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Preface

This collaborative volume aims at presenting and developing recent trends at the
interface between the study of sequences, groups, and number theory, as the title
may suggest. It is inspired by the celebrated Lothaire series [385–387] and animated
by the same spirit as in the books [78, 79]. Among the various topics developed
in this volume, let us quote the notions of automatic and regular sequences,
of normality, of amenability of groups, but also of tilings and multidimensional
subshifts, as striking examples of such bridges. These topics are handled with
a viewpoint combining mathematics and theoretical computer science. On the
one hand, some of the newest results in these areas have been selected for this
volume and benefit from a synthetic exposition. On the other hand, emphasis on
the connections existing between the main topics of the book is sought.

This book is primarily intended for graduate students or research mathematicians
and computer scientists interested in combinatorics on words, automatic and
regular sequences, numeration systems, normal numbers, automata theory, group
theory, automaton groups, amenable groups, number theory and arithmetics, formal
language theory and discrete dynamical systems, symbolic dynamics, but also
tilings. We hope that some of the chapters can serve as a useful material for lecturing
at a master or graduate level.

Let us succinctly sketch the contents of this contributed volume. The book can
roughly be divided into four general blocks. The first block which is made of
Chapters 2, 3, and 4 pertains to number theory and focuses on sequences. The
second one made of Chapters 5 and 6 is devoted to word combinatorics. The
third block, made of Chapters 7 and 8, focuses on normal numbers and provides
two viewpoints on normal numbers, namely, a computer scientist and a dynamical
perspective. The last block is concerned with group theory with Chapters 9, 10,
and 11. Note that short abstracts of each chapter can be found below and at the
beginning of each chapter.

Number theory is one of the main frames underpinning this book. One can
represent a real number by an infinite word, for instance, by considering its
development in an integer base. One can also code a set of natural integers by
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its characteristic sequence considered as an infinite word over the alphabet f0; 1g.
Connections between number theory and the study of sequences are therefore
natural.

Automatic and regular sequences provide rich and widely studied classes
of sets, numbers, or functions, illustrating remarkably well these connections.
Automatic sequences correspond to the most basic objects in terms of Chomsky–
Schützenberger hierarchy, namely, regular languages, i.e., languages accepted by
finite automata, and they allow the definition of “simple sets” of numbers by
recognizing sets of representations in a given numeration system. Similarly, the
notion of a regular sequence extends the concept of automatic sequence to sequences
taking infinitely many values. For more on automatic and regular sequences, see the
monograph [14]. This hierarchy can be revisited in terms of sequences, numbers,
and functions, such as developed in Chapter 2 with the study of Mahler functions.
Chapter 2 focuses in particular on the algebraic, analytic, and Diophantine prop-
erties of Mahler functions, by highlighting the rational-transcendental dichotomy.
The question of the number theoretic properties of real numbers whose expansions
are highly structured is also developed in Chapter 2, whereas Chapter 4 looks
at applications of the theory of polynomial identities for automatic and regular
sequences: a characterization of regular sequences is provided in terms of the so-
called shuffle and power properties, stated in the context of noncommutative rational
series by Berstel and Reutenauer in [77, Chap. 3].

Recently several authors have proposed formal methods to obtain automatic
proofs (in the sense of automated theorem proving) about properties of k-automatic
sequences and, more generally, for particular families of morphic words (see, for
instance, [248, 540]). Indeed, some properties of interest for automatic sequences
are expressible by a first-order (FO) formula of hN;C;Vbi, where Vb is a base-
dependent predicate. One can derive the decidability of hN;C;Vbi from the
decidability of Presburger arithmetic hN;Ci together with the Büchi–Bruyère
theorem [112, 114, 115] (see Theorem 3.3.4), and one thus can algorithmically
decide, for instance, whether or not a given automatic sequence contains a repetition
like a square or a cube. Chapter 3 deals with these connections involving formal
logic, decision problems, automaticity, regularity, and numeration. It also shows
how problems linked with the enumeration of combinatorial objects associated with
automatic sequences give rise to regular sequences. Questions on repetitions and
avoidance in words are also considered in Chapter 5.

Note that logic is a crucial notion in the present context that goes through several
chapters, in particular in the context of tilings. Indeed, the domino problem asks for
the existence of an algorithm deciding whether a finite set of Wang tiles may tile the
plane. This problem was formulated on Z2 by Wang [580] in 1961 in order to study
a fragment of first-order (FO) logic, as recalled in Chapter 9. As another example,
the set theory notion of filters and ultrafilters is also considered in Chapters 6 and 11.

Similarly, machines issued from theoretical computer science are ubiquitous in
this book and occur under various forms by providing hierarchies and measures
of computational complexity or generating and constructing devices: let us quote
Büchi automata in Chapter 3, transducers in Chapter 7, Mealy automata in
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Chapter 10, Turing machines in Chapter 9, but also cellular automata in Chapters 10
and 11.

The study of normal numbers is another representative illustration of the numer-
ous connections existing between numbers, sequences, computability, dynamical
systems, probability, arithmetics, and algebra. Several (fast) effective constructions
of normal numbers and of absolutely normal numbers are provided in Chapter 7,
with the speed of convergence to normality being also considered. The analysis of
the computational complexity is obtained by counting the number of mathematical
operations required to output the first k digits of the expansion of the computed
number in a designated base. Moreover, in Chapter 7, normality is also expressed
in terms of non-compressibility by a bounded-to-one nondeterministic transducer,
according to [56], together with further generalizations. The degree of randomness
in the expansions is investigated in Chapter 8 under a dynamical viewpoint.
Normality is discussed both from a topological and from a measure-theoretic
viewpoint, by stressing the fact that normality corresponds to genericity for an
invariant measure of maximal entropy. The symbolic dynamical systems considered
in this chapter are assumed to fulfill the specification property and thus to have a
unique measure of maximal entropy. Constructions by concatenations of words are
then provided.

Dynamical systems and computation are known to have closed connections.
Indeed, numerous computational models benefit from being viewed as a dynamical
system, whereas the ability to encode computations in various dynamical systems
provides information on their complexity and predictability. As an illustration
of this interplay, Hochman’s breakthrough [294, 295] on sofic multidimensional
subshifts has shown how computability theory is needed for their understanding
(see also [79, Chap. 9]). The main techniques in this framework rely on the use of
Turing machines that can be encoded by tilings. These topics will be developed in
Chapter 9 where the interactions between symbolic dynamics, substitution tilings,
computability, and group combinatorics are stressed: subshifts are considered here
both as computational models and discrete models for dynamical systems, and the
decidability of the Domino Problem is reinterpreted as a group property. Different
notions of effectiveness in subshifts defined over groups are also discussed. Recall
that the emptiness problem for subshifts of finite type is equivalent to the domino
problem, that is, the problem of tiling the plane with Wang tiles. Note that Wang
tilings are also considered as a tool for the understanding of the behavior of
automaton (semi)groups, such as developed in Chapter 10, where Wang tilesets are
associated with complete and deterministic Mealy automata.

Combinatorics on words deals with problems that can be stated in a noncom-
mutative monoid such as construction and properties of infinite words, k-automatic
and k-regular sequences, unavoidable regularities or patterns, factorization and
colorings, etc. Word combinatorics is a quite recent subject in discrete mathematics.
One can trace it back to the early twentieth century with the works of Thue, dealing
with repetition-free words, and then in the 1930s with Morse and Hedlund, with
their fundamental work on symbolic dynamics. The expansion of this research topic
is mostly due to Schützenberger in France and Novikov and Adjan in former Russia.
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Several important problems in combinatorics on words (e.g., pattern avoidance
of various forms such as squares, cubes, fractional, abelian powers, binomial
powers, etc.) are explored and often solved by developing algorithmic methods.
In particular, Chapter 5 is devoted to existence (or nonexistence) results for infinite
words avoiding a repetition, a pattern, or even a formula. The size of a language
of words avoiding some repetition pattern is also considered. Morphic words play
a crucial role in this context. This approach complements the formal methods of
Chapter 3. Another recurrent topic in combinatorics deals with factorization and
coloring problems such as in Ramsey theory. Chapter 6 is about monochromatic
factorizations of nonperiodic words and presents striking connections with topolog-
ical compactification, Hindman’s finite sums theorem, partition regularity of IP sets
(an IP set is a set of natural numbers which contains all finite sums of some infinite
set), and the Milliken–Taylor theorem.

Groups are ubiquitous in this book. They provide dynamical systems such as
developed in Chapter 9, which deals with decidability problems (domino problem)
involving subshifts of finite type on a finitely generated group. Group actions are
considered in Chapter 11 with the notion of self-similarity, a notion which occurs
in geometry, algebra, holomorphic dynamics, and computer science. The common
language is the one of finite automata such as developed in Chapter 10. Self-
similarity is interpreted in group theory as a group that contains permuted copies of
itself as a group. Constructions using finite automata have allowed the developments
of spectacular and unexpected group zoologies. They have permitted the proof of
existence of finitely generated groups with intermediate growth using the automaton
group of Grigorchuk or with nonuniform exponential growth, etc. Two classes of
(semi)groups are considered in Chapter 10, namely, automatic and automata groups.
Growth issues are also naturally considered in Chapters 10 and 11. The notion of
amenability for group actions, whose study is thoroughly developed in Chapter 11,
is again a striking example of the interaction between combinatorics, dynamics,
group theory, functional analysis, probability, etc. Amenability for a group G acting
on a set X can be formulated in terms of the existence of a G-invariant mean on
subsets of X.

Let us conclude our brief presentation of the book with numeration systems.
In a generic way, a numeration system allows the expansion of numbers as words
over an alphabet of digits. A numeration system usually is either defined by
an algorithm providing expansions or by an iterative process associated with a
dynamical system. So again, words are demonstrating their representation power.
Among the various questions related to the expansions of numbers, we have chosen
to develop two focused viewpoints on ˇ-numeration (i.e., numeration systems with
non-integer bases), namely, connections with logic in Chapter 3 and normality issues
in Chapter 8.

Parts of the material developed in this book were presented during the fourth
CANT (Combinatorics, Automata and Number Theory) school that was organized
at the Centre International de Rencontres Mathématiques (CIRM) from 28 Novem-
ber to 2 December 2016 in Marseille. We thank the CIRM for supporting this
event.
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We now give, by order of appearance, abstracts of every chapter. Chapter 1 is
a general introduction where the main notions that will occur in this book are
presented. The reader may skip this chapter in a first reading and use it as a reference
if needed.

Chapter 2 by Michael Coons and Lukas Spiegelhofer
Number Theoretic Aspects of Regular Sequences

We present a survey of results concerning regular sequences and related objects.
Regular sequences were defined in the early 1990s by Allouche and Shallit
as a combinatorially, algebraically, and analytically interesting generalization of
automatic sequences. In this chapter, after a historical introduction, we follow the
development from automatic sequences to regular sequences, and their associated
generating functions, to Mahler functions. We then examine size and growth
properties of regular sequences. The last half of the chapter focuses on the algebraic,
analytic, and Diophantine properties of Mahler functions. In particular, we survey
the rational-transcendental dichotomies of Mahler functions, due to Bézivin, and of
regular numbers, due to Bell, Bugeaud, and Coons.

Chapter 3 by Émilie Charlier
First-Order Logic and Numeration Systems

The Büchi–Bruyère theorem states that a subset of Nd is b-recognizable if and only
if it is b-definable. This result is a powerful tool for showing that many properties
of b-automatic sequences are decidable. Going a step further, first-order logic
can be used to show that many enumeration problems of b-automatic sequences
can be described by b-regular sequences. The latter sequences can be viewed
as a generalization of b-automatic sequences to integer-valued sequences. These
techniques were extended to two wider frameworks: U-recognizable subsets of Nd

and ˇ-recognizable subsets of Rd. In the second case, real numbers are represented
by infinite words, and hence, the notion of ˇ-recognizability is defined by means
of Büchi automata. Again, logic-based characterizations of U-recognizable (resp.
ˇ-recognizable) sets allow us to obtain various decidability results. The aim of this
chapter is to present a survey of this very active research domain.

Chapter 4 by Jason Bell
Some Applications of Algebra to Automatic Sequences

We give an overview of the theory of rings satisfying a polynomial identity and use
this to give a proof of a characterization due to Berstel and Reutenauer of automatic
and regular sequences in terms of two properties, which we call the shuffle property
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and the power property. These properties show that if one views an automatic
sequence f as a map on a free monoid on k-letters to a finite subset of a ring, then the
values of f are closely related to values of f on related words obtained by permuting
letters of the word. We use this characterization to give answers to three questions
from Allouche and Shallit, two of which have not appeared in the literature. The final
part of the chapter deals more closely with the shuffle property, and we view this
as a generalization of regular sequences. We show that sequences with the shuffle
property are closed under the process of taking sums, taking products; in addition
we show that there is closure under a noncommutative product, which turns the
collection of shuffled sequences into a noncommutative algebra. We show that this
algebra is very large, in the sense that it contains a copy of a free associative algebra
on countably many generators. We conclude by giving some open questions, which
we hope will begin a more careful study of shuffled sequences.

Chapter 5 by Pascal Ochem, Michaël Rao, and Matthieu
Rosenfeld
Avoiding or Limiting Regularities in Words

It is commonly admitted that the origin of combinatorics on words goes back to
the work of Axel Thue in the beginning of the twentieth century, with his results
on repetition-free words. Thue showed that one can avoid cubes on infinite binary
words and squares on ternary words. Up to now, a large part of the work on the
theoretic part of combinatorics on words can be viewed as extensions or variations
of Thue’s work, that is, showing the existence (or nonexistence) of infinite words
avoiding, or limiting, a repetition-like pattern. The goal of this chapter is to present
the state of the art in the domain and also to present general techniques used to
prove a positive or a negative result. Given a repetition pattern P and an alphabet,
we want to know if an infinite word without P exists. If it exists, we are also
interested in the size of the language of words avoiding P, that is, the growth rate
of the language. Otherwise, we are interested in the minimum number of factor P
that a word must contain. We talk about limitation of usual, fractional, abelian, and
k-abelian repetitions and other generalizations such as patterns and formulas. The
last sections are dedicated to the presentation of general techniques to prove the
existence or the nonexistence of an infinite word with a given property.

Chapter 6 by Caïus Wojcik and Luca Zamboni
Coloring Problems for Infinite Words

Given a finite coloring (or finite partition) of the free semigroup A C over a set A ,
we consider various types of monochromatic factorizations of right-sided infinite
words x 2 A ! . In 2006, Brown asked the following question in the spirit of Ramsey
theory: Given a nonperiodic infinite word x D x1x2x3 � � � with values in a set A ,
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does there exist a finite coloring ' W A C ! C relative to which x does not admit
a '-monochromatic factorization, i.e., a factorization of the form x D u1u2u3 � � �
with '.ui/ D '.uj/ for all i; j � 1? We give an optimal affirmative answer to this
question by showing that if x D x1x2x3 � � � is an infinite nonperiodic word with
values in a set A , then there exists a 2-coloring ' W A C ! f0; 1g such that for any
factorization x D u1u2u3 � � � , we have '.ui/ ¤ '.uj/ for some i ¤ j: Some stronger
versions of the usual notion of monochromatic factorization are also introduced and
studied. We establish links, and in some cases equivalences, between the existence
of these factorizations and fundamental results in Ramsey theory including the
infinite Ramsey theorem, Hindman’s finite sums theorem, partition regularity of IP
sets, and the Milliken–Taylor theorem.

Chapter 7 by Verónica Becher and Olivier Carton
Normal Numbers and Computer Science

Émile Borel defined normality more than one hundred years ago to formalize
the most basic form of randomness for real numbers. A number is normal to a
given integer base if its expansion in that base is such that all blocks of digits of
the same length occur in it with the same limiting frequency. This chapter is an
introduction to the theory of normal numbers. We present five different equivalent
formulations of normality, and we prove their equivalence in full detail. Four of the
definitions are combinatorial, and one is in terms of finite automata, analogous to the
characterization of Martin-Löf randomness in terms of Turing machines. All known
examples of normal numbers have been obtained by constructions. We show three
constructions of numbers that are normal to a given base and two constructions of
numbers that are normal to all integer bases. We also prove Agafanov’s theorem
that establishes that a number is normal to a given base exactly when its expansion
in that base is such that every subsequence selected by a finite automaton is also
normal.

Chapter 8 by Manfred Madritsch
Normal Numbers and Symbolic Dynamics

The present chapter takes a dynamical viewpoint on normal numbers. Starting with
a description of the link between dynamical systems and numeration systems, we
present the concept of normal and non-normal numbers providing two different
views on the dynamics of the system. Normal numbers are “normal” with respect
to randomly chosen objects, whereas non-normal numbers and extreme variants
thereof are examples of general objects, from a topological viewpoint. In the
following sections, we present how to obtain maximal randomness as well as
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constructions of numbers with a given degree of chaos. Then we turn our attention
to non-normal numbers. Since they are not completely random, we have to find a
different measurement for analyzing their structure. The Hausdorff dimension will
provide us with an interesting parameter in this context.

Chapter 9 by Nathalie Aubrun, Sebastián Barbieri, and
Emmanuel Jeandel
About the Domino Problem for Subshifts on Groups

From a classical point of view, the domino problem is the question of the existence
of an algorithm which can decide whether a finite set of square tiles with colored
edges can tile the plane, subject to the restriction that adjacent tiles share the same
color along their adjacent edges. This question has already been settled in the
negative by Berger in 1966; however, these tilings can be reinterpreted in dynamical
terms using the formalism of subshifts of finite type, and hence, the same question
can be formulated for arbitrary finitely generated groups. In this chapter, we present
the state of the art concerning the domino problem in this extended framework.
We also discuss different notions of effectiveness in subshifts defined over groups,
that is, the ways in which these dynamical objects can be described through Turing
machines.

Chapter 10 by Ines Klimann and Matthieu Picantin
Automaton (Semi)groups: Wang Tilings and Schreier Tries

Groups and semigroups generated by Mealy automata were formally introduced in
the early 1960s. They revealed their full potential over the years, by contributing to
important conjectures in group theory. In the current chapter, we intend to provide
various combinatorial and dynamical tools to tackle some decision problems all
related to some extent to the growth of automaton (semi)groups. In the first part, we
consider Wang tilings as a major tool in order to study and understand the behavior
of automaton (semi)groups. There are various ways to associate a Wang tileset with
a given complete and deterministic Mealy automaton and various ways to interpret
the induced Wang tilings. We describe some of these fruitful combinations, as well
as some promising research opportunities. In the second part, we detail some toggle
switch between a classical notion from group theory—Schreier graphs—and some
properties of an automaton group about its growth or the growth of its monogenic
subgroups. We focus on polynomial activity automata and on reversible automata,
which are somehow diametrically opposed families.
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Chapter 11 by Laurent Bartholdi
Amenability Groups and G-Sets

This text surveys classical and recent results in the field of amenability of groups,
from a combinatorial standpoint. It has served as the support of courses at the
University of Göttingen and the École Normale Supérieure. The goals of the text
are to be as self-contained as possible, so as to serve as a good introduction for
newcomers to the field; to stress the use of combinatorial tools, in collaboration
with functional analysis, probability, etc., with discrete groups in focus; to consider
from the beginning the more general notion of amenable actions; and, lastly, to
describe recent classes of examples and, in particular, groups acting on Cantor sets
and topological full groups.

Paris, France Valérie Berthé
Liège, Belgium Michel Rigo
August 2017
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5.2.2 Erdős’s Question: Avoiding Long Squares . . . . . . . . . . . . . 179
5.2.3 Fractional Repetitions and Dejean’s Conjecture . . . . . . . 179
5.2.4 Generalized Repetition Threshold . . . . . . . . . . . . . . . . . . . . . . 180
5.2.5 Limiting Occurrences and Letters. . . . . . . . . . . . . . . . . . . . . . . 181
5.2.6 Patterns and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.3 Abelian and Sum Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5.3.1 Mäkelä’s Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.3.2 Abelian Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
5.3.3 Powers Modulo ˚ , Additive Powers,

and k-Repetitive Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
5.3.4 k-Abelian Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
5.3.5 k-Binomial Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.4 Techniques for Negative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.4.1 Exhaustive Search and Backtracking . . . . . . . . . . . . . . . . . . . 199
5.4.2 Bounds on Densities by Exhaustive Searches . . . . . . . . . . 200



xx Contents

5.4.3 Mean Cycles and Rauzy Graphs . . . . . . . . . . . . . . . . . . . . . . . . 201
5.4.4 Upper Bound on the Growth Rate . . . . . . . . . . . . . . . . . . . . . . 202
5.4.5 Nonuniform Rauzy Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.5 Techniques for Positive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.5.1 Finding a Candidate Morphism . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.5.2 Avoiding Patterns and Formulas . . . . . . . . . . . . . . . . . . . . . . . . 207
5.5.3 The Dejean Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.5.4 A Power Series Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.5.5 Kolpakov’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6 Coloring Problems for Infinite Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Caïus Wojcik and Luca Q. Zamboni
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.3 A Coloring Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.4 Variations on the Coloring Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7 Normal Numbers and Computer Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Verónica Becher and Olivier Carton
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.2 Borel’s Definition of Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.3 Equivalences Between Combinatorial Definitions

of Normality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
7.4 Normality as a Seemingly Weaker Condition . . . . . . . . . . . . . . . . . . . . . 244
7.5 Normality as Incompressibility by Finite Automata . . . . . . . . . . . . . . 246
7.6 Normality as Uniform Distribution Modulo 1 . . . . . . . . . . . . . . . . . . . . . 250
7.7 Constructions of Numbers That Are Normal to a Given Base . . . . 252

7.7.1 À la Champernowne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
7.7.2 Infinite de Bruijn Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
7.7.3 A Normal and Self-Similar Word . . . . . . . . . . . . . . . . . . . . . . . 255

7.8 Constructions of Absolutely Normal Numbers . . . . . . . . . . . . . . . . . . . . 257
7.8.1 Turing’s Construction of Absolutely

Normal Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.8.2 A Fast Construction of Absolutely Normal Numbers . . 261

7.9 Normality, Non-normality, and Other Mathematical Properties . . 266
7.10 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

8 Normal Numbers and Symbolic Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Manfred Madritsch
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

8.1.1 Infinite Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.2 Normal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

8.2.1 Infinite Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.3 Construction of the Maximal Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.4 Generic Sequences for Different Measures . . . . . . . . . . . . . . . . . . . . . . . . 299



Contents xxi

8.5 Besicovitch-Eggleston Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
8.5.1 Reconstruction and Canonical Sequences . . . . . . . . . . . . . . 306
8.5.2 A Cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
8.5.3 The Lower Bound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

8.6 Extremely Non-normal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
8.6.1 Finite Alphabet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
8.6.2 Infinite Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.6.3 Preliminaries on Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
8.6.4 Proof of Theorem 8.6.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
8.6.5 Proof of Theorem 8.6.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

9 About the Domino Problem for Subshifts on Groups . . . . . . . . . . . . . . . . . . 331
Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
9.2 Subshifts of Finite Type on Z2, Wang Tiles and the

Domino Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
9.2.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
9.2.2 Turing Machines and the Halting Problem . . . . . . . . . . . . . 335
9.2.3 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
9.2.4 Domino Problem with Constrained Origin . . . . . . . . . . . . . 340
9.2.5 Domino Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

9.3 Subshifts of Finite Type on Finitely Generated Groups . . . . . . . . . . . 347
9.3.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.3.2 Domino Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
9.3.3 Inheritance Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.3.4 Classes of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
9.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

9.4 Towards a Definition of Effective Subshifts on Groups . . . . . . . . . . . 369
9.4.1 Link Between Z and Z2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
9.4.2 Effectiveness on Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
9.4.3 Two Larger Notions of Effectiveness . . . . . . . . . . . . . . . . . . . 380

9.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

10 Automaton (Semi)groups: Wang Tilings and Schreier Tries . . . . . . . . . . 391
Ines Klimann and Matthieu Picantin
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

10.1.1 Mealy Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
10.1.2 Minimization and Nerode Classes . . . . . . . . . . . . . . . . . . . . . . 393
10.1.3 Automaton (Semi)groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

10.2 A Matter of Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
10.2.1 Background on Tilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
10.2.2 Finiteness and Order Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 398
10.2.3 Helix Graphs and Rigidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
10.2.4 Automat-ic-on Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409



xxii Contents

10.3 A Matter of Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
10.3.1 Schreier Graphs and Polynomial-Activity Automata . . 418
10.3.2 Schreier Tries and Reversible Automata . . . . . . . . . . . . . . . . 421
10.3.3 The Burnside Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
10.3.4 Growth and Level-Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . 428

11 Amenability of Groups and G-Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Laurent Bartholdi
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

11.1.1 Amenability of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
11.1.2 Why This Text? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
11.1.3 Why Not This Text? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
11.1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

11.2 Means and Amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
11.2.1 First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
11.2.2 Elementary Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

11.3 Følner, Day, and Reiter’s Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
11.3.1 Growth of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
11.3.2 Day’s and Reiter’s Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
11.3.3 Non-amenability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

11.4 Growth of Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461
11.4.1 Groups of Polynomial Growth . . . . . . . . . . . . . . . . . . . . . . . . . . 461
11.4.2 Groups of Exponential Growth. . . . . . . . . . . . . . . . . . . . . . . . . . 462
11.4.3 Groups of Intermediate Growth . . . . . . . . . . . . . . . . . . . . . . . . . 465

11.5 Paradoxical Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
11.5.1 Hausdorff’s Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
11.5.2 Doubling Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

11.6 Convex Sets and Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
11.6.1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
11.6.2 Amenability of Equivalence Relations . . . . . . . . . . . . . . . . . . 479

11.7 Elementary Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
11.7.1 Elementary Amenable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 484
11.7.2 Subexponentially Amenable Groups. . . . . . . . . . . . . . . . . . . . 486
11.7.3 Free Group Free Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

11.8 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
11.8.1 Spectral Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
11.8.2 Harmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

11.9 Extensive Amenability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
11.9.1 Recurrent Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
11.9.2 Topological Full Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

11.10 Cellular Automata and Amenable Algebras . . . . . . . . . . . . . . . . . . . . . . . 522
11.10.1 Goldie Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
11.10.2 Amenable Banach Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
11.10.3 Amenable Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536



Contents xxiii

11.11 Further Work and Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
11.11.1 Boundary Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
11.11.2 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
11.11.3 Ergodic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
11.11.4 C�- and von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . 541
11.11.5 Numerical Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
11.11.6 Sofic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
11.11.7 Is This Group Amenable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569



Contributors

Nathalie Aubrun LIP, ENS de Lyon, Lyon, France

Sebastián Barbieri LIP, ENS de Lyon, Lyon, France

Laurent Bartholdi École Normale Supérieure, Paris, France. Mathematical Insti-
tute, Georg-August University of Göttingen, Bunsenstrasse, Göttingen, Germany

Verónica Becher Departamento de Computación, Facultad de Ciencias Exactas y
Naturales, Universidad de Buenos Aires. CONICET, Pabellón I, Ciudad Universi-
taria, Buenos Aires, Argentina

Jason Bell Department of Pure Mathematics, University of Waterloo, Waterloo,
ON, Canada

Valérie Berthé IRIF, UMR 8243, CNRS & Université Paris Diderot, Paris Cedex
13, France

Olivier Carton IRIF, UMR 8243, CNRS & Université Paris Diderot, Paris Cedex
13, France

Émilie Charlier Department of Mathematics, University of Liège, Liège, Belgium

Michael Coons School of Mathematical and Physical Sciences, University of
Newcastle, Callaghan, NSW, Australia

Emmanuel Jeandel LORIA, Campus Scientifique, Vandœuvre-Lès-Nancy, France

Ines Klimann IRIF, UMR 8243, CNRS & Univ. Paris Diderot, Paris Cedex 13,
France

Manfred Madritsch Institut Élie Cartan de Lorraine, Universtité de Lorraine,
Vandœuvre-Lès-Nancy Cedex, France

Pascal Ochem CNRS & LIRMM, Montpellier, Montpellier Cedex 5, France

Matthieu Picantin IRIF, UMR 8243, CNRS & Université Paris Diderot, Paris,
France

xxv



xxvi Contributors

Michaël Rao LIP, ENS de Lyon, Lyon, France

Michel Rigo Department of Mathematics, University of Liège, Liège, Belgium

Matthieu Rosenfeld LIP, ENS de Lyon, Lyon, France

Lukas Spiegelhofer Institut für Diskrete Mathematik und Geometrie, Technische
Universität Wien, Wien, Austria

Caïus Wojcik Institut Camille Jordan, Université Lyon 1, CNRS UMR 5208,
Villeurbanne Cedex, France

Luca Q. Zamboni Institut Camille Jordan, Université Lyon 1, CNRS UMR 5208,
Villeurbanne Cedex, France



Chapter 1
General Framework

Valérie Berthé and Michel Rigo

Abstract This introductory chapter briefly presents some of the main notions that
appear in the subsequent chapters of this book. We recap a few definitions and
results from combinatorics on groups and words, formal language theory, morphic
words, k-automatic and k-regular sequences, and dynamical systems. Our aim is not
to be exhaustive. The reader can consult this chapter when studying other parts of
this book.

1.1 Conventions

The set of nonnegative integers (respectively integers, rational numbers, real
numbers, and complex numbers) is written N (respectively, Z, Q, R, and C). In
particular, the set N is f0; 1; 2; : : :g. We use the notation ŒŒi; j�� for the set of integers
fi; i C 1; : : : ; jg. The floor of a real number x is bxc D supfz 2 Z j z � xg,
whereas fxg D x � bxc stands for the fractional part of x. Recall that d�e denotes
the ceiling function, i.e., dxe D inffz 2 Z j z � xg. The characteristic sequence
�X of a set X � Nd takes its values in f0; 1g and satisfies �X.n/ D 1 if and only if
n 2 X.

Let us recall the notation about asymptotics. Let f ; g W R! R be two functions.
The definitions given below can also be applied to functions defined on another
domain like R>a, N or Z. We assume implicitly that the following notions are
defined for x ! C1. We write f 2 O.g/, if there exist two constants x0 and
C > 0 such that, for all x � x0, jf .x/j � Cjg.x/j. We also write f � g or
g � f , or else g 2 ˝.f /. Note that we can write either f 2 O.g/ or f D O.g/.
Be aware that in the literature, authors sometimes give different meanings to the
notation ˝.f /. Here we consider a bound, for all large enough x, but there exist
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2 V. Berthé and M. Rigo

variants where the bound holds only for an increasing sequence .xn/n�0 of reals,
i.e., lim supx!C1 jg.x/j=jf .x/j > 0.

If g belongs to O.f /\˝.f /, i.e., there exist constants x0;C1;C2 with C1;C2 > 0
such that, for all x � x0, C1jf .x/j � jg.x/j � C2jf .x/j, then we write g 2 �.f /. As
an example, the function x2 C sin 6x is in �.x2/ and x2j sin.4x/j is in O.x2/ but not
in �.x2/.

1.2 Algebraic Structures

We briefly recall the basic definitions of monoid, (semi)group, (semi)ring, field,
ideal, vector space, and module.

Definition 1.2.1. Let S be a set equipped with a single binary operation

? W S 	 S! S :

It is convenient to call this operation a multiplication over S, and the product of
x; y 2 S is usually denoted by xy.

If this multiplication is associative, i.e., for all x; y; z 2 S, .xy/z D x.yz/, then the
algebraic structure given by the pair .S; ?/ is a semigroup.

If, moreover, multiplication has an identity element, i.e., there exists some
element 1 2 S such that, for all x 2 S, x1 D x D 1x, then .S; ?/ is a monoid.

In addition if every element x 2 S has an inverse, i.e., there exists y 2 S such
that xy D 1 D yx, then .S; ?/ is a group.

Definition 1.2.2. A semiring is a set R equipped with two binary operationsC and �
such that

1. .R;C/ is a commutative monoid with identity element 0.
2. .R; �/ is a monoid with identity element 1.
3. The product is distributive with respect to the sum.
4. For all r 2 R, 0 � r D 0 D r � 0.

If, moreover, � is commutative, then the semiring is said to be commutative. A ring
is a semiring where .R;C/ is a commutative group. A field is a commutative ring
where .R; �/ is a group.

Definition 1.2.3. A (two-sided) ideal of a ring .R;C; �/ is a nonempty subset I of
R, such that .I;C/ is a subgroup of .R;C/ and for all i 2 I and all r 2 R, i � r and
r � i belong to I.

Definition 1.2.4. Let K be a field with identity element 1 for its multiplication. A
vector space over K is a set V equipped with a binary operation C W V 	 V ! V
such that .V;C/ is a commutative group and a binary operation � W K 	V ! V such
that, for all k; ` 2 K and all x; y 2 V ,
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1. k � .` � x/ D .k`/ � x
2. 1 � x D x
3. .kC `/ � x D k � xC ` � x
4. k � .xC y/ D k � xC k � y

A K-module is similarly defined but it is built over a ring K instead of a field.

We now consider natural notions specific to group and semigroup theory (see
also Section 9.3.1 for further basic definitions on group theory and Chapter 11).

For a given property P of groups (abelian, free, nilpotent, soluble, . . . ), group G
is called virtually P if G contains a finite-index subgroup satisfying property P .
See also Definition 9.3.36 and Section 9.3.4.1 for properties of virtually free groups
such as the decidability for the word problem (Theorem 9.3.37).

Schreier graphs generalize Cayley graphs. Let G be a group generated by S
and acting on a set X, the vertices of its Schreier graph (depending on S) are the
elements of X, and there is an edge from x to y if y is the image of x under the
action of some element of S. By considering the action of the group on itself by right
multiplication, this graph coincides with its Cayley graph. See also Definition 10.3.1
and Section 11.3.

Let G be a finitely generated group with a generator system given by S D
fg1; : : : ; gmg. The length of g 2 G (with respect to S) is the smallest integer ` such
that g can be represented by a product of the form

g D g˙1i1 � � � g
˙1
i`
;

i.e., the length of the shortest decomposition of g. The growth of the group G (with
respect to S) is the map

�S W N! N; n 7! Cardfg 2 G j dS.g/ � ng ;

where dS.g/ is the length of g with respect to S. This definition can be made
independent of S by noticing that the growths corresponding to two generating sets
are equivalent [409]. Note that a finite group has a bounded growth, an infinite
abelian group has a polynomial growth, and a non-abelian free group has an
exponential growth. The growth of a finitely generated group can also be seen as
the growth of its Cayley graph: we count the vertices which are within distance n of
the identity element. This notion is considered in Sections 10.3.4.1, 11.3.1, and 11.4.

1.3 Words

This section is intended to give basic definitions about words either finite or infinite.
Words are ubiquitous when encoding a piece of information. As an example, a finite
word over the alphabet of digits f0; : : : ; k � 1g can be seen as the k-ary expansion
of an integer. On the other hand, an infinite word over f0; 1g could be used as the
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characteristic sequence for a subset of N. For material not covered here, see the
classical Lothaire’s textbooks on finite or infinite words and their properties are
[385–387]. Also see Allouche and Shallit’s book [14] about automatic sequences
or, Queffélec’s book [488] for a dynamical point of view. For a quick overview, the
reader can have a look at the chapter [150] or the tutorial [75]. The book [504] is
also intended to serve as introductory lecture notes on the subject.

1.3.1 Finite Words

An alphabet is a finite nonempty set. Its elements are called symbols or letters.

Definition 1.3.1. A (finite) word over ˙ is a finite sequence of letters from ˙ .
The empty sequence is called the empty word and it is denoted by ". The sets of
all finite words (respectively, finite nonempty words) over ˙ are denoted by ˙�

(respectively, ˙C). A word w D w0w2 � � �wn�1 where wi 2 ˙ , 0 � i < n, can be
seen as a function w W f0; 1; : : : ; n�1g ! ˙ in which w.i/ D wi for all i. The empty
word is the word whose domain is the empty set.

Let u D u0 � � � um�1 and v D v0 � � � vn�1 be two words over˙ . The concatenation
of u and v is the word w D w0 � � �wmCn�1 defined by wi D ui if 0 � i < m, and
wi D vi�m otherwise. We write u � v or simply uv to express the concatenation of u
and v. The concatenation (or catenation) of words is an associative operation, i.e.,
given three words u, v and w, .uv/w D u.vw/. Hence, parenthesis can be omitted. In
particular, the set ˙� (respectively, ˙C) equipped with the concatenation product
is a monoid (respectively, a semigroup).

The length of a word w, denoted by jwj, is the number of occurrences of the letters
in w. In other words, if w D w0w2 � � �wn�1 with wi 2 ˙ , 0 � i < n, then jwj D n. In
particular, the length of the empty word is zero. The set of words of length k (respec-
tively, at most k) over ˙ is denoted by ˙ k (respectively, ˙�k). For a 2 ˙ and
w 2 ˙�, we write jwja for the number of occurrences of a in w. Therefore, we have

jwj D
X

a2˙

jwja :

If u and v are two words over ˙ such that juja D jvja for all a 2 ˙ , then u is
obtained by permuting the letters of v: u and v are said to be abelian equivalent.
These are anagrams.

A word u is a factor of a word v (respectively, a prefix or a suffix), if there
exist words x and y such that v D xuy (respectively, v D uy, or v D xu). A
factor (respectively, a prefix or a suffix) u of a word v is called proper if u ¤ v

and u ¤ ". Prefixes and suffixes are sometimes called initial and terminal factors.
Thus, for example, if w D concatenation, then con is a prefix, ate is a
factor, and nation is a suffix of w. If w D w0 � � �wn and u is a factor of w such
that u D wi � � �wiCjuj�1, we say that u occurs in w at position i. For instance, in
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abbabaabbaab, the factor ab occurs at positions 0; 3; 6; 10. The set of factors of
u (respectively, of prefixes of u) is denoted by Fac.u/ (respectively, Pref.u/).

The mirror (sometimes called reversal) of a word u D u0 � � � um�1 is the word
Qu D um�1 � � � u0. It can be defined inductively on the length of the word by Q" D "

and eau D Qua for a 2 ˙ and u 2 ˙�. Notice that for u; v 2 ˙�, euv D Qv Qu. A
palindrome is a word u such that Qu D u. For instance, the palindromes of length at
most 3 in f0; 1g� are �; 0; 1; 00; 11; 000; 010; 101; 111.

1.3.2 Infinite Words

Instead of considering finite sequences of elements belonging to an alphabet ˙ ,
considering infinite sequences of elements in ˙ is also relevant.

Definition 1.3.2. An (one-sided right) infinite word is a map from N to ˙ . If w is
an infinite word, we often write

w D a0a1a2 � � � ;

where each ai 2 ˙ . The set of all infinite words of ˙ is denoted ˙! (one can also
find the notation ˙N).

Example 1.3.3. Consider the infinite word x D x0x1x2 � � � where the letters xi 2

f0; : : : ; 9g are given by the digits appearing in the usual decimal expansion of ��3,

� � 3 D

C1X

iD0

xi 10
�i�1;

i.e., x D 14159265358979323846264338327950288419 � � � is an infinite word.

The notions of factor, prefix, or suffix introduced for finite words can be extended
to infinite words. Factors and prefixes are finite words, but a suffix of an infinite word
is also infinite. We still make use of the notation Fac.w/ and Pref.w/.

Definition 1.3.4. The language of the infinite word x is the set of all its factors. It
is denoted by Fac.x/. The set of factors of length n occurring in x is denoted by
Facn.x/.

Definition 1.3.5. The complexity function, or factor complexity, of an infinite word
x maps n 2 N onto the number px.n/ D Card.Facn.x// of distinct factors of length
n occurring in x.

Example 1.3.6. The Thue–Morse word t D t0t1t2 � � � (ubiquitous word encountered
in combinatorics on words [18]) can be defined over fa;bg by tn D a if and only if
there is an even number of ones in the base-2 expansion of n � 0. Otherwise stated,
if the sum of base-2 digits of n is even. Thus a prefix of t is given

abbabaabbaababbabaababbaabbabaab � � � :



6 V. Berthé and M. Rigo

If we replace a with 1 and b with 0, then we get the characteristic sequence �E of
the set of integers whose sum of base-2 digits is even. The factor complexity of the
Thue–Morse word t is well known [107, 391]. See also [78, p. 225] where a chapter
is devoted to the factor complexity of morphic words. We have

pt.n/ D

�
4n � 2 � 2m � 4; if 2 � 2m < n � 3 � 2mI

2nC 4 � 2m � 2; if 3 � 2m < n � 4 � 2m:

Definition 1.3.7. A two-sided or bi-infinite word is a map from Z to ˙ . The set of
all bi-infinite words is denoted !˙! (one can also find the notation ˙Z).

Definition 1.3.8. An infinite word x D x0x1 � � � is (purely) periodic if there exists a
finite word u D u0 � � � uk�1 ¤ � such that x D u! , i.e., for all n � 0, we have xn D ur

where n D dkC r with r 2 f0; : : : ; k � 1g. An infinite word x is eventually periodic
(or ultimately periodic) if there exist two finite words u; v 2 ˙�, with v ¤ � such
that x D uvvv � � � D uv! . Notice that purely periodic words are special cases of
eventually periodic words. For any eventually periodic word x, there exist words
u; v of shortest length such that x D uv! , then the integer juj (respectively jvj) is
referred to as the preperiod (respectively period) of x. An infinite word is said to be
nonperiodic if it is not eventually periodic.

Let us mention the next result called Morse–Hedlund theorem.

Theorem 1.3.9. Let w be an infinite word over a finite alphabet. The word w is
eventually periodic if and only if there exists some integer N such that pw.N/ � N.

Among the nonperiodic words of low factor complexity, Sturmian words play
a special role and have been extensively studied. An infinite word x is Sturmian
if px.n/ D n C 1 for all n � 0. Note that Sturmian words are over a 2-letter
alphabet. For general references, see [386, Chapter 2] or [487, Chapter 6]. They
will be considered in Chapter 6.

Definition 1.3.10. An infinite word x is recurrent if all its factors occur infinitely
often in x. It is uniformly recurrent if it is recurrent and for every factor u of x, for
the infinite set

n
i.u/1 < i.u/2 < i.u/3 < � � �

o

of positions where u occurs in x, there exists a constant Cu such that, for all j � 1,

i.u/jC1 � i.u/j � Cu :

Note that, by Furstenberg’s theorem, for any infinite word w, there is a uniformly
recurrent word r over the same alphabet such that every finite factor of r is a factor
of w, i.e., Fac.r/ 
 Fac.w/ (see Theorem 4.4.9).

Let x be an infinite word, the function Rx W Fac.x/ ! N [ f1g maps a factor
u of x to the smallest k such that every factor of x of length k contains u, or 1 if
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no such k exists. Otherwise stated, an infinite word x is uniformly recurrent, if for
every factor u of x, Rx is finite. The recurrence function maps n 2 N to

Rx.n/ D max
u2Ln.x/

Rx.u/ :

Otherwise stated, if x is uniformly recurrent, then for every factor of length n of x,
Rx.n/ is finite and u occurs in all factors of length Rx.n/ of x.

Assume that ˙ is totally ordered: .˙;</. Let x; y be two infinite words over ˙ .
We say that x is lexicographically less than y if there exists N such that xi D yi for
all i < N and xN < yN .

Definition 1.3.11. One can endow ˙! with a distance d defined as follows. Let
x; y be two infinite words over ˙ . Let x ^ y denote the longest common prefix of x
and y. Then the distance d is given by

d.x; y/ WD
�
0; if x D y;
2�jx^yj; otherwise:

This notion of distance extends to˙Z. Notice that the topology on˙! is the product
topology (of the discrete topology on ˙ ). The space ˙! is a compact Cantor set,
that is, a totally disconnected compact space without isolated points. Since ˙! is a
(complete) metric space, it is therefore relevant to speak of convergent sequences of
infinite words. The sequence .zn/n�0 of infinite words over˙ converges to x 2 ˙! ,
if for all � > 0, there exists N 2 N such that, for all n � N, d.zn; x/ < �. To express
the fact that a sequence of finite words .wn/n�0 over˙ converges to an infinite word
y, it is assumed that ˙ is extended with an extra letter c 62 ˙ . Any finite word wn

is replaced with the infinite word wnccc � � � , and if the sequence of infinite words
.wnccc � � � /n�0 converges to y, then the sequence .wn/n�0 is said to converge to y.

Let .un/n�0 be a sequence of nonempty finite words. If we define, for all ` � 0,
the finite word v` as the concatenation u0u1 � � � u`, then the sequence .v`/`�0 of finite
words converges to an infinite word. This latter word is said to be the concatenation
of the elements in the infinite sequence of finite words .un/n�0. In particular, for a
constant sequence un D u for all n � 0, v` D u`C1 and the concatenation of an
infinite number of copies of the finite word u is denoted by u! .

We have discussed the fact that a (finite) word u may appear as a factor of an
infinite word x. It may occur a finite number of times, infinitely often, or even in
such a way that Rx.u/ is finite. But we could also introduce the frequency of a factor
u occurring in x as the following limit, if it exists,

lim
n!C1

Card
�
fi � n � juj j xi � � � xiCjuj�1 D ug

�

n
:

For instance, for the infinite word w D 01 0011 0414 08 18 016116 � � � where we have
longer and longer blocks of consecutive zeroes followed by longer and longer blocks
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of ones. The frequencies of 0 and 1 do not exist. Frequency appears naturally in
the definition of normal numbers given below. See also Theorem 1.6.10 about the
frequency of symbols in automatic sequences and morphic words. Frequencies are
also considered in Chapter 5 in the framework of repetitions, and in Chapter 7 and 8
in the framework of normality.

1.3.3 Number Representations

We refer the reader to Frougny’s chapter [386] or to [227] for a general presentation
of numeration systems. The book [503] can also serve as an introduction to the
subject. We also mention the survey [36]. More details are also discussed in
Section 3.2 of this book.

Let k � 2 be an integer. Let us recall how base-k expansion of integers may be
computed. For any positive integer n, there exist ` � 0 such that k` � n < k`C1 and
unique coefficients c0; : : : ; c` 2 f0; : : : ; k � 1g such that

n D
X̀

iD0

ci ki and c` ¤ 0 :

The coefficients c`; : : : ; c0 can be computed by successive Euclidean divisions. Set
n0 WD n. We have n0 D c` k`Cn1 with n1 < k` and for i D 1; : : : ; `, ni D c`�i k`�iC

niC1 with niC1 < k`�i. The word c` � � � c0 is said to be the k-ary representation or k-
ary expansion of n (sometimes called greedy representation) and denoted by repp.n/.
If d` � � � d0 is a word over an alphabet of digits included in Z, we define

valk.d` � � � d0/ D
X̀

iD0

di ki :

If one replaces the sequence .kn/n�0 with an increasing sequence .Un/n�0 of integer
such that U0 D 1, then a similar algorithm may be applied. The corresponding
U-expansions are over the alphabet f0; : : : ; supdUnC1

Un
e � 1g. One finds the general

terminology positional numeration system. It is also possible to extend the proce-
dure to represent real numbers. Let x 2 .0; 1/. There exists a decomposition of the
form

x D
C1X

iD1

ci k�i

where ci 2 f0; : : : ; k � 1g for all i � 1. If we forbid sequences where ci D k � 1
for all large enough i, then the sequence .ci/i�1 is unique. Given x 2 Œ0; 1/, the
algorithm in Table 1.1 provides the corresponding sequence .ci/i�0 of digits.
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Table 1.1 An algorithm for
computing the base-k expansion
of x 2 Œ0; 1/.

i 0

y x

REPEAT FOREVER

ci bkyc

y fkyg

INCREMENT i

END-REPEAT.

In this algorithm, we iterate a map from the interval Œ0; 1/ onto itself, i.e.,

Tk W Œ0; 1/! Œ0; 1/; y 7! fkyg (1.1)

and the value taken by the image determines the next digit in the expansion. This
yields a dynamical system such as discussed in Section 1.7. The interval Œ0; 1/ is
thus split into k subintervals Œj=k; .j C 1/=k/, for j D 0; : : : ; k � 1. For all i � 0,
if Ti

k.x/ belongs to the subinterval Œj=k; .j C 1/=k/, then the digit ci occurring in
repk.x/ is equal to j. It is indeed natural to consider such subintervals. If y belongs to
Œj=k; .jC1/=k/, then ky has an integer part equal to j and the map Tk is continuous and
increasing on every subinterval Œj=k; .jC1/=k/. Note also that the range of Tk on any
of these subintervals is Œ0; 1/. So applying Tk to a point in one of these subintervals
can lead to a point belonging to any of these subintervals (later on, we shall introduce
some other transformation, e.g., ˇ-transformations, where a restriction appears on
the intervals that can be reached). So to speak, the base-k expansion of x can be
derived from the trajectory of x under Tk, i.e., from the sequence .Tn

k .x//n�0.
As an example, consider the base k D 3 and the expansion of x D 3=10. The

point lies in the interval Œ0; 1=3/; thus the first digit of the expansion is 0. Then
T3.3=10/ D 9=10 lies in the interval Œ2=3; 1/; thus the second digit is 2. If we apply
again T3, we get T23 .3=10/ D f27=10g D 7=10, which belongs again to Œ2=3; 1/
giving the digit 2. Then T33 .3=10/ D 1=10 giving the digit 0 and finally T43 .3=10/ D
3=10. So rep3.3=10/ D .0220/

! .
A natural generalization of base-k expansion (discussed in Section 3.6 and in

Example 8.1.2) is to replace the base k with a real number ˇ > 1. In particular, the
transformation Tk will be replaced by the so-called ˇ-transformation. Note that we
shall be concerned with expansions of numbers in Œ0; 1/. If x � 1, then there exists
a smallest d such that x=ˇd belongs to Œ0; 1/. It is therefore enough1 to concentrate
on Œ0; 1/.

Definition 1.3.12 (ˇ-Expansions). We will only represent real numbers in the
interval Œ0; 1/. Let ˇ > 1 be a real number. The representations discussed here

1If the ˇ-expansion of x=ˇd is d0d1 � � � , then using an extra decimal point, the expansion of x is
conveniently written d0 � � � d`�1 �d`d`C1 � � � . Note that the presentation in Chapter 1 is not entirely
consistent with our present treatment if x belongs to Œ0; 1=.ˇ � 1/� n Œ0; 1/.
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are a direct generalization of the base-k expansions. Every real number x 2 Œ0; 1/
can be written as a series

x D
C1X

iD0

ci ˇ
�i�1 (1.2)

where ci belong to f0; dˇe � 1g. Note that if ˇ is an integer, then dˇe � 1 D ˇ � 1.
For integer base-b expansions, a number may have more than one representation,
namely, those ending with 0! or .b � 1/! . For a real base ˇ, we obtain many more
representations. Consider the Golden mean �, which satisfies �2 � � � 1 D 0, and
thus

1

�n
D

1

�nC1
C

1

�nC2
; 8n � 0 :

As an example, the number 1=� has thus infinitely many representations as a power
series with negative powers of � and coefficients 0 and 1:

1

�
D

1

�2
C

1

�3
D

1

�2
C

1

�4
C

1

�5
D

1

�2
C

1

�4
C

1

�6
C

1

�7
D � � � :

To get a canonical expansion for a real x 2 Œ0; 1/, we just have to replace the
integer base b with ˇ and consider the so-called ˇ-transformation

Tˇ W Œ0; 1/! Œ0; 1/; x 7! fˇxg

in the algorithm from Table 1.1. For i D 0; 1; : : :, the idea is to remove the largest
integer multiple ci of ˇ�i�1 and then repeat the process with the remainder and the
next negative power of ˇ to get (1.2). Note that ci is less than dˇe because of the
greediness of the process. Otherwise, one could have removed a larger multiple of
the power of ˇ at a previous step. The corresponding infinite word c0c1 � � � is called
the ˇ-expansion of x and is usually denoted by dˇ.x/. Any word d0d1 � � � over a
finite alphabet of nonnegative integers satisfying

x D
C1X

iD0

di ˇ
�i�1

is said to be a ˇ-representation of x. Thus, the ˇ-expansion of x is the
lexicographically maximal word among the ˇ-representations of x.

The greediness of the algorithm can be reformulated as follows.

Lemma 1.3.13. A word d0d1 � � � over f0; : : : ; dˇe � 1g is the ˇ-expansion of a real
number x 2 Œ0; 1/ if and only if, for all j � 0,
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C1X

iDj

di ˇ
�i�1 < ˇ�j :

Proposition 1.3.14. Let x; y be real numbers in Œ0; 1/. We have x < y if and only if
dˇ.x/ is lexicographically less than dˇ.y/.

1.3.4 Normality

Now that number representations and the frequency of a factor have been intro-
duced, we can define normal numbers.

A real number x is simply normal with respect to base b � 2 if in the base-
b expansion of x (which is an infinite word over f0; : : : ; b � 1g), the frequency
of every digit d 2 f0; 1; : : : ; b � 1g exists and is equal to 1=b. Furthermore x is
normal in base b if it is simply normal with respect to the bases b, b2, b3,. . . . An
equivalent definition is to say that for all k � 1 and every word u D u1 : : : uk 2

f0; 1; : : : ; b�1gk, the frequency of u in the base-b expansion of x exists and is equal
to 1=bk. A real number x is absolutely normal if x is normal to every integer base
greater than or equal to 2.

Normality can also be expressed in terms of uniform distribution modulo 1 [578]
(see Section 7.6 for corresponding definitions). Indeed, a real number x is normal to
base b if and only if the sequence .bjx/j�0 is uniformly distributed modulo 1.

These notions were introduced by Borel [99] and are discussed in Chapters 2, 7,
and 8. In particular, constructions of normal numbers are provided in Sections 7.7
and 7.8. See also Theorem 7.4.1 (the so-called Hot Spot Lemma according to [101])
for a further convenient characterization of normality in terms of limsups instead
of limits. For a dynamical viewpoint, see Section 8.2, where the definition of a
normal number is transferred to symbolic dynamical systems, and constructions
with concatenation of words for languages with specification are provided.

1.3.5 Repetitions in Words

In combinatorics on words, a question that naturally arises is to study the repetitions
that should occur or may be avoided in words. See in particular Chapter 5 and
Chapters 4 and 5 in [79].

Concatenating a word w with itself k times is abbreviated by wk. In particular,
w0 D ". Furthermore, for an integer m and a word w D w1w2 � � �wn, where wi 2 ˙

for 1 � i � n (here it is convenient to start indexing with 1), the rational power

wm=n
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is wqw1w2 � � �wr, where m D qnC r for 0 � r < n. For instance, we have

.abbab/9=5 D abbababba :

Consider definitions that have to do with repetitions in words. A square is a
nonempty word of the form xx, where x 2 ˙�. An example of a square in English
is the word murmur with x equal to mur. An overlap is a word of the form axaxa,
where a 2 ˙ and x 2 ˙�. The word alfalfa is an example of an overlap in
English with x equal to lf. It is obvious that every overlap has a square as prefix.
For any positive integer k � 2, a k-power is a nonempty word of the form xk. Thus a
2-power is a square, and a 3-power is a cube. A nonempty word that is not a k-power
for any k � 2 is primitive.

Let us say a few words about avoidance (which is the topic of Chapter 5). It is
an easy exercise to show that over a 2-letter alphabet, every word of a length of at
least 4 contains a square. This raises several questions. Over a 3-letter alphabet, can
we build longer words with no square as a factor? In particular, does there exist an
infinite word with no square in it? Also over a 2-letter alphabet, if squares cannot be
avoided, could we avoid cubes or even overlaps?

We say that a word w (finite or infinite) is square-free (or avoids squares) if no
factor of w is a square. A finite or infinite word is overlap-free if it contains no
factor that is an overlap. Thue [563] was the first to show the existence of an infinite
overlap-free binary word. The Thue–Morse word (see Example 1.3.6) is overlap-
free. See [79, Chapter 4] for more on avoidable repetitions and regularities in words.
More generally, a (finite or infinite) word is k-power-free (or avoids k-powers) if
none of its factors is a k-power. For instance, one can check that abbabaabbaab
is overlap-free. (It is indeed a prefix of the Thue–Morse word). The goal of Chapter 5
is to present general techniques to prove positive or negative results about the
appearance of a repetition pattern. The general question is to know whether an
infinite word without a given pattern exists over an alphabet of a given size. Another
question is to consider the growth function (in the sense of Definition 1.5.7) of the
language of finite words avoiding a particular pattern.

Many variations on these topics exist. For instance, an abelian square is a word of
the form uv where u and v are abelian equivalent. One can check that over a 3-letter
alphabet, every long enough finite word contains an abelian square.

In Chapter 6, the addressed question is this: given a nonperiodic word x 2 ˙! ,
does there exist a finite nonempty set C and a mapping ' W ˙C ! C such that for
each factorization x D u1u2u3 � � � there exist i; j � 1 such that '.ui/ ¤ '.uj/?

1.4 Morphisms

Infinite words of particular interest can be obtained by iterating morphisms of free
monoids. They have many interesting combinatorial properties and can be generated
by a simple mean.
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Definition 1.4.1. A map h W ˙� ! 	�, where ˙ and 	 are alphabets, is called a
morphism if h satisfies h.xy/ D h.x/h.y/ for all x; y 2 ˙�. In particular, we have
h."/ D ". When ˙ D 	, morphisms are also called substitutions.

A morphism may be specified by providing the values h.a/ for all a 2 ˙ . For
example, we may define the morphism t W f0; 1g� ! f0; 1g� by

0 7! 01

1 7! 10: (1.3)

This morphism is often referred to as the Thue–Morse morphism. The domain ˙�

of a morphism h is easily extended to the set ˙! of (one-sided) infinite words. Let
h W ˙� ! 	� be a morphism and x D x0x1x2 � � � be an infinite word over˙ . Simply
consider the sequence of finite words .h.x0 � � � xn//n�0 of images of the prefixes of x.
The limit of this sequence is h.x/. In particular, if h W ˙� ! ˙� and x is an infinite
word such that h.x/ D x, then x is said to be a fixed point of h.

A morphism h W ˙� ! ˙� such that h.a/ D ax for some a 2 ˙ and x 2 ˙�

with hi.x/ 6D � for all i is said to be prolongable on a. The Thue–Morse morphism t
given by (1.3) is prolongable on 0 (and also on 1). The first few iterations of t are

t.0/ D 01
t2.0/ D 0110
t3.0/ D 01101001
t4.0/ D 0110100110010110

:::

Since jt.0/j D jt.1/j D 2, we have jtn.0/j D 2n for all n � 0. It is easy to prove that
tn.0/ is a proper prefix of tnC1.0/, and thus the sequence .tn.0//n�0 converges to an
infinite word. So we get the fixed point of t

t!.0/ D 0110100110010110 � � � :

One can prove that the fixed point t!.0/ is the Thue–Morse word introduced in
Example 1.3.6.

More generally, if h W ˙� ! ˙� is a morphism prolongable on a, we may then
repeatedly iterate h to obtain the infinite fixed point

h!.a/ D a x h.x/ h2.x/ h3.x/ � � � :

This infinite word is said to be purely morphic.
The factor complexity of purely morphic word is well known. The next result

was stated by Pansiot in [467] and then generalized in [468]. For a comprehensive
presentation, see [78, Section 4.7]. Recall that the case of eventually periodic words
is settled by Morse–Hedlund theorem.
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Theorem 1.4.2. Let w be a pure morphic word. If w is not eventually periodic, then
its factor complexity pw belongs to �.n/, �.n log log n/, �.n log n/, or �.n2/.

Definition 1.4.3. A morphism h is non-erasing if h.a/ 6D � for all a 2 ˙ .
Otherwise it is erasing. A morphism is k-uniform if jh.a/j D k for all a 2 ˙ ; it
is uniform if it is k-uniform for some k. A 1-uniform morphism is often said to be a
letter-to-letter morphism or a coding.

The Thue–Morse morphism t given in (1.3) is 2-uniform.

Example 1.4.4 (Fibonacci Word). Another significant example of a purely morphic
word is the Fibonacci word. It is obtained from the non-uniform morphism defined
over the alphabet f0; 1g by 
 W 0 7! 01; 1 7! 0,


!.0/ D .xn/n�0 D 0100101001001010010100100101001001010010100 � � � :

It is a Sturmian word and can be obtained as follows. Let � D .1C
p
5/=2 be the

Golden mean. For all n � 1, if b.nC 1/�c � bn�c D 2, then xn�1 D 0; otherwise
xn�1 D 1.

An infinite word x over	 is morphic if there exists a purely morphic word y over
˙ and a morphism g W ˙� ! 	� such that x D g.y/.

We can always restrict ourselves to non-erasing prolongable morphisms and
codings. This result was already stated in [154]. J.-J. Pansiot also considered this
result in [466]. For a proof, see [14]. An alternative short proof is given in [298].
This result is also discussed in detail in [134] and [146].

Theorem 1.4.5. Let f W ˙� ! ˙� be a (possibly erasing) morphism that is
prolongable on a letter a 2 ˙ . Let g W ˙� ! � � be a (possibly erasing)
morphism. If the word g.f !.a// is infinite, there exists a non-erasing morphism
h W 	� ! 	� prolongable on a letter c 2 	 and a coding j W 	� ! � � such
that g.f !.a// D j.h!.c//.

1.5 Languages and Machines

Formal languages theory is mostly concerned with the study of the mathematical
properties of sets of words. For a comprehensive exposition on regular (or rational)
languages and automata theory, see, for instance, Sakarovitch’s book [518]. For the
connections with infinite words, see [476]. For an overview see the chapter [590].
Finally see [555], Hopcroft and Ullman’s classic book [301], or its updated version
[300] for general books on formal languages theory.
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1.5.1 Languages of Finite Words

Let ˙ be an alphabet. A subset L of ˙� is said to be a language. Since a language
is a set of words, we can apply all the usual set operations like union, intersection,
or set difference: [, \, or n. The concatenation of words can be extended to define
an operation on languages. If L, M are languages, LM is the language of the words
obtained by concatenation of a word in L and a word in M, i.e.,

LM D fuv j u 2 L; v 2 Mg :

We can of course define the concatenation of a language with itself, so it permits us
to introduce the power of a language. Let n 2 N, ˙ be an alphabet, and L 
 ˙� be
a language. The language Ln is the set of words obtained by concatenating n words
in L. We set L0 WD f�g. In particular, we recall that ˙n denotes the set of words
of length n over ˙ , i.e., concatenations of n letters in ˙ . The (Kleene) star of the
language L is defined as

L� D
[

i�0

Li :

Otherwise stated, L� contains the words that are obtained as the concatenation of
an arbitrary number of words in L. Notice that the definition of Kleene star is
compatible with the notation ˙� introduced to denote the set of finite words over
˙ . We also write L�n as a shorthand for

L�n D

n[

iD0

Li :

Note that if the empty word belongs to L, then L�n D Ln. We recall that ˙�n is the
set of words over ˙ of length at most n.

Example 1.5.1. Let L D fa; ab; aabg and M D fa; ab; bag be two finite languages.
We have

L2 D faa; aab; aaab; aba; abab; abaab; aaba; aabab; aabaabg

and

M2 D faa; aab; aba; abab; abba; baa; baab; babag :

One can notice that Card .L2/ D .Card L/2 but Card .M2/ < .Card M/2. This is due
to the fact that all words in L2 have a unique factorization as concatenation of two
elements in L, but this is not the case for M, where .ab/a D a.ba/. We can notice
that
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L� D fag� [ fai1bai2b � � � ain bainC1 j 8n � 1; i1; : : : ; in � 1; inC1 � 0g :

Since languages are sets of (finite) words, a language can be either finite or
infinite. For instance, a language L differs from ; or f�g if and only if the language
L� is infinite. Let L be a language, we set LC D LL�. The mirror operation can also
be extended from words to languages: QL D fQu j u 2 Lg.

Definition 1.5.2. A language is prefix-closed (respectively suffix-closed) if it con-
tains all prefixes (respectively suffixes) of any of its elements. A language is
factorial if it contains all factors of any of its elements.

Obviously, any factorial language is prefix-closed and suffix-closed. The con-
verse does not hold. For instance, the language fanb j n > 0g is suffix-closed but
not factorial.

Example 1.5.3. Connected with the Thue–Morse word (see Example 1.3.6), the set
of words over f0; 1g containing an even number of ones is the language

E D fw 2 f0; 1g� j jwj1 � 0 .mod 2/g

D f�; 0; 00; 11; 000; 011; 101; 110; 0000; 0011; : : :g:

This language is closed under mirror, i.e., QL D L. Notice that the concatenation
Ef1gE is the language of words containing an odd number of ones and E[Ef1gE D
E.f�g [ f1gE/ D f0; 1g�. Notice that E is neither prefix-closed, since 1001 2 E but
100 62 E, nor suffix-closed.

Definition 1.5.4. The set of factors of a language L is denoted as Fac.L/, whereas
the set of prefixes of a language L is denoted as Pref.L/. The notation w�1L stands
for w�1L D fu j wu 2 Lg.

If a language L over ˙ can be obtained by applying to some finite languages
a finite number of operations of union, concatenation, and Kleene star, then this
language is said to be a regular language. This generation process leads to regular
expressions which are well-formed expressions used to describe how a regular
language is built in terms of these operations.

Note that the Chomsky–Schützenberger hierarchy introduced in the theory of
formal languages provides a classification depending on the machine needed to
recognize an infinite language of finite words. From a computational perspective,
the simplest languages are the regular languages. They are accepted (or recognized)
by finite automata, and described by regular expressions. One then has context-
free languages that are recognized by non-deterministic pushdown automata,
context-sensitive languages recognized by linear-bounded non-deterministic Turing
machines, and lastly, recursively enumerable languages recognized by Turing
machines. See Section 2.1.2 for a similar hierarchy for Mahler functions and regular
sequences.

From the definition of a regular language, the following result is immediate.
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Theorem 1.5.5. The class of regular languages over ˙ is the smallest subset of
2˙

�

(for inclusion) containing the languages ;, fag for all a 2 ˙ and closed under
union, concatenation, and Kleene star.

Example 1.5.6. For instance, the language L over f0; 1gwhose words do not contain
the factor 11 is regular. It is called the Golden mean shift. This language can be
described by the regular expression L D f0g�f1gf0; 01g� [ f0g�. Otherwise stated,
it is generated from the finite languages f0g, f0; 01g, and f1g by applying union, con-
catenation, and star operations. Its complement in˙� is also regular and is described
by the regular expression ˙�f11g˙�: The language E from Example 1.5.3 is
also regular; we have the following regular expression f0g�.f1gf0g�f1gf0g�/�

describing E.

Definition 1.5.7. Let L 
 ˙� be a language over the alphabet ˙ . The growth
function of L is the map

gL W N! N; n 7! Card.L \˙n/ :

In particular, gL.n/ � .Card˙/n for all n � 0. Note that the complexity function
of an infinite word x (see Definition 1.3.5) is exactly the growth function of the
language Fac.x/ of x.

1.5.2 Formal Series

Let R be a semiring (see Definition 1.2.2). We can consider a map m from ˙� to R.
This map can be represented as a formal series

S D
X

w2˙�

m.w/w :

This means that the coefficient .S;w/ of the series S for the word w is given by m.w/.
The sets of those formal series is denoted by Rhh˙�ii and has a semiring structure
for the two operations defined as follows:

.SC T;w/ D .S;w/C .T;w/

and

.ST;w/ D
X

uvDw

.S; u/.T; v/ :

In particular, a finite word w of length n can be factored in n C 1 concatenation
products. This means that the sum above is finite. When R is limited to the Boolean
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semiring B, then Bhh˙�ii is just the set of languages over ˙ . As a prominent
example, Mahler functions are studied in details in Chapter 2.

1.5.3 Codes

A subset X � ˙C is a code if every word in X� has a unique factorization with
factors in X, i.e.,

.x1 � � � xm D y1 � � � yn; x1; : : : ; xm; y1; : : : ; yn 2 X/) .m D n and xi D yi 8i/ :

As an example, the set X D fa; ab; bag is not a code because the word aba has two
X-factorizations: a.ba/ and .ab/a. The language faib j i � 0g is clearly a code. For
an introduction to codes, see Bruyère’s chapter in [386].

Let X be a set of words where no word in X is a proper prefix of another word
in X. Then X is said to be a prefix code. The terminology of code comes from the
following proposition.

Proposition 1.5.8. A subset X � ˙C is a code if and only if any morphism f W
� � ! ˙� induced by a one-to-one correspondence (i.e., bijection) from � to X is
one to one (injective).

The notion can be extended to deal with infinite words. A subset X � ˙C is
an !-code if every word in ˙! has at most one factorization with words in X. As
an example, X D fa; ab; bbg is a code but it is not an !-code. The infinite word
abbb � � � has two X-factorizations .a; bb; bb; : : :/ and .ab; bb; bb; : : :/.

1.5.4 Automata

As we shall briefly explain in this section, the regular languages are exactly the
languages recognized by finite automata. We start with non-deterministic automata
in Definition 1.5.9, then we present the deterministic ones in Definition 1.5.13.
Finally, we introduce automata with output in Definition 1.5.17. The notions
recalled here will be used in particular in Section 7.5 in connection with normality,
and in Chapter 10 with the notion of Mealy automaton.

Definition 1.5.9. A finite automaton is a labeled graph given by a 5-tuple A D

.Q; ˙;E; I;T/ where Q is the (finite) set of states, E 
 Q 	˙� 	 Q is the finite set
of edges defining the transition relation, I 
 Q is the set of initial states, and T is
the set of terminal (or final) states. A path in the automaton is a sequence

.q0; u0; q1; u1; : : : ; qk�1; uk�1; qk/
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such that, for all i 2 f0; : : : ; k � 1g, .qi; ui; qiC1/ 2 E, u0 � � � uk�1 is the label of the
path. Such a path is successful if q0 2 I and qk 2 T . The language L.A / recognized
(or accepted) by A is the set of labels of all successful paths in A .

Any finite automaton A gives a partition of ˙� into L.A / and ˙� n L.A /.
When depicting an automaton, initial states are marked with an incoming arrow
and terminal states are marked with an outgoing arrow. A transition like .q; u; r/ is

represented by a directed edge from q to r with label u, q
u
�! r.

Example 1.5.10. In Figure 1.1 the automaton has two initial states p and r and three
terminal states q, r, and s. For instance, the word ba is recognized by the automaton.
There are two successful paths corresponding to the label ba: .p; b; q; a; s/ and

.p; b; p; a; s/. For this latter path, we can write p
b
�! p

a
�! s. On the other hand,

the word baab is not recognized by the automaton.

Example 1.5.11. The automaton in Figure 1.2 recognizes exactly the language E of
the words having an even number of 1 from Example 1.5.3.

Definition 1.5.12. Let A D .Q; ˙;E; I;T/ be a finite automaton. A state q 2 Q is
accessible (respectively co-accessible) if there exists a path from an initial state to
q (respectively from q to some terminal state). If all states of A are both accessible
and co-accessible, then A is said to be trim.

p q

r s

b

b

a
a

a

b

a
a

Fig. 1.1 A finite automaton.

p q
1

1

0 0

Fig. 1.2 An automaton recognizing words with an even number of 1.
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Definition 1.5.13. A finite automaton A D .Q; ˙;E; I;T/ is said to be determin-
istic (DFA) if it has only one initial state q0, if E is a subset of Q 	˙ 	 Q and for
each .q; a/ 2 Q 	 ˙ there is at most one state r 2 Q such that .q; a; r/ 2 E.
In that case, E defines a partial function ıA W Q 	 ˙ ! Q that is called the
transition function of A . The adjective partial means that the domain of ıA can
be a strict subset of Q 	 ˙ . To express that the partial transition function is total,
the DFA can be said to be complete. To get a total function, one can add to Q a
new “sink state” s and, for all .q; a/ 2 Q 	 ˙ such that ıA is not defined, set
ıA .q; a/ WD s. This operation does not alter the language recognized by A . We can
extend ıA to be defined on Q 	˙� by ıA .q; �/ D q and, for all q 2 Q, a 2 ˙ , and
u 2 ˙�, ıA .q; au/ D ıA .ıA .q; a/; u/. Otherwise stated, the language recognized
by A is L.A / D fu 2 ˙� j ıA .q0; u/ 2 Fg where q0 is the initial state of A .
If the automaton is deterministic, it is sometimes convenient to refer to the 5-tuple
A D .Q; ˙; ıA ; I;T/.

As explained by the following result, for languages of finite words, finite
automata and deterministic finite automata recognize exactly the same languages.
The following result is referred to as Rabin–Scott theorem [489].

Theorem 1.5.14. If L is recognized by a finite automaton A , there exists a DFA
which can be effectively computed from A and recognizing the same language L.

A proof and more details about classical results in automata theory can be found
in textbooks like [300, 518] or [539]. For standard material in automata theory, we
shall not refer again to these references below.

One important result is that the set of regular languages coincides with the set
of languages recognized by finite automata. The following result is referred to as
Kleene’s theorem [349].

Theorem 1.5.15. A language is regular if and only if it is recognized by a
(deterministic) finite automaton.

Observe that if L and M are two regular languages over ˙ , then L \M, L [M,
LM, and LnM are also regular languages. In particular, a language over˙ is regular
if and only if its complement in ˙� is regular.

Example 1.5.16. The regular language L D f0g�f1gf0; 01g� [ f0g� introduced in
Example 1.5.6 is recognized by the DFA depicted in Figure 1.3. Notice that the state
s is a sink: a non-terminal state and all transitions remain in s.

s
1

0 1

0
0,1

Fig. 1.3 A DFA accepting words without factor 11.
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We introduce the notion of automaton with output (see also more generally
Definition 7.5.1 for the notion of a transducer). It generalizes the classical DFA:
if the output function takes at most two values, then it is a DFA. The extra output
function will take care of the extra coding.

Definition 1.5.17. A deterministic finite automaton with output or DFAO for short
is given by a 5-tuple A D .Q; q0;A; ı; �/ where Q is a finite set of states, q0 2 Q
is the initial state, ı W Q 	 A ! Q is the transition function, and � W Q ! B is the
output map (where B is some finite set).

Finite automata accepting languages of infinite words are not presented here.
Büchi automata (where an accepting run goes infinitely often through an accepting
state) are introduced in Section 3.6.

1.6 Sequences and Machines

1.6.1 Automatic Sequences

We now consider how finite automata can be used to generate sequences with values
in a finite alphabet, namely, we present the automatic sequences. As we shall soon
see, they are particular morphic words and are deeply linked with the integer base-
k numeration system. They were introduced by A. Cobham [156] under the name
uniform tag sequences. Automatic sequences will appear in Chapters 2, 3, and 4. See
in particular Section 2.2 for definitions, properties and examples, and connections
with Mahler functions. We will recall that automatic sequences may be obtained as
the image under a coding of the fixed point of a k-uniform morphism. Equivalently,
for all n � 0, the nth symbol of such a sequence is the output of a deterministic
finite automaton with output fed with the k-ary expansion of n.

Definition 1.6.1. Let k � 2. Consider an infinite word w D g.f !.a// where f W
˙� ! ˙� is a k-uniform morphism prolongable on a and g W ˙� ! � � is a
coding. We say that w is k-automatic.

Observe that jf n.a/j D kn for all n � 0. We first consider the “internal sequence,”
i.e., the fixed point x D f !.a/ D x0x1x2 � � � . Let j such that k � j < k2; then
j D kqC r with 1 � q < k and 0 � r < k. The symbol xj is the .r C 1/st symbol
occurring in f .xq/. As depicted in Figure 1.4, this simply comes from one iteration
of the k-uniform morphism.

We obtain the following result by induction on m � 0. Even though it is not
surprising, it has an important consequence about how the word can be obtained.

Lemma 1.6.2. Let j such that km � j < kmC1, for some m � 0. Then j D kq C r
with km�1 � q < km and 0 � r < k and the symbol xj is the .r C 1/st symbol
occurring in f .xq/.
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k
k2

Fig. 1.4 Iterating a k-uniform morphism (with k D 4).

f :

⎧
⎨

⎩

a abc
b cbc
c bca

a

b c

0

1
2

0,2

1 1
0

2

Fig. 1.5 A 3-uniform morphism and the associated automaton Af .

The quotient bj=kc of the Euclidean division of j by k is denoted by j DIV k. So
to speak, for any symbol xj occurring in x D f !.a/, we can track its history: xj has
been produced by f from xj DIV k. The latter symbol appears itself in the image by f
of x.j DIV k/ DIV k, and so on and so forth.

Note that if the base-k expansion of j is repk.j/ D ci � � � c1c0, then the base-
k expansion of j DIV k is ci � � � c1. This simple observation permits one to easily
track the past of a given symbol by considering the prefixes of repk.j/. Consider, for
instance, the symbol t28 occurring in the Thue–Morse word:

t D 01101001100101101001011001101001 � � � :

Since rep2.28/ D 11100, this symbol comes from t14 because rep2.14/ D 1110.
Then t14 appears in the image of t7, itself appearing in the image of t3 and finally in
the image of t1.

But Lemma 1.6.2 provides some extra knowledge. Let j such that j D kqCr with
km�1 � q < km and 0 � r < k, for some m � 0. We have just explained how xj

comes from xq. But the knowledge of xq and r entirely determines xj. It is thus time
to explain where does the term of automatic sequence come from.

We can associate with a k-uniform morphism f W ˙� ! ˙� and a letter a 2 ˙ ,
a DFA Af D .˙; a; ŒŒ0; k � 1��; ıf ; ˙/ where ıf .b; i/ D wb;i if f .b/ D wb;0 � � �wb;k�1.
Note that the alphabet ˙ is the set of states of this automaton.

Example 1.6.3. Consider the morphism f and the associated automaton depicted in
Figure 1.5.

The next propositions explain the terminology of automatic sequences.
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Proposition 1.6.4. Let x D f !.a/ D x0x1 � � � with f a k-uniform morphism. With
the above notation, for all j � 0,

xj D ıf .a; repk.j// :

Proof. This is a direct consequence of Lemma 1.6.2. ut

The converse also holds.

Proposition 1.6.5. Let .˙; a; ŒŒ0; k�1��; ı;˙/ be a DFA such that ı.a; 0/ D a. Then
the word x D x0x1x2 � � � defined by xj D ı.a; repk.j//, for all j � 0, is the fixed point
of a k-uniform morphism f prolongable on a where f .b/ D ı.b; 0/ � � � ı.b; k� 1/ for
all b 2 ˙ .

Proof. This is again a direct consequence of Lemma 1.6.2. ut

The reader will object that we have not taken into account that an extra coding
can be applied to x D f .x/. This does not require many changes. We simply have
to make use of automata with output as stated below in Cobham’s theorem on
automatic sequences [156].

Theorem 1.6.6. Let w D w0w1w2 � � � be an infinite word over an alphabet � . It is
of the form g.f !.a// where f W ˙� ! ˙� is a k-uniform morphism prolongable on
a 2 ˙ and g W ˙� ! � � is a coding if and only if there exists a DFAO

.˙; a; ŒŒ0; k � 1��; ı; � W ˙ ! � /

such that ı.a; 0/ D a and, for all j � 0, wj D �.ı.a; repk.j///.

Proof. Proceed as above and the coding g coincides with the output function �. ut

Example 1.6.7. From the morphism t given in (1.3) generating the Thue–Morse
word, we derive the automaton depicted in Figure 1.2. Again considering 28,
which is written 11100 in base 2, if we start from the initial state p and we read
consecutively the symbols in rep2.28/ from left to right, then we follow some path
in the automaton, and the state q finally reached gives the symbol t28. The output
function maps p to 0 and q to 1.

Example 1.6.8. Let us consider a more intricate example where a coding, and thus
an output function, is used. The morphism f and the coding g are given in Figure 1.6.
The corresponding automaton is represented on the right of the same figure. We have

f !.a/ D acabaccaacababacacabaccaaccaacab � � �

and

g.f !.a// D 00010000000101000001000000000001 � � � :
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f :

⎧
⎨

⎩

a ac
b ca
c ab

g :

⎧
⎨

⎩

a 0
b 1
c 0

a/0 b/1 c/0

0
0

0

11

1

Fig. 1.6 A 2-uniform morphism, a coding and the corresponding DFAO.

u

b c

p s

f f

f

f

f

f

f

f

Fig. 1.7 Iterating a 2-uniform morphism.

Again, the jth symbol in g.f !.a// can be readily obtained from rep2.j/ fed to the
DFAO represented in Figure 1.6 where the states contain the information about the
value of the output function.

Now we turn to the factors occurring in an automatic sequence w D g.x/, where
x is a fixed point of the k-uniform morphism f W ˙� ! ˙�. Let u be a factor of
length n occurring in x. There exists i such that ki�1 � n < ki. Note that jf i.b/j D ki

for all b 2 ˙ . We consider the factorization of x into consecutive blocks of length
ki of the form f i.b/. Therefore, the factor u either occurs inside some f i.b/ or it
overlaps two images, i.e., u occurs in f i.bc/ for some letters b; c 2 ˙ . Actually, there
exist two letters b and c such that f i.bc/ D pus with jpj < ki. This last condition tells
us that u starts inside f i.b/. Such a simple observation, where we look backwards
at the images of the morphism, as suggested by Figure 1.7, is sometimes called a
desubstitution. It provides us with an upper bound on the number of factors of length
n that may occur in x: the number of pairs of letters .b; c/ is .Card˙/2 and u should
start in one of the ki symbols of f i.b/. Therefore, the number of factors of length n
in x is at most

.Card˙/2 ki � .Card˙/2 k n :

We can even replace .Card˙/2 with px.2/ because only the factors bc occurring in
x give factors of the form f i.b/f i.c/ occurring in x D f i.x/. Since applying a coding
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g cannot increase the number of factors, we get

Card.Fac.x/ \˙n/ � Cardfg.u/ j u 2 Fac.x/ \˙ng ;

and so we have obtained the following result.

Theorem 1.6.9. Let w be a k-automatic sequence. Then pw.n/ is in O.n/.

A proof of the following result can be found in [14, Section 8.4].

Theorem 1.6.10. If the frequency of a letter in a morphic sequence exists, then it
is an algebraic number. If the frequency of a letter in an automatic sequence exists,
then it is a rational number.

To conclude this section, we present another characterization of k-automatic
sequences. This is not the last one; in Chapter 3, Section 3.3, a logical character-
ization of k-automatic sequences will be discussed, whereas Chapter 4 will provide
an algebraic characterization in terms of polynomial identities (see Corollary 4.5.3).

Definition 1.6.11. Let k � 2 be an integer. Given a sequence s D .s.n//n�0, we
define a particular set of subsequences called the k-kernel of s

Kerk.s/ WD
˚
.s.k`nC r//n�0 j ` � 0; 0 � r < k`

�
:

An equivalent definition of the k-kernel is to introduce k operators of k-decimation
acting on the set of sequences and defined, for r 2 f0; : : : ; k � 1g, by

k;r..s.n//n�0/ D .s.knC r//n�0 :

Thus Kerk.s/ is the set of sequences of the form

k;r1 ı � � � ı k;rm..s.n//n�0/ (1.4)

for all m � 0 and r1; : : : ; rm 2 f0; : : : ; k � 1g. These decimation operators are close
to the Cartier operators discussed in Chapter 2. The following result appeared in
Eilenberg’s book [211]. Note that if a sequence t belongs to Kerk.s/, then k;r.t/
also belongs to Kerk.s/.

Theorem 1.6.12. A sequence is k-automatic if and only if its k-kernel is finite.

Example 1.6.13. The 2-kernel of the Thue–Morse sequence contains exactly two
sequences (the sequence itself and its “complement”). Indeed, let s2.n/ be the sum
of digits of the binary expansion of n, we have

s2.2n/ D s2.n/; s2.2nC 1/ D s2.n/C 1 : (1.5)
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1.6.2 Regular Sequences

We have seen that k-automatic sequences may be defined through the finiteness of
their k-kernel (Theorem 1.6.12). This characterization is used to extend the notion to
sequences taking infinitely many values. Allouche and Shallit considered sequences
taking values in a ring R containing a commutative Noetherian ring R0 (i.e., every
ideal of R0 is finitely generated). Examples of such rings R0 are given by all finite
rings, all principal ideal domains, and in particular Z, the ring of polynomials
with coefficients in a field, or all fields. We may consider linear combinations with
coefficients in R0 (R0-linear combinations) of sequences in RN. Endowed with point-
wise addition and multiplication by an element in R0, the set RN has a R0-module
structure: if r D .r.n//n�0 and s D .s.n//n�0 belong to RN and ˛ belongs to R0,
then, for all n 2 N,

.rC s/.n/ D r.n/C s.n/

and

.˛ � r/.n/ D ˛ � r.n/:

In this short section, we mainly consider sequences in ZN, i.e., R D R0 D Z. We
will encounter regular sequences in Chapters 2, 3, and 4 of this book. To have
stand-alone chapters, these notions will also be repeated there. In Chapter 3 (see
in particular Section 3.4.1), k-regularity will be extended to sequences taking values
in a semiring.

Regular sequences appeared in [16]. Many examples are given in [15]. See also
[14, Chapter 16] and the updated version of Berstel and Reutenauer’s book [77]
where a chapter is devoted to regular sequences and linked with rational series.

Let M be a R-module and a subset X � M. The submodule generated by X is the
intersection of all submodules of M containing X. It is denoted by hXi. It is the set
of all finite R-linear combinations of elements in X. A module is finitely generated
(over R) when it is generated by a finite set (i.e., it is the R-span of a finite set). One
also says that the module is of finite type or even finite over R. Note that the finite
set of generators is not necessarily a basis.

Definition 1.6.14. Let k � 2 be an integer. A sequence s D .s.n//n�0 taking integer
values is k-regular if the Z-module generated by its k-kernel hKerk.s/i is finitely
generated, i.e., there exists a finite number of sequences in ZN

t1 D .t1.n//n�0; : : : ; t` D .t`.n//n�0

such that

hKerk.s/i D ht1; : : : ; t`i:

In particular, every sequence in Kerk.s/ is a Z-linear combination of the tjs. For all
i � 0 and for all r 2 f0; : : : ; ki � 1g, there exist integers ci;1; : : : ; ci;` such that
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8n � 0; s.kinC r/ D
X̀

jD1

ci;j tj.n/:

One can consider another point of view. A sequence is said to be k-regular
if its orbit under the action of the operators of k-decimation remains in a finite
dimensional vector space. Indeed, Z is included in fields such as Q, R, or C. Thus
the sequences can be seen as elements of QN which is a Q-vector space.

Remark 1.6.15. The original definition in [16] was formulated differently. Let R be
a ring containing a commutative Noetherian ring R0. A sequence s D .s.n//n�0 in
RN is (R’,k)-regular if there exists a finite number of sequences in RN

t1 D .t1.n//n�0; : : : ; t` D .t`.n//n�0

such that every sequence in Kerk.s/ is an R0-linear combination of t1; : : : ; t`. Thus
the definition means that hKerk.s/i 
 ht1; : : : ; t`i. Otherwise stated, hKerk.s/i is a
submodule of a finitely generated R0-module (in general, this does not imply that
the submodule itself is finitely generated). Since R0 is assumed to be Noetherian,
one can show that every submodule of a finitely generated R0-module is finitely
generated2, and thus hKerk.s/i is finitely generated. This was the point of view
adopted in Definition 1.6.14. In particular, if the setting does not assume that R0

is Noetherian (in particular, if R or R0 is a semiring), then Definition 1.6.14 would
be stronger than simply requiring hKerk.s/i 
 ht1; : : : ; t`i.

Example 1.6.16. The base-2 sum-of-digits function s2 gives the sequence

.s2.n//n�0 D 0; 1; 1; 2; 1; 2; 2; 3; 1; 2; 2; 3; 2; 3; 3; 4; 1; 2; 2; 3; 2; 3; 3; 4; 2; 3; 3; 4; : : : :

(Notice that we can interchange the words function and sequence and also speak
of k-regular functions when defined over N.) Clearly this sequence is unbounded:
s2.2n � 1/ D n for all n. Nevertheless, in view of (1.5), the Z-module generated by
its 2-kernel is generated by the sequence .s2.n//n�0 itself and the constant sequence
.1/n�0.

Obviously, every k-automatic sequence is k-regular.

Proposition 1.6.17. Let s be a sequence taking finitely many different values, i.e.,
there exists a finite alphabet ˙ such that s 2 ˙! . Let k � 2. The sequence is
k-automatic if and only if it is k-regular.

There is an intermediate class of sequences between k-automatic and k-regular
sequences [130].

2An R0-module M is Noetherian if every submodule of M is finitely generated. Let R0 be a
Noetherian ring. An R0-module M is Noetherian if and only if it is finitely generated.
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Definition 1.6.18. Let k � 2 be an integer. The map repk is extended to N 	 N as
follows. For all m; n 2 N,

repk.m; n/ D
�
0M�jrepk.m/jrepk.m/; 0

M�jrepk.n/jrepk.n/
�

where M D maxfjrepk.m/j; jrepk.n/jg. The idea is that the shortest word is padded
with leading zeroes to get two words of the same length.

A sequence .s.n//n�0 of integers is said to be k-synchronized if the language
frepk.n; s.n// j n 2 Ng is accepted by some finite automaton reading pairs of digits.

As an example, the complexity function .px.n//n�0 of a k-automatic sequence x
is k-synchronized [522]; we refer to Proposition 3.4.16. More results of this form
are provided in Section 3.4. For results on the growth of regular sequences, see
Section 2.3.

Proposition 1.6.19. Let s be a sequence taking finitely many different values, i.e.,
there exists a finite alphabet ˙ such that s 2 ˙! . Let k � 2. The sequence is
k-automatic if and only if it is k-synchronized.

Similarly to recognizable formal series, with every k-regular sequence
.s.n//n�0 2 ZN is associated linear representation .�; �; �/. There exist a positive
integer r, a row vector � 2 Z1�r and a column vector � 2 Zr�1, a matrix-valued
morphism � W f0; : : : ; k � 1g ! Zr�r such that

s.n/ D ��.c0 � � � c`/�

for all c`; : : : ; c0 2 f0; : : : ; k � 1g� such that valk.c` � � � c0/ D
P`

iD0 ci ki D n.
The converse also holds, if there exists a linear representation associated with the
canonical k-ary expansion of integers (one has to take into account the technicality
of representations with leading zeros), then the sequence is k-regular. See, for
instance, [14, Theorem 16.2.3]. As a corollary, the nth term of a k-regular sequence
can be computed with blogk.n/c matrix multiplications.

Proof. Let s D .s.n//n�0 2 ZN be a k-regular sequence. By definition, there exists a
finite number of sequences t1; : : : ; t` such that hKerk.s/i D ht1; : : : ; t`i. In particular,
each tj is a Z-linear combination of elements in the k-kernel of s. We have finitely
many tjs, so t1; : : : ; t` are linear combinations of finitely many elements in Kerk.s/.
Thus we can assume that hKerk.s/i is generated by finitely many elements from
Kerk.s/ itself. Without loss of generality, we will now assume that t1; : : : ; t` belong
to Kerk.s/.

From (1.4), for all r 2 f0; : : : ; k � 1g and all i 2 f1; : : : ; `g, k;r.ti/ is a sequence
in Kerk.s/, and thus, there exist coefficients .Ar/1;i; : : : ; .Ar/`;i such that

k;r.ti/ D
X̀

jD1

.Ar/j;i tj :
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Notice that Ar is an ` 	 ` matrix. Roughly, if we were in a vector space setting, this
means that the matrices Ar represent the linear operators k;r in the basis t1; : : : ; t`.
Let p � 0 be an integer. Notice that if repk.p/ D rm � � � r0, then s.p/ is the first term,
i.e., corresponding to the index 0, of the sequence

.s.bmC1nC p//n�0 D k;r0 ı � � � ı k;rm ..s.n//n�0/ :

We will use the fact that k;r is linear, i.e., if ˛; ˇ are coefficients and v;w are two
sequences, then k;r.˛v C ˇw/ D ˛k;r.v/C ˇk;r.w/. It is easy to see that

k;r0 ı � � � ı k;rm .ti/ D
X̀

jD1

.Ar0 � � � � � Arm/j;i tj :

If we have the following decomposition of s (in a vector space setting, we would
have a unique decomposition of s in the basis t1; : : : ; t`)

s D
X̀

iD1


i ti

then, by linearity,

.s.bmC1nC p//n�0 D
X̀

iD1


i

X̀

jD1

.Ar0 � � � � � Arm/j;i .tj.n//n�0 D
X̀

jD1

�j .tj.n//n�0

where

0

B@
�1
:::

�`

1

CA D Ar0 � � � � � Arm

0

B@

1
:::


`

1

CA :

Consequently, s.p/ is obtained as

s.p/ D
X̀

iD1

�i ti.0/ D
�
t1.0/ � � � t`.0/

�
Ar0 � � � � � Arm

0

B@

1
:::


`

1

CA :

ut

For a reader familiar with rational series, the previous result can be reformulated
as follows. A sequence s.n/ is k-regular if and only if the formal series
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X

w2f0;:::;k�1g�

s.valk.w//w

is recognizable (with the terminology of [77]; see Definition 3.4.1).

Example 1.6.20. For the sum-of-digits function given in Example 1.6.16, the
sequence s2 D .s2.n//n�0 has a (base-2) linear representation given by

� D
�
0 1
�
; �.i/ D

�
1 0

i 1

	
; � D

�
1

0

	
:

We let 1 denote the constant sequence. It does not belong to the 2-kernel of s2,
but it belongs to the Z-module generated by it because it is equal to 2;1.s2/ � s2.
Nevertheless, it is enough to see that 2;0.1/ D 2;1.1/ D 1 and take s2 and 1 as
generators to proceed as in the proof above. From the following relations we derive
the two columns of matrix �.0/

2;0.s2/ D 1 � s2 C 0 � 1; 2;0.1/ D 0 � s2 C 1 � 1

and for �.1/

2;1.s2/ D 1 � s2 C 1 � 1; 2;1.1/ D 0 � s2 C 1 � 1 :

The vector � is given by s2.0/ D 0 ans 1.0/ D 1. The vector � is obtained from
s2 D 1 � s2 C 0 � 1. To compute s2.19/, observe that rep2.19/ D 10011. Thus we
compute

�
0 1
�
�.1/�.1/�.0/�.0/�.1/

�
1

0

	
D 3 :

Example 1.6.21. A less trivial example is considered in [201] by counting the
number of odd numbers in the first n rows of the Pascal triangle. This sequence
has a (base-2) linear representation given by

� D
�
0 1
�
; �.0/ D

�
3 6

0 1

	
; �.1/ D

�
0 �6

1 5

	
; � D

�
1

0

	
:

Remark 1.6.22. In [15, Section 6], a practical procedure to guess relations a
possibly k-regular sequence will satisfy is described. Consider a sequence .s.n//n�0.
The idea is to construct a matrix in which the rows represent truncated versions
of elements of the k-kernel of .s.n//n�0, together with row reduction. Start with
a matrix having a single row, say, corresponding to the first m elements of the
sequence. Then repeatedly add subsequences of the form .s.k`nCr//n�0 not linearly
dependent of the previous stored sequences. From this, you have candidate relations
that remain to be proven.
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Fig. 1.8 The periodic function G on Œ0; 1�.

Considering again the sum-of-digit function, Delange [191] showed that the
summatory function of s2 exhibits a particular behavior (also see [14, Thm. 3.5.4]).

1

N

N�1X

jD0

s2.j/ D
1

2
log2 N C G .log2 N/ (1.6)

where G is a continuous nowhere differentiable periodic function of period 1

(Figure 1.8).
General results do exist for summatory function of k-regular sequences. The

result below can be found in [14, Thm. 16.4.1].

Theorem 1.6.23. Let a D .a.n//n�0 and b D .b.n//n�0 be k-regular sequences.
Then c D a ? b, where, for all n � 0, c.n/ D

Pn
iD0 ai bn�i, is k-regular.

Corollary 1.6.24. Let a D .a.n//n�0 be a k-regular sequence. The sequence of
partial sums

 
nX

iD0

ai

!

n�0

is k-regular.

Proof. One simply takes for b the constant sequence .1/n�0 in Theorem 1.6.23. ut

A linear representation of the summatory sequence can easily be deduced
from the linear representation of the sequence itself, see [201, Lemma 1] or
Proposition 2.2.11 in Chapter 2. Let us state the following result obtained by Dumas
[201, 202] (see also Theorem 2.3.13).
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Theorem 1.6.25. Let k � 2 be an integer. The summatory function of a k-regular
sequence .u.n//n�0 with a linear representation given by the matrices �0; : : : ; �k�1

admits an asymptotic expansion which is a sum of terms of the form

N logk 

 
logk N

m

!
ei� logk N '.logk N/

for the eigenvalues ei� of � WD �0 C � � � C �k�1 whose modulus  is larger than
the joint spectral radius of �0; : : : ; �k�1 and where m is an integer bounded by the
maximal size of a Jordan block associated with ei� and ' is a periodic function
of period 1. For this asymptotic expansion, there is an error term in O.N logk r/ for
every r larger than the joint spectral radius of the matrices �0; : : : ; �k�1.

Definition about the joint spectral radius will be given in Chapter 2; see also
Chapter 11.8.1. Similar results are also discussed by Drmota and Grabner in [78,
Theorem 9.2.15]. Let us also mention another result (see [14, Theorem 3.5.1]) with
stronger assumptions but avoiding error terms. In this result, if v belongs to Cd,

then the notation jjvjj stands for the Euclidean norm of v defined by
�Pd

iD1 jvij
2
� 1
2
.

Moreover, if M is a square matrix of dimension d with entries in C, then by jjMjj
we mean the L2 norm, which is the matrix norm associated with the usual Euclidean
norm on Cd by the formula jjMjj D supjjxjjD1 jjMxjj.

Theorem 1.6.26. Let k � 2 be an integer. Suppose there exist an integer d � 1, a
sequence of vectors .Vn/n�0, Vn 2 Cd, defined by

Vn D

0

BBBB@

V.1/
n

V.2/
n
:::

V.d/
n

1

CCCCA
;

and k square matrices �0; �0; : : : ; �k�1 of dimension d such that

1. VknCr D �rVn for all n � 0 and all r, 0 � r < k.
2. jjVnjj D O.log n/.
3. There exist a d 	 d matrix � and a constant c > 0 such that either jj�jj < c or
� is nilpotent, such that � WD �0 C �1 C � � � C �k�1 D cI C�.

The matrix � being clearly invertible, if jj� �1jj < 1, then there exists a continuous
function G W R! Cd of period 1 such that

X

0�n<N

Vn D N logk c.I C c�1�/logk NG .logk N/ :
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1.7 Dynamical Systems

There are two main types of dynamical systems, namely, topological ones and
measure-theoretic ones. Dynamical systems will be considered in particular in
Chapters 8, 9, and 11.

1.7.1 Topological Dynamical Systems

Definition 1.7.1. A topological dynamical system .X;T/ is defined as a compact
metric space X together with a continuous map T defined onto the set X.

We are interested in iterating the map T , and we look at the orbits O.x/ of x 2 X
defined as

O.x/ D fTn.x/W n 2 Ng:

under the action T . The trajectory of x 2 X is the sequence .Tn.x//n�0.
A topological dynamical system .X;T/ is minimal if, for all x in X; the orbit of

x, i.e., the set fTnx j n 2 Ng, is dense in X. Let us note that if .X; S/ is a subshift,
and if X is furthermore assumed to be minimal, then X is periodic if and only if X is
finite.

Two dynamical systems .X1;T1/ and .X2;T2/ are said to be topologically
conjugate (or topologically isomorphic) if there exists an homeomorphism f from
X1 onto X2 which conjugates T1 and T2, that is:

f ı T1 D T2 ı f :

If f is only onto, then .X1;T1/ is said to factor onto .X2;T2/, .X2;T2/ is a factor of
.X1;T1/, and f is called a factor map.

1.7.2 Measure-Theoretic Dynamical Systems

We have considered here the notion of dynamical system, that is, a map acting on
a given set, in a topological context. This notion can be extended to measurable
spaces; we thus get measure-theoretic dynamical systems. For more details, one can
refer, for instance, to [579]. See also Section 11.11.3.

Definition 1.7.2. A measure-theoretic dynamical system is defined as a system
.X;B; �;T/, where B is a 
 -algebra, � a probability measure defined on B, and
T W X ! X is a measurable map which preserves the measure �, i.e., for all B 2 B,
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�.T�1.B// D �.B/. Such a measure is said to be T-invariant and the map T is said
to preserve the measure �.

The transformation T (or the system .X;B; �;T/) is ergodic if for every B 2 B
such that T�1.B/ D B, then B has either zero measure or full measure.

Let .X;T/ be a topological dynamical system. A topological system .X;T/
always has an invariant probability measure. The case where there exists only one
T-invariant measure is of particular interest. A topological dynamical system .X;T/
is said to be uniquely ergodic if there exists one and only one T-invariant Borel
probability measure over X. In particular, a uniquely ergodic topological dynamical
system yields an ergodic measure-theoretic dynamical system.

A measure-theoretic ergodic dynamical system satisfies the Birkhoff ergodic
theorem, also called individual ergodic theorem. Let us recall that the abbreviation
a.e. stands for “almost everywhere”: a property holds almost everywhere if the set of
elements for which the property does not hold is contained in a set of zero measure.

Theorem 1.7.3. Let .X;B; �;T/ be a measure-theoretic dynamical system. Let f 2
L1.X;R/. Then the sequence . 1n

Pn�1
kD0 f ı Tk/n�0 converges a.e. to a function f � 2

L1.X;R/. One has f � ı T D f � a.e. and
R

X f � d� D
R

X f d�. Furthermore, if T is
ergodic, since f � is a.e. constant, one has:

8f 2 L1.X;R/ ;
1

n

n�1X

kD0

f ı Tk ��a:e:
����!
n!1

Z

X
f d� :

Note that the notions of conjugacy and factor between two topological dynamical
systems extend in a natural way to the measure-theoretic context.

1.7.3 Symbolic Dynamics

Let us introduce some basic notions in symbolic dynamics. For expository books
on the subject, see [167, 348, 381, 475] and [488]. For references on ergodic theory,
also see, e.g., [579]. These notions will be central in particular in Chapters 8 and 9.

Let S denote the following map defined on ˙! , called the one-sided shift:

S..xn/n�0/ D .xnC1/n�0 :

In particular, if x D x0x1x2 � � � is an infinite word over ˙ , then for all n � 0, its
suffix xnxnC1 � � � is simply Sn.x/. The map S is uniformly continuous, onto but not
one to one on ˙! . This notion extends in a natural way to ˙Z. In this latter case,
the shift S is one to one. We thus get symbolic dynamical systems. Here symbolic
refers to the fact that they are defined on words.

The definitions given below correspond to the one-sided shift, but they extend in
a natural way to the two-sided shift.
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Definition 1.7.4. Let x be an infinite word over the alphabet ˙ . The symbolic
dynamical system associated with x is then defined as the shift orbit closure
.O.x/; S/, where O.x/ 
 ˙! is the closure of the orbit O.x/ D fSnx j n 2 Ng
of x.

In the case of bi-infinite words, we similarly define O.x/ D fSnx j n 2 Zg where
the (two-sided) shift map is defined on ˙Z. The set Xx WD O.x/ is a closed subset
of the compact set˙! ; hence it is a compact space and S is a continuous map acting
on it. One checks that, for every infinite word y 2 ˙! , the word y belongs to Xx

if and only if L.y/ 
 L.x/. For a proof, see [488] or Chapter 1 of [487]. Note that
O.x/ is finite if and only if x is eventually periodic. Moreover, if x is an infinite
word, .Xx; S/ is minimal if and only if x is uniformly recurrent. Indeed, w is a factor
of x, we write

O.x/ D
[

n2N

S�nŒw�;

and we conclude by a compactness argument.
Generic examples of symbolic dynamical systems are provided by subshifts (also

called shifts for short). Let Y be a closed subset of˙! that is stable under the action
of the shift S. The system .Y; S/ is called a subshift. The full shift is defined as
.˙!; S/. If Y is a subshift, there exists a set F � ˙� of finite words such that an
infinite word x belongs to X if and only if none of its factors belongs to F . A subshift
X is called a subshift of finite type if one can choose the set F to be finite. A subshift
is said to be sofic if the set F is a regular language. A subshift .X; S/ is said to be
periodic if there exist x 2 X and an integer k such that X D fx; Sx; : : : ; Skx D xg.
Otherwise it is said to be aperiodic.

For the more general case of a group G acting on configurations in ˙G, see
Chapter 9. Elements of ˙G can be considered as colorings of a group G by a finite
alphabet ˙ . The set of configurations ˙G, endowed with the product topology, is a
compact space on which we define the shift transformations: for every g 2 G, the
shift Sg translates a configuration x 2 ˙G through Sg.x/h D xg�1h for every h 2 G.
In this framework, subshifts are exactly subsets of AG that are both shift-invariant
and closed for the product topology.

Example 1.7.5. The set of infinite words over f0; 1g of Example 1.5.6 which do not
contain the factor 11 is a subshift of finite type, whereas the set of infinite words
over f0; 1g having an even number of 1 between two occurrences of the letter 0 is a
sofic subshift which is not of finite type.

Definition 1.7.6. Let Y be a subshift. For a word w D w0 � � �wr, the cylinder set
Œw� is the set fy 2 Y j y0 D w0; : : : ; yr D wrg:

The cylinder sets are clopen (open and closed) sets and form a basis of open sets
for the topology of Y . Furthermore, one checks that a clopen set is a finite union of
cylinders. In the bi-infinite case, the cylinders are the sets
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Œu:v�Y D fy 2 Y j yi D ui; yj D vj; �juj � i � �1; 0 � j � jvj � 1g

and the same remark holds.
Then the topological entropy h.X/ of the symbolic dynamical system .X; S/

measures the richness of its language L, defined as the set of factors of elements
in X. It is defined as

h.X/ D lim
n!1

1

n
ln jL \˙nj :

It is closely related to the growth rate of the language L defined as lim supn!1 jL\

˙nj
1
n and considered in Chapter 5.



Chapter 2
Number Theoretic Aspects of Regular
Sequences

Michael Coons and Lukas Spiegelhofer

Abstract We present a survey of results concerning regular sequences and related
objects. Regular sequences were defined in the early 1990s by Allouche and Shallit
as a combinatorially, algebraically, and analytically interesting generalization of
automatic sequences. In this chapter, after an historical introduction, we follow the
development from automatic sequences to regular sequences, and their associated
generating functions, to Mahler functions. We then examine size and growth
properties of regular sequences. The last half of the chapter focuses on the algebraic,
analytic, and Diophantine properties of Mahler functions. In particular, we survey
the rational-transcendental dichotomies of Mahler functions, due to Bézivin, and of
regular numbers, due to Bell, Bugeaud, and Coons.

2.1 Introduction

The concept of “number” is central to mathematics and paramount to number theory.
From the mathematical standpoint, one of the most important ways to view and treat
numbers is algebraically, that is, to consider the integers as the ring Z under the
operations addition and multiplication and the rationals Q as the field of fractions
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of Z. Of course, from there interest is extended to the algebraic numbers, the
field Q of numbers, which are zeroes of polynomials with integer coefficients. The
study of algebraic numbers and their properties is a continual fount of results and
questions that for centuries has provided the foundational structures of mathematics
and will—beyond doubt—form a significant part of these foundations for centuries
to come.

The numbers of the preceding paragraph are abstract and in that sense do not
really need to be represented. Yet, when one wishes to give an example of an integer,
say 2 or 10 or 1729, one must write something down; if you wish to use only tick
marks, treating the example 1729 will require large amounts of both time and space.
Thus we have adopted the base system, with base 10—the number of fingers the
average human has—as the most popular base for humans. The concept of “base
expansion” is inseparable from modern computation and is fundamental to computer
science. The use and importance of base expansions (predominantly binary) has
become even more important with the advent of digital computers.

For those of us with interests at the interface of mathematics and theoretical com-
puter science, the characterization of relationships between the algebraic viewpoint
and the base-expansion viewpoint is an extremely important and interesting area
of research. Two specific questions stand out here and form the backdrop of our
chapter.

2.1.1 Two Important Questions

The first is an old question of Borel [99] concerning the probabilistic properties
(probabilités dénombrables) of base expansions of real algebraic numbers.

Question 2.1.1 (Borel, 1909). Is the base expansion of an irrational algebraic real
number normal?

Recall that a real number x is called simply normal to the base k (or k-simply
normal) if each of 0; 1; : : : ; k � 1 occurs in the base-k expansion of x with equal
frequency 1=k. This number x is then called normal to the base k (or k-normal)
provided it is km-simply normal for all positive integers m, and the number x is just
called normal if this is true for all integers k > 2.

While Borel’s question is asked from the standpoint of probability, Hartmanis
and Stearns [285] were interested in the—at least morally related—question of
computability. To state their question, we remind the reader that a real number x
is computable in real time provided there is a multitape Turing machine that can
compute the first n bits of x in time O.n/.

Question 2.1.2 (Hartmanis and Stearns, 1965). Do there exist irrational algebraic
real numbers which are computable in real time?

Presumably, the answers to these questions are “yes” and “no,” respectively,
though we stress here that our presumption is extremely presumptive. These
presumptive answers reflect the well-observed notion that algebraic manipulations
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tend to do strange things to base expansions. In fact, compared to what is expected,
very little is known about the digital properties of real algebraic numbers. For those
interested, Bugeaud’s recent work [119] provides a comprehensive exposition.

While Questions 2.1.1 and 2.1.2 are posed to study the digital properties of real
algebraic numbers, in this chapter, we concern ourselves with a flipped version of
these questions: what are the number theoretic properties of real numbers whose
expansions are highly structured?

Real numbers with eventually periodic base expansions are the simplest numbers
and sequences one can consider in our context. These numbers are not normal,
are computable, and of course are algebraic—they are the zeroes of linear poly-
nomials. This perceived exception to Questions 2.1.1 and 2.1.2 is why the word
“irrational” appears in these questions. Indeed, the rational numbers are in many
ways fundamentally different from the irrational algebraic numbers. For examples,
see Dirichlet’s approximation theorem and Roth’s theorem [514] on the irrationality
exponent of algebraic numbers. The digital properties of rational numbers have been
almost completely classified (up to some deep questions about the orbits of primitive
roots).

From a computational point of view, the next step is to consider real numbers
whose base-k expansion is k-automatic1 for some integer k > 2. This is where things
become extremely interesting. In fact, here the base starts to matter. Recall that if a
number is rational, then its base expansion is eventually periodic in every base. This
is not true for numbers that are k-automatic for some integer k > 2. Cobham [155]
showed that if a real number is both k-automatic and l-automatic for two integers k
and l that are multiplicatively independent2, then that real number is rational.

This difference from rationals continues with the complexity of base expansions.
For a rational written in base k, the number of strings of digits of length n that occur
in the expansion is bounded by a constant, while for a k-automatic real number, the
number of strings can increase with n. But not too fast, this number is O.n/ (see
Theorem 1.6.9), and so an automatic number is not normal since a normal number
must have all kn possible strings occur.

For Borel’s question, it may seem hopeful to then wonder if the set of automatic
numbers contains an irrational algebraic number, but the negative answer to this
question, which became known somewhat as the Cobham–Loxton–van der Poorten
conjecture, was settled3 by Adamczewski and Bugeaud in 2007 [3].

Theorem 2.1.3 (Adamczewski and Bugeaud). The base expansion of an irra-
tional real algebraic number cannot be output by a finite automaton.

1For a detailed account of automatic sequences, see the monograph of Allouche and Shallit [14].
See also Section 1.6.1.
2Two integers k and l are multiplicatively independent provided log k= log l is irrational.
3This result is inherent in the work of Cobham. In the 1980s, Loxton and van der Poorten [389]
claimed to have proved that an automatic number is either rational or transcendental, but a few
unresolvable flaws were found in their argument. This is why their name is associated with the
conjecture.
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2.1.2 Three (or Four) Hierarchies in One

According to Loxton [388], “the result about the decimal expansion of algebraic
irrationals and finite automata suggests an alternative theoretical approach to
randomness. We can try to assign a measure of computational complexity to a
sequence by means of the following hierarchy:

(L0) [eventually] periodic sequences,
(L1) [: : :] sequences generated by finite automata,
(L2) sequences generated by automata with one push-down store,
(L3) sequences generated by non-deterministic automata with one push-down

store, and
(L4) sequences generated by Turing machines.

Essentially, the n-th term of an [automatic] sequence is computed from the input n
without any memory of earlier terms. A push-down store allows an arbitrary number
of terms of the sequence to be stored and recalled later, the first one in being the last
one out. Two push-down stores are equivalent to the doubly infinite tape of a Turing
machine, which explains why the classification stops as it does. A random sequence
is now one which cannot be generated by any machine less powerful than a Turing
machine.”

The well-informed reader will recognize Loxton’s hierarchy as a subset of the
Chomsky–Schützenberger hierarchy of formal languages (see also Section 1.5.1).
This type of language-theoretical hierarchy, while classical and certainly of interest,
lacks the mathematical structure to delve into such arithmetic questions that we will
address here—especially at the higher levels of the hierarchy.

We present here a more natural hierarchy for such questions based on the work
of Mahler and the generalization of automatic sequences presented by Allouche
and Shallit. This hierarchy will be one of sequences, numbers, and functions
simultaneously. From the standpoint of integer sequences, the Mahler hierarchy is
as follows:

(M0) eventually periodic sequences,
(M1) automatic sequences,
(M2) regular sequences,
(M3) coefficient sequences of Mahler functions, and
(M4) integer sequences4.

Levels (M0) and (M1) are taken from Loxton’s hierarchy. Regular sequences were
introduced in 1992 by Allouche and Shallit [17]. See also Section 1.6.2. Following

4We make no comment on the randomness properties of integer sequences, but will be content with
their generality as is.
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their treatment5, let C denote the field of complex numbers and define the k-kernel
of f W Z>0 ! C as the set

Kerk.f / WD
˚
ff .k`nC r/gn>0 W ` > 0; 0 6 r < k`

�
: (2.1)

Definition 2.1.4 (Allouche and Shallit). Let k > 1 be an integer. A sequence
f taking values in C is called k-regular provided the C-vector space hKerk.f /iC
spanned by Kerk.f / is finite dimensional over C.

Allouche and Shallit introduced regular sequences as a direct generalization of
automatic sequences based on the k-kernel. Their generalization rests on a result of
Eilenberg [211], who showed the following.

Theorem 2.1.5 (Eilenberg). A sequence f is k-automatic if and only if Kerk.f / is
finite.

While the notion of k-regularity is certainly worth studying in its own right,
it becomes much more important when viewed as a bridge between the areas of
theoretical computer science and number theory. As Allouche and Shallit showed,
this notion is a direct extension of that of automatic sequences. Moreover, it is
an extension that is algebraically, analytically, and arithmetically interesting and
important.

The algebraic properties start with a correspondence between regular sequences
and finite sets of matrices. Indeed, Allouche and Shallit [17, Lemma 4.1] (see also
Section 1.6.2) showed that for a Noetherian ring R, an R-valued sequence f is k-
regular if and only if there exist a positive integer d, a finite set of matrices Af D

fA0; : : : ;Ak�1g 
 Rd�d, and vectors v;w 2 Rd such that

f .n/ D wTAi0 � � �Ais v; (2.2)

where .n/k D is � � � i0 is the base-k expansion of n.
The analytic importance comes via a result of Becker [61] relating regular

sequences to Mahler functions. Recall the following definition; see the works of
Mahler [403–405, 407].

Definition 2.1.6. A power series F.z/ 2 CŒŒz�� is k-Mahler for an integer k > 2

provided there is an integer d > 1 and polynomials a0.z/; : : : ; ad.z/ 2 CŒz� with
a0.z/ad.z/ ¤ 0 such that

a0.z/F.z/C a1.z/F.z
k/C � � � C ad.z/F.z

kd
/ D 0: (2.3)

5Allouche and Shallit gave a more general treatment for sequences taking values in Noetherian
rings. In our applications, the most important settings are those of the integers and complex
numbers, depending on the type of result presented. For our purposes, for results on sequences
and numbers, the integers will be the standard setting, and for results on power series those with
complex coefficients will be the most important.
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The minimal such d is called the degree of the Mahler function.

The above mentioned result of Becker states that if ff .n/gn>0 is a k-regular
sequence, then the generating function F.z/ D

P
n>0 f .n/zn is a k-Mahler function.

This established that those sequences in level (M3) contain those in (M2).
The arithmetic interest and importance of k-regular sequences are precisely the

content of this chapter. We will present properties and results to this effect in
the context of the Mahler hierarchy. It is important to note that while the Mahler
hierarchy is stated in terms of sequences, it can be stated in term of numbers and
functions as well.

Definition 2.1.7. If a sequence ff .n/gn>0 is k-automatic (resp. k-regular), then we
call the generating function F.z/ D

P
n>0 f .n/zn k-automatic (resp. k-regular) as

well and refer to F.z/ as a k-automatic function (resp. a k-regular function).

In this way, the levels (M1)–(M4) of the Mahler hierarchy can be translated to a
hierarchy of functions as:

(M1) automatic functions,
(M2) regular functions,
(M3) Mahler functions, and
(M4) general power series.

The “number” version of the hierarchy is stated mutatis mutandis using the
following definition.

Definition 2.1.8. Let k > 2 and b > 2 be integers. If F.z/ is a k-automatic function
(resp. k-regular or k-Mahler), then we call the special value F.1=b/ a k-automatic
number (resp. k-regular or k-Mahler).

Note that our notion of k-automatic number is more general than the traditional
definitions; we call something an automatic number if it is the special value of an
automatic function. In most of the literature, a real number is called k-automatic
if its base-k expansion can be produced by an automaton. This is not the case for
all of the numbers in our class. For example, the number

P
n>0 3

�2n
is 2-automatic

under our definition, though its base-2 expansion is not 2-automatic. Being able to
treat such numbers is just one example of the strength and generality of using the
framework of the Mahler hierarchy.

2.2 From Automatic to Regular to Mahler

In this section, we describe automatic and regular sequences based on their k-kernel
and develop their properties as coefficient sequences of Mahler functions. We first
recall the definitions from the context of the k-kernel with a little more generality
than the previous section, then we give many simple properties and provide some
examples.



2 Number Theoretic Aspects of Regular Sequences 43

Fig. 2.1 The 2-automaton
that produces the
Thue–Morse sequence.

0 1

0 01

1

2.2.1 Definitions

We take Eilenberg’s result (Theorem 2.1.5) as our definition of automaticity.

Notation 2.2.1. Unless otherwise specified, a sequence f will be one that takes
values in a commutative ring R, which when necessary to avoid complication will
be taken as a subring of the complex numbers.

Definition 2.2.2. A sequence f is k-automatic if and only if Kerk.f / is finite.

Example 2.2.3. The canonical example of an automatic sequence is the Thue–
Morse sequence. The Thue–Morse sequence ft.n/gn>0 over the alphabet f�1; 1g
is given by t.n/ WD .�1/s.n/ where s.n/ is the number of 1s in the binary expansion
of the number n. Using this definition, it is immediate that the sequence ft.n/gn>0 is
2-automatic. That is, there is a deterministic finite automaton that takes the binary
expansion of n as input and outputs the value t.n/; see Figure 2.1.

To show that t is 2-automatic using the Eilenberg-inspired definition based on
the k-kernel, it is enough to note that t.2n/ D t.n/ and t.2n C 1/ D �t.n/, so that
Ker2.t/ has only two elements, namely, the sequences t.n/ and �t.n/.

As stated by Allouche in Shallit in their foundational paper [17], “unfortunately,
the range of automatic sequences is necessarily finite, and this restricts their
descriptive power.”

Definition 2.2.4. The sequence f taking values in a ring R is k-regular provided the
k-kernel of f is contained in a finitely generated R-module.

Example 2.2.5. Let fs.n/gn>0 be Stern’s diatomic sequence, which is determined
by the relations s.0/ D 0, s.1/ D 1, and for n > 0, by

s.2n/ D s.n/; and s.2nC 1/ D s.n/C s.nC 1/:

These recursions immediately imply that the 2-kernel of s is contained in the Z-
module generated by fs.n/gn>0 and fs.nC 1/gn>0, so that s is 2-regular. Note that s
takes infinitely many values as well—s.2nC1/ D nC1—so that s is not 2-automatic.

The definition of k-regularity implies that there are a finite number of sequences
f1; : : : ; fd such that each element of the k-kernel of f is an R-linear combination
of f1; : : : ; fd. This finite number of sequences can be taken in many ways, though
two of these ways stand out. The first is to use an R-module basis for the R-module
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generated by the k-kernel of f . This is useful for proving results where minimality or
irreducibility is important. The second is to take a spanning set directly from the k-
kernel itself. This set is useful for more combinatorial results since it provides useful
and usable recurrences, especially for manipulating sums. We record this result in
the following lemma, the proof of which can be found in [17], though it is a worthy
(and easy) exercise for the reader wishing to sharpen their teeth a bit on these ideas.

Lemma 2.2.6 (Allouche and Shallit). The following are equivalent:

(a) f is k-regular,
(b) the R-module generated by Kerk.f / is generated by a finite number of elements

of Kerk.f /,
(c) there exists an integer E such that for all ej > E, each subsequence f .kej nC aj/

with 0 6 aj < kej can be expressed as an R-linear combination

f .kej nC aj/ D
X

i

cijf .k
hij nC bij/;

where hij 6 E and 0 6 bij < khij ,
(d) there exist an integer d and d sequences f D f1; : : : ; fd such that for 1 6 i 6 d

the k sequences fi.knC a/, 0 6 a < k, are R-linear combinations of the fi,
(e) there exist an integer d, d sequences f D f1; : : : ; fd and k matrices

A0; : : : ;Ak�1 2 Rd�d such that if v.n/ D Œf1; : : : ; fd�T ; then v.knCa/ D Aav.n/
for 0 6 a < k.

One of the most fundamental and important characterizations of k-regular
sequence is their matrix formulation [17, Lemma 4.1] (see also Section 1.6.2).

Lemma 2.2.7 (Allouche and Shallit). A sequence f is k-regular if and only if there
exist a positive integer d, a finite set of matrices Af D fA0; : : : ;Ak�1g 
 Rd�d, and
vectors v;w 2 Rd such that

f .n/ D wTAi0 � � �Ais v; (2.4)

where .n/k D is � � � i0 is the base-k expansion of n.

Proof. We prove only the right-hand implication; the other is left as an exercise for
the reader.

Suppose that f is k-regular and .n/k D is � � � i0 is the base-k expansion of n. By
Lemma 2.2.6(e), there exist an integer d, d sequences f D f1; : : : ; fd and k matrices
A0; : : : ;Ak�1 2 Rd�d such that if v.n/ D Œf1; : : : ; fd�T ; then v.knC a/ D Aav.n/ for
0 6 a < k. Since f D f1, setting v WD v.0/ and e1 WD Œ1 0 � � � 0�T , we have that for
each n > 0 that

f .n/ D eT
1Ai0 � � �Ais v:

Setting w WD e1 gives the desired result. ut
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Definition 2.2.8. Let f be a k-regular sequence taking values in the ring R. If Af D

fA0; : : : ;Ak�1g 
 Rd�d is a finite set of matrices and v;w 2 Rd vectors such that

f .n/ D wTAi0 � � �Ais v;

where .n/k D is � � � i0 is the base-k expansion of n, then we call the tuple .w;Af ; v/
the linear representation of f.

Example 2.2.9. As we saw in a previous example, the Stern sequence is 2-regular.
Using Lemma 2.2.6(e) and following the notation of Lemma 2.2.7, one can show
that the Stern sequence has linear representation

�
Œ1 0�; fA0;A1g D

�

1 1

0 1

�
;



1 0

1 1

��
; Œ1 0�

	
:

We define the convolution of two sequences f and g by

f ? g.n/ WD
X

iCjDn

f .i/g.j/:

The following result, which provides for the algebraic structure of the set of
k-regular sequences, is due to Allouche and Shallit [17, Theorem 3.1 and Corol-
lary 3.2], though we offer here a slightly different proof.

Theorem 2.2.10 (Allouche and Shallit). The set of k-regular sequences forms a
ring under standard addition and convolution.

Proof. It is clear that the set of k-regular sequences forms a group under addition.
To see that the set is closed under convolution, let f and g be two k-

regular sequences, whose k-kernels are contained in the R-modules generated
by f1; f2; : : : ; fd and g1; g2; : : : ; ge, respectively. To prove the theorem, it is enough
to show that the k-kernel of f ? g is contained in the R-module

C WD
˝˚
f.fi ? gj/.n/gn>0 W 1 6 i 6 d; 1 6 j 6 eg

�˛
R :

To see this, suppose that c 2 Kerk.f ? g/ and that ` > 0 and r (0 6 r < k`) are such
that c.n/ D .f ? g/.k`nC r/ for all n > 0. Then there are ˛1; : : : ; ˛d; ˇ1; : : : ; ˇe 2 R
such that

f .k`nC r/ D
dX

iD0

˛ifi.n/ and g.k`nC r/ D
eX

jD0

ˇjgj.n/:
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Now

c.n/ D .f ? g/.k`nC r/ D
nX

aD0

f .k`aC r/g.k`.n � a/C r/

D

nX

aD0

dX

iD0

˛ifi.a/
eX

jD0

ˇjgj.n � a/

D

dX

iD0

eX

jD0

˛iˇj

nX

aD0

fi.a/gj.n � a/

D

dX

iD0

eX

jD0

˛iˇj.fi ? gj/.n/ (2.5)

is an element of C, which proves the theorem. ut

Equality (2.5) essentially gives a description of the matrix representation of
the k-regular convolution f ? g, but working this out can in practice be extremely
complicated—the bookkeeping involved is nothing short of a nightmare. From the
number-theoretic perspective, the most useful special case of convolution is 1 ? f ,
which is the sequence of partial sums of f . Fortunately, in this case the details are
not so unfriendly. The following result is due to Dumas [201, Lemma 1], which we
reproduce here with a few fixed typos.

Proposition 2.2.11 (Dumas). Let f be a k-regular sequence, with matrix presenta-
tion as in (2.4). Then the sequence g.m/ D .1 ? f /.m/ D

P
16n6m f .n/ is k-regular

and

g.m/ D xTGis � � �Gi0y;

where .m/k D is : : : i0, xT WD Œ01�d wT �, yT WD ŒvT 01�d� and for b 2 f0; : : : ; k � 1g,

Gb WD



B0 0

B0 � BbC1 � A0 Id�d

�
;

where Bb WD
Pk�1

`Db A` for b D 0; : : : ; k � 1 and Bk WD 0.

Proof. Let m > 1 be an integer with .m/k D brbr�1 � � � b0, and write g.m/ WDP
16n6m f .n/. It is quite clear that

g.m/ D xT

 
X

16n6m

A.n/k

!
v D xT

0

BB@
X

06i6r

0

@
X

16j6bi

Aj

1

A
X

jwj6i
w2f0;:::;k�1g�

Aw

1

CCA v; (2.6)
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where we use that convention that if bi D 0; then
P

16j6bi
Aj D 0, and when i D 0,

then
P
jwj6i;w2f0;:::;k�1g� Aw D Id�d:

Now, in the notation presented in the statement of the proposition, it is quite clear
that

Bi
0 D

X

jwj6i
w2f0;:::;k�1g�

Aw;

where our above convention is preserved since we understand B00 D Id�d: Also, we
note that

B0 � BbiC1 � A0 D
X

16j6bi

Aj;

where again our above convention is preserved since for bi D 0, we have B0 �B1 �
A0 D 0:

With this information of the preceding paragraph, we interpret the equality (2.6)
as

g.m/ D xT

 
X

06i6r

.B0 � BbiC1 � A0/Bi
0

!
v: (2.7)

But this is exactly the output of the matrix representation for g.m/ as described in
the statement of the proposition. ut

The importance of the ring structure under addition and convolution begins with
the following immediate corollary of Theorem 2.2.10.

Corollary 2.2.12 (Allouche and Shallit). The set of k-regular functions forms a
ring under standard addition and multiplication.

This importance continues with the relationship to Mahler functions as provided
by Becker [61]. Following Becker, we require the following definition and lemma
regarding the Cartier operators.

Definition 2.2.13. Given a positive integer k > 2, we define the Cartier operators
�0; : : : ; �k�1 W CŒŒz��! CŒŒz�� by

�i

 
X

n>0
c.n/zn

!
D
X

n>0
c.knC i/zn;

for i D 0; : : : ; k � 1.

Lemma 2.2.14. Let F.z/;G.z/ 2 CŒŒz��. For i D 0; : : : ; k � 1 we have

(a) �i.F.zk/G.z// D F.z/�i.G.z//, and
(b) F.z/ D

Pk�1
iD0 zi�i.F/.zk/;
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where �i.F/.zk/ is understood as �i.F.z// evaluated at zk, so that if F.z/ DP
n>0 f .n/zn, then �i.F/.zk/ D

P
n>0 f .knC i/zkn:

Proof. This is left as an exercise. ut

Theorem 2.2.15 (Becker). A k-regular function is a k-Mahler function.

Proof. For convenience, we will assume that the k-regular function takes values in
the complex numbers. This proof can be easily modified to give a result for any
Noetherian ring R provided you work with the field of fractions of R.

Let f D f1; : : : ; fd be a basis for the C-vector space spanned by the k-kernel of f
and set Fi.z/ WD

P
n>0 fi.n/zn. Further, define the C.z/-vector space V by

V WD hfFi.z/ W i D 1; : : : ; dgiC.z/;

so that the set fFi.z/ W i D 1; : : : ; dg is a basis for V , and define the operator

˚ W V ! C..z//

by ˚.G.z// D G.zk/: We claim that V D ˚.V/.
To show that V � ˚.V/ we note that for each i D 1; : : : ; d

Fi.x/ D
k�1X

jD0

X

n>0
fi.knC j/.xk/nxj;

and since each ffi.knC j/gn>0 is in the k-kernel of f , it is a C-linear combination of
the basis sequences f1; : : : ; fd. Thus we may write

Fi.x/ D
dX

jD1

pi;j.x/Fj.x
k/ (2.8)

where for each i; j we have pi;j.x/ 2 CŒx� and deg pi;j.x/ 6 k � 1. But since fFi.z/ W
i D 1; : : : ; dg is a basis for V , we thus have that fFi.zk/ W i D 1; : : : ; dg spans ˚.V/,
and so the relationship in (2.8) shows that V � ˚.V/.

For the other inclusion, we set F.x/ WD ŒF1.x/; : : : ;Fd.x/�T and note that (2.8)
gives

F.x/ D A.x/F.xk/; (2.9)

where A.x/ D .pi;j.x//16i;j6d 2 CŒx�d�d: Also, since fFi.z/ W i D 1; : : : ; dg
is a basis for V , the matrix A.z/ is nonsingular; if this were not the case, there
would be a vector v.z/ 2 C.z/d such that v.z/A.z/ D 0 so that by (2.9) we
would have v.z/F.z/ D 0, contradicting that the coordinates of F.z/ are C.z/-linear
independent—they form a basis of V . Thus also
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A.z/�1F.z/ D F.zk/;

whence ˚.V/ � V , showing that V D ˚.V/.
We note that the arguments of the previous two paragraphs also show that since

V has dimension d, F.z/ 2 V , and ˚.V/ � V , the d C 1 functions F.z/;F.zk/; : : : ;

F.zkd
/ 2 V are C.z/-linearly dependent, meaning there are polynomials a0.z/; : : : ;

ad.z/ 2 CŒz� such that

dX

iD0

ai.z/F.z
ki
/ D 0: (2.10)

Of course, to prove the theorem, we must show that one has such a relationship with
a0.z/ ¤ 0.

Indeed, as Becker points out [61, p. 273], if one has a functional equation (2.10)
with aj.z/ ¤ 0 with j > 0 minimal, then we can just “shift” it down to one smaller
j by applying one of the Cartier operators, since from Lemma 2.2.14(a) we have for
a D 0; : : : ; k � 1 that

0 D �a

0

@
dX

iDj

ai.z/F.z
ki
/

1

A D
dX

iDj

�a .ai.z//F.zki�1
/;

where we are guaranteed from Lemma 2.2.14(b) that for at least one
a D 0; : : : ; k � 1, the polynomial �a.aj.z// is nonzero. ut

This argument can be adjusted to prove the following stronger form of Becker’s
theorem, and so we state it here as a corollary.

Corollary 2.2.16. If R is a Noetherian ring and F.z/ 2 RŒŒz�� is k-regular for an
integer k > 2, then there is an integer d > 1 and polynomials a0.z/; : : : ; ad.z/ 2 RŒz�
with a0.z/ad.z/ ¤ 0 such that

a0.z/F.z/C a1.z/F.z
k/C � � � C ad.z/F.z

kd
/ D 0:

That is, F.z/ is k-Mahler satisfying a Mahler functional equation with coefficients
in the ring RŒz�.

The most important case in the above corollary is the case of R D Z.

Example 2.2.17. Let s again denote the Stern sequence and set S.z/ WDP
n>0 s.n/zn. Using the definition of s, we have

zS.z/ D z
X

n>0
s.2n/z2n C z

X

n>0
s.2nC 1/z2nC1

D z
X

n>0
s.n/z2n C

X

n>0
s.n/z2nC2 C

X

n>0
s.nC 1/z2nC2
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D zS.z2/C z2S.z2/C
X

n>0
s.n/z2n

D S.z2/
�
1C zC z2

�
;

which gives that the generating function S.z/ satisfies the 2-Mahler equation

zS.z/ � .z2 C zC 1/S.z2/ D 0:

2.2.2 Some Comparisons Between Regular and Mahler
Functions

Becker’s result, Theorem 2.2.15 above, shows that every regular function is a Mahler
function. The converse of Becker’s result is not true, which we can show as a
consequence of the following result.

Proposition 2.2.18. The sequence fangn>0 is k-regular if and only if a D 0 or a is
a root of unity.

Proof. One direction is simple, since if a D 0 or a root of unity, the sequence of
powers is periodic and hence k-regular.

For the other direction, assume fangn>0 is k-regular. Then there exist an integer r
and integers �0; : : : ; �r�1, not all zero, such that

rX

jD0

�ja
kjn D 0:

Now we use the Vandermonde determinant identity, which states that

det

2

6664

1 b0 b20 � � � bm
0

1 b1 b21 � � � bm
1

:::
:::
:::
: : :

:::

1 bm b2m � � � bm
m

3

7775 D
Y

06i<j6m

.bj � bi/:

It follows that the sequences fbn
j gn>0 are linearly independent if and only if the

numbers b0; b1; : : : ; bm are distinct. Hence the numbers 1; ak; ak2 ; : : : ; akr
are not all

distinct, and we must have akj
D akl

for some j ¤ l. Thus either a D 0 or a is a root
of unity. ut

Example 2.2.19. The function 1=.1�2z/ is k-Mahler for every k but is not k-regular
for any k. To see this, note that inside the disk of radius 1=2 centered at zero, we
have that
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F.z/ WD
1

1 � 2z
D
X

n>0
2nzn:

By Proposition 2.2.18, the sequence f2ngn>0 is not k-regular for any k. But it is quite
easy to check that F.z/ D 1=.1 � 2z/ satisfies the Mahler equation

.1 � 2z/F.z/ � .1 � 2zk/F.zk/ D 0;

for any k, so that F.z/ is k-Mahler for each k.

In fact, Example 2.2.19 suggests the following result concerning the degree of
rational Mahler functions.

Proposition 2.2.20. If R.z/ is a nonzero rational function, then it is a k-Mahler
function of degree 1 for every positive integer k > 2.

Proof. Now write R.z/ D p.z/=q.z/ for nonzero polynomials p.z/ and q.z/. Then
R.z/ satisfies the k-Mahler equation

p.zk/q.z/R.z/ � p.z/q.zk/R.zk/ D 0;

which is of degree 1. ut

While not all Mahler functions are regular functions, there are some describable
families. For example, Becker showed that if F.z/ is k-Mahler and the coefficient
a0.z/ of F.z/ in the functional equation is a nonzero constant, then F.z/ is k-regular.

Theorem 2.2.21 (Becker [61]). Let F.z/ 2 CŒŒz�� be a k-Mahler function satisfy-
ing

dX

iD0

ai.z/F.z
ki
/ D 0;

where 0 ¤ a0.z/ 2 C and a1.z/; : : : ; ad.z/ 2 CŒz�. Then F.z/ is k-regular.

Proof. Without loss of generality, we may assume that a0.z/ D �1, since we may
just divide by the appropriate complex number if needed. Thus,

F.z/ D
dX

iD1

ai.z/F.z
ki
/: (2.11)

Set H WD maxfdeg ai.z/ W i D 1; : : : ; dg; and let V be the C-vector space generated
by the functions

Gij.z/ WD ziF.zkj
/ .i D 0; : : : ;HI j D 0; : : : ; d/:
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For a D 0; : : : ; k � 1 we have �a.Gij.z// 2 V . To see this, note that if j D
1; : : : ; d, then by Lemma 2.2.14(a) we have

�a.z
iF.zkj

// D F.zkj�1
/�a.z

i/ 2 V;

since �a.zi/ is a monomial (possibly a constant) of degree at most H. If j D 0, then
we use the functional equation (2.11) and Lemma 2.2.14(a) to obtain

�a.z
iF.z// D

dX

`D1

�a

�
zia`.z/F.z

k` /
�
D

dX

`D1

�a
�
zia`.z/

�
F.zk`�1 /:

Since for each combination of i and `, deg zia`.z/ 6 2H, we have deg�a.zia`.z// 6
2H=k 6 H; so that �a.ziF.z// 2 V .

Since �a.V/ � V for each a D 0; : : : ; k � 1, we have that V is mapped into
itself for any element in the semigroup � WD hf�0; : : : ; �k�1gi. Since V is finite
dimensional and F.z/ 2 V , we have that the set�.F.z// (the semigroup� evaluated
at F.z/ for each element) generates a finite-dimensional C-vector space. But, using
the definitions of regularity and the Cartier operators, this is possible if and only if
F.z/ is k-regular. ut

Theorem 2.2.21 is a simplified version of the following result of Dumas, which
we will use in the proof of Theorem 2.2.24. Its proof can be attained by an argument
almost identical to the proof of Theorem 2.2.21; for details see Dumas’s thesis [200,
Theorem 24].

Theorem 2.2.22 (Dumas). Let F.z/ 2 CŒŒz�� be a power series satisfying

dX

iD0

ai.z/F.z
ki
/ D E.z/;

where 0 ¤ a0.z/ 2 C, a1.z/; : : : ; ad.z/ 2 CŒz�, and E.z/ is k-regular. Then F.z/ is
k-regular.

Sometimes functions satisfying a Mahler functional equation with a0.z/ D 1 are
called k-Becker; for example, see Adamczewski and Bell [2]. Becker conjectured
that a result very similar to Theorem 2.2.21 holds for all regular functions.

Conjecture 2.2.23 (Becker). If F.z/ is a k-regular function, then there exists a k-
regular rational function r.z/ such that the function F.z/=r.z/ satisfies a Mahler
functional equation with a0.z/ D 1.

Theorem 2.2.24 (Structure Theorem, Dumas [200]). A k-Mahler function is the
quotient of a series and an infinite product which are k-regular. That is, if F.z/ is
the solution of the Mahler functional equation

a0.z/F.z/C a1.z/F.z
k/C � � � C ad.z/F.z

kd
/ D 0;
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where a0.z/ad.z/ ¤ 0, the ai.z/ are polynomials, then there exists a k-regular series
H.z/ such that

F.z/ D
H.z/

Q
j>0 � .z

kj
/
;

where a0.z/ D zı� .z/, with  ¤ 0 and � .0/ D 1.

Proof. Suppose that F.z/ D
P

n>0 f .n/zn satisfies

a0.z/F.z/C a1.z/F.z
k/C � � � C ad.z/F.z

kd
/ D 0;

where a0.z/ad.z/ ¤ 0, the ai.z/ are polynomials, and for each i D 0; : : : ; d let ıi

be the order of ai.z/ at z D 0, where we let ıi D 0 if ai.z/ D 0, and define the
polynomials bi.z/ by ai.z/ D zıi bi.z/. Further, let

D WD max

�
ı0;


kı0 � ı1

k � 1

�
;


k2ı0 � ı2

k2 � 1

�
; : : : ;


kdı0 � ıd

kd � 1

��
;

and define the polynomial

p.z/ WD
D�ı0X

nD0

f .n/zn;

so that there is a power series FD.z/ such that

F.z/ D p.z/C zD�ı0C1FD.z/: (2.12)

Combining this with the Mahler functional equation and separating the i D 0 term,
we have

zDC1b0.z/FD.z/ D �
dX

iD0

ai.z/p.z
ki
/ �

dX

iD0

z�i bi.z/FD.z
ki
/; (2.13)

where

�i D ıi C ki.D � ı0 C 1/:

We claim that �i > DC 1 for each i D 1; : : : ; d. To see this, note that for each
i D 0; : : : ; d we have

D >


kiı0 � ıi

ki � 1

�
> kiı0 � ıi

ki � 1
C

1

ki � 1
� 1;

which gives the desired lower bound on �i after some rearrangement.
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Since each �i > DC 1 and the left-hand side of (2.13) is divisible by zDC1, we
have that the polynomial

Pd
iD0 ai.z/p.zki

/ is also divisible by zDC1, so we may write

dX

iD0

ai.z/p.z
ki
/ D zDC1E.z/

for some polynomial E.z/. Thus we have that

b0.z/FD.z/ D �E.z/ �
dX

iD0

z�i�.DC1/bi.z/FD.z
ki
/: (2.14)

Now let  be the nonzero number such that

a0.z/ D zı0b0.z/ D zı0� .z/;

with � .0/ D 1, and set

G.z/ WD FD.z/
Y

j>0
� .zkj

/:

Thus we may write (2.14) as

G.z/ D ��1E.z/
Y

j>1
� .zkj

/ � �1
dX

iD0

z�i�.DC1/

0

@bi.z/
iY

jD0

� .zkj
/

1

AG.zki
/:

(2.15)
The infinite product P.z/ WD

Q
j>0 � .z

kj
/ is k-regular by Theorem 2.2.21 since it

satisfies the Mahler functional equation

P.z/ � � .z/P.zk/ D 0:

Combining this with Theorem 2.2.22, (2.15) gives that G.z/ is k-regular.
Using the definition of G.z/ and (2.12), we have

F.z/ D p.z/C zD�ı0C1
G.z/

Q
j>0 � .z

kj
/
:

Setting H.z/ WD p.z/
Q

j>0 � .z
kj
/CzD�ı0C1G.z/;we have both that H.z/ is k-regular,

since the set of k-regular functions form a ring, and also that

F.z/ D
H.z/

Q
j>0 � .z

kj
/
;

which is the desired result. ut
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2.3 Size and Growth

The range of automatic sequences is finite, so questions of size and growth
concerning automatic sequences are typically uninteresting. Regular sequences can
take an infinite number of values. Three immediate questions that arise are as
follows: (1) How slow can an unbounded regular sequence grow? (2) Are there
good upper bounds for such sequences? (3) What is the maximum possible growth?

2.3.1 Lower Bounds

When considering the question of the growth of a regular sequence, from the lower
bound perspective, it is worth noting that any such result will be an “infinitely often”
result at best. For example, there are regular sequences that are unbounded, yet take
the value 1 infinitely. The Stern sequence s is a great witness to this property. As we
have stated previously, s.2nC 1/ D nC 1, so that the Stern sequence is unbounded,
yet also, s.2n/ D 1 for all n. Similar results hold for the valuation function �k.n/,
which is the largest integer m such that km divides n; �k is clearly unbounded, and it
takes each nonnegative integer value an infinite number of times.

In 2014, an “infinitely often” lower bound-type result was given by Bell, Coons,
and Hare [65]. We present their result with proof here.

Theorem 2.3.1 (Bell, Coons, and Hare). Let k > 2. If f W N! Z is an unbounded
k-regular sequence, then there exists c > 0 such that jf .n/j > c log n infinitely often.

Lemma 2.3.2. Let k > 2 be an integer, let A0; : : : ;Ak�1 be d 	 d integer matrices,
and let B be the semigroup generated by A0; : : : ;Ak�1. Then either B is finite or
there is some S 2 B and fixed vectors v and w 2 Cd such that jwTSnvj > n for all
sufficiently large n.

Proof. Suppose that B is infinite. Then since B is finitely generated, a result of
McNaughton and Zalcstein [414] gives that there is some S in B such that the
matrices S;S2;S3; : : : are all distinct. Let p.x/ be the characteristic polynomial of S.
Then p.x/ is a monic integer polynomial. If p.x/ has a root � that is strictly greater
than 1 in modulus, then S has an eigenvector v such that Sv D �v. Pick a nonzero
vector w such that wTv D C ¤ 0. Then jwTSnvj D jCj � j�jn > n for n sufficiently
large.

If, on the other hand, all the roots of p.x/ are at most 1 in modulus, then all
nonzero eigenvalues of S are algebraic integers with all conjugates having modulus
1; hence, they are roots of unity. Let Y be a matrix in GLd.C/ such that T WD Y�1SY
is in Jordan form, where we take Jordan blocks to be upper triangular. Then each
Jordan block in T is of the form Ji.�/ with � either zero or a root of unity and i > 1.
Since S does not generate a finite subsemigroup of B, there is some root of unity
! and some m > 1 such that T has a block of the form Jm.!/. We may assume,
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without loss of generality, that Jm.!/ is the first block occurring in T. Then the
.1; 2/-entry of Tn is n!n�1 and so jeT

1Tne2j D n for every n. In particular, we have

jeT
1Y�1SnYe2j > n

for every n. Taking wT D eT
1Y�1 and v D Ye2 gives the result. ut

Proof (of Theorem 2.3.1). Let k > 2 be an integer, and suppose that f W N ! Z is
an unbounded k-regular sequence. Given a word w D is � � � i0 2 f0; : : : ; k � 1g�, as
stated previously, we let Œw�k denote the natural number n D isksC� � �C i1kC i0. The
Z-submodule of all Z-valued sequences spanned by Kerk.f / is a finitely generated
torsion-free module and hence free of finite rank. Let

˚
fg1.n/gn>0; : : : ; fgd.n/gn>0

�

be a Z-module basis for the Z-module spanned by Kerk.f /. Then for each i 2
f0; 1; : : : ; k � 1g, the functions g1.kn C i/; : : : ; gd.kn C i/ can be expressed as Z-
linear combinations of g1.n/; : : : ; gd.n/, and hence there are d 	 d integer matrices
A0; : : : ;Ak�1 such that

Œg1.n/; : : : ; gd.n/�Ai D Œg1.knC i/; : : : ; gd.knC i/�

for i D 0; : : : ; k � 1 and all n > 0. In particular, if is � � � i0 is the base-k expansion
of n, then Œg1.0/; : : : ; gd.0/�Ais � � �Ai0 D Œg1.n/; : : : ; gd.n/�. (We note that this holds
even if we pad the base-k expansion of n with zeros at the beginning.) We claim that
the Q-span of the vectors Œg1.i/; : : : ; gd.i/�T , as i ranges over all natural numbers,
must be all of Qd. Indeed, if this were not the case, then their span would be a proper
subspace of Qd, and hence the span would have a nontrivial orthogonal complement.
In particular, there would exist integers c1; : : : ; cd, not all zero, such that

c1g1.n/C � � � C cdgd.n/ D 0

for every n, contradicting the fact that g1.n/; : : : ; gd.n/ are linearly independent
sequences.

Let A denote the semigroup generated by A0; : : : ;Ak�1. Then we have just
shown that there exist words X1; : : : ;Xd in A such that

Œg1.0/; : : : ; gd.0/�X1; : : : ; Œg1.0/; : : : ; gd.0/�Xd

span Qd. Now, if A is finite, then fg1.n/gn>0; : : : ; fgd.n/gn>0 take only finitely
many distinct values. Since ff .n/gn>0 is a Z-linear combination of fg1.n/gn>0; : : : ;
fgd.n/gn>0, we see that it too takes only finitely many distinct values, which
contradicts our assumption that it is unbounded. Thus A must be infinite. By
Lemma 2.3.2, there exist Y 2 A and vectors x; y 2 Cd such that jxTYnyj > n
for all n sufficiently large.

By construction, we may write xT D
P

j ˛jŒg1.0/; : : : ; gd.0/�Xj for some
complex numbers ˛j. Then
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xTYn D
X

j

˛jŒg1.0/; : : : ; gd.0/�XjYn:

Let uj be the word in f0; 1; : : : ; k � 1g� corresponding to Xj, and let y be the word
in f0; : : : ; k � 1g� corresponding to Y; that is, uj D is � � � i0 where Xj D Ais � � �Ai0
and similarly for y. Then we have

Œg1.0/; : : : ; gd.0/�XjYn D Œg1.Œujy
n�k/; : : : ; gd.Œujy

n�k/�
T :

Write yT D Œˇ1; : : : ; ˇd�. Then

xTYny D
X

i;j

˛iˇjgj.Œuiy
n�k/:

By assumption, each of fg1.n/gn>0; : : : ; fgd.n/gn>0 is in the Z-module generated
by Kerk.f /, and hence there exist natural numbers p1; : : : ; pt and q1; : : : ; qt with
0 6 qm < kpm for m D 1; : : : ; t such that for each s D 1; : : : ; d we have gs.n/ DPt

iD1 �i;sf .kpi nC qi/ for some integers �i;s. Then

xTYny D
X

i;j;`

˛iˇj�`;j f .Œuiy
nv`�k/;

where v` is the unique word in f0; 1; : : : ; k � 1g� of length p` such that Œv`�k D q`.
Let K D

P
i;j;` j˛ij � jˇjj � j�`;jj. Then since jxTYnyj > n for all n sufficiently large,

there is some N0 > 0 such that for n > N0 some element from

˚
fjf .Œuiy

nvj�k/jgn>0W i D 1; : : : ; d; j D 1; : : : ; tg
�

is at least n=K.
We let M denote the maximum of the lengths of u1; : : : ; ud; y; v1; : : : ; vt. Then

each of Œuiynvj�k < k2Mn for n > 2. Hence we have constructed an infinite set of
natural numbers N D Nn WD Œuiynvj�k such that jf .N/j > logk.N/=2K and so taking
c D .2MK log k/�1, we see that jf .N/j > c log N for infinitely many N. ut

The above proof actually shows something a bit more specific. It shows for an
unbounded k-regular sequence that there exist words u1; : : : ; um; y; v1; : : : ; vm 2

f0; 1; : : : ; k � 1g� and a constant c0 > 0 such that for all sufficiently large n there
exist an i and j such that jf .Œuiynvj�k/j > c0n. Here for a word w D is � � � i0 2
f0; 1; : : : ; k � 1g�, we have written Œw�k D isks C � � � C i0. This can be thought of
as a type of “pumping lemma” for attaining unbounded growth. This argument will
prove quite useful when we consider good upper bounds in the next section.
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2.3.2 Upper Bounds

The question of upper bounds was first addressed by Allouche and Shallit [17,
Theorem 2.10] in their original paper introducing regular sequences.

Theorem 2.3.3 (Allouche and Shallit). Let f be a k-regular sequence with values
in C. Then there is a constant c such that f .n/ D O.nc/:

Proof. We use the matrix version of regular sequences as given by Lemma 2.2.7. In
particular, let d be a positive integer, Af D fA0; : : : ;Ak�1g 
 Cd�d, and v;w 2 Cd

be vectors such that

f .n/ D wTAi0 � � �Ais v;

where .n/k D is � � � i0 is the base-k expansion of n.
Let k � k be a (submultiplicative) matrix norm, i0 � � � is be the base k expansion of

n, and

c WD maxfkvk; kwk; kA0k; : : : ; kAk�1kg:

Then

jf .n/j 6 kvk � kwk �
sY

jD0

kAijk 6 csC3:

Using the bound s 6 logk n with some rearrangement gives the result. ut

In recent work, Coons [163] determined the optimal constant c for which
Theorem 2.3.3 holds. Its description requires a few definitions, the first of which
formalizes what is meant by “optimal” in this context.

Definition 2.3.4. Let k > 1 be an integer and f W Z>0 ! C be a (not eventually
zero) k-regular sequence. We define the growth exponent of f, denoted GrExp.f /, by

GrExp.f / WD lim sup
n!1
f .n/¤0

log jf .n/j

log n
:

Definition 2.3.5. The spectral radius of a square matrix is the maximal absolute
value of eigenvalues of the matrix. The joint spectral radius of a finite set of matrices
A D fA0;A1; : : : ;Ak�1g, denoted .A /, is defined as the real number

.A / D lim sup
n!1

max
06i0;i1;:::;in�16k�1

kAi0Ai1 � � �Ain�1k
1=n ;

where k � k is any (submultiplicative) matrix norm.
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The joint spectral radius was introduced by Rota and Strang [513] and has a
wide range of applications. See Rota and Strang [513] also for details about the
independence of the matrix norm in the definition. For an extensive treatment, see
Jungers’s monograph [315].

Theorem 2.3.6 (Coons). Let k > 1 and d > 1 be integers and f W Z>0 ! C
be a (not eventually zero) k-regular sequence. If Af is any collection of k integer
matrices associated to a basis of the C-vector space hKerk.f /iC, then

logk .Af / D GrExp.f /;

where logk denotes the base-k logarithm.

Before moving on with the needed preliminary results for the proof of this
theorem, we describe what it means for a collection of k integer matrices to be
associated to a basis of the C-vector space hKerk.f /iC. This is all taken in the context
of Lemma 2.2.7 that provides for a set of matrices Af coming from Lemma 2.2.6(e).
In particular, given a word w D is � � � i0 2 f0; : : : ; k � 1g�, we let Œw�k denote the
natural number n such that .n/k D w. Let fff .n/gn>0 D fg1.n/gn>0; : : : ; fgd.n/gn>0g
be a basis for the C-vector space hKerk.f /iC. Then for each i 2 f0; 1; : : : ; k � 1g,
the sequences fg1.kn C i/gn>0; : : : ; fgd.kn C i/gn>0 can be expressed as C-linear
combinations of fg1.n/gn>0; : : : ; fgd.n/gn>0, and hence there is a set of d 	 d
matrices Af D fA0; : : : ;Ak�1g with entries in C such that

AiŒg1.n/; : : : ; gd.n/�
T D Œg1.knC i/; : : : ; gd.knC i/�T

for i D 0; : : : ; k � 1 and all n > 0. In particular, if is � � � i0 is the base-k expansion of
n, then Ai0 � � �Ais Œg1.0/; : : : ; gd.0/�

T D Œg1.n/; : : : ; gd.n/�T . (We note that this holds
even if we pad the base-k expansion of n with zeros at the beginning.)

Definition 2.3.7. We call a set of matrices Af , as constructed in the previous
paragraph, a set of matrices associated to a basis of hKerk.f /iC. In general, if Bf

is any set of matrices for which there are vectors w and v such that f has linear
representation .w;Bf ; v/, then we call the set Bf a set of matrices associated to f.

The first step in the proof of Theorem 2.3.6 is to modify the proof of Theo-
rem 2.3.3 to include the notion of the joint spectral radius. This is done by appealing
to a result, which we record here as Lemma 2.3.8; it can be found as Proposition 4
of Blondel et al. [90], though it was first given in the original paper of Rota and
Strang [513].

Lemma 2.3.8. Let k > 1 be an integer and A D fA0;A1; : : : ;Ak�1g be a finite set
of matrices. Given " > 0 then there is a submultiplicative matrix norm k � k such
that kAik < .A /C " for each i 2 f0; 1; : : : ; k � 1g.

With this lemma in hand, it is quite easy to give a tight upper bound for the
optimal constant for Theorem 2.3.3.
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Proposition 2.3.9. Let k > 2 be an integer and f W Z>0 ! C be a k-regular
function. For any " > 0, there is a constant c D c."/ > 0 such that for all n > 1,

jf .n/j

nlogk..Af /C"/
6 c;

where Af is any set of matrices associated to f .

Proof. Let " > 0 be given and let k � k be a matrix norm such that the conclusion of
Lemma 2.3.8 holds. Then

jf .n/j 6 kvk � kwk �
sY

jD0

kAijk 6 kvk � kwk � ..A /C "/sC1;

where the base-k expansion of n is is � � � i0: Using the bound s 6 logk n with some
rearrangement gives the result. ut

As it turns out, if Bf is any set of matrices associated to f and Af is any set of
matrices associated to a basis of hKerk.f /iC, then .Af / 6 .Bf /; though the proof
of this statement is only apparent after validating Theorem 2.3.6.

Lemma 2.3.10. Let k > 1 be an integer and A D fA0;A1; : : : ;Ak�1g be a finite
set of matrices. If " > 0 is a real number, then there is a positive integer m and a
matrix Ai0 � � �Aim�1 , such that

..A / � "/m < .Ai0 � � �Aim�1 / < ..A /C "/m:

Proof. By using the properties of limits, this is a direct consequence of the definition
of the joint spectral radius. Details are left as an exercise. ut

Restricting to a set of matrices associated to a basis of hKerk.f /iC allows us to
provide the lower bound analogue of Proposition 2.3.9.

Proposition 2.3.11. Let k > 2 be an integer and f W Z>0 ! C be a k-regular
function. For any " > 0, there is a constant c D c."/ > 0 such that for infinitely
many n > 1,

jf .n/j

nlogk..Af /�"/
> c;

where Af is any set of matrices associated to a basis of hKerk.f /iC.

Proof. As in the proof of Theorem 2.3.1, we follow the argument of Bell, Coons,
and Hare (see p. 198 of [65]).

Let k > 2 be an integer, suppose that f W Z>0 ! C is an unbounded k-regular
sequence, and Af D fA0; : : : ;Ak�1g be a set of matrices associated to a basis
fff .n/gn>0 D fg1.n/gn>0; : : : ; fgd.n/gn>0g of the C-vector space hKerk.f /iC.
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Let " > 0 be given. Then by Lemma 2.3.10 there is a positive integer m and a
matrix A D Ai0 � � �Aim�1 such that .A/ > ..Af / � "/

m: Let � be an eigenvalue of
A with j�j D .A/: Then there is an eigenvector y such that Ay D �y: Pick a vector
x such that xTy D c1 ¤ 0: Then

ˇ̌
xTAny

ˇ̌
D jc1j � j�j

n D jc1j � .A/n > jc1j �
�
.Af / � "

�nm
: (2.16)

We claim that the C-span of the vectors Œg1.i/; : : : ; gd.i/�, as i ranges over all
natural numbers, must span all of Cd. If this were not the case, then their span would
be a proper subspace of Cd, and hence the span would have a nontrivial orthogonal
complement. In particular, there would exist c1; : : : ; cd 2 C, not all zero, such that

c1g1.n/C � � � C cdgd.n/ D 0

for every n, contradicting the fact that g1.n/; : : : ; gd.n/ are C-linearly independent
sequences.

Let hAf i denote the semigroup generated by the elements of Af . We have just
shown that there exist words X1; : : : ;Xd in hAf i such that

Œg1.0/; : : : ; gd.0/�X1; : : : ; Œg1.0/; : : : ; gd.0/�Xd

span Cd.
Now consider xTAny as described in the paragraph ending with (2.16). The

following lines are as in the proof of Theorem 2.3.1. By construction, we may write
xT D

P
j ˛jŒg1.0/; : : : ; gd.0/�Xj for some complex numbers ˛j. Then

xTAn D
X

j

˛jŒg1.0/; : : : ; gd.0/�XjAn:

Let uj be the word in f0; 1; : : : ; k � 1g� corresponding to Xj and let y D im�1 � � � i0
be the word in f0; : : : ; k � 1g� corresponding to A; that is, y D im�1 � � � i0 where
A D Ai0 � � �Aim�1 and similarly for uj. Then we have

Œg1.0/; : : : ; gd.0/�XjAn D Œg1.Œujy
n�k/; : : : ; gd.Œujy

n�k/�
T :

Write yT D Œˇ1; : : : ; ˇd�. Then

xTAny D
X

i;j

˛iˇjgj.Œuiy
n�k/:

By assumption, each of fg1.n/gn>0; : : : ; fgd.n/gn>0 is in the C-vector space gen-
erated by Kerk.f /, and hence there exist natural numbers p1; : : : ; pt and q1; : : : ; qt

with 0 6 q` < kp` for ` D 1; : : : ; t such that for each j D 1; : : : ; d, we have
gj.n/ D

Pt
`D1 �`;jf .k

p`nC q`/ for some constants �`;j 2 C. Then
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xTAny D
X

i;j;`

˛iˇj�`;jf .Œuiy
nv`�k/;

where v` is the unique word in f0; 1; : : : ; k � 1g� of length p` such that Œv`�k D q`.
Let K D

P
i;j;` j˛ij � jˇjj � j�`;jj. Then since jxTAnyj > jc1j �

�
.Af / � "

�nm
for all n,

some element from

˚
jf .Œuiy

nv`�k/j W i D 1; : : : ; d; ` D 1; : : : ; tg
�

is at least .jc1j=K/ �
�
.Af / � "

�nm
for each n. Set c2 WD jc1j=K.

If M D maxfjuij; jv`j W i D 1; : : : ; d; ` D 1; : : : ; tg, then

N D Œui.im�1 � � � i0/
nv`�k < k2MCnm;

so that logk.N/ � 2M < nm: Thus, by the finding of the previous paragraph, there
are infinitely many N such that

jf .N/j

N logk..Af /�"/
D

jf .N/j

..Af / � "/logk N
>

c2
..Af / � "/2M

;

which is the desired result. ut

Proof (of Theorem 2.3.6). For a given " > 0, Proposition 2.3.9 implies that

lim
n!1

jf .n/j

nlogk..Af /C2"/
D 0;

and Proposition 2.3.11 implies that

lim sup
n!1

jf .n/j

nlogk..Af /�2"/
D1:

Taken together these give

logk..Af / � 2"/ 6 GrExp.f / 6 logk..Af /C 2"/:

Since " can be taken arbitrarily small, this proves the theorem. ut

Example 2.3.12. For the Stern sequence s, one has

GrExp.s/ D log2 ';

where ' D .1C
p
5/=2 is the golden ratio. This follows from work of Reznick [501,

Theorem 5.13]. See also, Calkin and Wilf [124] and Coons and Tyler [165].



2 Number Theoretic Aspects of Regular Sequences 63

Before moving on, we note the works of Dumas [201, 202] concerning the
asymptotic expansion of the summatory functions of regular sequences. Among
many results and useful algorithms, his results have the flavor of the following
theorem [201, Theorem 1].

Theorem 2.3.13 (Dumas). Let f be a k-regular function with linear representation
.w;Af ; v/. Then

s.n/ WD
X

j6n

f .n/ �
X

˛>˛�

`>0;#

n˛
 

logk n

`

!
exp.i# logk n/�˛;`;# .logk n/C O.n˛�/;

where exponents ˛ and angular variables # are real numbers, the numbers ` are
nonnegative integers, and the functions � are 1-periodic functions. Specific details
can be found in Dumas’ work [201].

2.3.3 Maximum Values and the Finiteness Property

Determining the maximum values of regular sequences remains a mysterious area,
though it is related to a very interesting and important open question regarding the
joint spectral radius. As examples and results surrounding this area are sparse, in
this section, we will present a motivating extended example—Stern’s sequence—as
a way to frame some questions.

Recall from Example 2.2.5 that Stern’s diatomic sequence is 2-regular and
defined by the relations s.0/ D 0, s.1/ D 1, and for n > 0, by

s.2n/ D s.n/; and s.2nC 1/ D s.n/C s.nC 1/:

The first few values of the sequence are

0; 1; 1; 2; 1; 3; 2; 3; 1; 4; 3; 5; 2; 5; 3; 4; 1; 5; 4; 7; 3; 8; 5; 7; 2; 7; 5; 8; 3; 7; 4; 5; 1; : : : :

The Stern sequence, like essentially all observed regular sequences, has a limiting
distribution between consecutive powers of 2 (powers of kr for k-regular sequences
for some appropriate r). In fact, if one looks at the plot of the points .n; s.n//
for n between consecutive powers of 2, the picture seems to have asymptotically
stabilized; see Figures 2.2 and 2.3.

In particular, note the stabilizing two maximums in the each of the plots in
Figures 2.2 and 2.3. It is easy to show that the Stern sequence is palindromic
between consecutive powers of 2, so we may focus on just the first maximum. (The
maximum is in fact attained at at most two points, which we state here without
proof.) We will use the defining recursions to classify and get a bound on this
maximum value.
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Fig. 2.2 Stern’s diatomic sequence in the intervals
�
2n; 2nC1

�
for n D 9; 11; 13; 15.
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Fig. 2.3 Stern’s diatomic sequence in the interval Œ217; 218�.

To this end, for m > 0 define

Mm WD maxfs.n/ W n 2
�
2m; 2mC1

�
g:

Then, by observation, we have that M0 D 1; M1 D 2; and M2 D 3.
For m > 3 we note that s.2nC 1/ > s.n/ D s.2n/, so that the maximum value

always occurs at an odd index 2nC 1 2
�
2m; 2mC1

�
. Of course, like for all numbers,

for this value 2nC 1, one of n or nC 1 is even, so that the recursion for odd indices
gives
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Mm 6 Mm�1 CMm�2:

But, combining this inequality with the fact that M0 D 1 and M1 D 2, gives that

Mm 6 FmC2;

where Fk is the k-th Fibonacci number. This inequality is actually an equality, which
we will now show.

Proposition 2.3.14. The maximal value of the Stern sequence in the interval�
2m; 2mC1

�
is the Fibonacci number FmC2, and this value occurs at n D

�
2mC2 �

.�1/mC2
�
=3:

Proof. We have already shown above that Mm 6 FmC2, so it remains only to show
that there is an integer n 2

�
2m; 2mC1

�
such that s.n/ D FmC1.

To this end, set ˛m WD
�
2mC2 � .�1/mC2

�
=3. It is clear that ˛m 2

�
2m; 2mC1

�
and

that

˛mC1 D

(
2˛m C 1 if m is even;

2˛m � 1 if m is odd;

therefore by the recurrence for s we have

s.˛mC1/ D

(
s.˛m/C s.˛m C 1/ D s.˛m/C s.2˛m�1/ if m is even;

s.˛m � 1/C s.˛m/ D s.2˛m�1/C s.˛m/ if m is odd

D s.˛m�1/C s.˛m/:

By induction, it follows that s.˛m/ D FmC2, which is exactly what we set out to
show. ut

The binary forms

˛m WD

( �
.10/m=21

�
2

if m is even;
�
.10/.m�1/=211

�
2

if m is odd

of the integers ˛m here are a point of interest. They are of the form wku for some
words u and w and some integer k. This implies something even more interesting for
the normalized graph of the Stern sequence between consecutive powers of two. To
be clear, we state the generalizations of these ideas as a series of formal questions.

Question 2.3.15. Let f be a k-regular sequence. Is there an integer M > 1, such that
f (suitably normalized to the box Œ0; 1�2) has a limit when taken between powers of
kM? That is, the normalized picture of the points .n; f .n//, where n 2 ŒkMj; kM.jC1/�,
converges.
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Question 2.3.16. Let f be an integer-valued k-regular sequence. If f is not an
automatic sequence, is there a positive integer M such that

max
kMm6n6kM.mC1/�1

jf .n/j < max
kM.mC1/6n6kM.mC2/�1

jf .n/j ‹

Question 2.3.17. Suppose that Question 2.3.16 has a positive answer and that f is an
integer-valued k-regular sequence. Is it true that there are words u;w 2 f0; : : : ; k �
1g� such that one of the maximum values ˛f ;m of jf .n/j in ŒkMm; kM.mC1/� satisfies
˛f ;m D wnm u for some increasing sequence of integers nm and infinitely many m?

The careful reader will notice that Questions 2.3.16 and 2.3.17 have the added
assumption that f is integer-valued. This assumption cannot be removed completely
as the questions have negative answers when one looks at general real-valued
sequences. In fact, this line of questioning is related to an open question regarding
the joint spectral radius (see Definition 2.3.5) of a finite set of matrices.

Definition 2.3.18. A finite set of matrices A is said to have the finiteness property
provided there is a specific finite product Ai0 � � �Aim�1 of matrices from A such that
.Ai0 � � �Aim�1 /

1=m D .A /:

Arising from the work of Daubechies and Lagarias [179], Lagarias and Wang
[367] conjectured that the finiteness property holds for all finite sets of real matrices,
though this was shown to be false—hence the negative answer to the generalization
of Question 2.3.17 for real-valued regular sequences. The existence of counterex-
amples was first shown by Bousch and Mairesse [102] (see also [91, 360]), and
a constructive counterexample was recently given by Hare, Morris, Sidorov, and
Theys [284]. Their counterexample is reminiscent of the Stern sequence, and so we
give it here to add a little connective flavor to the questions.

Example 2.3.19 (Hare, Morris, Sidorov, and Theys). Let � denote the sequence of
integers defined by �0 D 1, �1; �2 D 2, and �nC1 D �n�n�1 � �n�2 for all n > 2, and
let Fn be the nth Fibonacci number for n > 0. Define the real number ˛� 2 .0; 1� by

˛� WD
Y

n>1

�
1 �

�n�1

�n�nC1

	.�1/nFnC1

:

Then this infinite product converges unconditionally, and the set
�

1 1

0 1

�
; ˛�



1 0

1 1

��

does not have the finiteness property.

Note that the number

˛� D 0:7493265463303675579439619480913446720913273702360643173 : : : ;

and it is unknown if ˛� is irrational, though it is suspected.
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It is an open and interesting question to determine if all finite sets of rational
matrices satisfy the finiteness property. The current best result toward this conjecture
is that of Jungers and Blondel [316], who showed that the finiteness property holds
for all finite sets of rational matrices provided it holds for all pairs of matrices with
entries in f�1; 0; 1g:Restricting to the case of nonnegative rational matrices, Jungers
and Blondel [316] could reduce f�1; 0; 1g to the set f0; 1g.

As a fact related to Question 2.3.15, we want to show that there are only few
large values of s.n/ in the interval

�
2m; 2mC1

�
, compared to the maximal value

Mm D FmC2. First, we note that the mean value of s.n/ in such an interval equals
.3=2/m, which can be proved by induction. What we want to show is that there are
in fact exponentially few integers n in

�
2m; 2mC1

�
such that s.n/ > "Mm, for any

" > 0. By definition of the mean value and the nonnegativity of s.n/, the number
N of such integers satisfies N"Mm=2

m 6 .3=2/m; therefore, N 6 3m=.Mm"/ �

.3='/m=", where ' is the golden ratio. Since ' is strictly larger than 3=2, there are
exponentially few integers n such that s.n/ is large. This leads us to the following
proposition for the graph of s.n/ in dyadic intervals

�
2m; 2mC1

�
, normalized to

Œ0; 1�2. We define functions fm from Œ0; 1� to Œ0; 1� by

fm.x/ D
1

FmC2
s
�
2m C

�
2mx

˘�
:

Proposition 2.3.20. The sequence ffmgm>0 of functions converges to zero almost
everywhere.

Proof. By the above considerations, there is an K < 1 such that

�.fx 2 Œ0; 1� W fm.x/ > "g/ 6 Km=";

where � is the Lebesgue measure. It follows that

�
�
fx 2 Œ0; 1� W 9m > M such that fm.x/ > "g

�

D �

 
[

m>M

fx 2 Œ0; 1� W fm.x/ > "g
!
6
X

m>M

�
�
fx 2 Œ0; 1� W fm.x/ > "g

�

6 1
"

X

m>M

Km D
1

"

KM

1 � K
:

Setting AM."/ D fx 2 Œ0; 1� W fm.x/ < " for all m > Mg, we obtain �.AM/ >
1 � KM=.".1 � K//. It follows that

1 D �

 
[

M>1
AM

!
D �.B"/;
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where

B" D fx 2 Œ0; 1� W 9M > 1 such that fm.x/ < " for all m > Mg:

Therefore

�.fx 2 Œ0; 1� W fm.x/! 0 as m!1g/ D �

 
\

">0

B"

!
D �

 
\

n>1
B1=n

!
D 1: ut

In fact, we conjecture the following more precise statement.

Conjecture 2.3.21. The sequence ffmgm>0 of functions converges pointwise, and the
limit is nonzero if and only if x 2 Œ0; 1� is of the form x D a=.3�2s/ for some integers
a > 1 and s > 0.

Another interesting question concerns values of s.n/ near the mean value .3=2/m.
Lansing [369] studies the quantity

H.�;m/ D
1

2m

ˇ̌
ˇ
˚
2m 6 n < 2mC1 W s.n/ > �.3=2/m

�ˇ̌
ˇ

and notes that the data “suggests that H.�;m/ converges to a smooth function, but
it is not clear if it actually does.” This statement is based on the behavior for some
small values of m. We used randomly chosen integers in the interval

�
2m; 2mC1

�
for

some larger m in order to guess the asymptotic behavior. Our experiments suggest
that H.�;m/ converges to zero for all � > 0.

We finish this section with a remark concerning the distribution of the values of
s.n/. Heuristically, the method of obtaining s.n/ by a matrix product is (formally)
similar to studying the product of independent identically distributed random
variables. The question therefore suggests itself: is the distribution of the values
s.n/ in dyadic intervals

�
2m; 2mC1

�
close to a log-normal distribution? We leave this

as another open question.

2.4 Analytic and Algebraic Properties of Mahler Functions

In this section, we consider the properties of regular functions and Mahler functions
viewed as functions of a complex variable. In particular, we will address questions of
convergence, analytic behavior, and rationality. In particular, the results will lead to a
proof of Bézivin’s theorem [83] that an irrational Mahler function is transcendental.
The arguments in this section follow closely those of Bell, Coons, and Rowland
[66], who gave an alternative proof of Bézivin’s result.
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2.4.1 Analytic Properties of Mahler Functions

Allouche and Shallit’s upper bound on regular sequences, Theorem 2.3.3, yields the
following as an immediate corollary.

Proposition 2.4.1. A regular function F.z/ converges inside the unit circle.

This proposition can be used to give an alternative proof that there are Mahler
functions that are not regular.

Example 2.4.2 (Example 2.2.19 Revisited). Recall from Example 2.2.19, the func-
tion 1=.1 � 2z/ is k-Mahler for each k. But z D 1=2 is a singularity of the function,
so it does not converge everywhere inside the unit circle. Hence it is not k-regular
for any k by Proposition 2.4.1.

Dumas’ structure theorem, Theorem 2.2.24, yields the following immediate
corollary, which we note here as a proposition.

Proposition 2.4.3. Let k > 2 be an integer and let F.z/ 2 CŒŒz�� be a k-Mahler
function. Then F.z/ has a positive radius of convergence.

Proof. Denote by B.0; r/ the open ball of radius r > 0 centered at the origin. Let
k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler function satisfying, say,

dX

jD0

aj.z/F.z
kj
/ D 0;

for aj.z/ 2 CŒz�, a0.z/ad.z/ ¤ 0. Proposition 2.4.1 states that a k-regular series
is analytic in the unit disk, so Theorem 2.2.24 gives that F.z/ converges in
B.0; r/, where r 2 .0; 1/ is the minimal distance from 0 to a nonzero root of
a0.z/.z � 1/. ut

It is quite easy to see that all polynomials are regular functions, and so they are
all Mahler functions as well. As it turns out, polynomials are precisely the set of
entire Mahler functions—and so also the set of entire regular functions.

Theorem 2.4.4. Let k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler function.
If F.z/ is entire, then F.z/ is a polynomial.

Proof. Let k > 2 be an integer and F.z/ 2 CŒŒz�� be an entire k-Mahler function
satisfying

dX

jD0

aj.z/F.z
kj
/ D 0;

for aj.z/ 2 CŒz� with a0.z/ad.z/ ¤ 0. Write

F.zkd
/ D �

d�1X

jD0

aj.z/

ad.z/
F.zkj

/: (2.17)
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Pick L > 1 such that all of the zeros of ad.z/ are in the open disk, B.0;L/, of
radius L centered at the origin. Notice that since the ai.z/ are polynomials, there is
an N > 1 and a constant C > 1 such that for jzj > L, we have

max
06i6d�1

� ˇ̌
ˇ̌ ai.z/

ad.z/

ˇ̌
ˇ̌
�
< CjzjN I (2.18)

in particular, the value N D max06i6d�1fdeg ai.z/; 2g is sufficient.
For ` > 0 denote

M` WD max
n
jF.z/j W jzj D Lk`

o
;

where L is as chosen above. Using (2.17), (2.18), and the maximum modulus
theorem, we have for j > d that

Mj 6 .dC 1/C
�
Lkj�d�N

Mj�1 6 C.dC 1/LNkj
Mj�1:

Thus recursively, we have for each n > d that

Mn 6 Md�1.C.dC 1//
nLNknC1

:

But since L > 1, this implies that there is some constant b > 0 such that for n > d
we have

Mn 6 Lbkn
:

Now let m > bC 2 be a natural number, fix an ˛ 2 C and consider

F.m�1/.˛/ D
1

2� i

Z

�n

F.z/

.z � ˛/m
dz;

where �n is the circle of radius Lkn
with n large enough so that ˛ is inside the circle

of radius Lkn
=2 centered at the origin. Then for all z on �n, we have that

jzj

2
6 jz � ˛j:

Thus for n large enough, we have

jF.m�1/.˛/j 6 1

2�
� 2�Lkn

�
2mMn

.Lkn
/m
D

2mMn

.Lkn
/m�1

6 2mLkn.b�mC1/:

Recall that m > bC 2 so that the above gives that
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jF.m�1/.˛/j 6 2m

Lkn :

Since n can be taken arbitrarily large, we have that F.m�1/.˛/ D 0. But ˛ 2 C was
arbitrary, and so F.m�1/.z/ is identically zero; hence F.z/ is a polynomial. ut

2.4.2 Rational-Transcendental Dichotomy of Mahler
Functions

Using Theorem 2.4.4 one can prove a rational-transcendental dichotomy of Mahler
functions; see Bézivin [83].

Theorem 2.4.5 (Bézivin). Let k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler
function. If F.z/ is algebraic, then F.z/ is a rational function.

In fact, since algebraic functions have only a finite number of singularities (see
Flajolet and Sedgewick [224, Section VII.7.1]), Theorem 2.4.5 is a consequence of
the upcoming Theorem 2.4.7. First we record a lemma, the proof of which is left as
an exercise, though it can be found in the paper of Bell, Coons, and Rowland [66].

Lemma 2.4.6. Let k > 2 be an integer and let F.z/ 2 CŒŒz�� be a k-Mahler function.
The function F.z/ is meromorphic if and only if it has finitely many singularities.

Theorem 2.4.7. Let k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler function.
If F.z/ has only finitely many singularities, then F.z/ is a rational function.

Proof. Let k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler function satisfying

dX

jD0

aj.z/F.z
kj
/ D 0; (2.19)

for aj.z/ 2 CŒz� with a0.z/ad.z/ ¤ 0. If F.z/ has only finitely many singularities,
then since by Lemma 2.4.6 it is meromorphic, there is a nonzero polynomial q.z/ 2
CŒz� such that q.z/F.z/ is entire. For j 2 f0; : : : ; d � 1g set

qj.z/ WD
1

q.zkj
/

dY

iD0

q.zki
/ 2 CŒz�:

Multiplying (2.19) by
Qd

iD0 q.zki
/ 2 CŒz�, we then have that

dX

jD0

aj.z/qj.z/q.z
kj
/F.zkj

/ D 0;
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where since q.z/ is not identically zero we have that a0.z/q0.z/ad.z/qd.z/ ¤ 0:

Hence q.z/F.z/ is an entire k-Mahler function and thus, by the preceding lemma, a
polynomial. This proves that F.z/ is a rational function. ut

One can actually do a lot better as Randé showed in his thesis [492].

Theorem 2.4.8 (Randé). Let k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler
function. Then F.z/ is a rational function, or it has the unit circle as a natural
boundary.

Recall that a function is differentiably finite (or D-finite) provided it satisfies
a linear homogeneous differential equation with polynomial coefficient. Since D-
finite functions can have only a finite number of singularities (see Flajolet and
Sedgewick [224, Section VII.9.1]), Randé’s result implies the following corollary.

Corollary 2.4.9. Let k > 2 be an integer and F.z/ 2 CŒŒz�� be a k-Mahler function.
If F.z/ is D-finite, then F.z/ is a rational function.

It is an open and very interesting question to determine where Mahler functions
fall in the diffeo-algebraic hierarchy. Of particular interest is whether an irrational
Mahler function can satisfy an algebraic differential equation. A function that does
not satisfy an algebraic differential equation is called hypertranscendental.

Question 2.4.10. Is it true that an irrational Mahler function is hypertranscendental?

For Mahler functions of degree one, this question has been mostly answered by
Bundschuh [120], though any sort of general result for other degrees remains open.

2.5 Rational-Transcendental Dichotomy of Regular Numbers

While the rational-transcendental dichotomy of regular (and Mahler) functions is
more or less straightforward as shown in the previous section, the dichotomy at the
level of their special values was much more elusive.

Adamczewski and Bugeaud [3] showed that a real automatic irrational number is
transcendental, and Bell, Bugeaud, and Coons [63] generalized their result to show
that if F.z/ is a regular function, then the value F.1=b/, for any integer b > 2, is
either rational or transcendental. In this section, we provide a simplified version of
the result of Bell, Bugeaud, and Coons.

Theorem 2.5.1 (Bell, Bugeaud, and Coons). Let F.z/ 2 ZŒŒz�� be a k-regular
power series and b > 2 be a positive integer. Then either F.1=b/ is rational or it is
transcendental.

We take as our starting point Equation (2.9). To this end, let F.z/ be a k-regular
function and let F.z/ WD ŒF.z/ D F1.z/; : : : ;Fd.z/�T be the vector of functions that
form a basis for the Q.z/-vector space V in the proof of Theorem 2.2.15, and recall
that (2.9) gives
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F.z/ D A.z/F.zk/; (2.20)

where A.z/ D .ai;j.z/=B/16i;j6d 2 QŒz�d�d is a nonsingular matrix of polynomials
ai;j.z/ 2 Z.z/ of degree at most k � 1 and B is a nonzero positive integer.

We will require some additional notation. In particular, in this section we take
all complex matrix norms k � k to be the operator norm, i.e., kAk D supkvkD1 kAvk,
where the norm of a vector v is the ordinary Euclidean norm. Also, we let � W
Q..x//! Z [ f1g be the valuation defined by �.0/ D1 and

�

 
X

n>�m

cnxn

!
WD inffi W ci ¤ 0g

when
P

n>�m cnxn 2 Q..x// is a nonzero Laurent power series (this valuation will
also be used in further sections).

Lemma 2.5.2. Let F.z/ satisfy (2.20) and H WD max16i;j6dfdeg ai;j.z/g. Then there
are " > 0, polynomials P1.z/; : : : ;Pd.z/;Q.z/ 2 ZŒz� of degree at most .d � 1/.dC
2/H with Q.0/ D 1, and a positive constant C D C."/ such that for i 2 f1; : : : ; dg
we have

jFi.t/ � Pi.t/=Q.t/j 6 Ctd.dC2/H

for t 2 .0; "/.

Proof. For i 2 f1; 2; : : : ; dg, the theory of simultaneous Padé approximation (see
the monograph Rational Approximations and Orthogonal Polynomials by Nikishin
and Sorokin [445, Chapter 4] for details) provides polynomials Pi.z/ and Q.z/ of
degree each bounded by .d � 1/.dC 2/H, and Q.0/ D 1, such that

� .Q.z/Fi.z/ � Pi.z// > d.dC 2/H:

For i 2 f1; : : : ; dg, we thus have

�

�
Fi.z/ �

Pi.z/

Q.z/

	
> d.dC 2/H:

Since Q.0/ D 1 and by Proposition 2.4.1 each of F1.z/; : : : ;Fd.z/ converges
inside the unit disk, Fi.z/ � Pi.z/=Q.z/ is analytic inside B.0; r/ for i 2 f1; : : : ; dg
for some r > 0 since Q.0/ D 1. Hence there exist power series G1.z/; : : : ;Gd.z/
that are analytic inside B.0; r/ such that

Fi.z/ �
Pi.z/

Q.z/
D zd.dC2/HGi.z/

for i 2 f1; : : : ; dg. Let " 2 .0; r/. Then there is a positive constant C such that

jG1.z/j; : : : ; jGd.z/j 6 C
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for jzj 6 ". Thus for i 2 f1; : : : ; dg,

ˇ̌
ˇ̌Fi.t/ �

Pi.t/

Q.t/

ˇ̌
ˇ̌ 6 Ctd.dC2/H

whenever t 2 .0; "/. ut

Having established the first rational approximations to our vector of regular
functions, we now establish a family of good rational approximations, which will
be used in the proof of Theorem 2.5.1.

Lemma 2.5.3. Let F.z/ satisfy (2.20) and H WD max16i;j6dfdeg ai;j.z/g and let t 2
.0; 1/. Then for each n > 0, there are polynomials P1;n.z/; : : : ;Pd;n.z/;Qn.z/ 2 ZŒz�
satisfying:

(i) max16i6dfdeg Pi;n.z/; deg Qn.z/g 6 ..dC 2/.d � 1/C 1/Hkn;
(ii) Qn.z/ D BnQ0.zkn

/;
(iii) there exists an " > 0 and positive constants C0 D C0."/ and C1 D C1."/, not

depending on t, such that for i 2 f1; : : : ; dg and for all n sufficiently large we
have Qn.t/ ¤ 0 and

jFi.t/ � Pi;n.t/=Qn.t/j 6 C1C
n
0t

d.dC2/Hkn
;

whenever t 2 .0; "/ and in particular the order of vanishing of Fi.t/ �
Pi;n.t/=Q.t/ at t D 0 is at least d.dC 2/Hkn.

Proof. By Lemma 2.5.2, there are " > 0, polynomials P1;0.z/; : : : ;Pd;0.z/;Q0.z/ 2
ZŒz� of degree at most .d C 2/.d � 1/H with Q0.0/ D 1, and a positive constant C
such that for i 2 f1; : : : ; dg we have

jFi.t/ � Pi.t/=Q0.t/j 6 Ctd.dC2/H

whenever t 2 .0; "/.
We define

R0.z/ WD ŒP1;0.z/=Q0.z/; : : : ;Pd;0.z/=Q0.z/�
T (2.21)

and for n > 1, we take

Rn.z/ D A.z/Rn�1.z
k/: (2.22)

We note that there exist integer polynomials Pi;n.z/ for i 2 f1; : : : ; dg and Qn.z/
such that

(a) Rn.z/ D ŒP1;n.z/=Qn.z/; : : : ;Pd;n.z/=Qn.z/�T ;
(b) Qn.z/ D B � Qn�1.zk/ for n > 1.
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From (b), we immediately get Qn.z/ D BnQ0.zkn
/. Since the entries of A.z/ are all

polynomials of degree at most H, we see that if we define

dn WD max
16i6d
fdeg Pi;n.z/; deg Qn.z/g;

then (2.22) gives dn 6 kdn�1 C H. By induction we see, using the fact that d0 6
.d � 1/.dC 2/H, that

dn 6 d.dC 2/H � kn C H.kn�1 C � � � C kC 1/

D knd0 C H �
kn � 1

k � 1
6 ..d � 1/.dC 2/C 1/Hkn: (2.23)

By assumption,

F.x/ D A.x/F.xk/;

and hence for n > 1 we have

F.x/ � Rn.x/ D A.z/A.zk/ � � �A.zkn�1

/
�
F.zkn

/ � R0.z
kn
/
�
:

Then for n sufficiently large, we have tkn
< ". Hence if ei denotes the d 	 1

column vector whose i-th coordinate is 1 and all other coordinates are zero, then

jFi.t/ � Pi;n.t/=Qn.t/j D
��eT

i .F.t/ � Rn.t//
��

D
���eT

i A.t/A.tk/ � � �A.tkn�1

/.F.tkn
/ � R0.t

kn
//
���

6
���F.tkn

/ � R0.t
kn
/
��� �

n�1Y

`D0

���A.tk` /
���

6 C
p

dtd.dC2/Hkn
�

n�1Y

`D0

���A.tk` /
��� :

Since each of the entries in A.z/ is a polynomial with rational coefficients, there is
a positive constant C0 (independent of t) such that

n�1Y

`D0

���A.tk` /
��� < Cn

0

for all n > 1 and any t 2 .0; 1/. Hence we have

jFi.t/ � Pi;n.t/=Qn.t/j < C
p

dCn
0t

d.dC2/Hkn
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for all i 2 f1; : : : ; dg and all n sufficiently large. To see that this gives the statement
about the order of vanishing at t D 0, note that if Fi.t/ � Pi;n.t/=Qn.t/ has a zero of
order ` at t D 0, then we can write Fi.t/ � Pi;n.t/=Qn.t/ as t`G.t/ where G.0/ ¤ 0.
It follows that there is a neighborhood of zero such that jt`G.t/j > jG.0/jjtj`=2 for
t in this neighborhood. Letting t approach 0 from the right and using the fact that

jFi.t/ � Pi;n.t/=Qn.t/j < C
p

dCn
0t

d.dC2/Hkn

gives ` > d.d C 2/Hkn and so Fi.t/ � Pi;n.t/=Qn.t/ has a zero at t D 0 of order at
least d.dC 2/Hkn. ut

With these preliminaries in hand, we are ready to proceed with the proof of
Theorem 2.5.1. We will use the following version of the p-adic Schmidt subspace
theorem due to Schlickewei [528].

Theorem 2.5.4 (p-Adic Schmidt Subspace Theorem). Let n > 2, " > 0, and
let p1; : : : ; ps be distinct prime numbers. Further, let L1;1; : : : ;Ln;1 be linearly
independent linear forms in X1; : : : ;Xn with algebraic coefficients in C, and for
j D 1; : : : ; s, let L1;pj ; : : : ;Ln;pj be linearly independent forms in X1; : : : ;Xn with

algebraic coefficients in Qpj
: Consider the inequality

jL1;1.x/; : : : ;Ln;1.x/j �
sY

jD1

jL1;pj.x/; : : : ;Ln;pj.x/jpj 6 kxk�"; (2.24)

with x 2 Zn. There are a finite number of proper linear subspaces T1; : : : ;Tt of Qn

such that all solutions of (2.24) lie in T1 [ � � � [ Tt:

Proof (of Theorem 2.5.1). Let F.z/ satisfy (2.20). By Lemma 2.5.3, there exist
polynomials P1;n.x/; : : : ;Pd;n.x/;Qn.x/ 2 ZŒx� such that

Qn.x/ D BnQ0.x
kn
/; (2.25)

and constants C1;C2 > 0 such that for i 2 f1; : : : ; dg and for sufficiently large n, we
have Qn.1=b/ ¤ 0 and

ˇ̌
ˇ̌F.1=b/ �

Pd;n.1=b/

Qn.1=b/

ˇ̌
ˇ̌ 6 C1Cn

0

bd.dC2/Hkn :

Let D be the smallest positive integer such that

pn WD bDkn
Pd;n.1=b/ and qn WD bDkn

Qn.1=b/

are both integers, and so we have

jqn � F.1=b/ � pnj 6
C1Cn

0jqnj

bd.dC2/Hkn : (2.26)
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Recall, by Lemma 2.5.3, we have

deg Pd;n.x/ 6 deg Qn.x/ 6 d.dC 1/H

so that also D < d.dC 1/H. Also by (2.25), we have that deg Q0.xkn
/ D D. Write

Q0.x
kn
/ WD

DX

iD0

aix
ikn
;

and assume, without loss of generality, ai ¤ 0 for each i (the general case follows
mutatis mutandis). Note that by (2.25) we have that

jqnj D Bn

ˇ̌
ˇ̌
ˇ

DX

iD0

aib
.D�i/kn

ˇ̌
ˇ̌
ˇ 6 Bn

DX

iD0

jaijb
.D�i/kn 6 C2B

nbDkn
;

where C2 >
PD

iD0 jaij > 0 is a positive constant. Thus for n large enough, since
d > 2 we have

jqnF.1=b/ � pnj 6
C1C2.C1B/nbd.dC1/Hkn

bd.dC2/Hkn D
C1C2.C1B/n

bdHkn <
1

bHkn : (2.27)

We now setup to apply the p-adic Schmidt subspace theorem, suppose that � WD
F.1=b/ is algebraic and for x D .x1; : : : ; xDC2/ 2 ZDC2 set

Li;1.x/ WD xi .i 2 f1; : : : ;DC 1g/;

and

LDC2;1.x/ WD �
DC1X

iD1

xi C xDC2:

Also for each prime p dividing b set

Li;p.x/ WD xi .i 2 f1; : : : ;DC 2g/:

For n 2 N denote

sn WD .B
na0b

Dkn
;Bna1b

.D�1/kn
; : : : ;BnaD;�pn/ 2 ZDC2:

Then (2.27) gives for large enough n that

jLDC2;1.sn/j <
1

bHkn :
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Also, we have that

jL1;1.sn/ � � � LDC1;1.sn/j D

DY

iD0

Bnjaijb
ikn 6 C3B

Dnb
D.DC1/

2 kn
;

where C3 WD
QDC1

iD1 jaij C 1 > 0 is a positive constant.
For primes p dividing b, we have

DC2Y

iD1

Y

pjb

jLi;p.sn/jp 6
DY

iD0

Y

pjb

jBnaib
ikn
jp

6
DY

iD0

Y

pjb

jbikn
jp D

DY

iD0

Y

pjb

p��p.b/�ikn
D b�

D.DC1/
2 kn

;

where for
Q

pjb jLDC2;p.sn/jp we used the trivial bound of 1.
To bound ksnk, we note first that since jLDC2;1.sn/j < b�Hkn

, we have

jpnj 6 j�jBn

ˇ̌
ˇ̌
ˇ

DX

iD0

aib
.D�i/kn

ˇ̌
ˇ̌
ˇC b�Hkn

:

Thus

ksnk
DC2 D

DX

iD0

ˇ̌
Bnaib

.D�i/kn ˇ̌DC2
C jpnj

DC2

<

DX

iD0

ˇ̌
Bnaib

.D�i/kn ˇ̌DC2
C

 
j�jBn

ˇ̌
ˇ̌
ˇ

DX

iD0

aib
.D�i/kn

ˇ̌
ˇ̌
ˇC b�Hkn

!DC2

6
 

DX

iD0

ˇ̌
Bnaib

.D�i/kn ˇ̌
C j�jBn

ˇ̌
ˇ̌
ˇ

DX

iD0

aib
.D�i/kn

ˇ̌
ˇ̌
ˇC b�Hkn

!DC2

;

and so there is constant C4 > 0 such that ksnk 6 C4BnbDkn
: Thus for a given " > 0,

we have that

1

C"
4B

"nb"Dkn 6 ksnk
�":

Now set " D 1
2D . Then putting these bounds together gives for n large enough

that
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jL1;1.sn/; : : : ;LDC2;1.sn/j �
Y

pjb

jL1;p.sn/; : : : ;LDC2;p.sn/jp

<
C3BDn

bHkn D
C3BDn

bHkn �
C"
4B

"nb"Dkn

C"
4B

"nb"Dkn 6
C3BDnC"

4B
"n

b.H�"D/kn � ksnk
�" 6 ksnk

�";

for n large enough, since H > 1 as long as F.x/ is not identically 1 (in which case
F.1=b/ is rational and the theorem holds anyway).

Thus for n large enough, the .DC 2/-tuples sn are solutions to the system,

jL1;1.sn/; : : : ;LDC2;1.sn/j �
Y

pjb

jL1;p.sn/; : : : ;LDC2;p.sn/jp 6 ksnk
� 1
2D ;

which, by the p-adic Schmidt subspace theorem, lie in finitely many proper linear
subspaces of QDC2. Hence there exists a nonzero .D C 2/-tuple .˛0; : : : ; ˛DC1/ 2

QDC2, such that for n large enough

˛0B
na0b

Dkn
C

DX

iD1

˛iB
naib

.D�i/kn
� ˛DC1pn D 0:

Dividing by qn and taking the limit as n!1, we have

˛0 � ˛DC1� D 0;

so that � D F.1=b/ 2 Q, which completes the proof of the theorem. ut

Remark 2.5.5. In very recent work, Adamczewski and Faverjon [4] have extended
the results of Adamczewski and Bugeaud [3] and Bell, Bugeaud, and Coons [63] to
the best possible. They have shown that a Mahler function evaluated at an algebraic
number is either rational or transcendental. Moreover, their proof avoided the use of
Schmidt’s subspace theorem!

2.6 Diophantine Properties of Mahler Functions

In our final section, we look at the Diophantine properties of Mahler functions. We
first look at how well a Mahler function can be approximated by rational functions.
We then use that information to present the universal transcendence test for Mahler
functions due to Bell and Coons [64]. Finally, we focus on the approximation of
Mahler functions with algebraic functions.
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2.6.1 Rational Approximation of Mahler Functions

Suppose we have a rational solution to (2.3). Our first result of this section gives
bounds on the degrees of the numerator and the denominator of a rational Mahler
function. This result can be found in Bell and Coons [64, Proposition 2].

Proposition 2.6.1. Let F.z/ D P.z/=Q.z/ be a rational k-Mahler function satisfy-
ing (2.3) with gcd.P.z/;Q.z// D 1 and set H WD maxfdeg ai.z/ W i D 0; : : : ; dg:
Then

deg Q.z/ 6 bH.k � 1/=.kdC1 � 2kd C 1/c;

and

deg P.z/ 6 deg Q.z/C bH=kd�1.k � 1/c:

Proof. Write F.z/ D P.z/=Q.z/ with gcd.P.z/;Q.z// D 1. Since F.z/ is a power
series, Q.0/ ¤ 0. Then we have

dX

iD0

ai.z/P.z
ki
/=Q.zki

/ D 0:

In particular, if we multiply both sides by

R.z/ WD
d�1Y

jD0

Q.zkj
/;

we see that Q.zkd
/ must divide ad.z/P.zkd

/R.z/. Since gcd.P.z/;Q.z// D 1, we
then have that Q.zkd

/ divides ad.z/R.z/. Let D denote the degree of Q.z/. Then
considering degrees, we have

kdD 6 deg ad.z/C deg R.z/ 6 H C DC kDC � � � C kd�1D:

In other words, .kd � kd�1 � � � � � 1/D 6 H. Since

kd � kd�1 � � � � � 1 D kd � .kd � 1/=.k � 1/ > kd.k � 2/=.k � 1/;

if k > 2, we have

D 6 H.k � 1/=kd.k � 2/:

If k D 2, then all we get is D 6 H. In any case, setting
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A.H; k; d/ WD bH.k � 1/=.kdC1 � 2kd C 1/c;

we have D D deg Q.z/ 6 A.H; k; d/.
Similarly, we can bound the degree of P.z/, but this is slightly more subtle.

Suppose that F.z/ D P.z/=Q.z/ has a pole at z D 1 of order M > 0 with
Mkd�1 C H < Mkd. Since F.z/ satisfies (2.3), we have

F.zkd
/ad.z/ D �

d�1X

iD0

ai.z/F.z
ki
/: (2.28)

Now, the right-hand side of (2.28) has a pole at z D1 of order at most kd�1MCH,
and the left-hand side of (2.28) has a pole at z D 1 of order at least kdM. Since
the equality (2.28) must hold, we conclude that Mkd�1 C H > Mkd and so M 6
H=.kd � kd�1/: In other words,

deg P.z/ 6 deg Q.z/C H=kd�1.k � 1/;

which finishes the proof. ut

2.6.2 A Transcendence Test for Mahler Functions

While we can bound the degrees of the numerator and the denominator of a rational
Mahler function, unfortunately, deciding whether a general power series is a rational
function is still not effectively determinable. After all, one can imagine that the
function is very close to some rational function, and one must go very far out when
looking at its coefficients to see that it is irrational. Fortunately, as Bell and Coons
showed [64, Lemma 1], deciding whether a Mahler function is a rational function is
effective.

Lemma 2.6.2. Let F.z/ be a Mahler function satisfying (2.3) and as before set
H WD maxfdeg ai.z/ W i D 0; : : : ; dg. If P.z/=Q.z/ is a rational function with
Q.0/ ¤ 0 and the degrees of P.z/ and Q.z/ are strictly less than some positive
integer �, then F.z/ � P.z/=Q.z/ is either identically zero or it has a nonzero
coefficient of zi for some i 6 H C � � kdC1=.k � 1/.

Proof. Suppose not. Then F.z/ � P.z/=Q.z/ D zMT.z/ for some nonzero power
series T.z/ with T.0/ nonzero and some M > H C � � kdC1=.k � 1/. Then we have

dX

iD0

ai.z/P.z
ki
/=Q.zki

/ D

dX

iD0

ai.z/z
Mki

T.zki
/: (2.29)
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Notice the right-hand side of (2.29) has a zero of at least order M at z D 0. On
the other hand, we can write the left-hand side of (2.29) as a rational function with
denominator Q.z/Q.zk/ � � �Q.zkd

/ and numerator

dX

iD0

ai.z/P.z
ki
/Ri.z/;

where Ri.z/ WD
Q

j¤i Q.zkj
/. Thus the numerator of the left-hand side of (2.29)

when written in lowest terms has degree at most H C �.kd C � � � C k C 1/. But
this can occur only if the left-hand side of (2.29) is identically zero since M >

H C �.kdC1 � 1/=.k � 1/, a contradiction. ut

Proof (of Universal Test for Transcendence of Mahler Functions in Figure 2.4). Let
M be the matrix formed in Step 2 of the universal transcendence test described in
Figure 2.4.

Suppose that M does not have full rank. Then there is a nonzero row vector
q WD Œq0; q1; : : : ; q�� such that q �M D 0. In other words,

.q� C q��1zC � � � C q0z
�/F.z/

has the property that 0 is the coefficient of zi for i D �; : : : ; � C H C �.kdC1 �

1/=.k � 1/; that is, there is a polynomial P.z/ of degree less than � such that

Universal test for transcendence of Mahler functions.

Let k 2 and d 1 be integers and F(z) be a k-Mahler function satisfying

a0(z)F(z)+a1(z)F(z k)+· · ·+ad(z)F(zk
d
) = 0,

for polynomials a0(z), . . . ,ad(z) ∈ [z]. Set H := max{degai(z) : i= 0, . . . ,d} and

:= H(k−1)/(kd+1−2k d+1) + H/kd−1(k−1) +1.

Step 1. Compute the coefficient, f (i), of zi of F(z) for

i= 0,1, . . ., +H+ (kd+1−1)/(k−1).

Step 2. Form the
(1+ )× (1+H+ (kd+1−1)/(k−1))

matrix M whose (i, j)-entry is f (i+ j−2).

Step 3. Put this matrix in echelon form and verify whether it has full rank (i.e., rank equal to
1+ ).

Step 4. If it does, then F(z) is transcendental; otherwise it is rational.

Fig. 2.4 Universal test for transcendence of Mahler functions of Bell and Coons.
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.q� C q��1zC � � � C q0z
�/F.z/ � P.z/

has a zero of order at least � C H C �.kdC1 � 1/=.k � 1/ at z D 0. Then P.z/
must have an order of zero at z D 0 that is at least as great as the order of zero of
Q.z/ WD q�Cq��1zC� � �Cq0z� at z D 0. This means that P.z/=Q.z/ can be reduced
to be written as a ratio of polynomials of degree less than � with the denominator
being nonzero at z D 0 and such that F.z/ � P.z/=Q.z/ has a zero at z D 0 of order
at least H C �.kdC1 � 1/=.k � 1/. Lemma 2.6.2 gives then that F.z/� P.z/=Q.z/ is
identically zero and hence F.z/ is rational.

Conversely, if F.z/ is rational, then we write F.z/ D P.z/=Q.z/ with the degree
of P.z/ and Q.z/ less than � and use Q.z/ to provide a nonzero row vector q as above
with q �M D 0. ut

2.6.3 Algebraic Approximation of Mahler Functions

The main result presented in this subsection is the recent result of Coons [164]
concerning a zero order estimate for the difference of a Mahler function with an
algebraic function.

As before, let � W C..z//! Z[ f1g be the valuation defined by �.0/ WD 1 and

�
�X

cnzn
�
WD minfi W ci ¤ 0g

when
P

n cnzn is nonzero. Also, for G.z/ an algebraic function with minimal
polynomial P.z; y/ 2 CŒz; y�, we call the value degy P.z; y/ the degree of G.z/, and
we call the value exp

�
degz P.z; y/

�
the height of G.z/.

Theorem 2.6.3 (Coons). If F.z/ is an irrational k-Mahler function of degree dF

and height AF, and G.z/ is an algebraic function of degree at most n and height at
most HG, then

�
�
F.z/ � G.z/

�
6 .dF C 1/ � AF � n

dFC1 C
kdFC1 � 1

k � 1
� log HG � n

dF :

The order of Coons’s bound is very similar to that of previous results on
zero estimates of Mahler functions, though those focused on upper bounds for
�.Q.z;F.z/// for polynomials Q.z; y/ 2 CŒz; y� and used quite deep methods, relying
on the elimination-theoretic method of Nesterenko [443, 444]; see Becker [60],
Nishioka [447], and Töpfer [566]. The approach taken by Coons is quite elementary
and easily lends itself to exposition.

The case of rational functions was given by Bell’s and Coons’s result of
the previous section (see Proposition 2.6.1). It is translated to the language of
Theorem 2.6.3 as the following.
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Lemma 2.6.4 (Bell and Coons). Let F.z/ be an irrational k-Mahler function of
degree dF and height AF, and let P.z/=Q.z/ be any rational function with Q.0/ ¤ 0.
Then

�

�
F.z/ �

P.z/

Q.z/

	
6 AF C

kdFC1 � 1

k � 1
�maxfdeg P.z/; deg Q.z/g:

Theorem 2.6.3 is the generalization of this result to approximation by algebraic
functions of arbitrary degree. To prove this generalization, we use a resultant
argument.

Lemma 2.6.5. Let f .z/ and g.z/ be two algebraic functions of degrees at least 2
satisfying polynomials of degrees 	f and 	g with coefficients of degree at most ıf

and ıg, respectively. Then the algebraic function f .z/C g.z/ satisfies a polynomial
of degree

	fCg 6 	f	g

with coefficients of degree

ıfCg 6 ıf	g C ıg	f :

Proof. This result follows by using the Sylvester matrix to calculate a certain
resultant. For R a ring and P;Q 2 RŒy� with

P.y/ D

degy PX

iD0

piy
i and Q.y/ D

degy QX

iD0

qiy
i;

the resultant of P and Q with respect to the variable y is denoted by resy.P;Q/ and
may be calculated as the determinant of the .degy QC degy P/ 	 .degy QC degy P/
Sylvester matrix; that is

resy.P;Q/ WD det

0

BBBBBBBBBBBBBB@

p0 p1 p2 � � � pdegy P

p0 p1 p2 � � � pdegy P

: : :
: : :

: : :
: : :

p0 p1 p2 � � � pdegy P

q0 q1 q2 � � � qdegy Q

q0 q1 q2 � � � qdegy Q

: : :
: : :

: : :
: : :

q0 q1 q2 � � � qdegy Q

1

CCCCCCCCCCCCCCA

;

where there are degy Q rows of the coefficients of P and degy P rows of the
coefficients of Q. Now suppose R D CŒz; x�, so that the entries of the above Sylvester
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matrix are polynomials in the variables z and x, and set D.x; z/ WD resy.P;Q/. Since
polynomial degrees are additive, using the Leibniz formula for the determinant, we
have immediately that

degz D.x; z/ 6 degy Q degz PC degy P degz Q (2.30)

and

degx D.x; z/ 6 degy Q degx PC degy P degx Q: (2.31)

The lemma now follows immediately by combining (2.30) and (2.31) with the
fact that given algebraic functions f .z/; g.z/ 2 CŒŒz�� and polynomials Pf .z; y/;
Pg.z; y/ 2 CŒz; y� with Pf .z; f / D Pg.z; g/ D 0, the algebraic function f .z/C g.z/ is
a root of the polynomial resy.Pf .z; y/;Pg.z; x� y// viewed as a polynomial in x. ut

Using Lemma 2.6.4 as the result for algebraic functions of degree 1, we now
focus on algebraic functions of degree at least 2.

Lemma 2.6.6. Let a0.z/; : : : ; ad.z/ be polynomials of degree at most A. If G.z/ 2
CŒŒz�� is an algebraic function of degree 	G > 2 satisfying a minimal polynomial
with coefficients of degree at most ıg, then the function

MG.z/ WD
dX

iD0

ai.z/G.z
ki
/

is an algebraic function satisfying a polynomial of degree 	MG 6 	dC1
G whose

coefficients have degree

ıMG 6 .dC 1/A �	dC1
G C

kdC1 � 1

k � 1
� ıG �	

d
G:

Proof. Since G.z/ is an algebraic function, so is
Pd

iD0 ai.z/G.zki
/. One can easily

gain information about the sum using the theory of resultants.
To get an upper bound on �.MG.z//, we apply the idea of the previous paragraph

by including the terms Gi.z/ WD ai.z/G.zki
/ one at a time. To do this, let

PG.z; y/ WD g	G y	G C � � � C g1yC g0

be the minimal polynomial of G.z/. Here we have denoted the degree of G.z/ by
	G. Set ıG WD degz PG.z; y/. Then

PGi.z; y/ D ai.z/
	G PG.z

ki
; y=ai.z//

is a polynomial with PGi.z;Gi.z// D 0, where, of course, we only form this
polynomial when ai.z/ ¤ 0. Here, we have that PGi.z; y/ is still minimal with respect
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to the degree of y, but there is no guarantee that it is minimal with respect to the
degree of z for this degree of y. However, we do have that the minimal polynomial
of Gi.z/ divides PGi.z; y/ and the quotient is just a polynomial in z. In any case, the
above gives that

	Gi WD degy PGi.z; y/ D degy PG.z; y/ D 	G (2.32)

and

ıGi WD degz PGi.z; y/ 6 A	G C kiıG: (2.33)

The lemma now follows by combining (2.32) and (2.33) with Lemma 2.6.5. ut

Lemma 2.6.7. Let G.z/ 2 CŒŒz�� be an algebraic function of degree at least 2
satisfying the polynomial PG.z; y/ D an.z/yn C an�1.z/yn�1 C � � � C a1.z/yC a0.z/;
with a0.z/ ¤ 0. Then �.G.z// 6 �.a0.z//: In particular, �.G.z// 6 degz PG.z; y/.

Proof. Since PG.z; y/ is a minimal polynomial, we have a0.z/ ¤ 0. We thus have,
identically,

�
an.z/G.z/

n�1 C an�1.z/G.z/
n�2 C � � � C a1.z/

�
G.z/ D �a0.z/:

The fact G.z/; an.z/; : : : ; a0.z/ 2 CŒŒz�� then gives

�
�
an.z/G.z/

n�1 C an�1.z/G.z/
n�2 C � � � C a1.z/

�
C �.G.z// D �.a0.z//;

which proves the lemma, since each of the terms is a nonnegative integer. ut

Proof (of Theorem 2.6.3). Let F.z/ be a k-Mahler function satisfying (2.3) of degree
dF and height AF and let G.z/ be an algebraic function of degree at most n and height
at most HG. Since by Lemma 2.6.4, the theorem holds for n D 1, we may assume
without loss of generality that n > 2.

Set M WD �.F.z/ � G.z//, and write

F.z/ � G.z/ D zMT.z/;

where T.z/ 2 CŒŒz�� with T.0/ ¤ 0. Then also

dX

iD0

ai.z/F.z
ki
/ �

dX

iD0

ai.z/G.z
ki
/ D

dX

iD0

ai.z/z
kiMT.zki

/;

which since F.z/ satisfies (2.3) reduces to

MG.z/ WD
dX

iD0

ai.z/G.z
ki
/ D �

dX

iD0

ai.z/z
kiMT.zki

/:
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This immediately implies that

�.F.z/ � G.z// D M 6 � .MG.z// 6 ıMG ;

where the last inequality follows from Lemma 2.6.7. By definition, ıG D log HG,
hence applying Lemma 2.6.6 proves the theorem. ut

The most important term in the inequality of Theorem 2.6.3 is the rightmost
term. One of the most important questions in the algebraic approximation of Mahler
functions concerns the degree of n in this term. The current best known upper bound
is dF, but a lower value may be true. In particular, one may expect a “Roth-type”
upper bound.

Question 2.6.8. If F.z/ is an irrational Mahler function and G.z/ is an algebraic
function of degree at most n and height at most HG where log HG > n > 1, then is
there a constant c > 0 such that �.F.z/ � G.z// 6 c � log HG � n‹



Chapter 3
First-Order Logic and Numeration
Systems

Émilie Charlier

Abstract The Büchi-Bruyère theorem states that a subset of Nd is b-recognizable
if and only if it is b-definable. This result is a powerful tool for showing that
many properties of b-automatic sequences are decidable. Going a step further, first-
order logic can be used to show that many enumeration problems of b-automatic
sequences can be described by b-regular sequences. The latter sequences can be
viewed as a generalization of b-automatic sequences to integer-valued sequences.
These techniques were extended to two wider frameworks: U-recognizable subsets
of Nd and ˇ-recognizable subsets of Rd. In the second case, real numbers are
represented by infinite words, and hence, the notion of ˇ-recognizability is defined
by means of Büchi automata. Again, logic-based characterization of U-recognizable
(resp. ˇ-recognizable) sets allows us to obtain various decidability results. The aim
of this chapter is to present a survey of this very active research domain.

3.1 Introduction

In computer science and in mathematics in general, we are concerned with the
following questions: How do we have sets of numbers at our disposal? How can we
manipulate them? Which sets of numbers should be considered simple? In which
sense? In order to approach such questions, we first need to represent numbers.
The basic consideration is as follows: properties of numbers are translated into
syntactical (or combinatorial) properties of their representations. This is where
numeration systems come into play. For example, the famous theorem of Cobham
(and Semenov for its multidimensional version) tells us that nontrivial properties of
numbers are dependent on the base we choose.

In this chapter, we will consider multidimensional subsets of numbers whose sets
of representations are accepted by finite automata. Representations of numbers will
always be taken from one of the following families of numeration systems: the unary
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systems, the integer bases b � 2, and, more generally, the positional numeration
systems based on increasing sequences U D .Un/n�0, the abstract numeration
systems S based on regular languages, and finally the real bases ˇ > 1. Depending
on the cases, we shall refer to such sets as 1-recognizable sets, b-recognizable sets,
U-recognizable sets, S-recognizable sets, and ˇ-recognizable sets.

Many descriptions of recognizable sets were given in various works [78, 96,
113, 114, 211, 503]. Here, we focus on characterizations of recognizable subsets
(first of Nd and then of Rd) in terms of first-order logic. We start by presenting
the Büchi-Bruyère theorem, which states that a subset of Nd is b-recognizable
if and only if it is b-definable, that is, definable by a first-order formula of the
structure hN;C;Vbi where Vb is a base-dependent predicate (see below for formal
definitions). We explain how this result turns out to be a powerful tool for showing
that many properties of b-automatic sequences are decidable. We illustrate our
purpose with many examples of decidable problems on b-automatic sequences.
Going a step further, we show that first-order logic can also be used to prove
that many enumeration problems of b-automatic sequences can be described by
b-regular sequences. The latter sequences are at the core of Chapters 2 and 4. First-
order logic is also mentioned in Chapters 9 and 10 in the context of the domino
problem and of Wang tiles.

In the last (and longest) part of this chapter, we give an extensive presentation
of (multidimensional) ˇ-recognizable sets of real numbers. Those sets are defined
by means of Büchi automata. Again, we give a logic-based characterization of these
sets and show how we can use it to obtain various decidability results. We end
by showing the links between the so-called ˇ-self-similar sets, the attractors of
some (base-dependent) graph-directed iterated function systems, and certain sets
recognizable by Büchi automata. Let us mention here that the numeration systems
in real bases ˇ > 1 are referred to as the main motivation of Chapter 7.

Besides these logic-based characterizations and their applications, we mention
(usually without proofs) various results concerning recognizable sets. Among them,
in the vein of Eilenberg’s result [211], we explicitly list the possible growth func-
tions of (unidimensional) S-recognizable sets. Let us emphasize that this is done in
the very general framework of abstract numeration systems and, thus, encompasses
the previous known results about b-recognizable sets only. In particular, this result
permits us to exclude right away a huge amount of (unidimensional) subsets from
the class of S-recognizable sets, and further, it also permits us to exhibit many
subsets which are never S-recognizable, that is, no matter which abstract numeration
system we choose. Finally, let us mention that along the lines, we present four open
problems.

3.2 Recognizable Sets of Nonnegative Integers

Finite automata may be seen as the simplest devices. They have only finite memory,
and they are only able to read words and accept or reject them in the end. Regular
languages, i.e., languages accepted by finite automata, form the bottom level of
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Chomsky–Schützenberger hierarchy. For this reason, it makes sense to consider the
following definition of “simple sets” of numbers. A subset X of N is said to be
recognizable with respect to a given numeration system repWN! A� if the language

frep.n/ j n 2 Xg 
 A�

is accepted by a finite automaton.
In order to be able to recognize multidimensional sets of numbers by means of

finite automata, we need to represent tuples of numbers by finite words. The classical
way to manage this is to introduce a padding symbol, which allows each component
to be represented by words of the same length. A subset X of Nd is recognizable
with respect to a numeration system repWN! A� if the language

f.rep.n1/; : : : ; rep.nd//
# j .n1; : : : ; nd/ 2 Xg 
 ..A [ f#g/d/�;

where # is some padding symbol, is accepted by a finite automaton.
Formally, for alphabets A1; : : : ;Ad and for a letter #, the padding map .�/#WA�1 	

� � � 	 A�d ! ..A1 [ f#g/ 	 � � � 	 .Ad [ f#g//� is defined by

.w1; : : : ;wd/
# D .#m�jw1jw1; : : : ; #

m�jwd jwd/;

where m D maxfjw1j; : : : ; jwdjg. In this way, from a subset R of the monoid A�1 	
� � � 	 A�d , we create a language

R# D f.w1; : : : ;wd/
# j .w1; : : : ;wd/ 2 Rg 
 ..A1 [ f#g/ 	 � � � 	 .Ad [ f#g//

�:

In particular, if # … [d
iD1Ai, then no word in R# contains the letter .#; : : : ; #/.

Here and throughout the chapter, d designates a dimension, i.e., an integer greater
than or equal to 1. We will also use the notation

# D .#; : : : ; #„ ƒ‚ …
d times

/; 0 D .0; : : : ; 0„ ƒ‚ …
d times

/; F D .?; : : : ; ?„ ƒ‚ …
d times

/;

where # and ? are fixed symbols.

3.2.1 Unary Representations

Perhaps the simplest way of representing a natural number n is to repeat a symbol
n times. This approach presents an obvious drawback: it requires way too much
memory space in practice to store a number and, even worse, to do computations
with them. Even though they are highly unpractical, unary representations are of
some theoretical interest, for example in computability theory. Let a be some fixed
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symbol. The unary numeration system rep1WN! a� is defined by rep1.n/ D an for
all n 2 N. The set of all possible representations is L1 D rep1.N/ D a�.

Definition 3.2.1. A subset X of Nd is 1-recognizable if the language rep1.X/ is
regular.

In dimension 1, the 1-recognizable sets are exactly the finite union of arithmetic
progressions, as they correspond to regular languages over a unary alphabet. In the
multidimensional case, it is already more complicated to capture the essence of 1-
recognizable sets; see Section 3.2.5.

3.2.2 Integer Bases

Throughout this chapter, b designates an integer greater than or equal to 2.
The integer base b numeration system repbWN ! A �b is defined as follows:

positive integers n are represented by finite words repb.n/ D c` � � � c1c0 over the
alphabet Ab D f0; 1; : : : ; b � 1g obtained from the greedy algorithm:

n D
X̀

iD0

ci bi:

By convention repb.0/ D ". The greedy algorithm only imposes having a nonzero
leading digit c`, and the set of all greedy (or canonical) b-representations is

Lb D repb.N/ D A�b n 0A�b :

We may also consider non-greedy b-representations. The evaluation map
valbWN� ! N is defined by valb.c` � � � c1c0/ D

P`
iD0 ci bi. Any word c` � � � c1c0 2

N� such that valb.c` � � � c1c0/ D n is called a b-representation of n.
We extend the definitions of the functions repb and valb to the multidimensional

setting as follows (and we keep the same notation):

repbWN
d ! .A d

b /
�; .n1; : : : ; nd/ 7! .repb.n1/; : : : ; repb.nd//

0

valbW .N
d/� ! Nd; .w1; : : : ;wd/ 7! .valb.w1/; : : : ; valb.wd//:

Let us emphasize that the components of repb.n/ are padded with zeros. Also note
that .w1; : : : ;wd/ 2 .Nd/� implies that jw1j D � � � D jwdj.

The following proposition is a generalization of Proposition V.3.1 in [211].

Proposition 3.2.2. Let # be a symbol not belonging to Ab. For any subset X of Nd,
the following are equivalent:

1. The language repb.X/ is regular.
2. The language 0�repb.X/ is regular.
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3. There exists a regular language L 
 .A d
b /
� such that 0�.0�/�1L D 0�repb.X/.

4. There exists a regular language L 
 .A d
b /
� such that valb.L/ D X.

5. The language f.repb.n1/; : : : ; repb.nd//
# j .n1; : : : ; nd/ 2 Xg is regular.

6. The language #�f.repb.n1/; : : : ; repb.nd//
# j .n1; : : : ; nd/ 2 Xg is regular.

7. There exists a regular language L 
 ..Ab [ f#g/d/� such that

#�.#�/�1L D #�f.repb.n1/; : : : ; repb.nd//
# j .n1; : : : ; nd/ 2 Xg:

Proof. If no word of a language L 
 A� starts with a specific letter a 2 A, then
L is regular if and only if a�L is as well. This shows 1 ” 2 and 5 ” 6.
For 1 H) 4, take L D repb.X/. For 4 H) 3, observe that if X D valb.L/
for some regular language L 
 .A d

b /
�, then 0�.0�/�1L D 0�repb.X/. 3 H) 2 is

clear. For 5 H) 7, take L D f.repb.n1/; : : : ; repb.nd//
# j .n1; : : : ; nd/ 2 Xg.

7 H) 6 is clear. Finally we show 1 ” 5. Given a DFA accepting
f.repb.n1/; : : : ; repb.nd//

# j .n1; : : : ; nd/ 2 Xg, we modify it by replacing every #
with 0 in every transition. The resulting automaton is an NFA accepting repb.X/.
Now suppose that A is a DFA accepting repb.X/. We modify A by replacing
every transition labeled .a1; : : : ; ad/ 2 A d

b with k components equal to 0 with 2k

transitions obtained by placing either 0 or # in every component where there was a
0. Let B denote the resulting DFA. Now we can build a DFA C accepting the words
in ..Ab [ f#g/d/� such that, in every component, each occurrence of # is preceded
by # or by nothing, and the last occurrence of # is not followed by 0. The language
f.repb.n1/; : : : ; repb.nd//

# j .n1; : : : ; nd/ 2 Xg is the intersection of the languages
accepted by B and C ; hence, it is regular. ut

Definition 3.2.3. A subset X of Nd is b-recognizable if any of the assertions of
Proposition 3.2.2 is satisfied.

Remark 3.2.4. The integer base b numeration systems have the remarkable property
that Nd is b-recognizable since 0�repb.N

d/ D .A d
b /
�. It is also true that val�1b .X/ D

0�repb.X/ for any subset X of Nd. The latter fact was actually used in the proof of
Proposition 3.2.2 (it is needed in the implication 4 H) 3).

It is equivalent to say that the characteristic sequence �XWNd ! f0; 1g is b-
automatic:

Definition 3.2.5. A sequence xWNd ! N is b-automatic if there exists a finite
deterministic automaton with output (DFAO for short) M D .Q; q0;A d

b ; ı;A; �/
such that, for all n 2 Nd, x.n/ D �.ı.q0; repb.n///.

Note that a DFAO being finite by definition, the image of a b-automatic
sequence is necessarily finite. Therefore, b-automatic sequences may be viewed as
multidimensional infinite words over a finite alphabet A.

Example 3.2.6. The DFAO of Figure 3.1 generates the sequence 011010111 � � �
when reading the greedy 2-representations of the nonnegative integers.

Proposition 3.2.7. Let X be a subset of Nd. Then X is b-recognizable if and only if
�X is b-automatic.
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0 1

0,1

1

0

Fig. 3.1 A DFAO generating some 2-recognizable set

Proof. In order to build a DFAO generating �X starting from a DFA accepting
repb.X/, it suffices to output 1 when ending in a terminal state and to output 0
when ending in a nonterminal state. In particular, the obtained DFAO outputs 0 if we
enter a non-greedy b-representation. The other direction works well because Nd is b-
recognizable. By declaring terminal those states outputting 1 and nonterminal those
states outputting 0, we obtain a DFA that might accept non-greedy b-representations
as well. But if L is the accepted language of this DFA, then valb.L/ D X (which is
the fourth item in Proposition 3.2.2). ut

Similarly, we have the following result.

Proposition 3.2.8. Let A be a finite alphabet and let xWNd ! A. Then x is b-
automatic if and only if every subset x�1.a/ of Nd (for a 2 A) is b-recognizable.

Proof. In order to build DFAs accepting a language L such that val.L/ D x�1.a/
starting from a DFAO generating x, it suffices to declare a state to be final if and
only if the corresponding output is a. For the other direction, let A D fa1; : : : ; akg,
and for each i, let Mi D .Qi; q0;i;Fi;A d

b ; ıi/ be a DFA accepting 0�repb.x
�1.ai//.

Let M D M1 	 � � � 	Mk. For all n 2 Nd, the state reached from the initial state
.q0;1; : : : ; q0;k/ after reading repb.n/ contains exactly one final component (in some
Mi). We define �.q1; : : : ; qk/ D ai if there is exactly one i such that qi 2 Fi (� is
undefined on other states). Then the DFAO obtained from M and � generates x. ut

One way to describe the b-recognizable sets is to study their growth functions.

Definition 3.2.9. For a subset X of N, we let tX.n/ denote the .nC 1/st term of X.
The map tXWN! N is called the growth function of X.

Theorem 3.2.10. [211] Any b-recognizable subset X of N satisfies either

lim sup
n!C1

.tX.nC 1/ � tX.n// < C1; or

lim sup
n!C1

tX.nC 1/

tX.n/
> 1:

Thanks to this result, examples of sets that are not b-recognizable for any b have
been exhibited. The set fn2 W n 2 Ng of squares is such an example.

There are several equivalent definitions of b-recognizable sets using logic,
morphisms, finiteness of the b-kernel, or formal series. We refer the reader to the
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survey [114] for an extensive presentation. The equivalence with b-definable sets
will be discussed in Section 3.3.

3.2.3 Positional Numeration Systems

A positional numeration system repUWN! A �U is based on an increasing sequence
UWN! N such that U.0/ D 1 and CU D supi�0

˙U.iC1/
U.i/

�
< C1. Positive integers

n are represented by finite words repU.n/ D c` � � � c1c0 over the alphabet AU D

f0; 1; : : : ;CU � 1g obtained from the greedy algorithm:

n D
X̀

iD0

ci U.i/:

By convention repU.0/ D ". The greedy algorithm imposes having a nonzero lead-
ing digit c` and that, for every 0 � j � `,

Pj
iD0 ciU.i/ < U.jC 1/. A description of

the set of all greedy (or canonical) U-representations LU D repU.N/ highly depends
on the base sequence U. The evaluation map is valUWN� ! N; c` � � � c1c0 7!P`

iD0 ci U.i/. Any word c` � � � c1c0 2 N� such that valU.c` � � � c1c0/ D n is called
a U-representation of n.

Example 3.2.11. If UW i 7! bi, then we recover the integer base b numeration
systems presented in the previous section.

Example 3.2.12. The positional numeration system repF based on the Fibonacci
sequence FWN! N defined by F.0/ D 1; F.1/ D 2 and F.iC2/ D F.iC1/CF.i/
for i 2 N, is called the Zeckendorf numeration system [592]. Zeckendorf proved
that the set of all greedy F-representations is the language of the finite words over
f0; 1g that do not begin in 0 and that do not contain the word 11 as a factor: LF D

1f0; 01g� [ f"g. This language is accepted by the DFA of Figure 3.2.

Again, we extend the definitions of repU and valU to the multidimensional
setting:

repUWN
d ! .A d

U /
�; .n1; : : : ; nd/ 7! .repU.n1/; : : : ; repU.nd//

0

valUW .N
d/� ! Nd; .w1; : : : ;wd/ 7! .valU.w1/; : : : ; valU.wd//:

1

0
0

1

Fig. 3.2 A DFA accepting the Zeckendorf representations of nonnegative integers
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We give the statement of the following proposition without proof since it is
similar to that of Proposition 3.2.2.

Proposition 3.2.13. Let # be a symbol not belonging to AU. For any subset X of Nd,
the following are equivalent:

1. The language repU.X/ is regular.
2. The language 0�repU.X/ is regular.
3. There exists a regular language L 
 .A d

U /
� such that

0�.0�/�1L D 0�repU.X/: (3.1)

4. The language f.repU.n1/; : : : ; repU.nd//
# j .n1; : : : ; nd/ 2 Xg is regular.

5. The language #�f.repU.n1/; : : : ; repU.nd//
# j .n1; : : : ; nd/ 2 Xg is regular.

6. There exists a regular language L 
 ..AU [ f#g/d/� such that

#�.#�/�1L D #�f.repU.n1/; : : : ; repU.nd//
# j .n1; : : : ; nd/ 2 Xg:

Observe that we lost the fourth characterization of Proposition 3.2.2. For integer
bases, the non-greedy representations are only those with leading zeros. For
positional numeration systems, there are other kinds of non-greedy representations.
For example, 100 and 11 are both F-representations of 3. In general, if X 
 N and
L 
 .A d

U /
� are such that X D valU.L/, then we do not know that (3.1) holds for the

same L.

Definition 3.2.14. A subset X of Nd is U-recognizable if any of the assertions of
Proposition 3.2.13 is satisfied.

Let us mention two open problems concerning positional numeration systems.
The first one was already reported in [78, Chapter 2]. As far as we know, the best
results achieved in this area are those of [297].

Problem 3.2.15. Characterize those positional numeration systems repU such that
N is U-recognizable.

Here we propose another related problem. However, an answer to any of these
two problems does not seem to provide a straightforward answer to the other. We
first give a remark.

Remark 3.2.16. For any subset X of Nd, we have repU.X/ D val�1U .X/ \ repU.N
d/.

Therefore, whenever N is U-recognizable (and hence Nd is as well), then for any
subset X of Nd, the regularity of val�1U .X/ implies that of repU.X/. However, there
is no evidence that the converse should be true.

Problem 3.2.17. Characterize those positional numeration systems repU such that,
for any subset X of Nd, the regularity of repU.X/ implies that of val�1U .X/.
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3.2.4 Abstract Numeration Systems

In this very general framework, the question is reversed. We first choose a language
L, the basic assumption being that L is regular, and then we declare L to form the set
of all valid representations of nonnegative integers, with the rule:

8n;m 2 L; n < m ” repS.n/  repS.m/:

Formally, an abstract numeration system S is given by a regular language L over
a totally ordered alphabet .A; </. A nonnegative integer n is represented by the
.n C 1/st word in L in radix (or genealogical) order . The question is now to –
efficiently – describe the map n 7! repS.n/, which of course depends on the choice
of S.

Definition 3.2.18. A subset X of Nd is S-recognizable if the language

f.repS.n1/; : : : ; repS.nd//
# j .n1; : : : ; nd/ 2 Xg 
 ..A [ f#g/d/�

is regular, where # is some padding symbol not contained in the numeration
alphabet A.

Note that, for a fixed S, the choice of padding the representations to the right or
to the left is arbitrary and gives two different notions of S-recognizability. At first
glance, one could think that we just have to consider the reversed representations,
but the numeration language L might not be closed under reversal, and even if
it were, then the order of the representations could change. Recall that if w D
a1 � � � ajwj, thenew D ajwj � � � a1.

Example 3.2.19. Consider S D .a�b� [ a�c�; a < b < c/. Then the pair .6; 9/
is represented by

�
#ac
aaa

�
D
�

#
a

�
. a

a / .
c
a /. If we had chosen a right padding instead,

.6; 9/ would have been represented by
�

ac#
aaa

�
, which is not equal to

�
#ac
aaa

�	
D
�

ca#
aaa

�
.

In fact, the latter word is not even the S-representation of any pair of nonnegative
integers since ca does not belong to the numeration language.

Abstract numeration systems encompass positional numeration systems having a
regular numeration language; see Problem 3.2.15. The next example illustrates that
the converse is not true.

Example 3.2.20. We saw that the set X D fn2 W n 2 Ng is not b-recognizable for
any b. However, this set is S-recognizable for the abstract numeration system S of
Example 3.2.19 since repS.X/ D a�.

More generally, we have the following result.

Theorem 3.2.21 ([502, 554]). For any polynomial P 2 QŒx� such that P.N/ 
 N,
there exists an abstract numeration system S such that P is S-recognizable.
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Describing the S-recognizable subsets of Nd is not easy in general. In the vein
of Theorem 3.2.10, the following result, which we give without proof, lists the
possible growth orders of such sets. These growth orders depend on the growth
of the numeration language, which is either polynomial or exponential as shown by
the following lemma.

For any language L over an alphabet A and any nonnegative integer n, we let
vL.n/ denote the number of words of length less than or equal to n in L.

Lemma 3.2.22. For all regular languages L, there exist p; c 2 N and
˛; a0; : : : ; ap�1 2 R�0 with p; ˛ � 1 such that

8i 2 f0; : : : ; p � 1g; vL.npC i/ � ai nc˛n .n!C1/: (3.2)

Proof. The formal series
P

n�0 vL.n/xn are N-recognizable for all regular languages
L; see, for instance, [77]; also see Section 3.4.1. Since .vL.n//n�0 are nondecreasing
sequences, the lemma follows from [520, Theorem II.10.2]. ut

Theorem 3.2.23 ([147]). Let S D .L;A; </ be an abstract numeration system and
let X be an infinite S-recognizable subset of N. Suppose that (3.2) holds and that

8j 2 f0; : : : ; q � 1g; vrepS.X/.nqC j/ � bjn
dˇn .n!C1/; (3.3)

for some q; d 2 N and some ˇ; b0; : : : ; bq�1 2 R�0 with q; ˇ � 1. Whenever ˇ > 1,
we have

tX.n/ D �
�
.log.n//c�df nf

�
; with f D

log. p
p
˛/

log. q
p
ˇ/
:

If ˇ D 1, then

tX.n/ D �
�
n

c
d . p
p
˛/�.n

1=d/
�
:

If moreover q D 1, then

tX.n/ D �
�
n

c
d . p
p
˛/
.1Co.1//. n

b0
/1=d�

:

Definition 3.2.24. Two real numbers ˛ and ˇ different from 1 are said to be
multiplicatively dependent if ˛ D ˇr for some r 2 Q, or, equivalently, if log˛

logˇ 2 Q.
Otherwise, ˛ and ˇ are said to be multiplicatively independent.

The following corollary of Theorem 3.2.23 considers the case of a polynomial
numeration language.

Corollary 3.2.25. Let S D .L;A; </ be an abstract numeration system built on a
polynomial regular language, and let X be an infinite S-recognizable subset of N.
Then tX.n/ D �.nr/ for some rational r � 1.
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Proof. By Lemma 3.2.22, the growth functions vL.n/ and vrepS.X/.n/ satisfy (3.2)
and (3.3), respectively. The fact that L is polynomial means that ˛ D 1. As 1 � ˇ �
˛, we have ˇ D 1 as well. Then from Theorem 3.2.23, we obtain tX.n/ D �.n

c
d /.
ut

By Theorem 3.2.21, we know that any set of the form fnk j n 2 Ng, with k 2 N,
is S-recognizable for some S. In the constructions of [502, 554], the numeration
languages are of polynomial growth. Consider the base 4 numeration system,
whose numeration language is of exponential growth. By Theorem 3.2.23, if X D
val4.f1; 3g�/, then tX.n/ D �.n2/. Indeed, with the notation of Theorem 3.2.23, we
have ˛ D 4, ˇ D 2, p D q D 1 (hence f D 2), and c D d D 0.

Proposition 3.2.26. For every rational number r � 1, there exists an abstract
numeration system S built on a polynomial regular language and an infinite S-
recognizable subset X of N such that tX.n/ D �.nr/.

Proof. Fix a rational number r � 1. Write r D c
d where c and d are positive integers.

Define B` to be the bounded language a�1a�2 � � � a
�
` . We have vB`

.n/ D
�nC`
`

�
for all

` � 1 and n 2 N (e.g., see [149, Lemma 1]). Let S be the abstract numeration system
built on Bc with the order a1 < a2 < � � � < ac, and let X D valS.Bd/ (since c � d,
we have Bd 
 Bc). Hence we have vBc.n/ D

�nCc
c

�
and vrepS.X/.n/ D

�nCd
d

�
for all

n 2 N. Then from Theorem 3.2.23, we obtain tX.n/ D �.n
c
d / D �.nr/. ut

Theorem 3.2.23 also allows us to exhibit subsets of N which are not S-
recognizable for any abstract numeration system S. For example, let C D fCn j

n 2 Ng denote the set of Catalan numbers Cn D
1

nC1

�
2n
n

�
. As is well known, we

have Cn �
4n

n3=2
p
�

.n ! C1/, which does not correspond to any of the forms
described by Theorem 3.2.23. Hence, for all S, the set C is not S-recognizable.

3.2.5 The Cobham–Semenov Theorem

So far we have introduced several numeration systems and have considered the
question of describing recognizable sets of nonnegative integers within a fixed
numeration system. The celebrated theorem of Cobham concerns, on the contrary,
sets of numbers that are simultaneously recognizable in different integer bases.
Cobham’s theorem and its numerous generalizations are the subject of several
surveys [114, 206]. Nevertheless, due to the importance of this result and its
relevance to the subject of the present chapter, we briefly discuss it in this short
section.

Definition 3.2.27. Semi-linear subsets of Nd are the finite unions of sets of the form
p0 C p1NC � � � C p`N, where p0;p1; : : : ;p` 2 Nd.

Recall that b and b0 are multiplicatively independent if log.b/
log.b0/

… Q; see
Definition 3.2.24.
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Theorem 3.2.28 (Cobham–Semenov [155, 536]). Let b and b0 be multiplicatively
independent integer bases. If a subset of Nd is simultaneously b-recognizable and
b0-recognizable, then it is semi-linear.

As semi-linear sets are b-recognizable for all integer bases b, we obtain that a
subset of Nd is b-recognizable for all b � 2 if and only if it is semi-linear. Note that
we cannot replace b � 2 by b � 1 as, for example, the linear set X D f.n; 2n/ j n 2
Ng D .1; 2/N is not 1-recognizable.

We have just argued that the family of 1-recognizable sets is distinct from that of
semi-linear sets. It is worth noticing that 1-recognizable sets also do not correspond
to the so-called recognizable subsets of Nd, which are the subsets X of Nd for which
the equivalence relation �X over Nd defined by

x �X y ” .8z 2 Nd; xC z 2 X ” yC z 2 X/

has finite index. For example, the diagonal D D f.n; n/ j n 2 Ng is 1-recognizable
but not recognizable as .m; 0/ �D .n; 0/ if and only if m D n. On the other hand,
it is true that the recognizable subsets of Nd are all 1-recognizable. More precisely,
we have the following result.

Theorem 3.2.29 ([144]). A subset X of Nd is S-recognizable for all abstract
numeration systems S if and only if it is 1-recognizable.

3.3 First-Order Logic and b-Automatic Sequences

In this section, we present an equivalent definition of b-automatic sequences in
terms of logic. It is given by the Büchi-Bruyère theorem. This criterion is of high
interest since it represents a powerful tool in order to show that many properties of
b-automatic sequences are decidable.

3.3.1 b-Definable Sets of Integers

A (logical) structure S D hS; .Ri/i consists of a set S, called the domain of the
structure, and countably many relations Ri 
 Sdi , where the di’s are positive integers,
called the arities of the Ri’s.

A first-order formula is defined recursively from

• variables x1; x2; x3; : : : describing elements of the domain S,
• the equality D,
• the relations given in the structure S ,
• the connectives _;^; H) ; ” ;:,
• the quantifiers 8; 9 on variables.
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Example 3.3.1. The Presburger arithmetic is described by the first-order formulæ
of the structure hN;Ci. See Section 3.7.

Let S be a logical structure whose domain is S. For a first-order formula
'.x1; : : : ; xd/ of S , we let

X' D f.s1; : : : ; sd/ 2 Sd j S � '.s1; : : : ; sd/g:

A subset X of Sd is definable in S if there exists a first-order formula '.x1; : : : ; xd/

of S such that X D X' , i.e., such that, for all .s1; : : : ; sd/ 2 Sd, '.s1; : : : ; sd/ is true
if and only if .s1; : : : ; sd/ 2 X.

We shall use particular notation for constant relations and for functional relations.
A constant relation is a relation of the form fcg. It will be simply denoted c. A
functional relation is a binary relation R such that for any s 2 S, there is at most
one t 2 S with .s; t/ 2 R. Such a relation R will be denoted f W S ! S where it is
understood that f .s/ D t if there exists t 2 S such that .s; t/ 2 R and f .s/ is undefined
otherwise.

Definition 3.3.2. A subset X of Nd is b-definable if it is definable in the logical
structure hN;C;Vbi, whereC is the ternary relation defined by xC y D z and Vb is
the function defined by Vb.0/ D 1, and for x a positive integer, Vb.x/ is the largest
power of b dividing x.

Example 3.3.3. One has V2.9/ D 1 and V2.24/ D 8.

3.3.2 The Büchi-Bruyère Theorem

Theorem 3.3.4 ([112, 115]). A subset X of Nd is b-recognizable if and only if it is
b-definable. Moreover, both directions are effective.

For a detailed proof of this result, we refer the reader to [114]. We only sketch
the idea of their proof here. They work with automata accepting reversed b-
representations of numbers. From a DFA recognizing X least significant digit first,
that is, such that it accepts a language L 
 .A d

b /
� satisfying X D fvalb.ew/ j w 2

Lg, they construct a first-order formula ' of the structure hN;C;Vbi defining X.
Conversely, given a first-order formula ' of the structure hN;C;Vbi defining X,
they build a DFA accepting all the reversed b-representations of the elements in X,
that is, accepting the language .repb.X//

	0�.

3.3.3 The First-Order Theory of hN; C; Vbi Is Decidable

As a corollary of the Büchi-Bruyère theorem, the first-order theory of hN;C;Vbi is
decidable: given any closed first-order formula of hN;C;Vbi, we can decide whether
it is true or false in N. As this corollary has a nice short proof, we give it here.
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Since there is no constant in the structure, a closed formula of hN;C;Vbi is
necessarily of the form 9x'.x/ or8x'.x/. The set X' is b-recognizable by the Büchi-
Bruyère theorem. This means that we can effectively construct a DFA accepting
repb.X'/. The closed formula 9x'.x/ is true if repb.X'/ is nonempty and false
otherwise. As the emptiness of a regular language is decidable [301], we can decide
if 9x'.x/ is true.

The case 8x'.x/ reduces to the previous one since 8x'.x/ is logically equivalent
to:9x:'.x/. We can again construct a DFA accepting the b-representations of X:' .
The language it accepts is empty if and only if the closed formula 8x'.x/ is true.

3.3.4 Applications to Decidability Questions for b-Automatic
Sequences

Proposition 3.3.5. If we can express a property P.n/ of an integer n using quanti-
fiers, logical operations, the operations of addition and subtraction, and comparison
of integers or elements of a b-automatic sequence x, then 9nP.n/; 91nP.n/, and
8nP.n/ are decidable.

We just have to convince ourselves that those properties P can all be expressed by
a first-order formula of hN;C;Vbi. If xWNd ! N is b-automatic, then, for all letters
a occurring in x, the subsets x�1.a/ of Nd are b-recognizable by Proposition 3.2.8.
Hence they are definable by some first-order formulæ  a of hN;C;Vbi by the
Büchi-Bruyère theorem:  a.n1; : : : ; nd/ is true if and only if x.n1; : : : ; nd/ D a.
Therefore, we can express that x.m1; : : : ;md/ D x.n1; : : : ; nd/ by the first-order
formula '.m1; : : : ;md; n1; : : : ; nd/ of hN;C;Vbi:

'.m1; : : : ;md; n1; : : : ; nd/ �
_

a

. a.m1; : : : ;md/ ^  a.n1; : : : ; nd//:

In practice, given a DFAO A computing xWNd ! N, we can directly com-
pute a DFA recognizing the tuples .m1; : : : ;md; n1; : : : ; nd/ 2 N2d such that
x.m1; : : : ;md/ D x.n1; : : : ; nd/. We compute the product of automata A 	 A ,
thus reading tuples of size 2d, and simulate .m1; : : : ;md/ on the first component
and .n1; : : : ; nd/ on the second component, and we accept if the outputs of A after
reading repb.m1; : : : ;md/

# and repb.n1; : : : ; nd/
# are the same and reject otherwise.

In fact, Theorem 3.3.4 allows us to prove a stronger result than the decidability of
such properties of b-automatic sequences. What we obtain is that the characteristic
sequences of those properties are themselves b-automatic. The following proposi-
tion is far from being exhaustive. It only aims to give a flavor of the properties that
can be handled by using this technique. For similar results, we refer to [12, 148]. A
finite word is unbordered if no proper prefix equals a suffix. A palindrome is a finite
word equal to its reversal: w D ew.
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0 0 1 1

0 1

1 0

1
1

0

0

Fig. 3.3 DFAO generating the regular paperfolding sequence

Proposition 3.3.6. Let xWN ! N be a b-automatic sequence. Then the following
sequences yWN! f0; 1g are also b-automatic:

• y.i/ D 1 if and only if x has an overlap at position i
• y.i/ D 1 if and only if x has an unbordered factor of length i
• y.i/ D 1 if and only if x has a square at position i
• y.i/ D 1 if and only if x has a palindrome at position i.

Some properties of interest of automatic sequences are not expressible by a
first-order formula of hN;C;Vbi as the following proposition shows. The regular
paperfolding sequence

0010011000110110001001110011011000100110001101110010011 � � �

is the 2-automatic sequence computed by the DFAO of Figure 3.3.

Proposition 3.3.7 ([523]). If x is the paperfolding sequence, then the predicate “x
has an abelian square at position i of length 2n” is not expressible in hN;C;V2i.

This method for deciding first-order expressible properties of b-automatic
sequences is very bad in terms of complexity. In the worst case, we have a tower of
exponentials in the number of states of the given DFAO whose height is the number
of alternating quantifiers of the first-order predicate. Nevertheless, this procedure
was implemented by Mousavi and works efficiently in many cases. His open source
software package is called Walnut [426]. It can be used in practice in order to
prove (and reprove) many results about some particular b-automatic sequences, in a
purely mechanical way [248–250].

3.4 Enumeration

The object of this section is to study enumeration problems about b-automatic
sequences. It turns out that the sequences .a.m//m2N that count the number of
n 2 N such that P.m; n/ is true, for any first-order predicate P of the logical
structure hN;C;Vbi, are indeed b-regular sequences; this is Theorem 3.4.15. We
first introduce b-regular sequences over an arbitrary semiring K (also see Chapters 2
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and 4). Then we focus on the semirings N and N1 WD N [ f1g. We discuss
N-recognizable and N1-recognizable formal series and their connections to finite
automata. This, together with the Büchi-Bruyère theorem, allows us to prove that
counting various quantities related to b-automatic sequences gives rise to b-regular
sequences. Finally, we discuss the particular case of b-synchronized sequences and
show that, in general, the same techniques cannot be used to show that the obtained
sequences are b-synchronized: some of them are, whereas some others are not.

3.4.1 b-Regular Sequences

A formal series S is a map from A� to K, where A is a finite alphabet and K is a
semiring. The image of a word w is denoted .S;w/, as is customary. We also use the
notation S D

P
w2A�.S;w/w.

Definition 3.4.1. Let A be a finite alphabet and K be a semiring. A formal series
SWA� ! K is K-recognizable if there exist an integer m � 1, vectors � 2 K1�m,
� 2 Km�1, and a morphism of monoids �WA� ! Km�m such that, for all w 2 A�,
.S;w/ D ��.w/� . The triple .�; �; �/ is called a linear representation of S, and we
say it is of size, or of dimension, m.

The family of K-recognizable series has many stability properties. We list here
(without proofs) only those we will explicitly use for our purpose. For more on
K-recognizable series, we refer the reader to [77].

The characteristic series of a language L 
 A� is �L WD
P

w2L w. It can be viewed
as a map from A� to K for any semiring K (as any semiring contains 0 and 1).

Proposition 3.4.2. For any language L, the following assertions are equivalent.

1. L is regular.
2. �L is N-recognizable.
3. For all semirings K, �L is K-recognizable.

The Hadamard product of two formal series S and T is their term-wise product:
Sˇ T D

P
w2A�.S;w/.T;w/w. In particular, Sˇ �L D

P
w2L.S;w/w.

Proposition 3.4.3. If SWA� ! K is a K-recognizable series and L 
 A� is a regular
language, then Sˇ �L is K-recognizable.

Proposition 3.4.4. Every formal series SWA� ! K with only finitely many terms
.S;w/ ¤ 0 is K-recognizable.

It follows from the previous two propositions that two formal series that differ
only in a finite number of words are either both K-recognizable or both not K-
recognizable.

We will need the following lemma.
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Lemma 3.4.5. Let SWA� ! K be a K-recognizable series, B 
 A be a nonempty
sub-alphabet, and � WA! B be a letter-to-letter morphism. Then the series TWB� !
K defined by

T D
X

u2A�

.S; u/ �.u/ D
X

w2B�

� X

u2A�

�.u/Dw

.S; u/
�

w

is K-recognizable.

Proof. Let .�; �; �/ be a linear representation of S, say of size m. Define a
morphism �0WB� ! Km�m by �0.b/ D

P
a2A; �.a/Db �.a/ for each b 2 B. By

induction on jwj, we easily get that �0.w/ D
P

u2A�; �.u/Dw �.u/ for all w 2 B�.
Therefore, .�; �0; �/ is a linear representation of T: for all w 2 B�,

��0.w/� D
X

u2A�

�.u/Dw

��.u/� D
X

u2A�

�.u/Dw

.S; u/ D .T;w/:

ut

By an abuse of notation, we sometimes write
P

n2Nd x.n/ repb.n/ instead
of
P

w2repb.Nd/ x.valb.w//w. Similarly,
P

n1;:::;nd2N
x.n1; : : : ; nd/ .repb.n1/; : : : ; repb

.nd//
# is the series SW ..Ab [ f#g/ d/� ! K defined by .S;w/ D x.n1; : : : ; nd/ if

w D .repb.n1/; : : : ; repb.nd//
# for some n1; : : : ; nd 2 N and .S;w/ D 0 otherwise.

Proposition 3.4.6. Let # be a symbol not belonging to Ab. For any sequence
xWNd ! K, the following assertions are equivalent.

1.
P

w2.A d
b /

� x.valb.w//w is K-recognizable.
2.
P

n2Nd x.n/ repb.n/ is K-recognizable.
3. There exists a K-recognizable series SW .A d

b /
� ! K such that, for all n 2 Nd,

.S; repb.n// D x.n/.
4. There exists a K-recognizable series TW ..Ab [ f#g/d/� ! K such that, for all

n1; : : : ; nd 2 N, .T; .repb.n1/; : : : ; repb.nd//
#/ D x.n1; : : : ; nd/.

5.
P

n1;:::;nd2N
x.n1; : : : ; nd/ .repb.n1/; : : : ; repb.nd//

# is K-recognizable.

Proof. 1 H) 2: We have

G0 WD
X

n2Nd

x.n/ repb.n/ D
X

w2.A d
b /

�

x.valb.w//w ˇ �repb.Nd/:

As Nd is b-recognizable, we obtain 1 H) 2 from Proposition 3.4.3.
The implication 2 H) 3 is clear.
3 H) 1 ^ 4: Assume that 3 holds and let SW .A d

b /
� ! K be a K-recognizable

series such that, for all n 2 Nd, .S; repb.n// D x.n/. Let .�; �; �/ be a linear
representation of S, say of size m.
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First, let �0 D Œ1 0 � � � 0� 2 N1�.mC1/, �0W .A d
b /
� ! N.mC1/�.mC1/ be the

morphism defined by

�0.0/ D

2

6664

1 0 � � � 0

0
:::

0

2

4�.0/

3

5

3

7775 ; �0.a/ D

2

6664

0 Œ��.a/�
0
:::

0

2

4�.a/

3

5

3

7775 ; for a ¤ 0;

and � 0 D Œ�� ��T 2 N.mC1/�1. Then, for all w 2 .A d
b /
�, �0�0.w/� 0 D x.valb.w//;

hence,
P

w2.A d
b /

� x.valb.w//w is K-recognizable, which is 1.

Second, we define a morphism �00W ..Ab[f#g/d/� ! Km�m by �00.a/ D �.�.a//
for all a 2 .Ab [ f#g/d, where � W .Ab [ f#g/d ! A d

b is the letter-to-letter morphism
defined by

.�.a1; : : : ; ad//i D

(
ai; if ai ¤ #;

0; if ai D #:

Then, for all w 2 ..Ab [ f#g/d/�, we have ��00.w/� D ��.�.w//� D .S; �.w//.
Thus 4 holds, as the formal series

T D
X

w2..Ab[f#g/d/�

.S; �.w//w

is K-recognizable and such that, for all n D .n1; : : : ; nd/ 2 Nd,

.T; .repb.n1/; : : : ; repb.nd//
#/ D .S; repb.n// D x.n/:

4 H) 5: Let TW ..Ab[f#g/d/� ! K be such that, for all n D .n1; : : : ; nd/ 2 Nd,
.T; .repb.n1/; : : : ; repb.nd//

#/ D x.n/. Since Nd is b-recognizable, the language

L# WD f.repb.n1/; : : : ; repb.nd//
# j n1; : : : ; nd 2 Ng

is regular by Proposition 3.2.2. As the formal series

G# WD
X

n1;:::;nd2N

x.n1; : : : ; nd/ .repb.n1/; : : : ; repb.nd//
#

satisfies G# D T ˇ �L# , it is K-recognizable if T is as well by Proposition 3.4.3.
5 H) 2: Suppose that G# is K-recognizable. By Lemma 3.4.5, the series

R D
X

u2..Ab[f#g/d/�

.G#; u/ �.u/ D
X

w2.A d
b /

�

� X

u2..Ab[f#g/d/�

�.u/Dw

.G#; u//
�

w
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is K-recognizable. As, for all n D .n1; : : : ; nd/ 2 Nd,

.R; repb.n// D
X

u2..Ab[f#g/d/�

�.u/Drepb.n/

.G#; u/ D
X

u2L#
�.u/Drepb.n/

.G#; u/

D .G#; .repb.n1/; : : : ; repb.nd//
#/ D x.n/;

we obtain G0 D Rˇ�repb.Nd/; hence, G0 is K-recognizable by Proposition 3.4.3. ut

Definition 3.4.7. A sequence xWNd ! K is .K; b/-regular if any of the assertions
of Proposition 3.4.6 is satisfied.

Thanks to the following elementary lemma, we can equivalently consider rever-
sals of representations, i.e., starting with the least significant digit. Here ę denotes
the transpose of the matrix ˛, and e� is the morphism defined by e�.a/ D e�.a/ for
each letter a.

Lemma 3.4.8. If a formal series SWA� ! K admits the linear representation
.�; �; �/, then the reversal series eS WD

P
w2A�.S;ew/w admits the linear repre-

sentation .e�;e�;e�/.

Proof. For all w D a1 � � � ajwj 2 A�b , A�.ew/ D .�.ajwj � � � a1//	 D

.�.ajwj/ � � ��.a1//	 D A�.a1/ � � �B�.ajwj/ D e�.a1/ � � �e�.ajwj/ D e�.a1 � � � ajwj/ D
e�.w/, hence .eS;w/ D .S;ew/ D ��.ew/� D .��.ew/�/	 De�A�.ew/e� De� e�.w/e�.

ut

In what follows, the semiring K will be either N or N1 D N[f1g with 0 �1 D
0. Let us mention the following result, a proof of which can be found in Chapter 2.

Proposition 3.4.9 ([17]). If xWN ! N is an .N; b/-regular sequence, then there
exists some c 2 N such that x.n/ 2 O.nc/.

3.4.2 N-Recognizable and N1-Recognizable Formal Series

We have the following useful characterizations of N-recognizable and N1-recogni-
zable formal series. Here �i denotes the projection onto the ith component.

Theorem 3.4.10. Let SWA� ! N. The following assertions are equivalent.

1. S is N-recognizable.
2. There exists a regular language L 
 .A		/� (where	 is a finite alphabet) such

that, for all w 2 AC, .S;w/ equals the number of z 2 L with �1.z/ D w.

Proof. 1 H) 2. Suppose that S is N-recognizable. We consider

S0WA� ! N; w 7!

(
.S;w/; if w ¤ ";

0; if w D ":
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Then S0 is N-recognizable as it is a finite modification of S. Let .�; �; �/ be a
linear representation of S0 of size n. We may suppose, without loss of generality,
that � D Œ1 0 � � � 0� and � D Œ0 � � � 0 1�T . Indeed, let �0 D Œ1 0 � � � 0� 2 N1�.nC2/,
� 0 D Œ0 � � � 0 1�T 2 N.nC2/�1, and �0WA� ! N.nC2/�.nC2/ be the morphism defined
by

�0.a/ D

2

666664

0 Œ��.a/� Œ��.a/��
0
:::

0

2

4�.a/

3

5

2

4�.a/�

3

5

0 Œ0 � � � 0� 0

3

777775
; for a 2 A:

Then .�0; �0; � 0/ is a linear representation of S0 of size nC 2.
Let M D .Q; q0;F;A 	 Q; ı/ be the DFA defined as follows. Let

m D max
a2A

1�i;j�n

�.a/ij

and

Q D f.i; r/ j 1 � i � n; 1 � r � mg

q0 D .1; 1/

F D f.n; r/ j 1 � r � mg

ı..i; r/; .a; .j; s/// D .j; s/ if 1 � s � �.a/ij:

So ı..i; r/; .a; .j; s/// is not defined if s > �.a/ij, and not every state in Q is
necessarily accessible. We show by induction on jwj that �.w/ij equals the number
of paths of label z with �1.z/ D w from .i; r/ to f.j; s/ j 1 � s � mg (for any
1 � r � m). Let Pi;j.w/ denote the number of such paths. The base case w D " is
clear as �."/ is the identity matrix of size n, and Pi;j."/ is equal to 1 if i D j and to
0 else. For a 2 A and x 2 A�,

Pi;k.a/ D Cardfs j ı..i; r/; .a; .k; s/// D .k; s/g D �.a/ik:

and

�.ax/ij D
nX

kD1

�.a/ik�.x/kj D

nX

kD1

Pi;k.a/Pk;j.x/ D Pi;j.ax/;

where we have applied the induction hypothesis to x. Now if L is the language
accepted by M , then, for all w 2 AC, .S;w/ D .S0;w/ D ��.w/� D �.w/1n D

P1;n.w/ D Cardfz 2 L j �1.z/ D wg.
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2 H) 1. Suppose that M D .Q; q1;F;A	Q; ı/ is a DFA accepting a language
L 
 .A 	 	/� such that, for all w 2 AC, .S;w/ equals the number of z 2 L with
�1.z/ D w. Let Q D fq1; : : : ; qng. Define � D Œ1 0 � � � 0� 2 N1�n, � 2 Nn�1 be
such that �i1 D 1 if qi 2 F and �i1 D 0 if qi … F. Let �.a/ij be the number of
paths of label z with �1.z/ D a from qi to qj, and let �WA� ! Nn�n be the induced
morphism. It is easy to see that, for all w 2 A�, �.w/ij is the number of paths of
label z with �1.z/ D w from qi to qj. Then, for all w 2 AC,

��.w/� D
X

1�j�n
qj2F

�.w/1j D Cardfz 2 L j �1.z/ D wg D .S;w/:

This proves that S is N-recognizable (whatever the value .S; "/ is). ut

We sometimes want to count quantities that might be unbounded in certain
entries, as, for example, the length of the longest square (or k-power, overlap,
palindrome, unbordered factor, etc.) beginning at position i.

Proposition 3.4.11. If SWA� ! N is N1-recognizable, then it is N-recognizable.

Proof. Let n � 1, � 2 N1�n
1 , � 2 Nn�1

1 , and a morphism of monoids �WA� ! Nn�n
1

such that, for all w 2 A�, .S;w/ D ��.w/� . As, for all w 2 A�, .S;w/ 2 N, any
occurrence of 1 in the computation of ��.w/� must belong to a multiplication
with 0. Hence we can modify �; �; � to �0; � 0; �0 by replacing any occurrence of
1 by 0. In this way, �0 2 N1�n, � 0 2 Nn�1, �0WA� ! Nn�n, and, for all w 2 A�,
.S;w/ D �0�0.w/� 0. This shows that S is N-recognizable. ut

Lemma 3.4.12. If SWA� ! N1 is N1-recognizable, then the language fw 2 A� j
.S;w/ D1g is regular.

Proof. Let .�; �; �/ be a linear representation of S. Consider the set f0; p;1g
(where p is any symbol, intended to represent positive integers). We endow this set
with a structure of commutative semiring as follows: 0C0 D 1, pC0 D pCp D p,
p C 1 D 1 C 1 D 1, 0 � 0 D p � 0 D 1 � 0 D 0, p � p D p, and
p � 1 D 1 � 1 D 1. Define a morphism of semirings � WN1 ! f0; p;1g
by �.0/ D 0, �.n/ D p for n 2 N n f0g, and �.1/ D 1. Now we define a
DFA M D .Q; q0;F;A; ı/ as follows: Q D f0; p;1g1�n, q0 D Œ�.�11/ � � � �.�1n/�,
F D fq 2 Q j q Œ�.�11/ � � � �.�n1/�

Tg D 1g, and ı.q; a/ D q .�.�.a/ij//1�i;j�n. We
have ı.q0;w/ 2 F ” �.��.w/�/ D 1 ” .S;w/ D ��.w/� D 1. This
proves that M accepts fw 2 A� j .S;w/ D1g. ut

Theorem 3.4.13. Let SWA� ! N1. The following assertions are equivalent.

1. S is N1-recognizable.
2. There exists a regular language L 
 ..A [ f#g/ 		/� (where # … A and 	 is a

finite alphabet) such that, for all w 2 AC, .S;w/ equals the number of z 2 L with
�#.�1.z// D w, where �# is the morphism defined by a 7! a for a 2 A and # 7! ".
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Proof. 1 H) 2. Suppose that S is N1-recognizable. By Lemma 3.4.12, the
language L1 D fw 2 A� j .S;w/ D1g is regular. Now, the series S0 D S ˇ
�fw2A�j.S;w/¤1g is N-recognizable by Propositions 3.4.3 and 3.4.11. From Theo-
rem 3.4.10, we get a regular language L2 
 .A 	 	/� (for some alphabet 	) such
that, for all w 2 AC, .S0;w/ D Cardfz 2 L2 j �1.z/ D wg. Let a 2 	 and let # … A.
Then define L3 D fz 2 .A [ f#g/ 		/� j �1.z/ 2 L1#�; �2.z/ 2 a�g. Clearly L3 is
regular, and, for all w 2 AC, .S;w/ D Cardfz 2 L2 [ L3 j �#.�1.z// D wg.
2 H) 1. Suppose that L 
 ..A [ f#g/ 	 	/� is such that, for all w 2 AC,

.S;w/ D Cardfz 2 L j �#.�1.z// D wg and that M D .Q; q1;F;A; ı/ is a DFA
accepting L. Let Q D fq1; : : : ; qn/. For each a 2 A [ f#g, we define a matrix Da 2

Nn�n as follows: .Da/ij equals the number of letters b 2 	 such that ı.qi; .
a
b // D qj.

Then any finite path in M labeled z with �#.�1.z// D a1 � � � a`, with the ai’s in A, is
of the form

�
#
?

�
; : : : ;

�
#
�

�
; . a1
� / ;

�
#
�

�
; : : : ;

�
#
�

�
; . a2
� / ; : : : ;

�
#
�

�
; : : : ;

�
#
�

�
; . a`
� / ;

�
#
�

�
; : : : ;

�
#
�

�
;

where � could be anything. Now, let D D
P

i�0 Di
# 2 Nn�n

1 . Then the computation
.DDa1DDa2 � � �DDa`D/ij returns the number of such paths from qi to qj. Let � D
Œ1 0 � � � 0� 2 N1�n and � 2 Nn�1 be defined by �i1 D 1 if qi 2 F and �i1 D 0 if
qi … F. Let �WA� ! Nn�n

1 be the morphism defined by �.a/ D DDa for a 2 A, and
let � 0 D D� . Then, for all w D a1 � � � a` 2 AC,

.S;w/ D Cardfz 2 L j �#.�1.z// D wg

D
X

1�j�n; qj2F

.DDa1DDa2 � � �DDa`D/1j

D ��.a1 � � � a`/D�

D ��.w/� 0:

This shows that S is N1-recognizable (whatever the value .S; "/ is). ut

3.4.3 Counting b-Definable Properties of b-Automatic
Sequences Is b-Regular

We are now able to prove the main result of this section, namely, Theorem 3.4.15.

Proposition 3.4.14. If xWNd ! N is .N1; b/-regular, then it is .N; b/-regular.

Proof. Suppose that xWNd ! N is .N1; b/-regular. Then
P

w2.A d
b /

� x.valb.w//w
is N1-recognizable. By Proposition 3.4.11, the latter formal series is indeed N-
recognizable since .S;w/ D x.valb.w// 2 N for all w 2 .A d

b /
�. Hence x is .N; b/-

regular. ut
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Theorem 3.4.15. If X is a b-definable subset of NdC1, then the sequence aWNd !

N1 defined by

8.n1; : : : ; nd/ 2 Nd; a.n1; : : : ; nd/ D Cardfm 2 N j .n1; : : : ; nd;m/ 2 Xg; (3.4)

is .N1; b/-regular. If moreover a.Nd/ 
 N, then a is .N; b/-regular.

Proof. By Theorem 3.3.4, X is b-recognizable. So, the language

L D f.repb.n1/; : : : ; repb.ndC1//
# j .n1; : : : ; ndC1/ 2 Xg

is regular by Proposition 3.2.2. Then, for all n1; : : : ; nd 2 N,

a.n1; : : : ; nd/ D Cardfz 2 L j �1;:::;d.z/ 2 #
�.repb.n1/; : : : ; repb.nd//

#g

where �1;:::;d denotes the projection onto the first d components. Let A D .Ab [

f#g/d n f#g and

SWA� ! N1; w 7! Cardfz 2 L j �1;:::;d.z/ 2 #
�wg:

Observe that, for all w 2 A� and z 2 L, we have �1;:::;d.z/ 2 #�w ”

�#.�1;:::;d.z// D w since w does not contain the letter #. Here �# is the morphism
defined by a 7! a for a 2 A and # 7! ". Then S is N1-recognizable by Theo-
rem 3.4.13. As .S; .repb.n1/; : : : ; repb.nd//

#/ D a.n1; : : : ; nd/ for all n1; : : : ; nd 2 N,
we obtain that a is .N1; b/-regular by Proposition 3.4.6.

The fact that a is .N; b/-regular if a.N/ 
 N follows from Proposition 3.4.14. ut

As an application, the factor complexity of a b-automatic sequence is .N; b/-
regular.

Proposition 3.4.16. The factor complexity n 7! Card.Ln.x// of a b-automatic
sequence xWN! N is .N; b/-regular.

Proof. Let xWN ! N be a b-automatic sequence. For all n 2 N, Card.Ln.x// D
Cardfi 2 N j 8j < i; x.j/ � � � x.j C n � 1/ ¤ x.i/ � � � x.i C n � 1/g. Now let X D
f.i; n/ j 8j < i; 9t < n; x.j C t/ ¤ x.i C t/g. Then X 
 N2 is b-definable by
Theorem 3.3.4, and, for all n 2 N, we have Card.Ln.x// D Cardfi 2 N j .i; n/ 2 Xg;
hence, the factor complexity of x is .N; b/-regular by Theorem 3.4.15. ut

In a similar manner, we can show the following. In order not to overburden the
text, we do not define these counting functions here and refer the interested reader
to [148].

Proposition 3.4.17. Let xWN! N be a b-automatic sequence.

• The function that maps n to the number of squares (or palindromes, unbordered
factors, k-powers) of x beginning at position n is .N1; b/-regular.
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• The recurrence function of x is .N1; b/-regular.
• The appearance function of x is .N; b/-regular.
• The separator length function of x is .N; b/-regular.
• The permutation complexity of x is .N; b/-regular.
• The periodicity function of x is .N1; b/-regular.
• The function that maps n to the number of unbordered factors of length n of x is
.N; b/-regular.

Using the same technique, it can be shown that all these quantities are either O.n/
or infinite for at least one n.

Proposition 3.4.18. Let X be a b-definable subset of N2, and let aWN! N1 be the
sequence defined by a.n/ D Cardfm 2 N j .n;m/ 2 Xg for all n 2 N. Then either
a.n/ D1 for some n 2 N or a.n/ D O.n/.

Proof. If L 2 N is such that for all .m; n/ 2 X, jrepb.m/j � jrepb.n/j C L, then for
all n 2 N, a.n/ � bLn. If a is not O.n/, then for all L 2 N, there exists .m; n/ 2 X
such that jrepb.m/j > jrepb.n/j C L. Therefore .repb.m/; #

Krepb.n// 2 repb.X/
# for

some K > L. As X is b-definable, there is a DFA accepting repb.X/
#. By choosing

L equal to the number of states of this DFA and applying the pumping lemma, we
obtain infinitely many elements .m0; n/ in X. This means that a.n/ D1. ut

It seems more difficult to obtain similar enumeration results in the multidimen-
sional setting. For example, what about the following question?

Problem 3.4.19. Must the function f WN2 ! N that counts the number of rectangu-
lar factors of size m	 n in a bidimensional b-automatic sequence be .N; b/-regular?

3.4.4 b-Synchronized Sequences

The family of b-synchronized sequences lies in between the families of b-automatic
sequences and b-regular sequences; see Proposition 3.4.21 and Theorem 3.4.23
below. Therefore, a natural question in the context developed in the present chapter
is whether (various) enumeration problems about b-automatic sequences can or
cannot be described by b-synchronized sequences.

Definition 3.4.20. A sequence xWNd ! N is b-synchronized if its graph, i.e., the
subset

Gx WD f.n1; : : : ; nd; x.n1; : : : ; nd// j n1; : : : ; nd 2 Ng

of NdC1, is b-recognizable.

Proposition 3.4.21. Let A be a finite subset of N and let xWNd ! A. Then x is
b-synchronized if and only if it is b-automatic.
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Proof. For each a 2 A, x�1.a/ D f.n1; : : : ; nd/ 2 Nd j .n1; : : : ; nd; a/ 2 Gxg and
Gx D

S
a2A .x

�1.a/	fag/. Therefore, the result follows from Proposition 3.2.8 and
Theorem 3.3.4. ut

Note that the use of Theorem 3.3.4 in the previous proof is somewhat superfluous
since we could easily build finite automata recognizing the fibers x�1.a/ and the
graph Gx.

We have the following useful lemma.

Lemma 3.4.22. If xWNd ! N is a b-synchronized sequence, then there is a b-
definable subset X of NdC1 such that, for all n1; : : : ; nd 2 N, x.n1; : : : ; nd/ D

Cardfm 2 N j .n1; : : : ; nd;m/ 2 Xg.

Proof. Let x be a b-synchronized sequence. Then Gx is b-definable by The-
orem 3.3.4. Therefore, the subset X D f.n1; : : : ; nd;m/ 2 NdC1 j m <

x.n1; : : : ; nd/g D f.n1; : : : ; nd;m/ 2 NdC1 j 9` .n1; : : : ; nd; `/ 2 Gx and m < `g is
b-definable as well, and of course x.n1; : : : ; nd/ D Cardfm 2 N j .n1; : : : ; nd;m/ 2
Xg for all n1; : : : ; nd 2 N. ut

Theorem 3.4.23. Any b-synchronized sequence is .N; b/-regular.

Proof. This is a consequence of Lemma 3.4.22 and Theorem 3.4.15. ut

Proposition 3.4.24. If xWN! N is b-synchronized, then x.n/ is O.n/.

Proof. The result is a consequence of Lemma 3.4.22 and Proposition 3.4.18. ut

We saw in Proposition 3.4.16 that the factor complexity of a b-automatic
sequence is .N; b/-regular. In fact, we have the more precise following result, which
we give without proof.

Proposition 3.4.25 ([522]). Let xWN ! N be a b-automatic sequence. Then the
factor complexity of x is b-synchronized.

In view of Propositions 3.4.18 and 3.4.24, one might think that all the quantities
of Proposition 3.4.17 are in fact b-synchronized. However, it is not the case.

Proposition 3.4.26. Let X D f2i j i 2 Ng. Then �X is 2-automatic, but the function
that counts the number of unbordered factors of length n of �X is not 2-synchronized.

Proof. As repb.X/ D 10�, we get that �X is 2-automatic. Let yWN ! N be
the function that maps n to the number of unbordered factors of length n of �X .
Suppose that y is 2-synchronized, i.e., that its graph Gy D f.n; y.n// j n 2 Ng is
2-recognizable. Then rep2.G/ is accepted by some DFA M . For all integers n � 2,
we have y.2n C 1/ D nC 2; hence, .10n�11; 0n�blog2.nC2/crep2.nC 2// is accepted
by M . By choosing n � blog2.n C 2/c to be larger than the size of M , the result
follows from an application of the pumping lemma. ut
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3.5 First-Order Logic and U-Automatic Sequences

In order to be able to provide a logical framework for positional numeration systems,
we encounter two major problems:

• In general, N is not U-recognizable.
• In general, the addition is not recognized by finite automaton.

Theorem 3.5.3 below shows that a nice setting is given by the so-called Pisot
numeration systems.

Definition 3.5.1. A Pisot number is an algebraic integer greater than 1 such that all
of its Galois conjugates have moduli less than 1.

Definition 3.5.2. A positional numeration system repU is Pisot if the base sequence
U satisfies a linear recurrence whose characteristic polynomial is the minimal
polynomial of a Pisot number.

Theorem 3.5.3 ([113, 232]). If repU is a Pisot numeration system, then the sets N
and f.x; y; z/ 2 N3 j xC y D zg are U-recognizable.

Definition 3.5.4. A subset of Nd is U-definable if it is definable in the logical
structure hN;C;VUi, where VU.0/ D 1, and for x a positive integer, VU.x/ denotes
the smallest Ui occurring in the greedy U-representation of x with a nonzero
coefficient.

Example 3.5.5. We have VF.11/ D 3 and VF.26/ D 5.

Theorem 3.5.6 ([113]). If repU is a Pisot numeration system, then a subset of Nd is
U-recognizable if and only if it is U-definable. Consequently, the first-order theory
of hN;C;VUi is decidable.

As an application, one can prove (and reprove, or verify) many results about the
Fibonacci word

f D 01001010010010100101001001010010 � � �

(which is the fixed point of 0 7! 01; 1 7! 0). Indeed, the Fibonacci word f is an
F-automatic sequence as it is generated by the DFAO of Figure 3.4 whenever the
inputs are the Zeckendorf representations of nonnegative integers.

0 1

0
1

0

Fig. 3.4 A DFAO generating the Fibonacci word
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Here are some concrete applications (among many others), all of which have
been shown in a purely mechanical way [427]. Again, in order not to overburden
the text, we give no definition but one. An infinite word is linearly recurrent if there
exists a constant C such that the distance between any two occurrences of any factor
x is at most Cjxj. For the missing definitions (neither included here nor in Chapter 1),
we refer the interested reader to [427].

• f is not ultimately periodic.
• f contains no fourth powers.
• f is reversal invariant.
• f is linearly recurrent.
• Characterizations of the squares (or cubes, antisquares, palindromes, antipalin-

dromes) occurring in f .
• Characterizations of the least periods of factors (or unbordered factors, Lyndon

factors, special factors) of f .
• Computation of the critical exponent and initial critical exponent of f .
• The lexicographically least element in the shift orbit closure S .f / is 0f .

In a similar fashion, one can also obtain results concerning the Tribonacci word

t D 01020100102001020100101020100102010102 � � �

(which is the fixed point of 0 7! 01; 1 7! 02; 2 7! 0) [428]. In this case, we work
within the positional numeration system based on the sequence UWN ! N defined
by U.0/ D 1; U.1/ D 2; U.2/ D 3 and U.nC 3/ D U.nC 2/CU.nC 1/CU.n/
for n 2 N.

We end this section by a problem.

Problem 3.5.7. Do the results on enumeration of b-automatic sequences described
in this section extend to Pisot numeration systems?

3.6 First-Order Logic and Real Numbers

In general real numbers are represented by infinite words. In this context, we
consider Büchi automata, which allows us to define a notion of (base-related)
recognizability of multidimensional sets of reals. In the continuity of the ideas
developed so far, we will show that the so-called ˇ-recognizable sets can again
be characterized in terms of first-order logic, which will provide us with decision
procedures for various problems concerning those sets.
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3.6.1 Büchi Automata

Büchi automata are defined as NFAs, but the acceptance criterion has to be adapted:
an infinite word is accepted if it labels a path going infinitely many times through
an accepting state. In the present chapter, we always assume that a Büchi automaton
is finite. Without loss of generality, we also always assume that there is only one
initial state.

Example 3.6.1. The Büchi automaton of Figure 3.5 accepts the infinite words over
fa; bg containing finitely many a’s.

Subsets of AN are called !-languages, and !-regular languages are defined
as !-languages which are accepted by (finite) Büchi automata. Regular languages
and !-regular languages share some important properties: their families are closed
under Boolean operations, morphic image and inverse image under a morphism.
Nevertheless, they differ in some other aspects. One of them is determinism. As
with DFAs, we can define deterministic Büchi automata. But one has to be careful
as the family of !-languages that are accepted by deterministic Büchi automata is
strictly included in that of !-regular languages.

Example 3.6.2. No deterministic Büchi automaton accepts the !-language
accepted by the Büchi automaton of Figure 3.5.

For more on automata reading infinite words, see [476]. Let us stress that,
contrary to the present chapter, Büchi automata are not considered finite by default
in [476].

3.6.2 Real Bases ˇ

Throughout the text, ˇ designates a real number greater than 1. For a real number x,
any infinite word u D u` � � � u1u0 ?u�1u�2 � � � with ` � 0, ui 2 C for all i � ` where
C is a finite subset of Z and such that

valˇ.u/ WD
X

�1<i�`

ui ˇ
i D x

is a ˇ-representation of x. In general, this is not unique.
Note that ˇ-numeration systems are also presented in Chapter 8.1.

a,b

b

b

Fig. 3.5 A (nondeterministic) Büchi automaton
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Example 3.6.3. Consider x D ��1, where � is the Golden Ratio. The words u D
0 ? 001111 � � � ; v D 0 ? 0101010 � � � , and w D 0 ? 10! are all ˇ-representations
of x.

For x � 0, among all ˇ-representations of x, we distinguish the ˇ-expansion

dˇ.x/ D x` � � � x1x0 ? x�1x�2 � � �

which is obtained by the greedy algorithm: we fix the minimal ` 2 N such that

x D
X

�1<i�`

xi ˇ
i and, for all i � `; xi � 0;

and, for all k � `,

X

�1<i�k

xi ˇ
i < ˇkC1:

The digits xi then belong to the alphabet Aˇ D f0; : : : ; dˇe � 1g. One has x` ¤ 0 if
and only if x � 1 and real numbers in Œ0; 1/ have a ˇ-expansion of the form 0 ? u
with u 2 AN

ˇ . In particular, dˇ.0/ D 0 ? 0! .
In order to deal with negative numbers, a denotes the integer �a for all a 2 Z.

Moreover we write u v D u v, u ? v D u?v, and u D u. For x < 0, the ˇ-expansion
of x is defined as

dˇ.x/ D dˇ.�x/:

We let NAˇ D fN0; N1; : : : ; dˇe � 1g and QAˇ D Aˇ [ NAˇ (with N0 D 0).
Now let us define the ˇ-expansion of a vector x of Rd.

Definition 3.6.4. Let x D .x1; : : : ; xd/ be a vector in Rd. We define the ˇ-expansion
of x as being the word dˇ.x/ over the alphabet QA d

ˇ [ fFg that belongs to 0�dˇ.x1/	
0�dˇ.x2/ 	 � � � 	 0�dˇ.xd/ and that does not start with 0 except if jxij < 1 for all i,
in which case we consider the word starting with 0F.

Otherwise stated, the ˇ-expansions of each component are synchronized by
possibly using some leading zeros in such a way that all the ? symbols occur at
the same position in every ˇ-expansion.

Example 3.6.5. Consider x D .x1; x2/ D . 1C
p
5

4
; 2C

p
5/. We have

d�.x/ D
0 0 0 0 ? 1 0 0 1 0 0 � � �

1 0 0 0 ? 0 0 0 0 0 0 � � �

where the first �-expansion is padded with some leading zeros. Now we consider an
example where all the components have moduli less than one. With y D .x1; x2/ D
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. 1C
p
5

4
;� 1

2
/, we get

d�.y/ D
0 ? 1 0 0 1 0 0 � � �

0 ? 0 1 0 0 1 0 � � �

where the two �-expansions start with one symbol 0 followed by ?.

We let Sˇ.Rd/ be the topological closure of 0�dˇ.Rd/. For uFv 2 .Zd/CF.Zd/N

with finitely many possible digits, we define valˇ.uFv/ to be the vector in Rd

obtained by evaluating each component of uFv.

Definition 3.6.6. For X 
 Rd, we define Sˇ.X/ as Sˇ.X/ D Sˇ.Rd/\ val�1ˇ .X/. For
x 2 Rd, the elements in Sˇ.x/ are called the quasi-greedy ˇ-representations of x.

Here and throughout the text, we write Sˇ.x/ instead of Sˇ.fxg/. Note that ˇ-
expansions are particular quasi-greedy ˇ-representations.

Remark 3.6.7. If ˇ is an integer, then Sˇ.X/ is the set of all ˇ-representations of
elements in X. Otherwise stated, when ˇ is an integer, any ˇ-representation is a
quasi-greedy ˇ-representation.

Proposition 3.6.8. Let X 
 Rd. Then X is closed if and only if Sˇ.X/ is closed.

Proof. Suppose first that X is closed. Then val�1ˇ .X/ is closed since the function

valˇW . QA d
ˇ /
CF. QA d

ˇ /
! ! Rd is continuous. As Sˇ.Rd/ is closed by definition, we

obtain that Sˇ.X/ D Sˇ.Rd/ \ val�1ˇ .X/ is closed as well.

Conversely, suppose that Sˇ.X/ is closed, and let x.n/ be a sequence of X
converging to some x. By the pigeonhole principle, there exists a subsequence x.k.n//

of x.n/ such that, for all n, x.k.n// � x has a constant sign (potentially 0) on each
component. Then the sequence dˇ.x.k.n/// converges to some uFv 2 Sˇ.X/. The
function valˇ being continuous, we have valˇ.uFv/ D x, and hence x 2 X. This
proves that X is closed. ut

As usual, we let d �ˇ .1/ denote the lexicographically greatest w 2 NN not ending
in 0! and such that valˇ.0 ? w/ D 1. The infinite word d �ˇ .1/ has the property
of being the supremum of all its shifted sequences; see, for instance, [386]. For all
bases ˇ > 1, one has dˇ.1/ D 1?0! , whereas the definition of d�ˇ.1/ indeed depends
on ˇ. The following theorem is known as Parry’s theorem or Parry’s criterion. A
proof of this result can be found in [386].

Theorem 3.6.9 (Parry [469]). Let u D u` � � � u1u0 ? u�1u�2 � � � with ` � 0 and
ui 2 N for all i � `. Then

u 2 0�dˇ.R
�0/ ” 8k � `; ukuk�1 � � � < d �ˇ .1/; and

u 2 Sˇ.R
�0/ ” 8k � `; ukuk�1 � � � � d �ˇ .1/:
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Example 3.6.10. We continue Example 3.6.3. We have d�� .1/ D .10/! . Thanks to
Parry’s theorem, the �-expansions of real numbers in Œ0; 1/ are of the form 0 ? u,
where u 2 f0; 1gN does not contain 11 as a factor and does not end in .10/! . So the
�-expansion of x is w, but both v and w belong to Sˇ.x/.

The following proposition characterizes which real numbers admit quasi-greedy
ˇ-representations other than those of the form 0`dˇ.x/: they are exactly the real
numbers in the set f x

ˇi j x 2 Zˇ; i 2 Ng, where Zˇ is the set of the so-called ˇ-
integers. The notion of ˇ-integers will be central in Section 3.6.5 and thus deserves
a proper definition.

Definition 3.6.11. A real number x is a ˇ-integer if dˇ.x/ is of the kind u? 0! . The
set of ˇ-integers is denoted by Zˇ .

Proposition 3.6.12. Let x 2 Œ0; 1/. If dˇ.x/ D 0 ? x1 � � � xk0
! with k � 1 and

xk ¤ 0, then Sˇ.x/ D 0�fdˇ.x/; 0 ? x1 � � � xk�1.xk � 1/d�ˇ.1/g, and Sˇ.x/ D 0�dˇ.x/
otherwise.

Proof. Let u ? v 2 Sˇ.x/. As x 2 Œ0; 1/, we have u 2 0C. If v does not end
in d�ˇ.1/, then u ? v 2 0�dˇ.x/ by Theorem 3.6.9. Suppose now that v ends in
d�ˇ.1/ D d1d2 � � � . Let m � 0 be minimal such that v D v1 : : : vmd�ˇ.1/. Then m � 1
and vm < d1. We claim that dˇ.x/ D 0 ? v1 � � � vm�1.vm C 1/0

! . By minimality of
m, for all 1 � j � m, we have

vj : : : vmd�ˇ.1/ < d�ˇ.1/ � d1 � � � dm�jC1d
�
ˇ.1/;

hence vj : : : vm < d1 � � � dm�jC1. If vj : : : vm�1 < d1 � � � dm�j, then vj : : : vm�1.vm C

1/0! < d�ˇ.1/. If vj : : : vm�1 D d1 � � � dm�j, then vm < dm�jC1 and vj : : : vm�1.vm C

1/0! � d1 � � � dm�jC10
! < d�ˇ.1/. As valˇ.0?v1 � � � vm�1.vmC1/0

!/ D x, we obtain
the claim by Theorem 3.6.9.

Now we suppose that dˇ.x/ D 0 ? x1 � � � xk0
! with k � 1 and xk ¤ 0

(in particular, x > 0). From the previous paragraph, we obtain that Sˇ.x/ 

0�fdˇ.x/; 0?x1 � � � xk�1.xk�1/d�ˇ.1/g. The other inclusion holds by Theorem 3.6.9.

If dˇ.x/ D 0 ? 0! , then x D 0 and Sˇ.0/ D 0C ? 0! . Finally we suppose that
dˇ.x/ does not end in 0! . From the first paragraph, we obtain that if u ? v 2 Sˇ.x/,
then u 2 0C and v does not end in d�ˇ.1/. This proves Sˇ.x/ D 0�dˇ.x/. ut

Corollary 3.6.13. Let x 2 R�0 and let d�ˇ.1/ D d1d2 � � � .

• If dˇ.x/ D x` � � � x0 ? x�1 � � � x�k0
! 2 A Cˇ ? A !

ˇ with x�k ¤ 0, then

Sˇ.x/ D 0
�fdˇ.x/; x` � � � x0 ? x�1 � � � x�kC1.x�k � 1/d1d2 � � � g

• If dˇ.x/ D x` � � � xk0
k ? 0! 2 A Cˇ ? A !

ˇ with xk ¤ 0, then

Sˇ.x/ D 0
�fdˇ.x/; x` � � � xkC1.xk � 1/d1 � � � dk ? dkC1dkC2 � � � g:
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• Sˇ.x/ D 0�dˇ.x/ in all other cases.

Moreover, we have Sˇ.�x/ D Sˇ.x/.

3.6.3 ˇ-Recognizable Sets of Real Numbers

Definition 3.6.14. A subset X of Rd is ˇ-recognizable if Sˇ.X/ is !-regular.

The following result shows that leading zeros do not affect the ˇ-recognizability
of a subset. We omit the proof as it is similar to that of Proposition 3.2.2.

Proposition 3.6.15. Let X 
 Rd. The following are equivalent:

• X is ˇ-recognizable.
• Sˇ.X/ \

�
. QA d
ˇ n f0g/. QA

d
ˇ /
�F. QA d

ˇ /
! [ 0F. QA d

ˇ /
!
�

is !-regular.

• There exists an !-regular language L 
 . QA d
ˇ /
CF. QA d

ˇ /
! such that 0�.0�/�1L D

Sˇ.X/.

We also have the following nice criterion.

Proposition 3.6.16. Two ˇ-recognizable subsets of Rd coincide if and only if they
have the same ultimately periodic quasi-greedy ˇ-representations.

Proof. The result follows from the well-known fact that two !-regular languages
are equal if and only if they have the same ultimately periodic elements [476]. ut

In the case of closed subsets of Rd, we can require additional conditions on the
Büchi automata recognizing them.

Proposition 3.6.17. A ˇ-recognizable subset X of Rd is closed if and only if Sˇ.X/
is accepted by a deterministic Büchi automaton all of whose states are final.

Proof. It is easily seen that an !-regular language L is closed if and only if it is
accepted by a deterministic Büchi automaton in which each state is final (see, e.g.,
[476, Proposition 3.9]). Then the result follows from Proposition 3.6.8. ut

We note that, in our context of Büchi automata recognizing sets of real numbers,
the final/non-final status of the states occurring before an edge labeled F has no
impact on the accepted language.

Definition 3.6.18. A Parry number is a real number ˇ greater than 1 for which
d�ˇ.1/ is ultimately periodic.

Proposition 3.6.19. If ˇ is Parry, then a subset X of Rd is ˇ-recognizable if and
only if dˇ.X/ is !-regular.

Proof. For the sake of clarity, we do the proof for d D 1. Let X 
 R. First note that
dˇ.X/ is !-regular if and only if 0�dˇ.X/ is as well. By Corollary 3.6.13, we have
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0�dˇ.X/ D Sˇ.X/ n fu ? v 2 QA
C
ˇ ? QA !

ˇ j uv ends in d�ˇ.1/ or in d�ˇ.1/g:

As ˇ is a Parry number, fu ? v 2 QA Cˇ ? QA !
ˇ j uv ends in d�ˇ.1/ or in d�ˇ.1/g is an

!-regular language. This shows that dˇ.X/ is !-regular if Sˇ.X/ is as well.
Conversely, as d�ˇ.1/ D d1d2 � � � is ultimately periodic, the two !-languages

L1 D f.
u
u / .

?
? / .

v
v / .

a
a�1 /

�
0
d1

� �
0
d2

�
� � � j u 2 ACˇ ; v 2 A�ˇ; a ¤ 0g

L2 D f.
u
u / .

a
a�1 /

�
0
d1

�
� � �
�
0
dk

�
. ?? /

�
0

dkC1

� �
0

dkC2

�
� � � j u 2 A�ˇ; a ¤ 0; k 2 Ng:

are !-regular. By Corollary 3.6.13, we have

Sˇ.X/ D0
�dˇ.X/ [ �2

�
.L1 [ L2 [ L1 [ L2/ \ .0

�dˇ.X/ 	 . QAˇ [ f?g/
!/
�
:

This proves that Sˇ.X/ is !-regular if dˇ.X/ is as well. ut

As a consequence of Propositions 3.6.16 and 3.6.19, we obtain the following
result.

Proposition 3.6.20. If ˇ is Parry, then two ˇ-recognizable subsets of Rd coincide
if and only if they have the same ultimately periodic ˇ-expansions.

3.6.4 Weakly ˇ-Recognizable Sets of Real Numbers

We now consider particular ˇ-recognizable sets of real numbers, namely, the
weakly ˇ-recognizable subsets. We note that we have chosen to respect the original
terminology of [95, 384], even though the property of being weakly ˇ-recognizable
is in fact stronger than being ˇ-recognizable. This terminology comes from the fact
that weak Büchi automata are less expressive than Büchi automata: not all !-regular
languages are accepted by weak Büchi automata.

Definition 3.6.21. A Büchi automaton is said to be weak if each of its strongly
connected components contains either only final states or only nonfinal states.

Definition 3.6.22. A subset X of Rd is weakly ˇ-recognizable if Sˇ.X/ is accepted
by a weak deterministic Büchi automaton.

The advantage of weak deterministic Büchi automata is that they admit a
canonical form [384, 551]. Therefore, they can be viewed as the analogues of
DFAs for infinite words. Moreover, the family of !-languages accepted by weak
deterministic Büchi automata is closed under the Boolean operations of union,
intersection, and complementation [408, 551]. However, let us stress that weak
Büchi automata cannot be determinized. For example, the Büchi automaton of
Figure 3.5 is clearly weak, but as already pointed out, there is no deterministic
Büchi automaton accepting the same !-language. This has important consequences
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0,1

0,1 0,1

Fig. 3.6 A weak deterministic Büchi automaton accepting S2.R/

in our work, namely, for the choice of Definition 3.6.22, which is highlighted by the
following remark.

Remark 3.6.23. It is not true that a subset X of Rd is weakly ˇ-recognizable if
and only if dˇ.X/ is accepted by a weak deterministic Büchi automaton, even
when ˇ is an integer base. Indeed, the set R is weakly 2-recognizable as S2.R/
is accepted by the weak deterministic Büchi automaton of Figure 3.6. Yet we
have S2.R/ n 0�d2.R/ D f0; 1gC ? f0; 1g�1! . Since the family of !-languages
accepted by weak deterministic Büchi automata is closed under intersection and
complementation, if d2.R/were accepted by a weak deterministic Büchi automaton,
then f0; 1g�1! would be as well, which is known to be not true as already mentioned
in Example 3.6.2. This remark has to be compared with Proposition 3.6.19.

It is interesting to note that, for closed subsets of Rd, the concepts of ˇ-
recognizability and weak ˇ-recognizability actually coincide.

Proposition 3.6.24. A closed subset of Rd is ˇ-recognizable if and only if it is
weakly ˇ-recognizable.

Proof. This is a straightforward consequence of Proposition 3.6.17. ut

The following result is a consequence of Theorem 3.6.9. We first fix some
notation that will be useful here and in the proof of Theorem 3.6.29 below. For
r 2 R, we define sign.r/ to be C if r � 0 and � else. If x D .x1; : : : ; xd/ 2 Rd,
then sign.x/ D .sign.x1/; : : : ; sign.xd//. For X 
 Rd and s 2 fC;�gd, we define
Xs D fx 2 X j sign.x/ D sg/.

Proposition 3.6.25. If ˇ is a Parry number, then Rd is weakly ˇ-recognizable.

Proof. As a consequence of Theorem 3.6.9, a DFA Aˇ is canonically associated
with any Parry number ˇ. For details on the construction of Aˇ , we refer the reader
to [386]. This DFA accepts the language of factors of those infinite words u such
that 0 ? u D dˇ.x/ for some x 2 Œ0; 1/. All states of Aˇ are final (as any prefix of a
factor is again a factor). Moreover, Aˇ has a loop labeled 0 on its initial state.

Given s 2 fC;�gd, we build a weak deterministic Büchi automaton Aˇ;s

accepting Sˇ
�
.Rd/s

�
. Then the union of those 2d !-languages will be Sˇ

�
Rd/, which

will still be accepted by a weak deterministic Büchi automaton since the class of
!-languages accepted by such automata is closed under union.

We construct the automaton Aˇ;s by considering two copies of Aˇ 	 � � � 	 Aˇ

(d times), one for the ˇ-integer part and one for the ˇ-fractional part of the ˇ-
representations. For each state q of Aˇ 	 � � � 	 Aˇ , we let .q; int/ (resp. .q; frac/)
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denote the state of Aˇ;s that corresponds to q in the ˇ-integer (resp. ˇ-fractional)
part copy. In all labels of transitions of both copies of Aˇ 	 � � � 	Aˇ , we replace the
ith component by its opposite value if si D �, and we leave it unchanged otherwise.

The initial state of Aˇ;s is a new additional state i and, for each transition labeled
a 2 QA d

ˇ from the initial state to any state .q; int/ of the ˇ-integer part copy of
Aˇ	� � �	Aˇ , there is a new transition labeled a from i to .q; int/. The terminal states
are all states .q; frac/. We complete Aˇ;s by adding, for each state q of Aˇ	� � �	Aˇ ,
a transition from .q; int/ to .q; frac/ labeled F. ut

Example 3.6.26. The canonical DFA A� is depicted in Figure 3.7. The determinis-
tic Büchi automaton depicted in Figure 3.8 accepts the !-language S�.R�0/. Note
that the two �-representations v and w of ��1 of Example 3.6.3 are accepted as they
are both quasi-greedy, whereas u is not.

Theorem 3.6.27 provides a decomposition of weakly ˇ-recognizable subsets
into their ˇ-integer and ˇ-fractional parts. In the case where the base ˇ is an
integer, this decomposition is in fact independent of the chosen integer base; this
is Theorem 3.6.29.

To express this decomposition, we introduce the following notation. For x 2 Zd
ˇ ,

we let repˇ.x/ be defined by dˇ.x/ D repˇ.x/F0! . Note that by Corollary 3.6.13,

we have that, for all x 2 Zd
ˇ , Sˇ.x/\

�
. QA d
ˇ /
�F0!

�
D 0�repˇ.x/F0! . Symmetrically,

for u 2 ACˇ , we let valˇ.u/ D valˇ.uF0!/.
Recall that a Büchi automaton is said to be trim if it is accessible and

coaccessible, i.e., each state can be reached from the initial state and from each state

1

0

0

Fig. 3.7 The canonical DFA A�

1

0

0

1

0

0

0 1

Fig. 3.8 A deterministic Büchi automaton accepting S�.R�0/
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starts an infinite accepting path. From any given Büchi automaton, we can easily
build another Büchi automaton which is trim and accepts the same !-language.
Moreover, if the original Büchi automaton is weak (resp. deterministic), the obtained
trim Büchi automaton is as well.

Theorem 3.6.27. Any weakly ˇ-recognizable subset X of Rd is a finite union of sets
of the form XI C XF where XI 
 Zd

ˇ is such that repˇ.X
I/ 
 .A d

ˇ /
� is regular and

XF 
 Œ0; 1�d is weakly ˇ-recognizable.

Proof. Let X 
 Rd and let A D .Q; q0; QA d
ˇ [ fFg;F; ı/ be a trim deterministic

Büchi automaton accepting Sˇ.X/. No infinite path (starting from any state) of A
contains more than one occurrence of the letter F. Hence, the set of states Q can be
divided into two parts: Q1 containing the states occurring before transitions labeled
F and Q2 containing the states occurring after those transitions. Note that F 
 Q2.
Let q1; : : : ; qm be the states of Q2 that can be reached (in one step) by reading the
letter F. Without loss of generality, we assume that the !-languages accepted from
q1; : : : ; qm are pairwise distinct. This implies that, for all u 2 0�repˇ.X\Zd

ˇ/ and all

` 2 N, q0 �0`uF D q0 �uF. For each i, 1 � i � m, we define XI
i D fvalˇ.u/ j q0 �uF D

qig, and XF
i D fvalˇ.0Fv/ j v is accepted from qig. We have X D [m

iD1X
I
i C XF

i .
Now, for each i, 1 � i � m, we consider the DFA Di D .Q1; q0; QA d

ˇ ;Fi; ı1/ and

the Büchi automaton Bi D .Q2; qi; QA d
ˇ ;F; ı2/, where Fi D fq 2 Q1 j q � F D qig

and ı1 (resp. ı2) is equal to the original transition function ı restricted to the domain
Q1 	 QA d

ˇ (resp. Q2 	 QA d
ˇ ). Then the language accepted by Di is 0�repˇ.X

I
i / and the

!-language accepted by Bi is Sˇ.XF
i / \

�
0F QA !

ˇ

�
. It is now easy to modify Bi to

obtain a deterministic Büchi automaton accepting Sˇ.XF
i /. Finally, if in addition A

has the property of being weak, then the same is true for the obtained deterministic
Büchi automata accepting Sˇ.XF

j /. ut

Remark that, in the previous proof, it is not true that the union X D [m
iD1.X

I
iCXF

i /

is disjoint as a Büchi automaton for Sˇ.X/ accepts all quasi-greedy ˇ-represen-
tations of elements in X.

Example 3.6.28. In the Büchi automaton of Figure 3.8, the infinite paths corre-
sponding to the �-representations d�.1/ D 1?0! and 0?d�� .1/ D 0? .01/

! of 1 go
through the two different edges labeled ?. This means that, in the decomposition of
Theorem 3.6.27 corresponding to X D R�0, the number 1 belongs to all of the sets
XI C XF.

The following result is a stronger version of Theorem 3.6.27 in the restricted
case of integer bases. Indeed, in Theorem 3.6.29 below, the sets in the union are
independent of the base b, whereas this is not the case in the previous theorem.
Unfortunately, this stronger result does not generalize to real bases as in general Zˇ
differs from Zˇ0 if ˇ ¤ ˇ0, even for multiplicatively dependent ˇ; ˇ0. For example,
2 2 Z'2 n Z' .
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Theorem 3.6.29. Any subset X of Rd is a finite union of sets of the form XI C XF

with XI 
 Zd and XF 
 Œ0; 1�d and such that repb.X
I/ is regular and XF is weakly

b-recognizable for all b for which X is weakly b-recognizable.

Proof. Let X 
 Rd. With the notation introduced before Proposition 3.6.25, we have

X D [s2fC;�gd Xs;

and if A is a deterministic Büchi automaton accepting Sb.X/, then the !-languages
Sb.Xs/ are accepted by the deterministic Büchi automata obtained from A by only
keeping those edges whose labels have sign s. For the sake of simplicity, we suppose
that X 
 .R�0/d. (If we had X 
 .Rd/s for some s ¤ .C; : : : ;C/ (d times), then we
would have to discuss the sign of each component separately, which is just a tedious
adaptation of what follows.)

For i 2 Nd, we define F.X; i/ D fx 2 Œ0; 1�d j iC x 2 Xg and I.X; i/ D fi0 2 Nd j

F.X; i/ D F.X; i0/g. Then let C.X/ D fI.X; i/ j i 2 Nd and F.X; i/ ¤ ;g. We have

X D
[

I.X;i/2C.X/

I.X; i/C F.X; i/:

Now suppose that A is a weak trim deterministic Büchi automaton accepting
Sb.X/. Let q0 be the initial state of A and let q1; : : : ; qm be the states of A that
can be reached (in one step) by reading the letter F. Without loss of generality,
we may suppose that the !-languages accepted from the states q1; : : : ; qm are
pairwise distinct. We consider the same decomposition of X as in the proof of
Theorem 3.6.27:

X D
m[

jD1

.XI
j C XF

j /;

with XF
j D fvalb.0Fv/ j v is accepted from qjg and XI

j D fvalb.u/ j q0 � uF D qjg.
From the proof of Theorem 3.6.27, we know that, for each j, repb.X

I
j / is regular and

that XF
j is weakly b-recognizable.

Let us show that the two exhibited decompositions of X are actually the same. In
particular, the obtained decomposition will be independent of the base b, which will
prove the result. To obtain the correspondence between the two decompositions, it is
enough to show that, for all u 2 A�b and all j 2 f1; : : : ;mg, the following assertions
are equivalent:

1. q0 � uF D qj.
2. F.X; valb.u// D XF

j .
3. I.X; valb.u// D XI

j .

As A accepts all the b-representations of the elements of X and the !-languages
accepted from the states q1; : : : ; qm are pairwise distinct, the subsets XF

1 ; : : : ;X
F
m
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and XI
1; : : : ;X

I
m are pairwise distinct. Therefore, we only have to show 1 H) 2 ^

3. Suppose that q0 � uF D qj. If x D valb.0Fv/ and v is accepted from qj, then
uFv 2 L.A /; hence, x C valb.u/ 2 X. Conversely, let x 2 Œ0; 1�d such that x C
valb.u/ 2 X. Then there exists v 2 A!b such that x D valb.0Fv/. As A accepts
all the b-representations of the elements of X, we have uFv 2 L.A /. Because A
is deterministic, v is necessarily accepted from qj; hence, x 2 XF

j . This proves 2;
hence, we have obtained 1 ” 2. Now, let i 2 I.X; valb.u//. Then F.X; i/ D
F.X; valb.u// D XF

j . From 2 H) 1, we obtain q0 � repb.i/F D qj; hence, i 2 XI
j .

Finally, let i 2 XI
j . Then i D valb.u0/ with q0 � u0F D qj. From 1 H) 2, we obtain

F.X; i/ D F.X; valb.u//; hence, i 2 I.X; valb.u//. Hence we have 3, which ends the
proof. ut

3.6.5 First-Order Theory for Mixed Real and Integer Variables
in Base ˇ and Büchi Automata

In order to obtain an analogue of the Büchi-Bruyère theorem for real numbers
represented in base ˇ, we need a suitable logical structure for defining the so-called
ˇ-definable subsets of Rd. In this section we present the chosen logical structure.

Definition 3.6.30. For a 2 QAˇ , we define a binary relation Xˇ;a as follows. Suppose
that x; y 2 R with dˇ.x/ D x` � � � x0 ? x�1x�2 � � � , then Xˇ;a.x; y/ if and only if y D ˇi

for some i 2 Z, and either i > ` and a D 0 or i � ` and xi D a.

In other words, Xˇ;a.x; y/ is true whenever y is an integer power of the base ˇ and
the digit in !0dˇ.x/ corresponding to this power is a. The notation !0 means that
we add infinitely many zeros to the right of the greedy representation dˇ.x/. Note
that here we use the notation Xˇ;a.x; y/ for .x; y/ 2 Xˇ;a.

Recall that Zˇ is the set of ˇ-integers; see Definition 3.6.11.

Definition 3.6.31. A subset of Rd is ˇ-definable if it is definable by a first-order
formula of

hR;C;�;Zˇ;Xˇi;

where Xˇ is the finite collection of binary predicates fXˇ;a j a 2 QAˇg.

Remark 3.6.32. x D 0 is defined by xC x D x.

Remark 3.6.33. The property of being an integer power of ˇ is definable in
hR;C;� ;Xˇi: x is a power of ˇ ” Xˇ;1.x; x/. Note that the letter 1 always
belong to Aˇ since ˇ > 1. If x is a power of ˇ, then one can define the next (or the
previous) power of ˇ as follows:
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x0 D ˇx ” .x0 is a power of ˇ/

^ .x0 > x/

^ .8y/..y is a power of ˇ ^ y > x/ H) y � x0/:

By adding the constant 1 to the structure, we can also define the properties of
being a positive or negative power of ˇ by adding x > 1 or x < 1, respectively.
Consequently, any constant power of ˇ is definable in hR;C;�; 1;Xˇi.

Lemma 3.6.34. The structures hR;C;�; 1;Xˇi and hR;C;�;Zˇ;Xˇi are equiva-
lent.

Proof. On the one hand, z D 1 can be defined in hR;C;�;Zˇ;Xˇi by the formula

z 2 Zˇ ^
�
.8x/

��
x 2 Zˇ ^ x > 0

�
H) x � z

��
:

On the other hand, the set Zˇ can be defined in hR;C;�; 1;Xˇi:

z 2 Zˇ ” .8y/
�
.y is a negative power of ˇ/ H) Xˇ;0.z; y/

�
:

ut

Remark 3.6.35. Multiplication (or division) by ˇ is ˇ-definable:

y D ˇx, .8b/
� ^

a2QAˇ

.Xˇ;a.x; b/ H) Xˇ;a.y; ˇb//
�
:

Note that Xˇ;a.x; b/ implies that b is an integer power of ˇ. Consequently, multipli-
cation (or division) by a constant power of ˇ is ˇ-definable.

Remark 3.6.36. The structures hR;C;�; 1i and hR;C;�;Zi are not logically
equivalent : z D 1 is definable in hR;C;�;Zi, whereas z 2 Z is not definable
in hR;C;�; 1i; see Proposition 3.6.38.

Let us characterize the subsets of Rd that are definable in hR;C;�; 1i and in
hR;C;�;Zi, respectively. We will make use of the following important result.

Theorem 3.6.37 ([221]). The structure hR;C;�; 1i admits the elimination of
quantifiers.

A rational polyhedron of Rd is the intersection of finitely many half-spaces
whose borders are hyperplanes whose equations have integer coefficients. These
sets are sometimes referred to as convex polytopes. Note that a rational polyhedron
is not necessarily bounded.

Proposition 3.6.38. The subsets of Rd which are definable in hR;C;�; 1i are
the finite unions of rational polyhedra. In particular, the subsets of R which are
definable in hR;C;�; 1i are the finite unions of intervals with rational endpoints.
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Proof. From Theorem 3.6.37, a subset X of Rd is definable in hR;C;�; 1i if and
only if it can be expressed by a finite Boolean combination of linear constraints
with rational coefficients. Now consider an equivalent formula in disjunctive normal
form. This gives us the desired result. ut

We end this section by a characterization of those subsets X of Rd which are
definable in hR;C;�;Zi. Note that the proof of this characterization depends on a
subsequent result (namely, Theorem 3.6.44).

Theorem 3.6.39. A subset X of Rd is definable in hR;C;�;Zi if and only if it is a
finite union of sets of the form XI C XF, with XI 
 Zd definable in hZ;C;�i and
XF 
 Œ0; 1�d definable in hR;C;�; 1i.

Proof. Suppose that X D XI C XF where XI 
 Zd is definable in hZ;C;�i and
XF 
 Œ0; 1�d is definable in hR;C;�; 1i. By Remark 3.6.36, XF is definable in
hR;C;�;Zi. If �.y1; : : : ; yd/ is a first-order formula of hZ;C;�i defining XI , then
�.y1; : : : ; yd/ ^ y1 2 Z ^ � � � ^ yd 2 Z is a first-order formula of hR;C;�;Zi
defining XI . Thus the predicate .x1; : : : ; xd/ 2 X is definable in hR;C;�;Zi by
.9y1/ � � � .9yd/.9z1/ � � � .9zd/.x1 D y1 C z1 ^ � � � ^ xd D yd C zd ^ .y1; : : : ; yd/ 2

XI ^ .z1; : : : ; zd/ 2 XF/. Finite unions of definable sets are always definable, in any
structure.

For the other direction, suppose that X 
 Rd is definable in hR;C;�;Zi. By
Theorem 3.6.44, X is weakly b-recognizable for all b. By Theorem 3.6.29, X is a
finite union of sets of the form XI C XF, where XI 
 Zd is such that repb.X

I/

is regular and XF 
 Œ0; 1�d is b-recognizable for all b. Then, by Theorem 3.2.28
(which can be adapted to Zd in a straightforward way), each XI is semi-linear, hence
definable in hZ;C;�i, and by Theorem 3.6.45, each XF is definable in hR;C;�; 1i.

ut

Note that we have used Theorem 3.6.29, which is a stronger version of Theo-
rem 3.6.27. Indeed, we need the sets in the decomposition of X to be independent of
the base b.

Finally, in the particular case of bounded subsets of Rd, we have the following
characterizations.

Corollary 3.6.40. For any bounded subset X of Rd, the following assertions are
equivalent.

1. X is definable in hR;C;�;Zi.
2. X is definable in hR;C;�; 1i.
3. X is a finite union of rational polyhedra.

Proof. This follows from Proposition 3.6.38 and Theorem 3.6.39. ut
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3.6.6 Characterizing ˇ-Recognizable Sets Using Logic

The following theorem can be viewed as an analogue of Theorem 3.3.4 for real
numbers represented in real bases ˇ. Let us emphasize that the base ˇ needs be a
Pisot number in order to recognize the addition. We do not present here the details
of the normalization in real Pisot bases, but the interested reader is referred to [145,
231].

Theorem 3.6.41 ([145]).

• If ˇ is a Parry number, then every ˇ-recognizable subset of Rd is ˇ-definable.
• If ˇ is a Pisot number, then every ˇ-definable subset of Rd is ˇ-recognizable.

In the context of the present chapter, the relevant direction is given by the
second assertion. Indeed, our aim is to build suitable DFAs starting from formulæ
expressing various properties of ˇ-recognizable sets of numbers, in order to decide
whether a given set satisfies a given property. For this reason, we only give a proof
of the second assertion of Theorem 3.6.41. The interested reader will find a proof of
the other direction in [145].

Proof (of the second assertion). The proof goes by induction on the length of the
formula defining X. It is sufficient to discuss the logical operations :'; ' _  ; 9x�
as all others can be obtained from these three. At each step of the induction, we need
to obtain Büchi automata for Sˇ.X1/; : : : ; Sˇ.Xn/, where X1; : : : ;Xn are the current
subsets of Rd in the recursive definition of X. Let '; be such that X'; X 
 Rd.
We have Sˇ.X:'/ D Sˇ.Rd/ n Sˇ.X'/ and Sˇ.X'_ / D Sˇ.X'/ [ Sˇ.X /. If B is
a Büchi automata accepting Sˇ.X�/ where � contains a free variable called x, then
the !-language L accepted by the Büchi automata obtained from B by deleting the
component corresponding to x in every label is such that 0�.0�/�1L D Sˇ.X9x�/.
The induction step then follows from Propositions 3.6.15 and 3.6.25 and from
the stability of !-regular languages under Boolean operations and projection on
components.

Let us verify that the atomic formulæ of hR;C �;Zˇ;Xˇi are all ˇ-recognizable.
We need ˇ to be a Pisot number only for the addition to be ˇ-recognizable
[229]. Now we suppose that ˇ is a Parry number. By Proposition 3.6.25, Rd is ˇ-
recognizable for any dimension d. Let G be a Büchi automaton accepting dˇ.R2/
(such an automaton exists by Proposition 3.6.19). The !-languages dˇ.f.x; y/ 2
R2 j x D yg/ and dˇ.f.x; y/ 2 R2 j x < yg/) are accepted by the intersections
of G with the Büchi automata of Figures 3.9 and 3.10, respectively. We have
dˇ.Zˇ/ D dˇ.R/ \ . QAˇ/C ? 0! . For each a 2 QAˇ , dˇ.Xˇ;a/ is accepted by the
intersection of G with the Büchi automaton represented in Figure 3.11. Finally, in
order to start the induction process, we have to build Büchi automata accepting
Sˇ.f.x; y; z/ 2 R3 j x C y D zg/, Sˇ.f.x; y/ 2 R2 j x < yg/, Sˇ.Zˇ/, and Sˇ.Xˇ;a/,
which can be done thanks to Proposition 3.6.19. ut
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{(a,a) | a ∈ Ã ∪{ }}

Fig. 3.9 A Büchi automaton for the equality

{(a,b) ∈ Ã × Ã | a< b}

{(a,a) | a ∈ Ã ∪{ }} (Ã × Ã )∪{( )}

Fig. 3.10 A Büchi automaton for the order

(a,1)

(a,1)

( ) ( )

{(b,0) | b ∈ Ã } {(b,0) | b ∈ Ã }

{(b,0) | b ∈ Ã } {(b,0) | b ∈ Ã }

Fig. 3.11 A Büchi automaton for Xˇ;a

Corollary 3.6.42. If ˇ is a Pisot number, then the first-order theory of hR;C;
�;Zˇ;Xˇi is decidable.

Proof. A closed first-order formula of hR;C;�;Zˇ;Xˇi is of the form 9x'.x/ or
8x'.x/. By Theorem 3.6.41, the sets X' D fx 2 R j '.x/ is trueg and X:' D fx 2
R j '.x/ is falseg are ˇ-recognizable. As the emptiness of an !-regular language is
decidable [476], we can decide whether X' is nonempty (resp. X:' is empty) and,
thus, whether 9x'.x/ (resp. 8x'.x/) is true. ut

Like Theorem 3.3.4, this result has many applications: any property of ˇ-recogni-
zable sets that can be expressed by a first-order predicate in the structure hR;C;
�;Zˇ;Xˇi is decidable. For example, it is decidable whether a ˇ-recognizable
subset of Rd is a subgroup of Rd with respect to the addition. As another example,
we are also able to decide topological properties of ˇ-recognizable sets. Note that,
in this context, interesting examples of compact ˇ-recognizable sets are given
by a class of fractal sets, called ˇ-self-similar sets [1]. Indeed, it follows from
Theorem 3.6.56 below that ˇ-self-similar sets are ˇ-recognizable when ˇ is Pisot.
This fact is highlighted in Remark 3.6.59.
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Proposition 3.6.43. If ˇ is Pisot, then the following properties of ˇ-recognizable
subsets X of Rd are decidable: X has a nonempty interior, X is open, X is closed, X
is bounded, X is compact, X is dense.

Proof. Suppose that ˇ is Pisot and let X be a ˇ-recognizable subset X of Rd and let
' be a first-order formula of hR;C;�;Zˇ;Xˇi defining X. For .x1; : : : ; xd/ 2 Rd and
" > 0, we let B.x1; : : : ; xd; "/ denote the set f.y1; : : : ; yd/ 2 Rd j �" < x1 � y1 <
" ^ � � � ^ �" < xd � yd < "g. Clearly, the predicate .y1; : : : ; yd/ 2 B.x1; : : : ; xd; "/

is expressible by a first-order formula of hR;C;�;Zˇ;Xˇi. Then, we can express
that X has a nonempty interior by the formula

.9x1/ � � � .9xd/
�
'.x1; : : : ; xd/ ^

h
.9" > 0/ .8y1/ � � � .8yd/

�
.y1; : : : ; yd/ 2 B.x1; : : : ; xd; "/ H) '.y1; : : : ; yd/

�i�
:

It is open if and only if

.8x1/ � � � .8xd/
�
'.x1; : : : ; xd/ H)

h
.9" > 0/ .8y1/ � � � .8yd/

�
.y1; : : : ; yd/ 2 B.x1; : : : ; xd; "/ H) '.y1; : : : ; yd/

�i�
:

It is closed if and only if it is not open. It is bounded if and only if

.9R > 0/ .8x1/ � � � .8xd/
�
'.x1; : : : ; xd/ H) .x1; : : : ; xd/ 2 B.0; : : : ; 0;R/

�
:

It is compact if and only if it is closed and bounded. Finally, it is dense if and only if

.8x1/ � � � .8xd/.8" > 0/.9y1/ � � � .9yd/
�
'.y1; : : : ; yd/ ^ .y1; : : : ; yd/ 2 B.x1; : : : ; xd; "/

�
:

As those properties of X are all expressible by a closed first-order formula of
hR;C;�;Zˇ;Xˇi, they are decidable by Corollary 3.6.42. ut

We note that, thanks to Proposition 3.6.17, the property of being closed can be
directly verified from a Büchi automaton recognizing the set under consideration.
Indeed, given a Büchi automaton accepting Sˇ.X/, we can effectively compute a
DFA accepting Pref.Sˇ.X//. Then, by Proposition 3.6.8, this DFA seen as a Büchi
automaton accepts Sˇ.X/ if and only if X is closed. As it is decidable if two
Büchi automata accept the same !-language [476], we can decide whether a ˇ-
recognizable set X is closed.
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3.6.7 Analogues of the Cobham–Semenov Theorem for Real
Numbers

Several analogues of Cobham’s theorem were obtained in the context of integer
base b representations of real numbers. In this section, we list some of them without
proof. We will show the connections between these results, as well as with The-
orem 3.6.61. This connection is achieved by using graph-directed iterated function
systems (GDIFS) and allows us to provide extensions of the abovementioned results:
Theorem 3.6.50 extends to Rd, Theorem 3.6.61 extends to a large class of GDIFS,
and the logical characterization of b-recognizable sets of reals used for proving
Theorem 3.6.46 extends to the so-called Pisot real bases.

Theorem 3.6.44 ([95]). Let b and b0 be integer bases with different sets of prime
divisors. A subset of Rd is simultaneously b-recognizable and b0-recognizable if and
only if it is definable in hR;C;�;Zi.

The hypothesis of sharing no prime divisors is stronger than that of being
multiplicatively independent. In order to obtain an analogue of the Cobham theorem
for multiplicatively independent integer bases, we need an extra hypothesis, which
is the weak b-recognizability.

Theorem 3.6.45 ([94]). Let b and b0 be multiplicatively independent integer
bases. A subset of Œ0; 1�d is simultaneously weakly b-recognizable and weakly b0-
recognizable if and only if it is definable in hR;C;�; 1i.

Note that, together with Theorems 3.6.29 and 3.2.28, Theorem 3.6.45 implies the
following result.

Theorem 3.6.46 ([94]). Let b and b0 be multiplicatively independent integer bases.
A subset of Rd is simultaneously weakly b-recognizable and weakly b0-recognizable
if and only if it is definable in hR;C;�;Zi.

In the particular case where d D 1 and we consider only compact subsets of
Œ0; 1�, Theorem 3.6.45 is indeed another formulation of Theorem 3.6.50 below. To
state this result, we need a definition first.

Definition 3.6.47. A subset X of Œ0; 1�d is b-self-similar if it is closed, and there are
finitely many sets of the form

.baX � t/ \ Œ0; 1�d

for a 2 N and t 2 .Œ0; ba/ \ Z/d.

Example 3.6.48. The Pascal triangle modulo 2 (see Figure 3.12) is 2-self-similar. It
is the closure of the set f 1

2`
.m; n/ j

�n
m

�
� 1 mod 2; ` � jrep2.m; n/jg:

Example 3.6.49. The Menger sponge (see Figure 3.13) is 3-self-similar. It is the
closure of the set of points x 2 Œ0; 1�3 such that rep3.x/ does not contain any of the
digits .0; 1; 1/, .1; 0; 1/, .1; 1; 0/, .1; 1; 1/.
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Fig. 3.12 The Pascal triangle modulo 2

Fig. 3.13 The Menger sponge

Theorem 3.6.50 ([1]). Let b; b0 � 2 be multiplicatively independent integers. A
compact subset of Œ0; 1� is simultaneously b-self-similar and b0-self-similar if and
only if it is a finite union of closed intervals with rational endpoints.

The object of the next section is to study the connection between Theo-
rems 3.6.45 and 3.6.50.

3.6.8 Linking Büchi Automata, ˇ-Self-Similarity and GDIFS

We generalize Definition 3.6.47 to real bases ˇ. The set of polynomials in ˇ with
integer coefficients is denoted by ZŒˇ�. Note that it is not equal to the set Zˇ of
ˇ-integers as, for example, d'.' � 1/ D 0 ? 10! , hence ' � 1 2 ZŒ'� n Z' .

Definition 3.6.51. A subset X of
�
0;
dˇe�1
ˇ�1

�d
is ˇ-self-similar if it is closed, and

there are only finitely many sets of the form

.ˇaX � t/ \
h
0;
dˇe � 1

ˇ � 1

id
;

for a 2 N and t 2 .
�
0;

.dˇe�1/
ˇ�1

ˇa
�
\ ZŒˇ�/d.
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Definition 3.6.52. A graph-directed iterated function system (GDIFS for short) is
given by a 4-tuple

.V; E; .Xv; v 2 V/; .�e; e 2 E//

where .V; E/ is a connected digraph such that each vertex has at least one outgoing
edge, for each v 2 V , Xv is a metric space and, for each e 2 Euv , �eWXv ! Xu is a
contraction map, where Euv denotes the set of edges in E from u to v.

Theorem 3.6.53 ([208, 306]). For each GDIFS .V; E; .Xv; v 2 V/; .�e; e 2 E//
on complete metric spaces Xv , there is a unique list of nonempty compact subsets
.Ku; u 2 V/ such that, for all u 2 V, Ku 
 Xu and

Ku D
[

v2V

[

e2Euv

�e.Kv/:

Definition 3.6.54. The attractor of a GDIFS on complete metric spaces is the list
of nonempty compact subsets from Theorem 3.6.53.

We will use the following result.

Theorem 3.6.55 ([70, 231]). The sets
�
�c
ˇ�1

; c
ˇ�1

�
\ ZŒˇ� are finite for all c 2 N if

and only if ˇ is a Pisot number.

Theorem 3.6.56 ([145]). Let ˇ be a Pisot number. For any compact subset X of�
0;
dˇe�1
ˇ�1

�d
, the following are equivalent:

1. There is a Büchi automaton A over the alphabet A d
ˇ such that valˇ.0FL.A // D

X.
2. X belongs to the attractor of a GDIFS on Rd whose contraction maps are of the

form x 7! xCt
ˇ

with t 2 A d
ˇ .

3. X is ˇ-self-similar.

Proof. 1 H) 2. Let A D .Q; q0;F;A d
ˇ ; ı/ be a trim Büchi automaton such that

valˇ.0FL.A // D X. Because X is closed and valˇ is continuous, we may suppose
that Q D F, i.e., that all states are final. The GDIFS on Rd we build is obtained
from A by replacing each label t 2 A d

ˇ by the contraction map x 7! xCt
ˇ

. For
all q 2 Q, let Lq denote the set of infinite words accepted from q in A , and let
Xq D fvalˇ.0Fw/ j w 2 Lqg. We claim that .Xq; q 2 Q/ is the attractor of this
GDIFS. This is sufficient as X D Xq0 . The fact that A is trim and contains only
final states implies that the subsets Xq are closed and nonempty. Moreover, they

satisfy Xq 

�
0;
dˇe�1
ˇ�1

�d
. Then, by Theorem 3.6.53, it suffices to show that the list

.Xq; q 2 Q/ satisfies

8q 2 Q; Xq D
[

p2Q

[

q
t
�!p

1

ˇ
.Xp C t/:
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This follows from the following two observations:

8q 2 Q; Lq D
[

p2Q

[

q
t
�!p

tLp

8w 2 .A d
ˇ /

!;8t 2 A d
ˇ ; valˇ.0Ftw/ D

valˇ.0Fw/C t
ˇ

:

2 H) 1. Let .Kv; v 2 V/ be the attractor of a GDIFS on Rd whose contraction
maps are of the form x 7! xCt

ˇ
with t 2 A d

ˇ and suppose that X D Kv0 for some v0 2

V . Let A be the Büchi automaton .V; v0;V;A d
ˇ ; ı/where the transitions correspond

to the edges of the GDIFS in which we have replaced the labels xCt
ˇ

by t. As the
underlying digraph of a GDIFS is connected and such that there is at least one
outgoing edge starting from each vertex, the Büchi automaton A is trim. Then,
from the proof of 1 H) 2, we obtain that Kv D fvalˇ.0Fw/ j w 2 Lvg for all
v 2 V (where Lv is defined as before); hence, X D fvalˇ.0Fw/ j w 2 L.A /g.
2 H) 3. Let .Kv; v 2 V/ be the attractor of a GDIFS on Rd whose contraction

maps are of the form StW x 7! xCt
ˇ

with t 2 A d
ˇ , and suppose that X D Kv0 for some

v0 2 V . For all vertices u and v, we let E`uv denote the set of words of length ` over
A d
ˇ that label a path from u to v (where the labels xCt

ˇ
are replaced by t). For all

u 2 V and ` 2 N, we have

Ku D
[

v2V

[

t1���t`2E`uv

St1 ı � � � ı St` .Kv/:

For the sake of conciseness, we let rˇ D
dˇe�1
ˇ�1

. By setting u D v0 and ` D a in the
previous equality, we obtain that

.ˇaX � t/ \ Œ0; rˇ�d D
[

v2V

[

t1���ta2Ea
v0v

�
ˇa.St1 ı � � � ı Sta.Kv/ � t/ \ Œ0; rˇ�d

�

for all a 2 N and t 2 Rd. Observe that

ˇa.St1 ı � � � ı Sta.Kv// � t D Kv C .ta C ˇta�1 C � � � C ˇ
a�1t1/ � t

and, if t 2 .ZŒˇ�/d and, for each 1 � i � a, ti 2 A d
ˇ , then

ta C ˇta�1 C � � � C ˇ
a�1t1 � t 2 .ZŒˇ�/d:

For all v 2 V , the set Kv is included in Œ0; rˇ�d; hence, the sets .Kv C x/ \ Œ0; rˇ�d

are empty for all x … Œ�rˇ; rˇ�d. Since ˇ is Pisot, Theorem 3.6.55 implies that
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Œ�rˇ; rˇ� \ ZŒˇ� is finite. Consequently, there are finitely many sets of the form
.KvCx/\ Œ0; rˇ�d, with x 2 .ZŒˇ�/d and v 2 V . As any set .ˇaX� t/\ Œ0; rˇ�d with
a 2 N and t 2 .Œ0; rˇˇa/\ ZŒˇ�/d is a finite union of such sets, this proves that X is
ˇ-self-similar.
3 H) 2. Suppose that X is ˇ-self-similar. Again, we let rˇ D

dˇe�1
ˇ�1

. Define

a GDIFS on Rd as follows: the vertices of the underlying digraph are the nonempty
compact sets among

Na;t.X/ WD .ˇ
aX � t/ \ Œ0; rˇ�

d;

with a 2 N and t 2 .Œ0; rˇˇa/ \ ZŒˇ�/d and, for each s 2 A d
ˇ , there is an edge

labeled xCs
ˇ

from Na;t.X/ to NaC1;ˇtCs.X/ if both are nonempty. For all a 2 N and

t 2 .Œ0; rˇˇa/ \ ZŒˇ�/d, we have

[

s2A d
ˇ

1

ˇ

�
NaC1;ˇtCs.X/C s

�
D

[

s2A d
ˇ

1

ˇ

�h
.ˇaC1X � ˇt � s/ \ Œ0; rˇ�

d
i
C s

�

D
[

s2A d
ˇ

�
.ˇaX � t/ \

1

ˇ

�
Œ0; rˇ�

d C s
��

D .ˇaX � t/ \
� [

s2A d
ˇ

1

ˇ

�
Œ0; rˇ�

d C s
��

D .ˇaX � t/ \ Œ0; rˇ�
d

D Na;t.X/;

hence the sets Na;t.X/ form the attractor of this GDIFS. To conclude with the proof,
observe that X D N0;0.X/. ut

Note that, in the previous theorem, the Pisot condition is needed only for the
implications 2 H) 1 and 2 H) 3. Also note that all the equivalences are
effective, meaning that from any of the hypotheses 1, 2, or 3, we can effectively
construct a Büchi automaton for 1, a GDIFS for 2, and the ˇ-kernel for 3.

We are now able to show the connection between Theorems 3.6.45 and 3.6.50.

Proposition 3.6.57. Any b-self-similar subset of Œ0; 1�d is weakly b-recognizable.

Proof. Let X be a b-self-similar subset of Œ0; 1�d. By Theorem 3.6.56, there is a
Büchi automaton A over the alphabet A d

b such that valb.0 ? L.A // D X. We show
that this implies that X is weakly b-recognizable. For the sake of clarity, we discuss
the case d D 1 (the general case is just a tedious adaptation of the same arguments
as we have to consider each component separately). We have



3 First-Order Logic and Numeration Systems 137

Sb.X/ D 0
C ? L.A / [ 0��1

�
M \ Œ.Ab [ f?g/

! 	 .0 ? L.A //�
�

where

M D f
�
0
0

�
. ?? / .

u
u /
�

aC1
a

� �
0

b�1

�!
j u 2 A�b ; 0 � a � b � 2g [ f

�
1
0

�
. ?? /

�
0

b�1

�!
g

[ f
�
0
0

�
. ?? / .

u
u / .

a
aC1 /

�
b�1
0

�!
j u 2 A�b ; 0 � a � b � 2g

This shows that Sb.X/ is an !-regular language; hence, X is b-recognizable. Since
X is closed, it is weakly b-recognizable by Proposition 3.6.24. ut

The following result generalizes Theorem 3.6.50 to the multidimensional setting.

Theorem 3.6.58 ([142, 145]). Let b; b0 � 2 be two multiplicatively independent
integers. A compact subset of Œ0; 1�d is simultaneously b-self-similar and b0-self-
similar if and only if it is a finite union of rational polyhedra.

Proof. The result is a consequence of Proposition 3.6.38, Theorem 3.6.45, and
Proposition 3.6.57. ut

Remark 3.6.59. We have seen in Proposition 3.6.57 that any b-self-similar subset
of Œ0; 1�d is weakly b-recognizable. By using Theorem 3.6.56 and the fact that the
normalization is realizable by a letter-to-letter transducer [229, 231], we obtain that
this fact also holds for Pisot bases ˇ: any ˇ-self-similar subset of Œ0; 1�d is weakly
ˇ-recognizable. However, the converse is not true as, for every base ˇ > 1, there
exist weak ˇ-recognizable subsets of Œ0; 1�d which are not closed. For example, any
interval of the form Œr; sŒ is weakly ˇ-recognizable for all bases ˇ > 1. Hence the
hypothesis of b-self-similarity is strictly stronger than that of b-recognizability.

We also obtain the following analogue of the Cobham–Semenov theorem for
GDIFS.

Theorem 3.6.60. Let b; b0 � 2 be multiplicatively independent integers. A compact
subset of Rd is the attractor of two GDIFS, one with contraction maps of the form
x 7! xCt

b with t 2 A d
b and the other with contraction maps of the form x 7! xCt

b0

with t 2 A d
b0 , if and only if it is a finite union of rational polyhedra.

Proof. The result is a consequence of Theorem 3.6.56, Proposition 3.6.57, Theo-
rem 3.6.46, and Corollary 3.6.40. ut

The previous result has to be compared with the following theorem. Here dimH

denote the Hausdorff dimension, and an iterated function system (IFS for short) is
a GDIFS whose graph contains only one vertex. An IFS ˚ D .�1; : : : ; �k/ is said
to satisfy the open set condition if there exists a nonempty open set V such that
�1.V/; : : : ; �k.V/ are pairwise disjoint subsets of V .

Theorem 3.6.61 ([220]). Suppose that a compact subset K of R is the attractor
of two IFS ˚ and � all of whose contraction maps are affinities sharing the same
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contraction ratios, denoted r˚ and r� , respectively, and suppose that ˚ satisfies the
open set condition.

• If dimH.K/ < 1 then log jr� j
log jr˚ j

2 Q.

• If dimH.K/ D 1 and K is not a finite union of intervals, then log jr� j
log jr˚ j

2 Q.

We note that Theorem 3.6.60 is more general than Theorem 3.6.61 in two ways
as it concerns the more general setting of GDIFS and it is formulated for the d-
dimensional Euclidean space. It is also weaker as the contraction ratios must be of
the form 1

b and 1
b0 .

3.7 Exercises

The following exercises are related to Section 3.2.

Exercise 3.7.1. Consider the abstract numeration system S built on the language
L accepted by the automaton of Figure 3.14. The set X D valS.L0/, where L0 D
f"g [ 2f0; 2g�. By definition, X is S-recognizable. Show that tX.n/ D �.n log.n//.
Proceed by using two different methods: first, in a direct way by characterizing the
elements in X and, second, by showing vL.n/ D .nC 1/2n and vL0.n/ D 2n for all
n 2 N and then by using Theorem 3.2.23.

Exercise 3.7.2. Consider the base 4 numeration system. Let X D val4.L/ where L
is the language accepted by the automaton of Figure 3.14. It is 4-recognizable by
construction. Show that tX.n/ D �

�
. n

log.n/ /
2
�
.

Exercise 3.7.3. Consider the 4-recognizable set X D val4.f1; 2; 3g�/ and show that

tX.n/ D �
�

n
log.4/
log.3/

�
.

Exercise 3.7.4. Define LF D f"g[1.0C01/
� to be the language of the Zeckendorf

numeration system, and let X D val4.LF/. Show that

8n 2 N; vLF .n/ D
5C 3

p
5

10
�n C

5 � 3
p
5

10
.1 � �/n

and that tX.n/ D �
�

n
log.4/
log.'/

�
.

1 01

0,2

1,3

0,1

1,3

2

Fig. 3.14 The trim minimal automaton of L
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1,2,3

0,2

Fig. 3.15 The trim minimal automaton of L

Exercise 3.7.5. Define L to be the language accepted by the DFA depicted in
Figure 3.15. Let X D val4.L/ and show that vL.2n/ � 9

5
6n and vL.2nC 1/ � 24

5
6n

.n!C1/ and that tX.n/ D �
�

n
log.4/

log.
p
6/

�
.

Exercise 3.7.6. Let X D val2.1�0�/. Show that v1�0�.n/ D
�nC2
2

�
for all n 2 N and

that tX.n/ D 2.1Co.1//
p
2n.

The following exercises are related to Section 3.2.5.

Exercise 3.7.7. Show that semi-linear sets are b-recognizable for all b.

An ultimately periodic subset of N is a subset X of N for which there exist
integers i � 0 (the preperiod) and p � 1 (the period) such that, for all x 2 N,
x 2 X if and only if xC p 2 X.

Exercise 3.7.8. Let X be a subset of N. Show that the following assertions are
equivalent:

• X is a finite union of arithmetic progressions.
• X is ultimately periodic.
• X is semi-linear.
• X is a recognizable subset of N.
• X is 1-recognizable.
• X is b-recognizable for all integers bases b.
• X is S-recognizable for all abstract numeration systems S.

The following exercise is related to Section 3.3.

Exercise 3.7.9. Show the following assertions

• x � y is definable in hN;Ci but not in hZ;Ci.
• x D y is definable in hN;Ci but not in hZ;Ci.
• x D 0 is definable in hN;Ci and in hZ;Ci.
• x D 1 is definable in hN;Ci but not in hZ;Ci.
• For every c 2 N, x D c is definable in hN;Ci.
• The arithmetic progressions are definable in hN;Ci.
• A subset X of N is definable in hN;Ci if and only if it is a finite union of

arithmetic progressions.
• A subset X of Nd is definable in hN;Ci if and only if it is semi-linear.

The following exercises are related to Section 3.6.
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Exercise 3.7.10. Show that the structures hR;C;�;Zi and hR;C;�;Ni are equiv-
alent.

Exercise 3.7.11. Find a direct argument proving that Z is not definable in hR;C;
�; 1i (not using Theorem 3.6.39).

Exercise 3.7.12. Show that the finite unions of rational polyhedra are b-self-similar
for all b.
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Chapter 4
Some Applications of Algebra to
Automatic Sequences

Jason Bell

Abstract We give an overview of the theory of rings satisfying a polynomial
identity and use this to give a proof of a characterization due to Berstel and
Reutenauer of automatic and regular sequences in terms of two properties, which
we call the shuffle property and the power property. These properties show that if
one views an automatic sequence f as a map on a free monoid on k-letters to a finite
subset of a ring, then the values of f are closely related to values of f on related
words obtained by permuting letters of the word. We use this characterization to
give answers to three questions from Allouche and Shallit, two of which have not
appeared in the literature. The final part of the chapter deals more closely with the
shuffle property, and we view this as giving a generalization of regular sequences.
We show that sequences with the shuffle property are closed under the process of
taking sums and taking products; in addition we show that there is closure under
a noncommutative product, which turns the collection of shuffled sequences into a
noncommutative algebra. We show that this algebra is very large, in the sense that
it contains a copy of a free associative algebra on countably many generators. We
conclude by giving some open questions, which we hope will begin a more careful
study of shuffled sequences.

4.1 Introduction

We recall that, given a finite set	, a sequence f W N! 	 is said to be k-automatic if
the nth term of this sequence is generated by a finite-state machine taking the base-k
expansion of n as input, starting with the least significant digit. Automatic sequences
appear in many different contexts (see, e.g., [14, 189]), and there are many examples
of their application to algebra, such as their involvement in the characterization
of algebraic power series over finite fields [14, Chapter 12]. The purpose of this
chapter, however, is to look at applications of algebra, in particular the theory of
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polynomial identities, in giving a characterization of automatic sequences due to
Berstel and Reutenauer [77, Chapter 3] and to use this characterization to answer
some open questions about automatic and regular sequences.

Another way of defining the k-automatic property comes from looking at the k-
kernel of a sequence. The k-kernel of a sequence f .n/ is defined to be the collection
of sequences of the form f .kin C j/ where i � 0 and 0 � j < ki. A sequence is k-
automatic if and only if its k-kernel is finite. Using this definition of k-automatic
sequences, Allouche and Shallit [14, 16] generalized the notion of k-automatic
sequences, defining k-regular sequences.

Let K be a field. Given a sequence f .n/ taking values in K, we create a vector
subspace of KN, V.f .n/I k/, which is defined to be the subspace spanned by all
sequences f .kinC j/, where i � 0 and 0 � j < ki.

Definition 4.1.1. A sequence is k-regular if V.f .n/I k/ is a finite-dimensional K-
vector space.

Since the k-kernel of a sequence f .n/ spans V.f .n/I k/ as a K-vector space, we see
that a k-automatic sequence is necessarily k-regular. We remark that one can adopt a
slightly more general viewpoint by replacing the field K by a commutative ring and
asking that submodules generated by elements of the kernel be finitely generated.
Everything we do in this chapter holds in this more general setting, but for ease of
exposition we restrict to the case where our sequences are K-valued with K a field.

In the first half of this chapter, we take a ring theoretic look at automatic
sequences and regular sequences and prove a result due to Berstel and Reutenauer
[77, Chapter 3], which is not as well known as it probably should be. Part of the
reason for this is that their result is written in the context of noncommutative rational
series, so we give a straightforward translation of these results into our setting. In
fact, we shall give a quantitative version of their result, which we hope will be of
future use. We then give some applications of this result.

Let A be a finite alphabet. We let A � denote the free monoid on A ; that is, A
is the collection of all words on A . We let " denote the empty word on A .

We are interested in maps f W A � ! K, where A is some finite alphabet and
K is a field. In the case that A D f1; 2; : : : ; kg for some positive integer k, we can
regard a word in A as an integer as follows. We associate 0 to the empty word ",
and for nontrivial words am � � � a0 2 A � with 1 � ai � k, we associate a positive
integer using the correspondence

am � � � a0 7! amkm C am�1k
m�1 C am�2k

m�2 C � � � C a0: (4.1)

Observe that this gives a bijection between A � and the natural numbers and hence,
in this case, we may think of f as being a sequence indexed by the nonnegative
integers taking values in K. We note that it is more common to use the alphabet
f0; 1; : : : ; k � 1g and instead restrict to the regular sublanguage of the monoid
f0; : : : ; k � 1g consisting of words whose first letter is not zero when dealing with
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k-automatic and k-regular sequences. The point of view we adopt is completely
equivalent, but we find the framework used in this chapter easier to deal with.

Using this correspondence and the k-kernel definition of a k-automatic sequence,
we see that we can think of a k-automatic sequence taking values in a field K
as being a map f W f1; 2; : : : ; kg� ! K with the property that the collection of
maps f u.w/ WD f .wu/ obtained by taking a word u 2 f1; 2; : : : ; kg� is finite.
Similarly, if the vector space of set maps from f1; : : : ; kg� to K generated by the
maps of the form f u is finite-dimensional, then f is k-regular. We shall give an
overview of the work of Berstel and Reutenauer [77, Chapter 3], describing k-
automatic and k-regular sequences, in terms of two additional properties, which
for the purposes of this chapter we shall call the shuffle property and the power
property. These properties are defined in Section 4.2 and Section 4.3, respectively. In
Section 4.4 we present some results from the theory of rings satisfying a polynomial
identity which will be necessary in giving the aforementioned characterization of k-
regular sequences. In Section 4.5 we show that for a sequence, possessing these two
properties is equivalent to being regular. If in addition to having these two properties,
the sequence only takes on a finite number of values, the sequence is automatic. In
Section 4.6 and Section 4.7, we use our characterization to answer some questions of
Allouche and Shallit about whether certain sequences are k-regular and k-automatic.
In Section 4.8 we develop the basic properties of sequences with the shuffle property
and show that they have nice closure properties. In Section 4.9, we conclude with
some open problems and some useful remarks.

4.2 The Shuffle Property

In this section we define the shuffle property and show that regular sequences
necessarily possess this property. Let A be a finite alphabet and let K be a field.
Given a map f W A � ! K, we say that f has the d-shuffle property if for any words
w;w1; : : : ;wd;w0 2 A � we have

X


2Sd

sgn.
/f .ww
.1/w
.2/ � � �w
.d/w
0/ D 0: (4.2)

We define the dth-shuffle function

Shufd.f Iw;w1; : : : ;wd;w
0/ WD

X


2Sd

sgn.
/f .ww
.1/w
.2/ � � �w
.d/w
0/: (4.3)

Example 4.2.1. Let A D f0; 1g, let K be the field of rational numbers, and define
f .w/ to be the number of ones in the word w 2 A �. Then f has the 2-shuffle
property.
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Example 4.2.2. Let A D f0; 1g and define f .w/ to be the nonnegative integer
whose binary expansion is equal to w. Then f has the 4-shuffle property, but does
not have the 3-shuffle property.

We postpone the proof of the fact that f has the 4-shuffle property till after
the proof of Proposition 4.2.8. To see that f does not have the 3-shuffle property,
take w1 D 0, w2 D 1, w3 D 10. Then f .w1w2w3/ D Œ0110�2 D 6. Similarly,
f .w1w3w2/ D 5, f .w2w3w1/ D 12, f .w2w1w3/ D 10, f .w3w1w2/ D 9,
f .w3w2w1/ D 10. Thus

X


2S3

sgn.
/f .w
.1/w
.2/w
.3// D 6 � 5C 12 � 10C 9 � 10 D 2 6D 0:

The motivation for this shuffle property definition comes from the following
theorem of Amitsur and Levitzki [20].

Theorem 4.2.3 (Amitsur-Levitzki [20]). Let A1; : : : ;A2m be m	m matrices with
entries in a commutative ring C. Then

Sd.A1; : : : ;A2m/ WD
X


2S2m

sgn.
/A
.1/ � � �A
.2m/ D 0: (4.4)

Before we prove this result, we need a basic result about matrices.

Lemma 4.2.4. Let C be a commutative Q-algebra and let Y 2 Mn.C/. Suppose that
Y has the property that the trace of Yi is zero for i D 1; 2; : : : ; n. Then Yn D 0.

Proof. Let yi;j denote the .i; j/-entry of Y. Then we may assume without loss of
generality that C is generated by the yi;j. Now let R D QŒxi;jW 1 � i; j � n� and
let Z 2 Mn.R/ be the matrix whose .i; j/-entry is xi;j. We note that if we impose the
constraints on the xi;j that give that the trace of Zi is equal to zero for i D 1; 2; : : : ; n,
then we obtain a homomorphic image R0 of R and by hypothesis the map xi;j 7! yi;j

gives a surjective map Q-algebra homomorphism from R0 to C. Thus it is sufficient
to show that Zn D 0 in Mn.R0/. We note that there is a Q-algebra S that contains R
and is a finite R-module and that contains all the eigenvalues of the matrix Z. Then
the relations imposed by setting the trace of Zi to zero for i D 1; 2; : : : ; n give a
homomorphic image S0 of S that is a finite R0-module. Now Z is triangularizable in
Mn.S0/ and so we may assume that Z is upper triangular. Then if �1; : : : ; �n 2 S0 are
the diagonal entries of Z, then we have

Pn
iD1 �

j
i D 0 for j D 1; 2; : : : ; n. We now

claim that �1; �2; � � � ; �n are nilpotent elements of S0. Once we establish this claim,
we see that some power of Z is strictly upper triangular and so Z is nilpotent. Then
the Cayley-Hamilton theorem gives that Zn D 0 in Mn.S0/ and hence in Mn.R0/, and
so we get Yn D 0.

To establish the claim, we note that it is sufficient to show that if C is a finitely
generated commutative Q-algebra and �1; : : : ; �n 2 C satisfy

Pn
iD1 �

j
i D 0 for

j D 1; 2; : : : ; n then �1; : : : ; �n are nilpotent. Let N denote the nil radical of C (the
set of all nilpotent elements of C). Then we may replace C by C=N, and we see that
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it is sufficient to show that if C is a finitely generated reduced (i.e., it has no nonzero
nilpotent elements) commutative Q-algebra and �1; : : : ; �n 2 C satisfy

Pn
iD1 �

j
i D 0

for j D 1; 2; : : : ; n, then �1; : : : ; �n are all zero. Since a reduced commutative ring
embeds in a direct product of integral domains, we then see we can use projection
maps to reduce to the case of an integral domain. So we prove the more general fact
that if C is a commutative Q-algebra that is an integral domain and �1; : : : ; �n 2 C
are distinct and nonzero and ˇ1; : : : ; ˇn 2 C are nonzero then

P
ˇi�

j
i ¤ 0 for

some j D 1; : : : ; n. We note that the original claim follows easily from this more
general statement (but this requires characteristic zero). To see this general claim,
we note that since we are in an integral domain, we get the result for n D 1. Now
suppose that the result holds for n < d and consider the case where n D d. Then ifPd

iD1 ˇi�
j
i D 0 for j D 1; 2; : : : ; d, we see that

dX

iD1

ˇi�
j
i�d �

dX

iD1

ˇi�
jC1
i D 0

for j D 1; 2; : : : ; d � 1. Simplifying, we see that

d�1X

iD1

ˇi.�i � �d/�
j
i D 0;

for j D 1; : : : ; d � 1. But this contradicts the induction hypothesis, and we get the
claim. This finishes the proof. ut

Proof (Proof of Theorem 4.2.3). We only prove the case when C is an integral
domain, which is sufficient for the considerations of this chapter. Here we give an
argument due to Rosset [512] (we note that Rosset does the more general case of a
commutative ring). We note that one can immediately reduce to the case when C is
a field of characteristic zero, since an integral domain C of positive characteristic is
a homomorphic image of an integral domain C0 of characteristic zero, and one can
show that if the result holds for the field of fractions of C0 then it holds for C. Now
let A1; : : : ;A2n be 2n elements in Mn.C/ and let V be a 2n-dimensional C-vector
space with basis e1; : : : ; e2n. For each i � 0, we recall that there is a d-th exterior
product, ^dV is formed by taking the vector space Vd WD ˝

d
iD1V and then forming

the quotient Vd=Wd where Wd is the subspace of Vd spanned by elements of the form
ei1 ˝ � � � ˝ eid � sgn.
/e
.i1/ ˝ � � � ˝ e
.id/, where 
 2 Sd and 1 � i1; : : : ; id � 2n.
Then we let ei1^� � �^eid denote the image of ei1˝� � �˝eid in this quotient. Then one
can check that ^dV is a

�
2n
d

�
-dimensional space with basis consisting of elements of

the form ei1 ^ � � � ^ eid with i1 < i2 < � � � < id.
Now let E D

L2n
dD0 ^

i.V/; this is called the exterior algebra on V . Notice that
E is a ring with multiplication formed by taking the natural bilinear “wedge” map
^i.V/ 	 ^j.V/! ^iCj.V/ given by

�
.ep1 ^ � � � ^ epi/; .eq1 ^ � � � ^ eqj/

�
7! ep1 ^ � � � ^ epi ^ eq1 ^ � � � ^ eqj :
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Then E is generated as a C-algebra by e1; : : : ; e2n. Let Ee denote the subalgebra
of E consisting of the direct sum of ^iV with i even. Then Ee is generated by
elements of the form ei^ej as an algebra, and it is straightforward to check, using the
relations given above, that these elements commute with one another and so Ee is a
commutative ring of characteristic zero. Now consider B WD Mn.C/˝C E Š Mn.E/.
Let X D A1 ˝ e1 C � � � C A2n ˝ e2n 2 B. Then

Y WD X2 D
X

i<j

.AiAj � AjAi/ei ^ ej 2 Mn.Ee/:

Notice that Y has trace zero, as it is an Ee-linear combination of commutators. More
generally,

Yi D
X

1�j1;:::;j2i�2n

Aj1 � � �Aj2i ej1 ^ � � � ^ ej2i ;

which is equal to

X

1�j1<j2<���<j2i�2n

S2i.Aj1 ; : : : ;Aj2i/ej1 ^ � � � ^ ej2i :

It is straightforward to check that S2i.Aj1 ; : : : ;Aj2i/ always has trace zero for i � 1
and so we see that the trace of Yi is zero for i D 1; 2; : : : ; n. Thus Y is an n 	 n
matrix over the commutative Q-algebra Ee, and it has the property that the trace of
all of its powers is equal to zero. By Lemma 4.2.4, we have that Yn D 0. Thus
Yn D X2n D 0. As before, we have X2n D S2n.A1; : : : ;A2n/e1 ^ � � � ^ e2n and so
we get the desired result. ut

We now show that the d-shuffle property implies all larger shuffle properties hold.

Proposition 4.2.5. If f has the d-shuffle property, then f has the e-shuffle property
for all e � d.

Proof. By induction, it is sufficient to prove this when e D dC 1. Notice that

ShufdC1.f Iw;w1; : : : ;wdC1;w
0/

D

dC1X

iD1

.�1/i�1Shufd.f ;wwi;w1; : : : ; bwi; : : : ;wdC1;w
0/;

where bwi means that wi is omitted from the list. Hence if f has the d-shuffle property,
it must also have the .dC 1/-shuffle property. ut

We now introduce some notation. Given a finite alphabet A , a field K, a word
w 2 A � and a function f W A ! K, we define two functions fw; f w W A ! A by

fw.u/ WD f .wu/ and f w.u/ D f .uw/: (4.5)
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We now give some definitions.

Definition 4.2.6. Given a finite alphabet A , a field K, and a function f W A � ! K,
we say that f is left (resp. right) A -regular if the K-vector space spanned by the
functions ffw j w 2 A �g (resp. ff w j w 2 A �g) is finite-dimensional. If in addition
to being left (resp. right) A -regular, the range of f is a finite subset of K, we say
that f is left (resp. right) A -automatic.

Later, we will give Kleene’s theorem, which states that being left A -regular is
equivalent to being right A -regular. Thus we will omit the words left and right and
just use the term A -regular. In the case that A D f1; 2; : : : ; kg, we shall say that a
right A -regular function is k-regular and shall say that a right A -automatic function
is k-automatic.

Notice that this definition of k-regular coincides with the definition of k-regular
given by Allouche and Shallit [14] and the definition of k-automatic coincides with
the conventional definitions of the k-automatic property.

For convenience, we use the following notation. Given a finite alphabet A , a
field K, and a function f W A � ! K, we let L.f / denote the K-vector space spanned
by the functions ffw j w 2 A �g, and we let R.f / denote the vector space spanned by
ff w j w 2 A �g.

Proposition 4.2.7. Let A be a finite alphabet and let f be a left (resp. right) A -
regular function taking values in a field K. Let m denote the dimension of L.f / (resp.
the dimension of R.f /). Then there exist some m � 1, m 	m matrices fAa j a 2 A g
with entries in K, and v;w 2 Kd�1 such that

f .x1 � � � xi/ D wTAx1 � � �Axi v

for all words x1 � � � xi 2 A �.

Proof. Choose " D w1; : : : ;wm 2 A � such that fw1 ; : : : ; fwm span the vector space
L.f /. Given x 2 A , for each i pick ci;j 2 K, j � m, such that

fxwi D

mX

jD1

ci;jfwj :

Define the m	m matrix Ax whose .i; j/-entry is given by ci;j. Take v to be the m	 1
column vector whose ith coordinate is f .wi/. Notice that if x1; : : : ; xi 2 A , then

eT
1Ax1 � � �Axi v D f .x1 � � � xi/:

In the case that f is right A -regular, an analogous construction gives the same result.
ut

Proposition 4.2.8. Let A be a finite alphabet, let K be a field, and let f W A � ! K
be a left (resp. right) A -regular sequence. Then f has the d-shuffle property for
d D 2dim.L.f // (resp. d D 2dim.R.f //).
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Proof. Let m denote the dimension of L.f /. Since f is left A -regular, there exist
m 	 m matrices fAx j x 2 A g with entries in K and some vector v 2 Kd�1 such that

f .x1 � � � xm/ D eT
1Ax1 � � �Axm v

for all words x1 � � � xm 2 A �. Let d D 2m. We claim that f has the d-shuffle property.
To see this, let w1; : : : ;wd;w;w0 be words in A �. Let S denote the monoid on
fAx j x 2 A �g. Then there exist matrices U1; : : : ;Ud;U;U0 in S which correspond
to w1; : : : ;wd;w;w0, respectively, given by the correspondence " 7! Id and

x1 � � � xm 2 A � 7! Ax1 � � �Axm :

Then

f .ww
.1/ � � �w
.d/w
0/ D eT

1UU
.1/ � � �U
.d/U0v:

Hence

X


2Sd

sgn.
/f .ww
.1/ � � �w
.d/w
0/ D

X


2Sd

eT
1U

 
X


2Sd

U
.1/ � � �U
.d/

!
U0v

D 0;

where the last step follows from the Amitsur-Levitzki theorem. ut

We now prove that the function given in Example 4.2.2 has the 4-shuffle property.
We note that if f W f0; 1g� ! Q is the function which maps a word w to Œw�2, where
Œw�2 is the natural number whose binary expansion is equal to w, then the Q-vector
space R.f / is two-dimensional, spanned by f and the constant function g which
sends every word to 1. To see this, notice that f w.u/ D Œuw�2 D 2length.w/Œu�2 C Œw�2
and so

f w D 2length.w/f C Œw�2g:

Clearly f and g are both in R.f / and are linearly independent. Thus dim.R.f // D 2

and so f has the 4-shuffle property.

4.3 The Power Property

In this section we define the power property, which is the second ingredient of
the characterization of automatic and regular sequences of Berstel and Reutenauer.
Given a finite alphabet A and a field K, we say that f W A ! K has the d-power
property if for any word w0, there exists a polynomial ˚.t/ 2 KŒt� of degree at most
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d with constant coefficient 1 such that for any words w;w0 we have

˚.t/

 
1X

iD0

f .wwi
0w
0/

!
ti;

is a polynomial in KŒt� of degree at most d. We shall say that f has the power property
if f has the d-power property for some d � 1.

Lemma 4.3.1. Let K be a field and let X be a d 	 d matrix with entries in K. Then

1X

iD0

Xiti D Y.t/ det.1 � tX/�1;

for some matrix Y with entries in KŒt� of degree at most d � 1.

Proof. Let Y.t/ denote the classical adjoint of 1 � tX. Then Y.t/ is a matrix with
entries given by polynomials in t of degree at most d � 1 and

Y.t/.1 � tX/ D det.1 � tX/Id:

Notice that

Y.t/.1 � tX/
1X

iD0

Xiti D Y.t/

and so

1X

iD0

Xiti D Y.t/ det.1 � tX/�1:

ut

Proposition 4.3.2. Let f be a A -regular function taking values in a field K. Then f
has the m-power property, where m is the dimension of L.f /.

Proof. It suffices to show that for any word w0 and w;w0 that

1X

iD1

f .wwi
0w
0/ti

is a rational function in t whose numerator and denominator have degrees that are
at most m (with denominator independent of w;w0 and depending only upon w0 and
having constant coefficient 1). By Proposition 4.2.7, there exists some m and m	m
matrices U;U0;U0 such that f .wwi

0w
0/ D eT

1UUi
0U
0v. We then have
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1X

iD0

f .wwi
0w
0/ti

D

1X

iD0

eT
1U

 
Ui
0

!
U0v

D eT
1U

 
1X

iD0

Ui
0t

i

!
U0v

D eT
1UY.t/U0v � det.1 � U0t/

�1;

where Y.t/ is the classical adjoint of 1 � U0t. This expression is easily seen to be a
rational function of the form

P.t/˚.t/�1;

and the numerator and denominator have degree at most m and ˚.0/ D 1 and ˚
depends only upon U0 and hence only on w0. ut

4.4 Shirshov’s Height Theorem

We now introduce an important result in combinatorial ring theory: Shirshov’s
theorem. We have seen that A -regular functions have both the shuffle and power
properties. In fact, it is the case that the shuffle and power properties characterize
regular sequences. To deduce this we need a famous combinatorial result due to
Shirshov. We first take a detour and survey the beautiful field of polynomial identity
algebras.

Definition 4.4.1. Let K be a field and let B be a K-algebra. We say that B is
a polynomial identity ring if there exists a nonzero, noncommutative polynomial
p.x1; : : : ; xd/ with coefficients in K, such that p.b1; : : : ; bd/ D 0 for all b1; : : : ; bd 2

B. In this case the polynomial p is called a polynomial identity for B. The total degree
of the polynomial identity p of B of least positive degree is called the PI degree of
B.

Example 4.4.2. Any commutative algebra B is a polynomial identity ring since it
satisfies the identity x1x2 � x2x1 D 0.

Example 4.4.3 (Wagner). The ring of 2 	 2 matrices over a field K satisfies the
identity Œx1; Œx2; x3�2� D 0, where Œa; b� D ab � ba.

Proof. Notice that if X is a 2 	 2 matrix then by the Cayley-Hamilton theorem

X2 � Tr.X/XC det.X/I2 D 0:



4 Some Applications of Algebra to Automatic Sequences 153

Hence if X has trace 0, then its square is a scalar matrix. In particular the square of
a commutator must commute with every 2 	 2 matrix. ut

An important fact is that if a ring B satisfies a nontrivial polynomial identity, then
it in fact satisfies a homogeneous multilinear identity (i.e., each monomial occurring
in the identity has degree precisely one in each variable).

Proposition 4.4.4. Let K be a field and let B be a K-algebra satisfying a polynomial
identity of degree at most d. Then B satisfies a multilinear homogeneous identity of
degree at most d.

Proof. Let m.f / be the maximum degree of a variable appearing in f . Among all
nonzero polynomial identities, we pick one with the property that m.f / is minimal.
Let us call this minimum m. Among all such identities with m.f / D m, we pick
one with the property that the number of variables of degree m is minimal. Let
f .x1; : : : ; xd/ be such a minimal polynomial identity for the ring B. By permuting the
variables, if necessary, we may assume that m is the degree of x1 in f . Consider the
identity g.x1; y1; x2; : : : ; xd/ WD f .x1 C y1; : : : ; xd/� f .x1; : : : ; xd/� f .y1; : : : ; xd/ 2

Kfx1; y1; x2; : : : ; xdg. We note that this is an identity for B. Then it is straightforward
to see that this transforms any monomial of degree m in x1 to a monomial of total
degree m in x1 and y1 and no terms of degree m in just x1 or just y1. That means
that either m.g/ < m or m.g/ D m but the number of variables of degree m
in g is strictly less than that of f . By minimality of f we have that g D 0. But
this occurs only if m D m.f / D 1. So having m D 1 says that every monomial
appears with degree at most 1. Now pick a monomial occurring in f with nonzero
coefficient of smallest degree, say r � d, By relabeling indices, we may assume that
the monomial is x1 � � � xr. Then consider f .x1; : : : ; xr; 0; : : : ; 0/. This is nonzero and
must be homogeneous by minimality of r.

Notice this process yields an algorithm to convert a polynomial identity into a
homogeneous multilinear identity. One begins with an identity, and if it is of degree
strictly greater than one in some variable, say x1, then we add a new variable y1,
and we look at f .x1 C y1; : : :/ � f .x1; : : :/ � f .y1; : : :/. This creates an additional
variable, but the total degree does not increase. If we keep repeating this process,
the argument above shows that it must terminate and so we obtain an identity
in some set of variables in which each variable occurs with degree at most 1.
Then we pick a monomial of minimal length and set all variables not occurring
in this monomial equal to zero to get a homogeneous multilinear identity. Notice
that the total degree never increases at any step, so we see the total degree of
the homogeneous multilinear identity we ultimately produce is at most that of the
original identity. ut

Remark 4.4.5. We note that in the case that the polynomial p.x1; : : : ; xd/ is mul-
tilinear and homogeneous, to check that a K-algebra B satisfies this identity, it is
sufficient to check that p.b1; : : : ; bd/ D 0 for .b1; : : : ; bd/ 2 Yd where Y is a K-
spanning set for B.

Proof. To see this, we remark that if a1; : : : ; ad 2 B then we can write each ai as
a K-linear combination of elements of Y . Then using multilinearity, we can write
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p.a1; : : : ; ad/ as a K-linear combination of elements of the form p.b1; : : : ; bd/ with
.b1; : : : ; bd/ 2 Yd. Thus if the latter all vanish, then p is necessarily an identity for
B. ut

We will make use of this fact for algebras B of the form B WD Kfx1; : : : ; xkg=I,
where I is a two-sided ideal of the free algebra on noncommuting variables
x1; : : : ; xk. In this case, we can take the images of the words in x1; : : : ; xk to be
our spanning set, and so to check that a homogeneous multilinear identity holds for
an algebra B, it suffices to check that it vanishes when evaluated at elements from
the semigroup generated by a finite set of generators.

Arguably, the most important types of identities studied in the theory of
polynomial identities are the standard identities, which we already encountered,
albeit in a different form, when addressing the shuffle property. The nth standard
identity is defined as follows:

Sn.x1; : : : ; xn/ D
X


2Sn

sgn.
/x
.1/ � � � x
.n/: (4.6)

The Amitsur-Levitzki theorem shows that the ring of n 	 n matrices over a
commutative ring satisfies the 2nth standard identity. In fact, every finitely generated
algebra satisfying a polynomial identity must satisfy one of these standard identities.

Theorem 4.4.6 (Braun). Let K be a field and let B be a finitely generated K-
algebra satisfying an identity. Then B satisfies the identity Sn for some n � 1.

Proof. See Braun [105] or Amitsur and Small [21, Corollary 1.2.8A]. ut

We recall that if we are given a free monoid A � with A D fx1; : : : ; xkg, we can put
a pure lexicographic order � on A � by declaring that

x1  x2  � � �  xk:

In this order we declare that if w is a proper initial factor of w0 then w  w0. So,
for example, x1 � x1x3 and x2x3x4  x3x1. We note that this lexicographic order
extends to right infinite words on A . If we alter the order somewhat and use the
pure lexicographic order to order words of the same length and for words of different
length declare that the longer word is bigger, then this new order is called the degree
lexicographic order.

Using intricate combinatorial techniques, Shirshov proved the following beauti-
ful result.

Theorem 4.4.7 (Shirshov). Let A D fx1; : : : ; xkg be a finite alphabet, and let m
be a positive integer. If w is a right-infinite word over the alphabet A , then either
there is some nontrivial word w0 2 A � such that wd

0 is a factor of w for every d � 1
or w contains a finite factor of the form w1w2 � � �wm where w1 � w2 � � � � � wm are
nontrivial words in A � with no wi equal to a prefix of wj for i ¤ j and � is the pure
lexicographic order induced by x1 � x2 � � � � � xk.
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We postpone the proof of Shirshov’s theorem until we have developed a few basic
combinatorial tools.

To prove Theorem 4.4.7, we require two basic combinatorial tools. The first is
König’s infinity lemma; the second is a theorem of Furstenberg.

Theorem 4.4.8 (König’s infinity lemma). Let A be a finite alphabet, and let S
be an infinite subset of A � that is closed under the process of taking factors. Then
there exists w 2 A N such that every finite factor of w is in S .

Proof. We define w D a1a2 � � � as follows. Since S is infinite, there is some a1 2 A
such that a1 is the first letter of infinitely many elements of S ; now suppose that for
every i � 1 we have defined a word a1a2 � � � ai with the property that it is a prefix
of infinitely many elements of S . Then since A is finite, there is some aiC1 2 A
such that a1a2 � � � aiaiC1 is a prefix of infinitely many elements of S . Continuing in
this way, we obtain an infinite word w with the desired property. ut

The next result is Furstenberg’s theorem, which is part of a more general result
in Ergodic theory. We give an algebraic proof in the case in which we are interested.
We recall that a right-infinite word is uniformly recurrent if each factor u has the
property that there is some natural number N D N.u/ such that whenever u occurs
as a factor, its next occurrence is at most N positions later in our right-infinite word.
As far as we know, this rather simple proof (which requires the axiom of choice)
does not appear in the literature.

Theorem 4.4.9 (Furstenberg’s theorem). Let A be a finite alphabet and let w 2
A N. Then there is a uniformly recurrent word u 2 A N such that every finite factor
of u is a factor of w.

Proof. Let K be a field. Write A D fx1; : : : ; xkg, and consider the algebra B D
Kfx1; : : : ; xkg=I, where I is the ideal generated by all monomials that do not occur
as a factor of w. Then B is infinite-dimensional as a K-vector space since w is infinite
and the images of the factors of w are linearly independent in B. Now let S denote
the collection of ideals J of Kfx1; : : : ; xkg that are generated by monomials, contain
I, and have the property that B=J is infinite-dimensional. Then S is nonempty since
I is in S . We note that S is closed under unions of chains, for if L is the union
of a chain in S , then L is certainly generated by monomials and contains I; if
Kfx1; : : : ; xkg=L is finite-dimensional, then there is some N such that L contains all
monomials of length � N. In particular, L is finitely generated as it generated by
all monomials of length exactly N along with the finite set of monomials of length
< N that are in L. Since L is the union of a chain in S , and L is finitely generated,
there is some element in our chain that must be equal to L. Thus we can pick a
maximal element L of S by Zorn’s lemma. Now since L is generated by monomials,
Kfx1; : : : ; xkg=L is spanned by the images of all monomials over x1; : : : ; xk that are
not in the ideal L. Since Kfx1; : : : ; xkg=L is infinite-dimensional and the collection
of words that are not in L is closed under taking factors, we see by König’s infinity
lemma that there is a right-infinite word u with the property that all factors of u are
not in L. In particular, they are not in I, and so all factors of u are factors of w.
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We claim that u is uniformly recurrent. If not, there is some finite factor u0 such
that there are arbitrarily long factors of u that avoid u0. Then let L0 be the ideal
generated by u0 and L. Then since there are arbitrarily long words in u that avoid
u0, we see that these words have nonzero image in the ring Kfx1; : : : ; xkg=L0, and so
Kfx1; : : : ; xkg=L0 is infinite-dimensional. But this contradicts maximality of L in S .
The result follows. ut

Proof (Proof of Theorem 4.4.7). We follow the proof of Pirillo [484]. By Fursten-
berg’s theorem, there is some uniformly recurrent right-infinite word v such that
every factor of v is a factor of w. Now if v is eventually periodic, then v D v0w!0
for some v0;w0 with w0 nontrivial, and we get the claim. If v is not eventually
periodic, then v must have at least m distinct factors of length m � 1 (see [14,
Theorem 10.2.6]). Let w1; : : : ;wm be these distinct factors and suppose that w1 �
w2 � � � � � wm. Since v is uniformly recurrent, there is a factor v0 of v that can
be written in the form v0 D v1 � � � vm where wi is a prefix of vi. Then we see
that v
.1/ � � � v
.m/  v1 � � � vm, where the inequality is strict whenever 
 is not the
identity. ut

Shirshov’s theorem has as an immediate application the following result about
algebras satisfying a polynomial identity.

Corollary 4.4.10 (Shirshov). Let K be a field and let B be a finitely generated K-
algebra with generators x1; : : : ; xk that satisfies a polynomial identity. Then either
B is finite-dimensional as a K-vector space or there is some word w 2 fx1; : : : ; xdg

�

such that the images of 1;w;w2; : : : in the algebra B are linearly independent over
K.

Proof. We put the degree lexicographic order, , on the monomials in fx1; : : : ; xkg
�

induced by the x1 � x2 � � � � � xk. We let p be the corresponding pure
lexicographic order. Let I be the two-sided ideal of Kfx1; : : : ; xkg generated by the
collection of monomials w 2 fx1; : : : ; xkg

� with the property that the image of w
in B can be expressed as a K-linear combination of the image of monomials that
are strictly smaller than w in the degree lexicographic order. Since B satisfies a
polynomial identity, we know that it satisfies a homogeneous multilinear identity by
Proposition 4.4.4. We may write this identity as

f .x1; : : : ; xm/ D x1 � � � xm C
X


2Smnid

c
x
.1/ � � � x
.m/:

It then follows that if w1 �p w2 �p w3 �p � � � �p wm with no wi equal to a prefix of
wj for i ¤ j then the identity f shows that w1w2 � � �wm can be written as a K-linear
combination of strictly smaller words in the degree lexicographic order.

Now if Kfx1; : : : ; xkg=I is finite-dimensional, then B is finite-dimensional since
by construction the images in B of words over fx1; : : : ; xkg

� that are not in I span
B as a K-vector space. So if B is infinite-dimensional over K, then Kfx1; : : : ; xkg=I
must be infinite-dimensional. Then there are arbitrarily long words on fx1; : : : ; xkg

�

that are not in the ideal I, and so by König’s infinite lemma, we see that there is a
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right-infinite word w whose factors all lie outside of the ideal I. But by the remarks
above, we see that w cannot contain any factor of the form w1w2 � � �wm with w1 �p

w2 �p w3 �p � � � �p wm with no wi equal to a prefix of wj for i ¤ j. Thus, by
Shirshov’s theorem, there is a nontrivial word w0 such that for every d � 1, wd

0 is
a factor of w. This means that w0;w20; : : : are not in I. By definition of I this means
that their images in B are linearly independent in B. ut

In fact, there is an even stronger version of Shirshov’s theorem for rings satisfying
a polynomial identity, which we give now.

Theorem 4.4.11 (Strong version of Shirshov’s theorem). Let C be a commutative
ring, and let B be a finitely generated C-algebra with generators x1; : : : ; xk and
which satisfies a polynomial identity of degree d. Then every element in B is a C-
linear combination of elements of the form

wi1
1 � � �w

im
m ;

where m � d5kd and w1; : : : ;wm are words of length less than d.

Proof. See Theorem 1.2.2 of Amitsur and Small [21]. ut

We have the following unexpected application of Shirshov’s theorem to functions
with a shuffle property.

Corollary 4.4.12. Let K be a field and let f W A ! K have the d-shuffle property.
Then the vector space L.f / (resp. R.f /) is spanned by elements of the form f

w
j1
1 ���w

jm
m

(resp. f w
j1
1 ���w

jm
m ) with m � d5jA jd and w1; : : : ;wm words of length at most d.

Proof. Write A D fx1; x2; : : : ; xkg. Let B D Kfx1; : : : ; xkg be the free K-algebra
on k-variables, i.e., the ring of “noncommutative polynomials” in k variables with
coefficients in K.

We define an ideal I 
 Kfx1; : : : ; xkg as follows. Given words w1; : : : ;wm in
x1; : : : ; xk, we declare that

c1w1 C � � � C cmwm 2 I

if

c1fuw1 C � � � C cmfuwm is identically 0 for all u 2 A �:

We note that all such relations form an ideal. Notice that since f has the d-shuffle
property, for any d words w1; : : : ;wd, we have

Sd.w1; : : : ;wd/ D
X


2Sd

sgn.
/w
.1/ � � �w
.d/ 2 I:

Since the function

Sd.x1; : : : ; xd/
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is multilinear, we see that Sd.b1; : : : ; bd/ 2 I for all b1; : : : ; bd in B. Consequently,
B=I satisfies a polynomial identity. It follows from Theorem 4.4.11 that every
element of B=I is a K-linear combination of the images of elements of the form
wj1
1 � � �w

jm
m with m � d5jA jd, j1; : : : ; jm � 0 and w1; : : : ;wm words of length at most

d. It follows that any word w 2 fx1; : : : ; xkg
� there is some b 2 I such that w�b can

be written as a linear combination of words of the form wj1
1 � � �w

jm
m with m � d5jA jd

and w1; : : : ;wm of length at most d. By definition of I we then have

fw 2 SpanKffwj1
1 ���w

jm
m
j m � d5jA jd; length.wi/ � d for i � mg:

We thus obtain the desired result. A similar argument works for the vector space
R.f /. ut

4.5 Characterization of A -Regular Sequences

In this section, we are finally able to give the general version of Kleene’s theorem
along with the structure result of Berstel and Reutenauer.

Lemma 4.5.1. Let K be a field, let d and e be positive integers, and let f W A � !
K be a function with the e-power property and let m be at most d5jA jd and let
w1; : : :wm be words of length at most d. Then there exists e � 0 such that the K-

vector space spanned by ff
w

i1
1 ���w

im
m
j i1; : : : ; im � 0g (resp. f w

i1
1 ���w

im
m j i1; : : : ; im � 0g)

is spanned by

ff
w

i1
1 ���w

im
m
j 0 � i1; : : : ; im � eg

(resp. ff
w

i1
1 ���w

im
m
j 0 � i1; : : : ; im � eg).

Proof. By the e-power property, there exist polynomials ˚1; : : : ; ˚m of degree at
most e with constant coefficient 1 such that for every word u we have

˚i.t/
1X

sD0

f .wi1
1 � � �w

s
j � � �w

im
m u/ti1 � � � tim

is a polynomial in KŒt� of degree at most e. Let e be the maximum of the degrees of
P; ˚1; : : : ; ˚m. Now suppose that it is not the case that ff

w
i1
1 ���w

im
m
j 0 � i1; : : : ; im � eg

spans ff
w

i1
1 ���w

im
m
j i1; : : : ; im � 0g. Then there exist j1; : : : ; jm with ji > e for some i

such that f
w

j1
1 ���w

jm
m

is not in the span of S . It is no loss of generality to assume that

.j1; : : : ; jm/ has the property that if .j01; : : : ; j
0
m/ satisfies:

• j0k � jk for 1 � k � m; and
• .j01; : : : ; j

0
m/ 6D .j1; : : : ; jm/,



4 Some Applications of Algebra to Automatic Sequences 159

then

f
w

j01
1 ���w

j0m
m

2 ff
w

i1
1 ���w

im
m
j 0 � i1; : : : ; im � eg:

By assumption ji > e and by the e-power property, we have

eX

kD0

ckf
w

j1
1 ���w

ji�k
i ���w

jm
m
D 0;

where ck is the coefficient of xk in ˚i. Hence

f
w

j1
1 ���w

jm
m
2 SpanKffwj1

1 ���w
ji�k
i ���wim

m
j 1 � k � jigg;

since ˚i has constant coefficient 1. By minimality, we deduce that f
w

j1
1 ���w

jm
m

is in the

span of ff
w

i1
1 ���w

im
m
j 0 � i1; : : : ; im � eg, a contradiction. The result follows. ut

Theorem 4.5.2 (Berstel-Reutenauer). Let K be a field and let f W A � ! K. Then
the following are equivalent:

1. f is right k-regular;
2. f is left k-regular;
3. f has the d-shuffle and the d-power property for some d;
4. f has the d-shuffle and the d-power property for all sufficiently large d.

Proof. From Propositions 4.2.5, 4.2.8, and 4.3.2, we have that if f is either right or
left k-regular, then f has the d-shuffle and the d-power property for all sufficiently
large d. Hence .1/ and .2/ both imply .4/. Clearly .4/ implies .3/. Thus, it is
sufficient to show that if f has the d-shuffle and the d-power property for some
d, then f is both left and right regular. Suppose that f has the d-shuffle and the d-
power property. We claim that the K-vector space L.f / is finite-dimensional. To see
this, notice that by Corollary 4.4.12, the vector space L.f / is spanned by elements of
the form f

w
i1
1 ���w

im
m

with m � d5jA jd and w1; : : : ;wm having length at most d. Since

f has the d-power property, by Lemma 4.5.1 for any words w1; : : : ;wm of length at
most d with m � d5jA jd, the K-vector space spanned by ff

w
i1
1 ���w

im
m
j i1; : : : ; im � 0g

is spanned by

ff
w

i1
1 ���w

im
m
j 0 � i1; : : : ; im � dg:

It now follows that L.f / is in the K-span of the set

[

m�d5jA jd

[

length.wj/�d;

1�j�m

ff
w

i1
1 ���w

im
m
j i1; : : : ; im � dg:



160 J. Bell

Thus L.f / is finite-dimensional and so f is left A -regular. A similar argument shows
that f is right A -regular and hence .3/ implies both .1/ and .2/. ut

As a result of the equivalence between left and right regularity, we drop the words
left and right and talk only of A -regular functions from now on.

Corollary 4.5.3. Let f W A � ! A. Then the following are equivalent:

1. f is k-automatic;
2. f has the d-shuffle and the d-power property for some d and has a finite range;
3. f has the d-shuffle and the d-power property for all sufficiently large d and has a

finite range.

We make the following remark that follows from the proof of Theorem 4.5.2. This
gives a bound on the dimension of the vector space in terms of the quantities d and
e for which one has the d-shuffle and e-power property, which is undoubtedly far
from optimal, but has the advantage of being explicit in terms of d and e.

Remark 4.5.4. If jA j � 2 and f W A � ! K has the d-shuffle property and the
e-power property, then L.f / and R.f / are both at most N-dimensional where

N D .eC 1/d
5jA jdA j2d6jA jd :

Proof. The proof of Theorem 4.5.2 shows that L.f / is in the K-span of the set

[

m�d5jA jd

[

length.wj/�d;

1�j�m

ff
w

i1
1 ���w

im
m
j i1; : : : ; im � eg:

Since there are at most jA jdC1 words of length at most d, we see that the number
of m-tuples of words of length at most d with m � d5jA jd is at most

d5jA jd jX

mD1

jA j.dC1/mj � jA j2d6jA jd :

Now for each such m-tuple, we pick up a space of dimension at most .e C 1/m in
our spanning set, and so the dimension of L.f / is at most .eC 1/d

5jA jd jA j2d6jA jd . A
similar argument works for R.f /. ut

4.6 Sandwich Functions

In this section we introduce a special type of function that is produced from a
K-valued function on a free monoid, where K is a field; these functions will be
called, for reasons that will soon become apparent, sandwich functions. We will
then characterize all automatic sandwich functions.
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Let A D fx1; : : : ; xkg be a finite alphabet. We put a pure lexicographic order �
on A � by declaring that

x1  x2  � � �  xk:

We note that this lexicographic order extends to right infinite words over the
alphabet A .

Let w1 and w2 be two (possibly right-infinite) words on A with w1 � w2. In
dealing with right-infinite words, it will be convenient to use w! to denote the right-
infinite word wwww � � � . We define f W A ! f0; 1g by f .w/ D 1 if w1 � w � w2
and f .w/ D 0 otherwise. We call f a sandwich function since the words which get
mapped to 1 are sandwiched between w1 and w2.

Example 4.6.1. Let A D fx1; : : : ; xkg. Then the constant function 1 and the
constant function 0 are both sandwich functions.

Proof. To get the constant function 1, take w1 D " and take w2 D x!k . To get the
constant function 0, take w1 D w2 D x!k . ut

Example 4.6.2. Let A D fx1; : : : ; xkg. Then the function f which sends words
beginning with x1 to 1 and all other words to 0 is a sandwich function.

Proof. Take w1 D x1 and take w2 D x1x!k . Then the sandwich function given by
these words is f . ut

We now characterize A -automatic sandwich functions. To do this we first prove
some basic results. As notation for the following lemma, we introduce the function �
which inputs a statement and outputs 1 if the statement is true and 0 if the statement
is false.

Lemma 4.6.3. Let w be a (possibly right-infinite) word on a finite alphabet A
which is either finite or eventually periodic. Then the functions f .u/ WD �.u � w/
and g.u/ D �.u � w/ are both A -automatic.

Proof. If w is finite, notice that if v is a word whose length is greater than the length
of w, then

fv.u/ D f .vu/ D �.vu  w/ D �.v � w/:

Hence the vector space L.f / is contained in the space spanned by the constant
function 1 and the functions ffv j length.v/ � length.w/g. Thus L.f / is finite-
dimensional. A similar argument shows that L.g/ is finite-dimensional. If w is
eventually periodic, then we can write w D w1w!2 . Notice that if v is not an initial
factor of w, then

fv.u/ D f .vu/ D �.vu � w/ D �.v � w/;
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which is a constant function. If v is an initial factor of w of length at least
length.w1/C 2length.w2/, then fv D fv0 , where v0 is an initial factor of v obtained
by removing the last length.w2/ letters from v. Hence L.f / is again contained in
a finite-dimensional vector space and hence must be finite-dimensional. A similar
argument works for L.g/. ut

We need a lemma about monotonic subsequences.

Lemma 4.6.4. Let w be a right-infinite word on a finite alphabet A which is not
eventually periodic. Then for any d � 1, there exist finite words u1; : : : ; ud such
that:

• length.u1/ < length.u2/ < � � � < length.ud/;
• the sequence u1; : : : ; ud is monotonic with respect to ;
• for 2 � i � d, there exists a word u0i 6D ui of the same length as ui which does not

have ui�1 as an initial factor and has the property that ui�1; u0i; ui is monotonic;
• u1u2 � � � ud is a factor of w.

Proof. For i � 0 define wi to be the right-infinite word obtained by removing the
first i letters from w. Since w is not eventually periodic, the words w0;w1; : : : are
all distinct. It follows that they are totally ordered by . It follows that there is a
monotonic (with respect to ) subsequence wi1 ;wi2 ; : : : of w0;w1; : : :. Without loss
of generality wi1  wi2  � � � : Let vj D wij for j � 1. Pick k1 D 1. Since v1  v2
and v2 is not eventually periodic, there exists some number m1 such that the first m1

letters of v1 differ from the first m1 letters of v2 and the first m1 letters of v2 differ
with the first m1 letters of v3. Choose j1 � m1 such that if we remove the first j1
letters of v1 be obtain a word vk2 with k2 � 3. Define u1 to be the first j1 letters of
v1. Now vk2  vk2C1 and hence there is some m2 such that the first m2 letters of vk2
differ from the first m2 letters of vk2C1 and the first m2 letters of vk2C1 differ from
the first m2 letters of vk2C2. As before, we choose j2 > max.j1;m2/ such that if we
remove the first j2 letters of vk2 we obtain some word vk3 with k3 � k2 C 2. We
define u2 to be the first j2 letters of vk2 and u02 to be the first j2 letters of v2. Notice
that u1  u02  u2 and u02 6D u2, and it cannot have u1 as an initial factor of u1.
Continuing in this manner, we see that we can write

w D uu1u2u3 � � �

with u some initial factor and words u1; u2; : : : ; ud, u01; : : : ; u
0
d satisfying the

conditions in the statement of the lemma. ut

Theorem 4.6.5. Let w1 and w2 be (possibly right-infinite) words on a finite
alphabet. Then the sandwich function f corresponding to w1 and w2 is A -automatic
if and only if w1 and w2 are both either finite or ultimately periodic.

Proof. Suppose that w1 is neither finite nor ultimately periodic. Write w1 D w01w
00
1

where w01 is a finite word which is not an initial factor of w2 and w001 is a right-infinite
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word. Then w001 is not eventually periodic and hence by Lemma 4.6.4, for any d we
can find words u; u1; u2; : : : ; ud such that w1 D w01uu1 � � � udu0 for some right-infinite
word u0; u1; : : : ; ud is monotonic with respect to ;

length.u1/ < � � � < length.ud/I

and for i � 2 there exist words u0i with ui�1; u0i; ui monotonic with u0i 6D ui,
length.u0i/ D length.ui/ and ui�1 not an initial factor of u0i. We have two cases:

Case I u1  u2  � � �  ud.

In this case take vd D u0d and for 1 � i � d � 1 take vi D ui. Consider

Shufd.f Iw
0
1u; v1; : : : ; vd�1; vd; �/:

Notice that since w01u is lexicographically less than the initial factor of w2 of the
same length and since v1  v2  � � �  vd, we have that

w1  w01uv
.1/ � � � v
.d/  w2

unless 
 is the identity. When 
 is the identity, we have w1 6� w01uv1 � � � vd and
hence

X


2Sd

sgn.
/f .w01uv
.1/ � � � v
.d// � 1.mod 2/:

Thus f cannot have the d-shuffle property. Since d is arbitrary we conclude that f is
not A -automatic.

Case II: u1 � u2 � � � � � ud.

In this case take vd D u0d and for 1 � i � d� 1 take vi D ui. In this case we have

f .w01uv
.1/ � � � v
.d// D 1 if and only if
 6D id:

Thus the result again holds in this case.

In either case, the d-shuffle property fails to hold for any d, and so our function
cannot be A -regular. A similar argument shows that f is not A -regular if w2 is
right-infinite and not eventually periodic.
Next consider what happens if w1 and w2 are finite or eventually periodic. Then by
the lemma

f .w/ D �.w � w1/�.w  w2/

and hence f is the coordinate-wise product of two A -automatic sequences. It
follows that f is automatic. ut
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4.7 Applications

4.7.1 The Logarithm and Automaticity

We now give an application of our description of automatic sandwich functions
to answer a question of Allouche and Shallit. We note that this question had been
answered via a different method by Yossi [425] in 2008.

Proposition 4.7.1. Let ˛ 2 R. Then the sequence given by f .0/ D 1 and

f .n/ D blogk nC ˛c for n � 1

is k-regular if and only if k˛ is rational.

Proof. We may assume that ˛ 2 Œ0; 1/. It is easy to verify that the function g.0/ D 0
and g.n/ D blogk nc for n � 1 is k-regular. Let us consider the function f .n/� g.n/.
This function takes values in f0; 1g and is 1 at an integer n � 1 if and only if there
is some integer m such that

logk nC ˛ � m > logk n:

Equivalently, we must have

k˛n � km � n:

Write

k�˛ D
1X

iD1

ai=ki

with ai 2 f1; 2; 3; : : : ; kg. Let w1 D " and let w2 be the right-infinite word
a1a2a3 � � � . Let w be the word in f1; 2; : : : ; kg which corresponds to n using the
correspondence described in equation (4.1). Then if we regard h WD f � g as a
function on f1; 2; : : : ; kg�, then h.w/ D 1 if and only if w � w2, where  is the
lexicographic order induced by taking 1  2  � � �  k; equivalently, h.w/ D 1 if
w1 � w � w2 and is 0 otherwise. Hence h is a sandwich function. Notice that w2 is
a right-infinite word which is eventually periodic if and only if k˛ is rational. Thus
h is k-regular if and only if k˛ is rational. Since f D gC h and g is k-regular, we see
that f is k-regular if and only if h is k-regular. The result now follows. ut

Allouche and Shallit [14] ask whether the sequence blog2 n C 1
2
c is 2-automatic;

since
p
2 is irrational, we deduce that it is not.
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4.7.2 The 2-Adic Behavior of the Logarithm

Allouche and Shallit [14, Section 16.7, Q. 4] ask whether the sequence

f .n/ D min
i�nC1

i � v2.i/

is 2-regular, where v2.i/ is the 2-adic valuation; that is, v2.i/ satisfies 2v2.i/ji but
2v2.i/C1 6 ji. We show that it is not. Here we use the fact that right regularity and left
regularity are equivalent properties to answer a question which is difficult to handle
using the traditional definition of regularity in terms of right regularity, but which is
easily handled if one uses the notion of left regularity.

Proposition 4.7.2. Let

f .n/ D min
i�nC1

i � v2.i/:

Then f .n/ is not 2-regular.

Proof. Let A D f0; 1g. Let wi D 1i0 2 A �. Consider the subspace of L.f /
generated by ffwi j i � 0g. Suppose that f is A -regular. Then since L.f / is finite-
dimensional, there exists some m � 3 such that this subspace is spanned by
ffwi j i � mg: Let d D 22

m
. By assumption, there exist integers c0; : : : ; cm such

that

fwd D

mX

iD0

cifwi :

In particular, we have

f .wdwj/ D fwd .wj/

D

mX

iD0

cifwi.wj/

D

mX

iD0

cif .wiwj/ (4.7)

for all j � 0. Observe that for Œwiwj�2 D 2
iCjC2 � 2 � 2j. Hence

f .wiwj/ D

�
2iCjC2 � 2j � j if 2j � iC 2I
2iCjC2 � i � j � 2 if 2j � iC 2:
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In particular, if m � j � 2m, we have f .wdwj/ D 2
dCjC2 � d � j � 2 and f .wiwj/ D

2iCjC2 � 2j � j for 1 � i � m. Using equation (4.7), we see that for m � j � 2m we
have

2dCjC2 � d � j � 2 D f .wdwj/

D

mX

iD0

cif .wiwj/

D

mX

iD0

ci.2
iCjC2 � 2j � j/:

Simplifying, we deduce

2j

 
2dC2 �

mX

iD0

ci.2
iC2 � 1/

!
C j

 
� 1C

mX

iD0

ci

!
D dC 2;

for m � j � 2m. Let

A D 2dC2 �

mX

iD0

ci.2
iC2 � 1/

and let

B D �1C
mX

iD0

ci:

Then we have

2jAC jB D dC 2;

for m � j � 2m. Consider the function G.x/ D 2xACxB�.dC2/. We have G.m/ D
G.mC 1/ D � � � D G.2m/ D 0 and hence by Rolle’s theorem G0.x/ D 2xA log 2CB
must have at least 2m � m � 2 real zeros. This implies that A D B D 0 since the
function G0.x/ is monotonic. Then the fact that G.m/ D 0 along with A D B D 0

now implies that d C 2 D 0, which is a contradiction. It follows that f .n/ is not a
2-regular function. ut
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4.7.3 Nim Sums and Nim Products

In this subsection we consider the 2-regularity of sequences constructed using nim
sums and nim products. Given nonnegative integers n and m, we define the nim
sum, n ˚ m, of n and m as follows. We write n D Œad � � � a0�2 with ai 2 f0; 1g and
m D Œbd � � � b0�2 with bi 2 f0; 1g, where we may pad the binary expansion of either
a or b with zeros at the beginning to ensure that they have the same length. We then
define

n˚ m WD Œ.ad C bd mod 2/ � � � .a0 C b0 mod 2/�2:

For example, if m D 12 and n D 21, then

m˚ n D Œ01100�2 ˚ Œ10101�2 D Œ11001�2 D 25:

The nim product, ˝, is defined as follows:

22
a
˝ 22

b
D

(
22

a
� 22

b
if a 6D bI

3 � 22
a�1 if a D b:

(4.8)

The product is then defined for all pairs of natural numbers using associativity and
distributivity. For example,

8˝ 3 D .22
1

˝ 22
0

/˝ .22
0

˚ 1/

D 22
1

˝ .22
0

˝ 22
0

/˚ .22
1

˝ 22
0

/

D 22
1

˝ 3˚ 8

D 22
1

˝ .22
0

˚ 1/˚ 8

D 8˚ 4˚ 8

D 4:

The nim sum and nim products have the following properties, which can be found
in Conway [162, Chap. 6]:

• 22
a
˝ x D 22

a
x for 0 � x < 22

a
;

• the set of nonnegative numbers less than 22
a

is a field under ˚ and˝.

Allouche and Shallit [14, Section 16.7, Q. 5,6] ask the following questions:

• Is the nim sum of two 2-regular sequences a 2-regular sequence?
• Is the sequence fn˝ ng a 2-regular sequence?

We show the answer to these questions is “no.” In fact, Allouche and Shallit ask
questions involving 2-dimensional arrays of numbers, but negative answers to the
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above questions imply negative answers to their questions about arrays. This time,
we use the power property and show that it fails to hold.

Lemma 4.7.3. Let i be a nonnegative integer. Then 2i ˝ 2i D 3 � 2i�1 if and only if
i is a power of 2.

Proof. If i is a power of 2, then 2i˝2i D 3�2i�1 by the definition of the nim product.
Next suppose that i is not a power of 2. Then there is some a such that i D 2a C j
with 0 < j < 2a. Then

2i ˝ 2i D .22
a
˝ 2j/˝ .22

a
˝ 2j/

D .22
a
˝ 22

a
/˝ .2j ˝ 2j/

D .22
a
˚ 22

a�1/˝ .2j ˝ 2j/

D
�
22

a
˝ .2j ˝ 2j/

�
˚
�
22

a�1 ˝ .2j ˝ 2j/
�

D
�
22

a
� .2j ˝ 2j/

�
˚
�
22

a�1 ˝ .2j ˝ 2j/
�
;

where we are using the two facts from Conway mentioned above to obtain these
equalities.

Observe that if 2i˝2i D 3 �2i�1, then the binary expansion of 2i˝2i cannot have
any 1’s appearing in the 2a C j� 1 least significant digits. In particular it must have
0’s appearing in the 2a least significant digits. Since 22

a
˝ .2j˝2j/ has this property,

22
a�1˝ .2j˝2j/must also have this property if 2i˝2i D 3 �2i�1, as the nim sum of

these two numbers is 2i˝ 2i. But since f0; 1; : : : ; 22
a
� 1g is a field under˝ and˚,

we see that 22
a�1 ˝ .2j ˝ 2j/ is a nonzero number less than 22

a
. We conclude that

2i ˝ 2i 6D 3 � 2i�1. ut

Proposition 4.7.4. The sequence fm˝ mg is not 2-regular.

Proof. To do this, we show that the sequence does not have the power property. It
is sufficient to show that the power series

F.x/ D
1X

iD0

.2i ˝ 2i/xi

is not rational. Suppose that F.x/ is rational. Then

G.x/ D F.x/ �
3

2
.1 � 2x/�1 D

1X

iD0

.2i ˝ 2i � 3 � 2i�1/xi

must also be rational. Notice that by Lemma 4.7.3 the coefficient of xn is zero in
G.x/ if and only if n is a power of 2. If follows from the Skolem-Mahler-Lech
theorem (see [282]) that G.x/ is not rational. We conclude that F is not rational and
so fn˝ ng is not 2-regular. ut
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Proposition 4.7.5. There exist 2-regular sequences f .n/ and g.n/ such that f .n/˚
g.n/ is not 2-regular.

Proof. Let f .n/ be defined by

f .n/ D

�
4m�1
3

if n D 2m

0 otherwise:

Then it is easy to check that f .n/ is 2-shuffled and has the power property. Hence f
is 2-regular. Let

g.n/ D

�
m if n D 2m

0 otherwise:

Then g.n/ is 2-regular. Observe that f .2m/˚g.2m/ D f .2m/�g.2m/ if and only if the
binary expansion of m has 0’s in all the even positions (beginning the count from
the least significant digit). Suppose that f .n/ ˚ g.n/ is 2-regular. Then the power
property gives that the sequence

f .2m/˚ g.2m/

must satisfy a linear recurrence. If this is the case, then by the Skolem-Mahler-Lech
theorem (see [282]), the set of m such that f .2m/˚ g.2m/ D 4m�1

3
�m must contain

an infinite arithmetic progression. But

#fm � 4N j f .2m/˚ g.2m/ D f .2m/ � g.2m/g � 2N :

In other words, the density of the set of m such that f .2m/˚ g.2m/ D 4m�1
3
�m is 0.

But this is a contradiction, since by the Skolem-Mahler-Lech theorem, the density
must be positive. It follows that f ˚ g is not 2-regular. ut

We note that if f .n/ and g.n/ are k-automatic, then both f .n/˝ g.n/ and f .n/˚ g.n/
are k-automatic; this follows easily from the fact that k-automatic sequences assume
only finitely many different values.

4.8 Shuffled Sequences

In this section we develop the basic properties of sequences possessing the shuffle
property. We will find it more useful to work with abelian groups rather than fields
in obtaining some of our closure properties, so we shall adopt this point of view in
this section.

Definition 4.8.1. Let A be a finite alphabet and let A be an abelian group. We say
that f W A � ! A is an A -shuffled sequence if f has the d-shuffle property for some
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positive integer d. In the case that A D f1; 2; : : : ; kg, we say that f is k-shuffled.
We point out that being k-shuffled is not the same as having the k-shuffle property;
when we use the word shuffled, the k is making reference to the underlying alphabet
and when we use the word shuffle, the k is making reference to the shuffle identity
satisfied by a function.

In the case that no confusion will arise, we will drop the alphabet and refer to a
sequence as being a shuffled sequence. We note that the shuffle property, although
originally defined in the case where our abelian group is a field (with group law
given by addition), makes sense in this more general setting.

We have the following containments:

A -automatic sequences 
 A -regular sequences

 A -shuffled sequences:

It is well known [14, Theorem 16.3.1] that a k-regular sequence f W N ! Z has
polynomially bounded growth in the sense that there is some d > 0 such that
jf .n/j � nd for all sufficiently large n. The following example shows that no such
growth restriction on shuffled sequences holds.

Example 4.8.2. A k-shuffled sequence can have arbitrarily rapid growth.

Proof. Let a1; a2; : : : be a sequence of integers and let f W f1; 2g� ! C be defined by

f .w/ D

�
0 if 2 appears in w
ad if w D 1d:

Then f .w/ has the 2-shuffle property and hence is a shuffled sequence. Since the ad

are arbitrary, we see that shuffled sequences can have arbitrarily rapid growth. ut

We now give some closure properties for shuffled sequences.

Proposition 4.8.3. Let A and B be two abelian groups, and let A be a finite
alphabet. If f W A � ! A and g W A � ! B are shuffled sequences, then so are
.f ˚ g/ W A � ! A˚B and f ˝ g W A � ! A˝Z B. (Here f ˚ g/.w/ D f .w/˚ g.w/
and f ˝ g.w/ D f .w/˝ g.w/.)

Proof. Create the ideals I1 and I2 in Zfx1; : : : ; xkg as follows. Let I1 be the set of
elements of the form c1w1 C � � � cdwd such that

c1f .ww1w
0/C � � � C cdf .wwdw0/ D 0

for all w;w0 2 A �. Similarly, define I2 to be the set of elements of the form c1w1C
� � � cdwd with

c1g.ww1w
0/C � � � C cdg.wwdw0/ D 0



4 Some Applications of Algebra to Automatic Sequences 171

for all w;w0 2 A �. Then I1 and I2 are ideals and R1 WD Zfx1; : : : ; xkg=I1 and R2 WD
Zfx1; : : : ; xkg=I2 both satisfy the identity Sd and hence satisfy polynomial identities.
It follows from Regev’s theorem [498], that R1 ˝Z R2 also satisfies a polynomial
identity. Since it is finitely generated as a Z-algebra, it satisfies the standard identity
Sm for some m � 0. Now suppose that the image of

P
ci;jwi˝wj is zero in R1˝ZR2.

Then by construction, we have

X
ci;jf .wwiw

0/˝ g.wwjw
0/ D 0

for all words w;w0. Let R 
 R1˝Z R2 be the subalgebra generated by the images of
x1 ˝ x1; : : : ; xk ˝ xk. Then R must also satisfy the identity Sm, since it is a subring
of R1˝R2. Consequently, the sequence f ˝ g must have the m-shuffle property. ut

Remark 4.8.4. Let A be a finite alphabet and let A and B be abelian groups. If
f W A � ! A is a shuffled sequence and � W A ! B is a homomorphism of abelian
groups, then � ı f W A � ! B is a shuffled sequence.

Corollary 4.8.5. Let A be a finite group and let A be an abelian group. If f ; g W
A ! A are shuffled, then .f C g/ is shuffled. If, in addition, A is a ring then f � g is
shuffled.

Proof. For the first part, use Proposition 4.8.3 and Remark 4.8.4, taking the
homomorphism � W A ˚ A ! A given by �.a; a0/ D a C a0. For the product,
again use Proposition 4.8.3 and Remark 4.8.4, this time taking the homomorphism
� W A˝ A! A given by �.a˝ a0/ D aa0. ut

Sometimes it is easier to verify that a sequence is shuffled by showing that an
identity holds other than the standard identity of the shuffle property holds. We
make this more precise in the next theorem.

Theorem 4.8.6. Let n be a nonnegative integer. Suppose that there exist integers
fc
 j 
 2 Sng, at least one of which is equal to 1, such that

X


2Sn

c
 f .ww
.1/ � � �w
.n/w
0/ D 0:

for all words w;w1; : : : ;wn;w0 2 A �. Then f is shuffled.

Proof. Write A D fx1; : : : ; xkg. We define an ideal I in the algebra Zfx1; : : : ; xkg as
follows. We declare that

P
aww 2 I if

X
awf .w0ww00/ D 0

for all w0;w00 2 A �. Notice that R D Zfx1; : : : ; xkg=I satisfies a polyno-
mial identity, as it satisfies the multilinear, homogeneous polynomial identityP


2Sn
c
 t
.1/ � � � t
.n/. Since R is finitely generated, it satisfies a standard identity

Sm for some m (cf. Theorem 4.4.6 and see, also, Braun [105]). Consequently,
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X


2Sm

sgn.
/w
.1/ � � �w
.m/ 2 I

for all .w1; : : : ;wm/ 2 .A �/m. Hence

X


2Sm

sgn.
/f .ww
.1/ � � �w
.m/w
0/ D 0

for all w;w1; : : : ;wm;w0 2 A �. ut

Let A be a finite alphabet and let R be a ring. The set of maps f W A � ! R has
a multiplication defined as follows: Given x1; : : : ; xd 2 A , we define

f ? g.x1 � � � xd/ WD

dX

iD0

f .x1 � � � xi/g.xiC1 � � � xd/; (4.9)

where f .x1 � � � xi/ is taken to mean f ."/ when i D 0 and we take g.xiC1 � � � xd/ to
be g."/ when i D d. This product, along with ordinary sum, turns the set of maps
f W A � ! R into an associative ring [77]. We show that the shuffled sequences form
a subalgebra.

Proposition 4.8.7. If f W A � ! A and f W A � ! A are shuffled, then f ? g is
shuffled.

Proof. We may pick d such that f and g both have the d-shuffled property. We claim
that if w1; : : : ;wd; u1; : : : ; ud;w;w0 2 A �, then

X


2Sd

X

�2Sd

sgn.
/sgn.�/.f ? g/.ww
.1/ � � �w
.d/u�.1/ � � � u�.d/w
0/ D 0:

To see this, let

v.
; �/ D ww
.1/ � � �w
.d/u�.1/ � � � u�.d/w
0:

Then

X


;�2Sd

sgn.
/sgn.�/.f ? g/.v.
; �// D
X


;�2Sd

X

v1v2D

v.
;�/

sgn.
/sgn.�/f .v1/g.v2/:

If v1v2 D v.
; �/ then either v1 D v1.
; �/ contains ww
.1/ � � �w
.d/ as an initial
factor, or v2 D v2.
; �/ contains u�.1/ � � � u�.d/w0 as a terminal factor (or both). Notice
that if v1 D ww
.1/ � � �w
.d/v01, then v01 and v2 depend only on � . Hence

X


2Sd

X

�2Sd

sgn.
/sgn.�/f .v1/g.v2/
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D
X

�2Sd

X


2Sd

sgn.
/sgn.�/f .ww
.1/ � � �w
.d/v
0
1/g.v2/

D
X

�2Sd

sgn.�/g.v2/

 
X


2Sd

sgn.
/f .ww
.1/ � � �w
.d/v
0
1/

!

D 0;

since f has the d-shuffled property. Similarly, if v2 contains the terminal factor
u�.1/ � � � u�.d/w0, then the fact that g has the d-shuffled property guarantees that

X


2Sd

X

�2Sd

f .v1/g.v2/ D 0:

Observe that Sd 	 Sd embeds in S2d by taking an ordered pair .
; �/ and letting 

act on f1; 2; : : : ; dg and letting � act on fd C 1; : : : ; 2dg. Given � 2 S2d, we define
c� D sgn.
/sgn.�/ if � corresponds to .
; �/ under this inclusion and we take
c� D 0 otherwise. Then from Theorem 4.8.6, we see that f ? g is shuffled. ut

We let Sk denote the collection of k-shuffled sequences taking values in C. Then
we have just shown that .Sk;C; ?/ is a C-algebra. The following proposition shows
that in some sense this algebra is very large.

Proposition 4.8.8. The algebra .Sk;C; ?/ contains a copy of the free C-algebra
on infinitely many generators.

Proof. Since the free algebra on two generators contains a copy of the free algebra
on infinitely many generators, it is sufficient to do show we contain a copy of the free
algebra on two generators. Let f0 W f1; 2; : : : ; kg� ! C be defined to be 1 on words
of the form 12i and be defined to be 0 on all other words. Let f1 W f1; 2; : : : ; kg� ! C
be defined to be i on the word 12i and to be 0 on words not of the form 12i. Then
it is easy to check that f0 and f1 are k-shuffled sequences. We claim that f0 and f1
generate a free algebra. Suppose that

G WD
dX

kD1

X

.i1;:::;ik/2f0;1gk

˛i1;:::;ik fi1 ? fi2 ? � � � ? fik D 0

for some d with ˛i1;:::;id 6D 0 for some .i1; : : : ; id/ 2 f0; 1gd. Notice that if w is a
word of the form 12a112a2 � � � 12ad then fi1 ? � � � ? fik.w/ D 0 for k < d. Hence

G.12a112a2 � � � 12ad /

D
X

.i1;:::;id/2f0;1gd

˛i1;:::;id fi1 ? fi2 ? � � � ? fid .12
a112a2 � � � 12ad /
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D
X

.i1;:::;id/2f0;1gd

˛i1;:::;id ai1
1 � � � a

id
d :

by assumption G is identically 0 and hence the polynomial

H.x1; : : : ; xd/ WD
X

.i1;:::;id/2f0;1gd

˛i1;:::;id xi1
1 � � � x

id
d

vanishes on all points .x1; : : : ; xd/ 2 Nd. But this implies that H is the zero
polynomial, which contradicts the fact that ˛i1;:::;id 6D 0 for some .i1; : : : ; id/ 2
f0; 1gd. We conclude that the algebra generated by f0 and f1 is free. This completes
the proof. ut

4.9 Open Problems and Concluding Remarks

One of the fundamental theorems from the theory of automatic sequences is
Cobham’s theorem. Two integers p and q are multiplicatively independent if pa 6D qb

for .a; b/ 6D .0; 0/. Cobham’s theorem [14, Chapter 11] states that if a sequence is
p-automatic and q-automatic and p and q are multiplicatively independent, then the
sequence is eventually periodic. Given a sequence f .n/ taking values in an abelian
group, by the correspondence described in item 4.1, it makes sense to talk about the
sequence being a k-shuffled sequence.

Question 4.9.1. Suppose a Z-valued sequence f .n/ is both p-shuffled and q-shuffled
for two multiplicatively independent integers p and q. What can be said about f .n/?
For instance, does f .n/ satisfy a linear recurrence?

Another question comes from looking at closure properties. In Section 4.8 we
showed that shuffled sequences are closed under ordinary products and under the ?
product. We now ask if shuffled sequences are closed under Cauchy products.

Question 4.9.2. Given integer-valued sequences f .n/ and g.n/ that are k-shuffled,
is the Cauchy product of f .n/ and g.n/ also k-shuffled?

In Section 4.8 we showed that the set Sk of k-shuffled sequences taking values
in C forms a C-algebra under the ? product.

Question 4.9.3. Can one find nice generating sets for the C-algebra .Sk;C; ?/?

Question 4.9.4. Can one extend the notion of shuffled sequences to nonconstant
length substitutions? See, for example, Shallit [542] and Allouche, Scheicher, and
Tichy [13].

Two final questions we pose come from the nim sum and nim product. In
Section 4.7 we studied sequences defined using the nim sum and the nim product. In
each example, we showed that the power property failed to hold. We did not show,
however, that the shuffle property fails to hold.
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Question 4.9.5. Let ˚ and ˝ denote, respectively, the nim sum and the nim
product. Is the sequence fm ˝ mg a 2-shuffled sequence? If f .n/ and g.n/ are 2-
shuffled sequences, is f .n/˚ g.n/ also a 2-shuffled sequence?

Question 4.9.6. Does f2n ˚ 3ng satisfy a linear recurrence? We note that this is
related to Mahler’s study of Z-numbers [406].

We note that throughout we have been looking at sequences taking values in
a field or occasionally in an abelian group. In fact, we can work more generally
by using a commutative ring C and look at sequences taking values in a C-
module. Allouche and Shallit [16] define the more general notion of a .C; k/-regular
sequence. We note that since Shirshov’s height theorem is over a more general
base ring C, all the results in this paper which relate to k-regular sequences have
analogues in this more general context of .C; k/-regular sequences.

Acknowledgements I thank Jean-Paul Allouche and Jeffrey Shallit for many helpful comments.
I also thank Jean-Paul Allouche for raising Question 4.9.4.



Chapter 5
Avoiding or Limiting Regularities in
Words

Pascal Ochem, Michaël Rao, and Matthieu Rosenfeld

Abstract It is commonly admitted that the origin of combinatorics on words goes
back to the work of Axel Thue in the beginning of the twentieth century, with his
results on repetition-free words. Thue showed that one can avoid cubes on infinite
binary words and squares on ternary words. Up to now, a large part of the work
on the theoretic part of combinatorics on words can be viewed as extensions or
variations of Thue’s work, that is, showing the existence (or nonexistence) of infinite
words avoiding, or limiting, a repetition-like pattern. The goal of this chapter is to
present the state of the art in the domain and also to present general techniques
used to prove a positive or a negative result. Given a repetition pattern P and an
alphabet, we want to know if an infinite word without P exists. If it exists, we are
also interested in the size of the language of words avoiding P, that is, the growth
rate of the language. Otherwise, we are interested in the minimum number of factors
P that a word must contain. We talk about limitation of usual, fractional, abelian,
and k-abelian repetitions and other generalizations such as patterns and formulas.
The last sections are dedicated to the presentation of general techniques to prove the
existence or the nonexistence of an infinite word with a given property.

5.1 Introduction

It is commonly admitted that the origin of combinatorics on words goes back to the
work of Axel Thue in the beginning of the twentieth century [562, 563], with his
results on repetition-free words. A word is a (possibly infinite) sequence of letters,
taken in a finite alphabet. A factor of a word is a subsequence of consecutive letters
in the word. A square (resp. cube) is a nonempty factor of the form uu (resp. uuu).
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Thue showed that one can avoid cubes on infinite binary words and squares on
ternary words.

Up to now, a large part of the work on the theoretic part of combinatorics on
words can be viewed as extensions or variations of Thue’s work, that is, showing
the existence (or nonexistence) of infinite words avoiding, or limiting, a repetition-
like pattern.

The goal of this chapter is to present the state of the art in the domain and also
to present general techniques used to prove a positive or a negative result. Given a
repetition pattern P and an alphabet, we want to know if an infinite word without
P exists, and if it exists, we are also interested in the size of the language of words
avoiding P, that is, the growth rate of the language.

In Section 5.2 we talk about the avoidability and the limitation of usual
repetitions, that is, word equality, and its generalizations like the fractional repetition
threshold. We also talk about avoidability of patterns and formulas. In Section 5.3,
we talk about avoidability of abelian repetitions and its generalizations. Finally, in
Section 5.4 and Section 5.5, we present general techniques which can be used to
prove the existence or the nonexistence of an infinite word with a given property.

5.2 Usual Repetitions

In this section, we focus on the avoidability and limitation of repetitions when the
equivalence relation is the equality, that is, the “usual” case. Some results have
already been discussed in [79, Chapter 4]. In this case we only give main results
and redirect the reader to that chapter.

5.2.1 Thue’s Results and Ternary Square-Free Words

Thue showed that one can avoid squares on ternary words and overlaps on binary
words [562, 563] (for a translation, see [74]).

Let 
 W f0; 1g� ! f0; 1g� be the morphism such that 
.0/ D 01 and 
.1/ D 10.
The fixed point of 
 with first letter 0 is known as the Thue–Morse (or Prouhet–
Thue–Morse) word:

wTM D 0110100110010110 : : : :

Thue showed that this word avoids overlaps, that is, factors xuxux where u is a
(maybe empty) word and x a letter. In consequence, the Thue–Morse word avoids
cubes.

Let � be the morphism 0! 012; 1! 02; 2! 1. The fixed point of � is known
as the ternary Thue–Morse word or the Hall word:
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wTTM D 012021012102012021020121 : : : :

Since � 0 ı � D 
 ı � 0, where � 0 is the morphism 0 ! 011; 1 ! 01; 2 ! 0, wTTM

is also the preimage of wTM by � 0. One can easily show that if w has a square uu,
then � 0.w/ has an overlap �.u/�.u/0. Thus, since wTM is overlap-free, then wTTM is
square-free.

The growth rate of a language L on an alphabet A is lim supn!1 jL \ A nj
1
n .

Some authors prefer the terminology of entropy, which is, in the case of languages
on words, the logarithm of the growth rate. The growth rate of overlap-free binary
words is 1, since there are only polynomially many such words (see [79, Section
4.2.3]), and the growth rate of cube-free binary words is between 1:45697 and
1:4576 [209, 356]. The growth rate of ternary square-free words is between 1:30173
and 1:30179 [356, 452]. We will see in Sections 5.4 and 5.5 some techniques to
compute lower and upper bounds of the growth rate of a language.

5.2.2 Erdős’s Question: Avoiding Long Squares

In 1957 and 1961, Erdős asked two questions on the avoidability of squares in words
[216, 217]. Firstly, he asked if one can avoid arbitrarily long squares in binary words.
Secondly, he asked if one can avoid factors uv over a finite alphabet, where v is a
permutation of the letters of u. (This notion is the abelian equivalence and will be
discussed in Section 5.3.)

Erdős thought that the answer to the first question was negative. Entringer,
Jackson, and Schatz showed the opposite: it is possible to construct an infinite binary
word without squares of size 6 and more [214]. This result has been improved by
Fraenkel and Simpson: it is possible to construct an infinite binary word with only
three squares: 00, 11, and 1010 (and this is the best we can do) [228]. Perhaps the
simplest construction of such a word is given by Badkobeh and Crochemore:

Theorem 5.2.1 ([28]). Let � W 0 ! 01001110001101; 1 ! 0011; 2 ! 000111.
Then �.wTTM/ contains only 3 squares: 00, 11, and 1010.

5.2.3 Fractional Repetitions and Dejean’s Conjecture

A repetition in a word w is a pair of words .p; q/ such that pq is a factor of w, p is
nonempty, and q is a prefix of pq. The exponent of a repetition .p; q/ is jpqj

jpj , and its
period is jpj. Squares are thus repetitions of exponent 2.

A word is said x-free (resp. xC-free) if it does not contain a repetition of exponent
y with y � x (resp. y > x). For an integer k � 2, the repetition threshold for k letters,
denoted by R.k/, is the infimum over the set of x such that there exists an infinite
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x-free word over a k-letter alphabet or equivalently the smallest x such that there
exists an infinite xC-free word over a k-letter alphabet.

Since squares cannot be avoided on binary words, but overlaps can, one has
R.2/ D 2. Dejean [187] conjectured that for every k � 2, we have:

R.k/ D

8
ˆ̂<

ˆ̂:

7
4

if k D 3
7
5

if k D 4
k

k�1 otherwise.

This conjecture is now completely solved and already discussed in [79, Section
4.3]. Notice that the proof is constructive, but none of the constructions are morphic
words, except for k 2 f2; 3g, and use Pansiot’s encoding. We call a Dejean word an
R.k/C-free k-ary word.

We know that there are exponentially many Dejean words on k letters, for k 2
f3; 4g [449], k 2 f5; : : : ; 10g [331], and every odd k 2 f7; : : : ; 101g [568]. Moreover
it is conjectured that limk!1 gk D 1:242 : : :, where gk is the growth rate of Dejean
words on k letters [545].

For k D 2, R.k/ D 2, and we are in the case of overlap-free binary words. As
we already know, the growth rate is 1. More generally, there are polynomially many
7
3
-free binary words (their growth rate is then 1), and there are exponentially many
7
3

C
-free binary words [331]. The growth rate of 7

3

C
-free binary words is estimated

at 1:2206448 : : : [544].
Looking at a stronger version of Dejean’s question, one has the following. It is

known that for every k � 3, there is an infinite R.k/C-free word on k letters with
only finitely many R.k/-repetitions [27, 29, 568]. Ochem proposed the following
stronger version of Dejean’s conjecture.

Conjecture 5.2.2 ([450]).

(1) For every k � 5, there exists an infinite k
k�1
C

-free word over k letters with letter
frequency 1

kC1 .

(2) For every k � 6, there exists an infinite k
k�1
C

-free word over k letters with letter
frequency 1

k�1 .

This conjecture has already been proved for several cases when k < 9 [140, 450,
493].

5.2.4 Generalized Repetition Threshold

A word is .˛C; `/-free if it contains no repetition of exponent greater than ˛ and
period at least `. The generalized repetition threshold R.k; `/ is the smallest real
˛ such that there exists an infinite .˛C; `/-free word on k letters [308]. The case
` D 1 corresponds to Dejean’s repetition threshold. The general behavior of R.k; `/
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is known when ` tends to infinity [223], but the exact values, especially for small `,
are still unknown or conjectured.

Conjecture 5.2.3 ([308]). For ` � 2, R.3; `/ D 1C 1
`

and R.4; `/ D 1C 1
`C2

.

The following theorem gives a partial answer to the previous conjecture (joint
work of Kolpakov and Rao).

Theorem 5.2.4. For all ` � 11, R.3; `/ � 1C 1
`
.

Proof. Suppose that R.3; `/ < 1 C 1
`

for a ` > 0. Then for every n > 0 and
0 < m � `, one can find n ternary words u1; u2; : : : ; un of size m with the following
property: for every e > 0 and 1 � i < j � n and 1 � x; y � m C 1 � e such that
uiŒx W xC e � 1� D ujŒy W yC e � 1�, one has:

• e < j � iC 1 if x < y
• e < j � i if either x D y or x > y and iC 1 < j.

To show this, it suffices to take u1 D wŒ1 W m�; u2 D Œ1 C ` W m C `�; : : : ; un D

wŒ1C .n�1/` W mC .n�1/`�, where w is an infinite .1C1=`; `/-free ternary word.
A backtracking algorithm shows that such u1; u2; : : : ; un do not exist for n D 10

and m D 11. Thus R.3; `/ � 1C 1
`
. ut

5.2.5 Limiting Occurrences and Letters

Erdős’s question is about the limitation of squares as factor in binary words. If one
wants to limit squares as occurrences in binary words, one has the following.

Theorem 5.2.5 ([363, 465]). The minimal density of square occurrences in an
infinite binary word is 103

187
D 0:55080213 : : :.

The upper bound is given by a morphic word [363] and the lower bound is proven
using a general technique presented in Section 5.4.

A related question is about the possible frequencies of a letter in a power-free
language. For ternary square-free words, one has the following.

Theorem 5.2.6 ([346, 450]).

• The minimal density of a letter in an infinite ternary square-free word is 883
3215
D

0:27465007 : : :.
• The maximal density of a letter in an infinite ternary square-free word is 255

653
D

0:39050535 : : :.

Let .x/ (resp. C.x/) be the minimal frequency of a letter in an x-free (resp.
xC-free) word. The function  is defined in [357] and also studied in [450, 465].
For example, one has .2C/ D .7=3/ D 1=2, and .7=3C/ D 327=703 D

0:4651493598 : : :. The minimal frequency of a letter in a cube-free binary word
is approximately 0:40636 : : :, but its exact value is still unknown.
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The behavior between 7
3

C
and 5C

p
5

2
is complicated. It seems that .x/ is a

piecewise constant function and that the set of x such that .x/ ¤ .xC/ has 5C
p
5

2

as an accumulation point. It seems also that, for x � 5C
p
5

2
, the optimal word is

always a Sturmian word. More precisely, one can conjecture the following.

Conjecture 5.2.7. For every integer n � 4:

• .Œn � 1; 1; n � 3�/ D .n/ D Œ0; n � 1; 1; n � 3�,
• for all k 2 N, .UCn;k/ D .Un;kC1/ D Œ0; n.; 1; n � 2/k; 1; n � 3�,

where Œa; b; c; : : :� denotes the continued fraction aC 1=.bC 1=.cC 1=.: : :///, and
Un;k D nC 1 � Dn;k�1C2

Dn;k
, Dn;�1 D �1, Dn;0 D 1, and Dn;kC1 D nDn;k � Dn;k�1.

5.2.6 Patterns and Formulas

Let Ak denote the alphabet f0; : : : k�1g. A pattern p is a nonempty finite word over
an alphabet 	 D fA;B;C; : : : g of capital letters called variables. An occurrence of
p in a (finite or infinite) word w is a non-erasing morphism h W 	� ! A � such
that h.p/ is a factor of w. We say that w avoids p if it contains no occurrence of
p. The avoidability index �.p/ of a pattern p is the size of the smallest alphabet A
such that there exists an infinite word avoiding p over A . Bean, Ehrenfeucht, and
McNulty [48] and Zimin [595] characterized unavoidable patterns, i.e., such that
�.p/ D 1. We say that a pattern p is t-avoidable if �.p/ � t. They also give an
algorithm to test whether a pattern is unavoidable.

Cassaigne [132] began and Ochem [449] finished the determination of the
avoidability index of every pattern with at most three variables. Two words u 2 A �

and v 2 B� are isomorphic if there exists a bijection b W A ! B such that
u D b.v/.

Theorem 5.2.8. Let p be a pattern over the variables fA;B;Cg.

• If p contains an occurrence of a pattern in Table 5.1, or the mirror of a pattern
in Table 5.1, then �.p/ D 2.

• If p is isomorphic to a pattern in fA;AB;ABA;ABAC;ABACA;ABACAB;
ABACABA;ABACB;ABACBA;ABCg, then � D1.

• Otherwise, �.p/ D 3.

A variable that appears only once in a pattern is said to be isolated. Following
Cassaigne [132], we associate to a pattern p the formula f obtained by replacing
every isolated variable in p by a dot. The factors between the dots are called
fragments.

An occurrence of a formula f in a word w is a non-erasing morphism h W 	� !
A � such that the h-image of every fragment of f is a factor of w. Every other
notion related to patterns is similarly defined for formulas. Clearly, if a formula f is
associated to a pattern p, every word avoiding f also avoids p, so �.p/ � �.f /. Notice
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Table 5.1 Minimally two avoidable patterns over three variables.

AAA, ABCABC, AABBA, ABAAB, ABABA, AABABB, ABCBABC, AABAACBAAB, AABACCB,
AABBCABBA, AABBCAC, AABBCBC, AABBCC, AABCBC, AABCCAB, AABCCBA,
ABAACBC, ABAACCB, ABACACB, ABACBC, ABACCAB, ABACCBA, ABBACCA,
ABBACCB, ABBCACB, ABBCBAC, ABBCBCA, ABBCCAB, ABCAACB, ABCACAB,
ABCACB, ABCBBAC, AABAACBAB, AABAACBB, AABABCBB, AABACABBA, AABACBABA,
AABACBABB, AABACBBAB, AABBCABA, AABBCBAB, AABBCBBAA, AABCCACA,
ABAACABAB, ABAACABBA, ABAACBBAB, ABABCABBA, ABABCBAAB, ABABCBC,
ABACBBC, ABBACBAAB, ABBCABC

also that every recurrent word avoiding p also avoids f . Moreover, it is not to hard
to see that there exists a recurrent word avoiding p over A�.p/, so that �.p/ D �.f /.

Without loss of generality, a formula is such that no variable is isolated and no
fragment is a factor of another fragment.

A doubled pattern contains every variable at least twice. Thus, a doubled pattern
is a formula with exactly one fragment. Every doubled pattern is 3-avoidable [451].
A formula is said to be binary if it has at most two variables. The avoidability index
of every binary formula has been recently determined [453]. Moreover, for every
2-avoidable binary formula f , it is known whether f is avoided by exponentially
many binary words [453]. We say that a formula f is divisible by a formula f 0 if f
does not avoid f 0, that is, there is a non-erasing morphism h such that the image of
every fragment of f 0 by h is a factor of a fragment of f . If f is divisible by f 0, then
every word avoiding f 0 also avoids f and thus �.f / � �.f 0/. Moreover, the reverse
f R of a formula f satisfies �.f R/ D �.f /. For example, the fact that ABA:AABB is
2-avoidable implies that ABAABB and BAB:AABB are 2-avoidable.

Finally, Clark [152, 153] has obtained several examples of formulas with
avoidability index 5. The simplest one is AB:BA:AC:BC:CDA:DCD.

Clark [152] has introduced the notion of n-avoidance basis for formulas, which
is the smallest set of formulas with the following property: for every i � n, every
avoidable formula with i variables is divisible by at least one formula with at most i
variables in the n-avoidance basis.

From the definition, it is not hard to obtain that the 1-avoidance basis is fAAg and
the 2-avoidance basis is fAA; ABA:BABg. Clark obtained the 3-avoidance basis. The
formulas in the 3-avoidance basis are given below with their avoidability index:

• AA (� D 3 [562])
• ABA:BAB (� D 3 [132])
• ABCA:BCAB:CABC (� D 3 [237])
• ABCBA:CBABC (� D 2 [237])
• ABCA:CABC:BCB (� D 3 [237])
• ABCA:BCAB:CBC (� D 3 [237])
• AB:AC:BA:CA:CB (� D 4 [32])

The following properties of the avoidance basis are derived:

• The n-avoidance basis is a subset of the .nC 1/-avoidance basis.
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• The n-avoidance basis is closed under reverse. (In particular, ABCA:BCAB:CBC
is the reverse of ABCA:CABC:BCB.)

• Two formulas in the n-avoidance basis with the same number of variables are
incomparable by divisibility. (However, AB:AC:BA:CA:CB divides AA.)

• The n-avoidance basis is computable.

Let us comment on the last property. Every pattern with n variables and length
at least 2n has a factor that is a doubled pattern, which is 3-avoidable. Thus, every
formula in the n-avoidance basis has either one fragment of length at most 2n or all
of its fragments have length at most 2n�1. So, to compute the n-avoidance, we have
to consider only finitely many formulas and select the ones that are not divisible by
another formula with n variables.

The circular formula Ct is the formula over t � 1 variables A0; : : : ;At�1

containing the t fragments of the form AiAiC1 : : :AiCt such that the indices are taken
modulo t. Thus, the first three formulas in the 3-avoidance basis, namely, C1 D AA,
C2 D ABA:BAB, and C3 D ABCA:BCAB:CABC, are also the first three circular
formulas. More generally, for every t � n, the n-avoidance basis contains Ct. It is
known that �.Ci/ D 2 for every i � 4 [237].

We conclude this part with some open problems. Minor open problems
include:

1. Prove that long enough doubled patterns are 2-avoidable.
2. Prove that every formula in the n-avoidance basis has at least two fragments

except AA.
3. Find two 2-avoidable formulas f1 and f2 such that no infinite ternary word avoids

f1 and f2 simultaneously.

Major open problems include:

1. Cassaigne’s conjecture: for every formula f , there exists a morphic word in A ��.f /
that avoids f .

2. Is there an algorithm that decides whether �.f / � k, given a formula f and an
integer k?

3. Is there an avoidable formula f such that �.f / � 6?
4. Is there an infinite family of avoidable formulas f1, f2, f3, : : : such that �.f1/ <
�.f2/ < �.f3/ < : : :?

Notice that the major open problems are related to each other. A negative answer
to (3) would restrain problem (2) to the cases 2 � k � 4. Also, a positive answer to
(1) restrains problem (2) to a question about morphic words.

5.3 Abelian and Sum Equivalence

Abelian powers are a commutative version of usual powers. The avoidability of
abelian repetitions has been studied since a question from Erdős in 1957 [216, 217].



5 Avoiding or Limiting Regularities in Words 185

Fig. 5.1 Exhaustive search
of every ternary word
avoiding abelian squares.
(See Section 5.4.1)

01

012

0120
01202

01201 012010

0121 01210 012101 0121012

010 0102
01020 010201 0102010

01021
010212

010210 0102101

Let A be an alphabet. The Parikh vector �.w/ of a word w 2 A � is the
vector indexed over A such that for all a 2 A , �.w/a D jwja. For instance, over

A D fa; b; cg, we have �.abac/ D

0

@
2

1

1

1

A and �.bbc/ D

0

@
0

2

1

1

A. Two words u

and w are abelian equivalent, denoted by u �a v, if and only if �.u/ D �.v/.
Equivalently, two words are abelian equivalent if and only if they are permutations
of each other. Given an integer k � 2, the word w 2 A C is an abelian k-th power if
there are w1;w2; : : : ;wk 2 A C such that w D w1w2 : : :wk and for all i 2 f2; : : : ; kg,
wi �a w1. An abelian square (resp. abelian cube) is an abelian 2nd power (resp.
3rd power).

One can easily check that every ternary word of length at least 8 contains an
abelian square (see Figure 5.1) and every binary word of length 10 contains an
abelian cube.

Erdős asked whether there is an infinite abelian square-free word over an alphabet
of size 4 [216, 217]. After some intermediary results (alphabet of size 25 by
Evdokimov [219] and size 5 by Pleasant [486]), Keränen gave a positive answer:

Theorem 5.3.1 (Keränen [342]). The fixed points of the following 85-uniform
morphism are abelian square-free:


K W

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

a!abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcb

acbcdcacdcbdcdadbdcbca

b!bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdc

bdcdadbdadcadabacadcdb

c!cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdad

cadabacabadbabcbdbadac

d!dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcaba

dbabcbdbcbacbcdcacbabd:

Moreover, Carpi showed that the number of abelian-square-free words over four
letters is exponential [128]. The best known lower bound on the growth rate, due to
Keränen, is 1:02306 [344].

Besides that, Dekking answered the question of the avoidability of abelian n-th
powers, for n � 3.
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Theorem 5.3.2 (Dekking [188]). The fixed points of the following morphism are
abelian cube-free:


D3 W

8
<

:

a! aabc
b! bbc
c! acc:

Theorem 5.3.3 (Dekking [188]). The fixed point of the following morphism is
abelian 4th power-free:


D2 W

�
a! abb
b! aaab:

Moreover, the growth rate of abelian-cube-free words over 3 letters is at least
31=19 D 1:059526 : : : [494], and the growth rate of abelian-4th-power-free binary
words is at least 21=16 D 1:044273 : : : [172].

In fact, we can show that the morphisms of Theorems 5.3.1, 5.3.2, and 5.3.3 are
abelian k-th power-free for the corresponding k, that is, the image of an abelian k-th
power-free word by the given morphism is also abelian k-th power-free. Dekking
gave sufficient conditions for a morphism to be abelian k-th power-free and used
them to show Theorems 5.3.2 and 5.3.3.

Carpi gave stronger sufficient conditions for a morphism to be abelian k-th
power-free [127]. These conditions can be used to show Theorem 5.3.1. In order
to check the conditions, the help of a computer is needed. This set of conditions is
conjectured to be a characterization of abelian k-th power-free morphisms.

Nonetheless, there are non-abelian k-th power-free morphisms whose fixed point
is abelian k-th power-free. This is the case for the morphism 
4 used to prove that
Z is not uniformly 3-repetitive in Theorem 5.3.30 or for 
6 used in Theorem 5.3.16
and Theorem 5.3.22.

In [79, Section 4.6.3], the authors present the algorithm of [173] which decides
if the fixed point of a given morphism is abelian-k-power-free. This algorithm can
be applied to the morphisms of Keränen and Dekking, but not to 
4 and 
6.

We explain here the algorithm of [497], which generalizes the algorithm of [173]
and which can decide for a wider class of morphisms, including 
4 and 
6. We first
introduce some definitions.

Definition 5.3.4 (Matrix Associated to a Morphism). To a morphism h on A �,
we associate a matrix Mh on A 	 A such that .Mh/a;b D jh.b/ja. The eigenvalues
of h are the eigenvalues of Mh.

Using this matrix we have the following property:

8w; �.h.w// D Mh�.w/:

The notion of template was first introduced in [173] and is useful both for proving
and formulating the results of this section.
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Definition 5.3.5 (k-Template and Realization). Fix k an integer and A an alpha-
bet of size n. A k-template over A is a .2k/-tuple t D Œa1; : : : ; akC1;d1; : : : ;dk�1�

where for all i, ai 2 A [ f"g and di 2 Zn.
A word w D a1w1a2w2 : : :wkakC1, where wi 2 A �, is a realization of (or

realizes) the template t if for all i 2 f1; : : : ; k � 1g; �.wiC1/ � �.wi/ D di.

For instance aabaac is a realization of the 2-template Œ"; b; c; .0; 0; 0/�. A word is

an abelian k-th power if and only if it realizes the k-template Œ"; : : : ; ";
�!
0 ; : : : ;

�!
0 �.

Definition 5.3.6. Let h be a morphism and let t0 D Œa01; : : : ; a
0
kC1;d

0
1; : : : ;d0k�1�

and t D Œa1; : : : ; akC1;d1; : : : ;dk�1� be two k-templates. We say that t0 is a parent
by h of t if there are p1; s1; : : : ; pkC1; skC1 2 A � such that:

• 8i 2 f1; : : : ; kC 1g, h.a0i/ D piaisi,
• 8i 2 f1; : : : ; k � 1g, di D Mhd0i C �.siC1piC2/ � �.sipiC1/.

We denote by Parh.t/ the set of parents of t by h.

Definition 5.3.7. The set of ancestors of a k-template t0, denoted by Anch.t0/, is
the smallest set S such that:

• t0 2 S,
• for all t 2 S, Parh.t/ 
 S.

The “is an ancestor” relation is the transitive, reflexive closure of the “is a parent”
relation.

In [173], the authors use the notion of template to show that if the matrix M�1h is
defined and has induced euclidean norm smaller than one, then on can decide if the
fixed point of h is abelian k-th power-free. We present the following generalization.
We say that a morphism h is primitive if there exists k 2 N such that for all a 2 A ,
hk.a/ contains all the letters of A (i.e., Mhk is positive). Moreover for any primitive
morphism h and any letter a 2 A such that h.a/ D au with u 2 A �, we denote by
h!.a/ the fixed point of h which is the limit of the sequence .hi.a//i2N.

Theorem 5.3.8. For any primitive morphism h with no eigenvalue of absolute value
1 and for any template t0, it is possible to decide whether h!.a/ avoids t0.

As a corollary, one can decide for every integer k, alphabet A and primitive
morphism h W A � 7! A � with no eigenvalue of absolute value 1, if a fixed point of
h is abelian k-th power-free.

We will first give some useful lemmas about parents:

Lemma 5.3.9. Let tp be a parent of a template t0, and w 2 A �. If w realizes tp,
then h.w/ realizes t0.

The proof of this lemma can be found in [79, Section 4.6.3]. Templates and parents
are defined so that they have this property.

For any k-template t D Œa1; : : : ; akC1;d1; : : : ;dk�1�, let 	.t/ D maxk�1
iD1 jjdijj1

and ı D maxa2A jh.a/j.
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Lemma 5.3.10. Let t be a k-template and w 2 Fact.h!.a// a word which realizes

t. If jwj > k
�
.k�1/	.t/

2
C ı C 1

�
C 1, then for every w0 such that w 2 Fact.h.w0//,

there is a parent t0 of t such that a factor of w0 realizes t0.

Proof. Let t D Œa1; : : : ; akC1;d1; : : : ;dk�1� be a k-template and w 2 Fact.h!.a//

a word which realizes t such that jwj > k
�
.k�1/	.t/

2
C ı C 1

�
C 1. Then there

are w1; : : : ;wn 2 A � such that w D a1w1a2w2 : : :wkakC1 and 8i 2 f1; : : : ; k �
1g; �.wiC1/ � �.wi/ D di. Thus for any i; j 2 f1; : : : ; kg such that j < i,
�.wi/ D �.wj/C

Pi�1
mDj dm and, by triangular inequality, we have:

jwij �
ˇ̌
wj

ˇ̌
D jj�.wi/jj1 � jj�.wj/jj1 �

i�1X

mDj

jjdmjj1 � .i � j/	.t/:

Therefore for any i; j 2 f1; : : : ; kg,
ˇ̌
wj

ˇ̌
� ji � jj	.t/ C jwij, and for any i, jwj �Pk

mD1.ji � mj	.t/C jwij/C k C 1. Thus jwj � k.k�1/
2
	.t/C kjwij C k C 1. Then

k
�
.k�1/	.t/

2
C jwij C 1

�
C 1 � jwj > k

�
.k�1/	.t/

2
C ı C 1

�
C 1, and consequently

8i; jwij > ı D maxa2A jh.a/j. We also know that 8i, wi 2 Fact.h!.a// so there
are w01; : : : ;w

0
k 2 A �, a01; : : : ; a

0
kC1 2 A , p1; : : : ; pkC1 2 Pref.h/ and s1; : : : ; skC1 2

Suff.h/ such that:

• 8i, wi D sih.w0i/piC1,
• 8i, h.a0i/ D piaisi,
• w0 D a01w

0
1a
0
2 : : : a

0
kw0ka0kC1.

w0 realizes the template t0 D Œa01; : : : ; a
0
kC1; �.w

0
2/��.w

0
1/; : : : ; �.w

0
k/��.w

0
k�1/�.

Moreover for all i:

di D �.wiC1/ � �.wi/

di D �.siC1h.w
0
iC1/piC2/ � �.sih.w

0
i/piC1/

di D Mh�.w
0
iC1/ �Mh�.w

0
i/C �.siC1piC2/ � �.sipiC1/

di D Mh.�.w
0
iC1/ � �.w

0
i//C �.siC1piC2/ � �.sipiC1/

Thus t0 is a parent of t and t0 is realized by w0. ut

Definition 5.3.11 (Small Realization). A small realization of a k-template t is a

realization w of t such that jwj > k
�
.k�1/	.t/

2
C ı C 1

�
C 1.

Using Lemmas 5.3.9 and 5.3.10, one can easily show the following proposition.

Proposition 5.3.12. Let h be a primitive morphism and t0 a k-template. Then h!.a/
avoids t0 if and only if h!.a/ avoids every small realizations of every elements of
Anch.t0/.
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Any template has finitely many small realizations, and we only need to compute
small factors of h!.a/ to compute them. If Anch.t0/ is finite and computable, then
the set of small realizations of the templates of Anch.t0/ is also computable, and we
can decide if h!.a/ avoids t0.

In particular it is proven in [173] that if M�1h is defined and has induced euclidean
norm smaller than 1, then Anch.t0/ is finite. And in order to compute Anch.t0/, we
can recursively add the missing parents. The parents of a template t can be obtained
by considering all the possible choices of letters, suffixes, and prefixes and using
M�1h to compute the corresponding vectors.

In the setting of Theorem 5.3.8, Mh is not necessarily invertible which implies
that t0 has infinitely many parents. Thus we need to find a way to discard many
elements of Anch.t0/. In fact, using the Jordan normal form of Mh, we can find
conditions on the vectors of the templates of Anch.t0/.

Let h be a primitive morphism and PJP�1 D Mh be a Jordan decomposition
of Mh. We can write �.h.w// D Mh�.w/ D PJP�1�.w/, which implies
P�1�.h.w// D JP�1�.w/. Let B D .b1; : : : ; bn/ be the base where bj is the j-th
line of P�1. We get the two following lemmas.

Lemma 5.3.13. For all i 2 Œ1; n� such that jJi;ij < 1, there exists ci 2 RC such that:
for all w 2 Fact.h!.a//, jbi � �.w/j < ci.

The complete proof can be found in Proposition 3.3 of [497]. We give a sketch
of the proof in the special case where J is diagonal.

Let i 2 Œ1; n� such that jJi;ij < 1. For any factor w of h!.a/ which is not the
factor of the image of a letter, there is a prefix p of the image of a letter by h, a
suffix s of the image of a letter by h, and a factor w0 of h!.a/ such that w D sh.w0/p.
Since J is diagonal, bi � �.h.w0// D Ji;i.bi � �.w0//. This implies bi � �.w/ D
Ji;ibi ��.w0/C bi ��.sp/ or w is the factor of the image of a letter. Now let maxsp D

maxa;b;s2Suff.h.a//;p2Pref.h.b// jbi � �.sp/j and maxf D maxa;f2Fact.h.a// jbi�.f /j, we get
jbi ��.w/j � jJi;ibi ��.w0/jCmaxsp or jbi ��.w/j � maxf . This implies jbi ��.w/j �
max.jJi;ibi � �.w0/j C maxsp;maxf / and thus by induction for all w 2 Fact.h!.a//:

jbi � �.w/j � max

�
maxsp

1 � jJi;ij
;maxf

	
:

If J is not diagonal, we can work Jordan block by Jordan block instead of
coordinate by coordinate, and we also get an explicit formula.

Lemma 5.3.14. For all k-template t0, and for all i 2 Œ1; n� such that jJi;ij > 1, there
exists ci 2 RC such that for all v 2 Zn which appears in a least one template of
Anch.t0/, jbi � vj < ci.

The proof of this lemma is similar to the proof of the last lemma. One uses the
fact that t is the parent of an ancestor of t0 (or is t0) and shows by induction that
there is a bound.

It is easy to deduce from Lemma 5.3.13 that for any vector v of a template t
which is realized by a factor of h!.a/, for all i such that jJi;ij < 1, jbivj > 2ci.
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Thus the two lemmas together imply that, if there is no i such that jJi;ij D 1, then
the norms of the vectors of a template t 2 Anc.T0/ which is realized by a factor of
h!.a/ are bounded (since it is bounded by ci or 2ci on each coordinate).

Using this fact and Proposition 5.3.12, we get the following.

Proposition 5.3.15. Let h be a primitive morphism with no eigenvalues of norm 1

and t0 a k-template. Then h!.a/ avoids t0 if and only if h!.a/ avoids every small
realization of every element of Sbounded.t0/ D Anch.t0/ \ ft j for every vector v 2
t;8i; jbi � vj � 2cig.

Proof. If t 2 Anch.t0/ n Sbounded.t0/, then there exists i such that jbi � vj > 2ci

and from Lemma 5.3.13 there is no factor of h!.a/ realizing t. This implies that
there is a small realization of a template from Sbounded.Tt0/ if and only if there is
a small realization of a template from Anch.t0/. So the result is now equivalent to
Proposition 5.3.12. ut

There are only finitely many possible values for any vector of any t 2 Sbounded.t0/
since they have integer coordinates and are bounded. Thus Sbounded.t0/ is a finite set.
If Mh is invertible, one can easily compute the parents of a given template and thus
compute Sbounded.t0/ by iteratively adding the missing parents.

In the case where Mh is not invertible, we can first generate exhaustively the set
S1 D ft j t is a k-template and for every vector v 2 t;8i; jbi � vj � cig. This set is
finite and easy to generate since there are finitely many letters and finitely many
vectors. Now for each template t, compute all the templates T 2 S1 such that t is a
parent of T (for this direction we do not need Mh to be invertible). Finally construct
SBounded.t0/ by inductively adding the missing parents obtained from the previous
computation.

This can be done more efficiently by computing inductively the parents of t0 that
respect the bounds without computing S1. In order to compute the parents of a given
template t, one can first compute the Smith decomposition to find an integer basis
Bk of the kernel of Mh. There are finitely many choices for the letters, suffixes, and
prefixes when computing a parent, so we try all of them exhaustively. For a given
choice, we need to be able to compute all the pre-images of a vector v that respect
the bounds. Using the Smith decomposition, one can find a particular solution u
to Mhu D v. Then we know that all the other solutions are of the form k D u C
Bkx where x is an integer vector, and since we know that k is bounded, we can
deduce bounds on Bk. And so we can generate exhaustively all such vectors and
compute all the parents of a given template. Note that we do not compute exactly
Sbounded.t0/ as defined in the theorem, since we might lose some parents that were
only accessible by elements that do no respect the bound, but the theorem is still true
for this set.

This concludes the proof of Theorem 5.3.8. The algorithm first computes
the Jordan normal form of Mh and the bounds from Lemma 5.3.13. Then it
recursively computes the parents of the template t0 included in Sbounded.t0/. Finally,
for each template in Sbounded.t0/, we check if there are small realizations of this
template.
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This algorithm can be used for the proof of Theorems 5.3.1, 5.3.2 and 5.3.3. We
can also use it to show that the fixed points of the morphism given in [133] are
abelian-cube-free or to get the following result.

Theorem 5.3.16. Let 
6 be the following morphism:


6 W

8
<

:

a! ace; b! adf
c! bdf ; d! bdc
e! afe; f ! bce:

Then 
!6 .a/ is abelian-square-free.

The eigenvalues of the matrix of 
6 are 0 (with algebraic multiplicity 3, and
geometric multiplicity 2), 3,

p
3, and �

p
3. Thus the matrix of 
6 is neither

invertible nor diagonalizable. Moreover, by Lemma 5.3.13, the Parikh vectors of
the factors of 
!6 .a/ are at bounded distance from a subspace of R6 of dimension 3.
This property will be important to prove Theorem 5.3.22.

5.3.1 Mäkelä’s Questions

Erdős asked if it is possible to avoid arbitrarily long ordinary squares on
binary words. This question was answered positively by Entringer, Jackson, and
Schatz [214]. In the same spirit, Mäkelä asked the following two questions about
the avoidability of long abelian cubes (resp. squares) on a binary (resp. ternary)
alphabet:

Problem 5.3.17 (Mäkelä (See [343])). Can you avoid abelian cubes of the form
uvw where juj � 2 over two letters? You can do this at least for words of length
250.

Problem 5.3.18 (Mäkelä (See [343])). Can you avoid abelian squares of the form
uv where juj � 2 over three letters? Computer experiments show that you can avoid
these patterns at least in words of length 450.

One can show that the answer to the first question is negative:

Theorem 5.3.19 ([496]). There is no infinite word over a binary alphabet avoiding
abelian cubes of period at least 2.

The proof of the this theorem is explained in Section 5.4. Then one can then
reformulate the questions from Mäkela and ask:

Problem 5.3.20. Is there a p 2 N such that one can avoid abelian squares of period
at least p over three letters? If yes what is the smallest such p?

Problem 5.3.21. Is there a p 2 N such that one can avoid abelian cubes of period
at least p over two letters? If yes what is the smallest such p?
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Let 
3 be the following morphism:


3 W

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

a! bbbaabaaac
b! bccacccbcc
c! ccccbbbcbc
d! ccccccccaa
e! bbbbbcabaa
f ! aaaaaaabaa:

Theorem 5.3.22 ([497]). 
3.

!
6 .a// does not contain any square of period at

least 6.

Thus we know that 2 � p � 6 in Problem 5.3.20 and p � 3 in Problem 5.3.21. In
order to prove Theorem 5.3.22, we use the same technique as for Theorem 5.3.8. If
there is an abelian square in 
3.
!6 .a//, then there is a factor of 
3.
!6 .a// that
realizes the 2-template T0 D Œ"; "; "; 0�. By Lemma 5.3.10 if the length of this
abelian square is at least 25, then there is a parent t of T0 by 
3 which is realized
by a factor of 
!6 .a/. So if we can show that there is no parent of T0 by 
3 which
is realized by a factor of 
!6 .a/, then we know that 
3.
!6 .a// only contains small
abelian squares, and we can compute the exact value by looking at the small factors
of 
3.
!6 .a//. Given a parent t of T0 by 
3, we can use Theorem 5.3.8 to decide if it
is avoided by 
!6 .a/. But since M
3 is not invertible, T0 has infinitely many parents
by 
3, so we need to find a way to eliminate most of them.

For any a1; a2; a3 2 A [ f"g, if t D Œa0; a1; a2; v� is a parent of T0 by 
3, then
there are p1; s1; p2; s2; p3; s3 such that:

• 8i 2 f1; 2; 3g, h.a0i/ D pisi,
• 0 D M
3vC �.s1p2/ � �.s2p3/.

There are only finitely many values for the ai, si, and pi, so we only need to be able
to find the set of solutions for fixed ai, si, and pi. We need to find vectors v such that
M
3v D �.s2p3/ � �.s1p2/. One can use the Smith normal form to find an integer
base K D .k1; k2; k3/ of the kernel of M
3 and a particular integer solution v0 such
that M
3v0 D �.s2p3/��.s1p2/. Thus all the solutions are of the form v D v0CKx
where x is an integer vector.

Lemma 5.3.13 tells us that there are three vectors b1; b2; b3 2 C6 and three
constants c1; c2; c3 2 RC such that if t D Œa0; a1; a2; v� is realized by a factor of

!6 .a/ then for all i 2 f1; 2; 3g, jbi � vj < ci. Using that, one can check that in fact
x is bounded by a constant C. Thus there are finitely many possible v such that t is
realizable by a factor of 
!6 .a/ and they can be computed.

5.3.2 Abelian Patterns

A nice way to define an abelian analog of the notion of pattern is to use an alternative
definition of the occurrence of a pattern.

Theorem 5.3.23. For any word w 2 A � and pattern P in 	, the three following
are equivalent:
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1. w is an occurrence of the pattern P;
2. there exists a morphism h W 	� 7! A � such that h.P/ D w;
3. there exists u1; u2; : : : ; ujPj 2 A � such that w D u1u2 : : : ujPj and for all i; j 2
Œ1; jPj�, Pi D Pj H) ui D uj.

With this alternative definition in mind, we say that a word w 2 A � is an abelian
occurrence of a pattern P 2 	 if there are u1; u2; : : : ; ujPj 2 A � such that w D
u1u2 : : : ujPj and for all i; j 2 Œ1; jPj�, Pi D Pj H) ui �a uj. Note that if a word w
is an occurrence of a pattern P, then w is also an abelian occurrence of P. A word
w contains an abelian occurrence of P if one of its factors is an abelian occurrence
of P. If w does not contain an abelian occurrence of P, we say that w avoids P in
the abelian sense. We say that a pattern is abelian-k-avoidable if there is an infinite
word from an alphabet of size k that avoids this pattern. For any pattern P 2 	�,
the abelian-avoidability index of P (denoted by �a.P/) is the smallest integer k such
that P is abelian-k-avoidable or1 if there is no such k.

It is left to the reader to verify that the relation “contains an abelian occurrence
of” over A � [ 	� is transitive. It implies that if a pattern P contains an abelian
occurrence of a pattern P0 then �a.P0/ � �a.P/. This is really similar to the notion
of divisibility between patterns or formulas but in the abelian framework, and this
is useful to show the following first result.

Theorem 5.3.24. Let P 2 fA;BgC. If P 2 fA;B;AB;BA;ABA;BABg, then �a.P/ D
1, otherwise �a.P/ � 4.

Proof. Let F D fA;B;AB;BA;ABA;BABg.
Recall that abelian squares are avoidable over four letters which implies that

�a.AA/ D 4. One can check that F is the set of nonempty binary words avoiding
abelian squares. Then for any P 2 fA;BgC n F, P contains an abelian occurrence of
AA which implies �a.P/ � �a.AA/ D 4.

Let w be an infinite word over a finite alphabet. There is at least one letter, say a,
which occurs infinitely many times. Thus there is a nonempty word u such that aua
is a factor of w and then w contains an abelian occurrence of ABA. This implies that
�a.ABA/ D 1. Moreover, for all P 2 F, ABA contains an abelian occurrence of P
which implies �a.ABA/ � �a.P/ and �a.P/ D1. ut

Using the same idea and the fact that �a.AAA/ D 3, we can show the following.

Theorem 5.3.25. Binary patterns of length at least 9 are abelian-3-avoidable.

Proof. This is easy to check exhaustively that every pattern of length at least 9
contains an abelian cube. Using �a.AAA/ D 3, we get the result. ut

There are only finitely many binary patterns with abelian-avoidability index at
least 4.

Finding one pattern P such that �a.P/ D 2 is not enough to get the same kind
of result on the binary alphabet since there are infinitely many binary patterns
avoiding P. The solution is to find a set S of patterns, such that 8P 2 S; �a.P/ D 2

and such that there are only finitely many patterns avoiding all the elements of S in
the abelian sense.
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Let wn be the fixed point of the morphism �n such that �n.0/ D 0nC11; �n.1/ D

01n. Dekking showed that w2 avoids AAAA in the abelian sense (see Theorem 5.3.3).
It is possible to generalize the conditions from Dekking [188] to obtain a set of
binary patterns avoided by at least one of the wi in the abelian sense and to use this
set to show that binary patterns of length at least 119 are avoidable in the abelian
sense over the binary alphabet [174].

It is in fact possible to decide under some restriction whether the fixed point of a
given morphism avoids a pattern in the abelian sense.

Theorem 5.3.26. For any alphabets 	 and A , pattern P 2 	�, morphism h W
A � 7! A �, and any letter a 2 A such that

• h.a/ D as for some s,
• Mh, the matrix associated to h, is invertible,
• kM�1h k2 < 1,
• 8
 2 A , jh.
/j > 1,

it is possible to decide whether h!.a/ contains an abelian occurrence of P.

The algorithm is based on a generalization of the notion of templates to patterns.
The details can be found in [511]. Note that one could generalize this result
to matrix with no eigenvalues of module 1 by using the same technique than
for Theorem 5.3.8. An implementation of this decision algorithm can check the
following lemma.

Lemma 5.3.27 ([511]). The patterns in Table 5.2 are avoidable in the abelian
sense over a binary alphabet.

Table 5.2 Patterns avoidable in the abelian sense over a binary alphabet

• Avoided by a 7! aabaa; b 7! bbabb: AABBBAAAB; ABAAABBBA; AAABABABBB;
AAABABBABB; AAABABBBAB; AABBBABAAB; AABBBABABA; ABAABABBBA;
ABAABBBABA; ABABAABBBA; ABBBABAAAB; AABAABBBAB; AABBBAABAB;
AABBBAABAAB; AAABABBAAAB; AABBBABBBAA; ABABABBBABA; ABABBABBABA;
AAABAAABBAB; AAABBABAAAB; AAABAABAABAB; AAABABAAABAB;
AABAAABABAAB; AAABAAABABBA; AAABAABABAAB; AAABABAABAAB;
ABBABAAABAAB; ABABBBABBBABA:

• Avoided by a 7! aaaab; b 7! abbab: ABAABBBAAB; AAABBABABB; AAABBABBAB;
AABAABBABB; AABABABBBA; AABABBABBA; AABABBBAAB; AABABBBABA;
AABBAABBBA; AABBABABBA; AABBABBAAB; AABBABBABA; AABBBAABBA;
ABAABBABBA; AABBABABBBA; AABABBBABBBA:

• Avoided by a 7! abb; b 7! aaab: AAAA; AAABAABBB; AAABBBABB; AABBABBBA;
AABBBABBA; AAABBAAABB; AABABAAABB; ABBBAABBBA; AAABAABBAB;
AAABAABAABB; AAABBAABAAB; AABAABAABBA; AABAABBAAAB; AABABABAAAB;
AAABBAAABAB; AABAAABABAB; AABAAABBAAB; AAABAABAAABAB:

• Avoided by a 7! aaab; b 7! bbba: AAABABBBAA; AAABBAABBB; AAABBABBAA;
ABABAAABBB; ABABBBAABBA; AABABBAAABA; AABBABAAABA:

• Avoided by a 7! abaa; b 7! babb: AABBABBABBA; AABABBABBBA; AABBBABBBABA;
ABABBABBABBA; ABABBABBBABA; ABABBBABABBA; ABBABABBABBA:

• Avoided by a 7! aaaba; b 7! babbb: ABAABBBAAA; AABABBBAAA:
• Avoided by a 7! aababbaaaba; b 7! babbbaababb: AABAAABAAABAB;

ABBBABBBABBBA; AAABAAABAAABAAA:
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Moreover it is possible to check by exhaustive search that any pattern of length
at least 15 contains an occurrence of one of the patterns from Table 5.2. Using that
and the fact that the relation “contains an abelian occurrence of” is transitive, we
get the following lemma.

Theorem 5.3.28. Binary patterns of length at least 15 are abelian-2-avoidable.

It seems hard to show that a binary pattern is not abelian-2-avoidable and only
few of the patterns that avoid a pattern from Lemma 5.3.27 are proven to be abelian-
2-unavoidable.

5.3.3 Powers Modulo ˚ , Additive Powers, and k-Repetitive
Groups

Let .G;C/ be a semigroup and ˚ W .A �; :/ ! .G;C/ be a morphism. For any
k � 2, a k-th power modulo ˚ is a word w D w1w2 : : :wk with for all i 2 f2; : : : ; kg,
˚.wi/ D ˚.w1/. If moreover jw1j D jw2j D : : : D jwkj then it is a uniform k-th
power modulo ˚ . We say that .G;C/ is k-repetitive (resp., uniformly k-repetitive)
if for any alphabet A and any morphism ˚ W .A �; :/! .G;C/ every infinite word
over A contains a k-power modulo ˚ (resp., a uniform k-power modulo ˚). Note
that if .G;C/ is abelian, then every abelian k-power is a uniform k-power modulo
˚ . Since usual squares are avoidable over 3 letters, we know that the free group
on three generators is not 2-repetitive, and we deduce that the free group on two
generators is not 2-repetitive.

One of the most important question related to this notion is to know which
groups are (uniformly) k-repetitive for a given k. An important result is the following
theorem from Pirillo and Varricchio.

Theorem 5.3.29 ([485]). Let k be an integer greater than 1. The following state-
ments are equivalent:

1. Z is not uniformly k-repetitive,
2. any finitely generated and uniformly k-repetitive semigroup is finite.

It is a long-standing question whether Z is uniformly 2-repetitive or not. Recently
Cassaigne et al. showed that Z is not uniformly 3-repetitive. We deduce that any
finitely generated infinite group is not uniformly 3-repetitive.

In the rest, we only consider groups .G;C/ D .Zd;C/ for some d > 0. Uniform
k-th powers modulo ˚ are usually called additive k-th powers, without mention of
the morphism ˚ , if the value of ˚.a/ is clear in the context (i.e., A 
 G). For
instance, if we take A D f0; 1; 2; 3g 
 Z, then 012030 is an additive square, and in
fact one can check by exhaustive search that additive squares are not avoidable over
this particular subset of Z. An application of Szemerédi’s theorem shows that for
d D 1, for any finite alphabet A and k 2 N, it is not possible to avoid k-th power
modulo ˚ over A , that is, .Z;C/ is k-repetitive for any k.
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It was recently showed that:

• Z is not uniformly 3-repetitive;
• Z2 is not uniformly 2-repetitive.

Those two facts are corollaries of the following theorems.

Theorem 5.3.30 ([133]). The fixed point of 
4 is additive-cube-free, with


4 W

8
ˆ̂<

ˆ̂:

0! 03

1! 43

3! 1

4! 01:

Let ˚ be the morphism such that

˚ W

8
<

:

a! .0; 0/; b! .1; 1/

c! .2; 1/; d! .0; 1/

e! .2; 0/; f ! .1; 0/:

Theorem 5.3.31 ([497]). ˚.
!6 .a// does not contain two consecutive blocks of the
same size and the same sum.

The proof of Theorem 5.3.30 given in [133] is really specific to the morphism 
4
and relies on linear algebra and a lot of computation done by computer. In [497],
the authors gave a procedure deciding if the fixed points of a given morphism are
additive-square-free. The algorithm uses some of the idea of [133] and the ideas of
the decision procedure for abelian power freeness already used for Theorem 5.3.8.
The algorithm is also based on templates.

In order to compute which templates correspond to an additive power, we first
need to associate a matrix M˚ to ˚ such that for any word w, ˚.w/ D M˚�.w/. It
is easy to see that two factors u and v have the same sum if M˚.�.u/��.v// D 0.
Thus a factor w is an additive square if and only if it realizes a template t D Œ"; "; "; v�
with M˚v D 0. It is possible to compute an integer base K of the kernel of M˚ using
Smith normal form and then v 2 fKx j x 2 Z3g. One can then use Lemma 5.3.13
and some linear algebra to show that if t is realizable, then x and thus v are bounded
[497]. It is then easy to compute a finite superset of all the realizable templates
corresponding to an additive cube. And we can check using Theorem 5.3.8 that all
these templates are avoided by 
!6 .a/. It implies that ˚.
!6 .a// does not contain
additive square. This proof technique can also be applied to Theorem 5.3.30 or to
other similar results.

Let �4 W

8
ˆ̂<

ˆ̂:

0! 001

1! 041

2! 41

4! 442

, � 04 W

8
ˆ̂<

ˆ̂:

0! 03

2! 53

3! 2

5! 02

and � 004 W

8
ˆ̂<

ˆ̂:

0! 03

2! 63

3! 2

5! 02:
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Theorem 5.3.32. �!4 .0/, �
0!
4 .0/, and � 00!4 .0/ avoid additive cubes.

Rao conjectured that for any integers 0 < i < j such that i and j are coprime
and j � 6, additive cubes are avoidable over f0; i; jg, since it seems easy to find
a morphism � from f0; 1; 3; 4g� to f0; i; jg� such that �.w/ avoids additive cubes
if and only if w avoids additive cubes, using the decision algorithm presented in
[494]. Moreover, he showed that this conjecture is true for 6 � j � 9 and that
additive cubes are also avoidable over f0; 1; 5g. Thus using these observations and
Theorem 5.3.32, f0; 1; 2; 3g, f0; 1; 4g, and f0; 2; 5g might be the only alphabets over
which additive cubes are not avoidable.

Problem 5.3.33. Are additive cubes avoidable over f0; 1; 2; 3g? f0; 1; 4g? f0; 2; 5g?

5.3.4 k-Abelian Equivalence

One recent generalization of the abelian equivalence is the k-abelian equivalence
introduced by Karhumäki et al. [329, 330]. Let k � 1. For any words u and w,
we denote by jujw the number of occurrences of w as a factor of u. Let k 2 N [
fC1g and u; v be two words over the alphabet A . We let A �k denote the set of
words of length at most k over A . Two words u 2 A � and v 2 A � are k-abelian
equivalent, if for every w 2 A �k, jujw D jvjw. A word u is a k-abelian n-th power,
n � 2, if u D u1u2 : : : un such that ui �a;k uiC1 for every i 2 f1; : : : ; n � 1g. A
k-abelian square (resp. k-abelian cube) is a k-abelian 2nd power (resp. k-abelian
3rd power). This notion is between the abelian equivalence (which is the 1-abelian
equivalence) and the usual equality between words (which can be viewed as the
1-abelian equivalence). Since cubes are avoidable over the binary alphabet (e.g.,
in the Prouhet–Thue–Morse word), but are not avoidable in the abelian sense, it is
natural to ask for the smallest k for which k-abelian cubes are avoidable over the
binary alphabet.

Theorem 5.3.34 ([304]). 2-abelian squares are not avoidable on ternary words.

We will show in Section 5.4 how to prove this result. On the other hand, we have
the following.

Theorem 5.3.35 ([494]).

• One can avoid 2-abelian cubes on binary words.
• One can avoid 3-abelian squares on ternary words.

The proof follows from the fact that for any abelian square-free word (resp.
abelian-cube-free word) w, the morphic word �3.w/ (resp. �2.w/) is 3-abelian
square-free (resp. 2-abelian cube-free), where �2 and �3 are given in Table 5.3. It
also implies that there are exponentially many such words.

Following Erdős’ and Mäkelä’s questions, we can ask to avoid only long k-
abelian repetitions. One has the following.
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Table 5.3 Morphisms for k-abelian n-th power-free words

2-abelian cube-free morphism:

�2 W

8
<̂

:̂

0! 00100101001011001001010010011001001100101101011

1! 00100110010011001101100110110010011001101101011

2! 00110110101101001011010110100101001001101101011

3-abelian square-free morphism:

�3 W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

0! 0102012021012010201210212

1! 0102101201021201210120212

2! 0102101210212021020120212

3! 0121020120210201210120212

Theorem 5.3.36 ([496, 497]). Let g.k/ be the least integer such that there exists
an infinite binary word with only g.k/ distinct k-abelian squares. Then g.1/ D 1,
5 � g.2/ � 734, g.4/ D g.3/ D 4, and g.k/ D 3 for every k � 5.

The determination of the exact value g.2/ is still open and has the same order of
difficulty as Problem 5.3.20 and Problem 5.3.21.

5.3.5 k-Binomial Equivalence

Another generalization of the abelian equivalence has been introduced: the k-
binomial equivalence [505]. Let u and v be two words. Let

�u
v

�
denotes the number

of times v occurs as a subsequence of u (meaning as a “scattered” subword). We say
that u and v are k-binomially equivalent if

8w 2 A �k;

 
u

w

!
D

 
v

w

!
:

We write u �b;k v if u and v are k-binomially equivalent. Note that the 1-binomial
equivalence is the abelian equivalence. Moreover, this notion is not comparable with
the k-abelian equivalence, except for k D 1.

A 2-binomial square (resp. 2-binomial cube) is a nonempty word of the form xy
where x �b;2 y (resp. x �b;2 y �b;2 z).

Theorem 5.3.37 ([495]). The ternary Thue–Morse word avoids 2-binomial
squares.

Consider the morphism h W 0 7! 001 and h W 1 7! 011.

Theorem 5.3.38 ([495]). For every 2-binomial-cube-free word w 2 f0; 1g�, h.w/
is 2-binomial-cube-free.

Corollary 5.3.39. The infinite word h!.0/ D 001001011 � � � fixed point of h avoids
2-binomial cubes.



5 Avoiding or Limiting Regularities in Words 199

5.4 Techniques for Negative Results

5.4.1 Exhaustive Search and Backtracking

If one wants to prove that a factorial language is finite, a simple and often effective
method is to do an exhaustive search to find every word within the language.

Algorithm 1 Exhaustive search
1: procedure RECURSE(w)
2: for every x 2 A do
3: if wx 2 L then RECURSE(wx)

Algorithm 1 terminates if and only if the language is finite. Note that the number
of call of RECURSE is exactly the size of the language.

If L is defined by a set of forbidden factors, we only need to check (line 3) the
suffixes of w, since we know that every proper prefix of w is in L . Moreover, we
may use a good data structure to check efficiently if a suffix of w is forbidden. For
example, one can remember the Parikh vector of every prefix of w to check in O.n/
if a suffix of w is an abelian square.

Example 5.4.1. There are no infinite 2-abelian square-free words over 3 letters. The
Algorithm 1 terminates and finds 81 217 678words. The larger word in the language
has length 537 [304].

This exhaustive search can be shortened using the lexicographic order. We fix
now an arbitrary order on A .

Algorithm 2 Search of lexicographic least element
1: procedure RECURSE(w)
2: for i from 1 to jwj � 1 do
3: if wŒ1 W i� > wŒjwj � iC 1 W jwj� then return
4: for every x 2 A do
5: if wx 2 L then RECURSE(wx)

Let L be the set of infinite words w such that every finite factor in w is in L . If
L is infinite, then the set L is nonempty, by König’s lemma. Then the condition of
line 3 in Algorithm 2 fails for every prefix of the lexicographic least element in L .
Thus, Algorithm 2 terminates if and only if L is finite.

This can be improved again if L is stable by permutations of letters, that is, if
L D h.L / for every bijection h W A ! A (see [153]).

Again, the condition of line 4 in Algorithm 3 fails for every prefix of the
lexicographic least element in L , and the procedure terminates if and only if L
is finite.
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Algorithm 3 Search of lexicographic least element up to permutations
1: procedure RECURSE(w)
2: for i from 1 to jwj � 1 do
3: for every bijection h on A do
4: if wŒ1 W i� > h.wŒjwj � iC 1 W jwj�/ then return
5: for every x 2 A do
6: if wx 2 L then RECURSE(wx)

Example 5.4.2. On the case of 2-abelian-square-free words, the Algorithm 1
terminates after 81 217 678 calls, the Algorithm 2 terminates after 354 802 calls,
and the Algorithm 3 terminates after 139 962 calls.

Example 5.4.3. There are no infinite binary words avoiding abelian cubes of period
at least 2. The Algorithm 3 terminates after 2 873 166 727 calls, and the longest word
in the exploration has size 289.

5.4.2 Bounds on Densities by Exhaustive Searches

Exhaustive searches can also be used to get bounds on densities.

Definition 5.4.4. A generalized occurrence function on a factorial language L is
a function f W L ! RC [ f1g such that there is a g W L ! RC [ f1g, and
f .w/ D

P
1�i�j�jwj g.wŒi W j�/.

This notion generalizes the notion of occurrences of repetitions or letters that we
discussed in Section 5.2. One can easily verify the following.

Proposition 5.4.5. The function f is a generalized occurrence function if and only
if the two following conditions are fulfilled:

(c1) f .�/ D 0, and
(c2) for every u; v;w 2 A �, f .uvw/C f .v/ � f .uv/C f .vw/.

Let L be a factorial language and f be a generalized occurrence function. We
define

`L
f D lim

n!C1
min

u2L\A n

f .u/

n
;

which is well defined, since for every integer n and k, mknCl �
k

kC1mn, where mn D

minu2L\A n
f .u/

n . One can easily show the following.

Lemma 5.4.6. There is an infinite word w in L such that

lim
n!1

f .wŒ1 W n�/

n
D `L

f :
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Proof. The proof follows the ideas presented in [559]. One has directly, for every
infinite word w in L , lim infn!1

f .wŒ1Wn�/
n � `L

f . Suppose that `L
f < 1 and let

A D
n
w 2 L W f .wŒ1::n�/

n � `L
f for all n 2 f1; : : : ; jwjg

o
. Suppose that A is finite.

Then for every word w 2 L , there is a sequence of words w1; : : : ;wk such that
w D w1w2 : : :wk, for every i 2 f1; : : : ; kg, jwij � mC 1 (where m D maxw2A jwj),
and for every i 2 f1; : : : ; k � 1g, f .wi/ � .`

L
f C ı/jwij, for a ı > 0. This implies

that there is a ı0 > 0 such that the set
n
w 2 L j f .w/

jwj � `
L
f C ı

0
o

is finite, and we

have a contradiction.
Thus A is infinite, and by König’s lemma, there is an infinite word w such that

limn!1
f .wŒ1Wn�/

n � `L
f . ut

A word w is k-biprolongable in L if there exists a word lwr 2 L with jlj D
jrj D k. A set S 
 L is a suffix cover of L if there exists an integer k such that for
every k-biprolongable word w 2 L , there is a word in S which is a suffix of w.

Let f be a generalized occurrence function. For every u 2 L , let

Au.q/ D

�
w 2 L W uw 2 L and for every prefix w0 of w;

f .uw0/ � f .u/

jw0j
< q

�
:

Proposition 5.4.7. Let q 2 R and S be a suffix cover of L . If for every u 2 S, Au.q/
is finite, then for every infinite word w in L , lim infn!1

f .wŒ1Wn�/
n � q.

Proof. Let k be such that every k-biprolongable word in L has a suffix in S. Let w
be an infinite word in L , and let w D w0w1 : : : be such that w0 is the smallest prefix
of w which has a k-biprolongable suffix in S, and for every i � 0, wiC1 the smallest
prefix of wŒ1Cjw0 : : :wij W 1� not in Aui.q/, where ui is a suffix of w0 : : :wi in S. Let
w0 be a prefix of w and j be the least integer such that w0 is a prefix of w0w1 : : :wj.
Then f .w0/ �

Pj�1
iD1 f .uiwi/ � f .ui/ � qjw1 : : :wj�1j. Since each wi has bounded

size, one has lim infn!1
f .wŒ1Wn�/

n � q. ut

Example 5.4.8. If one wants to prove that the maximum frequency of a letter in a
ternary square-free word is at most 255

653
, one can show that the sets Au

�
398
653

�
are finite

for every u 2 f0; 01; 021; 0121g and the occurrence function f .w/ D jwj1 C jwj2.
The largest set is A0121

�
398
653

�
, with 188 614 words of maximal size 10 090. Since 1

and 2 play a symmetric role, and f0; 01; 021; 0121; 012; 02; 0212g is a suffix cover
of the square-free words, we have the result.

5.4.3 Mean Cycles and Rauzy Graphs

A weighted graph is a triplet .V;A; p/, where V is the finite set of vertices, A 
 V	V
is the set of arcs, and p W A! RC[f1g is the weight function. We only work with
weighted graphs, so we generally call them graphs. If X is a set of arcs, its weight
p.X/ is the sum of the weights in X.
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Let G D .V;A; p/ be a graph. A path in a graph is a (possibly infinite) sequence
of arcs e1; : : : ; ek such that for every i 2 f1; : : : ; kg, ei D .xi; xiC1/ and eiC1 D

.xiC1; xiC2/ (where k is the cardinality of the sequence). A cycle in a graph is a
sequence of arcs e1; : : : ; ek such that for every i 2 f1; : : : ; kg, ei D .xi; xiC1/ and
eiC1 D .xiC1; xiC2/ (indices are taken modulo k).

The mean cycle of a graph G is � .G/ D min w.C/
jCj over all cycles C in G. One can

easily see that one takes the minimum over cycles which only pass at most one time
through each vertex. The mean cycle is a well-known parameter in optimization area
which is closely related to the maximum eigenvalue in max-plus algebra, and there
are efficient algorithms to compute it (see, e.g., [337]).

The Rauzy graph of order n of a language L on the alphabet A , where n is a
positive integer, is the graph of vertex set L \A n and of arc set f.u; v/ W uŒ2 W n� D
vŒ1 W n � 1�and uŒ1�v 2 L g (see also [78, Section 4.5.5]).

Let f be a generalized occurrence function on L . Let n > 1 and .V;A/ be the
Rauzy graph of order n of L .

Let p be the weight function such that p.u; v/ D f .uvŒn�/ � f .u/. Let G D
.V;A; p/.

Lemma 5.4.9. There is a constant cG such that for every n0 � 0, minw2A n0 f .w/C
cG � � .G/ 	 n0. In particular, we have `L

f � � .G/.

Proof. Suppose w.l.o.g. that n0 � n. Let k D n0 � n, and let P D

..x1; x2/; : : : .xk; xkC1// be the path in G such that for every i 2 f1; : : : kC1g, xi

is wŒi W iCn�. Since f is generalized occurrence function, and by the definition of p,
f .w/ �

P
i2f0;:::k�1g p..xi; xiC1//. Now P can be decomposed into P0C1P1 : : :ClPl,

where for every i 2 f1; : : : lg, Ci is a cycle in G, and P0 : : :Pl is a path withP
i2f0;:::lg jPij � jVj. Thus f .w/ � � .G/ 	 .n0 � n � V/. ut

5.4.4 Upper Bound on the Growth Rate

The mean cycle is an analogue of the maximum eigenvalue in the .max;C/ algebra.
Lemma 5.4.9 recalls the following well-known fact.

Lemma 5.4.10. Let n > 1 and let G D .V;A/ be the Rauzy graph of order n of
L . Then the spectral radius of the incidence matrix of G is an upper bound for the
growth rate of L .

More generally, Lemma 5.4.10 is also true for every automaton which recognizes
a superset of L . The next section presents an iterative construction of such an
automaton.
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5.4.5 Nonuniform Rauzy Graphs

The mean cycle method to compute bounds is often much more effective if we use
a nonuniform version of Rauzy graphs, called suffix graphs in this section.

Let A be a finite alphabet, and let f be a generalized occurrence function on A �.
One can always suppose that L D A �, by taking f .w/ D 1 for every w 62 L .
Thus we may omit the superscript L in the following.

Definition 5.4.11. A good suffix cover on A is a finite set V of words on the
alphabet A such that:

(a) V is a complete suffix code, i.e., for every u; v 2 V with u ¤ v, u is not a suffix
of v, and every left-infinite word has a suffix in V .

(b) For every ux 2 V with u 2 A � and x 2 ˛, there is a v 2 V such that u is a suffix
of v.

Definition 5.4.12. A suffix graph of .A ; f / is a graph .V;A; p/ such that:

• V is a good suffix cover,
• .u; v/ 2 A if v is a suffix of ux for an x 2 A , and p..u; v// D f .ux/ � f .u/.

Note that a suffix graph is uniquely determined by the good suffix cover and by f .
One can easily show that Lemma 5.4.9 is also true for suffix graphs. Figure 5.2 gives
an example of a suffix graph on f0; 1g� and the occurrence function f which counts
the number of squares. Thus, the suffix graph of Figure 5.2 shows that `f �

1
3
, that

is, the minimal density of squares in a binary word is at least 1
3
.

5.4.5.1 Automatic Method to Construct a Suffix Graph

We present now an automatic method which constructs a suffix graph.
Throughout this section, we fix a finite alphabet A and a generalized occurrence
function f .

Proposition 5.4.13. Let G D .V;A; p/ be a suffix graph, and let .u; v/ 2 A such
that juj < jvj. Then juj D jvj � 1, and there is no w 2 V n fug such that .w; v/ 2 A.

Fig. 5.2 A suffix graph of
.0; 1�; f /, where f counts the
number or squares. One has
� .G/ D 1

3

010

101

110

001

00 111 11
10 0

0

0

1

1

1

1
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We say that a vertex v 2 V is critical in G D .V;A; p/ if there exists u 2 V such
that u is the suffix of v of length jvj � 1. For example, the critical vertices of the
graph in Figure 5.2 are 001 and 110.

Lemma 5.4.14. Let G D .V;A;w/ be a suffix graph, and let v 2 V be a noncritical
vertex in V. Then V � v D .V n fvg/ [ fxv j x 2 A g is a good suffix cover.

Proof. Clearly, V 0 D V �v is a maximal suffix code. Suppose that (b) is not fulfilled
and let uy 2 V 0 such that u is not a suffix of any word in V 0. Then uy 2 V 0nV D fxv W
x 2 A g, and uy D xv D xwy for a x 2 A . Let w0 2 V be such that either w0 is a
suffix of u or u is a suffix of w0. Such a w0 always exists, since V is a complete suffix
code. We have w0 ¤ v, otherwise u D v will be a suffix of zv 2 V 0. Thus w0 2 V 0, u
is not a suffix of w0, and w0 is a suffix of u. Then v is critical. Contradiction. ut

We denote by G � v the suffix graph with vertex set V � v.
We describe now the algorithm used to obtain a lower bound. We start with the

suffix graph G with suffix cover V D A .
In an infinite loop, we take a circuit C in G of ratio p.C/

jCj D � .G/. We take a
vertex v in C of minimum length, and we replace G by G � v. Note that a vertex of
minimum length on the cycle cannot be critical.

The mean cycle cannot decrease and occasionally increases. At each cycle in the
infinite loop, we get a lower bound for `f . We are only limited by the amount of
memory needed to store the suffix graph.

Example 5.4.15. Let f denote the number of square occurrences in a word w. If we
apply the previous algorithm for the function f on the binary words, it gives the
lower bound 103

187
after approximately 120000 iterations and 8 hours of single core

computation on a 3 GHz CPU. The longest word in V has size 275. In [363], we
show that if we count only squares of size at most 274, then the minimum ratio is at
most 38

69
. Thus every suffix graph which proves the 103

187
bound has a vertex of size at

least 275. If we want to prove the exact bound with a uniform Rauzy graph, the graph
would have at least 2275 vertices. This shows why the nonuniform generalization is
crucial here.

5.4.5.2 Improvement of the Extension Phase

Since the construction of the suffix graph and the computation of the mean cycle
take the major part of the time, we modify the procedure to make several extensions
at each step.

We extend the V �v operation in the following way. Let V be a good suffix cover,
let v 2 A C, and let vi be the suffix of size i in v for every i 2 f1; : : : ; jvjg. Let
V0 D V , and for every i � 1, let Vi D Vi�1 � vi if vi 2 Vi�1, and Vi D Vi�1

otherwise. Finally let V � v D Vjvj.
Let w be the word which corresponds to a cycle of minimal ratio in G, that

is, if the cycle is ..x0; x1/; : : : ; .xk�1; xk//, wŒi� is the last letter of xi for every
i 2 f1; : : : ; kg. � .G/	k is a lower bound for f .wlw/�f .wl/ for a certain l (e.g., when
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.l�1/	k � nC1, where n is the size of the larger word in the good suffix cover). The
circular word w may contain an occurrence of a factor u such that g.u/ > 0 (using
notation of Definition 5.4.4) and such that u is not counted in this lower bound (i.e.,
the occurrence of u is not an occurrence in xi, for every i 2 f1; : : : ; kg).

At each iteration of the algorithm, we choose the smallest such u in a cycle C of
minimal ratio, and we replace G by G � u. Informally speaking, we kill the cycle C
by adding an occurrence of a factor which increases the weight of the cycle. In all
the weight functions f we study here, we have liml!1 f .ul/ D C1; thus such a u
always exists.

5.4.5.3 Computation of the Mean Cycle

The mean cycle is computed by a Howard-like algorithm (see [239]).
Before computing the mean cycle, we simplify the graph. We first remove every

arc a with p.a/ D 1, since it cannot be part of a cycle with minimal ratio when
`f < 1. We also remove vertices with out-degree zero or in-degree zero. Then we
work on doubly valuated graphs, that is, graphs with two weight functions p and l,
where l.a/ is the length of the arc a, in which we allow multiple arcs (several copies
of the same arc .u; v/ with different weights). On doubly valuated graphs, the mean
cycle is � .G/ D min p.C/

l.C/ over every cycles. Clearly, the mean cycle of a graph is
the mean cycle of the doubly valuated graph with l..u; v// D 1 for every arc .u; v/.

Our simplified procedure is the following: while there is a v 2 V of in-degree
or out-degree at most 1 and such that .v; v/ 62 A, we contract v. That is, we
remove v and every arc incident to v in the graph, and we add .u;w/ in A for
every .u; v/; .v;w/ 2 A2, with p..u;w// D p..u; v// C p..v;w// and l..u;w// D
l..u; v//C l..v;w//. It is not hard to see that the mean cycle of the contracted graph
is the mean cycle of the original graph. Moreover, Howard algorithm also works
for doubly valuated graphs. Note that this procedure can introduce multiple arcs.
For example, in Figure 5.2, one can contract the vertex 001: one removes the vertex
001, and we add the arc .00; 010/ of weight 0 and length 2, and the arc .00; 11/ of
weight 1 and length 2.

Example 5.4.16. Let f be the number of square occurrences and A D f0; 1g. With
the previous improvements, the lower bound 103

187
for `s takes only 39 iterations and

less than one second to compute.

5.5 Techniques for Positive Results

We present general techniques which can be used to prove the existence of an infinite
word with a given property P (in our case, avoiding a repetition-like patterns). There
are two main classes of techniques to show that an infinite word exists: either we
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give an explicit construction of a word with the property or we show it by some
nonconstructive way that such a word must exist, since the function which counts
the number of words of size n with the property is growing quickly.

5.5.1 Finding a Candidate Morphism

Most of explicit constructions are pure morphic words, morphic words, or the image
by a morphism of an already known word. Finding such constructions is usually
done in two steps. The first one is to find a candidate morphism 
 , that is, a
morphism 
 such that a long prefix of 
.u/ has the desired property P, where u
is a well-chosen infinite word. This word u can be, for example, a fixed point of

 (and in this case, we search for a pure morphic word with the property), a word
with the property P on a larger alphabet, or a word with another property P0. For
example, if one wants to limit squares on binary words, a natural choice for P0 is to
be square-free, that is, one can search for a morphism 
 W f0; 1; 2g ! f0; 1g such
that 
.wTTM/ has the property.

Once a candidate is found, the second step is to show that the infinite word

.u/ has the desired property. This is usually done by a decision algorithm, which
depends on P. Several of these algorithms have already been presented (e.g., in
Section 5.3 for abelian powers or in [79, Section 4.2.5] for usual powers), and this
second step will not be discussed here.

These two steps may have variable difficulties. For example, one can easily
decide if a morphic word avoids abelian powers or long abelian powers, but finding
such a morphic word is usually a hard task. One can cite that the simplest known
construction of an abelian-square-free word on a 4-letter alphabet is the fixed point
of the 85-uniform morphism from Keränen.

We focus here on the first step, finding a candidate morphism. If one wants to
find a morphism 
 such that 
!.a/ or 
.u/ has a hereditary property P, one can use
one of the following techniques.

First, one can try to construct a long word w with the property P, with a
backtracking algorithm (as Algorithm 1). To avoid border effect, one can remove
from w long enough prefix and suffix.

Sometimes, w already looks like a morphic word. If one can find a small set of
words fw1; : : : ;wkg such that a long factor w0 of w is the image of a word v by the
morphism 
 W f1; : : : ; kg� ! A � such that 
.i/ D wi, then one can guess that there
is an infinite word u such that 
.u/ has the property P. It suffices then to find the
property P0 that u must have, and then use an already known construction, or apply
recursively the technique on P0 and the alphabet Ak.

If the previous approach fails (that can happen in particular if too many words
have the property P), a second approach is to explicitly try to find a 
 among a large
class of morphisms, such that either 
!.a/ has the property or 
.u/ has the property,
for a previously specified u with a good property P0. One can start by choosing a set
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of candidate images U 
 A � and try among jUjjA j morphisms (if one is looking
for a fixed point) or jUjk morphisms if u is on a k letter alphabet (if one is looking
for word 
.u/ where u 2 A �k ).

This set U can be the set of all words in A � of size at most n with the property
P, and one can increase n until a candidate morphism is found. Of course, one is
quickly restricted by a combinatorial explosion. Thus one can restrict the set U to
some promising words. For example, one can take only words with a common prefix
or words often appearing in a long word with the property P.

5.5.2 Avoiding Patterns and Formulas

We address the problem of finding the avoidability index of a given formula f . First,
we ensure that f is avoidable using Zimin’s algorithm. We use the techniques given
in Section 5.4 to obtain a lower bound k on �.f /, which is also the conjectured value
of �.f /.

Now, we try to guess whether f is avoided by exponentially many words. This
may be done by looking at the number of avoiding words of length, say, 5, 10, 15,
20, 25, 30. If f is doubled, then we can try the nonconstructive method described in
Section 5.5.4.

The avoidability exponent AE.p/ of a formula f is the largest real ˛ such that
every ˛-free word avoids f . If f is avoided by exponentially many words, AE.f / > 1,
and either f has at least two fragments or the nonconstructive method does not give
the optimal upper bound, then we can try to find a suitable uniform morphism with
the method in Section 5.5.3. Finally, f may not be avoided by exponentially many
words. We say that two infinite words are equivalent if they have the same set of
recurrent factors. Then there exists a finite set S of morphic words that essentially
avoids f . This means that every infinite word over A�.f / avoiding f is equivalent to
a word in S. Examples of such formulas include:

• fgx.b3/; gt.b3/g essentially avoids ABA:AABB [453].
•
˚
b3; b03; b

00
3

�
essentially avoids ABCAB:BAC:ACA [453].

•
˚
b4; b04; b

00
4

�
essentially avoids AB:BA:AC:CA:BC [32].

where

• b3 is the fixed point of 0 7! 012, 1 7! 02, 2 7! 1 (i.e., the ternary Thue–Morse
word).

• b3, b03, and b003 are the three non-equivalent words obtained from b3 by permuta-
tions of A3.

• b4 is the fixed point of 0 7! 01, 1 7! 03, 2 7! 21, 3 7! 23.
• b4, b04, and b004 are the three non-equivalent words obtained from b3 by permuta-

tions of A4.
• gx.0/ D 01110; gt.0/ D 01011011010;

gx.1/ D 0110; gt.1/ D 01011010;
gx.2/ D 0: gt.2/ D 010:
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5.5.3 The Dejean Method

In this section, we consider another useful tool in pattern avoidance that has been
defined in [451] and already used implicitly in [449]. We extend this definition to
formulas. It is not hard to see that AE.Ci/ D 1C

1
i .

Let us show that AE.ABCBA:CBABC/ D 4
3
. Suppose for contradiction that a 4

3
-

free word contains an occurrence h of ABCBA:CBABC. We write a D jh.A/j, b D
jh.B/j, and c D jh.C/j. The factor h.ABCBA/ is a repetition with period jh.ABCB/j.
So we have aCbCcCbCa

aCbCcCb < 4
3
. This simplifies to 2a < 2b C c. Similarly, CBABC

gives 2c < aC 2b, BAB gives 2b < a, and BCB gives 2b < c. Summing up these
four inequalities gives 2aC 4bC 2c < 2aC 4bC 2c, which is a contradiction. On

the other hand, the word 01234201567865876834201234 is
�
4
3

C
�

-free and

contains an occurrence of ABCBA:CBABC with A D 01, B D 2, and C D 34.
As an exercise, prove that AE.ABCA:CABC:BCB/ D 5�

p
5

2
.

The avoidability exponent depends on the repetitions induced by f . We
have AE.f / D 1 for formulas such as f D AB:BA:AC:CA:BC or f D

AB:BA:AC:BC:CDA:DCD that do not have enough repetitions. That is, for every
� > 0, there exists a .1C �/-free word that contains an occurrence of f .

Recall that the repetition threshold RT.n/ is the smallest real number ˛ such
that there exists an infinite aC-free word over An. The proof of Dejean’s conjecture
established that RT.2/ D 2, RT.3/ D 7

5
, RT.4/ D 7

4
, and RT.n/ D n

n�1 for every
n � 5.

If AE.f / > 1, we consider the smallest integer n such that RT.n/ < AE.f /. Thus,
every RT.n/C-free word over An avoids f (which already gives �.f / � n). Then, for
increasing values of q, we look for a q-uniform morphism m W A �n ! A �k such that
m.w/ avoids f for every RT.n/C-free word w 2 A `

n , where ` is a trade-off between
impatience and paranoia.

Given such a candidate morphism m, we use Lemma 2.1 in [449] to show that
for every RT.n/C-free word w 2 A �n , the image m.w/ is

�
ˇC; t

�
-free. The pair

.ˇ; t/ is chosen such that RT.n/ < ˇ < AE.f / and t is the smallest possible for the
corresponding ˇ. If ˇ < AE.f /, then every occurrence h of f in a

�
ˇC; t

�
-free word

is such that the length of the h-image of every variable of f is bounded above by
a function of t and f only. Thus, the h-image of every fragment of f has bounded
length, and we can check that f is avoided by inspecting a finite set of factors of
words of the form m.w/.

5.5.4 A Power Series Method

Several nonconstructive methods have been already used to prove the existence of
words with a given property. One can cite the Lovász local lemma, the entropy
compression, or some power series methods. A selection of such methods was
already presented in [8, Chapter 4].
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The next method generalizes some previously known methods.
Let L � A �k be a factorial language defined by a set F of forbidden factors of

length at least 2. We denote the factor complexity of L by ni D jL\A i
k j. We define

L0 as the set of words w such that w is not in L and the prefix of length jwj � 1 of w
is in L. For every forbidden factor f 2 F, we choose a number 1 � sf � jf j. Then,
for every i � 1, we define an integer ai such that

ai � max
u2L

ˇ̌˚
v 2 A i

k j uv 2 L0; uv D br; f 2 F; sf D i
�ˇ̌
: (5.1)

We consider the formal power series P.x/ D 1 � kxC
P

i�1 aixi.

Lemma 5.5.1. If P.x/ has a positive real root x0, then ni � x�i
0 for every i � 0.

Proof. Let us rewrite that P.x0/ D 1 � kx0 C
P

i�1 aixi
0 D 0 as

k �
X

i�1

aix
i�1
0 D x�10 (5.2)

Since n0 D 1, we prove by induction that ni
ni�1
� x�10 in order to obtain that ni � x�i

0

for every i � 0. By using (5.2), we obtain the base case: n1
n0
D n1 D k � x�10 . Now,

for every length i � 1, there are:

• ki words in A i
k ,

• ni words in L,
• at most

P
1�j�i ni�jaj words in L0,

• k.ki�1 � ni�1/ words in A i
k n fL [ L0g.

This gives niC
P

1�j�i njai�jCk.ki�1�ni�1/ � ki, that is, ni � kni�1�
P

1�j�i ni�jaj.

ni
ni�1
� k �

P
1�j�i aj

ni�j

ni�1

� k �
P

1�j�i ajx
j�1
0 By induction.

� k �
P

j�1 ajx
j�1
0

D x�10 By (5.2).

ut

For example, one can use this method to show that shuffle squares are avoidable
over seven letters. A shuffle square is a word whose letters can be partitioned into
two identical subwords. For example, every square is a shuffle square, aabbcc and
abacbc are shuffle squares with the subword abc, and ccbcbaca is a shuffle square
with the subword cbca.

Theorem 5.5.2 ([277]). There exist at least 5:59n words of length n over the 7-letter
alphabet containing no shuffle square as a factor.
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Proof. The q-prefix (resp. q-suffix) of a word is its prefix (resp. suffix) of length q.
A shuffle square is minimal if it does not contain a smaller shuffle square as a factor.
A shuffle square is small if its length is two and is large otherwise. The set F of
forbidden factors contains every minimal shuffle square. We set sf D 1 if f 2 F is
small and sf D jf j � 2 otherwise.

We set a1 D 1 because sf D 1 only for small shuffle squares and there is only
one way to extend a prefix by one letter to obtain a suffix xx with x 2 Am. To obtain
reasonable upper bounds at for t � 2, we need to bound the number of large minimal
shuffle squares. To every shuffle square f of a word w of length i, we associate the
height function hW Œ0; : : : ; 2i�! Z defined as follows:

• h.0/ D 0.
• For 0 < j � 2i, h.j/ D h.j � 1/C 1 if the j-th letter of f belongs to the subword

w containing the first letter of f , and h.j/ D h.j � 1/ � 1 otherwise.

Since f is a shuffle square, we have h.2i/ D 0. Moreover, if h.j/ D 0 for some
0 < j < 2i, then the prefix of length j of f is a shuffle square. So, if h is the height
function of a minimal shuffle square, then h.j/ > 0 for every 0 < j < 2i. Thus, every
height function of a minimal shuffle square is associated to a unique Dyck word of
length 2i � 2. The number of height functions is thus at most .2i�2/Š

iŠ .i�1/Š . According
to (5.1), we need to bound the number of solutions to uv D bf such that u is fixed
and jvj D sf D jf j � 2 D 2i � 2. The 2-prefix of f is fixed since it corresponds to
the 2-suffix of u. Notice that the 2-prefix of a large minimal shuffle square of a word
w is equal to the 2-prefix of w, so the 2-prefix of w is also fixed. Thus, there are at
most mi�2 possibilities for w. Since f is determined by w and its height function,
there are at most mi�2 .2i�2/Š

iŠ .i�1/Š possibilities for f . So we set a2i�2 D mi�2 .2i�2/Š
iŠ .i�1/Š and

consider the polynomial

P.x/ D 1 � mxC xC
P

i�2 mi�2 .2i�2/Š
iŠ .i�1/Šx

2i�2

D 1 � .m � 1/xC
�

2x
1C
p
1�4mx2

�2
:

For m D 6, P.x/ has no positive root. For m D 7, we have P.x0/ D 0 with x0 D
0:1788487593 : : : . So there exist at least ˛n words of length n over A7 that avoid
shuffle squares, where ˛ D x�10 D 5:5913163944 : : : ut

5.5.5 Kolpakov’s Method

Kolpakov presented another nonconstructive method to give lower bounds on the
growth rate of some repetition-free languages [356]. This method strongly uses the
fact that one wants to avoid usual powers and can give a bound very close to the
actual growth rate. We present here the idea of the method on square-free ternary
words. This method can be easily adapted to other (fractional) powers. In particular,
this is used for Dejean words in [358].
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We fix a positive integer m. Let G be the Rauzy graph of order m of the square-
free words over the alphabet A D f0; 1; 2g. We remove in G every vertex which is
not in a cycle and call this new graph G0.

Let F be the language of square-free words such that every factor of size m is a
vertex in G0, and let F .n/ D F \A n. Let s D jF .m/j (i.e., the number of vertices
in G0) and F .m/ D fw1; : : :wsg.

We denote by �.w/ the set of ancestors of w in G0. Let	 be the adjacency matrix
of G0, r its spectral radius (which is a positive real number, by Perron–Frobenius
theorem), and let Qx D .x1; : : : ; xs/ be a nonnegative eigenvector which corresponds
to r. Note that r is an upper bound for the growth rate of F .

For a word w 2 F .m/ and n � m, we denote by F w.n/ the number of words in
F .n/with suffix w. Let S.n/ D

Ps
iD1 xi � jF wi.n/j. The goal is to find an ˛ > 1 such

that, assuming S.k C 1/ � ˛S.k/ for every k < n, one has S.nC 1/ � ˛S.n/, and
thus ˛ will be a lower bound for the growth rate of F . From now on, we suppose
that such ˛ > 1 exists. For small values of n, the fact is checked by computing
explicitly F wi.n/ and S.n/.

We estimate F w.nC 1/. Let H .n/ be the set of words w such that wŒ1 W n � 1�
and wŒn�m W n� are square-free and that w contains a square as a suffix. Let H w.n/
be the set of words of H .n/ with suffix w. One has

jF w.nC 1/j D
X

w02�.w/

jF w0

.n/j � jH w.nC 1/j:

And thus:

S.nC 1/ D
sX

iD1

xi � jF
wi.nC 1/j

D

sX

iD1

X

w02�.wi/

xj � jF
w0

.n/j �
sX

iD1

xi � jH
wi.nC 1/j

S.nC 1/ D r � S.n/ �
sX

iD1

xj � jH
wi.nC 1/j: (5.3)

For w 2H w.n/, let �.w/ be the smallest period of a square in w. Let H w
j .n/ D

fw 2H w.n/ j �.w/ D jg. One has

jH w.n/j D
bn=2cX

jDd m
2 eC1

jH w
j .n/j:
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The computation of jH w.n/j is cut into two part. We fix an integer p � m. Let
Aw.n/ D

Pp

jDd m
2 eC1

jH w
j .n/j and Bw.n/ D

Pbn=2c
jDpC1 jH

w
j .n/j. For large values of

j, and thus for Bw, one uses the easy bound jH w
j .n/j � jF

w.n � j/j. Thus:

sX

iD1

xi � B
wi.nC 1/ �

b.nC1/=2cX

jDpC1

sX

iD1

xi � jF
w.n � jC 1/j D

b.nC1/=2cX

jDpC1

S.n � jC 1/

�

1X

jDpC1

S.n/

˛j
D

S.n/

˛p�1.˛ � 1/
: (5.4)

For Aw, one needs to be more precise. For a wi;wi0 2 F .m/, a j �
˙

m
2

�
C 1,

and a l � j, one computes �i;i0 , the number of words w of size l C m, with prefix
wi0 , suffix wi, such that wŒ1 W jwj � 1� is square-free, and w has a square of period
j as a suffix, and has no square of period less than j. One has jH wi.n C 1/j �Ps

i0D1 �i;i0 jF wi0 .n � l/j. Of course, the bound is better when l is larger. But the size
of the computations is exponential in l. Kolpakov used l D 2j in [356].

For convenience, one can rewrite
Ps

iD1 xi � Awi as:

sX

iD1

xi � A
wi D

qX

dDd0

sX

iD1

�0i.d/ � jF
wi.n � d/j:

Let �00.d0/ D �0.d0/, and for every d 2 fd0; : : : q � 1g, let d D mini.�
0
i.d/=xi/

and �00.d C 1/ D �0.d/C ı�, where �i D �
0
i.d/ � d � xi. Let q D max.�0i.d/=xi/.

By induction of d0, one has

sX

iD1

xi � A
wi �

d0X

dDd0

dS.n � d/j C
sX

iD1

�00i .d
0 C 1/jF wi.n � d0 C 1/j

C

qX

dDd0C2

sX

iD1

�0i.dC 1/jF
wi.n � d/j:

Thus
Ps

iD1 xi �Awi � P.1=˛/S.n/, where P.y/ D
Pq

dDd0
dyd. Putting together with

equations (5.3) and (5.4), one has

S.nC 1/ � S.n/

�
rC P

�
1

˛

	
C

1

˛p�1.˛ � 1/

	
:

Then if ˛ � r C P.1=˛/ C 1=.˛p�1.˛ � 1//, and S.k C 1/ � ˛S.k/ for every
k < n, one has S.nC 1/ � ˛S.n/.

The computation can be greatly reduced using symmetries: one has jF w.n/j D
jF w0

.n/j if w and w0 are isomorphic. In [356], with m D 45, p D 52, and q D 60,
Kolpakov got the lower bound ˛ D 1:30173 for the growth rate of ternary square-
free words.



Chapter 6
Coloring Problems for Infinite Words

Caïus Wojcik and Luca Q. Zamboni

Abstract Given a finite coloring (or finite partition) of the free semigroup A C over
a set A , we consider various types of monochromatic factorizations of right-sided
infinite words x 2 A ! . In 2006 T. Brown asked the following question in the spirit
of Ramsey theory: Given a nonperiodic infinite word x D x1x2x3 � � � with values
in a set A , does there exist a finite Coloring ' W A C ! C relative to which x
does not admit a '-monochromatic factorization, i.e., a factorization of the form
x D u1u2u3 � � � with '.ui/ D '.uj/ for all i; j � 1? We give an optimal affirmative
answer to this question by showing that if x D x1x2x3 � � � is an infinite nonperiodic
word with values in a set A ; then there exists a 2-coloring ' W A C ! f0; 1g such
that for any factorization x D u1u2u3 � � � , we have '.ui/ ¤ '.uj/ for some i ¤ j:
Some stronger versions of the usual notion of monochromatic factorization are also
introduced and studied. We establish links, and in some cases equivalences, between
the existence of these factorizations and fundamental results in Ramsey theory
including the infinite Ramsey theorem, Hindman’s finite sums theorem, partition
regularity of IP-sets, and the Milliken–Taylor theorem.

6.1 Introduction

The following question was independently posed by T. Brown in [110] and by the
second author in [591]1:

Question 6.1.1. Let x 2 A N be nonperiodic. Does there exist a finite coloring of
A C (the free semigroup set generated by A / relative to which x does not admit a
monochromatic factorization.

1The original formulation of the question was stated in terms of finite colorings of the set of all
factors of x.
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In other words, given a nonperiodic word x 2 A N, does there exist a finite
nonempty set C and a mapping ' W A C ! C such that for each factorization
x D u1u2u3 � � � , there exist i; j � 1 such that '.ui/ ¤ '.uj/? If such a finite coloring
' W A C ! C exists, we say that ' is a separating coloring (or separating jCj-
coloring) for x.

Question 6.1.1 belongs to the class of Ramsey-type problems in which one tries
to show that some abstract form of Ramsey’s theorem does not hold in certain
settings. For instance, the infinite version of Ramsey’s theorem [491] (for coloring of
pairs) states that whenever the set ˙2.N/ of all two-element subsets of N is finitely
colored, there exists an infinite set X 
 N with ˙2.X/ monochromatic. Hence the
same applies when N is replaced by R. On the other hand, W. Sierpiński [548]
showed that there exists a finite coloring of ˙2.R/ such that there does not exist an
uncountable set X with ˙2.X/ monochromatic. In other words, Ramsey’s theorem
does not extend to the uncountable setting in R. Similarly, by a straightforward
application of Ramsey’s theorem, one deduces that given any finite coloring of N,
there exists an infinite X 
 N all of whose pairwise sums fnCm W n;m 2 X; n ¤ mg
is monochromatic. Again it follows the same is true with N replaced by R. On the
other hand, N. Hindman, I. Leader, and D. Strauss [292] recently exhibited (using
the Continuum Hypothesis) the existence of a finite coloring of R such that there
does not exist an uncountable set with all its pairwise sums monochromatic. In other
words, this additive formulation of Ramsey’s Theorem also fails in the uncountable
setting in R. A related question in these sorts of problems concerns the least number
of colors necessary to avoid the presence of monochromatic subsets of a certain
kind. For instance, N. Hindman [291] showed that there exists a 3-coloring of N
such that there does not exist an infinite subset X with XCX monochromatic, and it
is an open question of Owings [464] whether the same result may be obtained with
only two colors. Again, using the Continuum Hypothesis and a few more colors (288
to be precise), it is possible to extend Hindman’s result to the reals (see Theorem 2.8
in [292]). But again it is not known whether the same result can be obtained with
only two colors. Thus a stronger version of Question 6.1.1 would read: Does every
nonperiodic word admit a separating 2-coloring?

Various partial results in support of an affirmative answer to Question 6.1.1 were
obtained in [73, 390, 392, 393, 519]. In this chapter we give a complete answer
to this question and study various variations. We begin with some preliminaries
in which we recall some basic notions in combinatorics on words which will be
relevant. Then in Section 6.3 we give a solution to Question 6.1.1 by showing that
every aperiodic word admits a separating 2-coloring. We also give a reformulation
of this fact in terms of ultrafilters. More precisely, let ˇA C denote the Stone-Čech
compactification of the discrete semigroup A C which we regard as the set of all
ultrafilters on A C, identifying the points of A C with the principal ultrafilters. As
is well known, the operation of concatenation on A C extends uniquely to ˇA C

making ˇA C a compact right topological semigroup with A C contained in its
topological center (see, for instance, [293]). In particular by the Ellis–Numakura
lemma, ˇA C contains an idempotent element, i.e., an element p verifying p �p D p.
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We show that an infinite word x D x1x2x3 � � � 2 A N is periodic if and only if
there exists p 2 ˇA C such that for each A 2 p, there exists a factorization x D
u1u2u3 � � � with each ui 2 A. Moreover p as above may be taken to be an idempotent
element of ˇA C. In Section 6.4 we consider different variations of Question 6.1.1
relative to stronger monochromatic properties. For example, given a finite coloring
of A C and a word x 2 A N, we say a factorization x D u1u2u3 � � � is '-sequentially
monochromatic (resp., '-super monochromatic) if fui � � � uj W 1 � i � jg (resp., if
fun1un2 � � � unk W n1 < n2 < � � � < nk; k � 1g is '-monochromatic. We establish
links, and in some cases equivalences, between the existence of these factorizations
and fundamental results in Ramsey theory including the infinite Ramsey theorem,
Hindman’s theorem, partition regularity of IP-sets and the Milliken–Taylor theorem.
We show that given a finite coloring ' of A C and a word x 2 A N, there exists a
suffix x0 of x admitting a '-sequentially monochromatic factorization and a point z
in the shift orbit closure of x admitting a '-super monochromatic factorization. We
also prove that for each finite coloring ' W A C ! C, for almost all words x 2 A ! ,
there exists z in the subshift generated by x admitting a factorization z D u1u2u3 � � �
with the property that the set consisting of all unrepeated concatenations of the ui is
'-monochromatic.

6.2 Preliminaries

Let us briefly recall some basic notions on words. See also Section 1.3. Throughout
this chapter, A denotes a nonempty finite set (although most of the results extend
to the case that A is infinite). We let A � denote the set of all finite words u D
u1u2 � � � un with ui 2 A . We call n the length of u and denote it juj. The empty word
is denoted " and by convention j"j D 0. For u 2 A � and a 2 A , we let juja denote
the number of occurrences of a in u. We also let A C D A � n f"g denote the free
semigroup generated by A consisting of all finite (non-empty) words u1u2 � � � un

with ui 2 A . Given words u; v 2 A C we say v is a border of u if v is both a proper
prefix and a proper suffix of u. In case u admits a border, we say u is bordered.
Otherwise u is called unbordered.

Let A N denote the set of all infinite words x D x1x2x3 � � � with xi 2 A . We
endow A N with the topology generated by the metric

d.s; t/ D
1

2n
where n D inffk j sk ¤ tkg

whenever s D .sn/n�1 and t D .tn/n�1 are two elements of A N. The resulting
topology is generated by the collection of cylinders Œa1; : : : ; an�, where for each
n > 0 and ai 2 A , 1 � i � n,

Œa1; : : : ; an� D fs 2 A ! j si D ai for 1 � i � ng:
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It can also be described as being the product topology on A N with the discrete
topology on A . In particular this topology is compact. Each probability vector p D
.pi/i2A 2 Œ0I 1�

A determines a measure �p (Bernoulli measure corresponding to p)
defined as the unique measure on the 
 -algebra of A ! such that �p.Œa1; : : : ; an�/ D

pa1 � � � pan . By the standard Bernoulli measure on A N, we mean the Bernoulli
measure corresponding to the probability vector p D . 1d ; : : : ;

1
d /, with d D

Card.A /. For x 2 AN, we let ˝.x/ denote the shift orbit closure of x, i.e., the
closure in A N of fxnxnC1xnC2 � � � W n � 1g.

Given x D x1x2x3 � � � 2 A N and u 2 A C, let x
ˇ̌
u denote the set of all occurrences

of u in x, i.e.,

x
ˇ̌
u D fn j xnxnC1 � � � xnCjuj�1 D ug:

A word u 2 A C is called a factor of x if x
ˇ̌
u ¤ ;. A factor u of x is called recurrent

if x
ˇ̌
u is infinite and uniformly recurrent if x

ˇ̌
u is syndetic, of bounded gaps. An

infinite word x is called recurrent (resp., uniformly recurrent) if each of its factors
is recurrent (resp., uniformly recurrent).

We say x 2 A N is periodic if x D u! D uuu � � � for some u 2 A C, and
eventually periodic if x D uv! for some u; v 2 A C. We say x is aperiodic if x is
not eventually periodic. An infinite word x 2 A N is called Lyndon if there exists a
linear order on A with respect to which x is lexicographically smaller than all its
proper suffixes. In particular, Lyndon words are not periodic, although they may be
ultimately periodic, e.g., ab! .

A word x 2 f0; 1gN is called Sturmian (cf., Chapter 2 in [385]) if it is aperiodic
and balanced, i.e., for all factors u and v of x such that juj D jvj one has

jjuja � jvjaj � 1; a 2 f0; 1g:

It follows that each Sturmian word contains exactly one of the two factors 00
and 11. Alternatively, a binary infinite word x is Sturmian if x has a unique left
(or equivalently right) special factor of length n for each integer n � 0. This is
equivalent to saying that for each n � 0 the number of distinct factors of x of
length n is exactly equal to n C 1. As a consequence one derives that a Sturmian
word x is closed under reversal, i.e., if u is a factor of x, then so is its reversal u	

(see, for instance, Proposition 2.1.19 in [385]). The most famous Sturmian word is
the Fibonacci word f D 0100101001001010010 � � � which is the fixed point of the
morphism F defined by F W 0 7! 01; 1 7! 0.

6.3 A Coloring Problem

We begin this section with some simple examples illustrating the content of
Question 6.1.1. Let x 2 A N be a Lyndon word and define ' W A C ! f0; 1g

by
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'.u/ D

(
0 if u is a prefix of xI

1 otherwise
(6.1)

We claim that no factorization of x is '-monochromatic. In fact, suppose to the
contrary that x D u1u2u3 � � � is a '-monochromatic factorization of x. Since u1 is a
prefix of x, it follows that '.u1/ D 0 and hence '.ui/ D 0 for all i � 1. In other
words, each ui is a prefix of x and hence is lexicographically smaller than any other
factor of x of equal length. It follows that u2u3u4 � � � is lexicographically less or
equal to x, a contradiction. Thus ' defines a separating 2-coloring of x.

The coloring rule ' in (6.1) defines a separating coloring for any infinite word
which does not admit a prefixal factorization. This includes, for instance, all
words x 2 A N in which the first symbol of x does not occur in x in bounded
gaps:

Lemma 6.3.1. Let x 2 A ! be an infinite word having a prefixal factorization. Then
the first letter of x is uniformly recurrent.

Proof. Let x D u1u2u3 � � � be a prefixal factorization and let a denote the first letter
of x. Then every factor u of x of length > ju1j contains an occurrence of a. In fact,
the first occurrence of u cannot be contained in any ui, i � 1, and hence this first
occurrence of u must either contain some ui or must overlap two adjacent uj’s. In
either case, a occurs in u. Thus the first letter of x is uniformly recurrent.

The following gives a characterization of words admitting a prefixal factoriza-
tion:

Lemma 6.3.2. A word x 2 A N admits a prefixal factorization if and only if x begins
with only finitely many unbordered prefixes.

Proof. Suppose that x admits a prefixal factorization x D u1u2u3 � � � . Any prefix u
of x of length greater than ju1j is bordered. Indeed, we can write u D u1 � � � uku0

for a suitable k � 1 and u0 a proper prefix of ukC1 and then of x. If u0 ¤ ", then
u0, as ju0j < juj, is a proper prefix and suffix of u, i.e., a border of u. If u0 D ",
then uk is a border of u. Hence, u is bordered. For the converse, let u be the longest
unbordered prefix of x, and put m D juj. Let S be the set of all nonempty prefixes
of x of length at most m. Then every prefix v of x can be written as a product
v D v1v2 � � � vk where each vi, 1 � i � k, is in S. This is clear if jvj � m. If jvj > m,
then v is bordered so we can write v D v0v00 where v0 and v00 are both nonempty
prefixes of x. By induction on the length of v, each of v0 and v00 is a product of
elements of S, whence v is a product of elements of S. By the pigeonhole principle,
infinitely many prefixes of x begin with the same u1 in S. Of those infinitely many
begin with the same u1u2 with u2 in S. Of those infinitely many begin with the
same u1u2u3 with u3 in S. Continuing we get x D u1u2u3 � � � where each ui, i �
1, is in S (note that this proof is just an application of the usual König infinity
lemma).
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In contrast, the 2-coloring rule ' in (6.1) does not define a separating coloring of
the Fibonacci word

x D 010010100100101001010 � � �

In fact the factorization

x D 01 � 0 � 01 � 01 � 0 � 01 � 0 � 01 � 01 � 0 � 01 � � �

according to first returns to 0 is '-monochromatic. On the other hand, let us consider
the 3-coloring ' W f0; 1gC ! f0; 1; 2g defined by:

'.u/ D

8
ˆ̂<

ˆ̂:

0 if u is a prefix of x ending with 0I

1 if u is a prefix of x ending with 1I

2 if u is not a prefix of x:

(6.2)

We claim that no factorization of x is '-monochromatic. In fact, suppose that
x D u1u2u3 � � � is a '-monochromatic factorization of x. Then each ui is a prefix of x
terminating in the same letter a 2 f0; 1g. Whence the factorization au1a�1 � au2a�1 �
au3a�1 � � � defines a prefixal factorization of the Lyndon word ax, a contradiction.

Next consider the Thue–Morse infinite word

x D 011010011001011010010 � � �

where the nth term of x (starting from n D 0/ is defined as the sum modulo 2 of the
digits in the binary expansion of n. The origins of this word go back to the beginning
of the last century with the works of A. Thue [562, 563] in which he proves among
other things that x is overlap-free, i.e., x contains no factor of the form uuu0 where u0

is a nonempty prefix of u. We claim that the coloring rule ' W f0; 1gC ! f0; 1; 2g in
(6.2) also defines a separating 3-coloring for the Thue–Morse word. In fact, suppose
to the contrary that x D u1u2u3 � � � is a '-monochromatic factorization of x. Since
u1 is a prefix of x, it follows that '.u1/ 2 f0; 1g, i.e., there exists a 2 f0; 1g such that
each ui is a prefix of x terminating with a. Pick i � 2 such that juij � juiC1j. Then
as each ui is a prefix of x, it follows that ui is a prefix of uiC1 and hence auiui is a
factor of x. Writing ui D va, (with v empty or in f0; 1gC/, we have auiui D avava
which is an overlap, contradicting that x is overlap-free. This proves that there exists
a separating 3-coloring for the Thue–Morse word. S. Avgustinovich and O. Parshina
proved that it is possible to color f0; 1gC using only two colors in such a way that
no factorization of the Thue–Morse word is monochromatic.

Let us remark that since the Thue–Morse word x is not periodic, each proper
suffix of x begins in some factor which is not a prefix of x. This means that each
proper suffix x0 of x may be written as an infinite concatenation x0 D u1u2u3 � � �
with '.ui/ D 2 for all i � 1, where ' is the 3-coloring of f0; 1gC defined
above. Moreover, this monochromatic factorization of x0 has an even stronger
monochromatic property: The set fun W n � 1gC is also '-monochromatic (each
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element has ' color equal to 2/. This is because each element of fun W n � 1g is a
non-prefix of x and hence the same is true of any concatenation formed by elements
from this set. As we shall see later, a weaker version of this phenomenon is true in
greater generality: Given any x 2 AN and any finite coloring ' W A C ! C, one
can always find a suffix x0 of x which admits a factorization x0 D u1u2u3 � � � where
'.ui � � � uj/ D '.u1/ for all 1 � i � j. This fact may be obtained via a straightforward
application of the infinite Ramsey theorem [491] (see [110, 393] or see [532] for a
proof by M. P. Schützenberger which does not use Ramsey’s theorem).

Various partial results in support of an affirmative answer to Question 6.1.1
were obtained in [73, 390, 393, 393, 519]. For instance, in [390], it is shown that
Question 6.1.1 admits an affirmative answer for all nonuniformly recurrent words
and various classes of uniformly recurrent words including Sturmian words. In
[519], V. Salo and I. Törmä proved that for every aperiodic linearly recurrent word
x 2 A N, there exists a finite coloring of A C relative to which x does not admit
a monochromatic factorization into factors of increasing lengths. And recently A.
Bernardino, R. Pacheco and M. Silva [73] proved that Question 6.1.1 admits an
affirmative answer for fixed points of strongly recognizable primitive substitutions.
In addition to the fact that these partial results apply only to a restricted class
of nonperiodic words (e.g., Sturmian words or fixed points of certain primitive
substitutions), in most cases the number of colors required to color A C to avoid
a monochromatic factorization of x is determined to be quite large. For instance, in
[519], the authors proved that if x 2 A N is an aperiodic linearly recurrent word,
then there exists a constant K � 2 and a coloring ' W A C ! C with Card.C/ D

2 C
PK5�1

iD0 2Ki.K C 1/2i, such that no factorization of x D u1u2u3 � � � , verifying
the additional constraint that juij � juiC1j for each i � 1, is '-monochromatic. The
constant K above is chosen such that for every factor u of x, every first return w to
u satisfies jwj � Kjuj (see, for instance, [205]). A similar large bound depending on
the recognizability index of a substitution is obtained in [73] in the context of fixed
points of strongly recognizable substitutions. In contrast, it is shown in [390] that
every Sturmian word admits a separating 3-coloring.

The following theorem proved in [589] gives a complete and optimal affirmative
answer to Question 6.1.1 by showing that for every nonperiodic word x D
x1x2x3 � � � 2 A N, there exists a 2-coloring ' W A C ! f0; 1g relative to which
no factorization of x is '-monochromatic. Moreover, this is a characterization of
periodicity of infinite words:

Theorem 6.3.3. Let x D x1x2x3 � � � 2 A N be an infinite word. Then x is periodic if
and only if for every 2-coloring ' W A C ! f0; 1g there exists a '-monochromatic
factorization of x, i.e., a factorization x D u1u2u3 � � � such that '.ui/ D '.uj/ for all
i; j � 1.

Proof. First assume x D x0x1x2 � � � 2 A N is periodic, i.e., x 2 fugN for
some u 2 A C. Then the factorization x D u1u2u3 � � � with each ui D u is '-
monochromatic for any choice of ' W A C ! f0; 1g. Next assume x is not periodic.
We define a 2-coloring ' W A C ! f0; 1g with the property that no factorization of x
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is '-monochromatic. Pick any total order on the set A and let  denote the induced
lexicographic order on A C and A N. For u; v 2 A C with juj D jvj, we write u 4 v
if either u  v or u D v. For each n � 1, let Px.n/ denote the prefix of x of length n,
and for each y 2 A N, let x^ y denote the longest common prefix of x and y. Define
' W A C ! f0; 1g by the following rule:

If u is not a prefix of x, then set

'.u/ D

(
0 if u  Px.juj/

1 if Px.juj/  u:
(6.3)

If u is a prefix of x, say x D uy with y 2 A N, then set

'.u/ D

(
0 if x  y

1 if y  x:
(6.4)

Since x is not periodic, for every proper suffix y of x, we have either x  y or y  x,
whence ' is well defined. We observe that ' has the following key property: If u is
any nonempty prefix of x, say x D uy with y 2 A N, then there exists N � 0 such
that '.u/ ¤ '.v/ for every prefix v of y with jvj > N. In fact, let N D jx^ yj. Then
if v is a prefix of y with jvj > N, then v ¤ Px.jvj/. So if '.u/ D 0, then x  y
and hence Px.jvj/  v, whence '.v/ D 1. Similarly if '.u/ D 1, then y  x and
hence v  Px.jvj/, whence '.v/ D 0. The other key property of ' is given by the
following lemma:

Lemma 6.3.4. For all u 2 A C, if u D u1u2 � � � uk with ui 2 A C, then there exists
1 � i � k such that '.ui/ D '.u/.

Proof. Fix a 2 f0; 1g. We will prove by induction on k that if u D u1u2 � � � uk

and '.ui/ D a for all 1 � i � k, then '.u/ D a. Without loss of generality, we
may assume a D 0 for otherwise we could replace  by the reverse order. For
k D 1 the result is immediate. Next we consider the case k D 2, i.e., we assume
u D u1u2 and '.u1/ D '.u2/ D 0, and we will show that '.u/ D 0. If u1 is not a
prefix of x, then u1  Px.ju1j/ and hence u  Px.juj/, whence '.u/ D 0. Thus we
may suppose that u1 is a prefix of x. Let u02 be such that u1u02 is a prefix of x and
ju2j D ju02j. If u2  u02, then u D u1u2  u1u02 D Px.juj/, whence '.u/ D 0. Thus
we may suppose that u02 � u2. Also since '.u1/ D 0, it follows that Px.ju02j/ � u02,
whence Px.ju02j/ � u02 � u2. If any one of these two inequalities were strict, then
Px.ju2j/  u2 which would imply that '.u2/ D 1, a contradiction. Thus we must
have u2 D u02 D Px.ju2j/, i.e., both u and u2 are prefixes of x. Let x0 2 A N be such
that x D u1x0 and let w 2 A C denote the longest common prefix between x and x0.
Since '.u1/ D 0, there exist symbols a; b 2 A with a  b such that u1wb and wa
are each a prefix of x. Also since u2 is a prefix of both x and x0, we have ju2j � jwj
and hence we can write w D u2v for some v 2 A �. So each of u1u2vb D uvb and
u2va is a prefix of x. Finally since '.u2/ D 0, we have that Px.jvaj/ � va  vb,
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whence '.u/ D 0. This completes the case k D 2. Now, let n > 2 and suppose the
result of the lemma holds for all k < n, and suppose u D u1u2 � � � un with '.ui/ D a
for all 1 � i � n: Then by considering the factorization u D .u1u2/u3 � � � un of
length n � 1 and the fact that '.u1u2/ D a (which comes from the case k D 2/, we
deduce by induction hypothesis that '.u/ D a as required.

To complete the proof of Theorem 6.3.3, we will show that no factorization of
x is '-monochromatic. Let x D u1u2u3 � � � with ui 2 A C. Pick N � 0 such that
'.v/ ¤ '.u1/ for all prefixes v of u2u3 � � � with jvj > N. Pick k � 2 such that
ju2 � � � ukj > N. By the previous lemma, there exists 2 � i � k such that '.ui/ D

'.u2 � � � uk/. Hence '.ui/ D '.u2 � � � uk/ ¤ '.u1/.

Theorem 6.3.3 has several immediate consequences. Let x 2 A N and a 2 A . A
factor u of x is said to be rich in a if juja � jvja for all factors v of x with jvj D juj.
Theorem 6.7 in [390] states that a Sturmian word x 2 f0; 1gN does not admit a
factorization of the form x D u1u2u3 � � � where each ui is a prefix of x rich in the
same letter a 2 f0; 1g. The following consequence of Theorem 6.3.3 generalizes
this result to all binary nonperiodic words:

Corollary 6.3.5. Let x 2 f0; 1gN and a 2 f0; 1g. Suppose x admits a prefixal
factorization x D u1u2u3 � � � with each ui rich in a, i.e., juija � jvja whenever v
is a factor of x of length jvj D juij. Then x is periodic.

Proof. Suppose to the contrary that x is not periodic. Let ' W f0; 1gC ! f0; 1g be
the separating 2-coloring for x defined in (6.3) and (6.4) relative to the order on
f0; 1g where a is taken to be the least element. For each i � 1, writing x D uiyi

with yi 2 f0; 1g
N, we claim that x  yi. Otherwise if yi  x, then we can write

x D zbx0 D uizay0 for some z 2 f0; 1g�, x0; y0 2 f0; 1gN and where fa; bg D f0; 1g.
But then the factor u0i of length juij immediately preceding the suffix y0 of x would
contain one more occurrence of the symbol a than ui, contradicting that ui was
rich in a. Having established that x  yi, it follows that '.ui/ D 0 for all i � 1

contradicting that ' is a separating 2-coloring for x.

The following consequence of Corollary 6.3.5 is proved in [589]:

Corollary 6.3.6. Let A be an arbitrary nonempty set, x 2 A N and a 2 A .
Suppose x admits a prefixal factorization x D u1u2u3 � � � with each ui rich in a.
Then fn 2 N W xn D ag is a finite union of (infinite) arithmetic progressions.

The following two corollaries are also immediate consequences of Theorem 6.3.3
(see [589]):

Corollary 6.3.7. Let x D x1x2x3 � � � 2 A N and k be a positive integer. Let B 
 A C

with Card.B/ � 2k � 1. Suppose that x factors over every k-element subset A of B.
Then x is periodic.

Proof. Let us assume to the contrary that x is not periodic. By Theorem 6.3.3,
there exists a 2-coloring ' W A C ! f0; 1g relative to which no factorization
of x is '-monochromatic. Let ˙k.B/ denote the set of all k-element subsets of
B. By assumption x factors over each A 2 ˙k.B/. On the other hand, since
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Card.B/ � 2k�1, it follows that there exists a '-monochromatic subset A 2 ˙k.B/.
This gives rise to a '-monochromatic factorization of x, a contradiction.

Corollary 6.3.8. Let x D x1x2x3 � � � 2 A N and k be a positive integer. Let u1,
u2, u3; : : : ; u2kC1 be words in AC and suppose x 2 fu1; u2gN \ fu2; u3gN \ � � � \
fu2k; u2kC1g

N \ fu2kC1; u1gN. Then x is periodic.

Proof. Suppose to the contrary that x is not periodic. Pick any separating 2-coloring
' W A C ! f0; 1g for x. Then '.1/ D '.2i C 1/ for each 1 � i � k. Thus
x … fu2kC1; u1gN, a contradiction.

Theorem 6.3.3 may be reformulated in the language of ultrafilters. Given a
nonempty set S, let P.S/ denote the set of all subsets of S. Recall that a subset
p 
P.S/ is called a filter on S if

• S 2 p and ; … p
• If A 2 p and B 2 p then A \ B 2 p
• If A 
 B and A 2 p then B 2 p.

A filter p on S is called an ultrafilter if for all A 2 P.S/ either A 2 p or Ac 2 p
where Ac denotes the complement of A, i.e., Ac D S n A. Equivalently, a filter p is
an ultrafilter if for each A 2 p whenever A D A1 [ � � � [ An, we have that at least
one Ai 2 p. Each x 2 S determines an ultrafilter e.x/ on S defined by e.x/ D fA 

S W x 2 Ag. An ultrafilter p on S is called principal if p D e.x/ for some x 2 S.
Otherwise p is said to be free. Let ˇS denote the collection of all ultrafilters p on
S. By identifying each x 2 S with the principal ultrafilter e.x/, we regard S 
 ˇS.
If S is infinite, then a straightforward application of Zorn’s lemma guarantees the
existence of free ultrafilters on S.

Given A 
 S, we put A D fp 2 ˇS W A 2 pg. Then fA W A 
 Sg defines a basis
for a topology on ˇS relative to which ˇS is both compact and Hausdorff and the
mapping x 7! e.x/ defines an injection S ,! ˇS whose image is dense in ˇS. In
fact, if S is given the discrete topology, then ˇS is identified with the Stone-Čech
compactification of S W Any continuous mapping from f W S ! K, where K is a
compact Hausdorff space, lifts uniquely to a continuous mapping ˇf W ˇS ! K.
Of special interest is the case in which S is a discrete semigroup. In this case the
operation on S extends uniquely to ˇS making ˇS a right topological semigroup
with S contained in its topological center. This means that p W ˇS ! ˇS, defined
by p.q/ D q � p, is continuous for each p 2 ˇS and �s W ˇS ! ˇS, defined by
�s.q/ D s � q, is continuous for each s 2 S. The operation � on ˇS is defined as
follows: For p; q 2 ˇS

p � q D fA 
 S W fs 2 S W s�1A 2 qg 2 pg; (6.5)

where s�1A D ft 2 S W st 2 Ag. As a consequence of the Ellis–Numakura lemma,
ˇS contains an idempotent element, i.e., an element p verifying p � p D p (see,
for instance, [293]). Subsets A 
 S belonging to idempotents in ˇS have rich
combinatorial structures: Let Fin.N/ denote the set of all finite subsets of N. Given
an infinite sequence hsnin2N in S, let
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FP .hsnin2N/ D f
Y

n2F

sn W F 2 Fin.N/g

where for each F 2 Fin.N/, the product
Q

n2F sn is taken in increasing order of
indices. A subset A of S is called an IP-set if A contains FP .hsnin2N/ for some
infinite sequence hsnin2N in S. IP-sets are characterized as belonging to idempotent
elements: A 
 S is an IP-set if and only if A belongs to some idempotent element of
ˇS (see, for instance, Theorem 5.12 in [293]).

For x D x1x2x3 � � � 2 A N, we set

F .x/ D fA 
 A C W x 2 ANg

and

U .x/ D fp 2 ˇA C W p 
 F .x/g:

Thus p 2 U .x/ if and only if x factors over every A 
 A C belonging to p. The
following reformulation of Theorem 6.3.3 states that x is periodic if and only if
U .x/ is non-empty:

Theorem 6.3.9. Let x D x1x2x3 � � � 2 A N be an infinite word. Then x is periodic
if and only if there exists p 2 ˇA C such that for each A 2 p, there exists a
factorization x D u1u2u3 � � � with each ui 2 A.

Proof. Suppose x is periodic, i.e., x 2 fugN for some u 2 A C: Then the principal
ultrafilter e.u/ D fA 
 A C W u 2 Ag clearly belongs to U .x/. We note that U .x/
also contains free elements of ˇA C. In fact, for each i � 1, let Ai D fuj W j �
ig. Then fAi W i � 1g satisfies the finite intersection property whence there exists
p 2 ˇA C containing fAi W i � 1g, and any such p is a free ultrafilter belonging
to U .x/. Conversely, suppose there exists p 2 ˇA C such that for each A 2 p,
there exists a factorization x D u1u2u3 � � � with each ui 2 A. Let ' W A C !
f0; 1g be any 2-coloring of A C. We will show that x admits a '-monochromatic
factorization. The result then follows from Theorem 6.3.3. Consider the partition
A C D '�1.0/ [ '�1.1/. Since A C 2 p, it follows that '�1.a/ 2 p for some
a 2 f0; 1g. Thus there exists a factorization x D u1u2u3 � � � with each ui 2 '

�1.a/.
In other words, x admits a '-monochromatic factorization.

The ultrafilter p in Theorem 6.3.9 may be taken to be an idempotent element of
ˇA C.

Theorem 6.3.10. Let x D x0x1x2 � � � 2 A N. Then the following are equivalent:

i) x is periodic.
ii) U .x/ is a closed sub-semigroup of ˇA C.

iii) U .x/ contains an idempotent element.
iv) The set Pref.x/ consisting of all prefixes of x is an IP-set.
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Proof. We first note that for each infinite word x, the set U .x/ is a closed subset of
ˇA C. In fact, suppose p 2 ˇA C n U .x/, then there exists A 2 p with A … F .x/.
Then A is an open neighborhood of p and any q 2 A contains the set A and hence is
not in U .x/. To see that i/ H) ii/, suppose that x is periodic. By Theorem 6.3.9, we
have U .x/ ¤ ;. It remains to show that p � q 2 U .x/ whenever p; q 2 U .x/. Pick
the shortest u 2 A C such that x 2 fugN and set A D fuj W j 2 Ng. Then p 2 U .x/ if
and only if A 2 p. Let A 2 p � q with p; q 2 U .x/. Then by (6.5) we have fs 2 A C W
s�1A 2 qg 2 p. Since p 2 U .x/ it follows that fs 2 A C W s�1A 2 qg \A ¤ ;. Pick
n 2 N such that un 2 fs 2 A C W s�1A 2 qg. Then ft 2 A C W unt 2 Ag 2 q and since
q 2 U .x/ it follows that there exists m 2 N with um 2 ft 2 A C W unt 2 Ag. In other
words unCm 2 A and hence x factors over A. Thus p � q 2 U .x/. The implication
ii/ H) iii/ follows from the Ellis–Numakura lemma. To see iii/ H) iv/ pick an
idempotent element p 2 U .x/. We note that Pref.x/ belongs to every q 2 U .x/. In
fact, suppose that Pref.x/ … q, for some q 2 U .x/. Then A C n Pref.x/ 2 q which
implies that x factors over A C n Pref.x/. But this is a contradiction since in any
factorization of x, the first term occurring in the factorization belongs to Pref.x/.
Thus in particular Pref.x/ 2 p. Since p is an idempotent, it follows that Pref.x/
is an IP-set. Finally, to see that iv/ H) i/ assume that Pref.x/ is an IP-set. Then
Pref.x/ contains FP .hsnin2N/ for some infinite sequence hsnin2N of prefixes of x.
This means that for each n � 2, both s1s2 � � � sn and s2 � � � sn are prefixes of x. Thus
x D s1x which implies that x is periodic.

6.4 Variations on the Coloring Problem

Let x D 011010011001011010010 � � � 2 f0; 1gN denote the Thue–Morse infinite
word. Recall that the coloring rule ' W f0; 1gC ! f0; 1; 2g in (6.2) satisfies the
following very strong monochromatic property: For every proper suffix x0 of x, there
exists a factorization x0 D u1u2u3 � � � such that the free semigroup S D fui W i � 1gC

is '-monochromatic. In general, this is way too strong of a condition. In fact, given
any nonempty set A , let us consider the 2-coloring of � W A C ! f0; 1g given by
�.u/ D �2.juj/ mod 2 where �2.juj/ denotes the 2-adic valuation of juj. Then for
any u 2 A C, we have that �.u/ ¤ �.u2/ and hence no sub-semigroup of A C is
��monochromatic. However, we mentioned earlier that a weaker monochromatic
property does hold in greater generality. Let x 2 A N and ' W A C ! C be a
finite coloring of A C. A factorization x D u1u2u3 � � � with ui 2 A C is said to
be sequentially monochromatic if 9c 2 C such that '.ViViC1 � � �ViCj/ D c for all
i; j � 0. The following result was first proved in [393]:

Theorem 6.4.1. The following statements are equivalent:

i) For any finite coloring ' W A C ! C and any word x 2 A N; there exists a suffix
x0 of x which admits a '-sequentially monochromatic factorization.



6 Coloring Problems for Infinite Words 225

ii) For any finite coloring ' W ˙2.N/ ! C, where ˙2.N/ denotes the set of all
two-element subsets of N, there exist c 2 C and an infinite set N 
 N such that
˙2.N / 
 '�1.c/.

Proof. We note that item ii) is a special case of the Infinite Ramsey’s Theorem (see
[491]). We begin by showing that ii/ H) i/. Let x 2 A N and ' W A C ! C
be any finite coloring. Then ' induces a finite coloring '0 W ˙2.N/ ! C given
by '0.fm < ng/ D '.xmxmC1 � � � xn�1/. By .2/ there exists c 2 C and an infinite
subset N D fn0 < n1 < n2 < � � � g of N such that for all m; n 2 N with m < n
we have '0.fm < ng/ D c. It follows that the factorization of the suffix x0 D
xn0xn0C1xn0C2 � � � given by x0 D V0V1V2 � � � where jVij D niC1�ni is '-sequentially
monochromatic.

To see that i/ H) ii/, let ' W ˙2.N/ ! C be any finite coloring of ˙2.N/. Let
x 2 f0; 1g! be any aperiodic word. Then ' induces a finite coloring '0 W A C !
C [ f�g, where � denotes a symbol not in C, defined as follows: For each u 2 A C;
if u … Fact.x/, then set '0.u/ D �. Otherwise, let m.u/ be the least natural number
m such that u D xmxmC1 � � � xmCjuj�1, that is, m.u/ is the first occurrence of u in x.
Then we put

'0.u/ D '.fm.u/;m.u/C jujg/:

By .1/ there exists n � 0 such that the suffix x0 D xnxnC1xnC2 � � � of x admits
a '0-sequentially monochromatic factorization x0 D V0V1V2 � � � . Put c D '0.V0/.
Since V0 2 Fact.x/ we have c 2 C. Also, as x is aperiodic, there exists s � 0

such that n D m.V0V1 � � �Vs/. Indeed, set x D Ux0 with jUj D n. The statement is
clear if n D 0. Otherwise, if for each s, m.V0V1 � � �Vs/ < n, then by the pigeonhole
principle, there exists 0 � k < n such that k D m.V0V1 � � �Vs/ for infinitely many
values of s. This implies that x D Tk.x/ D Tn.x/, whence x is purely periodic and
hence x is ultimately periodic, a contradiction.

Similarly, for each r � 1 there exists s � r such that m.Vr � � �Vs/ D n CPr�1
iD0 jVij. Given any increasing sequence 0 D n0 < n1 < n2 < � � � , put

Wk D Vnk VnkC1 � � �VnkC1�1. Then clearly the factorization x0 D W0W1W2 � � � is
also '0-sequentially monochromatic. Thus we can assume that x0 admits a '0-
sequentially monochromatic factorization x0 D V0V1V2 � � � , such that m.V0/ D n
and m.Vr/ D nC

Pr�1
iD0 jVij for each r � 1. Setting

N D fn < nC jV0j < � � � < nC
rX

iD0

jVij < � � � g;

we have ˙2.N / 
 '�1.c/ as required.

We consider the following strengthening of the notion of sequentially monochro-
matic factorizations:

Definition 6.4.2. Let x 2 A N and ' W A C ! C be a finite coloring of A C. A
factorization x D u1u2u3 � � � with each ui 2 A C is called



226 C. Wojcik and L. Q. Zamboni

• '- super monochromatic if 9c 2 C such that '.un1un2 � � � unk/ D c for all k � 1
and n1 < n2 < � � � < nk.

• '-ultra monochromatic if 9c 2 C such that '.un
.1/un
.2/ � � � un
.k/ / D c for all
k � 1 and all n1 < n2 < � � � < nk and all permutations 
 of f1; 2; � � � ; kg.

Clearly any '-super monochromatic factorization is '-sequentially monochromatic,
and any '-ultra monochromatic factorization is '-super monochromatic.

The following result, established jointly by Lionel Nguyen Van Thé and the
second author, shows that given any infinite word x 2 A N and any finite coloring
' W A N ! C, there exists an element of the subshift generated by x admitting a
'-super monochromatic factorization:

Theorem 6.4.3. Given an infinite word x 2 A N and a finite coloring ' W A C !
C, there exists an element z in the shift orbit closure of x admitting a '-super
monochromatic factorization.

Proof. Fix an infinite word x 2 A N and a finite coloring ' W A C ! C. Pick a
recurrent point y 2 ˝.x/ (shift orbit closure of x/. As y is recurrent, there exists
a factorization y D u1u2u3 � � � with ui 2 A C such that for each n � 1, we have
that u1 � � � un is a suffix of unC1. It follows by a simple induction argument that
un1un2 � � � unk is a factor of y (and hence of x/ for each k � 1 and n1 < n2 < � � � < nk.
Let Fin.N/ denote the set of all finite nonempty subsets of N. Define a partial order
on Fin.N/ by F < G if and only if max F < min G. For each F D fn1; n2; : : : ; nkg 2

Fin.N/, with n1 < n2 < � � � < nk, set u.F/ D un1un2 � � � unk . Then for all F;G 2
Fin.N/, if F < G then u.F [ G/ D u.F/u.G/. The finite coloring ' W A C ! C
induces a finite coloring � W Fin.N/! C given by �.F/ D '.u.F//. We now make
use of the so-called Finite Unions Theorem which is an immediate consequence of
Hindman’s theorem (see Corollary 5.17 in [293]) :

Theorem 6.4.4 (Infinite Finite Unions Theorem). Let � W Fin.N/ ! C. Then
there exists a sequence hFti

1
tD1 in Fin.N/ with F1 < F2 < F3 < � � � such that

f
S

t2H Ft W H 2 Fin.N/g is �-monochromatic.

Applying Theorem 6.4.4 to the induced coloring � W Fin.N/ ! C, we
obtain an infinite sequence hFti

1
tD1 in Fin.N/ with F1 < F2 < F3 < � � �

such that fu.
S

t2H Ft/ W H 2 Fin.N/g is '-monochromatic. In other words,
fu.Fn1 /u.Fn2 / � � � u.Fnk/ W n1 < n2 < � � � < nk; k � 1g is '-monochromatic. The
result now follows by taking z D u.F1/u.F2/u.F3/ � � � which belongs to ˝.x/.

The following proposition shows that the previous result does not extend to ultra
monochromatic factorizations:

Proposition 6.4.5. Let r 2 N and x 2 f0; 1gN be a r-power-free Sturmian word.
Define ' W f0; 1gC ! f0; 1g by

'.u/ D

(
0 if u is a factor of xI

1 otherwise

Then no y 2 ˝.x/ admits a '-ultra monochromatic factorization.
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Proposition 6.4.5 follows immediately from the following lemma:

Lemma 6.4.6. Let r 2 NC and x 2 f0; 1g! be a r-power-free Sturmian word.
Then for each infinite sequence ! D V0;V1;V2; � � � with Vi 2 f0; 1g

C, there exist
k � 1, 0 � n1 < n2 < � � � < nk, and a permutation 
 of f1; 2; : : : ; kg such that
Vn
.1/Vn
.2/ � � �Vn
.k/ … Fact.x/.

Proof. For each ! D V0;V1;V2; � � � with Vi 2 f0; 1g
C, i � 0, set N.!/ D

jV0V1 � � �Vrj. We proceed by induction on N.!/ to show that for each ! D

V0;V1;V2; � � � with Vi 2 f0; 1g
C, and each r-power-free Sturmian word x, there

exist k � 1, 0 � n1 < n2 < � � � < nk and a permutation 
 of f1; 2; : : : ; kg such that
Vn
.1/Vn
.2/ � � �Vn
.k/ … Fact.x/.

The base case of the induction is when N.!/ D r C 1, i.e., jV0j D jV1j D � � � D
jVrj D 1. Let x be a r-power-free Sturmian word. For a 2 f0; 1g, put Na D 1 � a
so that fa; Nag D f0; 1g. Fix a 2 f0; 1g so that NaNa … Fact.x/. First suppose that
Vi D Vj D Na for some 0 � i < j. In this case ViVj … Fact.x/. Thus we can assume
that at most one Vi D Na. In this case, there exist 0 � n1 < n2 < � � � < nr � r such
that Vni D a for each 1 � i � r. It follows that Vn1Vn2 � � �Vnr D ar … Fact.x/.

For the inductive step, let N > r C 1, and suppose that for each ! D

V0;V1;V2; � � � with Vi 2 f0; 1g
C and N.!/ < N and for each r-power-free Sturmian

word x, there exist k � 1, 0 � n1 < n2 < � � � < nk, and a permutation 
 of
f1; 2; : : : ; kg such that Vn
.1/Vn
.2/ � � �Vn
.k/ … Fact.x/. Now let ! D V0;V1;V2; � � �
with Vi 2 f0; 1g

C, i � 0 and N.!/ D N and let x be a r-power-free Sturmian word.
Without loss of generality, we may assume 11 … Fact.x/ and that x begins with 0.
Note that if 11 … Fact.x/ and x begins with 1, we can replace x with 0x which is
Sturmian and r-power-free. We claim that for some k � 1, and 0 � n1 < n2 <
� � � < nk and permutation 
 of f1; 2; : : : ; kg, we have Vn
.1/Vn
.2/ � � �Vn
.k/ … Fact.x/.
Suppose to the contrary that for every k � 1, 0 � n1 < n2 < � � � < nk and
permutation 
 of f1; 2; : : : ; kg, we have Vn
.1/Vn
.2/ � � �Vn
.k/ 2 Fact.x/. Since x is
r-power-free, we have lim supn!1 jVnj D C1.

Suppose first that for some a 2 f0; 1g, there exist 0 � i < j such that Vi begins
with a and Vj begins with Na. Pick j < m < n such that jVnj > rjVmj. Since VmVnVi;

VmVnVj; VnVmVi, and VnVmVj are each factors of x, it follows that each of VmVn and
VnVm is a right special factor of x. But since jVmVnj D jVnVmj and x has exactly
one right special factor of each length, it follows that VmVn D VnVm, from which
one easily derives that Vr

m is a prefix of Vn and hence in particular Vr
m 2 Fact.x/, a

contradiction. Thus we may suppose that all Vi begin with the same letter a 2 f0; 1g.
A similar argument shows that all Vi terminate with the same letter b 2 f0; 1g.
Moreover, as 11 … Fact.x/, either a or b must equal 0. Since Fact.x/ is closed under
reversal, short of replacing each Vi in ! by its reversal, we may suppose that a D 0,
i.e., each Vi begins with 0. Thus Vi0 2 Fact.x/ for each i � 0.

Now consider the morphism L0 W 0 7! 0, and 1 7! 01. For each i � 0, define
V 0i 2 f0; 1g

C by L0.V 0i / D Vi and put !0 D V 00;V
0
1;V
0
2; : : :. Finally, as x begins with

0, define x0 2 f0; 1g! by L0.x0/ D x. Then, as is well known, x0 is a Sturmian word.
Moreover, since x is r-power-free, so is x0 and at least one Vi with 0 � i � r�1must
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contain an occurrence of 1. Thus N.!0/ < N.!/. For each k � 1, 0 � n1 < n2 <
� � � < nk and permutation 
 of f1; 2; : : : ; kg, we have Vn
.1/Vn
.2/ � � �Vn
.k/0 2 Fact.x/.
Thus V 0n
.1/V

0
n
.2/
� � �V 0n
.k/ 2 Fact.x0/, and this is a contradiction to our inductive

hypothesis.

We mention that A. Frid has extended the validity of previous lemma to the case
of any infinite word of linear factor complexity.

We next show that for every finite coloring ' W A C ! C, from a measure
theoretic point of view, almost all infinite words x, there exists a point z 2 ˝.x/
admitting a '-ultra monochromatic factorization. First we consider the case in which
x is periodic which turns out to be equivalent to Hindman’s theorem in [290].

Theorem 6.4.7. The following statements are equivalent:

i) For every finite coloring ' W A C ! C, each periodic word x 2 A ! admits a
'-ultra monochromatic factorization.

ii) For each finite coloring ' W N! C of the positive integers, there exist c 2 C and
an infinite sequence .nk/

1
kD1 such that FS..nk/

1
kD1/ D f

P
i2F ni jF 2 Fin.N/g 


'�1.c/.

Proof. We note that item ii/ is the statement of Hindman’s theorem. We begin by
showing that i/ H) ii/. Let ' W N! C be a finite coloring of the positive integers,
and let x be the periodic word x D a! , with a 2 A . Then ' induces a finite coloring
'0 W fagC ! C given by '0.an/ D '.n/. By i/ there exists a '0-ultra monochromatic
factorization x D u1u2u3 � � � . Put c D '0.u1/. For k � 1, set nk D jukj so that each
uk D ank . Then for each finite subset F of N, we have

'

 
X

i2F

ni

!
D '

 
X

i2F

juij

!
D '

 
j
Y

i2F

uij

!
D '0

 
Y

i2F

ui

!
D c

since
Q

i2F ui D a
P

i2F ni and hence is a factor of x. Whence FS..nk/
1
kD0/ D

f
P

i2F ni jF 2 Fin.N/g 
 '�1.c/.
To see that ii/ H) i/, let ' W A C ! C, u 2 A C, and x D u! . Define '0 W NC !

C by '0.n/ D '.un/. By .2/ there exist c 2 C and an infinite sequence .nk/
1
kD1 such

that FS..nk/
1
kD1/ D f

P
i2F ni jF 2 Fin.N/g 
 '0�1.c/. For each k � 1 set uk D unk .

Then clearly the factorization x D u1u2u3 � � � is '-ultra monochromatic.

As an immediate consequence, we obtain:

Corollary 6.4.8. Let A be a finite set, and let � be the Bernoulli measure on A ! .
Let ' W A C ! C be any finite coloring. Then for �-almost all x 2 A ! , there exists
y 2 ˝.x/ which admits a '-ultra monochromatic factorization.

Proof. As is well known almost all words x 2 A ! with respect to the measure
� are of full complexity, meaning Fact.x/ D A C (see, for instance, [14, Theo-
rem 10.1.6]). (As an example, normal words [448, Chap. 8] are of full complexity.)
Thus for almost all words x 2 A ! , relatively to measure �, there exists a 2 A such
that a! 2 ˝.x/. The result now follows from Theorem 6.4.7.

The above results suggest the following question:



6 Coloring Problems for Infinite Words 229

Question 6.4.9. Let x 2 A ! be a uniformly recurrent word. Suppose that for
each ' W A C ! C, there exists y 2 ˝.x/ admitting a '-ultra monochromatic
factorization. Then does it follow that x is periodic?

Let ' W A C ! C be a finite coloring of A C, x 2 A ! , and k be a
positive integer. A '-monochromatic (resp., '-sequentially monochromatic, '-
super monochromatic; '-ultra monochromatic) factorization x D V0V1V2 � � � is
said to be k-shift invariant if for each 1 � j � k the induced factorization
Tj.x/ D W0W1W2 � � � with jWij D jVij, i � 0, is '-monochromatic (resp., '-
sequentially monochromatic, '-super monochromatic, '-ultra monochromatic). A
'-monochromatic (resp., '-sequentially monochromatic, '-super monochromatic,
'-ultra monochromatic) factorization x D V0V1V2 � � � is called shift invariant if
for each positive integer j, the induced factorization Tj.x/ D W0W1W2 � � � with
jWij D jVij is '-monochromatic (resp., '-sequentially monochromatic, '-super
monochromatic, '-ultra monochromatic).

The following simple variation of the infinite Ramsey theorem is a simple iterated
application of the usual version of Ramsey’s theorem.

Proposition 6.4.10. Let ' W ˙2.N/ ! C be a finite coloring and k a nonnegative
integer. There exists an infinite set N 
 N and a sequence .ci/

k
iD0 such that for

each 0 � i � k, we have ci 2 C and

˙2.N C i/ 
 '�1.ci/:

As an immediate consequence we deduce that

Corollary 6.4.11. Let ' W A C ! C, x 2 A ! , and k � 1. Then there exists a suffix
x0 of x which admits a k-shift invariant '-sequentially monochromatic factorization.

Proof. As in the proof of Theorem 6.4.1, we apply the above variation of Ram-
sey’s theorem to the coloring '0 W ˙2.N/ ! C given by '0.fm < ng/ D
'.xmxmC1 � � � xn�1/.

Proposition 6.4.12. A word x 2 A ! is ultimately periodic if and only if for every
finite coloring ' W A C ! C, there exists a suffix of x which admits a shift invariant
'-monochromatic factorization.

Proof. Clearly, if x is ultimately periodic, and hence of the form x D uv! for some
u; v 2 A � with v ¤ ", then for any ' W A C ! C, the factorization v � v � v � � � � of
the suffix v! is shift invariant '-monochromatic. Conversely, suppose x is aperiodic.
Choose a recurrent word y 2 ˝.x/. Thus each prefix of y occurs infinitely often in
x. Let ' W A C ! f0; 1g be given by '.u/ D 0 if u is a prefix of y and '.u/ D 1

otherwise. Let x0 be any suffix of x. We claim that x0 does not admit a shift invariant
'-monochromatic factorization. In fact, suppose to the contrary that x0 admits a
shift invariant '-monochromatic factorization x0 D V0V1V2 � � � . Since y is recurrent
and each prefix of y occurs infinitely often in x, there exist 0 � i < j such that if we
consider the shifted factorizations Ti.x0/ D W0W1W2 � � � and Tj.x0/ D W 00W

0
1W
0
2 � � � ,

where jWij D jW 0i j D jVij for each i � 0, both W0 and W 00 are prefixes of y. It follows
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that Wi and W 0i are prefixes of y for each i � 0. But since they are of equal length,
we have Wi D W 0i for each i � 0. Thus Ti.x0/ D Tj.x0/ which implies that x is
ultimately periodic, a contradiction.

We recall that a subset A of NC is called an IP-set if A contains FS..ni/
1
iD1/ for

some infinite sequence .ni/
1
iD1. In terms of IP-sets, Hindman’s theorem states that

any finite coloring of NC contains a monochromatic IP-set. By using the so-called
Finite Unions Theorem, which is equivalent to Hindman’s Finite Sums Theorem
(cf. [47, 417]), one can show that IP-sets in NC are partition regular, i.e., if A is an
IP-set and A D

Sk
iD1 Ai, then there exists 1 � i � k such that Ai is an IP-set. We

recall also the following well-known theorem of Milliken–Taylor [417, 561]:

Theorem 6.4.13. Let k be a positive integer and ' W ˙k.NC/! C a finite coloring.
Then there exist c 2 C and an infinite sequence .ni/

1
iD1 such that

8
<

:
X

i2F1

ni;
X

i2F2

ni; : : : ;
X

i2Fk

ni

9
=

; 2 '
�1 .c/

for each F1 < F2 < � � � < Fk with Fi 2 Fin.NC/, 1 � i � k.

The next theorem shows that for each finite coloring ' W A C ! C, and
each periodic word x 2 A ! , there exists a shift invariant '-ultra monochromatic
factorization of x. We present two proofs, one uses the fact that IP-sets are partition
regular and the other uses the Milliken–Taylor Theorem.

Theorem 6.4.14. For each finite coloring ' W A C ! C, each periodic word x 2
A ! admits a shift invariant '-ultra monochromatic factorization.

Proof. (First proof ) Let ' W A C ! C be given. Let u D u1u2 � � � uk 2 A C, ui 2 A ,
i D 1; : : : ; k and x D u! . Consider the coloring '1 W NC ! C defined by '1.n/ D
'.un/. Then by Hindman’s theorem, there exists an infinite sequence .n.1/i /

1
iD1 and

c1 2 C such that FS..n.1/i /
1
iD1/ 
 '

�1
1 .c1/. This implies that the factorization

x D un
.1/
1 � un

.1/
2 � un

.1/
3 � � �

is '-ultra monochromatic. Next consider the coloring '2 W FS..n.1/i /
1
iD1/ ! C

defined by '2.n/ D '..u2 � � � uku1/n/. By partition regularity of IP-sets, it follows
that there exists an infinite sequence .n.2/i /

1
iD1 and c2 2 C such that FS..n.2/i /

1
iD1/ 


'�12 .c2/. It follows that the factorizations

x D un
.2/
1 � un

.2/
2 � un

.2/
3 � � �

and

T.x/ D .u2 � � � uku1/
n
.2/
1 .u2 � � � uku1/

n
.2/
2 .u2 � � � uku1/

n
.2/
3 � � �
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are both '-ultra monochromatic. Continuing in this way up to stage k, we can find
an infinite sequence .n.k/i /

1
iD1 such that for each 0 � i � k � 1 the factorization

Ti.x/ D .uiC1 � � � uku1 � � � ui/
n
.k/
1 .uiC1 � � � uku1 � � � ui/

n
.k/
2 .uiC1 � � � uku1 � � � ui/

n
.k/
3 � � �

is '-ultra monochromatic. Since Tk.x/ D x the result now follows.
(Second proof ) As before let ' W A C ! C be given, u D u1u2 � � � uk 2 A C,

ui 2 A , i D 1; : : : ; k, and x D u! . Then ' induces a finite coloring

� W ˙k.N
C/! Ck

defined by

�.fn1 < n2 < � � � < nkg/

D .'..u1u2 � � � uk/
n1 /; '..u2u3 � � � uku1/

n2 /; : : : ; '..uku1 � � � uk�1/
nk/:

By Theorem 6.4.13, there exist c D .c1; c2; : : : ; ck/ 2 Ck and .ni/
1
iD1 such that

�

0

@

8
<

:
X

i2F1

ni;
X

i2F2

ni; : : : ;
X

i2Fk

ni

9
=

;

1

A D c (�)

for each F1 < F2 < � � � < Fk with Fi 2 Fin.NC/, 1 � i � k.
Fix 1 � j � k and F 2 Fin.fk; kC 1; kC 2; : : :g/. We claim that

'..uj � � � uku1 � � � uj�1/
P

i2F ni/ D cj:

This is a consequence of .�/ by taking Fi D fig for 1 � i < j, Fj D F, and
FjCi D fMCig for 1 � i � k�j where M D max.F/. It follows that the factorization
x D unk unkC1unkC2 � � � is shift invariant '-ultra monochromatic.



Chapter 7
Normal Numbers and Computer Science

Verónica Becher and Olivier Carton

Abstract Émile Borel defined normality more than 100 years ago to formalize
the most basic form of randomness for real numbers. A number is normal to a
given integer base if its expansion in that base is such that all blocks of digits of
the same length occur in it with the same limiting frequency. This chapter is an
introduction to the theory of normal numbers. We present five different equivalent
formulations of normality, and we prove their equivalence in full detail. Four of
the definitions are combinatorial, and one is, in terms of finite automata, analogous
to the characterization of Martin-Löf randomness in terms of Turing machines. All
known examples of normal numbers have been obtained by constructions. We show
three constructions of numbers that are normal to a given base and two constructions
of numbers that are normal to all integer bases. We also prove Agafonov’s theorem
that establishes that a number is normal to a given base exactly when its expansion
in that base is such that every subsequence selected by a finite automaton is also
normal.

7.1 Introduction

Flip a coin a large number of times, and roughly half of the flips will come up heads
and half will come up tails. Normality makes analogous assertions about the digits
in the expansion of a real number. Precisely, let b be an integer greater than or equal
to 2. A real number is normal to base b if each of the digits 0; : : : ; b � 1 occurs in
its expansion with the same asymptotic frequency 1=b, each of the blocks of two
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digits occurs with frequency 1=b2, each of the blocks of three digits occurs with
frequency 1=b3, and so on, for every block length. A number is absolutely normal
if it is normal to every base. Émile Borel [99] defined normality more than 100
years ago to formalize the most basic form of randomness for real numbers. Many
of his questions are still open, such as whether any of �; e, or

p
2 is normal in some

base, as well as his conjecture that the irrational algebraic numbers are absolutely
normal [100].

In this chapter, we give an introduction to the theory of normal numbers. We start
by considering five different equivalent formulations of normality, and we prove
their equivalence in full detail. These proofs have not appeared all together in the
literature before. Four of the definitions are combinatorial, and one is, in terms of
finite automata, analogous to the characterization of Martin-Löf randomness [198]
in terms of Turing machines. This characterization of normality holds for various
enrichments of finite automata [57, 131], but the relation with deterministic push-
down automata remains unsolved. We also briefly mention another well-known
equivalent definition of normality, in terms of uniform distribution modulo 1, that
will be further considered in Chapter 8.

All known examples of normal numbers have been obtained by constructions.
We first focus in three selected constructions of numbers that are normal to a given
base. We then present two constructions of absolutely normal numbers, one is a
slightly simplified version of the pioneer work done by Alan Turing and the other is
a simplified version of the polynomial time algorithm in [53].

Finally we consider the problem of preserving normality by selection by finite
automata of a subsequence of a give sequence. We give the proof of Agafonov’s
theorem [6] showing that a number is normal to a given base exactly when its
expansion in that base is such that every subsequence selected by a finite automata
is also normal.

Notation Let A be finite set of symbols that we refer as the alphabet. We write
A! for the set of all infinite words in alphabet A, A� for the set of all finite words,
A�k for the set of all words of length up to k, and Ak for the set of words of length
exactly k. The length of a finite word w is denoted by jwj. The positions of finite
and infinite words are numbered starting at 1. To denote the symbol at position i of
a word w, we write wŒi�, and to denote the substring of w from position i to j, we
write wŒi : : : j�. The empty word is denoted by �.

For two words w and u, the number jwju of occurrences of u in w and the number
jjwjju of aligned occurrences of u in w are, respectively, given by

jwju D jfi W wŒi : : : iC juj � 1� D ugj;

jjwjju D jfi W wŒi : : : iC juj � 1� D u and i � 1 mod jujgj:

For example, jaaaaajaa D 4 and jjaaaaajjaa D 2. Notice that the definition of aligned
occurrences has the condition i � 1 mod juj instead of i � 0 mod juj, because
the positions are numbered starting at 1. When a word u is just a symbol, jwju and
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jjwjju coincide. Counting aligned occurrences of a word of length r over alphabet A
is the same as counting occurrences of the corresponding symbol over alphabet Ar.
Precisely, consider alphabet A, a length r, and an alphabet B with jAjr symbols. The
set of words of length r over alphabet A and the set B are isomorphic, as witnessed
by the isomorphism � W Ar ! B induced by the lexicographic order in the respective
sets. Thus, for any w 2 A� such that jwj is a multiple of r, �.w/ has length jwj=r
and �.u/ has length 1, as it is just a symbol in B. Then, for any u 2 Ar, jjwjju D
j�.w/j�.u/.

7.2 Borel’s Definition of Normality

A base is an integer greater than or equal to 2. For a real number x in the unit interval,
the expansion of x in base b is a sequence a1a2a3 : : : of integers from f0; 1; : : : ; b�1g
such that

x D
X

k�1

akb�k D 0:a1a2a3 : : :

To have a unique representation of all rational numbers, we require that expansions
do not end with a tail of b � 1. We will abuse notation, and whenever the base b is
understood, we will denote the first n digits in the expansion of x with xŒ1 : : : n�.

Definition 7.2.1 (Strong Aligned Normality, Borel [99]). A real number x is
simply normal to base b if, in the expansion of x in base b, each digit d occurs
with limiting frequency equal to 1=b,

lim
n!1

jxŒ1 : : : n�jd
n

D
1

b

A real number x is normal to base b if each of the reals x; bx; b2x; : : : are simply
normal to bases b1; b2; b3; : : :. A real x is absolutely normal if x is normal to every
integer base greater than or equal to 2.

Theorem 7.2.2 (Borel [99]). Almost all real numbers (with respect to Lebesgue
measure) are absolutely normal.

Are the usual mathematical constants, such as � , e, or
p
2, absolutely normal?

Or at least simply normal to some base? The question remains open.

Conjecture 7.2.3 (Borel [100]). Irrational algebraic numbers are absolutely nor-
mal.

The most famous example of a normal number is due to Champernowne [141].
He proved that the number

0:12345678910112131415161718192021222324252627 : : :
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is normal to base 10. The construction can be done in any base, obtaining a number
normal to that base. It is unknown whether Champernowne numbers are normal to
the bases that are multiplicatively independent to the base used in the construction.
Champernowne’s construction has been generalized in many interesting ways.
There are also some other methods to obtain examples of numbers that are normal to
a given base. In Section 7.7, we comment on the different methods, and we present
three selected constructions.

All known examples of absolutely normal numbers are given by constructions.
The oldest were not even computable. The first computable construction is due to
A. Turing [52, 570]. In Section 7.8, we give references of known constructions, and
we present two of them.

7.3 Equivalences Between Combinatorial Definitions
of Normality

Borel’s original definition of normality turned out to be redundant. Pillai in 1940,
see [118, Theorem 4.2], proved the equivalence between Definition 7.2.1 and the
following.

Definition 7.3.1 (Aligned Normality). A real number x is normal to base b if x is
simply normal to bases b1; b2; b3; : : :.

Niven and Zuckerman in 1951, see [118, Theorem 4.5], proved yet another
equivalent formulation of normality by counting occurrences of blocks but not
aligned. This formulation was stated earlier by Borel himself, without proof.

Definition 7.3.2 (Non-aligned Normality). A real number x is normal to base b if
for every block u,

lim
n!1

jxŒ1 : : : n�ju
n

D
1

bjuj
:

We will prove that Definitions 7.2.1, 7.3.1 and 7.3.2 are equivalent. The following
lemma gives a central limit theorem that bounds the number of words in alphabet A
of length k having too few or too many occurrences of some block w.

Definition 7.3.3. Let A be an alphabet of b symbols. We define the set of words of
length k such that a given word w has a number of occurrences that differs from the
expected value in plus or minus "k,

Bad.A; k;w; "/ D

�
v 2 Ak W

ˇ̌
ˇ̌ jvjw

k
� b�jwj

ˇ̌
ˇ̌ � "

�
:
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Lemma 7.3.4 (Adapted from Hardy and Wright [283, proof of Theorem 148]).
Let b be an integer greater than or equal to 2, and let k be a positive integer. If
6=k � " � 1=b, then for every d 2 A,

jBad.A; k; d; "/j < 4bke�b"2k=6:

Proof. Observe that for any d 2 A,

Bad.A; k; d; "/ D
X

n�k=b�"k

 
k

n

!
.b � 1/k�n C

X

n�k=bC"k

 
k

n

!
.b � 1/k�n

Fix b and k and write N.n/ for
 

k

n

!
.b � 1/k�n:

For all n < k=b, we have that N.n/ < N.nC 1/ and the quotients

N.n/

N.nC 1/
D
.nC 1/.b � 1/

k � n

decrease as n increases. Similarly, for all n > k=b, we have that N.n/ < N.n � 1/
and the quotients

N.n/

N.n � 1/
D

k � nC 1

n.b � 1/

increase as n decreases. The strategy will be to “shift” each of the sums m positions.
We bound the first sum as follows. For any n we can write

N.n/ D
N.n/

N.nC 1/
�

N.nC 1/

N.nC 2/
� : : : �

N.nC m � 1/

N.nC m/
� N.nC m/

Let

m D b"k=2c and p D bk=b � "kc

For each n such that n � pC m � 1, we have that nC m < k=b, so

N.n/

N.nC 1/
�

N.pC m � 1/

N.pC m/

D
.pC m/.b � 1/

k � p � mC 1

<
.k=b � "k=2/.b � 1/

k � k=bC "k=2
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D 1 �
"b=2

1 � 1=bC "=2

< 1 � "b=2 .using the hypothesis " � 1=b/:

< e�b"=2:

Then,

N.n/ <
�
e�b"=2

�m
N.nC m/

� e�b"."k=2�1/=2 N.nC m/

� 2e�b"2k=4 N.nC m/; .the hypothesis " � 1=b implies eb"=2 < 2/

We obtain,

X

n�u

N.n/ < 2e�b"2k=2
X

n�u

N.nC m/ � 2 bke�b"2k=4:

We now bound the second sum, shifting it m positions. For any n we can write

N.n/ D
N.n/

N.n � 1/
�

N.n � 1/

N.n � 2/
� : : : �

N.n � mC 1/

N.n � m/
� N.n � m/

Let

m D b"k=2c and q D dk=bC "ke:

For each n such that n � q � mC 1, we have n � m > k=b, so

N.n/

N.n � 1/
�

N.q � mC 1/

N.q � m/

D
k � qC m

.q � mC 1/.b � 1/

D
k � dk=bC "ke C b"k=2c

.dk=bC "ke � b"k=2c C 1/.b � 1/

�
k � k=b � "k=2

.k=bC "k=2C 1/.b � 1/

<
1 � 1=b � "=2

.1=bC "=2/.b � 1/
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Now

1�1=b�"=2
.1=bC"=2/.b�1/ � 1 � b"=3

, 1 � 1=b � "=2 � .1 � b"=3/.1=bC "=2/.b � 1/

, .b � 1/=b � "=2 � .1=bC "=2/.b � 1/ � .b"=3/.1=bC "=2/.b � 1/

, .b"=3/.1=bC "=2/.b � 1/ � b"=2

, .1=bC "=2/.b � 1/ � 3=2:

Since " � 1=b, we obtain the required inequality,

.1=bC "=2/.b � 1/ � .1=bC 1=.2b//.b � 1/ D 3=.2b/.b � 1/ � 3=2

We conclude,

N.n/

N.n � 1/
� 1 � b"=3 � e�b"=3:

Then,

N.n/ <
�
e�b"=3

�m
N.n � m/

� e�b"b"k=2c=3N.n � m/

� e�b"."k=2�1/=3N.n � m/

� 2 e�b"2k=6N.n � m/; .the hypothesis " � 1=b implies eb"=3 < 2/:

Thus,

X

n�q

N.n/ < 2 bke�b"2k=6:

This completes the proof.

The next lemma bounds the number of words of k symbols in alphabet A that
contain too many or too few occurrences of some block of length `, with respect to
a toleration specified by ".

Lemma 7.3.5. Let A be an alphabet of b symbols. Let k; ` be positive integers and
" a real such that 6=bk=`c � " � 1=b`. Then,

ˇ̌
ˇ̌
ˇ̌
[

w2A`

Bad.A; k;w; "/

ˇ̌
ˇ̌
ˇ̌ < 2` bkC2` e�b`"2k=.6`/:
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Proof. Split the set f1; 2; : : : ; kg into the congruence classes modulo `. Each of
these classes contains either bk=`c or dk=`e elements. Let M0 denote the class of all
indices which leave remainder zero when being reduced modulo `. Let n0 D jM0j.

For each x in Ak, consider the word in .A`/n0

xŒi1 : : : .i1 C ` � 1/�xŒi2 : : : .i2 C ` � 1/� : : : xŒin0 : : : .in0 C ` � 1/�

for i1; : : : in0 2 M0. By Lemma 7.3.4, we have

ˇ̌
Bad.A`; n0;w; "/

ˇ̌
< 4 .b`/n0e�b`"2n0=6:

Clearly, similar estimates hold for the indices in the other residue classes. Let
n1; : : : ; n`�1 denote the cardinalities of these other residue classes. By assumption
n0 C � � � C n`�1 D k. Then,

jBad.A; k;w; "/j �
`�1X

jD0

ˇ̌
Bad.A`; nj;w; "/

ˇ̌

�

`�1X

jD0

4.b`/nj e�b`"2nj=6

�

`�1X

jD0

4.b`/k=`C1e�b`"2k=.6`/

D 4 ` bkC` e�b`"2k=.6`/:

The last inequality holds because

.b`/dk=`ee�b`"2dk=`e=6 < .b`/k=`C1e�b`"2k=.6`/

and " � 1=b` ensures

.b`/bk=`ce�b`"2bk=`c=6 � bke�b`"2k=.6`/e1=.6b`/ � bke�b`"2k=.6`/b`:

Now, summing up over all w 2 A`, we obtain

ˇ̌
ˇ̌
ˇ̌
[

w2A`

Bad.A; k;w; "/

ˇ̌
ˇ̌
ˇ̌ < 2` bkC2`e�b`"2k=.6`/ :

Instead of the factor 4, we can put the factor 2 because if a word w 2 A` occurs
fewer times than expected in a given word x 2 Ak, then there is another word v 2 A`

that occurs in x more times than expected.
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Lemma 7.3.6. Let .x1;n/n�0; .x2;n/n�0; : : : ; .xk;n/n�0 be sequences of real numbers
such that

Pk
iD1 xi;n D 1, and let c1; c2; : : : ; ck be real numbers such that

Pk
iD1 ci D

1. Then,

1. If for each i, lim infn!1 xi;n � ci then for each i, limn!1 xi;n D ci.
2. If for each i, lim supn!1 xi;n � ci then for each i, limn!1 xi;n D ci.

Proof. For any i in f1; : : : ; kg,

lim sup
n!1

xi;n D lim sup
n!1

.1 �
X

j¤i

xj;n/

D 1C lim sup
n!1

.�
X

j¤i

xj;n/

D 1 � lim inf
n!1

.
X

j¤i

xj;n/

� 1 �
X

j¤i

lim inf
n!1

xj;n

� 1 �
X

j¤i

cj

D ci:

Since

lim inf � lim sup and lim sup
n!1

xi;n � ci � lim inf
n!1

xi;n;

necessarily,

lim inf
n!1

xi;n D lim sup
n!1

D ci and lim
n!1

xi;n D ci:

Theorem 7.3.7. Definitions 7.2.1, 7.3.1 and 7.3.2 are equivalent.

Proof. Let x be a real number. We use the fact that for every block w 2 A�,

lim
n!1

jxŒ1 : : : n�jw
n

D b�jwj

if and only if there is a positive integer r such that

lim
n!1

jxŒ1 : : : nr�jw
nr

D b�jwj:
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A similar fact is true for the limit of jjxŒ1 : : : n`�jjw=n.

1. We show that strong aligned normality implies non-aligned normality.
Observe that for any w 2 A`,

jxŒ1 : : : n�jw D
`�1X

iD0

jj.bix/Œ1 : : : n � i�jjw

Then,

lim
n!1

jxŒ1 : : : n�jw
n

D

`�1X

iD0

lim
n!1

jj.bix/Œ1 : : : n � i�jjw
n

D

`�1X

iD0

b�`=` D b�`:

2. We prove that non-aligned normality implies aligned normality. Define

jjvjjw;r D jfi W vŒi::iC jwj � 1� D w and i D r mod jwjgj:

jjvjjw;� D max
1�r�jwj

jjvjjw;r

V.w; k; "/ D fv 2 Akjwj�1 W jjvjjw;� > .k � 1/.b
�jwj C "/g

Given w 2 A�, let d be corresponding digit in Ajwj, and observe that for each
v 2 V.w; k; "/, there is Qv 2 Bad.Ajwj; k � 1; d; "/ and there are words s; t 2 A�

such that jsj C jtj D jwj � 1 and v D s Qvt. Thus,

jV.w; k; "/j � jwjbjwj�1jBad.Ajwj; k � 1; d; "/j:

So by Lemma 7.3.5, for every positive real ı, there is k0 such that for every k > 0,

jV.w; k; "/j b�.kjwj�1/ < ı:

Fix ` and assume w 2 A`. Then, for any k � max.2; k0/,

lim sup
n!1

jjxŒ1 : : : n`�jjw
n

� lim sup
n!1

1

n.k � 1/`

n`�`C1X

tD1

jjxŒt : : : tC .k � 1/`C ` � 2�jjw;2�t

� lim sup
n!1

1

n.k � 1/`

n`�`C1X

tD1

jjxŒt : : : tC .k � 1/`C ` � 2�jjw;�

D lim sup
n!1

X

v2Ak`�1

jxŒ1 : : : .nC k � 1/` � 1�jv
n`

jjvjjw;�

k � 1
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�
X

v2Ak`�1

�
lim sup
n!1

jxŒ1 : : : .nC k � 1/` � 1�jv
n`

	
jjvjjw;�

k � 1

D
X

v2Ak`�1

�
lim sup
n!1

jxŒ1 : : : n`�jv
n`

	
jjvjjw;�

k � 1

D
X

v2Ak`�1

b�.k`�1/
jjvjjw;�

k � 1

D
X

v2Ak`�1nV.w;k;"/

b�.k`�1/
jjvjjw;�

k � 1
C

X

v2V.w;k;"/

b�.k`�1/
jjvjjw;�

k � 1

�.b�` C "/
X

v2Ak`�1nV.w;k;"/

b�.k`�1/ C
X

v2Ak`�1nV.w;k;"/

b�.k`�1/

� b�` C "C ı:

To obtain the inequality in the second line, observe that each aligned occurrence
of w in a position j` C 1, where k � 1 � j < n, is counted .k � 1/` times by
jjxŒt : : : tC k` � 2�jjw;2�t for .jC 1 � k/`C 1 � t � j`C 1.

Since the last inequality is true for any ı; " > 0, we conclude that

lim sup
n!1

jjxŒ1 : : : n`�jjw
n

� b�`:

Applying Lemma 7.3.6, we conclude,

lim
n!1

jjxŒ1 : : : n`�jjw
n

D b�jwj:

3. We prove that aligned normality implies strong aligned normality. It is sufficient
to prove that if x has aligned normality, then bx also has aligned normality. Define

U.k;w; i/ D fu 2 Ak W uŒi : : : iC jwj � 1� D wg:

Fix a positive integer `. For any w 2 A` and for any positive integer r,

lim inf
n!1

jj.bx/Œ1 : : : nr`�jjw
nr

� lim inf
n!1

1

r

r�2X

kD0

X

u2U.r`;w;2C`k/

jjxŒ1 : : : nr`�jju
n

D
1

r

r�2X

kD0

X

u2U.`r;w;2C`k/

b�r`

D
r � 1

r
b�`:
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For every r, the following equality holds:

lim inf
n!1

jj.bx/Œ1 : : : n`�jjw
n

D lim inf
n!1

jj.bx/Œ1 : : : nr`�jjw
nr

:

Then, using the inequality obtained above, we have

lim inf
n!1

jj.bx/Œ1 : : : n`�jjw
n

�
r � 1

r
b�`:

Since this last inequality holds for every r, we obtain,

lim inf
n!1

jj.bx/Œ1 : : : n`�jjw
n

� b�`:

Finally, this last inequality is true for every w 2 A`; hence, by Lemma 7.3.6,

lim
n!1

jj.bx/Œ1 : : : n`�jjw
n

D b�`:

7.4 Normality as a Seemingly Weaker Condition

The following result is due to Piatetski-Shapiro in 1957 [481] and was rediscovered
later by Borwein and Bailey [101] who called it the hot spot lemma. In Theo-
rem 7.4.1, we present two versions of this result, one with non-aligned occurrences
and one with aligned occurrences. The theorem has been extended relaxing the
constant C to a sublinear function; see [118] for the references.

Theorem 7.4.1. Let x be a real and let b be an integer greater than or equal to 2.
Let A D f0; : : : ; b � 1g. The following conditions are equivalent,

1. The real x is normal to base b.
2. There is a constant C such that for infinitely many lengths ` and for every w in A`

lim sup
n!1

jjxŒ1 : : : njwj�jjw
n

< C � b�jwj:

3. There is a constant C such that for infinitely many lengths ` and for every w
in A`

lim sup
n!1

jxŒ1 : : : n�jw
n

< C � b�jwj:

Proof. The implications 1) 2 and 1) 3 follow from Theorem 7.3.7.
We now prove 2) 1. Define,
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eBad.Ajwj; k;w; "/ D

�
v 2 Akjwj W

ˇ̌
ˇ̌ jjvjjw

k
� b�jwj

ˇ̌
ˇ̌ > "

�

Lemma 7.3.5 implies that the size of eBad.Ajwj; k;w; "/ shrinks exponentially as k
increases. Suppose there is C such that for infinitely many lengths ` and for every
w 2 A`,

lim sup
n!1

jjxŒ1 : : : n`�jjw
n

< C � b�`:

Fix ` and w 2 A`. Fix " > 0 and take k large enough.

lim inf
n!1

jjxŒ1 : : : nk`jjw
nk

D lim inf
n!1

X

v2Ak`

jjxŒ1 : : : nk`jjv
n

jjvjjw

k

� lim inf
n!1

X

v2Ak`nfBad.A`;k;w;"/

jjxŒ1 : : : nk`jjv
n

jjvjjw

k

� .1 � "/b�` lim inf
n!1

X

v2Ak`nfBad.A`;k;w;"/

jjxŒ1 : : : nk`jjv
n

D .1 � "/b�` lim inf
n!1

0

@1 �
X

v2fBad.A`;k;w;"/

jjxŒ1 : : : nk`jjv
n

1

A

D .1 � "/b�`

0

@1 � lim sup
n!1

X

v2fBad.A`;k;w;"/

jjxŒ1 : : : nk`�jjv
n

1

A

� .1 � "/b�`

0

@1 �
X

v2fBad.A`;k;w;"/

lim sup
n!1

jjxŒ1 : : : nk`�jjv
n

1

A

� .1 � "/b�`

0

@1 �
X

v2fBad.A`;k;w;"/

C � b�k`

1

A

� .1 � "/b�`.1 � C"/:

Since this is true for all " > 0,

lim inf
n!1

jjxŒ1 : : : nk`jjw
nk

� b�`:
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Finally, this last inequality is true for every w 2 A`; hence, by Lemma 7.3.6

lim
n!1

jjxŒ1 : : : n`jjw
n

D b�`:

The proof of implication 3 ) 1 is similar to 2 ) 1. Consider the set
Bad.A;w; k; "/ from Definition 7.3.3, the bound in Lemma 7.3.5, and the following
fact. Fix w of length `. Then for any n and k,

jxŒ1 : : : n�jw �
1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r .jvjw C ` � 1/

jxŒ1 : : : n�jw �
1

k � `C 1

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;rjvjw

Then,

lim
n!1

jxŒ1 : : : n�jw
n

� lim
n!1

1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r
n

.jvjw C ` � 1/

D lim
n!1

1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r
n

jvjw:

And

lim
n!1

jxŒ1 : : : n�jw
n

� lim
n!1

1

k � `C 1

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r
n

jvjw

� lim
n!1

1

k

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r
n

jvjw

Hence,

lim
n!1

1

k

jxŒ1 : : : n�jw
n

D lim
n!1

X

v2Ak

k�1X

rD0

jjxŒ1 : : : n�jjv;r
n

jvjwD lim
n!1

1

k

X

v2Ak

jxŒ1 : : : n�jv
n

jvjw:

7.5 Normality as Incompressibility by Finite Automata

The definition of normality can be expressed as a notion of incompressibility by
finite automata with output also known as transducers. We consider nondetermin-
istic transducers. We focus on transducers that operate in real time, that is, they
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process exactly one input alphabet symbol per transition. We start with the definition
of a transducer (see Section 1.5.4 for the definition of automata without output).

Definition 7.5.1. A nondeterministic transducer is a tuple T D hQ;A;B; ı; I;Fi,
where

• Q is a finite set of states,
• A and B are the input and output alphabets, respectively,
• ı � Q 	 A 	 B� 	 Q is a finite transition relation,
• I 
 Q and F 
 Q are the sets of initial and final states, respectively.

A transition of such a transducer is a tuple hp; a; v; qi which is written p
ajv
�!

q. A finite (respectively infinite) run is a finite (respectively infinite) sequence of
consecutive transitions,

q0
a1jv1
���! q1

a2jv2
���! q2 � � � qn�1

anjvn
���! qn

A finite path is written q0
a1���anjv1���vn
��������! qn. An infinite path is final if the state qn

is final for infinitely many integers n. In that case, the infinite run is written
q0

a1a2a3���jv1v2v3���
�����������! 1. An infinite run is accepting if it is final and furthermore

its first state q0 is initial. This is the classical Büchi acceptance condition. For two
infinite words x 2 A! and y 2 B! , we write T .x; y/ whenever there is an accepting
run q0

xjy
�!1 in T .

Definition 7.5.2. A transducer T is bounded-to-one if the function y 7! jfx W
T .x; y/gj is bounded.

Definition 7.5.3. An infinite word x D a1a2a3 � � � is compressible by a nondeter-
ministic transducer if it has an accepting run q0

a1jv1
���! q1

a2jv2
���! q2

a3jv3
���! q3 � � �

satisfying

lim inf
n!1

jv1v2 � � � vnj

n

log jBj

log jAj
< 1:

It follows from the results in [175, 531] that the words which are not com-
pressible by one-to-one deterministic transducers are exactly the normal words. A
direct proof of this result appears in [56]. Extensions of this characterization for
nondeterminisms and extra memory appear in [57, 131].

Theorem 7.5.4. An infinite word is normal if and only if it not compressible by a
bounded-to-one nondeterministic transducer.

We first show that a non-normal word is compressible. We show a slightly
stronger result since the transducer can be chosen deterministic and one-to-one.

Lemma 7.5.5. A non-normal infinite word is compressible by a deterministic one-
to-one transducer.
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Proof. Assume x 2 A! is not normal. Let us show that x is compressible regardless
of the choice of an output alphabet B. Since x is not normal, there is some word u0
of length k such that

lim
n!1

jjxŒ1 : : : n�jju0
n=k

¤
1

jAjk

meaning that the limit on the left side either does not exist or it does exist but it is
different from 1=jAjk. There exists then an increasing sequence .ni/i�0 of integers
such that the limit fu D limi!1 jjxŒ1 : : : ni�jju=.ni=k/ does exists for each word u of
length k and furthermore fu0 ¤ 1=jAj

k. Note that
P

u2Ak fu D 1. Let m be an integer
to be fixed later. For each word w 2 Akm, let fw be defined by fw D

Qm
iD1 fui where w

is factorized w D u1 � � � um with juij D k for each 1 � i � m. Since
P

w2Akm fw D 1,
a word vw 2 B� can be associated with each word w 2 Akm such that vw ¤ vw0 for
w ¤ w0 , the set fvw W w 2 Amkg is prefix-free, and for each w 2 Akm,

jvwj � d�log fw=log jBje:

We claim that the words .vw/w2Akm can be used to construct a deterministic
transducer Tm which compresses x for m large enough. The state set Qm of Tm

is the set A<km of words of length less than km. Its initial state is the empty word �,
and all states are final. Its set Em of transitions is given by

Em D fw
aj�
��! wa W jwaj < kmg [ fw

ajvwa
���! � W jwaj D kmg:

Let us denote by Tm.z/ the output of the transducer Tm on some finite input word z.
Suppose that the word z is factorized z D w1 � � �wnw0 where jwij D km for each
1 � i � n and jw0j < km. Note that n D bjzj=kmc. Note also that the transducer Tm

always comes back to its initial state � after reading km symbols.

jTm.z/j D
nX

iD1

jvwi j

�

nX

iD1

d� log fwi= log jBje

�
jzj

km
C

nX

iD1

� log fwi= log jBj

�
jzj

km
C
X

w2Akm

jjzjjw
� log fw
log jBj

�
jzj

km
C
X

u2Ak

jjzjju
� log fu
log jBj

:
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Applying this computation to the prefix z D xŒ1::n� of x gives

lim inf
n!1

jTm.xŒ1::n�/ log jBj

n log jAj
� lim

i!1

jTm.xŒ1::ni�/ log jBj

ni log jAj

�
log jBj

km log jAj
C

1

k log jAj

X

u2Ak

fu.� log fu/:

Since at least one number fu is not equal to 1=jAjk, the sum
P

u2Ak fu.� log fu/
is strictly less than k log jAj. For m chosen large enough, we obtain that Tm

compresses x.

The following lemma is the key lemma to prove the converse.

Lemma 7.5.6. Let ` be a positive integer, and let u1; u2; u3; : : : be words of length `
over the alphabet A such that u1u2u3 � � � is simply normal to word length `. Let

C0
u1jv1
���! C1

u2jv2
���! C2

u3jv3
���! C3 � � �

be a run where each Ci is a configuration of some kind of transducer. Assume there
is a real " > 0 and a set U 
 A` of at least .1 � "/jAj` words such that ui 2 U
implies jvij � `.1 � "/. Then,

lim inf
n!1

jv1v2 � � � vnj

n`
� .1 � "/3:

Proof. Assume words ui as in the hypothesis. By definition of normality to word
length `, let n0 be such that for every u 2 A` and for every n � n0,

jfi W 1 � i � n; ui D ugj � njAj�`.1 � "/:

Then, for every n � n0,

jv1v2 � � � vnj D

nX

iD1

jvij

�
X

1�i�n;ui2U

jvij

�
X

1�i�n;ui2U

`.1 � "/

� njAj�`.1 � "/
X

u2U

`.1 � "/

� njAj�`.1 � "/.1 � "/jAj``.1 � "/

� .1 � "/3n`:
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We now come back to the proof that normal words are not compressible by
bounded-to-one transducers.

Proof. Fix a normal infinite word x D a1a2a3 � � � , a real " > 0, a bounded-
to-one nondeterministic transducer T D hQ;A;B; ı; q0;Fi, and an accepting run
q0

a1jv1
���! q1

a2jv2
���! q2

a3jv3
���! q3 � � � . It suffices to show that there is ` and U such that

Lemma 7.5.6 applies to this arbitrary choice of ", T , and accepting run. For each
word u 2 A�, let

hu D minfjvj W 9i; j; 0 � i � j; qi
ujv
�! qjg

be the minimum number of symbols that the processing of u can contribute to the
output in the run we fixed. Let

U` D fu 2 A` W hu � .1 � "/`g

be the set of words of length ` with relatively large contribution to the output. Let
t be such that T is t-to-one. For each length `, pair of states p; q that appear in the
run, and for each word v, consider the set

U0 D fu 2 A` W p
ujv
�! qg:

Since p and q appear in the run, let q0
u0jv0
���! p be a prefix of the run and q

x0jy0
���!1 be

a suffix of the run. This implies q
x0jy0
���!1 goes infinitely often through an accepting

state. Thus, for different u1; u2 2 U0, there are accepting runs q0
u0u1x0jv0vy0
�������!

1 and q0
u0u2x0jv0vy0
�������! 1, from which it follows that T .u0u1x0; v0vy0/ and

T .u0u2x0; v0vy0/. Therefore, by definition of t, jU0j � t.

jfu 2 A` W p
ujv
�! qgj � t:

Thus,

jU`j � jAj
` � jQj2tjBj.1�"/`C1:

Fix ` such that jU`j > jAj`.1 � "/ and apply Lemma 7.5.6 with U D U` to the
considered run. This completes the proof.

7.6 Normality as Uniform Distribution Modulo 1

Let .xj/j�1 be a sequence of real numbers in the unit interval. The discrepancy of the
N first elements is

DN..xj/j�1/ D sup
0�u<v�1

ˇ̌
ˇ̌ jfj W 1 � j � N and u � xj � vgj

N
� .v � u/

ˇ̌
ˇ̌ :
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The sequence .xj/j�1 is uniformly distributed in the unit interval if

lim
N!1

DN..xj/j�1/ D 0:

Schmidt [530] proved that for every sequence .xj/j�1 of reals in the unit interval,
there are infinitely many Ns such that

DN..xj/j�1/ �
log N

100 N
:

There are sequences that achieve this lower bound, see [199].
Normality can be expressed in terms of uniform distribution modulo 1.

Theorem 7.6.1 (Wall 1949 [578]). A real number x is normal to base b if and only
if the sequence .bjx/j�0 is uniformly distributed modulo 1.

The discrepancy modulo 1 of the sequence .bjx/j�0 gives the speed of conver-
gence to normality to base b. Gál and Gál [236] and Philipp [480] proved that for
almost all real numbers x, the discrepancy modulo 1 of the sequence .bjx/j�0 is
essentially the same and it obeys the law of iterated logarithm up to a constant
factor that depends on b. Fukuyama [233] obtained the precise constant factor.

For a real number x, we write fxg D x � bxc to denote the fractional part of x.

Theorem 7.6.2 (Fukuyama 2008 [233]). For every real � > 1, there is a constant
C� such that for almost all real numbers x (with respect to Lebesgue measure),

lim sup
N!1

DN.f�
jxgj�0/

p
N

p
log log N

D C� :

For instance, in case � is an integer greater than or equal to 2,

C� D

8
<

:

p
84=9; if � D 2p
2.� C 1/=.� � 1/=2; if � is oddp
2.� C 1/�.� � 2/=.� � 1/3=2; if � � 4 is even:

It remains an open problem to establish the minimal discrepancy that can be
achieved by a sequence .fbjxg/j�0 for some x.

The formulation of normality in terms of uniform distribution modulo 1 has
been used in constructions of numbers that are normal to one base and not normal
to another, where analytic tools come into play by way of Weyl’s criterion of
equidistribution [118, 364]. We give some references in Section 7.8.
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7.7 Constructions of Numbers That Are Normal
to a Given Base

Copeland and Erdős [166] generalized Champernowne’s construction [141]. They
show that for any increasing sequence of integers which does not grow too fast, the
concatenation of its terms yields the expansion of a normal number. In particular,
one can take the sequence of prime numbers. There are many other generalizations,
such as [180, 435].

Other examples of normal numbers are defined by arithmetic constructions, the
first ones are due to Stoneham [553] and Korobov [359]. For b; c be relatively prime
integers greater than 1, the real numbers

˛b;c D

1X

nD1

1

cnbcn

are normal to base b. Bailey and Borwein [31] showed that ˛2;3 is normal to base 2
but not to base 6. Noticeably, for any given integer base b, Levin [376] gives an
arithmetic construction of a real number x, subtler than the series for ˛b;c, such that
DN.fbnxgn�0/is in O..log N/2=N/. This is the lowest discrepancy obtained so far,
and it is close to the lower bound of O.log.N/=N/ proved by Schmidt for arbitrary
sequences (see Section 7.6 above). It is an open question whether there exists a real x
for which DN.fbnxgn�0/ reaches Schmidt’s general lower bound.

Yet there is a very different kind of construction of expansions of normal
numbers, based on combinatorics on words, specifically on de Bruijn words. This is
due to Ugalde in [571].

In all the cases, the constructions have the form of an algorithm or can be
turned into an algorithm. Recall that a real number x is computable if there is an
algorithm that produces the expansion of x in some base, one digit after the other.
The algorithm computes in linear time or has linear time complexity if it produces
the first n digits in the expansion of x after performing a number of operations that
is linear in n. Similarly, we consider polynomial, exponential, or hyper-exponential
complexity. Algorithms with exponential complexity cannot run in human time,
but algorithms with sub-exponential complexity can. In this monograph we analyze
the computational complexity by counting the number of mathematical operations
required to output the first k digits of the expansion of the computed number in
a designated base. Thus, we do not count how many elementary operations are
implied by each of the mathematical operations, which means that we neglect the
computational cost of performing arithmetical operations with arbitrary precision.

In this section we present three constructions of real numbers that are insured to
be normal to a given base. Since we care about the normality to just one base, we
will just construct infinite words in a given alphabet. We first present the simplest
possible construction à la Champernowne. Then we present Ugalde’s construction,
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and we give a much simpler proof than the one in [571]. Finally we present a subtle
construction of a normal word which has a self-similarity condition: the whole
infinite word is identical to its subsequence at the even positions. This result is due
to Becher, Carton, and Heiber (see [50, Theorem 4.2]).

7.7.1 À la Champernowne

Theorem 7.7.1. Let A be an alphabet. Let wj be the concatenation of all words over
A of length j, in lexicographic order. The infinite word w D w1w2w3 : : : is normal to
alphabet A.

Proof. Let w D w1w2w3 : : : D a1a2 : : : where each ai is a symbol in A. Fix N and
let n be such that

nX

jD1

jjAjj � N <

nC1X

jD1

jjAjj

Let u be a block of symbols in alphabet A. The occurrences of u in the prefix
of wŒ1::N� are divided into two classes: those that are fully contained in a single
block of length i in some wi and those that overlap several blocks.

ja1a2 : : : aN ju

N
�
ja1a2 : : : axnC1

ju

njAjn

�
1

njAjn

0

@
nC1X

jDjuj

.j � juj C 1/jAjj�juj C
nC1X

jD1

.juj � 1/jAjj

1

A

�
.nC 1/jAj�juj

njAjn

nC1X

jD1

jAjj C
juj

njAjn

nC1X

jD1

jAjj

�
.nC 1/

n.jAj � 1/
jAj�juj C

jujjAj2

n.jAj � 1/
:

The first term accounts for occurrences fully contained in a block and the second of
for those that overlap several blocks. It follows that

lim sup
N!1

ja1a2 : : : aN ju

N
�

2

jAj � 1
jAj�juj:

By Lemma 7.4.1, w is normal to alphabet A.
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The infinite word w can be computed very efficiently: the first N symbols can be
produced in at most O.N/ elementary operations. It is also possible to produce just
the N-th symbol of w in O.log N/ many elementary operations.

7.7.2 Infinite de Bruijn Words

See [76] for a fine presentation and history of de Bruijn words.

Definition 7.7.2 ([182, 517]). A (noncyclic) de Bruijn word of order n over alpha-
bet A is a word of length jAjn C n � 1 such that every word of length n occurs in it
exactly once.

Every de Bruijn word of order n over A with jAj � 3 can be extended to a de
Bruijn word of order n C 1. Every de Bruijn word of order n over A with jAj D 2

can not be extended to order nC 1, but it can be extended to order nC 2. See [55]
for a complete proof of this fact. This allows us to define infinite de Bruijn words,
as follows.

Definition 7.7.3. An infinite de Bruijn word w D a1a2 : : : in an alphabet of at least
three symbols is an infinite word such that, for every n, a1 : : : ajAjnCn�1 is a de Bruijn
word of order n. In case the alphabet has two symbols, an infinite de Bruijn word
w D a1a2 : : : is such that, for every odd n, a1 : : : ajAjnCn�1 is a de Bruijn word of
order n.

Ugalde [571] was the first to prove that infinite de Bruijn words are normal.

Theorem 7.7.4. Infinite de Bruijn words are normal.

Proof. In case the alphabet A has two symbols, consider instead the words in the
alphabet A0 of four symbols obtained by the morphism mapping blocks two symbols
in A to one symbol in A0, and prove normality for alphabet A0.

Suppose that the alphabet A has at least 3 symbols. Let x D a1a2 : : : be an infinite
de Bruijn word over A. Fix a word u of length ` and n > jAj`C `�1. Then u occurs
in a de Bruijn word of order n � ` between jAjn�` and jAjn�` C n � ` times. To
see this, observe if u occurs at a position i, for some i such that 1 � i � jAjn, then
position i is the beginning of an occurrence of a word of length n. There are exactly
jAjn�` words of length n whose first ` symbols are u. In addition, there are exactly
n � ` other positions in a de Bruijn word of order n at which a subword of length `
may start. Since x is infinite de Bruijn, by definition, for each n, a1 : : : ajAjnCn�1 is a
de Bruijn word or order n. Fix a position N, and let n be such that

jAjn C n � 1 � N < jAjnC1 C n:

Then,

ja1 : : : aN ju

N
�
ja1 : : : ajAjnC1Cnju

jAjn C n � 1
�
jAjnC1�` C n � `

jAjn C n � 1
� 2 jAj�`C1:
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Thus,

lim sup
N!1

ja1 : : : aN ju

N
< 2 jAj�`C1:

By Lemma 7.4.1, using C D 2 jAj, x is normal.

There is an obvious algorithm to compute an infinite de Bruijn word which, for
each n � 1, extends a Hamiltonian cycle in a de Bruijn graph of order n to an
Eulerian cycle in the same graph. This is done in time exponential in n. No efficient
algorithm is known to compute the N-th symbol of an infinite de Bruijn word
without computing the first N symbols.

7.7.3 A Normal and Self-Similar Word

For a given finite or infinite word x D a1a2a3 : : : where each ai is a symbol
in alphabet A, define even.x/ D a2a4a6 � � � and odd.x/ D a1a3a5 � � � . Thus,
x D even.x/ means that an D a2n for all n.

Theorem 7.7.5 ([50, Theorem 4.2]). There is a normal word x such that x D
even.x/.

We construct a normal word x D a1a2a3 � � � over the alphabet f0; 1g such that
a2n D an for every n. The construction can be extended to an alphabet of size k to
obtain a word a1a2a3 � � � such that akn D an for each integer n � 1.

A finite word w is called `-perfect for an integer ` � 1, if jwj is a multiple of `
and all words of length ` have the same number jwj=.`2`/ of aligned occurrences
in w.

Lemma 7.7.6. Let w be an `-perfect word such that jwj is a multiple of `22`. Then,
there exists a 2`-perfect word z of length 2jwj such that even.z/ D w.

Proof. Since jwj is a multiple of `22` and w is `-perfect, for each word u of length `,
jjwjju is a multiple of 2`. Consider a factorization of w D w1w2 � � �wr such that for
each i, jwij D `. Thus, r D jwj=`. Since w is `-perfect, for any word u of length `,
the set fi W wi D ug has cardinality r=2`. Define z of length 2jwj as z D z1z2 � � � zr

such that for each i, jzij D 2`, even.zi/ D wi and for all words u and u0 of length `,
the set fi W zi D u0 _ ug has cardinality r=22`. This latter condition is achievable
because, for each word u of length `, the set fi W even.zi/ D ug has cardinality r=2`

which is a multiple of 2`, the number of possible words u0.

Corollary 7.7.7. Let w be an `-perfect word for some even integer `. Then there
exists an `-perfect word z of length 2jwj such that even.z/ D w.
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Proof. Since w is `-perfect, it is also `=2-perfect. Furthermore, if u and v are words
of length `=2 and `, respectively, then jjwjju D 2`=2C1jjwjjv . Thus, the hypothesis of
Lemma 7.7.6 is fulfilled with `=2.

Corollary 7.7.8. There exist a sequence .wn/n�1 of words and a sequence of
positive integers .`n/n�1 such that jwnj D 2n, even.wnC1/ D wn, wn is `n-perfect
and .`n/n�1 is nondecreasing and unbounded. Furthermore, it can be assumed that
w1 D 01.

Proof. We start with w1 D 01, `1 D 1, w2 D 1001, and `2 D 1. For each n � 2,
if `n2

2`n divides jwnj, then `nC1 D 2`n and wnC1 is obtained by Lemma 7.7.6.
Otherwise, `nC1 D `n and wnC1 is obtained by Corollary 7.7.7. Note that the former
case happens infinitely often, so .`n/n�1 is unbounded. Also note that each `n is a
power of 2.

Proof (of Theorem 7.7.5). Let .wn/n�1 be a sequence given by Corollary 7.7.8. Let
x D 11w1w2w3 � � � We first prove that x satisfies x D even.x/. Note that xŒ2k C

1::2kC1� D wk for each k � 1 and xŒ1::2kC1� D 11w1 � � �wk. The fact that wn D

even.wnC1/ implies xŒ2n� D xŒn�, for every n � 3. The cases for n D 1 and n D 2

hold because xŒ1::4� D 1101.
We prove that x is normal. Consider an arbitrary index n0. By construction, wn0

is `n0-perfect, and for each n � n0, wn is also `n0 -perfect. For every word u of
length `n0 and for every n � n0,

jjxŒ1::2nC1�jju � jjxŒ1::2
n0 �jju C jjwn0 : : :wnjju:

Then, for every N such that 2n � N < 2nC1 and n � n0,

jjxŒ1::N�jju
N=`n0

�
jjxŒ1::2nC1�jju

N=`n0

�
jjxŒ1::2n0 �jju C jjwn0 : : :wnjju

N=`n0

�
jjxŒ1::2n0 �jju

2n=`n0

C
jjwn0 : : :wnjju

2n=`n0

D
jjxŒ1::2n0 �jju

2n=`n0

C
.2n0 C : : :C 2n/=.`n02

`n0 /

2n=`n0

<
jjxŒ1::2n0 �jju

2n=`n0

C
2

2`n0
:

For large values of N and n such that 2n � N < 2nC1, the expression
jjxŒ1::2n0 �jju=.2

n=`n0 / becomes arbitrarily small. We obtain for every word u of
length `n0 ,
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lim sup
N!1

jjxŒ1::N�jju
N=`n0

� 3 2�`n0 :

Since the choice of `n0 was arbitrary, the above inequality holds for each `n. Since
.`n/n�1 is unbounded, the hypothesis of Lemma 7.4.1 is fulfilled, with C D 3, so
we conclude that x is normal.

It is possible to compute a normal word x such that x D even.x/ in linear time.

7.8 Constructions of Absolutely Normal Numbers

The first constructions of absolutely normal numbers were given, independently,
by Lebesgue [371] and Sierpiński [547], when the theory of computing was
undeveloped. The numbers defined by these two constructions cannot be computed
because they are just determined as the infimum of a set defined by infinite unions
and intersections. The first example of a computable absolutely normal number
was given by Turing [52, 570], and, unfortunately, it has doubly exponential time
complexity. The computable reformulation of Sierpiński’s construction [51] has also
doubly exponential time complexity.

There are exponential algorithms that use analytic tools, such as Levin’s con-
struction [19, 375] of an absolutely normal number with fast convergence to
normality and Schmidt’s construction [529] of a number that is normal to all the
bases in a prescribed set but not normal to the bases in the complement, see
Theorem 7.9.3.

Some years ago, several efficient algorithms were published. Figueira and Nies
gave in [222] an algorithm based on martingales with polynomial time complexity.
Becher, Heiber, and Slaman [53] reworked Turing’s strategy and obtained an
algorithm with just above quadratic time complexity. Madritsch, Scheerer, and
Tichy [397] adapted it and obtained an efficient algorithm to compute a number
that is normal to all Pisot bases. Recently Lutz and Mayordomo [395] obtained an
algorithm based on martingales with poly-logarithmic linear time complexity.

Another aspect in constructions of absolutely normal numbers is the speed of
convergence to normality. Aistleitner et al. [8] constructed an absolutely normal
real number x, so that for every integer b greater than or equal to 2 the discrepancy
modulo 1 of the sequence .bnx/n�0 is strictly below that realized by almost all real
numbers (see Section 7.6) The construction yields an exponential algorithm that
achieves a discrepancy estimate lower than that in Levin’s work [375]. According to
Scheerer’s analysis [525], currently there are no other known constructions achiev-
ing a smaller discrepancy. The problem of the existence of an absolutely normal
number computable with polynomial complexity having fast rate of convergence to
normality remains open.

We will present two algorithms, and we will analyze their computational
complexity. We first need some notation.
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If v is a block of digits in base b, Iv denotes b-ary interval

.:v; :v C b�jvj/

Definition 7.8.1. Let x be a real in the unit interval, and let xb be its expansion in
base b. We define

	N.xb/ D max
d2f1;:::;bg

ˇ̌
ˇ̌ jxbŒ1 : : :N�jd

N
�
1

b

ˇ̌
ˇ̌ :

If w is a finite block of digits in base b, we just write 	.w/ instead of 	jwj.w/.

7.8.1 Turing’s Construction of Absolutely Normal Numbers

Theorem 7.8.2 (Turing 1937? [52, 570]). There is an algorithm that computes the
expansion in base 2 of an absolutely normal number y in the unit interval.

The construction is done by steps. We will use n as the step number, and we will
define the following functions of n: Nn is the number of digits looked at step n, bn

is the largest base considered at step n, and "n is the maximum difference between
the expected frequency of digits and the tolerated frequency of digits at step n. It is
required that bn be nondecreasing and unbounded and "n be nonincreasing and goes
to zero. Many instantiations of these functions can work.

Definition 7.8.3. Define the following functions of n,

Nn D 2
n0C2n;wheren0 D 11;

bn D blog Nnc

"n D 1=bn:

Define the following sets of real numbers,

E0 D .0; 1/; and for each n

En D
\

b2f2;::;bng

fx 2 .0; 1/ W 	Nn.xb/ < "ng:

The value n0 has been selected so that the forthcoming calculations are simple.
Observe that for every n, bn � 2. Thus, for each n the set En consists of all the real
numbers whose expansion in the bases 2,3, . . . , bn exhibit good frequencies of digits
in the first Nn digits. We write � for Lebesgue measure.

Proposition 7.8.4. For each n, En is a finite union of open intervals with rational
endpoints, EnC1 � En, and �En > 1 � N2

n .
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Proof. The values of Nn and "n satisfy the hypotheses of Lemma 7.3.5 with digits
in base b (i.e., let k be Nn, let ` be 1, and let " be "n),

�fx 2 .0; 1/ W 	Nn.xb/ � "ng < 2b2e�"
2
nbNn=6:

Then, for bn � log Nn, " � 1= log Nn and Nn > e10 can be checked that

bnX

bD2

2b2e�"
2bNn=6 < 1=N2

n :

Hence,

�En � 1 �

bnX

bD2

2b2e�"
2bNn=6 � 1 � 1=N2

n :

Proposition 7.8.5. The set
T

n�0 En has positive measure and consists just of
absolutely normal numbers.

Proof. From Proposition 7.8.4 follows that
T

n�0 En has positive measure. Suppose
x 2

T
n�0 En. Then, for every n, x 2 En, so for each b D 2; 3; : : : ; bn,

	Nn.xb/ � "n:

Let b be an arbitrary base, and let M be an arbitrary position. Let n be such that

Nn � M < NnC1:

For each b smaller than bn we have that for each digit d in f0; : : : ; b � 1g,

jxbŒ1 : : :M�jd
M

<
jxbŒ1 : : :NnC1�jd

Nn
<

NnC1

Nn

�
1

b
C "nC1

	
D 4

�
1

b
C "nC1

	

jxbŒ1 : : :M�jd
M

>
jxbŒ1 : : :Nn�jd

NnC1
>

Nn

NnC1

�
1

b
� "n

	
D

1

4

�
1

b
� "n

	
:

Since "n is decreasing in n and goes to 0, we conclude that for each base b D 2; 3 : : :,

lim sup
N!1

jxbŒ1 : : :N�jd
N

< 4
1

b
:

Using the morphism that maps digits in base b` to words in base b, this is equivalent
to say that for each base b, for every length `, and for every word u of length `,

lim sup
N!1

jjxbŒ1 : : : `N�jju
N

< 4
1

b`
:
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By Theorem 7.4.1, x is normal to every base b, hence absolutely normal.

Turing’s construction selects nested binary intervals I1; I2; : : : such that, for
each n, �In D 1=2n. Each interval InC1 is either the left half or the right
half of In. The base-2 expansion of the computed number y is denoted with the
sequences y1; y2; : : : which is the trace of the left/right selection at each step. Recall
Definition 7.8.3 where the sets En are defined, for every n � 0.

Initial step, n D 0. I0 D .0; 1/, E0 D .0; 1/.

Recursive step, n > 1. Assume that in the previous step we have computed In�1:

Let I0n be left half of In�1 and I1n be right half of In�1.

If �
�

I0n \
Tn

jD0 Ej

�
> 1=Nn then let In D I0n and yn D 0.

Else let In D I1n and yn D 1.

Proof (of Theorem 7.8.2). From Algorithm 7.8.1 follows that the intervals I1; I2; : : :
are nested, and for each n, �In D 1=2n. To prove the correctness of the algorithm,
we need to prove that the following condition is invariant along every step n of the
algorithm:

�

0

@In \

n\

jD1

Ej

1

A > 0:

We prove it by induction on n. Recall Nn D 2
n0C2n.

Base case n D 0.

�.I0 \ E0/ D �..0; 1// >
1

N2
0

D
1

22n0
:

Inductive case, n > 0. Assume as inductive hypothesis that

�

0

@In \

n\

jD0

Ej/

1

A >
1

Nn
:

We now show it holds for nC 1. Recall �En > 1 � 1=N2
n . Then,

�

0

@In \

nC1\

jD0

Ej

1

A D �

0

@In \

n\

jD0

Ej \ EnC1

1

A >
1

Nn
�

1

N2
nC1

>
2

NnC1
:

Since the algorithm chooses InC1 among I0n and I1n ensuring �.InC1\
TnC1

jD0 Ej/ >

1=NnC1, we conclude �.InC1 \
TnC1

jD0 Ej/ > 1=NnC1 as required.
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Finally, since .In/n�0 is a nested sequence of intervals and �.In \
Tn

jD0 Ej/ > 0,
for every n, we obtain that

\

n�0

In D
\

n�0

0

@In \

n\

jD0

Ej

1

A :

contains a unique real number y. By Lemma 7.8.5, all the elements in
T

j�0 Ej are
absolutely normal. This concludes the proof of Theorem 7.8.2.

We now bound the number of mathematical operations computed by the algo-
rithm to output the first n digits of the expansion of the computed number in a
designated base. We do not count how many elementary operations are implied by
each of the mathematical operations, which means that we neglect the computational
cost of performing arithmetical operations with arbitrary precision.

Proposition 7.8.6. Turing’s algorithm has double exponential time complexity.

Proof. At step n the algorithm computes the set In�1 \En by computing first the set

In�1 \ En D
\

b2f2;::;bng

fx 2 In�1 \ En�1 W 	Nn.xb/ < "ng

and choosing one of its halves. Then, the number of words to be examined to
compute In \ En is

.bn/
Nn�Nn�1�.n�1/:

Since Nn D 2
n0C2n and bn D blog Nnc, this number of words is in the order of

O
�
.2n/2

2n�
:

The examination of all these words requires O
�
.2n/2

2n�
mathematical operations.

We conclude by noticing that using the set In\En at step n the algorithm determines
the n � th binary digit of the computed number.

7.8.2 A Fast Construction of Absolutely Normal Numbers

We give a simplified version of the algorithm given by Becher, Heiber, and Slaman
in [53].

Theorem 7.8.7. There is an algorithm that computes an absolutely normal num-
ber x in nearly quadratic time completely: the first n digits in the expansion of x in
base 2 are obtained by performing O

�
n2 4
p

log n/ mathematical operations.
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The following two lemmas are not hard to prove.

Lemma 7.8.8 ([53, Lemma 3.1]). Let u and v be blocks and let " be a positive
real number.

1. If 	.u/ < " and 	.v/ < " then 	.uv/ < ".
2. If 	.u/ < ", v D a1 : : : ajvj and jvj=juj < " then 	.vu/ < 2", and for every `

such that 1 � ` � jvj, 	.ua1a2 : : : a`/ < 2".

Lemma 7.8.9 (Lemma 3.4 [53]). For any interval I and any base b, there is a
b-ary subinterval J such that �J � �I=.2b/.

The next two definitions are the core of the construction.

Definition 7.8.10. A t-sequence �!
 is a sequence of intervals .
2; : : : ; 
t/ such that
for each base b D 2; : : : ; t, 
b is b-ary, for each base b D 3; : : : ; t, 
b � 
b�1

and �
b � �
b�1=.2b/.

Observe that the definition implies �
t � .�
2/=.2
ttŠ/.

Definition 7.8.11. A t-sequence �!� D .�2; : : : ; �t/ refines a t0-sequence �!
 D
.
2; : : : ; 
t0/ if t0 � t and �b � 
b for each b D 2; : : : ; t0. A refinement has
discrepancy less than " if for each b D 2; ::t0, there are words u; v such that 
b D Iu,
�b D Iuv , and 	.v/ < ".

We say that an interval is b-ary of order n if it is of the form

�
a

bn
;

aC 1

bn

	

for some integer a such that 0 � a < bn. If 
b and �b are b-ary intervals, and �b 
 
b,
we say that the relative order of �b with respect to 
b is the order of �b minus the
order of 
b.

Lemma 7.8.12. Let t be an integer greater than or equal to 2, let t0 be equal to
t or to t C 1, and let " be a positive real less than 1=t. Then, any t-sequence
�!
 D .
2; : : : ; 
t/ admits a refinement �!� D .�2; : : : ; �t0/ with discrepancy less
than ". The relative order of �2 can be any integer greater than or equal to
max.6="; 24.log2 t/.log.tŠ//="2/.

Proof. First assume t0 D t. We must pick a t-sequence .�2; : : : ; �t/ that refines
.
2; : : : ; 
t/ in a zone of low discrepancy. This is possible because the measure of
the zones of large discrepancy decreases at an exponential rate in the order of the
interval. To prove the lemma, we need to determine the relative order N of �2 such
that the measure of the union of the bad zones inside 
2 for the bases b D 2; : : : t is
strictly less than the measure of the set all the possible t-ary subintervals �t of 
2.

Let L be the largest binary subinterval in 
t. Consider the partition of L in 2N

binary intervals �2 of equal length. For each �2, apply iteratively Lemma 7.8.9 to
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define �3; : : : ; �tn . In this form, we have defined 2N many tn-sequences .�2; : : : �t/.
Let S be the union of the set of all possible intervals �t over these 2N many tn-
sequences. Hence, by the definition of t-sequence,

�S � �L=.2ttŠ/:

By Lemma 7.8.9,

�L � �
t=4:

And by the definition of t-sequence again,

�
t � �
2=.2
ttŠ/:

Combining inequalities we obtain,

�S � �
2=.2
ttŠ 4 2ttŠ/

Now consider the bad zones inside 
2. For each b D 2; : : : t, for a length N and a
real value ", consider the following set of intervals of relative order dN= log2 bewith
respect to 
2,

Bb;dN= log2 be;" D
[

u2f0;:::;b�1gdN= log2 be

	.u/�"

Iu:

Thus, the actual measure of the bad zones is

�
2 �
� [

bD2;::;t

�Bb;dN= log2 be;"

�

Then, N must be such that

�
2 �
� [

bD2;::;t

Bb;dN= log2 be;"

�
< �S:

Using Lemma 7.3.5 on the left and the inequality above for�S on the right it suffices
that N be greater than 6=" and also N be such that

2t2 � e�"
2.N=3 log2 t/ <

1

2ttŠ

1

4

1

2ttŠ
:

We can take N greater than or equal to max.6="; 24.log2 t/.log.tŠ//="2/.

The case t0 D t C 1 follows easily by taking first a t-sequence �!� refining �!

with discrepancy less than ". Definition 7.8.11 does not require any discrepancy
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considerations for �tC1. Take �tC1 the largest .t C 1/-ary subinterval of �t. By
Lemma 7.8.9, ��tC1 � .��t/=.2.tC 1//. This completes the proof of the lemma.

The algorithm considers three functions of the step number n: tn is the maximum
base to be considered at step n, "n is the maximum discrepancy tolerated at step n,
and Nn is the number of digits in base 2 added at step n. It is required that tn be
increasing and "n be decreasing. Many instantiations of this functions can work.

The algorithm constructs �!
 0;
�!
 1;
�!
 2; : : : such that �!
 0 D .0; 1/, and for each

n � 1, �!
 n is tn-sequence that refines �!
 n�1 with discrepancy "n and such that the
order of 
n;2 is Nn plus the order of 
n�1;2.

Definition 7.8.13. Define the following functions of n,

tn D max.2; b 4
p

log nc/;

"n D 1=tn;

Nn D blog nc C nstart;

where nstart is the minimum integer such that it validates the condition in
Lemma 7.8.12. Thus, we require that for every positive n,

blog nc C nstart � 6="n and

blog nc C nstart � 24.log2 tn/.log.tnŠ//="
2
n:

Initial step, n D 1. �!
 1 D .
2/, with 
2 D .0; 1/.

Recursive step, n > 1. Assume �!
 n�1 D .
2; : : : ; 
tn�1 /. Take �!
 n D .�2; : : : ; �tn / the leftmost tn-
sequence such that it is refinement of�!
 n�1 with discrepancy less than "n such that the relative
order of �2 is Nn.

Proof (of Theorem 7.8.7). Consider Algorithm 7.8.2. The existence of the sequence
�!
 1;
�!
 2; : : : is guaranteed by Lemma 7.8.12. We have to prove that the real number

x defined by the intersection of all the intervals in the sequence is absolutely normal.
We pick a base b and show that x is simply normal to base b. Let Q" > 0. Choose n0 so
that tn0 � b and "n0 � Q"=4. At each step n after n0 the expansion of x in base b was
constructed by appending blocks un such that 	.un/ < "n0 . Thus, by Lemma 7.8.8
(item 1) for any n > n0,

	.un0 : : : un/ < "n0 :

Applying Lemma 7.8.8 (item 2a), we obtain n1 such that for any n > n1

	.u1 : : : un/ < 2"n0 :
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Let N.b/
n be the relative order of �b with respect to 
b. By Lemma 7.8.9,

Nn

log2 b
� N.b/

n �
Nn C 1

log2 b
C 1:

Since Nn D blog nc C nstart, Nn grows logarithmically and so does N.b/
n for each

base b. Then, for n sufficiently large,

N.b/
n �

Nn C 1

log2 b
C 1 � 2"n0

n�1X

jD1

Nj

log2 b
� 2"n0

n�1X

jD1

N.b/
j :

By Lemma 7.8.8 (item 2b), we conclude that for n sufficiently large, if un D

a1 : : : ajunj, then for every ` such that 1 � ` � junj,

	`.u1 : : : un�1a1 : : : a`/ < 4"n0 < Q":

So, x is simply normal to base b for every b � 2.
We now analyze the computational complexity of the algorithm. Lemma 7.8.12

ensures the existence of the wanted t-sequence at each step n. To effectively find it,
we proceed as follows. Divide the interval 
2 into

2Nn

equal binary intervals. In the worst case, for each of them, we need to check if it
allocates a tn-sequence .�2; : : : ; �tn/ that refines .
2 : : : ; 
tn�1 / with discrepancy less
than "n. Since we are just counting the number of mathematical operations ignoring
the precision, at step n the algorithm performs

O
�
2Nn tn

�

many mathematical operations. Since Nn is logarithmic in n and tn is a rational
power of log.n/, we conclude that at step n the algorithm performs

O.n 4
p

log n/

mathematical operations. Finally, in the first k steps, the algorithm will output
at least k many digits of the binary expansion of the computed number having
performed

O.k2 4
p

log k/

many mathematical operations. This completes the proof of Theorem 7.8.7.
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7.9 Normality, Non-normality, and Other Mathematical
Properties

Recall that two positive integers are multiplicatively dependent if one is a rational
power of the other. Then, 2 and 8 are dependent, but 2 and 6 are independent.

Theorem 7.9.1 (Maxfield 1953 [118]). Let b and b0 multiplicatively dependent.
For any real number x, x is normal to base b if and only if x is normal to base b0.

Theorem 7.9.2 (Cassels 1959 [135]). Almost all real numbers in the middle third
Cantor set (with respect to the uniform measure) are normal to every base which is
not a power of 3.

Theorem 7.9.3 (Schmidt 1961 [529]). For any given set S of bases closed under
multiplicative dependence, there are real numbers normal to every base in S and not
normal to any base in its complement. Furthermore, there is a real x computable
from S.

Theorem 7.9.3 was improved in [58] to obtain lack of simple normality for
the bases outside S instead of just lack of normality. Then Becher, Bugeaud, and
Slaman [49] obtained the necessary and sufficient conditions on a set S for the
existence of real numbers simply normal to every base in S and not simply normal
to any base in its complement.

Theorem 7.9.4 (Becher, Bugeaud, and Slaman [49]). Let S be a set of bases.
There is a real x that is simply normal to exactly the elements in S if and only
if

1. for each b, if bk in S then b in S,
2. if infinitely many powers of b belong to S, then all powers of b belong to S.

Moreover, the real x is computable from the set S. Furthermore, the set of real
numbers that satisfy this condition has full Hausdorff dimension.

We end the section with references on the relation of normality and Diophantine
approximations. The irrationality exponent m of a real number x reflects how well
x can be approximated by rational numbers. Precisely, it is the supremum of the set
of real numbers z for which the inequality

0 <

ˇ̌
ˇ̌x �

p

q

ˇ̌
ˇ̌ <

1

qz

is satisfied by an infinite number of integer pairs .p; q/with q > 0. Rational numbers
have irrationality exponent equal to 1. Liouville numbers are those with infinite
irrationality exponent. It follows from the fundamental work by [347] that almost all
irrational numbers (with respect to Lebesgue measure) have irrationality exponent
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equal to 2. On the other hand, it follows from the theory of continued fractions
that for every m greater than 2 or equal to infinity, there is a real number x with
irrationality exponent equal to m.

Absolute normality places no restriction on irrationality exponents of irrational
numbers. For every real number z greater than or equal to 2, there is an absolutely
normal number with irrationality exponent equal to z. This existential result
follows from Kaufman [338]. Bugeaud [117] showed there is an absolutely normal
Liouville. In both cases, existence of such real numbers follows from the existence
of a measure whose Fourier transform vanishes sufficiently quickly at infinity and
which is supported by a subset of the real numbers with the appropriate irrationality
exponent. Bugeaud’s argument employs an adaptation of Kaufman’s methods to the
set of Liouville numbers due to Bluhm [92]. Becher, Heiber, and Slaman [54] exhibit
a computable construction of an absolutely number Liouville number.

7.10 Selection

We consider the selection of symbols from an infinite word and define a word with
the selected symbols. The general problem is which forms of selection preserve
normality, that is, which families of functions f performing selection guarantee that
f .x/ is normal when x is normal. Notice that if a selection procedure is allowed to
read the symbol being decided, it would be possible to “select only zeroes” or yield
similar schemes that do not preserve normality.

We consider three forms of selection. Prefix selection looks at just the prefix of
length i � 1 to decide whether the symbol at position i is selected. Suffix selection
looks at just the suffix starting at position iC1 to decide whether symbol at position i
is selected. Two-sided selection looks at the prefix of length i � 1 and the suffix
starting at position i C 1 to decide the selection of the symbol at position i. Prefix
selection is the selection defined by Agafonov [6].

Let x D a0a1a2 � � � be an infinite word over alphabet A. Let L 
 A� be a set of
finite words over A and X 
 A! a set of infinite words over A.

The word obtained by prefix selection of x by L is x � L D ai0ai1ai2ai3 � � � where
i0; i1; i2; � � � is the enumeration in increasing order of all the integers i such that
a0a2 � � � ai�1 2 L.

The word obtained by suffix selection of x by X is x � X D ai0ai1ai2ai3 � � � where
i0; i1; i2; � � � is the enumeration in increasing order of all the integers i such that
aiC1aiC2aiC3 � � � 2 X.

Theorem 7.10.1 (Agafonov [6]). If x 2 A! is normal and L � A� is rational then
x � L is also normal.

Before giving the proof of Theorem 7.10.1, we discuss some other results.
Agafanov’s theorem can be extended to suffix selection by replacing the rational
set of finite words L by a rational set of infinite words X. The proof of this theorem
is quite technical, so we do not give it here.
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Theorem 7.10.2 ([57]). If x 2 A! is normal and X � A! is rational, then x � X is
also normal.

The prefix and suffix selections cannot be combined to preserve normality: in
general, two-sided selection does not preserve normality. For instance, selecting all
symbols surrounded by two symbols 1 in a normal word over f0; 1g always destroys
normality: the factor 11 occurs more frequently than the factor 00 in the resulting
word.

We now give three lemmas to be used in the proof of Theorem 7.10.1.

Lemma 7.10.3. For any set of finite words L, the function x 7! hx � L; x � A� n Li
is one-to-one.

Proof. Let y1 D x � L and y2 D x � A� n L. By definition, y1 contains some
symbols of x, in the same relative order, and y2 contains the complement, also in the
same relative order. It is possible to reconstruct x by interleaving appropriately the
symbols in y1 and y2. For each i � 1, the i-th symbol of x comes from y1 if and only
if the prefix of length i of x is in L. Thus, there is a unique x such that y1 D x � L
and y2 D x � A� n L.

A (deterministic) two-output transducer is like transducer, but it has two output
tapes. Each of its transitions has the form p

ajv;w
���! q where a is the symbol read on

the input tape and v and w are the words written to the first and the second output
tape, respectively.

An infinite word x D a0a1a2 � � � is compressible by a two-output transducer if
there is an accepting run q0

a0jv0;w0
�����! q1

a1jv1;w1
�����! q2

a2jv2;w2
�����! � � � that satisfies

lim inf
n!1

.jv0v2 � � � vnj C jw0w2 � � �wnj/

nC 1

log jBj

log jAj
< 1:

The following lemma states that an extra output tape does not help for
compressing.

Lemma 7.10.4. An infinite word is compressible by a bounded-to-one two-output
transducer if and only if it is compressible by a bounded-to-one transducer.

Proof. The “if” part is immediate by not using one of the output tapes.
Suppose that x is compressible by the bounded-to-one two-output transducer T2.

We construct a transducer T1 with a single output tape which also compresses x.
The main idea is to merge the two outputs into the single tape without losing the
bounded-to-one assumption. Let m be an integer to be fixed later. The transducer T1

simulates T2 on the input and uses two buffers of size m to store the outputs made
by T2. Whenever one of the two buffers is full and contains m symbols, its content
is copied to the output tape of T1 with an additional symbol in front of it. This
symbol is either 0 or 1 to indicate whether the m following symbols comes from the
first or the second buffer. This trick preserves the bounded-to-one assumption. This
additional symbol for each block of size m increases the length of the output by a
factor .mC 1/=m. For m large enough, the transducer T1 also compresses x.
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Lemma 7.10.5. Let x D a0a1a2 � � � be a normal word, and let q0
a0
�! q1

a1
�! q2

a2
�!

� � � be a run in a deterministic automaton. If the state q is visited infinitely often then
lim infn!1 jfi � n W qi D qgj=n > 0.

Proof. Let A be a deterministic automaton. For a state p and a finite word w, the
unique state q such that p

w
�! q is denoted p � w.

Let q D q1; : : : ; qn be the states occurring infinitely often in the run. For 1 �
i; j len, let ui;j be a word such that qi � ui;j D qj. Let us define the sequence of words
.wk/1�k�n by w1 D � and wkC1 D wkui;1 where qkC1 � wk D qi. By definition,
qk � wk D q, and thus the finite run qi

wn
�! qi � wn visits the state q for each i since wi

is a prefix of wn. Since the number of occurrences of wn in x converges to 1=jAjjwnj,
the result holds.

Proof (of Theorem 7.10.1). Let x be a normal word. Let L � A� be a rational
language. We suppose by constriction that x � L is not normal, and we show that x
can be compressed, contradicting its normality.

Let A be a deterministic automaton accepting L. This automaton can be turned
into a two-output transducer that outputs x � L and x � A� nL on its first and second
output tapes, respectively. Each transition that leaves a final state copies its input
symbol to the first output tape, and each transition that leaves a nonfinal state copies
its input symbol to the second output tape. By hypothesis, x � L is not normal and
therefore can be compressed by some deterministic transducer. Combining, these
two transducers yield a two-output transducer that compresses x. This later result
holds because, by Lemma 7.10.5, the states that select symbols from x are visited at
least linearly often. Then, by Lemma 7.10.4, x can be compressed and is not normal.



Chapter 8
Normal Numbers and Symbolic
Dynamics

Manfred Madritsch

Abstract The present chapter takes a dynamical point of view. The orbit of an
element plays a central role in dynamics, and we can deduce several properties
such as periodicity, uniqueness, randomness, etc. from the orbit. Starting with
a description of the link between dynamical systems and numeration systems,
we present the concept of normal and non-normal numbers providing different
views on the dynamics of the system. Normal numbers are “normal” with respect
to randomly chosen objects, whereas non-normal numbers and extreme variants
thereof are examples of general objects from a topological point of view. In the
following sections, we present how to obtain maximal randomness as well as
constructing numbers with a given degree of chaos. Then we turn our attention
to non-normal numbers. Since they are not completely random, we have to find a
different measurement for analyzing their structure. The Hausdorff dimension will
provide us with an interesting parameter in this context.

8.1 Introduction

In the present chapter, we want to take a different view on numeration systems and
normality than the one developed in Chapter 3 and Chapter 7. Let M D .M; d/ be
a compact metric space and TWM ! M a continuous transformation. Then, the pair
.M;T/ is a topological dynamical system. For a point x 2 M, one is interested in the
orbit O.x/ of x defined as

O.x/ D fTn.x/W n 2 Ng:

In particular, we want to characterize elements having a dense orbit and those having
a periodic orbit.
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From the point of view of numeration systems, we may associate with each
element x 2 M an “address,” namely, its expansion. This description uses letters
from an alphabet A (a finite or countable set) and associates an infinite word ! 2 AN

with each element x 2 M. In order to define this address, we need a so-called
topological partition P . A topological partition P is a family of disjoint open
subsets of M such that

[

P2P

P D M:

For the moment let us assume that P is finite. Then we associate with each element
in the orbit O.x/ the corresponding set Pi 2 P . Fixing a partition we may number
the elements of P starting with 0, i.e., P D fP0;P1; : : : ;PN�1g. Then we note for
each element of the orbit of x the corresponding set Pi, with 0 � i < N. In particular,
for k � 0, we set ak D i if Tkx 2 Pi. Then, for each element x 2 M, we obtain an
infinite word ! D a1a2a3 : : : over the alphabet A D f0; 1; : : : ;N � 1g. Clearly this
representation depends on the transformation T as well as on the partition P .

Now we consider the portion of the set of all words over A that occur as
representations. To this end we call a word w D a1a2 : : : an allowed if

n\

kD1

T�k.Pak/ ¤ ;:

Let L be the set of allowed words. Then L is a language and there is a unique shift
space X � AN, whose language is L. We denote by S the shift that is induced by T
on X. For the corresponding definitions in symbolic dynamics, see Section 1.7.

For a finite word a D a1a2 : : : an we denote by jaj D n its length. Furthermore,
let Ln D L\An be the set of all words of length n in L. Then the topological entropy
h.X/ of the symbolic dynamical system .X; S/measures the richness of its language,
i.e., it measures the number of different blocks occurring in the expansion of x. It is
defined as

h.X/ D lim
n!1

1

n
ln jLnj :

Before going further we want to present the two main examples we have in mind:
the N-adic and the ˇ-expansions.

Example 8.1.1. Let M D R=Z be the circle and TWM ! M be defined by T.x/ D
Nx�bNxc. We divide M into N subintervals P0; : : : ;PN�1 of the form Pi D .i=N; .iC
1/=N/, and let A D f0; : : : ;N�1g. Then the underlying number system is the N-ary
representation. Furthermore, it is easy to verify that the associated language L is the
set of all words over A, so that the one-sided symbolic dynamical system XP;T is
the full one-sided N-shift AN.
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Our second example will be the main motivation behind this chapter. In particu-
lar, we will consider ˇ-expansions, where ˇ > 1 is not necessarily an integer. These
systems are of special interest, since the underlying symbolic dynamical system is
not the full shift. Among the first authors investigating these number systems were
Parry [469] and Rényi [500]. For a more modern account on these number systems,
we refer the interested reader to the book of Dajani and Kraaikamp [176]. See also
Section 3.6.2.

Example 8.1.2. Let ˇ > 1 be a real number, M D R=Z the circle, and TW Œ0; 1/ !
Œ0; 1/ be the transformation given by

T.x/ D ˇx � bˇxc:

The sets

Pi WD

�
i

ˇ
;

iC 1

ˇ

	
.i D 0; : : : ; bˇc � 1/

and

PbˇcC1 WD

�
bˇc

ˇ
; 1

	

form a topological partition of M. The corresponding language is called the ˇ-shift.

Every x 2 M yields a representation as an infinite word ! over the alphabet A.
The converse needs not to be true as we will see in a moment. For an infinite word
! D a0a1a2 : : : 2 X and a positive integer k, we denote by !jk D a0a1 : : : ak�1 the
truncation of ! to the first k letters. Similarly we denote by ! j

i D aiaiC1 : : : aj the
factor from the ith to the jth letter of !. Furthermore let Xk be the projection of X to
the first k letters of its words.

For each w D w1 : : :wk 2 L we denote by Œw� � X the cylinder set of all infinite
words starting with the same letters as w, i.e.,

Œw� D fa1a2a3 : : : 2 XW a1 D w1; : : : ; ak D wkg

D f! 2 XW!jk D wg :

Similarly for each ! 2 X we define the cylinder set Dn.!/ of order n
corresponding to ! in M by

Dn.!/ WD

n�1\

kD0

T�kPak � M:

The reader may have observed that our representations have a little problem.
Let us consider the decimal system (with N D 10). Looking at the orbit of 1

10
,
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13
100

, or 137
1000

, we may observe that after a number of steps, we land outside of
any Pi. The reason is that, for example, 1

10
lies on the edge of P0 and P1. On

which side should we put it? Into P0 or P1? Recall that there are reals that do
not have a unique expansion in the decimals. In particular, we have two expansion
for 1

10
: 0:1000000 : : : and 0:0999999 : : :. In the following paragraphs, we want to

investigate the degree of randomness in their expansions. Since both are not very
random, we may neglect them in our considerations.

In the more general case of a topological partition P , this ambiguity in the
expansion originates from the intersection of two parts Pi \ Pj with i ¤ j. Using
this observation we want to describe the set of elements x 2 M that have a unique
expansion. To this end, let

U D
N�1[

iD0

Pi;

be an open and dense (U D M) set. By the disjointedness of the Pi, every x 2 U
lies in a unique Pi. Now we want to guarantee this also after iteration of T . Thus for
n � 1 we set

Un D

n�1\

kD0

T�k.U/:

This set is open and dense in M and contains all x 2 M that have a unique
representation after n iterations of T . Note that the expansion of x 2 Un needs not
be unique after m ¤ n steps. Thus by the Baire category theorem, the set

U1 D
1\

nD0

Un (8.1)

is dense. By construction every x 2 U1 has a unique expansion ! D a1a2a3 : : : 2
X. However, different x 2 M may share the same expansion. Therefore, we suppose
that, for any ! D a1a2a3 : : : 2 X, the set

T1
nD0 Dk.a/ is a singleton set, which is the

case in the examples above. Then define the map � WX ! M by

1\

kD0

T�kPak D f�.a/g :

Together with our definition of U1, we have the usual feeling that for each
expansion a 2 X, there exists one element �.a/ 2 M, and for each element x 2 U1,
there is exactly one expansion a 2 X such that �.a/ D x. Moreover we have that
the shift S on X acts such that the following diagram commutes:
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X
S
! X

#� #�

M
T
! M

Since our considerations mostly depend on the expansion and not on the point it
represents, we will focus on X in the following and identify M (or more precisely
U1) as the image of X under � . In particular, we will see below that, for normal
numbers, only their representation in X plays a role, whereas for non-normal
numbers, we have that the set M n U1 is the union of nowhere dense sets and is
therefore negligible (in the topological sense).

8.1.1 Infinite Alphabet

After working over a finite alphabet, we look for similar definitions over an infinite
alphabet. We start with the continued fraction expansion as motivation and example,
so to say a motivating example.

Let I denote the irrational numbers in the unit interval, i.e., I WD Œ0; 1� n Q. Then
every x 2 I can be represented in a unique way as an infinite simple continued
fraction, namely,

x D Œa1.x/; a2.x/; a3.x/; : : :� D
1

a1.x/C
1

a2.x/C
1

a3.x/C
: : :

;

where ak.x/ 2 N for k � 1.
As above, let M be a metric space and T W M ! M be a continuous map. Let

P WD fP1;P2; : : :g be a countable family of disjoint open sets. Then we call P a
topological partition (of M) if M is the union of the closures Pi for i � 1, i.e.,

M D
[

i2N

Pi:

For the rest of this section, let us assume that a dynamical system .M;T/ together
with an infinite topological partition P is given. As above, we take a closer look
at the underlying symbolic dynamical system. Without loss of generality, we may
denote by N the alphabet corresponding to the partition P . Furthermore, let Nk be
the set of words of length k and

N� D
[

k2N

Nk
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be the set of finite words. Finally we denote by NN the set of infinite words over N.
As previously, for an infinite word ! D a1a2a3 : : : 2 NN and a positive integer

n, we denote by !jn D a1a2 : : : an its truncation to the nth place. Furthermore for a
given finite word ! 2 N�, we denote by Œ!� � NN the cylinder set consisting of all
infinite words starting with the same letters as !, i.e.,

Œ!� WD
˚
� 2 NN W � j j!j D !

�
:

Now we want to describe the shift space that is generated. Therefore we call an
infinite word ! D a1a2a3 : : : 2 NN allowed for .P;T/ (or allowed for short) if

1\

kD1

T�k .Pak/ ¤ ;:

Let L D LP;T be the set of allowed words. Then L is a language, and there is a
unique shift space X D XP;T 
 NN, whose language is L. We call X 
 NN the
one-sided symbolic dynamical system corresponding to .P;T/. Finally for each
! D a1a2a3 : : : 2 X and n � 0, we denote by Dn.!/ the cylinder set of order n
corresponding to ! in M, i.e.,

Dn.!/ WD

n\

kD0

T�k.Pak/ 
 M:

Now we can state the definition of an infinite Markov partition.

Definition 8.1.3. Let .M;T/ be a dynamical system and P D fP1;P2;P3; : : :g be
an infinite topological partition of M. Then we call P an infinite Markov partition
if the generated shift space XP;T is of finite type and for every ! 2 XP;T the
intersection

T1
nD0 Dn.!/ consists of exactly one point.

Note that in the case of a finite alphabet, we did not introduce the Markov
partitions because this would mean that we have a shift of finite type as language.
However, we want to consider the more general case of a shift with specification
below. The lack of examples of shifts with specification over an infinite alphabet led
us to the definition of Markov partitions in this case.

After introducing all the necessary ingredients, we want to link the introduced
concept of infinite Markov partitions with the continued fraction expansion and
Lüroth series (cf. Dajani and Kraaikamp [176]).

Example 8.1.4. The dynamical system .Œ0; 1�;T/, where T is the Gauss map

Tx D

(
1
x � b

1
x c for x ¤ 0;

0 for x D 0;

together with the infinite topological partition
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P WD
˚�
1
2
; 1
�
;
�
1
3
; 1
2

�
;
�
1
4
; 1
3

�
; : : :

�

provides the continued fraction expansion.
In particular, if we set x1 WD x and xkC1 WD Txk for k � 1, then ak.x/ D b

1
xk
c for

k � 1 is the continued fraction expansion of x from the introduction.

There are several extensions of the continued fraction expansion like continued
fractions from below, nearest integers continued fractions, ˛-continued fractions,
Rosen continued fractions, and combinations of those. For criteria such that a given
number is normal with respect to different continued fraction expansions, we refer
the interested reader to Kraaikamp and Nakada [361].

Example 8.1.5. Let TW Œ0; 1/! Œ0; 1/ be defined by

T.x/ D

(
n.nC 1/x � n; x 2

�
1

nC1 ;
1
n

�
;

0 x D 0:
:

Then the pair .Œ0; 1/;T/ together with the infinite topological partition

P WD
˚�
1
2
; 1
�
;
�
1
3
; 1
2

�
;
�
1
4
; 1
3

�
; : : :

�

provides the Lüroth series (cf. [394]).

Under some mild restrictions, one can replace the intervals
�
.nC 1/�1; n�1

�
by

arbitrary ones in order to get the generalized Lüroth series (cf. Chapter 2.3 of [176]).
Before considering the elements of M having multiple expansions, we note that

in contrast to the survey of Barat et al. [36], we did not use fibered systems for
the definition of the dynamical system. The reason lies in the concrete treatment of
the border in the case of Markov partitions. In particular, when considering these
partitions, it is by definition clear that the sets Pi are all open sets, whereas this is a
priori not specified in the case of fibered systems by Schweiger [533]. This plays a
key role in the analysis of the one-to-one correspondence between the infinite word
and the corresponding element of M below. By the definition of a Markov partition,
we have that every ! 2 X maps to a unique element x 2 M. However, as above
the converse need not be true. Let us consider the continued fraction expansion
(Example 8.1.4). Then the rational 1

4
has two expansions, namely, Œ4� and Œ3; 1�.

One observes that this ambiguity originates from the intersections Pi \ Pj for i ¤ j
(which means from the borders of Pi). Thus we concentrate on the inner points,
which provide us with an infinite and unique expansion. Let

U D
1[

iD1

Pi;

which is an open and dense (U D M) set. Then for each n � 1 the set
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Un D

n�1\

kD0

T�k.U/;

is open and dense in M. Thus by the Baire category theorem, the set

U1 D
1\

nD1

Un (8.2)

is dense. Since M n U1 is the countable union of nowhere dense sets, it suffices to
show that a set is residual in U1 in order to show that in fact it is residual in M.

Since the definition of normal and thus non-normal numbers will involve the
expansions of the elements in M, we need the map � D �P;T W XP;T ! M
defined by

f�P;T.!/g D

1\

nD1

Dn.!/:

Since � is bijective on U1, we may call ! the symbolic expansion of x if
�P;T.!/ D x. Thus in the following we will silently suppose that x 2 U1.

8.2 Normal Numbers

At the moment of writing, we find several properties which are seen as “normal.”
This ranges from normal subgroups, normal vectors over the normal degree to
normal polytopes. Normal numbers are a concept introduced by Borel [99], who
had a probabilistic view in mind. We will see below that non-normal numbers are
“normal” from a topological point of view.

Let us choose x from the interval Œ0; 1� at random. Then x has a decimal expansion
of the form

x D
X

k�1

ak10
�k; (8.3)

where ak 2 f0; : : : ; 9g are the digits. We would expect that the events a1 D 1 and
a1 D 2 occur with the same probability, i.e., P.a1 D 1/ D P.a1 D 2/. Moreover
there is no reason why this should not also hold for any two blocks of digits of
the same length. In particular, we expect that for each block of digits b1; : : : ; bk 2

f0; 1; : : : ; 9g of length k, we have the same probability

P.a1 D b1; : : : ; ak D bk/ D 10
�k

to see it in the decimal expansion of x.
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We call x as in (8.3) simply normal in base 10 if for each d D 0; : : : ; 9 we have
that

lim
n!1

1

n
#f0 � i < nW ai D dg D

1

10
:

Furthermore we call x normal in base 10 if it is simply normal with respect to the
bases 10, 102, 103,. . . An equivalent definition would be that for each word b D
b1 : : : bk 2 f0; 1; : : : ; 9g

k we have

lim
n!1

1

n
#f0 � i < nW ai D b1; : : : ; aiCk�1 D bkg D

1

10k
:

This notion obviously generalizes to any base q � 2. Borel [99] showed that almost
all (with respect to the Lebesgue measure) real numbers are normal to all bases q �
2, that is, they are absolutely normal. On the one hand, we expect that the numbersp
2, � , log 2, etc. are all normal to all bases; however, almost nothing is known in

this direction. On the other hand, we would like to construct such a number. The
first construction of a normal number in base 10 is due to Champernowne [141],
who showed that the number

0:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 : : :

is normal in base 10. There are not many constructions known and even less on
numbers, which are normal to all bases. In the present chapter we consider the
normality from a more abstract point of view and refer the interested reader to
Chapter 7 for more information on explicit constructions.

Now we want to transfer the definition of a normal number to symbolic
dynamical systems. To this end let b D b1 : : : bk 2 Lk be a word of length k and
! D a0a1a2 : : : 2 X. Then we write

P.!;b; n/ D
jf0 � i < nW aiC1 D b1; : : : aiCk D bkgj

n

for the frequency of occurrences of the word b in the first n letters of !. Furthermore
we collect all different words of length k in a vector. For k � 1 and ! D a0a1a2 2 X
we define

Pk.!; n/ D .P.!;b; n//b2Lk
:

This vector describes the distribution of the different blocks among the first n letters
of a given infinite word ! 2 X.

These frequencies of occurrence can be seen as a measure � on X. In particular,
let a D .a1; : : : ; ak/ be a block of digits and fa its desired frequency of occurrences.
Then we set �.Œa�/ D fa and obtain a measure on the set of possible expansions.
However, the fa have to fulfill certain restrictions. In particular, let	k be the simplex
of all probability vectors, i.e.,
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	k D

(
.pa/a2Lk W pa � 0;

X

a

pa D 1

)
:

If we denote by j�j1 the 1-norm, then .	k; j�j1/ is a metric space. On the one hand,
every possible vector of frequencies of blocks of length k belongs to 	k. On the
other hand, we get certain restrictions by the structure of the sequences, namely, we
read them in one direction. Looking at all possible ways we can extend a block of
length 2, such as 35, to a block of length 3, we get that

ˇ̌
ˇ̌
ˇ
X

i2A

P.!; i35; n/ �
X

i2A

P.!; 35i; n/

ˇ̌
ˇ̌
ˇ �

1

n

for all sequences ! 2 X. This implies that for each ! all but finitely many points in
the sequence .P3.!; n//n are very close to the subsimplex

	3 \

(
.pa/a2L3 W

X

i2A

pi35 D
X

i2A

p35i

)
:

Looking at all possible blocks of length k � 1, we get that 	k is not the “correct”
object to consider. Rather we need to consider the subsimplex of shift invariant
probability vectors Sk, i.e.,

Sk WD

8
<

:.pa/a2Ak W pa � 0;
X

a2Ak

pa D 1;
X

i2A

pia D
X

i2A

pai for all a 2 Ak�1

9
=

; :

All these shift invariant probability vectors can be extended to a shift invariant
probability measure. Therefore we will only consider this kind of measures.

More generally, let � be a probability measure on X. Then we call � shift
invariant if for each A � X we have that �.S�1A/ D �.A/. Let M be the set
of shift invariant probability measure on X. Then for each k; n � 1 and ! 2 X
the vector Pk.!; n/ gives rise to a probability measure on Xk, which can be easily
extended to X. Moreover, we call � 2 M associated with ! 2 X if there exists an
infinite subset F � N such that for any k � 1 and any word b 2 Lk

lim
n!1
n2F

P.!;b; n/ D �.Œb�/:

Furthermore, we call ! a generic point for � if we can take F D N: then � is
the only measure associated with !. A normal number (a randomly chosen number)
should have maximum chaos in its expansion. Therefore we need to define (measure
theoretic) entropy first. This kind of entropy grades different measures with respect
to the uncertainty in the expansion of their generic points. For � 2M the measure-
theoretic entropy of � is defined as



8 Normal Numbers and Symbolic Dynamics 281

h.�/ D lim
n!1

�
1

n

X

a2Ln

�.Œa�/ log .� .Œa�// :

In 1969 Goodwyn [259] showed that, for all measures on X, we have h.�/ � h.X/
(cf. Chapter 18 of Denker et al. [193]). This motivates the following definition. We
call a measure � 2 M a measure of maximal entropy (or maximal measure) if
h.�/ D h.X/. Then we call ! 2 X normal if it is generic for a maximal measure �.

Compare these definitions with the concept of the empirical measure. Let x 2 X
be a point in our shift space. Then the empirical measure (of order n) is defined as

Tn.x/ WD
1

n

n�1X

kD0

ıSk.x/;

where ıu denotes the Dirac measure. Clearly the sequence fTngn has limit points,
which are shift invariant probability measures, and x is generic for each one of them.
Therefore x is generic for a single measure if and only if the sequence fTngn has only
one limit point.

A measure � 2 M is called ergodic if �.S�1A/ D �.A/ for a set A 
 X
implies that �.A/ D 1 or �.A/ D 0. This means that the only invariant sets are
either sets of full measure or negligible sets (in the measure theoretical sense). In
all our examples, we have a unique maximal measure, and this has to be ergodic
(cf. Section 8.3 of [579]). If there is only one maximal measure, then we call the
dynamical system intrinsically ergodic.

The common point of all constructions, if it is for normal or non-normal
words and sets, is the concatenation of words with prescribed distribution. This
concatenation is not always possible. Recall the ˇ-expansion (Example 8.1.2) with

respect to the Golden Ratio � D 1C
p
5

2
. In this case we have M D Œ0; 1� and

T.x/ D �x � b�xc. Furthermore the topological partition is given as

P D

��
0;
1

�

	
;

�
1

�
; 1

	�
:

Then we denote by .X; S/ the corresponding symbolic dynamical system. Since � D
1C 1

�
we have that

T

��
1

�
; 1

		
D

�
0;
1

�

	

and the language L of X consists of all words over the alphabet f0; 1g with no factor
11. In particular L D fa1 : : : ak 2 A�W ai � aiC1 D 0 for 1 � i � k � 1g.

Now clearly 1001 and 101 are elements of L; however, their concatenation
1001101 is not. We will circumvent this defect by using the specification property.
In particular, we say that a language L has the specification with gap g � 0 if for
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any a;b 2 L there exists a w 2 L with jwj � g such that awb 2 L. In this case we
chose w for a and b and write aˇ b D awb for short.

The specification property was first described by Bowen [103] with respect to
orbits of elements. In this context the specification property states the existence of
a periodic element that stays near the orbits of given elements for a given time. In
particular, let .M;T/ be a topological dynamical system consisting of a compact
metric space M D .M; d/ and a continuous map T from M onto itself. Then .M;T/
has the specification property if for every " > 0 there is an integer N."/ such that if
x1; x2; : : : xk are points in M and Ai D ŒŒai; bi�� are sets of consecutive integers with
ai � bi�1 > N."/ for i D 2; 3; : : : ; k and if p > bk � a1 C N."/, then there exists a
periodic point x 2 M with period p such that

d.Tjx;Tjxi/ < " for j 2 Ai:

Since concatenation in general and the specification property in particular are
very important for our constructions, we want to know if this is compatible with our
notion of normality and intrinsic ergodicity.

Theorem 8.2.1 (Bowen [103]). Let X be a shift. If X has the specification property,
then X is intrinsically ergodic.

This result of Bowen can be seen as optimal in the following sense. We will
consider two weaker versions of the specification property for which we do not
have intrinsic ergodicity anymore. The first one allows the length of the filling word
to depend on the left word. A subshift X has nonuniform specification property with
gap function g.n/ if

• g.n/ is positive and nondecreasing
• g.n/

n ! 0

• For any words w.1/;w.2/; : : : ;w.k/ 2 L, and for any integers n1; : : : ; nk�1, where
ni � g.

ˇ̌
w.i/

ˇ̌
/ for all i, there exist words v.1/ 2 Ln1 ; : : : ; v

.k�1/ 2 Lnk�1 so that the
word w.1/v.1/w.2/v.2/ : : :w.k�1/v.k�1/w.k/ 2 L.

Then clearly a subshift X has specification with gap g if it has nonuniform
specification with the constant gap function g.n/ D g. In a recent paper, however,
Pavlov [472] could show that these systems are not intrinsically ergodic.

Theorem 8.2.2 (Pavlov [472]). For any positive nondecreasing function g.n/ with
lim infn!1

g.n/
ln n > 0, there exists a subshift with nonuniform specification with gap

function g.n/with exactly two ergodic measures of maximal entropy, whose supports
are disjoint.

The second weaker form, which is essentially due to Pfister and Sullivan [479],
allows to replace a certain number of letters in the words in order to perform
concatenation. A subshift X has almost specification with mistake function g.n/ if

• g.n/ is positive and nondecreasing
• g.n/

n ! 0
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• For any words w.1/;w.2/; : : : ;w.k/ 2 L, there exist words v.1/; : : : ; v.k/ 2 L such
that

ˇ̌
w.i/

ˇ̌
D
ˇ̌
v.i/
ˇ̌

for 1 � i � k, w.i/ and v.i/ differ on at most g.
ˇ̌
w.i/

ˇ̌
/ letters

for 1 � i � k, and the concatenation v.1/v.2/ : : : v.k/ is in L.

In the very same paper, Pavlov [472] could also provide a counterexample for the
existence of a unique ergodic measure for this weaker form of the specification
property.

Theorem 8.2.3 (Pavlov [472]). There exists a subshift with almost specification
with mistake function g.n/ D 4 with exactly two ergodic measures of maximal
entropy, whose supports are disjoint.

Thus both weaker forms do not lead to intrinsic ergodicity. The results on
Besicovitch-Eggleston sets in this chapter hold true if one considers nonuniform
specification (cf. [478]).

8.2.1 Infinite Alphabet

As in the introduction above, we want to shed some light on the differences
if we have an infinite alphabet. We start with the continued fraction expansion
(Example 8.1.4). For k � 1 a positive integer and a block b D b1 : : : bk 2 Nk,
we denote by ˘.x;b; n/ the number of occurrences of this block b among the first
n digits of x, i.e.,

˘.x;b; n/ WD
f0 � i < n W aiC1.x/ D b1; : : : ; aiCk.x/ D bkg

n
:

Furthermore we denote by

˘k.x; n/ D .˘.x;b; n//b2Nk

the vector of frequencies ˘.x;b; n/ for all blocks b of length k.
For digits (blocks of length 1) a famous result of Lévy [377] states that for

Lebesgue almost all x 2 I D R n Q we have

˘.x; b; n/!
1

log 2
log

.bC 2/2

b.bC 2/
(8.4)

for all b 2 N. In analogy with normal numbers in q-adic number systems above, we
call x 2 I simple (continued fraction) normal if it satisfies (8.4) with b � 1.

We can extend this notion to (continued fraction) normal numbers by using the
Gauss measure defined by
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�.A/ D
1

log 2

Z

A

1

1C x
dx;

where A � Œ0; 1� is a Lebesgue measurable set. Then we call a number (continued
fraction) normal if the asymptotic frequency of its block of digits is determined by
the Gauss measure. Now an application of Birkhoff’s ergodic theorem (cf. [87] or
[176]) yields that almost all numbers are (continued fraction) normal with respect
to the Lebesgue measure.

After defining the environment, we want to pull over the definitions of normal and
non-normal numbers to the symbolic dynamical system. To this end let b 2 Nk be a
block of letters of length k and ! D a1a2a3 : : : 2 X be the symbolic representation
of an element. Then we write

P.!;b; n/ D jf0 � i < n W aiC1 D b1; : : : ; aiCk D bkgj

for the frequency of the block b among the first n letters of !. In the same manner
as above, let

Pk.!; n/ D .P.!;b/; n/b2Nk

be the vector of all frequencies of blocks b of length k among the first n letters of !.
Let � be a given T-invariant probability measure on X and ! 2 X. Then we call

the measure � associated with ! if there exists an infinite subsequence F of N such
that for any block b 2 ˙ k

lim
n!1
n2F

P.!;b; n/ D �.Œb�/:

Furthermore, we call ! a generic point for � if we can take F D N: then � is
the only measure associated with !. If � is the maximal measure, then we call !
normal.

An application of Birkhoff’s ergodic theorem yields for � being ergodic that
almost all numbers ! 2 X are generic for �. In both Examples 8.1.4 and 8.1.5, we
have that the system is intrinsically ergodic, which means that there exists a unique
maximal ergodic measure � (cf. Chapter 3.1.2 of [176]).

In the final section, we want to consider non-normal numbers with respect
to the continued fraction expansion. Again we get a restriction on the possible
limiting frequencies limn!1 Pk.!; n/. For each k � 1, we define the simplex of
all probability vectors 	k by

	k D

(
.pi/i2Nk W pi � 0;

X

i2Nk

pi D 1

)
:

The set 	k together with the 1-norm k�k1 defined by
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kp � qk1 D
X

i2Nk

jpi � qij :

is a compact metric space.
On the one hand, we clearly have that any vector Pk.!; n/ of frequencies of

blocks of digits of length k belongs to	k. On the other hand, any probability vector
needs to be shift invariant (cf. Volkmann [575] or Olsen [457]). Therefore we define
the subsimplex of shift invariant probability vectors Sk by

Sk WD

(
.pi/i2Nk W pi � 0;

X

i2Nk

pi D 1;
X

i2N

pii D
X

i2N

pii for all i 2 Nk�1

)
:

8.3 Construction of the Maximal Measure

Let us summarize for the moment. We have a topological dynamical system .X;T/
and a topological partition P . The partition P and the transformation T induce
a symbolic dynamical system .X; S/. Furthermore we set M the set of all shift
invariant measures. Finally we suppose that the symbolic dynamical system fulfills
the specification property and then there is a unique measure� 2M that maximizes
the entropy, i.e., h.�/ D h.X/.

In the present section we want to show that the Champernowne word is generic
for the unique maximal measure. In particular, we want to show a little bit more.
First of all we generalize our point of view to so-called coded systems. Simply
speaking we are concatenating words (“codes”) instead of letters. Secondly we also
consider the Copeland and Erdős [166] construction of normal numbers. In the
Champernowne word, we consider a concatenation of all possible words, whereas
in the Copeland and Erdős construction, we restrict ourselves to a sufficiently large
portion. The proof is of combinatorial nature and uses the fact that the number of
omitted blocks has only a negligible contribution to the frequency of occurrences of
a single word.

Modifying the Champernowne word, we will show in the next section that we
may construct a word that is generic with respect to any given shift invariant
measure. This construction has to be seen as a proof of concept. It is not optimal, and
more sophisticated analysis in special cases leads to a far better rate of convergence
(cf. Vandehey [573]). As an open problem, it would be of interest to improve the
number of repetitions in the case of shifts of finite type.

Let us start now with the definition of a coded system. We suppose that A is finite
and let AC denote the semigroup generated by A under concatenation. A language
X is called a code if X 2 AC generates a free submonoid X� of A� and if each word
w 2 XC has a unique factorization of the form

w D w1 : : :w`
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with wi 2 X for 1 � i � `. Furthermore a code is a prefix code if no word u 2 X�

has a representation of the form u D u1v where u1 2 X and v 2 AC. The set
W D W.X�/ of factors of all words w 2 X� is called the language generated by the
code X.

We denote by bn the number of words of X of length n and similarly by cn the
number of words of X� of length n. By convention we suppose that b0 D c0 D 1.
Furthermore we call X the radius of convergence of the code X if it is the radius of
convergence of the series

P
n>0 bnzn. Analogously the radius of convergence X� of

the code X� is the radius of convergence of the series
P

n>0 cnzn.
For any language X � A�, we denote by W1 D W1.X/ the set of “infinite

words” generated by X, i.e., the sequences w� D a1a2a3 : : : 2 A� of the form

w� D aw1w2w3 : : : ;

with a 2 A� and wj 2 X for j D 1; 2; : : :. With each given language L 2 A�, we
associate the symbolic dynamical system

SL.W
1;B;T;M /

where W1 D W1.L/; B is the 
 -algebra generated by all cylinders of AN, i.e., sets
of the form

Œw� D fa1a2 2 ANW a1 : : : an D wg

for some n 2 N and w 2 A�; T is the shift operator and M is the set of all T-invariant
probability measure � on B. We also write �.w/ for �.Œw�/ for short.

By abuse of language, we say that the dynamical system SL satisfies the
specification property if the language L does.

Our main result in this section is the following.

Theorem 8.3.1 ([80, Corollaire]). Let S be a measure theoretical system that
satisfies the specification property. Then the sequence obtained by concatenating
the words of length 1, then of length 2, then of length 3, and so on is generic for the
maximal measure of S.

The proof we present below is an extended version of the original proof of
Bertrand-Mathis [80]. Before jumping right into the proof, we have to unravel the
coded system and link the entropy of X with that of X�. Let X be a prefix code and �
be an invariant probability measure on X�. Then the mean length of X with respect
to � is the number

`.X; �/ D
X

x2X

jxj�.x/:

The following result of Blanchard and Hansel [88] provides an upper bound for
the entropy of a given probability measure.

Proposition 8.3.2 ([88, Proposition 2.15]). Let X be a prefix code, � be an
invariant probability measure on X�, and h.�/ its entropy. Then
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1. We have the inequality

h.�/ � �`.X; �/ log X� :

2. Equality holds if and only if the following two conditions are satisfied:

a.

X

x2X


jxj
X� D 1;

b. � is the Bernoulli probability measure on XZ defined by �.Œx�/ D 
jxj
X� , for

x 2 X.

The second tool considers the relation of the radii of convergence X and X� .

Proposition 8.3.3 ([88, Proposition 2.12]). Let X be a prefix code and X� the
generated submonoid. Then

1. we always have 0 � X� � X;
2. if X� < X, then X� is the unique solution of the equation

X

x2X

zjxj D 1I

3. we have X� D X if and only if X < C1 and
P

x2X 
jxj
X � 1.

Now we unwrap the transformation S on the coded system. Let ˝ � XN 	 N be
the set of couples ..xn/n2N; i/ such that 1 � i � jx0j. We define a transformation T
of ˝ onto itself by

T ..xn/n�0; i/ D

(
..xn/n�0; iC 1/ if i < jx0j ;

..xnC1/n�0; 1/ if i D jx0j :

The dynamical system .˝;T/ is called the associated unilateral tower of X. The
set XN may be identified with the grounding .XN; 1/ of the tower ˝. Using this
identification every probability measure � of .˝;T/ induces for each U 2 B one
on XN via

�.U/ D
� .U 	 f1g/

� .XN 	 f1g/
:

Remark that we have
P

x2X jxj�.c.x/ 	 f1g/ D �.˝/ D 1. Thus we get that

`.X; �/ D
X

x2X

jxj�.x/ D
1

� .X� 	 f1g/

and therefore `.X; �/ < C1.
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On the contrary every probability measure � on X� such that `.X; �/ < C1 is
induced by a probability measure � on .˝;T/. Furthermore we have by the formula
of Abramov (cf. Theorem 2 of Chapter 10 §6 of [167])

h.�/`.X; �/ D h.�/:

Finally we note that X has the discrete topology, X� has the product topology,
and ˝ has a natural topology such that T is continuous. But ˝ is only compact if X
is finite.

We call a prefix code X positive recurrent if it satisfies the conditions

X

x2X


jxj
X� D 1 and

X

x2X

jxj jxjX� < C1:

Remark 8.3.4. Any prefix code X such that X� < X is in fact positive recurrent.
We obtain

P
x2X 

jxj
X� D 1 from Proposition 8.3.3 part 2. For the second condition,

let  be such that X� <  < X . Then for jxj sufficiently large, jxj jxjX� < jxj, and

therefore
P

x2X 
jxj < C1 implies

P
x2X jxj 

jxj
X� < C1.

Proposition 8.3.5 ([88, Proposition 2.16]). Let X be a prefix code and .˝;T/ the
associated tower.

1. We have

sup
�

h.�/ D � log X� ;

where � runs through all probability measures of .˝;T/.
2. There exists one and only one probability measure � on ˝ such that h.�/ D
� log X� if an only if X is positive recurrent. In this case � is the unique
probability measure on ˝ inducing on X� the Bernoulli probability measure
defined by

�.x/ D jxjX� ; x 2 X:

Let f W˝ ! AN be the projection defined such that

fT D Tf

f ..xn/n2N; i/ D ai where ai is the ith letter of x0. This function is continuous and we
have the following.

Proposition 8.3.6 ([88, Proposition 2.17]). Let � be an ergodic probability mea-
sure on ˝ and � ı f�1 its image under f in AN. Then

h.� ı f�1/ D h.�/:
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We note that �X is only defined if X is positive recurrent, and therefore we may
define generic points of the Champernowne type only if X� < X .

There may be different codes that induce the same dynamical system. For
example, if A D f0; 1g, then the codes X D f0; 1g with X� D 1

2
< X D 1

and

Y D fu1; : : : ; un 2 ACW 8k 2 N; u1; : : : uk contains more 0 than 1

and u1; : : : ; un contain as many 0 as 1g

with Y� D
p
2
2
D Y both induce the system .AN;T/, but Y does not verify Y� <

Y and is not even positive recurrent.
We prove the theorem following the steps of Bertrand-Mathis [80]. Let us start

with the following.

Proposition 8.3.7. Let X be a prefix code (satisfying X� < X) over the
alphabet A.

Suppose that the gcd of the length of words in X equals q � 1. If we concatenate
all messages of length q, then all of length 2q, then all of length 3q, and so on,
then we obtain a sequence .en/n�0 of letters in a dynamical system associated with
X, and the generated sequence is generic for a measure �X, which we call the
Champernowne measure induced by X. The measure �X has entropy � log X� .

The proof of Proposition 8.3.7 relies on the following lemma.

Lemma 8.3.8. Let X be a prefix code such that

X� < X

and let

� D
1

b1X� C 2b2 .X�/2 C � � � C nbn .X�/n C � � �
:

If the gcd of the lengths of the words of the code is 1, then there exist reals d < 1=X�

and B such that

cn D
�

.X�/n
C vn; where jvnj < Bdn:

If the gcd of the lengths of the words of the code is q ¤ 1, then there exist reals
d < 1=X� and B such that

cqn D
q�

.X�/
C vqn; where

ˇ̌
vqn

ˇ̌
< Bdqn

and cn D 0 for q − n.

Proof. Since X� < X we get with Proposition 8.3.3 that
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X

n>0

bn .X�/n D 1

and on the converse that if the only real solution of the equation
P

n�0 bnzn D 1 is
strictly less than X , then it must equal X� .

Suppose that X� < X . Since the bn are nonnegative and the derivativeP
n>0 nbnzn�1 has no zero in X� , we must have that X� is a simple root of the

equation
P

n>0 bnzn � 1 D 0.
Suppose that ˛ is another solution to the equation. Then it must be greater in

modulus. Because otherwise if j˛j � X� , then

X

n>0

bn˛
n D

X

n>0

bn .X�/n ) 8n > 0W bn˛
n D bn .X�/n ;

and therefore the gcd of the length of the words in X is either 1 and ˛ D X� or it is
q and ˛ D e2i�m=qX� is a solution of the equation for each integer m.

Recall that ck is the number of words of X� of length k. Then by definition .ck/k�1
are the coefficients of the formal power series

1

1 �
P

n>0 bnYn
D 1C

 
X

n>0

bnYn

!
C

 
X

n>0

bnYn

!2
C � � � :

There exists a disk D with center 0 and radius strictly greater than X� on which the
function 1=

�
1 �

P
n�0 bnYn

�
is a meromorphic function. If the gcd of the lengths

of the words of the code is 1, then (by calculating the residue in X� )

1

1 �
P

n>0 bnYn
D

�

1 � .Y=X�/
C H.Y/;

where

� D

 
X

n>0

nbn
n
X�

!�1

and H is an analytic function on D. Thus

1

1 �
P

n>0 bnYn
D
X

n�0

�
�

n
X�

C vn

	
Yn;

where vn satisfies the required conditions.
The case of the gcd of the lengths of the words of the code being q > 1 reduces

to the consideration of the code over Aq. Then the gcd is 1 and we follow the case
above.
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Proof (Proof of Proposition 8.3.7). The idea of construction of the generic point
follows the one of Champernowne. We write

� D
1

X�

for short.
Let Bn be the block formed by the cn words in Cn concatenated one after the other.

The length of each Bk is kck. Now we calculate the length `n of the concatenation of
the blocks B1B2 � � �Bn. By Lemma 8.3.8 we have

`n D

nX

kD1

kck D

nX

kD1

�
�k� k C kvk

�
:

We set

un D

nX

kD1

kvk:

Then

junj �

nX

kD1

kdk D
d.ndnC1 � .nC 1/dn C 1/

.d � 1/2

and there exists B0 such that

junj � B0ndn:

Therefore

`n D
��

.� � 1/2
.n�nC1 � .nC 1/�n C 1/C un:

Now we want to count how often a given message m of length p occurs in the
generated message. We distinguish three cases:

1. The occurrence happens between two messages of length k and k C 1, respec-
tively. This means that m is on the edge of BkBkC1. Since this rarely happens, we
will neglect this case.

2. The message m occurs on the interior of a message m1 of length k in Bk and

m1 D amb;

where a and b are also messages.
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3. The message m occurs on the interior of a message m1 of length k in Bk such that

m1 D amb;

where a or b is not a message.

Lemma 8.3.9. The frequency of occurrences as in case 2 of the message m of length
p in the constructed word is equal to �=�p.

Proof. The number of occurrences of the message m in the block Bk as in case 2 is

fk D
k�pX

iD0

cick�p�i D

k�pX

iD0

�
�� i C vi

� �
�� k�p�i C vk�p�i

�

D

k�pX

iD0

�2� k�p C 2

k�pX

iD0

vi��
k�p�i C

k�pX

iD0

vivk�p�i

D xk C yk C zk:

The first part equals xk D .k � pC 1/�2� k�p.
Since j�ij < Bdi, the second part may be estimated by

jykj < 2

k�pX

iD0

B�di� k�p�i D 2B�� k�p

 
k�pX

iD0

di

� i

!
� �� k�p 1

1 �
�

d
�

� ;

where we used that d < � . Note that the implied constant neither depend on k nor
on p.

Finally we obtain the following upper bound for the third part:

jzkj �

k�pX

iD0

didk�p�i � .k � pC 1/dk�p;

where we may suppose that the implied constant neither depend on k nor on p.
Summing over all k, we obtain

gn D

nX

kDp

fk D
nX

kDp

.xk C yk C zk/

with

nX

kDp

xn D

nX

kDp

.k � pC 1/�2� k�p
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D �2
.n � pC 1/�nC2�p � .n � pC 2/�nC1�p C 1

.� � 1/2

ˇ̌
ˇ̌
ˇ̌

nX

kDp

yk

ˇ̌
ˇ̌
ˇ̌�

nX

kDp

� k�p �
�nC1�p � 1

� � 1

ˇ̌
ˇ̌
ˇ̌

nX

kDp

zk

ˇ̌
ˇ̌
ˇ̌�

nX

kDp

.k � pC 1/dk�p D
.n � pC 1/dn�pC2 � .n � pC 2/dn�pC1 C 1

.d � 1/2
:

Dividing by the length `n, we observe that the frequency gn=`n tends to �=�p for
n ! 1 and therefore a message m as in case 2 occurs with asymptotic frequency
�=� jmj.

For the moment we suppose that the gcd of the length of the words in X equals 1.

Lemma 8.3.10. Let ıu be the Dirac point measure in u. There exists a unique
measure �, which is a limit point of the sequence of measures

1

`n

`nX

kD1

ıTk..en/n�0/:

Proof. Let � be a limit point of the sequence. For a given message m, let K.m/ be
the set of messages m1 such that there exist u and v in A� but not in X� such that
m1 D umv. Furthermore u has no representation of the form u D m2u1, where m2

is a message, and v has no representation of the form v D v1m3, where m3 is a
message.

The message m occurs in the sequence .en/n�0 every time when a message of
K.m/ occurs in case 2 (we still neglect the case 1) and

�.m/ D
X

m12K.m/

a.m1/
�

� jm1j
;

where m occurs a.m1/ times in m1. For a given word !, let H.!/ be the set of
messages m4 such that m4 D u!v and u and v are no messages and where neither u
has a representation of the form

u D m5u1

nor v has one of the form

v D v1m6

with m5 and m6 again messages. Then
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�.!/ D
X

m2H.!/

b.m/�.m/;

where b.m/ is the number of occurrences of ! in m. This shows that the sequence

1

`n

`nX

kD1

ıTk..en/n�0/

only has one limit point � D �X .

We show that �X is the only limit point of the sequence e. Suppose there exists
another measure � which is a limit point of the sequence of measures

1

n

X

k<n

ıTk.e/:

Since `nC1=`n is bounded by 2� , the measure � is absolutely continuous with respect
to �X , which is impossible. Therefore

�X D lim
n!1

1

n

X

k<n

ıTk.e/:

It is clear that the constructed measure gives a positive measure to any message.
Now we turn our attention to the entropy of �X . Let En D f

S
Œm�Wm 2 Cng.

Since there are about ��n messages of length n and the measure of Œm� is greater
than �=�n, we get for n sufficiently large that

�.En/ >
�2

2
:

For given ı > 0 and " > 0 using the Shannon-McMillan-Breiman theorem (cf.
Theorem 5 of Chapter 10 §6 of [167]), we divide the words .a1 : : : an/ in An into
two classes. The set B of bad words satisfying

X

a1;:::;an2B

�X .Œa1 : : : an�/ < ı

and the set G of good words, where each a1 : : : an 2 G, satisfies

e�n.h.�X/C"/ < �.Œa1 : : : an�/ < e�n.h.�X/�"/:

Since the measure of En is greater than �2=2, we get that
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�

�n
< �.Œa1 : : : an�/ < e�n.h.�X/�"/:

Thus

h.�X/ � log �:

Now let us suppose that h.�X/ < log � and find a contradiction. We set

" D
1

2
.log � � h.�X// :

For ı sufficiently small and n sufficiently large, at least half of the words of En are
in the set G. Let Dn be their union, then

e�n.h.�X/C"/ < �X.Œa1 : : : an�/ if Œa1 : : : an� 2 Dn

e�n.log ��"/ < �X.Œa1 : : : an�/ if Œa1 : : : an� 62 Dn

Since Dn is the union of at least ��n=4 words, we get

�X.Dn/ >
��n

4
e�n.log ��"/ >

�

4

�n

� 0n
where log � 0 D log � � ":�

Since � 0 < � , we get that limn!1 �X.Dn/ D 1 which is absurd. Thus h.�X/ D

log � .

For the case of a gcd greater than one, we proceed as follows. Let X be a prefix
code over A, and let q ¤ 1 be the gcd of the length of the words in X. Now let Y
be the prefix code over Aq whose words are the words of X seen as words over Aq.
Then the gcd of the length of the words in Y is one and we have

Y D .X/
q and Y� D .X�/q :

If we concatenate the messages of length 1, then 2, then 3, and so on from Y�, then
we get a sequence .fn/n�0 in .Aq/N. We may see this sequence as concatenating the
messages of length q, then 2q, then 3q, and so on from X� to construct a sequence
.en/n�0 in AN. Since Y satisfies the requirements of Proposition 8.3.7, we get that it
is generic for a measure �q

c on .Aq/N, with entropy �q log X� with respect to the
shift on .Aq/N. Therefore the sequence .en/n�0 is generic for a T-invariant measure
on AN

�c D
1

q

�
�q

c C T�1�q
c C � � � C Tq�1�q

c

�
;

which has entropy � log X� .
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Proposition 8.3.11. Let X be a prefix code satisfying X� < X. Let .˝;T/ be the
associated tower, and let .en/n�0 be the sequence defined in Proposition 8.3.7.

Then .en/n�0 is the image of a point ."n/n�0 2 ˝ under f , and the point
."n/n�0 is generic for a unique measure �X with entropy � log X� on the tower.
The Champernowne measure �X is the image of �X by f .

Proof. The cn messages of Cn may be written (if we decompose them into words
over X) as

.x11;n; : : : ; x
k1
1;n; x

1
2;n; : : : ; x

k2
2;n; : : : ; x

1
cn;n; : : : ; x

kcn
cn;n/;

where for each 1 � i � n and 1 � j � ki, xj
i;n is a word in X and for all i

kiX

jD1

ˇ̌
ˇxj

i;n

ˇ̌
ˇ D n:

The sequence ."n/n�0 defined by

."0; "1; "2; : : :/ D.x
1
1;1; 1/.x

1
1;1; 2/ � � �

�
x11;1;

ˇ̌
x11;1

ˇ̌�
.x21;1; 1/ � � �

� � �
�

x
kc1
c1;1
;
ˇ̌
ˇxkc1

c1;1

ˇ̌
ˇ
�
.x11;2; 1/ � � �

� � �
�

x
kcn
cn;n;

ˇ̌
ˇxkcn

cn;n

ˇ̌
ˇ
�
.x11;nC1; 1/ � � �

is the preimage of the sequence .en/n�0 defined in Proposition 8.3.7, and we show
as above that the point ."n/n�0 is generic for a measure �, whose image by f is the
measure �X . The entropy of � is bounded from below by � log X� . Thus � is the
unique measure � with entropy � log X� on the tower and �X D f .�/.

Instead of directly computing the entropy, we could have shown that the
restriction of � to the base of the tower is with the exception of a factor the Bernoulli
measure with entropy � logX� . This implies � D � and with �X D f .�X/ we get

h.�X/ D h.�X/ D � log X� :

Champernowne’s construction is based on the sequence of positive integers.
He conjectured and Copeland and Erdős [166] later proved that the corresponding
construction over the primes, i.e.,

0:2 3 5 7 11 13 17 19 : : :

also yields a normal number. Moreover they showed that any strictly increasing
sequence of integers not missing too many elements yields a normal number.
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Theorem 8.3.12 ([166]). Let .an/n�1 be a strictly increasing sequence of positive
integers. If for each " > 0 there exists N0."/ such that for all N > N0."/

#fnW an � Ng > N1�"

holds, then the number

0:a1 a2 a3 a4 a5 : : :

is normal in the base of expansion.

This construction was generalized to languages with specification by Bertrand-
Mathis and Volkmann [81].

Theorem 8.3.13. Let L be a language with specification and .an/n�1 a sequence of
different elements of W.L�/ with ja1j � ja2j � : : :. If for all " > 0 there exists no."/

such that for all n � n0

#fa� W janj � ng > jLnj
1�"

holds, then the infinite word

a D a1a2a3 : : : 2 W1

is normal.

Remark 8.3.14. The proof is only for connecting languages. The difference with
languages with specification is that here the gap always has the same size g.
Otherwise said, for any pair a;b 2 L there exists v with jvj D g such that avb.
However, following the lines of the proof, it is easy to rewrite it for languages with
specification.

The idea of the proof is that the average word has good distribution. In the spirit
of Besicovitch [82], for " > 0, k an integer, and � a shift invariant measure, a word
w 2 W is ."; k; �/-normal if, for every b 2 Lk,

�.b/.1 � "/ <
N.b;w/
jwj

< �.b/.1C "/:

Furthermore we say that w is ."; k/-normal, if � is the maximal measure. Now
Bertrand-Mathis and Volkmann [81] show that the set En."; k/ of words of length n
which are not ."; k/-normal is small. Thus if we only eliminate a small portion of
“good” words, we still have enough for the construction.

This whole idea breaks down, when it comes to the sequence of squares. Using
a combinatorial argument, Besicovitch [82] succeeded to show that the number

0:1 4 9 16 25 36 49 64 : : :
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is normal in base 10. However, his combinatorial method gets more and more
involved when it comes to cubes and higher powers. Furthermore it seems to be
impossible to apply it to polynomials instead of monomials. The modern approach
is to use Fourier analysis. For simplicity we consider the decimal case. For a word
b D b1 : : : bk 2 f0; 1; : : : ; 9g

k we denote by Ib its indicator function, i.e.,

Ib D

8
<

:
1 if x 2

hPk
iD1 bi10

�i;
Pk

iD1 bi10
�i C 10�k

�

0 otherwise.

The function Ib detects whether the decimal expansion of x starts with the same
digits as b. Suppose that w D w1 : : :w` is a word of length ` over the alphabet
f0; 1; : : : ; 9g. We associate with w the positive integer w D

P`
iD1 wi10

`�i whose
decimal expansion is exactly the word w. Then Ib

�
wq�j

�
with k � j � ` detects

whether the word b occurs at position ` � j in w. Thus

#f0 � i � ` � kWwiC1 D b1; : : : ;wiCk D bkg D
X̀

iDk

Ib

�
w

qj

	
:

Now we consider the Fourier transform of Ib. To this end it is convenient to
interpret the indicator function as superposition of two rounding error functions '
(also called “saw-tooth function”, because of its function graph) defined by '.x/ D
x � bxc C 1

2
: Then we have

Ib.x/ D 10
�k'

 
x �

Pk
iD1 bi10

i�1 C 1

10k

!
� '

 
x �

Pk
iD1 bi10

i�1

10k

!
:

Vaaler [572] provided approximations to this functions by trigonometric functions.
Using his upper and lower bounds, we get the following.

Theorem 8.3.15 ([572, Theorem 19]). Let I � Œ0; 1� be an interval and �I its
indicator function. Then for each positive integer H, there exist coefficients aH.h/
and Ch for �H � h � H with jaH.h/j � 1 and jChj � 1 such that the trigonometric
polynomial

��I;H.t/ D jIj C
1

�

X

0<jhj�H

aH.h/

jhj
e.ht/

satisfies

j�I.t/ � �
�
I;H.t/j �

1

H C 1

X

jhj�H

Ch

�
1 �

jhj

H C 1

	
e.ht/:

This transfers the problem into one on exponential sums.
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For the estimation of the exponential sum, it is easier to fix the position first
and sum over the different expansions. Our target of application are polynomials
p. To this end we suppose that limn!1 p.n/ D C1. The case of �1 as limit is
similar, and the case of a constant polynomial is completely uninteresting as it yields
a periodic word. The important feature of polynomials p is that they are eventually
growing, meaning that there exists n0 2 N such that for all n � n0 we have p.nC
1/ > p.n/. Now we group all n yielding an expansion of the same length: There
exists `0 such that for ` � `0 we find n` such that blog10 p.n`/c < blog10 p.n` C 1/
and blog10 p.n/c D `�1 for all n`�1C1 � n � n`. Note that the decimal expansion
of a positive integer w has length ` if and only if blog10 wc D ` � 1. Then counting
the number of occurrences of a given block b in the constructed word is transferred
via an estimate of exponential sums of the form

LX

`D`0

X̀

jDk

n`C1X

nDn`C1

e

�
�p.n/

qj

	
:

The first result using this method is due to Davenport and Erdős [180] who
applied this to polynomials p 2 ZŒX�. Schiffer [527] extended this to polynomials
p 2 QŒX� such that p.N/ � N. Furthermore Nakai and Shiokawa [435, 436]
considered polynomial like functions p of the form p.x/ D ˛1xˇ1 C � � � C ˛dxˇd

with ˛i 2 R for 1 � i � d and 0 < ˇ1 < � � � < ˇd. Finally we want to mention
the construction of Madritsch, Thuswaldner, and Tichy [401] where p is an entire
function of bounded logarithmic order, i.e.,

lim sup
r!1

log log maxjzj�r p.z/

log log r
<
4

3
:

In the last case, the eventually growing condition is replaced by longer and longer
intervals where the function is bounded from below.

Similar constructions over the primes yield also normal numbers. We want to
mention Nakai and Shiokawa [437] and Madritsch, Thuswaldner, and Tichy [401].
Finally a recent result by Scheerer [526] generalizes these results to ˇ-expansions.
However, in his proof he uses a combinatorial argument of the Besicovitch type.

8.4 Generic Sequences for Different Measures

After the construction of generic words for the maximal measure, we want to look
at different measures. For example, suppose we want the following distribution of
digits in the q-adic expansion. The letters 0; 1; 2; : : : ; q � 2 should appear with
frequency 2�q, and the last letter q�1 should appear with frequency 1� .q�1/2�q.
For example in the binary expansion, we would have that 0 occurs with frequency
1=4 and 1 with frequency 3=4.
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Now for a block of digits a1a2 : : : ak, we suppose that its frequency of
occurrences is the product of the frequency of occurrences of the single digits
a1; a2 : : : ; ak. Considering our example in the binary expansion, this means that the
blocks 00, 01, 10, and 11 occur with the frequencies 1=16, 3=16, 3=16, and 9=16,
respectively.

The construction itself consists of two parts. The first one is a characterization of
useful sequences of words. Given such a sequence, we might construct a generic
sequence for � by repeated concatenation of the words in the sequence. This
immediately leads to the second part: the construction of such a useful sequence of
words. In both parts we have parameters, which allow us to adapt the construction to
the specific dynamical system (like Lüroth-series, continued fraction, ˇ-expansion,
. . . ).

We start by circumventing the issue of an infinite alphabet. Let � be a
shift invariant measure. A sequence .�i/ of shift invariant measures is called an
approximation scheme if �i converges weakly to �. A word b 2 L is �-admissible
if �.b/ ¤ 0, i.e., the cylinder Œb� is in the support of �. Let L� � L denote the
set of �-admissible words, and let L�;k denote the set of �-admissible words of
length k.

Recall that a word w D w1 : : :wn is called ."; k; �/-normal if for each word
b 2

Sk
iD1 Li we have that

�.b/.1 � "/ <
N.b;w/
jwj

< �.b/.1C "/:

Furthermore let .wi/i�1 be a sequence of finite words and .`i/i�1 be a nondecreasing
sequence of positive integers. Then we call the sequence of pairs .wi; `i/i�1 �-good
with respect to the approximation scheme .�i/i�1 if each wi is ."i; ki; �i/-normal
satisfying

1

"i�1 � "i
D o.jwij/I (8.5)

`i�1

`i
�
jwi�1j

jwij
D o.i�1/I (8.6)

1

`i
�
jwiC1j

jwij
D o.1/: (8.7)

The main theorem in this section is the following.

Theorem 8.4.1 ([399, Main Theorem]). Let A be an alphabet, L � A� be a
language satisfying the specification property, and W1.L/ be the set of sequences
generated by L. Let T be a shift of AN and � be a shift invariant probability
measure on W1.L/. Let .ki/i�1 be a sequence of positive integers, and for i � 1

let �iWAki ! Œ0; 1� be a shift invariant probability measure on Aki such that .�i/i�1
is an approximation scheme for �. Let .wi/i�1 be a sequence of finite words, and let
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.`i/i�1 be a nondecreasing sequence of positive integers. Suppose that .wi; `i/i�1
is �-good with respect to .�i/i�1, then for each integer k 2 Œ1; lim supi!1 ki�,
the sequence ! D wˇ`11 ˇ wˇ`22 ˇ � � � is �-normal of order k. Moreover, if
lim supi!1 ki D1, then ! is �-normal

Our construction is very similar to the Champernowne type construction of
Bertrand-Mathis in Section 8.3. However, our goal is to construct a sequence which
is generic for any given shift invariant measure and not necessarily the maximal
one. As a consequence of this general case, our construction is not so efficient in
that it uses many repetitions of words that have “good distribution” for the desired
measure.

The Champernowne word has several advantages like

• every possible block occurs exactly once,
• two consecutive blocks are different,
• the blocks are ordered in size, meaning that first we have those of length 1, then

of length 2, then of length 3, and so on.

On the contrary the Champernowne word is generic for the maximal measure. What
if we want a different one? A different one means that there is at least one block
that gets more weight. Let us return to our case of the binary expansion and the
frequencies 1=4 for 0 and 3=4 for 1. Then an idea would be to simply repeat each
block according to its weight. For example, the word

0 1 1 1;

where we repeated 0 once and 1 three times, has the desired frequencies of length
one. For length two, we look at the word

00 01 01 01 10 10 10 11 11 11 11 11 11 11 11 11;

where we repeated 00 once, 01 and 10 three times, and 11 nine times. In general,
since the common denominator is always 4k, we multiply the desired frequency by
4k and obtain the number of times we have to repeat this word in the sequence.

This works for q-adic expansions. However, we want to obtain such a construc-
tion for general symbolic dynamical systems satisfying the specification property.
In these systems we have to face two main issues: the possible infinite alphabet and
the restriction of concatenation of words.

Recall our example with ˇ-expansions (Example 8.1.2), and set ˇ D � the
Golden Ratio. In this case we have that the word 11 is forbidden in the expansion.
However, if we concatenate a D 1001 and b D 1010, which are admissible as such,
that yields the word ab D 10011010, which is not admissible. At this point we use
the specification property in order to glue the words together yielding the admissible
word aˇ b D 100101010.

For a fixed ` � 1 we let L` D fp1; : : : ;pjL`jg be an arbitrary ordering of the
words of length `. Furthermore let m` D minf�.b/ W b 2 L`g for ` � 1 and M be an
arbitrary large constant such that M � 1

m`
.
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Now we define a word pb;`;M that contains each pi 2 L` with multiplicity near
M�.p/i. Thus

p`;M WD pˇdM�.p1/e1 ˇ pˇdM�.p2/e2 ˇ � � � ˇ p
ˇ
l

M�
�

pjL`j

�m

jL`j
:

In order to be useful for our construction, we have to show the ."; k; �/-normality
of the constructed word p`;M for k � `, i.e.,

.1 � "/�.b/ �
N.b;pb;`;M/

jpb;`;Mj
� .1C "/�.b/: (8.8)

Furthermore for the applications below, we need " and k explicitly. We show the
inequalities in (8.8) by proving upper and lower bounds for the length jp`;Mj as well
as for the number of occurrences N.b;p`;M/ of a block b.

Starting with the length of the constructed word, we get the following upper and
lower bounds

M` � jp`;Mj � .gC `/
�

M C jAj`
�
;

where A denotes the alphabet, which we suppose to be finite for the moment. For
the lower bound we suppose that all words have length `, whereas for the upper
bound we always have to add the gab g. Moreover the lower bound for the number
of elements originates from the fact that each word has to appear at least once, and
in the upper bound we compensate the error from the ceiling function.

The lower and upper bounds of the number of occurrences of b in p`;M are a little
bit more work. In particular, as above in Section 8.3, we will distinguish several
cases: the word b may occur

1. within pi,
2. between two equal words pi ˇ pi or
3. between two different words pi ˇ piC1.

For the lower bound, we only consider the case of occurrences with pi yielding

N.b;p`;M/ � .` � kC 1/M�.b/:

A consideration of all three cases yields the upper bound

N.b;p`;M/ � .`C g/
�

M�.b/C jAj2`Cg�k
�
:

Putting these bounds together, we get that p`;M is ."; k; �/-normal for

k � ` and " � max

 
gC k � 1

`C g
C

jAj`

M C jAj`
;

g

`
C

1

mk

jAj2`Cg�k

M

!
: (8.9)
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This construction is far from optimal in the sense that even if you use it for
the construction of a normal number in the decimal system, it uses way too many
repetitions. In special cases Vandehey [573] reduced the number of copies necessary
in the construction. However, it remains an open problem to reduce the number of
copies in the case of ˇ-expansions or more generally in the case of shifts of finite
type.

In the following we want to apply this construction to ˇ-expansions and
continued fraction expansion. Note that further applications have been considered
by Madritsch and Mance [399], who constructed normal numbers with respect to
q-adic expansions with maximal and arbitrary measure and Lüroth series. Also the
unfair coin as a special application in the binary system with not maximal measure
has been considered.

We only have restrictions on the concatenation in the case of ˇ-expansions; all
other examples are in the full shift. It is easy to combine our construction for ˇ-
expansions and continued fractions in order to get constructions for ˛-continued
fractions (cf. Nakada [434]) or Rosen-continued fractions [510], which have an
infinite digit set with restrictions on the concatenation of words. For the relation
of normal numbers with respect to different continued fraction expansions, we refer
the interested reader to the paper of Kraaikamp and Nakada [361].

The main ingredient in all our constructions is the following lemma which is a
consequence of Theorem 8.4.1 together with the construction of the words p`;M .

Lemma 8.4.2. Let � be a shift invariant probability measure and let .�i/i�1 be
an approximation scheme for �. Suppose that qi � 2, Mi and `i are sequences of
positive integers such that

Mi � .minf�.b/ W b 2 D�i;ig/
�1 and q2i

i D o.Mi/ (8.10)

and .pi;Mi ; `i/ is �-good for the approximation scheme .�i/i�1. Then the sequence
! D wˇ`11 ˇ wˇ`22 ˇ � � � is �-normal.

For the ˇ expansion the size of the gap depends on the expansion of 1. To this end
we denote by dˇ.1/ D b1 : : : bt.btC1 : : : btCp/

` the ˇ-expansion of 1. If 1 has a finite
expansion, then we set p D 0. We are looking for the longest possible sequence of
zeroes occurring in the expansion of 1. As one easily checks, the longest occurs if
b1 D � � � D btCp�1 D 0 and btCp ¤ 0. Thus we can set the gap size g to be

g D tC p:

We wish to minimize the length of a cylinder set defined by a word of length `.
Define

�ˇ.`/ D

�
1 if 1 � ` � t
r if tC .r � 2/p � ` � tC .r � 1/p

:
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Then the length of this interval is at least ˇ�.tC�ˇ.`/p/. We use the fact that
�ˇ.I/ � .1 � 1=ˇ/�.I/ and put

Mi D max

 
ˇtC�ˇ.i/p

1 � 1
ˇ

; dˇe2i log i

!
:

Put wi D pi;Mi and qi D dˇe. Note that limi!1
�.i/
i=p D 1, so for large i

.iC g/ dˇe2i log i � jwij � .iC g/
�
dˇe2i log iC dˇei

�

Thus, for large i

jwij � i dˇe2i log i:

Put `i D i2i and the computation follows the same lines as above.
Now we turn our attention to the continued fraction expansion. For a word b D

b1 : : : bi, let 	b be the set of all real numbers in .0; 1/ whose first i digits of it’s
continued fraction expansions are equal to b. Put

�.b/ D
1

log 2

Z

	b

dx

1C x
:

If there is an index n such that bn > i, then let �i.b/ D 0. Let S D fn W bn D ig.
For i < 8, set �i.b/ D �.b/. For i � 8, if S D ;, then let �i.b/ D �.b/. If S ¤ ;,
then let

�i.b/ D
X

b0

�.b0/;

where the sum is over all words b0 D b01 : : : b
0
i such that for each index n in S, b0n � i.

Put mi D minb2D�i ;jbjDi �i.b/: We wish to find a lower bound for mi. If b D
b1 : : : bk, then let

pk

qk
D

1

b1 C
1

b2 C
: : : C

1

bk

:

It is well known that �.	b/ D
1

qk.qkCqk�1/
and �.b/ > 1

2 log 2�.	b/.

Thus, we may find a lower bound for mi by minimizing .qi.qi C qi�1//
�1 for

words b in D�i . The minimum will occur for b D ii : : : i. It is known that qn D

iqn�1 C qn�2 if we set q0 D 1 and q1 D i. Set
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r1 D
iC
p

i2 C 4

2
; r2 D

i �
p

i2 C 4

2
:

Then

qn D
rnC1
1 � rnC1

2p
i2 C 4

:

Thus,

1

qi.qi C qi�1/
D

i2 C 4

.riC1
1 � riC1

2 /..riC1
1 C ri

1/ � .r
iC1
2 � ri

2//
>

log 2

i2i
for i � 8:

Thus, mi >
1

2 log 2

�
log 2
i2i

�
D 1

2
i�2i. Let Mi D 2i2i log i, g D 0, wi D piC1;i;Mi . Set

`i D 0 for i < 8 and `i D
�

i2 log i
˘

for i � 8. Then for i � 9

`i�1

`i

jwi�1j

jwij
i <

2.i � 1/2i�1 C ii�1

2i2i
D

�
1 �

1

i

	2i
1

i � 1
C

1

2iiC1
! 0

and

jwiC1j

`ijwij
�
2.iC 1/2iC3 C .iC 2/iC1

i2 log i � 2i2iC1
D

�
1C

1

i

	2i
.iC 1/3

i3 log i
C o.i�i/! 0:

By 8.4.2 the number whose digits of its continued fraction expansions are formed
by wˇ`11 ˇ wˇ`22 ˇ � � � is normal with respect to the continued fraction expansions.

8.5 Besicovitch-Eggleston Sets

After constructing generic sequences for different measures, we want to consider
sets of non-normal numbers. We will distinguish different kinds of non-normality.
First of all it suffices for a sequences to be not generic for the maximal measure in
order to be a non-normal sequence.

In this vein we want to continue the idea from the above section and investigate
sets of reals whose digital distribution follows a different measure. These sets
are called Besicovitch-Eggleston sets. Besicovitch [82] considered binary expan-
sions where 0 appears with probability p and 1 with probability 1 � p. Later
Eggleston [210] generalized this to arbitrary q-adic expansions. For a given vector
.p0; : : : ; pq�1/ with

Pq�1
dD0 pd D 1 the set B.p0; : : : ; pq�1/ of sequences such that the

digit d appears with probability pd has Hausdorff dimension
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dimH B.p0; : : : ; pq�1/ D �

q�1X

dD0

pd log pd:

The connection with the entropy of the measure �.d/ D pd for 0 � d < q � 1 was
investigated by Billingsley [85, 86] who showed that for a given measure � over
the full shift, the set B.�/ of all sequences which are generic for this measure has
Hausdorff dimension

dimH B.�/ D h.�/:

In the following section, we want to show a generalization of this result to sets of
measures over a symbolic dynamical system fulfilling the specification property.

For ˛ 2M we denote by B.˛/ the subset of x 2 X, which are generic for ˛, i.e.,
all x 2 X such that for k � 1 and w 2 Lk

lim
n!1

P.x;w; n/ D ˛.w/:

Then Pfister and Sullivan [478] proved the following.

Theorem 8.5.1 ([478]). Let ˛ 2M . Then

dimH B.˛/ D
h.˛/

h.X/
:

They even proved more. In particular, they investigated connected sets of
measures and showed upper and lower bounds for their Hausdorff dimension (cf.
[478]). The rest of this section is devoted to a presentation of their proof.

8.5.1 Reconstruction and Canonical Sequences

Before jumping right into the presentation of the steps of their proof, we want
to shed some light on the general concept behind. In the preceding section, we
concatenated words in order to obtain a certain measure. For the Besicovitch-
Eggleston sets on the other hand, the main idea is to enclose the set with a larger
and a smaller one where we keep control on the Hausdorff dimension. To this end it
will be very handy to approximate a certain measure, which might be different from
the maximal one.

Considering cylinder sets up to a maximal order only gives us some “finite”
restriction, and we will get a cover (a larger set). For the smaller set we need a
sequence of sets �n 2 An such that the empirical measure of each word in �n is very
close to the desired measure. By playing with the parameters of this construction,
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we obtain a smaller set. In the end we need to show that the Hausdorff dimension of
the cover and the inner set converge to the same value.

For a better understanding, we look at a concrete example. Consider the full shift
over the alphabet f0; 1g, and let ˛ be the measure corresponding to the distribution
of the digits equal to . 2

3
; 1
3
/. This means that 2

3
of the digits are 0s and 1

3
of the digits

are 1s. An easy way of obtaining all words that satisfy this distribution (exactly) is
for n being divisible by 3 to consider the set

�n D

(
.a1 : : : an/ 2 f0; 1g

nW
1

n

nX

iD1

ai D
1

3

)
:

For n � 1 let ˇnŒ�j�n� be the probability measures on Ln that put equal weight
on the words in �n and zero weight on the words outside �n. Then for each subset
	n � Ln we have

ˇnŒ	nj�n� D
#.	n \ �n/

#�n
:

Furthermore for m < n every measure �n on Ln induces a measure �m on Lm by
selecting the first m letters from each word of length n.

Definition 8.5.2. A sequence f�n 2 LnW n 2 Ng is called a reconstruction sequence
for ˛ if each �n is invariant under cyclic permutations and

lim
n!1

ˇm Œ�j�n� D ˛m

for each m 2 N.

We illustrate the concept of a reconstruction sequence for ˛ by extending the
sequence f�n � LnW n 2 Ng for the case n=3 not being an integer.

For the efficiency of the construction, we would like the sequence to grow as fast
as possible. To this end we consider the following variant of the sets �n from above:

� ı
n D

(
.a1; : : : ; an/ 2 LnW

ˇ̌
ˇ̌
ˇ
1

n

nX

iD1

ai �
1

3

ˇ̌
ˇ̌
ˇ � ı

)
:

This sequence of sets grows faster than the original one, however, not to ˛. For
0 < ı < 1

6
the sequence fˇmŒ�j�

ı
n �gn converges to the distribution

�
2
3
� ı; 1

3
C ı

�
,

and for ı � 1
6

we obtain the maximal measure . 1
2
; 1
2
/ (cf. Chapter 4 of Lewis, Pfister,

and Sullivan [379]). This shows the tendency of a system to maximize its entropy
(principle of maximum entropy). Since the entropy equals h.p/ D �p log p � .1 �
p/ log.1�p/ where we denote by p the expected frequency of occurrences of 1s, we
have for 0 < ı < 1

6
that h. 1

3
C ı/ > h. 1

3
/ and the entropy maximizes for p D 1

2
.

We deduce from these examples that a reconstruction sequence cannot grow too
quickly. In fact, we have the following upper bound.
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Lemma 8.5.3 ([378, Lemma 2.2]). Let ˛ be a shift invariant measure. If f�n �

LnW n 2 Ng is a reconstruction sequence for ˛, then

lim sup
n!1

1

n
log #�n � h.˛/:

Now we turn our attention to another property of a sequence of sets of words. We
call a sequence f�n � LnW n 2 Ng a supporting sequence for ˛ if

lim
n!1

˛nŒ�n� D 1

where ˛n is the probability measure induced on Ln. The sequences with ı > 0 are
supporting sequences for the distribution

�
2
3
; 1
3

�
; however, this is not the case for

ı D 0. Therefore a supporting sequence cannot grow too slowly. In the same spirit
as above, we have the following lower bound.

Lemma 8.5.4 ([378, Lemma 2.1]). Let ˛ be a shift invariant measure. If f�n �

LnW n 2 Ng is a supporting sequence for ˛, then

lim inf
n!1

1

n
log #�n � h.˛/:

These two lemmas support the following definition.

Definition 8.5.5. Let ˛ be an invariant measure. A sequence f�n � LnW n 2 Ng has
entropic growth rate for ˛ if and only if

lim
n!1

1

n
log #�n D h.˛/:

Let us modify the sequence �n from above in order to get a sequence with
entropic growth rate. To this end we set

� 0n D

(
.a1; : : : ; an/ 2 LnW

ˇ̌
ˇ̌
ˇ
1

n

nX

iD1

ai �
1

3

ˇ̌
ˇ̌
ˇ �

log n
p

n

)
:

Using the conditional limit theorem (cf. [379]), we get that this sequence has the
reconstruction property. Furthermore the central limit theorem tells us that it also
has the supporting property.

We want to take a closer look at this construction. Using the frequency vector
from the introduction, we may write the set as

� 0n WD P1.�; n/
�1Fn;

where Fn is the closed ball of radius log n=
p

n centered in the point
�
2
3
; 1
3

�
. This

general idea motivates the following definition.
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Definition 8.5.6. Let TnWX ! M be the cyclic empirical measure. We call a
sequence f�n 2 LnW n 2 Ng canonical for ˛ if and only if

1. there exists a decreasing sequence fFng of closed neighborhoods of ˛ whose
intersection is f˛g;

2. each set �n is given by

�n D XnT�1n Fn;

where Xn is the projection on the first n letters of each word;
3. for all n sufficiently large, ˇnŒ�n� > 0.

In this case we say that the canonical sequence f�ng is based on the
sequence fFng.

We note the following three properties. The first one tells us that the canonical
sequences are those we are looking for.

Lemma 8.5.7 ([378, Lemma 2.3]). Let ˛ be a shift invariant measure. Every
canonical sequence for ˛ is a reconstruction sequence for ˛.

Moreover there is a canonical sequence that has entropic growth rate.

Lemma 8.5.8 ([378, Lemma 2.4]). Let ˛ be a shift invariant measure. Then there
exists a canonical sequence for ˛ having entropic growth rate.

Finally we have the following result if ˛ is ergodic.

Lemma 8.5.9 ([378, Lemma 2.5]). Let ˛ be an ergodic shift invariant measure.
Then there exists a canonical sequence for ˛ which is a supporting sequence
for ˛.

Together they prove the following theorem.

Theorem 8.5.10. Let ˛ be a shift invariant measure. Then there exists a reconstruc-
tion sequence for ˛ having entropic growth rate.

If, in addition, ˛ is ergodic, then the reconstruction sequence may be chosen so
as to be a supporting sequence for ˛.

In the present section, we will use this theorem in the following form.

Corollary 8.5.11 ([478, Corollary 2.1]). Let ˛ be a shift invariant measure and X
be a shift space satisfying the specification property. Then there exists a sequence
f�n � LnW n 2 Ng with the following properties. Given " > 0 and a neighborhood
U of ˛, there exists N.U; "/ such that for all n � N.U; "/,

log j�nj � n.h.˛/ � "/ and Tn.!/ 2 U; 8! 2 X�1n .� .n//:
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8.5.2 A Cover

Recall that � is the maximal probability measure on X. Suppose that there exists a
continuous nonnegative function e� on L, and C� > 0 such that

he�; ˛i WD
Z

e�d˛ � C� 8˛ 2M : (8.11)

Before we start with the proof, we first need some tools. A central one is the
concept of local functions.

Definition 8.5.12. A function f is local if there exists 1 � i � j < 1 such that
f .!/ D f .�/ whenever XŒi;j�.!/ D XŒi;j�.�/ where XŒi;j� denotes the projection to the
letters from i to j.

Let � 2M be a measure. Then we set

e�.!/ WD � log �.!1j!2; !3; : : :/:

We have the following estimates around the function e� .

Lemma 8.5.13 ([478, Lemma 3.1]). Let � be the maximal measure. Then

lim sup
n!1

sup
!2˙

ˇ̌
ˇ̌1
n

log �
�
!n
1

�
C he�;Tn.!/i

ˇ̌
ˇ̌ D 0: (8.12)

Furthermore for each ı > 0 there exist mı , Nı 2 N, and fı 2 Fmı such that for
all n � Nı , for all ! 2 ˙ , je�.!/ � fı.!/j � ı and

ˇ̌
ˇ̌hfı;Tn.!/i C

1

n
log �

�
!n
1

�ˇ̌ˇ̌ < ı: (8.13)

As a corollary we obtain the following useful calculation.

Corollary 8.5.14. For ˛ 2M we have jhe�; ˛i � hfı; ˛ij � ı and

lim
n!1

�
1

n

X

!n
12Ln

˛Œ!n
1 � log �Œ!n

1 � D he�; ˛i:

We set the desired dimension to be

s� WD
h.˛/

h.X/
:

Then for the cover we may assume that

s� < s < 1:
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It is sufficient to show that there exists a collection of cylinder sets fBnW n 2 Ng such
that

B.˛/ �
[

n

Bn and
X

n

�ŒBn�
s < ":

We define the closed neighborhoods

UM;" WD f 2M W k � ˛kM � "g ;

such that

\

M;"

UM;" D f˛g:

Let ı > 0. Since the entropy h is upper semicontinuous on M , there exists a closed
neighborhood, say, Fı WD UM;", such that M � mı , and if  2 Fı \M , then
h./ � h.˛/C ı. Set

� ı
n WD XnCM

�˚
! 2 LWTn.!/ 2 Fı

��
:

Now we cover B.˛/ by these sets and search an upper bound for

X

!
nCM
1 2� ın

�
��
!nCM
1

��s
:

Using Lemma 8.5.13 for ! 2 L such that XnCM.!/ 2 �
ı

n , we have for n � Nı ,

ˇ̌
ˇ̌ 1

nCM
log� ŒXnCM.!/�C hfı;TnCM.!/i

ˇ̌
ˇ̌ < ı:

Thus

log
X

!
nCM
1 2� ın

�
��
!nCM
1

��s
� log

ˇ̌
� ı

n

ˇ̌
C s

 
max

!
nCM
1 2� ın

log�
��
!nCM
1

��
!

� log
ˇ̌
� ı

n

ˇ̌
C s.nCM/.�hfı;TnCM.!/i C ı/:

For the estimation of the first term log
ˇ̌
� ı

n

ˇ̌
, we use standard large deviation results

on the empirical measure Tn over the probability space .˝; ˇ/, where ˝ is the full
shift over A and ˇ is the uniform probability: for any compact subset K �M

lim sup
n

1

n
logˇ .f! 2 ˝WTn.!/ 2 Kg/ � sup

˛2K
.h.˛/ � log r/;
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where we use the convention that if K D ;, then the supremum is equal to �1.
Applying this with K D Fı , the set f!WTn.!/ 2 Fıg is FnCM-measurable. Since

ˇ
�
f! 2 ˝WTn.!/ 2 Fıg

�
D

ˇ̌
XnCM.f! 2 ˝WTn.!/ 2 Fıg/

ˇ̌

rnCM
;

we deduce for n large enough

log
ˇ̌
� ı

n

ˇ̌
� log

ˇ̌
XnCM.f! 2 ˝WTn.!/ 2 Fıg/

ˇ̌

� .nCM/

 
sup
˛2Fı

.h.˛/C ı/

!
:

Combining our choice of Fı and Corollary 8.5.14, we obtain

sup
2Fı

h./ � h.˛/C ı �
h.˛/

h.X/
.hfı; ˛i C ı/C ı �

h.˛/

h.X/
hfı; ˛i C ı:

Therefore

log
X

!
nCM
1 2� ın

�.Œ!nCM
1 �/s � .nCM/


�
h.˛/

h.X/
� s

	
hfı; ˛i C 4ı

�
:

By Corollary 8.5.14 hfı; ˛i � he�; ˛i � ı � C� � ı. We choose ı > 0, such that

C� � ı > 0 and hfı; ˛i
�

h.˛/
h.X/ � s

�
C 4ı < 0. For such ı, we find M such that the

sum

X

n�m

X

!
nCM
1 2� ın

�
��
!nCM
1

��s

can be made arbitrarily small by taking m sufficiently large. If ! 2 L is such that
fTn.!/g ���!

n!1
˛, then ! is in

[

nDm

[

!
nCM
1 2� ın

X�1nCM

˚
!nCM
1

�

for arbitrary large m. Thus, for arbitrary large m,

˚
Œ!nCM
1 �W!nCM

1 2 � ı
n ; n � m

�

is a cover of B.˛/.
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8.5.3 The Lower Bound

Now we concentrate on the lower bound. We construct a large set B � B.˛/, and we
show that each element of B satisfies the requirements. Finally we prove the lower
bound by showing that B already has the desired dimension.

The central idea behind the construction of the set B is simple. We recursively
construct a sequence of positive integers f`kg and a sequence of subsets �k � L`k in
such a way that for !, with X`k.!/ 2 �k, the empirical measure T`k.!/ is in a close
neighborhood of ˛ and log

ˇ̌
�j

ˇ̌
is close to `kh.˛/. Using the specification property,

we construct a sequence Bk of subsets of L such that each word of Bk is a prefix of
a word in BkC1. The set B is the limit of these sets:

B WD
\

k

[

!2Bk

Œ!�:

Let `1 be a positive integer. Then we define B1 WD �1 � L`1 and set b1 D `1 to be
the length of the elements of B1. For each pair w1 2 B1 and w2 2 �2, there exists a
word v12 of length

ˇ̌
v12
ˇ̌
� g such that w1ˇw2 D w1v12w2 2 L. Thus we obtain for

each !1 2 B1 a set E0.w1/ of j�2j words having the same prefix w1 but not the same
length. Therefore we split the set E0.w1/ in at most gC 1 subsets, such that in each
subset the words have the same length b2. We denote by E.w1/ a subset of maximal
cardinality and define

B2 WD
[

w12B1

E.w1/:

By our construction we get the following lower bound for the number of elements
of B2:

jB2j �
jB1j � j�2j

gC 1
: (8.14)

The set B2 is called a concat product of B1 and �2. Since this product depends
on the choice of the “gluing” words v12 in w1v12w2 and of E.w1/, it is not unique.
However, it is well defined. Iterating this procedure yields sets Bk consisting of
words of length bk as concat products of Bk�1 and �k. By construction we obtain the
following.

Lemma 8.5.15 ([478, Lemma 4.1]). Each ! 2 B has a unique decomposition into

! D w1v12w2v23w3 � � � with wk 2 �k; k 2 N:

Let !; Q! 2 B. Then ! D Q! if and only if

!
bk
bk�`kC1

D Q!
bk
bk�`kC1

:

The following proposition summarizes the choices for the parameter of Pfister
and Sullivan [478], and we refer the interested reader to their paper for details.
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Proposition 8.5.16 ([478, Proposition 4.1]). Let ", 0 < " < 1 and let ˛ 2 M .
Then, there exist a sequence of subsets Bn � L, n � 1, an increasing diverging
sequence of integers `n, n � 1, and a decreasing sequence "n, n � 1, such that
"n � " and limn "n D 0 with the following properties.

1. log jBnj �
Pn

jD1 `j.h.˛/ � "j/.
2. Each word of Bn is a prefix of a word of BnC1, and

B WD
\

k

[

!2Bk

Œ!� � B.˛/:

After the construction of the set B, we turn our attention to actually showing that
the constructed sequence yields a lower bound. This is trivial if s� D 0 and we may
assume that 0 < s�. The idea is to show for 0 < s < s� that C s.B/ D1. Since B is
compact, it suffices to consider finite covers. Let D be such a finite cover of B. Each
cylinder in D is labeled by a word in L, and by abuse of notation we also denote
the set of these words by D . By construction of the set B, we clearly have that two
cylinders labeled by two different words, say w1 and w2, are either disjoint or one
is a subset of the other. The latter case occurs if and only if one of the words is the
prefix of the other. For each n 2 N we set

yn WD minf�.w/Ww 2 Bng;

where � denotes the maximum measure. The main part of the proof of C s.B/ D1
is established by the following lemma.

Lemma 8.5.17. Let 0 < s � 1. Let D be a cover of B, such that �.w/ < yN, for all
w 2 D . Then, there exists n � N such that

X

w2D

�.w/s � exp

0

@
nX

jD1

Lj.h.˛/ � "j/

1

A ys
nC1:

Proof. Since �.w/ < yN , each w 2 D is of the form w D vu, with v 2 BN .
Moreover, any v 2 BN appears as a prefix, since D is a cover of B. We write

X

w2D

�.w/s D
X

v2BN

X

uWvu2D

�.vu/s:

Let v� 2 BN be such that for all v 2 BN ,

X

uWvu2D

�.vu/s �
X

uWv�u2D

�.v�u/
s:

Then, by Proposition 8.5.16,
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X

w2D

�.w/s � jBN j
X

uWv�u2D

�.v�u/
s � exp

0

@
NX

jD1

Lj.h.˛/ � "j/

1

A
X

uWv�u2D

�.v�u/
s:

Either

X

w2D

�.w/s � exp

0

@
NX

jD1

Lj.h.˛/ � "j/

1

A ys
NC1

or

X

w2D

�.w/s < exp

0

@
NX

jD1

Lj.h.˛/ � "j/

1

A ys
NC1:

In the latter case, we have

X

uWv�u2D

�.v�u/
s < ys

NC1;

such that �.v�u/ < yNC1 for all u. Let PNC1 WD fv 2 BNC1W v� is a prefix of vg. For
each u such that v�u 2 D , we can write v�u D v0u0, with v0 2 PNC1. Since D is a
cover of B, all prefixes v0 2 PNC1 occur in the decompositions of v�u D v0u0.

By Corollary 8.5.11, for fixed " > 0 there exist sets � .˛; n/ 2 Ln and N.˛; "/ �
N" such that for all n � N.˛; "/,

jTn.!/ � ˛jM."/ <
"

3
8! 2 L;Xn.!/ 2 � .˛; n/I

j

n
< "I

log j� .˛; n/j > n

�
h.˛/C

log.jC 1/

n
� "

	
I

ˇ̌
ˇ̌he�; ˛i C

1

n
log �

��
!n
1

��ˇ̌ˇ̌ < " 8!n
1 2 � .˛; n/:

(8.15)

By the construction of BNC1 and (8.15), we have

jPNC1j � exp.LNC1.h.˛/ � "NC1//:

Choose v0� 2 PNC1 such that for all v0 2 PNC1,

X

u0Wv0u02D

�.v0u0/s �
X

u0Wv0
�u02D

�.v0�u
0/s:
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Therefore, we get

X

w2D

�.w/s � exp

0

@
NX

jD1

Lj.h.˛/ � "j/

1

A
X

uWv�u2D

�.v�u/
s

D exp

0

@
NX

jD1

Lj.h.˛/ � "j/

1

A
X

v02PNC1

X

u0Wv0u02D

�.v0u0/s

� exp

0

@
NC1X

jD1

Lj.h.˛/ � "j/

1

A
X

u0Wv0
�u02D

�.v0�u
0/s:

We can repeat the above argument; since the cover D is finite, there exists n � N
such that

X

w2D

�.w/s � exp

0

@
NX

jD1

Lj.h.˛/ � "j/

1

A ys
nC1:

For the construction of the inner set, we need some information on the empirical
measure if we concatenate two words. In particular, using (8.15) and the fact

kTn.!/ � Tm.!/k �
2.n � m/

n
if n > m;

we get for ! 2 B that

kTbmCk.!/ �

m�1X

jD0

bjC1 � bj

bm
˛k �

3k

bm
C 3

m�1X

jD0

bjC1 � bj

bm
"jC1: (8.16)

Using Lemma 8.5.13 and (8.16) we have

lim
n

sup
w2BnC1

ˇ̌
ˇ̌
ˇ̌
1

bnC1
log�.w/C

nX

jD0

bjC1 � bj

bnC1
he�; ˛i

ˇ̌
ˇ̌
ˇ̌ D 0: (8.17)

For ı > 0 there exists Nı such that for n � Nı we deduce from (8.17), (8.14), (8.15),
and the inequality h.˛/=s� � he�; ˛i � C� that

nX

jD1

Lj.h.˛/ � "j/C s log ynC1 �

nX

jD1

h.˛/

�
Lj �

s

s�
.bj � bj�1/

	



8 Normal Numbers and Symbolic Dynamics 317

� s.bnC1 � bn/he�; ˛i �
nX

jD1

Lj"j � ısbnC1:

Taking ı > 0 such that sı < .s� � s/C� and noting that limn
Pn

1 Lj=bnC1 D 1, we
deduce

lim inf
n

exp

0

@
nX

jD1

Lj.h.˛/ � "j/

1

A ys
nC1 D1

and therefore C s.B/ D1 by Lemma 8.5.17.

8.6 Extremely Non-normal Numbers

After considering the Hausdorff dimension for a given distribution, we would like to
know it on the one hand for more extreme cases as well as over an infinite alphabet.
First we stay with the finite alphabet in order to better understand these concepts.

8.6.1 Finite Alphabet

When thinking about non-normal numbers without limiting frequencies, one of the
first ideas is to suppose that the limiting frequency does not exist for one digit,
whereas it exists for another one. In this case we clearly have jAj > 2. Since
otherwise if p denotes the asymptotic frequency of 0s, then 1 � p must be the
asymptotic frequency of 1s. We call a sequence ! of digits over the alphabet
f0; 1; : : : ; q � 1g particularly non-normal if there exist two distinct digits 0 �
d1; d2 � q � 1 such that

lim
n!1

P.!; d1; n/ exist but lim
n!1

P.!; d2; n/ does not exist.

Albeverio et al. [10] could show that the set of particularly non-normal numbers has
full Hausdorff dimension 1.

Now we could suppose a different result, if we want no limits for all digits. A
sequence ! over the alphabet f0; 1; : : : ; q � 1g is called essentially non-normal if
for all digits 0 � d � q � 1 the asymptotic frequency of occurrences of this digit
does not exist, i.e.,

lim
n!1

P.!; d; n/ does not exist for 0 � d < q:

For the case of q-adic expansions, Albeverio et al. [10] could prove the following.
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Theorem 8.6.1 ([10, Theorem 1]). Let .P; �/ be the N-ary representation of
Example 8.1.1. Then the set of essentially non-normal numbers is residual.

This result has been generalized to Markov partitions whose underlying language
is the full shift by Madritsch [398]. For shifts fulfilling the specification property,
we have the following more general theorem.

Theorem 8.6.2 ([400]). Let P D fP0; : : : ;PN�1g be a topological partition for
.M; �/. Suppose that

•
T1

nD0 Dn.!/ consists of exactly one point;
• XP;T fulfills the specification property;
• for all i 2 ˙ there exist qi;1 D .q1;1; : : : q1;N�1/;qi;2 D .q2;1; : : : q2;N�1/ 2 S1

such that jq1;i � q2;ij > 0.

Then the set of essentially non-normal numbers is residual.

Remark 8.6.3. The requirement that for each digit we need at least two possible
distributions is sufficient in order to prevent that the underlying language is too
simple. For example, we want to exclude the case of the shift over the alphabet
f0; 1g with forbidden words 00 and 11.

In the present section we want to consider an “extreme” case. Let Ak.!/ be the
set of accumulation points of the sequence of frequency vectors .Pk.!; n//n with
respect to the 1-norm k�k1, i.e., for ! 2 X we set

Ak.!/ WD fp 2 	k W p is an accumulation point of .Pk.!; n//ng ;

where 	k denotes the simplex of all shift invariant probabilities. Then we define Sk

as union of all possible accumulation points, i.e.,

Sk WD
[

!2X

Ak.!/:

We note that in the case of q-ary expansions, this definition leads to the shift
invariant probability vectors (cf. Theorem 0 of Olsen [459]).

For any infinite word ! 2 X, we clearly have Ak.!/ 
 Sk. On the other hand, we
call ! 2 X extremely non-k-normal if the set of accumulation points of the sequence
.Pk.!; n//n (with respect to k�k1) equals Sk, i.e., Ak.!/ D Sk. Furthermore, we call
a number extremely non-normal if it is extremely non-k-normal for all k � 1.

The set of extremely non-normal numbers for the q-adic representation has been
considered by Olsen [459].

Theorem 8.6.4 ([459, Theorem 1]). Let .P;T/ be the q-adic expansion of Exam-
ple 8.1.1. Then the set of extremely non-normal numbers is residual in M.

This result was generalized to iterated function systems by Baek and Olsen [30]
and to finite Markov partitions by Madritsch [398].

We want to extend this notion to the Cesàro averages of the frequencies. To this
end for a fixed block b D b1 : : : bk 2 Lk, let
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P.0/.!;b; n/ D P.!;b; n/:

For r � 1 we recursively define

P.r/.!;b; n/ D

Pn
jD1 P.r�1/.!;b; j/

n

to be the rth iterated Cesàro average of the frequency of the block of digits b under
the first n digits. Furthermore, we define by

P.r/k .!; n/ WD
�
P.r/.!;b; n/

�
b2Lk

the vector of rth iterated Cesàro averages. As above, we are interested in the accu-
mulation points. Thus similar to above let A.r/

k .!/ denote the set of accumulation

points of the sequence .P.r/k .!; n//n with respect to k�k1, i.e.,

A.r/
k .!/ WD

n
p 2 	k W p is an accumulation point of .P.r/k .!; n//n

o
:

Now we call a number rth iterated Cesàro extremely non-k-normal if the set of
accumulation points is the full set, i.e., A.r/

k D Sk.

For r � 1 and k � 1 we denote by E.r/k the set of rth iterated Cesàro extremely
non-k-normal numbers of M. Furthermore, for r � 1 we denote by E.r/ the set of
rth iterated Cesàro extremely non-normal numbers and by E the set of completely
Cesàro extremely non-normal numbers, i.e.,

E D
\

k

E.r/k and E D
\

r

E.r/ D
\

r;k

E.r/k :

As above, this has already been considered for the case of the q-ary expansion
by Hyde et al. [307]. The general theorem for dynamical systems fulfilling the
specification property is due to Petrykiewicz and the author.

Theorem 8.6.5. Let k, r, and N be positive integers. Let P D fP0; : : : ;PN�1g

be a topological partition for .M; �/. Suppose that LP;T fulfills the specification
property. Then the set E.r/k is residual.

Since the set of non-normal numbers is a countable intersection of sets E.r/k , we
get the following.

Corollary 8.6.6. Let N be a positive integer and P D fP0; : : : ;PN�1g be a number
system partition for .M;T/. Suppose that LP;T fulfills the specification property.
Then the sets E.r/ and E are residual.
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8.6.2 Infinite Alphabet

Now we turn our attention to continued fractions with maximal digital frequency
oscillation. We use the definitions and notations of the corresponding Sections 8.1.1
and 8.2.1.

We call x 2 I D Œ0; 1� nQ extremely non-k-normal if each probability vector p 2
Sk is an accumulation point of the sequence of vectors of frequencies .˘k.x; n//n2N.
Furthermore we call x 2 I extremely non-normal if it is extremely non-k-normal for
every k � 1. Then Olsen [457] could prove the following.

Theorem 8.6.7 ([457, Theorem 1]). The set of extremely non-normal continued
fractions is residual.

We denote by A.x;b/ the set of all accumulation points of the sequence
.˘.x;b; n//n2N. Furthermore we set

A.b/ D
[

x2I

A.x;b/:

Then the set of continued fractions with maximal frequency oscillation F is
defined by

F D fx 2 IWA.b/ D A.x;b/ for all bg:

Liao, Ma, and Wang [380] could show the following.

Theorem 8.6.8 ([380, Theorem 1.1]). The set of continued fractions with maximal
frequency oscillation is residual.

Similar to the abovementioned paper of Hyde et al. [307], we extend our
considerations to Cesàro averages of the frequencies. For a fixed block b D
b1 : : : bk 2 Nk, let

P.0/.!;b; n/ D P.!;b; n/:

For r � 1 we recursively define

P.r/.!;b; n/ D

Pn
jD1 P.r�1/.!;b; j/

n

to be the rth iterated Cesàro average of the frequency of the block of digits b under
the first n digits. Furthermore we define by

P.r/k .!; n/ WD
�
P.r/.!;b; n/

�
b2Nk

the vector of rth iterated Cesàro averages. As above, we are interested in the
accumulation points. Let A.r/

k .!/ denote the set of accumulation points of the

sequence .P.r/k .!; n//n with respect to k�k1, i.e.,
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A.r/
k .!/ WD

n
p 2 	k W p is an accumulation point of .P.r/k .!; n//n

o
:

We will denote the set of extremely non-k-normal numbers of M by E.0/k .

Similarly for r � 1 and k � 1 we denote by E.r/k the set of rth iterated Cesàro
extremely non-k-normal numbers of M. Furthermore for r � 1 we denote by E.r/

the set of rth iterated Cesàro extremely non-normal numbers and by E the set of
completely Cesàro extremely non-normal numbers, i.e.,

E.r/ D
\

k

E.r/k and E D
\

r

E.r/ D
\

r;k

E.r/k :

Then our result is the following.

Theorem 8.6.9. Let k � 1 and r � 0 be integers. Furthermore let P D

fP1;P2; : : :g be an infinite Markov partition for .M;T/. Suppose that the generated
shift space XP;T is the one-sided full shift. Then the set E.r/k is residual.

Remark 8.6.10. We note that the same holds true for XP;T being a one-sided shift
of finite type. In fact the only change is a replacement of the definition of Zn and of
Lemma 8.6.12 (cf. Olsen [458] and Olsen and Winter [460]).

After considering extremely non-normal numbers, we want to turn our attention
toward numbers with maximal oscillation frequency. Similarly to above, for r �
0, we denote by A.r/.!;b/ the set of all accumulation points of the sequence�
P.r/.!;b; n/

�
n2N. Furthermore we set

A.r/.b/ D
[

!2U1

A.r/.!;b/:

Then the set of numbers with r-th iterated Cesàro maximal frequency oscillation
F.r/ is defined by

F.r/ D
˚
! 2 U1WA

.r/.b/ D A.r/.!;b/ for all b 2 N�
�
:

Our result is a generalization of Theorem 1 of Liao, Ma, and Wang [380].

Theorem 8.6.11. Let r � 0 be an integer, and let P D fP1;P2; : : :g be an infinite
Markov partition for .M;T/. Suppose that the generated shift space XP;T is the
one-sided full shift. Then F.r/ is residual.

In the subsequent sections, we will prove the two Theorems 8.6.9 and 8.6.11.
We will start with a general section on properties of words which we need in the
proof of Theorem 8.6.9 and which are interesting on their own. Then we will show
Theorem 8.6.9. Finally in Section 8.6.5 we will prove Theorem 8.6.11 by showing
that E.r/ � F.r/.
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8.6.3 Preliminaries on Words

First of all we want to reduce the infinite problem to a finite one. Thus instead of
considering Sk as such, we concentrate on those probability vectors that only put
weight on a finite set of digits. In particular, let

Sk;N D

8
<̂

:̂
.pi/i2Nk W

pi � 0;
X

i2Nk

pi D 1;
X

i2N

pii D
X

i2N

pii for all i 2 Nk�1

pi D 0 for i 2 Nk n f1; : : : ;Ngk

9
>=

>;

(8.18)

be the set of shift invariant probability vectors, where only the first N digits are
weighted. Furthermore let

S�k D
[

N�1

Sk;N (8.19)

be the union of all probability vectors over a finite alphabet.
Since S�k is a dense and separable subset of Sk, we may concentrate on a dense

sequence .qk;m/m in S�k . We fix q D qk;m throughout the rest of this section. Then
q 2 Sk;N for some N � 1, such that qi D 0 for i 2 Nk n f1; : : : ;Ngk. For n � 1

we put

Zn D Zn.q;N; k/ D

8
<

:! 2
[

`�knNk

f1; : : : ;Ng`j kPk.!/ � qk1 �
1

n

9
=

; :

Since q, N, and k will be fixed, we may omit them throughout the rest of this section.
The main idea consists now in the construction of a word having the desired

frequencies. In particular, for a given word !, we want to show that we can add
sufficiently many copies of any word from Zn to get a word with the desired
properties. To this end we first need that there is at least one word in Zn, i.e., that Zn

is not empty.

Lemma 8.6.12 ([457, Lemma 2.4]). For all n � 1, q 2 S�k , N 2 N, and k 2 N, we
have Zn.q;N; k/ 6D ;.

Now we may construct our word by adding arbitrary many copies of an element
of Zn.

Lemma 8.6.13. Let N; n; t be positive integers and q 2 Sk;N. Furthermore let ! D
!1 : : : !t 2 Nt be a word of length t, and let M D max1�i�t !i be the maximal
“digit” in !. Then, for any � 2 Zn.q;N; k/ and any

` � L WD tC j� jmax

�
n;

t

k
max

�
1;

Mk

Nk

		
(8.20)
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we get that

kPk.!�
�; `/ � qk1 �

6

n
:

Proof. We set s WD j� j and


 D !��j`:

Furthermore we set q and 0 � r < s such that m D tC qsC r. Since an occurrence
can happen in !, in � , somewhere in between or at the end, for every i 2 Nk we
clearly have that

qs

`
P.�; i/ � P.
; i/ �

qsP.�; i/
`

C
tC q.k � 1/C r

`
:

Now we concentrate on the occurrences in multiples of � and show that we may
neglect those outside of � , i.e.,

kPk.
/ � qk1 �
���Pk.
/ �

qs

`
Pk.�/

���
1
C
���

qs

`
Pk.�/ � q

���
1
:

We will estimate both parts separately. For the first one, we get that

���Pk.
/ �
qs

`
Pk.�/

���
1
D

X

i2f1;:::;Ngk

ˇ̌
ˇP.
; i/ �

qs

`
P.�; i/

ˇ̌
ˇ

C
X

i2Nknf1;:::;Ngk

ˇ̌
ˇP.
; i/ �

qs

`
P.�; i/

ˇ̌
ˇ

�
X

i2f1;:::;Ngk

tC qkC s

`
C

X

i2Nknf1;:::;Ngk

P.!;i/¤0

t

`

� Nk tC qk

qnkNk
C
1

q
CMk t

qnkNk

D
1

n
C .cC 1/

1

q
;

where we have used that ` � qs � qnkNk and written

c D
t

nk

�
1C

Mk

Nk

	
:

For the second part, we get that
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���
qs

`
Pk.�/ � q

���
1
�
���

qs

`
Pk.�/ � Pk.�/

���
1
C kPk.�/ � qk1

� qs

ˇ̌
ˇ̌1
`
�
1

qs

ˇ̌
ˇ̌C

1

n

�
t

`
C
1

n
�

t

qnkNk
C
1

n
:

Putting these together yields

kPk.
/ � qk1 �
1

n
C .cC 1/

1

q
C

t

qnkNk
C
1

n
:

By our assumptions on the size of ` in (8.20), this proves the lemma.

8.6.4 Proof of Theorem 8.6.9

The standard method of proof is to construct a subset E of E.r/k which is easier to
handle and already residual. In our construction of the set E, we mainly follow the
ideas of Hyde et al. [307]. We start by recursively defining the functions 'm for
m � 1 by '1.x/ D 2x and 'm.x/ D '1.'m�1.x// for m � 2. Furthermore we set
D D .Q.N

k/ \ S�k /. Since D is countable and dense in S�k and therefore dense in Sk,
we may concentrate on the probability vectors q 2 D.

Now we say that a sequence .xn/n in R.N
k/ has property P if for all q 2 D, m 2 N,

i 2 N, and " > 0, there exists a j 2 N satisfying:

1. j � i,
2. j=2j < ",
3. if j < n < 'm.j/ then kxn � qk1 < ".

Then we define our set E to consist of all frequency vectors having
property P, i.e.,

E D fx 2 U1 W .P
.0/
k .xI n//

1
nD1 has property Pg:

We will proceed in three steps showing that

1. E is residual,
2. if .P.r/.xI n//1nD1 has property P, then also .P.rC1/.xI n//1nD1 has property P, and

3. E 
 E.r/k .

Lemma 8.6.14. The set E is residual.

Proof. For fixed h;m; i 2 N and q 2 D, we say that a sequence .xn/n in RNk
has

property Ph;m;q;i if for every " > 1=h, there exists j 2 N satisfying:
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1. j � i,
2. j=2j < ",
3. if j < n < 'm.2

j/, then kxn � qk1 < ".

Now let Eh;m;q;i be the set of all points whose frequency vector satisfies property
Ph;m;q;i, i.e.,

Eh;m;q;i WD
n
x 2 U1 W

�
P.0/k .xI n/

�1
nD1

has property Ph;m;q;i

o
:

Obviously we have that

E D
\

h2N

\

m2N

\

q2D

\

i2N

Eh;m;q;i:

Thus it remains to show that Eh;m;q;i is open and dense.

1. Eh;m;q;i is open. Let x 2 Eh;m;q;i, then there exists a j 2 N such that j � i,
j=2j < 1=h, and if j < n < 'm.2

j/, then
���P.1/k .xI n/ � q

���
1
< 1=h:

Let ! 2 X be such that x D �.!/ and set t WD 'm.2
j/. Since Dt.!/ is open,

there exists a ı > 0 such that the ball B.x; ı/ 
 Dt.!/. Furthermore, since by
definition all y 2 Dt.!/ have their first t digits the same as x, we get that

B.x; ı/ 
 Dt.!/ 
 Eh;m;q;i:

2. Eh;m;q;i is dense. Let x 2 U1 and ı > 0. We must find y 2 B.x; ı/ \ Eh;m;q;i.
Let ! 2 X be such that x D �.!/. Since diamDt.!/ ! 0 for t ! 1 and

x 2 Dt.!/ for t � 1, there exists a t such that Dt.!/ � B.x; ı/. Let 
 D !jt be
the first t digits of x.

Now, an application of Lemma 8.6.12 with n D 6h yields that there exists a
finite word � such that

kPk.�/ � qk1 �
1

6h
:

Let " � 1
h and L be as in the statement of Lemma 8.6.13. Then we choose j

such that

j

2j
< " and j � max .L; i/ :

An application of Lemma 8.6.13 with n D 6h then gives us that

kPk.
�
�jj/ � qk1 �

6

n
D
1

h
� ":
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Thus we choose y 2 Dj.
�
�/. Then on the one hand, y 2 Dj.
�

�/ � Dt.!/ �

B.x; ı/, and on the other hand, y 2 Dj.
�
�/ � Eh;m;q;i

It follows that E is the countable intersection of open and dense sets, and therefore
E is residual in U1.

Lemma 8.6.15. Let ! 2 XP;� . If .P.r/.!; n//1nD1 has property P, then also
.P.rC1/.!; n//1nD1 has property P.

This is Lemma 2.2 of [307]. However, the proof is short so we present it here for
completeness.

Proof. Let ! 2 XP;� be such that .P.r/k .!I n//
1
nD1 has property P, and fix " > 0;q 2

D, i 2 N, and m 2 N. Since .P.r/k .!; n//
1
nD1 has property P, there exists j0 2 N

with j0 � i, j0=2j0 < "=3, and such that for j0 < n < 'mC1.2
j0/ we have that���P.r/k .!; n/ � q

���
1
< "=3.

We set j D 2j0 and show that .P.rC1/k .!; n//1nD1 has property P with this j. For all
j < n < 'm.2

j/ (i.e., 2j0 < n < 'mC1.2
j0/), we have

���P.rC1/k .!; n/ � q
���
1

D

�����
P.r/k .!; 1/C P.r/k .!; 2/C � � � C P.r/k .!; n/

n
� q

�����
1

D

�����
P.r/k .!; 1/C P.r/k .!; 2/C � � � C P.r/k .!; j

0/

n

C
P.r/k .!; j

0 C 1/C P.r/k .!; j
0 C 2/C � � � C P.r/k .!; n/ � .n � j0/q

n
�

j0q
n

�����
1

�

���P.r/k .!; 1/C P.r/k .!; 2/C � � � C P.r/k .!; j
0/
���
1

n

C

���P.r/k .!; j
0 C 1/ � q

���
1
C � � � C

���P.r/k .!; n/ � q
���
1

n
�
kj0qk1

n

�
j0

n
C
"

3

n � j0

n
C

j0

n
�

j0

2j0
C
"

3
C

j0

2j0
�
"

3
C
"

3
C
"

3
D ":

Lemma 8.6.16. The set E is a subset of E.r/k .

Proof. We will show that for any x 2 E we also have x 2 E.r/k . To this end, let x 2 E

and ! 2 XP;� be the symbolic expansion of x, i.e., x D �.!/. Since .P.0/k .!; n//n
has property P, by iterating Lemma 8.6.15 we get that .P.r/k .!; n/ has property P.
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Thus it suffices to show that p is an accumulation point of .P.r/k .!; n//n for any
p 2 Sk. Therefore we fix h 2 N and, since D is dense in Sk, we find a q 2 D such
that

kp � qk1 <
1

h
:

Since .P.r/k .!; n//n has property P for any m 2 N, we find j 2 N with j � h and such

that if j < n < 'm.2
j/ then

���P.r/k .!; n/ � q
���
1
< 1

h . Hence let nh be any integer with

j < nh < 'm.2
j/, then

���P.r/k .!; nh/ � q
���
1
<
1

h
:

Thus each nh in the sequence .nh/h satisfies

���p � P.r/k .!; nh/
���
1
� kp � qk1 C

���P.r/k .!; nh/ � q
���
1
<
2

h
:

Since nh > h, we may extract an increasing subsequence .nhu/u such that
P.r/k .!; nhu/! p for u!1. Thus p is an accumulation point of P.r/k .!; n/, which
proves the lemma.

Proof (Proof of Theorem 8.6.9). Since by Lemma 8.6.14 E is residual in U1 and
by Lemma 8.6.16 E is a subset of E.r/k , we get that E.r/k is residual in U1. Again we

note that M nU1 is the countable union of nowhere dense sets and therefore E.r/k is
also residual in M.

8.6.5 Proof of Theorem 8.6.11

Following the proof of Liao, Ma, and Wang [380], it suffices to show that

E.r/ � F.r/:

First the following lemma provides us with a suitable definition of A.r/.!;b/.

Lemma 8.6.17. Let r � 0 be an integer, ! 2 XP;� , and b 2 N�. Then

A.r/.!;b/ D



lim inf
n!1

P.r/.!;b; n/; lim sup
n!1

P.r/.!;b; n/
�
:

Proof. It suffices to show that the gaps between two consecutive frequencies tend
to zero, i.e.,

lim
n!1

�
P.r/.!;b; nC 1/ � P.r/.!;b; n/

�
D 0:
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For r D 0 direct upper and lower estimates for the number of occurrences yield

ˇ̌
P.0/.!;b; nC 1/ � P.0/.!;b; n/

ˇ̌
�

1

nC 1
:

Since, for i; j � 1 and r � 0, we have that

ˇ̌
P.r/.!;b; i/ � P.r/.!;b; j/

ˇ̌
� 1;

we get by the definition of P.rC1/.!;b; n/ that

ˇ̌
P.rC1/.!;b; nC 1/ � P.rC1/.!;b; n/

ˇ̌

�

Pn
jD1

ˇ̌
P.r/.!;b; nC 1/ � P.r/.!;b; j/

ˇ̌

.nC 1/n
�

1

nC 1
:

Let b D b1b2 : : : bk 2 N� be a word of length k. Then we denote by per.b/ the
basic period of b, i.e.,

per.b/ WD minfp � kW bpCj D bj for 1 � j � k � pg:

Furthermore we call the factoreb WD b1 : : : bper.b/ the basic factor. Then we have the
following.

Lemma 8.6.18. Let r � 0 be an integer and b 2 N� be a finite word with basic
period p and basic factoreb D b1 : : : bp. Then, for each n � 2,

lim
n!1

P.r/.eb�;b; n/ D
1

p
:

Proof. For r D 0 this is Lemma 2.2 of [380]. The case r � 1 follows, since

lim
n!1

P.r/.eb�;b; n/ D lim
n!1

P.r�1/.eb�;b; n/ D � � � D lim
n!1

P.0/.eb�;b; n/ D
1

p
:

Now we have enough tools to state the proof of Theorem 8.6.11.

Proof (Proof of Theorem 8.6.11). Let ! 2 E.r/ and b D b1 : : : bk 2 N� be a finite
word with basic period p. Then Lemma 8.6.17 and Lemma 8.6.18 imply that

A.r/.b/ D
h
0; 1p

i
:

Therefore in order to prove that ! 2 F.r/, it suffices to show that 0 and 1
p are limit

points of .P.r/.!;b; n//n2N. Furthermore, since ! 2 E, for any " > 0 and q 2 Sk we
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have
���P.r/k .!; n// � q

���
1

for infinitely many n. Thus it suffices to find two suitable

probability vectors q providing the limit points 0 and 1
p for

�
P.r/.!;b; n/

�
n2N.

• 0 is a limit point. We chose a digit d which is bigger than any digit in b, i.e.,
d > max fwiW 1 � i � kg. Then we define the probability vector q D .qi/i2Nk by

qi D

8
<̂

:̂

1 if i D d : : : d„ƒ‚…
k times

;

0 else:

We clearly have that q 2 Sk. Since P.r/.!;b; n// < " infinitely often, we have
that 0 is a limit point.

• 1
p is a limit point. We note that � D b1 is a periodic point with minimal period

p under the map �. Let � be the periodic orbit measure, which has mass 1
p at

each of the points f�; ��; : : : ; �p�1�g. Then � is shift invariant and induces a
shift invariant probability vector

q D .qb/b2Nk D .�.b//b2Nk :

Since q 2 Sk and qb D �.b/ D 1
p , we have

ˇ̌
ˇP.r/.!;b; n/ � 1

p

ˇ̌
ˇ < " infinitely

often. Therefore 1
p is also a limit point.



Chapter 9
About the Domino Problem for Subshifts
on Groups

Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel

Abstract From a classical point of view, the domino problem is the question of the
existence of an algorithm which can decide whether a finite set of square tiles with
colored edges can tile the plane, subject to the restriction that adjacent tiles share the
same color along their adjacent edges. This question has already been settled in the
negative by Berger in 1966; however, these tilings can be reinterpreted in dynamical
terms using the formalism of subshifts of finite type, and hence the same question
can be formulated for arbitrary finitely generated groups. In this chapter we present
the state of the art concerning the domino problem in this extended framework.
We also discuss different notions of effectiveness in subshifts defined over groups,
that is, the ways in which these dynamical objects can be described through Turing
machines.

9.1 Introduction

Symbolic dynamics is the study of a particular type of dynamical systems which are
called shift spaces or subshifts. These systems can be defined as sets of colorings
of a group G by a finite alphabet A which are closed under the product topology
and invariant under the shift action induced by the group. These objects were first
introduced as a tool to study dynamical systems through discretization in the work
of Hadamard [279] and then largely popularized in the highly influential article by
Morse and Hedlund [287] where they were studied not only as tools but as inherently
interesting objects.

A fundamental property of subshifts is the fact that they can be defined in a purely
combinatorial way. Namely, a set of colorings of a group G by a finite alphabet A is a
subshift if and only if it can be defined as the set of configurations which avoid a list
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of forbidden patterns. This motivates the notion of subshift of finite type (SFT), that
is, the set of subshifts which can be defined through a finite number of forbidden
patterns.

Subshifts of finite type are of high interest from a computational point of view
since they can be described by a finite amount of information – a finite set of
forbidden patterns that defines the subshift – and thus decidability and algorithmic
questions arise naturally. For instance, given a finite set of forbidden patterns F, the
simplest question one can formulate is the following: does the subshift XF defined
by F contain at least one configuration? The main goal of this chapter is to present
the state of the art concerning that question.

The domino problem of a finitely generated group G (sometimes noted DP.G/ in
the sequel) asks essentially the following: is there an algorithm that takes as input
a coding of a finite set of forbidden patterns F and outputs Yes if the SFT defined
by F is nonempty and No otherwise? In the particular case where the group G is
Z, this problem is decidable: one-dimensional SFTs can be represented by a finite
graph [381], and the existence of a configuration in the SFT (i.e., an infinite word)
is equivalent to the existence of an infinite path in the graph. The two-dimensional
case is much more interesting, since SFTs lack a good graph representation as it
exists in 1D, even if some generalizations exist [411, 440].

In the 2D case, the emptiness problem for SFTs is equivalent to the problem of
tiling the plane with Wang tiles. A Wang tile is a unit square with a color on each side
that cannot be rotated or reflected. The domino problem DP.Z2/ is the algorithmic
question of whether a given finite set of Wang tiles can be arranged along a Z2-
lattice in such a way that adjacent tiles have the same color on their adjacent edges.
This model is just another way to express local constraints: a set of tilings by Wang
tiles can be seen as an SFT – the finite set of tiles stands for the finite alphabet –
with constraints on the adjacent tiles. Reciprocally and up to a local recoding of the
alphabet, an SFT can be transformed into a set of tilings by Wang tiles.

Originally, the domino problem was formulated on Z2 by Wang [580] as a toy
problem to study a fragment of first-order logic (FO). He conjectured that every
nonempty SFT on Z2 admits a periodic configuration, which implies the decidability
of domino problem on Z2. His conjecture was proven wrong by Berger [71] who
both exhibited an aperiodic set of 104 Wang tiles and proved the undecidability
of the domino problem. This construction, later simplified by Robinson [508],
proceeds by reduction from the halting problem of Turing machines.

The domino problem on other structures than Z and Z2 has also been successfully
investigated. Robinson did not manage to prove undecidability of the problem
on the hyperbolic plane but obtained as a preliminary step the undecidability
of the origin-constrained version [509] – in this weaker version, noted OCDP
for origin-constrained domino problem, one asks whether there exists in the
SFT a configuration with a given letter at the origin. The undecidability of the
unconstrained problem on the hyperbolic plane was proven later by Kari [335] and
can also be obtained from the construction of a hierarchical aperiodic tiling on the
hyperbolic plane by Goodman-Strauss [258].
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For finitely generated groups, the question was formulated as such only very
recently. For now no characterization of the groups which have decidable DP is
known, and the problem seems very difficult to solve. Nevertheless a sufficient
condition for decidability of DP exists: virtually free groups have decidable domino
problem. The fact that they are indeed the only groups where we know the domino
problem is decidable motivates the following conjecture: a group has decidable
domino problem if and only if it is virtually free. This is further motivated by the
following result: if a group is not virtually free, it has a thick end [586] and then
arbitrarily large grids as minors by Halin’s theorem (see [196] for a recent proof). It
should then be possible to somehow use these grids as computation zones – similarly
to what is done in Robinson’s tiling [508] – to encode Turing machine computations
and use them to obtain the undecidability of DP. But the main problem is that even
if we know that such grids exist, we do not know where they appear and even less
how to code them using local rules. Recent preprints support the conjecture: to our
knowledge, the only other results are that decidability of DP is a quasi-isometry
invariant for finitely presented groups [157] – i.e., a geometric property of the group
– and that the conjecture holds true for Baumslag-Solitar groups [24], polycyclic
groups [309], and groups of the form G1 	 G2 [310].

To better understand SFTs, we can study them through the prism of projective
subdynamics. This operation modifies the group G on which a subshift X is defined
into one of its subgroups H: starting from a G-subshift X, the subshift �H.X/ is
defined as the set of configurations of X restricted to H. For instance one may
consider the set of rows that appear in a Z2-subshift. What can be said about
projective subdynamics of SFTs? Addressed this way, this question is unfortunately
hard to solve, even for Z2-SFTs. No complete characterization is known, even if
some partial results exist [473]. Nevertheless, if we allow the initial subshift to be
sofic – the image of an SFT under a contiguous and shift-commuting map – we get a
strong result, known as the simulation theorem. Initially proven by Hochman [294]
for sofic Z3-subshifts, and then generalized to Z2-subshifts independently in [203]
and [25], this result states that the class of projective subdynamics of sofic Z3- or
Z2-subshifts coincides exactly with the class of effectively closed subshifts, i.e.,
subshifts that can be defined by a recursively enumerable set of forbidden patterns.
This result motivates the study of these objects.

The chapter is organized as follows. Section 9.2 presents the standard back-
ground in dimension 2 and explains where undecidability comes from for the
domino problem on Z2. The heart of the chapter is Section 9.3 that surveys all
existing results about the decidability or undecidability of the domino problem for
finitely generated groups. Finally Section 9.4 is a reflexion about the notion of
effectively closed subshift on a finitely generated group. Three different notions
of effectiveness are defined, studied, and compared.
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9.2 Subshifts of Finite Type on Z2, Wang Tiles and the
Domino Problem

A Wang tile is a unit square with a color on each side that cannot be rotated or
reflected. In order to tile the plane, Wang tiles can be arranged side by side only
if the colors on their adjacent sides match. With this model of tilings in hand, one
may wonder whether a given finite set of Wang tiles can tile the entire plane or
not. This problem is known as the domino problem and was originally formulated
by Wang [580] as a toy problem to study the 898 fragment of first-order logic.
He conjectured that every finite set of Wang tiles that can tile the entire plane can
also do it in a periodic way, which implies the decidability of domino problem. His
conjecture was proven wrong by Berger [71, 72] who both exhibited an aperiodic
set of 104 Wang tiles and proved the undecidability of the domino problem. The
construction, later simplified by Robinson [508], consists in a tile set that forces all
possible tilings to contain a hierarchy of arbitrarily big squares – the plane can be
decomposed in squares of order n which are themselves obtained by gluing together
the squares of order n � 1 and so on; aperiodicity comes from the fact that every
translation cannot leave all levels of the structure invariant. These squares are then
used as computation zones to run one arbitrary Turing machine M ; the final set of
tiles associated with the Turing machine M has the property of being nonempty if
and only if the machine M halts on the empty entry. By reduction from the halting
problem, we conclude the undecidability of the domino problem. Note that Wang
tiles are also considered in Section 10.2 as as a major tool in order to study and
understand the behavior of automaton (semi)groups.

In this section, we do not present Robinson’s construction, but a proof due to
Kari [334] that can be generalized to Baumslag-Solitar groups, as described in
Section 9.3.4.3. This alternative proof uses an encoding of rational piecewise affine
maps into Wang tiles, and undecidability of the domino problem follows from a
reduction to the mortality problem for piecewise affine maps.

9.2.1 Definitions

A Wang tile is a 4-tuple t D .tN ; tW ; tS; tE/ 2 C4 where C is a finite set. It represents
a unit square whose edges are colored according to the tuple interpreting the letters
N; S;W;E as north, south, west, and east, respectively. See Figure 9.1.

tS

tN
tW tE

Fig. 9.1 If the set C is interpreted as a finite set of colors, a Wang tile defined by a tuple
.tN ; tW ; tS; tE/ of colors and can be represented as shown.
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Fig. 9.2 A tileset � and a partial valid tiling of the plane.

A set � � C4 of Wang tiles is called a tileset. We say x W Z2 ! � is a valid tiling
of the plane by � if and only if for every .i; j/ 2 Z2:

x.i; j/N D x.i; jC 1/S and x.i; j/E D x.iC 1; j/W :

Said otherwise, a valid tiling is an assignment of tiles from � to every position
of Z2 such that adjacent Wang tiles share the same color over adjacent edges
(Figure 9.2). See also Section 10.2 for more on Wang tilings.

A natural question which arises from this setting is the following: is there a finite
procedure which takes as input a tileset � and decides whether there exists a valid
tiling of the plane? In the next section, we introduce the formal concepts needed to
precisely state this question.

9.2.2 Turing Machines and the Halting Problem

In this section we give some classical definitions that can be found with more
details in [550]. Turing machines were initially introduced by Alan Turing [569]
as a mathematical model that would serve for representing computations made
by a human being. It is commonly accepted that Turing machines exactly catch
what human can compute. This constitutes the Church-Turing thesis, which is
the hypothesis under which functions computable by Turing machines are exactly
functions computable by a human being – with no memory nor time limitation.

Turing machines are similar to finite automata, except that they can use an
unlimited memory with a read/write access. The memory is realized by an infinite
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tape divided into cells, each cell carrying a symbol chosen among a finite alphabet.
At each step of the computation, the head – i.e., the finite automaton – of the Turing
machine can read the content of the tape, and depending on the read symbol and its
internal state, the head can do some of the following actions: modify the content of
the tape, change its internal state, and move to a neighbor cell.

A Turing machine is a tuple .Q; �;˙; ]; ı; q0; qa; qr/ where Q; ˙ are finite sets
and

• Q is the set of states,
• � is a finite alphabet, the tape alphabet,
• ˙ � � is the input alphabet,
• ] 2 � n˙ is the blank symbol,
• ı W Q 	 � ! Q 	 � 	 f�1; 0; 1g is the transition function,
• q0 2 Q is the initial state,
• qa and qr are the accepting and rejecting states, with qa ¤ qr.

A configuration of the Turing machine M is a tuple .x; i; q/ where x 2 ˙Z is an
infinite tape, i 2 Z is the position of the computation head, and q its state. If w is a
finite word, we will write .w; i; q/ for the configuration where the tape is filled with
blank symbols, except on positions 0 : : : jwj � 1 where the word w is written.

Given a configuration C D .x; i; q/, the machine M computes on C as follows.
If ı.q; x/ D .q0; x0; �/, then the machines goes to configuration .y; i C �; q0/ where
yn D xn for all n ¤ i and yi D x0. When the Turing machine M can go from

configuration C to C0 in one step, we denote C
M
�! C0.

We say that the Turing machine M accepts (resp. rejects) an input word w 2 ˙�

if starting from configuration .w; 0; q0/, the machine reaches the accepting state qa

(resp. rejecting state qr) after a finite number of steps of computation. Given an input
word w 2 ˙�, the machine M thus has three possible behaviors: it accepts, rejects,
or runs infinitely (loops). If M does not run infinitely, it is said to halt on w.

Example 9.2.1. An example of Turing machine and the first steps of a computation
starting with configuration .: : : ]10] : : : ; 0; q0/.

d (q x)
Symbol x

0 1

St
at

e
q q0 (q0 0 1) (q0 1 1) (q+ 1)

q+ (q f 1 ) (q+ 0 1) (q f 1 )
q f (q f 0 ) (q f 1 ) (q f )

step 0 1 0

q0

step 1 1 0

q0

step 2 1 0

q0

step 3 1 0

q+
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This Turing machine has the following behavior. If there is a finite number of
symbols 0’s and 1’s around the computation head on the initial tape, then the
machine adds 1 to the number coded in binary on the tape, and then halts. Otherwise,
the machine never halts.

In our definition, the tape is fixed and the computation head moves, but Turing
machines can equivalently be defined with a fixed computation head and a moving
tape. This variant is called moving tape Turing machine [365], and configurations in
this model are of the form .x; q/ where x 2 ˙Z is an infinite tape and q 2 Q is the
current state.

By definition, there are at most countably many Turing machines, and each given
Turing machines can be encoded in a finite word, which is denoted hM i. More
generally, we denote ha; bi the word that encodes the pair of objects .a; b/ – objects
can be words, Turing machines, or everything that possesses a finite description.

A language L is decidable if there exists a Turing machine M such that M
accepts a word w if w 2 L and rejects w if w … L. A language L is recursively
enumerable if there exists a Turing machine M such that M accepts a word w if
and only if w 2 L – it can reject or loop otherwise.

A decision problem is a problem that takes an input that can be encoded into
a finite word, and has a Yes/No answer. A decision problem is decidable if the
language of encodings of its inputs with positive answer is decidable, undecidable
otherwise.

A natural decision problem about Wang tiling is the so-called domino problem.

Definition 9.2.2. The domino problem is the decision problem that takes as input a
finite tileset � and outputs Yes if and only if there exists a valid tiling of the plane
by � .

Wang originally conjectured that if a set of Wang tiles can tile the plane, then they
can always be arranged to do so periodically. Here by periodic tiling, we mean that
the tiling can be constructed by repeating a rectangular pattern, where occurrences
of this pattern are arranged on a sublattice of Z2. If this conjecture were true,
then we could decide the domino problem by running in parallel the two following
semi-algorithms – procedures that do not necessarily halt. The first semi-algorithm
searches for a periodic rectangular pattern in the sense given above, by enumerating
valid rectangular patterns by increasing size and checking if the sequences of colors
that label the North and South edges (resp. West and East edges) match up to a cyclic
permutation. The second semi-algorithm tries to tile bigger and bigger squares by
a brute-force strategy. The first semi-algorithm halts if and only if there exists a
periodic pattern; the second halts if and only if the set of tiles cannot tile the plane.
Thus Wang’s conjecture implies the decidability of the domino problem. In other
words, the undecidability of the domino problem implies the existence of a set of
Wang tiles that tiles the plane, but never in a periodic way – such sets of tiles are
called aperiodic sets of tiles. Wang’s conjecture was disproven by Berger [72], who
proved the undecidability of the domino problem. It is noteworthy that his proof
relies on the construction of an aperiodic set of tiles.
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Theorem 9.2.3 (Berger, [71, 72]). The domino problem is undecidable.

A detailed proof of the undecidability of the domino problem will be given in
Section 9.2.5.

Definition 9.2.4. The halting problem is the decision problem that takes as input a
Turing machine M and an input word w and outputs Yes if and only if the machine
M reaches a final state during its computation on w.

Theorem 9.2.5 (Turing, [569]). The halting problem is undecidable.

Proof. Suppose that the following language

HALT D fhM ;wi jM halts on wg

is decidable. Then there exists a Turing machine H with the following behavior:
H accepts the entry hM ;wi if M halts on w and rejects hM ;wi if M loops on
w. We construct a Turing machine N that uses H as a subroutine. More precisely,
on the input hM i, the machine N runs H on the input hM ; hM ii, accepts if H
rejects, and loops if H accepts. Running N on its own coding hN i leads to a
contradiction, since the machine N should both accept and loop! Thus the machine
H cannot exist. ut

In what precedes, Turing machines are seen as a device that can accept, reject, or
loop on a given input. Another way to use this computational model is to consider
the finite word written on the tape when a final state is reached as the output of the
machine. A function f W D 
 f0; 1g� ! f0; 1g� is computable if there exists a
Turing machine M with the following behavior: if w 2 D, then the machine accepts
on entry w, and the tape contains f .w/ when the final state is reached.

9.2.3 Reductions

In what follows, L denotes the complement of the language L.
Reductions aim at comparing the computational difficulty of decision problems.

In this section we present two of them which are meaningful for this chapter, Turing
reduction and many-one reduction. In Section 9.4.3.2 a third one will be introduced,
the enumeration reduction.

An oracle Turing machine is a couple .M ;L/, where M is a classical Turing
machine with an additional state called the oracle state, and L � � � is a language
called the oracle that can be queried in a single step of computation. When that
machine M enters its oracle state, it can asks whether the word written on its tape
belongs to L or not, and then evolves according to the answer. The oracle does not
need to be a recursive or recursively enumerable language, so that the addition of
an oracle may increase the computational power of the model. We will not explain
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in details how the oracle can be formalized as an extension of a classical Turing
machine, but the reader can find details in [550].

Definition 9.2.6. The language L is Turing reducible to L0, denoted L �T L0, if
there exists a Turing machine with oracle L0 that computes L. We note L �T L0 if
L �T L0 and L0 �T L.

Example 9.2.7. One has that HALT �T HALT . Indeed, consider the Turing
machine with oracle HALT that immediately requests the oracle on its input word,
and then returns the negation of the oracle result. This machine accepts an input
word hM ;wi if hM ;wi … HALT and rejects otherwise. So it is a Turing machine
with oracle HALT that computes HALT .

Definition 9.2.8. The language L is many-one reducible (also called mapping
reducible in [550]) to L0, denoted L �m L0, if there exists a computable function
f such that x 2 L if and only if f .x/ 2 L0 for every x. We note L �m L0 if L �m L0

and L0 �m L.

Example 9.2.9. One has that HALT —m HALT . Indeed, suppose HALT �m HALT ,
that is to say there exists a computable function f such that x 2 HALT if and only if
f .x/ 2 HALT for every x. We construct the Turing machine Mm as follows. On
an input hM ;wi, it first computes the word f .hM ;wi/ D hM 0;w0i. Then the
machines simulates in parallel –one step for each simulation– the machine M on
w and the machine M 0 on w0. If M halts on w, then the machine Mm accepts. If
M 0 halts on w0, the machine Mm rejects. One can check that Mm computes HALT ,
raising a contradiction.

One can show that many-one reducibility is stronger than Turing reducibility (see
Exercise 9.5.1).

Definition 9.2.10. The blank tape halting problem is the decision problem that
takes as input a Turing machine M and outputs Yes if and only if the machine
M reaches a final state during its computation initiated on the empty tape

HALTb D fhM i jM halts on the empty inputg :

As an example of Turing reduction, we show the following.

Proposition 9.2.11 (Folklore). The blank tape halting problem is undecidable.

Proof. We prove that HALTb �T HALT , which is enough to prove that the blank
tape halting problem is undecidable. The fundamental ingredient in this proof is
that the encoding (a 7! hai or .a; b/ 7! ha; bi) and decoding (hai 7! a or ha; bi 7!
.a; b/) functions of finite objects are computable.

Let Mb be the Turing machine with oracle HALT with the following behavior. On
a given input word m, it first decodes m as a hM i and then encodes hM ; "i as a new
word w that is now written on the tape (" denotes the empty word). The machine
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now changes its state to enter the oracle state: if the word w written on the tape
belongs to HALT , then the machine accepts; otherwise it rejects. Thus the language
HALTb is computed by the machine Mb with oracle HALT . ut

9.2.4 Domino Problem with Constrained Origin

As explained above, the behavior of a Turing machine only depends on local
information (the state of the head and the content of the tape). Consequently, this
is relatively easy to encode it inside a finite set of Wang tiles. We give a concrete
encoding of the behavior of a given Turing machine M inside a finite tileset �M .

Definition 9.2.12. The origin-constrained domino problem is the decision problem
that takes as input a finite tileset � and a tile t 2 � and outputs Yes if and only if
there exists a valid tiling of the plane by � with the tile t at the origin.

Remark 9.2.13. Suppose the origin-constrained domino problem is decidable, and
fix a finite tileset � . Then it suffices to run the corresponding algorithm successively
on the inputs .�; t/ for every tile t 2 � to get the decidability of the domino problem.

Theorem 9.2.14 (Kahr, Moore & Wang [322], Büchi [116]). The origin-
constrained domino problem is undecidable.

Proof. Let M be a Turing machine. Consider the following tileset �M , where tiles
are defined for every a 2 ˙ , for every .q; a/ 2 Q	˙ such that ı.q; a/ D .q0; a0; :/,
for every .r; a/ 2 Q	˙ such that ı.r; a/ D .r0; a0; 1/, and for every .s; a/ 2 Q	˙
such that ı.s; a/ D .s0; a0;�1/:

a

a

∗ .

(q,a)

(q ,a )

∗ .

(r,a)

a

∗ (r,a)

b

(r ,b)

(r,a) .

?

⊥

? ⊥
?

?

? ?

b

(s ,b)

∗ (s,a)

(s,a)

a

(s,a) .

⊥

(q0 )

0

⊥
0 0

?

⊥
⊥ ⊥

⊥

⊥

?

Impose that the tile t0 D ⊥

(q0 )

0

appears at the origin. Then there is exactly one
way to fill in the first row and the half plane below it. Moreover, tiles located strictly
to the left of the origin are also uniquely determined. Thus only the filling of upper
right quadrant depends on the Turing machine M .
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?

?
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?
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?
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?

?

? ?

?

?

? ?

?

?

? ?

?

?

? ?

?

⊥

? ⊥
?

⊥
⊥ ⊥

?

⊥
⊥ ⊥

?

⊥
⊥ ⊥

?

⊥
⊥ ⊥

?

⊥
⊥ ⊥

?

⊥
⊥ ⊥

?

?

? ?

?

?

? ?

⊥

⊥

?

⊥

(q0 )

0

⊥

0 0

⊥

0 0

⊥

0 0

⊥

0 0

⊥

0 0

?

?

? ?

?

?

? ?

⊥

⊥

?

(q0 )

a

(q0 )

(qb+ )

(q0 ) . . . . . . . . .

?

?

? ?

?

?

? ?

⊥

⊥

?

a

a

.

(qb+ )

b

. (qb+ )

(q )

(qb+ ) . . . . . . .

?

?

? ?

?

?

? ?

⊥

⊥

?

a

a

.

b

b

. .

(q )

(q , )

. . . . . . . .

Suppose that the tiling presented above has been extended to a tiling until the
ith row. Then on the top edge of row i, one can read the configuration Ci D

.w0 : : :wn : : : ; j; q/, the ith configuration of M on ". So the tiling can be extended
to row iC 1 if and only if there exists a configuration CiC1 D Next .Ci/. Thus the
computation of M on " is infinite if and only if there exists a tiling by �M with tile
t0 at the origin. Since the blank tape halting problem is undecidable, we conclude
the origin-constrained domino problem is undecidable. ut

9.2.5 Domino Problem

The undecidability of the domino problem was originally proven by Berger [72]. We
present here an alternative proof, given by Kari [334], that has one main advantage
for the purpose of this chapter: the construction can be adapted to other groups than
Z2 (see Section 9.3.4.3).

Definition 9.2.15. The mortality problem of Turing machines is the decision
problem that takes as input a deterministic Turing machine M with an halting
state and outputs Yes if and only if there exists a non-halting configuration –
configuration that never evolves into the halting state.

It is important to note that in this problem, the machine does not start from an initial
configuration: the starting state and the starting tape are arbitrary. It is interesting to
know that while the first proof of the undecidability of the domino problem comes



342 N. Aubrun et al.

from Berger, a student of Wang, the main ingredient for this new proof is from
another student of Wang. Technical details can be found in [299].

Theorem 9.2.16 (Hooper, [299]). The mortality problem of Turing machines is
undecidable.

The proof proceeds by several reductions: the immortality problem of Turing
machines reduces to the immortality problem of 4-counter machines that itself
reduces to the halting problem of 2-counter machines that finally reduces to the
halting problem for Turing machines, which is undecidable by Theorem 9.2.5. Note
that the undecidability of the mortality problem for reversible Turing machines, a
stronger result, was proven in [336] with a much simpler proof.

Given a system of rational affine transformations of the plane f1; f2; : : : ; fn
associated with disjoint unit squares U1;U2; : : : ;Un with integer corners, we define
a partial function f W R2 ! R2 with domain U D [n

iD1Ui given by

�!x 7! fi.
�!x / if �!x 2 Ui:

A point �!x 2 R2 is an immortal starting point if for every n 2 N, the point f n.�!x /
lies inside the domain U.

Definition 9.2.17. The mortality problem of piecewise affine maps is the decision
problem that takes as input a system of rational affine transformations of the
plane f1; f2; : : : ; fn associated with disjoint unit squares U1;U2; : : : ;Un with integer
corners and outputs Yes if and only if the system has an immortal starting point.

Theorem 9.2.18 ([334]). The mortality problem of piecewise affine maps is unde-
cidable.

Proof. Given a Turing machine M , we construct a system of piecewise affine maps
that has an immortal starting point if and only if M has an immortal configuration.
The construction presented here is the one from [334] and refers to [89, 355]. We
assume that the machine M is a moving tape machine (see Section 9.2.2) and that
its states and alphabet are A D f0; 1; : : : ; a � 1g and Q D f0; 1; : : : ; b � 1g. The
current configuration .x; q/ of the machine will be coded by the two real numbers

` D

�1X

iD�1

Mixi

and

r D MqC
1X

iD0

M�ixi;
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where M is an integer such that M > a and M > b�1. The integer brc D MqCx0 is
enough to determine the next configuration, and a transition of the Turing machine
corresponds to an affine map with matrix

�
M 0

0 1
M

	
;

�
1 0

0 1

	
or

�
1
M 0

0 M

	

depending on the tape movement. The translation constant of the affine map is
adjusted to code the change of state and the change of the symbol on the tape. For
instance, the transition ı.q; a/ D .q0; a0; 1/ is coded by the affine transformation

�
`

r

	
7!

�
1
M 0

0 M

	�
`

r

	
C

�
a0

M.q0 � a �Mq/

	
:

The domain of this affine map is the unit square with integer coordinates Œ0; 1� 	
ŒMq;MqC 1�. With this procedure, we transform a Turing machine M into a finite
set of rational affine transformations f1; : : : ; fn and disjoint unit squares with integer
coordinates U1; : : : ;Un. One can check that immortality is preserved under this
transformation: the Turing machine M has an immortal configuration if and only if
the system of affine maps f1; : : : ; fn has an immortal point. From Theorem 9.2.16 we
conclude that the immortality problem of piecewise affine maps is undecidable. ut

Theorem 9.2.19. The domino problem is undecidable.

Proof. We present the proof due to Kari [334] that proceeds by reduction from the
mortality problem of piecewise affine maps. Consider f W R2 ! R2 a rational affine
map. We construct a finite set of Wang tiles �f whose colors are chosen in R2. We
first give an idea of how the tileset is made and will explain further how colors are
chosen to get only a finite number of tiles. The tile

→n

→s

→w →e

is said to compute the affine function f if

f .�!n /C�!w D �!s C�!e :

In other terms, �!n is the input on the top edge, and the output �!s is computed
on the bottom edge. The computation is not exact: a carry �!w from the left edge is
added to f .�!n /, and a carry �!e from the right edge is added to �!s . Suppose now that
a finite portion of a row is tiled with tiles that compute the function f as pictured
below.
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→w = →w 1

→n 1

→s 1

→n 2

→s 2

. . .

→n k−1

→s k−1

→n k

→s k

→e k = →e

In the case where f is affine and since ei D wiC1 for i D 1 : : : k � 1 by matching
rules, it follows that

f

 
�!n 1 C � � � C

�!n k

k

!
C
1

k
�!w D

�!s 1 C � � � C
�!s k

k
C
1

k
�!e :

The carries will eventually vanish as the size of the finite portion tends to infinity,
so that roughly speaking the average of the bottom labels will be the image by f of
the average of the top labels.

Let fi be the rational affine map with domain Ui D Œn; nC 1�	 Œm;mC 1�, given
by

fi.
�!x / D M�!x C

�!
b :

To describe the finite set of tiles that encodes fi, we need some additional definitions.
For�!x 2 R2 and k 2 Z, denote Ak.

�!x / D bk�!x c, where b.x; y/c D .bxc; byc/. Denote
also

Bk.
�!x / D Ak.

�!x / � Ak�1.
�!x / D bk�!x c � b.k � 1/�!x c:

If �!x is in the domain Ui D Œn; n C 1� 	 Œm;m C 1�, one can check that Bk.
�!x / 2

f.n;m/; .n;m C 1/; .n C 1;m/; .n C 1;m C 1/g for every k 2 Z. In other words,�
Bk.
�!x /
�

k2Z is a sequence of elements chosen in f.n;m/; .n;mC1/; .nC1;m/; .nC
1;mC 1/g:

We say that a bi-infinite sequence .xk/k2Z of i’s and .i C 1/’s represents a real
number x 2 Œi; i C 1� if there exists a sequence of intervals I1 � I2 � � � � � Z of
increasing lengths n1 < n2 < : : : such that

lim
k!1

P
j2Ik

xj

nk
D x;

that is to say there is an infinite sequence of intervals of increasing lengths whose
averages converge to x. Note that if .xk/k2Z is a representation of x, all the shifted
sequences .x`Ck/k2Z for every ` 2 Z are also representations of x. Note also that a
sequence .xk/k2Z can represent several distinct real numbers, since different interval
sequences may converge to different points, and that by a compactness argument,
every sequence .xk/k2Z does represent at least one real number x.

Clearly the bi-infinite sequence .Bk.
�!x //k2Z is a representation of �!x in the sense

defined above. It is called a balanced representation of �!x .
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The tileset �fi corresponding to fi.
�!x / D M�!x C

�!
b consists of tiles

Bk(→x )

Bk( fi(→x ))

fi(Ak−1(→x ))−Ak−1( fi(→x ))
+(k− 1)

→
b

fi(Ak(→x ))−Ak( fi(→x ))
+k

→
b

for every k 2 Z and �!x 2 Ui. One can check that these tiles compute the function fi.

ı D fi.
�!n /C�!w � �!s � �!e

D fi
�
Bk.
�!x /
�
C fi

�
Ak�1.

�!x /
�
� Ak�1

�
fi.
�!x /
�
C .k � 1/

�!
b � Bk

�
fi.
�!x /
�

� fi
�
Ak.
�!x /
�
C Ak

�
fi.
�!x /
�
� k
�!
b

D Mbk�!x c �Mb.k � 1/�!x c C
�!
b CMb.k � 1/�!x c C

�!
b � b.k � 1/fi.

�!x /c

C .k � 1/
�!
b � bkfi.

�!x /c C b.k � 1/fi.
�!x /c �Mbk�!x c �

�!
b C bkfi.

�!x /c � k
�!
b

D 0:

Denote by Ai the finite alphabet used to color the edges of tiles in �fi . Since the
domain Ui is bounded, there are only finitely many possible values for the top and
bottom colors in the tileset. The case of left and right colors is a little bit more subtle.
Denote

ck.
�!x / D fi.Ak.

�!x // � Ak.fi.
�!x //C k

�!
b

the color on the right edge of the tile of the figure above, so that the left color is
ck�1.

�!x /. By using the fact that

�!x �
�!
1 � b�!x c < �!x

for every �!x 2 R2, where
�!
1 denotes the vector .1; 1/, we get that

M.k�!x �
�!
1 /C

�!
b � k.M�!x C

�!
b /C k

�!
b � ck.

�!x / � Mk�!x

C
�!
b � k.M�!x C

�!
b /C

�!
1 C k

�!
b

�M �
�!
1 C
�!
b � ck.

�!x / �
�!
b C
�!
1 :
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Since
�!
b is a rational vector and M has rational coefficients, by taking q the lcm

of the denominators of all the rational numbers appearing in
�!
b and M, we get the

existence of �!p1;
�!p2 2 Z2 such that

�!p1
q
� ck.

�!x / �
�!p2
q
;

where �!p1 is chosen maximal and �!p2 minimal. And even better than that, it happens
that all values ck.

�!x / are in the finite set

(
�!p1
q
;
�!p1 C .0; 1/

q
;
�!p1 C .1; 0/

q
;
�!p1 C

�!
1

q
; : : : ;

�!p2
q

)
� Q

for every k 2 Z and every �!x 2 Ui. Indeed, a careful observation of all rational
numbers that appear inside the expression of ck.

�!x / shows that it can be written as
�!p
q , and the fact that �!p1 �

�!p � �!p2 directly follows from the definition of �!p1 and �!p2 .

So the tileset �fi corresponding to fi is finite. By definition of �fi , for a given �!x 2 Ui,
one can tile a row with �fi such that the balanced representations of �!x and fi.

�!x /
appear on the top and bottom labels, respectively.

Suppose now that we have a system of rational affine maps f1; f2; : : : ; fn associ-
ated with unit squares U1;U2; : : : ;Un with integer corners. From each function fi
we construct a finite set of tiles �fi that computes fi as explained above, whose top
colors �!n are in Ui and bottom colors �!s in fi.Ui/. We use an additional marking on
the tiles – for instance by adding the color i 2 f1; : : : ; ng to every color from Ai –
so that a row can be tiled only with tiles constructed from the same fi. We get a final
finite tileset �f �

Sn
iD1 .Ai 	 fig/

4. It remains to prove that the tileset �f admits a
tiling of the plane if and only if the system f1; f2; : : : ; fn has an immortal point.

Suppose that the system f1; f2; : : : ; fn has an immortal point x in one of the Ui.
We construct the tiling t 2 �Z2

f by assigning to every position .k; j/ 2 Z2 the tile

Bk f j(→x )

Bk f j+1(→x )

f Ak−1 f j(→x ) −Ak−1( f j+1(→x ))
+(k− 1)

→
b

f Ak f j(→x ) −Ak( f j+1(→x ))
+k

→
b

which gives a valid tiling in X�f . Reciprocally, suppose that �f admits a valid tiling

of the plane t 2 �Z2
f . There is no reason that would force the sequences of top labels

that appear on a given row to be the balanced representation of a number x 2 U.
Nevertheless, we can proceed by extraction to prove the existence of an immortal
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point for f . Consider the intervals Ik D f�k; : : : ; kg for all k 2N. Define vectors
.�!xk /k2N as follows:

�!xk D

Pk
iD�k
�!n .ti;0/

2kC 1
;

in other words we look at the mean of increasing sums of top labels of the first row
in the tiling t. By definition of the tileset �f , we immediately get that there exists
some 1 � i � n such that �!xk 2 Ui for every k 2 N. By compactness of Ui, we
extract a sequence

���!x�.k/
�

that converges to �!x 2 Ui. By continuity of each fi, we
can check that �!x is an immortal point for f . ut

9.3 Subshifts of Finite Type on Finitely Generated Groups

9.3.1 Definitions

9.3.1.1 Group Presentations and the Word Problem

Let G be a group. For words u; v 2 G� we write u DG v if after applying the group
operation on each pair of contiguous symbols the same element of G is obtained on
both sides.

Definition 9.3.1. Let G be a group and F � G. The group generated by F is the set

hFi WD fg 2 G j 9u 2 .F [ F�1/� such that u DG gg:

It is clear that hFi is the smallest subgroup of G that contains F.

Definition 9.3.2. We say a group G is finitely generated if there exists a finite subset
S � G such that G D hSi. Such a set S is called a set of generators for G. The rank
of G is defined as the smallest cardinality of a set of generators for G.

Example 9.3.3. The group of complex numbers of the form e2i�n˛ for n 2 Z
with multiplication as the operation is finitely generated with rank 1. Indeed, it is
generated by e2i�˛ . Note that this group is infinite if and only if ˛ … Q.

Example 9.3.4. The group .Q;C/ of rational numbers with addition has infinite
rank. Indeed, for any set of finite rational numbers p1=q1; : : : ; pn=qn, the denomina-
tor of any element of hp1=q1; : : : ; pn=qni is bounded by

Qn
iD1 qi. Therefore it cannot

generate Q.

By definition of hSi, each element of a finitely generated group can be seen as
a word in .S [ S�1/�. From now on, we will use the convention that every set of
generators contains its inverses to avoid writing S [ S�1.
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Definition 9.3.5. Let G be a group and S � G. The right Cayley graph of G with
respect to S is the colored directed graph � .G;S/ whose vertex set is G and its set
of arcs is given by E D

S
s2S Es where Es is the set of arcs colored by s 2 S defined

by Es WD f.g; gs/ j g 2 Gg.

If S generates G then � .G;S/ is connected. For g 2 G we denote jgjS the length
of the shortest path from 1G to g in � .G;S/. This induces a distance dS.g; h/ WD
jg�1hj. We denote the closed ball centered in g 2 G of radius r by BS.g; r/ D fh 2
G j dS.g; h/ � rg.

Example 9.3.6. Consider the group Z2 endowed with coordinate-wise sum as
the operation. Let S D f.0; 1/; .1; 0/; .0;�1/; .�1; 0/g be the canonical set of
generators. Then � .Z2;S/ is the bi-infinite grid, and j.n1; n2/jS D jn1j C jn2j is
the taxicab norm.

Definition 9.3.7. Let S be a set and consider a copy S�1 D fs�1 j s 2 Sg. We say a
word in .S[S�1/� is reduced if it does not contain ss�1 or s�1s as subwords. Every
word in can be reduced to an unique minimal word by successively eliminating
every apparition of ss�1 or s�1s.

Definition 9.3.8. The free group over S is defined as the group FS of all reduced
words in .S [ S�1/� endowed with word concatenation followed by reduction as
the operation.

A more combinatorial way to look at groups is using presentations. A group
presentation is a pair .S;R/ where S is a set and R � .S[S�1/� is a set of words.
Elements of S are called generators and words of R are called relators.

Definition 9.3.9. Let G be a group. We say .S;R/ is a presentation of G if G is
isomorphic to hSjRi where

hSjRi D FS=NR:

Here FS is the free group over S, and NR is the conjugate closure of R, that is,
NR D hfgrg�1 j g 2 FS and r 2 Rgi.

In other words, hSjRi is the largest quotient of the free group over S such that
every word in R is identified to the empty word.

Example 9.3.10. We have that Z2 Š ha; b j aba�1b�1i.

Definition 9.3.11. We say a group G is recursively presented if there exists a
presentation .S;R/ such that G Š hSjRi, S is recursive, and R is a recursively
enumerable language. If there exists a presentation for G for which both S and R
are finite, we say G is finitely presented.

Definition 9.3.12. The word problem of a group G with respect to a set of
generators S is the language WP.G;S/ D fu 2 S� j u DG 1Gg.
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Proposition 9.3.13. Let S1;S2 be two finite sets of generators for G. Then
WP.G;S1/ is many-one equivalent to WP.G;S2/.

Proof. As hS2i D G, we have that each s 2 S1 can be written as u.s/ 2 S�2 such
that s DG u.s/. As S1 is finite, the function which sends a word s0 � � � sk 2 S�1 to
u.s0/ � � � u.sk/ 2 S�2 is total computable and s0 � � � sk D 1G ” u.s0/ � � � u.sk/ D

1G:

In view of Proposition 9.3.13 in terms of computability, we can unambiguously
speak about the word problem of a group G and denote it as WP.G/.

Proposition 9.3.14. A finitely generated group G is recursively presented if and
only if WP.G/ is recursively enumerable.

Proof. If WP.G;S/ is recursively enumerable, one can choose .S;WP.G;S// as a
presentation for G. Conversely, as G is recursively presented, then G Š FS=NR for
some recursively enumerable R � S�. Given u 2 FS we have u DG 1G ”

u 2 NR, therefore it suffices to be able to recognize this set. An algorithm which
does this is the following: iteratively for each n 2 N run for n steps the algorithm
recognizing R on all words on S� of length at most n. Let An be the list of accepted
words so far. Build Bn D fw`w�1 j jwj < n; ` 2 Bng and Cn D fu 2 B�n j juj � ng.
The set Cn approximates the conjugate closure of R. It is easy to see that every
possible word in NR appears in Cn for large enough n.

9.3.1.2 SFT on Finitely Generated Groups

Most of the definitions are analogous to the one-dimensional case. Let A be a finite
alphabet. The set AG endowed with the left group action S W G	 AG ! AG given by
Sg.x/h D xg�1h is a full shift. The elements a 2 A and x 2 AG are called symbols and
configurations, respectively. With the product of the discrete topology on A, the set
of configurations AG is a compact metric space that has the cylinders Œa�g D fx 2
AGjxg D ag as a subbasis. A support is a finite subset F � G. Given a support F,
a pattern with support F is an element p 2 AF, and we write supp.p/ D F. We
also denote the cylinder generated by p in position g as Œp�g D

T
h2FŒph�gh, and

Œp� D Œp�1G .

Definition 9.3.15. A subshift is a subset X � AG which is closed and shift invariant,
that is, S.X/ � X. Equivalently a subshift is the set of configurations XF defined by
a set of forbidden patterns F as follows:

XF D AG n
[

p2F ;g2G

Œp�g:

Definition 9.3.16. The language of a subshift L.X/ is the set of patterns p that
appear in a configuration of X, that is, Œp� \ X ¤ ;. In particular L.AG/ is the
set of all patterns.
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Let X � AG and Y � BG be subshifts. A continuous map 
 W X ! Y such that
SY ı
 D 
 ı SX where SX; SY are the shift actions on X and Y , respectively, is called
a morphism. A well-known Theorem of Curtis, Lyndon, and Hedlund which can
be found in full generality in [136] asserts that morphisms are equivalent to maps
defined by local rules as follows: there exists a finite F � G and ˚ W AF ! B such
that 8x 2 X W 
.x/g D ˚.Sg�1

.x/jF/. A surjective morphism is called a factor map,
and we denote the existence of a factor map from X to Y by X � Y . A bijective
morphism is called a conjugacy, and the fact that two subshifts are conjugate is
written X Š Y .

Definition 9.3.17. A subshift X � AG is of finite type or SFT if there exist a finite
set F � L.AG/ of forbidden patterns such that X D XF . A subshift is sofic if it is
the image of an SFT via a factor map.

Definition 9.3.18. Let S be a set of generators for the group G. A subshift X � AG

is said to be nearest neighbor with respect to S if there exists a set F � L.AG/ such
that X D XF and every pattern p 2 F satisfies supp.p/ D f1G; sg for some s 2 S.
Such a set of forbidden patterns is also said to be nearest neighbor.

Nearest neighbor subshifts can be seen as colorings of the Cayley graph � .G;S/
such that for each edge .g; gs/ the choices of color are restricted.

Example 9.3.19. The set X D fx 2 AG j 8s 2 S; xg ¤ xgsg is a nearest neighbor
subshift.

This notion also encompasses Wang tiles as studied in Section 9.2.1. The
following example makes this explicit.

Example 9.3.20. Consider Z2 with the set of generators S D f.1; 0/; .0; 1/g. Given
a set of Wang tiles � , the set of all tilings of the plane by � is a nearest neighbor
subshift. Indeed, it corresponds to XF � �

Z2 where the patterns p 2 F with support
f.0; 0/; .1; 0/g (respectively, f.0; 0/; .1; 0/g) are exactly those such that .p.0;0//E ¤
.p.1;0//W (respectively, .p.0;0//N ¤ .p.0;1//S).

Every nearest neighbor subshift is of finite type, indeed, any set F satisfying
the constrains satisfies #.F / � #.A/2#.S/. The converse is false. For instance,
the sequence of Z-subshifts fXngn2N where Xn � f0; 1g

Z is defined by Fn D

f1ng is a countable set of subshifts of finite type which satisfy that 1n�1 2

L.Xn/ n
S

m<n L.Xm/. Therefore an infinite number of them are forcefully not
nearest neighbor. Nevertheless, every subshift of finite type is conjugate to a nearest
neighbor subshift.

Before showing that result in generality, we illustrate informally in Figure 9.3
how this conjugacy works in the case we would like to turn a Z2-subshift into an
equivalent set of Wang tiles. As the set of forbidden patterns is finite, there exists a
big enough n 2 N such that the support of every forbidden pattern is contained in
Œ0; n�2. Then one can construct the set of colorings of Œ0; n�2 which do not contain
forbidden patterns and turn each one of them into Wang tiles which through their
adjacency colors force two contiguous patterns to overlap. This technique gives a
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. . . →

Fig. 9.3 In the left we see for n D 2 a set of patterns which do not contain forbidden subpatterns.
In the right the transformation of one of these patterns into a Wang tile.

one to one correspondence between the set of valid tilings of the Wang tiles and the
configurations in the original subshift which can be shown to be a conjugacy.

Proposition 9.3.21. Every subshift of finite type is conjugate to a nearest neighbor
subshift.

Proof. Let F be a finite set of forbidden patterns defining XF � AG and let N D
maxp2F ;g2supp.p/ jgjS. We define the alphabet

B D fep 2 ABS.1G;N/ j 8p 2 F ;epjsupp.p/ ¤ pg:

Consider the set of forbidden patterns G containing q 2 Bf1G;sg if and only if
9g 2 BS.1G;N/ \ BS.s;N/ such that .q1G/g ¤ .qs/s�1g. By definition XG is nearest
neighbor for S. We claim XG Š XF . Indeed, consider the morphism 
 W XG ! XF

given by 
.y/g D .yg/1G . Let y; z be two different configurations in XG . Modulo
shifting these configurations we can suppose y1G ¤ z1G , meaning there exists h 2
BS.1G;N/ such that .y1G/h ¤ .z1G/h. Write h DG s1; � � � ; sn for some n � N such
that each si 2 S. The forbidden patterns of G force that .y1G/h D .ys1 /s�1

1 h and
.ys1 /s�1

1 h D .ys1s2 /s�1
2 s�1

1 h and so on we obtain:

.y1G/h D .ys1;��� ;sn/s�1
n ;��� ;s�1

1 h D .yh/1G :

Similarly, .z1G/h D .zh/1G , therefore .yh/1G ¤ .zh/1G and thus 
.y/h ¤ 
.z/h
showing that 
 is injective. Given x 2 XF we can define y 2 BG given by yg D

Sg�1
.x/jBS.1G;N/. y satisfies 
.y/ D x and y 2 XG thus proving the surjectivity of 
 .

Hence 
 is a conjugacy. ut

We remark that the subshift XG constructed in the previous proof is called the
higher-block shift of X and denoted by XŒN� in dimension one [381].

9.3.2 Domino Problem

From their representation with a finite automaton [381], the existence of a configu-
ration in a Z-SFT is equivalent to the existence of a cycle in a finite labeled graph,
which is decidable.
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In Z2 the domino problem asks for an algorithm which receives as an input a
set of Wang tiles and decides whether they admit a tiling of the plane. A similar
problem in the context of subshift would be to take a set of forbidden patterns F
and ask whether the subshift XF is non-empty. These two problems, while defined
in different settings do inherently refer to the same objects and are both undecidable
as shown in Section 9.2.4.

In general groups these problems become more complex to define for two
reasons. From the side of the domino problem, we have to replace Wang tiles by
nearest neighbor subshifts, which raises the question of which set of generators to
use. From the side of the emptiness problem, we need a way to code the set of
forbidden patterns such that a Turing machine can interpret them.

9.3.2.1 Definitions

We start this section by giving formal definitions for the domino problem and the
emptiness problem, and then we prove that the decidability status of these two
problems is the same and does not depend on the choice for the generating set of the
group considered.

Definition 9.3.22. Let S be a fixed set of generators for a group G. The domino
problem with respect to S is defined as the set DP.G;S/ of codings of nearest
neighbor for S sets of forbidden patterns F such that XF ¤ ;.

One way to formally code a nearest neighbor set of forbidden patterns is to
identify each pattern as a triple in A2 	 S and identify A to a finite set of words in
f0; 1g�. We say that the domino problem with respect to S is decidable if DP.G;S/
is a decidable language.

In order to define the emptiness problem, we first need to describe how to code
general patterns.

Definition 9.3.23. Let G be a finitely generated group, S � G a finite generating
set, and A a finite alphabet. A pattern coding c is a finite set of tuples c D
f.wi; ai/gi2I where wi 2 S� and ai 2 A. Given a set C of pattern codings, we define
the subshift XC by:

XC D AG n
[

g2G;c2C

\

.w;a/2c

Œa�gw

Note that if a pattern coding does not represent an actual pattern, that is, if two
words representing the same group element get paired with different letters, thenT
.w;a/2cŒa�gw is empty and the coding does not contribute at all in the formula above.

Definition 9.3.24. Let S be a fixed set of generators for a group G. The emptiness
problem with respect to S is defined as the set EP.G;S/ of sets of pattern codings
C such that XC ¤ ;.
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Using the same technique as in Proposition 9.3.13, we obtain that the compu-
tational properties of the emptiness problem are independent of the chosen set of
generators. Therefore, analogously to the case of the word problem for groups, we
can plainly speak about the emptiness problem for a given group EP.G/ and use an
arbitrary set of generators.

Proposition 9.3.25. For every pair S;S0 of finite set of generators of G, we have
that EP.G;S/ is many-one equivalent to EP.G;S0/.

Proposition 9.3.26. Let S be a finite set of generators of G. Then DP.G;S/ is many-
one equivalent to EP.G;S/.

Proof. Clearly DP.G;S/ �m EP.G;S/ as any instance of DP.G;S/ is an instance
of EP.G;S/. To prove the converse, we would like to use the conjugacy from Propo-
sition 9.3.21, but the construction of the new alphabet might not be computable if
the word problem of G is undecidable. We bypass this problem as follows. Given a
set of pattern codings C , we compute N D maxc2C max.wi;ai/2c jwij and

B D fb W
[

n�N

Sn ! A j 8c 2 C ; 9.w; a/ 2 c W bw ¤ ag

That is, the set of all colorings of words of length at most N such that no pattern
coding from C appears. This set is computable, and the nearest neighbor set of
forbidden patterns G containing q 2 Bf1G;sg if and only if 9w 2

S
n�N�1 Sn such that

.q1G/sw ¤ .qs/w also is. Therefore we obtain an instance of DP.G; S/.
If XC is nonempty, we can construct y 2 XG by setting .yg/w D xgh where h DG w

is the group element coded by w. It clearly does not contain any coding from C by
definition. Conversely, analogously to the proof of Proposition 9.3.21, we obtain
that for every y 2 XG , g 2 BS.1G;N/, and w 2

S
n�N Sn such that g DG w, then

.y1G/w D .yg/� where � is the empty word. In particular we deduce that every symbol
b 2 B appearing in a configuration must satisfy that bw1 D bw2 for each w1 DG w2.
We can thus construct a configuration x 2 XC from y 2 XG defined as xg D .yg/� .
We conclude that EP.G;S/ �m DP.G;S/ and thus DP.G;S/ �m EP.G;S/. ut

Mixing the two previous propositions, we get:

DP.G;S/ �m EP.G;S/ �m EP.G;S0/ �m DP.G;S0/

Corollary 9.3.27. Let S;S0 be a finite set of generators of G. Then DP.G;S/ is
many-one equivalent to DP.G;S0/.

We can therefore just speak plainly about the domino problem DP.G/ of a group
G as the domino problem with respect to any set of generators. The results of this
sections give us the liberty to treat the domino problem in any of the previous
formats, that is, using any finite set of generators, and either with nearest neighbor
forbidden patterns or with sets of pattern codings.
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9.3.2.2 Basic Properties

Theorem 9.3.28. For any group G then WP.G/ �m DP.G/. In particular the
domino problem is undecidable for any group with undecidable word problem.

Proof. More precisely, we are going to show WP.G/ �m EP.G/. Consider the
alphabet A D f0; 1; 2g. Given w 2 S� an input of the word problem, we associate
the set of pattern codings C D fc0; c1; c2g where ci D f.�; i/; .w; i/g. This set C
is clearly computable from w. In other words, the set C forces the symbol in each
group element g to be different from the one in gw.

If w 2 WP.G/ then w DG 1G, therefore Œi�� \ Œi�w D Œi�1G and so XC \ Œi�w D ;
for each i 2 f0; 1; 2g. We deduce that

; D
[

i2f0;1;2g

XC \ Œi�w D XC \ AG D XC and thus C 2 EP.G/:

In the case where w ¤G 1G, we show that XC ¤ ;. Indeed, let w DG g 2 G. As
g ¤ 1G then hgi is a nontrivial cyclic subgroup. So either hgi Š Z or hgi Š Z=nZ
for some n � 2. We construct y 2 Ahgi differently for each case as follows: In the
case hgi Š Z we set ygm D m mod 2. In the case hgi Š Z=nZ, we distinguish
again two cases; if n is even, then we set ygm D m mod 2. Otherwise we just set
ygm D m mod 2 if n − m, otherwise ygm D 2. One can verify that in each case
8h 2 hgi y … Œi�h \ Œi�hg.

Consider a set of left representatives L for the quotient G=hgi. We can define
x 2 AG by x`h D yh for every ` 2 L and h 2 hgi. By definition we have for each `; h,
and i 2 A, then x … Œi�`h \ Œi�`hw and thus x 2 XC and hence XC ¤ ;. ut

Fix a group G, a finite generating set S, a finite alphabet, and a set of
codings of nearest neighbor forbidden patterns F . Suppose XF is empty. Then
by compactness, there exists a size N such that the ball of size BS.1G;N/ fails to
be colored without patterns from F . So a naive procedure, which would consist
in exhaustively searching for a valid coloring of balls of increasing size, will
eventually stop because such a coloring does not exist for the ball of size N. The
only restriction we need to perform such a procedure is that the group structure
should be enumerable, which is formalized in the following proposition.

Proposition 9.3.29. The domino problem is co-recursively enumerable for any
recursively presented group.

Proof. As G is recursively presented, there is a Turing machine M1 which on input
w 2 S� returns YES if and only if w DG 1G. Consider the following algorithm
M2:

1. Initialize n 1.
2. Do the following procedure:
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• For each pair of words u; v 2 S� of length at most n. Run n steps M1 on entry
uv�1.

• For each m 2 f1; � � � ; ng construct the set Xm of functions p W
S

k�m Sk ! A
such that pu D pv for each pair .u; v/ where M answered YES and where no
forbidden pattern appears.

3. If some Xm is empty, return YES. Otherwise do n nC 1 and go to 2.

The previous algorithm answers YES if and only if the instance of DP.G/
generates an empty subshift. Indeed, if the subshift X is nonempty, then we can
take x 2 X and define p 2 Xm as pw D xw. Conversely if X � AG is empty, there
exists N 2 N such that every p 2 ABS.1G;N/ satisfies X \ Œp� D ;. Otherwise we may
choose xn 2 Œpn� \ X where pn 2 ABS.1G;n/ and any accumulation point of fxngn2N
would be in X. Therefore it suffices to run the procedure for sufficient steps such
that every pair .u; v/ of length at most N such that u DG v is identified and M2 will
forcefully obtain that XN D ; and answer YES. ut

In other words, Proposition 9.3.29 means that as soon as the group is recursively
presented, the difficult part of the domino problem is to detect if a valid tiling exists.

9.3.3 Inheritance Properties

Proposition 9.3.30. For every finitely generated H � G we have DP.H/ �m

DP.G/.

Proof. Let SH and SG be sets of generators for H and G, respectively. As H �
G then SG [ SH also generates G. Any input of DP.H;SH/ is also an input of
DP.G;SH [ SG/. If the original input produces an empty subshift, then it also does
so in the image as the subgroup H � G admits no valid configuration. Conversely,
if the original input admits a configuration, then it can be used to tile each lateral
class G=H as in the proof of Theorem 9.3.28, and therefore the subshift produced
by the image is also nonempty. ut

From Theorem 9.2.19 and Proposition 9.3.30 we get:

Corollary 9.3.31. If Z2 embeds into G then DP.G/ is undecidable.

Proposition 9.3.32. For every finitely generated normal subgroup H E G, we have
DP.G=H/ �m DP.G/.

Proof. Every quotient of a finitely generated group is finitely generated, so
DP.G=H/ is well defined. Let L be a set of representatives of G=H in G and let
� W G=H ! L be this identification. Consider finite sets SG=H , SH of generators of
G=H and H, respectively, and let SL D �.SG=H/. We remark that if f1; f2 2 G=H,
then �.f1f2/ D �.f1/�.f2/h for some h 2 H. In particular as every g 2 G can be
written as g D `h for some ` 2 L and h 2 H, we obtain that each g 2 G can be
written as uv where u 2 SL and v 2 SH . Therefore SL [ SH generate G.
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Consider an instance F of DP.G=H;SG=H/. We construct an instance G D G1 [
G2 of DP.G;SL [ SH/ such that XG D ; if and only if XF D ;. For each pattern
with support f1G=H; rg with r 2 SG=H in the original instance, we add the same
pattern with support f1G; �.r/g in G1. We construct G2 as the set of all patterns p
with support f1G; sg for s 2 SH such that p1G ¤ ps. Namely, G1 copies the original
rules in every quotient and G2 forces that 8y 2 XG every configuration is invariant
by translations by H. This construction of G is computable and gives an instance of
DP.G;SL [ SH/.

Suppose XF � AG=H is nonempty. Then from x 2 XF we can construct y 2 AG

defined by y`h D x��1.`/. By definition we have that for each g 2 G and s 2 SH then
yg D ygs and so no pattern from G2 appears. Also, given r 2 SL we have

y`hr D y`r.r�1hr/

D y.`r/h0 for some h0 2 H as H E G

D y`0h00h0 for some h00 2 H

D y`0

where `0 D �.��1.`/��1.r//. Therefore y`hr D x��1.`/��1.r/ meaning that no patterns
from G1 appear. Therefore y 2 XG .

Conversely let y 2 XG and consider x 2 AG=H defined by xg D y�.g/. Suppose a
forbidden pattern with support f1G=H;rg from F appears in x in position g. Therefore
y�.gr/ D y�.g/�.r/h D y�.g/�.r/ for some h 2 H, and thus the same forbidden pattern
appears in y with support f1G; �.r/g. This implies that x 2 XF ¤ ;. ut

Proposition 9.3.33. Let H � G such that ŒG W H� <1. Then DP.G/ �m DP.H/.

Proof. The direction DP.H/ �m DP.G/ is direct from Proposition 9.3.30. Con-
versely, to prove DP.G/ �m DP.H/, we can suppose that H E G. Indeed, if H is not
normal, we can find N � H such that N E G and ŒG W N� <1 (see Exercise 9.5.9).
If we prove that DP.G/ �m DP.N/, we would have DP.G/ �m DP.N/ �m DP.H/
and thus DP.G/ �m DP.H/.

Let X � AG be a subshift and R a set of representatives of the right lateral classes
GnH which contains 1G. We define the R-higher power shift of X as the set

XŒR� WD fy 2 .AR/H j 9x 2 X;8.h; r/ 2 H 	 R; .yh/r D xhrg:

The set XŒR� is indeed an H-subshift and X D ; ” XŒR� D ;. As every
finite index subgroup of a finitely generated group is itself finitely generated (see
Exercise 9.5.10), we can take a set of generators SH for H and thus SH[R is a finite
set of generators for G. Let D D SH [ .RRR�1 \ H/ and E D RDR�1. Note that as
both R and SH are finite then E also is. Furthermore as 1G 2 R then SH � E and as
H E G we have E � H, therefore H D hEi. Given an instance F of DP.G;SH [R/
with alphabet A, we are going to construct an instance G of DP.H;E/ with alphabet
AR such that XG D XŒR�F as follows: for every pattern p 2 F with supp.p/ D f1G; sg
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with s 2 SH and r 2 R, we put in G all the patterns q with support f1H; rsr�1g
such that .q1H /r D p1G and .qrsr�1 /r D ps. This will take care of all patterns with
support f1G; sg and s 2 SH . For the remaining patterns let .a; b/ 2 R2. By definition
it is always possible to write ab D Nhc for some c 2 R and some Nh 2 RRR�1 \ H.
Now for every pattern p 2 F with supp.p/ D f1G; bg with b 2 R and a 2 R, we
let Nh 2 RRR�1 \ H such that ab D Nhc and we add to G all patterns q with support
f1H; a�1 Nhg such that .q1H /a D p1G and .qa�1 Nh/c D pb.

Some of the patterns in G defined above will have some trivial support, in this
case we just consider that as a restriction on the alphabet AR. Clearly as R is fixed
beforehand, this construction can be computed from an instance of DP.G;SH [ R/.
We leave as an exercise to the reader to verify that XG D XŒR�F and thus conclude that
DP.G/ �m DP.H/. ut

We say two groups G1;G2 are commensurable if they contain finite index
subgroups H1 � G1 and H2 � G2 such that H1 Š H2.

Corollary 9.3.34. Let G1;G2 be two commensurable groups, then DP.G1/ �m

DP.G2/. Said otherwise, the domino problem is an invariant of commensurability.

9.3.4 Classes of Groups

9.3.4.1 Virtually Free Groups

Proposition 9.3.35. Let F be a free group of finite rank. Then DP.F/ is decidable.

Proof. Let n D rank.F/ and let S D fs1; : : : ; sn; s�11 ; � � � ; s
�1
n g be the set of free

generators of F. Consider an instance F of DP.F; S/ over an alphabet A. We say a
symbol a 2 A is extensible with respect to B � A if for every s 2 S there exists
b 2 B such that neither of the patterns p; q with supports supp.p/ D f1F; sg and
supp.p/ D f1F; s�1g defined by p1F D a, ps D b, q1F D b, qs�1 D a belong to
F . Said otherwise, a is extensible with respect to B if for every direction s 2 S it’s
possible to put an a next to some b 2 B in position s without creating a forbidden
pattern.

Consider the Turing machine M which receives an instance of DP.F; S/ and does
the following:

1. Initialize E A.
2. Let E0 be the subset of symbols of E which are extensible with respect to E.
3. If E0 ¤ E assign E E0 and go to step 2.
4. If E ¤ ; answer YES. Otherwise answer NO.

This procedure always ends in at most jAj iterations of step 2. Clearly non-
extensible symbols cannot appear in a configuration of XF . We deduce therefore
that XF � EF at any step of the algorithm. This implies that if M answers NO
then indeed XF D ;. If M answers YES, then E stabilizes into a nonempty set of
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extensible with respect to E symbols. Fix for every a 2 E a function 'a W S ! E
which gives an symbol in E which can be put next to a in direction s. We define
x 2 EF inductively as follows: Fix x1G D a 2 E. Suppose x is defined over all words
w 2 S� of length jwj � n. For each non-reducible word ws, we let xws D '.xw/.s/.
As the Cayley graph of F is a 2n-regular infinite tree, this construction does not
generate any forbidden patterns and hence x 2 XF . ut

Definition 9.3.36. Let P be a group property. A group is said to be virtually P if
it contains a finite index subgroup which satisfies such property.

Integrating the previous proposition with Proposition 9.3.33, we obtain the
following theorem.

Theorem 9.3.37. Every virtually free group has decidable word problem.

We would like to remark a nice application of Proposition 9.3.35. If G is finitely
generated by some finite set S, it admits a presentation G Š hSjRi D FS=NR

where NR E FS. As DP.FS/ is decidable, Proposition 9.3.32 implies that if NR is
finitely generated then DP.G/ is decidable. If we put this together with the Nielsen-
Schreier [402] theorem which states that every subgroup of a free group is itself
free, we can write it in the following way.

Corollary 9.3.38. Let .S;R/ be a group presentation. If DP.hSjRi/ is undecidable,
then the free group NR generated by the conjugate closure of R has infinite rank.

Example 9.3.39. Let Œa; b� D aba�1b�1 denote the commutator of a and b. Let
Z2 Š ha; b j Œa; b�i. As DP.Z2/ is undecidable, then NŒa;b� has infinite rank. One can
also easily verify that NŒa;b� D ŒF;F� D fŒg; h� j g; h 2 Fg. This constitutes a new
(and algebraic topology free) proof of the classical result stating that the commutator
subgroup of a free group of rank 2 has infinite rank.

9.3.4.2 Polycyclic Groups

The class of polycyclic groups is one of the largest for which we can obtain a
complete classification concerning the undecidability of the domino problem. This
is achieved through the use of the properties proved in section 9.3.3. Polycyclic
groups have indeed a lot of nice properties due to the fact that this is one of the
largest classes of groups which is closed under subgroups and quotients, and that
contain only finitely presented groups with decidable word problem. See [534]
and [373] for more details on polycyclic groups.

Polycyclic groups are the solvable groups for which every subgroup is finitely
generated. The best way to give examples of polycyclic groups is by the Auslander-
Swan theorem:

Theorem 9.3.40. Polycyclic groups are precisely solvable subgroups of GLn.Z/.
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See [534, Chapter 5, Theorem 5] or [373, section 3.3] for a proof. By Tits
Alternative [564], we therefore obtain that virtually polycyclic groups are precisely
the subgroups of GLn.Z/ that do not contain non-abelian free groups, or equivalently
amenable subgroups of GLn.Z/.

Polycyclic groups form a nice class of groups due to their many closure
properties:

Proposition 9.3.41. Quotients and subgroups of polycyclic groups are polycyclic.
In particular, subgroups of polycyclic groups are always finitely generated.

This property opens the possibility to do inductive proofs on polycyclic groups. This
is done formally with the concept of the Hirsch number. The Hirsch number h.G/
of a polycyclic group G is the number of infinite factors in a series with cyclic or
finite factors. The Hirsch number is always finite, and subgroups and quotients have
a smaller Hirsch number than the group. More precisely:

Proposition 9.3.42.

• If G1 is a subgroup of G2, then h.G1/ � h.G2/.
• If H is a normal subgroup of G, then h.G/ D h.G=H/C h.H/.
• h.G/ D 0 if and only if G is finite.
• h.G/ D 1 if and only if G is virtually Z.
• h.G/ D 2 if and only if G is virtually Z2.

See in particular [534, Chapter 1.C].
We now are ready for the main theorem of this section.

Theorem 9.3.43. Let G be a virtually polycyclic group. Then G has an undecidable
domino problem if and only if G is not virtually cyclic.

Proof. One direction is clear. By Proposition 9.3.33, it is sufficient to prove the
result for polycyclic groups.

We prove the result by induction on the Hirsch number. The result is clear for
Hirsch number 0; 1; 2. Now let G be a group of Hirsch number no less than 3.

It is known that every polycyclic group admit a nontrivial normal free abelian
subgroup [534, Chapter 1, lemma 8].

Let H be such a subgroup. If H D Zn for some n > 2, then H has an undecidable
domino problem, and therefore G also has an undecidable domino problem by
Proposition 9.3.30. Otherwise H D Z. Then G=H is a polycyclic subgroup of
Hirsch number h.G/�1 � 2 and therefore has an undecidable domino problem. We
conclude again by Proposition 9.3.32 that G has an undecidable domino problem.

ut

To which extent this theorem can be extended is open. Of course any group that
contains a polycyclic group of Hirsch number greater than 2 also has an undecidable
domino problem.

A natural direction is extending the theorem to all finitely generated solvable
groups. How to do this is unclear. First, there are finitely generated solvable groups
with an undecidable word problem. Furthermore, some of them do not contain a
copy of Z2 which means the previous method cannot work. Examples include the
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Lamplighter groups and the Baumslag-Solitar groups. Baumslag-Solitar groups will
be treated in the next section. Whether the Lamplighter group admits an undecidable
domino problem remains open.

9.3.4.3 Baumslag-Solitar Groups

In this section we prove the undecidability of the domino problem on Baumslag-
Solitar groups. Given two non-zero integers m and n, we define BS.m; n/ the
Baumslag-Solitar group of order .m; n/ as the two-generators and one-relator group
with presentation

BS.m; n/ D< a; bjamb D ban > :

In particular BS.1; 1/ is isomorphic to Z2. Since BS.�m;�n/ is isomorphic to
BS.m; n/, it is enough to consider groups with m > 0. For simplicity, we also assume
that n > 0. The case n < 0 is analogous.

We first discuss �m;n, the Cayley graph of BS.m; n/ for m; n > 0. Since BS.m; n/
has two generators, every vertex in its Cayley graph �m;n has in-degree and out-
degree 2.

The level associated with g of the Cayley graph �m;n is the induced subgraph
obtained by keeping only the vertices of the coset ghai D

˚
g:ak W k 2 Z

�
. We denote

it by Lg and we say that the vertex g defines the level Lg. The level Lgb is a
predecessor of the level Lg, while the latter is a successor of the former, for all
group elements g. Note that each level has m predecessors and n successors.

Our tilings will be colorings of the edges of the Cayley graph �m;n. The local
constraint is given in terms of a set of allowed patterns on the edges

" �! a �! a2 �! : : : �! am �! amb D ban

and

" �! b �! ba �! ba2 �! : : : �! ban D amb;

see the left side of Figure 9.4 for the case m D 3; n D 2. For each group element g
the pattern of this shape found at position g must be among the allowed patterns.

g.b g.ba g.ba2

g g.a g.a2 g.a3

Fig. 9.4 On the left: the shape of the tiles in �3;2. On the right: some levels in �3;2. The level L
has two successor levels (drawn below the level) and three predecessor levels (drawn above it).
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The Cayley graph �m;n can be projected into the Euclidean plane by a function
˚m;n W BS.m; n/ ! R2, defined as follows. Let w be a finite word on the alphabet
A D fa; b; a�1; b�1g. Then any element of BS.m; n/ can be represented by such a
word, but this representation is of course non unique. If x is a letter of A, we denote
by jwjx the number of occurrences of x in the word w. We then define for x 2 A the
contribution of x to w by k w kxD jwjx � jwjx�1 .

Let  m;n W A� ! R be the function defined by induction on the length of the
word by

8
ˆ̂̂
<

ˆ̂̂
:

 m;n."/ D 0 where " is the empty word
 m;n.w:b/ D  m;n.w:b�1/ D  m;n.w/

 m;n.w:a/ D  m;n.w/C
�

m
n

�kwkb

 m;n.w:a�1/ D  m;n.w/ �
�

m
n

�kwkb

Lemma 9.3.44. For every u; v 2 A� one has

 m;n.u:v/ D  m;n.u/C
�m

n

�kukb
 m;n.v/:

Proof. By induction on the length of v. ut

We can now define the projection function ˚m;n W BS.m; n/ ! R2 which
associates to every element g of BS.m; n/ its coordinates on the Euclidean plane:

˚m;n.g/ D . m;n.w/; k w kb�1 / ;

where w is a word representing g. The following proposition states that the
definition does not depend on the choice of w. Its proof is a simple application
of Lemma 9.3.44.

Proposition 9.3.45. The function ˚m;n is well defined on BS.m; n/.

For every element g 2 BS.m; n/, define the shift of g as the first coordinate of
˚m;n.g/ that takes rational values and the height of g as the second coordinate of
˚m;n.g/ that takes integer values.

All elements belonging to the same level project on the same horizontal line, thus
we can speak of the height of a level. The height is k w kb�1 for the words w that
represent the elements of the level.

Remark 9.3.46. The function ˚m;n is not injective. Let m D 3 and n D 2. Consider
the word

! D bab�1a2ba�1b�1a�2:
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Fig. 9.5 The general form of
tiles in BS.3; 2/.

→x 1
→x 2

→c →
d

→y 1
→y 2

→y 3

We have

˚3;2.!/ D ˚3;2."/ D .0; 0/:

However, freely reduced words that do not contain b�1akmb or baknnb�1 as
subwords, for any integer k, cannot represent the identity in BS.m; n/. Thus ! and
" represent different elements of the group. Moreover, Baumslag-Solitar groups are
HNN-extensions of Z, thus from Britton’s lemma it follows that a finite subgroup
of Baumslag-Solitar group is conjugate to a finite subgroup of Z. Since ! is not
the identity, it has infinite order in BS.3; 2/. We see that there is an infinite cyclic
subgroup that is projected by ˚3;2 to point .0; 0/. This will not be a problem in
the sequel: the tile associated with an element g 2 BS.m; n/ will depend only on
˚m;n.g/.

Following the ideas from Section 9.2.5, we can construct a tile set such that if a
level in a tiling of �m;n represents some �!x 2 R2, then its successor levels represent
f .�!x / where f W R2 ! R2 is a rational affine map. Going from one level to one of its
successor level corresponds to one iteration of f , and a decrease of the height of the
level by 1.

Consider the case BS.3; 2/. The tiles are of the form shown in Figure 9.5. We say
that the tiles compute the function f if the relation

f
��!x 1 C

�!x 2

�

2
C�!c D

�!y 1 C
�!y 2 C

�!y 3

3
C
�!
d : (9.1)

is satisfied.
Consider a sequence of k such tiles on some level, next to each other so that

the left vertical edge of a tile is the same as the right edge of the previous tile.
Averaging (9.1) over all k tiles yields then

f .�!x /C
�!c 1

k
D �!y C

�!
d k

k

where �!x is the average of the labels on the segment of 2k edges on the previous
level, �!y is the average of the labels on the corresponding segment of 3k edges on

the level below, and �!c 1 and
�!
d k are the left and right vertical edges of the first and
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the last tile in the row, respectively. Letting k grow to infinity, we see that if the
previous level represents some �!x 2 R2 then the next level necessarily represents
f .�!x /, as required.

For all g 2 BS.3; 2/ with ˚m;n.g/ D .˛; ˇ/ and for every k 2 Z, we define
the translated balanced representation of �!x as the bi-infinite sequence Bg.�!x / D
.Bg

k.
�!x //k2Z, where

Bg
k.
�!x / D

��m

n

�ˇ
˛ C k

	
�!x

�
�

��m

n

�ˇ
˛ C .k � 1/

	
�!x

�
:

Bg
k(

→x ) = m
n

+ k →x − m
n

+(k− 1) →x .

•g

Bg.b
2k−1 (

→x ) Bg.b
2k (→x )

cg (k− 1) cg (k)

Bg
3k−2 ( f (

→x )) Bg
3k−1 ( f (

→x )) Bg
3k ( f (

→x ))

with cg(k) = 1
2 f

3
2

−1 α +2k →x
− 1

3
3
2 +3k f (→x ) + k

→
bα

αα

For the same reasons as those invoked in Section 9.2.5 (the domain U is bounded,
and the function fi has rational coefficients), any rational function f W U � R2 ! R2

can be encoded by a finite tile set, so that for a given �!x 2 U, one can tile a level
of BS.3; 2/ such that the balanced representations of �!x and f .�!x / appear on the
top and bottom labels, respectively. We deduce the undecidability of the domino
problem for BS.3; 2/. The proof for other Baumslag-Solitar groups is similar.

Theorem 9.3.47. The domino problem is undecidable on Baumslag-Solitar groups.

9.3.4.4 Groups G1 � G2

In this section, we will prove the undecidability of the domino problem for groups
that are direct products of infinite groups, i.e., groups of the form G1 	 G2, where
G1 and G2 are infinite and finitely generated.
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Of course, the only interesting case is when at least one of the two groups is an
infinite torsion group, i.e., an infinite group where all elements are of finite order.
Indeed, if it is not the case, then both G1 and G2 contain Z as a subgroup, and
therefore G1 	 G2 contains Z2 as a subgroup and thus has an undecidable domino
problem by Proposition 9.3.30.

However, even if G does not contain a copy of Z, it is still true that the Cayley
graph of G, as any infinite connected graph, contains infinitely many (undirected)
paths. In fact, it can even been proven that some Cayley graph of G (for a suitable
choice of generators) can be covered by such paths. This is the purpose of the
following theorem:

Theorem 9.3.48 ([538]). Let G be an infinite, finitely generated group. Then there
exists a finite set S s.t. the Cayley graph � .G;S/ of G with S as generators can be
covered by disjoint bi-infinite paths.

This is a deep theorem with a nontrivial proof, see [538] for more details.
An equivalent way to say is as follows:

Theorem 9.3.49. Let G be an infinite, finitely generated group. Then there exists
a finite set S and a map next W G ! G, where next.g/ states which element of G
is the next one in the bi-infinite path g is lying on and that satisfies the following
conditions:

• next is one-to-one and onto. Its inverse will be called prev.
• next.g/ is a neighbor of g in � .G;S/. That is, for all g, g�1next.g/ 2 S.
• Each path is infinite: for all n > 0 and all g 2 G, nextn.g/ 6D g.

The last condition can be reformulated as follows: there is a map h from G to Z s.t.
h.next.g// D h.g/C 1.

In all that follows, we suppose without loss of generality that S is symmetric,
which means that additionally for all g, g�1prev.g/ 2 S.

Under these conditions, next and prev can be defined locally. Indeed, let n.g/ D
g�1next.g/ and p.g/ D g�1prev.g/. Then n and p have values in the finite set S.
Furthermore they satisfy the following two properties:

• If n.g/ D s then p.gs/ D s�1.
• If p.g/ D s then n.gs/ D s�1.

n and p can be interpreted in the Cayley graph � .G;S/. At each vertex g of the
Cayley graph, two arrows are pointed by. One of them corresponds to n.g/, the other
to p.g/. The first condition above states that if we start from some vertex g, follow
the arrow pointed by n, and then at gn.g/ follow the arrow pointed by p we come
back to g.

Definition 9.3.50. A valid pair for .G;S/ is a pair .n;p/ of maps from G to S s.t.

• If n.g/ D s then p.gs/ D s�1.
• If p.g/ D s then n.gs/ D s�1.
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By definition, .n; p/ is a valid pair. The two following facts are obvious:

Proposition 9.3.51. Let .n;p/ be a valid pair for .G;S/. Let next.g/ D gn.g/ and
prev.g/ D gp.g/. Then next is one-to-one and onto with inverse prev.

Proposition 9.3.52. The set of all valid pairs for .G;S/ is an SFT. More accurately,
define:

XG;S D
˚
x 2 .S 	 S/Gj8s 2 S;

�
.xg/1 D s) .xgs/2 D s�1

�

^
�
.xg/2 D s) .xgs/1 D s�1

��

Then XG;S is an SFT. Furthermore, if x 2 XG;S, then the pair .n;p/ defined by
n.g/ D .xg/1 and p.g/ D .xg/2 is a valid pair. Conversely, if .n;p/ is a valid pair,
then the configuration x defined by xg D .n.g/;p.g// is in XG;S.

Note that it might be possible that next and prev are not cyclic. In fact, in a
typical configuration of XG;S, it is quite likely that nexti.g/ D g for some g and
i > 0.

Intuitively, a configuration x of XG;S corresponds therefore to a partition of the
Cayley graph � .G;S/ into cycles and bi-infinite paths, where, at each position
g 2 G, we should look at xg to read the information coding n.g/ and p.g/ to
know what is the next and previous vertex in the cycle or path. In group terms,
we could say intuitively that we have partitioned the vertices of the Cayley graph of
G into copies of the (canonical) Cayley graphs of Z and/or Z=nZ for some (possibly
infinitely many) n. We know also that, if S is chosen to verify the conclusion of
Theorem 9.3.49, then at least one configuration of XG;S contains only bi-infinite
paths and no cycles.

We are now almost ready to proceed to the proof. Let G1 and G2 be two infinite,
finitely generated groups, and let G D G1 	 G2. Let S1 and S2 be two sets of
generators for G1 and G2 that satisfy the conclusion of Theorem 9.3.49.

We then obtain two SFTs, XG1;S1 on G1, and XG2;S2 on G2. We extend XG1;S1 to
an SFT on G1 	 G2 by extending periodically every configuration along G2 (using
the same idea as in Proposition 9.3.32) and proceed analogously with XG2;S2 . Taking
the product of these two SFTs, we have now obtained an SFT X over the alphabet
S1 	 S1 	 S2 	 S2 s.t.:

• If .n1;p1/ is a valid pair for .G1;S1/ and .n2;p2/ a valid pair for .G2;S2/, then
the configuration x defined by x.g1;g2/ D .n1.g1/;p1.g1/;n2.g2/;p2.g2// is in X.

• Furthermore, every configuration of X is of this form.

Intuitively a configuration of X partitions the vertices of the Cayley graph � .G;S1	
S2/ into copies of the (canonical) Cayley graphs of Z 	 Z, Z=nZ 	 Z, Z 	 Z=nZ
and/or Z=mZ 	 Z=nZ. We know also that as S1 and S2 were chosen to verify the
conclusion of Theorem 9.3.49, some configuration of X contains only copies of
Z 	 Z.
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We are now ready for the proof of the undecidability of the domino problem on
G1 	G2. Let Y be a nearest neighbor SFT on Z2 with alphabet A. Let F1 be the set
of forbidden patterns of Y of support f.0; 0/; .1; 0/g and F2 the set of patterns of
support f.0; 0/; .0; 1/g. We can interpret F1 and F2 as subsets of A2, so that y 2 Y
if and only if for all i; j .y.i;j/; y.iC1;j// 62 F1 and .y.i;j/; y.i;jC1// 62 F2.

We can define a subshift Z on G1	G2 over the alphabet .S1	S1	S2	S2	A/
as follows:

Z D

�
z 2 X 	 AG1�G2

ˇ̌
ˇ̌8g 2 G1 	 G2

�
..zg/5; .zg.zg/1 /5/ 62 F1

..zg/5; .zg.zg/3 /5/ 62 F2

	�
:

Basically, an element of z 2 Z is a configuration of X where each element g is
additionally labeled with a letter from A. At each element g, we forbid the patterns of
support f.0; 0/; .1; 0/g to appear in the direction indicated by n1.g/, and the patterns
of support f.0; 0/; .0; 1/g to appear in the direction indicated by n3.g/.

Proposition 9.3.53. Y is nonempty if and only if Z is nonempty.

Proof. Suppose that Y is nonempty, and let y be an element of Y . Informally, we
know some configuration of X partitions G into copies of Z2. We will thus use y in
each copy of Z 	 Z to obtain our configuration of Z.

Formally, let nexti; previ; ni; pi; hi; i 2 f1; 2g the functions that come from
Theorem 9.3.49. Consider the configuration x of X that correspond to the valid pairs
.n1; p1; n2; n2/.

We now define z by .zg/1�4 D .xg/ and .z.g1;g2//5 D yh1.g1/;h2.g2/. Then it is clear
that z 2 Z. Indeed, let g D .g1; g2/ 2 G1 	 G2. Then .zg.zg/1 /5 D .zg.n1.g1/;1G2 /

/5 D

.znext1.g1/;g2 /5 so that .z5; .z.zg/1g/5/ D .yh1.g1/;h2.g2/; yh1.g1/C1;h2.g2// 62 F1 by
definition of y. Similarly, .z5; .z.zg/1g/5/ 62 F2. Therefore z 2 Z and Z is nonempty.

Conversely, suppose Z is nonempty and let z 2 Z. Informally, z partitions G into
copies of Z	Z or bastardized versions of it of the form Z=nZ	Z=mZ. We look at
just one of this copy and use it to build our configuration on Y , possibly unfolding
the copy if necessary.

Formally, let x be defined by xg D .zg/1�4. Then x 2 X and therefore corresponds
to two valid pairs .n1;p2/ and .n2;p2/. Let next1;prev1 and next2;prev2 be the
associated functions. We now define y 2 AZ2 by y.i;j/ D .z..next1/i.1G/;.next2/j.1G///5.
Then y 2 Y .

Indeed. Let .i; j/ 2 Z2. Let g1 D .next1/i.1G/ and g2 D .next2/j.1G/. Then

y.iC1;j/ D .z.next1/.g1/;g2 /5 D .z.g1n1.g1/;g2//5 D .z.g1z.g1;g2//1;g2
/5

Therefore .y.i;j/; y.iC1;j// D ..z.g1;g2//5; .z..g1z.g1;g2//1;g2/
/5/ 62 F1 by hypothesis on z.

Similarly, .y.i;j/; y.i;jC1// 62 F2. Therefore y 2 Y and Y is nonempty. ut

Corollary 9.3.54. Let G1;G2 be two infinite, finitely generated groups. Then G1 	

G2 has an undecidable domino problem.
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Proof. Forbidden words for Z can be built effectively from a set of forbidden words
of a nearest neighbor Z2-subshift. ut

Corollary 9.3.55. The Grigorchuk group has an undecidable domino problem.

Proof. The Grigorchuk group G is a well-known example of a torsion group. G con-
tains a subgroup of finite index of the form H D H1	H2 with H1;H2 infinite [430].
H1	H2 has an undecidable domino problem by the previous propositions; therefore
G has an undecidable domino problem by Proposition 9.3.33. ut

9.3.5 Discussion

9.3.5.1 Muller & Schupp Theorem

In Section 9.3.4.1 we proved that virtually free groups have decidable domino
problem. The proof directly gives an algorithm that decides the problem. It is
noteworthy that this result can be obtained by a totally different argument. This
comes from the combination of three facts: first, the domino problem can be
expressed in Monadic Second Order logic (MSO) [33, 580]; second, a group is
virtually free if and only if it has finite tree-width [431]; third, graphs with finite
tree-width are exactly those with decidable MSO logic [366].

Proposition 9.3.56 ([366, 431]). If G is virtually free, then G has decidable domino
problem.

The reasoning that leads to decidability of domino problem for virtually free
groups using logic also suggests that this sufficient condition might also be
necessary. This assumption comes from the following reasoning: if a group is not
virtually free, then it has arbitrarily large grids as minors [507]. It should then be
possible to somehow use these grids as computation zones – similarly to what
is done in Robinson’s tiling [508] – to encode Turing machine computations and
conclude the undecidability of the domino problem. But the main issue is that even
if we know that such grids exist, we do not know where they appear and even less
how to make them appear inside a tiling by Wang tiles.

Conjecture 9.3.57. A finitely presented group has decidable domino problem if and
only if it is virtually free.

9.3.5.2 Hyperbolic Groups

The theorems in the previous section indicate that, whenever a group contains
(in some sense) Z 	 Z or any other nontrivial Baumslag-Solitar group, they
automatically have undecidable domino problem.
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A specific class of groups where this result cannot be applied is the class of
hyperbolic groups. Indeed, hyperbolic groups do not contain any copy of Z 	 Z or
any other nontrivial Baumslag-Solitar group. They also always have decidable word
problem, so Theorem 9.3.28 cannot apply, and they are always finitely presented.

Furthermore, free groups are hyperbolic, so it is very tempting to think that they
always have decidable domino problem. However, this is not true.

Indeed, by a theorem of Rips [506], there exist hyperbolic groups G and finitely
generated normal subgroups H of G s.t. G=H is isomorphic to Z2. Therefore, they
have an undecidable domino problem by Proposition 9.3.32. It is also tempting to
think the idea used above for the domino problem in the Baumslag-Solitar group
can be extended for hyperbolic surface groups.

While these two ideas give examples of hyperbolic groups with undecidable
domino problem, how to prove the result for an arbitrary, not virtually free,
hyperbolic group, remains an open problem.

9.3.5.3 Translation-Like and Quasi-Isometric Groups

Section 9.3.4.4 suggests that the undecidability of the domino problem is a
geometric property: as soon as some Cayley graph of G contains a grid structure, G
will have an undecidable domino problem. This is also hinted at in Section 9.3.5.1.
There are a few theorems that indeed suggest, at least for recursively presented
groups, that it is indeed the case. In order to study this idea, we need the notion of
quasi-isometry.

The definitions we give here are only valid in the context of finitely generated
groups, but these notions can be defined in the general case of metric spaces.

Definition 9.3.58. Let G1;G2 be two finitely generated groups and S1 a set of
generators for G1.

A map f W G1 ! G2 is Lipschitz if there exists a finite set S2 2 H s.t. for all
g 2 G1, and all s 2 S1, f .g/�1f .gs/ 2 S2.

A map f W G1 ! G1 is at bounded distance from the identity if there exists a
finite set F for all g 2 G1; g�1f .g/ 2 F.

Compare the definition with Theorem 9.3.49. Geometrically, a Lipschitz map f
sends adjacent vertices in the Cayley graph � .G1;S1/ to adjacent (or identical)
vertices in the Cayley graph � .G2;S2/. It can be proven easily that the fact that f
is Lipschitz does not depend on S1, so that it is a property of the function and the
group and not of the specific choice of generators.

Notice that if h is a homomorphism from G1 to G2, then h is a Lipschitz map by
taking S2 D h.S1/.

Definition 9.3.59. G1 and G2 are quasi-isometric if and only if there exists maps
f W G1 ! G2, g W G2 ! G1 such that:

• f ; g are Lipschitz.
• g is a quasi-inverse for f : f ıg and gı f are at bounded distance from the identity.
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Quasi-isometry intuitively means that a pair of Cayley graphs of G1 and G2 look
similar at large scale.

Definition 9.3.60 ([538, 584]). A right action of G on H is an infix operator ? W
H 	G! H s.t. h ? 1G D h and h ? .g1g2/ D .h ? g1/ ? g2 for all g1; g2 2 G and all
h 2 H.

An action is free if h ? g D h for some h implies g D 1G.
An action is translation-like if it is free and for all g 2 G, the map h ! h ? g is

at bounded distance from the identity.

It is easy to see that it is sufficient to prove the last property for a set of generators
of G. Therefore the last property can be replaced by: for some (any) set S1 of
generators of G, there exist S2 that generate H s.t. for all s 2 S1 and all h 2 H,
h�1.h ? s/ 2 S2. Compare the definition with Theorem 9.3.49 when G D Z.

An intuitive way to understand translation-like actions is that it covers some
Cayley graph of H by copies of some Cayley graph of G.

Theorem 9.3.61 ([157]). Let G and H be quasi-isometric finitely presented groups.
G has undecidable domino problem if and only if H has undecidable domino
problem.

Theorem 9.3.62 ([310]). Let G be a finitely presented group with undecidable
domino problem and H a finitely generated group. If G acts translation-like on H,
then H has an undecidable domino problem.

Both proofs are similar to the main proof of Section 9.3.4.4 in that they consist
in seeing the Cayley graph of H as similar to the Cayley graph of G, or copies
of the Cayley graph of G for the second theorem. The main difference is that we
have replaced Z, a free group, with an arbitrary finitely presented group. In the
first theorem, they define a subshift of finite that codes all quasi-isometries that
correspond to some finite sets S1;S2. In the second theorem, a subshift of finite
type analogous to XG;S from Corollary 9.3.54 will be defined that somehow codes
all translation-like actions (and also non-free actions) that correspond to a function
from a set of generators of G to a set of generators of H defined by the translation-
like action. However, in this case the group G acting on H is not free; therefore the
SFT needs also to code the relations of G (and hence needs G to be finitely presented
for the construction to work).

9.4 Towards a Definition of Effective Subshifts on Groups

We start this section by presenting the notion of effectively closed subshift on Zd for
d � 1. This class of subshift appears naturally in dimension 1 as a generalization of
sofic subshifts – those with a regular language, and thus whose complement of the
language is also regular – as follows: effectively closed subshifts are those which
can be defined by a recursively enumerable set of forbidden patterns. In addition to
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this fact, effectively closed subshifts also appear in a natural way when studying
some subsystems of two-dimensional SFTs or sofic subshifts, called projective
subdynamics. These links are explained in Section 9.4.1.

9.4.1 Link Between Z and Z2

To preserve the finiteness of the alphabet and thus compactness of the space of con-
figurations, we use the projective subdynamics, to be defined in the Section 9.4.1.1.
Note that this notion of projective subdynamics is different from the notion of
subdynamics of a subshift defined by Hochman in [294].

9.4.1.1 Projective Subdynamics: Definition and Example

We define the projective subdynamics of a two-dimensional subshift X 
 AZ2 as the
set of rows that can appear inside configurations of X :

�.X/ D
˚
y 2 AZ j 9x 2 X s.t. x.i;0/ D yi for every i 2 Z

�
:

The set of configurations �.X/ defined above is a subshift (see Exercise 9.5.2).

Example 9.4.1. Consider the two-dimensional SFT X on alphabet

A= a;a;b;b;c;c;c; ↑ ; ; ; ↑ ; ;

and whose allowed patterns appear in the following configuration.

c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c
c c c a a a a a b b b b b c c c c c c c c c c a a a b b b c c

↑

↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑

↑

↑
↑
↑
↑
↑
↑
↑
↑

↑
↑
↑
↑
↑
↑
↑
↑

a a

↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

The idea is to ensure that on every row, patterns of the form anbn appear in a
sea of c’ – without preoccupying of the colors. Diagonal signals are sent from the
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leftmost a’ and the rightmost b’ – they are designated as so if they have a c’ as a
neighbor. These diagonal signals bump on other signals and on symbols c’ when
they reach one, and two signals can collide only at the middle of a pattern anbn – the
middle is marked with up-arrows.

It is left as an exercise to prove that the projective subdynamics of the SFT X is
not a sofic subshift (see Exercise 9.5.3).

9.4.1.2 Effectively Closed Subshifts on Zd

A subshift X 
 AZ is effectively closed if there exists a recursively enumerable set
of forbidden patterns that defines it. To defined effectively closed subshifts on Zd for
d � 2, take any recursive bijection ˚ between Zd and Z – such a bijection always
exists. Then a pattern p with finite support S � Zd can be coded by the finite set
of tuples ˚.p/ D f.˚.i/; a/ j i 2 S and px D ag. The set ˚.p/ is called the pattern
coding of p. We then define an effectively closed subshift on Zd as a subshift for
which there exists a recursively enumerable set of pattern codings that defines it.

From that definition, it is easy to check that the class of effectively closed
subshifts contains SFTs and sofic subshifts.

Proposition 9.4.2. Subshifts of finite type and sofic subshifts are effectively closed.

Nevertheless, the class of effectively closed subshifts is wider than the class of
sofic subshifts, as the following example in dimension 1 shows.

Example 9.4.3. Let Y be the subshift defined as �.X/ where X is the two-
dimensional SFT of Example 9.4.1. This subshift Y is not sofic, nevertheless it can
be defined as the set of configurations that avoid the following patterns

fba; cb; acg [ fcambnc j m ¤ ng:

This set is obviously recursively enumerable, so that the subshift Y is effectively
closed but not sofic.

The previous example cannot be adapted to dimension 2, since we lack an
equivalent of graph representation of sofic subshifts in higher dimension. The
difficulty lies in the fact that it is difficult to prove, in general, that a subshift is
not sofic. There exist sufficient conditions for non-soficness, but no characterization
exists. Nevertheless, there are explicit examples of effectively closed but non-
sofic subshifts in dimension 2 (Figure 9.6). The proof of non-soficness uses a
combinatorial argument also used in [567] that can be generalized to prove non-
soficness of well-chosen subshifts on amenable groups [23].

Example 9.4.4. We define a two dimensional subshift Xmirror, called the mirror
shift. It consists of all configurations over the alphabet A D f ; , g which
avoid the following patterns
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Fig. 9.6 One configuration
in the two-dimensional mirror
subshift Xmirror.

F = ; ; ; ∪
w∈A∗

{ w ; w w̃ ; w w̃ } ;

where Qw denotes the mirror image of the word w, which is the word of length jwj
defined by . Qw/i D wjwj�iC1 for all 1 � i � jwj.

The mirror subshift Xmirror contains the Z2-fullshift f ; gZ
2

as a subsystem but
also all configurations that respect the following conditions: a symbol forces all
symbols in the same column to be also symbols; there is at most one column
of symbols; if a symbol is present on a row, then and symbols of this
row are arranged symmetrically with respect to the symbol.

The column of , if it appears in a configuration, behaves as a mirror towards
the two half planes it defines, hence the name of the subshift. Obviously this subshift
is effectively closed since the set of forbidden patterns Fmirror can be effectively
enumerated, but one can prove it is not sofic by a direct combinatorial argument.

Proposition 9.4.5. The mirror subshift Xmirror � AZ2 is not sofic.

Proof. Consider S D f.0; 1/; .1; 0/g and suppose that the mirror subshift is sofic on
Z2, then there exists a S-nearest neighbor Z2-SFT X � BZ2 on some finite alphabet
B and a 1-block factor code � W X� Xmirror.

Let n be a positive integer and define�n WD Œ�n; n�2. Notice that V�nC1 D �n and
thus @�nC1 D �nC1n�n. In L�n.Xmirror/ there are exactly 2.2nC1/2 different patterns
that do not contain a . These patterns are images of patterns of X with support
Œ�n; n�2 under � and are surrounded with a crown with support @�nC1. There are at
most jBj4.2nC2/ different crowns.

Consider now all configurations x 2 Xmirror in which a mirror appears at the
origin, that is to say x.0;j/ D for all j 2 Z. For n large enough one has jBj4.2nC2/ <

2.2nC1/2 , consequently there exist two distinct patterns P1 and P2 with support �n

that appear, respectively, in configurations y1 and y2 of Xmirror – assume that y1 and y2
are such that .x1/j�nC.n2;0/ D P1 and .x2/j�nC.n2;0/ D P2 – and such that there exist
two distinct configurations x1; x2 in the extension X of Xmirror with the same crown –
.x1/j@�nC1C.n2;0/ D .x2/j@�nC1C.n2;0/ – and such that y1 D �.x1/ and y2 D �.x2/. As

X is the nearest neighbor, we can construct a new configurationey 2 AZ2 defined by
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eyz D

�
.P2/z�.n2;0/, if z 2 �n C .n2; 0/
.y1/z otherwise,

in other termsey is the same configuration as y1 except that pattern P1 have been
replaced by pattern P2. On the one hand, in configurationey a mirror appears at the
origin, but since P1 and P2 have been chosen distinctey … Xmirror. On the other hand
the configurationex 2 BZ2 defined by

exz D

�
.x2/z�.n2;0/, if z 2 �n C .n2; 0/
.x1/z otherwise,

does not contain any forbidden pattern for X – that have been chosen nearest
neighbor – and satisfiesey D �.ex /, which proves thatey 2 Xmirror hence raising a
contradiction (Figure 9.7). ut

y1 ∈ Xmirror

P1P1

y2 ∈ Xmirror

P2P2

y /∈ Xmirror

P2P1

x1 ∈ X

Q1

x2 ∈ X

Q2

x ∈ X

Q2

↓ ↓ ↓

Fig. 9.7 Two configurations y1 and y2 in the mirror subshift Xmirror with a mirror at the origin, and
that differ on�nC.n2; 0/, but whose preimages in the nearest neighbor Z2-SFT extension X are the
same on @�nC1. If it were so, one could construct a configurationey – by replacing .y1/j�nC.n2;0/

by .y2/j�nC.n2;0/ in configuration y1 – which belongs to the image �.X/ but does not belong to
Xmirror. This proves Xmirror is not sofic.

Remark 9.4.6. One can define mirror subshifts in any dimension as the union of the
Zd-fullshift f ; gZ

d
and the set of configurations x 2 AZd

with the hyperplane
fig 	 Zd�1 filled with symbols for some i 2 Z, and such that xjfiCjg�Zd�1 D

xjfi�jg�Zd�1 for every j 2 Z. Then Proposition 9.4.5 can be generalized to any
dimension.

We now list stability properties satisfied by effectively closed subshifts.

Proposition 9.4.7. The class of effectively closed subshifts on Zd is closed under
finite intersection, finite union, and morphism.

Proof. The key ingredient is that one can choose a maximal – for inclusion – and
recursively enumerable set of forbidden patterns to define an effectively closed
subshift X. Indeed, the complement of the language of an effectively closed subshift
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has this property: it can be recursively enumerated from any recursively enumerable
set of forbidden patterns that defines X and is by definition maximal for inclusion.

If X1 and X2 are two effectively closed subshifts, then X1 \ X2 (resp. X1 [ X2) is
defined by the set of forbidden patterns L1 [L2 (resp. L1 \L2). Since the union
(resp. intersection) of two recursively enumerable languages is also recursively
enumerable, effectively closed subshifts are closed under finite intersection (resp.
finite union). Stability under morphisms comes from the fact that morphism are
computable. ut

Proposition 9.4.8. The class of effectively closed subshifts on Zd is closed under
projective subdynamics.

Proof. This stability result follows from the fact that projective subdynamics are
special cases of factors of subactions, and by Theorem 3.1 and Proposition 3.3
of [294] which establish that symbolic factors and subactions preserve effectiveness.

ut

9.4.1.3 Simulation Theorem

As seen in the previous section, neither the class of sofic subshifts nor the class
of SFTs are not closed under projective subdynamics. Natural questions are thus:
which subshifts can be obtained as projective subdynamics of sofic subshifts? of
SFTs? For the first question, a complete characterization is known.

Theorem 9.4.9 (Hochman, [294]). A subshift Y 
 BZk
is effectively closed if and

only if it the projective subdynamics of a sofic subshift X 
 AZkC2
.

The original construction by Hochman can be found in [294].

Theorem 9.4.10 (Aubrun & Sablik, [25], Durand, Romaschenko & Shen, [203]).
A subshift Y 
 BZk

is effectively closed if and only if it the projective subdynamics
of a sofic subshift X 
 AZkC1

.

These two theorems can be used as a black box to prove soficness of some
complex subshifts and lead to several applications. As a first example, consider the
following result.

Theorem 9.4.11 (Myers, [432]). There exist non-recursive two-dimensional SFTs,
i.e., subshifts of finite type on some alphabet A such that none of their configurations
can be described by a computable function f W Z2 ! A.

This theorem was proven a few years after the publication of Robinson’s proof
of the undecidability of the domino problem. The proof is strongly inspired by
Robinson’s techniques and is thus very technical. The same result can be obtained as
a direct application of the simulation theorem as follow. Consider a one-dimensional
effectively closed subshift X with no computable configurations (see [139] for an
explicit construction). The two-dimensional sofic subshift, obtained by the simula-
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tion theorem, that projects onto X has no computable configurations (otherwise X
would also contain a computable configurations). Since inverses of factor maps are
computable, we get a non-recursive two-dimensional SFT.

Consider now S-adic subshifts that are defined by a sequence of substitutions.
In higher dimension and if the driving sequence is chosen to be computable, then
S-adic subshifts are sofic [25]. This result generalizes theorems by Mozes [429]
and Goodman-Strauss [257] on substitutive subshifts – when the driving sequence
of substitutions is constant – to S-adic subshifts. The proofs of these two famous
theorems are highly technical and difficult to handle. In contrast, the proof presented
in [25] consists in a direct application of the simulation theorem, combined with a
clever encoding of substitutions.

We list other examples of applications of the simulation theorem:

• In [516] the authors prove that tilings obtained by digitizing irrational vector
spaces are aperiodic if and only if the digitized vector spaces are computable.

• In [312] it is proven that sets of periods for multidimensional SFTs are exactly
sets of integers of the complexity class NP.

• In [34] an example of one-dimensional effectively closed subshift with a non-
computable quasi-periodicity function is given.

9.4.2 Effectiveness on Groups

This section is devoted to the study of what kind of subshifts on groups can be
defined using Turing machines. As opposed to what happens in Zd, a general group
might present extra difficulties which are related to its word problem.

Before defining the main object of this section, we make a digression with regards
to their name. In the literature a subshift defined by a recursively enumerable set
of forbidden patterns is usually said to be effective. Nevertheless, the name has
also been used to talk about subshifts X whose language L.X/ is decidable, see
for example [192]. These two notions define different objects. To avoid confusion,
we refer to these objects as effectively closed subshifts, as they would be called in
computable analysis.

9.4.2.1 Definition and Basic Properties

For the definition of effectiveness in the context of subshift in a general group,
we use Definition 9.3.23 of a pattern coding as the standard structure in which the
information about forbidden patterns is given to a Turing machine.

Definition 9.4.12. We say a subshift X � AG is effectively closed if there exists a
recursively enumerable set of pattern codings C such that X D XC .
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Usually in computability theory the word effective is used for objects defined by
a decidable set instead of just a recursively enumerable one. In this case the usage
of the word is justified, as effectively closed subshifts coincide with those which are
definable by a decidable set of forbidden pattern codings.

Proposition 9.4.13. Let X � AG be an effectively closed subshift. Then there exists
a decidable set of pattern codings C such that X D XC .

Proof. Let C 0 a recursively enumerable set of pattern codings such that X D XC 0 . If
C 0 is finite the result is trivial. Otherwise there exists a recursive enumeration C 0 D
fc0; c1; : : : g. For a pattern coding c we define its length as jcj D max.w;a/2c jwj. For
n 2 N let Ln D maxk�n jckj and define Cn as the finite set of all pattern codings c
which satisfy the following properties:

• Every w 2 S� with jwj � Ln appears in exactly one pair in c.
• .w; a/ 2 c implies that jwj � Ln.
• If .w; a/ 2 cn then .w; a/ 2 c.

That is, Cn is the set of all pattern codings which are completions of cn up to every
word of length at most Ln in every possible way. Consider C D

S
n2N Cn. It is easy

to check that

[

c2Cn

\

.w;a/2c

Œa�w D
\

.u;b/2cn

Œb�u:

Therefore XC 0 D XC . We claim C is decidable.
Consider the algorithm which does the following on input c: It initializes n to

0. Then it enters into the following loop: first it produces the pattern coding cn. If
Ln > jcj it rejects the input. Otherwise it calculates the set Cn. If c 2 Cn, then it
accepts; otherwise it increases the value of n by 1.

As Ln is increasing and cannot stay in the same value indefinitely this algorithm
eventually ends for every input. ut

It is important to remark that the previous result just gives the existence of one
decidable set of pattern codings which defines the subshift. Even in the case of Z-
subshifts there exist effectively closed subshifts whose language is undecidable. See
Exercise 9.5.20.

Nevertheless, even with this result in hand, it is often more convenient to define
effectively closed subshifts by a recursively enumerable set of forbidden pattern
codings. In particular, if the group is recursively presented, this set can be chosen
canonically as the set of pattern codings which represent the complement of the
language.

Proposition 9.4.14. Let X � AG be an effectively closed subshift. If G is recursively
presented, then it is possible to choose C to be the recursively enumerable and
maximal – for inclusion – set of pattern codings such that X D XC .
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Proof. A pattern coding c belongs to the maximal set C defining X if and only if
X \

T
.w;a/2cŒa�w D ;. Let c 2 C and C 0 a recursively enumerable set such that

X D XC 0 . Then:

\

.w;a/2c

Œa�w �
[

c02C 0;g2G

\

.v;b/2c0

Œb�gv:

By compactness we may extract a finite open cover indexed by c0i; gi such that:

\

.w;a/2c

Œa�w �
[

i�n

\

.v;b/2c0
i

Œb�giv (?)

Note that each of these gi can be seen as a finite word in S�. Now let T be the
Turing machine which does iteratively for n 2 N the following:

• Runs n steps the machine T1 recognizing WP.G/ for every word in S� of length
smaller than n.

• Runs n steps the machine T2 recognizing C 0 for every pattern coding defined on
a subset of words of S� of length smaller than n.

• Let �n be the equivalence relation for words in S� of length smaller than n such
that u �n v if uv�1 has been already accepted by T1. Let Cn be the pattern codings
already accepted by T2. If every word in c has length smaller than n check if the
following relation is true under �n:

\

.w;a/2c

Œa�w �
[

c02Cn;juj�n

\

.v;b/2c0

Œb�uv

If it is true, accept, otherwise increase n by 1 and continue.

Let m be the max of all jwj such that .w; a/ 2 c, and jw0j such that .w0; a0/ 2 c0i and
all jgij. By definition, there exists an N 2 N such that every c0i for i � n is accepted
and every word representing 1G of length smaller than 2m is accepted. This means
that at stage N relation (?) is satisfied and T accepts c. If c is not in the maximal set,
the machine never accepts. ut

In what follows, we show that the class of effectively closed subshifts is closed
under factors and projective subdynamics when the group is recursively presented.

Proposition 9.4.15. For recursively presented groups the class of effectively closed
subshifts is closed under factors.

Proof. Let X � AG
X be an effectively closed subshift. As G is recursively presented,

a recursively enumerable set of pattern codings CX defining X can be chosen to be
maximal by Proposition 9.4.14. Consider a factor code 
 W X � Y defined by
a local function ˚ W AF

X ! AY . Let f1; : : : ; fjFj be words in S� representing the
elements of F.
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As 
 is surjective, for each a 2 AY we have j˚�1.a/j > 0. Therefore we can
associate to a pair .w; a/ a nonempty finite set of pattern codings

Cw;a D f.wfi; pfi/iD1;:::;jFj j p 2 ˚
�1.a/g:

That is, Cw;a is a finite set of pattern codings over AX representing every possible
preimage of a. For a pattern coding c D .wi; ai/i�n where ai 2 AY , we define

Cc D f
[

.w;a/2c

ecw;a jecw;a 2 Cw;ag:

That is, Cc is the finite set of pattern codings formed by choosing one possible
preimage for each letter. Let M be the Turing machine which on entry c runs the
machine recognizing CX on every pattern coding in Cc. If it accepts for every input,
then M accepts c. Let CY be the set of pattern codings accepted by M . We claim
Y D YCY .

Let y 2 YCY and n 2 N. For each pattern coding c defined over all words of
length at most n such that y 2

T
.w;a/2cŒa�w, there is a pattern coding cn 2 Cc which

does not belong to CX . As CX is maximal we have that
T
.v;b/2cn

Œb�v \ X ¤ ;.
Extracting a configuration xn from

T
.v;b/2cn

Œb�v \ X we obtain a sequence .xn/n2N.
By compactness there is a converging subsequence with limitex 2 X. By continuity
of 
 we have that y D 
.ex / 2 Y . Conversely if y 2 Y there exists x 2 X such
that 
.x/ D y. Therefore for every finite F0 � G and pattern coding c such thatT
.w;a/2cŒa�w D ŒyjF0 � there exists a pattern codingec 2 Cc such that

T
.v;b/2ec Œb�v D

ŒxjF0F�. Therefore, c … Cy and thus y 2 YCY . ut

Definition 9.4.16. Let H � G be a subgroup of G. Given a subshift X � AG the
H-projective subdynamics of X is the subshift �H.X/ � AH defined as:

�H.X/ D fx 2 AH j 9y 2 X;8h 2 H; xh D yhg

Proposition 9.4.17. Let G be a recursively presented group and H � G a finitely
generated subgroup of G. If X � AG is effectively closed, then its H-projective
subdynamics �H.X/ is effectively closed.

Proof. As H is finitely generated, there exists a finite set S0 � H such that hS0i D H.
As G is finitely generated by S, there exists a function � W S0 ! S� such that
s0 DG �.s0/ (i.e., every element of S0 can be written as a word in S�). Extend the
function � to act by concatenation over words in S0�.

As G is recursively presented, by Proposition 9.4.14, the set of pattern codings
CG defining X can be chosen to be maximal. Let c D .wi; ai/i2I a pattern coding
where wi 2 S0� and define �.c/ WD .�.wi/; ai/i2I . Let M be the Turing machine
which on entry c runs the algorithm recognizing CG on entry �.c/ and accepts if
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and only if this machine accepts. Clearly CH D fc j M accepts cg is recursively
enumerable. Also, as CG is a maximal set of pattern codings, then c 2 CH ”T
.w;a/2�.c/Œa�w \ X D ;. Therefore �H.X/ D XCH . ut

9.4.2.2 The Case of Non-recursively Presented Groups

In order to prove some of the properties of effectively closed subshifts, we have used
the hypothesis that the group is recursively presented. What could go wrong if this
is not the case? We aim to throw some light into this question.

The main problem we encounter is the failure of Proposition 9.4.14. Indeed, it
even fails for the simplest example. The full shift is always effectively closed as
the empty set of pattern codings defines it. Nevertheless if the alphabet A contains
at least two symbols, then a maximal set of forbidden pattern codings contains in
particular the coding f."; a/; .w; b/g for b ¤ a if and only if w 2 WP.G/. If this
set were recursively enumerable, one could use it to enumerate WP.G/, and thus G
would be recursively presented.

Consider the case of a sofic subshift Y in a non-recursively presented group G.
Any SFT extension 
 W X� Y can be represented by a finite set of pattern codings
for X and some fixed coding of the finite set F which defines the block code ˚ W
AF

X ! AY which determines 
 . A recursively enumerable set of pattern codings
for Y would consist of a list of patterns –which in particular– do not appear in Y .
This means that every pattern obtained by taking the preimage under ˚ does not
appear in X. Nevertheless, the previous argument implies that we cannot test this
algorithmically in general. This is the reason why the proof of Proposition 9.4.15
does not extend to this case.

9.4.2.3 The One-or-Less Subshift X�1

Consider the subshift X�1 � f0; 1gG whose configurations contain at most one
appearance of the letter 1.

X�1 D fx 2 f0; 1g
G j 1 2 fxg; xhg ) g D hg

We are going to show that even in the case of recursively presented groups this
subshift can fail to be effectively closed.

Proposition 9.4.18. If G is infinite, then X�1 is not an SFT.

Proof. Suppose X�1 D XF for a finite F and let F D
S

p2F supp.p/, U DS
h2F�1 hF and note that jUj <1. As G is infinite, there exists g 2 GnU. Consider

the configuration x 2 f0; 1gG which takes the value 1 in f1G; gg and 0 elsewhere.
Clearly x … Œp�h for every h 2 G and p 2 F otherwise f1G; gg � hF implying that
hF � U and thus g 2 U. Therefore x 2 XF but x … X�1. ut
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Proposition 9.4.19. Let G be a recursively presented group. Then X�1 if effectively
closed if and only if the word problem of G is decidable.

Proof. If WP.G/ is decidable then X�1 is effectively closed. Indeed, an algorithm
recognizing a maximal set of pattern codings C such that X�1 D XC is the
following: on input c it considers every pair .w1; 1/; .w2; 1/ in c and accept if and
only if w1w�12 ¤G 1G for a pair. Conversely, as G is recursively presented, the word
problem is already recursively enumerable. It suffices to show it is co-recursively
enumerable.

By Proposition 9.4.14 there exists a maximal set of forbidden pattern codings C
with X�1 D XC . Given w 2 S�, consider the pattern coding cw D f.�; 1/; .w; 1/g.
Note that w ¤G 1G ” cw 2 C . Therefore the algorithm, which on entry w 2 S�

runs the algorithm recognizing C on entry cw and accepts if and only if this one
accepts, recognizes S� n WP.G/. Hence WP.G/ is co-recursively enumerable. ut

Using Proposition 9.4.15 we obtain the following corollary.

Corollary 9.4.20. If G is recursively presented and WP.G/ is undecidable, then X�1
is not a sofic subshift.

9.4.3 Two Larger Notions of Effectiveness

As stated in Section 9.4.2, the classical notion of effectively closed Zd-subshifts
extended to finitely generated groups fails to be completely satisfying for several
reasons. First, the notion of effectively closed subshift is not directly related to the
group G itself: we use pattern codings, which is in some sense a way to come back
to dimension 1. Another way to formulate this reservation is that, unlike the case of
Z where effectively closeness comes with a natural computational model – classical
Turing machines – there is no similar correspondence for effectively closed subshifts
on a finitely generated group G. And second, very simple subshifts like the one-or-
less subshift X�1 are not effectively closed for recursively presented groups with
undecidable word problem (Proposition 9.4.19): it would be natural to ask that this
subshift is always effective, independently of the complexity of the word problem
of the group.

In order to escape from these limitations, we study two different extensions of
the notion of effectiveness which cover a larger countable class of subshifts. These
notions are G-effectiveness and enumeration effectiveness.

The notion of G-effectiveness tackles the problems linked to the word problem
of the group by adding the language WP.G/ as an oracle. The advantage of this class,
besides repairing the previous problems related to the word problem of the group, is
that the set of subshifts defined by it can be given a natural definition using modified
Turing machines which use the group as a tape. This characterization is interesting
in the sense that it allows explicit constructions to be made with the help of these
machines. Some examples can be found in [23].
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Then we show the limitations of the notion of G-effectiveness and propose an
alternative definition of effectiveness for G-subshifts called enumeration effective-
ness. This new notion, which is weaker than G-effectiveness, allows us to generalize
Proposition 9.4.19 to any group – the recursive presentation hypothesis is no longer
needed.

9.4.3.1 G-Effectiveness

Definition 9.4.21. A subshift X � AG is G-effectively closed if there is a set of
pattern codings C such that X D XC , and C is recursively enumerable with oracle
WP.G/.

Following from the results of this section, one can directly use the definition
above to show that the following properties hold for any finitely generated group G.

1. If X is a G-effectively closed subshift, then a maximal set of pattern codings C
such that X D XC is recursively enumerable with oracle WP.G/.

2. The class of G-effectively closed subshifts is closed under finite intersections and
unions.

3. The class of G-effectively closed subshifts is closed under factors.
4. Being G-effectively closed is a conjugacy invariant.
5. The class of G-effectively closed subshifts contains all sofic subshifts.
6. The class of G-effectively closed subshifts contains all effectively closed sub-

shifts.
7. If WP.G/ is decidable, then every G-effectively closed subshift is effectively

closed.
8. X�1 is a G-effectively closed subshift.

Nevertheless, this class fails to be stable under projective subdynamics.

Proposition 9.4.22. Let G be a group which is not recursively presented. There
exists a .G 	 Z/-effectively closed subshift X � AG�Z such that its Z-projective
subdynamics is not Z-effectively closed.

Proof. Let A D S [ f?g. For w 2 S�, let pw defined over the support f1Gg 	

f0; : : : jwjC1g such that .pw/.1G;0/ D .pw/.1G;jwjC1/ D ? and for j 2 f1; : : : ; jwjg then
.pw/.1G;j/ D wj. Let X WD XF � AG�Z be defined by the set of forbidden patterns
F D fpw j w 2 WP.G/g. Clearly X is .G 	 Z/-effectively closed. Every Z-coset
of a configuration x 2 X contains a bi-infinite sequence y 2 AZ such that either y
contains at most one symbol ? or every word appearing between two appearances
of ? represents 1G in G.

We claim that �Z.X/ is not effectively closed. If it were, there would exist
a maximal set of forbidden pattern codings which is recursively enumerable and
defines �Z.X/. Therefore given w 2 S� a machine could run the algorithm for the
word ?w?, and it would be accepted if and only if w DG 1G. This would imply that
G is recursively presented. ut
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Although Proposition 9.4.22 is a theoretical drawback for the notion of G-
effectiveness, it is noteworthy that this behavior only happens when the projective
subdynamics is taken with respect to a group with strictly weaker word problem.
If the projective subdynamics of a .G 	 Z/-effectively closed subshift is taken with
respect to G, the resulting subshift is indeed G-effectively closed.

The interest of this class is mainly due to the fact that they can be defined in
a natural way using modified Turing machines. These objects which we call G-
machines replace the bi-infinite tape by a Cayley graph � .G;S/ of the finitely
generated group G.

Definition 9.4.23. A G-machine is a 6-tuple .Q; ˙;t; q0;QF; ı/ where Q is a finite
set of states, ˙ is a finite alphabet, t 2 ˙ is the blank symbol, q0 2 Q is the initial
state, QF � Q is the set of accepting states, and ı W ˙ 	 Q ! ˙ 	 Q 	 S is the
transition function.

G-machine T acts on the set ˙G 	 Q as follows: let .x; q/ 2 ˙G 	 Q and
ı.x1G ; q/ D .a; q

0; s/. Then T.x; q/ D .Ss�1 .ex /; q0/ whereex j1G D a andex jGnf1Gg D

xjGnf1Gg. Figure 9.8 illustrates this action when G is a free group. Here the head of
the Turing machine is assumed to stay at a fixed position and the tape moves instead.

a

b

q1

a

b

q2

(qd 1, ) = (q2, ,a)

Fig. 9.8 A transition of a G-machine for the free group on two elements.

Let F � G be a finite set and p 2 ˙F. Let xp 2 ˙G be the configuration such
that .xp/jF D p and .xp/jGnF � t. We say that T accepts p if there is n 2 N such
that Tn.xp; q0/ 2 ˙G 	 QF. L � L.AG/ is G-recursively enumerable if there exists
a G-machine T which accepts p 2 ˙�G if and only if p 2 L. If both L and L.AG/ n L
are G-recursively enumerable, we say L is G-decidable.

In [23] it is shown that these machines characterize G-effective subshifts. We say
a set of patterns L � L.AG/ is closed by extensions if for each p1; p2 2 L.AG/ such
that p1 @ p2 then p1 2 L H) p2 2 L. Also, for a set of pattern codings C , we
denote by p.C / the set of patterns they define in the group G. Formally:
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p.C / D fp 2 L.AG/ j 9c 2 C ; Œp� D
\

.w;a/2c

Œa�wg

Theorem 9.4.24. Let G be a finitely generated infinite group and L � L.AG/ be
a set of patterns. If L is G-recursively enumerable, then there exists a recursively
enumerable with oracle WP.G/ set of pattern codings C such that L D p.C /.
Conversely, if C a recursively enumerable with oracle WP.G/ set of pattern codings.
If p.C / is closed by extensions, then p.C / is G-recursively enumerable.

Using the fact that the maximal set of forbidden patterns of a subshift is closed
by extension, we obtain what follows.

Corollary 9.4.25. A subshift X � AG is G-effectively closed if and only if there
exists a G-recursively enumerable set F � L.AF/ such that X D XF .

A big drawback of the class of G-effectively closed subshifts is that in general
they do not admit a simulation theorem in the sense of Theorem 9.4.10. Specifically,
X�1 is G-effective for each group, but it cannot be obtained as the projective
subdynamics of a sofic subshift if G is finitely generated, recursively presented
group but has undecidable word problem.

Proposition 9.4.26. Let G be a finitely generated, recursively presented group with
undecidable word problem and H a finitely generated group such that WP.H/ �m

WP.G/. Then X�1 cannot be obtained as the G-projective subdynamics of a sofic
G 	 H-subshift.

Proof. As G is recursively presented and WP.H/ �m WP.G/, then H is also
recursively presented, and thus G 	 H is recursively presented. Applying Propo-
sition 9.4.15 we get that sofic G 	 H-subshifts are effectively closed. Hence, using
Proposition 9.4.17 the G-projective subdynamics must also be effectively closed.
We conclude as per the fact that X�1 is not effectively closed for recursively
presented groups with undecidable word problem.

In particular, this means that if G is a finitely generated, recursively presented
group with undecidable word problem, then there is no general simulation theorem
for G-effective subshifts coming from sofic subshifts on G	Zd or even G	 � � �	G.
It might therefore be interesting to weaken the notion of G-effectiveness, so that
even if X�1 is no longer always in the class, a general simulation theorem is not
proscribed.

9.4.3.2 Enumeration Effectiveness

If A and B are two sets of words in S, we say that A is enumeration reducible to B,
denoted A �e B, if there exists an algorithm that produces an enumeration of A from
any enumeration of B. Formally, A �e B if there exists a partial computable function
f that associates to each hn; ii a finite set Dn;i such that n 2 A ” 9i;Dn;i 
 B.
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Remark 9.4.27. A set A is recursively enumerable if and only if A �e ;.
Particularly, if A is recursively enumerable then A �e B for any set B.

From this remark, we get a characterization of effectively closed subshifts as
those for which there exists a set of pattern codings C such that X D XC and
C �e ;.

We will use a characterization of enumeration reducibility that can be found
in [454, Exercise XIV.1.2] and in [535].

Proposition 9.4.28. A �e B if and only if for every set C, if B is recursively
enumerable with oracle C, then A is also recursively enumerable with oracle C.

We can translate the notion of G-effectiveness in term of enumeration reducibil-
ity. If we denote B ˚ C the set f.0; x/ j x 2 Bg [ f.1; x/ j x 2 Cg, we get that A
is recursively enumerable with oracle B if and only if A �e B ˚ B. As written in
Definition 9.4.21, a subshift X � AG is G-effectively closed if there is a set of pattern
codings C such that X D XC , and C is recursively enumerable with oracle WP.G/.
We thus get the following characterization of G-effectively closed subshifts.

Proposition 9.4.29. A G-subshift X � AG is G-effectively closed if there is a set of
pattern codings C such that X D XC , and such that C �e WP.G/˚ WP.G/.

Thus with G-effectiveness, forbidden patterns are produced from two enumera-
tions: one enumeration of the words in S� that represent the identity of the group
(the word problem WP.G/), and one enumeration of the word in S� that do not
represent the identity of the group (the complement of the word problem WP.G/).
But are those two enumerations strictly necessary to produce forbidden patterns? In
order to check whether a pattern coding is inconsistent, it suffices to check all pairs
of words w;w0, and if at some point two words happen to represent the same group
element, check whether they are assigned different symbols. Only the enumeration
of the word problem is needed for that. The notion of enumeration effectiveness is
based on this observation.

Definition 9.4.30. A G-subshift X � AG is G-enumeration effective if there exists
a set of pattern codings C such that X D XC and C �e WP.G/.

We first compare the class of G-enumeration effective subshifts with the classes
of effectively closed subshifts and G-effectively closed subshifts. From the charac-
terizations of these classes with enumeration reduction, it follows immediately that
G-enumeration effective subshifts are in between the two others. The diagram on
Figure 9.9 summarizes the propositions listed below.

Proposition 9.4.31. Let G be a finitely generated group and X an effectively closed
subshift. Then X is G-enumeration effective.

Proof. Since X is G-effectively closed, there exists a set of pattern codings C such
that X D XC , and C �e ;. A fortiori, we get that C �e WP.G/, thus X is G-
enumeration effective. ut



9 About the Domino Problem for Subshifts on Groups 385

effectively closed G-enumeration effective G-effectively closed

Sofic
G r.p.

G r.p. WP(G) ≤e WP(G)

WP(G) decidable

Fig. 9.9 Inclusion relations between different classes of G-subshifts for a finitely generated
group G. Inclusion represented by a dashed arrow only holds for groups having the property
labeling the arrow.

Proposition 9.4.32. Let G be a finitely generated group and X a G-enumeration
effective subshift. Then X is G-effectively closed.

Proof. Since X is G-enumeration effective, there exists a set of pattern codings C
such that X D XC and C �e WP.G/. A fortiori, we get that C �e WP.G/˚ WP.G/;
thus X is G-effectively closed. ut

Conversely, if WP.G/ is enumeration reducible to WP.G/, any set enumeration
reducible to WP.G/ is also enumeration reducible to WP.G/ ˚ WP.G/, from which
we deduce that groups with the property are exactly groups where G-enumeration
effectiveness and G-effectiveness coincide.

Proposition 9.4.33. Let G be a finitely generated such that WP.G/ �e WP.G/ and
X a G-effectively closed subshift. Then X is G-enumeration effective.

Proposition 9.4.34. G-enumeration effectiveness is closed under factors. In partic-
ular, if X is a sofic subshift, then it is G-enumeration effective.

Proof. Recall that a finitely generated group is recursively presented if and only
if WP.G/ is recursively enumerable. Let C be the list of forbidden pattern codings
obtained in the proof of Proposition 9.4.15 (with an oracle to WP.G/ in this case). We
have shown that C is recursively enumerable if WP.G/ is recursively enumerable.

Let C be an arbitrary language such that WP.G/ is recursively enumerable
with oracle C, then obviously C is recursively enumerable with oracle C. By
Proposition 9.4.28 this implies that C �e WP.G/. This shows that G-enumeration
effectiveness is closed under factors.

Let Y be an SFT extension of X. Clearly Y is always effectively closed: take
a finite list of forbidden patterns defining it hard code each pattern into a pattern
coding. By Proposition 9.4.31 we have that Y is G-enumeration effective. As G-
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enumeration effectiveness is closed under factors, we conclude that X is also G-
enumeration effective. ut

Proposition 9.4.35. Let G be a finitely generated group. Then the one-or-less
subshift X�1 is G-enumeration effective if and only if WP.G/ �e WP.G/.

This is not a vacuous hypothesis: if G is recursively presented (hence WP.G/
is recursively enumerable), this implies that WP.G/ is also recursively enumerable,
hence recursive. Contrary to Proposition 9.4.19, this characterization of the effec-
tiveness of the one-or-less subshift does not require the group G to be recursively
presented.

Proof. As claimed in Section 9.4.3.2, the subshift X�1 is G-effectively closed, which
means that there is a set of pattern codings C such that X D XC , and such that
C �e WP.G/˚WP.G/ by Proposition 9.4.29. Suppose that WP.G/ �e WP.G/. Let C
be a set such that WP.G/ is recursively enumerable with oracle C and denote M the
Turing machine with oracle C that recognizes WP.G/. We construct a new Turing
machine M 0 with oracle C with the following behavior. Given a pattern coding
c, M 0 in parallel simulates Me to enumerate the set f0g 	 WP.G/ and recursively
enumerates f1g 	 WP.G/ from the latter enumeration. From this enumeration of
WP.G/˚ WP.G/, the machine M 0 then produces an enumeration of C . Thus C �e

WP.G/.
Reciprocally, first note that in an analogous way to Proposition 9.4.14, we

can suppose that any G-enumeration effective subshift is given by a maximal
set of forbidden pattern codings. Let X�1 be G-enumeration effective and C �e

WP.G/ be the maximal set of pattern codings defining X�1. As in the proof of
Proposition 9.4.19, we can define f W S� ! C [ C where f .w/ D f.�; 1/; .w; 1/g.
Clearly if w 2 WP.G/ if and only if f .w/ 2 C . Therefore WP.G/ �m C �e WP.G/
which implies WP.G/ �e WP.G/. ut

9.4.3.3 Towards a Simulation Theorem

In the case of Zd-subshifts, the notion of effectively closed subshift is quite natural
for two reasons. First it extends the notion of sofic Z-subshift from the point of view
of pattern exclusion: a sofic Z-subshift has a regular language, while an effectively
closed Z-subshift has a recursively enumerable language. Hence sofic subshifts
are effectively closed. Second the class of effectively closed subshifts is stable
under projective subdynamics (see Section 9.4.1). A reasonable generalization of
effectiveness to finitely generated groups should at least satisfy these two properties,
with the hope that a simulation theorem may hold.

Clearly, the notion of effectiveness for a finitely generated group G given
in Definition 9.4.12 is too restrictive: sofic subshifts are effectively closed for
recursively presented groups (Proposition 9.4.15), but we do not know what
happens for non-recursively presented groups. Moreover, this notion does not
behave well with projective subdynamics (see Propositions 9.4.22). By Proposi-
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tions 9.4.34 and 9.4.32, sofic subshifts are always G-enumeration effective, and thus
G-effectively closed. Thus among the three definitions presented in this chapter,
only G-effectiveness and G-enumeration effectiveness are likely to fulfill our
requirements. Another argument that may be taken into account to choose between
these two notion is the one-or-less subshift X�1. On the one hand, this subshift is
always G-effectively closed (Section 9.3.4.1); on the other hand, it is G-enumeration
effective only for finitely generated groups satisfying that WP.G/ �e WP.G/.

What would be a general statement of a simulation theorem for a finitely
generated group G? The two notions of G-enumeration effectiveness and G-
effectiveness both depend on the group G. Apart from torsion groups and with
no additional restriction, the operation of projective subdynamics may transform
a G-subshift on a Z-subshift, where the three notions of effectiveness coincide. So
we should consider only projective subdynamics from a group to a subgroup with
the same complexity of WP. The simulation theorems from [37, 294] suggest that
adding the group Z2 to the group G – what is meant by adding has of course to
be precise – makes possible a characterization of projective subdynamics of sofic
subshifts on G equipped with Z2 as effective G-subshifts. In Section 9.3.4.4, the
result of [538] is used to extract a grid structure from a direct product G1 	 G2

where G1 and G2 are both infinite. Hence the idea to study projective subdynamics of
G	G	G-effectively closed subshifts. Unfortunately, Proposition 9.4.26 tells us that
for recursively presented groups G with undecidable WP, some simple G-effectively
closed subshifts cannot be realized as the projective subdynamics of a sofic G 	 H-
subshift, where H is any finitely generated group with WP.H/ �m WP.G/. So
a simulation theorem is excluded for G-effectiveness. To the knowledge of the
authors, the question remains open for G-enumeration effectiveness.

9.5 Exercises

Exercise 9.5.1. Show that if L �m L0, then L �T L0 Hint: Express L �m L0 with a
Turing machine with oracle L0.

Exercise 9.5.2. Let X 
 AZ2 be a subshift. Show that

�.X/ D
˚
y 2 AZ j 9x 2 X s.t. x.i;0/ D yi for every i 2 Z

�

is also a subshift.

Exercise 9.5.3. Prove that the projective subdynamics of the subshift defined in
Example 9.4.1 is not sofic. Hint: Use the fact that the language fanbn j n 2 Ng is
not a regular language.

Exercise 9.5.4. Give an example of a recursively presented group which is not
finitely presented.
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Exercise 9.5.5. Show that the properties of being an SFT and being a sofic subshift
are conjugacy invariants.

Exercise 9.5.6. Show that the domino problem is a group isomorphism invariant,
that is, that if G is isomorphic to H then the domino problem of G is many-one
equivalent to the domino problem of H.

Exercise 9.5.7. Find an example of a finitely generated group which contains a
non-finitely generated subgroup. Hint: One possibility is to use Corollary 9.3.38.

Exercise 9.5.8. Let G be a finitely generated group and H E G. Show that the
quotient group G=H is also finitely generated.

Exercise 9.5.9. Let H � G be a subgroup such that ŒG W H� <1. Show that there
exists N � H such that N E G and ŒG W N� <1. Hint: define N as the stabilizer of
the action of G over the lateral classes G=H by left multiplication.

Exercise 9.5.10. Let G be a finitely generated group and H � G a subgroup of
finite index. Show that H is finitely generated. Hint: Let L D f`1 : : : ; `ng be a set
of representatives of the left lateral classes containing 1G. For each generator s of
G write s`i D `i;shi;s for some `i;s 2 L and hi;s 2 H. Show that the set of all hi;s

generates H.

Exercise 9.5.11. Fill in the details from Proposition 9.3.33. In particular, show that
the subshift defined by G is indeed XŒR�F .

Exercise 9.5.12. Let G be the subgroup of GL2.Q/ generated by the matrices

a D

�
1 1

0 1

	
and b D

�
2 0

0 1

	
. Show that every matrix in G is of the form

�
x y
0 z

	
where

x; y; z are dyadic rationals (rationals of the form p=2q) and that all such matrices
with x D z D 1 belong to G. Deduce that G contains a subgroup that is not finitely
generated. Show that G is a Baumslag-Solitar group.

Exercise 9.5.13. Let G D F2 D ha; bi the free group generated by a and b.
Consider the Cayley graph � .G;S/ for S D fa; b; a�1; b�1g. Show that this Cayley
graph can be covered by disjoints bi-infinite paths (in the sense of Theorems 9.3.48
and 9.3.49).

Exercise 9.5.14. Let G D PSL2.Z/ D
˝
a; bja2; b3

˛
. Consider the Cayley graph

� .G;S/ for S D fa; b; a�1; b�1g depicted below.
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Show that this Cayley graph cannot be covered by disjoints bi-infinite paths (in
the sense of Theorems 9.3.48 and 9.3.49). (This example shows that the choice of S
is important for this theorem to hold.)

Exercise 9.5.15. Consider again G D PSL2.Z/ D
˝
a; bja2; b3

˛
. Show that XG;fa;bg

is nonempty.

Exercise 9.5.16. Consider again G D PSL2.Z/ D
˝
a; bja2; b3

˛
. Draw the Cayley

graph � .G;S/ for S D fa; ab; a�1; .ab/�1g. Show that this Cayley graph can be
covered by disjoints bi-infinite paths (in the sense of Theorems 9.3.48 and 9.3.49).

Exercise 9.5.17. A weak valid pair for .G; S/ is a pair .n;p/ from G to S s.t.
p.gs/ D s�1 where s D n.g/. Give an example for G D F2 D ha; bi and S D fa; bg
of a weak valid pair that is not a valid pair.

Exercise 9.5.18. Show that if G is finite, any weak valid pair is a valid pair.

Exercise 9.5.19. Give the proofs of Propositions 9.3.51 and 9.3.52.

Exercise 9.5.20. Give an example of a Z-subshift which is effectively closed but
with an undecidable language. Hint: Consider the set of forbidden words f10n1gn2L

for an appropriate set L.

Exercise 9.5.21. Show that the class of effectively closed subshifts is closed
under finite intersections. Prove that the same result does not hold for countable
intersections.

Exercise 9.5.22. Show that for recursively presented groups the class of effectively
closed subshifts is closed under finite unions.



Chapter 10
Automaton (Semi)groups: Wang Tilings
and Schreier Tries

Ines Klimann and Matthieu Picantin

Abstract Groups and semigroups generated by Mealy automata were formally
introduced in the early 1960s. They revealed their full potential over the years, by
contributing to important conjectures in group theory. In the current chapter, we
intend to provide various combinatorial and dynamical tools to tackle some decision
problems all related to some extent to the growth of automaton (semi)groups. In
the first part, we consider Wang tilings as a major tool in order to study and
understand the behavior of automaton (semi)groups. There are various ways to
associate a Wang tileset with a given complete and deterministic Mealy automaton
and various ways to interpret the induced Wang tilings. We describe some of these
fruitful combinations, as well as some promising research opportunities. In the
second part, we detail some toggle switch between a classical notion from group
theory—Schreier graphs—and some properties of an automaton group about its
growth or the growth of its monogenic subgroups. We focus on polynomial-activity
automata and on reversible automata, which are somehow diametrically opposed
families.

10.1 Introduction

Groups and semigroups generated by Mealy automata were formally introduced in
the early 1960s (for details, see [123, 271] and references therein). They revealed
their full potential over the years, by contributing to important conjectures in group
theory.

We intend here to provide various combinatorial and dynamical tools to tackle
some decision problems all related to some extent to the growth of automaton
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In Section 10.2, we consider Wang tilings as a major tool in order to study
and understand the behavior of automaton (semi)groups. There are various ways to
associate a Wang tileset with a given complete and deterministic Mealy automaton
and various ways to interpret the induced Wang tilings. We describe some of these
fruitful combinations, as well as some promising research opportunities.

In Section 10.3, we detail some toggle switch between a classical notion from
group theory—Schreier graphs—and some properties of an automaton group about
its growth or the growth of its monogenic subgroups. We focus on polynomial-
activity automata and on reversible automata, which are somehow diametrically
opposed families.

10.1.1 Mealy Automata

We first recall the formal definition of an automaton. A (finite, deterministic, and
complete) automaton is a triple

�
Q; ˙; ı D .ıiWQ! Q/i2˙

�
, where the state set Q

and the alphabet ˙ are nonempty finite sets and the ıi are functions.
A Mealy automaton is a quadruple .Q; ˙; ı; / such that .Q; ˙; ı/ and .˙;Q; /

are both automata. In other terms, a Mealy automaton is a complete, deterministic,
letter-to-letter transducer with the same input and output alphabet. Its size is the
cardinal of its state set.

The graphical representation of a Mealy automaton is standard; see Figures 10.1
and 10.2.

A Mealy automaton A D .Q; ˙; ı; / is invertible if each function x is a
permutation of ˙ and reversible if each function ıi is a permutation of Q.

x y1|0
0|1

1|1
0|0

x−1 y−10|1
1|0

1|1
0|0

0 1y|x
x|y

y|y
x|x

Fig. 10.1 The lamplighter automaton L , its inverse automaton L �1, and its dual automaton dL .

c

a

b d

e
0|1, 1|0

0|0

1|1

0|0

1|1

1|1

0|0

0|0, 1|1

Fig. 10.2 The Grigorchuk automaton.
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In the case where A is invertible, there is an explicit way to express the
actions of the inverses functions by considering the inverse automaton A �1 having
Q�1 D fx�1; x 2 Qg as state set and a transition x�1

jji

��!y�1 whenever x
ijj

��!y is a
transition in A (see Figure 10.1). In the case where A is reversible, its connected
components are strongly connected.

In any Mealy automaton A D .Q; ˙; ı; /, the sets Q and ˙ play dual roles.
So we may consider the dual (Mealy) automaton defined by dA D .˙;Q; ; ı/,
where we have the transition i

xjy

��!j whenever x
ijj

��!y is a transition in A (see
Figure 10.1). Obviously, a Mealy automaton is reversible if and only if its dual is
invertible.

An invertible Mealy automaton is bireversible if it is reversible (i.e., the input
letters of the transitions act like permutations on the state set) and if so is its inverse
(i.e., the output letters of the transitions act like permutations on the state set).

Whenever A is an invertible-reversible Mealy automaton, we can consider the
letters and their inverses. By setting A 0 D d.dA t .dA /�1/, the (invertible-
reversible) Mealy automaton eA D A 0 t .A 0/�1 is the extension of A with state
set Q t Q�1 and alphabet ˙ t˙�1.

For any set ˙ , we let ˙C denote the free semigroup over ˙ (resp. ˙� for the
free monoid with unit 1) and call its elements ˙ -words. We write jwj for the length
of a ˙ -word w and ww0 for the product of two ˙ -words w and w0.

A state of a Mealy automaton can be seen as acting on the set˙� of finite words
(equivalently on a regular rooted tree of arity j˙ j) or on the set˙! of infinite words
(equivalently on the boundary of the former tree).

10.1.2 Minimization and Nerode Classes

Let A D .Q; ˙; ı; / be a Mealy automaton.
The Nerode equivalence� on Q is the limit of the sequence of increasingly finer

equivalences .�k/k recursively defined by:

8x; y 2 Q; x �0 y ” x D y ;

8k > 0; x �kC1 y ”
�
x �k y ^ 8i 2 ˙; ıi.x/ �k ıi.y/

�
:

Since the set Q is finite, this sequence is ultimately constant. For every element x
in Q, we let Œx� denote the class of x w.r.t. the Nerode equivalence, called the Nerode
class of x. Extending to the n-th power of A , we let Œx� denote the Nerode class
in Qn of x 2 Qn.

Remark 10.1.1. The Nerode classes of a connected reversible Mealy automaton
(i.e., a Mealy automaton with exactly one connected component) have the same
cardinality.
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The minimization of A is the Mealy automaton m.A / D .Q=�; ˙; Qı; Q/, where
for every .x; i/ in Q	˙ , Qıi.Œx�/ D Œıi.x/� and QŒx� D x. This definition is consistent
with the standard minimization of “deterministic finite automata” where instead of
considering the mappings .x W ˙ ! ˙/x, the computation is initiated by the
separation between terminal and nonterminal states.

Two Mealy automata are equivalent if their minimizations are isomorphic as
labeled graphs. A Mealy automaton is minimal if it is equivalent to its minimization.

A pair of dual Mealy automata is reduced if both automata are minimal. The
md-reduction of a Mealy automaton, introduced in [9], consists in minimizing the
automaton or its dual until the resulting pair of dual Mealy automata is reduced. It
is well-defined: if both a Mealy automaton and its dual automaton are non-minimal,
the reduction is confluent.

10.1.3 Automaton (Semi)groups

Let A D .Q; ˙; ı; / be a Mealy automaton. For each transition x
ijx.i/

��! ıi.x/, we
associate the cross-transition depicted in the following way:

i

x δi(x)

ρx(i)

Each state x 2 Q defines a mapping from ˙� into itself recursively defined by:

8i 2 ˙; 8s 2 ˙�; x.is/ D x.i/ıi.x/.s/

that can also be depicted by a so-called cross-diagram obtained by gluing cross-
transitions (see [9, 246]) representing the action of a word of states on a word of
letters (or vice versa):

i s

x δ

δ

i(x) δs(δi(x))

ρx(i) ρ i(x)(s)

In a dual way, each letter i 2 ˙ defines also an action on Q�.
Both actions naturally extend to words, respectively, in Q� and ˙� with the

following convention. The image of the empty word is itself. We define the
function x induced by x D x1 � � � xn 2 Qn, with n > 0, by setting, xW˙

� !
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˙�; x D xn ı � � � ı x1 . We let ıiWQ� ! Q�; i 2 ˙ denote dually the functions
induced by the states of dA . For s D s1 � � � sn 2 ˙

n with n > 0, set ısWQ� !
Q�; ıs D ısn ı � � � ı ıs1 .

Alternatively, we consider the powers of A : for n > 0, its n-th power A n is the
Mealy automaton

A n D
�

Qn; ˙; .ıiWQ
n ! Qn/i2˙; .xW˙ ! ˙/x2Qn

�
:

By convention, A 0 is the trivial automaton on the alphabet ˙ . Note that all the
powers of a reversible Mealy automaton are reversible as well.

The semigroup of mappings from ˙� to ˙� generated by fx; x 2 Qg is called
the semigroup generated by A and is denoted by h A iC. When A is invertible,
the functions induced by its states are permutations on words of the same length,
and thus we may consider the group of mappings from ˙� to ˙� generated by
fx; x 2 Qg. This group is called the group generated by A and is denoted by hA i.
Such a group is self-similar in the sense that for any element g of the group and any
word w 2 ˙�, the unique mapping gjwW˙� ! ˙� defined by

8u 2 ˙�; g.wu/ D g.w/gjw.u/

belongs to the group. See also Definition 11.2.15.
Two states of a Mealy automaton belong to the same Nerode class if and only

if they represent the same element in the generated (semi)group, i.e., if and only if
they induce the same action on ˙�.

Remark 10.1.2. If two words of Q� are equivalent, so are their images under the
action of any element of h dA iC.

Remark 10.1.3. If a state of a Mealy automaton induces the identity, so do all the
states reachable from it. In particular, in a reversible connected component of a
Mealy automaton, a state induces the identity if and only so do all of its states.

Remark 10.1.4. Let A and B be two reversible connected Mealy automata on the
same alphabet ˙ , and let x be some state of A and y be some state of B. If x and
y have the same action on ˙�, then m.A / and m.B/ are isomorphic; in particular
they have the same size. Indeed the image of x in A by some word s 2 ˙� and the
image of y in B by this same word s have necessarily the same action on ˙�, and
A and B being strongly connected (because they are connected and reversible), for
every state of A there is a state of B which acts similarly on ˙� and vice versa.

Let us recall some known results from [9] and [351] (see also [178, 441, 521])
that will be used in our proofs.

Proposition 10.1.5. An invertible-reversible Mealy automaton A and its exten-
sion eA generate isomorphic groups.

Proposition 10.1.6. An invertible Mealy automaton generates a finite group if and
only if it generates a finite semigroup.
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Fig. 10.3 Three non-md-trivial bireversible automata that generate finite groups. The inverse of
the leftmost one provides a fourth minimal example.

Theorem 10.1.7. A Mealy automaton generates a finite (semi)group if and only if
so does its dual.

Corollary 10.1.8. A Mealy automaton generates a finite (semi)group if and only if
so does its md-reduction.

The trivial Mealy automaton generates the trivial (semi)group. If the md-reduction
of a Mealy automaton A leads to the trivial Mealy automaton, A is said to be md-
trivial. It is decidable whether a Mealy automaton is md-trivial. An md-trivial Mealy
automaton generates a finite semigroup, but in general the converse is false [9].

The (bi)reversible Mealy automata seem to be especially sensitive to md-
reduction. The four minimal examples of non-md-trivial bireversible Mealy
automata generating finite groups are displayed on Figure 10.3 (see [9] and [483]
for other examples).

Theorem 10.1.9. Any 2-letter and/or 2-state bireversible Mealy automaton gener-
ates a finite group if and only if it is md-trivial.

We shall see in Section 10.2.3 why and how we intend to generalize this fundamental
result.

10.2 A Matter of Tilings

Wang tilings are a major tool in order to study and understand the behavior
of automaton (semi)groups. Without even thinking about the potential generated
algebraic structures, Mealy automata have earlier been associated with Wang tilings
by K. Culik [170], by J. Kari [333], and ultimately by E. Jeandel and M. Rao [311]
in their overwhelming and successful pursuit of small aperiodic Wang tilesets. Such
Mealy automata need not to be either complete or deterministic, preventing to
easily define automaton (semi)groups as in the current framework. Now there are
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tn

ts
tetw

Fig. 10.4 A Wang tile.

various ways to associate a Wang tileset with a given complete and deterministic
Mealy automaton and various ways to interpret the induced Wang tilings. We aim
to describe some of these fruitful combinations, as well as some promising research
opportunities.

Section 10.2.1 recalls basic definitions and undecidability results about Wang
tilings. See also Section 9.2. Section 10.2.2 is devoted to the undecidability result
by P. Gillibert of the finiteness problem for automaton semigroups and then
sketches a bright connection between reset Mealy automata and some one-way
cellular automata. Section 10.2.3 focuses on so-called helix graphs, a crucial notion
capturing the whole dynamics by placing on a same footing the symmetric roles
of the state set and the alphabet. Section 10.2.4 outlines an effective and natural
approach to interpret any semigroup admitting a special language of greedy normal
forms—based on rewriting systems and Wang tilings—as an automaton semigroup,
namely, the semigroup generated by a Mealy automaton encoding the behavior of
such a language of greedy normal forms under one-sided multiplication. In each of
all these cases, the key notion is duality.

10.2.1 Background on Tilings

Named after H. Wang [580], a Wang tile is a unit square tile with a color on each
edge: it is a quadruple t D .tw; ts; te; tn/ 2 C4 where C is a finite set of colors, as
typically depicted in Figure 10.4. A Wang tileset is a finite set T of Wang tiles, and
for each t 2 T and d 2 fn; s; e;wg, we put td for the color of the edge in the d-side.
Given a Wang tileset T , a Wang tiling of a subset P of Z2 is a map f WP ! T .
We say that such a Wang tiling f is valid whenever, with each point .x; y/ 2 P, f
associates a tile f .x; y/ such that adjacent tiles share the same color on their common
edge:

f .x; y/n D f .x; yC 1/s; for .x; y/ 2 P and .x; yC 1/ 2 P;

f .x; y/e D f .xC 1; y/w; for .x; y/ 2 P and .xC 1; y/ 2 P:

A simple compactness argument gives the following classical result.

Theorem 10.2.1. For any Wang tileset T , Z2 admits a valid Wang tiling for T if
and only if so does each finite subset of Z2.
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qp ∈ T ⇔ p q ∈ AT 

i| j

Fig. 10.5 The transducer AT associated with a Wang tileset T according to Culik-Kari.

In particular, if Z2 admits no valid Wang tiling, then there is a least integer n 2 N
such that the square f0; 1; : : : ; ng2 admits no valid Wang tiling.

Following K. Culik [170] and J. Kari [333], any Wang tileset may be interpreted
as a letter-to-letter transducer with the same input and output alphabet, according
to the correspondence in Figure 10.5. Note that such a transducer may be neither
complete nor deterministic (and has neither initial nor final states). Following [370]
for instance, we say that a Wang tileset T is cd-deterministic with .c; d/ 2
I D f.n; e/; .s; e/; .n;w/; .s;w/g if each tile t 2 T is uniquely determined by
its pair .tc; td/ of colors. Whenever T is cd-deterministic for each .c; d/ 2 I , we
say that T is four-way deterministic. The following lemma links properties of the
Wang tileset T with properties of the associated transducer AT .

Lemma 10.2.2. Let T be a Wang tileset and AT be the associated transducer
according to Culik-Kari. A necessary condition for AT to be a Mealy automaton is
that T is nw-deterministic. In such a case, we have the following:

• T is ne-deterministic if and only if AT is reversible;
• T is sw-deterministic if and only if AT is invertible;
• T is 4-way deterministic if and only if AT is bireversible.

This original Wang tiling viewpoint could provide a special insight to the dynamics
of the Mealy automaton (see for instance [177]).

10.2.2 Finiteness and Order Problems

A second correspondence between Mealy automata and Wang tilings has allowed
P. Gillibert [242] to prove that the finiteness and the order problems for automaton
semigroups are undecidable (these decision problems are still open for automaton
groups, see [271, Problems 7.2.1(a) and 7.2.1(b)]). P. Gillibert’s proof relies on
the local correspondence from nw-deterministic Wang tilesets to Mealy automata
displayed in Figure 10.6, inspired by J. Kari’s proof of the undecidability of the
nilpotency problem for cellular automata [332].

The following results of R. Berger in [72] and of J. Kari in [332] illustrate how
the existence of valid Wang tilings is hard to determine.

Theorem 10.2.3. It is undecidable whether or not a Wang tileset admits a valid
Wang tiling for the discrete plane Z2.
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Wang tiling Mealy automaton

|

valid tiling

|

no valid tiling

Fig. 10.6 The Mealy automaton WT associated with a nw-deterministic Wang tileset T according
to Gillibert-Kari (see Definition 10.2.6).

Theorem 10.2.4. It is undecidable whether or not a nw-deterministic Wang tileset
admits a valid Wang tiling for the discrete plane Z2.

Enhancing a result by K. Culik, J. K. Pachl, and S. Yu in [171], J. Kari proved the
following in [332].

Theorem 10.2.5. It is undecidable whether or not a one-dimensional cellular
automaton is nilpotent.

P. Gillibert adapted J. Kari’s argument to address the finiteness and order problems
for automaton semigroups. We have to be careful about a side effect: a cellular
automaton acts on words indexed by Z, while an automaton semigroup acts on
words indexed by N. According to P. Gillibert [242], we first define a Mealy
automaton from a Wang tileset (Kari uses a similar construction to obtain a cellular
automaton).

Definition 10.2.6. With any nw-deterministic Wang tileset T , as illustrated in
Figure 10.6, we associate the Mealy automaton WT D .Q; ˙; ı; / with Q D ˙ D
T t f�g, ıb.a/ D b for .a; b/ 2 Q2, and

a.b/ D

(
c for a; b; c 2 T with ae D cw and cn D bs;

� otherwise.

The Mealy automaton WT associated with a nw-deterministic Wang tileset T
should be understood in the following way. Any word over the state set can be
seen as a word written over the tileset along some diagonal; the Mealy automaton
transforms this word to the word written on the tiles along the diagonal right below.
If it is impossible to put a tile at some place, then the mistake tile� is placed instead.
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For the next three statements, we consider a nw-deterministic Wang tileset T ,
with its associated Mealy automaton WT D .Q; ˙; ı; /, as in Definition 10.2.6.
The following is straightforward.

Lemma 10.2.7. For any state a 2 Q and any infinite word u D .uk/k2N 2 ˙
! , we

have

a.u/ D a.u0/.uk.ukC1//k2N: (10.1)

Lemma 10.2.8. If Z2 admits some valid Wang tiling for T , then h WT iC is
infinite.

Proof. Let tWZ2 ! T be some valid Wang tiling. Then we claim that the tile �
induces an element of infinite order. The point is to show that, for any n 2 N, the
word wn D .t.k C n; k//k2N satisfies m

�.wn/ D �mwmCn for every m 2 N, as
illustrated in Figure 10.7. By very definition, for .i; j/ 2 N2, we have

t.i;j/.t.iC 1; jC 1// D t.iC 1; j/ : (10.2)

Given n 2 N, we find:

�.wn/
(10.1)
DD �.t.n; 0//.t.nCk;k/.t.nC kC 1; kC 1///k2N ;

(10.2)
DD �.t.nC kC 1; k//k2N ;

D �wnC1 :

The result follows by induction. In particular, we deduce that the maps m
� are

pairwise different, which means that the element � has infinite order and implies
that the semigroup h WT iC is infinite. ut

w0
w1
2w2
3w3

Fig. 10.7 The action of the tile � corresponds to an element of infinite order (proof of
Lemma 10.2.8).
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Proposition 10.2.9. If Z2 admits no valid Wang tiling for T , then hWT iC is finite.

Proof. According to Theorem 10.2.1, there exists n 2 N such that the
set f0; 1; : : : ; ng2 admits no valid Wang tiling for T . Let fix .p; q/ 2 ˙n 	˙! . As
illustrated in Figure 10.8, we want to prove that any word u 2 Q2n satisfies

u.pq/ D u.p/�! : (10.3)

Write u D u1 � � � u2n (those orange tiles on Figure 10.8), and set �0 D id and

�k D u1u2���uk D uk ı uk�1 ı � � � ı u1 ; for 1 � k � 2n:

We have:

ukC1
ı �k D �kC1 ; for 0 � k � 2n � 1: (10.4)

Denoting by f .i; j/ the j-th letter of �i.pq/ for .i; j/ 2 N2 with 0 � i � 2n, we have:

�i.pq/ D .f .i; j//j2N ; for 0 � i � 2n: (10.5)

u1
u2

un
un+1

u2n

?

p

q

ρu(p)

Fig. 10.8 If some tile (along the black diagonal) was not �, the n � n square (with dotted line)
could be tiled, inside the 2n-width corridor (proof of Proposition 10.2.9).
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For 0 � i < 2n, we find:

f .iC 1; j/j2N
(10.5)
DD �iC1.pq/ ;

(10.4)
DD uiC1

.�i.pq// ;

(10.5)
DD uiC1

.f .i; j/j2N/ ;

(10.1)
DD uiC1

.f .i; 0//.f .i;j/.f .i; jC 1///j2N :

We deduce

f .i;j/.f .i; jC 1// D f .iC 1; jC 1/ (10.6)

for .i; j/ 2 N2 with 0 � i < 2n.
Now assume f .2n; n C k/ 6D � for some k 2 N (among the black diagonal on

Figure 10.8). Applying inductively (10.6), we obtain f .i C j; i C k/ 6D � for 0 �
i; j � n, which yields in particular a valid Wang tiling for some n 	 n square (with
dotted line on Figure 10.8): this is a contradiction that allows to prove (10.3) as well.

Let u D vw with v 2 Q2n and w 2 Q�. We have

u.pq/ D vw.pq/ D w.v.pq//
(10.3)
DD w.v.p/�!/ D vw.p/�! D u.p/�! :

The cardinality of fu W u 2 Q2nQ�g is bounded by j.˙n/.˙
n/j. From h WT iC D

fu W u 2 Q<2ng [ fu W u 2 Q2nQ�g, we deduce

jh WT iCj � 1C jQj C jQj
2 C � � � C jQj2n�1 C j.˙n/.˙

n/j :

Hence h WT iC is finite. ut

Gathering Lemma 10.2.8 and Proposition 10.2.9, we deduce:

Theorem 10.2.10. The semigroup h WT iC is infinite if and only if the discrete
plane Z2 admits some valid Wang tiling for T .

Gathering Theorems 10.2.4 and 10.2.10, we finally obtain:

Corollary 10.2.11. The finiteness problem for automaton semigroups is undecid-
able.

It is worthwhile noting that the Mealy automaton WT associated with any nw-
deterministic tileset T is reset: a Mealy automaton A D .Q; ˙; ı; / is said to be
a reset automaton if, for any state q 2 Q, the state ıi.q/ does not depend on q, that
is, if there is a map ' W ˙ ! Q such that any transition of A has the form

q (i)
i r

j
| q(i)
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The very definition of WT induces also that its state set and its alphabet coincide.
However, this feature is not specific in the framework of reset automata. Indeed, any
reset automaton is equivalent to a reset automaton with Q D ˙ (and ' D id).

The point now is that, by construction (with the mandatory adjunction of a
tile �), such reset Mealy automata WT are highly non-invertible, which seems to
prevent to adapt the previous approach for automaton groups. Silva and Steinberg
have studied groups generated by invertible reset automata [549]. They proved in
particular that such a group is infinite if and only if any generator is of infinite order.
However, the following problem remains open.

Problem 10.2.12. Is the finiteness problem for reset automaton groups decidable?

To conclude this section, we describe a link between the finiteness of reset
automaton groups and the periodicity of one-way cellular automata. A one-way
cellular automaton is a triple .Q; r; f / where Q is the finite state set, r 2 N is the
radius, and f W QrC1 ! Q is the local transition rule. A configuration of such an
automaton is an element in QN. The whole dynamics is described by the global
transition function F defined by the local transition function f as

F.c/.k/ D f .c.k/; c.kC 1/; : : : ; c.kC r//

for every configuration c 2 QN and every k 2 N. Such a cellular automaton is said
to be periodic if Fp D id holds for some integer p > 0.

Problem 10.2.13. Is the periodicity problem for one-way cellular automata decid-
able?

It must be recalled that J. Kari and N. Ollinger have shown that the periodicity
problem for (reversible) cellular automata is undecidable [336]. One can restrict the
study of the periodicity to those one-way cellular automata with radius 1 without
loss of generality. Let .Q; f / denote the one-way cellular automaton .Q; 1; f /with f W
Q2 ! Q.

Any such periodic cellular automaton .Q; f / has to preserve the value of the
cell c.0/; hence, for any state b 2 Q, the map b W a 7! f .a; b/ has to be a
permutation. Such a cellular automaton is said to be center-permutive. The latter
being a purely syntactic property, Problem 10.2.13 is equivalent to the following.

Problem 10.2.14. Is the periodicity problem for one-way center-permutive radius 1
cellular automata decidable?

As illustrated on Figure 10.9 and stated in [190], Problems 10.2.12 and 10.2.13
turn out to be a single one open problem.

Proposition 10.2.15. For any family  D .b/b2˙ of permutations of the alpha-
bet ˙ , the group generated by the Mealy automaton .˙;˙; id; / is finite if and
only if the cellular automaton .˙; .a; b/ 7! b.a// is periodic.

On the one hand, systematic experimentations on small reset Mealy automata
(as well as randomly chosen large ones) seem to indicate that whenever a reset
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Fig. 10.9 Any reset Mealy automaton .˙;˙; id; / (or its minimization, on the left) corresponds
to a cellular automaton .˙; .a; b/ 7! b.a// (with a fragment of a space-time diagram on the right),
according to Proposition 10.2.15.

automaton group is finite, the semigroup generated by the dual automaton is
very small. On the other hand, Delacourt and Ollinger have managed to inject
some computations in one-way center-permutive cellular automata [190]. Tilting
in opposite directions, these cooperating two points of view remain for now this
crucial open question in some swing state.

10.2.3 Helix Graphs and Rigidity

The notion of a helix graph is a dynamical tool introduced in [9] and can be thought
as some one-dimensional tiling.

Definition 10.2.16. The helix graph Hn;k of a Mealy automaton A D .Q; ˙; ı; /
is defined to be the directed graph with nodes Qn 	˙ k and arrows

u;v d v(u);ru(v)

for all .u; v/ 2 Qn 	˙ k (see Figure 10.10).

Merging together a Mealy automaton A and its dual dA , their helix graphs allow
to capture the whole dynamics by placing on a same footing the symmetric roles of
the state set and the alphabet. This way, the two faces of the coin are coalesced into
one.

Let us mention that a helix graph could be defined for any letter-to-letter
transducer where input and output alphabets coincide. Such a transducer is a Mealy
automaton if and only if from any vertex starts a unique edge.
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Fig. 10.10 The Mealy automaton L generating the lamplighter group, its associated Wang
tileset T .L /, and its helix graph H1;1.L /.

Proposition 10.2.17. If the group generated by an invertible-reversible Mealy
automaton is finite, then any of its helix graphs is a union of disjoint cycles.

Proof. Let A D .Q; ˙; ı; / be an invertible-reversible Mealy automaton that
generates a finite group. Theorem 10.1.7 implies that dA generates a finite group as
well. Let H be the helix graph of A and s be the map from the finite set of vertices
of H into itself that maps any vertex to its (unique) successor. The helix graph H
is a union of disjoint cycles if and only if the map s is bijective, that is, if and only
if the map s is surjective.

Let x 2 Q and i 2 ˙ . We have to show that the vertex .q; i/ admits a unique
predecessor in H . There exist integers m; n > 0 satisfying m

q D qm D idh A i

and ın
i D ıin D idh dA i. This means that there is a transition qm injin

��! qm in the
associated automaton of order .m; n/. The corresponding cross-diagram is:

i i i

q q

q q

...
...

...

q q

i i i

qm

in

The most southeast cross gives a predecessor to the vertex .q; i/. ut

The condition of Proposition 10.2.17 is not sufficient: there are invertible-reversible
Mealy automata whose helix graph is a union of disjoint cycles and that generate
an infinite group, as for instance the Alešin automaton displayed on Figure 10.11.
Proposition 10.2.18 characterizes the class of those invertible-reversible automata
whose helix graph is a union of disjoint cycles.
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Fig. 10.11 Alešin automaton generates an infinite group, namely, the rank 3 free group. Its helix
graph is a cycle.

Proposition 10.2.18. Let A be an invertible-reversible Mealy automaton. The
following are equivalent:

1. A is bireversible;
2. didiA is a Mealy automaton;
3. the helix graph of A is a union of disjoint cycles.

Proof. .1) 2/ By hypothesis of bireversibility, A is invertible and iA is
reversible. The latter means that diA is invertible. Therefore idiA is a Mealy
automaton and so is its dual didiA .

.2) 1/ First, by hypothesis of invertibility, iA is a Mealy automaton, and so is
its dual diA . Next, since didiA is assumed to be a Mealy automaton, so is its
dual idiA . This means that diA is invertible, that is, iA reversible. We deduce
that A is bireversible.

.2 , 3/ In any helix graph (of a Mealy automaton), each vertex admits a unique
successor. Such a helix graph is a union of disjoint cycles if and only if each
vertex admits a unique predecessor. Let G be the graph with set of vertices Q�1	
˙�1 and with an edge .y�1; j�1/! .x�1; i�1/whenever .x; i/! .y; j/ is an edge
in the helix graph H of A : the graph G is the helix graph of didiA :

()) if didiA is a Mealy automaton, each vertex of G admits a unique
successor, hence each vertex of H admits a unique predecessor, and H is
a union of disjoint cycles;

(() if H is a union of disjoint cycles, so is G . This implies that didiA is a
Mealy automaton. ut

We deduce a simple infiniteness criterion, which is very easy to check.

Corollary 10.2.19. Any invertible-reversible Mealy automaton which is not bire-
versible generates an infinite group.

We can also state the following characterization:

Theorem 10.2.20. Let A be an invertible-reversible Mealy automaton. The
group hA i is finite if and only if there exists an integer C such that, for all k; `, the
helix graphs fH k;` of eA are unions of disjoint cycles of lengths bounded by C.
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Note that such a characterization is not effective and does not directly lead to a
decision procedure of finiteness.

Recall that, for any invertible-reversible automaton A with state set Q and
alphabet˙ , we let eA denote the extension with state set QtQ�1 and alphabet˙ t
˙�1.

Proof. Assume first that h A i is finite: so is h eA i by Proposition 10.1.5.
Proposition 10.2.17 shows that the helix graphs of any level are unions of disjoint
cycles. It remains to prove that the lengths of these cycles are uniformly bounded.
By Theorem 10.1.7, the group h deA i is finite as well. Let C be a cycle in a helix
graph of eA and let .u; v/ 2 .QtQ�1/�	 .˙ t˙�1/� be a node of this cycle. Each
node of C is of the form .h.u/; g.v//, where g (resp. h) is an element of h eA i (resp.
h deA i). Since the nodes are pairwise distinct, the length of the cycle C is at most
jh eA ij 	 jh deA ij.

Let us prove the converse and assume that the group hA i is infinite: so is h eA i
by Proposition 10.1.5. First, we argue that the orders of the elements of h eA i are
unbounded. Indeed, automata groups are residually finite by construction since they
act faithfully on rooted locally finite trees. Moreover, it follows from Zelmanov’s
solution of the restricted Burnside problem [574, 593, 594] that any residually finite
group with bounded torsion is finite. Since h eA i is infinite, the orders of its elements
are unbounded.

There exists either x 2 .Q t Q�1/� such that the order of x is infinite or a
sequence .xn/n2N 
 .Q t Q�1/� such that the sequence .kn/n of orders of the
elements xn goes to infinity. We carry out the proof in the second case, the first one
can be treated similarly. Let us concentrate on xn , element of order kn of h eA i. For
all 1 � k < kn, there exists a word uk 2 .˙ t˙

�1/� satisfying k
xn
.uk/ D u0k ¤ uk.

Say that a word v 2 .˙ t ˙�1/� is unital if ıv is the identity of h deA i. Since
h deA i is a group, the word uk can be extended into a unital word ukvk. Set wn D

u1v1 � � � ukn�1vkn�1. By construction, we have xn.wn/ D u01 � � � ¤ wn. Since u1v1 is
unital, we also have:

2xn
.wn/ D 

2
xn
.u1v1/

2
xn
.u2v2 � � � ukn�1vkn�1/

D 2xn
.u1v1/u

0
2 � � � ¤ wn :

In the same way, we prove that, for all k < kn, we have k
xn
.wn/ ¤ wn.

In the helix graph of eA of level .jxnj; jwnj/, consider the cycle containing
the node .xn;wn/. Since wn is unital, the successors of .xn;wn/ on the cycle are
.xn; xn.wn//, .xn; 

2
xn
.wn//, . . . Therefore, the cycle is of length kn. Since kn goes

to infinity, the lengths of the cycles of the helix graphs of eA are not uniformly
bounded. ut

We finally mention a relevant perspective based on helix graphs. The original
observation is that the cyclic helix graph of Alešin on Figure 10.11 happens to be
what we call rigid: it admits a trivial symmetry group. We can simply illustrate the
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Fig. 10.12 The five helix graphs made of a unique cycle of size 2 � 3 D 6. Additional colors
(orange for the letters vs violet for the states) emphasize the symmetries (or the absence of such
ones). We give first the size s of the symmetry group of the helix graph together with the size e of
the equivalence class of the corresponding automaton (with s � e D 2Š 3Š) and then the generated
group (only its finite or infinite nature matters here).

phenomenon on Figure 10.12 by comparing the latter (at the center) with the other
four cyclic helix graphs with the same size.

This helix rigidity notion can be easily translated in terms of size of equivalence
class to formulate the following claimed criterion:

Conjecture 10.2.21. Let A be a bireversible automaton. If the (nontrivial) md-
reduction of A admits an equivalence class of maximal size, then the group h A i
is infinite.

Note that Conjecture 10.2.21 is trivially true for 2-letter and/or 2-state bireversible
automata by Theorem 10.1.9. Beyond, it would apply to more and more automata
as suggesting by some experimentations:

States Letters md-reduced Rigid %

2 5 190 154 81%

3 3 148 140 95%

4 3 6293 6117 97%

Furthermore, it seems that the lack of helix rigidity yields a conjugator such that
the md-reduction of the conjugated is smaller and so on. Based on the helix rigidity,
we claim the following generalization of Corollary 10.1.8 and Theorem 10.1.9.

Conjecture 10.2.22. Let A be a bireversible automaton. The group h A i is finite
if and only if some conjugate of A is md-trivial.

The latter would validate in particular the idea that md-reduction allows to solve the
finiteness problem for prime bireversible automata, that is, for those bireversible that
admit no nontrivial decomposition. This notion of primality turns out to be recurrent
in various contexts and seems to be especially relevant for the Burnside problem in
Section 10.3.
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Fig. 10.13 An md-reduced bireversible automaton that admits an md-trivial conjugate.

Let us come back to the specimens from Figure 10.3. We have seen that they are
md-reduced and generate finite groups. Each of their helix graphs admits a nontrivial
symmetry; hence it is not rigid.

For instance, the leftmost one (on Figure 10.3) admits the symmetry 0$ 1; a$
c; b $ d. As shown on Figure 10.13, it admits a decomposition as a product of
two components C1 and C2. The conjugate C2 	 C1 happens to be md-trivial. The
statement of Conjecture 10.2.22 might be stronger, and we could use some notion
of mdc-reduction that would alternate md-reduction and conjugacy.

10.2.4 Automat-ic-on Semigroups

Considering tilings as computations, they can be used to encode some rewriting
systems, that, according to [184, 185], we call quadratic normalizations. This allow
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to develop an effective and natural approach to interpret any semigroup admitting
a special language of greedy normal forms as an automaton semigroup, namely,
the semigroup generated by a Mealy automaton encoding the behavior of such a
language of greedy normal forms under one-sided multiplication [482].

The framework embraces many of the well-known classes of (automatic) semi-
groups: finite monoids, free semigroups, free commutative monoids, trace or divis-
ibility monoids, braid or Artin-Tits or Krammer or Garside monoids, Baumslag-
Solitar semigroups, etc. Like plactic monoids or Chinese monoids, some neither
left- nor right-cancellative automatic semigroups are also investigated, as well as
some residually finite variations of the bicyclic monoid.

It is worthwhile noting that, in all these cases, “being an automatic semigroup”
and “being an automaton semigroup” become dual properties in a very automata-
theoretical sense.

Definition 10.2.23. Assume that S is a semigroup with a generating subfamily Q.

EV : Q+ S

NF

A normal form for .S;Q/ is a (set-theoretic) section of the canonical projec-
tion EV from the language of Q-words onto S, that is, a map NF that assigns to each
element of S a distinguished representative Q-word.

Whenever NF.S/ is regular, it provides a right-automatic structure for S if the
language Lq D f .NF.a/; NF.aq// W a 2 S g is regular for each q 2 Q. The
semigroup S then can be called a (right-)automatic semigroup.

We mention here the thorough and precious study in [296] of the different
notions (right- or left-reading vs right- or left-multiplication) of automaticity for
semigroups.

Remark 10.2.24. In his seminal work [215, Chapter 9], Thurston shows how the set
of these different automata recognizing the multiplication—that is, recognizing the
languages of those pairs of normal forms of elements differing by a right factor q 2
Q—and the one recognizing the equality in Definition 10.2.23 can be replaced with
advantage by a single letter-to-letter transducer (Definition 10.2.35) that computes
the normal forms via iterated runs, each run both providing one brick of the final
normal from and outputting a word still to be normalized.

One will often consider the associated normalization N D NF ı EV.

Definition 10.2.25. A normalization is a pair .Q; N/, where Q is a set and N is a
map from QC to itself satisfying, for all Q-words u; v;w:

• jN.w/j D jwj,
• jwj D 1) N.w/ D w,
• N.u N.w/ v/ D N.u w v/.
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A Q-word w satisfying N.w/ D w is called N-normal. If S is a semigroup (resp. a
monoid), we say that .Q; N/ is a normalization for S if S admits the presentation

h Q W fw D N.w/ j w 2 QCg iC .resp: h Q W fw D N.w/ j w 2 Q�g i1C /:

Following [186], we associate with every element q 2 Q a q-labeled edge and
with a product the concatenation of the corresponding edges and represent equalities
in the ambient semigroup using commutative diagrams, what we call here square-
diagram: for instance, the following square illustrates an equality q1q2 D q01q

0
2.

q1

q2 q1

q2

For a normalization .Q; N/, we let N denote the restriction of N to Q2 and, for i �
1, by Ni the (partial) map from QC to itself that consists in applying N to the entries
in positions i and iC 1. For any finite sequence i D i1 � � � in of positive integers, we
write Ni for the composite map Nin ı � � � ı Ni1 (so Ni1 is applied first).

Definition 10.2.26. A normalization .Q; N/ is quadratic if both following condi-
tions hold:

• a Q-word w is N-normal if, and only if, so is every length-two factor of w;
• for every Q-word w, there exists a finite sequence i of positions, depending on w,

such that N.w/ is equal to Ni.w/.

Definition 10.2.27. As illustrated on Figure 10.14, with any quadratic normaliza-
tion .Q; N/ is associated its breadth .d; p/ (called minimal left and right classes
in [184, 185]) defined as:

d D max
.q1;q2;q3/2Q3

minf ` W N.q1q2q3/ D N 212���„ƒ‚…
length `

.q1q2q3/g;

and

p D max
.q1;q2;q3/2Q3

minf ` W N.q1q2q3/ D N 121���„ƒ‚…
length `

.q1q2q3/g:

Such a breadth is ensured to be finite provided that Q is finite and then satisfies jd�
pj � 1. For d � 4 and p � 3, .Q; N/ is said to satisfy Condition ( ), corresponding
to the so-called domino rule in [184–186] but with a different reading direction.

Remark 10.2.28. One can build quadratic normalizations with a (finite) breadth
arbitrarily high (see [185]). A natural question would be to know what is the
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· · ·

· · ·

· · ·

· · ·

q1

q2

q3

N
N

N
N

N

N

N
N

N
N

N

N

N212···(q1q2q3)

N121···(q1q2q3)

Fig. 10.14 From an initial Q-word q1q2q3, one applies normalizations on the first and the
second 2-factors alternatively up to stabilization, beginning either on the first 2-factor q1q2 (on
the right-hand side here) or on the second q2q3. The gray zone corresponds to Condition ( ) as
defined in Definition 10.2.27.

maximal breadth for a fixed size of Q. For instance, the semigroup

W D h a;b;c W aa D cc D bc;ba D cb D ab;bb D ca D ac iC

admits a quadratic normalization with breadth .11; 10/, corresponding to the
maximal breadth for jQj D 3. Such a large breadth corresponds with a great
height of the associated N-graph as displayed on Figure 10.15. An easy general
observation is the following: the larger the breadth, the higher the N-graph, the
most the associated semigroup approximates the rank 1 free semigroup. Here,
as an ultimate example, W is precisely isomorphic to h a W iC. Conversely, any
quadratic normalization .Q; N/ with a zero breadth corresponds to the rank jQj free
semigroup h Q W iC (except for jQj D 1).

The first main result of [185] is an axiomatization of these quadratic normaliza-
tions satisfying Condition ( ) in terms of their restrictions to length-two words:
any idempotent map N on Q2 that satisfies N2121 D N121 D N1212 extends into
a quadratic normalization .Q; N/ satisfying Condition ( ). For larger breadths, a
map on length-two words normalizing length-three words need not normalize words
of greater length.

The second main result involves termination. Every quadratic normaliza-
tion .Q; N/ gives rise to a quadratic rewriting system, namely, the one with rules
w �! N.w/ for w 2 Q2. By Definition 10.2.26, such a rewriting system is confluent
and normalizing, meaning that, for every initial word, there exists a finite sequence
of rewriting steps leading to a unique N-normal word, but its convergence, meaning
that any sequence of rewriting steps is finite, is a quite different problem.

Theorem 10.2.29. [185] If .Q; N/ is a quadratic normalization satisfying Condi-
tion ( ), then the associated rewriting system is convergent.
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Fig. 10.15 The N1;2-graph for the quadratic normalization associated with W: simple arrows
correspond to N1 and double arrows to N2, while loops (on the sinks and on some sources) are
simply omitted for better readability.

More precisely, every rewriting sequence starting from a word of Qp has length
at most p.p�1/

2
(resp. 2p � p � 1) in the case of a breadth .3; 3/ (resp. either .3; 4/

or .4; 3/). Theorem 10.2.29 is essentially optimal since there exist non-convergent
rewriting systems with breadth .4; 4/.

The results of the current section rely on the special Condition ( ) outlined
by Dehornoy and Guiraud (see [185]). However, none of their results (in particular
Theorem 10.2.29 mentioned here for completeness) is neither applied nor required
here. We want to emphasize that Condition ( ) appears as a common denominator
for the different approaches.

All the ingredients are now in place to effectively and naturally interpret as an
automaton monoid any automatic monoid admitting a special language of normal
forms—namely, a quadratic normalization satisfying Condition ( ). The point is
to construct a Mealy automaton encoding the behavior of its language of normal
forms under one-sided multiplication.

Definition 10.2.30. Assume that S is a semigroup with a quadratic normaliza-
tion .Q; N/. We define the Mealy automaton AS;Q;N D .Q;Q; ı; / such that, for
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every .a; b/ 2 Q2, b.a/ is the rightmost element of Q in the normal form N.ab/
of ab and ıa.b/ is the left one:

N.ab/ D ıa.b/b.a/:

The latter correspondence can be simply interpreted via square-diagram vs cross-
diagram:

a

b δ δ

ρ

a(b)

b(a)

N

a

b a(b)

b(a)ρ

Then, for N.s/ D sn � � � s1 and N.sq/ D qns0n � � � s
0
1, we obtain diagrammatically:

s1 s2 sn

q N Nq1 q2 qn−1 qn

s1 s2 sn
s1 s2 sn

q q1 q2 qn−1 qn

s1 s2 sn

We choose on purpose to always draw a normalization square-diagram backward,
such that it coincides with the associated cross-diagram. The function q induced by
the state q maps any normal form (read backward) to the normal form of the right
product by q (read backward).

We now aim to strike reasonable (most often optimal) hypotheses for a quadratic
normalization .Q; N/, associated with an original semigroup S to generate a
semigroup h AS;Q;N iC that approximates S as sharply as possible. Since the
generating sets coincide by Definition 10.2.30, we shall first focus on the case where
S should be a quotient of h AS;Q;N iC (top-approximation), and next, on the case
where h AS;Q;N iC should be a quotient of S (bottom-approximation).

Before establishing the top-approximation statement, we just recall that semi-
groups could appear much more difficult to handle, especially when it comes to
automaticity (see [296]) or self-similarity (see [108, 109]). To any (not monoid)
semigroup S with a quadratic normalization .Q; N/, one obtains a monoid S1 with
a quadratic normalization .Q1; N1/ by adjoining a unit 1 and then by setting Q1 D

Q t f1g and defining N1 by N1.w/ D N.w/ and
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N1.1w/ D N1.w1/ D 1N.w/ ( 1N1 )

for w 2 QC. The choice made for Condition ( 1N1 ) becomes natural whenever
we think of the (adjoined or not) unit 1 as some dummy element that simply
ensures the length-preserving property for N1 (see Definition 10.2.25 and also [185,
Section 2.2]).

Lemma 10.2.31. Assume that S is a monoid with a quadratic normalization .Q; N/

satisfying Condition ( 1N1 ). Then the Mealy automaton AS;Q;N generates a monoid of
which S is a quotient.

Proof. Let S1 D Q�=�N1 and AS1;Q1;N1 D .Q1;Q1; ı; / as in Definition 10.2.30.
We have to prove that any relation in h AS1;Q1;N1 i

1
C is a relation in S1, thereby

implying for all u; v 2 Q�:

u D v H) u �N1 v:

Let p1 � � � pk D q1 � � � q` be some relation in h AS;Q;N i
1
C with pi 2 Q

for 0 � i � k and qj 2 Q for 0 � j � `. Any word w over Q admits hence
the same image under p1 � � � pk and under q1 � � � q` . By taking w D 1! (or
any sufficiently long power of 1, precisely any word from 1max.k;`/1�), such a
common image corresponds to their normal forms by very definition of AS1;Q1;N1

(see Figure 10.16). Therefore, the resulting letter-wise equality 1�!N.p1 � � � pk/ D

1�!N.q1 � � � q`/ (where 1�! denotes the left-infinite word � � �111) implies that the
two corresponding Q-words p1 � � � pk and q1 � � � q` represent a same element in S1 by
definition of N1. ut

N N N N

N N N N

N N N N

1 1 1 1

p1 1 1 1 1 1

p1 1 1 1
p2 p2 1 1 1 1

p1 p2 1 1

1
pk pk pk p(k−1)

k 1 1

p(k−1)
1 p(k−1)

2 p(k−1)
k

1

1−ω N(p1 · · · pk)

Fig. 10.16 Proof of Lemma 10.2.31: any Q-words inducing a same action have normal forms that
coincide.
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Although specific to a monoidal framework and then requiring the innocuous
Condition ( 1N1 ), the previous straightforward proof relies only on the definition
of a quadratic normalization and on the well-fitted associated Mealy automaton
(Definition 10.2.30). For the bottom-approximation statement, we consider an extra
assumption, which happens to be necessary and sufficient.

Proposition 10.2.32. Assume that S is a semigroup with a quadratic normal-
ization .Q; N/. If Condition ( ) is satisfied, then the Mealy automaton AS;Q;N

generates a semigroup quotient of S. The converse holds provided that Condi-
tion ( 1N1 ) is satisfied.

Proof. Let S D QC=�N and AS;Q;N D .Q;Q; ı; / as in Definition 10.2.30.
.(/Assume that Condition ( ) is satisfied and that there exists .a; b; c; d/ 2 Q4

with ab �N cd. We have to prove ab D cd. Without lost of generality, the word ab
can be supposed to be N-normal, that is, N.ab/ D N.cd/ D ab holds.

Let u D qv 2 Qn for some n > 0 and q 2 Q. We shall prove both ab.u/ D cd.v/

(coordinate wise) and ıu.ab/ �N ıv.cd/ by induction on n > 0. For n D 1, we
obtain the two square-diagrams on Figure 10.17 (left). With these notations, we
have to prove q000 D q001 and a0b0 �N c0d0, the latter meaning N.a0b0/ D N.c0d0/, that
is, with the notations from Figure 10.17, the conjunction of a00 D c00 and b00 D d00.
Now these three equalities hold whenever .Q; N/ satisfies Condition ( ), as shown
on Figure 10.17 (right).

This allows to proceed the induction and to prove the implication .(/.
.)/ Consider an arbitrary length-three word over Q, say qcd. Let a; b denote

the elements in Q satisfying N.cd/ D ab. By definition, we deduce ab �N cd. This
implies ab D cd by hypothesis. In particular, the images of any word qv under ab

and cd coincide: ab.qv/ D cd.qv/, hence

ab.q/ D q000 D q001 D cd.q/

q

a

b

a

q0

b

q0

N

N

q

c

d

c

q1

d

q1

N

N

q

c

d

a

q0

b

a

c

wq1

q1

d

b

q0

a

b

c

dN
N

N

N
N

N

N

Fig. 10.17 Proof of Proposition 10.2.32: initial data (left) can be pasted into Condition ( )
(right).
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and

ıq.ab/.v/ D a0b0.v/ D c0d0.v/ D ıq.cd/.v/

(with notations of Figure 10.17). The last equality holds for any original
word v 2 Q� and implies a0b0 D c0d0 . Whenever, Condition ( 1N1 ) is satisfied,
we deduce N.a0b0/ D N.c0d0/ according to Lemma 10.2.31. We obtain

N121.qcd/ D N2121.qcd/:

Therefore .Q; N/ satisfies Condition ( ). ut

Gathering Lemma 10.2.31 and Proposition 10.2.32, we obtain the following result.

Theorem 10.2.33. Assume that S is a monoid with a quadratic normaliza-
tion .Q; N/ satisfying Conditions ( 1N1 ) and ( ). Then the Mealy automaton AS;Q;N

generates a monoid isomorphic to S.

Proof. By construction, S and h AS;Q;N i
1
C share a same generating subset Q.

Now, any defining relation for S maps to a defining relation for h AS;Q;N i
1
C by

Proposition 10.2.32 and conversely by Lemma 10.2.31. ut

Corollary 10.2.34. Any monoid with a quadratic normalization satisfying Condi-
tions ( 1N1 ) and ( ) is residually finite.

To conclude this section, we come back to Remark 10.2.24 about the original
transducer approach by Thurston.

Definition 10.2.35. With any quadratic normalization .Q; N/ is associated its
Thurston transducer defined as the Mealy automaton TQ;N with state set Q,
alphabet Q, and transitions as follows:

a

b d

c

N a c

b |d

Corollary 10.2.36. Assume that S is a monoid with a quadratic normaliza-
tion .Q; N/ satisfying Conditions ( 1N1 ) and ( ). The Thurston transducer TQ;N

and the Mealy automaton AS;Q;N being dual automaton, S possesses both the
explicitly dual properties of automaticity and self-similarity.

One of the simplest nontrivial examples is the following. Many others can be
found in [482, 483]. The automatic monoid M D h a;b W ab D a i1C admits a
quadratic normalization .Q; N/ with Q D f1;a;bg, N.ab/ D 1a, and N.xy/ D xy
for .x; y/ 2 Q2Xf.a;b/g. The latter has width .3; 3/, hence satisfies Condition ( ).
According to Theorem 10.2.33, M is therefore an automaton monoid. The
corresponding Wang tileset and the Mealy automaton are displayed on Figure 10.18.
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Fig. 10.18 The Wang tileset and the Mealy automaton associated with the
monoid h a;b W ab D a i1

C
.

10.3 A Matter of Orbits

In this section, we detail some toggle switch between a classical notion from group
theory—Schreier graphs—and some properties of an automaton group about its
growth or the growth of its monogenic subgroups. In the first part (Section 10.3.1),
we see how automaton groups can provide examples for questions on Schreier
graphs, and in the second part (Section 10.3.2), we see how Schreier graphs viewed
in a meta structure called an orbit tree or a Schreier trie1 can give answers to
questions about these groups generated by invertible-reversible Mealy automata.

The first part considers essentially polynomial-activity automata which were
introduced by S. Sidki [546], whereas the second part considers reversible automata.
As we will see, these families of Mealy automata are somehow diametrically
opposed.

10.3.1 Schreier Graphs and Polynomial-Activity Automata

There are many ways to define the Schreier graphs of a group acting on some set.
Schreier graphs are essentially a generalization of Cayley graphs: let G be a group
generated by S and acting on a set X, the vertices of its Schreier graph (depending
on S) are the elements of X, and there is an edge x! y if y is the image of x under
the action of some element of S. By considering the action of the group on itself by
right-multiplication, this graph coincides with its Cayley graph. In this chapter, the
considered group is always an automaton group which acts on the regular rooted
tree, leading to the following definitions (see also Section 11.3):

1This latter denomination is introduced for the first time in this chapter, motivated in Section 10.3.2.
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Definition 10.3.1. Let A D .Q; ˙; ı; / be a Mealy automaton. Let u be a finite
or infinite word on ˙ . The Schreier graph of h A i pinpointed by u is the orbit of u
under the action of h A i.

The finite Schreier graph of level n of h A i, n 2 N, is the union of the Schreier
graphs pinpointed by the length n words, and the infinite Schreier graph of h A i is
the union of the Schreier graphs pinpointed by the infinite words.

Pinpointed infinite Schreier graphs were for instance used by R. Grigorchuk and
V.V. Nekrashevych to prove the existence of amenable actions for non-amenable
groups [272].

The growth of the infinite Schreier graph pinpointed by some infinite word w
is the sequence .�n.w//n2N, where �n.w/ is the number of vertices in the closed
ball B.w; n/ of radius n centered at w:

B.w; n/ D fv 2 ˙� j 9q 2 Q�n; q.w/ D vg :

The growth of a group (which can be seen as the growth of its Cayley graph)
has been studied for a long time now (see an introduction to the growth problem
in Section 10.3.4). In this section, we explore the growth of Schreier graphs
of automaton groups, in the flavor of Bondarenko’s article [98], focusing on
polynomial-activity automata.

A Mealy automaton has polynomial activity if its nontrivial cycles are pairwise
disjoint (a trivial cycle is a state with a loop inducing the identity). Its degree is m
if the largest number of these cycles connected by a path is m C 1. A polynomial-
activity automaton of degree �1 is bounded: any nontrivial cycles are disjoint and
not connected by a directed path. The degree of a state of a Mealy automaton is
the degree of the part of this automaton accessible from it. Note that the set of
polynomial-activity automata of degree m forms a group for the usual product of
Mealy automata.

The class of polynomial-activity automata is important within Mealy automata:
it contains many interesting examples (let us mention the well-known automata
of Grigorchuk and of Gupta-Sidki), and its subfamily of bounded automata has
interesting deciding properties, for example, order and conjugacy [97], which are
undecidable in the general framework of Mealy automata [243, 556].

We give here a property of Schreier graphs of polynomial-activity automata.

Theorem 10.3.2. The infinite pinpointed Schreier graphs of a polynomial-activity
automaton have subexponential growth.

Sketch of the proof. Let A D .Q; ˙; ı; / be a polynomial-activity Mealy automa-
ton of degree m. By passing at the right power of˙ , we can assume that A satisfies
the following properties:

1. for every state q and every letter a, the state ıa.q/ either belongs to a cycle or has
degree less than the degree of q;

2. for every state q in a nontrivial cycle, there exists a letter a such that ıa.q/ D q.
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If q is some state in some power A n and v 2 ˙� is a word, it is clear from the
fact that A has polynomial activity of degree m that ıv.q/ is either a state in the
same cycle as q or it is not and then its degree is less than the degree of q. In fact,
the following property, called (P), can be proven to be true using quite technical
considerations (see [98]): there exists a constant C such that for any state q of A n

and any word v 2 ˙� of length greater than jvj � C.log n/.mC1/, either ıv.q/ D
p1 � � � pn and each state pi of A has degree at most m� 1 or ıv.q/ belongs to a loop,
that is, there exists a letter a 2 ˙ such that ıva.q/ D ıv.q/. We let k denote the least
integer greater to C.log n/.mC1/.

The proof of the theorem is now by induction on the degree m. For m D �1, as
the nontrivial cycles of the automaton are disjoint and not connected by a directed
path, the number of vertices of each of its pinpointed infinite Schreier graphs is
bounded.

Now, suppose that every pinpointed infinite Schreier graph of any polynomial-
activity automaton of degree less than m has subexponential growth, less than
or equal to j˙ jC1.log n/m for some constant C1. Let A be a polynomial-activity
automaton of degree m and w D a1a2 � � � 2 ˙! be an infinite word. Let us look
at the growth of the Schreier graph pinpointed by w and in particular at the balls
B.w; n/.

In what follows, we divide the word w in two factors: a length k prefix (where k is
introduced above) whose contribution to the orbit of w is finite, and an infinite suffix
v D akC1akC2 � � � whose contribution to the orbit of w is shown to be subexponential
through Property (P).

Any word of B.w; n/ consists then of a length k prefix which is the image of
a1 � � � ak by some element of h A i and an infinite suffix which is the image of v by
some element of

N.n;k/ D fıa1���ak.q/ j q 2 Q�ng :

We have a first bound for the size of the considered ball:

jB.w; n/j � j˙ jk� jN.n;k/.v/j ;

where N.n;k/.v/ denotes the orbit of v under the action of N.n;k/.
Let Bn denote now the set of the states of A �n of degree less than m � 1: Bn

satisfies the induction property, and so the size of Bn.v/, the orbit of v under the
action of Bn, is bounded by j˙ jC1.log n/m . Furthermore, by Property (P), for each
q 2 N.n;k/ nBn, there exists a letter a such that ıa.q/ D q. Hence

N.n;k/ 

[

a2˙

N a
.n;k/ [Bn ;

where N a
.n;k/ is the subset of N.n;k/ formed by the elements which are stabilized by

the action induced by a.
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We consider now the orbit of v under the action of N a
.n;k/ for some letter a.

For v D a!kC1, there exist some letter b 2 ˙ and some state p 2 Qjqj such that:

q.v/ D

(
b! for q 2 N

akC1

.n;k/ ;

bp.a!kC1/ otherwise :

Hence

jN
akC1

.n;k/ .v/j � j˙ j and jN b
.n;k/.v/j � j˙ j�Bn.v/ ;

for any letter b ¤ akC1. For v D a`kC1cv1 with c ¤ akC1, we obtain similarly:

jN
akC1

.n;k/ .v/j � j˙ j
2 and jN b

.n;k/.v/j � j˙ j� jBn.a
`�1
kC1cv1/j ;

for any letter b ¤ akC1. The conclusion follows. ut

10.3.2 Schreier Tries and Reversible Automata

Until very recently, the Schreier graphs of an automaton (semi)group were seen
individually, with no links between them. The notion of an orbit tree [353, 354]
gives a new, more dynamical, vision of the whole set of finite Schreier graphs
for a (semi)group generated by a reversible Mealy automaton. This notion stands
on the connected components of the powers of a reversible Mealy automaton. In
addition to the above remarks on these components (Remarks 10.1.1, 10.1.2, 10.1.3,
and 10.1.4), let us add the following one:

Remark 10.3.3. It is known from [353] that a reversible automaton generates a finite
semigroup if and only if the sizes of the connected components of its powers are
uniformly bounded. It is straightforward to adapt the proof to show that a reversible
automaton generates a finite semigroup if and only if the sizes of the minimizations
of the connected components of its powers are uniformly bounded.

In the second part of this section, we will deal with labeled trees. There will
be several possible label sets for these trees, but we need to set up some common
terminology. All our trees are rooted, i.e., with a selected vertex called the root.
We will visualize the trees traditionally as growing down from the root. A path is
a (possibly infinite) sequence of adjacent edges without backtracking from top to
bottom. A path is said to be initial if it starts at the root of the tree. A branch is an
infinite initial path. The lead-off vertex of a nonempty path e is denoted by>.e/ and
its terminal vertex by ?.e/ whenever the path is finite.

The level of a vertex is its distance to the root, and the level of an edge or a path
is the level of its initial vertex.
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The vertices of an orbit tree of a reversible Mealy automaton are the connected
component of its powers, i.e., the finite Schreier graphs of its dual.

In fact, when the automaton is reversible, its powers have a particular form: each
connected component of its .n C 1/-th power, for some integer n, can be seen as
several copies of some connected component of its n-th power. More precisely, we
have the following property:

Property 10.3.4. [351] Let A be a reversible Mealy automaton with state set Q
and n be a positive integer. The following links appear between the connected
components of A n and A nC1:

1. The length n prefixes of the states of a connected component of A nC1 belong to
the same connected component in A n.

2. If u and v are two states of the same connected component in A n (u; v 2 Qn),
then any connected component of A nC1 contains as many states prefixed by u as
states prefixed by v.

The orbit tree t.A / of the dual of a Mealy automaton A D .Q; ˙; ı; / has
vertices the connected components of the powers of A , and the incidence relation
built by adding an element of Q: for any nonnegative integer n, the connected
component of a word u 2 Qn is the parent of the connected component(s) of ux,
for any x 2 Q. This notion has been described in [537] for more general actions
on trees and leads in this context to a graph. In the case of rooted trees (which is
the only one we consider in this chapter), this graph is a tree as proved in [238]. To
avoid the heaviness of saying “the orbit tree of the dual of the Mealy automaton,”
we introduce here a new terminology: if A is a Mealy automaton, we call the orbit
tree of its dual its Schreier trie. Indeed, this tree is related to Schreier graphs as each
of its levels is a finite Schreier graph of its dual, and it is a trie by looking at the
states of the connected components labeling its vertices.

In [238], the vertices of a Schreier trie are labeled by the size of the connected
component. Following [353], we use a different though equivalent labeling: if C is
the parent of D in the orbit tree, we label the edge C ! D by the ratio jDj

jC j which
is known to be an integer by Property 10.3.4. An example of the first levels of a
Schreier trie is given in Fig. 10.19.

Each vertex of t.A / is labeled by a connected automaton with state set in Qn,
where n is the level of this vertex in the tree. By a minor abuse, we can consider that
each vertex is labeled by a finite language in Qn or even by a word in Qn.

Let u be a (possibly infinite) word over Q. The path of u in the Schreier trie t.A /

is the unique initial path going from the root through the connected components
of the prefixes of u; u can be called a representative of this path (we can say
equivalently that this path is represented by u or that the word u represents the
path).

A branch of a Schreier trie is active if it has infinitely many coefficients greater
than 1.

The Schreier trie t.A / is built emphasizing the prefix relation. Nevertheless,
once this tree obtained, it is interesting to highlight some paths that are suffix
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Fig. 10.19 An example of the first levels of a Schreier trie (all edges) and a jungle tree (plain
edges). After the trunk the jungle tree consists in a regular binary tree (plain edges).
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compatible. A 1-self-liftable (finite or infinite) path in this tree is a path such that
each representative of a level has a suffix in the previous level of the same path.
Note that this definition is equivalent by replacing “each” by “some” because of the
reversibility of the automaton A . For example, the path represented by q! , where q
is a state of A , is 1-self-liftable.

It is quite direct to obtain the following result.

Property 10.3.5. The sequence of the labels on a 1-self-liftable path decreases.

In a more general way, we say that an edge e of the tree is liftable to an edge f if
each state of ?.e/ admits a state of ?.f / as a suffix.

We extend the notion of children to edges: the children of some edge e are the
edges f such that ?.e/ and >.f / coincide. We can consider the children of an edge
that are liftable to it and call them legitimate children.

10.3.2.1 Order and Finiteness Problems

The order problem and the finiteness problem are strongly related to structural
properties of the Schreier trie of a reversible automaton:

Proposition 10.3.6. The semigroup generated by a reversible Mealy automaton is
finite if and only if the connected components of its powers have bounded size, that
is, if and only if the number of labels greater than 1 in a branch of its Schreier trie
is uniformly bounded.

Sketch of the proof. Let A be a reversible Mealy automaton.
A connected component of a power of A is an orbit of the action of the

semigroup generated by its dual. Hence if the sizes of these components are not
bounded, the dual automaton generates an infinite semigroup, and so does A by
Theorem 10.1.7. If these sizes are bounded, there exist two different powers of A
that are equivalent, and A generates a finite semigroup. ut

Note that by Proposition 10.1.6, this result holds for the group generated by an
invertible-reversible Mealy automaton.

Proposition 10.3.7. A state q of an invertible-reversible Mealy automaton induces
an action of finite order if and only if the connected components of the powers of q
have bounded sizes, i.e., if and only if the branch of the Schreier trie represented
by q! is not active.

Sketch of the proof. If q induces an action of finite order n, then qn acts like the
identity, as well as all the states in its connected component by Remark 10.1.3.
Hence this connected component generates a finite group and the result follows by
Proposition 10.3.6. If the connected components of the powers of q are bounded,
eventually two of them are isomorphic, with the powers of q labeling the same state,
hence q induces an action of finite order. ut



10 Automaton (Semi)groups: Wang Tilings and Schreier Tries 425

If j is a subtree of a Schreier trie, a j-word is a representative of one of its vertices.
A cyclic j-word is a word whose all powers are representative of vertices of j.

10.3.3 The Burnside Problem

The Burnside problem is a famous, long-standing question in group theory. In 1902,
W. Burnside asked if a finitely generated group whose all elements have finite
order—henceforth called a Burnside group—is necessarily finite [122].

The question stayed open until E.S. Golod and I. Shafarevitch exhibit in 1964 an
infinite group satisfying Burnside’s conditions [255, 256], hence solving the general
Burnside problem. In the early 1960s, V.M. Glushkov suggested using automata
to attack the Burnside problem [247]. Later, S.V. Alešin [11] in 1972 and then
R. Grigorchuk [266] in 1980 gave simple examples of automata generating infinite
Burnside groups.

It is remarkable that all known examples of infinite Burnside automaton groups
are generated by non-reversible Mealy automata. It has been proven in fact that two
specific subfamilies of invertible-reversible Mealy automata cannot generate infinite
Burnside groups: non-bireversible automata [252] and connected automata of prime
size [251]. Both proofs rely on the construction of a particular branch in the Schreier
trie of the automaton.

Let A D .Q; ˙; ı; / be an invertible-reversible Mealy automaton and t.A / be
its Schreier trie.

10.3.3.1 When the Automaton Is Not Bireversible

In this case, the automaton A has at least one non-bireversible connected compo-
nent, say B, and all the 1-self-liftable branches of the Schreier trie of B are active
(see Lemma 10.3.8 below), hence all the elements of the semigroup generated by B
have infinite order by Proposition 10.3.7.

Lemma 10.3.8. The 1-self-liftable branches of the Schreier trie of a connected
invertible-reversible non-bireversible Mealy automaton are all active.

Sketch of the proof. Because of the non-bireversibility of the automaton and of all
of the connected components of its power, there exists no 1-self-liftable branch with
a label 1. ut

10.3.3.2 When the Automaton Is Connected of Prime Size

Of course, if the Schreier trie of this automaton has at least one active 1-self-liftable
branch, the technique developed in the previous case can apply. But nothing ensures
that the existence of such a branch. So we have to develop an alternative strategy in
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case A has no active 1-self-liftable branch. This strategy can be summarized into
two steps:

Step 1 exhibit a subtree of the Schreier trie whose labels from some level on are 1:
hence there is only a finite number of applications induced by the language of the
labels of this subtree;

Step 2 prove that the action induced by a word of states has a uniform bounded
power equivalent to the action induced by some word in the above language.

Then by E.I. Zelmanov’s result [593, 594], the conclusion comes.
Assume that t.A / has no active 1-self-liftable branch.

Jungle Trees
We first build the tree of step 1. This tree, called jungle tree, starts with a linear part
whose labels decrease and eventually ends as a regular tree with all labels 1.

Definition 10.3.9. Let e be a finite initial 1-self-liftable path such that:

• the lowest (i.e., the last) edge of e has at least two legitimate children;
• each of its legitimate children has label 1.

The jungle tree j.e/ of e is the subtree of t.A / build as follows:

• it contains the path e—its trunk;
• it contains the regular tree rooted by?.e/, and formed by all the edges which are

descendant of ?.e/ and liftable to the lowest edge of e.

The arity of this jungle tree is the number of legitimate children of?.e/. Since every
legitimate child has label 1, it is also the label of the last edge of e.

Words in?.e/ are called stems. They have all the same length which is the length
of the trunk of j.e/.

A tree is a jungle tree if it is the jungle tree of some finite initial 1-self-liftable
path.

Note that (i) t.A / has at least one jungle tree, since A has no active self-liftable
branch by hypothesis; (ii) t.A / has finitely many jungle trees.

Any jungle tree answers step 1. Let us look closer at the language of j-words, for
some jungle tree j whose trunk has length n. In particular, the existence of cyclic
j-words is ensured by the simple fact that any j-word of length n	 .1CjQjn/ admits
a cyclic j-word as a factor. Besides, every cyclic j-word induces an action of finite
order, bounded by a uniform constant depending on j, by Proposition 10.3.7.

From now on, j denotes a jungle tree of A , whose trunk has length n.
The set of stems of j has several interesting properties.

Proposition 10.3.10. The relation over stems u � v is defined as follows: there
exists s 2 Q� such that usv is a j-word and us acts like the identity on ˙�, is an
equivalence relation.

Sketch of the proof. Because of the construction of the tree j, the j-words have a lot
of good combinatorial properties (proved in [251]):



10 Automaton (Semi)groups: Wang Tilings and Schreier Tries 427

• any factor of a j-word is itself a j-word;
• if uv is a j-word, with jvj � n, what can follow uv in j is independent from u. In

particular, if vw is also a j-word, then so is uvw;
• if t; u; v 2 Q� are such that tuv is a j-word, then there exists w 2 Q� such that

tuvwu is also a j-word (which means that if you are walking on a j-word and you
have already seen some factor, you can find eventually this same factor); ut

Proposition 10.3.11. The set of states which appear as first letter of a stem in a
�-class has a cardinal which is greater than or equal to 2 and divides the number
of states of A .

Corollary 10.3.12. If A has a prime size, all the states appear as first letter of a
stem in a fixed �-class.

The main tool of this section is the following one:

Proposition 10.3.13. Let A D .Q; ˙; ı; / be a connected bireversible Mealy
automaton of prime size, with no active self-liftable branch. Let j be a jungle tree
of its Schreier trie, and u some (possibly empty) j-word. Then for any state q 2 Q,
there exists w 2 Q� such that uwq is a j-word and w acts like the identity of ˙�.

Proof. Let s be a stem such that us is a j-word: there exists a stem x with first letter q
in the �-class of s, from Corollary 10.3.12, i.e., there exists v 2 Q� such that svx is
a j-word and sv acts like the identity of ˙�. Conclusion comes from the fact that
what can follow a stem depend only on its length n suffix. ut

We now have all elements to prove the main result of this section.

Theorem 10.3.14. A connected invertible-reversible Mealy automaton of prime
size cannot generate an infinite Burnside group.

Proof. Let A be a connected invertible-reversible Mealy automaton of prime size.
If A is not bireversible, apply step 1.

If A is bireversible and its Schreier trie has an active self-liftable branch, as seen
above, the method of step 1 is still valid, and h A i has an element of infinite order.

Therefore, we can assume that A is bireversible and its Schreier trie has no
active self-liftable branch. Let us show that h A i is finite. Let j be some jungle tree
of t.A /. As in [353] we prove that for any word u 2 Q�, u has some uniformly
bounded power which acts like some cyclic j-word.

Let u 2 Q�. We prove by induction that any prefix of u induces the same action
as some j-word. It is obviously true for the empty prefix. Fix some k < juj and
suppose that the prefix v of length k of u induces the same action as some j-word s.
Let x 2 Q be the .k C 1/-th letter of u. By Corollary 10.3.13, there exists a j-word
w inducing the identity, such that swx is a j-word. But vx and swx induce the same
action; the result follows. Hence we obtain a j-word u.1/ inducing the same action
as u.

By the very same process, we can construct, for any i 2 N, a j-word u.i/ inducing
the same action as u, such that u.1/u.2/ : : : u.i/ is a j-word. Since the set Qn is finite,
there exist i < j; j � i � jQjn, such that u.i/ and u.j/ have the same prefix of length
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n. Take v D u.i/u.iC1/ : : : u.j�1/: v is a cyclic j-word and induces the same action
as uj�i. As seen before, the fact that v is a cyclic j-word implies that the order of
its induced action v is bounded by a constant depending only on j, hence so does
u (with a different constant, but still depending only on j). Consequently, every
element of h A iC has a finite order, uniformly bounded by a constant, whence,
as h A iC is residually finite, by Zelmanov’s theorem [593, 594], h A iC is finite,
which concludes the proof. ut

10.3.4 Growth and Level-Transitivity

In this section, we give a negative answer to the Milnor problem on the existence of
groups of intermediate growth for a very particular class of automaton groups: the
ones generated by an invertible-reversible Mealy automaton whose Schreier trie has
a unique branch.

This family of groups contain in particular automaton groups which are branch
groups, one of the three classes into which the class of just infinite groups is
naturally decomposed [42, 270].

10.3.4.1 Growth

We first recall some definitions concerning the notion of growth function for groups.
See also Sections 11.3.1 and 11.4.

Let H be a semigroup generated by a finite set S. The length of an element g of
the semigroup, denoted by jgj, is the length of its shortest decomposition:

jgj D minfn j 9s1; : : : ; sn 2 S; g D s1 � � � sng :

The growth function �S
H of the semigroup H with respect to the generating set S

enumerates the elements of H with respect to their length:

�S
H.n/ D jfg 2 H I jgj � ngj :

The growth functions of a group are defined similarly by taking symmetrical
generating sets.

The growth functions corresponding to two generating sets are equivalent [409],
so we may define the growth of a group or a semigroup as the equivalence class of its
growth functions. Hence, for example, a finite (semi)group has a bounded growth,
while an infinite abelian (semi)group has a polynomial growth, and a non-abelian
free (semi)group has an exponential growth.

It is quite easy to obtain groups of polynomial or exponential growth. Answering
a question of J. Milnor [419], R. Grigorchuk gave the very first example of an
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automaton group of intermediate growth [269]: faster than any polynomial, slower
than any exponential (see Grigorchuk automaton in Figure 10.2).

10.3.4.2 Level-Transitivity

The action of a (semi)group generated by an invertible Mealy automaton A D

.Q; ˙; ı; / is level-transitive if its restriction to ˙n has a unique orbit, for any n
(this notion is equivalently called spherically transitive [271]). From a dual point of
view, it means that the powers of the dual dA are connected, i.e., its Schreier trie
has a unique branch.

The level-transitivity of an automaton semigroup has some influence on the
growth of the semigroup generated by the dual automaton.

Theorem 10.3.15 ([352]). The semigroup generated by an invertible-reversible
Mealy automaton whose Schreier trie has a unique branch has exponential growth.

Note that the exponential growth of the semigroup generated by an invertible
Mealy automaton implies the exponential growth of the group generated by this
same automaton.

The Nerode classes of two consecutive powers of its state set are linked in the
following way:

Lemma 10.3.16. Let A D .Q; ˙; ı; / be an invertible-reversible Mealy automa-
ton whose Schreier trie has a unique branch. Let .Ci/1�i�k be the Nerode classes of
Qn for some n, and D be a Nerode class of QnC1. We have

D D
[

q2QD

Ciq;D q and D D
[

q2Q0
D

qCi0q;D
;

where QD 
 Q and Q0D 
 Q have the same cardinality, and the .iq;D/q2QD on the
one hand and the .i0q;D/q2QD on the other are pairwise distinct.

The automata m.A n/ and m.A nC1/ have the same size if and only if QD D

Q0D D Q.

Theorem 10.3.15 can now be proven by observing that a relatively immediate
consequence of Lemma 10.3.16 is that the sequence .jm.A n/j/n�0 increases strictly
and exponentially.

The next theorem improves Theorem 10.3.15 for Mealy automata of prime size.

Theorem 10.3.17 ([351]). The semigroup generated by an invertible-reversible
Mealy automaton of prime size whose Schreier trie has a unique branch is free
on the automaton state set.

The idea is to bound the sizes of the Nerode classes in the powers of the Mealy
automaton.
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For the next three lemmas, let A D .A; ˙; ı; / be a reversible p-state
Mealy automaton, p prime, whose Schreier trie is formed by a unique branch. By
Proposition 10.3.6, A generates an infinite semigroup.

Lemma 10.3.18. There cannot exist two equivalent words of different length in Q�.

Proof. For each m, A m is connected, and so any two words of length m are mapped
one onto the other by an element of h dA iC.

Let u and v be two equivalent words of different lengths, say juj < jvj. Every
word of length jvj is then equivalent to a word of length juj: if w is of length jvj,
then w D ıt.v/ for some t 2 ˙�, and, by Remark 10.1.2, w is equivalent to ıt.u/ of
length juj. By Remark 10.3.3, the semigroup h A iC is finite, which is impossible.

ut

Lemma 10.3.19. All the Nerode classes of a given power Qm have the same size,
which happens to be a power of p.

The proof of this lemma is direct from Remark 10.1.1.

Lemma 10.3.20. There cannot exist two equivalent words of the same length in Q�.

Proof. Let u and v be two different equivalent words of the same length nC 1. Let
us prove by induction on m > n that m.A m/ has at most pn states.

The automaton A nC1 has pnC1 states. The words u and v are in the same Nerode
class: by Lemma 10.3.19, all Nerode classes of QnC1 have at least p elements, and
m.A nC1/ has at most pn states.

Suppose that m.A m/ has at most pn states. Then, since all Nerode classes have
the same size by Lemma 10.3.19, the induction hypothesis implies that they have at
least pm�n elements. Let us look at Œxm

1 �: it contains

xm
1 ; u1; u2; : : : ; upm�n�1 ;

which are pairwise distinct. Among these words, there is at least one whose suffix in
x1 is the shortest, say u1 without loss of generality: pm�n > 1 and xm

1 has the longest
possible suffix in x1. Hence ŒxmC1

1 � contains the following pairwise distinct pm�nC1

words:

xmC1
1 ; u1x1; u2x1; : : : ; upm�n�1x1; x1u1 :

By Lemma 10.3.19, jŒxmC1
1 �j is a power of p, so jŒxmC1

1 �j � pmC1�n. As all Nerode
classes of QmC1 have the same cardinality, we can conclude that m.A mC1/ has at
most pmC1=pmC1�n D pn elements, ending the induction.

Consequently, since there is only a finite number of different Mealy automata
with up to pn states, there exist k < ` such that m.A k/ and m.A `/ are equal up to
state numbering. Hence the semigroup h A iC is finite, which is impossible. ut

As a corollary of Lemmas 10.3.18 and 10.3.20, we can state the following
proposition.
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Proposition 10.3.21. Let A be a reversible Mealy automaton of size p, with p
prime. If the Schreier trie of A has a unique branch, then A generates a free
semigroup of rank p, with the states of A being free generators of the semigroup.



Chapter 11
Amenability of Groups and G-Sets

Laurent Bartholdi

Abstract This text surveys classical and recent results in the field of amenability of
groups, from a combinatorial standpoint. It has served as the support of courses at
the University of Göttingen and the École Normale Supérieure. The goals of the text
are (1) to be as self-contained as possible, so as to serve as a good introduction for
newcomers to the field; (2) to stress the use of combinatorial tools, in collaboration
with functional analysis, probability, etc., with discrete groups in focus; (3) to
consider from the beginning the more general notion of amenable actions; and (4)
to describe recent classes of examples and in particular groups acting on Cantor sets
and topological full groups.

11.1 Introduction

In 1929, John von Neumann introduced in [576] the notion of amenability of G-
spaces. Fundamentally, he considers the following property of a group G acting on
a set X: The right G-set X is amenable if there exists a G-invariant mean on the
power set of X, namely, a function mW fsubsets of Xg ! Œ0; 1� satisfying m.AtB/ D
m.A/C m.B/ and m.X/ D 1 and m.Ag/ D m.A/ for all A;B 
 X and all g 2 G.

Amenability may be thought of as a finiteness condition, since nonempty finite
G-sets are amenable with m.A/ D #A=#X; it may also be thought of as a fixed-point
property: on a general G-set, there exists a G-invariant mean; on a compact G-set,
there exists a G-invariant measure; on a convex compact G-set, there exists a G-
fixed point, see Section 11.6; and on a G-measure space, there exists a G-invariant
measurable family of means on the orbits, see Section 11.6.2.

Amenability may be defined for other objects such as graphs and random walks
on sets. If X is a G-set and G is finitely generated, then X naturally has the structure
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of a graph, with one edge from x to xs for every x 2 X; s 2 S. Amenability
means, in the context of graphs, that there are finite subsets of X with arbitrarily
small boundary with respect to their size. In terms of random walks, it means
that there are finite subsets with arbitrarily small connectivity between the set and
its complement and equivalently that the return probability of the random walk
decreases subexponentially in time, see Section 11.8.

The definition may also be modified in another direction: rather than considering
group actions, we may consider equivalence relations or more generally groupoids.
The case we concentrate on is an equivalence relation with countable leaves on a
standard measure space. The orbits of a countable group acting measurably naturally
give rise to such an equivalence relation. This point of view is actually very valuable:
quite different groups (e.g., one with free subgroups, one without) may generate the
same equivalence relation; see Section 11.6.2.

One of the virtues of the notion of amenability of G-sets is that there is a wealth
of equivalent definitions; depending on context, one definition may be easier than
another to check, and another may be more useful. In summary, the following will
be shown, in the text, to be equivalent for a G-set X:

1. X is amenable; i.e., there is a G-invariant mean on subsets of X;
2. There is a G-invariant normalized positive functional in `1.X/�, see Corol-

lary 11.2.25;
3. For every bounded functions hi on X and gi 2 G, the function

P
i hi.1 � gi/ is

nonnegative somewhere on X, see Theorem 11.2.29;
4. For every finite subset S 
 G and every � > 0, there exists a finite subset F 
 X

with #.FS n F/ < �#F, see Theorem 11.3.23(5);
5. For every finite subset S 
 G, every � > 0, and every p 2 Œ1;1/, there

exists a positive function � 2 `p.X/ with k�s � �k < �k�k for all s 2 S, see
Theorem 11.3.23(4);

6. Every convex compact set equipped with a G-equivariant map from X admits a
fixed point, see Theorem 11.6.4;

7. Every compact set equipped with a G-equivariant map from X admits an
invariant measure, see Theorem 11.6.7;

8. The isoperimetric constant (Definition 11.8.2) of every nondegenerate G-driven
random walk on X vanishes, see Theorem 11.8.4(2);

9. The spectral radius (Definition 11.8.2) of every nondegenerate G-driven ran-
dom walk on X is equal to 1, see Theorem 11.8.4(3);

10. For every field k, every finite subset S 
 G, and every � > 0, there exists
a finite-dimensional subspace F � kX with dim.FS/ < .1 C �/ dim F, see
Theorem 11.10.29.

In turn, non-amenability also amounts to existential statements: the following are
equivalent:

1. X is not amenable;
2. There exists a “paradoxical decomposition” of X, namely, X D Z1 t � � � t Zm D

ZmC1 t � � � t ZmCn D Z1g1 t � � � t ZmCngmCn for some Zi � X and gi 2 G, see
Theorem 11.5.14(2);
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3. There exists a map �WX ý and a finite subset S 
 G with #��1.x/ D 2 and
�.x/ 2 xS for all x 2 X, see Theorem 11.5.14(4);

4. There exists a free action of a non-amenable group H on X by G-wobbles, i.e.,
with the property that for every h 2 H there is a finite subset S 
 G with xh 2 xS
for all x 2 X, see Theorem 11.5.15(3);

5. For every n 2 N large enough and for every field k, there exits an n 	 .n � 1/
matrix with entries in kG that gives an injective map .kX/n ,! .kX/n�1, see
Theorem 11.10.12.

Amenability has been given particular attention for groups themselves, seen as
G-sets under right multiplication; see the next section. We stress that many results
that exclusively concern groups (e.g., the recent proofs that topological full groups
are amenable) are actually proven using amenable G-sets in a fundamental manner.
The reason is that a group is amenable if and only if it acts on an amenable G-set
with amenable point stabilizers, see Proposition 11.2.26.

Quotients of amenable G-sets are again amenable; but sub-G-sets of amenable G-
sets need not be amenable. A stronger notion will be developed in Section 11.9, that
of extensively amenable G-sets. It has the fundamental property that if � WX � Y
is a G-equivariant map between G-sets, then X is extensively amenable if and only
if both Y and all ��1.y/ are extensively amenable, the latter for the action of the
stabilizer Gy.

We detail slightly the Day-Reiter characterization of amenability given above: the
space `1.G/ of summable functions on G is a Banach algebra under convolution, and
`1.X/ is a Banach `1.G/-module. We denote by $.`1G/ and $.`1X/, respectively,
the ideal and submodule of functions with 0 sum, and by `1C.G/ and `1C.X/ the
cones of positive elements.

Then XG is amenable if and only if for every � > 0 and every g 2 $.`1G/, there
exists f 2 `1C.X/ with kfgk < �kfk, see Proposition 11.3.25.

The quantifiers may be exchanged; we call XG laminable2 if for every � > 0 and
every f 2 $.`1X/ there exists g 2 `1C.G/ with kfgk < �kgk, see Theorem 11.8.20.
It has the consequence that there exists a measure � on G such that every �-
harmonic function on X is constant and equivalently that there are no nontrivial
tail events for the random walk on X driven by �.

In case X D GG, these definitions are equivalent, but for G-sets the properties of
being amenable or laminable are in general position.

11.1.1 Amenability of Groups

John von Neumann’s purpose, in introducing amenability of G-spaces, was to
understand better the group-theoretical nature of the Hausdorff-Banach-Tarski
paradox. This paradox, due to Banach and Tarski [35] and based on Hausdorff’s

2This has been considered recently by Kaimanovich under the name of “L-amenable actions.”
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work [286], states that a solid ball can be decomposed into five pieces, which when
appropriately rotated and translated can be reassembled into two balls of same size
as the original one. It could have been felt as a death blow to measure theory; it is
now resolved by saying that the pieces are not measurable.

A group is called amenable if all nonempty G-sets are amenable; and it suffices
to check that the regular G-set GG is amenable, see Corollary 11.2.11.

Using the “paradoxical decompositions” criterion, it is easy to see that the free
group F2 D ha; b ji is not amenable: we exhibit a partition F2 D G1 t � � � t Gm t

H1 t � � � t Hn and elements g1; : : : ; gm; h1; : : : ; hn with F2 D G1g1 t � � � t Gmgm D

H1h1 t � � � t Hnhn as follows. Set

G1 D fwords whose reduced form ends in ag [ f1; a�1; a�2; : : : g;

G2 D fwords whose reduced form ends in a�1g n fa�1; a�2; : : : g;

H1 D fwords whose reduced form ends in bg;

H2 D fwords whose reduced form ends in b�1gI

then F2 D G1 t G2 t H1 t H2 D G1 t G2a D H1 t H2b.
The group of rotations SO3.R/ contains a free subgroup F2 and even one that acts

freely on the sphere S2; so its orbits are all isomorphic to F2. Choose a transversal:
a subset T � S2 intersecting every F2-orbit in exactly one point. Consider then the
sphere partition S2 D TG1 t TG2 t TH1 t TH2 D TG1 t TG1a D TH1 t TH2b; this
is the basis for the paradoxical Hausdorff-Banach-Tarski decomposition.

John von Neumann also noted that the class of amenable groups is closed under
the following operations .�/: subgroups, quotients, extensions, and directed unions.
It contains all finite and abelian groups. More generally, a criterion due to Følner,
Theorem 11.3.23(5), shows that all groups in which every finite subset generates a
group of subexponential word growth3 are amenable. One may therefore define the
following classes:

EG D the smallest class containing finite and abelian groups and closed under .�/;

SG D the smallest class containing groups of subexponential growth and closed

under.�/;

AG D the class of amenable groups;

NF D the class of groups with no free subgroupsI

and concrete examples show that all inclusions

EG ¤ SG ¤ AG ¤ NF

3Namely, in which the number of elements expressible as a product of at most n generators grows
subexponentially in n.
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Fig. 11.1 The universe of groups

are strict: the “Grigorchuk group” G for the first inclusion, see Section 11.4.3;
the group of “bounded tree automorphisms” for the second inclusion, see Sec-
tion 11.7.2; and the “Frankenstein group” for the last one, see Section 11.7.3.

This text puts a strong emphasis on examples; they are essential to obtain a
(however coarse) picture of the universe of discrete groups, see Figure 11.1. A
fairly general framework contains a large number of important constructions: groups
acting on Cantor sets. On the one hand, if we choose X D A N as model for the
Cantor set, we have examples of groups defined by automatic transformations of
X, namely, by actions of invertible transducers. On the other hand, we may fix a
“manageable” group H acting on X and consider the group of self-homeomorphisms
of X that are piecewise H.

Examples of the first kind may be constructed via their recursively defined
actions on X. The Grigorchuk group G is the group acting on f0; 1gN and generated
by four elements a; b; c; d defined by

a.x0x1 : : : / D .1 � x0/x1 : : : ; b.x0x1 : : : / D

(
x0 a.x1 : : : / if x0 D 0;

x0 c.x1 : : : / if x0 D 1;

c.x0x1 : : : / D

(
x0 a.x1 : : : / if x0 D 0;

x0 d.x1 : : : / if x0 D 1;
d.x0x1 : : : / D

(
x0x1 : : : if x0 D 0;

x0 b.x1 : : : / if x0 D 1:

The Grigorchuk group gained prominence in group theory for being a finitely
generated infinite torsion group and for having intermediate word growth between
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polynomial and exponential, see Section 11.4.3. An amenable group that does not
belong to the class SG is the “Basilica group” B, generated by two elements a; b
acting recursively on f0; 1gN by

a.x1x2 : : : / D

(
1x2 : : : if x1 D 0;

0 b.x2 : : : / if x1 D 1;
b.x1x2 : : : / D

(
0x2 : : : if x1 D 0;

1 a.x2 : : : / if x1 D 1:

The Basilica group is a subgroup of the group of bounded tree automorphisms,
whose amenability will be proven in Section 11.7.2.

These groups are residually finite: the action on f0; 1gN is the limit of actions
on the finite sets f0; 1gn as n ! 1, so that the groups may be arbitrarily well
approximated by their finite quotients. More conceptually, the actions of G and B
on f0; 1gN induce actions on the clopens of f0; 1g1, and every clopen has a finite
orbit, giving rise to a finite quotient acting by permutation on the orbit.

Examples of the second kind include the “Frankenstein” group mentioned
above, which is a non-amenable group acting on the circle by piecewise projective
transformations and “topological full groups” of a minimal action of H D Z on a
Cantor set, for example, let 
 W 0 7! 01; 1 7! 0 be the Fibonacci substitution and
consider H D hSi the two-sided shift on the subset X D fSn.
1.0// j n 2 Zg �
f0; 1gZ. Let G be the group of piecewise-H homeomorphisms of X. Then G0 is an
example of a simple, infinite, finitely generated, amenable group.

These groups’ actions on the Cantor set exhibit behaviors at the exact opposite
of G and B: the actions are expansive: the orbit of a clopen may be used to separate
points in X.

Finally, we consider in Section 11.10 the adaptation of amenability to a linear
setting: on the one hand, a natural notion of amenability of A -modules for an
associative algebra A and, on the other hand, a characterization of amenability by
cellular automata.

11.1.2 Why This Text?

After John von Neumann’s initial work in the late 1920s, amenability of groups has
developed at great speed in the 1960s and then remained mostly dormant till the
late 2000s, when a variety of new techniques and examples appeared. It seems now
to be a good time to reread and rewrite the fundamentals of the field with these
developments in mind.

I have done my best to include all the material I found digestible and to express
it in the “best” generality, namely, the maximum generality that does not come at
the price of arcane definitions or notation. Whenever possible, I included complete
proofs of the results, so that the text may be used for a course as well as for a
reference.
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I have also striven to follow von Neumann’s use of G-sets rather than groups; it
seems to me that clarity is gained by separating the set X (with a right G-action)
from the group G.

I have also, consciously, avoided any mention of amenability for topological
groups. This notion is well developed for second-countable locally compact groups,
see, e.g., [62, 499], so I should justify its exclusion. I have felt that either the results
stated for discrete groups extend more or less obviously to topological groups (and
then there is no point in loading the notation with topology), or they don’t extend,
and then the additional effort would be a distraction from the main topic.

I have also devoted a fairly large part of the text to examples and, in particular,
to groups defined by their action on a Cantor set, see the previous section. I have
included exercises, with rankings *=just check the definitions, **=requires some
thought, and ***=probably very difficult. Problems are like *** exercises but are
questions rather than statements.

I have consulted a large number of sources and did my best to attribute to their
original authors all results and fragments of proof that I have used. Apart from
articles, these sources include notes from a course given by Nicolas Monod at EPFL
in 2007 and from a course given by Anna Erschler and myself at ENS in 2016 and
books in preparation by Kate Juschenko [317] and Gábor Pete [477]. I have also
made abundant use of [137, 265], and [62, Chapter 5 and Appendix G].

I benefited from useful conversations with and remarks from Yves de Cornulier,
Anna Erschler, Vadim Kaimanovich, Peter Kropholler, Yash Lodha, Nicolas Matte
Bon, Nicolas Monod, Volodia Nekrashevych, and Romain Tessera. I thank all of
them heartily.

11.1.3 Why Not This Text?

For lack of space, I have left out much material that I wanted to include. First and
foremost, I have not touched at all at the boundary initiated by Furstenberg; the
“size” of its boundary is an indication of the non-amenability of a G-set.

I have also left out much material related to quantitative invariants — drift,
entropy, on- and off-diagonal probabilities of return of random walks, and their
relation to other invariants such as growth and best-case distortion of embeddings
in convex metric spaces such as Hilbert space. This topic is evolving rapidly, and I
fear that my rendition would be immediately obsolete.

I would have preferred to write Section 11.6.2 in terms of groupoids, especially
since groupoids appear anyways in Section 11.9.2. In the end, I have opted for
directness at the cost of generality.

Finally, I put as much effort as I could into including applications and examples
in the text; but I omitted the most important ones, e.g., Margulis’s work on lattices
in semisimple Lie groups and percolation on graphs, feeling they would take us too
far adrift.



440 L. Bartholdi

11.1.4 Notation

We mainly use standard mathematical notation. We try to keep Latin capitals for
sets, Latin lowercase for elements, and Greek for maps. A subset inclusion A � B
is strict, while A 
 B means that A could equal B. The difference and symmetric
difference of two sets A;B are, respectively, written A n B and A4B. We denote by
P.X/ the power set of X and by Pf .X/ the collection of finite subsets of X. Since
it appears quite often in the context of amenability, we use A b B (“compactly
contained”) to mean that A is a finite subset of B.

We denote by AX the set of maps X ! A, and by A.X/ the restricted product of A,
namely, the set of finitely supported maps X ! A. Under the operation of symmetric
difference, P.X/ and Pf .X/ are, respectively, isomorphic to .Z=2/X and .Z=2/.X/.

We denote by Sym.X/ the group of finitely supported permutations of a set X and
abbreviate Sym.n/ D Sym.f1; : : : ; ng/. Groups and permutations always act on the
right, and we denote by X" G a set X equipped with a right G-action.

We denote by 1A the characteristic function of a set A, and also by 1P the
function that takes value 1 when property P holds and 0 otherwise.

Finally, we write x�S for various kinds of restriction of the object x to a set S.

11.2 Means and Amenability

Definition 11.2.1. Let X be a set. A mean on X is a function4 mWP.X/ ! Œ0; 1�

satisfying

m.X/ D 1;

m.A t B/ D m.A/C m.B/ for all disjoint A;B 
 X:

(This last property is often called finite additivity, as opposed to the 
 -additivity
property enjoyed by measures, in which countable unions are allowed.)

It easily follows from the definition that m.;/ D 0; that m.A/ � m.B/ if A 
 B;
and that m.A1 t � � � t Ak/ D m.A1/C � � � C m.Ak/ for pairwise disjoint A1; : : : ;Ak.

We denote by M .X/ the set of means on X, with the usual topology on a set of
functions, namely, a sequence mn 2 M .X/ converges to m precisely if for every
" > 0 and every finite collection A1; : : : ;Ak 
 X we have jmn.Ai/ � m.Ai/j < " for
all i 2 f1; : : : ; kg and all n large enough.

Observe that M is a covariant functor: if f WX ! Y , then we have a natural map
f�WM .X/!M .Y/ given by

f�.m/WB 7! m.f�1.B// for all B 
 Y:

4By P.X/ we denote the power set of X, namely, the set of its subsets.
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In particular, if a group G acts on X, then it also acts on M .X/. For a right action
�WX	G! X, we have a right action on M .X/ given by .m � g/.A/ D m.A � g�1/ for
all A 
 X.

Definition 11.2.2 (von Neumann [576]). Let G be a group and let X" G be a set
on which G acts. The G-set X is amenable if there is a G-fixed element in M .X/.

A group G is amenable if all nonempty right G-sets are amenable.

In other words, the G-set X is amenable if M .X/G ¤ ;, namely, if there exists a
mean m on X such that m.Ag/ D m.A/ for all g 2 G and all A 
 X.

11.2.1 First Examples

Proposition 11.2.3. Every finite, nonempty G-set is amenable. More generally,
every G-set with a finite orbit is amenable.

Note that, trivially, the empty set is never amenable since a mean requires m.;/ D
0 ¤ 1 D m.X/.

Proof. Let xG be a finite G-orbit in the G-set X. Then m.A/ :D #.A \ xG/=#.xG/
defines a G-invariant mean on X.

In particular, finite groups are amenable. We shall now see that, although amenable
groups abound, extra logical tools are necessary to provide more examples.

Proposition 11.2.4. The infinite cyclic group Z is amenable.

Proof (False proof). Define m 2M .Z/ by

m.A/ D lim
n!1

#.A \ f1; 2; : : : ; ng/

n
:

It is clear that m.A/ is contained in Œ0; 1�, and the axioms of a mean are likewise
easy to check. Finally, if g denote the positive generator of Z,

jm.Ag/ � m.A/j D lim
n!1

j#.Ag \ f1; 2; : : : ; ng/ � #.A \ f1; 2; : : : ; ng/j

n

D lim
n!1

j#.A \ f0; 1; : : : ; n � 1g/ � #.A \ f1; 2; : : : ; ng/j

n

D lim
n!1

#.A \ f0; ng/

n
D 0: ut

The problem in this proof, of course, is that the limit need not exist. Consider
typically

A D
[

k�0

f2k C 1; 2k C 2; : : : ; 2k C 2k�1g D f2; 3; 5; 6; 9; 10; 11; 12; 17; : : : g:
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The arguments of the “limit” above oscillate between 2=3 and 1=2. To correct this
proof, we make use of a logical axiom:

Definition 11.2.5. Let X be a set. A filter is a family F of subsets of X, such that

1. X 2 F and ; 62 F;
2. if A 2 F and B � A then B 2 F;
3. if A;B 2 F then A \ B 2 F.

An ultrafilter is a maximal filter (under inclusion). It therefore satisfies the extra
condition:

4. if A 
 X, then either A 2 F or X n A 2 F.

For every x 2 X, there is a principal ultrafilter Fx D fA 
 X j x 2 Ag.
The set of ultrafilters on X is called its Stone-Čech compactification and is written

ˇX. Its topology is defined by declaring open, for every Y 
 X, the collection
fF 2 ˇX j Y 2 Fg Š ˇY .

Elements of a filter are thought of as “large.” As a standard example, consider
the “cofinite filter” on N:

Fc D fA 
 N j N n A is finiteg:

Using this notion, the standard definition of convergence in analysis can be phrased
as follows: “a sequence .xn/ converges to x if for every � > 0 we have fn 2 N j
� > jxn � xjg 2 Fc.” More generally, for a filter F on N, we define convergence with
respect to F by

lim
F

xn D x if and only if 8� > 0 W fn 2 N j � > jxn � xjg 2 F:

A standard axiom asserts the existence of non-principal ultrafilters on every
infinite set. In fact, Zorn’s lemma implies that the cofinite filter Fc is contained
in an ultrafilter F. Using this axiom, ˇX is compact and in fact is universal in the
sense that every map X ! K with K compact Hausdorff factors uniquely through
ˇX. We state this universal property in the following useful form sometimes called
“Stone duality”:

Lemma 11.2.6. Let X be a set. The map f 7! .F 7! limF f / is an isometry between
the spaces `1.X/ of bounded functions on X and C .ˇX/ of continuous functions on
ˇX with supremum norm.

In particular, if F is an ultrafilter on N, then every bounded sequence converges
with respect to F.

Proof. We first prove that if f WX ! R is bounded and F is an ultrafilter, then it has
a well-defined limit with respect to F. Assume f .x/ 2 ŒL0;U0� for all x 2 X. For
i D 0; 1; : : : repeat the following.
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1. Set Mi D .Li C Ui/=2.
2. Define Ai D fx 2 X j f .x/ 2 ŒLi;Mi�g and Bi D fx 2 X j f .x/ 2 ŒMi;Ui�g.
3. By induction, Ai [ Bi 2 F; so either Ai 2 F or Bi 2 F. In the former case, set
.LiC1;UiC1/ D .Li;Mi/ while in the latter case set .LiC1;UiC1/ D .Mi;Ui/.

Then .Li/ is an increasing sequence, .Ui/ is a decreasing sequence, and they both
have the same limit; call that limit f .F/.

We have extended f to ˇX. Let us show that this extension is continuous at every
F: keeping the notation from the previous paragraph, for every � > 0, there is some
i with Ui � Li < �; so fx 2 X j � > jf .x/ � f .F/jg � Ai [ Bi 2 F and therefore
f .x/! f .F/ when x! F.

Finally the inverse map C .ˇX/ ! `1.X/ is simply given by restriction to the
discrete subspace X 
 ˇX.

Exercise 11.2.7 (*). Prove that the Stone-Čech compactification ˇX is homeomor-
phic to the set of continuous algebra homomorphisms `1.X/ ! R, with the
induced topology of `1.X/�.

Exercise 11.2.8 (*). Let F be an ultrafilter on N. Prove limF.xnC yn/ D limF xnC

limF yn when these last two limits exist.

Using a non-principal ultrafilter F on N, we may correct the “proof” that Z is
amenable, by replacing “lim” by “limF”; but in some sense we have done nothing
except shuffling axioms around. Indeed, an ultrafilter F on X is precisely the same
thing as a f0; 1g-valued mean on X: given an ultrafilter F, we define a mean m on
X by

m.A/ D

(
0 if A 62 F;

1 if A 2 F;

and given a mean m taking f0; 1g values, we define a filter F D fA 
 X j m.A/ D
1g; so the construction of complicated means is as hard as the construction of
complicated filters.

Proposition 11.2.9. The free group Fk is not amenable if k � 2.

Proof. We reason by contradiction, assuming that the regular right Fk-set Fk " Fk

is amenable. Assume that there were an invariant mean mWP.Fk/! Œ0; 1�. In Fk D

hx1; : : : ; xk ji, let A denote those elements whose reduced form ends by a nontrivial
(positive or negative) power of x1. Then clearly Fk D A [ Ax1, so

1 D m.Fk/ � m.A/C m.Ax1/ D 2m.A/:

On the other hand, Fk � Ax�12 t A t Ax2, so

1 D m.Fk/ � m.Ax�12 /C m.A/C m.Ax2/ D 3m.A/:

These statements imply 1=2 � m.A/ � 1=3, a contradiction.
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11.2.2 Elementary Properties

Proposition 11.2.10. Let G;H be groups; let X" G and Y " H be, respectively,
a G-set and an H-set; let �WG� H be a surjective homomorphism; and let f WX !
Y be an equivariant map, namely, satisfying f .xg/ D f .x/�.g/ for all x 2 X; g 2 G.
If X is amenable, then Y is amenable.

Proof. If M .X/G ¤ ;, then f�.M .X/G/ D f�.M .X//�.G/ 
M .Y/H so M .Y/H ¤
;.

Corollary 11.2.11 ([264, Corollary 3.2]). Let G be a group. Then G is amenable
if and only if the right G-set GG is amenable.

Proof. Assume the right G-set G" G is amenable. For every nonempty G-set X,
choose x 2 X; then g 7! xg is a G-equivariant map G ! X, so X is amenable by
Proposition 11.2.10. The converse is obvious.

Thus amenability of a group is equivalent to amenability of the right regular
action and also to amenability of all actions. We give another characterization:

Proposition 11.2.12. Let G be a group. Then the following are equivalent:

1. the group G is amenable;
2. the G-set GG is amenable;
3. G admits an amenable free action.

Proof. In view of the previous corollary, it suffices to prove .3/ ) .2/. Let X be
a free G-set, and choose a G-isomorphism X Š T 	 G. Let mWP.X/ ! Œ0; 1� be a
G-invariant mean. Define a mean m0 on G by m0.A/ D m.T 	 A/, and check that m0

is G-invariant.

Exercise 11.2.13 (*). Let X;Y be G-sets. Then

1. X t Y is amenable if and only if X or Y is amenable;
2. X 	 Y is amenable if and only if X and Y are amenable.

Proposition 11.2.10 says that quotients of amenable G-sets are amenable. Note
however that subsets of amenable G-sets need not be amenable, the empty set being
the extreme example. See Section 11.9 for a notion of amenability better suited to
subsets and extensions of G-sets.

Definition 11.2.14 (Wreath product). We introduce a construction of groups that
serve as important examples. Let A;G be groups and let X be a G-set. Their
(restricted) wreath product is

A oX G :D A.X/ Ì G; (11.1)

the semidirect product of the group of finitely supported maps X ! A with G,
under the action of G at the source. Elements of A oX G may be written as .f ; g/
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with f WX ! A and g 2 G; they multiply by .f ; g/ � .f 0; g0/ D .f � .f 0g�1/; gg0/ with
.f 0g�1/.x/ D f 0.xg/.

In case G acts faithfully on X, elements of A oX G may be thought of as “decorated
permutations”: permutations, say 
 represented by a diagram with vertex set X and
an arrow from x to 
.x/ and with a label in A on each arrow in such a manner that
only finitely many labels are nontrivial. Decorated permutations are composed by
concatenating their arrows and multiplying their labels.

The wreath product is associative, in the sense that if A;G;H are groups, X is a
G-set and Y is an H-set, then G oY H naturally acts on X 	 Y and A oX�Y .G oY H/ D
.A oX G/ oY H.

On the other hand, for groups A;G we write “A oG” for the wreath product A oG G
with regular right action of G on itself, and that operation is not associative.

Definition 11.2.15 (Tree automorphisms). For a finite set A , consider the set
X :D A � of words over A . This set is naturally the vertex set of a rooted tree T ;
the root is the empty word, and there is an edge between x1 � � � xn and x1 � � � xnxnC1

for all xi 2 A . The space A N corresponds to infinite paths in T and thus naturally
describes the boundary of T .

Let G be the group of graph automorphisms of T : maps A � ý that preserve
the edge set. There is then a natural map � WG ! Sym.A / defined by restricting
the action of G to the neighbors of the root; and ker.�/ acts on the #A disjoint
trees hanging from the root, so it is isomorphic to GA . We therefore have a natural
isomorphism

˚ WG �! G oA Sym.A /: (11.2)

A subgroup H � G is called self-similar if the isomorphism (11.2) restricts to
a homomorphism ˚ WH ! H oA Sym.A /. In that case, elements of H may be
defined recursively in terms of their image under ˚ , and conversely such a recursive
description defines uniquely an action on T .

The Grigorchuk group G (see Section 11.4.3 or the Introduction) acts faithfully
on the binary rooted tree T2 and as such is a subgroup of the automorphism group
of T2. It is self-similar, and the generators fa; b; c; dg of G may be written using
decorated permutations as follows:

a ; b a c ; c a d ; d b :

Example 11.2.16 (The “lamplighter group”). Consider G D Z acting on itself by
translation, and A D Z=2. The wreath product W D A oG is called the “lamplighter
group.” The terminology is justified as follows: consider an bi-infinite street with a
lamp at each integer location. The group G consists of invertible instructions for a
person, the “lamplighter”: either move up or down the street, or toggle the state of a
lamp before him/her.
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If we denote by a the operation of toggling the lamp at position 0 and by t the
movement of the lamplighter one step up the street, then G is generated by fa; tg;
and it admits as presentation

G D ha; t j Œa; atk � for all k 2 Ni: (11.3)

Exercise 11.2.17 (**). Let A be a simple group and let H be perfect. Let G :D
H oX A be their wreath product. Then G is perfect, and all normal subgroups of G
are G or of the form NX for a normal subgroup N G H.

Example 11.2.18 (Monod-Popa [422]). There are groups K G H G G such that the
G-sets KnG and HnG are amenable, but the H-set KnH is not.

Choose indeed any non-amenable group Q, and set G :D Q o Z and H D Q.Z/

and K D Q.N/.
The G-set HnG is clearly amenable, since the action of G factors through an

action of Z. To prove that KnG is amenable, it therefore suffices to find an H-
invariant mean on `1.KnG/, and then apply Proposition 11.2.26. Let t denote the
positive generator of Z. For every k 2 N, define a mean mk by mk.f / D f .Ktk/ for
f 2 `1.KnG/. This mean is invariant by the group Ktk . Since H D

S
k2N Ktk , any

weak limit of the mk is an H-invariant mean.
On the other hand, KnH is just a restricted direct product of Q’s, so it is not

amenable by Proposition 11.2.12.

Exercise 11.2.19 (**). Give an amenable G-set such that none of its orbits are
amenable.

Hint: Consider the “lamplighter group” G D ha; ti, see Example 11.2.16, and
the groups Gn D ha; t j Œa; atk � for all k D 1; : : : ; ni. Consider the natural action of
F2 D ha; t ji on X D

F
n�0 Gn, and show that (i) each Gn is non-amenable, (ii)

the group G is amenable, and (iii) the action on X approximates arbitrarily well the
action on G.

We return to the definition of means we started with; we shall see more criteria
for amenability. Recall that M .X/ denotes the set of means on X.

Lemma 11.2.20. M .X/ is compact.

Proof. Since M .X/ is a subset of Œ0; 1�P.X/ which is compact by Tychonoff’s
theorem,5 it suffices to show that M .X/ is closed.

Now each of the conditions defining a mean, namely, m.X/ � 1 D 0 and m.A [
B/�m.A/�m.B/ D 0, defines a closed subspace of Œ0; 1�P.X/ because it is the zero
set of a continuous map. The intersection of these closed subspaces is M .X/ which
is therefore closed.

Here are simple examples of means. For x 2 X, define ıx 2M .X/ by

ıx.A/ D

(
0 if x 62 A;

1 if x 2 A:

5We are using here, and throughout this chapter, the axiom of choice; see [341].
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It is easy to see that the axioms of a mean are satisfied. We have thus obtained a map
ıWX !M .X/, which is clearly injective.

Lemma 11.2.21. ı.X/ is discrete6 in M .X/.

Proof. Given x 2 X, set

U D fm 2M .X/ j m.fxg/ > 0g:

ut

Corollary 11.2.22. If X is infinite, then ı.X/ is not closed.

Proof. Indeed, if ı.X/ is closed in M .X/, then it is compact; being furthermore
discrete, it is finite; ı being injective, X itself is finite.

Recall that a subset K of a topological vector space is convex if for all x; y 2 K
the segment f.1 � t/xC ty j t 2 Œ0; 1�g is contained in K; see Section 11.6 for more
on convex sets. The convex hull of a subset S of a topological vector space is the
intersectionbS of all the closed convex subspaces containing S.

Lemma 11.2.23. M .X/ is convex.

Proof. Consider means mi and positive numbers ti such that
P

ti D 1. Then
P

timi

clearly satisfies the axioms of a mean.

For a set X and p 2 Œ1;1/, we denote by `p.X/ the Banach space of functions
�WX ! R satisfying k�kp :D

P
j�.x/jp < 1 and by `1.X/ the space of bounded

functions with supremum norm. For p 2 Œ1;1� the space `p.X/ carries a natural
isometric G-action by .�g/.x/ D �.xg�1/. Of particular interest is the space `1.X/,
and its subset

P.X/ D
˚
� 2 `1.X/ j � � 0;

X

x2X

�.x/ D 1
�
; (11.4)

the space of probability measures on X. It is a convex subspace of `1.X/, compact
for the weak*-topology, and (for infinite X strictly) contained in M .X/:

Proposition 11.2.24. For a set X, consider the following subset of `1.X/�:

B.X/ :D fm 2 `1.X/� j m.f / � 0 whenever f � 0; m.1/ D 1g:

Then the map
R
WB.X/!M .X/ defined by

.
R

m/.A/ :D m.1A/ with 1A the characteristic function of A

is a homeomorphism, functorial in X.

6Recall that D is discrete in a topological space X if for every x 2 D there is an open set U 3 x
with D\U D fxg.
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The subspace `1.X/ \ B.X/ � `1.X/� corresponds via
R

to the convex hull
bı.X/ of ı.X/.

We recall that there is a natural nondegenerate pairing `1.X/	`1.X/! R, given
by .f ; g/ 7!

P
f .x/g.x/. For that pairing, .`1X/� D `1.X/; but .`1X/� is much

bigger than `1.X/, as is clear from the proposition. In fact, `1.X/ is in isometric
bijection with the space of continuous functions on the Stone-Čech compactification
ˇX of X, see Lemma 11.2.6, so

.`1.X//� D L1.ˇX/ the set of Borel measures on ˇX: (11.5)

Proof (Proof of Proposition 11.2.24). Let S be the set of simple functions on X,
namely, the functions that take only finitely many values. Consider first m 2 `1.X/�

with m.1A/ D 0 for all A 
 X. Then m vanishes on S by linearity; and S is dense
in `1.X/, so m D 0. This proves that

R
is injective.

On the other hand, let mWP.X/! Œ0; 1� be a mean. For f 2 S , we have

.
R

m/.f / D
X

v2f .X/

vm.f�1.v//:

We check that
R

m is a continuous function S ! R for the `1 norm on S ; indeed,
for f ; g simple functions on X,

j.
R

m/.f / � .
R

m/.g/j D

ˇ̌
ˇ̌
ˇ̌

X

v2f .X/;w2g.X/

.v � w/�.f�1.v/ \ g�1.w//

ˇ̌
ˇ̌
ˇ̌

�
X

v2f .X/;w2g.X/

jv � wj�.f�1.v/ \ g�1.w//

� kf � gk1
X

v2f .X/;w2g.X/

�.f�1.v/ \ g�1.w//

� kf � gk1:

Therefore,
R

m extends to a continuous function `1.X/! R, which clearly belongs
to B.X/. Since S is dense, this extension is unique.

Finally recall that `1.X/ embeds in `1.X/� by f 7! .f 0 7!
P

x f .x/f 0.x//. The
element f 2 `1.X/ therefore corresponds to the affine combination

P
f .x/ıx of

Dirac means.

From now on, we will use interchangeably the notations m 2 M .X/ and m 2
.`1.X//�; they correspond to each other via the proposition.

Corollary 11.2.25. Let X be a G-set. Then X is amenable if and only if there exists
a G-invariant positive functional in `1.X/�. ut
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The fact that the “Dirac” means bı.X/ constitute a small subset of M .X/ may be
confirmed as follows. Every mean m 2 bı.X/ enjoys an additional property, namely,

 -additivity: for disjoint A1;A2; : : : we have

m.
[

Ai/ D
X

m.Ai/:

Consider now an invariant mean m on Z, as given by Proposition 11.2.4. Assume
for contradiction that m were 
 -additive. Then either m.f0g/ D 0, so m.fng/ D 0

for all n 2 Z by Z-invariance and m.Z/ D 0 by 
 -additivity; or m.f0g/ D � >

0 and m.f0; 1; : : : ; ng/ > 1 as soon as n > 1=�. In all cases we have reached a
contradiction.

Proposition 11.2.26. Let X be an amenable G-set such that all point stabilizers Gx

are amenable. Then G itself is amenable.

Proof. Thanks to Proposition 11.2.24, for all Y we view M .Y/ as the set of
normalized positive functionals mW `1.Y/ ! R. Let us first define a map ˚ WX !
M .G/.

Since every Gx is amenable, there exists for all x 2 X an invariant mean mx 2

M .Gx/
Gx , which we extend via the inclusion Gx ,! G to mean still written mx 2

M .G/Gx . Choose for every G-orbit in X a point x, and set ˚.xg/ D mxg on that
orbit. This is well defined: if xg D xh, then hg�1 2 Gx, so mxh D mxhg�1g D mxg.
It follows automatically that ˚ is G-equivariant.

By functoriality, ˚ induces a G-equivariant map ˚�WM .X/!M .M .G//.
Now there is, for all Y , a functorial map ˇWM .M .Y// ! M .Y/ called the

barycentre: it is given by

� .m/.f / D m.n 7! n.f // for m 2M .M .Y//; f 2 `1.Y/; n 2M .Y/: (11.6)

Composing, we get a map � ı ˚�WM .X/ ! M .G/, which is still G-equivariant.
Now since X is amenable M .X/G is nonempty, so M .G/G is also nonempty.

Corollary 11.2.27. Let 1 �! N �! G �! Q �! 1 be an exact sequence of
groups. Then G is amenable if and only if both N and Q are amenable.

Proof. If G is amenable, then its quotient Q is amenable by Proposition 11.2.10,
and its subgroup H is amenable by Proposition 11.2.12, since it acts freely on the
amenable G-set G.

Conversely, if N and Q are amenable, then the natural action of G on Q satisfies
the hypotheses of Proposition 11.2.26.

Exercise 11.2.28 (*). Let G be a group. We might have called G left-amenable if
there exists a left-invariant mean on G, namely, a mean m 2M .G/ with m.gA/ D
m.A/ for all g 2 G;A 
 G, and have called G bi-amenable if there exists a mean
m 2M .G/ with m.gAh/ D m.A/ for all g; h 2 G;A 
 G.
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Prove that in fact G is amenable if and only if it is left-amenable, if and only if it
is bi-amenable.

We conclude with yet another criterion, attributed7 to Jacques Dixmier:

Theorem 11.2.29 (Følner [225, Theorem 4], Dixmier [197, Théorème 1];
see [263, Theorem 4.2]). Let X be a G-set. Then X is amenable if and only if
for any h1; : : : ; hn 2 `

1.X/ and any g1; : : : ; gn 2 G the function

H :D
nX

iD1

.hi � higi/ satisfies sup
x2X

H.x/ � 0:

Proof. If X is amenable, then there is an invariant positive mean m 2 `1.X/�; then
for every function H as above, m.H/ D 0 by invariance while m.H/ � sup H by
positivity.

On the other hand, if sup H � 0 for all H as above, then an invariant mean may
be constructed as follows: set

Qm.f / D inf
H as above

sup
X
.f C H/:

Clearly Qm satisfies Qm.�f / D � Qm.f / for � � 0 and Qm.fg/ D Qm.f / for g 2 G and
Qm.1/ D 1 and Qm.f / � 0 if f � 0; and Qm.f C g/ � Qm.f / C Qm.g/ because if
Qm.f / � supX.f C H/ � � and Qm.g/ � supX.gC K/ � � then Qm.f C g/ � supX.f C
gCHCK/ � supX.f CH/C supX.gCK/ � Qm.f /C Qm.g/� 2�. The Hahn-Banach
theorem (see, e.g., [515, Theorem 3.12]) implies the existence of a linear functional
m with the same properties.

11.3 Følner, Day, and Reiter’s Criteria

The following combinatorial criterion will be shown equivalent to amenability; it
is sometimes the easiest path to prove a group’s amenability. It was introduced by
Erling Følner [226], though the idea of averaging over larger and larger finite sets to
construct invariant means can be traced back at least to Ahlfors [7, Chapter III.25].

Definition 11.3.1. Let X be a G-set. We say that X satisfies Følner’s condition if for
all finite S b G and all � > 0, there is a finite subset F b X with

#.FS n F/ < �#F:

When we say that a group G satisfies Følner’s condition, we mean it for the right
G-set X D G" G.

7Erroneously!
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For example, Z satisfies Følner’s condition: given � > 0 and S � Z finite, find
k such that S 
 f�k; : : : ; kg. Let ` 2 N be such that ` > 2k=�, and set F D
f1; 2; : : : ; `g. Then FS nF 
 f1� k; : : : ; 0; `C 1; : : : ; `C kg has size at most 2k, so
#.FS n F/ < �#F.

Actually, the definition makes sense in a much more general context, that of
graphs:

Definition 11.3.2. A directed graph (digraph) is a pair of sets G D .V;E/ called
vertices and edges, with maps ˙WE ! V giving for each edge e 2 E its head
eC 2 V and tail e� 2 V .

A graph G D .V;E/ has bounded valency if there is a bound K 2 N such that
at every vertex v 2 V there are at most K incoming and outgoing edges, namely, if
#fe 2 E j v D eCg � K and #fe 2 E j v D e�g � K.

Consider a G-set X and a finite set S � G. The Schreier graph of X with respect
to S is the graph with vertex set V D X and edge set E D X 	 S, with .x; s/� D x
and .x; s/C D xs. In other words, there is an edge from x to xs for all x 2 X; s 2 S. If
X D G" G, then the Schreier graph is usually called the Cayley graph of G. See
also Definition 10.3.1.

Let .V;E/ be a graph. For a subset F 
 V , its boundary is the set of edges
connecting F to its complement, in formulæ

@F D fe 2 E j e� 2 F; eC 62 Fg:

Definition 11.3.3. A graph G D .V;E/ satisfies Følner’s condition if for all � > 0

there is a finite subset F b V with #@F < �#F.

Thus Følner’s criterion asks for the existence of subgraphs of X with an arbitrarily
small relative outer boundary. It is clear that a G-set X satisfies Følner’s condition if
and only if its Schreier graphs satisfy it for all choices of S b G.

Lemma 11.3.4. Let X be a G-set. Følner’s condition is equivalent to: for all finite
subsets S b G and all � > 0, there is a finite subset F b X with

#.Fs n F/ < �#F for all s 2 S:

Proof. If #.FS n F/ < �#F, then in particular #.Fs n F/ < �#F for all s 2 S.
Conversely, if #.Fs n F/ < �#F=#S for all s 2 S then #.FS n F/ < �#F.

Recall that a directed set is a partially ordered set .N ;�/ with finite upper
bounds, i.e., for every m; n 2 N , there exists an element maxfm; ng 2 N with
m; n � maxfm; ng. A net is a sequence indexed by a directed set. For .xn/n2N a
real-valued net, we write

lim
n!1

xn D x to mean 8� > 0 W 9n0 2 N W 8n � n0 W jxn � xj < �; (11.7)

as in usual calculus.
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Exercise 11.3.5 (*). Let N be a nonempty net. Then fF 
 N j 9n0 2 N W n �
n0 ) n 2 Fg is a filter on N , and the notions of convergence in (11.7) and in the
filter coincide.

We have the following alternative definition of Følner’s condition:

Lemma 11.3.6. Let G be a group and let X be a G-set. Then X satisfies Følner’s
condition if and only if there exists a net .Fn/n2N of finite subsets of X with

lim
n!1

#.Fng n Fn/

#Fn
D 0 for all g 2 G: (11.8)

Proof. Assume (11.8), and let S b G; � > 0 be given. For each s 2 S, let n.s/ 2 N
be such that #.Fns n Fn/ < �#Fn=#S for all n � n.s/, and set F D Fmaxfn.s/g; then
#.FS n F/ �

P
s2S #.Fs n F/ < �#F, so Følner’s condition is satisfied.

Conversely, define N D f.S; �/ j S b G finite ; � > 0g, ordered as follows:
.S; �/ � .T; ı/ if S 
 T and � > ı; so maxf.S; �/; .T; ı/g D .S [ T;minf�; ıg/. For
each n D .S; �/ 2 N , choose a finite set Fn b X with #.FS n F/ < �#F. These
satisfy (11.8).

In case G is finitely generated, we also have the following alternative definition:

Lemma 11.3.7. Let G be finitely generated, say by a finite set S containing 1, and
let X be a G-set. Then X satisfies Følner’s condition if and only if for all � > 0 there
is a finite subset F b X with

#.FS n F/ < �#F:

Proof. One direction is obvious. In the other direction, let S0 b G and �0 > 0 be
given. Since S generates G, there exists k 2 N with S0 
 Sk. Set � D �0=k, and let
F b X satisfy #.Fs n F/ < �#F for all s 2 S.

Consider g 2 S0, and write it as g D s1 : : : sk with s1; : : : ; sk 2 S. Then

Fg n F D
kG

jD1

Fsj � � � sk n FsjC1 � � � sk;

so

#.Fg n F/ D
X

#.Fsj � � � sk n FsjC1 � � � sk/

D
X

#.Fsj n F/sjC1 � � � sk < k�#F D �0#F:

We are done by Lemma 11.3.4.

We shall see in Theorem 11.3.23 that a G-space X satisfies Følner’s criterion if
and only if it is amenable. This can be used to prove (non-)amenability in numerous
cases; for example,
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Proposition 11.3.8. A G-set X " G is amenable if and only if for every finitely
generated subgroup H � G the H-set X" H is amenable.

Proof. (() Given S b G and � > 0, consider H D hSi and apply Følner’s criterion.
()) Every G-invariant mean is also H-invariant.

Thus, for instance, the action of Q on Q=Z is amenable, because every finitely
generated subgroup of Q has a finite orbit on Q=Z. (We shall later see that all actions
of Q are amenable.)

Example 11.3.9. The group of permutations Sym.N/ of N with finite support is
amenable; indeed every finite subset generates a finite group.

Example 11.3.10. The group of “bounded-displacement permutations of Z”

G D W.Z/ D f� WZ ýj sup
n2Z
j�.n/ � nj <1g

acts amenably on Z. Indeed given S � G finite and � > 0, the maximum
displacement of elements of S is bounded, say � k; and then Z " G satisfies
Følner’s condition with F D f0; : : : ; dk=�eg.

Example 11.3.11. The “lamplighter group” G from Example 11.2.16 is amenable.
Indeed elements of G may be written as pairs .f ;m/ with f WZ ! Z=2 and m 2 Z,
and one may consider as Følner sets

Fn D f.f ;m/ j support.f / 
 Œ�n; n� and m 2 Œ�n; n�g:

Example 11.3.12. The free group Fk D hx1; : : : ; xk ji is amenable if and only if
k � 1, see Proposition 11.2.9. Indeed if k � 1 then Fk is f1g or Z; while in
general, choose S D fx˙11 ; : : : ; x˙1k g and consider F b X. In the Cayley graph of Fk,
which is a 2k-regular tree (see Figure 11.2 left), consider the subgraph spanned by

1 b

a

b−1

a−1

H
Hb Hb2

Ha

Hb−1

Ha−1

Fig. 11.2 The Cayley graph of the free group F2, and the coset space of H (see Example 11.3.13)
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F. It suffices to consider connected components of the graph once at a time; each
connected component is a tree, with say v vertices and therefore v � 1 edges. The
sum of the vertex degrees within that tree is therefore 2v � 2, so the total number
of edges pointing out of the component is at least 2kv � .2v � 2/ � .2k � 2/v;
these edges point to distinct elements in SF n F. Therefore, Følner’s criterion is not
satisfied as soon as � < 2n � 2.

There are plenty of non-amenable groups with amenable actions and even faithful
amenable actions; here is one.

Example 11.3.13. Consider F2 D ha; b ji and its subgroup H D habn
W n � 0i.

Then F2 acts naturally on the coset space X :D HnF2, see Figure 11.2 right, and
this action is amenable. Indeed with S D fa˙1; b˙1g and � > 0 given, consider the
set F D fH;Hb; : : : ;Hbng for n > ��1. It satisfies Følner’s criterion. Note that the
action of F2 on X is not free, but it is nevertheless faithful.

11.3.1 Growth of Sets

Let X " G be a G-set, and consider S b G and x0 2 X. The orbit growth of X is
the function vX;x0;SWN! N given by

vX;x0;S.n/ D #fx 2 X j x D x0s1 � � � sm for some si 2 S;m � ng:

If G is finitely generated, then the orbit growth depends only mildly on the choice
of S as soon as it generates G: if S0 be another generating set of G, then there
exists a constant C > 0 with vX;x0;S.n/ � vX;x0;S0.Cn/ and vX;x0;S0.n/ � vX;x0;S.Cn/.
Similarly, if x0; x00 2 X belong to the same G-orbit, then there exists a constant
C 2 N with vX;x0;S.n/ � vX;x0

0;S
.nC C/ and vX;x0

0;S
.n/ � vX;x0;S.nC C/. Therefore,

the equivalence class of vX;x0;S under linear transformations of its argument is
independent of the choice of S if S generates G and of x0 if X is transitive; it is
denoted simply vX;x0 , vX , and vx0 , respectively.

As usual, we consider G as a G-set under right translation and denote by vG;S and
vG its growth function. We also write BG;S.n/ for the ball of radius n in G and more
generally BX;x0;S.n/ for the ball of radius n in X around x0.

Proposition 11.3.14. Let X be a G-set and let x0 2 X be such that vX;x0;S grows
subexponentially for all S b G. Then X satisfies Følner’s condition.

Proof. Let a finite subset S b G and � > 0 be given. Since X has subexponential
growth, we have lim n

p
vX;x0;S.n/ D 1; therefore lim inf

vX;x0;S.nC1/
vX;x0;S.n/

D 1, so for some

n we have vX;x0;S.nC 1/ < .1C �/vX;x0;S.n/. Set F D BX;x0;S.n/. We have #.FS/ <
.1C �/#F, so X satisfies Følner’s condition by Lemma 11.3.7.

Note that it is unknown whether in every finitely generated group G of subexpo-
nential growth we have lim vG;S.nC1/

vG;S.n/
D 1; only the “lim inf” is known to equal 1.
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One may study more quantitatively the Følner condition as follows: let X be a
G-set and let S be a generating set for G. Define FølWN! N [ f1g by

Føl.n/ D inff#F j F b X; #.F4Fs/ < #F=n for all s 2 Sg: (11.9)

Then Føl.n/ < 1 for all n precisely if X is amenable. A similar definition may be
given for graphs, which we leave to the reader. Groups admit the following lower
bound on Føl:

Proposition 11.3.15 (Coulhon-(Saloff-Coste) [168]). Let G D hSi be a finitely
generated group, with growth function vG;S.n/. Then

Føl.n/ �
1

2
vG;S.n/ for all n 2 N:

Proof. We shall prove the following equivalent form: given F b G, choose n 2 N
such that vG;S.n/ � 2#F. We are required to find s 2 S with #.F4Fs/ � #F=n.

First, for all x 2 F we have #.xBG;S.n/ n F/ � #F � #.xBG;S.n/ \ F/, so

X

g2BG;S.n/

1xg62F � v.n/=2 �
X

g2BG;S.n/

1xg2F;

X

g2BG;S.n/

X

x2F

1xg62F � v.n/#F=2;

so for some g 2 BG;S.n/, we have
P

x2F 1xg62F � #F=2, namely, #.F4Fg/ � #F.
Write now g D s1 � � � sn; then F4Fg D .F4Fsn/4 � � �4.Fs2 � � � sn4Fg/ 

.F4Fsn/ [ � � � [ .F4Fs1/s2 � � � sn. It follows that there exists some k 2 f1; : : : ; ng
with #.F4Fsk/ � #F=n.

On the other hand, we have an upper bound on Føl coming from balls: with
F D BG;S.n/ we have F4Fs 
 BG;S.nC 1/, so #.F4Fs/ � v.nC 1/ � v.n/, and
therefore Føl.v.n/=.v.nC 1/� v.n/// � v.n/. Assuming that v is the restriction to
N of a differentiable function, we may seek a function f satisfying f .1= log.v/0/ D v
to obtain an upper bound Føl.n/ � f .n/. For example, if v.n/ / nd then f .n/ / nd,
and therefore the estimate given by Proposition 11.3.15 is at worst a constant off.
The “1=2” in Proposition 11.3.15 cannot easily be eliminated: in a finite group, we
shouldn’t expect any good estimates for sets larger than half of the group.

Note also that we have Føl.n/ > n as soon as X is infinite, since then #.F4Fs/ �
1 for all F b X. No analogue of Proposition 11.3.15 may hold for G-sets in general:

Exercise 11.3.16 (**). Let X be a G-set for a finitely generated group G. Prove that
Føl.n/ is linear (i.e., Føl.n/ � Cn for some constant C) if and only if the Schreier
graph of X has bounded cutsets, namely, there is a bound C0 such that every finite
set of vertices can be separated by removing at most C0 vertices.
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Exercise 11.3.17 (**). We saw in Exercise 11.2.28 that a group is “left-amenable”
if and only if it is amenable. First prove directly that if a group admits sets that are
almost invariant under right translation, then it admits sets that are almost invariant
under left translation.

Next, prove that the infinite dihedral group D1 D ha; b j a2; b2i admits finite
subsets that are almost right-invariant but far from left-invariant, namely, subsets
Fn b D1 with #.Fn4Fng/=#Fn ! 0 for all g 2 D1 but #.Fn4gFn/=#Fn 6! 0.

Give on the other hand a family of sets Fn b D1 with #.Fn4gFnh/=#Fn ! 0

for all g; h 2 D1.

We return to Definition 11.3.3. A connected graph G D .V;E/ endows its set of
vertices V with the structure of a metric space still written G : the distance between
two vertices is the minimal length of a path connecting them. Given two metric
spaces (e.g., connected graphs) X;Y , a map f WX ! Y is quasi-Lipschitz if there is a
constant C with

d.f .x/; f .y// � Cd.x; y/C C;

and f is a quasi-isometry if there is a quasi-Lipschitz map gWY ! X with
supx2X d.x; g.f .x/// <1 and supy2Y d.y; f .g.y/// <1.

Exercise 11.3.18 (*). Let G D .V;E/ be a graph, and let G 0 D .V 0;E0/ be its
barycentric subdivision: V 0 D V t E and E0 D E 	 fC;�g with .e;˙/˙ D e˙ and
.e;˙/
 D e. Prove that G and G 0 are quasi-isometric.

Exercise 11.3.19 (*). Let G be a finitely generated group. Prove that all Cayley
graphs of G with respect to finite generating sets are quasi-isometric; that all finite-
index subgroups of G are have quasi-isometric Cayley graphs; and that all quotients
of G by finite subgroups have quasi-isometric Schreier graphs.

Proposition 11.3.20. Let G D .V;E/ and G 0 D .V 0;E0/ be bounded-degree
graphs, and let f WG ! G 0 be quasi-Lipschitz with supy2V0 d.y; f .V// < 1. If G
is amenable then G 0 is amenable.

In particular, if G ;G 0 are quasi-isometric, then G is amenable if and only if G 0

is amenable.

Proof. Let G 00 D .V 00;E00/ be a graph. For F b V 00 and k 2 N, define

@k.F/ D f.e1; : : : ; ek/ j ei 2 E00; eCi D e�iC1; e
�
1 2 F; eCk 62 Fg:

Recall that G is amenable if and only if infFbV #@F=#F D 0. Equivalently,
infFbV #feC j e 2 @Fg=#F D 0. There exists a constant D such that, for every
F b V , we have ff .eC/ j e 2 @Fg 
 feCD j .e1; : : : ; eD/ 2 @

D.f .F//g. Therefore,
infFbV #@D.f .F//=#f .F/ D 0, and therefore infF0bV0 #@.F0/=#F0 D 0.

Exercise 11.3.21 (*). Prove that if G ;G 0 are quasi-isometric graphs, then their
Følner functions (11.9) are equivalent in the sense that FølG .n/ � CFølG 0.Cn C
C/C C and conversely, for some constant C.
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There are quasi-invariant groups with quite distinct algebraic properties, e.g., AoZ
and B o Z are quasi-isometric for all finite groups A;B of same cardinality. If A is
Abelian but B is simple, then A o Z is metabelian and residually finite, but B o Z is
neither. However, these groups are quasi-isometric (and both amenable).

11.3.2 Day’s and Reiter’s Criterion

Følner sets—finite subsets F b X that are almost invariant under translation—may
be thought of as almost invariant characteristic functions.

Definition 11.3.22 (see [181, Theorem 1], [499, page 168]). Let X be a G-set. It
satisfies the Day-Reiter condition for p � 1 if for every finite subset S b G and
every � > 0 there exists a positive function � 2 `p.X/ with k�s � �k < �k�k for
all s 2 S.

Theorem 11.3.23. Let X be a G-set. The following are equivalent:

1. X is amenable;
2. X satisfies the Day-Reiter condition for p D 1;
3. X satisfies the Day-Reiter condition for some p 2 Œ1;1/;
4. X satisfies the Day-Reiter condition for all p 2 Œ1;1/;
5. X satisfies Følner’s condition.

Proof. .1/) .2/ Given S b G and � > 0, consider the subset

K D
˚M

s2S

.�s � �/ j � 2P.X/g � `1.X/S:

Since X is amenable, there exists a G-invariant functional m 2 `1.X/� by
Corollary 11.2.25. Since `1.X/ is weak*-dense in `1.X/�, there exists a net
.�n/n2N in `1.X/ with �n ! � in the weak*-topology, so

L
s2S.�ns � �n/ 2 K

converges to 0 in the weak*-topology on `1.X/S, so K
weak*

3 0. Since K is convex,
its norm closure K also contains 0, by the Hahn-Banach theorem (see, e.g., [515,
Theorem 3.12]); so there exists � 2P.X/ with k�s � �k < � for all s 2 S.
.2/ ) .4/ Let  2 `1.X/ satisfy k s �  k < �k k for all s 2 S. Define

�.x/ :D  .x/1=p; then � 2 `p.X/ with k�kp D k k
1=p, and

k�s � �kp
p D

X

x2X

j�.xs�1/ � �.x/jp D
X

x2X

j .xs�1/1=p �  .x/1=pjp

�
X

x2X

j .xs�1/ �  .x/j because jA1=p � B1=pj � jA � Bj1=p for all A;B

D k s �  k < �k k D �k�kp
p:

.4/) .3/ is obvious and so is .2/) .3/.
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.3/ ) .2/ Let  2 `p.X/ satisfy k s �  k < �k�k for all s 2 S. Define
�.x/ :D  .x/p; then � 2 `1.X/ with k�k1 D k kp, and

k�s � �k D
X

x2X

j�.xs�1/ � �.x/j D
X

x2X

j .xs�1/p �  .x/pj

�
X

x2X

pj .xs�1/ �  .x/jmaxf .xs�1/;  .x/gp�1 because jXp � Ypj

� pjX � YjmaxfX;Ygp�1

� p
�X

x2X

j .xs�1/ �  .x/jp
�1=p�X

x2X

j .xs�1/C  .x/jp
�1�1=p

by Hölder’s inequality

D pk s �  kpk sC  kp�1
p < p�k kp2

p�1k kp�1
p D p2p�1�k�k:

.2/ ) .5/ Given S b G and � > 0, let � 2 `1.X/ be positive and satisfy
k�s � �k < �k�k for all s 2 S. For all r 2 RC, consider the set Fr D fx 2 X j
�.x/ � rg. Then � D

R
1Fr dr and �s D

R
1Frsdr, so

Z
.#Frs4Fr/dr D k�s � �k < �k�k D �

Z
#FrdrI

therefore, there exists r 2 RC with #.Frs4Fr/ < �#Fr, and X satisfies Følner’s
criterion by Lemma 11.3.4.
.5/ ) .1/ By Lemma 11.3.6, there exists a net .Fn/n2N with limn!1 #.Fng n

Fn/=#Fn ! 0 for all g 2 G.
For each n 2 N , consider the “discrete” mean �n 2M .X/ defined by

�n.A/ D
#.A \ Fn/

#Fn
:

Since M .X/ is compact, the net .�n/n2N has an accumulation point, say �. We
will show that � is a G-invariant mean by a standard “ı=3” argument.

Given g 2 G and A 
 X, we show j�.A/ � �.Ag/j < ı for any ı > 0. There is
n 2 N with

n > .fg; g�1g; ı=3/; j�n.A/ � �.A/j < ı=3; j�n.Ag/ � �.Ag/j < ı=3;

because the �n converge pointwise to �. Then

j#.A \ Fn/ � #.Ag \ Fn/j D j#.A \ Fn/ � #.A \ Fng�1/j

� maxf#.Fn n Fng�1/; #.Fng�1 n Fn/g

� #.Fnfg; g
�1g n Fn/ < �#Fn < ı=3#Fn;
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so j�n.A/ � �n.Ag/j < ı=3 and

j�.A/ � �.Ag/j � j�n.A/ � �.A/j C j�n.A/ � �n.Ag/j C j�n.Ag/ � �.Ag/j < ı:

Since this holds for all ı > 0, we get �.A/ D �.Ag/.

In fact, the “#.Fs n F/=#F ! 0” in Følner’s condition can be substantially
weakened:

Proposition 11.3.24 (Gournay). Let X be a G-set. Then X is amenable if and only
if there is a constant c < 1 with the following property: for every finite subset S b X,
there is a finite subset F b X with #.Fs n F/ � c#F for all s 2 S.

Proof. .)/ is obvious, by Lemma 11.3.4 and Theorem 11.3.23.
.(/ by the condition of the proposition, there exists a net .Fn/n2N of finite

subsets of X (say indexed by Pf .G/) with lim supn!1 #.Fng n Fn/=#Fn � c for all
g 2 G. Let �n :D 1Fn=

p
#Fn 2 `

2.X/ be the normalized characteristic function of
Fn. We have

2 � 2h�n; �ngi D k�ng � �nk
2
2 D k1Fng � 1Fnk1=#Fn D 2#.Fng n Fn/=#Fn;

so h�n; �ngi � 1 � c for all n� 1.
Choose now a non-principal ultrafilter F on N , and consider the ultraproduct

space H :D `2.X/F: it is a Hilbert space, whose elements are equivalence classes
of sequences .�n/n2N with �n 2 `

2.X/ for all n and
P

n2N k�nk
2 < 1, under the

relation .�n/ � .�
0
n/ if limF k�n � �

0
nk D 0.

Write � D .�n/ 2 H , and let K denote the convex hull in H of f�g j g 2 Gg.
We have h�g; �i � 1 � c for all g 2 G, so h�; �i � 1 � c > 0 for all � 2 K, and in
particular 0 62 K. Let �0 be the element of K of minimal norm, and set � D �0=k�0k,
represented by a sequence .�n/n2N with �n 2 `

2.X/ of norm 1. Since �g D � by
unicity of the element of minimal norm in K, we have k�n� �ngk ! 0 for all g 2 G,
so X is amenable by Theorem 11.3.23(3).

We finally present a result that puts as much symmetry between X and G as
possible, with an eye toward the corresponding notion with the roles of G and X
interchanged, see Theorem 11.8.20:

Proposition 11.3.25. Let X be a G-set. Then X is amenable if and only if for every
� > 0 and every g 2 $.`1G/ there exists a positive function f 2 `1.X/ with
kfgk < �kfk.

Proof. ()) Given � > 0 and g D
P

x2G gxx 2 `1G with
P

gx D 0, let S b G be
such that g0 :D g �

P
s2S gs.s � 1/ satisfies kg0k < �=2. Since X is amenable, there

exists F b X with #.Fs n F/ < �=4kgk#F for all s 2 S. Set f :D 1F. Then

kfgk � kfg0k C
X

s2S

kgs.fs � f /k < #Fkg0k C 2#.FS n F/kgk < �#F D �kfk:
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(() Given � > 0 and S b G, set g D
P

s2S s� 1, and let f 2 `1.G/ be a positive
function satisfying kfgk < �kfk=2. Then

�kfk > 2kfgk � 2
���
X

s2S

max.fs � f ; 0/
��� D

X

s2S

2kmax.fs � f ; 0/k �
X

s2S

kfs � fk:

ut

11.3.3 Non-amenability

It may be interesting to consider weaker versions of amenability for groups, for
instance, to consider groups admitting faithful amenable actions.

Denis Osin considers in [463] a class of “weakly amenable groups,” which in
our context are groups G admitting an amenable action X such that, for every finite
F � G, there exists x 2 X with #.xF/ D #F, namely, the orbit map f 7! x � f
is injective on F. An example of a weakly amenable, non-amenable group is the
Baumslag-Solitar group ha; t j amt D tani, for m > n � 2.

If a group G is not amenable, but all its proper subgroups are amenable,
then G does not have any “interesting” amenable actions: by Proposition 11.2.26,
every amenable action of G has a fixed point. This applies in particular to Tarski
monsters [455], which are non-amenable torsion groups in which every proper
subgroup is cyclic.

Definition 11.3.26 (Kazhdan, see [339] or [62]). A group G has property (T)
if every unitary representation G ! U.H / in a Hilbert space H with almost
invariant vectors (in the sense that for every � > 0 and every finite S b G there
exists nontrivial x 2 H with kx � xsk < � for all s 2 S) has a nontrivial fixed
vector.

If G is infinite, then Kazhdan’s property (T) restricted to the unitary represen-
tation on `2.G/ is thus precisely the negation of amenability: there are invariant
vectors in `2.G/ if and only if G is finite, and the existence of almost invariant
vectors is the Day-Reiter condition for p D 2.

Thus an amenable group with property (T) is finite,8 and more generally a group
with property (T) does not have any “interesting” amenable actions: every amenable
action has a finite orbit.

Glasner and Monod consider in [245] another group property, which they call
property (F): “every amenable action has a fixed point.” They show that a free
product of groups always has a faithful, transitive, amenable action unless one factor
is (F) and the other is virtually (F). Thus, for example, G�Z is not amenable if G ¤ 1
yet admits a faithful, transitive, amenable action.

8This was exploited in a fundamental manner by Margulis in [410] to prove his “normal subgroup
theorem.”
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11.4 Growth of Groups

We cover here some classical material on asymptotic growth of groups. Recall
from Section 11.3.1 that vG;S.n/ denotes the number of elements in a group G that
are expressible as products of at most n elements of S. The group G has exponential
growth if vG;S.n/ � Bn for some B > 1 and subexponential growth otherwise; it has
polynomial growth if vG;S.n/ � p.n/ for some polynomial p; and it has intermediate
growth if its growth is neither polynomial nor exponential. These properties are
easily seen to be independent of the choice of generating set S.

11.4.1 Groups of Polynomial Growth

Groups of polynomial growth admit an elegant algebraic characterization. The “if”
part is due to Hyman Bass [46] and independently Yves Guivarc’h [278], with an
explicit computation of the growth degree of G, which is always an integer; the
harder, “only if” part is due to Misha Gromov.

We recall some basic group theoretical terminology. For P a property of groups
(abelian, . . . ), a group G is called virtually P if G admits a finite-index subgroup
satisfying P .9

A group G is nilpotent if there exists a constant c such that every .c C 1/-
fold iterated commutator Œg0; Œg1; : : : ; Œgc�1; gc� � � � �� vanishes in G; the minimal c
is called the nilpotency class of G. A group G is polycyclic if it admits a sequence
of subgroups G D G0 F G1 F � � � F Gn D 1 with Gk=GkC1 cyclic for all k. Finitely
generated nilpotent groups are polycyclic.

Theorem 11.4.1 (Gromov [274]). Let G be a finitely generated group. Then G has
polynomial growth if and only if G is virtually nilpotent, namely, G has a finite-index
nilpotent subgroup.

Proof (Proof of Theorem 11.4.1, “if” direction). Let G0 be a finite-index nilpotent
subgroup of G. It suffices to prove that G0 has polynomial growth, since then G will
have polynomial growth of same degree as G0. Denote by c the nilpotency class of
G0, so all .cC 1/-fold iterated commutators vanish.

Let .Gk/0�k�` be a composition series for G, namely, a series of subgroups such
that Gk=GkC1 is cyclic for all k; and for each k, let xk 2 Gk be a lift of a generator of
Gk=GkC1 so that G0 D hx0; x1; : : : x`�1i.

We reason by induction on `. If ` D 0, or if G=G1 is finite, we are done.
Assume then G0=G1 Š Z, and by induction that the growth of G1 is bounded by a
polynomial, say of degree d.

9Much to the annoyance of finite group theorists, some people call finite groups “virtually trivial.”
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Consider x 2 G0, of the form x D x˙1i1
� � � x˙1in

. Write it in the form xe
0z, with

e 2 Z and z 2 G1. This requires us to exchange past each other some letters x0
and xij , producing subexpressions Œxij ; x0; : : : ; x0� along the process: indeed one has
Wx0 D x0WŒW; x0� for any expression W.

There are at most n letters x0 in x; each of them must be brought past at most
n other letters, producing at most n2 expressions Œxi; x0�; each of these produces in
turn at most n3 expressions Œxi; x0; x0�; etc. We take as generating set S for G1 all
expressions of the form Œxi; x0; : : : ; x0� with i � 1 and length 2 f1; : : : ; cg. We have
then expressed x by an integer e 2 f�n; : : : ; ng and a word z of length at most
nC � � � C nc in these generators; so

vG0;S[fx0g.n/ � .2nC 1/vG1;S.nC � � � C nc/

is bounded by a polynomial of degree � cdC 1.

We shall give at the end of Section 11.8.2 a sketch of the “only if” direction, via
slowly growing harmonic functions.

Corollary 11.4.2. Let G be a virtually nilpotent group. Then G is amenable.

Proof. If G is virtually nilpotent, then every finitely generated subgroup of G is also
virtually nilpotent, so by Theorem 11.4.1 has polynomial growth, so is amenable by
Proposition 11.3.14.

11.4.2 Groups of Exponential Growth

At the other end of the growth spectrum, we find groups of exponential growth. In
fact, as soon as a group has a non-abelian free subgroup, it has exponential growth;
so a large class of groups, including all non-elementary hyperbolic groups [241],
have exponential growth.

In the class of soluble groups, the growth of a group is either polynomial or
exponential, as we shall see below. Recall that the derived series of a group G is the
series of normal subgroups defined by G.0/ D G and G.iC1/ D ŒG.i/;G.i/� and that
G is soluble if G.n/ D 1 for some n. The minimal such n is called the derived length
of G.

Proposition 11.4.3 (see [418]*Lemma 1). Let G be a finitely generated group of
subexponential growth, and let N G G be a normal subgroup with G=N Š Z. Then
N is also finitely generated.

Proof. Let S D fx1; : : : ; xdg generate G, and let x 2 G generate G=N. Write each
xi D xei yi, with yi 2 N; so G D hx; y1; : : : ; ydi, and N D hy1; : : : ; ydi

G.
Consider further Ni D hyxn

i j n 2 Zi, so that N D hN1; : : : ;Ndi. It is sufficient to
show that each Ni is finitely generated.
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Write then y D yi, and consider all expressions x�1ye1x�1ye2 : : : x�1yen xn, with
all ej 2 f0; 1g. There are 2n such expressions, and their length is linear in n, so two
must be equal in G because G has subexponential growth. Let

ye1x � � � yemxm
D yf1x � � � yfmxm

(11.10)

be such an equality in G, without loss of generality with 1 D em ¤ fm D 0. It follows
that yxm

is in the group generated by fyx; : : : ; yxm�1
g, so that Ni D hyxn

i j n < mi.
Now a similar argument, replacing x by x�1 in (11.10), shows that Ni is finitely
generated.

Corollary 11.4.4. Let G be a finitely generated group of subexponential growth,
and let N G G be a normal subgroup such that G=N is virtually polycyclic. Then N
is finitely generated. ut

Corollary 11.4.5 (Milnor [418]). Let G be a finitely generated soluble group of
subexponential growth. Then G is polycyclic.

Proof. Consider the derived series G.i/ of G; by assumption, G.sC1/ D 1 for
some minimal s 2 N. Set A D G.s/. We may assume, by induction, that G=A is
polycyclic. By Corollary 11.4.4, the subgroup A is finitely generated and abelian, so
is polycyclic too. It follows that G is polycyclic.

Lemma 11.4.6. Let G be a finitely generated group that is an extension N:Q of
finitely generated virtually nilpotent groups. Then G is virtually soluble.

Proof. Assume first that N is finite; we then claim that G is virtually nilpotent.
Indeed the centralizer ZG.n/ has finite index in G, so Z D

T
n�0 ZG.n/ has finite

index in G. Then Z is a central extension of Z \ N by Z=.Z \ N/, so is virtually
nilpotent; and then so is G.

We turn to the general case. Let N0 be a nilpotent subgroup of finite index in N.
Up to replacing N0 by

T
ŒNWM�DŒNWN0�

M, we may assume N0 is characteristic in N and
therefore normal in G. By the first paragraph, G=N0 is virtually nilpotent, so G is
virtually soluble.

We recall that a group is noetherian if all its subgroups are finitely generated; in
other words, if every chain H1 < H2 < � � � of subgroups of G is finite.

Lemma 11.4.7. A group G is polycyclic if and only if it is both soluble and
noetherian.

Proof. Note first that an abelian group is noetherian if and only if it is finitely
generated: if finitely generated, it is of the form Zd 	 F for a finite abelian group F
and is clearly noetherian.

If G is soluble and noetherian, then all quotients G.i/=G.iC1/ along its derived
series are also noetherian, so finitely generated; the derived series may then be
refined into a polycyclic series.

Conversely, an extension of noetherian groups is noetherian, so if G is polycyclic,
then it is noetherian by induction.
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This reduction to polycyclic groups brings us closer to groups of polynomial
growth; the next step is the

Theorem 11.4.8 (Wolf). Let G be a polycyclic group of subexponential growth.
Then G is virtually nilpotent.

Proof. Let G D G0 > G1 > � � � be a polycyclic series of minimal length. If ŒG W
G1� < 1, proceed inductively with G1. Assume therefore that G=G1 Š Z D hxi.
By induction, there is a nilpotent subgroup N � G1 of finite index. Furthermore,
since G1 is finitely generated by Proposition 11.4.3, we may suppose that N is
characteristic in G1, at the cost of intersecting it with its finitely many images under
automorphisms of G1; so we may assume N GG. We have Nhxi � G of finite index,
and we replace G by Nhxi, to simplify notation.

We now seek a central series .Nk/ in N, i.e., a series with N0 D N, all Nk

normal in G, and Nk=NkC1 � Z.N=NkC1/; and we require that some nonzero power
xn centralizes Nk=NkC1 for all k. Then hN; xni will be the finite-index nilpotent
subgroup of G we are after.

Among central series, choose one maximizing the number of k such that Nk=NkC1

is infinite; it exists because the number of factors is bounded by the Hirsch length
of G. The torsion subgroup of Nk=NkC1 is characteristic, so insert it in the series
between Nk and NkC1. The resulting series is such that each quotient Nk=NkC1 is
either finite or free abelian; and, in the latter case, if M G G and NkC1 � M � Nk,
then either NkC1 D M or Nk=M is finite.

If Nk=NkC1 is finite, then certainly some nonzero power of x will act trivially
on it. We therefore consider Nk=NkC1 Š Zm, and we study the QŒx�-module V :D
Nk=NkC1 ˝ Q Š Qm.

The module V is irreducible; indeed, otherwise there would exist a proper,
nontrivial invariant subspace W < V; then M :D fx 2 Nk j xNkC1 2 Wg is a
normal subgroup of G, of infinite index in Nk, contradicting the maximality of the
number of infinite factors in .Nk/. We then use the

Lemma 11.4.9 (Schur). Let V be an irreducible module. Then End.V/ is a
division ring.

Proof. Let ˛ ¤ 0 2 End.V/ be an endomorphism; then ker.˛/ and ˛.V/ are
invariant subspaces, so ker.˛/ D 0 and ˛.V/ D V; so ˛ is invertible.

We see x 2 G as an endomorphism of V; by Lemma 11.4.9, the ring End.V/
does not contain nilpotent elements, so x generates a field Q.x/within End.V/. Since
End.V/ is finite-dimensional, x is algebraic. Since x preserves the lattice Nk=NkC1 �

V , it is an algebraic integer. We now recall the classical

Lemma 11.4.10 (Kronecker). Let � be an algebraic number, all of whose
conjugates have norm 1. Then � is a root of unity.

Proof. Let � be algebraic of degree n, and consider some power 
 D �N . Then

 2 Q.�/, and all conjugates of 
 have norm 1, so the coefficients of the minimal
polynomial of 
 , which are symmetric functions of the conjugates of 
 , have norm
at most 2n. It follows that there are finitely many such minimal polynomials, so

N D 
M for some M > N.
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We are now ready to finish the proof. Either all conjugates of x (seen now as an
algebraic number) have norm � 1; and then x is a root of unity by Lemma 11.4.10,
so xn acts trivially for some n > 0; or there exists an embedding of Q.x/ in C such
that jxj > 1.

In that last case, we may replace x by a power of itself so that jxj > 2. Choose y 2
NknNkC1, seen as a vector v ¤ 0 2 V . Consider as in the proof of Proposition 11.4.3
all expressions x�1ye1x�1ye2 : : : x�1yen xn, with all ej 2 f0; 1g. There are 2n such
expressions, and their length is linear in n, so two must be equal in G because G has
subexponential growth. This leads in V to the relation

.e1 � f1/x.v/C � � � C .en�1 � fn�1/x
n�1.v/C xn.v/ D 0;

so .e1 � f1/xC � � � C .en�1 � fn�1/xn�1 C xn D 0, because only 0 is non-invertible
in End.V/. Now taking norms we get

jxjn � .e1 � f1/jxj C � � � C .en�1 C fn�1/jxj
n�1 � jxj

jxjn�1 � 1

jxj � 1
� jxjn

using jxj > 2, a contradiction.

Corollary 11.4.11. Let G be a virtually soluble finitely generated group. Then G
has either polynomial of exponential growth, and has polynomial growth precisely
when it is virtually nilpotent. ut

11.4.3 Groups of Intermediate Growth

The previous sections were aimed at showing that “most” groups have polynomial or
exponential growth; John Milnor asked in 1968 whether there existed any groups of
intermediate growth [419]. There can be no such examples among virtually soluble
groups, as we saw above, nor among linear groups (subgroups of matrix groups over
fields), by Tits’ alternative [564].

Milnor’s question has, however, a positive answer, which was given in the early
1980s by Slava Grigorchuk. We give here his example.

Set A D f0; 1g, and consider the following group G acting recursively on the set
X :D A N of infinite sequences over A . It is generated by four elements a; b; c; d
defined by

.x0x1 � � � /aD .1 � x0/x1 � � � ;

.x0x1 � � � /bD

(
x0 � � � .1 � xn/xnC1 � � � if x0 D � � � D xn�2D 0¤ xn�1; n 6� 0 .mod 3/

x0x1 � � � else;
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.x0x1 � � � /cD

(
x0 � � � .1 � xn/xnC1 � � � if x0 D � � � D xn�2D 0¤ xn�1; n 6� 2 .mod 3/

x0x1 � � � else;

.x0x1 � � � /dD

(
x0 � � � .1 � xn/xnC1 � � � if x0 D � � � D xn�2D 0¤ xn�1; n 6� 1 .mod 3/

x0x1 � � � else:

This action is the limit of an action on finite sequences A �, which is the vertex set
of the binary rooted tree, and G is self-similar, see Definition 11.2.15.

Theorem 11.4.12 (Grigorchuk [268]). The group G has intermediate growth.
More precisely, let � � 0:811 be the positive root of X3 C X2 C X � 2 D 0; then

exp.n1=2/ - vG;S.n/ - exp.nlog.2/=.log.2/�log.�///:

We begin by a series of exercises deriving useful properties of G. Details may be
found, e.g., in [183, Chapter 8]. The self-similar structure of G is at the heart of all
arguments; let us describe it again, starting from the action above.

There is an injective group homomorphism ˚ WG ! .G 	 G/ Ì C2, written
g 7! hh g0; g1 ii�g and defined as follows. If g permutes 0X and 1X, then �g D " ¤ 1,
while if g preserves them setwise, then �g D 1. Then g��1g preserves 0X and 1X,
and for i D 0; 1 define a permutation gi of X by .x0x1 : : : /g D .x0�g/ .x1 : : : /gx0 .
To see that the gi belong to G, note that ˚ is given on the generators by

˚ W

8
ˆ̂̂
<̂

ˆ̂̂
:̂

a 7! hh1; 1ii";

b 7! hh a; cii;

c 7! hha; dii;

d 7! hh1; bii:

Exercise 11.4.13 (*). Check in G the relations a2 D b2 D c2 D d2 D bcd D
.ad/4 D 1.

We fix once and for all the generating set S D fa; b; c; dg of G. It follows from
the exercise that every element of G may be written as a word of minimal length in
the form s0as1 � � � sn�1asn for some s0; sn 2 f1; b; c; dg and other si 2 fb; c; dg.

We let � � 0:811 be the real root of X3 C X2 C X � 2 D 0 and define a metric
on G by setting

kak D 1 � �3; kbk D �3; kck D 1 � �2; kdk D 1 � �

and extending the metric to G by the triangle inequality: kgk D minfks1k C � � � C
ksnk j g D s1 � � � sng.
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Lemma 11.4.14. If ˚.g/ D hh g0; g1 ii� , then kg0k C kg1k � �.kgk C kak/.

Proof. Consider g 2 G. Since kck C kdk � kbk, etc., g may be written as a word
of minimal norm in the form s0as1 � � � sn�1asn for some s0; sn 2 f1; b; c; dg and other
si 2 fb; c; dg, using Exercise 11.4.13. Now among the si, each “b,” taken with the
“a” after it, contributes kbkCkak D 1 to kgk and contributes at most kakCkck D �
to kg0k C kg1k because ˚.b/ D hh a; cii. Similarly, each “c”+“a” contributes � to
kgk and at most �2 to kg0k C kg1k, and each “d”+“a” contributes �2 to kgk and at
most �3 to kg0k C kg1k. Only the last sn may not have an “a” after it. Summing all
these inequalities proves the lemma.

Exercise 11.4.15 (**). Define 
 WG! G by


 W a 7! ca; b 7! d; d 7! c; c 7! b;

extended multiplicatively. Prove ˚.
.g// D hh�.g/; gii for all g 2 G, where �.a/ D
d; �.b/ D 1; �.c/ D �.d/ D a is a homomorphism to the finite group ha; di Š D4.
Deduce that 
 is well defined and is an injective endomorphism of G. For the usual
word metric, prove that j
.g/j � 2jgj C 1 for all g 2 G.

Proof (Proof of Theorem 11.4.12, see [38]). For the lower bound, consider the map
(not quite a homomorphism!)

FWG 	G! G; .g0; g1/ 7! 
.g0/
a
.g1/:

By the exercise, we have ˚.F.g0; g1// D hhg0�.g1/; �.g0/g1ii. Since #�.G/ D 8

and ˚ is injective, we have #˚�1.g/ D 8 for all g 2 G. Also, j
.g/j � 2jgj C 1
for the usual word metric, so jF.g0; g1/j � 2jg0j C 2jg1j C 4. Denoting by B.n/ the
ball of radius n in G for the word metric, we have F.B.n/ 	 B.n// 
 B.4nC 4/, so
the growth function v.n/ of G satisfies 8v.n� 2/2 � v.4.n� 2/C 4/ � v.4n� 2/.
Iterating, we have v.4tn � 2/ � 82

t�1v.n � 2/2
t
, so v.n/ � 8

p
n=8�1.

For the upper bound, we make use of the norm k � k and represent every g 2 G by
a finite rooted tree R.g/. Fix any constant K > kak=.�� 1/. Given g 2 G, construct
R.g/ as follows. If kgk � K, let R.g/ be the one-vertex tree with label g written at
the root, which is also a leaf of the tree.

If kgk > K, compute ˚.g/ D hh g0; g1 ii� . Note kg0k; kg1k < kgk, and construct
R.g0/;R.g1/ recursively. Let then R.g/ be the tree with a root labeled � connected
by two edges leading to the roots of R.g0/ and R.g1/, respectively. Since ˚ is
injective, the map R is injective, and it remains to count the number of trees of given
size.

Up to replacing kgk by maxf1; kgk�Kg, we may assume that, in Lemma 11.4.14,
we have kg0k C kg1k � �kgk as soon as kgk is large enough.
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Let us denote by #R.g/ the number of leaves of R.g/, and set ˛ D log 2=.log 2�
log �/. We claim that there is a constant D such that #R.g/ � Dkgk˛ for all
g 2 G. This is certainly true if kgk is small enough. For kgk > K, we proceed by
induction:

#R.g/ D #R.g0/C #R.g1/ � D.kg0k
˛ C kg1k

˛/

� 2D

�
kg0k C kg1k

2

	˛
by convexity of X˛

� 2Dkgk˛
��
2

�˛
D Dkgk˛:

We finally count the number of trees with n leaves. There are Catalan.n/ such tree
shapes; each of the n � 1 non-leaf vertices has a label in f1; "g, and each of the n
leaf vertices has a label in B.K/. It follows that there are Catalan.n/2n�1B.K/n � En

trees with at most n leaves, for some constant E; and then v.n/ � En˛ .

Exercise 11.4.16 (**). Prove that G is a torsion group.
Hint: Use Exercise 11.4.13, Lemma 11.4.14 and induction.

11.5 Paradoxical Decompositions

We consider again the general case of a group G acting on a set X and shall derive
other characterizations of amenability, based on finite partitions of X.

Definition 11.5.1. A G-set X is paradoxical if there are partitions

X D Y1 t � � � t Ym D Z1 t � � � t Zn;

and g1; : : : ; gm; h1; : : : ; hn 2 G, such that

X D Y1g1 t � � � t Ymgm t Z1h1 t � � � t Znhn:

ut

As a naive example, relax the condition that G be a group, and consider the
monoid of affine transformations of N. Then N D Ng1 t Nh1 for g1.n/ D 2n, and
h1.n/ D 2nC 1 defines a paradoxical decomposition.10

10This should not come as a surprise, since fg1; h1g generate a free monoid.
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Example 11.5.2. We return to Proposition 11.2.9. More precisely, now, consider
X D G D hx1; x2 ji a free group of rank 2; and

Y1 D freduced words ending in x1g; Y2 D G n Y1;

Z1 D freduced words ending in x2g [ f1; x
�1
2 ; x

�2
2 ; : : : g; Z2 D G n Z1I

then G D Y1 t Y2 D Z1 t Z2 D Y1 t Y2x�11 t Z1 t Z2x�12 .

11.5.1 Hausdorff’s Paradox

John von Neumann had noted already in [576] that non-amenability of F2 was at the
heart of the Hausdorff-Banach-Tarski paradox. We first show:

Proposition 11.5.3. The group SO3.R/ of rotations of the sphere contains a non-
abelian free subgroup.

Proof. There are many classical proofs of this fact. Consider, for example, the
matrices

U D

0

@
0 1 0

1 0 0

0 0 �1

1

A ; V D

0

B@
1 0 0

0 � 1
2

p
3
2

0 �
p
3
2
� 1
2

1

CA

in SO3.R/. They satisfy the relations U2 D V3 D 1, but no other, since in a product
W D U"1V˙1U � � �V˙1U"2 with "1; "2 2 f0; 1g and n letters V˙1 we have

W D
1

2n

0

@
a1;1 a1;2

p
3a1;3

a2;1 a2;2
p
3a2;3p

3a3;1
p
3a3;2 a3;3

1

A

with ai;j 2 Z and a3;3 odd, as can be seen from computing 2nW mod 2; so W ¤ 1.
Then hŒU;V�; ŒU;V�1�i is a free group of rank 2.

Here is another proof: SO3.R/ is the group of quaternions of norm 1. Let p be a
prime� 1 .mod 4/, and set

S D f.aC biC cjC dk/=
p

p j a 2 2NC 1; b; c; d 2 2Z; a2 C b2 C c2 C d2 D pg:

It follows from Lagrange’s theorem on sums of four squares that #S D p C 1 and
from the unique factorization of quaternions that S generates a free group of rank
.pC 1/=2. See [305] for proofs of these facts.
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The following paradox follows:

Theorem 11.5.4 (Hausdorff [286]). There exists a partition of the sphere S2, or of
the ball B3, in two pieces; and a further partition of each of these into, respectively,
two and three pieces, in such a manner that these be reassembled, using only
isometries of R3, into two spheres or balls, respectively.

Proof. We first show the following: there is a countable subset D � S2 such that
one can decompose S2 nD D PtQ, and further decompose P D P1 t � � � t Pm and
Q D Q1 t � � � t Qn, so that S2 n D D P1g1 t � � � t Pmgm D Q1h1 t � � � t Qnhn.

Indeed, by Proposition 11.5.3, there is a free subgroup G of SO3.R/, acting on
the sphere. Every nontrivial element of G acts as a rotation and therefore has two
fixed points. Let D denote the collection of all fixed points of all nontrivial elements
of G; clearly D is countable. The group G acts freely on S2 n D; let T be a choice
of one point per orbit.11 Let .Yi;Zj; gi; hj/ be a paradoxical decomposition of G as
in Definition 11.5.1. Set then Pi D TYig�1i and Qj D TZjh�1j for i D 1; : : : ;m and
j D 1; : : : ; n.

Keeping the same notation, we now show that S2 can be cut as S2 D U tV , such
that for an appropriate rotation  we have .U/tV D S2 nD. Since D is countable,
there is a direction Rv � R3 that does not intersect D. There are continuously many
rotations  with axis Rv and only countably many that satisfy D \ n.D/ ¤ ; for
some n ¤ 0; let  be any other rotation. Set U D

S
n�0 

n.D/ and V D S2 nU; then
.U/ D U n D and we are done.

These paradoxical decompositions can be combined (see Corollary 11.5.8 below
for details), proving the statement for S2.

The same argument works for all concentric spheres simultaneously and there-
fore for B3 n f0g. It remains to show that B3 and B3 n f0g can, respectively, be cut
into isometric pieces. Let  be a rotation about . 1

2
; 0;R/ with angle 1 (in radians),

and set W D fn.0/ j n 2 Ng. Then .W/ D W n f0g, so B3 D W t .B3 nW/ and
B3 n f0g D .W/ t .B3 nW/.

11.5.2 Doubling Conditions

Let us restate paradoxical decompositions in a more sophisticated way.

Definition 11.5.5. Let a group G act on a set X. A G-wobble is a map �WY ! Z for
two subsets Y;Z 
 X, such that there exists a finite decomposition Y D Y1t� � �tYn

and elements g1; : : : ; gn 2 G with �.y/ D ygi whenever y 2 Yi.

11The axiom of choice is required here.
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We define a preorder12 on subsets of X by Y - Z if there exists an injective
G-wobble Y ! Z and an equivalence relation Y � Z if there exists a bijective
G-wobble Y ! Z; in that case, we say that Y and Z are equidecomposable.

Using that terminology, the G-set X is paradoxical if one may decompose X D YtZ
with Y � X � Z.

Lemma 11.5.6. The map �WY ! Z is a G-wobble if and only if there exists a finite
subset S b G such that �.y/ 2 yS for all y 2 Y.

Proof. If � is a G-wobble, set S D fg1; : : : ; gng, and note �.y/ 2 yS for all y 2 Y .
Conversely, if �.y/ 2 yS for all y 2 Y , write S D fg1; : : : ; gng, and set

Yn D fy 2 Y j �.y/ D ygn and �.y/ ¤ ygm for all m < ng:

ut

Corollary 11.5.7. The composition of G-wobbles is again a G-wobble, and the
inverse of a bijective G-wobble is also a G-wobble. ut

It follows that the set of invertible G-wobbles is actually a group. If the space X
is assumed compact and the pieces in the decomposition are open, then this group
is known as the “topological full group” of G, see Section 11.9.2.

Corollary 11.5.8. The relation - is a preorder, and � is an equivalence relation.

Proof. Consider injective G-wobbles �WY ! Z and  WW ! Y . By Lemma 11.5.6,
there are S;T b G such that �.y/ 2 yS and �.w/ 2 wT for all y 2 Y;w 2 W. Then
� .w/ 2 wTS for all w 2 W, so � WW ! Z is an injective G-wobble, again by
Lemma 11.5.6.

Theorem 11.5.9 (Cantor-Schröder-Bernstein [126]). Let Y;Z be sets. If there
exists an injection ˛WY ! Z and an injection ˇWZ ! Y, then there exists a bijection
� WY ! Z.

Furthermore, � may be chosen so that �.y/ 2 f˛.y/; ˇ�1.y/g for all y 2 Y.

Proof. Let ˛WY ! Z and ˇWZ ! Y be injective maps. Set Y0 D Y and Z0 D Z;
and, for n � 1, set Yn D ˇ.Zn�1/ and Zn D ˛.Yn�1/. Partition Y as follows:

U D
G

n2N

Y2n n Y2nC1; V D
G

n2N

Y2nC1 n Y2nC2; W D
\

n2N

Yn:

Define then � WY ! Z as follows:

�.y/ D

(
˛.y/ if y 2 UI

ˇ�1.y/ if y 2 V [W:

12That is, a transitive, reflexive relation.



472 L. Bartholdi

Therefore � sends Y2n n Y2n�1 to Z2nC1 n Z2n and Y2nC1 n Y2nC2 to Z2n n Z2n�1 while
sending

T
Yn to

T
Zn. It follows that � is a bijection.

Corollary 11.5.10. If Y - Z and Z - Y, then Y � Z.

Proof. Consider injective G-wobbles ˛WY ! Z and ˇWZ ! Y . By Lemma 11.5.6,
there are finite sets S;T b G such that ˛.y/ 2 yS and ˇ.z/ 2 zT for all y 2 Y; z 2 Z.
Let � WY ! Z be the bijection given by Theorem 11.5.9, with �.y/ 2 y.S [ T�1/.
Then � is a bijective G-wobble, again by Lemma 11.5.6.

We also need a little more terminology, coming from graph theory and following
Definition 11.3.2:

Definition 11.5.11. A digraph .V;E/ is bipartite if there is a decomposition V D
VC t V� such that eC 2 VC and e� 2 V� for every edge.

If VC and V� are G-sets and are identified, the graph .V;E/ is bounded if there
exists a finite subset S b G with eC 2 e�S for all e 2 E.

An m:n matching in .V;E/ is a subgraph .V;M / with M � E, such that for
each v 2 VC there are precisely n edges e 2M with eC D v, and for each v 2 V�

there are precisely m edges e 2M with e� D v. We define similarly m W .� n/ and
m W .� n/ matchings.

If X is a G-set, a bounded matching on X is a matching in a bounded graph with
vertex set X t X.

In particular, a 1 W 1 matching is nothing but a bijection V� ! VC; and a bounded
1 W 1 matching is a bijective G-wobble. A 1 W .� 1/ matching is an injective map,
and a 1 W .� 0/ matching is just a map.

Theorem 11.5.12 (Hall [281]-Hall-Rado [490]). Let V;W be sets, and for each
v 2 V, let Ev � W be a finite set. Assume that, for every finite subset F b V,

the set EF :D
[

v2F

Ev contains at least #F elements: (11.11)

Then there exists an injection eWV ! W with e.v/ 2 Ev for all v 2 V.

Proof. Assume first that .Ev/ satisfies (11.11) and that #Ev � 2 for some v 2 V . We
show that we may replace Ev by Ev n fwg for some w 2 Ev and still satisfy (11.11).

Indeed, consider w0 ¤ w1 2 Ev , and assume that neither w0 nor w1 may be
removed from Ev . Then there are F0;F1 b V and Ni D EFi [ .Ev n fwig/ 
 W for
i D 0; 1 such that #Ni < #.Fi [ fvg/; i.e., #Ni � #Fi. Then

#F0 C #F1 � #N0 C #N1 D #.N0 [ N1/C #.N0 \ N1/

� #.EF0[F1 [ Ev/C #.EF0\F1 /

� #.F0 [ F1/C 1C #.F0 \ F1/ D #F0 C #F1 C 1;

a contradiction. Then, inductively, we may suppose #Ev D 1 for any given v 2 V .
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If V is finite, we are done by repeatedly replacing each Ev by a singleton; the
injection is v 7! w for the unique w 2 Ev .

If V is countable, we may write V D fv1; v2; : : : g and define recursively E0v D Ev
for all v 2 V , and, for i; j > 0,

Ej
vi
D

(
Ej�1
vi if j ¤ i;

the singleton coming from the above operation if j D iI

then the required injection is vi 7! w for the unique w 2 Ei
vi

.
For general V , we need the help of an axiom. Order all systems .E0v/ satis-

fying (11.11) by .E0v/ � .E00v / if E0v 
 E00v for all v 2 V . By Zorn’s lemma,
f.E0v/ � .Ev/g admits a minimal element .E0v/. If #E0v � 2 for some v 2 V , then by
the above it could be made strictly smaller; therefore #E0v D 1 for all v 2 V , and we
again have an injection V ! W.

Note that if one drops the assumption that Ev is finite for all v, then there are
counterexamples to the theorem, e.g., V D W D N, E0 D N and EnC1 D fng
for all n 2 N. For more details see [420].

Corollary 11.5.13. Let .V;E/ be a bipartite graph, and assume that for all " 2
f˙1g and all finite subsets F � V", the set

fv 2 V�" j e�" D v; e" 2 F for some e 2 Eg

is finite and contains at least #F elements. Then there exists a 1 W 1 matching in
.V;E/.

Proof. By Theorem 11.5.12, there exists a subgraph of .V;E/ defining an injection
V� ! VC; and symmetrically there exists a subgraph of .V;E/ defining an injection
VC ! V�. Applying Theorem 11.5.9, there exists a subgraph of .V;E/ defining a
bijection V� ! VC.

We are ready to prove the equivalence of our new notions:

Theorem 11.5.14. Let X be a G-set. The following are equivalent:

1. X is paradoxical;
2. X is not amenable;
3. For any m > n > 0, there exists a bounded m W n matching on X;
4. There exists a G-wobble �WX ! X with #��1fxg D 2 for all x 2 X;
5. There exists a G-wobble �WX ! X with #��1fxg � 2 for all x 2 X.

Proof. .1/) .2/ Assume that there exists a G-invariant mean � 2M .X/. Then

1 D �.X/ D
mX

iD1

�.Yigi/C

nX

jD1

�.Zjhj/D

mX

iD1

�.Yi/C

nX

jD1

�.Zj/ D �.X/C�.X/ D 2;

a contradiction.
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.2/) .3/ Assume that X does not satisfy Følner’s condition, so there are S b G
and � > 0 with #.FS/ � .1 C �/#F. Given m > n > 0, let k 2 N be such that
.1C �/k � m=n.

Construct now the following bipartite graph: its vertex set is V D X	f1; : : : ;mgt
X 	 f1; : : : ; ng. There is an edge from .x; i/ to .xg; j/ for all g 2 Sk and all i 2
f1; : : : ;mg; j 2 f1; : : : ; ng. Consider first a finite subset F b V�, and project it to
F0 
 X. Then

#.F0Sk 	 f1; : : : ; ng/ D n#.F0Sk/ � m#F0 � #F;

and all these vertices are reached from F by edges in .V;E/. Conversely, fix g 2 Sk,
and consider a finite subset F b VC. Because m > n, every .x; i/ 2 F is connected
by an edge to .xg�1; i/ 2 V�. Therefore, every finite F � V˙ has at least #F
neighbors in V
.

We now invoke the Hall-Rado theorem 11.5.12 to obtain a 1 W 1 matching
.V;M /, which we project to a bounded m W n matching .X t X;M / by setting
e˙ D x whenever we had e˙ D .x;�/ in .V;M /.
.3/ ) .4/ Let M be a bounded 2 W 1 matching on X. Given x 2 X, there is a

unique e 2 M with e� D x; set �.x/ D eC. This defines a G-wobble �WX ! X
with #��1.y/ D 2.
.4/) .5/ is obvious.
.4/) .1/ For each x 2 X choose yx 2 X with �.yx/ D y; this is possible using

the axiom of choice. Set Y D fyx j x 2 Xg, and Z D X n Y . We have X D Y t Z, and
� restricts to bijective G-wobbles Y ! X and Z ! X, so Y � X � Z.
.5/) .2/ Let S b G satisfy �.x/S 3 x for all x 2 X. Then, for any finite F b X,

we have ��1.F/ 
 FS so #.FS/ � 2#F.

If a group G contains a non-abelian free subgroup, then G is not amenable.
The converse is not true, as we shall see in Section 11.7.3. However, the following
weaker form of the converse holds:

Theorem 11.5.15 (see [584]). Let X be a G-set. The following are equivalent:

1. X is not amenable;
2. There is a free action of the free group F2 on X by bijective G-wobbles;
3. There is a free action of a non-amenable group on X by bijective G-wobbles.

Proof. .1/ ) .2/ Assume that X is non-amenable, so by Theorem 11.5.14 there
exists a G-wobble �WX ! X with #��1fxg D 2 for all x 2 X. Let S b G satisfy
�.x/ 2 xS for all x 2 X.

View X as a directed graph T , with an edge from x to �.x/ for all x; and let U be
the corresponding undirected graph. These graphs are 3-regular: in T every vertex
has one outgoing and two incoming edges. Assume that there is a cycle in U. This
cycle is necessarily oriented, for otherwise there would be two outgoing edges at a
vertex. Furthermore, there cannot be two cycles in the same connected component
of U: if there were two such cycles, consider a minimal path p joining them. At least
one of p’s extremities would be oriented away from its end, and again there would
be two outgoing edges at a vertex.
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It follows that all connected components of U are either 3-regular trees or cycles
with 3-regular trees attached to them. Remove an edge from each cycle, creating
in this manner either two vertices of degree 2 or one of degree 1. In all cases, at
each vertex v of degree < 3, choose a ray v going to infinity consisting entirely
of degree-3 vertices and shift the edges attached to v toward v along v so as to
increase the degree of v. In this manner, we obtain a 3-regular forest U with vertex
set X, with the following property: there exists a finite subset S0 b G such that every
edge of U, joining say x to y, satisfies y 2 xS0. In fact, S0 D S [ S�1S2 will do.

Now label all edges of U with fa; b; cg in such a manner that at every vertex all
three colors appear exactly once on the incident edges. This is easy to do: on each
connected component, label arbitrarily an edge; then at each extremity, label the two
other incident edges by the two remaining symbols, and continue.

In this manner, every connected component of U becomes the Cayley graph of
H :D ha; b; c j a2; b2; c2i. In effect, we have defined an action of H on X by G-
wobbles: the image of x under a; b; c, respectively, is the other extremity of the edge
starting at x and labeled a; b; c, respectively. The group H contains a free subgroup
of rank 2, namely, hab; bci.
.2/) .3/ is obvious.
.3/ ) .1/ Assume that X admits a free action of a non-amenable group H by

bijective G-wobbles; without loss of generality, H is finitely generated, say by a set
T . Since H is not amenable and acts freely, it does not satisfy Følner’s condition by
Proposition 11.2.12, so there exists ı > 0 such that #.FT/ � ı#F for all F b X.

Let S b G satisfy xT � xS for all x 2 X. In particular, #.FS/ � ı#F, so X does
not satisfy Følner’s condition.

Note that the proof becomes trivial in case X D G " G, and G contains a non-
abelian free subgroup; indeed the action of G itself is by G-wobbles.

It is possible to modify slightly this construction to make F2 act transitively by
G-wobbles, see [538].

11.6 Convex Sets and Fixed Points

We consider an abstract version of convex sets, introduced by Marshall Stone
in [552] as sets with barycentric coordinates:

Definition 11.6.1. A convex space is a set K with an operation Œ0; 1�	K 	K ! K
of taking convex combinations, written .t; x; y/ 7! t.x; y/, satisfying the axioms

0.x; y/ D x D t.x; x/;

t.x; y/ D .1 � t/.y; x/; for all x; y; z 2 K and 0 � u � t � 1:

t.x; u
t .y; z// D

t � u

1 � u
.x; u.y; z//;
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It is called cancellative if it furthermore satisfies the axiom

t.x; y/ D t.x; z/; t > 0) y D z:

An affine map is a map f WK ! L between convex spaces satisfying t.f .x/; f .y// D
t.x; y/ for all t 2 Œ0; 1� and all x; y 2 K.

Usual convex subsets of vector spaces are typical examples; if K 
 V is convex,
then t.x; y/ :D .1� t/xC ty gives K the structure of a convex space. There are other
examples: for any set X, one may take K D P.X/ with t.x; y/ D x [ y whenever
t 2 .0; 1/.

As another example, trees (and more generally R-trees: geodesic metric spaces
in which every triangle is isometric to a tripod) are convex spaces: for x; y in a tree,
there is a unique geodesic from x to y, and t.x; y/ is defined as the point at distance
t d.x; y/ from x along this geodesic. Unless the tree is a line segment, this convex
space is not cancellative.

The set of closed balls in an ultrametric space,13 with Hausdorff distance, is
also an example of a convex space; it is actually isomorphic to the convex space
associated with an R-tree, see [302].

It turns out [552, Theorem 2] that those convex spaces that are embeddable in
real vector spaces as convex subsets are precisely the cancellative ones.

A topological convex space is a convex space K with the structure of a topological
space, such that the structure map Œ0; 1� 	 K 	 K ! K is continuous. A convex G-
space is a convex space on which a group G acts by affine maps. The convex hull of
a subset X 
 K of a convex space is the intersectionbX of all convex subspaces of K
containing X.

Exercise 11.6.2 (*). Convex spaces form a variety. Prove that the free convex space
on nC 1 generators is isomorphic to the standard n-simplex f.x0; : : : ; xn/ 2 RnC1 j

xi � 0;
P

xi D 1g and also to the convex hull of the basis vectors in RnC1. In
particular, it is cancellative.

Definition 11.6.3. Let X;Y be G-sets. We say that Y is X-markable if there exists
an equivariant G-map X ! Y .

Theorem 11.6.4. Let X be a G-set. The following are equivalent:

1. X is amenable;
2. Every compact X-markable convex space admits a fixed point;
3. Every compact X-markable convex subset of a locally compact topological vector

space admits a fixed point.

Proof. .1/) .2/ By Lemma 11.3.6, there exists a net .Fn/n2N of Følner sets in X.
Let K be a compact X-markable convex space, and let � WX ! K be a G-equivariant
map. For each n 2 N , set

13Namely, a metric space in which the ultratriangle inequality d.x; z/ � maxfd.x; y/; d.y; z/g holds.
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kn :D
X

x2Fn

1

#Fn
�.x/ 2 K:

Then .kn/ is a net in K, so by compactness admits a cluster point, say k. The kng
have the same limit, so k is a fixed point.
.2/) .3/ is obvious.
.3/ ) .1/ Take K D M .X/; it is compact by Lemma 11.2.20, X-marked by

ı, convex by Lemma 11.2.23, and contained in the topological vector space `1.X/�

which is locally compact by the Banach-Alaoglu theorem [515, Theorem 3.15]. A
fixed point is an invariant mean on X.

In particular, a group G is amenable if and only if every compact nonempty
convex G-space admits a fixed point. We may thus show that amenability of G-sets
is stable under amenable extensions:

Proposition 11.6.5. Let X be a G-set, and let N G G be a normal subgroup with
G=N amenable. Then X" G is amenable if and only if X" N is amenable.

Proof. Let K be an X-markable convex compact space. The “if” direction is
obvious, since every G-fixed point in K is N-fixed. Conversely, if KN ¤ ;, then
KN is a nonempty convex compact space on which G=N acts and has a fixed point
because G=N is amenable. Clearly .KN/G=N D KG, so X" G is amenable.

11.6.1 Measures

Consider a topological space X. We recall that C .X/ denotes the space of continuous
functions X ! R and that probability measures on X are identified with functionals
� 2 C .X/� such that �.1/ D 1 and �.�/ � 0 if � � 0. One sometimes writes
�.�/ D

R
�d�.

An important property of measures on subsets of vector spaces is that they have
barycentres:

Lemma 11.6.6. Let K be a nonempty convex compact subset of a locally compact
topological vector space, and let � 2 C .K/� be a probability measure. Then there
exists a unique b 2 K such that �.�/ D �.b/ for all affine maps � 2 C .K/. We
write b D

R
td�.t/ and call it the barycentre of �.

Proof. For any affine function �WK ! R, set

K� :D fx 2 K j �.�/ D �.x/g:

It is clear that K� is convex and compact. Furthermore, it is nonempty; more
generally, we will show that K�1 \ � � � \ K�n ¤ ; for all affine �1; : : : ; �nWK ! R.
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Write � D .�1; : : : ; �n/WK ! Rn. Define L D f�.x/W x 2 Kg; this is a convex
compact in Rn. Define p 2 Rn by pi D �.phii/ D

R
K �id�. We claim that p belongs

to L; once this is shown, every x 2 K with �.x/ D p belongs to K�1 \ � � � \ K�n , so
the intersection is not empty.

We now show that, for any q 62 L, we have p ¤ q. There exists then a hyperplane
that separates q from L, namely, the nullspace of any affine map � WRn ! R with
�.q/ < 0 and �.L/ > 0. In particular �.�.x// > 0 for all x 2 K, so by integrating
�.p/ > 0, and therefore p ¤ q.

Set now B D
T
� affine K� . It is nonempty by compactness of K, because any finite

sub-intersection is nonempty.
Affine functions separate points14 in K, so B contains a single point b.

Theorem 11.6.7. Let X be a G-set. The following are equivalent:

1. X is amenable;
2. Every compact X-markable set admits an invariant probability measure.

Proof. .1/ ) .2/ Let K be a compact G-set and let � WX ! K be a G-equivariant
map. Let m 2 `1.X/� be a G-invariant positive functional; then m ı ��W `1.K/!
`1.X/! R is a G-invariant, positive functional on K, and its restriction to C .K/ is
an invariant probability measure on K.
.2/ ) .1/ Let K be a compact X-markable convex subset of a locally compact

topological vector space, and let � be an invariant probability measure on K. Then
�’s barycentre, which exists by Lemma 11.6.6, is a fixed point in K, so X is amenable
by Theorem 11.6.4.3/) .1/.

Exercise 11.6.8 (*). Reprove that the free group F2 is not amenable as follows:
write F2 D ha; b ji, and make it act on the circle X D Œ0; 1�=.0 � 1/ by xa D x2 and
xb D .xC 1=2/ mod 1 for all x 2 Œ0; 1�. Show that the only a-invariant measure on
X is ı0 and that it is not b-invariant.

We proved in Corollary 11.4.2 that abelian groups are amenable. We may reprove
it as follows:

Proposition 11.6.9 (Kakutani [326]-Markov [412]). Let G be an abelian group.
Then G is amenable.

Proof. Let G act affinely on a convex compact K. For every g 2 G and every n � 1,
define a continuous transformation An;gWK ! K by

An;g.x/ D
1

n

n�1X

iD0

xgi:

Let S denote the monoid generated by fAn;g j g 2 G; n � 1g. We show thatT
s2S s.K/ is not empty. Since K is compact, it suffices to show that every finite

intersection s1.K/\ � � � \ sk.K/ is nonempty. To that end, set t D s1 : : : sk. We have

14Note that we use here the Hahn-Banach theorem, which requires certain logical axioms.



11 Amenability of Groups and G-Sets 479

si.K/ 
 sis1 : : :bsi : : : sk.K/ D t.K/;

because S is commutative. Therefore s1.K/ \ : : : sk.K/ contains t.K/, so it is not
empty.

Pick now x 2
T

s2S s.K/. To show that x is G-fixed, choose any affine function
�WK ! R, and any g 2 G. For all n, write x D An;g.y/, and compute

�.x/ � �.xg/ D
1

n

�
�.y/ � �.ygn/

�
�
2

n
k�k1I

Since �; g are fixed and n is arbitrary, we have �.x/ D �.xg/ for all affine �WK ! R,
from which x D xg.

Furstenberg studied in [235] a condition at the exact opposite of amenability:
a boundary for a group G is a compact G-space K which is minimal and such
that every probability measure on K admits point measures in the closure of its
G-orbit. By Theorem 11.6.7, if G is amenable then its only boundary is the point.
See Section 11.11.1 for more details.

11.6.2 Amenability of Equivalence Relations

In the previous section, we gave conditions on a compact G-set to admit an invariant
measure. Here, we assume that we are given a measure space on which a group acts
by measure-class-preserving transformations.

In the abstract setting, we are given a set X, a 
 -algebra M of subsets of X, and
a map �WM! R.

To simplify the presentation, and focus on the interesting cases, we assume that
.X; �/ is 
 -finite, namely, X is the countable union of subsets of finite measure.
In this case, it costs nothing to assume that � is a probability measure, namely,
�.X/ D 1. (Indeed, if X D

F
n2N Xn with �.Xn/ < 1, define a new measure

�0.A/ D
P

n2N 2
�n�.A\Xn/=�.Xn/.) We will even assume that .X; �/ is a standard

probability space [577], such as .Œ0; 1�;Lebesgue/ or .f0; 1gN;Bernoulli/; these
spaces are isomorphic as measure spaces.

Let G be a group, and assume that G acts by measure-class-preserving trans-
formations on .X; �/. Recall that this means that G acts on �-null sets: if A � X
satisfies �.A/ D 0, then .�g/.A/ D �.Ag�1/ D 0 for all g 2 G. In other
words, the measures � and �g are absolutely continuous with respect to each other,
and the Radon-Nikodym theorem [446] implies that there is an essentially unique
measurable function @.�g/=@�WX ! R satisfying

Z

X
f .xg/d�.x/ D

Z

X
f .x/

@.�g/

@�
d�.x/ for all f 2 L1.X; �/:
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If .X; �/ D .Œ0; 1�;Lebesgue/ and gWX ! X is differentiable, then @.�g/=@� D
dg=dx, the usual derivative. The chain rule gives a “cocycle” identity

@.�gh/

@�
D
@.�g/

@�
�

�
@.�h/

@�
g

	
:

In the extreme case (which is not the typical case we are interested in), the
measure � might be G-invariant: �.A/ D �.Ag/ for all A 
 X; g 2 G, and then
the Radon-Nikodym derivative is constant � 1.

To simplify the presentation and concentrate on the useful cases, we also restrict
ourselves to a countable group G. Recall that an action is essentially free if �-almost
every point has a trivial stabilizer, namely, �.fx 2 X j Gx ¤ 1g/ D 0. More
generally, everything is considered “up to measure 0”: a group action, isomorphisms
between actions, etc., only need to be defined on sets of full measure.

It will be useful to forget much about the group action and only remember its
orbits. This is captured in the following definitions:

Definition 11.6.10. A countable (respectively finite) measurable equivalence rela-
tion on .X; �/ is a Borel equivalence relation R 
 X 	 X such that for every x 2 X
the equivalence class xR :D fy 2 X j .x; y/ 2 Rg is countable (respectively finite)
and such that for every measurable A 
 X with �.A/ D 0 one has �.AR/ D 0.

The set R itself is treated as a measure space, with the counting measure on each
equivalence class: for E 
 R, one sets �.E/ D

R
X #fy 2 X j .x; y/ 2 Egd�.x/.

A fundamental example is given by a measure-class-preserving action of a
countable group G, as above: one sets RG D f.x; y/ 2 X2 j 9g 2 G with xg D yg.

Definition 11.6.11. A countable measurable equivalence relation R on .X; �/ is
amenable if there is a measurable invariant mean mWX ! M .R/, written x 7! mx,
with mx 2 M .xR/ for all x 2 X. Here “measurable” means that for every
F 2 L1.X; �/, the map x 7! mx.F/ is measurable, and “invariant” means that
mx D my almost whenever .x; y/ 2 R.

By [161], a countable measurable equivalence R relation is amenable if and only
if it is hyperfinite: R is the increasing union of countably many finite measurable
equivalence relations; by [207], this in turn is equivalent to R being given by an
action of Z.

The following lemma rephrases amenability of equivalence relations as an
analogue of the Day-Reiter criterion; we omit the proof which essentially follows
that of Theorem 11.3.23; see [323]:

Lemma 11.6.12. The equivalence relation R on .X; �/ is amenable if and only if
there exists a system .�x;n/x2X;n2N of measures, with �x;n 2 `

1.xR/, which is

— measurable: for all n 2 N the function .x; y/ 7! �x;n.y/ is measurable on R,
— asymptotically invariant: k�x;n � �y;nk ! 0 for almost all .x; y/ 2 R. ut

Proposition 11.6.13. If G is amenable and acts on .X; �/ by measure-class-
preserving transformations, then G generates an amenable equivalence relation.
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Proof. Since G is amenable, there exists a sequence of almost invariant measures
�n 2 `1.G/, in the sense that k�n � �ngk ! 0 for all g 2 G. Let RG be the
equivalence relation generated by G on X. For x 2 X, set �x;n :D x � �n, the
push-forward of �n along the orbit of x. Clearly .�x;n/x2X;n2N is an asymptotically
invariant system, and it is measurable since for all n 2 N the level sets f.x; y/ 2 R j
�x;n.y/ > ag are the unions of the graphs of finitely many elements of G.

Note that the proposition does not admit a converse: for instance, if G is a discrete
subgroup of a Lie group L and P � L is soluble, then the action of G on PnL
is amenable. Indeed the action of G on L is amenable: letting T be a measurable
transversal of G in L, choose arbitrarily a measurable assignment mWT ! M .RG/

on the transversal, and extend it to L by translation. The map m may easily be
required to be P-invariant, so it passes to the quotient PnL.

Proposition 11.6.14. If G acts essentially freely by measure-preserving transfor-
mations on the probability space .X; �/, and the generated equivalence relation R
is amenable, then G is amenable.

Proof. Given f 2 `1.G/, set

m.f / D
Z

X
mx.xg 7! f .x//d�.x/:ut

It is possible for a non-amenable group to act essentially freely on a probability
space:

Example 11.6.15. Let Fk D hx1; : : : ; xk ji be a free group of rank k, and consider
its boundary @Fk: it is the space of infinite reduced words over the generators of Fk,

@Fk D fa0a1 � � � 2 fx
˙
1 ; : : : ; x

˙
k g

N j aiaiC1 ¤ 1 for all i 2 Ng:

The measure is equidistributed on cylinders: �.a0a1 : : : anfx˙1 ; : : : ; x
˙
k g

N/ D

.2k/�1.2k � 1/1�n. The action of Fk on @Fk is by pre-catenation:

.a0a1 : : : / � xi D

(
xia0a1 : : : if xia0 ¤ 1;

a1 : : : if xia0 D 1:

Then the action of Fk on @Fk is essentially free and amenable, although Fk is not
amenable.

Proof. For 1 ¤ g D a1 : : : an 2 Fk, its only fixed points in @Fk are g1 and g�1;
since Fk is countable and @Fk has the cardinality of the continuum, the action of Fk

is free almost everywhere in @Fk.
For all x D a0a1 � � � 2 @Fk, define probability measures �x;n on the orbit of x by

�x;n D
1

n

�
ıx C ıxa0 C � � � C ıxa0���an�1

�
:
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These measures converge weakly to a mean mx on the orbit of x, and clearly mx and
mxg have the same limit, since the sums defining �x;n and �xg;n agree on all but at
most jgj terms. Therefore, mWX ! RFk is invariant, so RFk is amenable.

Consider a non-amenable group acting on .X; �/. So as to guarantee that the
equivalence relation RG be non-amenable, we may relax somewhat the condition
that G preserve �. We also assume that X is a compact topological space on which
G acts by homeomorphisms. In fact, this is not a strong restriction: given an action of
G on .X; �/ by measure-class-preserving transformations, we may always construct
a compact topological G-space Y , with a measure � on its Borel subsets, such that
.X; �/ and .Y; �/ are isomorphic as G-measure spaces; see [59, Theorem 5.2.1].

We will call the action of G indiscrete if for every � > 0 and every neighborhood
U of the diagonal in X 	 X there exists g ¤ 1 2 G with f.x; xg/ j x 2 Xg 
 U and
@.�g/=@� 2 .1 � �; 1C �/ almost everywhere.

The measurable-class-preserving action of G on X induces an action of G by
isometries on the Banach space L1.X; �/ of integrable functions on X, by

.fg/.x/ D
�@.�g/

@�
f
�
.xg�1/ for f 2 L1.X; �/:

Lemma 11.6.16. If we give G the topology of uniform convergence in its action on
X, then the action of G on L1.X; �/ is continuous.

Proof. Consider f 2 L1.X; �/; we wish to show fg! f whenever g! 1.
The closure of G in the homeomorphism group of X is second-countable locally

compact; it therefore admits a Haar measure �. Let K 
 G be a compact with
�.K/ D 1, and let V be a compact neighborhood of 1 in G. Since the Haar measure
is invariant, we have

kfg � fk D
Z

K
kfgh � fhkd�:

Since f is measurable, there is for all � > 0 a continuous function f 0WVK ! R
with

R
VK kfh � f 0hkd� < �, and there is also a neighborhood W of 1 in V such that

kf 0gh � f 0hk < � for all h 2 K; g 2 W. Then kfg � fk < 3� as soon as g 2 W by a
standard “3ı” argument.

Proposition 11.6.17 (Monod; see [240, Théorème 2]). Let G contain an indis-
crete non-abelian free group acting essentially freely on a measure space .X; �/.
Then G generates a non-amenable equivalence relation.

Proof. It suffices to prove the claim with G D ha; b ji itself free. Let A � G denote
those elements whose reduced form starts with a nontrivial power of a, and define
similarly B using b; so G D A t B t f1g.

Assume for contradiction that RG is amenable, and let mWX ! M .RG/ be an
invariant mean. Define measurable maps u; vWX ! Œ0; 1� by

u.x/ D mx.xA/; v.x/ D mx.xB/:
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Then u C v D 1 almost everywhere, and 0 �
P

n2Z u.xbn/ � 1 and 0 �P
n2Z v.xan/ � 1 almost everywhere, because the sets bnA are all disjoint. In

particular, if v.x/ > 1
2

then v.xan/ < 1
2

for all n ¤ 0, so if u.x/ < 1
2

then u.xan/ > 1
2

for all n ¤ 0. Define

P D fx 2 X j u.x/ < 1
2
g; Q D fx 2 X j u.x/ > 1

2
g:

Denote furthermore by A0 � A those elements of G that start and end with a
nontrivial power of a, and by B0 � B those elements of G that start and end with a
nontrivial power of b. Then PA0 
 Q, and QB0 
 P.

Since G is indiscrete, there exist gn 2 G n f1g with gn ! 1 and @.�gn/=@�! 1

uniformly. Up to taking a subsequence, we may assume all gn have the same first
letter and the same last letter and have increasing lengths. Up to switching the roles
of a and b, we may assume they all start with a˙1. Up to replacing gn by gngn�1g�1n ,
we may assume they all belong to A0.

Since P is measurable, its characteristic function 1P is measurable and �.P/ DR
X 1Pd�. Then �.P4Pgn/ D

R
X j1P � 1Pgn jd�; now 1Pgn D @.�gn/=@�1Pgn with

@.�gn/=@�! 1, and by Lemma 11.6.16 1Pgn ! 1P, so �.P4Pgn/! 0 as n!1.
However, Pgn 
 Q 
 XnP so �.P4Pgn/ D 2�.P/; so �.P/ D 0. Next �.QB0/ �

�.P/ D 0 so �.Q/ D 0. It follows that u D 1
2

almost everywhere, but this contradicts
0 �

P
n2Z u.xbn/ � 1.

Example 11.6.18. Let G be a countable indiscrete, non-soluble subgroup of
PSL2.R/. Then G contains a non-discrete free group acting essentially freely on
X D P1.R/. It follows that G generates a non-amenable equivalence relation on X.

Indeed, G contains an elliptic element of infinite order, namely, an element with
j trace.g/j 2 Œ�2; 2� n 2 cos.�Q/, see [314]. The group generated by some power of
g and of a hyperbolic element not fixing g’s fixed points is a non-discrete Schottky
group.

Note that groups and equivalence relations are two special cases of groupoids, see
Definition 11.9.17. There is a well-developed theory of amenability for groupoids
with a measure on their space of units, see [323], and [22] for a full treatise.

11.7 Elementary Operations

We turn to a more systematic study of the class AG of amenable groups. John von
Neumann already noted in [576] that AG is closed under the following operations:

Proposition 11.7.1. Let G be a group.

1. Let N G G be a normal subgroup. If G is amenable, then G=N is amenable.
2. Let H < G be a subgroup. If G is amenable, then H is amenable.
3. Let NGG be a normal subgroup. If N and G=N are amenable, then G is amenable.
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4. Let .Gn/n2N be directed family of groups: N is a directed set, and for all m < n
there is a homomorphism fmnWGm ! Gn, with fmnfnp D fmp whenever m < n < p.
If Gn is amenable for all n, then lim

�!
Gn is amenable.

In particular, if the Gn form a nested sequence of amenable groups, i.e., Gm �

Gn for m < n, then
S

n2N Gn is amenable.

It is an amusing exercise to prove the proposition using a specific definition of
amenability. Below we prove it using the fixed-point property of convex compact
G-sets and give references to previous statements where other proofs were given.

Proof. 1. Proposition 11.2.10.
For another proof, let G=N act on a nonempty convex compact K. Then

in particular G acts on K, and since G is amenable, we have KG ¤ ; by
Theorem 11.6.4. Then KG=N ¤ ; so G=N is amenable.

2. Proposition 11.2.12.
For another proof, let H act on a nonempty convex compact K, and define

KG=H D ff WG! K j f .xh/ D f .x/h for all x 2 G; h 2 Hg:

Then KG=H is a convex compact G-set under the action .f � g/.x/ D f .gx/, so it
admits a fixed point. This fixed point is a constant function, whose value is an
H-fixed point in K.

3. Proposition 11.2.26.
For another proof, let G act on a nonempty convex compact K. Since N is

amenable, KN ¤ ;. Since N is normal, G=N acts on KN , and since G=N is
amenable, .KN/G=N ¤ ;. But this last set is nothing but KG.

4. Proposition 11.3.8.
For another proof, write G D lim

�!
Gn, with natural homomorphisms fnWGn !

G such that fm D fmnfn for all m < n. Let G act on a nonempty convex compact
K. Then each Gn acts on K via fn, and KGn is nonempty because Gn is amenable.
Furthermore the KGn form a directed sequence of closed subsets of K: given
I b N finite, there is n 2 N greater than I, so

T
i2I KGi � KGn is not empty.

By compactness,
T

n2N KGn D KG ¤ ;. ut

We deduce immediately

Corollary 11.7.2. A group G is amenable if and only if all its finitely generated
subgroups are amenable.

Indeed one direction follows from (2), the other from (4) with N the family of finite
subsets of G, ordered by inclusion, and Gn D hni.

11.7.1 Elementary Amenable Groups

Finite groups are amenable; we saw in Corollary 11.4.2 and Proposition 11.6.9
that abelian groups are amenable and saw in Proposition 11.7.1 that the class
of amenable groups is closed under extensions and colimits. Following Mahlon
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Day [181], let us define the class of elementary amenable groups, EG. This is
the smallest class of groups that contains finite and abelian groups and is closed
under the four operations of Proposition 11.7.1: quotients, subgroups, extensions,
and directed unions.

Example 11.7.3. Virtually soluble groups are in EG.

Indeed, they are obtained by a finite number of extensions using finite and abelian
groups.

Example 11.7.4. For a set X, the group Sym.X/ of finitely supported permutations
is in EG.

Indeed, X is the union of its finite subsets, so Sym.X/ is the directed limit of finite
symmetric groups.

Example 11.7.5. Consider

G D h: : : ; x�1; x0; x1; � � � j hxi; : : : ; xiCki
.k/ for all i 2 Z; k 2 Ni;

where F.k/ denotes the kth term of the derived series of F. Then G is in EG.
Obviously the map xi 7! xiC1 extends to an automorphism of G; let bG denote the

extension G Ì Z using this automorphism. Then bG also is in EG.

Indeed, G D
S

k2Nhx�k; : : : ; xki, where each term is soluble. However, G itself is
not soluble.

Example 11.7.6. This example is similar to 11.7.5 but more concrete. Consider
formal symbols emn for all m < n 2 Z. The group M is the set of formal expressions
1C

P
m<n ˛mnemn, with ˛mn 2 Z and almost all 0; multiplication is defined by the

formulas emnenp D emp, all other products being 0. Then M is locally nilpotent, so it
is in EG.

Extend then M by the automorphism 
 W emn 7! emC1;nC1; the resulting group
bM D M Ì Z is again in EG and is finitely generated, by 1C e12 and 
 .

The class EG may be refined using transfinite induction. Let EG0 denote the
class of finite or abelian groups. For an ordinal ˛, let EG˛C1 denote the class of
extensions or directed unions of groups in EG˛; and for a limit ordinal ˛, set EG˛ DS
ˇ<˛ EGˇ .

Lemma 11.7.7. A group is elementary amenable if and only if it belongs to EG˛

for some ordinal ˛.

Proof. It suffices to see that the classes EG˛ are closed under subgroups and
quotients. This is clear for EG0. If ˛ is a successor, consider a subgroup H �
G 2 EG˛ . Either G D N:Q is an extension of groups in EG˛�1; and then
H D .N \ H/:.H=N \ H/ with H=N \ H � Q; or G D

S
Gi, in which case

H D
S
.H \ Gi/; in both cases, H 2 EG˛ by induction. Consider next a quotient

� W G � H. Either G D N:Q, and H D �.N/:.H=�.N// with Q � H=�.N/, or
G D

S
Gi, in which case H D

S
�.Gi/; in both cases, H 2 EG˛ by induction.



486 L. Bartholdi

If ˛ is a limit ordinal, then each G 2 EG˛ actually belongs to EGˇ for some
ˇ < ˛, and there is nothing to do.

Example 11.7.8. Continuing Example 11.7.4, consider H D Sym.Z/ Ì Z, with Z
acting on functions in Sym.Z/ by shifting: .n � p/.x/ D p.x � n/. Then H is 2-
generated, for example, by .1; 2/ 2 Sym.Z/ and a generator of Z.

Since Sym.Z/ is a union of finite groups but is neither finite nor abelian,
Sym.Z/ 2 EG1 n EG0. Likewise, H 2 EG2 n EG1.

Example 11.7.5 is a bit more complicated. Fk=F.k/k is soluble of class precisely
k; so it belongs to EGk�1 n EGk�2. Therefore, G 2 EG! , but G 62 EGn for finite n.
Similarly, bG 2 EG!C1. The same holds for M and bM from Example 11.7.6.

Note also in Example 11.7.4 that the group of all permutations of Z is not
amenable. Indeed it contains every countable group (seen as acting on itself); so
if it were amenable, then by Proposition 11.7.1 every countable group would be
amenable.

Recall that AG denotes the class of amenable groups. In [181], Mahlon Day asks
whether the inclusion EG 
 AG is strict; in other words, is there an amenable group
that may not be obtained by repeated application of Proposition 11.7.1 starting with
finite or abelian groups?

Theorem 11.7.9 (Chou [151, Theorems 2.3 and 3.2]). Finitely generated torsion
groups in EG are finite.

No finitely generated group in EG has intermediate word growth.

The inequality EG ¤ AG follows, since there exist finitely generated infinite torsion
groups (see [254] or Exercise 11.4.16) and groups of intermediate word growth, see
Theorem 11.4.12 and [269].

Proof. The two statements are proven in the same manner, by transfinite induction.
We only prove the second and leave the (easier) first one as an exercise. Let us
show that if G 2 EG has subexponential word growth, then G is virtually nilpotent.
Groups in EG0 have polynomial growth and are therefore virtually nilpotent by
Theorem 11.4.1. Consider next ˛ a limit ordinal, and G 2 EG˛ a finitely generated
group. We may assume that ˛ is minimal, so in particular ˛ is not a limit ordinal.
Since G is finitely generated, we have G D N:Q for N;Q 2 EG˛�1. By induction Q
is virtually nilpotent, so in particular it is virtually polycyclic. By Corollary 11.4.4
the subgroup N is finitely generated, so is virtually nilpotent by induction. By
Lemma 11.4.6, the group G is virtually soluble, and by Corollary 11.4.11 it has
either polynomial or exponential growth.

11.7.2 Subexponentially Amenable Groups

In [137, Section 14], Tullio Ceccherini-Silberstein, Pierre de la Harpe and Slava
Grigorchuk consider the class SG of subexponentially amenable groups as the
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smallest class containing groups of subexponential growth and closed under taking
subgroups, quotients, extensions, and direct limits. We then have EG ¤ SG 
 AG,
and we shall see promptly that the last inclusion is also strict.

We introduce a general construction of groups: let H be a permutation group
on a set A . We assume that the action is transitive and choose a point 0 2 A .
Let us construct a self-similar group M .H/ acting on the rooted tree A �, see
Definition 11.2.15. The group M .H/ is generated by two subgroups, written H
and K and isomorphic, respectively, to H and to H o H0 D H.A nf0g/ Ì H0. We first
define the actions of H and K on the boundary A N of the tree. The action of h 2 H
is on the first letter:

.a0a1 : : : /h D .a0h/a1 : : : :

The action of .f ; h/ 2 K, with f WA n fag ! H finitely supported, fixes aN and is as
follows on its complement:

.a0a1 : : : /.f ; h/ D 0 : : : 0.anh/.anC1f .an//anC2 : : : with n minimal such that an¤ 0:

The self-similarity of M .H/ is encoded by an injective homomorphism
˚ WM .H/ ! M .H/ oA H D M .H/A Ì H, written g 7! hhga j a 2 A ii� and
defined as follows. Given g 2 M .H/, its image � in H is the natural action of
g on faA N j a 2 A g Š A . The permutation ga of A N is the composition
A N ! aA N ! .a�/A N ! A N of the maps .w 7! aw/, g and ..a�/w 7! w/,
respectively. On the generators of M .H/, we have

˚.h/ D hh1 j a 2 A iih; ˚..f ; h// D hh f .a/ j a 2 A iih:

Proposition 11.7.10. If H is perfect and 2-transitive, then ˚ is an isomorphism.

Proof. First, if H is 2-transitive, then M .H/ is generated by three subgroups
H;H0;H. Fix a letter 1 2 A ; then H0 consists of those .1; h/ 2 K, and H consists
of those .f ; 1/ where f .a/ D 1 for all a ¤ 1. To avoid confusions between these
subgroups, we write h; h0; h for respective elements of H;H0;H.

To prove that ˚ is an isomorphism, it suffices to prove that hhh; 1; : : : ; 1ii,
hhh0; 1; : : : ; 1ii, and hhh; 1; : : : ; 1ii belong to ˚.M .H// for all h 2 H; h0 2 H0; h 2
H.

First, choose k 2 H0 with 1k ¤ 1. For all h; h
0
2 H, we have ˚.Œh; .h

0
/k�/ D

hh Œh; h
0
�; 1; : : : ; 1ii; and since H Š H is perfect, we get that the image of ˚

contains H 	 1 � � � 	 1. Consider next h0 2 H0; then ˚.h0h�1/ D hhh0; 1; : : : ; 1ii.
Finally, ˚.h/ D hhh; h; 1; : : : ; 1ii and hhh; 1; : : : ; 1ii belongs to the image of ˚ , so
hh1; h; 1; : : : ; 1ii also belongs to its image. Conjugating by an appropriate element of
H, we see that hhh; 1; : : : ; 1ii belongs to the image of ˚ .

Theorem 11.7.11 ([43]; see [106] for the proof). If H is finite, then the group
M .H/ is amenable.
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Proof. If H � bH as permutation groups then M .H/ � M .bH/. It therefore does
not reduce generality, in proving that M .H/ is amenable, to consider H perfect and
2-transitive.

We consider S D H [ K as generating set for M .H/. Let us define finite subsets
Ik 
 Lk of M .H/ inductively as follows:

I0 D K; L0 D I0H;

Ik D H � ˚�1.Ik�1 	 LA nf0g
k�1 /;

Lk D H � ˚�1.LA
k�1 n .Lk�1 n Ik�1/

A /:

Lemma 11.7.12. For all k 2 N, we have IkK D Ik and IkH D LkH D Lk; therefore,
IkS D Lk.

Proof. The claims are clear for k D 0. Also, LkH D Lk for all k. Consider g 2 Ik

and f 2 K, and write them g D hhhga j a 2 A ii and f D hh fa j a 2 A iih0. Note
gf D ahhgafa j a 2 A iih0. We have fa 2 H for all a ¤ 0, so gafa 2 Lk�1 for all
a ¤ 0; and f0 2 K so g0f0 2 Ik�1.

Lemma 11.7.13. Setting k D #Ik=#Lk, we have

k D
k�1

1 � .1 � k�1/#A
:

Proof. Set d D #A . From the definition, we get #Lk D #Ld
k�1#H.1 � .1 � k�1/

d/

and #Ik D #Ik�1#Ld�1
k�1#H, so

k D
#Ik

#Lk
D

#Ik�1

#Lk�1.1 � .1 � k�1/d/
:

ut

We are ready to prove that the sequence .Ik/ is a Følner sequence. In view of
Lemma 11.7.12, it suffices to prove k ! 1. Note 0 < k�1 < k < 1, so the
sequence .k/ has a limit, . Then  satisfies  D =.1 � .1 � /d/, so  D 1.

To prove that M .H/ has exponential growth, we use a straightforward criterion:

Proposition 11.7.14. Let a left-cancellative monoid G D hSiC act on a set X; let
there be a point x 2 X and disjoint subsets Ys 
 X n fxg satisfying xs 2 Ys and
YsS 
 Ys for all s 2 S. Then G is free on S, namely, G Š S�.

Proof. Consider distinct words u D u1 : : : um; v D v1 : : : vn 2 S�; we are to prove
that they have distinct images in G. Since G is left-cancellative, we may assume
either m D 0 or u1 ¤ v1. In the first case, xu D x ¤ xv 2 Yv1 , and in the second
case, Yu1 3 xu ¤ xv 2 Yv1 .
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The proposition implies that M .H/ has exponential growth for almost all H;
it seems difficult to formulate a general result, so we content ourselves with an
example:

Example 11.7.15. The group M .S3/ has exponential growth.

Proof. Write A D f0; 1; 2g and S3 D h.0; 1/; .0; 2/i. In our notation, consider the

elements s D .0; 1/.0; 1/ and t D .0; 2/
.1;2/0

.0; 2/. A quick calculation gives

˚.s/ D hh s.0; 1/; .0; 1/; 1ii.0; 1/; ˚.t/ D hh t.0; 2/; 1; .0; 2/ii.0; 2/;

Proposition 11.7.14 applies with G D hs; tiC and X D A N and x D 0N and Ys D

A �10N and Yt D A �20N.

The first construction of an amenable, not subexponentially amenable group
appears in [45], with an explicit subgroup of (what was later defined to be) M .D4/.

Example 11.7.16. The group M .A5/ belongs to AG n SG.

Proof. The group G :D M .A5/ is amenable by Theorem 11.7.11. It contains
M .S3/, e.g., because the permutations .0; 1/.3; 4/ and .0; 2/.3; 4/ generate a copy
of S3 in A5, so G has exponential growth by Example 11.7.15.

It remains to prove that G does not belong to SG, and we do this by transfinite
induction, defining (just as we did for EG) the class SG0 of groups of subexponential
growth and for an ordinal ˛ by letting SG˛ denote those extensions and directed
unions of groups in SGˇ for ˇ < ˛.

By way of contradiction, let ˛ be the minimal ordinal such that G belongs to
SG˛ . Since G is finitely generated, it is an extension of groups in SGˇ for some
ˇ < ˛. Now the only normal subgroups of G are 1 and the groups Gn in the series
defined by G0 D G and GnC1 D ˚

�1.GA
n 	H/; the argument is similar to that used

to show that G is not in EG, see Exercise 11.2.17. In particular, every nontrivial
normal subgroup of G maps onto G, so it cannot belong to SGˇ for some ˇ < ˛.

11.7.3 Free Group Free Groups

For levity, in this section by “free group,” we always mean “non-abelian free group.”
It follows from Proposition 11.7.1 that every group containing a free subgroup is
itself not amenable; this covers surface groups, or more generally word-hyperbolic
groups; free products of a group of size at least 2 with a group of size at least 3;
and SO3.R/; that last example is important in relation to the Banach-Tarski paradox
(see Section 11.5.1).

Let us denote by NF the class of groups with no free subgroup. In [181], Mahlon
Day asks whether the inclusion AG 
 NF is an equality; in other words, does every
non-amenable group contains a free subgroup?
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This was made into a conjecture by Frederick Greenleaf [265, Page 9],
attributed15 to von Neumann. Ching Chou [151] proved EG ¤ NF, while Alexander
Ol’shanskiı̆ [456] proved AG ¤ NF, see also Sergei Adyan [5]. Indeed, they proved
the much stronger result that the free Burnside groups

B.n;m/ D hx1; : : : ; xn j w
m for all words w in x˙11 ; : : : ; x˙1n i (11.12)

are non-amenable as soon as n � 2 and m � 665 are odd. These groups, of course,
do not contain any non-trivial free subgroup.

The following examples of groups are called “Frankenstein groups,” since (as
their namesake) they have rather different properties than the groups they are
built of:

Theorem 11.7.17 (Monod [421]). Let A be a countable subring of R properly
containing Z; let PA 
 P1.R/ be the set of fixed points of hyperbolic elements in
PSL2.A/, and let H.A/ be the group of self-homeomorphisms of P1.R/ that fix 1
and are piecewise elements of PSL2.A/ with breakpoints in PA. Then H.A/ is a
non-amenable free group free group.

Proof. Since A properly contains Z, it is dense in R, so PSL2.A/ is a countable dense
subgroup of PSL2.R/. It therefore generates a non-amenable equivalence relation on
P1.R/, by Example 11.6.18.

Lemma 11.7.18 ([421, Proposition 9]). For all p 2 P1.R/ n f1g, we have

p � PSL2.A/ 
 f1g [ p � H.A/:

Proof. Given g 2 PSL2.A/ with pg ¤ 1, we seek h 2 H.A/ with ph D pg. It will
be made of two pieces, g near p and z 7! z C r near 1 for a suitable choice of
r 2 A. Consider the quotient q :D g � .z 7! z� r/ 2 PSL2.A/; if q is hyperbolic, say
with fixed points �˙, and f�˙g separates p from1, then we may define h as g on
the component of P1.R/ n f�˙g containing p and as z 7! zC r on its complement.
Now an easy calculation shows that q is hyperbolic for all jrj large enough, and as
jrj ! ˙1 one of the fixed points of q approaches1 and the other approaches1g,
and as the sign of r changes the approach to1 is from opposite sides; so in all cases
it is easy to find a suitable r.

Therefore, the equivalence relation generated by H.A/ is non-amenable, so H.A/
is itself non-amenable.

On the other hand, consider f ; g 2 H.A/. We claim that they do not generate a
free group and more precisely that hf ; gi either is metabelian or contains a subgroup
isomorphic to Z2.

Let 1 ¤ h 2 hf ; gi00 belong to the second derived subgroup, and intersect as
few connected components of support.f / [ support.g/ as possible — if no such h
exists, we are already done. For every endpoint p 2 @.support.f / [ support.g//,

15Infelicitously!
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the element h acts trivially in a neighborhood of p, because both f and g act as
affine maps in a neighborhood of p; so the support of h is strictly contained in
support.f / [ support.g/. Since the dynamics of hf ; gi has attracting elements in the
neighborhood of p, there exists k 2 hf ; gi such that support.h/ and support.h/k are
disjoint; then hh; hki Š Z2.

Exercise 11.7.19 (***). Since H.A/ is not amenable, there is a free action of
PSL2.A/ on R by H.A/-wobbles. Construct explicitly such an action.

Hint: This is essentially what [382] does in computing the minimal number of
pieces in a paradoxical decomposition of H.A/, but it’s still highly non-explicit.

Thus we have EG ¤ SG ¤ AG ¤ NF. The last inequality also holds for finitely
generated groups — any finitely generated non-amenable subgroup of H.A/ will do.
Lodha and Moore construct finitely presented examples in [383].

Problem 11.7.20. Is the group H.Z/ amenable?

The group H.Z/ is related to a famous group acting on the real line, consider
Thompson’s group F (see Problem 11.11.3), which we describe here.

Example 11.7.21. Let F be the group of self-homeomorphisms of Œ0; 1� that are
piecewise affine with slopes in 2Z and breakpoints in ZŒ 1

2
�.

Conjugating F by Minkowski’s “?” map, defined by ‹.x/ D
P

n�0.�1/
n2�a0�����an

if x’s continued fraction expansion is Œa0; a1; : : : �, one obtains a group of piecewise-
PSL2.Z/ homeomorphisms of the real line with rational breakpoints; it is easy to see
that having rational breakpoints is equivalent to the maps being diffeomorphisms.

The same argument as that given in the proof of Theorem 11.7.17 shows that F
is a free group free group.

The difference with H.Z/ is that breakpoints of maps in H.Z/ are in PZ, which is
disjoint from Q. There are embeddings of F in H.Z/, so amenability of H.Z/ would
imply that of F.

Yet another description of F is by an action on the Cantor set. For this, break
the interval Œ0; 1� open at every dyadic rational; one obtains in this manner a Cantor
set, modeled on f0; 1gN by the usual binary expansion of real numbers, except that
one does not identify a1 : : : an01

1 with a1 : : : an10
1. The action of F is then by

lexicographical order-preserving maps that are piecewise of the form a1 : : : anv 7!

b1 : : : bkv for a collection of words .a1 : : : an; b1 : : : bk/ and every v 2 f0; 1gN. The
group F is finitely generated, by the elements x0W 00v 7! 0v; 01v 7! 10v; 1v 7! 11v

and x1W 0v 7! 0v; 1v 7! 1x0.v/, and is even finitely presented. See [125] for a
detailed survey of F.

11.8 Random Walks

We now turn to other criteria for amenability, expressed in terms of random walks.
For a thorough treatment of random walks, consult the book [588]; we content
ourselves with the subset most relevant to amenability. One is given a space X,
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and a random walker W moving at random in X. There is thus a random process
W 2 X S.W/ 2 X, describing a single step of the random walk. One asks for the
distribution Wn of the random walker after a large number n of iterations of S.

More formally, we are given one-step transition probabilities p1.x; y/ D P.Wn D

xjWn�1 D y/ of moving to x for a particle lying at y; they satisfy p1.x; y/ �
0 and

P
x2X p1.x; y/ D 1 for all y 2 X. We define iteratively pn.x; y/ DP

z2X pn�1.x; z/p1.z; y/ and then ask for asymptotic properties of pn.
Here are two fundamental examples. First, if X is a graph with finite degree, set

p1.x; y/ D 1= deg.y/ if x; y are neighbors, and p1.x; y/ D 0 otherwise. This is called
the simple random walk (SRW) on the graph X.

Another fundamental example is given by a group G, a right G-set X, and a
probability measure � on G, namely, a map �WG ! Œ0; 1� with

P
g2G �.g/ D 1 as

in (11.4). The random walk is then defined by

p1.x; y/ D
X

g2G;xDyg

�.g/: (11.13)

It is called the random walk driven by �. The measure � is called symmetric if
�.g/ D �.g�1/ for all g 2 G and is called adapted if its support generates G qua
semigroup.

These two examples coincide in case G D hSi is finitely generated and the
driving measure � is equidistributed on S; one considers then SRW on the Schreier
graph of the action of G on X.

A random walk p on a set X is reversible if there exists a function sWX ! .0;1/

satisfying s.x/p1.x; y/ D s.y/p1.y; x/ for all x; y 2 X. SRW is reversible on
undirected graphs, with s.x/ D deg.x/, and if � is symmetric, then the random
walk driven by � is reversible with s.x/ � 1.

11.8.1 Spectral Radius

We shall prove a criterion, due to Harry Kesten in the case of groups and Dodziuk-
Kendall and Gerl in the case of graphs, relating the spectral radius of the linear
operator associated with p to amenability. It first appeared in [345]. Let p be a
reversible random walk on a set X, for simplicity assumed symmetric throughout
this subsection. Set E D f.x; y/ 2 X2 j p1.x; y/ > 0g. We introduce two Hilbert
spaces:

`20 D ff WX ! R j hf ; f i <1g;

`21 D fgWE! R j g.x; y/ D �g.y; x/; hg; gi <1g

with scalar products

hf ; f 0i D
X

x2X

f .x/f 0.x/ and hg; g0i D
1

2

X

x;y2X

p1.x; y/g.x; y/g
0.x; y/:
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Elements of `21 are naturally extended to functions on X2 which vanish on X2 n E.
One step of the random walk p induces a linear operator T on `20 given by

.Tf /.x/ D
X

y2X

p1.x; y/f .y/:

Writing ıx for the function taking value 1 at x 2 X and 0 elsewhere, we then have
pn.x; y/ D .Tnıy/.x/. We also define operators d; d� between `20 and `21 by

dW `20 ! `21; .df /.x; y/ D f .x/ � f .y/;

d�W `21 ! `20; .d�g/.x/ D
X

y2X

p1.x; y/g.x; y/:

Lemma 11.8.1. T is a self-adjoint operator on `20 of norm at most 1. The operator
d� is the adjoint of d, and T D 1 � d�d.

Proof. The first claim follows from the second. For f 2 `20 and g 2 `21, we compute

hdf ; gi D
1

2

X

.x;y/2E

p1.x; y/.f .x/ � f .y//g.x; y/

D
1

2

X

x2X

f .x/
X

y2X

p1.x; y/.g.x; y/ � g.y; x//

D
X

x2X

f .x/.d�g/.x/ D hf ; d�gi;

and

.1 � d�d/f .x/ D f .x/ �
X

y2X

p1.x; y/.f .x/ � f .y// D
X

y2X

p1.x; y/f .y/:

ut

The following definitions are more commonly given in the context of graphs; our
more general setting coincides with it if p is the simple random walk:

Definition 11.8.2. Let p be a random walk on a set X. The isoperimetric constant
of p is

�.p/ D inf
FbX

p1.F;X n F/

#F
D inf

FbX

P
x2F;y2XnF p1.x; y/

#F
:

The spectral radius of p is the spectral radius—or, equivalently, the norm—of the
operator T .
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The following inequalities relating spectral radius and isoperimetric constant
appear, with different notation and normalization, in [84]:

Proposition 11.8.3. Let p be a symmetric random walk on a set X. Then the
isoperimetric constant � and spectral radius  of p are related by

�2 C 2 � 1 � �C :

Proof. We begin by the second inequality. For � > 0, let F b X satisfy p1.F;X n
F/=#F < �C�. Let � 2 `20 denote the characteristic function of F. Then k�k2 D #F,
and

kd�k2 D
1

2

X

.x;y/2E

p1.x; y/.�.x/ � �.y//
2 D

X

x2F;y2XnF

p1.x; y/ < .�C �/k�k
2I

then .C �C �/k�k2 > h�;T�iCkd�k2 D h�; .1�d�d/�iCkd�k2 D k�k2. The
conclusion C � � 1 follows under � ! 0.

In the other direction, consider for finite F b X the projection �FW `
2
0 ý defined

by .�Ff /.x/ D f .x/ if x 2 F and 0 otherwise, and set TF :D �FT�F. The operator
TF is self-adjoint and converges strongly to T as F increases, so the spectral radius
of TF converges to . For � > 0, let F be such that the spectral radius F of TF is
larger than  � �. Since TF has nonnegative entries, its eigenvalue F is simple and
has a nonnegative eigenvector �, by the Perron-Frobenius theorem. We extend � by
0 into an element of `20 and normalize it so that k�k D 1. Set then

A :D
1

2

X

.x;y/2E

p1.x; y/j�.x/
2 � �.y/2j;

and compute

A2 D

�
1

2

X

.x;y/2E

p1.x; y/j�.x/C �.y/j � j�.x/ � �.y/j

	2

�
1

2

X

.x;y/2E

p1.x; y/.�.x/C �.y//
2 �
1

2

X

.x;y/2E

p1.x; y/.�.x/ � �.y//
2

D .k�k2 C h�;TF�i/.k�k
2 � h�;TF�i/ D .1C F/.1 � F/;

because
P

.x;y/2E p1.x; y/�.x/�.y/ D
P

x2F �.x/
P

y2X p1.x; y/�.y/ D h�;TF�i.
On the other hand, let 0 < s1 < s2 < � � � < sn denote the finitely many values

that � takes, and define, for k D 1; : : : ; n,

Fk D fx 2 X j �.x/ � skg;
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with the additional conventions s0 D 0 and FkC1 D ;. Then

A D
1

2

X

.x;y/2E

p1.x; y/j�.x/
2 � �.y/2j D

nX

kD1

X

x2Fk ;y62Fk

p1.x; y/.s
2
k � s2k�1/

�

nX

kD1

�#Fk.s
2
k � s2k�1/ D �

nX

kD1

.#Fk � #FkC1/s
2
k D �k�k D �:

Combining, we get

.1 � . � �/2/ � 1 � 2F � A2 � �2I

and the conclusion 2 C �2 � 1 follows under � ! 0.

This section’s main result is the following characterization of amenable G-sets:

Theorem 11.8.4. Let� be a symmetric, adapted probability measure on a group G,
let X be a G-set, and let p be the random walk on X driven by �. Then the following
are equivalent:

1. X is amenable;
2. �.p/ D 0;
3. .p/ D 1.

Proof. .1/ ) .2/ Assume first that X is amenable, and let � > 0 be given. Let
S b G satisfy �.S/ > 1 � �=2. Let F b X satisfy #.FS n F/ < �#F=2. Then

X

x2F;y62F

p1.x; y/ �
X

x2F;y2FSnF

�.fs 2 S j y D xsg/C
X

x2F;g2GnS

�.g/ � �#F;

so �.p/ � � for all � > 0. (Note that we have not used the assumption that � is
adapted here.)
.2/ ) .1/ Let � > 0 and a finite subset S of G be given. By assumption, there

exist n 2 N and ı > 0 such that �n.s/ � ı for all s 2 S. Let F be a finite subset of
X such that

P
x2F;y62F pn.x; y/ < ı�#F. Then #.FS n F/ < �#F, so X is amenable by

Følner’s criterion, Theorem 11.3.23.5/) .1/.
The equivalence .2/, .3/ is given by Proposition 11.8.3.

The spectral radius of the random walk has a direct interpretation in terms of
probabilities of return of the random walk, at least when we restrict to transitive
random walks: random walks with the property that for any two x; y 2 X, there
exists n 2 N such that pn.x; y/ > 0 (not to be confused with random walks invariant
under a transitive group action!). Let us make the following temporary

Definition 11.8.5. The spectral radius of the random walk p based at x is

.p; x/ :D lim sup
n!1

n
p

pn.x; x/:
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Lemma 11.8.6 (Fekete). Let N 2 N be given, and let ˛W fN;N C 1; : : : g ! R be
a subadditive function, i.e., a function satisfying ˛.mC n/ � ˛.m/C ˛.n/. Then

lim
n!1

˛.n/

n
D inf

n>0

˛.n/

n
I

in particular ˛.n/=n either converges or diverges to �1.

Proof. Consider any a � N, and write every k � N as k D qaC r with q 2 N and
r 2 fN;N C 1; : : : ;N C a � 1g. Then, for k � N,

˛.k/

k
�

q˛.a/C ˛.r/

qaC r
�
˛.a/

a
C
˛.r/

k
I

letting k ! 1, we get lim supn!1 ˛.k/=k � ˛.a/=a for every a � N;
so lim supn!1 ˛.k/=k D infa2N ˛.a/=a converges or diverges to �1.

The “limsup” in the definition of the spectral radius is in fact a limit and is
independent of the starting and endpoints:

Proposition 11.8.7. Assume p is transitive. Then

.p; z/ D lim sup
n!1

n
p

pn.x; y/ D lim
n!1

2n
p

p2n.x; x/ for all x; y; z 2 X:

Proof. For the first claim, consider more generally w; x; y; z 2 X. There are ` 2 N
such that p`.x;w/ > 0; and m 2 N such that pm.z; y/ > 0. Since pnC`Cm.x; y/ �
p`.x;w/pn.w; z/pm.z; y/ for all n 2 N, we have

lim sup
n!1

n
p

pn.x; y/ � lim sup
n!1

n�`�m
p

p`.x;w/pm.z; y/
n�`�m

p
pn.w; z/ D lim sup

n!1

n
p

pn.w; z/:

Applying it to .w; x; y; z/ D .z; x; y; z/ and .x; z; z; y/, respectively, gives the claim.
It is then clear that lim supn!1

2n
p

p2n.x; x/ � .p; x/; but conversely p2n.x; x/ �
pn.x; x/2, so lim supn!1

2n
p

p2n.x; x/ � lim supn!1
n
p

pn.x; x/ D .p; x/.
Now p2rC2s.x; x/ � p2r.x; x/p2s.x; x/ for all r; s 2 N. Setting ˛.r/ D

� log p2r.x; x/, we get ˛.rC s/ � ˛.r/C ˛.s/; furthermore, because p is transitive,
˛.r/ is defined for all r large enough, and ˛.r/ � 0 because p2r.x; x/ � 1. By
Lemma 11.8.6, ˛.r/=r converges, whence 2n

p
p2n.x; x/ converges.

Proposition 11.8.8. Let p be symmetric and transitive. Then the spectral radius of
p is equal to the norm of T acting on `2.X/.

Proof. Let us write kTk the operator norm of T on `2.X/. First, by Proposi-
tion 11.8.7,

.p; x/ D lim
n!1

2n
p

p2n.x; x/ D lim
n!1

2n
p
hT2nıx; ıxi �

2n
p
kT2nk � kTk:
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Next, consider f 2 CX. By Cauchy-Schwartz’s inequality, for all m 2 N we have

hTmC1f ;TmC1f i D hTmf ;TmC2f i � kTmfk � kTmC2fkI

so kTmC1fk=kTmfk is increasing, with limit limn!1
n
p
kTnfk. Now

lim
n!1

n
p
kTnfk D lim

n!1

2n
p
hTnf ;Tnf i D lim

n!1

2n
p
hT2nf ; f i

D lim
n!1

2n

s X

x;y2support.f /

p2n.x; y/f .x/f .y/ D .p; x/;

because the sum is finite. Taking m D 0, we obtain kTfk=kfk � .p; x/ for all
f 2 CX; and since CX is dense in `2.X/, we have kTk � .p; x/.

The probabilities of return, in the case of SRW, have a straightforward interpre-
tation in terms of paths: say we consider a k-regular graph X with basepoint �. Then
there are kn paths of length n starting at �, and among these asymptotically .p/n

will end at �. Therefore, non-amenable graphs are characterized as those graphs in
which exponentially few paths are closed.

Example 11.8.9. Let us look first at an amenable example: X D Z and p1.x; x ˙
1/ D 1

2
; this is SRW on the line. We write pn.x; y/ for the probability that a particle

starting at y reaches x at time n, that is, the probability that Tn.x/ D y. The simple
formula

pn.x; y/ D

8
<

:

1
2n

� n
nCx�y

2

�
if nC x � y � 0 .mod 2/;

0 else

is easily justified as follows: at each step, one chooses C1 or �1 with equal
probabilities; at time n we then made 2n choices. If .nC x � y/=2 of these are C1
and .n� xC y/=2 are �1, then we end up at xC .nC x� y/=2� .n� xC y/=2 D y.

In particular, if n is even, we have pn.x; x/ D 2�n
� n

n=2

�
, so by Stirling’s formula

nŠ /
p
2�n.n=e/n we get

pn.x; x/ /

r
2

�n
:

Example 11.8.10. Consider the free group Fd, whose Cayley graph is a 2d-regular
tree T . Fix an edge of this tree, e.g., between 1 and x1, let An denote the number of
closed paths in T based at 1 and by Bn the number of closed paths in T , based at
1, that do not cross the fixed edge. Consider the generating series A.z/ D

P
Anzn

and B.z/ D
P

Bnzn. Then A.z/ D 1=.1 � 2dz2B.z//, because every closed path
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factors uniquely as a product of closed paths that reach 1 only at their endpoints;
and B.z/ D 1=.1 � .2d � 1/z2B.z// for the same reason; so

A.z/ D
1 � dC d

p
1 � 4.2d � 1/z2

1 � 4d2z2

and An / .8d � 4/n=2 and pn.1; 1/ / .8d � 4/n=2=.2d/n. Therefore, SRW on Fd has
spectral radius .p/ D

p
2d � 1=d.

The isoperimetric constant of SRW may also easily be computed. A connected,
finite subset F of T has #F vertices and is connected to 2n#F edges, of which
2.#F � 1/ point back to F, so

P
x2F;y62F p1.x; y/ D ..2n � 2/#F C 2/=2n. The

isoperimetric constant is therefore �.p/ D 1 � 1=n.

Exercise 11.8.11 (**). Compute the isoperimetric constant of SRW on the surface
group ˙g D ha1; b1; : : : ; ag; bg j Œa1; b1� � � � Œag; bg� D 1i.

Hint: its Cayley graph is a tiling of hyperbolic plane by 4g-gons, meeting 4g per
vertex. Use Euler characteristic.

Note that it is substantially harder to compute the spectral radius of SRW; only
estimates are known, proportional to

p
g, see [261] for the best bounds.

It is sometimes easier to count reduced paths in graphs, rather than general paths.
Formally, this may be expressed as follows: let G D hS[S�1i be a finitely generated
group, and write S˙ D S [ S�1. There is a natural map � WFS ! G induced by the
inclusion S ,! G. The spectral radius of SRW on G is

 D lim
n!1

n
p

#fw 2 .S˙/n j w DG 1g

#S˙
2 Œ0; 1�:

The cogrowth of G is

� D lim
n!1

n
p

#w 2 FS j �.w/ D 1#.S [ S�1/ 2 Œ1; #S˙ � 1�:

Theorem 11.8.12 ([267]; see also [39, 158, 557, 587]). The parameters �;  are
related by the equation

 D
� C .#S˙ � 1/=�

#S˙
if � > 1:

In particular, G is amenable if and only if � D #S˙ � 1.

Proof. The most direct proof is combinatorial. Define formal matrices B;C indexed
by G with power series coëfficients by

B.z/g;h D
X

w2FSWg�.w/Dh

zjwj; C.z/g;h D
X

w2.S˙/�WgwDGh

zjwj:
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Set for convenience q :D #S˙ � 1. We shall prove the formal relationship

B.z/

1 � z2
D

C.z=.1C qz2//

1C qz2
; (11.14)

from which the claim of the theorem follows. Define the adjacency matrix

Ag;h D
X

s2S˙WgsDh

1I

then C.z/ D 1=.1 � zA/. If for all s 2 S˙ we define

Bs.z/g;h D
X

w2FSnf1gWw1Ds;g�.w/Dh

zjwj

then

B.z/ D 1C
X

s2S˙

Bs.z/; Bs.z/ D sz.B.z/ � Bs�1 .z//

which solve to Bs.z/ D .1 � z2/�1.sz � z2/B.z/ and therefore to

1C qz2

1 � z2
B.z/ D 1C

X

s2S˙

z

1 � z2
sB.z/ D 1C

z

1 � z2
AB.z/I

so .1C qz2/=.1� z2/ �B.z/ D 1=.1� z=.1C qz2/A/, which is equivalent to (11.14).

It is also known that  �
p

#S˙ � 1, with equality if and only if G Š FS, see [470].

11.8.2 Harmonic Functions

We shall obtain, in this subsection, yet another characterization of amenability in
terms of bounded harmonic functions.

Definition 11.8.13. Let p be a random walk on a set X. A harmonic function is a
function f WX ! R satisfying

f .x/ D
X

y2X

p1.y; x/f .y/:

In other words, f is a martingale: along a trajectory .Wn/ of a random walk, the
expectation of f .Wn/ given W0; : : : ;Wn�1 is f .Wn�1/.
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A random walk is called Liouville if the only bounded harmonic functions are
the constants.

If X is a G-set and p is the random walk driven by a measure � on the group G,
we say that .X; �/ is Liouville when the corresponding random walk is Liouville.

Bounded harmonic functions are fundamental in understanding long-term behavior
of random walks. The space of trajectories of a random walk on X started at � 2 X is
the probability space .XN; �/, in which the trajectory .W0;W1; : : : / has probability
�.W0;W1; : : : / D

Q
n�0 �.fg 2 G j Wng D WnC1g/ when W0 D �. An asymptotic

event on .XN; �/ is a measurable subset of XN that is invariant under the shift map
of XN. Given a asymptotic event E, we define a bounded function f on X by f .x/ D
�.E\fWn D xg/=�.fWn D xg/, with n chosen large enough so that the denominator
does not vanish; and check that it is harmonic by conditioning on the first step of
the random walk; conversely, given a bounded harmonic function f the limit f .Wn/

almost surely exists along trajectories, by Doob’s martingale convergence theorem,
so EŒa;b� D f.W0;W1; : : : / j lim f .Wn/ 2 Œa; b�g is an asymptotic event. In summary,
a random walk is Liouville if and only if there are no nontrivial asymptotic events.

Let us continue with the example of SRW on Z: a harmonic function satisfies
f .x � 1/C f .xC 1/ D 2f .x/, so f is affine. In particular, SRW on Z is Liouville.

Let us consider next the example of SRW, started at the identity, on the Cayley
graph of F2 D ha; b ji, which is a tree. The random walk .Wn/ escapes at speed
1=2 toward the boundary of the tree, since at every position except the origin it has
three ways of moving one step farther and one way of moving one step closer; so
in particular almost surely Wn ¤ 1 for all n large enough. Let A � F2 denote those
elements whose reduced form starts with a, and define

f .g/ D P.Wn 2 g�1A for all n large enough/:

In words, f .g/ is the probability that a random walk started at g escapes to the
boundary of the tree within A. It is clear that f is bounded, and it is seen to be
harmonic by conditioning on the first step of the random walk. More succinctly, “the
random walk eventually escapes in A” is a nontrivial asymptotic event. Therefore,
SRW on a regular tree is not Liouville.

Exercise 11.8.14 (*). Let .X; �/ and .Y; �/ be Liouville random walks. Prove that
.X 	 Y; � 	 �/ is Liouville.

Let us recal some properties of measures and random walks. The set `1.G/ of
summable functions on G is a Banach *-algebra, for the convolution product

.��/.g/ D
X

gDhk

�.h/�.k/ for �; � 2 `1.G/: (11.15)

We denote by L� the adjoint of �, defined by L�.g/ D �.g�1/. If X is a G-set, then
`p.X/ is an `1.G/-module for all p 2 Œ1;1�, under

.f�/.x/ D
X

xDyh

f .y/�.h/ for f 2 `p.X/; � 2 `1.G/:
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If a random walk is driven by a measure �, then from (11.13) we get Tf D f�. With
our notation, a function f 2 `1.X/ is harmonic for the random walk driven by a
measure � if and only if f L� D f .

The Liouville property is fundamentally associated with a measure or a random
walk. It has a counterpart which solely depends on the space and is a variant of
amenability with switched quantifiers (see Proposition 11.3.25):

Definition 11.8.15. A G-set X is called laminable16 if for every � > 0 and every
f 2 $.`1X/ there exists a positive function g 2 `1.G/ with kfgk < �kgk.

Proposition 11.8.16. Let G be a group, viewed as a right G-set GG. Then GG is
amenable if and only if GG is laminable.

Let G be an amenable group, and let X " G be a G-set. Then X is laminable if
and only if it is transitive or empty.

Proof. By Proposition 11.3.25, GG is amenable if for every � > 0 and every 0 ¤
g 2 $.`1G/ there exists a positive function f 2 `1.X/ with kfgk < �kfk kgk;
equivalently, kLgLfk < �kgk kfk, which is the definition of laminability of GG.

For the second statement: if there is more than one G-orbit on X, choose x; y in
different orbits; then k.ıx � ıy/gk D 2kgk for all positive g 2 `1.G/. Conversely,
given � > 0 and f 2 $.`1X/, choose x 2 X and h 2 $.`1G/ with f D ıxh.
Since G is amenable, there is a positive function g 2 `1.G/ with kgLhk < �kgk; so
kf Lgk D kxhLgk D kgLhk < �kgk, and X is laminable.

The following easy proposition is an analogue to Proposition 11.2.10:

Proposition 11.8.17. Let G;H be groups; let X" G and Y " H be, respectively,
a G-set and an H-set; let �WG � H be a homomorphism; and let f WX ! Y be a
surjective equivariant map, namely, satisfying f .xg/ D f .x/�.g/ for all x 2 X; g 2
G. If X is laminable, then Y is laminable.

Proof. Given � > 0 and e 2 $.`1Y/, there is e0 2 $.`1X/with e0 D eıf , because f
is surjective; then there is a positive function g 2 `1.G/ with ke0gk < �kgk, because
X is laminable; then ke�.g/k � ke0gk < �kgk D ��.g/, so Y is laminable.

Corollary 11.8.18. Let X " G be a G-set and let H � G be a subgroup. If H is
amenable and transitive, then X is laminable. ut

Lemma 11.8.19. If X " G is laminable, then for every x 2 X, every finite subset
S b X, and every � > 0, there exists a positive function g 2 `1.G/ with

kısg � ıxgk < �kgk for all s 2 S:

Furthermore g may be supposed to be of finite support.

16This is a contraction of “Liouville” and “amenable.”
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Proof. Consider f D
P

s2S ıs � #Sıx. Since X is laminable, there is for every � > 0
a positive function g 2 `1.G/ with kfgk < �kgk=2. Then

�kgk > 2kfgk � 2
���
X

s2S

max.ısg � ıxg; 0/
��� D

X

s2S

2kmax.ısg � ıxg; 0/k

�
X

s2S

kısg � ıxgk:

Using density of finitely supported functions in `1.G/ gives the last claim.

The main result of this section is:

Theorem 11.8.20. Let X be a G-set. The following are equivalent:

1. X is laminable;
2. There exists a symmetric measure � with support equal to G such that .X; �/ is

Liouville;
3. There exists a measure � on G such that .X; �/ is Liouville.

Corollary 11.8.21 (Kaimanovich-Vershik [325, Theorem 4.4]). Let G be a
countable group. Then G is amenable if and only if there exists a measure � (ad
lib. symmetric, with full support) such that .G; �/ is Liouville. ut

Note that there exist amenable non-laminable G-sets, such as Example 11.3.13,
and non-amenable graphs for which SRW is Liouville, see [69] or [67, Chapter 13].
At the extreme, note that the empty set is laminable but not amenable, and the
disjoint union of two points is amenable but not laminable. Here is a slightly less
contrived example:

Example 11.8.22 (Kaimanovich). Consider the binary rooted tree with vertex set
f0; 1g� and an edge between a1 : : : an and a1 : : : anC1 for all ai 2 f0; 1g. Fix a
function f WN! N satisfying f .n/ < n for all n 2 N, and put also an edge between
a1 : : : an and a1 : : : baf .n/ : : : an for all ai 2 f0; 1g. Finally add some loops at the root
so as to make the graph 6-regular; we have constructed a graph G , with a natural
action of F6 once the edges are appropriately labeled. We consider SRW on G .

On the one hand, G is not amenable, for example, because SRW drifts away from
the root at speed .4� 2/=6 D 1=3 or because the isoperimetric inequality in G is at
least as bad as in a binary tree.

On the other hand, if f grows slowly enough, then SRW on G is Liouville; indeed
SRW converges to the boundary of the binary tree, represented by binary sequences
f0; 1gN, and it suffices to show that there are no asymptotic events on this boundary.
If f is such that f�1.n/ is infinite for all n 2 N, then each cöordinate in f0; 1gN is
randomized infinitely often by the walk when it follows the f -edges, so there is no
nonconstant measurable function on the space of trajectories.

For the remainder of the section, we assume the hypotheses of the theorem:
a countable group G and a transitive G-set X are fixed. We also assume that all
measures � under consideration satisfy �.1/ > 0 and call such � lazy. This
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is harmless: a function f is harmonic for � if and only if it is harmonic for
q�C .1 � q/ı1 whenever q 2 .0; 1�.

Lemma 11.8.23. Let � be a lazy measure on G. Then there exists a sequence
.�n/! 0, depending only on �.1/, such that, for all f 2 `1.X/,

kf�n � f�nC1k � �nkfk:

Proof. Since kf�n � f�nC1k1 � kfk1 � k�n � �nC1k1, it suffices to prove k�n �

�nC1k1 ! 0. Set q D �.1/; we assume q 2 .0; 1/. Define a measure � on N by
�.0/ D q; �.1/ D p D 1 � q, and let � be the probability measure on G such that
� D qı1 C p�. Then

�n.g/ D .qı1 C p�/n.g/ D
nX

iD0

�n.i/�i.g/;

so k�n � �nC1k D

����
nC1X

iD0

.�n.i/ � �nC1.i//�i

����:

Since �n.i/ � �nC1.i/ D �n.i/ � q�n.i/ � p�n.i � 1/ D p.�n.i/ � �n.i � 1//, it
suffices to prove

PnC1
iD0 j�

n.i/ � �n.i � 1/j ! 0. Remembering �n.i/ D
�n

i

�
piqn�i,

the argument of the absolute value is positive for i < pn and negative for i > pn, soPnC1
iD0 j�

n.i/ � �n.i � 1/j � �n.bpnc/C �n.dpne/! 0.

Corollary 11.8.24. For every bounded sequence of functions .Fn/ in `1.X/, every
pointwise accumulation point of the sequence .Fn L�

n/ is harmonic. ut

Proposition 11.8.25 ([194, Théorème 4]). Let� be lazy and adapted. Then .X; �/
is Liouville if and only if

for all x; y 2 X W kıx�
n � ıy�

nk1 ! 0 as n!1:

Proof. Let first f 2 `1.X/ be harmonic. Then for all n 2 N

jf .x/ � f .y/j D

ˇ̌
ˇ̌
X

z2X

f .z/
�X

zDxh

�n.h/ �
X

zDyh

�n.h/
�ˇ̌
ˇ̌

� kfk1 �
X

z2X

ˇ̌
.ıx�

n/.z/ � .ıy�
n/.z/

ˇ̌
D kfk1 � kıx�

n � ıy�
nk ! 0;

so f is constant.
Conversely, assume that there exist x; y 2 X and a sequence .ni/ such that

kıx�
ni � ıy�

nik � 4c > 0 for all i 2 N. Set Vi :D fz 2 X j .ıx�
ni/.z/ > .ıy�

ni/.z/g;
then

X

z2Vi

.ıx�
ni/.z/ � .ıy�

ni/.z/ � 2c:
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Set then Wi :D fz 2 X j .ıx�
ni/.z/ � .1 C c/.ıy�

ni/.z/g; then .ıx�
ni/.Wi/ �

c, for otherwise one would have
P

z2Vi
.ıx�

ni/.z/ � .ıy�
ni/.z/ D

P
z2Wi

.: : : / CP
z2VinWi

.: : : / < cC c D 2c. Set finally fi D 1Wi L�
ni . Note then

fi.y/ D
X

zDyh

1Wi.z/�
ni.h/ D

X

z2Wi

.ıy�
ni/.z/ �

X

z2Wi

.ıx�
ni/.z/=.1Cc/ D fi.x/=.1Cc/;

and similarly fi.x/ D .ıx�
ni/.Wi/ � c, so any accumulation point of the fi is

harmonic by Corollary 11.8.24, bounded and nonconstant.

Proof (Proof of Theorem 11.8.20, see [325, Theorem 4.3]). .1/ ) .2/ We assume
throughout that X is transitive and therefore countable. Fix a basepoint x0 2 X, and
let fx0; x1; : : : g be an enumeration of X. Choose two sequences .ti/i2N and .�i/i2N
of positive real numbers with

P
ti D 1 and lim �i D 0. Let .ni/ be a sequence of

integers with .t1C� � �Cti�1/ni < �i for all i. Since X is laminable, by Lemma 11.8.19,
there exists for every i a positive function ˛i 2 `

1.G/, normalized by k˛ik D 1 and
supported on a finite set (say Fi), with

k.ıs � ıx0 /˛ik < �i for all s 2 fx0; : : : ; xig � .f1g [ F1 [ � � � [ Fi�1/
ni :

Let us set � D
P

i2N ti˛i. To prove that .G; �/ is Liouville, it suffices, by
Proposition 11.8.25, to prove that kıx�

n � ıx0�
nk ! 0 for all x 2 X. Say x D x`;

we claim that kıx�
n` � ıx0�

n`k < 4�`, and this is sufficient to conclude the proof.
For convenience let us write n` D n, and expand

�n D
XX

k1;:::;kn
tk1 � � � tkn˛k1 � � �˛kn : (11.16)

We subdivide the sum (11.16) into two summands, �1 on which all ki < ` and
�2 D �

n � �1. First, k�1k D
P

ki<`
tk1 � � � tkn D .t1 C � � � C t`�1/n` < �`, so kıx�1 �

ıx0�1k < 2�`. Secondly, consider a summand � D ˛k1 � � �˛kn appearing in �2; by
hypothesis ki � ` for some i, which we choose minimal. The summand then has
the form �1˛ki�2. The supports of ıx�1 and of ıx0�1 are by hypothesis contained
in fx; x0g � .f1g [ F1 [ � � � [ F`�1/n` , so kıx�1˛ki � ıx0˛kik < �` and kıx0�1˛ki �

ıx0˛kik < �`. Consequently, kıx� � ıx0�k < 2�`, so kıx�2� ıx0�2k < 2�` and finally
kıx�

n � ıx0�
nk < 4�` as required.

.2/) .3/ is obvious.

.3/ ) .1/ By Proposition 11.8.25, the sequence .�n/n2N is asymptotically
invariant. Consider � > 0 and f 2 $.`1X/. There is then a subset S b X 	 X such
that f D f 0 C

P
.x;y/2S ıx � ıy with kf 0k < �=2; we have kf�nk �

P
.x;y/2S kıx�

n �

ıy�
nkC kf 0�nk, and for n large enough, each ıx�

n � ıy�
n has norm at most �=2#S,

from which kf�nk < � D �k�nk, and X is laminable.
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Exercise 11.8.26 (**, [325]§6.5). Let G be a group and let� be a finitely supported
probability measure on G. Prove that .G; �/ is Liouville if and only if .G; L�/ is
Liouville.

On the other hand, give a group G and a probability measure � on G such that
.G; �/ is Liouville but .G; L�/ is not Liouville.

Hint for the second part: take G D Z=2 o Z, the “Lamplighter group” from
Example 11.2.16. Choose a positive sequence .�n/n�0 with

P
�n D

1
2

and
P

n�n D

1. Write elements of G as pairs .f ;m/ with f WZ ! Z=2 and m 2 Z, and define
�WG! Œ0; 1� by

�.0; 1/ D
3

8
; �.0;�1/ D

1

8
;

�.f ; 0/ D

(
�n
2n if fng 
 support.f / 
 f0; : : : ; ng for some n 2 N;

0 else.

11.9 Extensive Amenability

We introduce now a property stronger than amenability for G-sets, a property that
behaves better with respect to extensions of G-sets (whence the name). This section
is based on [320].

Definition 11.9.1. Let X be a set; recall that Pf .X/ denotes the collection of finite
subsets of X. An ideal in Pf .X/ is a subset, for some x 2 X, of the form fE b X j
x 2 Eg.17

Let X be a G-set. It is extensively amenable if there exists a G-invariant mean m
on Pf .X/ giving weight 1 to every ideal.

It follows immediately from the definition that m.f;g/ D 0 if X ¤ ; and that for
every E b X we have m.fF b X j E 
 Fg/ D 1.

Recall that Pf .X/ is an abelian group under symmetric difference 4 and is
naturally isomorphic to .Z=2/.X/ under the map E 7! 1E. Recall also from (11.1)
that the wreath product Z=2 oX G is the semidirect product G Ë .Z=2/.X/, with G
acting on .Z=2/.X/ by permuting its factors.

Lemma 11.9.2. If G is amenable, then all G-sets are extensively amenable. Every
extensively amenable nonempty G-set is amenable.

Proof. Let G be amenable and let X be a G-set. Consider the set K of means on
Pf .X/ giving full weight to every ideal. Clearly K is a convex compact subset of
`1.Pf .X//� and is nonempty because it contains any cluster point of .ıE/EbX . Since
G is amenable, there exists a fixed point in K, so X is extensively amenable.

17It is really the ideal generated by fxg in the semigroup .Pf .X/;[/.
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Let next X " G be extensively amenable, and let m be an invariant mean in
`1.Pf .X/ n f;g/�. Define a mean on X by

`1.X/ 3 f 7! m
�

E 7!
1

#E

X

x2E

f .x/
�
;

and note that it is G-invariant because m is.

Lemma 11.9.3. Let X be a G-set. Then the following are equivalent:

1. X is extensively amenable;
2. For every finitely generated subgroup H of G and every H-orbit Y 
 X, the H-set

Y is extensively amenable;
3. For every finitely generated subgroup H of G and every x0 2 X, there is an H-

invariant mean on Pf .x0H/ that gives nonzero weight to fE b x0H j x0 2 Eg;
4. There is a G-invariant mean on Pf .X/ that gives nonzero weight to fE b X j

x0 2 Eg for all x0 2 X.

Proof. .1/) .4/ by definition.
.4/ ) .3/ There is a natural map `1.Pf .x0H// ! `1.Pf .X// given by f 7!

f .� \ x0H/, inducing an H-equivariant map M .Pf .X//!M .Pf .x0H//.
.3/ ) .2/ Let Y D x0H be an H-orbit, and let m0 be an H-invariant mean on

Pf .Y/ that gives positive weight to fA b Y j x0 2 Ag. As in Theorem 11.3.23,
the mean m0 may be approximated by a net pn of probability measures on Pf .Y/:
these are maps Pf .Y/ ! Œ0; 1� with total mass 1. Define now for every k 2 N new
probability measures on Pf .Y/ by

pn;k.E/ D
X

E1[���[EkDE

pn.E1/ � � � pn.Ek/:

Let m be an cluster point of the pn;k as n; k!1; then m is an H-invariant mean on
Pf .Y/, and we check that it gives mass 1 to the ideal S :D fE b Y j x0 2 Eg and
therefore also to every ideal because H acts transitively on Y and m is H-invariant:
since m0.S/ > 0, there exists ı < 1 such that pn.S/ > 1 � ı for all n large enough,
and then pn;k.S/ > 1 � ık so at the cluster point m.S/ D 1.
.2/ ) .1/ For every finitely generated subgroup H of G and every finite union

Y D Y1 [ � � � [ Yn of H-orbits, choose for i D 1; : : : ; n an H-invariant mean mi

on Pf .Yi/, and construct a mean mH;Y on Pf .X/ by mH;Y.S/ D m1.fE \ Y1 j E 2
Sg/ � � �mn.fE \ Yn j E 2 Sg/. Clearly mH;Y is H-invariant and gives full weight to
ideals in Pf .Y/. Order the pairs .H;Y/ by inclusion, and consider a cluster point of
the net .mH;Y/. It is G-invariant and gives full weight to ideals in Pf .X/.

Note that Lemma 11.9.3(2) implies in particular that extensively amenable sets
are hereditarily amenable: every subgroup acting on every orbit is amenable. We
obtain in this manner an abundance of amenable actions that are not extensively



11 Amenability of Groups and G-Sets 507

amenable. For instance, consider Example 11.3.13 of an amenable action of F2 D
ha; b ji, and the subgroup K D hab�1

; ab�2
i. Then K is a free group of rank 2, and

the K-orbit Y of 1 in X is free, so Y is not an amenable K-set, and therefore X is
not extensively amenable. We shall see in Example 11.9.20 a hereditarily amenable
G-set that is not extensively amenable.

We come to the justification of the terminology “extensive amenability”: the
analogue of Corollary 11.2.27 for G-sets.

Proposition 11.9.4. Let G be a group acting on two sets X;Y, and let qWX ! Y be
G-equivariant. If Y is extensively amenable and if for every y 2 Y the Gy-set q�1.y/
is an extensively amenable, then X is extensively amenable. The converse holds if q
is onto.

Proof. The proof follows closely that of Proposition 11.2.26; see [320, Proposi-
tion 2.4] for details. Assume that q�1.y/ is extensively amenable for all y 2 Y , and
let my be a Gy-invariant mean giving full weight to ideals. By making one choice
per G-orbit, we may also assume that my0 is the push-forward by g of my whenever
y0 D yg. Extend every my to a mean on Pf .X/; then .my/ is a G-equivariant map
Y !M .Pf .X//.

For every F D fy1; : : : ; yng b Y , we set

mF.S/ D my1 .fE \ q�1.y1/ j E 2 Sg/ � � �myn.E \ q�1.yn//;

and note that mF gives full weight to every ideal of the form fE b X j x 2
Eg for some x 2 q�1.F/. The map F 7! mF defines a G-equivariant map
Pf .Y/ ! M .Pf .X//. Composing with the barycentre � as in (11.6), we obtain
a G-equivariant map m�WM .Pf .Y//!M .Pf .X//.

Assume now that Y is extensively amenable, and let n be a G-invariant mean on
Pf .Y/ giving full weight to ideals. Set m :D m�.n/; then m is a G-invariant mean
on Pf .X/ giving full weight to ideals, so X is extensively amenable.

Assume finally that q is onto and that X is extensively amenable. By
Lemma 11.9.3, the Gy-subset q�1.y/ of X is extensively amenable for all y 2 Y . Let
m be a mean on Pf .X/ giving full weight to ideals, and define a mean n on Pf .Y/
by n.S/ D m.fE b X j q.E/ 2 Sg/. Given y 2 Y , choose x 2 q�1.y/, and note

n.fF b Y j y 2 Fg/ D m.fE b X j y 2 q.E/g/ � m.fE b X j x 2 Eg/ D 1:

ut

In particular, let K � H � G be groups. Then KnG is an extensively amenable
G-set if and only if both KnH and HnG are extensively amenable. This is in contrast
with Example 11.2.18, where the corresponding property is shown not to hold for
amenability of sets.

The following proposition relates Definition 11.9.1 to the original definition; we
begin by introducing some vocabulary. Let A denote the category of group actions:
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its objects are pairs X " G of a set X and an action of G on X, and a morphism
.X " G/ ! .Y " H/ is a pair of maps .f WX ! Y; �WG ! H/ intertwining
the actions on X and Y , namely, satisfying f .x/�.g/ D f .xg/ for all x 2 X; g 2 G.
We denote by AA and EA the subcategories of amenable, respectively, extensively
amenable actions.

We are interested in functors FW ffinite sets, injectionsg ! AA, written F.X/ D
F0.X/" F1.X/ for a group F1.X/ and an F1.X/-set F0.X/. Since amenable actions
are closed under directed unions, and every set is the directed union of its finite
subsets, we get by continuity a functor still written FW fsets, injectionsg ! AA,
called an amenable functor. If furthermore F takes values in EA then we call it an
extensively amenable functor. We call the functor F tight if the map F0.X n fxg/!
F0.X/ is never onto.

We already saw some examples of tight functors: for any amenable group A, the
functor X 7! A.X/" A.X/ since A.X/ is the directed union of its amenable subgroups
AE over all E b X; the functor X 7! Sym.X/ " Sym.X/, by the same reasoning
(see Example 11.7.4); and the functor X 7! X" Sym.X/. Note that if X is a G-set,
then F0.X/ and F1.X/ inherit G-actions by functoriality.

Proposition 11.9.5 ([320, Theorem 3.14]). Let F be a functor as above, and let
X be a G-set. If X is extensively amenable and F is amenable, then F0.X/" .G Ë
F1.X// is amenable, and if furthermore F is extensively amenable, then F0.X/ "
.G Ë F1.X// is extensively amenable.

Conversely, if F is tight and F0.X/ " .G Ë F1.X// is amenable, then X is
extensively amenable.

Proof. Assume first that F is amenable. For every E b X let mE 2M .F0.E//F1.E/

be an invariant mean, and extend it functorially to a mean still written mE 2

M .F0.X//F1.E/. By choosing once mE per cardinality class of subsets of X, we may
ensure that we have f�.mE/ D mE0 for every bijection f WE ! E0. We obtain in this
manner a G-equivariant map Pf .X/ ! M .F0.X//, and therefore, composing with
the barycentre � as in (11.6), a map M .Pf .X//G !M .F0.X//G.

By assumption, there exists m0 2M .Pf .X//G giving full mass to ideals; let m be
the image of m0 under the above map. Clearly m is a G-invariant mean on F0.X/. It
is also F.A/-invariant for every A b X: one may restrict m0 to fE b X j A 
 Eg and
still obtain a mean. Every mE is F1.E/-invariant, so it is in particular F.A/-invariant,
and therefore m is also F.A/-invariant. In summary, m is G Ë F1.X/-invariant, so
F0.X/ is an amenable G Ë F1.X/-set.

For the converse, define a G-equivariant map supportWF0.X/! Pf .X/ by

support.x/ D
\
fE b X j x 2 image.F0.E/! F0.X//g:

Assume that F0.X/ is an amenable GË F1.X/-set, and let m0 be a G-invariant mean
on F0.X/. Let m the push-forward of m0 via support; it is a G-invariant mean on
Pf .X/. Choose x0 2 X. By definition, m.fE b X j x0 2 Eg/ D m0.S/ for the ideal
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S D fx 2 F0.X/ j x0 2 support.x/g

D
\

x0 62EbX

.F0.X/ n image.F0.E/! F0.X///

D F0.X/ n F0.X n fx0g/:

Since F is tight, S ¤ ;. Furthermore, m0 is F1.X/-invariant, so m0.S/ > 0. We
conclude by Lemma 11.9.3 that X is extensively amenable.

Finally, to prove that F0.X/ is an extensively amenable G Ë F1.X/-set whenever
F is an extensively amenable functor, we apply the converse just proven to the
functor H.X/ D .Z=2/.X/ " .Z=2/.X/. For every X, we know from the first part
of the proof that H0.F0.X// is an amenable .G Ë F1.X// Ë H1.F0.X//-set, since
we assumed F1.X/ " G Ë F1.X/ is extensively amenable. Therefore, the functor
X 7! H0.F0.X//" .F1.X/ËH1.F0.X/// is amenable, and yet again the second part
of the proof allows us to deduce that F0.X/" G Ë F1.X/ is extensively amenable.

A fundamental application of Proposition 11.9.5 is the following.

Corollary 11.9.6. Let H be a subgroup of GËF.X/ for some extensively amenable
G-set X. If H \ .G 	 1/ is amenable, then H is amenable too.

Proof. By Proposition 11.9.5, F.X/ is extensively amenable, so by Lemma 11.9.3
the H-orbit 1 � H 
 X is an extensively amenable H-set and is therefore amenable
by Lemma 11.9.2. The stabilizers in this action are conjugate to H\ .G	 1/, which
is amenable by assumption, so H is amenable by Proposition 11.2.26.

There is also a connection between extensive amenability and laminability, see
Definition 11.8.15: by Corollary 11.8.18, if X " G is extensively amenable then
F.X/" G Ë F.X/ is laminable.

In the next section, we shall see a sufficient condition for an action to be
extensively amenable, and in Example 11.9.15 an application to interval exchange
transformations.

We finish this section by a very brief summary of the “only if” part of a proof
of Theorem 11.4.1 due to Kleiner [350] and simplified by Tao; we include it
here because it combines amenability and the study of (now unbounded) harmonic
functions.

Let G be a group of polynomial growth; we are to show that G has a nilpotent
subgroup of finite index. We may of course assume that G is infinite, and by
induction on the growth degree, it suffices to show that G has a finite-index subgroup
mapping onto Z. For that purpose, it suffices to show that G has an infinite image in
some virtually soluble group. By [543], every amenable finitely generated subgroup
of GLn.C/ is virtually soluble, and G is amenable by Proposition 11.3.14, so it
suffices to construct a representation G ! GLn.C/ with infinite image. The proof
uses the following arguments:

Lemma 11.9.7. Let G be a countably infinite amenable group. Then there exists an
action of G on a Hilbert space H with no fixed points.
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Proof. Consider H D `2.N 	 G/, the space of square-summable functions
.f1; f2; : : : / in `2.G/. There is a natural, diagonal action of G on H by right
translation. This action has a fixed point 0, but we can construct an affine action
without fixed point as follows.

Let .Fn/n2N be a Følner sequence in G, and define h D .1Fn=
p

#Fn/n2N. Then
h 62 H , but h � hg 2 H for all g 2 G, using the almost invariance of .Fn/. We let
G act on H by f � g D fgC h � hg, namely, we move the fixed point to h.

The main result, whose proof we omit, is the following control on the growth
of harmonic functions. It follows easily from Gromov’s theorem, but Bruce Kleiner
gave a direct and elementary proof of it:

Lemma 11.9.8. Let G be a group of polynomial growth, and let � be a measure on
G. Then for every d 2 N, the vector space of harmonic maps uWG ! R of growth
degree at most d (namely, for which there is a constant C with ju.g/j � Cjgjd for all
g 2 G) is finite-dimensional. ut

The proof of Theorem 11.4.1 is then finished: a group G of polynomial growth is
amenable, so by Lemma 11.9.7 it has an affine, fixed-point-free action on a Hilbert
space H . Let � be SRW on G, and define

EWH ! RC; v 7!
1

2

X

s2S

�.s/kvs � vk2:

Since H has no fixed point, E.v/ > 0 for all v 2 H . Let us assume that E.v/
attains its minimum—this can be achieved by considering a sequence of better and
better approximations to a minimum in an ultrapower of H —and call its minimum
h. One directly sees from @E.v/=@vjh D 0 that h is �-harmonic, and it is not
constant. Then V :D fhhjvi j v 2 H g is a vector space of Lipschitz harmonic
maps, so it is finite-dimensional by Lemma 11.9.8, and G’s action on V has infinite
image because V has no nonzero G-fixed point.

11.9.1 Recurrent Actions

We saw in Proposition 11.3.14 that actions on subexponentially growing spaces
are amenable and in Theorem 11.8.4 that random walks on graphs in which the
probability of return to the origin decays subexponentially give amenable actions.
We see here that stronger conditions—quadratic growth, recurrent random walks—
produce extensively amenable actions.

Let p1WX 	 X ! Œ0; 1� be a random walk on a set X. It is recurrent at x 2 X
if
P

n�0 pn.x; x/ D 1, namely, if a random walk started at x is expected to return
infinitely often to x and equivalently if it is certain to return to x. It is transient if it
is not recurrent.
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We computed in Example 11.8.9 that the probability of return in to the origin in
n steps of SRW on Z is / n�1=2; so the probability of return to the origin on Zd is
/ n�d=2. It follows that SRW on Zd is recurrent precisely for d � 2.

Lemma 11.9.9. The random walk p is recurrent if and only if for every x 2 X, there
exists a sequence of functions .an/ in `2.X/ with an.x/ D 1 and kan�Tank ! 0, for
T the associated random walk operator.

Proof. For a function � 2 `2.X/, define its Dirichlet norm as D.�/ D kd�k2 D
1
2

P
x;y2X.f .x/� f .y//2p1.x; y/. The claim is equivalent to requiring the existence of

functions an 2 `
2.X/ with an.x/ D 1 and arbitrarily small Dirichlet norm. If X is

finite, there is nothing to do, as the functions an � 1 have D.an/ D 0.
Choose x 2 X. Assume first that p is transient, so that G.y/ :D

P
n�0 pn.x; y/ is

well defined. Then for all � 2 `2.X/, we have

hd�; dGi D h�; d�dGi D �.x/;

and jhd�; dGij2 � D.�/D.g/, so D.�/ � �.1/=D.g/ is bounded away from 0.
Assume next that p is recurrent. For every n 2 N, set Gn.y/ D

Pn
mD0 pm.x; y/

and an.y/ D Gn.y/=Gn.x/. Since by assumption Gn.x/ ! 1, the functions an.y/
satisfy the requirement.

For random walks with finite range, the following criterion due to Nash-Williams
is very useful. Let p be a transitive random walk on a set X, and let x 2 X be a
basepoint. A slow constriction of X is a family fxg D V0 � V1 � � � � of finite
subsets of X, such that

S
Vn D X and p1.Vm;Vn/ D 0 whenever jm � nj � 2 andP

n�0 p1.Vn;VnC1/
�1 D1. A refinement of p is the random walk on a set obtained

by subdividing arbitrarily each transition p1.x; y/ by inserting midpoints along it.

Theorem 11.9.10 (Nash-Williams [439]). Let p be a transitive random walk on
a set X. Then p is recurrent if and only if it has a refinement admitting a slow
constriction.

The result applies to Zd for d � 2: the sets Vn may be chosen as f�n; : : : ; ngd. We
only prove the “only if” direction, which is the important direction for us.

Proof (First proof of Theorem 11.9.10, “only if” direction). Given a constriction
.Vn/, set cn D 1=p1.Vn;VnC1/, and define an associated random walk q on N by
q1.n; n C 1/ D cn=.cn C cn�1/ and q1.n; n � 1/ D cn�1=.cn C cn�1/. It is easy to
check

P
n qn.1; 1/ D1 if the constriction is slow.

We shall give another proof of the “only if” direction, based on Lemma 11.9.9;
we begin by a simple

Lemma 11.9.11. Let
P

i vi be a positive, divergent series. Then there exist �i;n � 0

such that
P

i �i;nvi D 1 for all n and
P

i �
2
i;nvi & 0 as n!1.
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Proof. Let ˛n D 1C1=n be a decreasing sequence converging to 1. Group the terms
in
P
vi into blocks w1 C w2 C � � � such that wi � 1 for all i. Set

�i;n D
˛n � 1

wk˛k�1
n

if vi belongs to the block wk:

ut

Proof (Second proof of Theorem 11.9.10, “only if” direction). Let .Vi/i�1 be a slow
constriction of X with basepoint x, and set vi :D 1=p1.Vi;ViC1/. Apply the lemma
to the divergent series

P
vi, and define maps anWX ! Œ0; 1� by

an.y/ D 1 �
X

i

�i;nvi1y62Vi :

Then an has finite support, so in particular it belongs to `2.X/; an.x/ D 1 because
x 2 Vi for all i; and kan � angk2 ! 0 for all g 2 G because

P
�2i;nvi ! 0.

The main result of this section is the following. We will prove it in two different
manners and, in fact in this manner, recover the “if” direction of Theorem 11.9.10:

Theorem 11.9.12. If X is a G-set with an adapted recurrent random walk, then X
is extensively amenable.

We begin with some preparation for the proof. Let � be a symmetric, adapted
measure on a group G, and let X be a G-set. For a basepoint x 2 X and a trajectory
x; xg1; xg1g2; : : : of the random walk on X, the corresponding length-n inverted orbit
is the random subset

On D fx; xgn; xgn�1gn; : : : ; xg1 � � � gng:

If X is transitive, then #On depends only mildly on the choice of x.

Proposition 11.9.13. Let X be a transitive G-set and let � be a symmetric, adapted
probability measure on G. Then X is extensively amenable if and only if

lim
n!1

�1

n
log E.2�#On/ D 0: (11.17)

Proof. Thanks to Proposition 11.9.5, it is enough to prove that (11.17) is equivalent
to the amenability of the G Ë .Z=2/.X/-set .Z=2/.X/. Choose a basepoint x 2 X,
and consider on G Ë .Z=2/.X/ the probability distribution � :D 1

2
.1 C ıx/ � � �

1
2
.1 C ıx/, called the “switch-walk-switch” measure: in the action on .Z=2/.X/,

it amounts to randomizing the current copy of Z=2, moving to another position
in X, and randomizing the new copy of Z=2. By Kesten’s Theorem 11.8.4,
amenability of the action on .Z=2/.X/ is equivalent to subexponential decay of
return probabilities of a random walk .f0 D 1; f1; f1f2; : : : / on .Z=2/.X/, namely, to
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limn!1
�1
n log P.f1 � � � fn D 1/ D 0. Now the support of f1 � � � fn is contained in On:

writing each fi D ı�i
x giı

�i
x with gi 2 G, we get f1 � � � fn D g1 � � � gnı

�1
xg1���gn

ı
�1C�2
xg2���gn � � � ı

�n
x ;

and fn randomizes every copy of Z=2 indexed by On, so P.fn D 1/ D E.2�#On/.

Lemma 11.9.14. Let p be a transitive random walk on a G-set X driven by a sym-
metric probability measure �. Then X is recurrent if and only if lim 1

nE.#On/ D 0.

Proof. Choose a basepoint x 2 X for the random walk .x D x0; x1; : : : /, and define
the random variable � D minfn � 1 j xn D xg. Then

E.#OnC1 � #On/ D P.xgnC1 62 On/

D P.xgnC1 62 fx; xgn; xgn�1gn; : : : ; xg1 � � � gng/

D P.fxgnC1; xgnC1g
�1
n ; xgnC1g

�1
n g�1n�1; � � � ; xgnC1g

�1
n � � � g

�1
1 g 63 x/

D P.� > nC 1/;

because the random walk with increments gnC1; g�1n ; : : : ; g�11 has the same law
as �n. Therefore, E.#On/=n ! P.� D 1/, which vanishes if and only if X is
recurrent.

Proof (First proof of Theorem 11.9.12). We may assume, by Lemma 11.9.3, that
X is transitive. Let p be an adapted, transitive, recurrent random walk on X. By
Lemma 11.9.14, we have 1

nE.#On/! 0, so by convexity

�1

n
log E.2�#On/ �

1

n
E.#On/ log 2! 0;

so X is extensively amenable by Proposition 11.9.13.

Proof (Second proof of Theorem 11.9.12). Let x 2 X be arbitrary. We start, using
Lemma 11.9.9, with a sequence of functions .an/ in `2.X/ satisfying an.x/ D 1 and
lim kan � angk D 0 for all g 2 G. (This is also the outcome of the second proof of
Theorem 11.9.10.) We construct then maps bnWPf .X/! Œ0; 1� by

bn.E/ D
Y

y2E

an.y/:

They are finitely supported and therefore may be viewed in `2.Pf .X//. It remains to
check that they are almost invariant under the action of Z=2 oX G. Assuming that X
is transitive, this last group is generated by ıxWX ! Z=2 and G. We have bnıx D bn,
because bn.E/ D bn.E4fxg/.

The spaces `2.Pf .X// and
N

X `
2.C2/ are isometric; the isometry is the obvious

one mapping ıE to
N

x2X ıx2E, if we take fıfalse; ıtrueg as basis of `2.C2/. We compute

kbnk
2 D hbn; bni D

Y

y2X

.12 C an.y/
2/;
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and for g 2 G we similarly have hbn; bng�1i D
Q

y2X.1C an.y/an.yg//, so

�
hbn; bni

hbn; bng�1i„ ƒ‚ …
A

	2
D
Y

y2X

.1C an.y/2/.1C an.yg/2/

.1C an.y/an.yg//2„ ƒ‚ …
B

:

Taking logarithms, and using the approximation log.t/ � t � 1,

0 � 2 log.A/ �
X

y2X

log.B/ �
X

y2X

.an.y/ � an.yg//2

.1C an.y/an.yg//2
� kan � ang�1k2 ! 0;

so hbn; bni=hbn; bng�1i ! 1 and therefore kbn � bngk ! 0.

Example 11.9.15. An interval exchange is a piecewise translation self-map of the
circle. More precisely, it is a right-continuous map gWR=Z ý such that ^.g/ :D
fg.x/ � x j x 2 R=Zg is finite.

The rotation x 7! x C ˛ is an extreme example of interval exchange.18 The
interval exchange transformations naturally form a group IET acting on R=Z; and
every countable subgroup G � IET can be made to act on the Cantor set by letting
D be the union of the G-orbits of discontinuity points of G (or of 0 if all elements
of G are rotations) and replacing R=Z by

X :D .R=Z nD/ [ .D 	 fC;�g/;

namely, by opening up the circle at every point of D; see [340, Section 5].

Little is known on the group IET; in particular, it is not known whether it contains
non-abelian free groups or whether it is amenable. We prove:

Theorem 11.9.16 ([320, Theorem 5.1]). Let � � R=Z be a finitely generated
subgroup with free rank at most 2, namely, dim.�˝ Q/ � 2. Then

IET.�/ :D fg 2 IET j ^.g/ 
 �g

is an amenable subgroup of IET.

Proof. We first prove that the action of IET.�/ on R=Z is extensively amenable.
Choose a finite generating set for �; then the Cayley graph of � is quasi-isometric
to Zd for d � 2 and in particular is recurrent. Let G D hSi be a finitely generated
subgroup of IET.�/. For x 2 R=Z, the orbit xG injects into � under the map y 7!
y�x, and this map is Lipschitz with Lipschitz constant maxs2S max�2^.s/ k�k, so the

18The name “interval exchange” comes from opening up the circle into an interval Œ0; 1�; the
rotation on the circle may be viewed as an exchange of two intervals Œ0; 1 � ˛� 7! Œ˛; 1�; Œ1 �
˛; 1� 7! Œ0; ˛�.
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Schreier graph of xG is recurrent. Theorem 11.9.12 implies that xG is an extensively
amenable G-set, so R=Z is an extensively amenable IET.�/-set by Lemma 11.9.3.

We wish to apply Corollary 11.9.6 to X D R=Z and G D IET.�/ and
F.X/ D X" Sym.X/. Given an interval exchange map g 2 IET, let Qg be the unique
left-continuous self-map of R=Z that coincides with g except at its discontinuity
points, and let �g D g�1 Qg 2 Sym.R=Z/ be the corresponding permutation of the
discontinuity points of g�1. We have a cocycle identity �gh D �

h
g �h, so the map

�W

(
IET ! IET Ë Sym.R=Z/

g 7! .g; �g/

is an embedding. Observe that �g D 1 if and only if g is continuous, namely, is a
rotation. Therefore, �.IET.�// \ .IET.�/ 	 1/ D � consists of rotations, so it is
amenable. We deduce by Corollary 11.9.6 that IET.�/ is amenable.

11.9.2 Topological Full Groups

We apply the results from the previous sections to exhibit a wide variety of amenable
groups.

We begin by a fundamental construction. Let G be group acting on a compact
set X. The associated topological full group is the group ŒŒG;X�� of piecewise-G
homeomorphisms of X:

ŒŒG;X�� D f�WX ýj 9�WX ! G continuous with �.x/ D x�.x/ for all xg:

Note that � takes finitely many values since it is a map from a compact set to a
discrete set. If we suppose X discrete rather than compact, then ŒŒG;X�� becomes the
group of bijective G-wobbles of X that we saw in Section 11.5.2. The connection is
even more direct: let x 2 X be such that its orbit xG is dense in X. Then ŒŒG;X�� acts
faithfully on the orbit xG by G-wobbles.

The natural setting for the definition of the topological full group is that of
groupoids of germs. We recall the basic notions:

Definition 11.9.17. A groupoid is a set G with source and range maps s; rWG ý,
with an associative multiplication �1�2 defined whenever r.�1/ D s.�2/, and with
an everywhere-defined inverse satisfying ���1 D s.�/ D r.��1/. Its set of units is
the subset G0 of elements of the form ���1. The groupoid G is called topological
if G is a topological space and the multiplication and inverse maps are continuous.
Note that for every x 2 G0, the subset Gx :D f� 2 G j s.�/ D r.�/ D xg is a group,
called the isotropy group of G at x.
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A fundamental example is given by a G-set X: the associated groupoid is X 	 G as
a set, with s.x; g/ D x and r.x; g/ D xg and .x; g/.xg; h/ D .x; gh/ and .x; g/�1 D
.xg; g�1/. One writes this groupoid as X Ì G and calls in the action groupoid of
X" G.

Another example is given by the groupoid of germs, see Section 11.7.3. Let XÌG
be an action groupoid, and declare .x; g/ � .y; h/ when x D y and there exists an
open neighborhood of x on which g and h agree. The set of equivalence classes G is
called the groupoid of germs of X Ì G.

Definition 11.9.18. Let G be a groupoid of germs, and let G0 be its space of units.
A bisection is a subset F of G such that s; rWF ! G0 are homeomorphisms. Note
in particular that bisections are open and closed. Bisections may be composed and
inverted, qua subsets of G. The full group ŒŒG�� of a groupoid G is the group of its
bisections.

Note that the topological full group of the groupoid of germs of the action of a
group G coincides with the earlier definition of topological full group. It is more
convenient to consider the full group of a groupoid of germs, because it is defined
only in terms of local homeomorphisms and not of the global action of a group.

Theorem 11.9.19 ([321, Theorem 11]). Let X be a G-topological space, let
G denote the groupoid of germs of X, and let H be a groupoid of germs of
homeomorphisms of X. Assume that

1. G is finitely generated;
2. At every x 2 X the group of germs Gx is amenable;
3. For every g 2 G, there are only finitely many x 2 X such that .x; g/ 62 H, and

then for each of these x, the action of G on xG is extensively amenable;
4. The topological full group ŒŒH�� is amenable.

Then G is amenable, and if X is compact, then ŒŒG�� is amenable too.

Proof. Let P be the space of “finitely supported sections of HnG”: the quotient HnG
is the set of equivalence classes in G under � � ı� for all � 2 G; ı 2 H, and

P D f�WX ! HnG finitely supported j s.�.x// 2 xH for all x 2 Xg:

There is a natural action of G on P, by .�g/.x/ D �.x/ � .t.�.x//; g/.
We claim that P is an amenable G-set. For this, note first that there are only

finitely many G-orbits in X at which at element of P can possibly be nontrivial: let S
be a finite generating set for G; then for every s 2 S there is a finite subset ˙s 
 X
at which .x; s/ 62 H, so if .x; g/ 62 H for some g D s1 : : : sn, then .xs1 : : : si�1; si/ 62 H

for some i, and therefore x 2 ˙si G for some i.
The G-set P is naturally the direct product, with diagonal action, of its restrictions

to the finitely many G-orbits in X at which P can possibly be nontrivial. We therefore
restrict ourselves to a single G-orbit Y 
 X, and the corresponding image PY D

f�WY ! HnGg of P.
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Let us choose, for every y; z 2 Y , an element fy;z 2 G with s.fy;z/ D y and
r.fy;z/ D z, taking fz;y D f�1y;z and fy;y D 1. Choose also a basepoint x 2 Y . We have
a “twisted” embedding �WG! Gx oY G given by g 7! ..y 7! fx;y.y; g/fyg;x/; g/. Note
that PY is isomorphic, qua G-set, to

F
Y HxnGx with natural action of �.G/.

Now since Gx is amenable, we have a functor ffinite setsg ! famenable groupsg
given by E 7! G

.E/
x ; since X and therefore Y are extensively amenable, Proposi-

tion 11.9.5 implies that
F

Y Gx is an amenable Gx oY G-set, and a fortiori so is its
quotient P.

We next prove that the stabilizer G� of every � 2 P is amenable. Let fv1; : : : ; vng

be the support of �, and set K D G� \ Gv1 \ � � � \ Gvn . We have a natural
homomorphism K ! Gv1 	 � � � 	 Gvn to an amenable group, whose kernel is
contained in ŒŒH��; so K is amenable. Iteratively applying Proposition 11.2.26 proves
that G� \ Gv1 \ � � � \ Gvi is amenable for all i D n; n � 1; : : : ; 0.

We apply once more Proposition 11.2.26 to deduce that G is amenable. Finally,
the full group ŒŒG�� is the union of groups generated by finite sets of bisections, to
which the theorem applies, so ŒŒG�� itself is amenable.

Example 11.9.20 ([320, Theorem 6.1]). Consider the “Frankenstein group” H.A/
from Theorem 11.7.17. Then the action of H.A/ on R is hereditarily amenable but
is not extensively amenable.

Indeed, consider first H � H.A/ and any x 2 R, and set m :D inf.xH/ 2 R[f1g,
as at the end of the proof of Theorem 11.7.17. Every element of H00 acts trivially in a
neighborhood of m. Consider a sequence .xn/ in R converging to m; then any cluster
point of the sequence of measures .ıxn/ is an H00-invariant mean on xH. Since H=H00

is amenable, there is also an H-invariant mean on xH.
On the other hand, since H.A/ is not amenable, there exists a non-amenable

finitely generated subgroup G � H.A/, and Theorem 11.9.19 should not apply to
G with H the groupoid of germs of the action of PSL2.R/ on R [ f1g. However,
the first condition is satisfied by assumption, the second one is satisfied because
the group of germs at x 2 R is at most Affine.R/ 	 Affine.R/, and the fourth one
is satisfied because projective transformations are analytic, so their germs coincide
with point stabilizers, namely, with Affine.R/. Therefore, the third condition fails,
so there exists x 2 R such that the action of G on xG is not extensively amenable.

We now specialize the results to X, a Cantor set, and more precisely the Cantor
set of paths in a specific kind of graph:

Definition 11.9.21 ([104]; see [204]). A Bratteli diagram is a directed graph D D
.V;E/ along with decompositions V D

F
i�0 Vi and E D

F
i�1 Ei in nonempty

finite subsets, such that e� 2 Vi�1 and eC 2 Vi for all e 2 Ei. For v 2 V we denote
by Xv the set of paths starting at V0 and ending at v; by Xn D

S
v2Vn

Xv the set of
paths of length n starting at V0; and by X the set of infinite paths starting at V0.

If for any n � m there exists a path from every vertex in Vm to every vertex in
Vn, the diagram is called simple.

For e D .e1; : : : ; en/ 2 Xn, we denote by eX the set of paths beginning with e;
it is a basic open set for the topology on X, which turns X into a compact, totally
disconnected space. If D is simple then X has no isolated points, so it is a Cantor set.
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For two paths e; f 2 Xv for some v 2 Vn, we define a homeomorphism Te;f W eX !
fX by

Te;f .e; enC1; : : : / D .f ; enC1; : : : / for all ei 2 Ei:

Denote by T the groupoid of germs of all homeomorphisms of Te;f . It coincides with
the tail equivalence groupoid of D :

T D f.e; f / 2 X 	 X j e D .ei/i�1; f D .fi/i�1; and ei D fi for all i large enoughg;

with the obvious groupoid structure s.e; f / D e, r.e; f / D f , and .e; f / � .f ; g/ D
.e; g/. The topology on T has as basic open sets fgerms of Te;f g.

Let us describe the topological full group ŒŒT��. Every g 2 ŒŒT�� acts locally like
Te;f for some v 2 Xn and some e; f 2 Xv; since X is compact, there exists a common
n.g/ 2 N, assumed minimal, for all these local actions. Write ŒŒT��n D fg 2 ŒŒT�� j
n.g/ � ng; then ŒŒT��n is a group and is in fact isomorphic to

Q
v2Vn

Sym.Xv/ �
Sym.Xn/, since every g 2 ŒŒT��n is uniquely determined by the rule .e; enC1; : : : /

g D

.eg; enC1; : : : /. It follows that ŒŒT�� D
S

n�0ŒŒT��n is a locally finite group.

Definition 11.9.22 ([321]). Consider a homeomorphism aWX ý. For v 2 Vn

denote by ˛a.v/ the number of paths e 2 Xv such that a�eX does not coincide
with a transformation of the form Te;f for some f 2 Xv . The homeomorphism a is
called of bounded type if kak :D supv2V ˛a.v/ is finite and there are only finitely
many points x 2 X at which the germ .a; x/ does not belong to T.

It is easy to see that the set of bounded-type self-homeomorphisms of X forms a
group. The following result produces a wide variety of amenable groups:

Theorem 11.9.23 ([321, Theorem 16]). Let D be a Bratteli diagram, and let G be
a group of homeomorphisms of bounded type of X. If the groupoid of germs of G
has amenable isotropy groups, then G is amenable.

Proof. We may assume without loss of generality that G is finitely generated. We
apply Theorem 11.9.19 with H D T; since ŒŒT�� is locally finite, it is amenable. The
only condition to check is that the action of G on X is extensively amenable; we
prove that it is recurrent and apply Theorem 11.9.12.

Consider therefore an orbit xG of G and a finite generating set S of G. We will in
fact prove that the simple random walk on xG admits a slow constriction and apply
Theorem 11.9.10.

The Schreier graph of the orbit xG � X is an S-labeled graph. In it, remove
all edges y ! ys such that the germ .y; s/ does not belong to T. By assumption,
only finitely many edges were removed, so the resulting graph has finitely many
connected components; let P 
 xG be a choice of one point per connected
component. We have covered xG by finitely many T-orbits. For e D .ei/i�1 2 P
consider

Fn;e D f.a1; a2; : : : ; an; enC1; : : : / 2 xG j a1 2 E1; : : : ; an 2 Eng;
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and set Fn D
S

e2P Fn;e. The Fn are finite subsets of xG, and xG D
S

Fn. For
e 2 P; s 2 S, there are at most ˛s.eCn / paths f 2 Fn;e with fs 62 Fn;e; so #.FnSnFn/ �

#P � #S �maxs2S ksk are bounded. Furthermore the FnS nFn may be assumed disjoint
by passing to a subsequence.

Definition 11.9.24 ([204, Definition 6.3.2]). A Bratteli-Vershik diagram is a Brat-
teli diagram D D .V;E/ together with a partial order � on E such that e; f are
comparable if and only if eC D fC. For every v 2 V , there is an induced linear
order on Xv: if e D .e1; : : : ; en/; f D .f1; : : : ; fn/ 2 Xv , then e � f if and only
if ei � fi; eiC1 D fiC1; : : : ; en D fn for some i 2 f1; : : : ; ng. We let Xmax denote
those e D .e1; : : : / 2 X such that .e1; : : : ; en/ is maximal for all n 2 N, define Xmin

similarly, and say D is properly ordered if #Xmax D #Xmin D 1.
The adic transformation of a properly ordered Bratteli-Vershik diagram .D ;�/ is

the self-homeomorphism aWX ý defined as follows. If e D .e1; : : : / 2 X is such that
.e1; : : : ; en/ is not maximal in XeC

n
for some n 2 N, then ea :D .f1; : : : ; fn; enC1; : : : /.

Otherwise, e is the unique maximal path in X, and ea is defined to be the unique
minimal path in X.

If D is simple, then a is a minimal transformation of X. Bratteli-Vershik diagrams
encode all minimal homeomorphisms of Cantor sets:

Theorem 11.9.25 ([289], see [204, Theorem 6.4.6]). Every minimal homeomor-
phism of the Cantor set is topologically conjugate to the adic transformation of a
properly ordered simple Bratteli-Vershik diagram. ut

(The idea of the proof is to choose a decreasing sequence .Cn/n�0 of clopen sets,
shrinking down to a base point fxg, and to consider the associated “Kakutani-
Rokhlin tower”: the largest collection of iterated images of Cn under the home-
omorphism that are disjoint. These translates of Cn make up the nth level of the
Bratteli-Vershik diagram.)

Corollary 11.9.26 ([318]). Let a be a minimal homeomorphism of a Cantor set X.
Then the topological full group ŒŒhai;X�� is amenable.

Proof. Using Theorem 11.9.25, we may assume a is the adic transformation of a
Bratteli-Vershik diagram. It follows directly that ˛a.v/ D 1 for every v 2 V and
that the germs of a belong to T for all points x 2 X n Xmax. No power of a has fixed
points so their germs are all trivial.

Here are some typical examples of minimal Z-actions on a Cantor set, to which
Corollary 11.9.26 applies to produce amenable groups:

Example 11.9.27. Consider an irrational ˛ 2 .0; 1/ and the transformation x 7!
xC ˛ on R=Z. It is minimal, since ZC Z˛ is dense in R. We can replace R=Z by a
Cantor set as follows: set

X˛ :D .R n Z˛ t .Z˛ 	 fC;�g//=Z;
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namely, replace every point x 2 Z˛ � R=Z by a pair x˙. Give X˛ the cyclic order
induced from the circle and x� < xC and its associated topology. Then X˛ is a
Cantor set, and x 7! xC ˛ is a minimal transformation of X˛; see Example 11.9.15.

As another example, consider the substitution a 7! ab; b 7! a on fa; bg� and let
x 2 fa; bgZ denote a fixed point of the substitution; for example, with “a” denoting
the position of the 0th letter, x D lim.ab; abaab; abaababa; : : : /. Set X D xZ. Then
the action of Z by shift on X is minimal.

In fact, this example coincides with the first one if one takes ˛ D .
p
5�1/=2 the

golden ratio and x D 0C, decomposes X˛ D Œ0C; ˛�� [ Œ˛C; 1��, defines � WX˛ !
fa; bg by �.x/ D a if x 2 Œ0C; ˛�� and �.x/ D b if x 2 Œ˛C; 1��, and puts X˛ in
bijection with X via the map x 7! .n 7! �.xC n//.

The encoding of this example as a Bratteli diagram D is as follows:

•

•

•

•
V0

• V1

• V2

• V3

...
...

a b

a
b a

a
b a

where now a point x 2 X˛ is encoded by the path in D with labels .�.Qx=˛n//n�1 for
the unique representative Qx of x in Œ0; 1�.

We next quote some results from [442] to exhibit some properties of the
topological full groups ŒŒG;X�� constructed above.

Definition 11.9.28. Let G be a groupoid. A multisection of degree d is a collection
M of d2 nonempty, disjoint bisections fFi;jgi;jD1;:::;d of G such that Fi;j 
 G0 and
Fi;jFj;k D Fi;k for all i; j; k 2 f1; : : : ; dg.

For � 2 Sym.d/, we denote by M� the element of ŒŒG�� that maps x to xFi;i� if
x 2 Fi;i and fixes G0 n

Sd
iD1 Fi;i, and by Alt.M/ the subgroup fM� j � 2 Alt.d/g of

ŒŒG��. Finally, we denote by Alt.G/ the subgroup of ŒŒG�� generated by Alt.M/ for
all multisections M of G.

Proposition 11.9.29 ([442, Theorem 4.1]). Let G be a minimal groupoid of
germs. Then every nontrivial subgroup of ŒŒG�� normalized by Alt.G/ contains
Alt.G/. In particular, Alt.G/ is simple and is contained in every nontrivial normal
subgroup of ŒŒG��. ut

(Note that the minimality assumption is always necessary: if G does not act
minimally, then let Y ¤ G0 be a closure of an orbit; then there is a natural quotient
map ŒŒG��! ŒŒG�Y��, proving that ŒŒG�� is not simple.)
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We call a groupoid G compactly generated if there exists a compact subset S of
G that generates it. This is, for example, the case if G is the action groupoid of a
finitely generated group G acting on a compact set (in which case one bisection per
generator of G suffices to generate G).

Let G be a compactly generated groupoid, say by S 
 G. We call G expansive
if there exists a finite cover S of S by bisections such that

S
n�0 S n generates

the topology on G; so in particular for every x ¤ y 2 G0, there exists a bisection
F 2 S n with x 2 s.F/ 63 y.

Proposition 11.9.30 ([442, Theorem 5.6]). If G is compactly generated and
expansive, then Alt.G/ is finitely generated. ut

Example 11.9.31. Consider the Z-action from Example 11.9.27 for ˛ the golden
ratio. We claim that the group G D ŒŒZ;X��0 is infinite, amenable, finitely generated
and simple.

Amenability of G was proven in Corollary 11.9.26. Let G be the groupoid of the
action of Z D hai on X. It is minimal, so Alt.G/ is simple by Proposition 11.9.29;
and it is easy to check Alt.G/ D ŒŒG��0. The groupoid G is compactly generated, say
by S D X[f.x; xa˙1/ j x 2 Xg. Finally X � f0; 1gZ is a subshift, so G is expansive:
the cover of S by X by ffx 2 X j x0 D 0g [ fx 2 X j x0 D 1g [ f.x; xa/ j x 2
Xg [ f.x; xa�1/ j x 2 Xgg generates the topology on X and therefore on G.

Finally, we end with examples of topological full groups of non-minimal
Z-actions and of minimal Z2-actions which are not amenable, showing that
Corollary 11.9.26 does not generalize without extra conditions:

Example 11.9.32 (Geodesic flow). Consider a free group Fk and the space X of
geodesic maps aWZ ! Fk into the Cayley graph of Fk, namely, of bi-infinite
geodesic rays. The Z-action is by shifting: 
.a/ D .i 7! aiC1/. The space X is
a Cantor set and may be identified with fa 2 fx˙1 ; : : : ; x

˙
k g

Z j aiaiC1 ¤ 1 for all i 2
Zg. For a 2 X and j 2 f1; : : : ; kg, define

a � xj D

8
ˆ̂<

ˆ̂:


.a/ if a0 D xj;


�1.a/ if a�1 D x�1j ;

a otherwise:

This defines a piecewise-Z action of Fk on X, which is easily seen to be faithful:
for a nontrivial reduced word w 2 Fk, extend w arbitrarily but non-periodically
to a bi-infinite geodesic a containing w at positions f0; : : : ; jwj � 1g; then
a � w D 
 jwj.a/ ¤ a.

We may modify the example above by letting C2 � C2 � C2 rather than Fk act
on the space of geodesics of its Cayley graph and then embed that system into a
minimal Z2-action, as follows:

Example 11.9.33 ([212]). Consider the space X of proper colorings of the edges
of the standard two-dimensional grid by A D fA;B;C;D;E;Fg. There is a natural
action of Z2 on X by translations.
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To each a 2 A corresponds a continuous involution aWX ý, defined as follows.
For 
 2 X, if there is an edge between .0; 0/ and one of its neighbors v with color a,
then 
 �a :D 
 �v; otherwise 
 �a :D 
 . These involutions clearly belong to ŒŒZ2;X��.

We shall exhibit a minimal nonempty closed Z2-invariant subset Y of X on
which Z2 acts freely and H :D hA;B;C j A2;B2;C2i acts faithfully as subgroup
of ŒŒZ2;X��; since H contains free subgroups, we will have proved that ŒŒZ2;Y��
may contain free subgroups (and therefore be non-amenable) for minimal, free
Z2-spaces Y .

We create a specific coloring of the grid, namely, an element 
 2 X, as follows:
first, color every horizontal line of the grid alternately with E and F. Enumerate
H D fw0;w1; : : : g. For all x 2 N, write x D 2ix0 with x0 odd, and color the vertical
lines fxg 	 R and f�xg 	 R by the infinite word .wiD/1. Set Y D 
Z2.

Every finite patch of 
�S repeats infinitely, and moreover there exists n.S/
such that every ball of radius n.S/ in the grid contains a copy of 
�S. It follows
(see [260]) that Y is minimal, that Z2 acts freely on Y because 
 is aperiodic, and
that every � 2 Y also uniformly contains copies of every patch.

Consider now w ¤ 1 2 hA;B;Ci, and let � be a translate of 
 in which wD reads
vertically at the origin. Then �w reads D vertically at the origin, so �w ¤ � , and
therefore w acts nontrivially.

11.10 Cellular Automata and Amenable Algebras

Von Neumann defined19 cellular automata as creatures built out of infinitely many
finite-state devices arranged on the nodes of Z2 or Z3, each device being capable
of interaction with its immediate neighbors. Algebraically, we consider the natural
generalization to creatures living on the vertices of a Cayley graph. We shall see that
some fundamental properties of the automaton are characterized by amenability of
the underlying graph.

Definition 11.10.1. Let G be a group. A finite cellular automaton on G is a G-
equivariant continuous map �WA G ý, where A , the state set, is a finite set, and G
acts on A G by left translation: .xg/.h/ D x.gh/ for x 2 A G and g; h 2 G. Elements
of A G are called configurations.

A linear cellular automaton is defined similarly, except that A is rather required
to be a finite-dimensional vector space, and � is required to be linear.

Note that usually G is infinite; much of the theory holds trivially if G is finite. The
map� computes the one-step evolution of the automaton; its continuity implies that
the evolution of a site depends only on a finite neighborhood, and its G-equivariance
implies that all sites evolve with the same rule.

19It seems that von Neumann never published his work on cellular automata—see [121] for history
of the subject.
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Lemma 11.10.2 (Lyndon-Curtis-Hedlund). A map �WA G ý is a cellular
automaton if and only if there exists a finite subset S b G and a map � WA S ! A
such that

�.x/.g/ D �.s 7! x.gs//

for all x 2 A G. The minimal such S is called the memory set of �.

Proof. Such a map � is continuous in the product topology if and only if �.x/.1/
depends only on the restriction of x to S for some finite S.

A classical example of cellular automaton is Conway’s Game of Life. It is
defined by G D Z2 and A D falive;deadg, and by the following local rule � as in
Lemma 11.10.2: S D f�1; 0; 1g 	 f�1; 0; 1g, and �.x/ depends only on x.0; 0/ and
on the number of alive cells among its eight neighbors:

�.x/.0; 0/ D

8
ˆ̂<

ˆ̂:

alive if x.0; 0/ is alive and two or three of its neighbors are alive;

alive if x.0; 0/ is dead and exactly three of its neighbors are alive;

dead in all other cases, from loneliness or overpopulation:

For example, here is the evolution of a piece of the plane; we represent alive in
black and dead in white:

→ → .

Note that the last configuration is the first one, transformed by .x; y/ 7! .1� y;�x/,
so the pattern moves by a sliding reflection along the xC y D 0 direction.

Some properties have been singled out in attempts to understand the global,
long-term behavior of cellular automata: a cellular automaton � may

have “Gardens of Eden” (GOE) if the map � is not surjective, the biblical
metaphor expressing the notion of paradise lost forever. NoteA G, so if � is
not surjective, then there exists a finite subset F b G such that the projection of
�.A G/ to A F is not onto;

have “Mutually Erasable Patterns” (MEP) if � fails in a strong way to be
injective: there are configurations x ¤ y which nevertheless agree at all but
finitely many places and such that �.x/ D �.y/. The opposite is sometimes
called pre-injectivity;
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preserve the Bernoulli measure; open sets of the form Og;q D fx 2 A G j x.g/ D
qg are declared to have measure ˇ.Og;q/ D 1=#A , and one may ask whether
ˇ.M/ D ˇ.��1.M// for every measurable M 
 A G.

For example, it is clear that the Game of Life has Mutually Erasable Patterns,
because of the “loneliness” clause:

→

but it is less clear that there are also Gardens of Eden (there are some; the smallest
known one is specified by #F D 92 cells).

Before addressing the question of relating the GOE and MEP properties, we
introduce one more tool: entropy. Assume that the group G is amenable, and let
.Fn/ be a Følner net in G, which exists by Lemma 11.3.6 and Theorem 11.3.23. For
subsets X 
 A G and S 
 G, we let X�S denote the projection of X to A S. We set

h.X/ D lim inf
n

log.#X�Fn/

#Fn
: (11.18)

If X is G-invariant, then the liminf in (11.18) is a limit and is independent of
the choice of Følner net. This follows from the following more general statement
(independence of the Følner net follows from interleaving two Følner nets), which
we quote without proof:

Lemma 11.10.3 (Ornstein-Weiss, see [276, Section 1.3.1] and [362]). Let
hWPf .G/! R be subadditive: h.A[ B/ � h.A/C h.B/, and G-invariant: h.Ag/ D
h.A/. Then the limit limn!1 h.Fn/=#Fn exists for every Følner net .Fn/n2N . ut

The following is the “Second Principle of Thermodynamics”:

Lemma 11.10.4. For every cellular automaton � and every G-invariant X 
 A G,
we have h.�.X// � h.X/.

Proof. Let S b G be a memory set for G. For every finite F b G, consider
E � G such that ES 
 F; then �.x/�E depends only on x�F. Therefore,
#.�.X/�E/ � #.X�F/, so #.�.X/�F/ � #.X�F/#A #F�#E. Take now F D FnS
and E D Fn for a net of Følner sets, and apply the definition from (11.18).
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Finally, given a measure � on A G, we may define a measured entropy as follows:
for S 
 G and y 2 A S, denote by Oy the open set fx 2 A G j x�S D y�Sg; and for
X 
 A G set

h�.X/ D lim inf
�
P

y2X�Fn
�.Oy/ log �.Oy/

#Fn
:

Note that ˇ.Oy/ D 1=#A #S if y 2 A S, so the measured entropy coincides
with (11.18) if � D ˇ.

We are ready to state the main result, called the “Garden of Eden theorem.” It
was first proven for G D Zd by Moore [423, the .1/) .2/ direction], Myhill [433,
the .2/) .1/ direction], and Hedlund [288, the .1/, .3/ equivalence]:

Theorem 11.10.5 ([138, 415]). Let G be an amenable group, and let � be a
cellular automaton. Then the following are equivalent:

1. � has Gardens of Eden;
2. � has Mutually Erasable Patterns;
3. � does not preserve Bernoulli measure ˇ;
4. h.�.A G// < log #A .

Remark 11.10.6. The same theorem holds for linear cellular automata (except that
I do not know an analogue of Bernoulli measure), with the entropy replaced in the
last statement by mean dimension:

mdim.X/ D lim inf
n

dim.#X�Fn/

#Fn
:

Proof. Throughout the proof, we let S denote the memory set of �.
.1/) .4/ If there exists a GOE, then there exists F b G with�.A G/�F ¤ A F,

so

h.�.A F// �
log #�.A G/�F

#F
< log #A :

.4/ ) .1/ If h.�.A G// < log #A , then there exists F b G with
�.A G/�F ¤ A F, and a GOE exists in A F n�.A G/�F.
.2/) .4/ If y ¤ z are MEP, which differ on F and agree elsewhere, set E D FS

and let T � G be maximal such that Et1 \ Et2 D ; for all t1 ¤ t2 2 T; note that T
intersects every translate of E�1E. Define

Z D fx 2 A G j x�Et ¤ y�Et for all t 2 Tg;

and compute h.�.A G// D h.�.Z// � h.Z/ < log #A ; the first equality follows
since given in x 2 �.A G/, say x D �.w/, one may replace in w every occurrence
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of y�Et by z�Et so as to obtain a y�Et-free configuration, which therefore belongs
to Z and has the same image as x under �; the second inequality follows from
Lemma 11.10.4; and the last inequality because there are forbidden patterns y�Et
in Z, with “density” at least 1=#.E�1E/.
.4/) .2/ If h.�.A G// < log #A , there exists Fn with log #.�.A G/�FnS/=#Fn <

log #A, because #FnS may be made arbitrarily close to #Fn for n large enough.
Therefore, by the pigeonhole principle, there exist y ¤ z 2 A G with y�.G n Fn/ D

z�.G n Fn/ and �.y/ D �.z/.
.1/) .3/ This is always true: if � has GOE, then there exists a nonempty open

set U in A G n�.A G/; then ˇ.U / ¤ 0 while ˇ.��1.U // D 0.
.3/) .1/ Define

K D f� probability measure on A G j ˇ D ���g:

Note that K is convex and compact, no admits a G-fixed point because G is
amenable. Consider � 2 KG. Then �W .A G; �/! .A G; ˇ/ is a factor map because
� is onto, so h�.A G/ � hˇ.A G/. However, ˇ is the unique measure of maximal
entropy,20 so � D ˇ and therefore ˇ D ��ˇ.

It turns out that Theorem 11.10.5 is essentially optimal, and yields
characterizations of amenable groups:

Theorem 11.10.7 ([41, 44]). Let G be a non-amenable group. Then there exist

1. cellular automata (ad lib linear) that admit Mutually Erasable Patterns but no
Gardens of Eden;

2. cellular automata (ad lib linear) that admit Gardens of Eden but no Mutually
Erasable Patterns;

3. cellular automata that do not preserve Bernoulli measure but have no Gardens
of Eden.

In fact, we shall prove Theorem 11.10.7 for finite fields, answering at the same
time the classical and linear questions. Let � be a linear cellular automaton; then
A D k

n for some field k and some integer n, and there exists an n 	 n matrix
M over kG such that �.x/ D xM for all x 2 A G. Conversely, every such matrix
defines a linear cellular automaton.

The ring kG admits an anti-involution �, defined on its basis G by g� D g�1

and extended by linearity. This involution extends to an anti-involution on square
matrices by .M�/i;j D .Mj;i/

�, and M� is called the adjoint of M.
We put on A the natural scalar product hx; yi D

Pn
iD1 xiyi. Consider the vector

space A G D
L

g2G A . Then A G may be naturally identified with the dual of
A G, under the nondegenerate pairing hx; yi D

P
g2Ghx.g/; y.g/i for x 2 A G and

y 2 A G.

20One says that the G-action is intrinsically ergodic.
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Exercise 11.10.8 (*). Prove that M� is the adjoint with respect to this pairing;
namely, hxM; yi D hx; yM�i for all x 2 A G; y 2 A G.

We put a topology on A G by declaring that, for every finite S b G and every
vector space V � A S, the subset fx 2 A G j x�S 2 Vg is closed. With this topology,
A G is compact (but not Hausdorff). Nevertheless,

Lemma 11.10.9. If � is a cellular automaton, then �.A G/ is closed.

Proof. Let S be the memory of �. Consider y in the closure of �.A G/. Then
for every F b G, the affine space LF D fx 2 A FS j �.x/�F D y�Fg is finite-
dimensional and nonempty, and if F 
 F0 then LF0�FS 
 LF; so fLF0�FS j F0 � Fg
is a nested sequence of nonempty affine spaces and in particular stabilizes at a
nonempty affine space JF. We still have restriction maps JF0 ! JF for all F 
 F0,
which are easily seen to be surjective. Then lim

 �FbG
JF is nonempty and contains all

preimages of y.

The following proposition extends to the infinite-dimensional setting the classical
statement that the image of a matrix is the orthogonal of the nullspace of its
transpose:

Proposition 11.10.10 ([565]). Let M be an n 	 n matrix over kG, let M� be its
adjoint, and set A D k

n. Then right multiplication by M is injective on A G if and
only if right multiplication by M� is surjective on A G.

Proof. Assume first that right multiplication by M is not injective, and consider a
nontrivial element c 2 A G with cM D 0. We claim that for every y 2 .A G/M�,
we have hc; yi D 0. Say y D zM�; then the claim follows from the computation

hc; yi D hc; zM�i D hcM; zi D h0; zi D 0:

Since h�;�i is nondegenerate, this implies that y cannot range over all of A G, so
right multiplication by M� is not surjective.

Conversely, suppose that right multiplication by M is not surjective. Since A GM
is closed, there exists an open set in its complement; so there exists a finite subset
S b G and a proper subspace V ˆ A S such that, for every c 2 A GM, its projection
c�S belongs to V . Since A S is finite-dimensional, there exists a linear form y on
A S that vanishes on V . Note that y, qua element of .A S/�, is canonically identified
with an element of A S and therefore with an element of A G. We claim yM� D 0,
proving that right multiplication by M� is not injective. This follows from the
following computation: consider an arbitrary c 2 A G. Then

hyM�; ci D hy; cMi D 0:

Since h�;�i is nondegenerate and c 2 VG is arbitrary, this forces yM� D 0.

Before embarking on the main step of the proof of Theorem 11.10.7, we give a
simple example of a cellular automaton that is pre-injective but not surjective:
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Example 11.10.11 (Muller, see [396, page 55]). Consider the free product of cyclic
groups G D ha; b; cja2; b2; c2i. Fix a field k, and set A :D k

2. Define the linear
cellular automaton �WA G ý by

�.x/ D x �

�
aC b 0
bC c 0

	
:

It is obvious that � is not surjective: its image is .k 	 0/G. To show that it is
pre-injective, consider x a nonzero configuration with finite support, and let F b G
denote its support. Let f 2 F be an element of maximal length; then at least two
among fa; fb; fc will be reached precisely once as products of the form F � fa; b; cg.
Write x.f / D .˛; ˇ/ ¤ .0; 0/; then at least two among the equations

�.x/.fa/ D ˛; �.x/.fb/ D ˛ C ˇ; �.x/.fc/ D ˇ

hold, and this is enough to force �.x/ ¤ 0.

In the general case of a non-amenable group G D hSi, we may not claim
that there exist two elements reached exactly once from an arbitrary finite
set F under right S-multiplication; but we shall see that there exists “many”
elements reached “not too many” times, in the sense that there exists f 2 F withP

s2S 1=#ft 2 S j fs 2 Ftg > 1; and this will suffice to construct a pre-injective,
non-surjective cellular automaton. We phrase our result as the following algebraic
criterion, which may be of independent interest:

Theorem 11.10.12. Let X " G be a right G-set, and let k be a field. Then X is
non-amenable if and only if there exists n 2 N and an n	 .n�1/ matrix with entries
in kG that gives an injective map .kX/n ,! .kX/n�1.

Obviously if there exists such an n, then every larger n is also suitable; and we shall
see in the proof that n depends only on X " G and the cardinality of k. We begin
the proof by a combinatorial lemma:

Lemma 11.10.13. Let n be an integer. Then there exists a set Y and a family of
subsets Z1; : : : ;Zn of Y such that, for all I 
 f1; : : : ; ng and all i 2 I, we have

#
�

Zi n
[

j2Infig

Zj

�
�

#Y

.1C log n/#I
: (11.19)

Furthermore, if n � 2 then we may require Z1 [ � � � [ Zn ¤ Y.

Proof. We denote by Sym.n/ the symmetric group on n letters. Define

Y :D
f1; : : : ; ng 	 Sym.n/

.i; 
/ � .j; 
/ if i and j belong to the same cycle of 

I

in other words, Y is the set of cycles of elements of Sym.n/. Let Zi be the natural
image of fig 	 Sym.n/ in the quotient Y .
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First, there are .i � 1/Š cycles of length i in Sym.i/, given by all cyclic orderings
of f1; : : : ; ig; so there are

�n
i

�
.i � 1/Š cycles of length i in Sym.n/, and they can be

completed in .n � i/Š ways to a permutation of Sym.n/; so

#Y D
nX

iD1

 
n

i

!
.i � 1/Š.n � i/Š D

nX

iD1

nŠ

i
� .1C log n/nŠ (11.20)

since 1C 1=2C � � � C 1=n � 1C log n for all n.
Next, consider I 
 f1; : : : ; ng and i 2 I, and set Zi;I :D Zi n

S
j2Infig Zj. Then

Zi;I D
˚
.i; 
/ j .i; 
/ œ .j; 
/ for all j 2 I n fig

�
. Summing over all possibilities for

the length-.jC 1/ cycle .i; t1; : : : ; tj/ of 
 intersecting I in fig, we get

#Zi;I D

n�#IX

jD0

 
n � #I

j

!
jŠ.n � j � 1/Š

D

nX

k:Dn�jD#I

.n � #I/Š.#I � 1/Š

 
k � 1

k � #I

!

D .n � #I/Š.#I � 1/Š

 
n

n � #I

!
D

nŠ

#I
:

(11.21)

Combining (11.20) and (11.21), we get

#Zi;I D
nŠ

#I
D
.1C log n/nŠ

.1C log n/#I
�

#Y

.1C log n/#I
:

Finally, if n � 2 then (11.19) may be improved to #Y � .0:9 C log n/nŠ;
for even larger n one could get to #Y � .0:57721 � � � C log n/nŠ. Since clearly
#Y=.0:9C log n/ � .#Y C 1/=.1C log n/, one may simply replace Y by Y t f�g.

Proof (Proof of Theorem 11.10.12). Assume first that X is amenable, and let
MW .kX/n ! .kX/n�1 be an injective map. Let S b G be such that M’s entries
belong to kS. Since X is amenable, there is F b X with #.FS/ < n

n�1#F. Consider
then the restriction MW .kF/n ,! .kFS/n�1. Since the dimension of the range is
greater than that of the source, it has a nontrivial kernel, so M is not injective.

Assume now that X is not amenable, so there exists by Theorem 11.3.23 a finite
subset S0 � G and � > 0 with #.FS0/ � .1 C �/#F for all finite F � X. We then
have #.FSk

0/ � .1C �/
k#F for all k 2 N. Let k be large enough so that .1C �/k >

1Ck log #S0, and set S :D Sk
0 and n :D #S. We will seek M supported in KS. We have

#.FS/ � .1C �/k#F > .1C k log #S0/#F

� .1C log n/#F for all finite F � G:
(11.22)
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Apply Lemma 11.10.13 to this n, and identify f1; : : : ; ng with S to obtain a set Y
and subsets Zs for all s 2 S. We have

S
s2S Zs ¤ Y and

#

�
Zs n

[

t2Tnfsg

Zt

	
�

#Y

.1C log n/#T
for all s 2 T 
 S:

In case k is a finite field, we shall perhaps have to replace it by a finite extension
K; this will produce an injective map .KX/n ! .KX/n�1 and therefore by restriction
of scalars an injective map .kX/n dimk K ! .kX/.n�1/ dimk K ! .kX/n dimk K�1.

We shall specify soon how large the finite extension K of k should be. Under
that future assumption, set A :D KY . For each s 2 S, we shall construct a linear
map ˛sWA ! KZs � A ; for this, we introduce the following notation: for T 3 s
denote by ˛s;T WA ! KZs;T the composition of ˛s with the coördinate projection
A ! KZs;T . We wish to impose the condition that, whenever fTs j s 2 Sg is a
family of subsets of S with

P
s2S #Zs;Ts � #Y , we have

\

s2S

ker.˛s;Ts/ D 0: (11.23)

As a first step, we treat each ˛s as a #Zs	#Y matrix with variables as coëfficients, by
considering only its rows indexed by Zs � Y; and we treat each ˛s;T as a #Zs;T 	 #Y
submatrix of ˛s. The space of all .˛s/s2S therefore consists of N :D #Y

P
s2S #Zs

variables, so it is an affine space of dimension N.
Equation (11.23) amounts to the condition on these variables that all matrices

obtained by stacking vertically a collection of ˛s;Ts ’s have full rank as soon asP
s2S #Zs;Ts � #Y . The complement of these conditions is an algebraic subvariety of

KN , given by a finite union of hypersurfaces of the form “det.� � � / D 0.” Crucially,
the equations of these hypersurfaces are defined over Z and in particular are inde-
pendent of the field K. Therefore, as soon as K is large enough, there exist points that
belong to none of these hypersurfaces; and any such point gives a solution to (11.23).

Define now the matrix M with coëfficients in KG by

M D
X

s2S

˛ss: (11.24)

It maps KXn D KY ˝ KX to KXn�1 D K.Y n f�g/ ˝ KX as required, since we
assumed

S
s2S Zs 
 Y n f�g. To show that M is injective, consider u 2 KXn

nontrivial, and let ; ¤ F b X denote its support. Define WFS ! .0; 1� by
.x/ :D 1=#fs 2 S j x 2 Fsg. Now

X

f2F

�X

s2S

.fs/
�
D
X

x2FS

X

s2SWx2Fs

.x/ D
X

x2FS

1 D #.FS/;
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so there exists f 2 F with
P

s2S .fs/ � #.FS/=#F � 1 C log n by (11.22). For
every s 2 S, set Ts :D ft 2 S j fs 2 Ftg, so #Ts D 1=.fs/. We obtain

X

s2S

#Zs;Ts �
X

s2S

#Y

.1C log n/#Ts
by Lemma 11.10.13

D
X

s2S

#Y.fs/

1C log n
� #Y;

so by (11.23) the map A 3 a 7! .˛s;Ts.a//s2S is injective. Set v :D uM. Since by
assumption u.f / ¤ 0, we get .˛s;Ts.u.f ///s2S ¤ 0, namely, there exists s 2 S with
˛s;Ts.u.f // ¤ 0. Now v.fs/�Zs;Ts D ˛s;Ts.u.f // by (11.24), so v ¤ 0 and we have
proven that M is injective.

Proof (Proof of Theorem 11.10.7). We start by (2). Apply Theorem 11.10.12 to
k D F2, and let M be the n 	 .n � 1/ resulting matrix over kG. Set A D k

n, and
extend M to an n	 n matrix by adding a column on 0’s to its right. Then �WA G ý

given by �.x/ D xM is a G-equivariant endomorphism of A G, is pre-injective
because M is injective on A G, and is not surjective because no configuration in its
image has a nontrivial last coördinate.

Right multiplication by M� on A G is surjective and not pre-injective by
Proposition 11.10.10, so this answers (1).

Finally, let y 2 A S, for some S b G, be such that Oy is a Garden of Eden for M.
Then OyM� D 0, so M� does not preserve Bernoulli measure, answering (3).

11.10.1 Goldie Rings

We saw in the last section that linear cellular automata are closely related to group
rings. We give now a characterization of amenability of groups in terms of ring
theory. We recommend [471] as a reference for group rings.

Definition 11.10.14. Let R be a ring. It is semiprime if aRa ¤ 0 whenever
a 2 R n f0g. An element a 2 R is regular if xay ¤ 0 whenever x; y 2 R n f0g, and
the ring R is a domain if xy ¤ 0 whenever x; y 2 R n f0g. The right annihilator of
a 2 R is fx 2 R j ax D 0g and is a right ideal in R.

The ring R is Goldie if (1) there is no infinite ascending chain of right annihilators
in R and (2) there is no infinite direct sum of nonzero right ideals in R.

Clearly R is a domain if and only if all its nonzero elements are regular; annihilators
of regular elements are trivial; and all domains are semiprime.

These definitions may be difficult to digest, but they have strong consequences
for the structure of R, see [169] and Goldie’s theorem below. In terms of their
ideal structure, the simplest rings are skew fields, in which all nonzero elements
are invertible. Next best are Artinian rings, which do not admit infinite descending



532 L. Bartholdi

chains of ideals. Finitely generated modules over Artinian rings have a well-defined
notion of dimension, namely, the maximal length of a composition series.

Øystein Ore studied in [461] when a ring R may be imbedded in a ring in which
all regular elements of R become invertible. Let us denote by R� the set of regular
elements in R. A naive attempt is to consider expressions of the form as�1 with a; s 2
R and s regular; then to multiply them, one must rewrite as�1bt�1 D ab0.s0/�1t�1 D
.ab0/.ts0/�1, and to add them, one must rewrite as�1C bt�1 D .at0C bs0/.st0/�1. In
all cases, it is sufficient that R satisfy the following property, called Ore’s condition:

for all a; s 2 R with s regular, there exist b; t 2 R with t regular and sb D at;

namely, every pair of elements a; s admits a common “right multiple” at D sb. The
ring

R.R�/�1 :D fas�1 j a 2 R; s 2 R�g=has�1 D at.st/�1 for all a 2 R; s; t 2 R�i

is called R’s classical ring of fractions. It naturally contains R as the subring fa1�1g.
If R is a domain, then R.R�/�1 is a skew field.

Theorem 11.10.15 (Goldie [253]). Let R be a semiprime Goldie ring. Then R
satisfies Ore’s condition, and its classical ring of fractions is Artinian. ut

Let R 
 S be a subring of a ring. The ring S is called flat over R if for every
exact sequence 0 ! A ! B ! C ! 0 of R-modules the corresponding sequence
0! A˝R S! B˝R S! C˝R S! 0 of S-modules is exact.

Exercise 11.10.16 (**). For R a domain, show that S :D R.R�/�1 is flat.
Hint: there is an equational criterion for flatness—S is flat if and only if every

R-linear relation
P

rixi D 0, with ri 2 R and xi 2 S, “follows from linear relations
in R,” in the following sense: the equation in matrix form rTx D 0, with r 2 Rn and
x 2 Sn, implies equations rTB D 0 and x D By for some n	m matrix B over R and
some y 2 Sm; see [368, 4.24(2)].

Using Ore’s condition, apply this criterion by expressing in a R-linear relationP
rixi D 0 every xi D ais�1 for ai 2 R and a common denominator s 2 R�.

Let now G be a group, let k be a field, and consider the group ring kG. It is
the k-vector space with basis G, and multiplication extended multilinearly from the
multiplication in G. Is is well understood when the group ring kG is semiprime:

Theorem 11.10.17 (Passman, see [471, Theorems 2.12 and 2.13]). If k has char-
acteristic 0, then kG is semiprime for all G. If k has characteristic p > 0, then kG is
semiprime if and only if G has no finite normal subgroup of order divisible by p. ut

Exercise 11.10.18 (*). If G is non-amenable, then it has a non-amenable quotient
G whose group ring kG is semiprime for all k.

Theorem 11.10.19 (Tamari [558], Kielak [44], Kropholler). Let k be a field and
let G be group such that kG is Goldie and semiprime. Then G is amenable.
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Furthermore, if kG is a domain,21 then kG satisfies Ore’s condition if and only
if G is amenable.

Proof. Assume first that G is amenable and that kG is a domain, and let a; s 2 kG
be given. Let S b G contain the supports of a and s. Since G is amenable, there
exists F b G with #.FS/ < 2#F, by Følner’s Theorem 11.3.23. Consider b; t 2 kG
as unknowns in kF. The equation sb D at which they must satisfy is linear in their
coëfficients, and there are more variables (2#F) than constraints (#.FS/), so there
exists a nontrivial solution, in which t ¤ 0 if s ¤ 0; so Ore’s condition is satisfied.

Assume next that G is not amenable. By Theorem 11.10.12, there exists an
n 	 .n � 1/ matrix M over kG such that multiplication by M is an injective map
.kG/n ! .kG/n�1, namely, we have an exact sequence of free kG-modules

0 �! .kG/dn �! .kG/d.n�1/: (11.25)

Suppose now for contradiction that kG is a semiprime Goldie ring, and let S be
its classical ring of fractions, which exists and is Artinian by Theorem 11.10.15. By
Exercise 11.10.16, the ring S is flat over k, so tensoring (11.25) with S we obtain an
exact sequence

0 �! Sdn �! Sd.n�1/

which is impossible for reasons of composition length.

11.10.2 Amenable Banach Algebras

We concentrated, in this text, on amenability of groups. The topic of amenability of
associative algebras has been developed in various directions; although the different
definitions are in general inequivalent, we stress here the connections between
amenability of a group (or a set) and that of an associated algebra (or module). In
this section, all algebras are over C, including the `p.X/.

Let A be a Banach algebra, and let V be a Banach bimodule: a Banach space
V endowed with commuting actions V b̋A ! V and A b̋V ! V . Recall that
a derivation is a map ıWA ! V satisfying ı.ab/ D aı.b/ C ı.a/b, and a
derivation ı is inner if it is of the form ı.a/ D av � va for some v 2 V . The
dual V� of a Banach bimodule is again a Banach bimodule, for the adjoint actions
.g � � � h/.x/ D �.h�1xg�1/.

Definition 11.10.20. The Banach A -module V is amenable if all bounded
derivations of A into V are inner. More pedantically: the Hochschild cohomology
group H1.A ;V/ is trivial.

21Conjecturally (see [327] and [328, Problem 6]), kG is a domain if and only if G is torsion-free.
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The algebra A itself is called amenable if all H1.A ;V�/ D 0 for all Banach
bimodules V .

Exercise 11.10.21 (**, see Johnson [313, Proposition 5.1]). Prove that the tensor
product of amenable Banach algebras is amenable.

This definition seems quite distinct from everything we have seen in the context
of groups and G-sets; yet it applies to the Banach algebra `1.G/ introduced
in (11.15). For a set X, denote by `1.X/�0 those functionals ˚ W `1.X/ ! C
such that ˚.1X/ D 0.

Theorem 11.10.22 ([313, Theorem 2.5]). Let G be a group. Then the following
are equivalent:

1. G is amenable;
2. `1.G/ is amenable;
3. the Banach `1.G/-module `1.G/�0 is amenable.

Proof. We begin by remarking that the bimodule structure on V can be modified into
a right module structure: let V be V qua Banach space, with actions g �v �h D h�1vh
for g; h 2 G; in other words, the left action becomes trivial while the right action is
by conjugation. A derivation ıW `1.G/! V gives rise to a “crossed homomorphism”
�W `1.G/! V , defined by �.g/ D g�1ı.g/. It satisfies �.gh/ D �.g/hC �.h/. Inner
derivations give rise to crossed homomorphisms of the form �.g/ D v � vg for
some v 2 V . For the rest of the proof, we replace V by V .
.1/ ) .2/ Let mW `1.G/ ! C be a mean on G. Given a Banach module V and

a crossed homomorphism �W `1.G/! V�, define v 2 V� by

v.f / D m.g 7! �.g/.f // for all f 2 V:

Compute then, for h 2 G,

.vh/.f / D v.fh�1/ D m
�
g 7! �.g/.fh�1/

�
D m

�
g 7! .�.g/h/.f /

�

D m
�
g 7! .�.gh/ � �.h//.f /

�
D .v � �.h//.f /;

so �.h/ D v � vh.
.2/) .3/ is obvious.
.3/ ) .1/ More generally, if X is a G-set and `1.X/�0 is amenable, then X is

amenable: choose ˚ 2 `1.X/� with ˚.1X/ D 1, and set �.g/ :D ˚ � ˚g. Then
�W `1.G/ ! `1.X/�0 is a crossed homomorphism, so since `1.X/�0 is amenable,
there exists � 2 `1.X/�0 with � � �g D ˚ � ˚g, namely, .˚ � �/g D ˚ � � .
Then ˚ � � W `1.X/! C is a G-invariant functional on X.

Furthermore, using (11.5), ˚ � � may be viewed as a measure on the Stone-
Čech compactification ˇX; its normalized absolute value is a positive measure and
therefore a G-invariant mean on X.

As a corollary, we may deduce that `1.G/ is amenable if and only if its
augmentation ideal has approximate identities, though we prefer to give a direct
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proof. Recall that an approximate identity in a Banach algebra A is a bounded net
.en/ in A with ena ! a for all a 2 A and that the augmentation ideal $.`1G/ is
ff 2 `1.G/ j

P
g2G f .g/ D 0g.

Lemma 11.10.23. Let A be a Banach algebra with approximate identities, and let
f1; : : : ; fN 2 A and � > 0 be given. Then there exists e 2 A with kfi � efik < � for
all i D 1; : : : ;N.

Proof. Let K D sup kenk be a bound on the norms of approximate identities in
A . For N D 0 there is nothing to do. If N � 1, find by induction e0 2 A
satisfying kfi � e0fik < �=.1 C K/ for all i < N, and let e00 2 A satisfy
k.fN � e0fN/ � e00.fN � e0fN/k < �. Set e :D e0 C e00 � e00e0, and check.

Theorem 11.10.24. Let G be a group. Then G is amenable if and only if $.`1G/
has approximate identities.

Proof. ()) Given f 2 $.`1G/ and � > 0, let S b G be such that
P

g2GnS jf .g/j <
�=2. Since G is amenable, there exists h 2 `1.G/ with h � 0 and khk D 1 and
kh � hsk < �=2 for all s 2 S; so khfk < �. Set e :D 1 � h; then kek � 2, and
kf � efk D khfk < �.

(() Let S D fs1; : : : ; sng b G and � > 0 be given, and apply Lemma 11.10.23
with fi D 1 � si to obtain e 2 A satisfying k1 � s � e.1 � s/k < � for all s 2 S;
set g :D 1 � e to rewrite this as kg � gsk < �. Finally set h.x/ D jg.x/j=kgk for all
x 2 G; we have obtained h � 0 and khk D 1 and kh � hsk < �, so G is amenable
by Theorem 11.3.23(2).

We recall without proof Cohen’s factorization theorem:

Lemma 11.10.25 (Cohen [159]). Let A be a Banach algebra with approximate
identities, and consider z 2 A . Then for every � > 0 there exists x; y 2 A with
z D xy and kz � yk < �. ut

For instance, it follows that if G is an amenable group, then $.`1G/2 D $.`1G/.
Amenability and the Liouville property are tightly related to the ideal structure of
`1.G/. The following is in fact a reformulation of Theorem 11.8.21.

Theorem 11.10.26 (Willis [585]). Let G be a group and let X be a G-set. For a
probability measure � on G, let

`1�.X/ :D ff � f� j f 2 `1.X/g

denote the closed submodule of `1.X/ generated by 1��, and write$.`1X/ D ff 2
`1.X/ j

P
g2G f .g/ D 0g. Then .X; �/ is Liouville if and only if `1�.X/ D $.`

1X/.
In particular, G is amenable if and only if f`1�.G/ j � 2 P.G/g has a unique

maximal element, which is $.`1G/.

Proof. Assume first that .X; �/ is Liouville, and consider an arbitrary f 2 $.`1X/.
By Proposition 11.8.25, we have kf�nk ! 0, so f � f�n ! f , and f � f�n D

f .1C �C � � � C �n�1/.1 � �/ 2 `1�.X/, so f 2 `1�.X/.
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Conversely, if � is such that `1�.X/ D $.`1X/, then given f 2 $.`1X/,
we may for every � > 0 find g 2 `1.X/ with kf � g.1 � �/k < �; then
kf � 1n

Pn�1
iD0 �

ik � kg.1 � �n/=nk ! 0, so f�n ! 0. By Proposition 11.8.25,
the random walk .X; �/ is Liouville.

By Theorem 11.8.21, G is amenable if and only if there exists a Liouville
measure on G.

It remains to prove that if `1�.X/ is the unique maximal element in f`1�.X/ j � 2
P.G/g, then `1�.X/ D $.`

1X/. For this, let f belong to$.`1X/ and write f D gCih

with g; h real. Furthermore, write g D gC�g� and h D hC�h� for positive g˙; h˙,
and set c D

P
x2X gC.x/ D

P
x2X g�.x/ and d D

P
x2X hC.x/ D

P
x2X h�.x/. Then

f D c.1 � gC=c/C .�c/.1 � g�=c/C .id/.1 � hC=d/C .�id/=.1 � h�=d/;

and each term belongs to some `1�.X/ and therefore to `1�.X/ because `1�.X/ is
maximal; so f 2 `1�.X/.

Exercise 11.10.27 (**, see Johnson [313, Proposition 5.1]). Let A be an
amenable algebra, and let J G A be a closed ideal. Prove that if J and A =J
are amenable, then A is amenable. Conversely, if A is amenable then A =J is
amenable, and if J has approximate identities then it is amenable.

11.10.3 Amenable Algebras

We now turn to the group algebra kG for a field k. Note that we do not make any
assumption on the field, which could be finite.

Definition 11.10.28. Let A be an associative algebra, and let V be an A -module.
We call V amenable if for every finite-dimensional subspace S � A and every
� > 0 there exists a finite-dimensional subspace F � V with

dim.FS/ < .1C �/ dim.F/:

The algebra A itself is called amenable if all nonzero A -modules are
amenable.22

We note in passing that if A is finitely generated, then the “S” in
Definition 11.10.28 may be fixed once and for all to be a generating subspace of A .

Theorem 11.10.29 ([40]). Let G be a group and let X be a G-set. Then kX is an
amenable kG-module if and only if X is amenable.

22Some people defined amenability of algebras—erroneously, in my opinion—as mere amenability
of the regular right module.



11 Amenability of Groups and G-Sets 537

Proof (Proof, after [273, Section 3.6]). ()) Consider the set O.X/ of orders on X;
it is a closed subspace of f0; 1gX�X , so it is compact. It is also the inverse limit of
O.F/ over all F b X.

Let ˘ denote the group of all bijections of X. There exists a unique ˘ -invariant
probability measure on O.X/, which may be defined as the inverse limit of the uni-
form probability measures on O.F/ over F b X. For an order � 2 O.X/, consider

˚�W

(
ffinite-dim’l subspaces of kXg ! ffinite subsets of Xg

W 7!
˚

min�.support.w// j w 2 W n f0g
�
;

and let m�W :D 1˚�.W/ be the corresponding characteristic function in `1.X/. We
clearly have

km�Wk D dim W; W1 � W2) m�W1
m�W2

pointwise: (11.26)

Define then mW :D
R
O.X/ m�Wd�.�/, and observe that (11.26) still holds for mW . Fur-

thermore, the map W 7! mW is ˘ -equivariant, so in particular it is G-equivariant;
and (11.26) further implies kmW2 �mW1k D dim W2 � dim W1 whenever W1 � W2.

Now given S b G finite and � > 0, there exists W � kX with
dim.W C Ws/ < .1 C �/ dim W for all s 2 S, because kX is amenable. Thus
kmWCWs � mWk < � dim W, and similarly kmWCWs � mWsk < � dim W, so

kmW � mWsk D kmW � mWsk < 2�kmWk;

and G is amenable by Theorem 11.3.23(2).
(() Let a finite-dimensional subspace S of kG and � > 0 be given. There is a

finite subset T b G with S � kT , so because X is amenable, there is F b X with
#.FT/ < .1C �/#F. Set E :D kF; then

dim.ES/ � dim..kF/.kT// � #.FT/ < .1C �/#F D .1C �/ dim E:

ut

Note that, although GG is amenable if and only if kGkG is amenable, the
growth of almost invariant subsets and subspaces may behave quite differently.
In Example 11.3.11, we saw Følner sets Fn for the “lamplighter group” G, and we
may convince ourselves that they are optimal, so G’s Følner function, see (11.9),
satisfies Føl.n/ D n2n. On the other hand,

Wn D k

� X

support.f /�Œ�n;n�

.f ;m/

ˇ̌
ˇ̌ m 2 Œ�n; n�

�
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are subspaces of kG of dimension 2n C 1 with dim.Wn C Wns/= dim Wn D

#.Fn [ Fns/=#Fn, so the “linear Følner function” of G grows linearly.
The following is an analogue, for linear spaces, of the space `1 of summable func-

tions on a set. Let V be a vector space. Consider the free Z-module with basis fŒA� j
A � V a finite-dimensional subspaceg, and let `1.V;Z/ be its quotient under the
relations ŒA�C ŒB� D ŒA\B�C ŒACB� for all A;B � V . Note that every x 2 `1.V;Z/
may be represented as x D

P
iŒX
C
i � �

P
jŒX
�
j �. Define a metric on `1.V;Z/ by

d.x; y/Dkx�yk; kxkD inff
X

i

dim.Xi/C
X

j

dim.X�j / j xD
X

i

ŒXCi ��
X

j

ŒX�j �g:

Lemma 11.10.30. Let A be an algebra generated by a set B of invertible elements,
and let V be an A -module. Then V is amenable if and only if for every S b B and
every � > 0 there exists f 2 `1.V;N/ with kf � fsk < �kfk for all s 2 S.

Proof. If V is amenable, then for every S b B and every � > 0, there exists
F � V finite-dimensional with dim.F C FS/ < .1 C �/ dim F; so in particular
dim.F C Fs/ < .1 C �/ dim F for all s 2 S; since dim.Fs/ D dim F because s is
invertible, we get dim.F\Fs/ > .1��/ dim F so f :D ŒF� satisfies kf�fsk < 2�kfk.

Conversely, given S b B and f 2 `1.V;N/ with kf � fsk < �kfk for all s 2 S, we
have

P
s2S kf � fsk < �#Skfk. There is a unique expression f D ŒX0�C � � � C ŒXn�

with X0 � � � � � Xn � V; so there exists i 2 f0; : : : ; ng with
P

s2S kŒXi� � ŒXi�sk <
�#SkŒXik, and therefore

P
s2S dim.XiCXis/ < .1C�#S/ dim Xi, so dim.XiCXiS/ <

.1C �#S/ dim Xi. We are done since S b B was arbitrary and B generates A .

Corollary 11.10.31. Let A be a group ring. Then A is amenable if and only if the
regular right module A " A is amenable.

Proof. Consider A D kG a group ring. If A is amenable, then obviously the
regular module AA is amenable.

Conversely, if AA is amenable, then GG is amenable by Theorem 11.10.29. Let
V be a nonzero A -module, and consider v 2 V n f0g. By Theorem 11.3.23(5) for
every S b G and every � > 0, there exists a subset F b G with #.F4Fs/ < �#F.
Consider x :D

P
f2FŒvf � 2 `1.V;N/, and note kx � xsk < �kxk. Thus A is

amenable by Lemma 11.10.30.

Problem 11.10.32 (Gromov). Let G be a group. If the RG-module

C0.G/ D ff WG! R j inf
FbG

sup.f�G n F/ D 0g

is amenable, does it follow that G is amenable?
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11.11 Further Work and Open Problems

For lack of space, some important and interesting topics have been omitted from
this text. Here are a few of the most significant ones, with very brief descriptions.

11.11.1 Boundary Theory

Harry Furstenberg initiated a deep theory of “boundaries” for random walks.
Given a random walk on a set X, say driven by a measure � on a group G,
a boundary is a measure space .Y; �/ with a measurable map from the orbit
space .XN; �N/ ! Y that quotients through asymptotic equivalence, namely, if
.x0; x1; : : : / and .x00; x

0
1; : : : / differ in only finitely many positions, then their images

are the same in Y .
There is a universal such space, written @.X; �/ and called the Poisson boundary

of .X; �/, such that all boundaries are quotients of @.X; �/. This space, as a measure
space, may be characterized by the identity

L1.@.X; �/; �/ D `1.X/=`1�.X/;

see Theorem 11.10.26. The Poisson boundary is reduced to a point if and only if
.X; �/ is Liouville.

In fact, it is better to view @.X; �/ as a measure space with a family of
measures �x, one for each starting point x 2 X of the random walk, and satisfyingP

g2G �.g/�xg D �x for all x 2 X. One then has a “Poisson formula” for harmonic

functions on X: if f 2 `1.X/ is harmonic, then there exists an integrable function Of
on @.X; �/ such that

f .x/ D
Z

@.X;�/

Of .�/d�x.�/:

There is another construction of @.X; �/ based on `1.X/ rather than `1.X/: the
subspace h1.X/ � `1.X/ of harmonic functions is a commutative Banach algebra,
under the product

.f1 � f2/.x/ D lim
n!1

X

g2G

f1.xg/f2.xg/�n.g/:

The spectrum of h1.X/, namely, the set of algebra homomorphisms h1.X/ ! C,
is naturally a measure space and is isomorphic to @.X; �/. The function Of is the
Gelfand transform of f , given by Of .�/ D �.f /.
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The Poisson boundary is naturally defined as a measure space and is directly
connected to the space of bounded harmonic functions; but other notions of
boundary have been considered, for example, the space of positive harmonic
functions, leading to the Martin boundary which is a well-defined topological space;
for a natural measure, it becomes measure-isomorphic to the Poisson boundary.

Shmuel Glasner considers in [244] “strongly amenable” groups: they are groups
all of whose proximal actions on a compact space have a fixed point; see the
comments at the end of Section 11.6.1. Recall that an action of G on a compact
Hausdorff space X is proximal if for every x; y 2 X, there exists a net .gn/ of
elements of G such that limn xgn D limn ygn.

For details, we refer to the original articles [234, 235], the classical [325], and
the survey [218].

11.11.2 Consequences

Little has been said about the uses of amenability. On the one hand, it plays a major
role in the study of Lie groups and their lattices; for example, Margulis’s “normal
subgroup theorem” states that a normal subgroup of a lattice in a higher-rank
semisimple Lie group is either finite or finite index [410]. Ruling out finite-
index subgroups, the strategy is to show that such a group is amenable and has
property (T).

Dave Witte Morris uses amenability, and Poincaré’s recurrence theorem, to prove
in [424] that all finitely generated amenable groups that act on the real line have
homomorphisms onto Z.

Benjamini and Schramm consider in [68] percolation on Cayley graphs. One
fixes p 2 .0; 1/ and a finitely generated group G D hSi; call G the corresponding
Cayley graph. Then every vertex v 2 G is made independently at random “open”
with probability p (and “closed” with probability 1 � p). “Open clusters” are
connected components of the subgraph of G spanned by open vertices. We define
critical probabilities

pc D supfp 2 .0; 1/ j the open cluster containing 1 is almost surely finiteg;

pu D inffp 2 .0; 1/ j there is almost surely a single infinite open clusterg:

They conjecture that pc < 1 for all G which are not virtually cyclic; this is known
for all groups of polynomial or exponential growth and for all groups containing
subgroups of the form A 	 B with A;B infinite, finitely generated groups.

They also conjecture that pc < pu holds precisely when G is not amenable;
see [280] for a survey of known results.
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11.11.3 Ergodic Theory

One of the standard tools of ergodic theory is the “Rokhlin-Kakutani lemma”: let
TWX ý be an invertible, measure-preserving transformation of a measure space
.X; �/ that is aperiodic in the sense that almost all points have infinite orbits. Then
for every n 2 N and every � > 0, there exists a measurable subset E 
 X such that
E;T.E/; : : : ;Tn�1.E/ are all disjoint with �.E t � � � t Tn�1.E// > 1 � �.

It may be understood as the following statement. Given S;TWX ý, define their
distance as d.S;T/ D �.fx 2 X j S.x/ ¤ T.x/g/. Then for every n 2 N; � > 0,
there exists S of period n with d.S;T/ < �. In other words, Z may be approximated
arbitrarily closely by Z=n.

The Rokhlin lemma is essential in reducing ergodic theory problems to
combinatorial ones. For example, it serves to prove that two Bernoulli shifts (the
shift on A Z for a given probability measure on A ) are isomorphic if and only if
they have the same entropy.

Ornstein and Weiss generalize in [462] the Rokhlin lemma to some amenable
groups; see also [581]. Let G be a group; we say that a subset F b G tiles G if G
is a disjoint union of translates of F; namely, if there exists a subset C 
 G with
G D

F
c2C Fc. They prove:

Theorem 11.11.1. Let G be amenable, and let F b G be a finite subset. Then F
tiles G if and only if for every free measure-preserving action of G on a probability
space .X; �/ and every � > 0 there is a measurable subset E 
 X such that
fEf j f 2 Fg are all disjoint and �.EF/ > 1 � �.

In [583], Weiss calls G monotileable if it admits arbitrarily large tiles. He proves
that amenable, residually finite groups are monotileable; more precisely, in Følner’s
definition of amenability, it may be assumed that the Følner sets tile G. For example,
Z is tiled by sets of the form f�n; : : : ; ng which form an exhausting sequence of
Følner sets and are also transversals for the subgroups .2nC 1/Z.

Let us denote by MG the class of monotileable groups; then MG contains
all residually amenable groups and is closed under taking extensions, quotients,
subgroups, and directed unions [151, Section 4].

It is at the present (2017) unknown whether every group is monotileable and
whether AG 
 MG. It is also unknown whether if a group G belongs to MG \ AG,
then G may be tiled by Følner sets.

11.11.4 C�- and von Neumann Algebras

We considered, in §11.10, amenability of groups in their relation to group rings and
Banach algebras. Given a group G, other algebras, closed under weaker topologies,
may be considered, in particular C� and von Neumann algebras. We restrict, here,
to countable groups.
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Given a unitary representation � WG ! U.H / on a Hilbert space H , one
considers the norm closure C��.G/ of �.CG/ in the Banach algebra B.H / of
bounded operators on H . In particular, if � is the regular representation on
H D `2.G/, one obtains the reduced C�-algebra C��.G/.

There is also a maximal C�-algebra C�max.G/, defined as the completion of
CG with respect to the norm kxk D sup� kxk� , where � ranges over all unitary
representations of G on Hilbert spaces. We have natural maps

CG ,! `1.G/ ,! C�max.G/� C��.G/:

Amenability of G is characterized by the fact that the last map C�max.G/� C��.G/
is an isomorphism, as shown by Hulanicki [303].

The von Neumann algebra W�.G/ is, by contrast, defined as the weak closure
of CG in B.`2.G//. Amenability of G is characterized by the fact that W�.G/
is hyperfinite: W�.G/ contains as a dense subalgebra the union of its finite-
dimensional subalgebras, as shown by Connes [160].

11.11.5 Numerical Invariants

Recall that the entropy of a probability measure � on a countable set X is defined as

H.�/ D �
X

x2X

�.x/ log�.x/; where as usual 0 log.0/ D 0:

The Liouville property can, in some favorable cases, be detected by a single
numerical invariant, its entropy or its drift. Given a random walk p on a set X,
starting at x 2 X, its entropy growth is the function h.n/ :D H.pn.x;�// computing
the entropy of distribution of the random walker after n steps. If furthermore X is
a metric space, the drift growth of p is the function `.n/ :D

P
y2X pn.x; y/d.x; y/

estimating the expected distance from the random walker to the origin after n steps.
Let us assume for simplicity that X admits a transitive group action so that

the functions h; `; v are independent of the choice of x. A celebrated criterion
by Avez [26] (for finitely supported �) and Derriennic [195] and Kaimanovich-
Vershik [325] (in the general case) shows that if H.�/ < 1, then .X; �/ is
Liouville if and only if h is sublinear. Moreover, the volume, entropy, and drift
growth are related by the inequality

lim
n!1

h.n/

n
�

�
lim

n!1

log v.n/

n

	�
lim

n!1

`.n/

n

	
:
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Finer estimates relate these functions log v; `; h, in particular if all are sublinear;
additionally, the probability of return p.n/ D � log pn.x; x/ and the `p distortion

dp.n/ D sup
˚ WG!`p 1-Lipschitz

inffk˚.g/ � ˚.h/k j d.g; h/ � ng

are all related by various inequalities; see [262, 438, 474].

11.11.6 Sofic Groups

The class of sofic groups is a common extension of amenable and residually finite
groups. We refer to [275, 582] for its introduction. The definition may be seen as a
variant of Følner’s criterion:

Definition 11.11.2. Let G be a group. It is sofic if for every finite subset S b G and
every � > 0, there exists a finite set F and a mapping � W S! Sym.F/ such that

if s; t; st 2 S then #ff 2 F j f�.s/�.t/ ¤ f�.st/g < �#F;

if s ¤ t 2 S then #ff 2 F j f�.s/ D f�.t/g < �#F:

Two cases are clear: if G is residually finite, then for every S b G there exists
a homomorphism WG ! F to a finite group that is injective on S; define then
f�.s/ D f.s/ for all s 2 S; f 2 F, showing that G is sofic. If on the other hand
G is amenable, then for every S b G and every � > 0, there exists F b G with
#.FS n F/ < �#F; define then f�.s/ D fs if fs 2 F, and extend the partial map
�.s/WFÜ F arbitrarily into a permutation, showing that G is sofic.

Remarkably, there is at the present time (2017) no known example of a non-sofic
group.

11.11.7 Is This Group Amenable?

We list here some examples of groups for which it is not known whether they are
amenable or not. These problems are probably very hard.

Problem 11.11.3 (Geoghegan). Is Thompson’s group F amenable?
Recall that F is the group of piecewise-linear homeomorphisms of Œ0; 1�, with

slopes in 2Z and breakpoints in ZŒ 1
2
�; see [125] and Example 11.7.21.

There have been numerous attempts at answering Problem 11.11.3, too many to
cite them all; a promising direction appears in [560]. Kaimanovich proves in [324]
that, for every finitely supported measure � on F, the orbit . 1

2
F; �/ is not Liouville;

however Juschenko and Zhang prove in [319] that 1
2
F is laminable.
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There is a group that is related to F and acts on the circle Œ0; 1�=.0 � 1/: it
satisfies the same definition as F, namely, the group T of piecewise-linear self-
homeomorphisms with slopes in 2Z and breakpoints in ZŒ 1

2
�=Z. Its amenable

subgroup ZŒ 1
2
�=Z acts transitively on the orbit 0T , so 0T " T is laminable by

Corollary 11.8.18.

Problem 11.11.4 (Nekrashevych). Are all contracting self-similar groups
amenable?

Recall that a self-similar group is a group G generated by invertible transducers;
it acts on A N and may be given by a map �WG ! G oA Sym.A /, as in (11.2).
It is contracting if there is a proper metric on G and constants � < 1;C such that
whenever �.g/ D hh g1; : : : ; g#A ii� , we have kgik < �kgk C C. See [441].

Problem 11.11.5 (Folklore, often attributed to Katok). Is the group of interval
exchange transformations amenable? Does it contain non-abelian free subgroups?

A partial, positive result appears in Example 11.9.15. It would suffice, following
the strategy in that example (see [320, Proposition 5.3]), to prove that the group
of Zd-wobbles W.Zd/ acts extensively amenably on Zd for all d 2 N; at present
(2017), this is known only for d � 2, see Theorem 11.9.16.
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217. Erdős, P.: Some unsolved problems. Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 221–254

(1961)
218. Erschler, A.G.: Poisson-furstenberg boundaries, large-scale geometry and growth of groups.

In: Proc. ICM Hyderabad, India, vol. II, pp. 681–704 (2010)
219. Evdokimov, A.A.: Strongly asymmetric sequences generated by a finite number of symbols.

Dokl. Akad. Nauk SSSR 179, 1268–1271 (1968)
220. Feng, D.J., Wang, Y.: On the structures of generating iterated function systems of Cantor sets.

Adv. Math. 222(6), 1964–1981 (2009)
221. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with

order. SIAM J. Comput. 4, 69–76 (1975)
222. Figueira, S., Nies, A.: Feasible analysis, randomness, and base invariance. Theory Comput.

Syst. 56, 439–464 (2015)
223. Fiorenzi, F., Ochem, P., Vaslet, E.: Bounds for the generalized repetition threshold. Theor.

Comput. Sci. 412(27), 2955–2963 (2011)
224. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge

(2009)
225. Følner, E.: Note on a generalization of a theorem of Bogolioùboff. Math. Scand. 2, 224–226

(1954)
226. Følner, E.: On groups with full Banach mean value. Math. Scand. 3, 243–254 (1955)
227. Fraenkel, A.S.: Systems of numeration. Am. Math. Mon. 92, 105–114 (1985)
228. Fraenkel, A.S., Simpson, R.J.: How many squares must a binary sequence contain? Electron.

J. Comb. 2, R2, 9pp. (1995)
229. Frougny, C.: Representations of numbers and finite automata. Math. Syst. Theory 25, 37–60

(1992)
230. Frougny, C., Pelantova, E.: Beta-representations of 0 and Pisot numbers. J. Théor. Nombres

Bordeaux (in press)
231. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Combinatorics,

Automata and Number Theory. Encyclopedia of Mathematics and Its Applications, vol. 135,
pp. 34–107. Cambridge University Press, Cambridge (2010)

232. Frougny, C., Solomyak, B.: On representation of integers in linear numeration systems. In:
Pollicott, M., Schmidt, K. (eds.) Ergodic Theory of Zd Actions (Warwick, 1993–1994).



554 References

London Mathematical Society Lecture Note Series, vol. 228, pp. 345–368. Cambridge
University Press, Cambridge (1996)

233. Fukuyama, K.: The law of the iterated logarithm for discrepancies of f�nxg. Acta Math.
Hung. 118(1), 155–170 (2008)

234. Furstenberg, H.: A poisson formula for semi-simple lie groups. Ann. Math. (2) 77, 335–386
(1963)

235. Furstenberg, H.: Boundary theory and stochastic processes on homogeneous spaces. In:
Harmonic Analysis on Homogeneous Spaces. Proceedings of Symposia in Pure Mathematics,
vol. XXVI, Williams Coll., Williamstown, MA, 1972, pp. 193–229. American Mathematical
Society, Providence, RI (1973)

236. Gál, S., Gál, L.: The discrepancy of the sequence f.2nx/g. Koninklijke Nederlandse Akademie
van Wetenschappen Proceedings. Seres A 67 = Indagationes Mathematicae 26, 129–143
(1964)

237. Gamard, G., Ochem, P., Richomme, G., Séébold, P.: Avoidability of circular formulas (2016).
ArXiv:1610.04439

238. Gawron, P.W., Nekrashevych, V.V., Sushchansky, V.I.: Conjugation in tree automorphism
groups. Int. J. Algebra Comput. 11(5), 529–547 (2001)

239. Georgiadis, L., Goldberg, A.V., Tarjan, R.E., Werneck, R.F.: An Experimental Study of
Minimum Mean Cycle Algorithms, pp. 1–13. SIAM (2009)

240. Ghys, É., Carrière, Y.: Relations d’équivalence moyennables sur les groupes de Lie. C. R.
Acad. Sci. Paris Sér. I Math. 300(19), 677–680 (1985)

241. Ghys, É., de la Harpe, P.: Sur les groupes hyperboliques d’après Mikhael Gromov. Progress
in Mathematics, vol. 83. Birkhäuser, Boston, MA (1990). Papers from the Swiss Seminar on
Hyperbolic Groups held in Bern, 1988

242. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable. Int. J. Algebra
Comput. 24(1), 1–9 (2014)

243. Gillibert, P.: Simulating Turing machines with invertible Mealy automata (2017, in prepara-
tion)

244. Glasner, S.: Proximal Flows. Lecture Notes in Mathematics, vol. 517. Springer, Berlin/New
York (1976)

245. Glasner, Y., Monod, N.: Amenable actions, free products and a fixed point property. Bull.
Lond. Math. Soc. 39(1), 138–150 (2007)

246. Glasner, Y., Mozes, S.: Automata and square complexes. Geom. Dedicata 111, 43–64 (2005)
247. Gluškov, V.: Abstract theory of automata. Uspehi Mat. Nauk 16(5), 3–62 (1961)
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A
abelian

avoidability index, 193
equivalence, 185
occurrence of a pattern, 193
powers, 185

abelian cube, 185
abelian square, 185

absolutely normal, 11, 235
abstract numeration system, 97
accepting G-machine, 382
accessible state, 19
additive k-th power, 195
adic transformation, 519
algebra

C�, von Neumann, 541
almost specification with mistake, 282
almost everywhere, 34
alphabet, 4
amenability, 433

Day’s and Reiter’s criterion, 457,
480

elementary, 484
elementary operations preserving,

483
elementary properties, 444
extensive, 505, 544
Følner’s criterion, 450
hereditary, 506
of groups, 441
of algebras, 522
of associative algebras, 536
of Banach algebras, 533
of equivalence relations, 479

of groupoids, 483
subexponential, 486

aperiodic word, 216
approximate identity, 534
attractor, 134
augmentation ideal, 535
automatic

(semi)group, 410
A -automatic function, 149
function, 42
number, 42
sequence, 41
structure, 410

automatic sequence, 140
F-automatic sequence, 114
U-automatic sequence, 114
b-automatic sequence, 93, 100, 102–104,

110–112
automaton, 138

(semi)group, 395
Büchi, see Büchi automaton
complete, 20
deterministic, 20
deterministic with output, 21
DFA, 93, 101, 102, 131, 139
DFAO, 93, 103
finite, 91, 104, 113, 114
NFA, 93
trim, 19

automorphism
of tree, 445

avoidability
exponent, 207
index, 182
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B
Büchi automaton, 116, 120, 126, 129–131,

133–136
deterministic, 116, 124, 125
trim, 124, 135
weak, 121, 125

Büchi-Bruyère theorem, 100–102, 104
balanced word, 216
Banach algebra, 533
barycentre, 449

of measure, 477
barycentric subdivision, 456
Basilica group, see group, Basilica
Baumslag-Solitar group, see group,

Baumslag-Solitar
Bernoulli measure, 216
ˇ-expansion, 10
ˇ-representation, 10
ˇ-transformation, 10
Birkhoff ergodic theorem, 34
border, 215
bordered word, 215
boundary

in graph, 451
Martin, 540
Poisson, 539

bounded-displacement permutation, 453
Bratteli diagram, 517

C
C�-algebra, 541
canonical sequence, 309
Cantor set, 7, 266, 437, 438, 519
Cartier operators, 25, 47
Cayley graph, 348
ceiling function, 1
cellular automaton, 522

center-permutive, 403
one-way, 403
periodic, 403

Cesàro extremely non-normal, 319
Chomsky–Schützenberger hierarchy, 16, 40
Church-Turing thesis, 335
clopen set, 35
closed by extensions set of patterns, 382
co-accessible state, 19
Cobham-Semenov theorem, 99, 132, 137
code, 18, 285

prefix, 18
coding, 14

pattern, 352
coloring, 214
complete automaton, 20

complexity function, 5
computable, 338
concat-product, 313
concatenation, 4
configuration (Turing machine), 336
conjugacy, 350
contracting self-similar group, 544
convex polytope, 127
cross-diagram, 394
cross-transition, 394
crossed homomorphism, 534
cube, 177
cylinder, 35

product topology, 215
set, 273

D
decidable, 337
decimation, 25
decision problem, 337
decomposition

paradoxical, 468
definable set, 101, 127, 128, 132, 139

U-definable set, 114
ˇ-definable set, 126, 129
b-definable set, 100–102, 110–113

derivation, 533
desubstitution, 24
deterministic Büchi automaton, see Büchi

automaton, 125
DFA, 20
D-finite function, 72
distance, 7
distortion of embedding, 543
domino problem, 337

for a group, 352
doubling condition, 470
drift of random walk, 542
dynamical system

conjugacy, 33
measure-theoretic, 33
subshift, 35
symbolic, 35
topological isomorphism, 33

E
effectively closed subshift, 371, 375
Ellis-Numakura lemma, 222
empirical measure, 281
emptiness problem for a group, 352
empty word, 4
entropic growth rate, 308
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entropy, 36, 542
enumeration reducible, 383
equidecomposable G-set, 471
equivalence relation

hyperfinite, 480
measurable, 480

ergodic
Birkhoff theorem, 34
measure, 34, 281

essentially non-normal, 317
eventually periodic word, 6, 39, 174, 216
expansion

ˇ-expansion, 10, 117
k-ary, 8

exponent, 12, 179
exponential growth, 462
extensive amenability, 505
extremely non-normal, 318

F
factor, 177

complexity, 5
map, 33, 350
of a word, 4, 5
proper, 4

factorial language, 16
Fibonacci

number, 65
sequence, 95
substitution, 438
word, 14, 114, 216

filter, 222, 442
final state, 18
finite automaton, 20
finitely additive measure, 440
finitely presented group, 348
finiteness property, 66
first-order formula, 100–103, 126, 128,

131
floor, 1
formula, 182

circular, 184
fractional part, 1
Frankenstein group, see group, Frankenstein
free

group, see group, free
monoid, 144
ultrafilter, 222

frequency, 7, 38, 235, 279
vector, 308

full shift, 35, 349
Furstenberg’s theorem, 6, 155

G
G-decidable, 382
G-effectively closed subshift,

381
G-enumeration effective, 384
G-machine, 382
G-recursively enumerable, 382
game of life, 523
garden of Eden (GOE), 523
generic point, 280
geodesic flow, 521
Golden mean, 14

shift, 17, 35
Goldie ring, 531
graph, 451, 492

bipartite, 472
Cayley, 451, 453, 475, 498, 540
matching, 472
Schreier, 451, 518

graph-directed iterated function system
GDIFS, 132–137

greedy-representation, see representation
Grigorchuk group, see group, Grigorchuk
group, 2

amenable, 441
Basilica, 438
Baumslag-Solitar, 460
bounded tree automorphism,

437
Burnside, 490
elementary amenable, 484
finitely generated, 347
Frankenstein, 437, 490, 517
free, 348, 436, 443, 453, 469
free group free, 489
generators, 347
Grigorchuk, 437, 445, 465
growth, 3, 428, 461
lamplighter, 445, 446, 453
monotileable, 541
nilpotent, 461
noetherian, 463
polycyclic, 461
presentation, 348
self-similar, 445, 466, 487, 544
sofic, 543
soluble, 462, 485
subexponentially amenable, 486
surface, 498
Tarski monster, 460
Thompson’s, 491, 543
topological full, 471, 515
torsion, 486
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groupoid, 483, 515
compactly generated, 521
expansive, 521

growth
exponential, 462, 489
function of a subset of N, 94
intermediate, 465, 486
of a Schreier graph, 419
of a group, 3, 428, 461
of sets, 454
orbit, 454
polynomial, 461, 509
rate, 36, 179
subexponential, 454

H
Hadamard product, 104
halting problem, 338, 339
harmonic function, 462, 499, 509
Hausdorff-Banach-Tarski paradox, 469
helix graph, 404

rigid, 407
hereditary amenability, 506
higher power shift, 356
higher-block shift, 351
hyperfinite, 542
hyperfinite equivalence relation, 480

I
ideal, 2
immortal starting point, 342
individual ergodic theorem, 34
Infinite Ramsey’s Theorem, 225
integer

ˇ-integer, 119, 123, 126, 133
intermediate growth, 465
interval exchange, 514, 519
intrinsically ergodic, 281
invariant measure, 34
inverted orbit, 512
IP-set, 223, 230
irrational rotation, 514, 519
isoperimetric constant, 493
iterated function system

IFS, 137

J
joint spectral radius, 32, 58, 60, 66
jungle tree, 426

K
k-abelian n-th power, 197
k-abelian equivalence, 197
k-kernel, 25, 44, 59, 144
k-repetitive group, 195
König’s infinity lemma, 155, 199, 217
Kleene star, 15
Kronecker’s lemma, 464

L
laminable action, 501
lamplighter group, see group, lamplighter
language, 15

!-language, 116
!-regular language, 116
factorial, 16
finite, 16
infinite, 16
of a subshift, 349
prefix-closed, 16
suffix-closed, 16

lazy measure, 502
legitimate child, 424
letter, 4
level-transitivity, 429
lexicographic order

degree, 154
pure, 154

Liouville random walk, 500, 539, 542
local function, 310
logical structure, 100, 101
`p.X/, 447
Lyndon word, 216

M
Mahler function, 41, 48

algebraic approximation, 83
D-finite, 72
entire, 69
radius of convergence, 69
rational, 80
rational approximation, 81

Mahler number, 42, 79
many-one reducible, 339
Martin boundary, 540
matching, in graph, 472
Mealy automaton, 392

md-reduced, 394
md-trivial, 396
bireversible, 393
bounded, 419
dual, 393
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equivalent, 394
generated (semi)group, 395
inverse, 393
invertible, 392
minimal, 394
minimized, 394
polynomial-activity, 419

degree, 419
power, 395
reset, 402
reversible, 392
rigid, 407

mean, 440
mean dimension, 525
measure, 477

of maximal entropy, 281
Bernoulli, 524
Borel, 448
finitely additive, 440
invariant, 34
lazy, 502
of maximal entropy, 526
probability, 447, 478

measure-theoretic
dynamical system, 33
entropy, 280

minimal
dynamical system, 33

mirror, 5
subshift, 371

monoid, 2
morphism, 13

abelian k-th power-free, 186
between subshifts, 350
coding, 14
letter-to-letter, 14

Morse–Hedlund theorem, 6
mortality problem

of piecewise affine maps, 342
of Turing machines, 341

moving tape Turing machine, 337
multiplicatively dependent number, 98
multiplicatively independent number, 98, 99,

132, 133, 137
multisection, 520
mutually erasable patterns (MEP), 523

N
nearest neighbor subshift, 350
Nerode equivalence, 393
nilpotent group, 461

nim
product, 167
sum, 167

noetherian
group, 463
module, 27
ring, 26

non-periodic word, 6
nonuniform specification property with gap

function, 282
normal

absolutely, 11, 235
form, 410
number, 11, 38
sequence, 281
simply, 11, 235, 279
word, 228

normalization, 410
breadth, 411
quadratic, 411

numeration system
abstract, 97, 138–140
base ˇ, 116
base b, 138, 139
Pisot, 114
positional, 114, 115
unary, 92
Zeckendorf, 95, 138

O
one-sided shift, 34
oracle Turing machine, 338
orbit, 33, 271

growth, 454
inverted, 512
of an infinite word, 35
tree, 422

origin constrained domino problem, 340
overlap, 12
overlap-free word, 12, 218

P
palindrome, 5
paperfolding sequence, 103
paradox

Hausdorff-Banach-Tarski, 435, 469, 489
paradoxical decomposition, 436, 468
Parikh vector of a word, 185
Parry number, 120
particularly non-normal, 317
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path, 18
label, 19
successful, 19

pattern, 182, 349
coding, 352
doubled, 183

percolation, 540
period, 6, 179
periodic

word, 6, 216
permutation

bounded-displacement, 453
decorated, 445
finitely supported, 485
wobble, 453, 471, 515

PI degree, 152
Pisot number, 114
Pisot numeration system, see numeration

system
Poisson boundary, 539
polycyclic group, 461
polynomial identity, 152
positional numeration system, see numeration

system
k-power, 12
power property, 150
k-power-free, 12
prefix, 4

-closed language, 16
prefix code, 286
prefixal factorization, 217
preperiod, 6
Presburger arithmetic, 101
primitive word, 12
principal ultrafilter, 222
projective subdynamics, 370
property (F), 460
property (T), 460, 540

Q
quasi-greedy ˇ-representation, see

representation
quasi-isometry, 456
quasi-Lipschitz map, 456

R
R-tree, 476
random walk, 491
rational polyhedron, 127, 128, 137, 140
rational power, 11
Rauzy graph, 202

recognizable series
K-recognizable series, 104, 105, 107
N-recognizable series, 98, 104, 107, 109
N1-recognizable series, 104, 107, 109,

110
recognizable set, 91, 100, 139, 140

1-recognizable set, 92, 100, 139
S- recognizable set, 100
S-recognizable set, 97, 98, 138, 140
U-recognizable set, 96, 114
ˇ-recognizable set, 120, 121, 129–131, 140
b-recognizable set, 93, 94, 97, 100, 101,

105, 107, 112, 132, 139, 140
weakly ˇ-recognizable set, 121–123, 125,

137
weakly b-recognizable set, 128, 136, 137

reconstruction sequence, 307
recurrent

action, 510
word, 6, 216

recursively
enumerable, 337
presented group, 348

regular function, 42
A -regular function, 149
Padé approximates, 73
radius of convergence, 69
ring of, 47

regular language, 16
regular number, 42, 72
regular sequence, 26, 41, 144

.K; b/-regular sequence, 107, 140

.N1; b/-regular sequence, 111
b-regular sequence, 110, 112
growth exponent, 59
linear representation, 45
ring of, 45

repetition, 12, 179
repetition threshold, 179

generalized repetition threshold, 180
representation

F-representation, 95
ˇ-expansion, 117
ˇ-representation, 116
b-representation, 92
k-ary, 8
greedy, 8
greedy b-representation, 92
greedy F-representation, 95
greedy U-representation, 95
quasi-greedy ˇ-representation, 118

resultant, 84
reversal, 5
rich factor, 221
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ring, 2
amenable, 522
Artinian, 531
classical, of fractions, 532
Goldie, 531
noetherian, 26
semiprime, 531

S
sandwich function, 161
Schmidt subspace theorem, 76
Schreier graph, 3, 419

growth, 419
Schreier trie, 422
Schur’s lemma, 464
self-liftable path, 424
self-similar (semi)group, 395, 445, 466, 487,

544
self-similar set

ˇ-self-similar set, 130, 133, 134, 137
b-self-similar set, 132, 136, 137, 140

semi-linear set, 99, 139
semigroup, 2
semiprime ring, 531
semiring, 2
separating coloring, 214
sequence

automatic, 41
regular, 26, 41
shuffled, 169
synchronized, 28

sequentially monochromatic
coloring, 215
factorization, 224

set
clopen, 35
ultimately periodic, 139

shift, 34
k-shift invariant monochromatic

factorization, 229
finite type, 35
full, 35
higher power, 356
higher-block, 351
invariant measure, 280
one-sided, 34
orbit closure, 35, 216
two-sided, 34

Shirshov’s theorem, 154
shuffle

function, 145
property, 145
square, 209

shuffled sequence, 169
sink, 20
sofic group, 543
sofic subshift, 350
soluble group, 462
specification property, 281
spectral radius, 32, 58, 492, 493
square, 12, 177
square diagram, 411
square-free word, 12
standard Bernoulli measure, 216
standard identities, 154
state

accessible, 19
co-accessible, 19
final, 18
terminal, 18

Stern’s sequence, 43, 45, 49, 55, 62, 63, 68
Stone-Čech compactification, 222, 442, 448,

534
strongly recognizable primitive substitution,

219
Sturmian word, 6, 216
subexponentially amenable group, 486
subshift, 35, 349

aperiodic, 35
conjugacy, 33
effectively closed, 371, 375
finite type, 35, 350
G-effectively closed, 381
mirror, 371
nearest neighbor, 350
periodic, 35
sofic, 35, 350

substitution, 13, 520
non-constant length, 174
sequence, 375
strongly recognizable primitive, 219

suffix, 4
-closed language, 16

super monochromatic
coloring, 215
factorization, 226

surface group, see group, surface
Sylvester matrix, 84
symbol, 4
symbolic dynamical system, 35
synchronized sequence, 28

b-synchronized sequence, 112, 140

T
terminal state, 18
Thompson’s group, see group, Thompson’s
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Thue–Morse
morphism, 13
sequence, 43
word, 13, 218, 224

Thurston transducer, 417
tileset, 335
topological

conjugacy, 33
dynamical system, 33, 271
entropy, 36, 272
isomorphism, 33
partition, 272

topological full group, see group, topological
full

trajectory, 33
transformation

adic, 519
transient action, 510
transition

function, 20
relation, 18

tree, 453, 475
tree automorphism, 445
Tribonacci word, 115
trim, 19
trim Büchi automaton, see Büchi automaton
Turing

machine, 336
reducible, 339

U
ultimately periodic

set, 139
word, 6

ultra monochromatic factorization, 226
ultrafilter, 222, 442

free, 222
principal, 222

ultrametric space, 476
unary numeration system, see numeration

system
uniformly recurrent word, 6, 216
unique ergodicity, 34

V
Vandermonde determinant, 50
vector space, 2
virtually, 3
von Neumann algebra, 541

W
Wang

deterministic tileset, 398
tile, 334, 397
tileset, 397
tiling, 397
valid tiling, 397

weak Büchi automaton, see Büchi automaton
weakly ˇ-recognizable set, see recognizable

set, 122
wobble, 453, 470, 515, 544
word, 4

aperiodic, 216
balanced, 216
bi-infinite, 6
concatenation, 4
Dejean word, 180
distance, 7
eventually periodic, 6, 39, 174, 216
factor, 5
Fibonacci, 14
infinite, 5
mirror, 5
non-periodic, 6
normal, 228
overlap-free, 12
Parikh vector, 185
periodic, 6, 216
preperiod, 6
primitive, 12
purely morphic, 13
recurrent, 6, 216
reversal, 5
Ternary Thue–Morse, 178
Thue–Morse, 5, 178, 224
uniformly recurrent, 6, 155, 216

word problem for groups, 348
wreath product, 444

X
x-free, 179

Z
Zeckendorf numeration system, see numeration

system
Zorn’s’s lemma, 442


	Preface
	Chapter 2 by Michael Coons and Lukas Spiegelhofer Number Theoretic Aspects of Regular Sequences
	Chapter 3 by Émilie CharlierFirst-Order Logic and Numeration Systems
	Chapter 4 by Jason BellSome Applications of Algebra to Automatic Sequences
	Chapter 5 by Pascal Ochem, Michaël Rao, and Matthieu RosenfeldAvoiding or Limiting Regularities in Words
	Chapter 6 by Caïus Wojcik and Luca ZamboniColoring Problems for Infinite Words
	Chapter 7 by Verónica Becher and Olivier CartonNormal Numbers and Computer Science
	Chapter 8 by Manfred MadritschNormal Numbers and Symbolic Dynamics
	Chapter 9 by Nathalie Aubrun, Sebastián Barbieri, and Emmanuel JeandelAbout the Domino Problem for Subshifts on Groups
	Chapter 10 by Ines Klimann and Matthieu Picantin Automaton (Semi)groups: Wang Tilings and Schreier Tries
	Chapter 11 by Laurent BartholdiAmenability Groups and G-Sets

	Acknowledgments
	Contents
	Contributors
	1 General Framework
	1.1 Conventions
	1.2 Algebraic Structures
	1.3 Words
	1.3.1 Finite Words
	1.3.2 Infinite Words
	1.3.3 Number Representations
	1.3.4 Normality
	1.3.5 Repetitions in Words

	1.4 Morphisms
	1.5 Languages and Machines
	1.5.1 Languages of Finite Words
	1.5.2 Formal Series
	1.5.3 Codes
	1.5.4 Automata

	1.6 Sequences and Machines
	1.6.1 Automatic Sequences
	1.6.2 Regular Sequences

	1.7 Dynamical Systems
	1.7.1 Topological Dynamical Systems
	1.7.2 Measure-Theoretic Dynamical Systems
	1.7.3 Symbolic Dynamics


	2 Number Theoretic Aspects of Regular Sequences
	2.1 Introduction
	2.1.1 Two Important Questions
	2.1.2 Three (or Four) Hierarchies in One

	2.2 From Automatic to Regular to Mahler
	2.2.1 Definitions
	2.2.2 Some Comparisons Between Regular and Mahler Functions

	2.3 Size and Growth
	2.3.1 Lower Bounds
	2.3.2 Upper Bounds
	2.3.3 Maximum Values and the Finiteness Property

	2.4 Analytic and Algebraic Properties of Mahler Functions
	2.4.1 Analytic Properties of Mahler Functions
	2.4.2 Rational-Transcendental Dichotomy of Mahler Functions

	2.5 Rational-Transcendental Dichotomy of Regular Numbers
	2.6 Diophantine Properties of Mahler Functions
	2.6.1 Rational Approximation of Mahler Functions
	2.6.2 A Transcendence Test for Mahler Functions
	2.6.3 Algebraic Approximation of Mahler Functions


	3 First-Order Logic and Numeration Systems
	3.1 Introduction
	3.2 Recognizable Sets of Nonnegative Integers
	3.2.1 Unary Representations
	3.2.2 Integer Bases
	3.2.3 Positional Numeration Systems
	3.2.4 Abstract Numeration Systems
	3.2.5 The Cobham–Semenov Theorem

	3.3 First-Order Logic and b-Automatic Sequences
	3.3.1 b-Definable Sets of Integers
	3.3.2 The Büchi-Bruyère Theorem
	3.3.3 The First-Order Theory of "426830A N,+,Vb"526930B  Is Decidable
	3.3.4 Applications to Decidability Questions for b-Automatic Sequences

	3.4 Enumeration
	3.4.1 b-Regular Sequences
	3.4.2 N-Recognizable and N∞-RecognizableFormal Series
	3.4.3 Counting b-Definable Properties of b-Automatic Sequences Is b-Regular
	3.4.4 b-Synchronized Sequences

	3.5 First-Order Logic and U-Automatic Sequences
	3.6 First-Order Logic and Real Numbers
	3.6.1 Büchi Automata
	3.6.2 Real Bases β
	3.6.3 β-Recognizable Sets of Real Numbers
	3.6.4 Weakly β-Recognizable Sets of Real Numbers
	3.6.5 First-Order Theory for Mixed Real and Integer Variables in Base β and Büchi Automata
	3.6.6 Characterizing β-Recognizable Sets Using Logic
	3.6.7 Analogues of the Cobham–Semenov Theorem for Real Numbers
	3.6.8 Linking Büchi Automata, β-Self-Similarity and GDIFS

	3.7 Exercises
	3.8 Bibliographic Notes

	4 Some Applications of Algebra to Automatic Sequences
	4.1 Introduction
	4.2 The Shuffle Property
	4.3 The Power Property
	4.4 Shirshov's Height Theorem
	4.5 Characterization of A-Regular Sequences
	4.6 Sandwich Functions
	4.7 Applications
	4.7.1 The Logarithm and Automaticity
	4.7.2 The 2-Adic Behavior of the Logarithm
	4.7.3 Nim Sums and Nim Products

	4.8 Shuffled Sequences
	4.9 Open Problems and Concluding Remarks

	5 Avoiding or Limiting Regularities in Words
	5.1 Introduction
	5.2 Usual Repetitions
	5.2.1 Thue's Results and Ternary Square-Free Words
	5.2.2 Erdős's Question: Avoiding Long Squares
	5.2.3 Fractional Repetitions and Dejean's Conjecture
	5.2.4 Generalized Repetition Threshold
	5.2.5 Limiting Occurrences and Letters
	5.2.6 Patterns and Formulas

	5.3 Abelian and Sum Equivalence
	5.3.1 Mäkelä's Questions
	5.3.2 Abelian Patterns
	5.3.3 Powers Modulo Φ, Additive Powers, and k-Repetitive Groups
	5.3.4 k-Abelian Equivalence
	5.3.5 k-Binomial Equivalence

	5.4 Techniques for Negative Results
	5.4.1 Exhaustive Search and Backtracking
	5.4.2 Bounds on Densities by Exhaustive Searches
	5.4.3 Mean Cycles and Rauzy Graphs
	5.4.4 Upper Bound on the Growth Rate
	5.4.5 Nonuniform Rauzy Graphs
	5.4.5.1 Automatic Method to Construct a Suffix Graph
	5.4.5.2 Improvement of the Extension Phase
	5.4.5.3 Computation of the Mean Cycle


	5.5 Techniques for Positive Results
	5.5.1 Finding a Candidate Morphism
	5.5.2 Avoiding Patterns and Formulas
	5.5.3 The Dejean Method
	5.5.4 A Power Series Method
	5.5.5 Kolpakov's Method


	6 Coloring Problems for Infinite Words
	6.1 Introduction
	6.2 Preliminaries
	6.3 A Coloring Problem
	6.4 Variations on the Coloring Problem

	7 Normal Numbers and Computer Science
	7.1 Introduction
	7.2 Borel's Definition of Normality
	7.3 Equivalences Between Combinatorial Definitionsof Normality
	7.4 Normality as a Seemingly Weaker Condition
	7.5 Normality as Incompressibility by Finite Automata
	7.6 Normality as Uniform Distribution Modulo 1
	7.7 Constructions of Numbers That Are Normal to a Given Base
	7.7.1 À la Champernowne
	7.7.2 Infinite de Bruijn Words
	7.7.3 A Normal and Self-Similar Word

	7.8 Constructions of Absolutely Normal Numbers
	7.8.1 Turing's Construction of AbsolutelyNormal Numbers
	7.8.2 A Fast Construction of Absolutely Normal Numbers

	7.9 Normality, Non-normality, and Other Mathematical Properties
	7.10 Selection

	8 Normal Numbers and Symbolic Dynamics
	8.1 Introduction
	8.1.1 Infinite Alphabet

	8.2 Normal Numbers
	8.2.1 Infinite Alphabet

	8.3 Construction of the Maximal Measure
	8.4 Generic Sequences for Different Measures
	8.5 Besicovitch-Eggleston Sets
	8.5.1 Reconstruction and Canonical Sequences
	8.5.2 A Cover
	8.5.3 The Lower Bound

	8.6 Extremely Non-normal Numbers
	8.6.1 Finite Alphabet
	8.6.2 Infinite Alphabet
	8.6.3 Preliminaries on Words
	8.6.4 Proof of Theorem 8.6.9
	8.6.5 Proof of Theorem 8.6.11


	9 About the Domino Problem for Subshifts on Groups
	9.1 Introduction
	9.2 Subshifts of Finite Type on Z2, Wang Tiles and the Domino Problem
	9.2.1 Definitions
	9.2.2 Turing Machines and the Halting Problem
	9.2.3 Reductions
	9.2.4 Domino Problem with Constrained Origin
	9.2.5 Domino Problem

	9.3 Subshifts of Finite Type on Finitely Generated Groups
	9.3.1 Definitions
	9.3.1.1 Group Presentations and the Word Problem
	9.3.1.2 SFT on Finitely Generated Groups

	9.3.2 Domino Problem
	9.3.2.1 Definitions
	9.3.2.2 Basic Properties

	9.3.3 Inheritance Properties
	9.3.4 Classes of Groups
	9.3.4.1 Virtually Free Groups
	9.3.4.2 Polycyclic Groups
	9.3.4.3 Baumslag-Solitar Groups
	9.3.4.4 Groups G1G2

	9.3.5 Discussion
	9.3.5.1 Muller & Schupp Theorem
	9.3.5.2 Hyperbolic Groups
	9.3.5.3 Translation-Like and Quasi-Isometric Groups


	9.4 Towards a Definition of Effective Subshifts on Groups
	9.4.1 Link Between Z and Z2
	9.4.1.1 Projective Subdynamics: Definition and Example
	9.4.1.2 Effectively Closed Subshifts on Zd
	9.4.1.3 Simulation Theorem

	9.4.2 Effectiveness on Groups
	9.4.2.1 Definition and Basic Properties
	9.4.2.2 The Case of Non-recursively Presented Groups
	9.4.2.3 The One-or-Less Subshift X≤1

	9.4.3 Two Larger Notions of Effectiveness
	9.4.3.1 G-Effectiveness
	9.4.3.2 Enumeration Effectiveness
	9.4.3.3 Towards a Simulation Theorem


	9.5 Exercises

	10 Automaton (Semi)groups: Wang Tilings and Schreier Tries
	10.1 Introduction
	10.1.1 Mealy Automata
	10.1.2 Minimization and Nerode Classes
	10.1.3 Automaton (Semi)groups

	10.2 A Matter of Tilings
	10.2.1 Background on Tilings
	10.2.2 Finiteness and Order Problems
	10.2.3 Helix Graphs and Rigidity
	10.2.4 Automat-ic-on Semigroups

	10.3 A Matter of Orbits
	10.3.1 Schreier Graphs and Polynomial-Activity Automata
	10.3.2 Schreier Tries and Reversible Automata
	10.3.2.1 Order and Finiteness Problems

	10.3.3 The Burnside Problem
	10.3.3.1 When the Automaton Is Not Bireversible
	10.3.3.2 When the Automaton Is Connected of Prime Size

	10.3.4 Growth and Level-Transitivity
	10.3.4.1 Growth
	10.3.4.2 Level-Transitivity



	11 Amenability of Groups and G-Sets
	11.1 Introduction
	11.1.1 Amenability of Groups
	11.1.2 Why This Text?
	11.1.3 Why Not This Text?
	11.1.4 Notation

	11.2 Means and Amenability
	11.2.1 First Examples
	11.2.2 Elementary Properties

	11.3 Følner, Day, and Reiter's Criteria
	11.3.1 Growth of Sets
	11.3.2 Day's and Reiter's Criterion
	11.3.3 Non-amenability

	11.4 Growth of Groups
	11.4.1 Groups of Polynomial Growth
	11.4.2 Groups of Exponential Growth
	11.4.3 Groups of Intermediate Growth

	11.5 Paradoxical Decompositions
	11.5.1 Hausdorff's Paradox
	11.5.2 Doubling Conditions

	11.6 Convex Sets and Fixed Points
	11.6.1 Measures
	11.6.2 Amenability of Equivalence Relations

	11.7 Elementary Operations
	11.7.1 Elementary Amenable Groups
	11.7.2 Subexponentially Amenable Groups
	11.7.3 Free Group Free Groups

	11.8 Random Walks
	11.8.1 Spectral Radius
	11.8.2 Harmonic Functions

	11.9 Extensive Amenability
	11.9.1 Recurrent Actions
	11.9.2 Topological Full Groups

	11.10 Cellular Automata and Amenable Algebras
	11.10.1 Goldie Rings
	11.10.2 Amenable Banach Algebras
	11.10.3 Amenable Algebras

	11.11 Further Work and Open Problems
	11.11.1 Boundary Theory
	11.11.2 Consequences
	11.11.3 Ergodic Theory
	11.11.4 C*- and von Neumann Algebras
	11.11.5 Numerical Invariants
	11.11.6 Sofic Groups
	11.11.7 Is This Group Amenable?


	References
	Index

