final awardee was Florencia Benitez
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xiv Organization of the volume

Martinez (U. de la Republica, Uruguay) for her poster “Primordial tensor modes of
the early Universe”. The Judging Committee was formed by Sylvie Paycha (Post-
dam, Germany), Sebastido Alves Dias (CBPF, Brazil) and José A. Helayél-Neto
(CBPF, Brazil).

The Editors
Sergio Duarte, Sofiane Faci, Jean-Pierre Gazeau
Tobias Micklitz, Ricardo Scherer, Francesco Toppan
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Part I
Laudatios: Wigner Medal and Weyl Prize



2016 Wigner Medal is attributed to Bertram Kostant. Ceremony at the Museu do
Amand, Rio de Janeiro. From left to right: Olivier Fudym, Francesco Toppan,
Shoshanna Kostant, Arno Bohm, Ann Kostant, Gerald Goldin, Bertram Kostant,
Piotr Kielanowski, Abbe Kostant Smerling, Michelle Vergne, Jean-Pierre Gazeau,
Mariano Del Olmo and Vasily Pestun. Image by Alvaro Farias.
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2016 Weyl Prize is attributed to Vasily Pestun (left) by Mariano Del Olmo (right).
Ceremony at the Museu do Amana, Rio de Janeiro. Image by Alvaro Farias.



Laudatio of Bertram Kostant

Michele Vergne
with Anthony Joseph and Shrawan Kumar

The 2016 Wigner Medal has been awarded to Bertram Kostant of the Massachusetts
Institute of Technology (USA) for his fundamental contributions to the representa-
tion theory of Lie algebraic systems. Many of his results have led to new develop-
ments both in Mathematics and, as emphasized here, in Theoretical Physics.

For this occasion, let me highlight some of the themes in Kostant’s work directly
related to particle physics: Geometric quantization, convexity, and completely in-
tegrable systems. This brief account has been prepared with the help of Anthony
Joseph and Shrawan Kumar.

The fundamental problem of quantum mechanics, as inaugurated by Dirac, is
the passage from Hamiltonian mechanics to unitary representations of the symme-
try group. Quantum mechanics should explain why some states of some physical
systems take discrete values, and was directly motivated by the quantum theory of
matter—at the time new—since it is the unitary transformations that preserve the all
important probability density.

Valentine Bargmann and Eugene Wigner, the first recipients in 1978 of the
Wigner medal, would have been delighted by the choice of the new laureate. In-
deed, in his fundamental paper Quantization and Unitary representations (1970) B.
Kostant showed that only those Hamiltonian manifolds admitting a prequantum line
bundle, now called the Kostant line bundle, are candidates for giving rise to unitary
representations of the symmetry group. Applied to the Poincaré group, this provided
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4 Michele Vergne with Anthony Joseph and Shrawan Kumar

a clear theoretical understanding as to why a massive elementary particle must have
a discrete spin.

Convexity theorems are important in determining the domain where experiments
should be done.

For completely integrable systems, the Hamiltonian equation is solvable in an
explicit fashion, the classical example being that of the Kepler laws of planetary mo-
tion. The Toda lattice, originally introduced as a simple model for a one-dimensional
crystal, was generalized by Kostant into a multi-dimensional completely integrable
system defined for any semisimple Lie algebra. A very simple and brilliant idea of
Kostant produces a maximal algebra of Poisson commuting functions. Furthermore,
the representation theory of semisimple groups allows us to compute the evolution
law of the system.

Let me comment in more detail on Geometric Quantization, its history and its
recent developments along the lines of Kostant’s theory. There were many ways,
apparently very different, to construct unitary representations of Lie groups. For ex-
ample, the unitary representation of the Heisenberg group in the Bargmann-Fock
space of holomorphic functions on the n-dimensional complex vector space, the
Borel-Weil-Bott construction of the irreducible representations of a compact Lie
group K on the d cohomology of flag manifolds with line bundles, Kirillov’s con-
struction of unitary representations of unipotent Lie groups by polarizing coadjoint
orbits, Harish-Chandra’s construction of unitary representations of real semisimple
Lie groups based on differential equations and induction. Kostant saw that all these
constructions are part of the unique scheme of quantum mechanics: passing from a
classical phase space to a Hilbert space. Kostant realized the fundamental fact that
any coadjoint orbit of a Lie group gives a Hamiltonian system. These systems are the
most basic ones: any Hamiltonian manifold with a transitive action of a Lie group
covers a coadjoint orbit, and those that are quantizable cover an orbit satisfying
some discrete integrality conditions.

Furthermore, Kostant explained quantum conditions in terms of Chern classes
of line bundles: a quantizable manifold is a symplectic manifold equipped with a
prequantum line bundle, now called the Kostant line bundle. It could be “quantized”
as a unitary representation of the underlying Lie group of symmetry if a suitable
“polarization” could be found. This separates (removes) one half of the variables of
phase space, a process that encapsulated Dirac’s original insight.

Building on the Bargmann-Fock realization of representations of the Heisen-
berg group and of the quantum harmonic oscillator, Kostant considered complex
polarizations, and the notion that the corresponding Hilbert space of sections is to
be found among holomorphic sections, or going into cohomological constructions
among solutions of a Dirac operator.

As a first successful use of geometric quantization, Kostant (with Auslander)
classified the unitary representations of real class 1 simply-connected solvable Lie
groups. Geometric quantization greatly generalizes provided one allows for coho-
mological methods and the study of the complex structure associated to a polariza-
tion.
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Kostant’s study of the homology of certain nilpotent Lie algebras encompasses
the Borel-Weil-Bott theorem for compact Lie groups, and is used as a fundamental
tool in constructing unitary representations for any real semisimple Lie group. Fi-
nally, as shown by Duflo, and also following the deep work of many authors, notably
Schmid on the discrete series, geometric quantization of admissible coadjoint orbits
of maximum dimension produces most (but not all) unitary representations of any
real Lie group.

Geometric quantization applies to any Hamiltonian manifold. The main intrin-
sic object is the Kostant line bundle, together with its connection. This provides a
moment map, and a notion of reduction. The most basic pieces of geometric quan-
tization theory are quantization of coadjoint orbits. It was shown by Meinrenken-
Sjamaar how to associate to any Kostant line bundle on a manifold with a compact
group of symmetry a quantum model made up of these basic pieces and reflecting
the semi-classical properties obtained at the asymptotic limit.

Severe difficulties may arise in quantizing a general Hamiltonian manifold with
an arbitrary symmetry group, involving the absence of a suitable polarization and
the verification of unitarity. The quantization of “small” coadjoint orbits or real
semisimple Lie groups are of particular interest because they lead to many relations
outside of those of the Lie algebra which are often just those of a physical system.
The quantization of those orbits is difficult to construct. It may seem paradoxical
that it is more difficult to quantize small coadjoint orbits than orbits of maximal
dimensions. This is because they are small dimensional manifolds, but with a large
group of symmetries and it may not be possible to integrate the full group of symme-
tries with a group of symmetries of the quantized space. If the Hamiltonian space
is just one point with a trivial line bundle, then the quantization is just the trivial
representation of the group G.

Models of quantization are usually produced by producing several models with
different groups of symmetry, and then piecing these models together. This is the
way that the metaplectic representation, a representation of the full group of symme-
tries of the simplest phase space T*R", was constructed by Segal-Shale-Weil using
the uniqueness of the canonical commutation relation. The following is one of the
most fundamental representations, namely, the quantization of the minimal orbit of
the symplectic group. With R. Brylinski, Kostant constructed uniform Fock space
models for quantizing minimal orbits. Kostant showed that the smallest non-trivial
orbit (for a semisimple Lie algebra) is defined by quadratic relations, thereby giving
rise to a so-called quadratic algebra. This result is of great importance. In partic-
ular, this quadratic algebra was shown to be Koszul, which meant that it could be
rather readily quantized — Gerstenhaber’s ghastly infinite set of quantization con-
ditions thereby reduces to just three. Imitating this, symplectic reflection algebras
were defined and have proved to be central to the understanding of several physi-
cal systems, notably the Knizhnik-Zamolodchikov equations arising in the study of
quantum many-body problems.

Pursuing the work of Valentine Bargmann on the complementary series, Kostant
computed a remarkable determinant (for real Lie groups) whose description still
provides one of the best tests for unitarity of the complementary series. The Kostant
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determinant had many other generalizations, notably by Parthasarathy-Ranga Rao-
Varadarajan, Shapovalev, Jantzen and Kac. These have been used many times as a
criteria for irreducibility and unitarity, and even for some infinite dimensional Lie
groups.

Kostant’s work on Lie algebra cohomology is an essential tool in representation
theory. It was for example influential on Vogan’s algebraic approach to the classifi-
cation of irreducible representations of semisimple Lie groups, in particular in the
success of the Atlas team in finding all unitary representations of the split form of
Ejg. Let us quote Bert: “Dealing with Eg is like looking at a diamond...from one di-
rection, one sees 2s all over the place, from another direction, one sees 3s, from a
third direction, one sees 5s,... it is magnificent, it is a symphony in the numbers 2,3
and 5”.

Let us recall at this point that the classification of all irreducible unitary repre-
sentations of a real Lie semisimple Lie group is still an open problem.

Can “everything” be quantized? Yes, if one abandons the idea of unitarity. De-
formation quantization is in some sense an infinitesimal version of geometric quan-
tization, and it might not be possible to integrate the symmetries. Using the pow-
erful techniques of Feynman graphs, Kontsevich showed that deformation quan-
tization allows us to produce a quantization of the commutation relations of any
Poisson manifold as a formal series. This striking result of Kontsevich relies in
part on the fundamental Hochschild-Kostant-Rosenberg theorem identifying the
Hochschild homology of an affine regular algebra.

One important object of quantization is the study of the spectra of matrices. The
simplest case of representation theory is to study the decomposition of a Hermitian
space under the action of a Hermitian matrix. Horn-Schur showed that the diag-
onal of a Hermitian matrix with prescribed spectrum always lies in some convex
polytope, the vertices being obtained when the matrix itself is diagonal. Convexity
results are important notably in studying measurements related to quantum com-
puters. Kostant generalizes convexity results for linear projections, and also in the
context of the Iwasawa decomposition G = KAN of a real Lie group. It led to a fur-
ther decomposition G = KNK of the latter. Moreover it provided a generalization
of the Golden-Thompson rule which was widely used in the C* algebra approach to
quantum field theory.

Let us now discuss completely integrable systems. One of Kostant’s most influ-
ential articles is his paper on the Toda Lattice in 1978. The fact that the solution
of the Toda lattice problem can be solved by the representation theory of the corre-
sponding semisimple Lie algebra is a result of atonishing beauty and significance.
It was the ingenuity of Kostant who could see at the time the interplay between
coadjoint orbits of the Borel subgroup, a Hamiltonian manifold with a solvable Lie
group of symmetry, and invariant polynomials of the corresponding semisimple Lie
algebra, two of Kostant’s favorite subjects. As is the case with several of Kostant’s
ideas, it is a brilliant, surprising, yet very simple idea.

The Toda lattice, originally introduced as a simple model for a one-dimensional
crystal, was transformed by Kostant into a multi-dimensional completely integrable
system defined for any semisimple Lie algebra. The quantization of a transversal
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slice, first undertaken by Kostant in the regular case and leading to the Whittaker
model, was further developed by many in greater generality. This eventually al-
lowed researchers (Premet, Losev, and others) to show that any nilpotent orbit could
be quantized. When applied to Kac-Moody infinite dimensional Lie algebras, the
Drinfeld-Sokolov generalization of the Toda system leads to W-algebras, the latter
being important in the study of conformal field theory.

In this short talk, it is impossible to mention Kostant’s various contributions to
Pure Mathematics. Kostant is counted as one of the most remarkable mathemati-
cians of the latter half of the last century in Lie Theory. Every paper by Kostant
has a life of its own, being the precursor of many developments in representation
theory of semisimple Lie groups and quantum groups, some developments being
completely unexpected. His works and ideas have inspired innumerable mathemati-
cians.

Each of the papers is a bright star in the dark sky of our knowledge. And, over
the years, it has formed a beautiful constellation.

Thank you, Bert, for all this beautiful mathematics.



Reflecting on mathematics and mathematical
physics

Bertram Kostant

Let me begin by expressing my appreciation to the Scientific Committee for award-
ing me the 2016 Wigner Medal, and to those on the Organizing Committee who have
made it possible for me to be here tonight as well as all of you who are sharing with
me in this great honor. The carefully chosen wording on this beautiful medal —*“For
fundamental work in representation theory that led to new branches of mathemat-
ics and physics” — resonates deeply with me, and captures the spirit of Wigner’s
phrase, “the unreasonable effectiveness of mathematics in the physical sciences.”

I want to thank Michele Vergne, distinguished member of the French Academy
of Sciences, my colleague at MIT, and longtime friend for coming to Rio to give the
Laudatio and speak about my work.

And I thank my wife Ann and two of my daughters, Abbe and Shoshanna, for
coming with me to this memorable event. I would not have made it quite so easily
without them. And they too insisted on being here.

I’d now like to go down memory lane with some unforgettable meetings related
to mathematical physics.

I met Wigner many years ago in Princeton. Among the topics of conversation
were the representation theory of the Lorenz group and the Poincaré group. I had
discussions with Bargmann as well on a variety of subjects. Back in the 70s and 80s
Bleuler and Doebner and so many colleagues from around the world regularly in-
vited me to conferences in Group Theoretical Methods in Physics, which became an
important part of my life, as I often recall those unforgettable meetings in Switzer-
land, Clausthal, and Salamanca, among others.

So, how did I get involved with group theory and Lie Groups in particular? It
all began at the University of Chicago back in the late 40s and early 50s when I
was a graduate student in mathematics. This was an historic time, exciting years for
mathematics and physics. I met and spoke with Fermi and other physicists, and in
mathematics, this period has been called the Stone Age, named for Marshall Stone
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who built an outstanding mathematics department. Those years became a turning
point in my life.

André Weil also played a key role.
He was among the many French math-
ematicians who led another French rev-
olution, this time in mathematics, and
brought critical ideas to the US. Weil
spread the Bourbaki way of writing down
and thinking about mathematics, and the
sheer beauty of it all resonated with
me immediately. I took a course with
Ed Spanier who used Chevalley’s book,
which I marked up and still treasure—
and that was my initiation into Lie the-
ory.

At Princeton after Chicago, I had con-
versations with Oppenheimer, Hermann
Weyl, Von Neumann, and many others,
and I often think back to Von Neumann
whose engaging personality and warmth
towards me was especially gratifying, as
was the time he gave me to deal with
some of my questions.

Fast forward to 1955, on one unfor-
gettable day, a week before he died, I
met Einstein at the Institute. I’ll tell you a
short story about my encounter with him.
It was on a Good Friday. Einstein real-
ized that his driver had the day off. I was
at the Institute and offered to drive him home. (In our conversation Einstein admit-
ted his lack of mathematical knowledge.) We talked about a lot of different things
and then he asked me what I was interested in. I told him I was interested in Lie
Theory. Einstein looked at me, raised a shaking finger, nodded, and said “That will
be very important some day.”

Years later, I had stimulating conversations with Dirac in Florida. Dirac had in-
vented a square root of the wave operator, and as a first-order operator it later gave
rise by others to the theory of anti-particles. I was pleased to hear him tell me that
the motivation for the operator was that it was mathematically beautiful.

This is but a very short glimpse into some of my enduring memories, which
I’ve been privileged to share with you. Again, I want to thank the Scientific and
Organizing Committees for this great honor.




Laudatio of Vasily Pestun

Luc Vinet

Dear colleagues and distinguished guests,

The Hermann Weyl Prize was established by the Standing Committee of the In-
ternational Colloquium on Group Theoretical Methods in Physics in 2002 and is
awarded every two years to recognize young scientists who have performed original
work of significant scientific quality in the area of understanding physics through
symmetries. To be eligible for the Weyl Prize, the candidate should be either un-
der thirty-five years of age, or be within five years of having received the doctoral
degree, at the time of the deadline of the application.

This year the members of the selection committee were:

Edward Frenkel, UC Berkeley (Chair)
Gitta Kutyniok, Berlin

Neli Stoilova, Sofia

Francesco Toppan, Rio de Janeiro
Luc Vinet, Montreal

The Chair of our committe could not be here today and has asked me to introduce
the 2016 winner of the prize which I am delighted to do.

It should first be said that the committee had a rather difficult task since there was
a number of outstanding nominees that were all deserving to receive the prize. It is
thus quite telling that in the end the members of the committee unanimously agreed
to choose Vasily Pestun as the winner.

Vasily Pestun is currently a permanent professor at the IHS in Paris. Prior to this
appointment he obtained his PhD in Physics from Princeton University under the
supervision of Edward Witten; he has been a Junior Fellow at Harvard University
and a member of the Institute for Advanced Study in Princeton. He has also received
many awards including an ERC starting grant.
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Vasily Pestun is without doubt a leading mathematical physicist. His field of re-
search is quantum field theory, its symmetries, and the use of symmetries in finding
exact solutions of quantum field theory.

The groundbreaking result of Vasily Pestun is the computation of partition func-
tion of N=4 super-Yang-Mills theory on the four dimensional sphere. By an inge-
nious use of supersymmetric localization, he showed that this partition function,
as well as the expectation values of the great circle supersymmetric Wilson loop,
can be cast in the form of the correlation function of a two dimensional conformal
field theory. This result led to tremendous activity in the field of BPS/CFT corre-
spondence, with major discoveries in both two dimensional and four dimensional
quantum field theories.

Let me now quote from the letter of recommendation of Nikita Nekrasov, himself
a Weyl prize winner. Nikita writes:

Perhaps the most important consequence of Dr. Pestun’s work was its impact on the theo-

retical physics community. More than to 700 papers were written following up his work,

extending it in various direction here I had to change Nekrasovs text because the number of
citations has grown by more than a hundred in the last 6 months. Continuing with Nikitas
comments : people found that the localization approach used by Pestun for the theories

on spheres can be extended to the theories on ellipsoids, giving additional parameters to

the partition functions one can play with. The structure of the partition function found by V.

Pestun led to the discovery of the four-dimensional version of the tt-fusion found by Cecotti
and Vafa in 1992, which was resisting generalizations for almost 15 years!

More recently Pestun has given a complete and definite treatment of the ordi-
nary and quantized Seiberg-Witten geometry of 4- and 5-dimensional quiver gauge
theory. The quantized Seiberg-Witten geometry and a connection with quantum in-
tegrable systems arise in the Nekrasov-Shatashvili limit. Pestun and collaborators
have developed a very elegant and powerful way of untangling the complexities
of this limit. It is based on the idea of g-characters that goes back to Frenkel and
Reshetikhin almost 20 years ago, and is now rapidly gaining importance and appre-
ciation in the mathematical physics community.

Furthermore with Kimura, Pestun has defined a general notion of deformed W-
algebra, which makes sense for any quiver and specialized it to the algebra consid-
ered by Frenkel and Reshetikhin for ADE quiver. He then connected the conjectural
formulas for the generating fields to the geometry of the corresponding Nakajima
variety and also to the notion of qg-characters investigated by Nekrasov in recent
years.

Commenting on these results of Pestun the Fields medallist Sacha Okounkov
wrote:

This beautiful construction completes a very important circle of ideas and represents very

important progress in understanding the structure of the deformed W-algebras and in apply-
ing it to solve important problems in mathematical physics.

Okunkov concludes his recommendation letter by the following:

Vasily Pestun is a highly original, exceptionally gifted, and very successful researcher work-
ing on the interface of supersymmetric gauge theories and what you may call geometric rep-
resentation theory. Both of these topics obviously relate to symmetries, but from very differ-
ent perspectives and in very different ways. The way in which they become intertwined in
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Pestun’s work is really beautiful and innovative, I therefore consider him an exceptionally
fitting candidate for the Hermann Weyl Prize.

In the official award statement, Edward Frenkel the Chair of the committe had
these words:

Vasily Pestun’s original contributions opened new opportunities for fruitful interaction be-

tween mathematics and quantum physics. It is quite fitting that his work is honored by the

prize named after Hermann Weyl, a pioneer in both of these fields who used to say that in
his research, he always tried to unite the true and the beautiful.

Ladies and Gentlemen, please welcome the 2016 Weyl prize winner Vasily Pes-
tun.



Part 11
Plenary invited articles



Phenomenology of neutrinos and macroscopic
bodies in non-commutative spacetime

Giovanni Amelino-Camelia

Abstract Over the last decade the efforts in quantum-gravity phenomenology have
been intensified significantly, and spacetime noncommutativity has inspired quite a
few of the relevant proposals. I here focus on two recent developments for quantum-
gravity phenomenology inspired by spacetime noncommutativity, which concern
neutrino observations and the description of the total momentum of a macroscopic
body.

1 Introduction

The field of quantum-gravity phenomenology [3] has experienced strong growth
over the last decade. Several proposals have been put forward for types of experi-
ments and observations which might have the peculiar qualities needed to be sen-
sitive to the minute quantum-gravity-scale effects. Among the formalisms which
proved most fruitful in inspiring some of these phenomenological avenues a promi-
nent role is played by theories with spacetime noncommutativity and the associated
description of relativistic symmetries [1], which can be given in particular by Hopf
algebras [5, 14, 16] (quantum groups). I here want to focus on two projects of this
type, inspired by spacetime noncommutativity, which kept me busy recently and
might have rather broad implications.

I have written elsewhere (see, e.g., Ref. [3] and references therein) about a phe-
nomenology focused on propagation of photons in a quantum spacetime, for which
indeed certain spacetime-noncommutativity models have provided a good part of
the inspiration [5]. We are now starting to open a new window on the Universe. The
first cosmological high-energy neutrinos have been observed. I here offer a short

Giovanni Amelino-Camelia
Dipartimento di Fisica, Universita “La Sapienza” and Sez. Romal INFN, Ple A. Moro 2, 00185
Roma, Italia e-mail: amelino@romal.infn.it

© Springer International Publishing AG 2017 17
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries,
https://doi.org/10.1007/978-3-319-69164-0_4


mailto:amelino@roma1.infn.it

18 Giovanni Amelino-Camelia

summary of (and perspective on) the first steps which have been taken for analyzing
data from the perspective of neutrino propagation in a quantum spacetime.

Besides writing about neutrino phenomenology I shall also offer some observa-
tions on the description of the total momentum of a macroscopic body in a quantum
spacetime. When there are nonlinearities in momentum space the description of
macroscopic bodies can be pathologic: the same nonlinearities producing minute
effects for microscopic particles (totally or for the most part not observable for us)
could produce, if applicable, a picture of macroscopic bodies in sizable conflict with
what is observed. Some spacetime-noncommutativity models do produce nonlinear-
ities in momentum space, but, as I shall here show, these nonlinearities do not affect
the total momentum of a macroscopic body.

2 Neutrino phenomenology

In-vacuo dispersion has been discussed extensively in the context of some much-
studied models of spacetime quantization (see, e.g., [1,3,6,7, 11, 12] and references
therein), and particularly spacetime noncommutativity [5]. These results can inspire
the hypothesis that the time needed for a ultrarelativistic particle to travel from a
given source to a given detector receives a quantum-spacetime correction, here de-
noted with A¢. I here follow Ref. [10], so I focus on the class of scenarios whose
predictions for Af can all be described, for corresponding choices of the parameters
1 and 8, in terms of the formula (working in units with the speed-of-light scale “c”
setto 1) E E

At—nMPD(z)j:5MPD(z). (1)
Here the redshift- (z-)dependent D(z) carries the information on the distance be-
tween source and detector, for which it is customary to take exploratively the form

[12]
_[F (1+9)
D(Z) _A dCHO\/.QA +(1+C)3.Qm ’ @

where Q4, Hy and £y denote, as usual, respectively the cosmological constant,
the Hubble parameter and the matter fraction. Mp denotes the Planck scale (~
1.2-10%8¢V) while the values of the parameters n and & in (1) characterize the
specific scenario one intends to study. The notation “+68” reflects the fact that §
parametrizes the size of quantum-uncertainty (fuzziness) effects.

The parameters 711 and § are expected to take values somewhere in a neighbor-
hood of 1, but values as large as 10° are plausible if the solution to the quantum-
gravity problem is somehow connected with the unification of non-gravitational
forces while values significantly smaller than 1 find support in some renormalization-
group arguments. In general, 1 and § can take different values for different parti-
cles [3] and in particular, one should allow for a dependence of 17 and & on the
helicity [3] of the neutrino.
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The relevant phenomenology could be particularly powerful [10] for neutri-
nos produced by GRBs (gamma-ray bursts). For the analysis of candidate GRB
neutrinos possibly affected by in-vacuo dispersion it is convenient to introduce a
“distance-rescaled time delay” At* defined as

D(1
At*EAtL) 3)
D(z)
so that (1) can be rewritten as
E E
At* =n—D(1)£86—D(1). 4
=D £8D() 4)

If one measures a certain Az for a candidate GRB neutrino and the redshift z of the
relevant GRB is well known, then one gets a firm determination of At* by simply
rescaling the measured At by the factor D(1)/D(z). When the redshift of the relevant
GRB is not known accurately one will be able to convert a measured Af into a
determined Ar* with accuracy governed by how much one is able to still assume
about the redshift of the relevant GRB.

In order to select some GRB-neutrino candidates one needs [9, 10] a tempo-
ral window and criteria of directional selection. The analysis of Ref. [10] focuses
on neutrinos with energies between 60 TeV and 500 TeV, allowing for a temporal
window of 3 days, and the directional criteria for the selection of GRB-neutrino
candidates on the signal direction PDF depending on the space angle difference be-

2
tween GRB and neutrino: P(v,GRB) = (2nc?)~! exp(f%), a two dimen-

sional circular Gaussian whose standard deviation is G = 4/ GCZ}RB + 0'3, denoting of

course with ogrp and oy respectively the uncertainties in the direction of observa-
tion of the GRB and of the neutrino. One then requests [10] that a GRB-neutrino
candidate should be such that the pair composed by the neutrino and the GRB is at
angular distance compatible within a 20 region.

Evidently whenever 11 and/or § do not vanish one should expect on the basis of
(4) a correlation between the |A¢*| and the energy of the candidate GRB neutrinos.

Ref. [10] considered four years of operation of IceCube, from June 2010 to May
2014. Since the determination of the energy of the neutrino plays such a crucial role
in the analysis one focuses only on IceCube “shower events”. There are 21 such
events within our 60-500 TeV energy window, and 9 of them fit the requirements
of Ref. [10] for candidate GRB neutrinos. For some of these 9 candidates the selec-
tion criteria produce multiple GRB-neutrino candidates, which one can handle by
focusing on the case that provides the highest correlation.

For the majority of GRBs relevant for the analysis the redshift was not measured.
For the rather rare cases of short GRBs this can be handled [10] by assuming the
redshift of 0.6. For long GRBs one typically will have some in the relevant sample
for which the redshift is known, and as argued in Ref. [10] one can use those known
values of redshift for obtaining at least a rough estimate of the redshift of long GRBs
for which the redshift is unknown.
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Following these prescriptions one finds a correlation of 0.951 between |A¢*| and
energy, for the 9 GRB-neutrino candidates found in Ref. [10]. This is a strikingly
high value of correlation, which invites one to ask [10] how likely it would be to have
accidentally data with such good agreement with the expectations of the quantum-
spacetime models here contemplated. Ref. [10] proposed that one needs to estimate
how often a sample composed exclusively of background neutrinos would produce
accidentally 9 or more GRB-neutrino candidates with correlation comparable to (or
greater than) those found in data. This estimate was performed in Ref. [10] find-
ing that background neutrinos could produce accidentally 9 or more GRB-neutrino
candidates with correlation > 0.951 only in 0.03% of cases.

These numbers are somewhat impressive but of course we should assess them
prudently. These numbers already take into account the fact that the analysis in-
volves only a few neutrinos, but somehow I still feel that because this is all about
just a few neutrinos we should be more cautious than the numbers appear to suggest.
There is no reason to rush to any conclusions, since more data is being gathered by
IceCube and will soon be reported. Still, it is interesting to take for a moment as a
working assumption that indeed these results are a true manifestation of in-vacuo
dispersion. In that hypothesis what would most surprise me is that our tentative
formulas provide such a good match. In particular, most results on in-vacuo dis-
persion, including those based on spacetime noncommutativity, were obtained for
flat/non-expanding spacetimes, while of course these data analyses require to factor
in the Universe expansion. The formula given above for D(z) is our best guess so
far of how the effects of in-vacuo dispersion interface with spacetime expansion.
For contexts where the universe is expanding at an accelerating rate we have some
theory support for this D(z) (at least as one among a few possibilities [8]) by rather
compelling arguments applicable to de Sitter expansion. However, at high redshifts,
according to the current picture of cosmology, the Universe should be described by
a phase of decelerating expansion, and we have no solid result on which to anchor
our description of in-vacuo dispersion. For the case of decelerating expansion one
still assumes the validity of D(z) without any support from theory. I feel that we
urgently need studies of in-vacuo dispersion applicable to cases in which spacetime
is in decelerated expansion.

3 On the description of macroscopic bodies in a
non-commutative spacetime

An emerging characteristic of quantum-gravity research over the last decade has
been a gradual shift of focus toward manifestations of the Planck scale on mo-
mentum space, particularly pronounced in some approaches to quantum gravity.
In particular for some research lines based on spacetime noncommutativity sev-
eral momentum-space structures have been in focus, including the possibility of
deformed laws of composition of momenta. There has been growing interest in the
conceptual implications and possible phenomenological implications [3] of nonlin-



Phenomenology of neutrinos and macroscopic bodies in non-commutative spacetime 21

ear laws on momentum space and particularly nonlinear laws of composition of
momenta. However, this interest is being tempered by concerns that a nonlinear law
of addition of momenta might produce a pathological description of the total mo-
mentum of a macroscopic body (see, e.g., Refs. [2,13,15]). This issue has been often
labelled as the “soccer-ball problem” [2]: the quantum-gravity pictures lead one to
expect nonlinearities of the law of composition of momenta which are suppressed
by the Planck scale (~ 10?8¢V) and would be unobservably small for particles at
energies we presently can access, but in the analysis of a macroscopic body, such
as a soccer ball, one might have to add up very many of such minute nonlinearities,
potentially producing a conflict with experimentally-established facts.

I here show that previous discussions of this soccer-ball problem failed to appre-
ciate the differences between two roles for laws of composition of momentum in
physics. Previous results supporting a nonlinear law of addition of momenta relied
exclusively on the role of a law of momentum composition in the description of
spacetime locality. The notion of total momentum of a multi-particle system is not
a manifestation of locality, but rather reflects translational invariance in interacting
theories. After being myself confused about these issues for quite some time [2] I
feel I am now in a position to address them. For definiteness I do this focusing here
on a specific simple model affected by nonlinearities for a law of composition of
momenta, a 2+1-dimensional model with pure-spatial K-Minkowski noncommuta-
tivity [14, 16], so that the time coordinate is left unaffected by the deformation and
the two spatial coordinates, x; and x;, are governed by

[xl,)Q] = ilx; (@)

(with the deformation scale ¢ expected to be of the order of the inverse of the Planck
scale).

3.1 Soccer-ball problem and sum of momenta from locality

The ingredients needed for seeing a nonlinear law of composition of momenta
emerging from noncommutativity of type (5) are very simple. Essentially one needs
only to rely on results establishing that functions of coordinates governed by (5) still
admit a rather standard Fourier expansion

B(x) = / d*k (k) o

and that the notion of integration on such a noncommutative space preserves many
of the standard properties, including

/ d*x e*t = 2m)* 6@ (k). (6)
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It is a rather standard exercise for practitioners of spacetime noncommutativity to
use these tools in order to enforce locality within actions describing classical fields.
For example, one might want to introduce in the action the product of three (pos-
sibly identical, but in general different) fields, @, ¥, T, insisting on locality in
the sense that the three fields be evaluated “at the same quantum point x”, i.e.,
P(x) W (x) Y (x). There is still no consensus on how one should formulate the more
interesting quantum-field version of such theories, and it remains unclear to which
extent and in which way our ordinary notion of locality is generalized by the re-
quirement of evaluating “at the same quantum point x” fields intervening in a prod-
uct such as @ (x) ¥'(x) I'(x). Nonetheless for the classical-field case there is a sizable
literature consistently adopting this prescription for locality. Important for my pur-
poses here is the fact that, with such a prescription, locality inevitably leads to a
nonlinear law of composition of momenta, as I show explicitly in the following
example:

/ d*s (%) P(R) (%) = (7
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where & is such that

(ke p)o=ko+po (®)
(k®p)2=ka+p2 ©)

k4 py [1-e 1—e'P2
(ko p)1= i) {kzem ki + 0 P (10)

This result is rooted in one of the most studied aspects of such noncommutative
spacetimes, which is their “generalized star product” [4]. This is essentially a char-
acterization of the properties of products of exponentials induced by rules of non-
commutativity of type (5). Specifically, one easily arrives at (7) (with & such that,
in particular, (10) holds) by just observing that from the defining commutator (5) it
follows that

log [exp (ika %y + k1 1) exp (ip2%a +ip1£1)] = (11)
ko + p2 <1—eék2 1—etr2 >
p1]-

1 — ellkatp2) \ kyelp2 ki + P

=i (p2+ky)+i%

The so-called soccer-ball problem concerns the acceptability of laws of composi-
tion of type (10). Since one assumes that the deformation scale ¢ is of the order of
the inverse of the Planck scale, applying (10) to microscopic/fundamental particles
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has no sizable consequences: of course (10) gives us back to good approximation
(k® p)1 ~ ki + p1 whenever |¢k;| < 1 and |¢p;| < 1. But if a law of composition
such as (10) should be used also when we add very many microparticle momenta in
obtaining the total momentum of a multiparticle system (such as a soccer ball) then
the final result could be pathological even when each microparticle in the system
has momentum much smaller than 1/¢.

3.2 Sum of momenta from translational invariance

As clarified in the brief review of known results given in the previous subsection, a
nonlinear law of composition of momenta arises in characterizations of locality, as
a direct consequence of the form of some star products. My main point here is that a
different law of composition of momenta is produced by the analysis of translational
invariance, and it is this other law of composition of momenta which is relevant for
the characterization of the total momentum of a multi-particle system. Here too I
shall just use known facts about the peculiarities of translation transformations in
certain noncommutative spacetimes, but exploit them for obtaining results relevant
for the description of the total momentum of a multi-particle system.

A first hint that translation transformations should be modified in certain non-
commutative spacetimes comes from noticing that (5) is incompatible with the stan-
dard Heisenberg relations [p;,x;] = i§j;. Indeed, if one adopts (5) and [p, xx] = idk
one then easily finds that some Jacobi identities are not satisfied. The relevant Jacobi
identities are satisfied if one allows for a modification of the Heisenberg relations
which balances the noncommutativity of the coordinates:

[plaxl]:i; [P17x2]:07 [pZ;XZ}:ia (12)
[p1,x2] = —ilp; . (13)

One easily finds that combining (5), (12) and (13) all Jacobi identities are satisfied.
Additional intuition for these nonstandard properties of the momenta p; comes
from actually looking at which formulation of translation transformations preserves
the form of the noncommutativity of coordinates (5). Evidently the standard de-
scription
X2 —>x/2 =xy+az, x| —>x’1 =x1+a

is not a symmetry of (5):
X, %] = [x1 + a1, x +ax] = ilx) = il(x} —ay). (14)

Unsurprisingly what does work is the description of translation transformations us-
ing as generators the p; of (12)-(13), which as stressed above satisfy the Jacobi-
identity criterion. These deformed translation transformations take the form
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Xy =x1 —iai[p1,x1] —iaz[p2,x1] =x1 4+ a1 ,

Xy = xy —iai[p1,x2] —iaz[p2,x2] = xa +az — Larpy (15)
and indeed are symmetries of the commutation rules (5):

¥, x5] = [x1 +ay,x2+ax —Llap] =
= ilxy —bay[x1, p1] = il(x) +ay) = ilx] . (16)

My main observation is that in order for us to be able to even contemplate the total
momentum of a multiparticle system, we must be dealing with a case where trans-
lational invariance is ensured: total momentum is the conserved charge for a trans-
lationally invariant multi-particle system. Surely the introduction of translationally
invariant multi-particle systems must involve some subtleties due to the noncom-
mutativity of coordinates, and these subtleties are directly connected to the new
properties of translation transformations (13), but they are not directly connected
to the properties of the star product (11) and the associated law of composition of
momenta (10). For my purposes, it is best to show the implications of this point
very simply and explicitly, focusing on a system of two particles interacting via a
harmonic potential.

I start by noticing that evidently one does not achieve translational invariance
through a description of the form

%on —transl —

(p?)2+(pf2‘k)2+(p113)2+(p123)2 +%[(x?—x?)2+(x§—x§)2}

2m

where indices A and B label the two particles involved in the interaction via the
harmonic potential. As stressed above, translation transformations consistent with
the coordinate noncommutativity (5), must be such that (see (15)) x; — x; +a;
and x; — xp +ay — fa;p;, and as a result by writing the harmonic potential with
(¥} —xB)2 + (x5 — xB)? one does not achieve translational invariance.

One does get translational invariance by adopting instead

(M) +(P)* + (1> + (P3)* | p
=W PR 202 Py by o (o 4k~ — )]
This is trivially invariant under translations generated by p,, which simply produce
x1 — x1 and xp — x2 +a». And it is also invariant under translations generated by
p1, since they produce x; — x| +a; and x; — xp — fa; py, so that x, + £x| p; is left
unchanged:

x2+x1py = xa —Llaipr +L(x1 +ar)p1 = x2+ lx1pr.

It is interesting for my purposes to see which conserved charge is associated with
this invariance under translations of the hamiltonian .77. This conserved charge will
describe the total momentum of the two-particle system governed by .77, i.e., the
center-of-mass momentum. It is easy to see that this conserved charge is just the
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standard p* + p®. For the second component one trivially finds that indeed

[p3 +p5, 2] =0
and the same result also applies to the first component:

[Pt + 7, ) o< [} + pT, (64 —x0)P] +
it 4+ P8, (4 + 0 pt — x5 — e pf)?) =
= [P} + PP, (0 +€x) pi — x5 — 02 )] o
o< [p + 7,35 + i i — x5 — Oxf pf]
= —ilp} +ilp +itp? —itp? =0 (17)

where the only non-trivial observation I have used is that (5) leads to
[P1,x2+€x1p1] = —ilp) +ilp; = 0.

The result (17) shows that indeed p* + p? is the momentum of the center of mass
of my translationally-invariant two-particle system, i.e., it is the total momentum of
the system.

The concerns about total momentum that had been voiced in discussions of the
Planck-scale soccer-ball problem were rooted in the different sum of momenta rel-
evant for locality, the @& sum discussed in the previous section. It was feared that
one should obtain the total momentum by combining single-particle momenta with
the nonlinear @ sum. The result (17) shows that this expectation was incorrect.
One can also directly verify that indeed p* @ p® is not a conserved charge for my
translationally-invariant two-particle system, and specifically, taking into account
(10), one finds that

[(p* @p®)1,#] #0.

4 Outlook

The results I here summarized for candidate GRB neutrinos are evidently intriguing
and set the stage for a very active research line, considering that IceCube will take
much more data and other neutrino telescopes (such as KM3NeT) are at advanced
stage of scheduling. By 2019 IceCube alone should put this sort of analyses in po-
sition to work with more than twice the amount of data so far available. In general I
expect that the new opportunities provided by the birth of neutrino astrophysics will
affect fundamental physics very strongly.

The description of macroscopic bodies in a quantum spacetime has been a very
active area of study, to which I here contributed novel results for the description of
total momentum. The “soccerball problem” fades away. From a conceptual perspec-
tive it is also interesting that the analysis I here reported makes us appreciate how our
current theories are built on a non-trivial correspondence between the momentum-
space manifestations of locality and translational invariance. I hope future studies
will allow us to understand more in depth the subtleties of this correspondence,
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which were here only preliminarily exposed. This might be achieved by also taking
as guidance the fact that in Galilean relativity all laws of composition of momenta
and velocities are linear, and there is a linear relationship between velocity and mo-
mentum. Within Galilean-relativistic theories one could choose to never speak of
momentum, and work exclusively in terms of velocities, with apparently a single
linear law of composition of velocities. In our current post-Galilean theories, the
relationship between momentum and velocity is non-linear (and velocities are com-
posed non-linearly, while the laws of composition of momenta remain linear) and
we then manage to better appreciate the differences between the logical roles of the
composition law for momenta and those of the composition law for velocities.
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The dynamical evolution in quantum physics
and its semi-group

Arno Bohm

Abstract Experiments on quantum systems are usually divided into preparation of
states and the registration of observables. Using the traditional mathematical meth-
ods (the Hilbert space or the Schwartz space of distribution theory), it is not possible
to distinguish mathematically between observables and states. The Hilbert space
boundary conditions for the dynamical equation lead by mathematical theorems
(Stone-von-Neumann) to unitary group evolution with —eo < ¢ < +-c0. In contrast,
the set-up of a scattering experiments calls for time-asymmetric boundary condi-
tions. Therefore, a new axiom of quantum theory is needed. This is the Hardy space
axiom, which uses a pair of Hardy spaces, one of them for states (defined by the
experimental preparation procedure), and the other for observables (defined by de-
tectors). The Paley-Wiener theorem for Hardy spaces then leads to semi-groups and
time asymmetry. It introduces a finite beginning of time 7y for a time asymmetric
quantum theory, which can be observed by an ensemble of onset times t(()’) of dark
periods in Dehmelt’s quantum jump experiments with single ions [1].

1 Time symmetric quantum theory

Time in quantum theory is usually assumed to extend over —oo < ¢ < oo,
Time Asymmetric Quantum Theory [2] is a quantum theory in which:

the time ¢ has a preferred direction: 7 = 0 <t < oo

the energy E (eigenvalue of the “essentially” selfadjoint
Hamiltonian H) can take (discrete and continuous) values
in the complex energy planes: E — z € Cy.

ey

Arno Bohm
Department of Physics, University of Texas at Austin, U.S.A.
e-mail: bohm@physics.utexas.edu

© Springer International Publishing AG 2017 27
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries,
https://doi.org/10.1007/978-3-319-69164-0_5


mailto:bohm@physics.utexas.edu

28 Arno Bohm

The conventional mathematical theory for quantum physics [3]: is time-symmetric

e the time 7 extends over —co < t < +o0
e the energy E is real (spectrum of selfadjoint Hamiltonian H) and it is bounded
from below (“stability of matter”): 0 = Ey < E < oo,

This is a consequence of the choice of the boundary conditions for the dynamical
equations

ih%y/: —Hy (2a) or ih%d) =H¢ (2b)
the Heisenberg eq. for observables |y)(y | and Schrodinger eq. for states ¢.

To find the solutions of differential equations one needs Boundary Conditions
(B.C.). In Standard Quantum Mechanics these B.C. are usually chosen to be given
by the
Hilbert Space Axiom:

set of states {¢} =set of observables {y} = ¢ = Hilbert space (norm-complete)

3
This means energy wave functions (E|9) = ¢(E), (E |w) = W(E) are Lebesgue
square integrable functions of energy, i.e., to one state ¢ does not correspond one
wave function ¢ (E) but infinitely many that differ from each other on a set of mea-
sure zero, e.g., at all rational numbers E.

To avoid these complications one uses in quantum physics only smooth Schwartz
space functions ¢ (E) and y(E) and the convergence is defined not by one norm, but
by a countable number of norms, e.g. for the harmonic oscillator by the definition
of norms:

(¢’w)n:(¢7(H+EO)nW)7 n:0717273"'7 (4)

where H is the energy operator or the Nelson operator for the quantum system.
In the Dirac formulation one uses the Schwartz space ¢ with countable norms,
as e.g., defined by (4):

1) The solutions of both the Heisenberg equation as well as the solutions of the
Schrodinger equation (observable and state) have a Dirac basis vector expansion
for processes with continuous E:

0= Y [dE B i) E S ian1o) = [ dE E)El). )
J5J3:M
3 .
(an analogue of x = Z ex').
i=1

The basis vectors |E, j, j3,1) are “eigenkets” of the energy operator H (and a
complete system of commuting operators H, J2, J3, N°P), using angular momen-
tum j, j3 and possibly other quantum numbers 1):

(9| HIE.j.js,m) = E(Q|E.j.js,m)  forall vectors ¢, € P, |E) € .
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To each vector ¢ corresponds then one function (E |¢) = ¢(E) of E (and addi-
tional quantum numbers, like j, j3).

2) The components of @, i.e. the bra-kets (E |¢) = ¢(E) are smooth, rapidly de-
creasing functions of E (“‘Schwartz function” € # ), and

one has a triplet of function spaces {0(E)} =7 CL*Cc .7~ )
a
and a triplet of abstract vector spaces {9} =P C H# C O~

called a Gelfand Triplet or Rigged Hilbert Space (RHS) [4]. In the Dirac formal-
ism one uses the same RHS @ C J# C @~ for the state vectors ¢ as well as for
the observables |y)(y|:

{9} = {y} = & = abstract Schwartz space. (6b)

Is there a physical reason that the solutions of the dynamical (Schrédinger or
Heisenberg) equation which fulfill the Hilbert space boundary condition (3), as well
as those fulfilling the Schwartz space boundary condition, ¢ € @, y € P, are given
by the two time evolution groups?:

0(1) = e M(0), w(t)=eMy(0),  —eo<t < foo. %)

The conclusion is: For standard quantum mechanics, even when amended with
the Dirac formalism in a Schwartz-Rigged Hilbert Space, the time extends over
—oo < t < +oo and there is no finite beginning of time #y > —oo, as required for time
asymmetric quantum theory in condition (1) of Sect. 1. Therefore, the dynamical
equations (2b) for the state vectors ¢ (¢) and the dynamical equation (2a) for the ob-
servable (i.e., the solution of the Heisenberg equation (2a)) obey the unitary group
evolution (1).

The question is: Could there be for quantum theory other boundary conditions of
the dynamical equation, that do not lead to the unitary group evolution like (1), but
to a quantum theory with a preferred direction of time, starting at a finite fo < ¢ < oo,
which our Universe seems to posses as the big bang time #y?

2 Dynamical equations of states and observables

The two fundamental entities of quantum theory are states (denoted by ¢ or by op-
erator p) and observables (denoted by operator A or vector Yy~ ). The time evolution
is expressed using two contrasting pictures:
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In the Schrodinger picture In the Heisenberg picture
One solves
The Schrodinger equation The Heisenberg equation
207 (¢ JA(t
in?2? ® _ Ho™ (1) (8) ih 0 _ —[H,A®t)]  (10)
Jt ot
for the state vector ¢ (¢), for the observables A(7),
or or
the von Neumann equation for the Heisenberg equation for spe-
the state operator (“density op- cial case Ay~ =y~ (1)) (v (1) |
erator”) p () for the vector observable y~
ap(t . d _
ih SE ) =[H,p(t)]. () lhg‘lf (t)=—Hy (t). (11)

The Schrodinger equation (1) is the special case of the von Neumann equation (1)

for the case: p(t) =|o* (1)) (o™ (¢)|.
The Heisenberg equation (4) is the special case of the Heisenberg equation (2)

for the “observable vector” y~(¢) in the special case Ay~ = [y~ (¢)) (™ (1) |.
State operator p or the state vector ¢ T, as well as the observable (-operators) A or
the observable vector Y, represent physical apparatuses in laboratory experiments.
The theoretical predictions which need to be compared with the experimental

data are the Born probabilities:
(A1) = Tr(A(1) p) = Tr(A p(1)). (12)

In the special case that A is the projection operator A =|y~){(y~ | onto the
1-dimensional subspace spanned by |y~ ) and p(¢) =|¢(¢))(¢(z) |, one gets

Por (v ) =Te(ly ONw @) 19" ) 0" =y 9" )7, (13)

which represents the probability of the observable Y~ (¢) in the state ¢ .

3 Meaning of states p or ¢, and of observable A or y—

States and observables are associated with two different aspects of scattering exper-
iments. Scattering experiments test the structure of micro physical systems.

States: are described in the theory by “density operators” p or by state vectors ¢
for pure states p =|¢™) (¢ T |.

Observables: are described by operators A = AT, or also by “observable vectors” y~
(i.e., vectors that obey the Heisenberg equation (4)).
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In the experiment [5]:

1. States p (or the pure in-states are defined by the preparation appa-
¢ of scattering experiment) experimentally ratus (e.g., accelerator).

Preparation of a state [¢)(¢™ | or p

(])in(t) T in . p
— =
Accelerator

Fig. 1: Accelerator and target T define the in-state.

Due to interaction of beam and target T, the in-state ¢ becomes an “uncontrolled
out-state” ¢ (¢) — ¢°** outside the interaction region

)
[
Accelerator

Out........

d ®

Fig. 2: The preparation of the uncontrolled out-state: ¢°* = S¢™

States fulfill the Schrodinger equation.

2. Observables A, |w~)(y~ | (out- are defined experi- by registration appara-
observable, often mis- mentally tus (e.g. detector)
leadingly called “out-state”)

Example: Preparation and decay of K0 in the reaction [6] (“formation” of a “reso-
nance” or of an unstable state K?)

np—AKS, KQ—ntn, nlnl

Registration of an observable |y~ )(y~ | or A
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detector

Fig. 3: The detector is built according to what it needs to register (e.g, a T 7~ -
detector registers or “counts” the observable A =y (£)){y~ (¢) |—=|w*) (y°* |=|

ata~)(mt x| = two s (usually the objects 7" and &~ are detected at different
places (scattering angles)).

3. The scattering experiment combines the preparation apparatus in Fig. 1 (accel-
erator) with a registration apparatus (detector) to count the clicks at the detector

o) (v

q)in(t)
L

Accelerator

detector counts
number N(t) of «tt 7~

Fig. 4: Combining the preparation of the state ¢ and the registration of an observ-
able y in a scattering experiment: One places the detector of Fig. 3 behind the target
in Fig. 2 and counts the number N(r) = N(1;AQ, E®") of &', &~ at the time  into
the solid angle AQ.

Observables fulfill the Heisenberg equation



The dynamical evolution in quantum physics and its semi-group 33

4 Theoretical description of states and observables

4.1 Born probabilities

As exhibited in the Figures 1, 2, 3 and 3, there are two different kinds of quantum
theoretical entities associated to the two different kinds of physical apparatuses:

States p (in-states vectors ¢ ) are prepared by the preparation apparatus,
(Figs. 1, 2) and governed by the

Schrodinger Eq. (1).

by the detector and governed by
Heisenberg Eq. (4)

Observables A (or y™) are registered

Experimental (observed)
quantities are the proba-
bilities for observable A in

They are calculated in the
theory as Born Proba-
bilities solving dynamic

They are measured as ra-
tios of large number of
detector counts (“relative

state p. equations (1) or (4)

and (1) or (2).

frequencies”) N(¢)/N.

(A1) = Tr(A(1) po) = Tr(Ao p()) ~ N(t) /N. (14a)

In the special case of an observable |y~ ) (y ™| in the pure state ¢ (¢) the probability
of the observable W~ in the state ¢ is:

[y~ oT (1)) (@ (1)|lw™) (14b)

in Schrodinger’s picture

Por(w ()= Ky 0" =

in Heisenberg’s picture

The agreement of theory 27, (A(r)) with the experimental counting rate N(r) of
Fig. 3 is given by
N()

Pp(A(r) or [(y (1) ]¢")]*~ N

The theory-calculated probabilities &7, (A(t)) must agree ~ with the registered de-
tector counts N(¢)/N; this must hold for an ensemble of N detector counts, where N
are “large” numbers.

(15)

To make a comparison of experimental counting rates % and the theoretical

probabilities |(y~(t)|¢ )|, one needs to solve either the Heisenberg equation (4)
for the out observable y~ () or one needs to solve the Schrddinger equation (1)
for the in-state ¢ ™ () and then calculate the Born probabilities: Tr(A(z) [¢ ) (¢ |)
=y~ ()[¢F)|?> = |{(w~|¢F(r))|* using the solution of Heisenberg eq. (4), or the
solution of Schrodinger eq. (1), respectively.
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4.2 Solutions of the dynamical equations and their boundary
conditions

To solve a differential equation (Schrodinger Eq. (1) and (1) or Heisenberg Eq. (2)
and (4)), requires the choice of Boundary Conditions. This means one has to
choose the mathematical spaces, to which the solutions of equations (1) and of
equations (4) need to belong.

The right choice of a Boundary Condition is most important for quantum physics.
The boundary condition will make the difference for the prediction of the theory and
thus it is our choice of the Boundary Conditions, which will determine the theory of
our choice. In the historical development of quantum theory, the following boundary
conditions were used for the solutions of the dynamical equations (1) and (4) or (2)
and (1):

1. Hilbert space boundary condition of von Neumann (called “Hilbert space ax-
iom”): !

Set of state vectors {¢ } = Set of observables {y} = .7 = Hilbert space (16a)

2. Schwartz space boundary condition of the Dirac formalism chooses the Schwartz
space for the states as well as the observables:

Set of state vectors {¢} = Set of observables {y} = & = Schwartz space (16b)

From the standard boundary condition (16a) as well as (16b) follows by the Stone-
von Neumann theorem, for Hilbert space and by a similar theorem for the Schwartz
space, the (unitary) group evolution (1); (10) and (17b).

The solutions of the Schrédinger equation under the condition ¢ € 7 as well as
under ¢ € @ are given by

o) =UT(1)p =e ™M/"p | with —oo <t < +oo for ¢ € # and ¢ € D. (17a)
The same holds for the Schwartz space boundary condition ¢ € P:

¢(1) = U (t) ¢ =e M1/ with — oo < 1,400 for ¢ € P,
where Ujp (t) =U(t) | is the restriction of U to the subspace ® C .

Similar results hold for the solutions of the Heisenberg equation under these bound-
ary conditions:

v()=U(@1) w=eM"My, with —co <t < 4oo for ye 7, (17b)

and y(t) = Ug(t) w = /My for y € .

I «“Complete” Hilbert space of von Neumann means the integrals which define the scalar product
are Lebesgue integrals and not just Riemann integrals, but physicists do not want to deal with
Lebesgue integrals anyway.
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This result (10) and (17b) has been well known (Stone-von Neumann theo-
rem [3,7]) for the Hilbert space boundary condition and it can also be proven for
the Schwartz space boundary condition y, ¢ € P.

From this, follows that a theory which uses the Hilbert space boundary condi-
tion (16a) or the theory based on the Schwartz space boundary condition (16b) (i.e.,
the mathematical version of the Dirac formalism), “predict” the Born probabilities

P(At)) =|(y~(t)|¢+)|? to detect an observable A(t) =y~ (1)) (y~(¢)| in
the state ¢ for all £: —eo < t < +-o0;
This would mean it predicts the probabilities, also for times ¢ < #y, before the

state T will be prepared by the accelerator and target T at a time fy. This
would, however violates causality, because:

The detector in Fig. 3 cannot detect anything relevant to the scattering process be-
Jore the times 1y, at which the Accelerator will be turned on.

Thus, a theory that makes predictions for —eco < t < 4o cannot be “quite” right.
It would violate the causality principle of quantum physics, which asserts [8]:

A state ¢ needs to be prepared first, by a time t, before an observable
|w™(£)){y (r) | can be measured in that state ¢ at times ¢ > #( by the detec-
tor counts, N(¢)/N. There cannot be any K¢ — 7" 7~ counted in the detector
of Fig. 3 before the accelerator has been turned on and 7™ has hit the target T.

Thus the experimental result, as well as our intuitive feeling of causality suggests
that the Born probabilities of the observable A(r) =|y~ (¢))(y~ (¢) | in the prepared
state ¢

Py (A1) =Te(A(1) [97)(9T]) = Py (ly~ () {y~ (1))
=[(y (1) 19" (1)) P=I(w (1) [F) P2, (18)

make physical sense only for times ¢ later than 7o, i.e., for # > #g.

Here the time o(= 0) is the time at which the state ¢ is prepared, and only after
this time ty can the observable W~ be registered in the state for t > t.

Since a quantum state represents an ensemble of (large number of) micro systems
in the lab, this beginning of time 7y represents usually also an ensemble of finite

(@)

times, 7y < {t(()’)}, where the 7, are in general different times on a clock in the

lab. (Such té’> for single particles have been observed as the onset times of the dark
periods in Dehmelt’s quantum jump experiments with single ions in a Paul traps).
Comparison with the quantum jump experiments means that 7y represents the

ensemble {t(()l)} of beginnings of time for the i-th individual quantum particles.

All this suggest that one must not solve the dynamical differential equation under
the standard Hilbert space or under the standard Schwartz space boundary condi-
tions which lead to (10), (17b), but under new boundary conditions which lead to
“beginnings of time” #(, and thus to the semi-group time evolution like

v (t) =% (t—1y) y(tp) with the finite beginning of time fo <7 < +o0, (19)
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where 7 is an ensemble of finite times (generally different times t(()i) on the clocks
in the lab.). The solution of the dynamical equations under Hardy Space Bound-
ary Condition leads to semigroup evolution of the dynamical euqations of quantum
physics.

4.3 New Hardy space boundary conditions

New boundary condition means that one chooses in place of the historical Hilbert
space % or in place of the Schwartz space @, a new space for state vectors {¢ "}
representing the preparation apparatus (e.g., the accelerator of Fig. 3) and another
new space for the observables {y~} representing the registration apparatus (e.g.,
the detector in Fig. 3).

These new spaces must NOT be given:

by the Hilbert space axiom:
{6} = {w} = A of von Neumann, (L*-integrable). (20H)

And they must also not be given by the Schwartz space axiom:

{¢} = {w} = & of the Dirac formulation (209)
which would lead to the Schwartz Rigged Hilbert Space:

D CH C D of Sec. 1.

Thus a new mathematical Axiom is needed for quantum physics; this new axiom
will be based on a pair of mathematical spaces, one for the prepared states in Figs. 1
and 2 and the other for the detected observables in Figs. 3 and 3.

There is no reason that the set of accelerator prepared states {¢ "}, as well as
the set of detector registerd observables {y~}, should both be represented by the
same mathematical space (e.g., by the Schwartz space @, or by the Hilbert space
). Thus, rather than using one and the same representation space, .7 or @ for the
in-state vectors ¢, as well as for the out-observable vectors y~, as done in (20H)
and similar for the Dirac formulation in (20®), it would be much more natural
to represent the accelerator prepared states (Fig. 1 and Fig. 2) and the detected
observables (Fig. 3 and Fig. 3) by two different mathematical representation spaces.

The new boundary conditions for the two differential equations (Schrodinger or
Heisenberg) of quantum mechanics need to be given by two different spaces, one
for the states ¢ ™ and the other for the observables y . For these two spaces one can
choose the Hardy space boundary conditions as the new Axiom for the fundamental
dynamical equations (1), (4), or (1), (2) of quantum mechanics.

There are two different Hardy spaces [9] that are conjugate to each other. This
suggests the following new axiom which allows us to distinguish mathematically
the prepared states from the observables, using the pair of Hardy spaces:



The dynamical evolution in quantum physics and its semi-group 37

The space of state vectors {¢ ™} representing the accelerator-prepared states
of Fig. 1 and 2, is the Hardy space ®_ of the lower complex energy plane
(2nd sheet of the analytic S-matrix):

prepared in-states {¢ "} = &_ Hardy space solutions of the Schrodinger eq.

(21.1-)
The space of observable vectors {y~ } representing the detector-registered
observables is the Hardy space & of the upper complex energy plane (2nd
sheet of the analytic S-matrix):

detected out-observables {y~ } = &, Hardy space solutions
of the Heisenberg eq. (21.1+4)

The amusing miss-match in the notation for the physical vectors and their mathe-
matical representation spaces:

¢" € @ (lower complex plane), (21.2-)
Yy~ €D, (upper complex plane), (21.2+)

has its origin in the two different conventions used for the Hardy spaces in mathe-
matics, and for the state vectors in physics:

Mathematicians notation of Physicists notation for the vectors of the
Hardy spaces scattering theory

Hardy space @ = {¢'} is realized  {¢"} represents the acceler-

by the smooth Hardy function ¢ " (E) = ator prepared states and thus (21.3-)

(TE|¢p") € (#*NS)g, onC_,ie,on  the Lippmann-Schwinger kets
the lower complex plane 2nd sheet of  |ET) € &*.
the S-matrix.

Hardy space @, = {y ™} is realized {y ™} represents the detec-

by the smooth Hardy function v~ (E) = tor registered observables
(CE|y™) € (#?NS)ry on C42, e, [y )y~ | and thus the (21.3+)
on the upper complex plane 2nd sheet Lippmann-Schwinger kets
of the S-matrix. are |[E~) € @, the dual space of @

Both, the state vectors ¢ and the observable vectors W, represent two entirely
different physical aspects of the experimental apparatus as displayed by the com-
parison of Figs. 1 and 2 with Figs. 3 and 3. Therefore we have no reason to suspect
that the vectors {¢*} representing states and the vectors { W~} representing ob-
servables, should be described by the same mathematical spaces, namely both by
the Hilbert space or both by the Schwartz space, as is usually done.

2 For the Hardy space we consider only the spaces, which can be realized by the “smooth Hardy
functions” 7% NS, i.e., Hardy class intersected with Schwartz function spaces.
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The Lippmann-Schwinger kets had been postulated in analogy to the Dirac
kets (5) as the in-plane wave “states” and the out-plane wave “states” |[E™) and
|[E~), H |E*) = E |ET), K |E) = E |E) which fulfill the Lippmann-Schwinger
equations [10]:

1

ESY=|E)+ ————
ES) =BVt ke

VIET)  H=K+V. (22)
In analogy to the Dirac basis vector expansion (5) of Section 1 for the Schwartz
space, the nuclear spectral theorem [4] of the topological vector space for in-state
vectors ¢ (representing the preparation apparatus, e.g., an accelerator in the scat-
tering experiment of Fig. 3) would then be given by

o =Y / dE|E,j, j3,n")("E,j, j3,n[¢")

Jnjzm 0

— [ arien) Bl = [ EV)0t @), @3
0

J, j3 denote the angular momentum and 1) denotes some additional (species) quan-
tum numbers.

The |[E~) = |E, j,j3,m ) are taken as basis systems for out-vectors (represent-
ing the observables |y~ ){y~ | registered by the detector); thus for the observables
|w~){y~ | of Figs. 3 and 3 one would then have the basis vector expansion:

v =) / dE'|E',j,j3,n ) (TE' j, j3,nly")
Jijzm 70
= [ aeEn)CEl ) = [aEE @) @
0

This is done in perfect analogy to the Dirac basis vector expansion justified by the
“nuclear spectral theorem” for Schwartz space: for every ¢ or y € &:

¢ = [dE|E)(E|¢),  TheDirac |[E) are mathematically defined as continuous
v=[dE |E)(E|y), antilinear functional of @: |E) € ®*.

The shortcoming of the Schwartz space axiom is that the set of states {¢} of
Figs. 1 and 2, and the set of observables {y} of Figs. 3 and 3 cannot be mathe-
matically distinguished from each other if one uses just the one Schwartz space (or
one J7).

The new idea suggested by the Lippmann-Schwinger kets (20), which is also
dictated by the Gamow vector, is to associate the set of physical states ¢ (defined
by the preparation apparatus, Figs. 1 and 2) with the mathematical Hardy space,
which is called &_. Thus the new physical axiom of scattering theory is

set of state vectors {¢ "} = &_ = Hardy on C_ (2nd sheet of the S-matrix).
(24-)
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And similarly for the set of observables y—,
setof {y~} = &, = Hardy on C (2nd sheet of the S-matrix). (24+)

This new Hardy space axiom (24=+) is an enormous step forward, because com-
paring this Hardy space axiom (24+) with Figs. 1 and 2 for the states and with
Figs. 3 and 3 for the observables, the Schwartz space axiom (6b) and the Hilbert
space axiom (3) do not feel right, because one should also distinguish mathemati-
cally between the prepared states {¢ ™} and registered observables {y ™ }.

Since W~ is the observable (defined by the detector, Figs. 3 and 3), and ¢*
represents the state (defined by the accelerator, Figs. 1 and 2), the matrix element
(w~|9™T) is the probability amplitude to detect the observable |y~ )(y ™ | in the state
|¢*)(¢" | and therfore,

|(w=|¢*)|* is the probability to detect the observable |y~ (¢))(w~(t) | in the
state ¢, which according to standard quantum theory (6), (14a), (14b) and (15)
is:

N()

(v ()]9™)IP~

(is measured by the detector counts) > 0 fort > 1ty (25)

as stated in (6) or for the general case in (5).
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Algebraic structures on the moduli spaces in
gauge theories

Vasily Pestun

Abstract The partition function of a four-dimensional supersymmetric gauge theory
on a four-sphere is factorizable in holomorphic and antiholomorphic blocks similar
to the correlation functions of the two-dimensional conformal field theories. The
holomorphic blocks are controlled by the geometry of the moduli spaces of vacua in
4d supersymmetric gauge theory, and this reveals a deep connection with algebraic
structures of quantum integrable systems, two-dimensional conformal field theories
and their g-deformations.

1 Introduction

Some of the pressing questions in the studies of quantum gauge theories are: what
can we do beyond perturbation theory, are there hidden algebraic structures, what
are the exactly computable quantities?

In the remarkable work of Belavin, Polyakov and Zamolochikov [1] the corre-
lation functions of some operators &; in two-dimensional conformal field theories
have been shown to have the factorizable form, schematically

M2 = [ waz@z@ M)

where the variable a labels the primary fields of the theory, the pt(a) is a certain inte-
gration measure determined by the physical content of the theory, whereas functions
Z(a), called conformal blocks are determined by the Virasoro symmetry algebra of
the 2d conformal field theory.
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Since then the algebraic approach to the two-dimensional conformal field theo-
ries and their relatives, such as massive deformations and 2d lattice integrable mod-
els, turned out to be very powerful with many mathematical and physical results that
are not possible to survey in this lecture.

Some of the key mathematical structures that have been encountered on the way
are:

conserved quantities

holomorphic factorization

conformal block and operator product expansion

affine Kac-Moody Lie algebras, # -algebras (generalization of Virasoro)
quantum groups, R-matrix

Recently, many of these facets of solvable models have been detected in two
current programs to access gauge theories beyond the perturbation theory;

1. large N (planar) limit of Yang-Mills gauge theory, specifically .4~ = 4 super
Yang-Mills,
2. vacuum or BPS sector of .4 = 2 supersymmetric gauge theories.

The large N approach is based on the gauge-string duality [2] [3] [4] [5] under
which computation in large N gauge theory is mapped to the computation in the
two-dimensional sigma model on the world-sheet of confining string, and further
the two-dimensional sigma-model is solved using the 2d integrability tools.

The vacuum or BPS approach [6] [7] [8] is based on the analysis of the su-
persymmetry implications on the geometry of the vacua in supersymmetric gauge
theories.

The focus of this lecture is on the geometrical and algebraic structures arising
from the BPS approach also known as localization.

2 The structures of 4d ./ = 2 theories

By now the following features of 4d .#” = 2 theories have been understood relatively
well:

e vacua sector = complex algebraic integrable system
e holomorphic factorization
o emergence of quantum algebras:

1. CFT type (Virasoro, # -algebra, Kac-Moody)
2. Lattice model type (R-matrix, spin-chains, quantum groups).
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2.1 Vacua sector = complex algebraic integrable system

In [6] [9] [10] [11] it was shown that the Coulomb branch .#Rg3s; of the moduli
space of vacua of 4d .4 = 2 theory on R x S! is fibered over the Coulomb branch
of vacua .#p4 of the same .4 = 2 gauge theory on R?,

.%R3X51 — %RA. (2)

Moreover, the space .#y3, g1 has dimension twice that of the base space .#ps.
It is holomorphic symplectic and the fibers of the fibration (2) are holomorphic
Lagrangian abelian varieties. The holomorphic symplectic structure on g3, g1 is
determined from the hyperKidhler structure at a certain point on the twistor sphere
of complex structures usually called complex structure /.

2.2 Holomorphic factorization

In [12] using supersymmetric path integral version of the localization formula of
Atiyah-Bott [13] and Berline-Vergne [14] it was shown that the partition function of
A = 2 gauge theory on four-sphere is computed by the finite-dimensional integral
over the Cartan of the Lie algebra of the gauge group

Zs = [ waz@Za 3

where (L (a) is a certain measure computed from the Atiyah-Singer index theorem for
transversally elliptic operators [15]. This result established that the partition func-
tions of the .#” = 2 supersymmetric gauge theories on a four-sphere have factor-
ization property similar to the partition functions of the two-dimensional conformal
field theories. The holomorphic or chiral block Z(a) was identified with Nekrasov’s
partition function of the equivariant topological Donaldson-Witten gauge theory,
also called gauge theory in the Q-background [8]. This function Z(a) can be found
by the cohomological computation on the moduli space of the BPS configurations
of the gauge theory called instantons [16], [17], [7], [8], [18] [19].

For the review of supersymmetric localization in gauge theories in different di-
mensions leading to the result similar in spirit to the factorization equation (3), see
the review of collected papers [20]

The factorization (3) suggests that Z(a) is like a conformal block of some algebra
of symmetries of the 2d conformal field theory. What is this algebra exactly and
where does it come from?
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3 Quantum algebras

3.1 Quantum algebras: CFT type

For certain .4~ = 2 gauge theories, the answer to the last question of the previous
paragraph has been discovered in a beautiful paper by Alday-Gaiotto-Tachikawa
[21].

Namely, for the 4d .4 = 2 gauge theories of the class named S(C, g), AGT iden-
tified the holomorphic block (Nekrasov’s partition function) Z(a) in the four-sphere
partition function (3) with the conformal block in the correlation function (1) for a
certain operator in two-dimensional conformal field theory of Toda for Lie algebra
g on the Riemann surface C. The 4d .#" = 2 supersymmetric gauge theory S(C, g)
is defined as a quantum field theory obtained by the compactification of the (0,2)
supersymmetric self-dual 6d tensor theory of ADE type g on the Riemann surface
C, possibly with punctures and certain data at the punctures [22].

The integrable system (2) which corresponds to the supersymmetric gauge the-
ories of class S(g,C) is Hitchin system [23] on C for the Lie algebra g. The phase
space s, g1 is identified with the moduli space .#yi(C, g) of G-Higgs bundles
on C, and the base .44 is the space of action variables, or in other words, it is the
space where Hitchin Hamiltonians are taking values.

The function Z(a) is a conformal block of the algebra called % (g)-algebra
which is a generalization of the Virasoro symmetry algebra to higher rank, so that
W (slp) = Vir.

Consequently, the relation between the gauge theory of class S(C,g), the inte-
grable system and the conformal theory can be summarized by the diagram

4d QFT: Mps 1 for S(C,g)

Mﬂ % )

Myt (C, ) enmmmmnnsmnnmmnssnnooonnconncnny W (g)-algebra on C

The link between .#41;(C, g) and the # (g) algebra is understood after Drinfeld-
Sokolov [24], Feigin-Frenkel [25], Nekrasov-Witten [26], Teschner [27]. Namely,
the # -algebra that emerges is the quantized algebra on the space of opers. The space
of opers is obtained by Poisson reduction from a hyperplane in a coadjoint Kac-
Moody Lie algebra by the loop nilpotent algebra, while that hyperplane is identified
with the space of G¢-flat connections d, +A on a punctured disc, see E. Frenkel 2002
lecture [28]. The space of G¢-flat connection as a complex variety is isomorphic to
My (C,g) for a different choice of the complex structure on the twistor sphere,
usually called J in contrast to the complex structure I in which .#4y;(C, g) has the
geometry of the algebraic integrable system

What replaces the #(g)-algebra for the moduli space of vacua s, i for
generic ./~ = 2 gauge theory, of not necessarily class S?
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3.2 Quantum algebras: generic proposition

Proposition. To the generic hyperKihler moduli space of vacua 4 = ;. sl there

is associated the two-parametric % -algebra #¢, ¢, (M) which is defined as the &;-
quantized algebra of holomorphic functions on space .# in the complex structure
¢ = Rey where ¢ € CP! is the twistor parameter of the twistor sphere of complex
structures on the hyperKéahler manifold ./ in the limit R — 0.

Besides previously mentioned papers, this proposition links to the works of
Kontsevich-Soibelman [29], Gukov-Witten [30], Kapustin-Witten [31], Gaiotto-
Moore-Neitzke [32], Fock-Goncharov [33], Gaiotto [34], Cecotti-Neitzke-Vafa [35].

In particular, the point { = 0 is the complex structure [ in which .# is the com-
plex phase space of an integrable system.

The global holomorphic sections of the quantized algebra of holomorphic func-
tions .# are identified with the quantum commuting Hamiltonians of the quan-
tum integrable system with quantum Planck constant i = & [36]. The non-zero
&-parameter deforms the commutative algebra of quantum Hamiltonians of an in-
tegrable system into an associative algebra of quantum integrals of motion of auxil-
iary low-dimensional quantum field theory: % -algebra. For the 4d gauge theory of
class S(C, g), this low-dimensional theory is two-dimensional quantum Toda field
theory.

3.3 Quantum algebras: lattice model type

The generic proposition of Section 3.2 can be tested more precisely in the different
class of theories rather than class S(C, g), namely in the class .#” = 2 gauge theories
called quiver gauge theories [37].

The quiver gauge theory is defined by a graph I" with some data assigned to the
nodes and edges. To each node i we assign a positive integer n;, which is a rank of
the factor of the gauge group U (n;) associated to this node, and a complex number
q; with |q;] < 1 which is the exponentiated coupling constant for the given gauge
group factor U (n;). To each edge e : i — j we assign a complex number m, which is
a mass of the hypermultiplet in the bi-fundamental representation (i1;,n;) between
the nodes i and j.

Using arguments from string theory and brane dualities, the phase space of
the integrable system underlying this class of theories was identified by Kapustin-
Cherkis [38] as the moduli space of the G monopoles on R2 x S!'. The derivation
of this result from the BPS-style localization computations on the moduli space of
quiver instantons was found in [19].

Here Gr is the Lie group with the simply-laced (ADE) Dynkin graph isomoprhic
tol.



46 Vasily Pestun

For a Riemann surface C, the moduli space of monopoles on C x S' can be
thought of as a moduli space of group version of the moduli space of Higgs bundles
on C [39].

Namely, one defines this space similar to Hitchin as the space of pairs (holomor-
phic G-bundle on C, Higgs field g(x)), except that now the Higgs field g(x) is taken
to be a meromorphic Lie group valued field, a section of AdG, rather than a Lie
algebra valued field ¢(x), a section of adg ® K¢ in the usual Hitchin case. (Here x
denotes a complex coordinate on C.)

In the case of the usual Lie algebra valued Hitchin system, the ring of the com-
muting Hamiltonians is generated by the global sections of polynomial adjoint in-
variant functions on the Lie algebra g evaluated on the Lie algebra valued Higgs
field ¢ (x). The ring of the adjoint invariant functions is generated by the fundamen-
tal invariants of degrees m; + 1 where m; are the Coxeter exponents of G.

In the case of the group valued Hitchin system the ring of the commuting Hamil-
tonians is generated by the global sections of polynomial adjoint invariant functions
on the Lie group G evaluated on the group valued Higgs field g(x). The ring of
adjoint invariant functions on the group is generated by the characters y; = trg, of
the fundamental representations R;, that is highest weight irreducible representation
with the highest weight given by a fundamental weight.

In the case of C = C ~ R? with no punctures, the global holomorphic sections
of trg, g(x) are polynomials of degrees n; defined by the ranks of the gauge group
factors U (n;) of the 4" = 2 4d gauge theory

trg, g(x) = x" +u,',1x”"*l +. Ui, i €nodes of I'. 5)

The coefficients (u;1,...,u;n,); are the Poisson commuting Hamiltonian func-
tions on the complex phase space of an integrable system: the moduli space of
monopoles on C x S'.

Moreover, the phase space of monopole integrable system can be identified with
a symplectic leaf in the Poisson-Lie loop group {g(x)} [40]. The Poisson structure
on this Poisson-Lie group is of quasi-triangular type defined either by a classical
rational type r-matrix if C ~ C is the complex affine line, or by a trigonometric r-
matrix if C ~ C* ~ C/Z is a cylinder, or by an elliptic r-matrix if C ~ C/(Z + tZ)
is an elliptic curve.

The quantization of such a Poisson-Lie group produces the famous quantum
groups of Drinfeld [41] and Jimbo [42] which are the quasi-triangular Hopf algebras
(with quantum R-matrix) underlying the solvability of the quantum spin chains of
various types and the Bethe ansatz [43]. The commuting Hamiltonians, as opera-
tors of the quantum group in a representation on a physical Hilbert space W, can
be constructed by taking the trace of R-matrix try Ry over an auxiliary space V.
Their commutativity is implied by the Yang-Baxter equation which is satisfied by
the R-matrix.

The explicit algebraic objects that replace the characters y; = trg, after the quan-
tization have been constructed by Frenkel-Reshetikhin [44] and were called g-
characters for affine quantum algebra U, (§) associated to the Poisson-Lie group
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of trigonometric type for C = C*. Here the parameter ¢ = exp(€ ) is the exponenti-
ated Planck constant. At the same time, the commutative algebra of the g-characters
was identified by Frenkel-Reshetikhin with the g-deformation of the classical % -
algebra [44]. The polynomiality conjecture of g-characters of [44] has been proven
in [45].

On the other hand, the same algebraic objects, the g-characters, were obtained
from the study of the equivariant cohomology of instanton moduli spaces in quiver
gauge theories on C,, 4, in [46] in the limit g» = 1, which justifies the g-version of
the triangle relation analogous to (4):

4d QFT: A3, 51 for
I'-quiver gauge theory

M%

Mtonopoles (C % st O $rmmmmnmsssnsooononoronosy Wo oo (gr)-algebra on C
(6)

Furthermore, following the approach in [19, 46], the two-parametric qi,q>-
deformation of the characters, called g1, g>-characters were obtained from the ge-
ometry of the quiver instanton moduli spaces in [47], and in [48] it was shown
that gauge-theory construction of g, g>-characters is isomorphic to the Frenkel-
Reshetikhin definition [49] of ¢g-deformed % -algebras #;, 4,(g). This supports the
two-parametric (g1, q>) relation (6).

While the geometric Langlands program can be embedded into the context of the
diagram (4) [50], [31], [26] relating to the quantization of the Hitchin system, differ-
ential equations and conformal field theories, the quantum field theory context for
the g-geometric Langlands program [49] relating to the quantization of the system
of periodic monopoles, difference equations and lattice models is provided by the
diagram (6).

The horizontal arrow in (6) denotes that #;, ,, (gr) is obtained by a quantization
of the Poisson algebra of functions on the space of g-opers [51, 52], and that the
Poisson structure on the space of g-opers naturally arises from the Poisson structure
on the moduli space of monopoles on the twisted product C xS I'for C~C*.In
turn, the symplectic structure on the monopole moduli space on the twisted prod-
uct C x4 S! comes from the hyperKiler rotation on the P'-twistor sphere of com-
plex structures on the monopole moduli space on the direct product space C x S'.
This justifies the generic Proposition 3.2 in the context of quiver gauge theories
and monopoles integrable systems on C x S'. Also, the construction of %4, 4, (gr)
algebras from quiver gauge theories on (qu .4, gives a natural g>-deformation of
the commutative K-theory ring of the representation theory of U, (Lg), obtained
in a geometrical way by Nakajima from the quiver variety associated to the same
quiver [53], into an associative non-commutative algebra. The representation theory
meaning of this algebra remains to be clarified.
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Statistical mechanics for complex systems: On
the structure of g-triplets

Constantino Tsallis

Abstract A plethora of natural, artificial and social complex systems exists which
violate the basic hypothesis (e.g., ergodicity) of Boltzmann-Gibbs (BG) statistical
mechanics. Many of such cases can be satisfactorily handled by introducing non-

.. . . l—ZVKI p! w .
additive entropic functionals, such as S, = k# (q ERX YL pi= 1), with

S1=8pc = ka}Zl piln p;. Each class of such systems can be characterized by a set
of values {q}, directly corresponding to its various physical/dynamical/geometrical
properties. A most important subset is usually referred to as the g-triplet, namely
(CISensitivityv {relaxation s dstationary state)v defined in the bOdy of this paper. In the BG limit
we have {sensitivity = {relaxation = {stationary state — 1. For a given class of complex sys-
tems, the set {¢} contains only a few independent values of g, all the others being
functions of those few. An illustration of this structure was given in 2005 [Tsallis,
Gell-Mann and Sato, Proc. Natl. Acad. Sc. USA 102, 15377; TGS]. This illustra-
tion enabled a satisfactory analysis of the Voyager 1 data on the solar wind. But the
general form of these structures still is an open question. This is so, for instance, for
the challenging g-triplet associated with the edge of chaos of the logistic map. We
introduce here a transformation which sensibly generalizes the TGS one, and which
might constitute an important step towards the general solution.

1 Introduction

The pillars of contemporary theoretical physics may be considered to be Newtonian,
quantum and relativistic mechanics, Maxwell electromagnetism, and Boltzmann-
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Gibbs (BG) statistical mechanics (microscopic theory consistent with thermody-
namics). Statistical mechanics is in turn grounded in electromechanics (meaning
by this the set of all mechanics and electromagnetism) and in the theory of prob-
abilities. The BG theory can be formally constructed by adopting the BG entropic
functional Spg = —kifil pilnp;, with Z}L pi = 1, k being a conventional positive
constant (usually taken to be the Boltzmann constant kg). This hypothesis is known
to be fully satisfactory for dynamical systems satisfying simple properties such as
ergodicity.

For more complex systems, the BG entropy can be inadequate, even plainly mis-
leading. When this happens, must we abandon the statistical mechanical approach?
It was advanced in 1988 [1] that this is not necessary. Indeed, it suffices to con-
sider entropic functionals different from Spg, and reconstruct statistical mechanics
on more general grounds. The so-called nonextensive statistical mechanics follows

along this path, based on the entropy S, = = kL=l Z’ 'P’ (g € #;S1 = Spg)- It can
be easily verified that, if A and B are any two probablhstlcally independent systems
(ie. pffB piph), then Sy(A+h) A+B) %A) + % +(1—¢q) S",({ ) Sq( ). In other words,
Sq is nonadditive for q#1, 1n contrast with Spg which is addmve

The optimization of S, under appropriate constraints yields distributions such as

the g-exponential one p,(x) o< [1 — (1 —¢q)Bx]"/(1-9) = e;ﬁx or the g-Gaussian one

pq(x) =< ey pe (see [2] for an introductory text). This and similar generalizations of
the BG statistical mechanics have been shown to provide uncountable predictions,
verifications, and applications in natural, artificial and social complex systems. A
regularly updated bibliography as well as selected theoretical, experimental, obser-
vational, and computational papers can be seen at http://tsallis.cat.cbpf.br/biblio.htm
Among recent applications we mention the experimental validation [3] (accom-
plished in granular matter) of a 20-year-old prediction, the emergence of neat g-
statistical behavior in high-energy collisions at LHC/CERN along 14 experimental
decades (see [4] for instance), a notable numerical discovery in the celebrated stan-
dard map [5], and the connection with networks (see [6] for instance).

2 g-triplets
The solution of the differential equation

2 —ay (6(0)=1) 0
is given by y = ¢“1*. The solution of the more general equation

dy

& —ap ((0)=1) @


http://tsallis.cat.cbpf.br/biblio.htm

Statistical mechanics for complex systems: On the structure of g-triplets 53
is given by y = eZ‘f". These facts in the realm of nonextensive statistical mechanics
suggested a conjecture in 2004 [7], namely that there could exist in nature g-triplets
as indicated in Table 1 and [8]. The first verification of the conjecture was done in
2005 by NASA researchers Burlaga and Vinas in the solar wind [9].

I I« | &) |

Stationary state distribution E; -B Z g qasionarysiae P(Ei)

T Pagationarystate =1
" “Ystationary state

Mg ciiioieo
Sensitivity to the initial conditions|| ¢ E(1) = gg ity

sensitivity Gsensitivity
Typical relaxation of observabl -1 Q(r) = Q-9
ypical relaxation of observable O|| t [—1/7, . . () = G0-0=)
— 7t/‘[‘4rs]axalion

— “drelaxation

Table 1: Three possible physical interpretations of Eq. (2) within nonextensive sta-
tistical mechanics. In the BG limit we have gsensitivity = Grelaxation = Jstationary state = 1.
For one dimensional dynamical systems it iS Gentropy production = Gsensitivity> Where
Gentropy production denotes the index g for which S, increases linearly with time .
From [8].

Since then a plethora of g-triplets and directly related quantities have been found
in solar plasma [10-13], the ozone layer [14], El Nifio/Southern Oscillations [15],
geological faults [16], finance [17, 18], DNA sequence [19], logistic map (see [20—
31]), and elsewhere [32,33].

3 Connections between g-indices

Some very basic points can be addressed at this stage: How many indices g can
be systematically defined? How many of them are independent? Through what rela-
tions can all the others be calculated? To what specific physical/mathematical/proba-
bilistic/dynamical property is each of them associated?

As we shall see, there are many more than three relevant g-indices. Nevertheless,
the g-triplet plays a kind of guiding role in questions such as what is the correct
entropy to be used, at what rhythm does it relax to a stationary state, and how can
this stationary state be characterized. Consistently, in the BG limit all the indices g
are expected to be equal among them and equal to unity.
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Inspired by the specific values for the g-triplet observed by NASA [9], a path was
developed in [34]. Two self-dual transformations admitting ¢ = 1 as a fixed point
were introduced, namely the additive duality ¢ — 2 — g and the multiplicative duality
q — 1/q. These simple transformations had already appeared in various contexts
in nonextensive statistical mechanics (see [2] and references therein). The novelty
in [34] is that they were used to systematically construct a mathematical structure,
which we describe in what follows. We first define the transformations ¢t and v:

1 1
N =2—qg — — , (3)
u 72(q) q —(q) g1

1 1 1
vV = qolqg)=—- — = +1. )
@) g l-qlq) q-1

The subindices 2 and 0 will become clear soon. We straightforwardly verify pu? =
vZ =1, vu = (uv)~!. Also, we can analogously define (1v)" and (vu)" with
integer numbers(m,n). This set of transformations enables (see [2,34]) the definition
of a simple structure (hereafter referred to as the TGS structure). The NASA g-triplet
for the solar wind found an elegant description within this structure, as shown later
on in this paper. Not so the logistic-map edge-of-chaos g-triplet, and others. As
a possible way out of this limitation, a generalization of the TGS structure was
proposed in [8], which we review now.
Let us consider the following transformation:

(a+2)—aq

= 74 5
wld) = = @A), )
or, equivalently,

1 1 a

=——+1-3, (©)
1—qalq) q—1 2
or, even
2 1 2 1

2—aT—qua) 2-ag—1"" @

We straightforwardly verify that g» = 2 — ¢ (additive duality) and g9 = 1/q
(multiplicative duality) [2,34,38,39]. Also, we generically verify selfduality, i.e.,
q4(q4(q)) = q,¥(a,q), as well as the BG fixed point, i.e., g,(1) = 1,Va: See the
figure in [8]. The duality (5) is in fact a quite general ratio of linear functions of g
which satisfies these two important properties (selfduality and BG fixed point). It
transforms biunivocally the interval [1, —eo) into the interval [1, _%5]. Moreover, for

a =3 and a = 5 we recover respectively g3 = % [35] and g5 = % [36].

Let us combine now two! transformations of the type (5) (or, equivalently, (6)):

(a+2)—aq 1 1 a
— qalgq) = — = +1-3,
H @) a—(a=2)g  l-qalqg) q—1 2

1 Of course, it is also possible to combine, along similar lines, three or more such transformations.

®)
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and (b+2)—b 1 1 b
_(b+2)—0bg — - —
V=m0 T T a1y ®
with b # a. It follows that
_(b—a)—(b—a—2)q L _ 1 | b-a
uv—>Qa(Qb(Q))—(b_a+2)_(b_a)q_> l_qa(qb(q))_l—q+ 2
(10)
and
_(a=b)—(a=b-2)q L __1 ja-b
Vi = qp(q4(q)) = (a—b+2)—(a—b)g - 1—q5(qa(q)) 1—61+ 2(1’1)

with pu? = v =1, v = (uv) ™', and ¢a(9a(q)) = ¢,¥(a,q).

For integer values of m and n, we can straightforwardly establish

V)" = 413 (@) = qalan(ga(an(--)))) = ﬁfb—a3)+[g(fm$_3§ 1)
- l—qfl,',?(q) B 1—qa(qb(qla(qb(...)))) - 1iq+mbga, (13)
and
(V)" = ay2(49) = ap(4a(ap(qa(...)))) = ’F;g’a—bb));[;](a;z—gq 14)
” 1—q§,'73<q> - 1—61b(qa(qlb<qa(...)))) - 11q+na;b. (15)

1 1
As we see, qi,ﬁ = dqa(qs(g)) and qé,g = qb(qa(q))-
For a # b and any integer values for (m,n), the above general relations can be

conveniently rewritten as follows:

2 1 2 1
b ) =% 1 +m (m=0,£1,42....), (16)
T4l —qup(q) P44
and
2 1 2 1
+n (n=0,+1,42,...). 17

g P

Form=n=1and (a,b) = (2,0) we recover the simple transformations q% =2-

(see Eq. (7) in [37], and footnote on page 15378 of [34]) and q(()g = ﬁ.
We can also check that with m = 0,£1,£2,..., (uv)™u and v(uv)™ correspond

respectively to

1
q
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2 1 2—a { 2 1 2—a } (18)
— - _ m,
bfalfq%;“)(q) 2(b—a) b—al—q 2(b—a)
and
2 1 2—b 2 1 2—b
- =- - +m. (19)
b—al_qit/l;m)(q) 2(b—a) {b—al—q Z(b—a)}

Analogously we can check that withn =0, 1,42, ..., (vu)"v and u(vu)” cor-
respond respectively to

2 1 2—-b 2 1 2—-b
- == - —n, (20)
a—bl_qé':l")@) 2(a—b) {a—bl—q 2(a—b)}
and
2 1 2—a 2 1 2—a
- = - +n. QD)
a_bl_qz(;fzn)(CI) 2(a—b) [b—al—q Z(a—b)}

As we see, the structures that are involved exhibit some degree of complexity.
Let us therefore summarize the frame within which we are working. If we have
an unique parameter (noted a) to play with, we can only transform g through Eq.
(5). If we have two parameters (noted a and b) to play with, we can transform ¢ in
several ways, namely through Eqgs. (13), (15), (18), (19), (20) and (21), with m =
0,£1,£2,...and n = 0,%1,42,...; the cases m = 0 and n = 0 recover respectively
Eqgs. (8) and (9). The particular choice (a,b) = (2,0) recovers the TGS structure
introduced in [2, 34,38, 39]. Also, the particular choice (a,b) = (—1,0) within the
transformation (10) recovers the transformation ¢ — é#, which plays a crucial role
in the g-generalized Central Limit Theorem [40]; coincigentally (or not), the relation
b —a = 1recovers the y = 1/2 case of Eq. (32) of [8] (see also [41-43]).

To make the approach introduced in [8] even more powerful, we may introduce
now the most general self-dual ratio of linear functions of q, which has the g = 1
fixed point. It is given by

ay —axq

dar.ay(q) = W — (2 —ar)q (a1 € R0 € R), (22)

or, equivalently,

1 1 ar
= + 1+ s
1—%1,(12(61) g—1 az —daj

(23)

or, even,
ay —ag 1 ay —daj 1

20— a1 1 — qayay(q)  2a2—a1q—1

+1. 24)

The particular case
(a1,a2) = (a+2,a) (25)
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recovers the transformation introduced in Eq. (5) [8]. All the steps from Eq. (8) to
Eq. (21) can easily be generalized, involving now four parameters, (a1,a2,b1,bs),
instead of only two, (a,b). It becomes clear that the 4-parameter structure that can
be constructed with the transformation (24) remains isomorphic to the set Z of in-
teger numbers. Of course, to go from the 4-parameter structure to the 2-parameter
structure we need to assume also, analogously to Eq. (25), that (b1,b,) = (b+2,b).

4 Some final remarks

Essentially, we reproduce here the final remarks in [8]. The data observed in [9] for
the solar wind are consistent with the g-triplet [34]:

(%ensmwtyvQStanonarystate»Qre]axatlon) = ( 0'577/474)-

If we identify, in Eq. (10), (q,qa 13) (Gsensitivity » Grelaxation) We can verify that,

for a — b = 2, the data are cons1stently recovered. Moreover, if we use once again
Eq. (10) and a — b = 2, but identifying now (g, qil 1)7) = (Grelaxation Istationary state ) » ONCE
again the data are consistently recovered. The particular case (a,b) = (2,0) was first
proposed in [34]. In other words, it is possible to consider this g-triplet as having
only one independent value, say gsensitivity; from this value we can calculate gretaxation
by using Eq. (10); and from grefaxation W€ can calculate Gstationarystate by using once
again Eq. (10). This discussion can be summarized as follows:

1 1 | 1 -
— _ _a=b 1 e

l—¢q sensitivity I — Grelaxation | — Grelaxation 1 —¢ stationary state 2

It is occasionally convenient to use the e-triplet defined as (8sensiﬁvity,

Estationary state s Srelaxation) = (1 — {sensitivity s - {stationary state 1— Qrelaxation)- Let us men-
tion that an amazing set of relations was found among these by [44], namely

Esensitivity =+ Erelaxation

Estationary state = ) ) 27
Esensitivity = \/ Estationary state Erelaxation » (28)
-1
-1 _ gsensmvny + 8statlon.ﬂlry state 29
grelaxation - 2 ( )

The emergence of the three Pythagorean means in this specific g-triplet remains
still today enigmatic. One could advance that these relations hide some unexpected
symmetry, but its nature remains today completely unrevealed.

Let us now focus on a different system, namely the well-known logistic map at its
edge of chaos (also referred to as the Feigenbaum point). The numerical data for this
map yield the g-triplet (gsensitivity » Istationary state » @relaxation) = (0.244487701...,1.65+
0.05,2.249784109...) [21,28,46-48].

An heuristic relation has been found [45] between these three values, namely
(usinge=1-—¢q):
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gsensitivity + Erelaxation = Ssensitivity gstationary state - (30)
Indeed, this relation straightforwardly implies

{stationary state — w . 3D
— {sensitivity

Through this relation we obtain ggagionarystate = 1.65424... which is perfectly com-
patible with 1.65 4 0.05. In the generalized structure that we have developed here
above, we have five free parameters (g,a;,a2,b1,bs) (or only three free parame-
ters (q,a,b) in the more restricted version presented in [8]) in addition to the in-
teger numbers (m,n). It is therefore trivial to make analytical identifications with
(%ensitivityvq stationary state; Jrelaxation) Such that Eq. (30) is satisfied.

The real challenge, however, is to find a general theoretical frame within which
such identifications (and, through the freedom associated with (m,n), infinitely
many more, related to physical quantities) become established on a clear basis,
and not only through conjectural possibilities; as a simple illustration of such
q indices being associated to specific properties, we may mention the relation
[49-51] gstationarystate = LJ;Z’ hence Gstationarystate — 1 = 2(Gavalanchesize — 1) with
T = 1/(qavalanchesize — 1)- Such a frame of systematic identifications remains up to
now elusive and certainly constitutes a most interesting open question. Along this
line, a connection that might reveal promising is that if we assume that g is a com-
plex number (see, for instance, [52, 53]), then Eq. (5) corresponds to nonsingular
[with (a+2)(a—2) —a* = —4 # 0,Ya] Moebius transformations, which form the
Moebius group, defining an automorphism of the Riemann sphere.

Acknowledgements I am deeply indebted to Piergiulio Tempesta. Indeed, during a long and fruit-
ful conversation with him about the present context focusing on the structure and use of g-triplets
based on transformation (5), he thought of generalizing it into transformation (22). Also, partial
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Unconventional supersymmetry: Local SUSY
without SUGRA

Jorge Zanelli

Eugene Wigner defined particle physics as a study of group representations. As-
suming spacetime to be essentially flat and therefore invariant under global (rigid)
Poincaré transformations, it was Wigner’s genius to observe that elementary par-
ticle states must correspond to irreducible representations of the Poincaré group.
Hence, the intrinsic particle properties mass and spin (M, J) should correspond to
the eigenvalues of the Casimir operators that classify those representations.

In the Standard Model, fundamental interactions result from locally realized in-
ternal symmetries (gauge groups). It has been a long-sought idea that spacetime and
internal symmetries could be combined in a natural way through a “super” symme-
try. The simplest implementation of supersymmetry (SUSY) has two fundamental
weaknesses:

a) It predicts for each fermionic matter field a bosonic one in the same gauge repre-
sentation and with the same mass, and vice-versa;

b) In spite of decades of intensive search, no experimental evidence of SUSY has
been found yet.

The fact that no trace of SUSY has been observed so far has been excused by
saying that it is a broken symmetry at experimentally accessible energies, but it
must be unbroken at sufficiently high energy. A statement of this sort can never be
falsified because it can always be said that the energy range for SUSY restoration
is such high energy that it remains unobserved, which puts SUSY on a doubtful
scientific basis.

In this work, we consider a gauge theory based on a superalgebra that includes
an internal gauge symmetry, the local Lorentz invariance and supersymmetry gen-
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Centro de Estudios Cientificos, CECs-Valdivia, Arturo Prat 514, Valdivia, Chile,
e-mail: z@cecs.cl

© Springer International Publishing AG 2017 61
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries,
https://doi.org/10.1007/978-3-319-69164-0_8


mailto:z@cecs.cl

62 Jorge Zanelli

erators. The important distinctive features between this theory and standard super-
symmetry are:

e The number of fermionic and bosonic states are not necessarily equal.

e There are no fermionic superpartners of gauge bosons (bosoninos), or bosonic
partners of matter (s-leptons).

e Although this supersymmetry originates in a local gauge theory and gravity is
included, there are no gravitini.

e Fermions acquire mass from the coupling to the background while bosons remain
massless.

The existence of bosonic SUS Y-invariant vacua depends on the existence of glob-
ally defined Killing spinors. Hence the fact that supersymmetry is not manifest in
a given situation might be understood as a consequence of the absence of Killing
spinors, a contingent phenomenon rather than a mysterious breaking of a local sym-
metry.
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Analysis of the production of exotic
bottomonium-like resonances via heavy-meson
effective theory

L. M. Abreu

Abstract We analyze the production of exotic bottomonium-like resonances in the
processes involving initial bottomed meson states B*)B™*), by using effective La-
grangians taking as guiding principles heavy quark symmetries. In this scenario,
we consider the Z,(10610) and Z;,(10650) as bound states of (B°B** +B*B*°) and
(B**B*) channels, respectively, and obtain the amplitudes of relevant processes.

1 Introduction

About five years ago, Belle Collaboration discovered two charged exotic states
Z£(10610) and Z;5(10650) (denoted henceforth as Z; and Z,%), in Y(55) —
Y(nS)ntn~ (n=1,2,3) and Y (55) — hp(mS)n~ 7~ (m = 1,2) decays [1,2]. Their
favored quantum numbers are 7¢(J¥) = 17(17). The masses averaged over the
five channels are mze = 10607.2 £2.0 MeV and mzéi = 10652.21.5 MeV [6],

being close to the BB* and B*B* thresholds, respectively. Also, the charge neu-
tral partner of Z,(10610) Belle Collaboration has found in Dalitz plot analysis of
Y (55) — r(25)x°7°, with mass being mze = 10609 6 MeV, suggesting that the
three sets of Z, resonances might form isos7pin triplets and need at least four quarks

as minimal constituents. Besides, Belle reported the observation of these two Zl(,') in
Y (5S) = (BB* +c.c.)mw and Y (55) — B*B*7 decays [4].

Many interesting theoretical discussions concerning the structure and properties
of Z, states have been made. In this sense, in the present work we are interested
in analyzing the hadronic effects on the production of ZIS/> resonances. The inspira-
tion relies on previous works, in which it is discussed the interaction between the
exotic X (3872) state and light hadrons, since it can be absorbed by the comoving
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light mesons or produced from the interaction between heavy mesons [5—12]. Thus,

here we investigate the processes BB — wZ;,, B*B — nzé’) and B*B* — EZI()/) within
the framework of Heavy-Meson Effective Theory (HMET), i.e.,, with effective La-
grangians constructed, taking as guiding principles heavy quark symmetries. The
leading-order amplitudes are determined and discussed.

2 Formalism

Here we introduce the effective theory known as Heavy-Meson Effective Theory
(HMET). It is characterized by effective Lagrangians respecting chiral, heavy-quark
spin, Lorentz, parity and charge conjugation symmetries, being given by

L =L+ L. (D

In Eq. (1), £ is the lowest-order effective Lagrangian carrying the kinetic terms
and couplings between light- and heavy-meson fields [13-20],

Ly = —iTr [FI(QV’%.@“H(SQ)}fiTr[ v 75 )]
+igTr[ yﬂﬂ ()8 +ngr[ b Q) yﬂﬂ () @)

where we have introduced the superfields:

1+v
H? = ( 2” )(PauQW“—PéQ)f),

g(Qa _ (PZ(Q)”W _ P@“f) ( T—vup* ) 7

2
=Pu2"Y, B =P H Dl 3)

with Q = ¢, b being the index with respect to the heavy-quark flavor group SU (2) g r;

v the velocity parameter; a the triplet index of the SU(3)y group; and Pa(Q/ 0 and

P;ﬁQ/ 9 the pseudoscalar and vector heavy-meson fields forming a 2 representation
of isospin group, i.e.,

P = (58, PP =(8"8), 4)

for the bottomed pseudoscalar meson field, and analogously for the vector case. The

heavy vector meson fields obey the transversality conditions: v - P /o) _y,

Also, in Eq. (1) we have defined
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a 1 gy ] a_ 1 gt )4
(Z)y = |Ou+5 (879 +£0uE") ) (u)j =5 (§79uC —Edué"),,

0
Y
M =2 " s)

§

T —==

In Eq. (5), M represents the light meson fields, with the £-field transforming as
LEUT = UERT under chiral transformations; g and f are coupling and pion decay
constants, respectively.
The term %), in Eq. (1) is the lowest-order effective Lagrangian coupling the
ZH fields to B*)-mesons:
0

Ly = —i%Tr {%(Q“FI,EQ)WFI@“} +c.c., (6)

where z() is the coupling constant; Qpﬂ(/) is the superfield representing Z;, and Z;,
states [18,20,21],

0 _ 1+Vp’]/p 0 1—vsY°
= (2 Zr\— ) @
with Z* being a 2 x 2 matrix representing quantized fields associated to the Z()4
state:

1 (10 (+

Z(/) o ﬁzﬂ ZIJ )
B 70 1 (0 |
H Vo

In Table 1 we outline transformation properties of the superfields under the rele-
vant symmetries.

Now we can determine scattering amplitudes of the processes B*)B(*) — EZ,()/) .
Following Ref. [21], we assume that Z, couples to the components (B°B*+ +
B*B*0), while Zj, couples only to the channel (B**B*?). In this sense, there is no
contribution to BB — n'ZZ',, since we do not consider the BE*Z@ vertex.

Then, based on the effective Lagrangians introduced above, we determine the
leading-order amplitudes, i.e., the amplitudes associated to processes represented
by one-heavy meson exchange diagrams. We fix the velocity parameter to be
v = (1,0), which in the present formalism means the transition to a non-relativistic
approach. Also, we approximate the sum over the polarizations to ¥ e'e*/ ~ §%.
Therefore, with these assumptions, the squared transition amplitudes, averaged over
the spins and isospins of the particles in the initial and final states, can be written as:
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Table 1: Transformations of the superfields under chiral, heavy-quark spin, Lorentz,
parity and charge conjugation symmetries. U is a matrix acting on unbroken SU (2)y
group; S (@) is a rotation matrix acting on heavy-quark spin (HQS); S is a rotation
matrix acting on heavy-antiquark spin; D = D(A) is the spinor representation of
Lorentz transformation A ; C = iy?}” is the charge conjugation matrix. The negative
charge conjugation for the Z field holds for neutral components.

Transformation / field H,gQ) | A(Qa | H(Q)a | ‘[SQ) | Zglb
Chiral v, | vra@ | ye@r | BOU) | Ul UL,
HQS 5@ g2 | gQag@)t | 4(Qag@) | 5@ p(Q)a S(Q)Zl(flbs(@f
Lorentz pH\®’D~'|\pA*p~'DH @D~ DAL D~'|  AYDZ!), D!
Parity ~H9 | —A@a | _g@a | _gQ —zZ
Charge Conjugation |CH@4Tc| cA®"c | cH?"c |ca@QaTc|-cz)*c=-Zz)*

%(EB—HTZI,) z 13222 |p7r|2
1 4 f2 ~ 27
(Ep- —Ex—A)
J%(B*Ban'zb) 2 o igZZZ |pn’|2
2 16 2 (g 2’
(Ep: —Ex)

%(B*B*%ﬂzb) 2 igZZZ 2 |pﬂ|2
f (Epr —Ez +A)
BBz > 1 g*2? pz|*
“///4 T 2
16 f° (Eg—Ez—A)
BBz 2 T g7 2

202 7 (Ep—Ex)?

In Eq. (9), pz and Ex = \/mZ + |pz|? are the tri-momentum and energy of the pion,
E B = pé(*) /2my.) is the kinetic energy of incoming particle 1 for every respective
reaction and A = mp+ — mgp.

Taking the isospin-spin averaged squared transition amplitudes of the processes
discussed above in CM frame, the four-vectors associated to the incoming bottomed
mesons are p; = (E1,p), p2 = (E2, —p); and to outgoing particles are p3 = (Er,pz)
and ps = (Ez, —pr). The total energy of incoming particles can be approximated to
E| + E» = my +my + Ecyy, where Ecy = |p|? /2412 is the collision energy, with 1115
being the reduced mass of incoming bottomed mesons [5]. Making use of conserva-
tion of energy, the pion momentum can be written as function of collision energy:
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px| & {[m) +my — mz+ Ecy)* —m2} 2. Thus, using these definitions in CM frame,
Eq. (9) can be given properly as function of E¢y,.

3 Results

In order to analyze the Z,g/) -production in Eq. (9) as function of collision energy Ecyy,

we use the following values for physical quantities and coupling constants [6,21,22]:
my = 137.3 MeV; mp = 5279.45 MeV; mp+ = 5324.83 MeV; mz = 10607.2 MeV;
my = 10652.2 MeV; g = 0.6; f =92.2 MeV.

Focusing on z and 7 coupling constants, the values considered here are those

obtained in Ref. [21] for original coupling constants with dimensions of E =2 within

the HMET approach: 0.79 GeV~Z and 0.62 GeV~2 , respectively. Nonetheless, we
notice that the squared amplitudes shown in Eq. (9) must be multiplied by the factor

81 (. Mg(ryMm,() to account for the non-relativistic normalization of the heavy-
meson and % fields [17]. Then we incorporate this factor in the definition of the z
and 7’ couplings, yielding values with dimensions of E!.

In addition, it is important to delimit the region of validity of the present ap-
proach. Since the relevant scales for HMET are the heavy scale M (M being the
mass of the heavy meson) and the physical scale Ay = 4nfz ~ 1 GeV, py is re-
quested to be much less than A, which safely occurs considering p; S 200 MeV.
Thus, taking the threshold and the upper bound of the pion momentum, we can es-
timate the allowed ranges of validity for the Z;, production processes: 185.6 MeV
< E{}) <300 MeV, 1402 MeV < E) <250 MeV and 94.8 MeV < ES) < 200
MeV for each respective reaction; while for the Z; production processes we have:

185.2 MeV < Elp) < 300 MeV, 139.8 MeV < EL) < 250 MeV.

The squared transition amplitudes in Eq. (9) are plotted in Fig. 1 as function
of collision energy Ecy. In the case of Z,-production, it can be noticed that all
processes have magnitudes of the same order with respect to the allowed range of
Ecy, but the BB — nZ,, acquires the greatest magnitude in greater values of collision
energy. Taking the upper limits of collision energy Ecys for each respective reaction
(i.e., considering |pz| 2= 200 MeV), the BB channel yields the biggest magnitude by
a factor about 3 and 1.5 with respect to other reactions B*B and B*B*, respectively.

In the case of Z; production (right panel in Fig. 1), the process B*B* has the
greatest magnitude in respective allowed range of Ecy, when compared to B*B pro-
cess (we remind that BB — wZ, has a vanishing magnitude). Working with the upper
limits of Ecyy for each respective reaction (engendering |py| ~ 200 MeV), the B*B*
process yields the biggest values by a factor about 2 with respect to B*B channel.

Also, we see that the squared magnitudes associated to the Z; production ac-
quires larger values with respect to the allowed range of Ecys with respect to the Zj)
production. In particular, at |p;| ~ 200 MeV (taking the upper limits of collision
energy Ecy of each reaction), the ratio between the Z, and Z; production squared
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Fig. 1: Left panel: squared transition amplitudes |.#|*, |.#5|* and |.#5)* (solid,
dashed and dotted lines, respectively), defined Eq. (9), as a function of collision

energy. Right panel: squared transition amplitudes |.#|* and |.#5|* (dashed and
dotted lines, respectively), defined in Eq. (9), as a function of collision energy.

amplitudes is about 2, due to the different magnitudes of coupling constants and
multiplicative factors in amplitudes given in Eq. (9).
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An alternative construction for the Type-II
defect matrix for the sshG

A.R. Aguirre, J.F. Gomes, A.L. Retore, N.I. Spano, and A.H. Zimerman

Abstract In this paper we construct a Type-II defect (super) matrix for the super-
symmetric sinh-Gordon model as a product of two Type-I defect (super) matrices.
We also show that the resulting defect matrix corresponds to a fused defect.

1 Introduction

Integrable classical field theories with defects and its connection with Type-I and
Type-II Backlund transformations (BT) has been widely studied in recent years by
using mainly the Lagrangian formalism and the defect matrix approach [1]- [7].
The classical integrability is ensured by the derivation of modified higher order
conserved quantities, which requires explicit solutions for the corresponding defect
matrices.

On the other hand, the supersymmetric extensions for Liouville and sinh-Gordon
(sshG) models with Type-I and Type-II defects has been also discussed in [12]-[15],
and their associated defect matrices constructed.

More recently, it has been proposed in [18] that Type-II defect matrices could be
constructed as a product of two Type-I defect matrices. This proposal was checked
for the bosonic case of the mKdV hierarchy.

The aim of this paper is to verify this proposal for the sshG model and show that
the resulting defect matrix corresponds to a fused defect.
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2 Type-I and Type II defect formulation

The Lagrangian density describing the N = 1 sshG model with Type-I defects lo-
cated at x = x; can be written as follows:

L=0(x1—x) A +06(x—x1)Lp, +0(x—x1)L, )
with
Py = 3000 = 320+ 01+ 0V — (0= )T
+4[cosh(2¢,,) — 1] — 8iy, Y, cosh ¢, )
T, = 3 (00391~ 130) — v — 0+ 2igidin + B+ B, G
where ¢, is a real scalar field, and y,, ¥, are the components of a Majorana spinor

field in the regions x > x1 (p = 0) and x < x; (p = 1) respectively, and g; an auxiliary
fermionic field defined at the defect point. The defect potentials are given by,

BE)I) =20] COSh(¢0 + ¢1) + %COSh((]}Q — ¢1), “@
=2iV2g, {ﬁcosh (@) (Wo+ )+ \%cosh (¢0 ; o ) (vo— w1 )] .

where o7 represent the Bicklund parameter. Besides the bulk field equations, we get
the following defect equations at x = x;:

01 — 0,1 = 201 sinh(o-+ 91) — - sinh(o 1) 5)
201ig1 [sinh(q)0 > (Pl )(l//o +9)— o1 s1nh<¢0 ; o ) (wo — 1//])} ,

0@ — 0y ¢ =207 sinh(@ + ¢1) + 0'% sinh(@o — ¢1) ©6)

261ig1[sinh(¢0—;¢l )(u‘/o+ W+ smh<¢0 —0 ) (vo— uq)},

Yo+ Y1 =24/ lcosh(%;(bl)gl, N

Vo — ¥ = —24/20 cosh (@)gh (3)
0ig1 = % [Gil cosh(‘P0 ; o )(l[/l - ) —cosh(%—;d)1 )(l/?(H- l/_/l)]. 9)

These defect conditions preserve the integrability of the system after considering
defect contributions to the conserved quantities [14]. The generating function for an
infinite set of modified conserved quantities depends on the existence of the defect
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matrix K; connecting two field configurations, namely w0 — k), satisfying
the following equations:

0.k =Kk AY — APk, (10)
where 03 = 1(d; £ 9;), [ is a spectral parameter, and ¥(P) are vector-valued fields
satisfying the associated auxiliary linear problem, o+ ¥(?) = —A(ip J@(P), The Lax

(p)

pair AY’ are 3 x 3 graded matrices valued in the s/(2,1) Lie superalgebra, which
can be written in the following form:

AV _9.9, -1 Vi,
AV = a2+, Vi, |- b
1PV, Vg, | A2

lil/z\/;'[l/pe‘pp
Viv,e o | (12)
NG —\ﬁl”/zy/pe%‘ 21-1/2

Therefore, we find that a suitable solution for the type-I defect matrix K can be
written in the following explicit form [14]:

/5 91+¢
1 %€¢1+¢0 — 21%6 7 g

K =12 61— (01+00) | —Vaiore 1, |, (13)

. (¢1+¢9) ; (91+90)
V2ioieT 7 g \/21%6’ 2 81‘ 1*1?7/12

where ¢ is a free constant parameter.

Now, the Type-II defect for the N = 1 sshG model can be constructed by con-
sidering initially a two-defects system of Type-I at different points, and then fusing
them to the same point by taking a limit in the Lagrangian density [15]—[17]. Let us
consider one of the defects placed at x = x; and the other at x = x;. The Lagrangian
density for this system can be written as,

A-1/2 1200

AP =20 1172

L =0(x1—x)L1+8(x—x1)Lp, +0(x—x1)0(x2—x)%
—‘1-5()6—)62).,%02 +0(x—x2)L, (14)

where £, with p =0, 1,2, is given by eq. (2), and the two type-I defect Lagrangian
densities at x = xz, k = 1,2, are given by eq. (3). Now, we have two auxiliary
fermionic fields g, and two free parameters oy, with k = 1,2, defined at the de-
fect positions, respectively. At the Lagrangian level, the fusing of defects can be
performed by taking the limit x, — x. After some manipulations, it was shown that
the fused defect is equivalent to a type-II defect [15], and takes the following form:
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Zp =091y~ *‘P s+ 5 (V’+‘I/— Vvl ) +ifiofi+ifiofi+B, (15)

with ¢ = ¢ & 02, wu = 1 £y, and B = B} + B\ + B\ + B\ the defect
potentials,

B9 — mo [e(¢+lo) 4o @) (sink? (‘%) + cosh? T)] ’ (16)
B = g oo sine? (%) +cos ) |. a7
— _ivmo [( S e cosh ) fi e sin (‘l’z)mﬁ}
+imc7(1 e~ (0+=10) cogh r) cosh (%‘) fif (18)

B = iy [ (et o)y sinn (%) we
(1 docosnt) oo (%) i 19)

where it has been used 6; = ce~ %, 0, = 0 ¢, and the reparametrizations

0o — flo+¢7+ —In {cosh (% ‘C)} - %sech(%ff)ﬁfl, (20)

1

. | et(0-—20 | 2
f1 = Uig2+p-g1, fi=u g —uigr, per=|——F5| . 2D

2

From the above defect Lagrangian we can write the defect conditions at x; = x»,
~0:—1o) 1 Lolo | : ! ¢-
(dr—0))¢pr =lp—m|ce P70+ —e'0|sinh ¢ —tm(G—l— )smh( )f1f1
c
[T
—H'\/mce_( E o) cosh (¢ )l;/+f1 —1i me2 cosh (¢ )l//+f1
V o
(e — 1 . o -
i (¢+=lo) ;- — ,lo had
im [Ge +—e } cosh‘L’smh( > )flfl, 22)
(+9)¢9_ =2mo {ew*l(’) (s.inh2 (¢;> + cosh? ’C) - e(¢+10)]
2
(¢+=lp) 9+ -lp)
+ivm ( T o0l —e ( e coshr) VL fi
(6+—1p)
—ivmoe~ +20 51h<¢ )l;/+f1

+2imo e+~ cosh T cosh (%)ﬁfh (23)
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(d—3)o_ = ZFm {e‘l‘) —elo (sinh2 (%) +cosh? 7)}
—i g [(e'? —¢? cosh r) v fi+e? sinh (%‘) y/+f1}
—ZZ% €0 cosh tcosh (%)ﬁfl, (24)
v — \/z {el? sinh (%)ﬁ - (e—l% ted coshr)fl] , 25)
Tl \/%{(e (o) | -l coshT) At Gon (%) ﬁ}, (26)
o fi = —@ (eL;lO) —|—e’(¢+277]0) coshr) v+ ;\/Zelg sinh (%) V2%

_% {(64_ é) + (O'e_(d’*_l(’) + éelo> coshr} cosh (%)ﬁ, (27)

x Vmo (61— | O_\ _ 1 /my/ & o
azfl——Té’ 2 Slnh<7>l//+—5 E(e 2 te2 cosh’c)q&

+% [(0-4_ é) + (ae*(m’lo) + éelo) cosh T:| cosh (%)ﬁ. (28)

In order to derive the associated Type-II defect super-matrix for the model, we pro-
pose [18] to construct it as a product of two Type-I defect matrices, such that

w2 — K](GZ)IP(O) — K1(62)K1(61)'P(1) — KZ(G’T)W(1)7 (29)

where K>(0,7) = K (02)K(07). Therefore, by a direct computation we find that
the components k;; of the fused defect matrix K3 are given by:

o_
ki =c (I+Gze_¢* +2i6e‘7(8182)11/2) ) (30)
9
kip = coe (o077 o019 1216 (1)), (31)
9 (91-7) ($2-7)
ki3 = —co Rice? (eq&— K g1—e 2 gz) (32)
9 (91-7) ($+7)
—eVaiol ¥ (P g e ) (33)
9.
kot = coe% (e—<¢1+r> e 0 {oje g, gz) , (34)
- 2 o . _9-
ko = c(l—i—c e +2ice 2 glgz), (35)

9 (91+7) ($p—1)
koz = —C\/Ziole_TO (gle_ ) + gre e )

9 (9 +17) (91+7)
+c0'\/2ic711/23_70(gze_ % — gle i _¢2), (36)
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% (91+7) (92-7)
k31:cv2i6le_7(gle_ I ge 2

9 (¢p-7)
+coV 2i611/2€770 (gze 0 —gie
¢2+T )

9 ( )
k3p = coV ZiGeT0 <g267 7 +0

—&81€

o/ (0-7) 0+
+CV%Gﬂﬁe%(e]2 gl+e 2 gﬁ,

ksz =c <l +0%—201'? (cosh(‘c) —2ig1g> cosh (452)) ,

(91+7)

2

(37)

(38)

(39)

where ¢ = c¢jc,. By straightforward comparison with eq. (A.80)—(A.89) in [15], it is
not difficult to see that the fused defect matrix derived as product of two type-I defect
matrices is equivalent (up to /'/2) to the type-II defect matrix previously found in

[15], after reparametrazing the auxiliary fields given as in egs. (20) and (21).
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Generalized supersymmetry and the
Lévy-Leblond equation

N. Aizawa, Z. Kuznetsova, H. Tanaka and F. Toppan

Abstract Symmetries of the Lévy-Leblond equation are investigated beyond the
standard Lie framework. It is shown that the equation has two remarkable symme-
tries. One is given by the super Schrodinger algebra and the other by a Z, x Z;
graded Lie algebra. The Z, X Z, graded Lie algebra is achieved by transforming
bosonic into fermionic operators in the super Schrédinger algebra and introducing
second order differential operators as generators of symmetry.

1 Introduction

The purpose of the present work is to show that a Z, x Z, graded Lie algebra is a
symmetry of a simple equation of physics, the Lévy-Leblond equation (LLE), which
is a non-relativistic wave equation of a spin 1/2 particle [9]. In the process to prove
the Z, x Zp symmetry we also show that LLE has a supersymmetry given by the
A =1 super Schrodinger algebra (see [3] and references therein).

Zy x 7 graded Lie algebras (introduced in [12, 13], see also [14]) are natural
generalizations of Lie superalgebras. We present their definition: Let g be a vector
space over C or R with a Z; x Z, grading structure, namely g is the direct sum of
four distinct subspaces labelled by an element of the Z, x Z; group:
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9=20(0,0)+90,1) + 91,0 +80,1)- ()
For two elements a = (aj,az), b= (b1,b2) € Zy x 7, we define

at+b= (a1 —|—b1,a2—|—b2) (InOd(Z,Z)), a-b=ab; +axb 2)

Definition 1. If g admits a bilinear form [ , ] : g x g — ¢ satisfying the following
three relations, then g is called a Z; x Z, graded Lie algebra:

1. [[gaagb]] C gatb,
2. [Xa, Xp] = —(—1)*P[Xp, Xa],
3. [Xa, [Xn, X]] = [[Xa, X, [, X1+ (—1)*®[Xs, [Xa, X]],

where X, € ga-

Two sub superalgebras exist (they are g(o) + g(0,1) and g(o,0) + 9(1,0))~ This fact
plays a crucial role when the symmetry of the LLE is identified with a Z, x Z,
graded Lie algebra.

In contrast to ordinary Lie algebras and superalgebras, the number of papers in
the literature discussing physical applications of Z, x Z; graded Lie algebras is
limited [8, 10, 15, 17, 18]. The equation discussed in this work is both simple and
fundamental. Even so, we naturally encountered this unusual algebraic structure.
This would suggest that Z, x Z; graded Lie algebras are natural objects in the in-
vestigation of symmetries.

The plan of this paper is as follows. In the next section we introduce the LLE and
present its symmetries. We show that the LLE has a super Schrodinger symmetry.
In §3 the supersymmetry is enhanced to a Z, x Z, graded Lie symmetry.

2 LLE and its (super)symmetries

The LLE here considered is a non-relativistic wave equation for a spin 1/2 free par-
ticle in 3D space. The wavefunction is a four-component spinor,

v(x) =" (o1 (x), p2(x)),

where @, is a SU(2) spinor and x = (f,x1,x2,x3). We use the following form of
LLE [4]:
Qyx)=0, Q=-2iad +iyjax_,. +2mp, 3)

where the sum over the repeated index j = 1,2,3 is understood; y,,a, B are 4 x 4
Dirac y-matrices defined by

{Vu73’v}:28uv, (gI.LV) :diag(+a_7_7_)a #7‘/:0717273 (4)

and
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1 1
o= 5(7’04‘7’4)7 B= 5(7’0—}’4% s =0Nr- (5)

One may take any four-dimensional representation of the y-matrices. We do not dis-
tinguish upper and lower indices since we are working in a non-relativistic setting.
LLE is the square root of the free Schrodinger equation, namely Q2 gives the free
particle Schrodinger operator:

Q% = —4imd; + dx;. (6)

We introduce now the symmetries of LLE. According to [4] we define them in
terms of symmetry operators [4]:

Definition 2. Let .7 be an operator acting on the solution space of LLE. Namely,
<7/ maps a solution of LLE into another one:

=0. @)

Qy=0 = Q(Avy) oo

In this case ¢/ is called a symmetry operator.

In this definition &7 can be any kind of operator such as multiplication, differential,
integral, etc. The traditional Lie point symmetry group of differential equations is
generated by a subset of symmetry operators which is closed under commutations.
Similarly, if a subset of symmetry operators forms a superalgebra or a Z, X Z;
graded Lie algebra, then the set generates a graded group of transformations in the
solution space of LLE.

We restrict now &7 to a differential operator of finite order. In this case a sufficient
condition of symmetry is given as follows. If &7 satisfies either the condition

(2, 4] = Ay (x)2 ®)

or
{Q,a} =I,(x)Q, ©)

where A (x) or Iy(x) is a 4 x 4 matrix depending on the spacetime coordinates,
then <7 is a symmetry operator.

We are looking for symmetry operators given by a first order differential operator.
The results are summarized in the following two propositions:

Proposition 1. The operators below are LLE symmetry operators satisfying the con-
dition (8):
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P; = 8x/-a Gj:taxj+2iij+Ot’)/j, M = 2im,
1
H =9, D:2t8t+xj&xj+2—§y0y4,
K =tD—1%0,+ imx;x; + ox;vyj,

1
ij = xjaxk _-xkax_,' - 5%%{7

- im

Xj = —Ejin <[O"m8"ﬂ o yn]). "

The only two non-vanishing A (x) matrices are Ap = 1, Ax = t. For convenience
the 4 x 4 unit matrix 14 is not explicitly indicated ( e.g., Pj =14 8xj = axj).

Apart from the X;’s, the remaining symmetry operators close a Lie algebra. h(3) =
(P;j,Gj,M ) is the three-dimensional Heisenberg Lie algebra with M as a central
element. We have the non-relativistic conformal algebra s((2,R) = ( H,D,K ) and
the spatial rotation s0(3) = ( Jj; ). Combining together these three Lie algebras we
get the Schrodinger algebra, whose structure is given by

(s1(2,R) @ 50(3)) 2 5(3),

with 3 a semidirect sum of Lie algebras. We thus see that the Schrodinger group is a
symmetry of LLE. This fact is already known in the literature. In [4] the Schrédinger
algebra is presented as the maximal Lie symmetry of LLE. If the symmetry oper-
ators X ; are included we are no longer able to close a Lie algebra. Their addition
leads to a Zy x Z, graded Lie algebra. Before addressing the Z; x Z, structure we
look at the LLE’s supersymmetry.

Proposition 2. The operators below are LLE symmetry operators satisfying the con-
dition (9):

1

Q: \/ﬁaal—’—V_lmB?
1 3

S = 7Tma(t8, +Xj(9xj + 5) + vV —im(tﬁ +xj")/j),
1

with only one non-vanishing I.;(x) matrix given by Iy = —a /+/—im.

The physical meaning of these symmetry operators becomes clear when computing
their anticommutators:

{0,0}=2H, {8,8} = 2K, {Xj, X} = 6uM,
{Q,S}ZD7 {Q,Xj}ZPj, {S,Xj}ZGj. (12)

It follows that Q, S are, respectively, a supercharge and a conformal supercharge,
with X; a fermionic counterpart of h(3). Indeed, the Schrodinger algebra of Propo-
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sition 1 and ( Q,S,X; ) close the .#" = 1 super Schrodinger algebra. This is verified
by direct computation of the (anti)commutation relations. The operator Q is already
found in [4] without recognizing it as a supercharge. One may also show (we omit
the proof for space reasons), that there exists no other supercharge Q satisfying

{Qaé} = 2H7 {Qaé} = 0? {éa Q} = Fa(x)ga

‘We thus have the theorem:

Theorem 1. The A = 1 super Schridinger algebra generates a symmetry super-
group of LLE and & = 1 is the maximal supersymmetry.

The supersymmetry of LLE was conjectured many years ago in the study of the
worldline supersymmetry of the spinning particle [5]. If the symmetry is defined
according to Definition 2, then the conjecture is true. We mention here two other
previous works on supersymmetry of LLE. In [6] it was shown that LLE coupled
with an arbitrary static magnetic field has a super Schrodinger symmetry. In [7] the
Dirac equation and the Deser-Jackiw-Templeton equation in a (2+ 1) dimensional
spacetime are unified in a single multiplet of osp(1/2). It is shown that the non-
relativistic limit of this system carries an .#” = 2 super Schrodinger symmetry.

3 The Z, x Z, graded symmetry of LLE

In this section we consider the symmetry of LLE with the X; operators. There
are two key observations: (i) the X ;’s are obtained from the commutators of the
fermionic generators X;, X; = %8jk,,[Xk,Xn]; (ii) each pair (Q,S),(P;,Gj) is a
s1(2,R)-doublet under the adjoint action. The observation (i) implies that we need
to give up the super Schrodinger structure, while (ii) implies that we may regard
(P;j,Gj) as fermionic since this treats all s/(2,R) doublets on equal footing [16].
Therefore we introduce, from the anticommutators, the new operators

Py ={P;,P}, Gj={Gj,G}, Wy ={P;,Gi},
Xh ={P. X}, X§={G; X} (14)

They are second order differential operators; it is easy to verify that they are sym-
metry operators of LLE. Surprisingly, these second-order operators, together with
the first-order operators in the super Schrodinger algebra, close a Z; x Z;, graded
Lie algebra ¥z, . 7,. This means their (anti)commutators never produce higher order
differential operators. The assignment of the grading is given by
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= <H D, K, J]/ﬂXJ?W]ka Jka ij>7

= <PjaG >

= (0,8, Xjt, X7 ),

:< j)- (15)

One may verify, by direct but cumbersome computation of the (anti)commutators,
that the algebra (15) satisfies Definition 1. We remark that the multiplication opera-
tor M has dropped out from this Z, x Z, graded Lie algebra.

Theorem 2. The 7, X Z, graded Lie algebra defined by the operators in (15) gen-
erates a symmetry group of LLE.

We have shown, in summary, that LLE has a .#" = 1 super Schrodinger symmetry
and a Z, X Z, graded symmetry given by (15). The super Schrodinger algebra is not
a subalgebra of the Z, x Z, graded algebra, although they share the same symmetry
operators. As a continuation of the present work, one may investigate symmetries
of LLE with a potential, since it is known that Schrodinger equation with linear or
quadratic potential has the same symmetry as the free equation [2, 11]. It is also an
interesting problem to study symmetries of a LLE for an arbitrary space dimension.
This would be done systematically by making use of the representation theory of
Clifford algebra. These works are in progress. Part of these results are reported
in [1].
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Investigating the effect of cognitive stress on
cardiorespiratory synchronization

Maia Angelova, Philip Holloway and Laurie Rauch

Abstract Synchrograms have been used to investigate the effects of cognitive stress,
induced by the Stroop test, on the phase synchronization of the cardiac and respira-
tory systems. The cardiorespiratory interactions have been investigated during a rest
and cognitive stressful task, namely the Stroop test, and found that cardiorespiratory
synchronization decreased during cognitive stress. Synchrogram techniques and the
Hilbert transform have been used to analyse phase syncronization. Our results sup-
port the hypothesis that respiration is key for improving the feedback between the
cardiac and respiratory systems.

1 Introduction

The cardiac and respiratory systems are known to be coupled by several mecha-
nisms [4]. The interaction between these two systems involves a large number of
feedback and feedforward mechanisms. In healthy subjects, the heart rate increases
during inspirations and decreases with expiration — a well known, and well stud-
ied phenomenon [1], known as respiratory sinus arrhythmia (RSA). Although this
arrhythmia is termed respiratory it is important to note that the variations in heart
rate are not directly caused by respiration itself. The modulation of the heart rate is
thought to be a result of several influences, most notably the results of a reflection
of the blood pressure waves via the baroreceptor feedback loop in the heart rate [7].
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Along with RSA, another phenomena rapidly gaining interest is that of cardiores-
piratory synchronizations. Earlier studies support its existence [2, 16,21, 28]. As
shown in [3] cardiorespiratory synchronization and RSA represent different aspects
of the interaction between the cardiac and respiratory systems.

Cognitive stress is known to affect the physiological functioning of the cardio-
vascular system suppressing heart rate variability (HRV) [6, 9, 27]. In physiology,
HRV is the variation in the time interval between heartbeats, measured by the vari-
ation in the beat-to-beat interval [10]. Raschke et al. suggested that synchronization
between the cardiac and respiratory systems would be at its strongest during states
of relaxation and stated that this coordination was easily disturbed under conditions
of stress or disease [19]. However, there is little knowledge on the effect of cogni-
tive stress on cardiorespiratory synchronizations. In this study, the participants were
asked to complete a Stroop test in order to impose stress and draw attention away
from consciously controlling one’s breathing and instead focus on completing the
task. The expectation is to see an increase in synchronizations during periods of
control — whether it be forced deep breathing or during unconscious control. In both
scenarios the cardiorespiratory systems are trying to maintain homeostasis.

The paper is organised as follows. Section 2 introduces the experimental data
and data collection methods. Section 3 considers the analysis techniques applied,
followed by the results in Section 4 and final conclusions in Section 5.

2 Data

The study was undertaken with 15 healthy participants, age 24 to 58. It investigated
the effect of cognitive stress with measurements before and during the Stroop test.
ECG and respiration signals were recorded from all participants during a period of
normal breathing where no restrictions or conditions were enforced and the subject
was instructed to breathe at a rate comfortable to them. After 5 minutes of resting,
the subjects were asked to complete a Stroop test. The scores from these Stroop
tests were recorded. ECG was measured via 3 electrodes — placed in Einthoven’s
triangle configuration — and was recorded at 1000Hz. The respiratory signal was
recorded via a force transducer fixed to a belt around the chest. Subjects were asked
to expel air from their lungs as the transducer was first fit, and then were instructed
to breathe normally. ECG and respiratory signals were recorded simultaneously for
ten minutes — five minutes prior to a Stroop test and five minutes during the test,
using AcqKnowledge software (version 2). The resultant time series were noisy and
strongly non-stationary.

The Stroop test [25] was used to investigate the participants psychological ca-
pacities. Essentially, participants are given the name of a colour, for example red,
which may or may not be written in the same colour ink. They are then asked to
state the colour of a word rather than read the word, for example, if the colour red
is written in blue ink the subject would be required to answer blue.
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3 Methods

Synchronization is a basic phenomenon in nature [13,20]. Through the detection
of synchronous states one may be able to achieve a better understanding of physio-
logical functioning. There are different types of synchronizations such as amplitude
synchronizations or frequency synchronizations. Pikovsky et al. suggested that the
properties associated with phase synchronization in chaotic oscillators are very sim-
ilar to noise in noisy oscillators [17], therefore analysis of phase synchronizations
would allow studying both chaotic and noisy signals, such as respiration or ECG,
under one common framework.

In the case of physiological signals, detecting phase-locking is not a simple task;
moreover, recording such signals via non-invasive means can result in synchronic-
ities being hidden by considerable background noise. Therefore, an adapted defini-
tion is used here to investigate phase-locking synchronizations:

Onm = [nPy — mP,|~=const, e

where the heart beats n times in m respiratory cycles, and 4 and r denote heart
and respiration phase respectively. In these cases, the m : n phase-locking manifests
itself as a variation of ¢, around a horizontal plateau [26]. The phase ¢(¢) can be
easily estimated from any mono-component time series, however, a problem arises if
the signal contains multiple component or time-varying spectra, thus making phase
estimation difficult.

To study the phase synchronization of the cardiorespiratory system, we use the
Hilbert transform (HT). It is far superior than Fourier-based methods, which are the
simplest and most popular methods of decomposing a signal into energy-frequency
distributions. However, these methods lose track of time-localised events and are
proven ineffective when analysing physiological systems with non-stationary pro-
cesses. The HT, y;, can be written for any function x; as follows:

yil) = Lp / ) )

T o L1

where P indicates the Cauchy principal value. Gabor et al. determined that an ana-
lytical function can be formed with the HT pair [8],

zi(t) = xi(t) +iyi(2) = Ai(t)ei¢i(t), 3)

with amplitude A;(¢) and instantaneous phase ¢;(¢),

Ait) = /X (O) + Y} (1), ¢i(t) = tan” (ﬁ 8) )

The instantaneous frequency can be written as the time derivative of the phase [11],

_dei(t)
="

. (&)
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One of the main advantages of the HT is that it can find the phase of a single
oscillation directly. In estimating the instantaneous phase, an assumption is made
that the system studied can be modelled as weakly-coupled oscillators. This im-
plies that the relative phase of the oscillators changes slowly with respect to their
motion around the limit cycle, resulting in a slow convergence to a steady state
phase-locking [18, 24]. We also assume that their interactions can be investigated
by analysing such phases [14]. We should note that the HT is not the only method
to estimate phase relationships; this can also be done by using wavelet transform or
marked events methods [5, 15,24].

In 1998, Schafer et al. developed the cardiorespiratory synchrogram in order to
analyse n : m synchronizations in the cardiorespiratory systems, in which the heart
beats n times in m respiratory cycles [22, 23]. The synchrogram analysis is very
effective to study phase synchronization between a point process (heartbeat) and
a continuous signal (respiration). The HT was used to calculate the instantaneous
phase of the respiration signal &, from (4). We then regarded the respiratory phase
at times f; — the r-peak of the k" heartbeat. The cardiorespiratory synchrogram can
be constructed by observing the phase of the respiration at each #;, and wrapping
the phase into a [0, 27tm] interval. In the simplest case of n : 1 synchronization, there
are n heartbeats in each respiratory cycle. Plotting these relative phases ¥, | as a
function of time against #;, we observe n horizontal lines (representing the number
of heartbeats) in one respiratory cycle. The relative phase is given by

1
'Ijn,m(tk) = 7=

o (D, (t; ) mod2mm]. (6)

4 Results

ECG and respiratory signals were recorded simultaneously for ten minutes, five
minutes prior to a Stroop test and five minutes during the test. Figure 1 illustrates the
results gained from such recordings for one participant. Initially, ( < 60 sec), there
is no synchronization as the participant is getting settled. From 60 sec to 300 sec
pronounced regions of 6:1 synchronization can be seen with total length of 160 sec.
During the Stroop test (+ >300 sec), virtually no areas of coordination are present,
which may explain the high number of Stroop mistakes (40) for this individual.
All participants (except one) displayed longer regions of synchronization during the
rest stage (r < 300 sec) with some regions lasting over 3 minutes. For the majority
of participants, most prominent synchronizations were 4:1 (average 95, stdev 48)
and 5:1 (average 99, stdev 72). 3:1 locking (average 75; stdev 15) was observed
for three individuals and 6:1 (average 100, stdev 60) for two. During the Stroop
test (f > 300 sec) synchronizations between the cardiorespiratory systems declined.
Seven participants displayed shorter areas of synchronization: 3:1 (average 68, stdev
40), 4:1 (average 54, stdev 30), two showed prolonged 5:1 locking (average 105,
stdev 15). Synchronizations were not observed for six individuals. The length of
the regions of synchronization in this stage was found to correlate with the subjects
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performance in the Stroop test, with stronger synchronizations seen in those who
performed better (R-sq =76%, p-value=0.00).

5 Conclusion

In this work we investigated the effect of cognitive stress induced via the Stroop
test on cardiorespiratory synchronization using synchrograms and HT. Our anal-
ysis showed that synchronizations exist during the resting stage to some extent
for each individual. Some individuals displayed considerably more synchronization
than others, possibly a result of a multitude of factors; from general health to better
command of their respiration and deep breathing. On the whole, synchronization
between the cardiorespiratory systems declined during the Stroop test. Therefore,
we conclude that cognitive stress causes a decrease or in some cases a loss of syn-
chronization of the cardiorespiratory systems. This, however, varied from individual
to individual with some participants still displaying prolonged periods of synchro-
nization during the Stroop test. The length of synchronization present was found
to correlate with the subjects performance in the Stroop test with stronger synchro-
nizations seen in those who made a small number of mistakes.
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Fig. 1: Cardiorespiratory synchrogram illustrating results for one participant. In the
rest stage pronounced regions of 6:1 locking can be seen for 60 < ¢ < 300 sec,
however in the latter half of the signal (the Stroop) all synchronizations have been
lost.
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The study confirmed that finding phase-locking regions with synchrograms and
HT is an effective way to investigate cardiorespiratory dynamics. Respiration has
been shown to be the driving force behind cardiorespiratory coupling [12]. Our re-
sults support the hypothesis that control over one’s respiration is essential for im-
proving the feedback between the cardiac and respiratory systems and possibly for
improving physiological function.
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Generalization of conserved charges for Toda
models

Rita C. Anjos

Abstract The soliton solutions to Toda models receive a zero curvature representa-
tion of their equations of motion, i.e. there exist potentials, (A ”), that are functionals
of the fields of the theory and which belong to a Kac-Moody algebra G such that
the zero curvature condition is equivalent to the equations of motion. For the con-
struction of the soliton solutions and conserved charges it is required an integer
gradation of the Kac-Moody algebra and a “vacuum solution”, such that the poten-
tials evaluated on it belong to an Abelian subalgebra. The conserved charges are
then constructed using the dressing method.

1 Introduction

Several methods have been used to calculate solutions of Toda models and hence
obtain the conserved charges [1-3]. The soliton solutions to the affine Toda equation
of motion using Hirota’s method can be derived by an ansatz. A large number of
authors have obtained soliton solutions using T-functions [4, 5].

The aim of this article is to give an explicit expression of conserved charges to
the affine Toda model s/(3) and s/(N) following the construction given in [6,7]. We
calculate the charges for Toda model s/(3) and generalized for Toda model s/(N)
for N-soliton [7].
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2 Dressing method

Dressing transformations are zero curvature symmetries, symmetries of non-linear
1+1 dimension differential equations. The zero curvature condition or Lax-Zakahov-
Shabat equation is given by

Fuv = 9uAv — dpAu + [Au,Av] =0, (1)

where Ay is a Lie algebra valued vector field. This equation constitutes the conser-
vation laws in 1 4 1 dimensions. Gradation of the algebra ensures that potentials can
de decomposed: . .

Y =00,% (91, %m) C Gpom- 2)

The equation (1) is invariant under gauge transformations generated by element of

group g:
Al — Ay =gAug ' —dugg ™", 3)

where g is an element of the Lie group associated with A,. The general idea of the
method is to consider the problem as a factorization problem. From equation

AL = = Woae Ve )

with
Yyac = o 67X7E71a (5)

we consider a constant group element 4, obtained by exponentiating the generators
of the s/(3) Kac-Moody algebra [8], which admit the Gauss decomposition

VeachWrae = G~ GoGy, (6)

where G_, Go and G are group elements obtained by exponentiating the generators
of the negative, zero and positive grades, respectively [6,7]. In addition, it introduces
the variables:

(= GoG- lI/vach = G+ Wyac )
VU =G-_WYach = G61G+ WYyace (8)
and the corresponding potentials
Ay = —ouwny;, ! ©)
Al = =iy (10)

The potentials Aﬁ and A, are connected by two gauge transformations, which con-
tain only elements with non-negative and non-positive grades that preserve the gra-
dation structure.
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2.1 Conserved charges for Toda model si(3)

The affine Toda theories are integrable relativistic models in two dimensions. The
models can be obtained by reduction from the Wess-Zumino-Novikov-Witten model
[4]. The Conformal affine Toda model is constructed by adding the two extras fields
in the Affine Toda models. The potentials for Toda model s/(3) are

Ay = 7%{1:11 (91792 4 22001 |y =02 ¢
+F (291702 4?0201 2o P17 P2) 4 (11)
+E (291792 4202701 4 o017 92)]
and

1 1 1 1
A== SR (0+7 ) +3F (@1 +792) +(301+ 302+ V+B)ICHNOI+E -y,
(12)
where Fy, Fi, E and C are generators of the s/(3) Kac-Moody algebra [8]. When
A are evaluated from vacuum solutions they become

A =—E; (13)
AY =FE; —d_p"C. (14)
with B¢ = —xx_. If the potentials are flat, we can write
AL = =0 Vae Vgt (15)
with
Yiae = €+ FlemEL (16)

The dressing transformation is done when we consider a constant 4 of the group,
written in terms of exponentiating the generators of the Kac-Moody algebra si(3)
and we write the Gauss decomposition (6). The potential Aﬁ defined in 9 becomes

Al = GA“G' - 9,G. G (17)
= Go(G-A“G~" - 9uG_G")Gy' — 9,GoGy . (18)

When we compare the grade zero component (A" = —d_ GoG,, ' 9_BC) with the
potential (12) with n = 0, we find Gg

Go = e3P+ 0)F +3 (P10 i +(3 014+ 5924V)C (19)

Using relations of the Kac-Moody algebra s/(3) and the highest weight states of
representations of the Kac-Moody algebra s/(3) that are annihilated by positive and
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negative grade generators operators, respectively G |4; >= |4; >, < ;|G- =< 4],
i=0,1,2, we find Hirota’s tau functions:

T = < 20| Veach Wi Ao >=< X0|Gy Ao >=¢ (20)
T = < 4| WachWgt| M >=< 4|Gy |4 >=e (@) (21)
T = < | WachWpt|lo >=< |Gyl >=e (@Y (22)

and expressions for the fields: @ = log%’, o = log% and v = B — logTy. The
variables 7y, 7| and 7, are called Hirota’s tau functions. Replacing the fields (¢1, ¢
and V) into equations of motion of the Toda model s/(3), what we get are Hirota’s

tau functions

1040 T — 0y Ti0_ T = Tj_ 1 Tiy1 — T2 (23)
withi=0,1,2, 71 = 7» e 73 = Tp. The group elements G are written as follows:
g+ +
=exp Z 51,32,+1E3n+1 +§2(,3;)1+2E3n+2)} (24
=1

(CEVEL +¢=YF2). (25)

s

8+ F = exp[

I
-

n

Rewriting the relations (17) as
g rALS y — Ougi rel = g EAY 8 —Oug kgl =a)  (26)

vac

g rALg Yy —dug re =g pAY e —Oug kgl =ay, (27)

which are used as definitions of the potentials a and a,,. The potentials A” are
written as
A} = Gy'A},Go— 9,G, ' Go, (28)

where we used G+ = g;}ng,E and the settings (24)-(25). Using the potentials ob-

tained by gauge transformations (AZ), vertex operators, and the discussion given
in [7], the infinite number of conserved charges for the Toda model is derived. The
conserved charges obtained for the 1-soliton are

3n+l )

A
o, =251 )

3n+2 )

(%3
Q) =+V3 ( ) : (30)

For 2-solitons the conserved charges have the form:

1—v
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3n+1

+(25) ()
) 14+v; 2 1+v,
“Q<3n+1)_j[\/g <1—V1> +<1—V2 GD
+(52) +(52)
) I+v; 2 14+vy 2
Qi) = V3 (1_V1> 1 G , (32)

where n =0, 1,2.. and v is the velocity of the soliton.

2.2 Conserved charges for Toda model si(N)

The potential for the Toda model s/(N) are

A, = —BA,B™! (33)

A_=—-0_BB '+A_, (34)
where B has the expression:

B = eXi=1 PalatvCinQ (35)

with Ay =Y e, Ao =Y _vifi, where ¢; and f; are generators of the Lie algebra
and v; is a vector in the algebra and v = —xx_. The field B has a vacuum solution
givenby ¢ =0and 1 =0 as

B(vuc) — g5 +x-C (36)

The vacuum potentials become
Al = _A 37
v = Ay (37
AL = g (e O C LA = —x . CHA. (38)
These potentials satisfy the condition of zero curvature and then we define the po-

tential Aﬁfac) :

AV = — 9 wowy! (39)

where wo = et e A~
From the decomposition of Gauss we have

G =wohwy ' = e“ M e A pet AT M = GGGy, (40)
which can be rewritten as

G =wohwy' =G_GoG =G _eVe? Gy 1)
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where we consider a decomposition of the generator of grade zero, Gy = 8(()1)8(()2) .
In this case Gy is the most general because it consists of a fragmentation between
O, and O_. The gauge potential transformed, (Aﬁ = GiA,Vf" 0. I au 0.0, l), with

-1
0, = sé])G+ and 0_ = 882) G~! has the same structure as the original potential.

With the states of highest weight representations of Kac-Moody algebra sI(N), ver-
tex operators and the discussion given in [7], we obtain the expressions for the con-
served charges. The general expression for charges of 1-soliton:

(")
o) = try (ti) (42)

where a = 1, ...,7 and r is the rank of the algebra, v is the velocity of the soliton and
Ky is a constant.

3 Conclusion

We emphasize the elegance and extent of the method to obtain conserved charges of
s1(3) and sI(N) Toda models evaluated on the solutions to the orbit of the vacuum.
The method is based in the representation of the equations of motion of the model
in terms of the zero curvature and properties of the dressing method. For all details
of calculations, see [7].

Acknowledgements The author would like to express her sincere thanks to Luis Agostinho
Ferreira and Carlos H. Coimbra-Aratjo.
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On supersymmetric eigenvectors of the 5D
discrete Fourier transform

M. K. Atakishiyeva and N. M. Atakishiyev

Abstract An explicit form of a discrete analogue of the quantum number operator,
constructed in terms of the lowering and raising difference operators that govern
eigenvectors of the 5D discrete (finite) Fourier transform @) has been explored.
This discrete number operator .4 (5) has distinct ei genvalues which are employed to
systematically classify eigenvectors of the @) thus avoiding the ambiguity caused
by the well-known degeneracy of the eigenvalues of the latter operator. In addition,
we show that the hidden symmetry of the discrete number operator .4 ) manifests
itself in the form of the unitary Lie superalgebra psi(5|5).

We begin by recalling first a few well-known facts about the discrete Fourier
transform (DFT). The discrete Fourier transform &) is based on N points and
represented by the N X N unitary symmetric matrix with elements

1 2mi 1
o) = — = = —— g™ 1
m,n \/N exp N mn \/N q ’ ( )
where g := e and m,n € {0,1,...,N—1}. Given a vector v with components

{ vk}ﬁ;o], one can compute another vector u with components

N—1 ™)
Unm = Z (pm,n Vn,
n=0
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referred to as the discrete (finite) Fourier transform of the vector v. Those vectors
f;,, which are solutions of the standard equations

o) (fk)n = M (fk>m, ke{0,1,...,N—~1}, @)

then represent eigenvectors of the DFT operator @ V), associated with the eigen-

values A. Since the fourth power of @) is the unit matrix, the only four distinct
eigenvalues among A;’s are the same as in the continuous case + 1 and =+1.

Although there exists a plethora of discussion in the literature on eigenvectors
of the DFT (see, for example [1]- [9] and the relevant references quoted there), the
problem of deriving eigenvectors of DFT analytically still remains to be solved.
Recently, we proposed in [10] a strategy for resolving this problem by constructing
a self-adjoint difference operator N N (with distinct nonnegative eigenvalues) in
terms of the lowering and raising difference operators by and b,Tv, which are defined
by the intertwining relations

by @™ =ie™py, bl dMN = _ieMpl. A3)

The ability to solve a difference equation for eigenvectors of this discrete number
operator .4 (V) which commutes with the DFT operator @V then enables one to
define an analytical form of the desired set of eigenvectors for the latter operator.
This presentation contains a refined account of the particular dimension N =5 for
the general discrete Fourier transform @™) which includes new results not found
in our earlier paper [11]. We hope that this study will deepen our understanding of
the case with an arbitrary N-dimensional discrete Fourier transform and help us to
provide some rigorous proofs, still needed for the generic dimensions N > 5.

The 5D lowering bs and raising bg difference operators for eigenvectors of the

DFT operator ®%) satisfy intertwining relations (2) with N = 5 and are explicitly
given as

bs =[S+ 3 (T 1) B =c[s— 2 (10 -10)], @)

where ¢ = \/% , the operator S represents the diagonal matrix with elements Sy, :=
sin(k@) 8y, 0 :=2x/5,0 < k,I < 4 and a pair of the shift operators T are defined
as Tk(li) = Oty With &6_; = 64’1 and 6531 = 5071.

Let us draw attention here to the intertwining relations (2) with N = 5, which
evidently imply that if a vector fy is the eigenvector of the DFT operator &), as-
sociated with the eigenvalue iX, 0 < k < 3, then the vectors bg f, and bsf; are also
the eigenvectors of the same operator ®(%), associated with the eigenvalues i**! and
i*~1, respectively.

It proves convenient to parametrize the operators bs and bg in terms of the golden
ratio 7:= (v/5+1)/2 = —2c0s26 and its conjugate T~ := (v/5—1)/2 =2co0s 0 =
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T—1

0 1 0 0 -1
ot kT2 1 0 0

(b5> =50 -1 k2 o |, (5)
e 0 0 -1 —xt /2 1
1 0 0 -1 —xrl/?
0 -1 0 0 1
1 kT2 1 0 0

(bg) —Slo 1 w2 o |, 6)
mt 200 1 —xt 12—
-1 0 0 1 —xrl/?

where Kk := (5)/4

by the identities

<b5)5+5(§)4rb5:0, <b§)5+5(%)4rbT:0. %)

. The ‘cyclic’ properties of the operators bs and bg are revealed

The matrix elements of the discrete number operator .4 () .= b§b5 are defined
as

2 —xtl/2 1 -1 —xt'/?
5 | =%t 441 ko2 —1

(JV(S)) e I T 5 VT T IR :)
mm 4 —1 —1 2kt V2 57 1732
—xtl/2 1 -1 k3?2 4471

As a product of a matrix and its transpose, the defining matrix in (4) is symmetric
and all of its eigenvalues are nonnegative. Moreover, since the determinant of the
matrix (4) is equal to zero, at least one of the eigenvalues should have zero value
as well; but this lowest eigenvalue turns out to be unique and all eigenvalues of the
matrix (4) are actually distinct. The explicit analytical form of the spectrum of the
discrete number operator .4 (5) can be represented as

Ak:02[5(1—5k0)+4((r—l)sink9+cosk6>sin2k9}7 0<k<4. (9)

Orthonormal eigenvectors f; of the number operator . (5), associated with these
eigenvalues Ay, have the following components:

2

(fo)zzo = 4\/12714 {2T+ K’Cl/z, l—i—K‘fc*l/z, 1,1, 1_,'_,(.,1:71/2}7

(f1>2:0 = :\/E{O, K+ 11/27 1—1/27 71.—1/2’ _ Kfq:l/z},

f, vt 2(1-7),1,1,1,1},
() { }

=0 2K
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(f3)2:0 = Z\/)Z{Q A eV VN 71/2}7

2
()= v

where /11 and 11 in the last line mean that the last two components of f4 coincide
with the third and second components, respectively.

Recall that the existence of an explicit solution of the spectrum problem for all
known exactly solvable models in quantum mechanics always indicates that there
is some type of underlying hidden symmetry of the Hamiltonian, associated with
each particular case [12, 13]. Since the discrete number operator .4 ) and its 5D
eigenvectors f,, can be considered as a discrete exactly solvable model version of
the linear harmonic oscillator in quantum mechanics, some hidden symmetry of
the .# (®) must exist in this case as well. It turns out that this hidden symmetry of
the discrete number operator .4 () manifests itself in the form of the unitary Lie
superalgebra ps/(5]5). This can be established in the following way.

The supersymmetric partner %(5) =bb" of the 5D discrete number operator

N 5) obtained by reversing the order of b and b' in the definition of 4 ), is
represented by a matrix

{2, —(r+2m‘/2) okt 4302, 111, 11}, (10)

2 xT!/2 -1 -1 xtl/?

2 kT2 441 —xr2 0 - —1

7| —kt 3?2 5—1t 2kt V2 . (11)
-1 -1 2%t '?2 51t k32
ktl/2 1 -1 —k13? 4471

Let C3 denote a 5-dimensional complex vector space, spanned by the eigenvectors
of the .#' ). Then the 10D supersymmetric (SUSY) difference operator .4 19,
which is built over two operators .4 (5) and %(5)’ and acts on 10-dimensional com-
plex vector superspace C> @ C, can be written as a block matrix

A0
N (10) . > |, 12
0s %(5) (12)

where Os represents 5 X 5 zero matrix. The next natural step is to construct 10D
discrete analogs of the SUSY generators (in supersymmetric theories they are called
SUSY charges) of the form

(lO)_L + _L Ost
2 _ﬁ(b2+b2+)_ﬁ<b05 :

(o) _ 1 i ) L (05 —ibT
210 = 2(bz_ b2+)—ﬁ<ib 0 ) (13)
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where 10 x 10 matrices X are defined as X = O Is and X_ = 05 05 ,
0s Os I5 Os
whereas /5 represents a 5 x 5 identity matrix. Then it is not hard to check that both of

the SUSY generators Qilo) and o@élo) do commute with the SUSY discrete number
operator (7), and they anti-commute among themselves:

{2, 2} = 29 210+ 210 917 — . (14)
Finally, it turns out that
10)* _ (900} _ L a0
(919 = (&40 = v

and, consequently,
2 2
10— (2('9)+ (20), (16)

which parallels one of the central features of globally SUSY theories: the hamilto-
nian is the sum of the squares of the supersymmetric charges. Thus, the three SUSY
operators .4 (10 32510) and e@élo) form an algebra, which closes under a combina-
tion of commutation and anti-commutation relations.

Perhaps it is worthwhile to recall at this point a few well-known facts about ma-
trix realizations of the classical Lie superalgebras [14]- [16]. The Lie superalgebra
I(m,n) is spanned by matrices of the form

A B
M:(CD)7 a7y

where A and D are gl(m) and gl(n) matrices, B and C are m x n and n x m rectangular
matrices. The supertrace function, denoted by str, is defined on I(m,n) as

str(M) =tr(A) —tr(D). (18)

The unitary superalgebra sl(m|n) is then defined as the superalgebra of matrices
M € [(m,n) satisfying the supertrace condition s¢r(M) = 0. In the case of m = n,
sl(n|n) contains a one-dimensional ideal .# generated by the identity operator I,
and one sets sl(n|n)/.% = psl(n|n).

It remains only to add that our case corresponds to m = n =5 in (17) and all three
matrices .4 (10, 2119 and 2% do satisfy the supertrace condition str(JV “0)) =

0 (notice in particular that from (4) and (11) it is evident that the operators .4 (3)

and </VS(5) have identical traces). Therefore the three SUSY operators .4 (19), Qilo)

and Qélo} are embedded in a matrix realization of the unitary Lie superalgebra (or
Zy-graded Lie algebra) psl(5]5).

It may be emphasized that this method of deriving an explicit form of the under-
lying supersymmetry can be readily extended to the generic dimensions N > 5.
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To summarize, we have discussed in detail an explicit form of a difference ana-
logue of the quantum number operator in terms of the raising and lowering operators
that govern eigenvectors of the 5D discrete (finite) Fourier transform. The main al-
gebraic properties of this operator have been examined. In particular, we have shown
that the hidden symmetry of the 5D discrete number operator manifests itself in the
form of the unitary Lie superalgebra psi(5|5).

We are grateful to Naruhiko Aizawa, Vladimir Matveev and Joris Van der Jeugt
for illuminating discussions and thank Fernando Gonzalez for the computation of
the eigenvalues (5) and eigenvectors (4) with the aid of Mathematica. The parti-
cipation of MKA in this work has been partially supported by the SEP-CONACyT
project 168104 “Operadores integrales y pseudodiferenciales en problemas de fisica
matemdtica”. NMA has been partially supported by the PAPIIT project IN-101115
“Optica Matemética”.
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Remarks on Berezin quantization on the
Siegel-Jacobi ball

Stefan Berceanu

Abstract Using recent results on Berezin quantization of homogeneous Kihler
manifolds, we emphasize some geometric aspects of Berezin quantization of the
Siegel-Jacobi ball.

1 Introduction

The Jacobi group is defined as G/, = H,, x Sp(n, R)c, where H,, denotes the (2n+1)-
dimensional Heisenberg group [5, 6,32]. The Jacobi group is an interesting object
in mathematics [16,22] and has many important applications in several branches of
physics, see references in [8, 10].

The Siegel-Jacobi ball, denoted @,{ [5], is the homogeneous manifold associated
with the Jacobi group G2, whose points are in C" x &, where %, denotes the Siegel
ball Sp(n,R)c/ U(n). The homogenous metric on the partially bounded domain
[3,5,6] was studied [8] as a balanced metric [1,21]. Recently there have been results
obtained on Berezin quantization [13—15] on homogenous bounded domains [26]
and homogeneous Kéhler manifolds [27]. Using these results, we shall emphasize
several geometric aspects of Berezin quantization on the Siegel-Jacobi ball. More
details are given in [8,9].

The paper is organized as follows. Section 3 sumarizes the notion of balanced
metric in the context of Berezin quantization via coherent states. Section 3 contains
a description of the balanced metric on the Siegel-Jacobi ball. The new results of
this paper are contained in Remark 2 and Proposition 1 of Section 4.
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2 Coherent states, Berezin quantization, and balanced metric

Let wys be a G-invariant Kéhler two-form

om(2) =i ), hyp(2)dza AdZg, hys =hpa =l (1
o,f=1

on the 2n-dimensional homogeneous manifold M = G/H, derived from the Kihler
2
potential f(z,2), i.e., haB = %
The homogeneous hermitian metric on the Siegel-Jacobi ball determined in [4-7]
is in fact a balanced metric, because it corresponds to the Kéhler potential calculated
as the scalar product of two coherent states (CS) vectors ez € §), z € M in the Hillbert

space §) of the representation of G [30],
f(Z,Z) = anM(Z7Z)a KM(Z7?) = (65,6‘2). (2)

We consider Berezin’s approach to quantization on Kéhler manifolds with the su-
percomplete set of vectors verifying the Parceval overcompletness identity [13—15]:

(llflall’z)f%,(:/(W17ez)(eZaW2)dVM(Z7Z)7 VI, ¥ €9, 3)
M
Q 7 1
de(z,Z)ZM; Qy:=— oyN...\Noy. 4)
(ez,ez) n! ————
n times

On the other side, it is introduced a weighted Hilbert space $); of square inte-
grable holomorphic functions on M, with weight e/ [23]:

Hr= {q) € hol(M)\/Me’f|¢|2.QM < oo}. 6))

In order to identify the Hilbert space $); defined by (5) with the Hilbert space
F with the scalar product (3), it is considered the e-function [17,18,31]:

e(z) = e "D Ky (z,2). (6)

If the Kéhler metric on the complex manifold M is obtained from the Kéhler poten-
tial via (1) and (2) is such that £(z) is a positive constant, then the metric is called
balanced [1,21,26].

Berezin’s quantization via coherent states was globalized and extended to non-
homogeneous manifolds [31] in the context of geometric quantization [25]. To the
Kihler manifold (M, ), it is also attached the triple o = (.Z,h,V), where .Z is a
holomorphic (pre-quantum) line bundle on M, # is the hermitian metric on . and V
is a connection compatible with metric and the Kéhler structure [12]. The manifold
is called quantizable if the curvature of the connection [20] F(X,Y) = VxVy —
VyVx — Vix y) has the property that F = —i . Then @y is integral, i.e., ¢ [£] =
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[@u]. The reproducing (weighted Bergman) kernel admits the series expansion

Ku(z,w) = (ez,65) = Y ¢i(2) @i(w).- @)
i=0
P = (@o,®i,...,) is an orthonormal base with respect to the scalar product (3).

We denote the normalized Bergman kernel of M (see also [2,12]) by

KM<Z7Z/)

VEu()Ku(@)

The set X, := {z' € M|xu(z,7) = 0} was called polar divisor relative to z € M
[2, 12], while a manifold for which X, = 0,Vz € M was called in [7] a Lu Qi-Keng
manifold, extending to manifolds a denomination introduced for bounded domains
in C" [28]. Note that for a particular class of compact homogeneous manifolds that
includes the hermitian symmetric spaces, X, is equal to the cut locus relative to
z € M (see the definition of the cut locus, e.g., at p. 100 in [24]), and X, is a divisor
in the sense of algebraic geometry [2, 12].

®)

ku(z,7) =

3 Balanced metric on the Siegel-Jacobi ball

The Jacobi algebra is the the semi-direct sum g/ := b, x sp(n,R)c, where the
Heisenberg algebra h, is generated by the boson creation (respectively, annihila-
tion) operators a:f (@), i=1,...,n, and the generators of the sp(R)c-algebra are

K§’0 [3,5,6]. Perelomov’s CS vectors [30], associated to the group Gﬁ with the Ja-

cobi algebra g/, and based on the complex Siegel-Jacobi ball Z;, have been defined
as [5,6],

n n
ezw =exp(X)eo, X := /U Y zia] + Y wiiK};, € CHW € 9. 9)
i=1 ij=1
The Siegel ball admits a matrix realization as a bounded homogeneous domain:

D ={W eMn,C):W=W'N>0,N:=kK,—WW}. (10)

If u € R} indexes the Heisenberg group and k /4 is an eigenvalue of K,-Oj, then the
reproducing kernel K(z,W) = (e;w,e,w), z€ C', W € @, is [5,6]:

K(z,W) = det(M) % expuF, M= (¥p—WW)", (11a)
2F =27 Mz+7WMz+7 MWZ, (11b)
2F =20'n —n'Wn —-n'W1q, (11c)

n=M@z+Wz3); z=n—-Wi. (11d)
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_(ra
g<qp>, (12)

and a € C", then the action (g, &) x (W,z) = (Wi,z1) of the Jacobi group G2, on the
Siegel-Jacobi ball 2/ is given by the formulae [5]:

If g € Sp(n,R)¢ has the form

Wi =(pW+q)(@W +p)~' = Wq"+p*) (¢ +Wp"), (13a)
a=Wg +p) ' zta-Wa). (13b)

We use the following notation for the matrix of the hermitian metric on 2:
hl'T h,ﬁq‘ PR
h={(," eM(n(n+3)/2,C), i,j=1,....n; 1 <p<qu<v<n. (14)
hpgi Mpgio
In [8] we have proved

Theorem 1. The Kdhler two-form 0gy, associated with the balanced metric of the
Siegel-Jacobi ball Z;, G!-invariant to the action (13), has the expression

—i0y (2, W) =ETe(BAB)+uTr(' MA ), of =dz+dWA,

o (15)
B=MdIW, M =¥, —WW) .
The matrix (14) of the hermitian metric on @,{ has the matrix elements (16):
hiy = Py, (162)
- - 1
hipg = u(oniP+aniq)qua Spg i =1— Equ; (16b)
hpgi = W (MgMpi + NpMgi) fpq» (16¢)
k
pgni = 5 Hpgn + Whipgnns (16d)
i = 2MnpMygdpg + 2MiygMipdn + My, 8pg O, dpg :=1—8,q:  (16€)
hgqrhﬁ = [ﬁp(nanm + anqn) + ﬁq(nnMpm + anpn)]qufmn- (16f)

The determinant of the metric matrix h is

k n(n+1) -
Vg (2. W) i= dethgy (. W) = (3) T det(E, —WW) "0 (17)

Remark 1. If €(z) is constant on M, then the balanced Hermitian metric on M is the
pullback

dsjy(2) = 1y dsis(z) = dspg(m(z)) (18)

of the Fubini-Study metric via the embedding

M= CP”, y(z) =[eo(z): @i(2) :...]. (19)



Berezin quantization on the Siegel-Jacobi ball 109

4 Quantization of the Siegel-Jacobi ball

Recently, some remarkable results [26,27] about Berezin quantization, reproduced
below, have been proved . We shall use these results in order to characterize Berezin
quantization on the Siegel-Jacobi ball.

Theorem 2. Let (M, ®) be a simply-connected homogeneous Kdiihler manifold such
that the associated Kdhler form w is integral. Then there exists a constant iy > 0
such that M equipped with Ly is projectively induced.

Theorem 3. Let (M, ®) be a homogeneous Kéihler manifold. Then the following are
equivalent:

a) M is contractible.

b) (M, ) admits a global Kiihler potential.

¢) (M, ) admits a global diastasis Dy : M x M — R.

d) (M, ®) admits a Berezin quantization.

As a consequence of Theorem 2, the following can be proven.

Remark 2. Let M = G/H be a simply-connected homogeneous Kéhler manifold.
Then the following assertions are equivalent:

A) M is a quantizable Kéhler manifold.

B) M admits a balanced metric.

C) M is a CS-type manifold and G is a CS-type group.

D) M is projectively induced and we have (18), (19).

The notion of diastasis was introduced in [19]. The notion of CS-group is explained
in [29].

Putting together Theorems 1, 2, 3, Remark 2, and Proposition 4 in [8], it follows
in the particular case of the Jacobi group:

Proposition 1. i) The Jacobi group G, is an unimodular, non-reductive, algebraic
group of Harish-Chandra type.

ii) The Siegel-Jacobi domain 7. is a homogeneous reductive, non-symmetric mani-
fold associated to the Jacobi group G, by the generalized Harish-Chandra embed-
ding.

iii) The homogeneous Kdhler manifold 9! is contractible.

iv) The Kdhler potential of the Siegel-Jacobi ball is global. 7. is a Lu Qi-Keng
manifold, with nowhere vanishing diastasis.

v) The manifold 9] is a quantizable Kéhler manifold.

vi) The manifold 9! is projectively induced, and the Jacobi group G, is a CS-type
group.

vii) The Siegel-Jacobi ball 7] is not an Einstein manifold with respect to the bal-
anced metric attached to the Kdhler two-form (15), but it is one with respect to the
Bergman metric corresponding to the Bergman Kiihler two-form i90In %@’{.

ix) The scalar curvature is constant and negative.

The Harish-Chandra embedding of the Siegel-Jacobi ball is explained in [11].
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The good, the bad and the ugly coherent states
through polynomial Heisenberg algebras

Miguel Castillo-Celeita and David J. Ferndndez C.

Abstract Second degree polynomial Heisenberg algebras are realized through the
harmonic oscillator Hamiltonian, together with two deformed ladder operators cho-
sen as the third powers of the standard annihilation and creation operators. The cor-
responding solutions to the Painlevé IV equation are easily found. Moreover, three
different sets of eigenstates of the deformed annihilation operator are constructed,
called the good, the bad and the ugly coherent states. Some physical properties of
such states will be studied as well.

1 Introduction

Polynomial Heisenberg algebras (PHA) of second degree are interesting deforma-
tions of the Heisenberg-Weyl algebra. In a differential representation they can be
realized by one-dimensional Schrédinger Hamiltonians, together with a pair of third
order ladder operators. In fact, when looking for the most general Hamiltonian ruled
by such an algebraic structure, it turns out that the potential depends on solutions to
a non-linear second-order ordinary differential equation called Painlevé IV (PIV).
Reciprocally, if one has Hamiltonians with third-order differential ladder operators,
then it is possible to design a simple algorithm for generating solutions to such an
equation, by identifying just the associated extremal states [1,2].

On the other hand, it is important to look for the simplest systems ruled by second
degree PHA, such that the corresponding extremal states satisfy the boundary con-
ditions for being eigenfunctions of the Hamiltonian [3, 4]. This is the main subject
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to be addressed in this work. Indeed, it will be shown that the harmonic oscillator
Hamiltonian, together with deformed ladder operators which are the third powers of
the standard annihilation and creation operators, will define a second degree PHA
with such properties (Section 3). The three solutions of the PIV equation associated
to this deformed algebra will be derived in the same section. The corresponding
coherent states (CS) as well as their properties, will be studied in Section 3, while
Section 4 will contain our conclusions.

2 Second degree PHA for the harmonic oscillator

There are several ways to realize the second degree PHA through the harmonic os-
cillator. Here, we look for realizations such that the three extremal states are eigen-
functions of H and, thus, we can generate from them three infinite ladders of eigen-
functions and eigenvalues [3]. Let us consider then the deformed ladder operators,

ag=a, a;,' =(a™). (1)

The operator set {H, a, a;} gives place to a second degree PHA, since

[Haag]:_3ag? [H7a;]:3ag+a [ag’a;]:N(H+3)_N(H)7 (2)

where the analogue of the number operator reads:
N(H) =afa;=(H—73) (H=3) (H=3). @)

Three extremal state energies are identified, & = E; | = j— %, j=1,2,3, with
eigenvectors given by

lwe)=lw) =1i—1), j=123 “)

where |j— 1), j=1,2,3 are the first three energy eigenstates of the harmonic oscil-
lator in Fock notation. Departing from them, by acting a; iteratively, we can con-
struct three independent ladders of energy eigenstates. The eigenvalues associated
to the j-th ladder are &/ = &5+ 3n, n=0,1,..., j=1,2,3, and the corresponding
eigenstates become

i) = Bn+j—1) = /gl (@) - 1), j=1,2,3. ®)

The spectrum of H thus takes the form
Sp(H) = {&). &), Y UL, 62, Y U{63.67... ), ©)

which is the harmonic oscillator spectrum seen from a new viewpoint: the Hilbert
space is the direct sum of three orthogonal supplementary subspaces,
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H = Iy D ] D 6, each of them containing one ladder, which is represented
in Figure 1.

Fig. 1 The three independent
ladders (with spacing AE = 3)
for the second degree PHA of
Eq. (2). They produce glob-
ally the harmonic oscillator
spectrum with the standard
spacing AE = 1.

NW Nt o=

N =

Since {H ,ag,a;} generate a second degree PHA, there is a link with the PIV
equation [1,2]:

d’g 1 (dg\* 3 , 5 5 b
2e_ (28 S 2% — Z 7
D7 2 (dy + 28 T AveT 20y a)g+g, (7

which allows us to find some of its solutions. We just need to supply the three
extremal states and their associated energies, in our case Y, (x) = (x[j — 1), & =
j—1/2, j=1,2,3. The PIV solution and its parameters turn out to be given by

d ~ ~ - - -
g0) ==y g mai0)), a=&+&26 -1, b=-2(4-&), ®

where ¢ (y) is the first extremal state for the previous ordering (the ground state),
and y = v/3x, éNZ‘, = &;/3, j=1,2,3 are the changes required to fit the spacing of
levels of our system (AE = 3) with the standard spacing (AE = 1) used in [1, 2].
Since the first label can be asigned to any extremal state, we can find indeed three
PIV solutions, whose explicit expressions and corresponding parameters become

g(y):_zy/37 a:07 b:—2/9, (9)
g(y):_zy/3_l/y7 a:_lv b:_8/97 (10)
g0) =-2y/3-4y/(2y*=3), a=-2, b=-2/9. (11)
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3 Coherent states

Let us consider now the CS as eigenstates of the deformed annihilation operator:

ag|a>j:a|a>j7 J=0,1,2, (12)
with |&) j = ¥ G,|3n+ j). Following a standard procedure, we arrive at

n=0

- 1 v a .
|a>J \/“’ o2 ngo \/(3n+]),|3n+.]> (13)

g (Bn+))!
Several important quantities for the CS |a) ; can be obtained straightforwardly:

(x);=1(p);=0, 2);=(p?;=(4x);(Ap);=(H);=lala);[*+5, (14)

where
1 0 ‘a‘2n+2 3
e g
r)::() ‘(O;‘rz)! o Gnt2)!
- .
lalot) ;> =4 T |a\2r'n§ G fori=l, .

(Ax)(Ap)

Fig. 2: Uncertainty products (Ax);(Ap);; the minima are %, % and % for j=0,1,2,
respectively.
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It is important to explore the completeness relation in each subspace ¢
[l j{aldp;(a) =1, j=0,1,2,

where /; is the identity operator on .¢; and

had 2r
duj(@) = 771 (20(3|a+1)) fillaP)d|alde.

r=|

115

(16)

7)

If fj(x) satisfies [;"x"~! fj(x)dx = I'(3n+ j+ 1), thus any state vector can be de-

composed in terms of our CS.

Finally, the time evolution of a coherent state is quite simple, U(r)|a); =

e (1)), a(r) = e .

Time
Time

Position

Fig. 3 Probability densities
(in position and time axis)
for the good, the bad and the
ugly CS (left, right, down
respectively).

Time

Position
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Let us consider next the non-normalized coherent states:

= =Y 3 —2. a8

The first state in Eq. (18) is a standard CS while the second one stands for the good,
the bad and the ugly CS, also named three-photon CS [5]. Equation (16) ensures
that |z¢?"//3) can be written in terms of |z);, j = 0,1,2 [3]. Reciprocally, we can
express |z) j in terms of |ze?™//3) j=0,1,2:

200 =No (12) +1e2*/%2) + 1e7/%2) ) 19
‘Z>] =N, (|Z> _einf/3‘ei27r/3z> _|_ei27r/3|ei4ﬂ:/3z>) ’ (20)
‘Z>2 -N, (|Z> +ei27r/3|ei27r/3z> +ei4n/3‘ei4ﬂ/3z>) , (21)

i.e., the good, the bad and the ugly CS are superpositions of standard CS with com-
plex labels ze'2%i/3 defining an equilateral triangle on the complex plane. Expres-
sions (19-21) are used to build the wave packets associated to |z(¢));, j=0,1,2,
whose probability densities as functions of x and ¢ are shown in Figure 3 [3].

As we can see, the probability densities are periodic in time, with a period (277/3)
equal to one third of the period for a classical motion for the oscillator. This implies
that the good, the bad and the ugly CS cannot describe semi-classical situations, i.e.,
they are intrinsically quantum states. It is worth noticing the existence of some other
states which are strongly quantum, e.g., the even and odd CS [4-7].

4 Conclusions

We have explored a realization of the second degree PHA in which the generators
are the harmonic oscillator Hamiltonian and the ladder operators a, = a, : =
(a*)3. The three associated extremal states become physical eigenstates of H, and
the ladders generated from them are of infinite length. In addition, these extremal
states supply some solutions to the PIV equation. The search of the eigenstates of
ag leads to three different sets, which here have been called the good, the bad and
the ugly CS. Their period turns out to be a fraction (1/3) of the original period (27)
for the oscillator, indicating the strong quantum nature of such states. They could
be important to describe the kind of interaction matter-radiation appearing in the
so-called multiphoton quantum optics [8].
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Generation and dynamics of crystallised-type
states of light within the Tavis-Cummings model

O. Castaiios, S. Cordero, E. Nahmad-Achar, and R. Lépez-Pefia

Abstract A generation of superpositions of photon number operator states within
the generalized Tavis-Cummings model (GTC) is proposed, which is independent
of the dipolar strengths and of the considered number of atoms. These are obtained
by considering a linear combination of states, with total number of excitations M;
and M,, whose corresponding Husimi function for the electromagnetic field ex-
hibits a cyclic point group symmetry C,, with n = |M, — M|, that is, describes a
crystallised-type state. Finally we establish that these superpositions under evolu-
tion with respect to the GTC Hamiltonian yields a Husimi function that preserves
the cyclic point group symmetry.

1 Introduction

We know that spontaneous emission must occur if matter and radiation are to
achieve thermal equilibrium. However, if the atoms are placed between mirrors in a
cavity, the spontaneous emission can be controlled and manipulated. QED in cavi-
ties explores the measurement and control of atoms interacting with quantised radi-
ation. The Dicke model studies a system of N, non-interacting two-level atoms or
molecules confined in a small container compared with the radiation wavelength. A
dipolar interaction between the electromagnetic field and two-level atoms is consid-
ered in this model [1]. The N, = 1 case, called the Jaynes-Cummings model (JCM)
is exactly soluble with and without the rotating wave approximation (RWA) [2, 3].
The case of N, two-level atoms or molecules in the RWA, the Tavis-Cummings
model (TCM), has been also solved analytically under resonant conditions [4].
Schrodinger cat states [5, 6], even and odd coherent states [7], and squeezed
states [8—11] describe non-classical states of light because they have different sta-

O. Castaiios et al.
Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México,
Apartado Postal 70-543, 04510 Mexico City, Mexico, e-mail: ocasta@nucleares.unam.mx

© Springer International Publishing AG 2017 119
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries,
https://doi.org/10.1007/978-3-319-69164-0_17


mailto:ocasta@nucleares.unam.mx

120 O. Castafios, S. Cordero, E. Nahmad-Achar, and R. Lopez-Pena

tistical properties than the coherent states, which are usually called classical states
of light [12—14]. More recently, the statistical properties of macroscopic superposi-
tions of coherent states that carry irreducible representations of a finite group have
been studied, together with their dynamic behaviour under evolution with respect
to quadratic Hamiltonians in the quadratures of the electromagnetic field; these are
called crystallised Schrédinger cats [15, 16]. The proposals to generate this type of
states can be grouped as follows: (i) non-linear processes [6, 17], (ii) non-demolition
measurements [18, 19], and (iii) field-atom interactions [20-22].

In this contribution we propose generating superpositions of photon-number-
operator states within the GTC model for any number of particles and values of
the matter-field coupling constants. Section 2 the GTC model is introduced together
with the discussion of the one particle case, which can be solved analytically. In Sec-
tion 3 we study the evolution of initial states with a definite value of the total number
of excitations M and that of a superposition of states with M; and M, values. We
determine the matter-field entanglement properties, and show that the Husimi func-
tion for the electromagnetic field exhibits a cyclic point group symmetry C,, with
n = |Mp — M |. The conclusions of this work are presented in Section 4.

2 The generalized Tavis-Cummings model

The TCM model describes many two-level atoms or molecules interacting dipo-
larly with a one-mode electromagnetic field in the RWA which can be solved ex-
actly under resonant conditions [4]. In this work, models describing many-level
atoms or molecules interacting with a one-mode radiation field are called gener-
alised Tavis-Cummings models (GTC) [23]. The Hamiltonian for the 3-level case
takes the form [23,24]

3
Hgre =hQa'a+n ) 0jAj;— \ﬁ Z wila® A +ady), 1)
j=1 aj<j=2

with the convention @; < @, < @3. Aj; denotes the number operator of particles
in level j, and Q the frequency of the creation and annihilation photon operators
(a’,a). The raising and lowering operators of the unitary algebra in 3 dimensions
can be realised in terms of bosonic operators A j; = b; by and uy is the matter-field
coupling parameter between levels @; and . It is straightforward to check that the
operator of the total number of excitations

My =a'a+M Ap+2; Az 2

is a constant of motion. The parameter X indicates the atomic configuration: =, V,
and A, each with (A2,43) = {(1,2),(1,1),(0,1)}, respectively.

Basis states are constructed in terms of the tensorial product of a Fock state |v),
associated to the number of photons, and the totally symmetric Gelfand-Tsetlin state
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of N, particles |[N,gr), i.e

1
Vot

where the state with all the atoms in their lowest energy level is determined by the
expression A jk|Na,Na7Na> =0, for all k > 1. Here, r denotes the eigenvalue of A1y,
i.e., the population of the lowest level w;, and ¢ denotes the sum of populations
of the two lowest levels. In this basis state, one constructs the Hamiltonian matrix
whose dimension d depends only on the number of particles d = (N, +1)(N,+2)/2,
when M > A3 N, [25].

AV AL INGNG NG, ()

5 aqr>:|v>®

One particle case. For N, = 1 one has a 3 x 3 Hamiltonian matrix for each value
of the total number of excitations. The energy spectrum is then an infinite ladder of
3-level steps, each step determined by E; = My + Ax /2 + 8x and Ey = My, with

E =/ (Ax/ 2)2 —l—.Q)%. Here Ax denotes a detuning value A;;, depending on the

configuration and levels in question:

Eimm =Q+ A, Vian =Q2+ A, A3 =Q+A3.

The resonant case is obtained by considering the detuning parameters A;; equal to
zero. The frequencies Qyx are given by

=Mz + (M2 — 1), Qv = [My (uh+pd). @a =My (83 +82).

The dressed states can be determined in analytic form as they involve the di-
agonalisation of a 3 x 3 matrix for any number of total excitations. Thus they are
combinations of the basis states introduced before. For the = configuration these are
given by

VM= VM= —1
o)z = — Y220 0 100) + Y EB g 1y,
Q Q
]
|Wi>5 = —1/2{\/ME—1,Ll,23|M5—2,100>—|—\/M5‘U12|M5,111>
Ex (2i%)
—(Alz/zigg) M= — 1,110>} . (4)

Similar expressions can be obtained for the V- and A-configurations.

3 Husimi function for the electromagnetic field

We first consider one atom in its ground state inside a cavity prepared in a Fock state
with M photons, and study the evolution of an initial state |M;111). The state at an
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arbitrary time 7, in units of the frequency of the electromagnetic field, is given by

‘l[/(T))M = UM(‘L')13 |M—2,3; 1 00> +UM(T)23 |M—3,2;] 10)
+ UM(T)33 |M;lll>, 5)

where Uy(7);; are given in the appendix for different atomic configurations.
This state yields the reduced density matrix for the radiation field

P (2) = Py, (0) IM = A3) (M — As| + Pyy_3, (2) |M — Aa) (M — 2|

+ Pu(7) |M)(M], ©)

where the time-dependent probabilities of finding M — A3, M — A,, and M photons,
respectively, are

Py 2,(0) = Un(t)13*, Py_2,(t) = |Un()23*, Pu(t)=|Un(t)53]*. (7)

These probabilities depend on the considered atomic configuration through the ex-
pression for the evolution matrix Uy (t), which is given in the appendix. The Husimi
function depends only on the magnitude of the parameter a@ = pe'? of the coherent
state |at),

2
qu)(p, )= e P pszzitg (M! PM7/13(T) M!Py_j,(7) pz(xrzz) +PM(T)p2’13> .
2 M! (M —23)! (M —2)!

The Q% has a volcano shape as a function of (p, ¢), whose radius at the top
of the crater oscillates between /2(M — A3 N,) and v2M, with N, = 1. This be-
haviour is also valid for any number of particles, and can be proved analytically and
corroborated numerically.

To generate the initial state one can use the experimental result that Fock states
can be prepared in a cavity. This has emerged from the interest in applications of
quantum information theory, as for example secure quantum communication and
quantum cryptography [26]. If instead of having the atom in the cavity, we send it
through the cavity, we will have a similar behaviour for the electromagnetic sector as
indicated in the Husimi function. Then we can properly select the traveling time of
the atom through the cavity in order for it to leave the latter in a linear combination
of two Fock states.

Without loss of generality, then one can consider a resonant cavity in a superpo-
sition of two Fock states. We then consider the evolution of a linear combination of
eigenstates of two values of the total number excitations

|D(0)) = (cosO|M;)+sin@|M,)) x [111). (8)

It is straightforward to determine the reduced density matrix of the field and its
expectation value with respect to the coherent states of light leads to
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sin2 6

2
_e’ pM P My+M
On(p,9.8) = 5 (COS 0P o +P " T

cos[(M; —Mz)q)]) .

This Husimi function is an invariant under the transformation ¢ — ¢ + M~ 2” , dis-
playing a cyclic point symmetry Cjy, —ps, |- This is shown in Fig. 3 for the & atomlc
configuration with M| =5 and M, = 2. The form of the function is qualitatively

similar for different strengths of the matter-field coupling parameters.

By a similar procedure than in the previous case, its dynamics is obtained through
the evolution operator; then the reduced density matrix of the field and its expecta-
tion value with respect to the coherent state are calculated as follows:

—p le +My—223

_ 2 1 in2
0u(6,p,0,t) = cos>6 0¥ (p,1) +sin 9Q (p, z)-|—s1n29 2 /M 1M,

< cos (b1 —M2)<z+¢)}<\/ T P (2 0)

M ' M>!
PR 1!1M! 2
+p \/(M1 ) (Ma— )] T Puty -2, (1) Paty 2, (1) + P2\ [ P, (t)PMz(f)>-

The Qp is invariant under the transformation ¢ — ¢ + M1
its symmetry under transformations of the cyclic group C| M1 Mz\’ again the result is
independent of the number of particles.

Fig. 1: Husimi function of the crystallized-type cat state with point symmetry Cs. A
contour plot (left) and the corresponding 3-dimensional plot (right) are shown. We
have taken M1 =5, M, =2, 0 = §, Uiz =1, Uz = V2, and q= ﬁp cos¢ and
p=+2psing.
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4 Conclusions

We have obtained analytic expressions for the one-particle case of the GTC model.
The energy spectrum is an infinite ladder of three-level steps, each of them with a
definite value for the total number of excitations M, together with the corresponding
dressed states. A construction of crystallised-type Schrodinger states were exhib-
ited for arbitrary dipolar strengths and whether or not the system is under resonant
conditions with the field. The cyclic point symmetry group associated to the Husimi
function of the electromagnetic field depends only on |M| — M>|. It is important to
mention that the results presented here can be extended to any number of particles,
and to situations out of resonance. These extensions have been proved numerically
by considering the evolution of a linear combination of states with M; and M, total
number of excitations and by constructing the corresponding Husimi function [27].
Additionally, we conjecture that it can be generalised to n-level atoms.

Acknowledgements This work was partially supported by CONACyT-México (under Project
No. 238494), and DGAPA-UNAM (under Projects No. IN101614 and No. IN110114).

Appendix

The evolution operator associated to the Hamiltonian (1) can be obtained in analytic
form for the different atomic configurations. It has the form U (t) = e~ ™' U;(t) with
the last factor denoting the evolution operator in the interaction picture. The matrix
elements needed in Eq. (7) are given by

1 —cosQx=t
Un (t —V/Mz(Mz — M12H2377

sm.Q t (Mg — 1) U3 + Mz uf, cos Qzt
— M= (t)33 = 92 )

—i,ulz sin Qyt

Uz (t)23 = —ivVMz Ui

—i,li13 Sinﬂvt

UMV(I)B = s UMV(I)23 = s UMV(Z‘)33 ZCOS.Qvl‘.
\/ Wi + Uiy \/ Wi + Ui
i SinQxt — 1 —cosQut
UMA ([)]3 _ [,1437/\’ UMA (t)23 _ Hi3 “232( B A ) ’
\/ B3 T s EREE
+ cosQt
Un, (1)33 = M

Wi+ U3y

Note that for the V- and A-configurations the dependence in the total number of
excitations appears only in the argument of the trigonometric functions.
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Immanants of unitary matrices and their
submatrices

Dylan Spivak and Hubert de Guise

Abstract Motivated by recent experiments, we discuss the connection between im-
manants of an arbitrary m X m unitary matrix U and group functions D of U. This
connection also applies to submatrices of U and can be expanded with modifications
to cases where U carries a representation of SU (m) that is not the defining represen-
tation. Early results on the connections to twisted immanants are also included.

1 Introduction and motivation

In this paper we discuss the connection between immanants of matrices and sub-
matrices and group functions D that occur in the representation theory of the uni-
tary groups. Our work is motivated by recent experiments where controllable dis-
tinguishability of pulses was shown to be related to permutation properties of these
pulses, and through Schur-Weyl duality to immanants of submatrices of the scatter-
ing matrix describing the interferometer in which the pulses propagate. We extend
previously published work [1] to observations where multiple pulses can enter in-
put channels of the interferometer and show that immanants of some specific non-
unitary matrices are nevertheless connected with unitary group functions. Finally,
we include a short discussion of twisted immanants and their connections to unitary
group functions.

Littlewood [2] has defined the immanant using characters of an irreducible rep-
resentation (irrep) {A} of the permutation group. For a 3 x 3 matrix, the relevant
permutation group is S3 and an immanant is given by
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Imm (U Zxa M1 Uao2)Usos) Z%{”P ) UnUnUss] . (1)

)
—
—

]

conjugacy class

[N

H_l
i

Table 1: The character table of S3.

{2, 1}]{3}
1|1

0 |—1
-1 11

e B e

From the character table above and Eq.(1) one rapidly finds that in addition to

the fully antisymmetric determinant Det(U) := ImmE(U ), we also have a perma-
nent Per(U) = Imm™2(U) given by Y scg, Uio(1)Uao(2)Uso(3) and a generic im-
manant ImmBj(U) =2U11UxUs3 — UjpUx3Us1 — U13Up 1 Usp. Unlike the permanent
or the determinant, which are associated with 1-dimensional irreps of the permuta-
tion group, ImmBj(U ) does not transform into a multiple of itself under permuta-
tions of row or columns.

If the matrix U is the fundamental representation of a group, say the irrep (1,0)
of SU(3) with Young diagram [ for example, U;; is the group function

= (ilu]j) :== D\}”(U) = D}(U) ®)

)

where {|j),j = 1,2,3} is a basis for this irrep. It is appropriate at this point to
introduce basis states for a general SU (3) irrep labelled by the non-negative integers
(p,q): |(p,q)vivavs;h3). These states can be conveniently realized as harmonic
oscillator states [3]. The weight of the state |(p,q)Vvivavs; h3) is [Vi — Vo, Vo — V3]
and I3 labels states with the same weight but transforming differently under the
SU(2) C SU(3) subgroup which mixes v, and vs.

In this notation an immanant is then a sum of products of DO functions:

Immaj(U) = 2D, (U)D5,(U)D55(U)
D7, (U)D35(U)D5, (U) — Di5(U)D5, (U) D5, (U), 3)

which can be rewritten in a D-function-like notation

Imm™* (U) = 1((1,0)100] ®,((1,0)100| ®3((1,0)100| U
[ZXW

provided we supply a recipe for the action of the permutation group. Indeed there
are two such actions: a right action

Pi23|1)112)2(3)3 = [2)113)2](1)3, 5)

1(1,0)100); ® |(1,0)010), @ |(1,0)001)3 )
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and a left action (by the inverse element) Py32|1)1]2)2]3)3 = [1)3]2)1]3)2.

Products like DY, (U)D5,(U)D55(U) can be expanded in a sum of group func-
tions in the decompositon (1,0) ® (1,0) ® (1,0) = (3,0) ®2(1,1) @ (0,0), but
the operator IT} 1=y xc{,/l}Pg is nothing but a projection on the irrep {A} =
{A1,2A2,43} of S5 corresponding to irrep (1) := (A1 — A2,A2 — A3). In view of this
one can write for instance the general expression

ImmF(U) = OtuD(Bljml;(m) (U)+ aloD(Bfu)l (111)0<U)

_HxO]D(Bljll) 0;(111)1 +a00DBIJH (aimoU) (©)

U):=p" U ):<(1,1)111;123|U|(1,1)111;1§3>.

e
D(111)123;(111)1§3( (111)h3: (1)1,

The general form of Eq.(6) is correct. Indeed, from a corollary of a theorem due to
Kostant [4], we find: ¢t;; = ago = 1 and a9 = 0p; = 0. We can extend this result to
states with non-zero weights by looking at a 3 x 3 submatrix

- < U Uz Upy
U= : 7
< Usp Usz Uz ™

«Usz Uyz Uyq

obtained from U by removing the first line and first row, to find a form very similar
to the same result for the 3 x 3 matrix [5]:

ImmF(0) = D(B(?l 11)1;(0111)1 () JrD(B(?l 1 1)0;(0111)0(0) : ®)

Symmetry restricts the terms in Eq.(6) as Imm{*} is invariant under conjugation
by permutations: Immt*} = P '"Imm{*} P.. We note that states [(A)v;I = 0) are
I = 0 singlets so antisymmetric w/r to P»3, while the states |(A)v;/=1) arein/ =1
triplets so symmetric w/r to P»3. Thus for instance ((A)Vv’ (A)v;0) =

_D({\/}/};l.(\,)o(U), from which o) = o9 = 0 follows.
When the submatrix is not principal diagonal, the proof of [5] or the previous

line of argument does not apply but we nevertheless find a similar result:

—1
23

_ H
ImmT (Uns;134) = D?(?111)1;(1011)1/2(U) +D(0111)0;(1011)1/2(U)7
= ImmBj(U234;P12(234))- )

It is conjectured in [5] that the result on submatrices holds for generic submatrices
with suitable minor changes.

Finally, suppose the matrix U is not the fundamental representation. For instance,
consider the 4 x 4 irrep of SU(2) (J = 3/2). The irrep {2,2} of S4 has dim=2 and
can be expanded in terms of SU(2) Wigner DL ,» functions. One can verify that,

ImmB(U) = 2 D4 (U)+§D5y(U) + 2Dy (U). (10)
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The values J = 4,2,0 are those that occur in the (outer) plethysm (3/2) ®, {2,2}.
The sum % + g + % =2 = dim(H). More complicated cases, i.e., immanants of the
6-dimensional irrep (2,0) of SU(3) also have similar expressions [5]. We have no

good way of analytically obtaining the coefficients in the expansion of the D’s.

2 Application to interferometry

Imagine a scenario in which a 2-channel linear interferometer is injected with si-
multaneous three photon pulses in one port and a pair of simultaneous pulses in the
other port. The relative delay between the pulses entering different input ports can
be adjusted by an experimentalist. What is the rate P(7) as a function of the relative
delay 7 at which triples of photon pulses come out at one of the two output ports
and pairs of pulses at the other?

The rate P(7) can be expressed [1] in a scalar product-like form P(7) = v'- R(1)-
v. The vector v is a polynomial in the entries U;;,1, j = 1,2 of the 2 x 2 unitary matrix
describing the scattering of individual pulses.

We approach this problem by first considering the action of S5 on the permuta-
tions of (1,1, 1,2,2). There are 10 possible permutations (or words), one such word
is (1,2,1,1,2). If the final word is (a,b,c,d,e), we identify with it the polynomial
U1,U1pU1:UzqUs, as one entry in the vector v. As there are 10 distinct words to be
constructed from (1,1,1,2,2), we obtain a 10 x 10 rate matrix R(7) which is re-
ducible under S5 as the partitions of 5 with at most 2 parts: DEI@HE@E}I.
One can obtain the rates and the rate matrix starting from the the 10 x 10 matrix U
constructed by repeating the 2 x 2 scattering matrix U:

vuvuuvu
U=t (in
vuvuuvu
The matrix U is neither unitary nor invertible; nevertheless Per(U ) = Imm---(U) =
14400D}, (U) is related to an SU (2) D-function for J = 5; the coincidence rate P(0)

when all bosons are indistinguishable is proportional to the modulus square of this
permanent.

3 Fermionic version

Suppose now we consider the interference of fermions in the simple case where
three fermions enter an interferometer by different channels and output also by dif-
ferent channels. In the matrix R(T) we insert a — sign in row Uis(h)Uas(2)Uss(3)
and column U, 5/(1 Uz (2)Usgr(3) if O - o’ is a product of an odd number of transpo-
sitions. The final rate is an expression of the form
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R(t) = T6x6 _l)12€7(1:171:2)2 —p13ef(11773)2—[)233*(’52*73)2
1 2

+(p1os + przp)e 2R r(Rmw o (mn) (12)

where p;; and p;jx are 6 X 6 matrices that carry the regular representation of S3. For
bosons, pi2 = P13 = p23 = +1 but the anticommutative nature of fermion leads to a
sign that is the character of ¢ in alternating representation I B.

The regular representation of S3 decomposes into "¢ = '@ 2I° & @Il The
effect of anticommutativity, encoded in I" §, is to transform every irrep into its con-
jugate since oo ®E = E mal ®E =, E@E = . As a result, what corresponds to a
permanent for bosons now corresponds to a determinant for fermions etc., and some
features of the landscapes are reversed, as illustrated in Fig.(1):

Fig. 1: Comparing a bosonic coincidence landscape (left) with a fermionic coinci-
dence landscape (right) for the same 3 x 3 scattering matrix. The two axes of the
landscape correspond to variable relative delays (7, 73) between the first and sec-
ond, and second and third pulses respectively.

Itoh [6] introduced the concept of twisted immanant for self-conjugate irreps. For
instance, we have for H-:

Imm*Bj(U) = i\/§U12U23U31 —i\/§U13U21U32,
= iv/3([even 3-cycle] — [odd 3-cycle]) . (13)

(Here, even and odd refer to the inversion number of the cycle.)

The self-conjugate irreps of S, split in two irreps under the alternating subgroup
A, C S,. More generally Imm*{”(U ) picks up a sign under conjugation by odd
elements:

+Imm**H(U)  ifoeA,,

~Imm**(U)  ifo¢A,. 14

P Imm* M (U) Py = {

One can express twisted immanants in terms of SU (3) D-functions:
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mm*F(U) = i (DB] ) -DF (U)) . (15)

(111)0;(111)1 (111)1;(111)0

A similar expression holds in SU (4): Imm*EH(U) < D%HI 111110 fD%Hl 0111

The antisymmetry of Eq.(14) implies that the twisted immanants will have a D-
function expansion where the input and output states are conjugate. We can visualize
this by constructing states that are labelled by S states, and by duality, associate

them with SU (k) states. For the SU (5) states in the self-conjugate irrep -, we have

Jmo lm ZZIli

l,B:D \LED =2

o _ e =)
- = o =4)
W 18 =|s)

0 o1e =6

The requirements of antisymmetry under transposition now dictate that we consider
Imm*8 = 016D + 061D, + s Do + 052D, + sl + 3Dy (16)

Indeed we find 0t = Qg1 = Otps = Olsp = Qlzg = O3 = 1.

What of rates in fermion interferometry? The boson rates are proportional to
modulus squared of linear combinations of immanants. The fermion rates are pro-
portional to modulus squared of linear combinations of twisted immanants when
self-conjugate irreps occur. The linear combos of twisted immanants are also linear
combos of regular immanants. As a result, there seems to be nothing fundamentally
new in the fermionic rates, unless we find a scheme where only one immanant (or
twisted immanant) occurs in the expression of the rates.

4 Conclusion

We note the deep connection between group functions, immanants, twisted im-
manants and multiphoton interferometry. This appears to be a subset of relations
within the Schur-Weyl duality for irreps of U(m) and the permutation group S,.
This work was supported by NSERC of Canada, and by Lakehead University.
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Group theoretical aspects of L>(R "), L?>(R?) and
associated Laguerre polynomials

Enrico Celeghini and Mariano A. del Olmo

Abstract A ladder algebraic structure for L?(R*) which closes the Lie algebra
h(1) ® h(1), where h(1) is the Heisenberg-Weyl algebra, is presented in terms
of a basis of associated Laguerre polynomials. Using the Schwinger method, the
quadratic generators that span the alternative Lie algebras so(3), so(2,1) and so(3,2)
are also constructed. These families of (pseudo) orthogonal algebras also allow us
to obtain unitary irreducible representations in L?(R?) similar to those in spherical
harmonics.

1 Introduction

The associated Laguerre polynomials (ALP) [1], LY (x) (x€[0,00),n=0,1,2,...
and « real fixed parameter, continuous and > —1), are defined by the 2nd order
differential equation (DE)

d? d (@)

The ALPs reduce to the Laguerre polynomials for o = 0. From the many recurrence
relations that they verify [1, 1,2], we start from the following:

_d (@), \ _ sla+1) d (@) \ _ (a-1)
{ dx—l—l} Ly’ (x)=L;," ' (x), [xdx—f—a]Ln ) =m+a)ly, (x). (2)
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For ¢ > —1 and fixed, the ALP L,(,a) (r) are orthogonal in the label n with respect
to the weight measure dt(x) = x* e *dx

I'n+o+1)
n!

5nn’ :

n

/ dxx® e LY (x) L((,x)(x) =
0

For an integer @ such that 0 < o0 < n, we have the generalization [1] LS,*‘”(x) =

% (—x)“Lf,‘i)a (x) . Hereafter we assume heren € N, ¢ € Z, n—a € N, and

we consider ¢ as a label, like n, and not a parameter fixed at the beginning.
Following the approach of previous works [4-7], we introduce now a set of al-

ternative functions including also the weight measure in such a way as to obtain the

orthonormal bases we are used to in quantum mechanics:

I'(n+1)

I UL N 7 ) L(a)
Thtat)” ¢ n (%)

M (x) =

For each fixed value of & > —n and n € N, the set of M.* (x), is a basis of L?>(R™")

/ M () My () dx = 8y Y ML () M () = (- ).

n=0

2 The symmetry algebra /(1), © (1),

(o)

The eqs. (2) rewritten in terms of M, ’ take the form

[ Vi +<a+x>} MY (x) = Vatat I (),

NG
[\f+2

(3)
(OH—x)} MY x) = vatam® (),

7

where p := n+ « plays, for n fixed, the role of eigenvalue of the number opera-
tor in a Heisenberg-Weyl algebra, A(1), realized on the space of functions M (x).
It is indeed a positive integer like n, so that we can define the new functions
My p(x) =My (- ")( ), which by inspection are symmetric in the interchange n < p,
ie., My ,(x) = (—=1)P7" M), (x) . The previous recurrence relations (3) can thus be
rewritten as

{ VL f] Map3) = NPT Mpir ().

|:\[dd+\[+g\[n:| ///n’p(x) = \/ﬁeﬁn,p—l(x)'

“
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To construct the operatorial structure corresponding to the recurrence relations
we define now four operators X, Dy, N and P:

X Myp(x) = x Myp(x),  Dytyy(x) = )
N My p(x) = n oty p(x), P My p(x) = p Myp(x).

Then, the second order DE (1) becomes

E 4, ,(x)=0, )

where N+P+1 1 X

- 2 _ _(P_N)Z_Z

E :=XD;+D,+ > 4X(P N) 1
Moreover from (4) we get the differential operators (DOs),
VX 1

bt :=FVXD,+ -~ +—=(P—N), 6
+ x 5 2\/)?( ) ©)

that act on the functions .#, ,(x) in such a way that An =0 and Ap = +1.
Since [b~,b"] =1, they close an h(1) algebra, (h(1),) with quadratic Casimir
€, ={b",b"} —2(P+1/2) verifying €, #, p(x) = —2E .4, ,(x) =0.

Now taking into account the symmetry under the interchange n < p of 4, ,(x),
we can define the operators a*(N,P) := —b®(P,N) that change the labels of
My p(x) as Ap =0 and An = +£1. Their explicit action on .#, ,(x) is indeed

at My p(x) = Vn+ 1 My p(x), a~ My p(x) = /n My p(x).

The two operators a* determine thus another HW algebra, /(1),. Since these
bosonic operators at and b* commute we have obtained in this way the global
algebra h(1), ®h(1),.

Moreover inside the Universal Enveloping Algebra UEA [h(1),® h(1),] other
algebras preserving the parity of n+ p can be found by the Schwinger procedure [8]
as we will do in the next section.

3 50(3), 50(2,1) and so(3,2) symmetries

so(3) symmetry

We start from J4 := a4 b, obtaining second order DOs which, taking into account
eq. (5), can be rewritten in the space {.#, ,(x)} as first order DOs:

1

Js :HFDX(N—Pil)—l—%(N—Pj:I)(N—P) SINEPED). ()
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Defining J3 := (a_a. —b_b,)/2 = (N — P)/2 we see that {J1,J3} closes a su(2)
algebra in the space {.#, ,(x)} since [J;,J_] = 2J3 — £ J;E. The action of J. is

Te tp6) =N D) p i p1 (). T ) = /1 (p 1) Mt pr ().

Also the Casimir of su(2), €,y = J3 + 3{J4,J_} is closely related to eq. (5) as
Cou(z) =J(J+1) + + (473 + 1)E, where J is the diagonal operator J := (N + P) /2.

s0(2,1) symmetry

In a similar way we can define the operators K+ := a1 b, such as in the case of the
operators J-, we find in the space {.#, ,(x)}

1 1
Ky =XDX+§(N+P+2—X), K_=-XD,+ §(N+P—X). (8)

Both operators together with K3 := (a_a; +bib_)/2 = (N+ P+ 1)/2 determine
asu(1,1) algebra

(K3, Ki]=+K.,  [K. K. ]=-2K;,
since the action on the functions .7, ,(x) is

Ky %mp(x) =V (l’l+ 1)([7+ 1) %nJrl,erl(x)? K- jln,p(x) = \/ﬁ%nfl.pfl(x)-

The Casimir of su(1, 1), €g1,1) = K2 — %{K+,K_}, is also connected with eq. (5)
as Cyu(1,1) = (M?>— 1)+ XE, where M = J5 := (N—P)/2.

More so(2, 1) symmetries

The commutators of /1. and Ky give the new operators
Ri = ﬂ:[Ji,Ki}, Si = :|:[J¢,Ki}.

Provided that we define R3 :=J+M +1/2 and S3 :=J — M + 1/2, they close two
s0(2,1) algebras with commutators

[R+7R7] = —4R3, [R3aRi] = +2Ry,

and Casimir %3 = R} — 1{Ry,R_} = —3 + £ (1 + (X +2M)?)E, similarly for
{S4,83}. Note that under the interchange m <> —m we have {R1,R3} <> {S+,S3}.
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50(3,2) symmetry

All the operators {K+,L+,R+,S+,J,M} can be written on the space {.#, ,(x)} as
first order DOs. All together they determine on {.#, ,(x)} the representation of the

Lie algebra so(3,2) with C"*% = —5/4 .

4 Representations of s0(3), so(2,1) and so(3,2) on the plane

We introduce now the operators directly related to so(3), J := (N+P)/2 and J3 =
M := (N —P)/2, and we define

m ]+m ! —m —x —2m
LX) = Mm,j-m(x) = Ej—m;!x e /2Ll(]-+fn)(x).

The operators J3 and J5. (7), rewritten in terms of J and M, act on {.£}"(x)} as

KL =m L), T L) = GEmGEm 1) L0 ).

So, {-Z]"(x)} with j € N and [m| < j supports the representation Z; of so(3).
Similar results can be obtained for the other algebras so(2, 1) and so(3,2). For
instance, for the so(2,1) spanned by {K+,K3}, {-Z}"(x)} supports the irreducible
representation of the discrete series with Casimir €, 1) = m* — }L with m fixed
and j > |m.
On the other hand, in general these representations are not faithful because
Zj"(x) = Z;"(x). The same difficulty is also present in the spherical harmonic

where the associated Legendre polynomial /" is related to P, ™. There the degen-
eration was removed by introducing an angle variable. Here we follow the same
procedure by considering the new functions,

2" (r,9) =" L"), PER, —m<P<m.
Under the change of variable x — r* the DE (5) becomes

aZ 1d 4m*
dr?  rdr r?

Normalization and orthogonality of the 27" (r, ¢) are similar to those of Y/"(6,¢)

1 i - m * gpm’
3 [ do [ 2rdr 270y 27 0) = 8,5 B

Y 2 n9) 2109 = T 8= 8(9—¢).

Jm
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This means that the set { Z7"(r,¢)} is a basis in the space of square integrable func-
tions defined on the plane L?(R?), as {Y}"(€)} is a basis of L2(S?).

Moreover, with a convenient introduction of phases we can define the operators
Ji :=e™ J; and J5 := J3, in the finite dimensional space {2]"(r,¢)} wih fixed j

To 27(r0) =/ (Fm)(jEm+1) 27 (r9), Js 2]"(r,9) =m 2]"(r9),

and analogously for the remaining operators. So {Z7"(r,¢)} support irreducible
representations of so(3), so(2,1) and s0(3,2) on the plane as {Y;"(6,¢)} are on the
sphere. For more details see [7,9, 10].

From the physical point of view, in spite of the analogy with the angular momen-
tum, J+ and J3 can be related to a one-dimensional Morse system, where m and j
are connected with the potential [9].

Conclusions

A relationship between Lie algebras and square integrable functions has been found.
Indeed we need to restrict ourselves to L?>(R*) and L*(R?), where E is identically
zero, to obtain differential representations of the Lie algebras in the spaces of func-
tions defined in R* and R? .
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Galilean complex Sine-Gordon equation:
symmetries, soliton solutions and gauge coupling

Genilson de Melo, Marc de Montigny, James Pinfold, Jack Tuszynski

Abstract We use the Galilean covariance formalism to obtain the Galilean com-
plex Sine-Gordon equation in 1+ 1 dimensions, ¥, (1 — ¥*¥) +2im¥, + ¥*¥? —
Y(l— ‘P*‘P)z = 0. We determine its Lie point symmetries, discuss some group-
invariant solutions, and examine some soliton solutions. We also discuss the coupling
of this field with Galilean electromagnetism. This work is motivated in part by re-

cent applications of the relativistic complex Sine-Gordon equation to the dynamics
of Q-balls.

1 Galilean covariance

The objectives of the presentation given at the Group-31 conference were to sum-
marize our recent paper [5], in which a Galilean complex Sine-Gordon (GCSG)
equation [7, 10] was formulated with Galilean covariance [12, 13], and to extend it
by adding couplings of the GCSG field to the Galilean electromagnetic field inves-
tigated in Ref. [6, 8].

The Galilean covariant approach is based on Galilean 5-vectors, such as [12, 13]
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= (' 20 x4 0) = (r,1,5)

which transforms under a Galilean boost as

r =r—wvt,
t =1,
s’ = S—I‘-V+%V2t.

This transformation leaves invariant (r,z,s) - (v/,¢/,s') =r-r' —ts' —t's, which sug-
gests the introduction of a ‘Galilean metric’:

100 0 0
0100 0
¢=10010 0
000 0 —1I
000—1 0

I, for instance, we consider a wave-function such that ¥(x) = e " y(x,t) so that
dy¥W = —im¥, then the Klein-Gordon equation in 5D, d,,d*¥(x) = 0 implies that
V2P —20,d¥ = e " (V2 y42mid, y) = 0 is reduced to the free Schrodinger equa-
tion in 4D: id,y = —ﬁw y. Ref. [6] shows that this 5-dimensional approach al-
lows one to obtain the Lévy-Leblond equation [9] which is a Galilean version of
the Dirac equation that was discussed at Group-31 [2], as well as the equations of

Galilean electromagnetism [8], to which we shall return in the last section.

2 Q-balls and the complex Sine-Gordon equation

The MoEDAL experiment will investigate highly-ionizing electrically charges par-
ticles, such as the multiparticle excitations called ‘Q-balls’ [1]. A Q-ball refers to a
type of non-topological soliton, thus a stable localized field configuration that car-
ries a conserved Noether charge [4]. Bowcock et al performed an analytical study of
the dynamics and interactions of relativistic Q-balls in 1 + 1 dimensions [3]. They
described the interactions and perturbations of Q-balls in non-integrable theories by
using an integrable model: the (relativistic) complex Sine-Gordon equation [7, 10]:
¥ = W&u oMY — U (|¥]) . Hereafter we consider

CA Al 4

P THT T T
1—[)?

+]PP?,

which leads to the equation of motion

(1-¥*"P) ¥ + P PP ¥ (1 -'P)* =0.



Galilean complex Sine-Gordon equation 141

With the Galilean covariance prescription, an equation in 1+ 1 dimensions is ob-
tained from a model formulated with the Galilean 2 + 1 metric,

10 O
gv=100 -1
0-10

which is then projected onto 1+ 1 dimensions with the restriction:
P(x) =e ™y(x,1) = ¥ = —imP.
The equation of motion becomes
(W —2%) (1 — ") + % (P2 2% ) - ¥ (1 - ¥*P)* =0,
which reduces to the central equation of this paper, the GCSG equation:

W (1= W) +2imy; + yy? —y (1 -y y)* = 0. $))

Hereafter, we will find the Lie point symmetries and determine one-soliton solutions
of this equation.
If we express the function y(x,?) as

l//(xvt) = p(xvt) exXp (i¢(xvt)) )
then the CGSG equation (1) leads to

P (1-p%) —p9Z +pp2 —2mpg —p (1-p*)° =0 @)

and
20 +p (1—p7) o +2mp; =0 (3)

We find that the Lie-point symmetries (see Ref. [11] for an introduction) generated
by four vector fields: space-translations v; = d,, time-translation v, = d;, field-shift
v3 = d, and a Galilean-like boost v4 = mxdy + 0.

Let us consider the group-invariant solutions for the subgroup generated by
0 + ¢dy, which admits the invariant w = x — c¢t. Then the equations (2) and (3)
respectively become

Pun (1= p%) = o2 +pp2 +2mepdy, —p (1—p>)* =0

and
200w +p (1 _p2) Oww —2mep,, = 0.

We impose an ansatz suggested by the two terms dependent of ¢ in the first equation:

—(j)v% + 2mc¢@,, = constant, o, = mc.
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p W

By substitution, multiplying by ;=

> and integrating, we find that

p2=—p*4+p*(1—k)+k—m’c*. 4)
The discriminant of the quartic polynomial in this equation is
(k+1)* = (2me)* = (k+1+2mc) (k+ 1 —2mc) .

We find localized solutions by setting the discriminant of this equation equal to zero,
so that k = £2mc — 1. If we keep the + sign, we find that

2
p2=—p*+2p% (1 —mc)+2mec—1—m*c* = — {Pz—l-(mC—l)z} )

which leads to d =i (p + 12) with A2 = mc — 1. If we restrict ourselves again

to the + sign, we find that p(w) = iv/mec — 1 tanh [v/mc — 1(w —wp)] , so that the
probability density is

% (x,1)|* = (mc — 1) tanh? {\/mc— l(x—ct—wo)} .

This shows that one must have mc > 1, otherwise the density function contains

infinite singularities; i.e. the speed of propagation admits a minimal value ¢ > %
Eq. (4) also leads to a soliton solution if we choose k = m?c?. Then Eq. (4)

reduces to pg = p* (1 —p* —m?c*) with roots p = 0 and p? = 1 —m?c?, which

e — [ 4dp _ 21— m2e2,
leads tow —wo = [ p\/m' If we define p = acos 0,where a 1—mc
then this integral becomes | ¢ 9 =2tanh™ (tan ) From the trig identity tan & 7=
1;?1095 8= +p , we find that tanh? [4 (wo —w)] = H' If we solve for p, we obtain

1 — tanh? B\/ 1 —m2c% (wp—x+ ct)}

p(X,t): Vv 1 —m2c? )

1 4 tanh? [% 1 —m?c? (W()*)C*FCI)}

which can be simplified as

p (x,1) = V1 —m2c?sech(v/1—m?c2 (x —ct)).

Then the complete solution is of soliton-type,

W (x,1) =1 —m2c2sech(y/1 —m2c? (x — ct)) e =),

and the density of probability is given by

% (x,1)|* = (1 —m?c?) sech®(\/1 — m2c2 (x — ct)), 5)

which is shown in Fig. 2 for 0 < < 10, with parameters m = 1 and ¢ = 0.5.
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3 Coupling with the Galilean electromagnetic field

The content of this section was not in Ref. [5]. We couple the field y to a Galilean
electromagnetic field via the covariant derivative dy — %, = d +iqAy. As dis-
cussed in Ref. [6], we must consider two Galilean limits, called the ‘electric limit’
and the ‘magnetic limit’. The Lagrangian becomes
& = M Y LR Y
= g (" —igAL ") (OMW +igAF W) + W + 1 Fuy FHY.

The Euler-Lagrange equation with respect to F* leads to

(1—P*W) 919y W + W9 WO W — ¥ (1 — W) +2igAH 9, W
—q* A AP +iq (uAM) W —iq (JuAM) W29 =0,

and with respect to A, we obtain
Oy Ay — udvA —iq (PO — PO W) +2¢°A PP = 0.

The two Galilean limits are found by setting A; = —¢,, and A; = —¢, alternately
equal to zero [6]. As for the Sine-Gordon field, we use d;%¥F = —im'¥P, as before.

Magnetic limit: We obtain this limit by setting ¢, = 0 so that ¢, is the scalar poten-
tial. Then the equation for y reads

(1 =y y) (V2y+2midw) + y* (Vy- Vy + 2miyd,y) — y (1 w*wgz
—Yy) =

+2igA - VY +2mqd, v — ¢*A - Ay +iqy (V-A + d:¢,) (1

Fig. 1 Graph of |¥(x,1)[*
in Eq. (§) with m = 1 and
c=0.5for0<r<10.
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The equations of motion for the gauge field read

VZA —20,0,A —V (V-A+0s0y) +ig (W' Vy — yVy*) —2¢8°Ay*y =0,
2avat¢m - V2¢m - al (V ° A+ a\(pm) +lq(llf*aﬂl/* Watlll*) + 2q2¢mllf*llf = Oa
arv A+ ass(Pm - qulll*llf =0.

Electric limit This limit corresponds to ¢,, = 0 and ¢, becomes the scalar potential.
The equation for y reads

(1= y*y) (V2 +2midyy) + y* (Vy - Vy + 2miyo,y) y (1 - v y)’
+2igA - Vy +2i99.0, ¥ — °A- Ay +iqy (V-A+9,¢.) (1 — y*y) = 0.

The equations for the gauge field are

VZA —20,0,A —V (V-A+09.) +iq (W' Vy —yVy*) = 2°Ay*y =0,
=0 (V-A+0i¢.) +iq(y oy — (dy*)y) =0,
20,0,0. — V¢, — 95 (V- A+ 0,0.) + 2mqu* v+ 29, w* v = 0.
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On completeness of coherent states in
noncommutative spaces with the generalised
uncertainty principle

Sanjib Dey

Abstract Coherent states are required to form a complete set of vectors in the
Hilbert space by providing the resolution of identity. We study the completeness
of coherent states for two different models in a noncommutative space associated
with the generalised uncertainty relation by finding the resolution of unity with a
positive definite weight function. The weight function, which is sometimes known
as the Borel measure, is obtained through explicit analytic solutions of the Stielt-
jes and Hausdorff moment problem with the help of the standard techniques of the
inverse Mellin transform.

1 Introduction

It is well known that the coherent states are useful in different areas of modern
science including quantum optics, atomic and molecular physics, mathematical
physics, quantum gravity, quantum cosmology, etc, for further informations; see,
for instance [1,2]. Various generalisations of the Glauber coherent states have also
become very popular in recent days giving rise to the possibility of constructing
many new coherent states arising from various sophisticated mathematical back-
grounds [3—7]. One of such prominent examples is the noncommutative space-time
structure in the framework of generalised uncertainty principle, from which the ex-
istence of minimal length appears naturally [§—11]. There have been plenty of inves-
tigations behind the applications and usefulness of coherent states emerging out of
the models on the noncommutative space [12—14]. Furthermore, based on these co-
herent states, various nonclassical states have been constructed; such as, squeezed
states [15], Schrodinger cat states [16, 17], photon added coherent states [18] and
their squeezing and entanglement properties have been studied. However, the math-
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ematical completeness of such coherent states have not been studied before, which is
important particularly to understand whether the coherent states are mathematically
well-defined and can be utilized for describing concrete physical systems.

The purpose of this article is to fill in this gap by finding the exact analytical
expression for the positive definite Borel measure, such that the coherent states sat-
isfy the required condition of resolution of identity. For this purpose, we mainly
follow [19-21] to associate our problem with the existing techniques of Stieltjes
and Hausdorff moment problem, and compute the inverse Mellin transforms corre-
sponding to our systems, which yield the precise expressions of the Borel measure.
The article is organised as follows: In Sect. 3, we introduce basic notions of the
generalised and nonlinear coherent states, as well as the moment problem associ-
ated with them to identify the resolution of identity. In Sect. 3, we implement the
existing framework as described in Sect. 3 to study the completeness relation for
coherent states in the noncommutative space for two different models, namely, the
harmonic oscillator and the Poschl-Teller. Our conclusions are stated in Sect. 4.

2 Nonlinear coherent states and resolution of identity

We commence by revisiting the basic notions of nonlinear coherent states for the
purpose of referencing. Nonlinear coherent states for Hamiltonians H with discrete
bounded below and nondegenerate eigenvalues, E,, = hwe, = honf 2 (), are defined
as follows [5,6,22]:

o

1 o 1
@ f)— y =L =n'2(0), po=1,
le, f) N ln), p kZIek nlf<(A)!, po (1)

where o € C and the normalisation constant can be computed from the requirement
(a, flo, f) =1 as given by

JV((X,f):Z*

n=0 n

@

The terminology nonlinear is not associated with the mathematical nonlinearity
anyway, but it follows from the convention introduced in the articles [5,6,22]. More
precisely, such coherent states (1) are one of the generalised versions of the Glauber
coherent states [23] for models corresponding to the generic function of the number
operator f(#). In [24], the authors have introduced an interesting alternative to the
so-called nonlinear generalisation by considering the coherent states to be eigen-
functions of a generalised exponential function. Nevertheless, the vectors |o, f) in
(1) are mathematically well defined in the domain & of allowed |c|? for which the
series (2) converges. The range of |«|?, 0 < |a|?> < R, is determined by the radius
of convergence R = lim,, ;. \/p,, Which may be finite or infinite depending on the
behaviour of p,, for large n. Therefore, a family of such coherent states (1) is an over-
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complete set of vectors in a Hilbert space ¢, labelled by a continuous parameter o
which belongs to a complex domain & (some domain in C. For R = e, ¥ = C). To
be more precise, since |n) forms an orthonormal basis in the Hilbert space . and,
letting e, be an infinite sequence of positive numbers, with eg = 0, then the vectors
|e, f) must satisfy the resolution of identity (completeness relation) with a weight
function £

| [ Lo s llof) o=ty ®
By considering o = re'®, the left-hand side of (3) turns out to be
S N
L s, e [T ol
=3 o [ e ©

such that one ends up with an infinite set of constraints

R
/ " Q(t)dt = py, 0 <R < oo, 6)
0

for which the completeness relation (3) holds. Therefore, one can construct the co-
herent states (1) for any models corresponding to a known f(n), provided that there
exists a measure 2 (¢) which satisfies (6). The explicit expression of the measure can
be found first by associating (6) with the classical moment problem, where p(n) >0
are the power moments of the unknown function Q(¢) > 0 and, subsequently, by car-
rying out the integration using the standard techniques of the Mellin transforms [25].
For more details in this context, we refer the readers to [19,21,26-28]. For Glauber
coherent states, i.e., for f(n) = 1, p, = n!, the moment problem (6) becomes

/t".Q(t)dt:n!, n=0,1,2,....., @)
0

so that one can easily identify the measure, Q(z) = ¢™'. For SU(1,1) discrete series
coherent states [3], p(n) = n!I"(2j)/I"(2j+n) and, the corresponding measure is
given by

Q(t)=(2j-1)(1—1)"2, 8)

where () is supported in the range (0,1), with j =1,1/2,2,3/2,3.... In the case
of the Barut Girardello coherent states [29], p(n) = n!I'(2j+n)/I"(2j) and, the
associated measure is given by the modified Bessel function of the second kind as
follows

2

Q@) = mf"%’@,l V), )



148 Sanjib Dey

where Q(¢) is supported in the interval (0, ). For more examples of different types
of coherent states, see, [19, 30].

3 Resolution of unity for coherent states in noncommutative
space

In this section, we will construct the coherent states arising from the noncommuta-
tive space [9, 10], in which the standard set of commutation relations for the canon-
ical coordinates are replaced by noncommutative versions, such as

[X,P| =in(1+1P?), X=(1+1%p*)x, P=p, (10)

where the noncommutative observables X, P are represented in terms of the standard
canonical variables x, p satisfying [x, p] = ihi. Here, T = 7/(moh) has the dimension
of inverse squared momentum and 7 is dimensionless. Since here we study a one-
dimensional problem, it may not be so obvious to the readers how commutation re-
lation (10) becomes a part of noncommutative systems. Actually, it is a reduced ver-
sion of a three-dimensional noncommutative space originating from a g-deformed
oscillator algebra, which was studied in [10] by the author and his collaborators.
The given framework (10) is fascinating by itself, because it leads to the generalised
version of Heisenberg’s uncertainty relation [8] followed by the existence of mini-
mal lengths [9, 10], which are one of the major findings of string theory. Let us now
discuss some concrete models in the given structure.

3.1 Noncommutative harmonic oscillator

‘We consider a one-dimensional harmonic oscillator
P2 ? 1
H:+mX2—hw(+>, (11)

defined on the noncommutative space satisfying (10). Here, ground state energy
is conventionally shifted to allow for a factorisation of the energy. Obviously, the
Hamiltonian H is non-Hermitian with respect to the standard inner product. How-
ever, we consider the Hamiltonian H to be pseudo-Hermitian and, thus by follow-
ing the standard results in the literature [31, 32] we transform the non-Hermitian
Hamiltonian H to a Hermitian Hamiltonian 4 by taking a similarity transformation
h =nHn~" with respect to a positive definite metric 7. Consequently, the energy
eigenvalues of H and % turn out to be real, as computed in [8, 10] by following the
standard techniques of Rayleigh-Schrodinger perturbation theory to the lowest order
as follows:
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T
E, = honf*(n) = hon [1+§(1+n)} 1O, (12)
Correspondingly, by following (1) the nonlinear coherent states are computed as
s Oc” T\ nl(n+241)!
|0, f)ncho = Z n), :n!fz(n)!: (*> —
NACEN: 2 (14 2)!
(13)

In order to verify that the states (13) are mathematically complete and well de-
fined in the Hilbert space, one needs to find out the existence of the positive definite
Borel measure 2 (¢) satisfying constraint (6) as follows:

Z ' ITnt+p+D)I(n+B+1)  A(n)B(n)
/0 rQ(e)dt = pu = (2) r(1+p) “Ta+py;

withA(n) = (7/2)",B(n) ='(n+pu+1)I'(n+B+1)and u =0, =1+2/7. For
the purpose of computing Q(¢) from (14) let us now briefly discuss some technical-
ities. First, we find the inverse Mellin transforms of the two functions A(n) and B(n)
separately, i.e.,

Aln) = (%)":/Ow (%)nS(t—‘c)dt:/omx"C(x)dx, (15)
B(n):F(n+y+1)1"(n+ﬁ+l):/Ooox"D(x)dx, (16)

with
C()=286(2x—1),  D(x)=2x"T"K, 5(2v%), (17)

where Kj;(x) denotes the modified Bessel function of the second kind. Then, we
utilize the composition formula [20] to find the inverse Mellin transform for the
composite system as given by

A(n)B(n) = / YA, A(x) = /0 wC(u)D(g)%, (18)

0

which when replaced in (14), we obtain the accurate expression of the Borel measure
Q(t) as follows:

Q) = F(llw/:c(t)p (5) du (19)

_F(1+B)/0 M(u) F‘*ﬁ( u) (2u—7)du (20)
25 (4+u+pB) <t>u;ﬁ 5
T u-p(2

=TT =). 1)

T
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3.2 A Poschl-Teller model in noncommutative space

Let us now consider another interesting Hamiltonian based on the noncommutative
space satisfying (10):

& o, hoy_ hwy €
HPT_ZmP 7% 2 + > +2 =, v,€ €R. (22)

Although the model (22) does not belong to a familiar class of models, however,
it is very interesting as it leads to the well-known Poschl-Teller potential when
the noncommutative observables are represented in terms of the standard canonical
variables by using (10). Therefore, one can describe the model as a noncommutative
version of the Poschl-Teller model, although the Hamiltonian (22) cannot be viewed
as a deformation of a model on standard commutative space in the sense that it does
not reduce to the usual Poschl-Teller model in the commutative limit T — 0. For
further details on the model, see [11], where the eigenvalues of the corresponding
Hamiltonian were computed in an exact manner as given below:

h 4 4
E,— ;)(l—l—Zn—&-a—i-b ,/1+i’ b=~ ,/1+—8 23)

The corresponding nonlinear coherent states can be computed by following (1)
with
T(n+v)? , o 3tath
rvy? "’ 2
Note that the form of p, in (24) is very similar to the case of the harmonic oscillator

as in (13) and, thus we follow the similar procedure as discussed in the previous
section to calculate the explicit expression of the measure

20 -1 (5) R/ 25)

pn=2"1 (24)

Numerically, we check that the measures (19) and (25) are positive definite for T €
R™. However, the exact analytical treatment of this problem may be more involved.
The interesting aspect of the moment problem in our case is that the moments (14)
and (24) satisfy the Carleman condition

> 1
= oo, (26)
nzl pa/?"

which implies that the obtained measures in both of the cases are unique.
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4 Conclusions

Coherent states in noncommutative spaces related to the generalised uncertainty
relation have been found to be interesting and useful for many different purposes
[12-18]. However, it was necessary to find out their resolution of identity by com-
puting the weight functions associated with them to show the mathematical com-
pleteness of the corresponding models. In this article we study the missing link by
finding the completeness relations of coherent states for the harmonic oscillator and
the Poschl-Teller model based on the noncommutative structure. We compute exact
analytical expressions for the weight functions through good solutions of Stieltjes
and Hausdorff moment problem for the two cases and show that the coherent states
in noncommutative space are indeed mathematically well defined and form a com-
plete set of vectors in the Hilbert space.

Evidently, there are many interesting open challenges left which will directly fol-
low our results. By utilizing the Hankel determinant method, or any other existing
mechanism in the literature [27,30,33,34], one may study the orthogonal polynomi-
als, that are associated with our coherent states. The investigation may end up with
some known orthogonal polynomials, or some fascinating g-orthogonal polynomi-
als. However, because of our sophisticated structure, the outcome may bring more
exciting possibilities for constructing some new orthogonal polynomials out of our
systems.

Acknowledgements The work is dedicated to the memory of Prof. S. Twareque Ali. The author is
supported by the Postdoctoral Fellowship of the Laboratory of Mathematical Physics of the Centre
de Recherches Mathématiques.
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Majorana neutrinos in an effective field theory
approach

Lucia Duarte and Oscar A. Sampayo

Abstract The discovery of neutrino oscillations and non-vanishing neutrino masses
is one of the key recent advances made in particle physics. Tiny neutrino masses
are very difficult to generate in a natural way in the Standard Model, based in the
SU(3)c x SU(2)L x U(1)y gauge group. Standard Yukawa interactions cannot ex-
plain the huge mass difference between the neutrinos and other fermions, and a very
attractive scheme is the seesaw mechanism, incorporating right-handed Majorana
neutrino species that allow for the lepton number violation. However, in typical see-
saw scenarios, the couplings between the Majorana neutrinos and the light neutrinos
must be vanishingly small in order to obtain tiny observed masses, leading to the de-
coupling of the former, and thus their detection (e.g., via lepton number violating
processes) would be a signal of physics beyond the minimal seesaw framework.
Here we consider a model independent scenario with one Majorana neutrino N with
negligible mixing with the standard v;, introducing its interactions via an effective
Lagrangian involving N and the standard fields and preserving SM symmetry. This
leads to a very rich N phenomenology, and we have studied its decay, production,
and detection mechanisms in present and future collider experiments.

1 Introduction

As is well known, in the Standard Model, the charged leptons acquire their masses
after the electroweak symmetry breaking (EWSB) by the vacuum expectation value
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of the Higgs field (®7) = (0,v/+/2)T leading to the Yukawa lagrangian term, where
the left-handed SU(2), doublet of flavor i L't = (vi ihT 1 combines with the right-
handed singlet £4: Lyukawa O Y, ri CDE’ — Y” v/\26 K’ A right-handed neutrino
component could be added ‘by hand’ to have a Yukawa term generating a Dirac mass
for the neutrinos. However, to get sub-eV left-handed neutrino masses (as known
from current neutrino data [16]) one would need extremely tiny Yukawa couplings
of order < 1072, As there is no theoretical justification for such small neutrino
Yukawa couplings, a new viewpoint is taken considering other new physics to be
responsible for the observed smallness of neutrino masses.

It seems natural to invoke some new physics beyond the SM at a higher scale A
to explain the neutrino masses: this is done by means of the dimension 5 Weinberg

operator [18]' Lysm D —MUU ® P, leading to neutrino masses after the EWSB

Lysm D — 2 Lvivi with m;; /2 = A% % If A > v, then neutrino masses can be made
much smaller than those of the charged leptons. This operator has only 3 renor-
malizable tree-level realizations: the most popular is the Type-I seesaw mechanism,
where @ and L' combine into an SU (2);, scalar. This needs the addition of new ‘ster-
ile’ SU(2), singlet neutrinos N as intermediate particles, identified as right-handed
Majorana neutrinos. The origin of the bare Majorana mass terms responsible for the
explicit violation of the B — L (Baryon-Lepton numbers) symmetry can be under-
stood from natural implementations of the seesaw mechanism in specific ultra-violet
complete theories. In the conventional seesaw scenarios, the light neutrino masses
are inversely proportional to a large lepton-number breaking scale (and hence the
name seesaw) [13].

In this context the ‘vanilla’ seesaw is implemented adding 3 SM singlets Ng, and
writing the most general renormalizable lagrangian:

. 3 MNl.ji
Ly = Loy — YoiL* PNg; — Z > Nﬁ‘NjR—f—h.C.,
ij=1

with Dirac and Majorana mass terms for the neutrinos. In the flavor basis these terms
give the following mass matrix, diagonalized by a unitary matrix U:

I — O mp Vi v( O mp —mDMIQImE 0
Z(VLNL)(mIT)MN) (NR>’ Ul my ) U= 0 My

1 A
—A" 1
In this way, left-handed neutrinos of flavor ¢ v, can be written in terms of mass

states as Vg = Uy, Vin + UpyN: the v — N mixings Uyy take values Upy =~ 1% =

A/ Xflv and the v, — v, mixing describes the oscillation phenomena. This gives light

with entries U ~ ,and AT = My lmg.

neutrinos v with masses m, = mDMN mD. As the Dlrac mass mp comes from the
Yukawa term Yq;L* P Npg; and takes values mp = f’ in order to accommodate
2
V

neutrino masses my =~ 0.001eV ~Y? 57 the Yukawa couplings need tobe Y =~ 10~
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for My ~ 100GeV . Then the v, — N mixing would be Uyy ~ X’Tg = 107° %

As this mixing weighs the coupling between Majorana neutrinos and the standard
bosons in the lagrangian terms:

8 ¢ + 8
L D ——==UnN Y'PIW] — ——
/A N Y PL " 200y
the experimental observation of the lepton number violation in this scenario depends
only on the tiny v; — N mixing, making it very difficult to find in current collider
searches.

ViY*UinPLNZy +h.c.,

2 Effective field theory with Majorana neutrinos

While most of the recent work has been focused on the study of heavy Majorana
neutrinos that mix with SM light neutrinos in the framework of Type-I seesaw sce-
narios [3, 4], the aim of our approach is to investigate the possible contribution of a
heavy Majorana neutrino with negligible mixing to the SM v;, [6].

Thus we consider an effective lagrangian in which we include a relatively light
right-handed Majorana neutrino N as one of the observable degrees of freedom. The
effects of the new physics involving one heavy sterile neutrino and the SM fields are
parameterized by a set of effective operators & constructed with the standard model
and the Majorana neutrino fields and satisfying SU(2), @ U(1)y gauge symmetry.

The effect of these operators is suppressed by inverse powers of the new physics
scale A, for which we take the value A = 1 TeV. The total lagrangian is organized
as follows:

- )
L =Lt Y e Loty M
n=>6 J

where 7 is the mass dimension of ﬁj(").

The dominating effects come from dimension 6 operators that can be generated at
tree level in the unknown underlying renormalizable theory. Following [6], we start
with a rather general effective lagrangian density for the interaction of right-handed
Majorana neutrinos N with leptons and quarks, including dimension 6 operators.
The first subset includes operators with scalar and vector bosons (SVB),

Ovg = (0T0)(LiNG), Onng = i(0"Du@)(NY'N), Onep = i(97 €Duo) (Nyer),  (2)

and a second subset includes the baryon-number conserving four fermion contact
terms:
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Oqune = (dY*u)(Nyul), Oy = (FY*f)(NWN), Onie = (LN)e(LI),
Ornga = (LN)e(Qd), Ogunr = (Qu)(NL), Ognia = (ON)e(Ld),
Oy = |NL* and Oy =|0ON|?, 3)

where e;, u;, d; and L;, Q; denote, for the family labeled i, the right-handed SU (2)
singlet and the left-handed SU (2) doublets, respectively.

One can also consider operators generated at one-loop level in the underlying full
theory, whose coefficients are naturally suppressed by a factor of 1/167:

Ong = (L6*'N)@Byy, Onw = (La™ T'N)§W,,,,
Opy = (LDuN)D*$,  Opy = (DyLN)D*§ . )

The effective couplings ¢ in (1) can be bounded exploiting the existing con-
straints on the different processes mediated by their associated operators. In general
phenomenological approaches, recent reviews [7, 8] summarize the existing exper-
imental bounds considering low scale minimal seesaw models parameterized by a
single heavy neutrino mass scale My and a light-heavy mixing Ujy. In previous
works [10, 11], we have presented in detail the way in which we take into account
existing constraints on processes like neutrinoless double beta decay (0v ), elec-
troweak precision data (EWPD), LNV rare meson decays, as well as direct collider
searches, including Z decays. We consider the existing experimental constraints on
sterile-active neutrino mixings, relating the U;y mixings in Type-I seesaw models
av”
272
involving the first fermion family, the most stringent are the 0vf3-decay bounds
obtained by the KamLLAND-Zen collaboration [12]. Following the treatment made

in [7,15], they give us an upper limit ag%’bd <32x107% (50) 12, Concerning
the second fermion family, for sterile neutrino masses 2 GeV < my < 10 GeV the
upper limits come from the DELPHI collaboration [2]. Considering Q;y = UjyUpy
as in [4], we obtain the bound o}3d,, < 2.3. The Belle [14] and LHCb [1] col-
laborations also find competitive upper limits in the 2 GeV < my <5 GeV region.
The bound from Belle is still the most stringent, giving a value ag‘e’l"l’;d < 0.3. For
higher masses, in the range my < my, the upper limits come from EWPD as the
radiative lepton flavor violating (LFV) decays as u — ey [5, 17] giving a bound
abgund < 0.32.

In order to simplify the discussion, for numerical calculations we only consider
the most stringent bounds, taking the couplings associated to the operators that con-

tribute to the Ov B-decay for the first family as restricted by the ag%’bd , and the

2
[3,4] with our effective couplings by the relation U, l%v i ( ’ ) . For the couplings

other couplings to the value ar??"¢ < 0.3.
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Fig. 1: Decay width [11] and branching ratios [10] for the Majorana neutrino N.

3 Majorana neutrino phenomenology

We have studied the Majorana neutrino phenomenology, searching for its production
in ep colliders [9] and calculated its decay channels for low my < my [10] and high
masses my < 1TeV [11].

For the low my region, the neutrino plus photon decay channel is found to be
dominant respective to the pure-leptonic or the N — liid modes. This decay mode
is driven by the tensorial one-loop generated operators Oyp and Oyw in (4), and
leads to an interesting phenomenology regarding different neutrino anomalies, as
discussed in [10]. In Figure 3 we show the total decay width and the branching
ratios for the N.

In our work [9] we studied the N production in the ep — ITN — [T + 3 jets
channel, which is a clear signature of the Majorana character of the intermediate
N due to the lepton number violation. We found the future Large Hadron electron
Collider (LHeC) could be able to discover Majorana neutrinos with my < 700 and
my < 1300 GeV for electron beams settings of E, = 50 and E, = 150 GeV respec-
tively, as shown in Figure 2.

We are currently investigating the N production and decay in the LHC, exploiting
the fact that for low my ~ a few GeV the Majorana neutrinos behave as long-lived
neutral particles that can be searched using displaced vertices techniques.

Acknowledgements We thank CONICET (Argentina) and Universidad Nacional de Mar del Plata
(Argentina); PEDECIBA, ANII, and CSIC-UdelaR (Uruguay); and the ICTP and the Group31
organizing committee for their financial supports.



158

Lucia Duarte and Oscar A. Sampayo

L S S | ax1077

Guulpbl

Ee=50 GeV

104 | k) ol v bbb
0 500 1.000 1.500 9 200 400 600 800 1.000 1200  1.400

my [GeV] my [GeV]

(a) Total cross section (b) Discovery regions

Fig. 2: Total cross section and discovery regions for the Majorana neutrino produc-
tion in the LHeC [9].
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Feynman-Dyson propagators for neutral
particles (local or non-local?)

Valeriy V. Dvoeglazov

Abstract An analog of the S = 1/2 Feynman-Dyson propagator is presented in
the framework of S = 1 Weinberg’s theory. The basis for this construction is the
concept of the Weinberg field as a system of four field functions differing by parity
and dual transformations. Next, we analyze the controversy in the definitions of the
Feynman-Dyson propagator for the field operator containing the S = 1/2 self/anti-
self charge conjugate states in the papers by D. Ahluwalia et al. and by W. Rodrigues
Jr. et al. The solution of this mathematical controversy is obvious. It is related to
the necessary doubling of the Fock Space (as in the Barut and Ziino works), thus
extending the corresponding Clifford algebra. However, the logical interrelations
of different mathematical foundations with the physical interpretations are not so
obvious (Physics should choose only one correct formalism: it is not clear, why two
correct mathematical formalisms , which are based on the same postulates, lead to
different physical results.)

1 Weinberg propagators

According to the Feynman-Dyson-Stueckelberg ideas, a causal propagator has to be
constructed using the formula in Ref. [1, p.91]. In the S = 1/2 Dirac theory it results

mn
d*k i k+m
Sk (x) = ik 1
F(x) /(2n)4e Kt tie’ M

provided that k = kyy*, the constant a and b are determined by imposing (igz —
m)Sg(x2,x1) = 8@ (xa —x) in [1, p.91], & = ﬁy“, namely, a = —b=1/i.
2
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However, attempts to construct the covariant propagator in this way have failed
in the framework of Weinberg’s theory, Ref. [2]. It is a generalization of the Dirac
ideas to higher spins. For instance, on page B1324 of Ref. [2] Weinberg writes:
“Unfortunately, the propagator arising from Wick’s theorem is NOT equal to the
covariant propagator except for S =0 and S = 1/2. The trouble is that the deriva-
tives act on the £(x) = 0(x) — 8(—x) in A€(x) as well as on the functions' A and
Ay. This gives rise to extra terms proportional to equal-time O functions and their
derivatives. .. The cure is well known: ... compute the vertex factors using only the
original covariant part of the Hamiltonian € ; do not use the Wick propagator for
internal lines, instead use the covariant propagator.” The propagator proposed in
Ref. [3] is the causal propagator. However, the old problem persists: the Feynman-
Dyson propagator is not the Green function of the Weinberg equation. As men-
tioned, the covariant propagator proposed by Weinberg propagates kinematically
spurious solutions [3].

The aim of my paper is to consider the problem of constructing the propagator in
the framework of the model given in [4]. The concept of the Weinberg field ‘doubles’
has been proposed there. It is based on the equivalence between the Weinberg field
and the antisymmetric tensor field, which can be described by both F,, and its
dual Fy;y. These field operators may be used to form a parity doublet. An essential
ingredient of my consideration is the idea of combining the Lorentz and the dual
transformation. The set of four equations has been proposed in Ref. [4].

The simple calculations give

(1)7(1)_1 7’"27 Sp®S) (1>—(1)_l 7_’”3 Sp®S)
“ _2<Sp®sp o )2 =5\5,05, )0 @
@@ _ L[ -m* §,85\ o.o_1( m $,05,
“th 2<S,,®S,, w2 ) =558, m ) O
where 5 5
(S-p)° < (S-p)

S,=m+(S-p)+ S,=m—(S-p)+ ; 4)

E+m’
and u— are 6-component objects for spin 1, which are solutions of the Weinberg
“double” equations in the momentum space. One can conclude: the generalization
of the notion of causal propagators is admitted using ‘Wick’s formula’ for the time-
ordered particle operators provided that a = b = 1/4im?. It is necessary to consider
all four equations. Obviously, this is related to the 12-component formalism, which
I presented in [4].

The S = 1 analogues of the formula (1) for the Weinberg propagators follow
immediately. In the Euclidean metrics they are

!'In the cited paper A;(x) = i[A;(x) +A4(—x)] and A(x) = A, (x) — A, (—x) have been used.
iAL(x) = ﬁ [ % exp(ipx) is the particle Green function.
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1

My 2
SF (p) l(2ﬂ')4(p2 +m2 7 lS) [YIJVp,leV m ] ) (5)
@y 1 2
SF (p) i(2ﬂ)4(p2+m2—i8) [Yuvpupv +m ] ’ (6)
S5 (p) ~ - 1 (Fuvpupy+m] ™)
F i(27)*(p* +m? —ig) LHVOREY ’
@y 1 ~ 9
Sk’ (p) 20 (2 +m?—ie) [Yuvpupv m ] . (8)

Yuv are the covariantly defined 6 x 6 matrices of the (1,0) @ (0,1) representation,

Yuv = YaaYuv Yas.

We should use the obtained set of Weinberg propagators (5,6,7,8) in the pertur-
bation calculus of scattering amplitudes. In Ref. [6] the amplitude for the interaction
of two 2(2S + 1) bosons has been obtained on the basis of the use of one field only
and it is obviously incomplete, see also Ref. [5]. But, it is interesting that the spin
structure was proved there to be the same, regardless of whether we consider the
two-Dirac-fermion interaction or the two-Weinberg(S = 1)-boson interaction. How-
ever, the denominator slightly differs in the cited papers [6] from fermion-fermion
case. More accurate considerations of the fermion-boson and boson-boson interac-
tions in the framework of the Weinberg theory has been reported elsewhere [7].

2 The self/anti-self charge conjugate construct in the
(1/2,0)(0,1/2) representation

The first formulations with doubling solutions of the Dirac equations have been
presented in Refs. [11], and [12]. The group-theoretical basis for such doubling has
been given in the papers by Gelfand, Tsetlin and Sokolik [13], who first presented
the theory in the 2-dimensional representation of the inversion group in 1956 (later
called ‘the Bargmann-Wightman-Wigner-type quantum field theory’ in 1993). M.
Markov wrote long ago two Dirac equations with the opposite signs at the mass
term [11]:

[iy* 9y —m] Wi (x) =0, )
[iY" Oy +m] ¥ (x) = 0. (10)

In fact, he studied all properties of this relativistic quantum model (while he did not
yet know the quantum field theory in 1937). Next, he added and subtracted these
equations. What did he obtain?

iy due(x) —my(x) =0, iy dux(x)—me(x)=0. (11)
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Thus, ¢ and y solutions can be presented as some superpositions of the Dirac 4-
spinors u— and v—. These equations, of course, can be identified with equations
for the Majorana-like A— and p— spinors, which we presented in Ref. [8,9]. The
equations can be written in the 8-component form as follows:

[iTH 0y —m] ¥, (x) =0,, [iI*du+m]¥  (x)=0. (12)
The signs at the mass terms depend on how do we choose the “positive”- and
“negative”- energy solutions. For instance,

Humo:(%gDAﬂﬂm=(ﬁ§0,ﬂ%:01f). (13)

It is easy to find the corresponding projection operators, and the Feynman-Dyson-
Stueckelberg propagator.

You may say that all of this is just related to the spin-parity basis rotation (unitary
transformations). However, in previous papers I explained: the connection with the
Dirac spinors has been found [9, 13], provided that the 4-spinors have the same
physical dimension. Thus, we can see that the two 4-spinor systems are connected
by the unitary transformations, and this represents itself the rotation of the spin-
parity basis. However, it is usually assumed that the A — and p— spinors describe the
neutral particles, and meanwhile u— and v— spinors describe the charged particles.
Kirchbach [13] found the amplitudes for neutrinoless double beta decay (00vf3) in
this scheme. It is obvious from that connections that there are some additional terms
comparing with the standard formulation.

Barut and Ziino [12] proposed yet another model. They considered 7° opera-
tor as the operator of the charge conjugation. The concept of the doubling of the
Fock space has been developed in the Ziino works (cf. [4, 13]) in the framework
of quantum field theory. In their case the self/anti-self charge conjugate states are
simultaneously the eigenstates of the chirality. Next, our formulation with the A —
and p— spinors naturally lead to the Ziino-Barut scheme of massive chiral fields.

3 The controversy

I cite Ahluwalia et al., Ref. [14]: “To study the locality structure of the fields A (x)
and A(x), we observe that field momenta are

oA

=733

9 -
=5 A (x), (14)

and similarly 7(x) = % A (x). The calculational details for the two fields now differ
significantly. We begin with the evaluation of the equal time anticommutator for
A(x) and its conjugate momentum
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3p 1, ,
(AGt), (K1) = i / @p L i)

The term containing 4 (p) vanishes only when x — X' lies along the z, axis (see
Eq. (24) [therein], and discussion of this integral in Ref. [15])

x—x along z,:  {A(x,1), (X ,1)} = i8> (x —x')I (15)

The anticommutators for the particle/antiparticle annihilation and creation opera-
tors suffice to yield the remaining locality conditions,

{A(x,1), AKX 1)} =0, {I(x,t), I(xX,t)}=0. (16)

The set of anticommutators contained in Eqs. (15) and (16) establish that A(x) be-
comes local along the z, axis. For this reason we call z, as the dark axis of locality.”

Next, I cite Rodrigues et al., Ref. [16]: “We have shown through explicitly and
detailed calculation that the integral of 4 (p) appearing in Eq.(42) of [ 14] is null for
x — X' lying in three orthonormal spatial directions in the rest frame of an arbitrary
inertial frame ey = d /ot.

This shows that the existence of elko spinor fields does not imply any breakdown
of locality concerning the anticommutator of {A(x,t),I1(X',t} and moreover does
not imply any preferred spacelike direction field in Minkowski spacetime.”

Who is right? In 2013 W. Rodrigues [17] changed a bit his opinion. He wrote:
“When A, #0, 9 (x —x') is null the anticommutator is local and thus there exists in
the elko theory as constructed in [14] an infinity number of ‘locality directions’. On
the other hand g(x —x') is a distribution with support in A, = 0. So, the directions
A = (Ay, Ay,0) are nonlocal in each arbitrary inertial reference frame ey chosen
10 evaluate 9 (x —x')”, thus accepting the Ahluwalia et al. viewpoint. See the cited
papers for the notation.

Meanwhile, I suggest using the 8-component formalism (see Section 2) in the
similarity with the 12-component formalism of Section 1. If we calculate

B d3k _ .
S (x2,m1) /(27031’1112 {O(IZ*fl)aq’f(k)®wi(k)e_lkx+
c

+0(t —1) bW (k) @ P (k)e™| =

_ / d*k ik (k£m)® b
Qm)* kR —m?tig’

a7

we easily come to the result that the corresponding Feynman-Dyson propagators
are local in the sense: [i[}, 05 F m]Sl(;“_)(xg —x1) = 8™ (xs — x1). The constants a
and b are defined as in Ref. [1]. However, again: Physics should choose only one
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correct formalism. It is not clear, why two correct mathematical formalisms lead to
different physical results?

Acknowledgements I acknowledge discussions with Prof. W. Rodrigues, Jr. and Prof. Z. Oziewicz.
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Generalized equations and their solutions in the
(S,0)®(0,S) representations of the Lorentz group

Valeriy V. Dvoeglazov

Abstract In this paper I present three explicit examples of generalizations in rel-
ativistic quantum mechanics. First of all, I discuss the generalized spin-1/2 equa-
tions for neutrinos. They have been obtained by means of the Gersten-Sakurai
method for derivations of arbitrary-spin relativistic equations. Possible physical
consequences are discussed. Next, it is easy to check that both Dirac algebraic
equation Det(p —m) = 0 and Det(p + m) = 0 for u— and v— 4-spinors have so-
lutions with pg = +E, = £+/p* +m?. The same is true for higher-spin equations.
Meanwhile, every book considers the equality po = E,, for both u— and v— spinors
of the (1/2,0) @ (0,1/2)) representation only, thus applying the Dirac-Feynman-
Stueckelberg procedure for eliminating negative-energy solutions. The recent Zi-
ino works (and, independently, the articles of several others) show that the Fock
space can be doubled. We re-consider this possibility on the quantum field level for
both S = 1/2 and higher spin particles. The third example is: we postulate the non-
commutativity of 4-momenta, and we derive the mass splitting in the Dirac equation.
The applications are discussed.

1 Generalized neutrino equations

A. Gersten [1] proposed a method for derivations of massless equations of arbitrary-
spin particles. In fact, his method is related to the van der Waerden-Sakurai [2] pro-
cedure for the derivation of the massive Dirac equation. I commented on the deriva-
tion of the Maxwell equations in [3]. Then, I showed that the method is rather ambi-
gious because instead of free-space Maxwell equations, one can obtain generalized
S = 1 equations, which connect the antisymmetric tensor field with additional scalar
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fields. The problem of physical significance of additional scalar chi-fields should be
solved of course by experiment.

In the present paper I apply the van der Waerden-Sakurai-Gersten procedure to
spin-1/2 fields. As a result one obtains equations which generalize the well-known
Weyl equations. However, these equations are known for a long time [4]. Raspini [5,
6] analyzed them again in detail. I add some comments on physical contents of
the generalized spin-1/2 equations. The generalized equation can be written in the
covariant form.

2
: myc (1=97)  mic(1+¥)],
IW%_mﬁ 5 | P =0 (1)

The standard representation of Y matrices has been used here. If m; = m; we can
recover the standard Dirac equation. As noted in [4b] this procedure can be viewed
as the simple change of the representation of y* matrices. However, this is valid
unless my # 0. Otherwise, entries in the transformation matrix become singular.
Furthermore, one can either repeat a similar procedure (the modified Sakurai proce-
dure) starting from the massless equation (4) of [1a] or put my = 0 in eq. (1). The
massless equation is

iW%—%?Uzm

P =9. 2)

It is necesary to stress that the term ‘massless’ is used in the sense that p, p* = 0.
Then we may have different physical consequences following from (2) comparing
with those which follow from the Weyl equation. The mathematical reason of such
a possibility of different massless limits is that the corresponding change of rep-
resentation of y* matrices involves mass parameters m; and m, themselves. It is
interesting to note that we can also repeat this procedure for other definitions, which
gives us yet another equation in the massless limit (4 — 0):

iwu—%“;m ¥ =0, 3)

differing in the sign at the 5 term.

The above procedure can be generalized to any Lorentz group representations,
i.e., to any spins. Is the physical content of the generalized S = 1/2 massless equa-
tions the same as that of the Weyl equation? Our answer is ‘no’. The excellent dis-
cussion can be found in [4a,b]. First of all, the theory does not have chiral invariance.
Those authors call the additional parameters as measures of the degree of chirality.
Apart from this, Tokuoka introduced the concept of gauge transformations (not to
be confuses with phase transformations) for the 4-spinor fields. He also found some
strange properties of the anti-commutation relations (see Sec. 3 in [4a] and cf. [8]).
And finally, the equation (2) describes four states, two of which answer for the pos-
itive energy E = |p|, and two others answer for the negative energy E = —|p|.
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I just want to add the following to the discussion. The operator of the chiral-
helicity i = (- P) (in the spinorial representation) used in [4b] does not commute,
e.g., with the Hamiltonian of the equation (2). Do not confuse with the Dirac Hamil-

tonian! 3/5
R mic1l— R
[%ﬂ,a-p]—=2717(7-p)~ “

For eigenstates of the chiral-helicity the system of corresponding equations can be

read (N =T,])

iwauwn—@ﬂw,n =0. )

o2

The conjugated eigenstates of the Hamiltonian |¥} 4+ ¥ > and |¥; — ¥ > are con-
nected, in fact, by y° transformation ¥ — Y% ~ (ac-p)¥ (or m; — —m;j). However,
the 7° transformation is related to the PT (t — —t only) transformation [4b], which,
in its turn, can be interpreted as E — —E, if one accepts the Stueckelberg idea
about antiparticles. We associate ¥} 4+ ¥, > with the positive-energy eigenvalue
of the Hamiltonian E = |p| and [¥; — ¥| >, with the negative-energy eigenvalue
of the Hamiltonian (E = —|p|). Thus, the free chiral-helicity massless eigenstates
may oscillate to one another with the frequency @ = E /i (as the massive chiral-
helicity eigenstates, see [7a] for details). Moreover, a special kind of interaction
which is not symmetric with respect to the chiral-helicity states (for instance, if the
left chiral-helicity eigenstates interact with the matter only) may induce changes in
the oscillation frequency, like in the Wolfenstein (MSW) formalism.

2 Negative energies in the Dirac equation

The general scheme for constructing the field operator has been presented in [9].
During the calculations above we had to represent 1 = 6(pg) + 0(—po) in order to
get positive- and negative-frequency parts. Moreover, during these calculations we
did not yet assume which equation this field operator (namely, the u— spinor) does
satisfy, with negative- or positive- mass? In general we should transform u;,(—p)
to the v(p). The procedure is the following; see [10]. In the Dirac case we should
assume the following relation in the field operator:

Y vn(p)bh(p) =Y un(—p)an(—p). (6)
h h
By direct calculations, we find that
- mbzﬂ) (r) =Y. Awm) (P)ag)(—p). @)
A

Hence, A(,u)()t) = —im(U -l’l)w)(l), n= p/|P\, and
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by (p) = i} (o -n)wman) (—p). ®)

However, other ways of thinking are possible. Unless the unitary transformations do
not change the physical content, we have that the negative-energy spinors ¥y u~
satisfy the accustomed “positive-energy” Dirac equation. We should then expect the
same physical content. Their explicite forms y7y%u~ are different from the textbook
“positive-energy” Dirac spinors. They are the following

—pt4+m
- N -
ip) = —F—m—— - fr ; ©))
2m(—E,+m) | p —m
—pr
—Di
~ N —p +m
i(p) = —F——rr— p_ . (10)
2m(—E,+m) Di
pt—m

E, =\/p*+m? >0, po = +E,, p* =E + p,, p;; = px £ ip,. Their normalization
isto (—2N 2). Similar formulations have been presented in Refs. [11], and [12]. The
group-theoretical basis for such doubling has been given in the papers of Gelfand,
Tsetlin and Sokolik [13], who first presented the theory in the 2-dimensional repre-
sentation of the inversion group in 1956 (later called as “the Bargmann-Wightman-
Wigner-type quantum field theory” in 1993). The Markov equations, of course, can
be identified with equations for the Majorana-like A — and p—, which we presented
in Ref. [7]. Neither of them can be regarded as the Dirac equation. However, they
can be written in the 8-component form as follows:

[il* 0y, —m] ¥, (x) =0, (11)
0.

(
[iT* 9y +m| ¥ (x) (12)

One can also re-write the above equations into two-component forms. Thus, one
obtains the Feynman-Gell-Mann [14] equations. As Markov wrote himself, he was
expecting “new physics” from these equations. Barut and Ziino [12] proposed yet
another model. They considered 7> operator as the operator of the charge conjuga-
tion. Thus, the charge-conjugated Dirac equation has a different sign in comparison
with the ordinary formulation, and the so-defined charge conjugation applies to the
whole system, fermion + electromagnetic field, e — —e in the covariant derivative.
Superpositions of the ¥z and ¥y, also give us the “doubled Dirac equation”, as the
equations for A— and p— spinors. The concept of the doubling of the Fock space
has been developed in the Ziino works (cf. [13, 15]) in the framework of quantum
field theory. In their case the self/anti-self charge conjugate states are simultane-
ously the eigenstates of the chirality. Finally, I would like to mention that in general,
in the Weyl basis, the y— matrices are not Hermitian, y*' = y°7%9°. So, ¥ = —¢,
i =1,2,3, the pseudo-Hermitian matrix. The energy-momentum operator idy, is ob-
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viously Hermitian. So, the question is whether the eigenvalues of the Dirac opera-
tor iy*dy (the mass, in fact) would be always real? The question of the complete
system of the eigenvectors of the non-Hermitian operator deserve careful consid-
eration [16]. Bogoliubov and Shirkov [9, p.55-56] used the scheme to construct a
complete set of solutions of the relativistic equations, fixing the sign of pg = +E),.

The main points of this section are: there are “negative-energy solutions” in that
is previously considered as “positive-energy solutions” of relativistic wave equa-
tions, and vice versa. Their explicit forms have been presented in the case of spin-
1/2. Next, relations to previous works have been found. For instance, the doubling
of the Fock space and the corresponding solutions of the Dirac equation obtained
additional mathematical bases. Similar conclusion can be deduced for higher-spin
equations.

3 Non-commutativity in the Dirac equation

The non-commutativity [17, 18] exibits interesting peculiarities in the Dirac case.
We analyzed Sakurai-van der Waerden method of derivations of the Dirac (and
higher-spins too) equation [19]. We can start from

(EIY +a-p+mB)(EIY) —a-p—mP) ¥y =0. (13)

Obviously, the inverse operators of the Dirac operators of the positive- and negative-
masses exist in the non-commutative case. We postulate the non-commutativity re-
lations for the components of 4-momenta: [E,p’]_ = @% = @' as usual. Thus, we
come to

{E*—p* —m*— (- 0)} W4y =0. (14)

However, let us apply the unitary transformation. It is known [7,20] that one can
Ui(o-a)U; ! = o3al. (15)

The explicit form of the U; matrix can be found in [19,20].
Let us apply the second unitary transformation:

1000 1000 100 0

« looo01 0001| [o10 0
hos? = 10010 %|0010]=|00-10 | (16)

0100 0100 000 —1

The final equation is

[E27p27m27%§himl|0”q](/4) =0. (17)
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In the physical sense this implies the mass splitting for a Dirac particle over the
non-commutative space mj, = +v'm?+ 6. This procedure may be attractive for
explaining the mass creation and mass splitting for fermions.
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Quantum cosmology with k-Essence theory

C.R. Almeida, J.C. Fabris, F. Sbisa, Y. Tavakoli

Abstract A class of k-Essence cosmological models, with a power law kinetic term,
is quantised in the mini-superspace. It is shown that for a specific configuration,
corresponding to a pressureless fluid, a Schrodinger-type equation is obtained with
the scalar field playing the role of time. The resulting quantum scenario reveals a
bounce, the classical behaviour being recovered asymptotically.

1 Introduction

One of the main problems in the canonical quantisation of the Einstein-Hilbert La-
grangian [1-4] is the absence of a clear time coordinate [5, 6]. There are many
approaches to deal with this problem. One of them is to identify an internal pa-
rameter that can play the role of time, a procedure called deparametrisation [7].
Another one, is to introduce matter fields such that they can be identified with the
time coordinate. One example of the last procedure is to introduce a fluid with
internal degrees of freedom using, e.g., Schutz’s variables [8, 9]. In this case, the

C.R. Almeida
Departamento de Fisica, UFES, Avenida Fernando Ferrari, 514, CEP 29075-910, Vitéria, ES,
Brazil, e-mail: carlagbjj@hotmail.com

J.C. Fabris

Departamento de Fisica, UFES, Avenida Fernando Ferrari, 514, CEP 29075-910, Vitéria, ES,
Brazil and National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, Moscow 115409,
Russia, e-mail: frabris@pq.cnpq.br

F. Sbisa
Departamento de Fisica, UFES, Avenida Fernando Ferrari, 514, CEP 29075-910, Vitéria, ES,
Brazil,e-mail: fulviosbisa@gmail.com

Y. Tavakoli
Departamento de Fisica, UFES, Avenida Fernando Ferrari, 514, CEP 29075-910, Vitéria, ES,
Brazil.e-mail: tavakoli@cosmo-ufes.org

© Springer International Publishing AG 2017 171
S. Duarte et al. (eds.), Physical and Mathematical Aspects of Symmetries,
https://doi.org/10.1007/978-3-319-69164-0_25


mailto:carlagbjj@hotmail.com
mailto:frabris@pq.cnpq.br
mailto:fulviosbisa@gmail.com
mailto:tavakoli@cosmo-ufes.org

172 C.R. Almeida, J.C. Fabris, F. Sbisa, Y. Tavakoli

quantisation of the Einstein-Hilbert action coupled to a fluid in the mini-superspace
leads to a Schrodinger-like equation, where the time coordinate is related to the
conjugated momentum of the fluid variables, which appears linearly in the Hamilto-
nian [10-13]. The connection of the fluid variables with a time coordinate through
Schutz’s variable has been studied extensively in the literature. One interesting re-
sult is that the initial cosmological singularity is replaced by a bounce, and classical
solutions are recovered asymptotically [12, 13]. This scenario is consistent with the
general belief that quantum effects must be important in the primordial universe,
while our present universe is essentially classical.

Among the different proposals found in the literature to describe an accelerated
phase of expansion of the universe, the k-Essence theories [14—16] have a very
particular position. Conceived initially to describe the inflationary universe, the k-
Essence theories have been used also to describe the present phase of accelerated
expansion. This class of theories considers a non-canonical kinetic term instead of
a self-interacting scalar field. In some cases, the k-essence behaviour can be recov-
ered from an effective string action, as it happens with the DBI action [17]. In a
cosmological context, one of the characteristics of these theories is that, under some
hypothesis, they can reproduce a fluid dynamics at the background and perturbative
levels [18,19]. This is particularly true for the a kinetic power law expression, which
can reproduce a linear relation between pressure and density p = wp, and the speed
of sound for the adiabatic perturbations of the fluid.

In this paper we will investigate the possibility of obtaining a time variable, in
a way similar to the employment of Schutz’s variables, using a power law non-
canonical kinetic term. We will show that this is possible in a very special circum-
stance, which corresponds to a pressureless fluid. We will obtain a Schrodinger type
equation, which will allow us to compute the expectation value for the scale factor,
which reveals a bouncing universe in the same way as it occurs using the Schutz
variables.

2 A k-Essence quantum model

The general k-Essence action can be written as!

= / axt =g {R—1xX)+v(0))}. (1)

where g = detgyy, and f(X) is an arbitrary function of the kinetic term X = ¢.,¢*"
and V(¢) is a potential term. If f(X) = X, the usual minimally coupled system
gravity-self interacting scalar field is recovered.

In what follows we will concentrate on the power law k-Essence model, for which
f(X) = €X", where n is a real number, and € = 1. With the introduction of € the

! 'We use the signature (+— ——) and the following convention for the Ricci tensor: Ryv = apl"”p v—
NIy + LIS, — il
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possibility of a phantom configuration is taken into account. The usual gravity-scalar
field system corresponds to n = 1, € = 1. Moreover, we will consider V(¢) = 0. In
this case, a cosmological fluid scenario with p = wp and @ = constant is reproduced
by the k-Essence model provided that

o — 1
T 2n—1'

@

This particular k-Essence class of theories has been recently investigated in the con-
text of static spherically symmetric configurations, revealing some very peculiar
new structures [20].

Let us consider the flat, homogenous and isotropic Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric defined by

ds®> = N(t)%di* — a(1)?[dx* + dy* + d, 3)

where N(¢) is the lapse function. With this metric, the action (1), after integrating
by parts and discarding total derivatives, reduces to

S = /dt{;aza—eawl‘”qiz"}. (4)

In order to have analyticity, we will consider ¢ positive, but it is possible to extend
the results for the whole real line. The corresponding conjugate momenta for the
scale factor a and the field ¢ are

T, = %ad , Ty =—2nea’ N>, Q)
In expressing ¢ in terms of Ty we must invert the relation above. For n = 2k, k is
a natural number such that k # 0, the radicand must be positive (¢ = —1); for n =
2k + 1, the radicand does not need to be positive, but analyticity is lost at the origin
7y = 0. In spite of this, we will proceed in a general way since the configurations
that interest us imply different conditions on n. The Hamiltonian reads H = NJZ,
where

1 ) 2n

_ 77[7 _ _ 377’% @ 2n—1
H = g +(2n—1)(—¢€a’)2 1(2}1) . ©)

If n — oo, the conjugated momentum associated to ¢ appears linearly in the Hamil-
tonian, so that ¢ can play the role of time.

3 The case n — =

In the limit n — oo, the Hamiltonian takes the form
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= ——2+4m. 7
a—|—¢ @)

A very important remark is that even if the Hamiltonian is well defined in the limit
n — oo, the Lagrangian is not well defined. After the redefinition 2% — @, the corre-
sponding Schrodinger equation, with 2 = 1, reads

—83'%’—%8a'f’:ai8¢‘ll, 8)

where we have introduced a factor ordering g. This is essentially the same equation
found in reference [13] with the Schutz formalism. In what follows we will consider
g = 1. In this case, it is possible to show that the effective Hamiltonian is self-
adjoint [21]. Other choices for g could be used without changing in an essential way
the final results.

The effective Hamiltonian represented by the terms on the left-hand side of (8)
is symmetric (or, hermitian) if a non-trivial measure is introduced in computing the
scalar product:

(0.y) = /0 ¢* wa*da. )

Let us consider a stationary state, such that ¥(a,¢) = @(a)e E?. Then, the
Schrodinger equation (8) takes the form

1
D+ -9, P+aEP =0. (10)
a

It is not difficult to show, using a non-trivial measure of the scalar product, that
the energy is positive, E > 0, which is important for the stability of the system.
Changing to the variable x = a3 and identifying %E — E, we end up with Bessel’s
equation, with the solution

¥(a,0) = A(E)Jo(Ead)e =, (11)

where A(E) is a weight factor, and we have discarded the second solution of the
Bessel equation, corresponding to the Neumann function, since it is divergent at the
origin.

The solution (11) may lead to a non-singular cosmological scenario as in ref-
erence [13]. In fact, let us consider the wavepacket constructed with the following
superposition [22]:

* 1 __ &
¥(a) = /0 ye ® Jo(ya)dy = We Areio), (12)

where y = VE and oo = y+ i, with 7 > 0. Now, we can calculate the expectation
value for the scale factor, considering ¢ as the corresponding time variable. The
expectation value is
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(a)g = / Pa¥a’da = C(7 +9)°. (13)
0

where C > 0 is a constant. This implies a bouncing universe, with no singularity,
since (a)y > Cyz/ 3. Furthermore, asymptotically (that is when ¢ — o) we have
(a)g o< 95

We can easily verify that the corresponding classical cosmological scenario is
recovered asymptotically. Using the FLRW, we find the differential equations (by
fixing the cosmic time, such that N = 1):

N\ 2
(“) _ (2”6* 1)£¢2n R (14)

a

where K is an integration constant. Hence, we have the following equation for the
scale factor:

a 2 — 6n
3() = Ra 2T =: p,, (15)

a

where K is a combination of the previous constants. A general solution can be easily
obtained:

2n—1 n—1

aoct I ot o, (16)
In the limit n — oo, the solutions read
2

aocti | (ot a7

The last relation confirms the previous statement that ¢ plays essentially the role of
time in the limit n — o. Moreover, in this limit, the scale factor behaves as in a dust
dominated universe. We have classically the relation a o< q)%, which agrees with
the relation found asymptotically in the quantum model.

4 Conclusions

In this paper we have studied a quantum model in the mini-superspace from a class
of k-Essence cosmology based on a power law kinetic term X", where X is the usual
expression for the kinetic term of a scalar field. We found that the momentum for
the scalar field appears linearly in the Hamiltonian in the limit 7 — oo. In this case,
the scalar field may play the role of a time variable. The corresponding quantum
scenario has been worked out, leading to a bounce universe, which recovers clas-
sical behaviour asymptotically. The case n — oo leads, at the classical level, to a
cosmological model equivalent to that obtained by a pressureless fluid matter com-

. 2 . . . .
ponent, with a o< ¢3. A clear identification of the scalar field as the time component
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is possible only in this special case. The canonical transformation allowing the iden-
tification of scalar field as a time component seems only well defined for that limit,
otherwise we must face problems with fractional derivatives which may imply loos-
ing the notion of locality. The fact that only the case corresponding to a pressureless
fluid leads to a possible identification of the scalar field with a time variable evokes
previous proposals that a pressureless fluid may allow recovery of the notion of a
time variable in cosmology [23,24].

It must be remarked, however, that strictly speaking, a pressureless fluid is an
idealisation, since no real fluid has zero pressure exactly. In some sense, maybe
such an aspect of the problem is related to the curious properties of the original k-
Essence model developed here in the limit n — oo, with a well-defined Hamiltonian,
but with no Lagrangian. The possible deep meaning of such a limit process remains
an open problem.
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Troubles with the radiation reaction in
electrodynamics

Sofiane Faci, José A. Helayel-Neto and V. H. Satheeshkumar

Abstract The dynamics of a radiating charge is one of the oldest unsettled prob-
lems in classical physics. The standard Lorentz-Abraham-Dirac (LAD) equation of
motion is known to suffer from several pathologies and ambiguities. This paper
briefly reviews these issues, and reports on a new model that fixes these difficulties
in a natural way. This model is based on a hypothesis that there is an infinitesimal
time delay between action and reaction. This can be related to Feynman’s regu-
larization scheme, leading to a quasi-local QED with a natural UV cutoff, hence
without the need for renormalization as the divergences are absent. Besides leading
to a pathology-free equation of motion, the new model predicts a modification of
the Larmor formula that is testable with current and near future ultra-intense lasers.

1 Introduction

The problem of electromagnetic radiation reaction goes back to the end of the nine-
teenth century [1]. This history is long, rich and also particularly surprising given
the simplicity of the problem at first sight. The standard Lorentz-invariant equa-
tion of motion of a radiating charged particle is given by the LAD equation. It is
well-known that this equation is plagued by several pathologies and ambiguities.
Although these have cast doubt on the foundations of classical electrodynamics,
they were long considered harmless for all practical purposes. However, the recent
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advances in ultra-intense laser technology [2—4] and related sophisticated numerical
simulations [5, 6] have renewed interest in this problem.
The LAD equation reads

mzt =Fl, +Fh . (1

where FY, is the exterior Lorentz force, and Fr’"al 4 18 the radiation damping force
given by
2.
Frog =me(ZH +2224), &)

with € = % and Z# = dd—;z“ being the acceleration; z* = z"(7) are the coordinates
of the charge given as functions of the proper time 7. We use unitsc=k=a=1 (k
is Coulomb’s constant) and the spacetime is flat with signature (+, — — —). The first
term on the r.h.s. of the Eq. (2) is the so-called Schott term, and the second is the
Larmor term. This is because Larmor’s formula for the radiated four-momentum is
given by

SPF = _—meF it 3)

Larmor —

Up to the current experimental precision, this formula correctly describes the ob-
served radiated energy not only in everyday devices like cellphones and WiFi spots,
but also in sophisticated cyclotrons and synchrotrons.

2 LAD equation: pathologies and ambiguities

In this section, we give a brief review of the two pathologies and three ambiguities
of the LAD equation.

Self-acceleration or runaway. This pathology can be inferred from the non-
relativistic limit of the LAD equation, ma = f4 me a. For simplicity let us consider
f = 0; the solution reads a(t) = a,exp(et), which is divergent for non-vanishing
initial acceleration. There have been several attempts to fix this pathology, among
which the most notable is certainly the Landau-Lifshitz equation [7]. This involves
rewriting LAD equation (1) in a perturbative way and linking explicitly the radiation
force (2) to the external forces; this is known as order reduction. Its non-relativistic
limit reads ma = fex; + € fex¢ + higher orders. This equation is obviously free of
runaway solutions but suffers from the remaining problems of the LAD equation.
Moreover, since the perturbation parameter is given by f/f, the Landau-Lifshitz
model is limited to slowly varying external forces. One can also mention the simi-
lar and familiar equation of Ford and O’Connell where no divergencies appear [8].
Another attempt came from Rohrlich whose solution has the peculiarity of worsen-
ing the pre-acceleration behaviour since the charge needs to know the whole future
history of the external force to adapt its acceleration [9].

Pre-acceleration. The charge’s acceleration always precedes the external force,
ma(t — €) ~ f(r), leading to causality violation. There have been not many at-
tempts at fixing this pathology. Since it is characterised by the infinitesimal time
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£ 10’23s, it is believed that there could be no classical resolution. Quantum me-
chanics is required to go further even though it is not well suited to describe motion'.
The first to implement this program were Moniz and Sharp who used the Heisen-
berg picture and standard perturbative theory [11]. The pre-acceleration pathology
is avoided by introducing a cutoff that corresponds to the Compton scale, A = 137¢
(recall that ¢ = 1). This comes as no surprise since the cutoff is much bigger than
the pathology typical scale. More recent developments include the work of Higuchi
and Martin who take into consideration the full relativistic QED [12]. Unfortunately
they recover the LAD equation and its associated pathologies in the classical limit.

Time-reversible or not. One might argue that the time-irreversible character of
the LAD equation is obvious due to the presence of the Schott term, o< Z*, in-
deed, every odd-order time-derivative of the position being irreversible. However,
some authors believe that classical electrodynamics should be time reversible and
sometimes prefer to rewrite the radiation force (2) in an integro-differential form to
hide the Schott term [13]. Rohrlich has argued that the LAD equation is reversible
provided that the retarded fields are replaced with advanced ones [14], but the ra-
diation process, as a whole, is irreversible for nature preferring retarded instead of
advanced fields [15]. Rovelli refuted the argument stating that time reversal should
also interchange cause and effect [16].

Uniform acceleration. The problems with the LAD equation become evident
when considering uniform acceleration. Instead of leading to trivial results, as one
would expect, it raises more questions. Indeed it is not clear why there is no radiation
damping and the very origin of the radiated energy is mysterious in this case [17].
In addition, this might give rise to a conflict with the Equivalence Principle which
locally equates acceleration and gravitational field. A free (unbound) charge on earth
would emit energy forever, which does not seem to happen. This is so troublesome
that Feynman claimed there could be no radiation in this case and commented that
the dependence of Larmor’s formula on the acceleration (instead of its variation) has
led us astray [18]. Since then an intense work has been devoted to this problem, see
[19] and references therein. The accepted resolution, due to Boulware [20], asserts
that a uniformly accelerated charge does radiate, but such a radiation cannot be
detected by a comoving observer because it falls outside of his (or her) future cone.

Energy balance paradox. There is a systematic energy balance discrepancy in
the LAD equation. Indeed, it is not possible to relate the work done against the radi-
ation reaction force and the radiated energy-momentum. In other words, the Larmor
formula cannot be recovered from the LAD equation. This is evident for uniform ac-
celeration, as discussed in the previous paragraph, but is not limited to this particular
case. This energy balance paradox was recently revealed in [21] where it was also
shown that the widely accepted treatment based on the bound field technique cannot
fix this discrepancy. The underlying reason is that the momentum defined by Schott
and later by Teitelboim is not a legitimate four-momentum for being indefinite and
non-conserved.

1t is possible to infer the equation of motion from non-relativistic QM as a limit for averaged
operators using the Ehrenfest theorem but we do not know exactly how to describe the motion of
radiating charges in this framework [10].
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3 Time-delayed electrodynamics

In this section, we discuss a recently proposed model for the motion of a classical
charge which appears to fix the above difficulties [25]. This model is based on the
hypothesis of an infinitesimal time-delay between the action of an external elec-
tromagnetic field and the inertial reaction of elementary charges. The time-delay is
given by € = 2¢%/(3m) which is of order 107235 for an electron®. This corresponds
to 2/3 the time that it takes light to cross the classical radius of the electron. The
infinitesimal delay parameter € should be seen as a scalar with dimension of time
(or distance if multiplied by c¢). Hence € is Lorentz-invariant and is thus observer-
independent. Note that no particular assumptions are required with respect to the
structure, shape or size of the electron. In particular the problems related to the rigid
spherical electron do not apply to this model. The new equation of motion reads

=3

Ful®) —mzu (1) = m ‘SZ(T,E)H —m|Y %z,ﬁ“m(r) : )

where 8%(7,€) =z(t+¢€) —%(7), |82(7, &) | = s 62(1, &), with s = sign(8%(7,€)).
This guarantees that energy flux goes from the external force f to the kinetic sec-
tor Z when the acceleration is positive and the opposite for negative acceleration.
The projector on the hyperplane X(t) orthogonal to the charge worldline (i.e.,
to z*) at instant 7 is denoted L;y= Nuy— ||gv With |[gv= Zy 2y being the paral-
lel projector on the worldline. This is needed for consistency since fy,(7) € Z(7)
while Z, (74 €) € (7 + €), the two hyperplanes being not parallel, except for in-
ertial motion. It is important to remark that 67(7,€) can be equivalently replaced
by 8f(t,€) = f(t) — f(t — €) in this equation (and throughout the text) provided
the external field is far below the Schwinger critical limit, E, = m; (linear electro-
dynamics) and the frequency under the limit €~! (electron-positron pair creation).
Both limits are far above current experimental capabilities [24]. Within these limits,
and up to the first-order expansion in terms of €, equation (4) reduces to

mZy (t) = fu(t) —sme zﬁ +o0(€?), 35)

with now s = sign(Z%). This is the LAD equation (1) when %7 < 0, implying
s = —1, which corresponds for example to circular motion (cyclotron and syn-
chrotron). For %+ > 0 the radiation force has an opposite sign in comparison with
the LAD equation and this, in principle, is experimentally testable. That is, the pre-
acceleration behaviour appears only when 7'~ < 0, and one has a post-acceleration

2 This is comparable to the observed time delay in the photoelectric effect by atoms and molecules.
Indeed, the recent advances in the so-called attosecond chronoscopy have raised fundamental
questions and generated an intense theoretical and experimental activity. This was predicted by
Wigner [23] and confirmed by direct observations. Time scales vary around 10~'8s for small atoms
and molecules. A recent proposal has demonstrated the technical possibility of reaching precision
of 10~2!s by using high harmonic x-ray pulses generated with midinfrared lasers [22]. Hence the
time shift attributed to the electron will be soon within the range of experimental capabilities.
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for 7> > 0. Hence pre-acceleration is not systematic and consequently not prob-
lematic. Note also that the time-irreversal character of equation (4) is evident since
even and odd high-order terms in the expansion series do not transform equally un-
der time reversal. As for the radiated energy-momentum, it is given by the parallel
projection

5P, = mz(r.e)l =m ¥ & gy, ©)

rad ’ = n! H

Like the equation of motion (1), this formula is clearly time-irreversible. The first
term of the expansion corresponds to Larmor formula (3). The higher-order terms
are new and might drastically change the behaviour of radiating charges in the
case of rapidly changing external forces, as in high-frequency lasers experiments.
The acceleration vector being spacelike, the Larmor term is evidently positive.
The odd higher-order terms are shown to be positive in [25]. The even derivative
terms have an indefinite sign and are time-reversible. However, within the valid-
ity limit of the model, the dominant term is the Larmor term and so the radi-
ated momentum is always positive and forward oriented. In addition, performing
a motion back and forth results in a null momentum coming from even terms.
Furthermore, using the identity 8%(7,€)? = (8%(t,€)%)? + (8%(t,€)l)2, together
with equations (4) and (6), defining the total momentum flux (between the in-
stants 7 and 7+ €) as 8P%,(t) = m&%(t,€) and the internal momentum flux as
8Pl (1) = f*(t) — mz* (1), one obtains

8P, =8Py, + 8Py, ™

This formula stands for energy-momentum conservation. It says that the total mo-
mentum, 8P, is split into an internal flux 6P, which flows between the kinetic
and potential sectors, and an external flux 0 P44, which is dissipated. Moreover since
it involves scalar quantities, the relation (7) is frame-independent.

Let us now apply the above formula to a simple and testable example related to
the ultra-high intense laser experiments. In particular, we consider a nonrelativistic
electron interacting with a monochromatic plane wave laser of frequency @ and
intensity [ = ﬁEoz, where E, stands for the mean value of the electric field. The
equation of motion is given by (5) with s = —1 (this is a cyclic motion) while the
radiated power (6) yields

8Praq = SPLarmor|1 + é(ea))2 +o(ew)?], 8)

where 8P ymor = mea® = %18 comes out of Larmor’s formula (3). Hence the
new formula predicts a higher amount of radiated energy. The excess radiated power
depends linearly on the intensity of the laser /, and non-linearly on its frequency, @.
Consequently one can remain well below the Schwinger and £~! limits (which limit
the validity of the present model) while the experimental conditions for testing the
predicted deviation from Larmor’s formula are guaranteed, which is more easily
attained by increasing the laser frequency.
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4 Summary

In this paper, we have attempted to fix many pathologies of the LAD equation de-
scribing the motion of a radiating charge. Our model is based on a hypothesis of
an infinitesimal time delay between action and reaction. Accordingly, the force and
acceleration vectors do not live on the same hyperplane orthogonal to the worldline.
The orthogonal projection of the delayed force leads to the equation of motion, a dis-
crete delay differential equation [26] whose expansion reduces to the LAD equation
at the first-order and for cyclic motion. The radiated four-momentum is extracted
from the parallel projection on the worldline of the charge, which exactly reduces to
Larmor formula at the first-order. The higher-order terms are new and experimen-
tally testable, thanks to recent advances in laser technology. One practical example
we have outlined has precise and explicit predictions. Finally, we would like to men-
tion that the time-delay € yields a quasi-local QED exhibiting a natural UV cutoff.
This might be related to Feynman’s regularization scheme [27] but with no need for
renormalization since no divergencies need to be cured.
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Gravitational “seesaw’ and light bending in
higher-derivative gravity

Antonio Accioly, Breno L. Giacchini and Ilya L. Shapiro

Abstract Local gravitational theories with more than four derivatives have remark-
able quantum properties, e.g., they are super-renormalizable and may be unitary in
the Lee-Wick sense. Therefore, it is important to explore also the IR limit of these
theories and identify observable signatures of the higher derivatives. In the present
work we study the scattering of a photon by a classical external gravitational field in
the sixth-derivative model whose propagator contains only real, simple poles. Also,
we discuss the possibility of a gravitational seesaw-like mechanism, which could
allow the makeup of a relatively small physical mass from the huge massive param-
eters of the action. If possible, this mechanism would be a way out of the Planck
suppression, affecting the gravitational deflection of low energy photons. It turns
out that the mechanism which actually occurs works only to shift heavier masses to
the further UV region. This fact may be favourable for protecting the theory from
instabilities, but makes experimental detection of higher derivatives more difficult.

1 Introduction

The