
Chapter 1
General Framework

Valérie Berthé and Michel Rigo

Abstract This introductory chapter briefly presents some of the main notions that
appear in the subsequent chapters of this book. We recap a few definitions and
results from combinatorics on groups and words, formal language theory, morphic
words, k-automatic and k-regular sequences, and dynamical systems. Our aim is not
to be exhaustive. The reader can consult this chapter when studying other parts of
this book.

1.1 Conventions

The set of nonnegative integers (respectively integers, rational numbers, real
numbers, and complex numbers) is written N (respectively, Z, Q, R, and C). In
particular, the set N is f0; 1; 2; : : :g. We use the notation ŒŒi; j�� for the set of integers
fi; i C 1; : : : ; jg. The floor of a real number x is bxc D supfz 2 Z j z � xg,
whereas fxg D x � bxc stands for the fractional part of x. Recall that d�e denotes
the ceiling function, i.e., dxe D inffz 2 Z j z � xg. The characteristic sequence
�X of a set X � Nd takes its values in f0; 1g and satisfies �X.n/ D 1 if and only if
n 2 X.

Let us recall the notation about asymptotics. Let f ; g W R ! R be two functions.
The definitions given below can also be applied to functions defined on another
domain like R>a, N or Z. We assume implicitly that the following notions are
defined for x ! C1. We write f 2 O.g/, if there exist two constants x0 and
C > 0 such that, for all x � x0, jf .x/j � Cjg.x/j. We also write f � g or
g � f , or else g 2 ˝.f /. Note that we can write either f 2 O.g/ or f D O.g/.
Be aware that in the literature, authors sometimes give different meanings to the
notation ˝.f /. Here we consider a bound, for all large enough x, but there exist
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2 V. Berthé and M. Rigo

variants where the bound holds only for an increasing sequence .xn/n�0 of reals,
i.e., lim supx!C1 jg.x/j=jf .x/j > 0.

If g belongs to O.f / \ ˝.f /, i.e., there exist constants x0; C1; C2 with C1; C2 > 0

such that, for all x � x0, C1jf .x/j � jg.x/j � C2jf .x/j, then we write g 2 �.f /. As
an example, the function x2 C sin 6x is in �.x2/ and x2j sin.4x/j is in O.x2/ but not
in �.x2/.

1.2 Algebraic Structures

We briefly recall the basic definitions of monoid, (semi)group, (semi)ring, field,
ideal, vector space, and module.

Definition 1.2.1. Let S be a set equipped with a single binary operation

? W S 	 S ! S :

It is convenient to call this operation a multiplication over S, and the product of
x; y 2 S is usually denoted by xy.

If this multiplication is associative, i.e., for all x; y; z 2 S, .xy/z D x.yz/, then the
algebraic structure given by the pair .S; ?/ is a semigroup.

If, moreover, multiplication has an identity element, i.e., there exists some
element 1 2 S such that, for all x 2 S, x1 D x D 1x, then .S; ?/ is a monoid.

In addition if every element x 2 S has an inverse, i.e., there exists y 2 S such
that xy D 1 D yx, then .S; ?/ is a group.

Definition 1.2.2. A semiring is a set R equipped with two binary operations C and �
such that

1. .R; C/ is a commutative monoid with identity element 0.
2. .R; �/ is a monoid with identity element 1.
3. The product is distributive with respect to the sum.
4. For all r 2 R, 0 � r D 0 D r � 0.

If, moreover, � is commutative, then the semiring is said to be commutative. A ring
is a semiring where .R; C/ is a commutative group. A field is a commutative ring
where .R; �/ is a group.

Definition 1.2.3. A (two-sided) ideal of a ring .R; C; �/ is a nonempty subset I of
R, such that .I; C/ is a subgroup of .R; C/ and for all i 2 I and all r 2 R, i � r and
r � i belong to I.

Definition 1.2.4. Let K be a field with identity element 1 for its multiplication. A
vector space over K is a set V equipped with a binary operation C W V 	 V ! V
such that .V; C/ is a commutative group and a binary operation � W K 	 V ! V such
that, for all k; ` 2 K and all x; y 2 V ,
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1. k � .` � x/ D .k`/ � x
2. 1 � x D x
3. .k C `/ � x D k � x C ` � x
4. k � .x C y/ D k � x C k � y

A K-module is similarly defined but it is built over a ring K instead of a field.

We now consider natural notions specific to group and semigroup theory (see
also Section 9.3.1 for further basic definitions on group theory and Chapter 11).

For a given property P of groups (abelian, free, nilpotent, soluble, . . . ), group G
is called virtually P if G contains a finite-index subgroup satisfying property P .
See also Definition 9.3.36 and Section 9.3.4.1 for properties of virtually free groups
such as the decidability for the word problem (Theorem 9.3.37).

Schreier graphs generalize Cayley graphs. Let G be a group generated by S
and acting on a set X, the vertices of its Schreier graph (depending on S) are the
elements of X, and there is an edge from x to y if y is the image of x under the
action of some element of S. By considering the action of the group on itself by right
multiplication, this graph coincides with its Cayley graph. See also Definition 10.3.1
and Section 11.3.

Let G be a finitely generated group with a generator system given by S D
fg1; : : : ; gmg. The length of g 2 G (with respect to S) is the smallest integer ` such
that g can be represented by a product of the form

g D g˙1
i1 � � � g˙1

i`
;

i.e., the length of the shortest decomposition of g. The growth of the group G (with
respect to S) is the map

�S W N ! N; n 7! Cardfg 2 G j dS.g/ � ng ;

where dS.g/ is the length of g with respect to S. This definition can be made
independent of S by noticing that the growths corresponding to two generating sets
are equivalent [409]. Note that a finite group has a bounded growth, an infinite
abelian group has a polynomial growth, and a non-abelian free group has an
exponential growth. The growth of a finitely generated group can also be seen as
the growth of its Cayley graph: we count the vertices which are within distance n of
the identity element. This notion is considered in Sections 10.3.4.1, 11.3.1, and 11.4.

1.3 Words

This section is intended to give basic definitions about words either finite or infinite.
Words are ubiquitous when encoding a piece of information. As an example, a finite
word over the alphabet of digits f0; : : : ; k � 1g can be seen as the k-ary expansion
of an integer. On the other hand, an infinite word over f0; 1g could be used as the
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characteristic sequence for a subset of N. For material not covered here, see the
classical Lothaire’s textbooks on finite or infinite words and their properties are
[385–387]. Also see Allouche and Shallit’s book [14] about automatic sequences
or, Queffélec’s book [488] for a dynamical point of view. For a quick overview, the
reader can have a look at the chapter [150] or the tutorial [75]. The book [504] is
also intended to serve as introductory lecture notes on the subject.

1.3.1 Finite Words

An alphabet is a finite nonempty set. Its elements are called symbols or letters.

Definition 1.3.1. A (finite) word over ˙ is a finite sequence of letters from ˙ .
The empty sequence is called the empty word and it is denoted by ". The sets of
all finite words (respectively, finite nonempty words) over ˙ are denoted by ˙�
(respectively, ˙C). A word w D w0w2 � � � wn�1 where wi 2 ˙ , 0 � i < n, can be
seen as a function w W f0; 1; : : : ; n�1g ! ˙ in which w.i/ D wi for all i. The empty
word is the word whose domain is the empty set.

Let u D u0 � � � um�1 and v D v0 � � � vn�1 be two words over ˙ . The concatenation
of u and v is the word w D w0 � � � wmCn�1 defined by wi D ui if 0 � i < m, and
wi D vi�m otherwise. We write u � v or simply uv to express the concatenation of u
and v. The concatenation (or catenation) of words is an associative operation, i.e.,
given three words u, v and w, .uv/w D u.vw/. Hence, parenthesis can be omitted. In
particular, the set ˙� (respectively, ˙C) equipped with the concatenation product
is a monoid (respectively, a semigroup).

The length of a word w, denoted by jwj, is the number of occurrences of the letters
in w. In other words, if w D w0w2 � � � wn�1 with wi 2 ˙ , 0 � i < n, then jwj D n. In
particular, the length of the empty word is zero. The set of words of length k (respec-
tively, at most k) over ˙ is denoted by ˙ k (respectively, ˙�k). For a 2 ˙ and
w 2 ˙�, we write jwja for the number of occurrences of a in w. Therefore, we have

jwj D
X

a2˙

jwja :

If u and v are two words over ˙ such that juja D jvja for all a 2 ˙ , then u is
obtained by permuting the letters of v: u and v are said to be abelian equivalent.
These are anagrams.

A word u is a factor of a word v (respectively, a prefix or a suffix), if there
exist words x and y such that v D xuy (respectively, v D uy, or v D xu). A
factor (respectively, a prefix or a suffix) u of a word v is called proper if u ¤ v

and u ¤ ". Prefixes and suffixes are sometimes called initial and terminal factors.
Thus, for example, if w D concatenation, then con is a prefix, ate is a
factor, and nation is a suffix of w. If w D w0 � � � wn and u is a factor of w such
that u D wi � � � wiCjuj�1, we say that u occurs in w at position i. For instance, in
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abbabaabbaab, the factor ab occurs at positions 0; 3; 6; 10. The set of factors of
u (respectively, of prefixes of u) is denoted by Fac.u/ (respectively, Pref.u/).

The mirror (sometimes called reversal) of a word u D u0 � � � um�1 is the word
Qu D um�1 � � � u0. It can be defined inductively on the length of the word by Q" D "

and eau D Qua for a 2 ˙ and u 2 ˙�. Notice that for u; v 2 ˙�, euv D Qv Qu. A
palindrome is a word u such that Qu D u. For instance, the palindromes of length at
most 3 in f0; 1g� are �; 0; 1; 00; 11; 000; 010; 101; 111.

1.3.2 Infinite Words

Instead of considering finite sequences of elements belonging to an alphabet ˙ ,
considering infinite sequences of elements in ˙ is also relevant.

Definition 1.3.2. An (one-sided right) infinite word is a map from N to ˙ . If w is
an infinite word, we often write

w D a0a1a2 � � � ;

where each ai 2 ˙ . The set of all infinite words of ˙ is denoted ˙! (one can also
find the notation ˙N).

Example 1.3.3. Consider the infinite word x D x0x1x2 � � � where the letters xi 2
f0; : : : ; 9g are given by the digits appearing in the usual decimal expansion of � �3,

� � 3 D
C1X

iD0

xi 10�i�1;

i.e., x D 14159265358979323846264338327950288419 � � � is an infinite word.

The notions of factor, prefix, or suffix introduced for finite words can be extended
to infinite words. Factors and prefixes are finite words, but a suffix of an infinite word
is also infinite. We still make use of the notation Fac.w/ and Pref.w/.

Definition 1.3.4. The language of the infinite word x is the set of all its factors. It
is denoted by Fac.x/. The set of factors of length n occurring in x is denoted by
Facn.x/.

Definition 1.3.5. The complexity function, or factor complexity, of an infinite word
x maps n 2 N onto the number px.n/ D Card.Facn.x// of distinct factors of length
n occurring in x.

Example 1.3.6. The Thue–Morse word t D t0t1t2 � � � (ubiquitous word encountered
in combinatorics on words [18]) can be defined over fa;bg by tn D a if and only if
there is an even number of ones in the base-2 expansion of n � 0. Otherwise stated,
if the sum of base-2 digits of n is even. Thus a prefix of t is given

abbabaabbaababbabaababbaabbabaab � � � :
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If we replace a with 1 and b with 0, then we get the characteristic sequence �E of
the set of integers whose sum of base-2 digits is even. The factor complexity of the
Thue–Morse word t is well known [107, 391]. See also [78, p. 225] where a chapter
is devoted to the factor complexity of morphic words. We have

pt.n/ D
�

4n � 2 � 2m � 4; if 2 � 2m < n � 3 � 2mI
2n C 4 � 2m � 2; if 3 � 2m < n � 4 � 2m:

Definition 1.3.7. A two-sided or bi-infinite word is a map from Z to ˙ . The set of
all bi-infinite words is denoted !˙! (one can also find the notation ˙Z).

Definition 1.3.8. An infinite word x D x0x1 � � � is (purely) periodic if there exists a
finite word u D u0 � � � uk�1 ¤ � such that x D u! , i.e., for all n � 0, we have xn D ur

where n D dk C r with r 2 f0; : : : ; k � 1g. An infinite word x is eventually periodic
(or ultimately periodic) if there exist two finite words u; v 2 ˙�, with v ¤ � such
that x D uvvv � � � D uv! . Notice that purely periodic words are special cases of
eventually periodic words. For any eventually periodic word x, there exist words
u; v of shortest length such that x D uv! , then the integer juj (respectively jvj) is
referred to as the preperiod (respectively period) of x. An infinite word is said to be
nonperiodic if it is not eventually periodic.

Let us mention the next result called Morse–Hedlund theorem.

Theorem 1.3.9. Let w be an infinite word over a finite alphabet. The word w is
eventually periodic if and only if there exists some integer N such that pw.N/ � N.

Among the nonperiodic words of low factor complexity, Sturmian words play
a special role and have been extensively studied. An infinite word x is Sturmian
if px.n/ D n C 1 for all n � 0. Note that Sturmian words are over a 2-letter
alphabet. For general references, see [386, Chapter 2] or [487, Chapter 6]. They
will be considered in Chapter 6.

Definition 1.3.10. An infinite word x is recurrent if all its factors occur infinitely
often in x. It is uniformly recurrent if it is recurrent and for every factor u of x, for
the infinite set

n
i.u/
1 < i.u/

2 < i.u/
3 < � � �

o

of positions where u occurs in x, there exists a constant Cu such that, for all j � 1,

i.u/
jC1 � i.u/

j � Cu :

Note that, by Furstenberg’s theorem, for any infinite word w, there is a uniformly
recurrent word r over the same alphabet such that every finite factor of r is a factor
of w, i.e., Fac.r/ 
 Fac.w/ (see Theorem 4.4.9).

Let x be an infinite word, the function Rx W Fac.x/ ! N [ f1g maps a factor
u of x to the smallest k such that every factor of x of length k contains u, or 1 if
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no such k exists. Otherwise stated, an infinite word x is uniformly recurrent, if for
every factor u of x, Rx is finite. The recurrence function maps n 2 N to

Rx.n/ D max
u2Ln.x/

Rx.u/ :

Otherwise stated, if x is uniformly recurrent, then for every factor of length n of x,
Rx.n/ is finite and u occurs in all factors of length Rx.n/ of x.

Assume that ˙ is totally ordered: .˙; </. Let x; y be two infinite words over ˙ .
We say that x is lexicographically less than y if there exists N such that xi D yi for
all i < N and xN < yN .

Definition 1.3.11. One can endow ˙! with a distance d defined as follows. Let
x; y be two infinite words over ˙ . Let x ^ y denote the longest common prefix of x
and y. Then the distance d is given by

d.x; y/ WD
�

0; if x D y;

2�jx^yj; otherwise:

This notion of distance extends to ˙Z. Notice that the topology on ˙! is the product
topology (of the discrete topology on ˙ ). The space ˙! is a compact Cantor set,
that is, a totally disconnected compact space without isolated points. Since ˙! is a
(complete) metric space, it is therefore relevant to speak of convergent sequences of
infinite words. The sequence .zn/n�0 of infinite words over ˙ converges to x 2 ˙! ,
if for all � > 0, there exists N 2 N such that, for all n � N, d.zn; x/ < �. To express
the fact that a sequence of finite words .wn/n�0 over ˙ converges to an infinite word
y, it is assumed that ˙ is extended with an extra letter c 62 ˙ . Any finite word wn

is replaced with the infinite word wnccc � � � , and if the sequence of infinite words
.wnccc � � � /n�0 converges to y, then the sequence .wn/n�0 is said to converge to y.

Let .un/n�0 be a sequence of nonempty finite words. If we define, for all ` � 0,
the finite word v` as the concatenation u0u1 � � � u`, then the sequence .v`/`�0 of finite
words converges to an infinite word. This latter word is said to be the concatenation
of the elements in the infinite sequence of finite words .un/n�0. In particular, for a
constant sequence un D u for all n � 0, v` D u`C1 and the concatenation of an
infinite number of copies of the finite word u is denoted by u! .

We have discussed the fact that a (finite) word u may appear as a factor of an
infinite word x. It may occur a finite number of times, infinitely often, or even in
such a way that Rx.u/ is finite. But we could also introduce the frequency of a factor
u occurring in x as the following limit, if it exists,

lim
n!C1

Card
�fi � n � juj j xi � � � xiCjuj�1 D ug�

n
:

For instance, for the infinite word w D 01 0011 0414 08 18 016116 � � � where we have
longer and longer blocks of consecutive zeroes followed by longer and longer blocks
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of ones. The frequencies of 0 and 1 do not exist. Frequency appears naturally in
the definition of normal numbers given below. See also Theorem 1.6.10 about the
frequency of symbols in automatic sequences and morphic words. Frequencies are
also considered in Chapter 5 in the framework of repetitions, and in Chapter 7 and 8
in the framework of normality.

1.3.3 Number Representations

We refer the reader to Frougny’s chapter [386] or to [227] for a general presentation
of numeration systems. The book [503] can also serve as an introduction to the
subject. We also mention the survey [36]. More details are also discussed in
Section 3.2 of this book.

Let k � 2 be an integer. Let us recall how base-k expansion of integers may be
computed. For any positive integer n, there exist ` � 0 such that k` � n < k`C1 and
unique coefficients c0; : : : ; c` 2 f0; : : : ; k � 1g such that

n D
X̀

iD0

ci ki and c` ¤ 0 :

The coefficients c`; : : : ; c0 can be computed by successive Euclidean divisions. Set
n0 WD n. We have n0 D c` k` Cn1 with n1 < k` and for i D 1; : : : ; `, ni D c`�i k`�i C
niC1 with niC1 < k`�i. The word c` � � � c0 is said to be the k-ary representation or k-
ary expansion of n (sometimes called greedy representation) and denoted by repp.n/.
If d` � � � d0 is a word over an alphabet of digits included in Z, we define

valk.d` � � � d0/ D
X̀

iD0

di ki :

If one replaces the sequence .kn/n�0 with an increasing sequence .Un/n�0 of integer
such that U0 D 1, then a similar algorithm may be applied. The corresponding
U-expansions are over the alphabet f0; : : : ; supd UnC1

Un
e � 1g. One finds the general

terminology positional numeration system. It is also possible to extend the proce-
dure to represent real numbers. Let x 2 .0; 1/. There exists a decomposition of the
form

x D
C1X

iD1

ci k�i

where ci 2 f0; : : : ; k � 1g for all i � 1. If we forbid sequences where ci D k � 1

for all large enough i, then the sequence .ci/i�1 is unique. Given x 2 Œ0; 1/, the
algorithm in Table 1.1 provides the corresponding sequence .ci/i�0 of digits.
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Table 1.1 An algorithm for
computing the base-k expansion
of x 2 Œ0; 1/.

i 0

y x

REPEAT FOREVER

ci bkyc
y fkyg
INCREMENT i

END-REPEAT.

In this algorithm, we iterate a map from the interval Œ0; 1/ onto itself, i.e.,

Tk W Œ0; 1/ ! Œ0; 1/; y 7! fkyg (1.1)

and the value taken by the image determines the next digit in the expansion. This
yields a dynamical system such as discussed in Section 1.7. The interval Œ0; 1/ is
thus split into k subintervals Œj=k; .j C 1/=k/, for j D 0; : : : ; k � 1. For all i � 0,
if Ti

k.x/ belongs to the subinterval Œj=k; .j C 1/=k/, then the digit ci occurring in
repk.x/ is equal to j. It is indeed natural to consider such subintervals. If y belongs to
Œj=k; .jC1/=k/, then ky has an integer part equal to j and the map Tk is continuous and
increasing on every subinterval Œj=k; .jC1/=k/. Note also that the range of Tk on any
of these subintervals is Œ0; 1/. So applying Tk to a point in one of these subintervals
can lead to a point belonging to any of these subintervals (later on, we shall introduce
some other transformation, e.g., ˇ-transformations, where a restriction appears on
the intervals that can be reached). So to speak, the base-k expansion of x can be
derived from the trajectory of x under Tk, i.e., from the sequence .Tn

k .x//n�0.
As an example, consider the base k D 3 and the expansion of x D 3=10. The

point lies in the interval Œ0; 1=3/; thus the first digit of the expansion is 0. Then
T3.3=10/ D 9=10 lies in the interval Œ2=3; 1/; thus the second digit is 2. If we apply
again T3, we get T2

3 .3=10/ D f27=10g D 7=10, which belongs again to Œ2=3; 1/

giving the digit 2. Then T3
3 .3=10/ D 1=10 giving the digit 0 and finally T4

3 .3=10/ D
3=10. So rep3.3=10/ D .0220/! .

A natural generalization of base-k expansion (discussed in Section 3.6 and in
Example 8.1.2) is to replace the base k with a real number ˇ > 1. In particular, the
transformation Tk will be replaced by the so-called ˇ-transformation. Note that we
shall be concerned with expansions of numbers in Œ0; 1/. If x � 1, then there exists
a smallest d such that x=ˇd belongs to Œ0; 1/. It is therefore enough1 to concentrate
on Œ0; 1/.

Definition 1.3.12 (ˇ-Expansions). We will only represent real numbers in the
interval Œ0; 1/. Let ˇ > 1 be a real number. The representations discussed here

1If the ˇ-expansion of x=ˇd is d0d1 � � � , then using an extra decimal point, the expansion of x is
conveniently written d0 � � � d`�1 �d`d`C1 � � � . Note that the presentation in Chapter 1 is not entirely
consistent with our present treatment if x belongs to Œ0; 1=.ˇ � 1/� n Œ0; 1/.
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are a direct generalization of the base-k expansions. Every real number x 2 Œ0; 1/

can be written as a series

x D
C1X

iD0

ci ˇ�i�1 (1.2)

where ci belong to f0; dˇe � 1g. Note that if ˇ is an integer, then dˇe � 1 D ˇ � 1.
For integer base-b expansions, a number may have more than one representation,
namely, those ending with 0! or .b � 1/! . For a real base ˇ, we obtain many more
representations. Consider the Golden mean �, which satisfies �2 � � � 1 D 0, and
thus

1

�n
D 1

�nC1
C 1

�nC2
; 8n � 0 :

As an example, the number 1=� has thus infinitely many representations as a power
series with negative powers of � and coefficients 0 and 1:

1

�
D 1

�2
C 1

�3
D 1

�2
C 1

�4
C 1

�5
D 1

�2
C 1

�4
C 1

�6
C 1

�7
D � � � :

To get a canonical expansion for a real x 2 Œ0; 1/, we just have to replace the
integer base b with ˇ and consider the so-called ˇ-transformation

Tˇ W Œ0; 1/ ! Œ0; 1/; x 7! fˇxg

in the algorithm from Table 1.1. For i D 0; 1; : : :, the idea is to remove the largest
integer multiple ci of ˇ�i�1 and then repeat the process with the remainder and the
next negative power of ˇ to get (1.2). Note that ci is less than dˇe because of the
greediness of the process. Otherwise, one could have removed a larger multiple of
the power of ˇ at a previous step. The corresponding infinite word c0c1 � � � is called
the ˇ-expansion of x and is usually denoted by dˇ.x/. Any word d0d1 � � � over a
finite alphabet of nonnegative integers satisfying

x D
C1X

iD0

di ˇ�i�1

is said to be a ˇ-representation of x. Thus, the ˇ-expansion of x is the
lexicographically maximal word among the ˇ-representations of x.

The greediness of the algorithm can be reformulated as follows.

Lemma 1.3.13. A word d0d1 � � � over f0; : : : ; dˇe � 1g is the ˇ-expansion of a real
number x 2 Œ0; 1/ if and only if, for all j � 0,
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C1X

iDj

di ˇ�i�1 < ˇ�j :

Proposition 1.3.14. Let x; y be real numbers in Œ0; 1/. We have x < y if and only if
dˇ.x/ is lexicographically less than dˇ.y/.

1.3.4 Normality

Now that number representations and the frequency of a factor have been intro-
duced, we can define normal numbers.

A real number x is simply normal with respect to base b � 2 if in the base-
b expansion of x (which is an infinite word over f0; : : : ; b � 1g), the frequency
of every digit d 2 f0; 1; : : : ; b � 1g exists and is equal to 1=b. Furthermore x is
normal in base b if it is simply normal with respect to the bases b, b2, b3,. . . . An
equivalent definition is to say that for all k � 1 and every word u D u1 : : : uk 2
f0; 1; : : : ; b � 1gk, the frequency of u in the base-b expansion of x exists and is equal
to 1=bk. A real number x is absolutely normal if x is normal to every integer base
greater than or equal to 2.

Normality can also be expressed in terms of uniform distribution modulo 1 [578]
(see Section 7.6 for corresponding definitions). Indeed, a real number x is normal to
base b if and only if the sequence .bjx/j�0 is uniformly distributed modulo 1.

These notions were introduced by Borel [99] and are discussed in Chapters 2, 7,
and 8. In particular, constructions of normal numbers are provided in Sections 7.7
and 7.8. See also Theorem 7.4.1 (the so-called Hot Spot Lemma according to [101])
for a further convenient characterization of normality in terms of limsups instead
of limits. For a dynamical viewpoint, see Section 8.2, where the definition of a
normal number is transferred to symbolic dynamical systems, and constructions
with concatenation of words for languages with specification are provided.

1.3.5 Repetitions in Words

In combinatorics on words, a question that naturally arises is to study the repetitions
that should occur or may be avoided in words. See in particular Chapter 5 and
Chapters 4 and 5 in [79].

Concatenating a word w with itself k times is abbreviated by wk. In particular,
w0 D ". Furthermore, for an integer m and a word w D w1w2 � � � wn, where wi 2 ˙

for 1 � i � n (here it is convenient to start indexing with 1), the rational power

wm=n
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is wqw1w2 � � � wr, where m D qn C r for 0 � r < n. For instance, we have

.abbab/9=5 D abbababba :

Consider definitions that have to do with repetitions in words. A square is a
nonempty word of the form xx, where x 2 ˙�. An example of a square in English
is the word murmur with x equal to mur. An overlap is a word of the form axaxa,
where a 2 ˙ and x 2 ˙�. The word alfalfa is an example of an overlap in
English with x equal to lf. It is obvious that every overlap has a square as prefix.
For any positive integer k � 2, a k-power is a nonempty word of the form xk. Thus a
2-power is a square, and a 3-power is a cube. A nonempty word that is not a k-power
for any k � 2 is primitive.

Let us say a few words about avoidance (which is the topic of Chapter 5). It is
an easy exercise to show that over a 2-letter alphabet, every word of a length of at
least 4 contains a square. This raises several questions. Over a 3-letter alphabet, can
we build longer words with no square as a factor? In particular, does there exist an
infinite word with no square in it? Also over a 2-letter alphabet, if squares cannot be
avoided, could we avoid cubes or even overlaps?

We say that a word w (finite or infinite) is square-free (or avoids squares) if no
factor of w is a square. A finite or infinite word is overlap-free if it contains no
factor that is an overlap. Thue [563] was the first to show the existence of an infinite
overlap-free binary word. The Thue–Morse word (see Example 1.3.6) is overlap-
free. See [79, Chapter 4] for more on avoidable repetitions and regularities in words.
More generally, a (finite or infinite) word is k-power-free (or avoids k-powers) if
none of its factors is a k-power. For instance, one can check that abbabaabbaab
is overlap-free. (It is indeed a prefix of the Thue–Morse word). The goal of Chapter 5
is to present general techniques to prove positive or negative results about the
appearance of a repetition pattern. The general question is to know whether an
infinite word without a given pattern exists over an alphabet of a given size. Another
question is to consider the growth function (in the sense of Definition 1.5.7) of the
language of finite words avoiding a particular pattern.

Many variations on these topics exist. For instance, an abelian square is a word of
the form uv where u and v are abelian equivalent. One can check that over a 3-letter
alphabet, every long enough finite word contains an abelian square.

In Chapter 6, the addressed question is this: given a nonperiodic word x 2 ˙! ,
does there exist a finite nonempty set C and a mapping ' W ˙C ! C such that for
each factorization x D u1u2u3 � � � there exist i; j � 1 such that '.ui/ ¤ '.uj/?

1.4 Morphisms

Infinite words of particular interest can be obtained by iterating morphisms of free
monoids. They have many interesting combinatorial properties and can be generated
by a simple mean.
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Definition 1.4.1. A map h W ˙� ! 	�, where ˙ and 	 are alphabets, is called a
morphism if h satisfies h.xy/ D h.x/h.y/ for all x; y 2 ˙�. In particular, we have
h."/ D ". When ˙ D 	, morphisms are also called substitutions.

A morphism may be specified by providing the values h.a/ for all a 2 ˙ . For
example, we may define the morphism t W f0; 1g� ! f0; 1g� by

0 7! 01

1 7! 10: (1.3)

This morphism is often referred to as the Thue–Morse morphism. The domain ˙�
of a morphism h is easily extended to the set ˙! of (one-sided) infinite words. Let
h W ˙� ! 	� be a morphism and x D x0x1x2 � � � be an infinite word over ˙ . Simply
consider the sequence of finite words .h.x0 � � � xn//n�0 of images of the prefixes of x.
The limit of this sequence is h.x/. In particular, if h W ˙� ! ˙� and x is an infinite
word such that h.x/ D x, then x is said to be a fixed point of h.

A morphism h W ˙� ! ˙� such that h.a/ D ax for some a 2 ˙ and x 2 ˙�
with hi.x/ 6D � for all i is said to be prolongable on a. The Thue–Morse morphism t
given by (1.3) is prolongable on 0 (and also on 1). The first few iterations of t are

t.0/ D 01

t2.0/ D 0110

t3.0/ D 01101001

t4.0/ D 0110100110010110
:::

Since jt.0/j D jt.1/j D 2, we have jtn.0/j D 2n for all n � 0. It is easy to prove that
tn.0/ is a proper prefix of tnC1.0/, and thus the sequence .tn.0//n�0 converges to an
infinite word. So we get the fixed point of t

t!.0/ D 0110100110010110 � � � :

One can prove that the fixed point t!.0/ is the Thue–Morse word introduced in
Example 1.3.6.

More generally, if h W ˙� ! ˙� is a morphism prolongable on a, we may then
repeatedly iterate h to obtain the infinite fixed point

h!.a/ D a x h.x/ h2.x/ h3.x/ � � � :

This infinite word is said to be purely morphic.
The factor complexity of purely morphic word is well known. The next result

was stated by Pansiot in [467] and then generalized in [468]. For a comprehensive
presentation, see [78, Section 4.7]. Recall that the case of eventually periodic words
is settled by Morse–Hedlund theorem.
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Theorem 1.4.2. Let w be a pure morphic word. If w is not eventually periodic, then
its factor complexity pw belongs to �.n/, �.n log log n/, �.n log n/, or �.n2/.

Definition 1.4.3. A morphism h is non-erasing if h.a/ 6D � for all a 2 ˙ .
Otherwise it is erasing. A morphism is k-uniform if jh.a/j D k for all a 2 ˙ ; it
is uniform if it is k-uniform for some k. A 1-uniform morphism is often said to be a
letter-to-letter morphism or a coding.

The Thue–Morse morphism t given in (1.3) is 2-uniform.

Example 1.4.4 (Fibonacci Word). Another significant example of a purely morphic
word is the Fibonacci word. It is obtained from the non-uniform morphism defined
over the alphabet f0; 1g by 
 W 0 7! 01; 1 7! 0,


!.0/ D .xn/n�0 D 0100101001001010010100100101001001010010100 � � � :

It is a Sturmian word and can be obtained as follows. Let � D .1 C p
5/=2 be the

Golden mean. For all n � 1, if b.n C 1/�c � bn�c D 2, then xn�1 D 0; otherwise
xn�1 D 1.

An infinite word x over 	 is morphic if there exists a purely morphic word y over
˙ and a morphism g W ˙� ! 	� such that x D g.y/.

We can always restrict ourselves to non-erasing prolongable morphisms and
codings. This result was already stated in [154]. J.-J. Pansiot also considered this
result in [466]. For a proof, see [14]. An alternative short proof is given in [298].
This result is also discussed in detail in [134] and [146].

Theorem 1.4.5. Let f W ˙� ! ˙� be a (possibly erasing) morphism that is
prolongable on a letter a 2 ˙ . Let g W ˙� ! � � be a (possibly erasing)
morphism. If the word g.f !.a// is infinite, there exists a non-erasing morphism
h W 	� ! 	� prolongable on a letter c 2 	 and a coding j W 	� ! � � such
that g.f !.a// D j.h!.c//.

1.5 Languages and Machines

Formal languages theory is mostly concerned with the study of the mathematical
properties of sets of words. For a comprehensive exposition on regular (or rational)
languages and automata theory, see, for instance, Sakarovitch’s book [518]. For the
connections with infinite words, see [476]. For an overview see the chapter [590].
Finally see [555], Hopcroft and Ullman’s classic book [301], or its updated version
[300] for general books on formal languages theory.
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1.5.1 Languages of Finite Words

Let ˙ be an alphabet. A subset L of ˙� is said to be a language. Since a language
is a set of words, we can apply all the usual set operations like union, intersection,
or set difference: [, \, or n. The concatenation of words can be extended to define
an operation on languages. If L, M are languages, LM is the language of the words
obtained by concatenation of a word in L and a word in M, i.e.,

LM D fuv j u 2 L; v 2 Mg :

We can of course define the concatenation of a language with itself, so it permits us
to introduce the power of a language. Let n 2 N, ˙ be an alphabet, and L 
 ˙� be
a language. The language Ln is the set of words obtained by concatenating n words
in L. We set L0 WD f�g. In particular, we recall that ˙n denotes the set of words
of length n over ˙ , i.e., concatenations of n letters in ˙ . The (Kleene) star of the
language L is defined as

L� D
[

i�0

Li :

Otherwise stated, L� contains the words that are obtained as the concatenation of
an arbitrary number of words in L. Notice that the definition of Kleene star is
compatible with the notation ˙� introduced to denote the set of finite words over
˙ . We also write L�n as a shorthand for

L�n D
n[

iD0

Li :

Note that if the empty word belongs to L, then L�n D Ln. We recall that ˙�n is the
set of words over ˙ of length at most n.

Example 1.5.1. Let L D fa; ab; aabg and M D fa; ab; bag be two finite languages.
We have

L2 D faa; aab; aaab; aba; abab; abaab; aaba; aabab; aabaabg

and

M2 D faa; aab; aba; abab; abba; baa; baab; babag :

One can notice that Card .L2/ D .Card L/2 but Card .M2/ < .Card M/2. This is due
to the fact that all words in L2 have a unique factorization as concatenation of two
elements in L, but this is not the case for M, where .ab/a D a.ba/. We can notice
that
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L� D fag� [ fai1bai2 b � � � ain bainC1 j 8n � 1; i1; : : : ; in � 1; inC1 � 0g :

Since languages are sets of (finite) words, a language can be either finite or
infinite. For instance, a language L differs from ; or f�g if and only if the language
L� is infinite. Let L be a language, we set LC D LL�. The mirror operation can also
be extended from words to languages: QL D fQu j u 2 Lg.

Definition 1.5.2. A language is prefix-closed (respectively suffix-closed) if it con-
tains all prefixes (respectively suffixes) of any of its elements. A language is
factorial if it contains all factors of any of its elements.

Obviously, any factorial language is prefix-closed and suffix-closed. The con-
verse does not hold. For instance, the language fanb j n > 0g is suffix-closed but
not factorial.

Example 1.5.3. Connected with the Thue–Morse word (see Example 1.3.6), the set
of words over f0; 1g containing an even number of ones is the language

E D fw 2 f0; 1g� j jwj1 � 0 .mod 2/g
D f�; 0; 00; 11; 000; 011; 101; 110; 0000; 0011; : : :g:

This language is closed under mirror, i.e., QL D L. Notice that the concatenation
Ef1gE is the language of words containing an odd number of ones and E[Ef1gE D
E.f�g [ f1gE/ D f0; 1g�. Notice that E is neither prefix-closed, since 1001 2 E but
100 62 E, nor suffix-closed.

Definition 1.5.4. The set of factors of a language L is denoted as Fac.L/, whereas
the set of prefixes of a language L is denoted as Pref.L/. The notation w�1L stands
for w�1L D fu j wu 2 Lg.

If a language L over ˙ can be obtained by applying to some finite languages
a finite number of operations of union, concatenation, and Kleene star, then this
language is said to be a regular language. This generation process leads to regular
expressions which are well-formed expressions used to describe how a regular
language is built in terms of these operations.

Note that the Chomsky–Schützenberger hierarchy introduced in the theory of
formal languages provides a classification depending on the machine needed to
recognize an infinite language of finite words. From a computational perspective,
the simplest languages are the regular languages. They are accepted (or recognized)
by finite automata, and described by regular expressions. One then has context-
free languages that are recognized by non-deterministic pushdown automata,
context-sensitive languages recognized by linear-bounded non-deterministic Turing
machines, and lastly, recursively enumerable languages recognized by Turing
machines. See Section 2.1.2 for a similar hierarchy for Mahler functions and regular
sequences.

From the definition of a regular language, the following result is immediate.
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Theorem 1.5.5. The class of regular languages over ˙ is the smallest subset of
2˙�

(for inclusion) containing the languages ;, fag for all a 2 ˙ and closed under
union, concatenation, and Kleene star.

Example 1.5.6. For instance, the language L over f0; 1g whose words do not contain
the factor 11 is regular. It is called the Golden mean shift. This language can be
described by the regular expression L D f0g�f1gf0; 01g� [ f0g�. Otherwise stated,
it is generated from the finite languages f0g, f0; 01g, and f1g by applying union, con-
catenation, and star operations. Its complement in ˙� is also regular and is described
by the regular expression ˙�f11g˙�: The language E from Example 1.5.3 is
also regular; we have the following regular expression f0g�.f1gf0g�f1gf0g�/�
describing E.

Definition 1.5.7. Let L 
 ˙� be a language over the alphabet ˙ . The growth
function of L is the map

gL W N ! N; n 7! Card.L \ ˙n/ :

In particular, gL.n/ � .Card ˙/n for all n � 0. Note that the complexity function
of an infinite word x (see Definition 1.3.5) is exactly the growth function of the
language Fac.x/ of x.

1.5.2 Formal Series

Let R be a semiring (see Definition 1.2.2). We can consider a map m from ˙� to R.
This map can be represented as a formal series

S D
X

w2˙�

m.w/ w :

This means that the coefficient .S; w/ of the series S for the word w is given by m.w/.
The sets of those formal series is denoted by Rhh˙�ii and has a semiring structure
for the two operations defined as follows:

.S C T; w/ D .S; w/ C .T; w/

and

.ST; w/ D
X

uvDw

.S; u/.T; v/ :

In particular, a finite word w of length n can be factored in n C 1 concatenation
products. This means that the sum above is finite. When R is limited to the Boolean
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semiring B, then Bhh˙�ii is just the set of languages over ˙ . As a prominent
example, Mahler functions are studied in details in Chapter 2.

1.5.3 Codes

A subset X � ˙C is a code if every word in X� has a unique factorization with
factors in X, i.e.,

.x1 � � � xm D y1 � � � yn; x1; : : : ; xm; y1; : : : ; yn 2 X/ ) .m D n and xi D yi 8i/ :

As an example, the set X D fa; ab; bag is not a code because the word aba has two
X-factorizations: a.ba/ and .ab/a. The language faib j i � 0g is clearly a code. For
an introduction to codes, see Bruyère’s chapter in [386].

Let X be a set of words where no word in X is a proper prefix of another word
in X. Then X is said to be a prefix code. The terminology of code comes from the
following proposition.

Proposition 1.5.8. A subset X � ˙C is a code if and only if any morphism f W
� � ! ˙� induced by a one-to-one correspondence (i.e., bijection) from � to X is
one to one (injective).

The notion can be extended to deal with infinite words. A subset X � ˙C is
an !-code if every word in ˙! has at most one factorization with words in X. As
an example, X D fa; ab; bbg is a code but it is not an !-code. The infinite word
abbb � � � has two X-factorizations .a; bb; bb; : : :/ and .ab; bb; bb; : : :/.

1.5.4 Automata

As we shall briefly explain in this section, the regular languages are exactly the
languages recognized by finite automata. We start with non-deterministic automata
in Definition 1.5.9, then we present the deterministic ones in Definition 1.5.13.
Finally, we introduce automata with output in Definition 1.5.17. The notions
recalled here will be used in particular in Section 7.5 in connection with normality,
and in Chapter 10 with the notion of Mealy automaton.

Definition 1.5.9. A finite automaton is a labeled graph given by a 5-tuple A D
.Q; ˙; E; I; T/ where Q is the (finite) set of states, E 
 Q 	 ˙� 	 Q is the finite set
of edges defining the transition relation, I 
 Q is the set of initial states, and T is
the set of terminal (or final) states. A path in the automaton is a sequence

.q0; u0; q1; u1; : : : ; qk�1; uk�1; qk/
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such that, for all i 2 f0; : : : ; k � 1g, .qi; ui; qiC1/ 2 E, u0 � � � uk�1 is the label of the
path. Such a path is successful if q0 2 I and qk 2 T . The language L.A / recognized
(or accepted) by A is the set of labels of all successful paths in A .

Any finite automaton A gives a partition of ˙� into L.A / and ˙� n L.A /.
When depicting an automaton, initial states are marked with an incoming arrow
and terminal states are marked with an outgoing arrow. A transition like .q; u; r/ is

represented by a directed edge from q to r with label u, q
u�! r.

Example 1.5.10. In Figure 1.1 the automaton has two initial states p and r and three
terminal states q, r, and s. For instance, the word ba is recognized by the automaton.
There are two successful paths corresponding to the label ba: .p; b; q; a; s/ and

.p; b; p; a; s/. For this latter path, we can write p
b�! p

a�! s. On the other hand,
the word baab is not recognized by the automaton.

Example 1.5.11. The automaton in Figure 1.2 recognizes exactly the language E of
the words having an even number of 1 from Example 1.5.3.

Definition 1.5.12. Let A D .Q; ˙; E; I; T/ be a finite automaton. A state q 2 Q is
accessible (respectively co-accessible) if there exists a path from an initial state to
q (respectively from q to some terminal state). If all states of A are both accessible
and co-accessible, then A is said to be trim.

p q

r s

b

b

a
a

a

b

a
a

Fig. 1.1 A finite automaton.

p q
1

1

0 0

Fig. 1.2 An automaton recognizing words with an even number of 1.
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Definition 1.5.13. A finite automaton A D .Q; ˙; E; I; T/ is said to be determin-
istic (DFA) if it has only one initial state q0, if E is a subset of Q 	 ˙ 	 Q and for
each .q; a/ 2 Q 	 ˙ there is at most one state r 2 Q such that .q; a; r/ 2 E.
In that case, E defines a partial function ıA W Q 	 ˙ ! Q that is called the
transition function of A . The adjective partial means that the domain of ıA can
be a strict subset of Q 	 ˙ . To express that the partial transition function is total,
the DFA can be said to be complete. To get a total function, one can add to Q a
new “sink state” s and, for all .q; a/ 2 Q 	 ˙ such that ıA is not defined, set
ıA .q; a/ WD s. This operation does not alter the language recognized by A . We can
extend ıA to be defined on Q 	 ˙� by ıA .q; �/ D q and, for all q 2 Q, a 2 ˙ , and
u 2 ˙�, ıA .q; au/ D ıA .ıA .q; a/; u/. Otherwise stated, the language recognized
by A is L.A / D fu 2 ˙� j ıA .q0; u/ 2 Fg where q0 is the initial state of A .
If the automaton is deterministic, it is sometimes convenient to refer to the 5-tuple
A D .Q; ˙; ıA ; I; T/.

As explained by the following result, for languages of finite words, finite
automata and deterministic finite automata recognize exactly the same languages.
The following result is referred to as Rabin–Scott theorem [489].

Theorem 1.5.14. If L is recognized by a finite automaton A , there exists a DFA
which can be effectively computed from A and recognizing the same language L.

A proof and more details about classical results in automata theory can be found
in textbooks like [300, 518] or [539]. For standard material in automata theory, we
shall not refer again to these references below.

One important result is that the set of regular languages coincides with the set
of languages recognized by finite automata. The following result is referred to as
Kleene’s theorem [349].

Theorem 1.5.15. A language is regular if and only if it is recognized by a
(deterministic) finite automaton.

Observe that if L and M are two regular languages over ˙ , then L \ M, L [ M,
LM, and LnM are also regular languages. In particular, a language over ˙ is regular
if and only if its complement in ˙� is regular.

Example 1.5.16. The regular language L D f0g�f1gf0; 01g� [ f0g� introduced in
Example 1.5.6 is recognized by the DFA depicted in Figure 1.3. Notice that the state
s is a sink: a non-terminal state and all transitions remain in s.

s
1

0 1

0
0,1

Fig. 1.3 A DFA accepting words without factor 11.
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We introduce the notion of automaton with output (see also more generally
Definition 7.5.1 for the notion of a transducer). It generalizes the classical DFA:
if the output function takes at most two values, then it is a DFA. The extra output
function will take care of the extra coding.

Definition 1.5.17. A deterministic finite automaton with output or DFAO for short
is given by a 5-tuple A D .Q; q0; A; ı; �/ where Q is a finite set of states, q0 2 Q
is the initial state, ı W Q 	 A ! Q is the transition function, and � W Q ! B is the
output map (where B is some finite set).

Finite automata accepting languages of infinite words are not presented here.
Büchi automata (where an accepting run goes infinitely often through an accepting
state) are introduced in Section 3.6.

1.6 Sequences and Machines

1.6.1 Automatic Sequences

We now consider how finite automata can be used to generate sequences with values
in a finite alphabet, namely, we present the automatic sequences. As we shall soon
see, they are particular morphic words and are deeply linked with the integer base-
k numeration system. They were introduced by A. Cobham [156] under the name
uniform tag sequences. Automatic sequences will appear in Chapters 2, 3, and 4. See
in particular Section 2.2 for definitions, properties and examples, and connections
with Mahler functions. We will recall that automatic sequences may be obtained as
the image under a coding of the fixed point of a k-uniform morphism. Equivalently,
for all n � 0, the nth symbol of such a sequence is the output of a deterministic
finite automaton with output fed with the k-ary expansion of n.

Definition 1.6.1. Let k � 2. Consider an infinite word w D g.f !.a// where f W
˙� ! ˙� is a k-uniform morphism prolongable on a and g W ˙� ! � � is a
coding. We say that w is k-automatic.

Observe that jf n.a/j D kn for all n � 0. We first consider the “internal sequence,”
i.e., the fixed point x D f !.a/ D x0x1x2 � � � . Let j such that k � j < k2; then
j D kq C r with 1 � q < k and 0 � r < k. The symbol xj is the .r C 1/st symbol
occurring in f .xq/. As depicted in Figure 1.4, this simply comes from one iteration
of the k-uniform morphism.

We obtain the following result by induction on m � 0. Even though it is not
surprising, it has an important consequence about how the word can be obtained.

Lemma 1.6.2. Let j such that km � j < kmC1, for some m � 0. Then j D kq C r
with km�1 � q < km and 0 � r < k and the symbol xj is the .r C 1/st symbol
occurring in f .xq/.
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k
k2

Fig. 1.4 Iterating a k-uniform morphism (with k D 4).

f :

⎧
⎨

⎩

a abc
b cbc
c bca

a

b c

0

1
2

0,2

1 1
0

2

Fig. 1.5 A 3-uniform morphism and the associated automaton Af .

The quotient bj=kc of the Euclidean division of j by k is denoted by j DIV k. So
to speak, for any symbol xj occurring in x D f !.a/, we can track its history: xj has
been produced by f from xj DIV k. The latter symbol appears itself in the image by f
of x.j DIV k/ DIV k, and so on and so forth.

Note that if the base-k expansion of j is repk.j/ D ci � � � c1c0, then the base-
k expansion of j DIV k is ci � � � c1. This simple observation permits one to easily
track the past of a given symbol by considering the prefixes of repk.j/. Consider, for
instance, the symbol t28 occurring in the Thue–Morse word:

t D 01101001100101101001011001101001 � � � :

Since rep2.28/ D 11100, this symbol comes from t14 because rep2.14/ D 1110.
Then t14 appears in the image of t7, itself appearing in the image of t3 and finally in
the image of t1.

But Lemma 1.6.2 provides some extra knowledge. Let j such that j D kqCr with
km�1 � q < km and 0 � r < k, for some m � 0. We have just explained how xj

comes from xq. But the knowledge of xq and r entirely determines xj. It is thus time
to explain where does the term of automatic sequence come from.

We can associate with a k-uniform morphism f W ˙� ! ˙� and a letter a 2 ˙ ,
a DFA Af D .˙; a; ŒŒ0; k � 1��; ıf ; ˙/ where ıf .b; i/ D wb;i if f .b/ D wb;0 � � � wb;k�1.
Note that the alphabet ˙ is the set of states of this automaton.

Example 1.6.3. Consider the morphism f and the associated automaton depicted in
Figure 1.5.

The next propositions explain the terminology of automatic sequences.
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Proposition 1.6.4. Let x D f !.a/ D x0x1 � � � with f a k-uniform morphism. With
the above notation, for all j � 0,

xj D ıf .a; repk.j// :

Proof. This is a direct consequence of Lemma 1.6.2. ut
The converse also holds.

Proposition 1.6.5. Let .˙; a; ŒŒ0; k�1��; ı; ˙/ be a DFA such that ı.a; 0/ D a. Then
the word x D x0x1x2 � � � defined by xj D ı.a; repk.j//, for all j � 0, is the fixed point
of a k-uniform morphism f prolongable on a where f .b/ D ı.b; 0/ � � � ı.b; k � 1/ for
all b 2 ˙ .

Proof. This is again a direct consequence of Lemma 1.6.2. ut
The reader will object that we have not taken into account that an extra coding

can be applied to x D f .x/. This does not require many changes. We simply have
to make use of automata with output as stated below in Cobham’s theorem on
automatic sequences [156].

Theorem 1.6.6. Let w D w0w1w2 � � � be an infinite word over an alphabet � . It is
of the form g.f !.a// where f W ˙� ! ˙� is a k-uniform morphism prolongable on
a 2 ˙ and g W ˙� ! � � is a coding if and only if there exists a DFAO

.˙; a; ŒŒ0; k � 1��; ı; � W ˙ ! � /

such that ı.a; 0/ D a and, for all j � 0, wj D �.ı.a; repk.j///.

Proof. Proceed as above and the coding g coincides with the output function �. ut

Example 1.6.7. From the morphism t given in (1.3) generating the Thue–Morse
word, we derive the automaton depicted in Figure 1.2. Again considering 28,
which is written 11100 in base 2, if we start from the initial state p and we read
consecutively the symbols in rep2.28/ from left to right, then we follow some path
in the automaton, and the state q finally reached gives the symbol t28. The output
function maps p to 0 and q to 1.

Example 1.6.8. Let us consider a more intricate example where a coding, and thus
an output function, is used. The morphism f and the coding g are given in Figure 1.6.
The corresponding automaton is represented on the right of the same figure. We have

f !.a/ D acabaccaacababacacabaccaaccaacab � � �

and

g.f !.a// D 00010000000101000001000000000001 � � � :
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f :

⎧
⎨

⎩

a ac
b ca
c ab

g :

⎧
⎨

⎩

a 0
b 1
c 0

a/0 b/1 c/0

0
0

0

11

1

Fig. 1.6 A 2-uniform morphism, a coding and the corresponding DFAO.

u

b c

p s

f f

f

f

f

f

f

f

Fig. 1.7 Iterating a 2-uniform morphism.

Again, the jth symbol in g.f !.a// can be readily obtained from rep2.j/ fed to the
DFAO represented in Figure 1.6 where the states contain the information about the
value of the output function.

Now we turn to the factors occurring in an automatic sequence w D g.x/, where
x is a fixed point of the k-uniform morphism f W ˙� ! ˙�. Let u be a factor of
length n occurring in x. There exists i such that ki�1 � n < ki. Note that jf i.b/j D ki

for all b 2 ˙ . We consider the factorization of x into consecutive blocks of length
ki of the form f i.b/. Therefore, the factor u either occurs inside some f i.b/ or it
overlaps two images, i.e., u occurs in f i.bc/ for some letters b; c 2 ˙ . Actually, there
exist two letters b and c such that f i.bc/ D pus with jpj < ki. This last condition tells
us that u starts inside f i.b/. Such a simple observation, where we look backwards
at the images of the morphism, as suggested by Figure 1.7, is sometimes called a
desubstitution. It provides us with an upper bound on the number of factors of length
n that may occur in x: the number of pairs of letters .b; c/ is .Card ˙/2 and u should
start in one of the ki symbols of f i.b/. Therefore, the number of factors of length n
in x is at most

.Card ˙/2 ki � .Card ˙/2 k n :

We can even replace .Card ˙/2 with px.2/ because only the factors bc occurring in
x give factors of the form f i.b/f i.c/ occurring in x D f i.x/. Since applying a coding
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g cannot increase the number of factors, we get

Card.Fac.x/ \ ˙n/ � Cardfg.u/ j u 2 Fac.x/ \ ˙ng ;

and so we have obtained the following result.

Theorem 1.6.9. Let w be a k-automatic sequence. Then pw.n/ is in O.n/.

A proof of the following result can be found in [14, Section 8.4].

Theorem 1.6.10. If the frequency of a letter in a morphic sequence exists, then it
is an algebraic number. If the frequency of a letter in an automatic sequence exists,
then it is a rational number.

To conclude this section, we present another characterization of k-automatic
sequences. This is not the last one; in Chapter 3, Section 3.3, a logical character-
ization of k-automatic sequences will be discussed, whereas Chapter 4 will provide
an algebraic characterization in terms of polynomial identities (see Corollary 4.5.3).

Definition 1.6.11. Let k � 2 be an integer. Given a sequence s D .s.n//n�0, we
define a particular set of subsequences called the k-kernel of s

Kerk.s/ WD ˚
.s.k`n C r//n�0 j ` � 0; 0 � r < k`

�
:

An equivalent definition of the k-kernel is to introduce k operators of k-decimation
acting on the set of sequences and defined, for r 2 f0; : : : ; k � 1g, by

k;r..s.n//n�0/ D .s.kn C r//n�0 :

Thus Kerk.s/ is the set of sequences of the form

k;r1 ı � � � ı k;rm..s.n//n�0/ (1.4)

for all m � 0 and r1; : : : ; rm 2 f0; : : : ; k � 1g. These decimation operators are close
to the Cartier operators discussed in Chapter 2. The following result appeared in
Eilenberg’s book [211]. Note that if a sequence t belongs to Kerk.s/, then k;r.t/
also belongs to Kerk.s/.

Theorem 1.6.12. A sequence is k-automatic if and only if its k-kernel is finite.

Example 1.6.13. The 2-kernel of the Thue–Morse sequence contains exactly two
sequences (the sequence itself and its “complement”). Indeed, let s2.n/ be the sum
of digits of the binary expansion of n, we have

s2.2n/ D s2.n/; s2.2n C 1/ D s2.n/ C 1 : (1.5)
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1.6.2 Regular Sequences

We have seen that k-automatic sequences may be defined through the finiteness of
their k-kernel (Theorem 1.6.12). This characterization is used to extend the notion to
sequences taking infinitely many values. Allouche and Shallit considered sequences
taking values in a ring R containing a commutative Noetherian ring R0 (i.e., every
ideal of R0 is finitely generated). Examples of such rings R0 are given by all finite
rings, all principal ideal domains, and in particular Z, the ring of polynomials
with coefficients in a field, or all fields. We may consider linear combinations with
coefficients in R0 (R0-linear combinations) of sequences in RN. Endowed with point-
wise addition and multiplication by an element in R0, the set RN has a R0-module
structure: if r D .r.n//n�0 and s D .s.n//n�0 belong to RN and ˛ belongs to R0,
then, for all n 2 N,

.r C s/.n/ D r.n/ C s.n/

and

.˛ � r/.n/ D ˛ � r.n/:

In this short section, we mainly consider sequences in ZN, i.e., R D R0 D Z. We
will encounter regular sequences in Chapters 2, 3, and 4 of this book. To have
stand-alone chapters, these notions will also be repeated there. In Chapter 3 (see
in particular Section 3.4.1), k-regularity will be extended to sequences taking values
in a semiring.

Regular sequences appeared in [16]. Many examples are given in [15]. See also
[14, Chapter 16] and the updated version of Berstel and Reutenauer’s book [77]
where a chapter is devoted to regular sequences and linked with rational series.

Let M be a R-module and a subset X � M. The submodule generated by X is the
intersection of all submodules of M containing X. It is denoted by hXi. It is the set
of all finite R-linear combinations of elements in X. A module is finitely generated
(over R) when it is generated by a finite set (i.e., it is the R-span of a finite set). One
also says that the module is of finite type or even finite over R. Note that the finite
set of generators is not necessarily a basis.

Definition 1.6.14. Let k � 2 be an integer. A sequence s D .s.n//n�0 taking integer
values is k-regular if the Z-module generated by its k-kernel hKerk.s/i is finitely
generated, i.e., there exists a finite number of sequences in ZN

t1 D .t1.n//n�0; : : : ; t` D .t`.n//n�0

such that

hKerk.s/i D ht1; : : : ; t`i:
In particular, every sequence in Kerk.s/ is a Z-linear combination of the tjs. For all
i � 0 and for all r 2 f0; : : : ; ki � 1g, there exist integers ci;1; : : : ; ci;` such that
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8n � 0; s.kin C r/ D
X̀

jD1

ci;j tj.n/:

One can consider another point of view. A sequence is said to be k-regular
if its orbit under the action of the operators of k-decimation remains in a finite
dimensional vector space. Indeed, Z is included in fields such as Q, R, or C. Thus
the sequences can be seen as elements of QN which is a Q-vector space.

Remark 1.6.15. The original definition in [16] was formulated differently. Let R be
a ring containing a commutative Noetherian ring R0. A sequence s D .s.n//n�0 in
RN is (R’,k)-regular if there exists a finite number of sequences in RN

t1 D .t1.n//n�0; : : : ; t` D .t`.n//n�0

such that every sequence in Kerk.s/ is an R0-linear combination of t1; : : : ; t`. Thus
the definition means that hKerk.s/i 
 ht1; : : : ; t`i. Otherwise stated, hKerk.s/i is a
submodule of a finitely generated R0-module (in general, this does not imply that
the submodule itself is finitely generated). Since R0 is assumed to be Noetherian,
one can show that every submodule of a finitely generated R0-module is finitely
generated2, and thus hKerk.s/i is finitely generated. This was the point of view
adopted in Definition 1.6.14. In particular, if the setting does not assume that R0
is Noetherian (in particular, if R or R0 is a semiring), then Definition 1.6.14 would
be stronger than simply requiring hKerk.s/i 
 ht1; : : : ; t`i.
Example 1.6.16. The base-2 sum-of-digits function s2 gives the sequence

.s2.n//n�0 D 0; 1; 1; 2; 1; 2; 2; 3; 1; 2; 2; 3; 2; 3; 3; 4; 1; 2; 2; 3; 2; 3; 3; 4; 2; 3; 3; 4; : : : :

(Notice that we can interchange the words function and sequence and also speak
of k-regular functions when defined over N.) Clearly this sequence is unbounded:
s2.2n � 1/ D n for all n. Nevertheless, in view of (1.5), the Z-module generated by
its 2-kernel is generated by the sequence .s2.n//n�0 itself and the constant sequence
.1/n�0.

Obviously, every k-automatic sequence is k-regular.

Proposition 1.6.17. Let s be a sequence taking finitely many different values, i.e.,
there exists a finite alphabet ˙ such that s 2 ˙! . Let k � 2. The sequence is
k-automatic if and only if it is k-regular.

There is an intermediate class of sequences between k-automatic and k-regular
sequences [130].

2An R0-module M is Noetherian if every submodule of M is finitely generated. Let R0 be a
Noetherian ring. An R0-module M is Noetherian if and only if it is finitely generated.
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Definition 1.6.18. Let k � 2 be an integer. The map repk is extended to N 	 N as
follows. For all m; n 2 N,

repk.m; n/ D
�
0M�jrepk.m/jrepk.m/; 0M�jrepk.n/jrepk.n/

�

where M D maxfjrepk.m/j; jrepk.n/jg. The idea is that the shortest word is padded
with leading zeroes to get two words of the same length.

A sequence .s.n//n�0 of integers is said to be k-synchronized if the language
frepk.n; s.n// j n 2 Ng is accepted by some finite automaton reading pairs of digits.

As an example, the complexity function .px.n//n�0 of a k-automatic sequence x
is k-synchronized [522]; we refer to Proposition 3.4.16. More results of this form
are provided in Section 3.4. For results on the growth of regular sequences, see
Section 2.3.

Proposition 1.6.19. Let s be a sequence taking finitely many different values, i.e.,
there exists a finite alphabet ˙ such that s 2 ˙! . Let k � 2. The sequence is
k-automatic if and only if it is k-synchronized.

Similarly to recognizable formal series, with every k-regular sequence
.s.n//n�0 2 ZN is associated linear representation .�; �; �/. There exist a positive
integer r, a row vector � 2 Z1�r and a column vector � 2 Zr�1, a matrix-valued
morphism � W f0; : : : ; k � 1g ! Zr�r such that

s.n/ D ��.c0 � � � c`/�

for all c`; : : : ; c0 2 f0; : : : ; k � 1g� such that valk.c` � � � c0/ D P`
iD0 ci ki D n.

The converse also holds, if there exists a linear representation associated with the
canonical k-ary expansion of integers (one has to take into account the technicality
of representations with leading zeros), then the sequence is k-regular. See, for
instance, [14, Theorem 16.2.3]. As a corollary, the nth term of a k-regular sequence
can be computed with blogk.n/c matrix multiplications.

Proof. Let s D .s.n//n�0 2 ZN be a k-regular sequence. By definition, there exists a
finite number of sequences t1; : : : ; t` such that hKerk.s/i D ht1; : : : ; t`i. In particular,
each tj is a Z-linear combination of elements in the k-kernel of s. We have finitely
many tjs, so t1; : : : ; t` are linear combinations of finitely many elements in Kerk.s/.
Thus we can assume that hKerk.s/i is generated by finitely many elements from
Kerk.s/ itself. Without loss of generality, we will now assume that t1; : : : ; t` belong
to Kerk.s/.

From (1.4), for all r 2 f0; : : : ; k � 1g and all i 2 f1; : : : ; `g, k;r.ti/ is a sequence
in Kerk.s/, and thus, there exist coefficients .Ar/1;i; : : : ; .Ar/`;i such that

k;r.ti/ D
X̀

jD1

.Ar/j;i tj :
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Notice that Ar is an ` 	 ` matrix. Roughly, if we were in a vector space setting, this
means that the matrices Ar represent the linear operators k;r in the basis t1; : : : ; t`.
Let p � 0 be an integer. Notice that if repk.p/ D rm � � � r0, then s.p/ is the first term,
i.e., corresponding to the index 0, of the sequence

.s.bmC1n C p//n�0 D k;r0 ı � � � ı k;rm ..s.n//n�0/ :

We will use the fact that k;r is linear, i.e., if ˛; ˇ are coefficients and v; w are two
sequences, then k;r.˛v C ˇw/ D ˛k;r.v/ C ˇk;r.w/. It is easy to see that

k;r0 ı � � � ı k;rm .ti/ D
X̀

jD1

.Ar0 � � � � � Arm/j;i tj :

If we have the following decomposition of s (in a vector space setting, we would
have a unique decomposition of s in the basis t1; : : : ; t`)

s D
X̀

iD1


i ti

then, by linearity,

.s.bmC1n C p//n�0 D
X̀

iD1


i

X̀

jD1

.Ar0 � � � � � Arm/j;i .tj.n//n�0 D
X̀

jD1

�j .tj.n//n�0

where

0

B@
�1

:::

�`

1

CA D Ar0 � � � � � Arm

0

B@

1

:::


`

1

CA :

Consequently, s.p/ is obtained as

s.p/ D
X̀

iD1

�i ti.0/ D �
t1.0/ � � � t`.0/

�
Ar0 � � � � � Arm

0

B@

1

:::


`

1

CA :

ut
For a reader familiar with rational series, the previous result can be reformulated

as follows. A sequence s.n/ is k-regular if and only if the formal series
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X

w2f0;:::;k�1g�
s.valk.w// w

is recognizable (with the terminology of [77]; see Definition 3.4.1).

Example 1.6.20. For the sum-of-digits function given in Example 1.6.16, the
sequence s2 D .s2.n//n�0 has a (base-2) linear representation given by

� D �
0 1
�

; �.i/ D
�

1 0

i 1

	
; � D

�
1

0

	
:

We let 1 denote the constant sequence. It does not belong to the 2-kernel of s2,
but it belongs to the Z-module generated by it because it is equal to 2;1.s2/ � s2.
Nevertheless, it is enough to see that 2;0.1/ D 2;1.1/ D 1 and take s2 and 1 as
generators to proceed as in the proof above. From the following relations we derive
the two columns of matrix �.0/

2;0.s2/ D 1 � s2 C 0 � 1; 2;0.1/ D 0 � s2 C 1 � 1

and for �.1/

2;1.s2/ D 1 � s2 C 1 � 1; 2;1.1/ D 0 � s2 C 1 � 1 :

The vector � is given by s2.0/ D 0 ans 1.0/ D 1. The vector � is obtained from
s2 D 1 � s2 C 0 � 1. To compute s2.19/, observe that rep2.19/ D 10011. Thus we
compute

�
0 1
�

�.1/�.1/�.0/�.0/�.1/

�
1

0

	
D 3 :

Example 1.6.21. A less trivial example is considered in [201] by counting the
number of odd numbers in the first n rows of the Pascal triangle. This sequence
has a (base-2) linear representation given by

� D �
0 1
�

; �.0/ D
�

3 6

0 1

	
; �.1/ D

�
0 �6

1 5

	
; � D

�
1

0

	
:

Remark 1.6.22. In [15, Section 6], a practical procedure to guess relations a
possibly k-regular sequence will satisfy is described. Consider a sequence .s.n//n�0.
The idea is to construct a matrix in which the rows represent truncated versions
of elements of the k-kernel of .s.n//n�0, together with row reduction. Start with
a matrix having a single row, say, corresponding to the first m elements of the
sequence. Then repeatedly add subsequences of the form .s.k`nCr//n�0 not linearly
dependent of the previous stored sequences. From this, you have candidate relations
that remain to be proven.
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–0.05

–0.10

–0.15

–0.20

Fig. 1.8 The periodic function G on Œ0; 1�.

Considering again the sum-of-digit function, Delange [191] showed that the
summatory function of s2 exhibits a particular behavior (also see [14, Thm. 3.5.4]).

1

N

N�1X

jD0

s2.j/ D 1

2
log2 N C G .log2 N/ (1.6)

where G is a continuous nowhere differentiable periodic function of period 1

(Figure 1.8).
General results do exist for summatory function of k-regular sequences. The

result below can be found in [14, Thm. 16.4.1].

Theorem 1.6.23. Let a D .a.n//n�0 and b D .b.n//n�0 be k-regular sequences.
Then c D a ? b, where, for all n � 0, c.n/ D Pn

iD0 ai bn�i, is k-regular.

Corollary 1.6.24. Let a D .a.n//n�0 be a k-regular sequence. The sequence of
partial sums

 
nX

iD0

ai

!

n�0

is k-regular.

Proof. One simply takes for b the constant sequence .1/n�0 in Theorem 1.6.23. ut
A linear representation of the summatory sequence can easily be deduced

from the linear representation of the sequence itself, see [201, Lemma 1] or
Proposition 2.2.11 in Chapter 2. Let us state the following result obtained by Dumas
[201, 202] (see also Theorem 2.3.13).
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Theorem 1.6.25. Let k � 2 be an integer. The summatory function of a k-regular
sequence .u.n//n�0 with a linear representation given by the matrices �0; : : : ; �k�1

admits an asymptotic expansion which is a sum of terms of the form

N logk 

 
logk N

m

!
ei� logk N '.logk N/

for the eigenvalues ei� of � WD �0 C � � � C �k�1 whose modulus  is larger than
the joint spectral radius of �0; : : : ; �k�1 and where m is an integer bounded by the
maximal size of a Jordan block associated with ei� and ' is a periodic function
of period 1. For this asymptotic expansion, there is an error term in O.N logk r/ for
every r larger than the joint spectral radius of the matrices �0; : : : ; �k�1.

Definition about the joint spectral radius will be given in Chapter 2; see also
Chapter 11.8.1. Similar results are also discussed by Drmota and Grabner in [78,
Theorem 9.2.15]. Let us also mention another result (see [14, Theorem 3.5.1]) with
stronger assumptions but avoiding error terms. In this result, if v belongs to Cd,

then the notation jjvjj stands for the Euclidean norm of v defined by
�Pd

iD1 jvij2
� 1

2
.

Moreover, if M is a square matrix of dimension d with entries in C, then by jjMjj
we mean the L2 norm, which is the matrix norm associated with the usual Euclidean
norm on Cd by the formula jjMjj D supjjxjjD1 jjMxjj.
Theorem 1.6.26. Let k � 2 be an integer. Suppose there exist an integer d � 1, a
sequence of vectors .Vn/n�0, Vn 2 Cd, defined by

Vn D

0

BBBB@

V.1/
n

V.2/
n
:::

V.d/
n

1

CCCCA
;

and k square matrices �0; �0; : : : ; �k�1 of dimension d such that

1. VknCr D �rVn for all n � 0 and all r, 0 � r < k.
2. jjVnjj D O.log n/.
3. There exist a d 	 d matrix � and a constant c > 0 such that either jj�jj < c or

� is nilpotent, such that � WD �0 C �1 C � � � C �k�1 D cI C �.

The matrix � being clearly invertible, if jj� �1jj < 1, then there exists a continuous
function G W R ! Cd of period 1 such that

X

0�n<N

Vn D N logk c.I C c�1�/logk NG .logk N/ :
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1.7 Dynamical Systems

There are two main types of dynamical systems, namely, topological ones and
measure-theoretic ones. Dynamical systems will be considered in particular in
Chapters 8, 9, and 11.

1.7.1 Topological Dynamical Systems

Definition 1.7.1. A topological dynamical system .X; T/ is defined as a compact
metric space X together with a continuous map T defined onto the set X.

We are interested in iterating the map T , and we look at the orbits O.x/ of x 2 X
defined as

O.x/ D fTn.x/W n 2 Ng:

under the action T . The trajectory of x 2 X is the sequence .Tn.x//n�0.
A topological dynamical system .X; T/ is minimal if, for all x in X; the orbit of

x, i.e., the set fTnx j n 2 Ng, is dense in X. Let us note that if .X; S/ is a subshift,
and if X is furthermore assumed to be minimal, then X is periodic if and only if X is
finite.

Two dynamical systems .X1; T1/ and .X2; T2/ are said to be topologically
conjugate (or topologically isomorphic) if there exists an homeomorphism f from
X1 onto X2 which conjugates T1 and T2, that is:

f ı T1 D T2 ı f :

If f is only onto, then .X1; T1/ is said to factor onto .X2; T2/, .X2; T2/ is a factor of
.X1; T1/, and f is called a factor map.

1.7.2 Measure-Theoretic Dynamical Systems

We have considered here the notion of dynamical system, that is, a map acting on
a given set, in a topological context. This notion can be extended to measurable
spaces; we thus get measure-theoretic dynamical systems. For more details, one can
refer, for instance, to [579]. See also Section 11.11.3.

Definition 1.7.2. A measure-theoretic dynamical system is defined as a system
.X;B; �; T/, where B is a 
 -algebra, � a probability measure defined on B, and
T W X ! X is a measurable map which preserves the measure �, i.e., for all B 2 B,
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�.T�1.B// D �.B/. Such a measure is said to be T-invariant and the map T is said
to preserve the measure �.

The transformation T (or the system .X;B; �; T/) is ergodic if for every B 2 B
such that T�1.B/ D B, then B has either zero measure or full measure.

Let .X; T/ be a topological dynamical system. A topological system .X; T/

always has an invariant probability measure. The case where there exists only one
T-invariant measure is of particular interest. A topological dynamical system .X; T/

is said to be uniquely ergodic if there exists one and only one T-invariant Borel
probability measure over X. In particular, a uniquely ergodic topological dynamical
system yields an ergodic measure-theoretic dynamical system.

A measure-theoretic ergodic dynamical system satisfies the Birkhoff ergodic
theorem, also called individual ergodic theorem. Let us recall that the abbreviation
a.e. stands for “almost everywhere”: a property holds almost everywhere if the set of
elements for which the property does not hold is contained in a set of zero measure.

Theorem 1.7.3. Let .X;B; �; T/ be a measure-theoretic dynamical system. Let f 2
L1.X;R/. Then the sequence . 1

n

Pn�1
kD0 f ı Tk/n�0 converges a.e. to a function f � 2

L1.X;R/. One has f � ı T D f � a.e. and
R

X f � d� D R
X f d�. Furthermore, if T is

ergodic, since f � is a.e. constant, one has:

8f 2 L1.X;R/ ;
1

n

n�1X

kD0

f ı Tk ��a:e:����!
n!1

Z

X
f d� :

Note that the notions of conjugacy and factor between two topological dynamical
systems extend in a natural way to the measure-theoretic context.

1.7.3 Symbolic Dynamics

Let us introduce some basic notions in symbolic dynamics. For expository books
on the subject, see [167, 348, 381, 475] and [488]. For references on ergodic theory,
also see, e.g., [579]. These notions will be central in particular in Chapters 8 and 9.

Let S denote the following map defined on ˙! , called the one-sided shift:

S..xn/n�0/ D .xnC1/n�0 :

In particular, if x D x0x1x2 � � � is an infinite word over ˙ , then for all n � 0, its
suffix xnxnC1 � � � is simply Sn.x/. The map S is uniformly continuous, onto but not
one to one on ˙! . This notion extends in a natural way to ˙Z. In this latter case,
the shift S is one to one. We thus get symbolic dynamical systems. Here symbolic
refers to the fact that they are defined on words.

The definitions given below correspond to the one-sided shift, but they extend in
a natural way to the two-sided shift.
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Definition 1.7.4. Let x be an infinite word over the alphabet ˙ . The symbolic
dynamical system associated with x is then defined as the shift orbit closure
.O.x/; S/, where O.x/ 
 ˙! is the closure of the orbit O.x/ D fSnx j n 2 Ng
of x.

In the case of bi-infinite words, we similarly define O.x/ D fSnx j n 2 Zg where
the (two-sided) shift map is defined on ˙Z. The set Xx WD O.x/ is a closed subset
of the compact set ˙! ; hence it is a compact space and S is a continuous map acting
on it. One checks that, for every infinite word y 2 ˙! , the word y belongs to Xx

if and only if L.y/ 
 L.x/. For a proof, see [488] or Chapter 1 of [487]. Note that
O.x/ is finite if and only if x is eventually periodic. Moreover, if x is an infinite
word, .Xx; S/ is minimal if and only if x is uniformly recurrent. Indeed, w is a factor
of x, we write

O.x/ D
[

n2N
S�nŒw�;

and we conclude by a compactness argument.
Generic examples of symbolic dynamical systems are provided by subshifts (also

called shifts for short). Let Y be a closed subset of ˙! that is stable under the action
of the shift S. The system .Y; S/ is called a subshift. The full shift is defined as
.˙!; S/. If Y is a subshift, there exists a set F � ˙� of finite words such that an
infinite word x belongs to X if and only if none of its factors belongs to F . A subshift
X is called a subshift of finite type if one can choose the set F to be finite. A subshift
is said to be sofic if the set F is a regular language. A subshift .X; S/ is said to be
periodic if there exist x 2 X and an integer k such that X D fx; Sx; : : : ; Skx D xg.
Otherwise it is said to be aperiodic.

For the more general case of a group G acting on configurations in ˙G, see
Chapter 9. Elements of ˙G can be considered as colorings of a group G by a finite
alphabet ˙ . The set of configurations ˙G, endowed with the product topology, is a
compact space on which we define the shift transformations: for every g 2 G, the
shift Sg translates a configuration x 2 ˙G through Sg.x/h D xg�1h for every h 2 G.
In this framework, subshifts are exactly subsets of AG that are both shift-invariant
and closed for the product topology.

Example 1.7.5. The set of infinite words over f0; 1g of Example 1.5.6 which do not
contain the factor 11 is a subshift of finite type, whereas the set of infinite words
over f0; 1g having an even number of 1 between two occurrences of the letter 0 is a
sofic subshift which is not of finite type.

Definition 1.7.6. Let Y be a subshift. For a word w D w0 � � � wr, the cylinder set
Œw� is the set fy 2 Y j y0 D w0; : : : ; yr D wrg:

The cylinder sets are clopen (open and closed) sets and form a basis of open sets
for the topology of Y . Furthermore, one checks that a clopen set is a finite union of
cylinders. In the bi-infinite case, the cylinders are the sets
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Œu:v�Y D fy 2 Y j yi D ui; yj D vj; �juj � i � �1; 0 � j � jvj � 1g

and the same remark holds.
Then the topological entropy h.X/ of the symbolic dynamical system .X; S/

measures the richness of its language L, defined as the set of factors of elements
in X. It is defined as

h.X/ D lim
n!1

1

n
ln jL \ ˙nj :

It is closely related to the growth rate of the language L defined as lim supn!1 jL \
˙nj 1

n and considered in Chapter 5.
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