
Chapter 7
Normal Numbers and Computer Science

Verónica Becher and Olivier Carton

Abstract Émile Borel defined normality more than 100 years ago to formalize
the most basic form of randomness for real numbers. A number is normal to a
given integer base if its expansion in that base is such that all blocks of digits of
the same length occur in it with the same limiting frequency. This chapter is an
introduction to the theory of normal numbers. We present five different equivalent
formulations of normality, and we prove their equivalence in full detail. Four of
the definitions are combinatorial, and one is, in terms of finite automata, analogous
to the characterization of Martin-Löf randomness in terms of Turing machines. All
known examples of normal numbers have been obtained by constructions. We show
three constructions of numbers that are normal to a given base and two constructions
of numbers that are normal to all integer bases. We also prove Agafonov’s theorem
that establishes that a number is normal to a given base exactly when its expansion
in that base is such that every subsequence selected by a finite automaton is also
normal.

7.1 Introduction

Flip a coin a large number of times, and roughly half of the flips will come up heads
and half will come up tails. Normality makes analogous assertions about the digits
in the expansion of a real number. Precisely, let b be an integer greater than or equal
to 2. A real number is normal to base b if each of the digits 0; : : : ; b � 1 occurs in
its expansion with the same asymptotic frequency 1=b, each of the blocks of two
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digits occurs with frequency 1=b2, each of the blocks of three digits occurs with
frequency 1=b3, and so on, for every block length. A number is absolutely normal
if it is normal to every base. Émile Borel [99] defined normality more than 100
years ago to formalize the most basic form of randomness for real numbers. Many
of his questions are still open, such as whether any of �; e, or

p
2 is normal in some

base, as well as his conjecture that the irrational algebraic numbers are absolutely
normal [100].

In this chapter, we give an introduction to the theory of normal numbers. We start
by considering five different equivalent formulations of normality, and we prove
their equivalence in full detail. These proofs have not appeared all together in the
literature before. Four of the definitions are combinatorial, and one is, in terms of
finite automata, analogous to the characterization of Martin-Löf randomness [198]
in terms of Turing machines. This characterization of normality holds for various
enrichments of finite automata [57, 131], but the relation with deterministic push-
down automata remains unsolved. We also briefly mention another well-known
equivalent definition of normality, in terms of uniform distribution modulo 1, that
will be further considered in Chapter 8.

All known examples of normal numbers have been obtained by constructions.
We first focus in three selected constructions of numbers that are normal to a given
base. We then present two constructions of absolutely normal numbers, one is a
slightly simplified version of the pioneer work done by Alan Turing and the other is
a simplified version of the polynomial time algorithm in [53].

Finally we consider the problem of preserving normality by selection by finite
automata of a subsequence of a give sequence. We give the proof of Agafonov’s
theorem [6] showing that a number is normal to a given base exactly when its
expansion in that base is such that every subsequence selected by a finite automata
is also normal.

Notation Let A be finite set of symbols that we refer as the alphabet. We write
A! for the set of all infinite words in alphabet A, A� for the set of all finite words,
A�k for the set of all words of length up to k, and Ak for the set of words of length
exactly k. The length of a finite word w is denoted by jwj. The positions of finite
and infinite words are numbered starting at 1. To denote the symbol at position i of
a word w, we write wŒi�, and to denote the substring of w from position i to j, we
write wŒi : : : j�. The empty word is denoted by �.

For two words w and u, the number jwju of occurrences of u in w and the number
jjwjju of aligned occurrences of u in w are, respectively, given by

jwju D jfi W wŒi : : : i C juj � 1� D ugj;
jjwjju D jfi W wŒi : : : i C juj � 1� D u and i � 1 mod jujgj:

For example, jaaaaajaa D 4 and jjaaaaajjaa D 2. Notice that the definition of aligned
occurrences has the condition i � 1 mod juj instead of i � 0 mod juj, because
the positions are numbered starting at 1. When a word u is just a symbol, jwju and
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jjwjju coincide. Counting aligned occurrences of a word of length r over alphabet A
is the same as counting occurrences of the corresponding symbol over alphabet Ar.
Precisely, consider alphabet A, a length r, and an alphabet B with jAjr symbols. The
set of words of length r over alphabet A and the set B are isomorphic, as witnessed
by the isomorphism � W Ar ! B induced by the lexicographic order in the respective
sets. Thus, for any w 2 A� such that jwj is a multiple of r, �.w/ has length jwj=r
and �.u/ has length 1, as it is just a symbol in B. Then, for any u 2 Ar, jjwjju D
j�.w/j�.u/.

7.2 Borel’s Definition of Normality

A base is an integer greater than or equal to 2. For a real number x in the unit interval,
the expansion of x in base b is a sequence a1a2a3 : : : of integers from f0; 1; : : : ; b�1g
such that

x D
X

k�1

akb�k D 0:a1a2a3 : : :

To have a unique representation of all rational numbers, we require that expansions
do not end with a tail of b � 1. We will abuse notation, and whenever the base b is
understood, we will denote the first n digits in the expansion of x with xŒ1 : : : n�.

Definition 7.2.1 (Strong Aligned Normality, Borel [99]). A real number x is
simply normal to base b if, in the expansion of x in base b, each digit d occurs
with limiting frequency equal to 1=b,

lim
n!1

jxŒ1 : : : n�jd
n

D 1

b

A real number x is normal to base b if each of the reals x; bx; b2x; : : : are simply
normal to bases b1; b2; b3; : : :. A real x is absolutely normal if x is normal to every
integer base greater than or equal to 2.

Theorem 7.2.2 (Borel [99]). Almost all real numbers (with respect to Lebesgue
measure) are absolutely normal.

Are the usual mathematical constants, such as � , e, or
p

2, absolutely normal?
Or at least simply normal to some base? The question remains open.

Conjecture 7.2.3 (Borel [100]). Irrational algebraic numbers are absolutely nor-
mal.

The most famous example of a normal number is due to Champernowne [141].
He proved that the number

0:12345678910112131415161718192021222324252627 : : :
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is normal to base 10. The construction can be done in any base, obtaining a number
normal to that base. It is unknown whether Champernowne numbers are normal to
the bases that are multiplicatively independent to the base used in the construction.
Champernowne’s construction has been generalized in many interesting ways.
There are also some other methods to obtain examples of numbers that are normal to
a given base. In Section 7.7, we comment on the different methods, and we present
three selected constructions.

All known examples of absolutely normal numbers are given by constructions.
The oldest were not even computable. The first computable construction is due to
A. Turing [52, 570]. In Section 7.8, we give references of known constructions, and
we present two of them.

7.3 Equivalences Between Combinatorial Definitions
of Normality

Borel’s original definition of normality turned out to be redundant. Pillai in 1940,
see [118, Theorem 4.2], proved the equivalence between Definition 7.2.1 and the
following.

Definition 7.3.1 (Aligned Normality). A real number x is normal to base b if x is
simply normal to bases b1; b2; b3; : : :.

Niven and Zuckerman in 1951, see [118, Theorem 4.5], proved yet another
equivalent formulation of normality by counting occurrences of blocks but not
aligned. This formulation was stated earlier by Borel himself, without proof.

Definition 7.3.2 (Non-aligned Normality). A real number x is normal to base b if
for every block u,

lim
n!1

jxŒ1 : : : n�ju
n

D 1

bjuj :

We will prove that Definitions 7.2.1, 7.3.1 and 7.3.2 are equivalent. The following
lemma gives a central limit theorem that bounds the number of words in alphabet A
of length k having too few or too many occurrences of some block w.

Definition 7.3.3. Let A be an alphabet of b symbols. We define the set of words of
length k such that a given word w has a number of occurrences that differs from the
expected value in plus or minus "k,

Bad.A; k; w; "/ D
�

v 2 Ak W
ˇ̌
ˇ̌ jvjw

k
� b�jwj

ˇ̌
ˇ̌ � "

�
:
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Lemma 7.3.4 (Adapted from Hardy and Wright [283, proof of Theorem 148]).
Let b be an integer greater than or equal to 2, and let k be a positive integer. If
6=k � " � 1=b, then for every d 2 A,

jBad.A; k; d; "/j < 4bke�b"2k=6:

Proof. Observe that for any d 2 A,

Bad.A; k; d; "/ D
X

n�k=b�"k

 
k

n

!
.b � 1/k�n C

X

n�k=bC"k

 
k

n

!
.b � 1/k�n

Fix b and k and write N.n/ for
 

k

n

!
.b � 1/k�n:

For all n < k=b, we have that N.n/ < N.n C 1/ and the quotients

N.n/

N.n C 1/
D .n C 1/.b � 1/

k � n

decrease as n increases. Similarly, for all n > k=b, we have that N.n/ < N.n � 1/

and the quotients

N.n/

N.n � 1/
D k � n C 1

n.b � 1/

increase as n decreases. The strategy will be to “shift” each of the sums m positions.
We bound the first sum as follows. For any n we can write

N.n/ D N.n/

N.n C 1/
� N.n C 1/

N.n C 2/
� : : : � N.n C m � 1/

N.n C m/
� N.n C m/

Let

m D b"k=2c and p D bk=b � "kc
For each n such that n � p C m � 1, we have that n C m < k=b, so

N.n/

N.n C 1/
� N.p C m � 1/

N.p C m/

D .p C m/.b � 1/

k � p � m C 1

<
.k=b � "k=2/.b � 1/

k � k=b C "k=2
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D 1 � "b=2

1 � 1=b C "=2

< 1 � "b=2 .using the hypothesis " � 1=b/:

< e�b"=2:

Then,

N.n/ <
�
e�b"=2

�m
N.n C m/

� e�b"."k=2�1/=2 N.n C m/

� 2e�b"2k=4 N.n C m/; .the hypothesis " � 1=b implies eb"=2 < 2/

We obtain,

X

n�u

N.n/ < 2e�b"2k=2
X

n�u

N.n C m/ � 2 bke�b"2k=4:

We now bound the second sum, shifting it m positions. For any n we can write

N.n/ D N.n/

N.n � 1/
� N.n � 1/

N.n � 2/
� : : : � N.n � m C 1/

N.n � m/
� N.n � m/

Let

m D b"k=2c and q D dk=b C "ke:

For each n such that n � q � m C 1, we have n � m > k=b, so

N.n/

N.n � 1/
� N.q � m C 1/

N.q � m/

D k � q C m

.q � m C 1/.b � 1/

D k � dk=b C "ke C b"k=2c
.dk=b C "ke � b"k=2c C 1/.b � 1/

� k � k=b � "k=2

.k=b C "k=2 C 1/.b � 1/

<
1 � 1=b � "=2

.1=b C "=2/.b � 1/
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Now

1�1=b�"=2

.1=bC"=2/.b�1/
� 1 � b"=3

, 1 � 1=b � "=2 � .1 � b"=3/.1=b C "=2/.b � 1/

, .b � 1/=b � "=2 � .1=b C "=2/.b � 1/ � .b"=3/.1=b C "=2/.b � 1/

, .b"=3/.1=b C "=2/.b � 1/ � b"=2

, .1=b C "=2/.b � 1/ � 3=2:

Since " � 1=b, we obtain the required inequality,

.1=b C "=2/.b � 1/ � .1=b C 1=.2b//.b � 1/ D 3=.2b/.b � 1/ � 3=2

We conclude,

N.n/

N.n � 1/
� 1 � b"=3 � e�b"=3:

Then,

N.n/ <
�
e�b"=3

�m
N.n � m/

� e�b"b"k=2c=3N.n � m/

� e�b"."k=2�1/=3N.n � m/

� 2 e�b"2k=6N.n � m/; .the hypothesis " � 1=b implies eb"=3 < 2/:

Thus,

X

n�q

N.n/ < 2 bke�b"2k=6:

This completes the proof.

The next lemma bounds the number of words of k symbols in alphabet A that
contain too many or too few occurrences of some block of length `, with respect to
a toleration specified by ".

Lemma 7.3.5. Let A be an alphabet of b symbols. Let k; ` be positive integers and
" a real such that 6=bk=`c � " � 1=b`. Then,

ˇ̌
ˇ̌
ˇ̌
[

w2A`

Bad.A; k; w; "/

ˇ̌
ˇ̌
ˇ̌ < 2` bkC2` e�b`"2k=.6`/:
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Proof. Split the set f1; 2; : : : ; kg into the congruence classes modulo `. Each of
these classes contains either bk=`c or dk=`e elements. Let M0 denote the class of all
indices which leave remainder zero when being reduced modulo `. Let n0 D jM0j.

For each x in Ak, consider the word in .A`/n0

xŒi1 : : : .i1 C ` � 1/�xŒi2 : : : .i2 C ` � 1/� : : : xŒin0 : : : .in0 C ` � 1/�

for i1; : : : in0 2 M0. By Lemma 7.3.4, we have

ˇ̌
Bad.A`; n0; w; "/

ˇ̌
< 4 .b`/n0e�b`"2n0=6:

Clearly, similar estimates hold for the indices in the other residue classes. Let
n1; : : : ; n`�1 denote the cardinalities of these other residue classes. By assumption
n0 C � � � C n`�1 D k. Then,

jBad.A; k; w; "/j �
`�1X

jD0

ˇ̌
Bad.A`; nj; w; "/

ˇ̌

�
`�1X

jD0

4.b`/nj e�b`"2nj=6

�
`�1X

jD0

4.b`/k=`C1e�b`"2k=.6`/

D 4 ` bkC` e�b`"2k=.6`/:

The last inequality holds because

.b`/dk=`ee�b`"2dk=`e=6 < .b`/k=`C1e�b`"2k=.6`/

and " � 1=b` ensures

.b`/bk=`ce�b`"2bk=`c=6 � bke�b`"2k=.6`/e1=.6b`/ � bke�b`"2k=.6`/b`:

Now, summing up over all w 2 A`, we obtain

ˇ̌
ˇ̌
ˇ̌
[

w2A`

Bad.A; k; w; "/

ˇ̌
ˇ̌
ˇ̌ < 2` bkC2`e�b`"2k=.6`/ :

Instead of the factor 4, we can put the factor 2 because if a word w 2 A` occurs
fewer times than expected in a given word x 2 Ak, then there is another word v 2 A`

that occurs in x more times than expected.
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Lemma 7.3.6. Let .x1;n/n�0; .x2;n/n�0; : : : ; .xk;n/n�0 be sequences of real numbers
such that

Pk
iD1 xi;n D 1, and let c1; c2; : : : ; ck be real numbers such that

Pk
iD1 ci D

1. Then,

1. If for each i, lim infn!1 xi;n � ci then for each i, limn!1 xi;n D ci.
2. If for each i, lim supn!1 xi;n � ci then for each i, limn!1 xi;n D ci.

Proof. For any i in f1; : : : ; kg,

lim sup
n!1

xi;n D lim sup
n!1

.1 �
X

j¤i

xj;n/

D 1 C lim sup
n!1

.�
X

j¤i

xj;n/

D 1 � lim inf
n!1 .

X

j¤i

xj;n/

� 1 �
X

j¤i

lim inf
n!1 xj;n

� 1 �
X

j¤i

cj

D ci:

Since

lim inf � lim sup and lim sup
n!1

xi;n � ci � lim inf
n!1 xi;n;

necessarily,

lim inf
n!1 xi;n D lim sup

n!1
D ci and lim

n!1 xi;n D ci:

Theorem 7.3.7. Definitions 7.2.1, 7.3.1 and 7.3.2 are equivalent.

Proof. Let x be a real number. We use the fact that for every block w 2 A�,

lim
n!1

jxŒ1 : : : n�jw
n

D b�jwj

if and only if there is a positive integer r such that

lim
n!1

jxŒ1 : : : nr�jw
nr

D b�jwj:
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A similar fact is true for the limit of jjxŒ1 : : : n`�jjw=n.

1. We show that strong aligned normality implies non-aligned normality.
Observe that for any w 2 A`,

jxŒ1 : : : n�jw D
`�1X

iD0

jj.bix/Œ1 : : : n � i�jjw

Then,

lim
n!1

jxŒ1 : : : n�jw
n

D
`�1X

iD0

lim
n!1

jj.bix/Œ1 : : : n � i�jjw
n

D
`�1X

iD0

b�`=` D b�`:

2. We prove that non-aligned normality implies aligned normality. Define

jjvjjw;r D jfi W vŒi::i C jwj � 1� D w and i D r mod jwjgj:
jjvjjw;� D max

1�r�jwj
jjvjjw;r

V.w; k; "/ D fv 2 Akjwj�1 W jjvjjw;� > .k � 1/.b�jwj C "/g

Given w 2 A�, let d be corresponding digit in Ajwj, and observe that for each
v 2 V.w; k; "/, there is Qv 2 Bad.Ajwj; k � 1; d; "/ and there are words s; t 2 A�
such that jsj C jtj D jwj � 1 and v D s Qvt. Thus,

jV.w; k; "/j � jwjbjwj�1jBad.Ajwj; k � 1; d; "/j:

So by Lemma 7.3.5, for every positive real ı, there is k0 such that for every k > 0,

jV.w; k; "/j b�.kjwj�1/ < ı:

Fix ` and assume w 2 A`. Then, for any k � max.2; k0/,

lim sup
n!1

jjxŒ1 : : : n`�jjw
n

� lim sup
n!1

1

n.k � 1/`

n`�`C1X

tD1

jjxŒt : : : t C .k � 1/` C ` � 2�jjw;2�t

� lim sup
n!1

1

n.k � 1/`

n`�`C1X

tD1

jjxŒt : : : t C .k � 1/` C ` � 2�jjw;�

D lim sup
n!1

X

v2Ak`�1

jxŒ1 : : : .n C k � 1/` � 1�jv
n`

jjvjjw;�
k � 1
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�
X

v2Ak`�1

�
lim sup
n!1

jxŒ1 : : : .n C k � 1/` � 1�jv
n`

� jjvjjw;�
k � 1

D
X

v2Ak`�1

�
lim sup
n!1

jxŒ1 : : : n`�jv
n`

� jjvjjw;�
k � 1

D
X

v2Ak`�1

b�.k`�1/ jjvjjw;�
k � 1

D
X

v2Ak`�1nV.w;k;"/

b�.k`�1/ jjvjjw;�
k � 1

C
X

v2V.w;k;"/

b�.k`�1/ jjvjjw;�
k � 1

�.b�` C "/
X

v2Ak`�1nV.w;k;"/

b�.k`�1/ C
X

v2Ak`�1nV.w;k;"/

b�.k`�1/

� b�` C " C ı:

To obtain the inequality in the second line, observe that each aligned occurrence
of w in a position j` C 1, where k � 1 � j < n, is counted .k � 1/` times by
jjxŒt : : : t C k` � 2�jjw;2�t for .j C 1 � k/` C 1 � t � j` C 1.

Since the last inequality is true for any ı; " > 0, we conclude that

lim sup
n!1

jjxŒ1 : : : n`�jjw
n

� b�`:

Applying Lemma 7.3.6, we conclude,

lim
n!1

jjxŒ1 : : : n`�jjw
n

D b�jwj:

3. We prove that aligned normality implies strong aligned normality. It is sufficient
to prove that if x has aligned normality, then bx also has aligned normality. Define

U.k; w; i/ D fu 2 Ak W uŒi : : : i C jwj � 1� D wg:

Fix a positive integer `. For any w 2 A` and for any positive integer r,

lim inf
n!1

jj.bx/Œ1 : : : nr`�jjw
nr

� lim inf
n!1

1

r

r�2X

kD0

X

u2U.r`;w;2C`k/

jjxŒ1 : : : nr`�jju
n

D 1

r

r�2X

kD0

X

u2U.`r;w;2C`k/

b�r`

D r � 1

r
b�`:
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For every r, the following equality holds:

lim inf
n!1

jj.bx/Œ1 : : : n`�jjw
n

D lim inf
n!1

jj.bx/Œ1 : : : nr`�jjw
nr

:

Then, using the inequality obtained above, we have

lim inf
n!1

jj.bx/Œ1 : : : n`�jjw
n

� r � 1

r
b�`:

Since this last inequality holds for every r, we obtain,

lim inf
n!1

jj.bx/Œ1 : : : n`�jjw
n

� b�`:

Finally, this last inequality is true for every w 2 A`; hence, by Lemma 7.3.6,

lim
n!1

jj.bx/Œ1 : : : n`�jjw
n

D b�`:

7.4 Normality as a Seemingly Weaker Condition

The following result is due to Piatetski-Shapiro in 1957 [481] and was rediscovered
later by Borwein and Bailey [101] who called it the hot spot lemma. In Theo-
rem 7.4.1, we present two versions of this result, one with non-aligned occurrences
and one with aligned occurrences. The theorem has been extended relaxing the
constant C to a sublinear function; see [118] for the references.

Theorem 7.4.1. Let x be a real and let b be an integer greater than or equal to 2.
Let A D f0; : : : ; b � 1g. The following conditions are equivalent,

1. The real x is normal to base b.
2. There is a constant C such that for infinitely many lengths ` and for every w in A`

lim sup
n!1

jjxŒ1 : : : njwj�jjw
n

< C � b�jwj:

3. There is a constant C such that for infinitely many lengths ` and for every w
in A`

lim sup
n!1

jxŒ1 : : : n�jw
n

< C � b�jwj:

Proof. The implications 1 ) 2 and 1 ) 3 follow from Theorem 7.3.7.
We now prove 2 ) 1. Define,
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eBad.Ajwj; k; w; "/ D
�

v 2 Akjwj W
ˇ̌
ˇ̌ jjvjjw

k
� b�jwj

ˇ̌
ˇ̌ > "

�

Lemma 7.3.5 implies that the size of eBad.Ajwj; k; w; "/ shrinks exponentially as k
increases. Suppose there is C such that for infinitely many lengths ` and for every
w 2 A`,

lim sup
n!1

jjxŒ1 : : : n`�jjw
n

< C � b�`:

Fix ` and w 2 A`. Fix " > 0 and take k large enough.

lim inf
n!1

jjxŒ1 : : : nk`jjw
nk

D lim inf
n!1

X

v2Ak`

jjxŒ1 : : : nk`jjv
n

jjvjjw
k

� lim inf
n!1

X

v2Ak`nfBad.A`;k;w;"/

jjxŒ1 : : : nk`jjv
n

jjvjjw
k

� .1 � "/b�` lim inf
n!1

X

v2Ak`nfBad.A`;k;w;"/

jjxŒ1 : : : nk`jjv
n

D .1 � "/b�` lim inf
n!1

0

@1 �
X

v2fBad.A`;k;w;"/

jjxŒ1 : : : nk`jjv
n

1

A

D .1 � "/b�`

0

@1 � lim sup
n!1

X

v2fBad.A`;k;w;"/

jjxŒ1 : : : nk`�jjv
n

1

A

� .1 � "/b�`

0

@1 �
X

v2fBad.A`;k;w;"/

lim sup
n!1

jjxŒ1 : : : nk`�jjv
n

1

A

� .1 � "/b�`

0

@1 �
X

v2fBad.A`;k;w;"/

C � b�k`

1

A

� .1 � "/b�`.1 � C"/:

Since this is true for all " > 0,

lim inf
n!1

jjxŒ1 : : : nk`jjw
nk

� b�`:
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Finally, this last inequality is true for every w 2 A`; hence, by Lemma 7.3.6

lim
n!1

jjxŒ1 : : : n`jjw
n

D b�`:

The proof of implication 3 ) 1 is similar to 2 ) 1. Consider the set
Bad.A; w; k; "/ from Definition 7.3.3, the bound in Lemma 7.3.5, and the following
fact. Fix w of length `. Then for any n and k,

jxŒ1 : : : n�jw �1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r .jvjw C ` � 1/

jxŒ1 : : : n�jw � 1

k � ` C 1

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;rjvjw

Then,

lim
n!1

jxŒ1 : : : n�jw
n

� lim
n!1

1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r

n
.jvjw C ` � 1/

D lim
n!1

1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r

n
jvjw:

And

lim
n!1

jxŒ1 : : : n�jw
n

� lim
n!1

1

k � ` C 1

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r

n
jvjw

� lim
n!1

1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r

n
jvjw

Hence,

lim
n!1

1

k

jxŒ1 : : : n�jw
n

D lim
n!1

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r

n
jvjwD lim

n!1
1

k

X

v2Ak

jxŒ1 : : : n�jv
n

jvjw:

7.5 Normality as Incompressibility by Finite Automata

The definition of normality can be expressed as a notion of incompressibility by
finite automata with output also known as transducers. We consider nondetermin-
istic transducers. We focus on transducers that operate in real time, that is, they
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process exactly one input alphabet symbol per transition. We start with the definition
of a transducer (see Section 1.5.4 for the definition of automata without output).

Definition 7.5.1. A nondeterministic transducer is a tuple T D hQ; A; B; ı; I; Fi,
where

• Q is a finite set of states,
• A and B are the input and output alphabets, respectively,
• ı � Q � A � B� � Q is a finite transition relation,
• I 	 Q and F 	 Q are the sets of initial and final states, respectively.

A transition of such a transducer is a tuple hp; a; v; qi which is written p
ajv�!

q. A finite (respectively infinite) run is a finite (respectively infinite) sequence of
consecutive transitions,

q0

a1jv1���! q1

a2jv2���! q2 � � � qn�1

anjvn���! qn

A finite path is written q0
a1���anjv1���vn��������! qn. An infinite path is final if the state qn

is final for infinitely many integers n. In that case, the infinite run is written
q0

a1a2a3���jv1v2v3��������������! 1. An infinite run is accepting if it is final and furthermore
its first state q0 is initial. This is the classical Büchi acceptance condition. For two
infinite words x 2 A! and y 2 B! , we write T .x; y/ whenever there is an accepting
run q0

xjy�! 1 in T .

Definition 7.5.2. A transducer T is bounded-to-one if the function y 7! jfx W
T .x; y/gj is bounded.

Definition 7.5.3. An infinite word x D a1a2a3 � � � is compressible by a nondeter-
ministic transducer if it has an accepting run q0

a1jv1���! q1
a2jv2���! q2

a3jv3���! q3 � � �
satisfying

lim inf
n!1

jv1v2 � � � vnj
n

log jBj
log jAj < 1:

It follows from the results in [175, 531] that the words which are not com-
pressible by one-to-one deterministic transducers are exactly the normal words. A
direct proof of this result appears in [56]. Extensions of this characterization for
nondeterminisms and extra memory appear in [57, 131].

Theorem 7.5.4. An infinite word is normal if and only if it not compressible by a
bounded-to-one nondeterministic transducer.

We first show that a non-normal word is compressible. We show a slightly
stronger result since the transducer can be chosen deterministic and one-to-one.

Lemma 7.5.5. A non-normal infinite word is compressible by a deterministic one-
to-one transducer.
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Proof. Assume x 2 A! is not normal. Let us show that x is compressible regardless
of the choice of an output alphabet B. Since x is not normal, there is some word u0

of length k such that

lim
n!1

jjxŒ1 : : : n�jju0

n=k
¤ 1

jAjk

meaning that the limit on the left side either does not exist or it does exist but it is
different from 1=jAjk. There exists then an increasing sequence .ni/i�0 of integers
such that the limit fu D limi!1 jjxŒ1 : : : ni�jju=.ni=k/ does exists for each word u of
length k and furthermore fu0 ¤ 1=jAjk. Note that

P
u2Ak fu D 1. Let m be an integer

to be fixed later. For each word w 2 Akm, let fw be defined by fw D Qm
iD1 fui where w

is factorized w D u1 � � � um with juij D k for each 1 � i � m. Since
P

w2Akm fw D 1,
a word vw 2 B� can be associated with each word w 2 Akm such that vw ¤ vw0 for
w ¤ w0 , the set fvw W w 2 Amkg is prefix-free, and for each w 2 Akm,

jvwj � d�log fw=log jBje:

We claim that the words .vw/w2Akm can be used to construct a deterministic
transducer Tm which compresses x for m large enough. The state set Qm of Tm

is the set A<km of words of length less than km. Its initial state is the empty word �,
and all states are final. Its set Em of transitions is given by

Em D fw
aj���! wa W jwaj < kmg [ fw

ajvwa���! � W jwaj D kmg:

Let us denote by Tm.z/ the output of the transducer Tm on some finite input word z.
Suppose that the word z is factorized z D w1 � � � wnw0 where jwij D km for each
1 � i � n and jw0j < km. Note that n D bjzj=kmc. Note also that the transducer Tm

always comes back to its initial state � after reading km symbols.

jTm.z/j D
nX

iD1

jvwi j

�
nX

iD1

d� log fwi= log jBje

� jzj
km

C
nX

iD1

� log fwi= log jBj

� jzj
km

C
X

w2Akm

jjzjjw � log fw
log jBj

� jzj
km

C
X

u2Ak

jjzjju � log fu
log jBj :
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Applying this computation to the prefix z D xŒ1::n� of x gives

lim inf
n!1

jTm.xŒ1::n�/ log jBj
n log jAj � lim

i!1
jTm.xŒ1::ni�/ log jBj

ni log jAj

� log jBj
km log jAj C 1

k log jAj
X

u2Ak

fu.� log fu/:

Since at least one number fu is not equal to 1=jAjk, the sum
P

u2Ak fu.� log fu/

is strictly less than k log jAj. For m chosen large enough, we obtain that Tm

compresses x.

The following lemma is the key lemma to prove the converse.

Lemma 7.5.6. Let ` be a positive integer, and let u1; u2; u3; : : : be words of length `

over the alphabet A such that u1u2u3 � � � is simply normal to word length `. Let

C0

u1jv1���! C1

u2jv2���! C2

u3jv3���! C3 � � �

be a run where each Ci is a configuration of some kind of transducer. Assume there
is a real " > 0 and a set U 	 A` of at least .1 � "/jAj` words such that ui 2 U
implies jvij � `.1 � "/. Then,

lim inf
n!1

jv1v2 � � � vnj
n`

� .1 � "/3:

Proof. Assume words ui as in the hypothesis. By definition of normality to word
length `, let n0 be such that for every u 2 A` and for every n � n0,

jfi W 1 � i � n; ui D ugj � njAj�`.1 � "/:

Then, for every n � n0,

jv1v2 � � � vnj D
nX

iD1

jvij

�
X

1�i�n;ui2U

jvij

�
X

1�i�n;ui2U

`.1 � "/

� njAj�`.1 � "/
X

u2U

`.1 � "/

� njAj�`.1 � "/.1 � "/jAj``.1 � "/

� .1 � "/3n`:
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We now come back to the proof that normal words are not compressible by
bounded-to-one transducers.

Proof. Fix a normal infinite word x D a1a2a3 � � � , a real " > 0, a bounded-
to-one nondeterministic transducer T D hQ; A; B; ı; q0; Fi, and an accepting run
q0

a1jv1���! q1
a2jv2���! q2

a3jv3���! q3 � � � . It suffices to show that there is ` and U such that
Lemma 7.5.6 applies to this arbitrary choice of ", T , and accepting run. For each
word u 2 A�, let

hu D minfjvj W 9i; j; 0 � i � j; qi
ujv�! qjg

be the minimum number of symbols that the processing of u can contribute to the
output in the run we fixed. Let

U` D fu 2 A` W hu � .1 � "/`g
be the set of words of length ` with relatively large contribution to the output. Let
t be such that T is t-to-one. For each length `, pair of states p; q that appear in the
run, and for each word v, consider the set

U0 D fu 2 A` W p
ujv�! qg:

Since p and q appear in the run, let q0
u0jv0���! p be a prefix of the run and q

x0jy0���! 1 be
a suffix of the run. This implies q

x0jy0���! 1 goes infinitely often through an accepting
state. Thus, for different u1; u2 2 U0, there are accepting runs q0

u0u1x0jv0vy0�������!
1 and q0

u0u2x0jv0vy0�������! 1, from which it follows that T .u0u1x0; v0vy0/ and
T .u0u2x0; v0vy0/. Therefore, by definition of t, jU0j � t.

jfu 2 A` W p
ujv�! qgj � t:

Thus,

jU`j � jAj` � jQj2tjBj.1�"/`C1:

Fix ` such that jU`j > jAj`.1 � "/ and apply Lemma 7.5.6 with U D U` to the
considered run. This completes the proof.

7.6 Normality as Uniform Distribution Modulo 1

Let .xj/j�1 be a sequence of real numbers in the unit interval. The discrepancy of the
N first elements is

DN..xj/j�1/ D sup
0�u<v�1

ˇ̌
ˇ̌ jfj W 1 � j � N and u � xj � vgj

N
� .v � u/

ˇ̌
ˇ̌ :
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The sequence .xj/j�1 is uniformly distributed in the unit interval if

lim
N!1 DN..xj/j�1/ D 0:

Schmidt [530] proved that for every sequence .xj/j�1 of reals in the unit interval,
there are infinitely many Ns such that

DN..xj/j�1/ � log N

100 N
:

There are sequences that achieve this lower bound, see [199].
Normality can be expressed in terms of uniform distribution modulo 1.

Theorem 7.6.1 (Wall 1949 [578]). A real number x is normal to base b if and only
if the sequence .bjx/j�0 is uniformly distributed modulo 1.

The discrepancy modulo 1 of the sequence .bjx/j�0 gives the speed of conver-
gence to normality to base b. Gál and Gál [236] and Philipp [480] proved that for
almost all real numbers x, the discrepancy modulo 1 of the sequence .bjx/j�0 is
essentially the same and it obeys the law of iterated logarithm up to a constant
factor that depends on b. Fukuyama [233] obtained the precise constant factor.

For a real number x, we write fxg D x � bxc to denote the fractional part of x.

Theorem 7.6.2 (Fukuyama 2008 [233]). For every real � > 1, there is a constant
C� such that for almost all real numbers x (with respect to Lebesgue measure),

lim sup
N!1

DN.f� jxgj�0/
p

Np
log log N

D C� :

For instance, in case � is an integer greater than or equal to 2,

C� D
8
<

:

p
84=9; if � D 2p
2.� C 1/=.� � 1/=2; if � is oddp
2.� C 1/�.� � 2/=.� � 1/3=2; if � � 4 is even:

It remains an open problem to establish the minimal discrepancy that can be
achieved by a sequence .fbjxg/j�0 for some x.

The formulation of normality in terms of uniform distribution modulo 1 has
been used in constructions of numbers that are normal to one base and not normal
to another, where analytic tools come into play by way of Weyl’s criterion of
equidistribution [118, 364]. We give some references in Section 7.8.
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7.7 Constructions of Numbers That Are Normal
to a Given Base

Copeland and Erdős [166] generalized Champernowne’s construction [141]. They
show that for any increasing sequence of integers which does not grow too fast, the
concatenation of its terms yields the expansion of a normal number. In particular,
one can take the sequence of prime numbers. There are many other generalizations,
such as [180, 435].

Other examples of normal numbers are defined by arithmetic constructions, the
first ones are due to Stoneham [553] and Korobov [359]. For b; c be relatively prime
integers greater than 1, the real numbers

˛b;c D
1X

nD1

1

cnbcn

are normal to base b. Bailey and Borwein [31] showed that ˛2;3 is normal to base 2

but not to base 6. Noticeably, for any given integer base b, Levin [376] gives an
arithmetic construction of a real number x, subtler than the series for ˛b;c, such that
DN.fbnxgn�0/is in O..log N/2=N/. This is the lowest discrepancy obtained so far,
and it is close to the lower bound of O.log.N/=N/ proved by Schmidt for arbitrary
sequences (see Section 7.6 above). It is an open question whether there exists a real x
for which DN.fbnxgn�0/ reaches Schmidt’s general lower bound.

Yet there is a very different kind of construction of expansions of normal
numbers, based on combinatorics on words, specifically on de Bruijn words. This is
due to Ugalde in [571].

In all the cases, the constructions have the form of an algorithm or can be
turned into an algorithm. Recall that a real number x is computable if there is an
algorithm that produces the expansion of x in some base, one digit after the other.
The algorithm computes in linear time or has linear time complexity if it produces
the first n digits in the expansion of x after performing a number of operations that
is linear in n. Similarly, we consider polynomial, exponential, or hyper-exponential
complexity. Algorithms with exponential complexity cannot run in human time,
but algorithms with sub-exponential complexity can. In this monograph we analyze
the computational complexity by counting the number of mathematical operations
required to output the first k digits of the expansion of the computed number in
a designated base. Thus, we do not count how many elementary operations are
implied by each of the mathematical operations, which means that we neglect the
computational cost of performing arithmetical operations with arbitrary precision.

In this section we present three constructions of real numbers that are insured to
be normal to a given base. Since we care about the normality to just one base, we
will just construct infinite words in a given alphabet. We first present the simplest
possible construction à la Champernowne. Then we present Ugalde’s construction,
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and we give a much simpler proof than the one in [571]. Finally we present a subtle
construction of a normal word which has a self-similarity condition: the whole
infinite word is identical to its subsequence at the even positions. This result is due
to Becher, Carton, and Heiber (see [50, Theorem 4.2]).

7.7.1 À la Champernowne

Theorem 7.7.1. Let A be an alphabet. Let wj be the concatenation of all words over
A of length j, in lexicographic order. The infinite word w D w1w2w3 : : : is normal to
alphabet A.

Proof. Let w D w1w2w3 : : : D a1a2 : : : where each ai is a symbol in A. Fix N and
let n be such that

nX

jD1

jjAjj � N <

nC1X

jD1

jjAjj

Let u be a block of symbols in alphabet A. The occurrences of u in the prefix
of wŒ1::N� are divided into two classes: those that are fully contained in a single
block of length i in some wi and those that overlap several blocks.

ja1a2 : : : aN ju
N

� ja1a2 : : : axnC1
ju

njAjn

� 1

njAjn

0

@
nC1X

jDjuj
.j � juj C 1/jAjj�juj C

nC1X

jD1

.juj � 1/jAjj
1

A

� .n C 1/jAj�juj

njAjn
nC1X

jD1

jAjj C juj
njAjn

nC1X

jD1

jAjj

� .n C 1/

n.jAj � 1/
jAj�juj C jujjAj2

n.jAj � 1/
:

The first term accounts for occurrences fully contained in a block and the second of
for those that overlap several blocks. It follows that

lim sup
N!1

ja1a2 : : : aN ju
N

� 2

jAj � 1
jAj�juj:

By Lemma 7.4.1, w is normal to alphabet A.
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The infinite word w can be computed very efficiently: the first N symbols can be
produced in at most O.N/ elementary operations. It is also possible to produce just
the N-th symbol of w in O.log N/ many elementary operations.

7.7.2 Infinite de Bruijn Words

See [76] for a fine presentation and history of de Bruijn words.

Definition 7.7.2 ([182, 517]). A (noncyclic) de Bruijn word of order n over alpha-
bet A is a word of length jAjn C n � 1 such that every word of length n occurs in it
exactly once.

Every de Bruijn word of order n over A with jAj � 3 can be extended to a de
Bruijn word of order n C 1. Every de Bruijn word of order n over A with jAj D 2

can not be extended to order n C 1, but it can be extended to order n C 2. See [55]
for a complete proof of this fact. This allows us to define infinite de Bruijn words,
as follows.

Definition 7.7.3. An infinite de Bruijn word w D a1a2 : : : in an alphabet of at least
three symbols is an infinite word such that, for every n, a1 : : : ajAjnCn�1 is a de Bruijn
word of order n. In case the alphabet has two symbols, an infinite de Bruijn word
w D a1a2 : : : is such that, for every odd n, a1 : : : ajAjnCn�1 is a de Bruijn word of
order n.

Ugalde [571] was the first to prove that infinite de Bruijn words are normal.

Theorem 7.7.4. Infinite de Bruijn words are normal.

Proof. In case the alphabet A has two symbols, consider instead the words in the
alphabet A0 of four symbols obtained by the morphism mapping blocks two symbols
in A to one symbol in A0, and prove normality for alphabet A0.

Suppose that the alphabet A has at least 3 symbols. Let x D a1a2 : : : be an infinite
de Bruijn word over A. Fix a word u of length ` and n > jAj` C ` � 1. Then u occurs
in a de Bruijn word of order n � ` between jAjn�` and jAjn�` C n � ` times. To
see this, observe if u occurs at a position i, for some i such that 1 � i � jAjn, then
position i is the beginning of an occurrence of a word of length n. There are exactly
jAjn�` words of length n whose first ` symbols are u. In addition, there are exactly
n � ` other positions in a de Bruijn word of order n at which a subword of length `

may start. Since x is infinite de Bruijn, by definition, for each n, a1 : : : ajAjnCn�1 is a
de Bruijn word or order n. Fix a position N, and let n be such that

jAjn C n � 1 � N < jAjnC1 C n:

Then,

ja1 : : : aN ju
N

� ja1 : : : ajAjnC1Cnju
jAjn C n � 1

� jAjnC1�` C n � `

jAjn C n � 1
� 2 jAj�`C1:
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Thus,

lim sup
N!1

ja1 : : : aN ju
N

< 2 jAj�`C1:

By Lemma 7.4.1, using C D 2 jAj, x is normal.

There is an obvious algorithm to compute an infinite de Bruijn word which, for
each n � 1, extends a Hamiltonian cycle in a de Bruijn graph of order n to an
Eulerian cycle in the same graph. This is done in time exponential in n. No efficient
algorithm is known to compute the N-th symbol of an infinite de Bruijn word
without computing the first N symbols.

7.7.3 A Normal and Self-Similar Word

For a given finite or infinite word x D a1a2a3 : : : where each ai is a symbol
in alphabet A, define even.x/ D a2a4a6 � � � and odd.x/ D a1a3a5 � � � . Thus,
x D even.x/ means that an D a2n for all n.

Theorem 7.7.5 ([50, Theorem 4.2]). There is a normal word x such that x D
even.x/.

We construct a normal word x D a1a2a3 � � � over the alphabet f0; 1g such that
a2n D an for every n. The construction can be extended to an alphabet of size k to
obtain a word a1a2a3 � � � such that akn D an for each integer n � 1.

A finite word w is called `-perfect for an integer ` � 1, if jwj is a multiple of `

and all words of length ` have the same number jwj=.`2`/ of aligned occurrences
in w.

Lemma 7.7.6. Let w be an `-perfect word such that jwj is a multiple of `22`. Then,
there exists a 2`-perfect word z of length 2jwj such that even.z/ D w.

Proof. Since jwj is a multiple of `22` and w is `-perfect, for each word u of length `,
jjwjju is a multiple of 2`. Consider a factorization of w D w1w2 � � � wr such that for
each i, jwij D `. Thus, r D jwj=`. Since w is `-perfect, for any word u of length `,
the set fi W wi D ug has cardinality r=2`. Define z of length 2jwj as z D z1z2 � � � zr

such that for each i, jzij D 2`, even.zi/ D wi and for all words u and u0 of length `,
the set fi W zi D u0 _ ug has cardinality r=22`. This latter condition is achievable
because, for each word u of length `, the set fi W even.zi/ D ug has cardinality r=2`

which is a multiple of 2`, the number of possible words u0.

Corollary 7.7.7. Let w be an `-perfect word for some even integer `. Then there
exists an `-perfect word z of length 2jwj such that even.z/ D w.
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Proof. Since w is `-perfect, it is also `=2-perfect. Furthermore, if u and v are words
of length `=2 and `, respectively, then jjwjju D 2`=2C1jjwjjv . Thus, the hypothesis of
Lemma 7.7.6 is fulfilled with `=2.

Corollary 7.7.8. There exist a sequence .wn/n�1 of words and a sequence of
positive integers .`n/n�1 such that jwnj D 2n, even.wnC1/ D wn, wn is `n-perfect
and .`n/n�1 is nondecreasing and unbounded. Furthermore, it can be assumed that
w1 D 01.

Proof. We start with w1 D 01, `1 D 1, w2 D 1001, and `2 D 1. For each n � 2,
if `n22`n divides jwnj, then `nC1 D 2`n and wnC1 is obtained by Lemma 7.7.6.
Otherwise, `nC1 D `n and wnC1 is obtained by Corollary 7.7.7. Note that the former
case happens infinitely often, so .`n/n�1 is unbounded. Also note that each `n is a
power of 2.

Proof (of Theorem 7.7.5). Let .wn/n�1 be a sequence given by Corollary 7.7.8. Let
x D 11w1w2w3 � � � We first prove that x satisfies x D even.x/. Note that xŒ2k C
1::2kC1� D wk for each k � 1 and xŒ1::2kC1� D 11w1 � � � wk. The fact that wn D
even.wnC1/ implies xŒ2n� D xŒn�, for every n � 3. The cases for n D 1 and n D 2

hold because xŒ1::4� D 1101.
We prove that x is normal. Consider an arbitrary index n0. By construction, wn0

is `n0-perfect, and for each n � n0, wn is also `n0 -perfect. For every word u of
length `n0 and for every n � n0,

jjxŒ1::2nC1�jju � jjxŒ1::2n0 �jju C jjwn0 : : : wnjju:

Then, for every N such that 2n � N < 2nC1 and n � n0,

jjxŒ1::N�jju
N=`n0

� jjxŒ1::2nC1�jju
N=`n0

� jjxŒ1::2n0 �jju C jjwn0 : : : wnjju
N=`n0

� jjxŒ1::2n0 �jju
2n=`n0

C jjwn0 : : : wnjju
2n=`n0

D jjxŒ1::2n0 �jju
2n=`n0

C .2n0 C : : : C 2n/=.`n02
`n0 /

2n=`n0

<
jjxŒ1::2n0 �jju

2n=`n0

C 2

2`n0

:

For large values of N and n such that 2n � N < 2nC1, the expression
jjxŒ1::2n0 �jju=.2n=`n0 / becomes arbitrarily small. We obtain for every word u of
length `n0 ,
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lim sup
N!1

jjxŒ1::N�jju
N=`n0

� 3 2�`n0 :

Since the choice of `n0 was arbitrary, the above inequality holds for each `n. Since
.`n/n�1 is unbounded, the hypothesis of Lemma 7.4.1 is fulfilled, with C D 3, so
we conclude that x is normal.

It is possible to compute a normal word x such that x D even.x/ in linear time.

7.8 Constructions of Absolutely Normal Numbers

The first constructions of absolutely normal numbers were given, independently,
by Lebesgue [371] and Sierpiński [547], when the theory of computing was
undeveloped. The numbers defined by these two constructions cannot be computed
because they are just determined as the infimum of a set defined by infinite unions
and intersections. The first example of a computable absolutely normal number
was given by Turing [52, 570], and, unfortunately, it has doubly exponential time
complexity. The computable reformulation of Sierpiński’s construction [51] has also
doubly exponential time complexity.

There are exponential algorithms that use analytic tools, such as Levin’s con-
struction [19, 375] of an absolutely normal number with fast convergence to
normality and Schmidt’s construction [529] of a number that is normal to all the
bases in a prescribed set but not normal to the bases in the complement, see
Theorem 7.9.3.

Some years ago, several efficient algorithms were published. Figueira and Nies
gave in [222] an algorithm based on martingales with polynomial time complexity.
Becher, Heiber, and Slaman [53] reworked Turing’s strategy and obtained an
algorithm with just above quadratic time complexity. Madritsch, Scheerer, and
Tichy [397] adapted it and obtained an efficient algorithm to compute a number
that is normal to all Pisot bases. Recently Lutz and Mayordomo [395] obtained an
algorithm based on martingales with poly-logarithmic linear time complexity.

Another aspect in constructions of absolutely normal numbers is the speed of
convergence to normality. Aistleitner et al. [8] constructed an absolutely normal
real number x, so that for every integer b greater than or equal to 2 the discrepancy
modulo 1 of the sequence .bnx/n�0 is strictly below that realized by almost all real
numbers (see Section 7.6) The construction yields an exponential algorithm that
achieves a discrepancy estimate lower than that in Levin’s work [375]. According to
Scheerer’s analysis [525], currently there are no other known constructions achiev-
ing a smaller discrepancy. The problem of the existence of an absolutely normal
number computable with polynomial complexity having fast rate of convergence to
normality remains open.

We will present two algorithms, and we will analyze their computational
complexity. We first need some notation.
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If v is a block of digits in base b, Iv denotes b-ary interval

.:v; :v C b�jvj/

Definition 7.8.1. Let x be a real in the unit interval, and let xb be its expansion in
base b. We define

�N.xb/ D max
d2f1;:::;bg

ˇ̌
ˇ̌ jxbŒ1 : : : N�jd

N
� 1

b

ˇ̌
ˇ̌ :

If w is a finite block of digits in base b, we just write �.w/ instead of �jwj.w/.

7.8.1 Turing’s Construction of Absolutely Normal Numbers

Theorem 7.8.2 (Turing 1937? [52, 570]). There is an algorithm that computes the
expansion in base 2 of an absolutely normal number y in the unit interval.

The construction is done by steps. We will use n as the step number, and we will
define the following functions of n: Nn is the number of digits looked at step n, bn

is the largest base considered at step n, and "n is the maximum difference between
the expected frequency of digits and the tolerated frequency of digits at step n. It is
required that bn be nondecreasing and unbounded and "n be nonincreasing and goes
to zero. Many instantiations of these functions can work.

Definition 7.8.3. Define the following functions of n,

Nn D 2n0C2n; wheren0 D 11;

bn D blog Nnc
"n D 1=bn:

Define the following sets of real numbers,

E0 D .0; 1/; and for each n

En D
\

b2f2;::;bng
fx 2 .0; 1/ W �Nn.xb/ < "ng:

The value n0 has been selected so that the forthcoming calculations are simple.
Observe that for every n, bn � 2. Thus, for each n the set En consists of all the real
numbers whose expansion in the bases 2,3, . . . , bn exhibit good frequencies of digits
in the first Nn digits. We write � for Lebesgue measure.

Proposition 7.8.4. For each n, En is a finite union of open intervals with rational
endpoints, EnC1 � En, and �En > 1 � N2

n .
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Proof. The values of Nn and "n satisfy the hypotheses of Lemma 7.3.5 with digits
in base b (i.e., let k be Nn, let ` be 1, and let " be "n),

�fx 2 .0; 1/ W �Nn.xb/ � "ng < 2b2e�"2
nbNn=6:

Then, for bn � log Nn, " � 1= log Nn and Nn > e10 can be checked that

bnX

bD2

2b2e�"2bNn=6 < 1=N2
n :

Hence,

�En � 1 �
bnX

bD2

2b2e�"2bNn=6 � 1 � 1=N2
n :

Proposition 7.8.5. The set
T

n�0 En has positive measure and consists just of
absolutely normal numbers.

Proof. From Proposition 7.8.4 follows that
T

n�0 En has positive measure. Suppose
x 2 Tn�0 En. Then, for every n, x 2 En, so for each b D 2; 3; : : : ; bn,

�Nn.xb/ � "n:

Let b be an arbitrary base, and let M be an arbitrary position. Let n be such that

Nn � M < NnC1:

For each b smaller than bn we have that for each digit d in f0; : : : ; b � 1g,

jxbŒ1 : : : M�jd
M

<
jxbŒ1 : : : NnC1�jd

Nn
<

NnC1

Nn

�
1

b
C "nC1

�
D 4

�
1

b
C "nC1

�

jxbŒ1 : : : M�jd
M

>
jxbŒ1 : : : Nn�jd

NnC1

>
Nn

NnC1

�
1

b
� "n

�
D 1

4

�
1

b
� "n

�
:

Since "n is decreasing in n and goes to 0, we conclude that for each base b D 2; 3 : : :,

lim sup
N!1

jxbŒ1 : : : N�jd
N

< 4
1

b
:

Using the morphism that maps digits in base b` to words in base b, this is equivalent
to say that for each base b, for every length `, and for every word u of length `,

lim sup
N!1

jjxbŒ1 : : : `N�jju
N

< 4
1

b`
:
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By Theorem 7.4.1, x is normal to every base b, hence absolutely normal.

Turing’s construction selects nested binary intervals I1; I2; : : : such that, for
each n, �In D 1=2n. Each interval InC1 is either the left half or the right
half of In. The base-2 expansion of the computed number y is denoted with the
sequences y1; y2; : : : which is the trace of the left/right selection at each step. Recall
Definition 7.8.3 where the sets En are defined, for every n � 0.

Initial step, n D 0. I0 D .0; 1/, E0 D .0; 1/.

Recursive step, n > 1. Assume that in the previous step we have computed In�1:

Let I0
n be left half of In�1 and I1

n be right half of In�1.

If �
�

I0
n \Tn

jD0 Ej

	
> 1=Nn then let In D I0

n and yn D 0.

Else let In D I1
n and yn D 1.

Proof (of Theorem 7.8.2). From Algorithm 7.8.1 follows that the intervals I1; I2; : : :

are nested, and for each n, �In D 1=2n. To prove the correctness of the algorithm,
we need to prove that the following condition is invariant along every step n of the
algorithm:

�

0

@In \
n\

jD1

Ej

1

A > 0:

We prove it by induction on n. Recall Nn D 2n0C2n.
Base case n D 0.

�.I0 \ E0/ D �..0; 1// >
1

N2
0

D 1

22n0
:

Inductive case, n > 0. Assume as inductive hypothesis that

�

0

@In \
n\

jD0

Ej/

1

A >
1

Nn
:

We now show it holds for n C 1. Recall �En > 1 � 1=N2
n . Then,

�

0

@In \
nC1\

jD0

Ej

1

A D �

0

@In \
n\

jD0

Ej \ EnC1

1

A >
1

Nn
� 1

N2
nC1

>
2

NnC1

:

Since the algorithm chooses InC1 among I0
n and I1

n ensuring �.InC1 \TnC1
jD0 Ej/ >

1=NnC1, we conclude �.InC1 \TnC1
jD0 Ej/ > 1=NnC1 as required.
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Finally, since .In/n�0 is a nested sequence of intervals and �.In \Tn
jD0 Ej/ > 0,

for every n, we obtain that

\

n�0

In D
\

n�0

0

@In \
n\

jD0

Ej

1

A :

contains a unique real number y. By Lemma 7.8.5, all the elements in
T

j�0 Ej are
absolutely normal. This concludes the proof of Theorem 7.8.2.

We now bound the number of mathematical operations computed by the algo-
rithm to output the first n digits of the expansion of the computed number in a
designated base. We do not count how many elementary operations are implied by
each of the mathematical operations, which means that we neglect the computational
cost of performing arithmetical operations with arbitrary precision.

Proposition 7.8.6. Turing’s algorithm has double exponential time complexity.

Proof. At step n the algorithm computes the set In�1 \ En by computing first the set

In�1 \ En D
\

b2f2;::;bng
fx 2 In�1 \ En�1 W �Nn.xb/ < "ng

and choosing one of its halves. Then, the number of words to be examined to
compute In \ En is

.bn/Nn�Nn�1�.n�1/:

Since Nn D 2n0C2n and bn D blog Nnc, this number of words is in the order of

O
�
.2n/22n�

:

The examination of all these words requires O
�
.2n/22n�

mathematical operations.
We conclude by noticing that using the set In \En at step n the algorithm determines
the n � th binary digit of the computed number.

7.8.2 A Fast Construction of Absolutely Normal Numbers

We give a simplified version of the algorithm given by Becher, Heiber, and Slaman
in [53].

Theorem 7.8.7. There is an algorithm that computes an absolutely normal num-
ber x in nearly quadratic time completely: the first n digits in the expansion of x in
base 2 are obtained by performing O

�
n2 4

p
log n/ mathematical operations.
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The following two lemmas are not hard to prove.

Lemma 7.8.8 ([53, Lemma 3.1]). Let u and v be blocks and let " be a positive
real number.

1. If �.u/ < " and �.v/ < " then �.uv/ < ".
2. If �.u/ < ", v D a1 : : : ajvj and jvj=juj < " then �.vu/ < 2", and for every `

such that 1 � ` � jvj, �.ua1a2 : : : a`/ < 2".

Lemma 7.8.9 (Lemma 3.4 [53]). For any interval I and any base b, there is a
b-ary subinterval J such that �J � �I=.2b/.

The next two definitions are the core of the construction.

Definition 7.8.10. A t-sequence �!� is a sequence of intervals .�2; : : : ; �t/ such that
for each base b D 2; : : : ; t, �b is b-ary, for each base b D 3; : : : ; t, �b � �b�1

and ��b � ��b�1=.2b/.

Observe that the definition implies ��t � .��2/=.2ttŠ/.

Definition 7.8.11. A t-sequence �!	 D .	2; : : : ; 	t/ refines a t0-sequence �!� D
.�2; : : : ; �t0/ if t0 � t and 	b � �b for each b D 2; : : : ; t0. A refinement has
discrepancy less than " if for each b D 2; ::t0, there are words u; v such that �b D Iu,
	b D Iuv , and �.v/ < ".

We say that an interval is b-ary of order n if it is of the form

�
a

bn
;

a C 1

bn

�

for some integer a such that 0 � a < bn. If �b and 	b are b-ary intervals, and 	b 	 �b,
we say that the relative order of 	b with respect to �b is the order of 	b minus the
order of �b.

Lemma 7.8.12. Let t be an integer greater than or equal to 2, let t0 be equal to
t or to t C 1, and let " be a positive real less than 1=t. Then, any t-sequence�!� D .�2; : : : ; �t/ admits a refinement �!	 D .	2; : : : ; 	t0/ with discrepancy less
than ". The relative order of 	2 can be any integer greater than or equal to
max.6="; 24.log2 t/.log.tŠ//="2/.

Proof. First assume t0 D t. We must pick a t-sequence .	2; : : : ; 	t/ that refines
.�2; : : : ; �t/ in a zone of low discrepancy. This is possible because the measure of
the zones of large discrepancy decreases at an exponential rate in the order of the
interval. To prove the lemma, we need to determine the relative order N of 	2 such
that the measure of the union of the bad zones inside �2 for the bases b D 2; : : : t is
strictly less than the measure of the set all the possible t-ary subintervals 	t of �2.

Let L be the largest binary subinterval in �t. Consider the partition of L in 2N

binary intervals 	2 of equal length. For each 	2, apply iteratively Lemma 7.8.9 to
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define 	3; : : : ; 	tn . In this form, we have defined 2N many tn-sequences .	2; : : : 	t/.
Let S be the union of the set of all possible intervals 	t over these 2N many tn-
sequences. Hence, by the definition of t-sequence,

�S � �L=.2ttŠ/:

By Lemma 7.8.9,

�L � ��t=4:

And by the definition of t-sequence again,

��t � ��2=.2ttŠ/:

Combining inequalities we obtain,

�S � ��2=.2ttŠ 4 2ttŠ/

Now consider the bad zones inside �2. For each b D 2; : : : t, for a length N and a
real value ", consider the following set of intervals of relative order dN= log2 be with
respect to �2,

Bb;dN= log2 be;" D
[

u2f0;:::;b�1gdN= log2 be

�.u/�"

Iu:

Thus, the actual measure of the bad zones is

��2 �
� [

bD2;::;t

�Bb;dN= log2 be;"

	

Then, N must be such that

��2 �
� [

bD2;::;t

Bb;dN= log2 be;"

	
< �S:

Using Lemma 7.3.5 on the left and the inequality above for �S on the right it suffices
that N be greater than 6=" and also N be such that

2t2 � e�"2.N=3 log2 t/ <
1

2ttŠ

1

4

1

2ttŠ
:

We can take N greater than or equal to max.6="; 24.log2 t/.log.tŠ//="2/.

The case t0 D t C 1 follows easily by taking first a t-sequence �!	 refining �!�
with discrepancy less than ". Definition 7.8.11 does not require any discrepancy
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considerations for 	tC1. Take 	tC1 the largest .t C 1/-ary subinterval of 	t. By
Lemma 7.8.9, �	tC1 � .�	t/=.2.t C 1//. This completes the proof of the lemma.

The algorithm considers three functions of the step number n: tn is the maximum
base to be considered at step n, "n is the maximum discrepancy tolerated at step n,
and Nn is the number of digits in base 2 added at step n. It is required that tn be
increasing and "n be decreasing. Many instantiations of this functions can work.

The algorithm constructs �!� 0; �!� 1; �!� 2; : : : such that �!� 0 D .0; 1/, and for each
n � 1, �!� n is tn-sequence that refines �!� n�1 with discrepancy "n and such that the
order of �n;2 is Nn plus the order of �n�1;2.

Definition 7.8.13. Define the following functions of n,

tn D max.2; b 4
p

log nc/;

"n D 1=tn;

Nn D blog nc C nstart;

where nstart is the minimum integer such that it validates the condition in
Lemma 7.8.12. Thus, we require that for every positive n,

blog nc C nstart � 6="n and

blog nc C nstart � 24.log2 tn/.log.tnŠ//="2
n:

Initial step, n D 1. �!� 1 D .�2/, with �2 D .0; 1/.

Recursive step, n > 1. Assume �!� n�1 D .�2; : : : ; �tn�1 /. Take �!� n D .	2; : : : ; 	tn / the leftmost tn-
sequence such that it is refinement of �!� n�1 with discrepancy less than "n such that the relative
order of 	2 is Nn.

Proof (of Theorem 7.8.7). Consider Algorithm 7.8.2. The existence of the sequence�!� 1; �!� 2; : : : is guaranteed by Lemma 7.8.12. We have to prove that the real number
x defined by the intersection of all the intervals in the sequence is absolutely normal.
We pick a base b and show that x is simply normal to base b. Let Q" > 0. Choose n0 so
that tn0 � b and "n0 � Q"=4. At each step n after n0 the expansion of x in base b was
constructed by appending blocks un such that �.un/ < "n0 . Thus, by Lemma 7.8.8
(item 1) for any n > n0,

�.un0 : : : un/ < "n0 :

Applying Lemma 7.8.8 (item 2a), we obtain n1 such that for any n > n1

�.u1 : : : un/ < 2"n0 :
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Let N.b/
n be the relative order of 	b with respect to �b. By Lemma 7.8.9,

Nn

log2 b
� N.b/

n � Nn C 1

log2 b
C 1:

Since Nn D blog nc C nstart, Nn grows logarithmically and so does N.b/
n for each

base b. Then, for n sufficiently large,

N.b/
n � Nn C 1

log2 b
C 1 � 2"n0

n�1X

jD1

Nj

log2 b
� 2"n0

n�1X

jD1

N.b/
j :

By Lemma 7.8.8 (item 2b), we conclude that for n sufficiently large, if un D
a1 : : : ajunj, then for every ` such that 1 � ` � junj,

�`.u1 : : : un�1a1 : : : a`/ < 4"n0 < Q":

So, x is simply normal to base b for every b � 2.
We now analyze the computational complexity of the algorithm. Lemma 7.8.12

ensures the existence of the wanted t-sequence at each step n. To effectively find it,
we proceed as follows. Divide the interval �2 into

2Nn

equal binary intervals. In the worst case, for each of them, we need to check if it
allocates a tn-sequence .	2; : : : ; 	tn/ that refines .�2 : : : ; �tn�1 / with discrepancy less
than "n. Since we are just counting the number of mathematical operations ignoring
the precision, at step n the algorithm performs

O
�
2Nn tn

�

many mathematical operations. Since Nn is logarithmic in n and tn is a rational
power of log.n/, we conclude that at step n the algorithm performs

O.n 4
p

log n/

mathematical operations. Finally, in the first k steps, the algorithm will output
at least k many digits of the binary expansion of the computed number having
performed

O.k2 4
p

log k/

many mathematical operations. This completes the proof of Theorem 7.8.7.
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7.9 Normality, Non-normality, and Other Mathematical
Properties

Recall that two positive integers are multiplicatively dependent if one is a rational
power of the other. Then, 2 and 8 are dependent, but 2 and 6 are independent.

Theorem 7.9.1 (Maxfield 1953 [118]). Let b and b0 multiplicatively dependent.
For any real number x, x is normal to base b if and only if x is normal to base b0.

Theorem 7.9.2 (Cassels 1959 [135]). Almost all real numbers in the middle third
Cantor set (with respect to the uniform measure) are normal to every base which is
not a power of 3.

Theorem 7.9.3 (Schmidt 1961 [529]). For any given set S of bases closed under
multiplicative dependence, there are real numbers normal to every base in S and not
normal to any base in its complement. Furthermore, there is a real x computable
from S.

Theorem 7.9.3 was improved in [58] to obtain lack of simple normality for
the bases outside S instead of just lack of normality. Then Becher, Bugeaud, and
Slaman [49] obtained the necessary and sufficient conditions on a set S for the
existence of real numbers simply normal to every base in S and not simply normal
to any base in its complement.

Theorem 7.9.4 (Becher, Bugeaud, and Slaman [49]). Let S be a set of bases.
There is a real x that is simply normal to exactly the elements in S if and only
if

1. for each b, if bk in S then b in S,
2. if infinitely many powers of b belong to S, then all powers of b belong to S.

Moreover, the real x is computable from the set S. Furthermore, the set of real
numbers that satisfy this condition has full Hausdorff dimension.

We end the section with references on the relation of normality and Diophantine
approximations. The irrationality exponent m of a real number x reflects how well
x can be approximated by rational numbers. Precisely, it is the supremum of the set
of real numbers z for which the inequality

0 <

ˇ̌
ˇ̌x � p

q

ˇ̌
ˇ̌ <

1

qz

is satisfied by an infinite number of integer pairs .p; q/ with q > 0. Rational numbers
have irrationality exponent equal to 1. Liouville numbers are those with infinite
irrationality exponent. It follows from the fundamental work by [347] that almost all
irrational numbers (with respect to Lebesgue measure) have irrationality exponent
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equal to 2. On the other hand, it follows from the theory of continued fractions
that for every m greater than 2 or equal to infinity, there is a real number x with
irrationality exponent equal to m.

Absolute normality places no restriction on irrationality exponents of irrational
numbers. For every real number z greater than or equal to 2, there is an absolutely
normal number with irrationality exponent equal to z. This existential result
follows from Kaufman [338]. Bugeaud [117] showed there is an absolutely normal
Liouville. In both cases, existence of such real numbers follows from the existence
of a measure whose Fourier transform vanishes sufficiently quickly at infinity and
which is supported by a subset of the real numbers with the appropriate irrationality
exponent. Bugeaud’s argument employs an adaptation of Kaufman’s methods to the
set of Liouville numbers due to Bluhm [92]. Becher, Heiber, and Slaman [54] exhibit
a computable construction of an absolutely number Liouville number.

7.10 Selection

We consider the selection of symbols from an infinite word and define a word with
the selected symbols. The general problem is which forms of selection preserve
normality, that is, which families of functions f performing selection guarantee that
f .x/ is normal when x is normal. Notice that if a selection procedure is allowed to
read the symbol being decided, it would be possible to “select only zeroes” or yield
similar schemes that do not preserve normality.

We consider three forms of selection. Prefix selection looks at just the prefix of
length i � 1 to decide whether the symbol at position i is selected. Suffix selection
looks at just the suffix starting at position iC1 to decide whether symbol at position i
is selected. Two-sided selection looks at the prefix of length i � 1 and the suffix
starting at position i C 1 to decide the selection of the symbol at position i. Prefix
selection is the selection defined by Agafonov [6].

Let x D a0a1a2 � � � be an infinite word over alphabet A. Let L 	 A� be a set of
finite words over A and X 	 A! a set of infinite words over A.

The word obtained by prefix selection of x by L is x � L D ai0ai1ai2ai3 � � � where
i0; i1; i2; � � � is the enumeration in increasing order of all the integers i such that
a0a2 � � � ai�1 2 L.

The word obtained by suffix selection of x by X is x � X D ai0ai1ai2ai3 � � � where
i0; i1; i2; � � � is the enumeration in increasing order of all the integers i such that
aiC1aiC2aiC3 � � � 2 X.

Theorem 7.10.1 (Agafonov [6]). If x 2 A! is normal and L � A� is rational then
x � L is also normal.

Before giving the proof of Theorem 7.10.1, we discuss some other results.
Agafanov’s theorem can be extended to suffix selection by replacing the rational
set of finite words L by a rational set of infinite words X. The proof of this theorem
is quite technical, so we do not give it here.
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Theorem 7.10.2 ([57]). If x 2 A! is normal and X � A! is rational, then x � X is
also normal.

The prefix and suffix selections cannot be combined to preserve normality: in
general, two-sided selection does not preserve normality. For instance, selecting all
symbols surrounded by two symbols 1 in a normal word over f0; 1g always destroys
normality: the factor 11 occurs more frequently than the factor 00 in the resulting
word.

We now give three lemmas to be used in the proof of Theorem 7.10.1.

Lemma 7.10.3. For any set of finite words L, the function x 7! hx � L; x � A� n Li
is one-to-one.

Proof. Let y1 D x � L and y2 D x � A� n L. By definition, y1 contains some
symbols of x, in the same relative order, and y2 contains the complement, also in the
same relative order. It is possible to reconstruct x by interleaving appropriately the
symbols in y1 and y2. For each i � 1, the i-th symbol of x comes from y1 if and only
if the prefix of length i of x is in L. Thus, there is a unique x such that y1 D x � L
and y2 D x � A� n L.

A (deterministic) two-output transducer is like transducer, but it has two output
tapes. Each of its transitions has the form p

ajv;w���! q where a is the symbol read on
the input tape and v and w are the words written to the first and the second output
tape, respectively.

An infinite word x D a0a1a2 � � � is compressible by a two-output transducer if
there is an accepting run q0

a0jv0;w0�����! q1
a1jv1;w1�����! q2

a2jv2;w2�����! � � � that satisfies

lim inf
n!1

.jv0v2 � � � vnj C jw0w2 � � � wnj/
n C 1

log jBj
log jAj < 1:

The following lemma states that an extra output tape does not help for
compressing.

Lemma 7.10.4. An infinite word is compressible by a bounded-to-one two-output
transducer if and only if it is compressible by a bounded-to-one transducer.

Proof. The “if” part is immediate by not using one of the output tapes.
Suppose that x is compressible by the bounded-to-one two-output transducer T2.

We construct a transducer T1 with a single output tape which also compresses x.
The main idea is to merge the two outputs into the single tape without losing the
bounded-to-one assumption. Let m be an integer to be fixed later. The transducer T1

simulates T2 on the input and uses two buffers of size m to store the outputs made
by T2. Whenever one of the two buffers is full and contains m symbols, its content
is copied to the output tape of T1 with an additional symbol in front of it. This
symbol is either 0 or 1 to indicate whether the m following symbols comes from the
first or the second buffer. This trick preserves the bounded-to-one assumption. This
additional symbol for each block of size m increases the length of the output by a
factor .m C 1/=m. For m large enough, the transducer T1 also compresses x.
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Lemma 7.10.5. Let x D a0a1a2 � � � be a normal word, and let q0
a0�! q1

a1�! q2
a2�!

� � � be a run in a deterministic automaton. If the state q is visited infinitely often then
lim infn!1 jfi � n W qi D qgj=n > 0.

Proof. Let A be a deterministic automaton. For a state p and a finite word w, the
unique state q such that p

w�! q is denoted p � w.
Let q D q1; : : : ; qn be the states occurring infinitely often in the run. For 1 �

i; j len, let ui;j be a word such that qi � ui;j D qj. Let us define the sequence of words
.wk/1�k�n by w1 D � and wkC1 D wkui;1 where qkC1 � wk D qi. By definition,
qk � wk D q, and thus the finite run qi

wn�! qi � wn visits the state q for each i since wi

is a prefix of wn. Since the number of occurrences of wn in x converges to 1=jAjjwnj,
the result holds.

Proof (of Theorem 7.10.1). Let x be a normal word. Let L � A� be a rational
language. We suppose by constriction that x � L is not normal, and we show that x
can be compressed, contradicting its normality.

Let A be a deterministic automaton accepting L. This automaton can be turned
into a two-output transducer that outputs x � L and x � A� nL on its first and second
output tapes, respectively. Each transition that leaves a final state copies its input
symbol to the first output tape, and each transition that leaves a nonfinal state copies
its input symbol to the second output tape. By hypothesis, x � L is not normal and
therefore can be compressed by some deterministic transducer. Combining, these
two transducers yield a two-output transducer that compresses x. This later result
holds because, by Lemma 7.10.5, the states that select symbols from x are visited at
least linearly often. Then, by Lemma 7.10.4, x can be compressed and is not normal.
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