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Preface

This collaborative volume aims at presenting and developing recent trends at the
interface between the study of sequences, groups, and number theory, as the title
may suggest. It is inspired by the celebrated Lothaire series [385-387] and animated
by the same spirit as in the books [78, 79]. Among the various topics developed
in this volume, let us quote the notions of automatic and regular sequences,
of normality, of amenability of groups, but also of tilings and multidimensional
subshifts, as striking examples of such bridges. These topics are handled with
a viewpoint combining mathematics and theoretical computer science. On the
one hand, some of the newest results in these areas have been selected for this
volume and benefit from a synthetic exposition. On the other hand, emphasis on
the connections existing between the main topics of the book is sought.

This book is primarily intended for graduate students or research mathematicians
and computer scientists interested in combinatorics on words, automatic and
regular sequences, numeration systems, normal numbers, automata theory, group
theory, automaton groups, amenable groups, number theory and arithmetics, formal
language theory and discrete dynamical systems, symbolic dynamics, but also
tilings. We hope that some of the chapters can serve as a useful material for lecturing
at a master or graduate level.

Let us succinctly sketch the contents of this contributed volume. The book can
roughly be divided into four general blocks. The first block which is made of
Chapters 2, 3, and 4 pertains to number theory and focuses on sequences. The
second one made of Chapters 5 and 6 is devoted to word combinatorics. The
third block, made of Chapters 7 and 8, focuses on normal numbers and provides
two viewpoints on normal numbers, namely, a computer scientist and a dynamical
perspective. The last block is concerned with group theory with Chapters 9, 10,
and 11. Note that short abstracts of each chapter can be found below and at the
beginning of each chapter.

Number theory is one of the main frames underpinning this book. One can
represent a real number by an infinite word, for instance, by considering its
development in an integer base. One can also code a set of natural integers by
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its characteristic sequence considered as an infinite word over the alphabet {0, 1}.
Connections between number theory and the study of sequences are therefore
natural.

Automatic and regular sequences provide rich and widely studied classes
of sets, numbers, or functions, illustrating remarkably well these connections.
Automatic sequences correspond to the most basic objects in terms of Chomsky—
Schiitzenberger hierarchy, namely, regular languages, i.e., languages accepted by
finite automata, and they allow the definition of “simple sets” of numbers by
recognizing sets of representations in a given numeration system. Similarly, the
notion of a regular sequence extends the concept of automatic sequence to sequences
taking infinitely many values. For more on automatic and regular sequences, see the
monograph [14]. This hierarchy can be revisited in terms of sequences, numbers,
and functions, such as developed in Chapter 2 with the study of Mahler functions.
Chapter 2 focuses in particular on the algebraic, analytic, and Diophantine prop-
erties of Mahler functions, by highlighting the rational-transcendental dichotomy.
The question of the number theoretic properties of real numbers whose expansions
are highly structured is also developed in Chapter 2, whereas Chapter 4 looks
at applications of the theory of polynomial identities for automatic and regular
sequences: a characterization of regular sequences is provided in terms of the so-
called shuffle and power properties, stated in the context of noncommutative rational
series by Berstel and Reutenauer in [77, Chap. 3].

Recently several authors have proposed formal methods to obtain automatic
proofs (in the sense of automated theorem proving) about properties of k-automatic
sequences and, more generally, for particular families of morphic words (see, for
instance, [248, 540]). Indeed, some properties of interest for automatic sequences
are expressible by a first-order (FO) formula of (N, 4, V}), where V}, is a base-
dependent predicate. One can derive the decidability of (N, +,V,) from the
decidability of Presburger arithmetic (N, +) together with the Biichi-Bruyere
theorem [112, 114, 115] (see Theorem 3.3.4), and one thus can algorithmically
decide, for instance, whether or not a given automatic sequence contains a repetition
like a square or a cube. Chapter 3 deals with these connections involving formal
logic, decision problems, automaticity, regularity, and numeration. It also shows
how problems linked with the enumeration of combinatorial objects associated with
automatic sequences give rise to regular sequences. Questions on repetitions and
avoidance in words are also considered in Chapter 5.

Note that logic is a crucial notion in the present context that goes through several
chapters, in particular in the context of tilings. Indeed, the domino problem asks for
the existence of an algorithm deciding whether a finite set of Wang tiles may tile the
plane. This problem was formulated on Z> by Wang [580] in 1961 in order to study
a fragment of first-order (FO) logic, as recalled in Chapter 9. As another example,
the set theory notion of filters and ultrafilters is also considered in Chapters 6 and 11.

Similarly, machines issued from theoretical computer science are ubiquitous in
this book and occur under various forms by providing hierarchies and measures
of computational complexity or generating and constructing devices: let us quote
Biichi automata in Chapter 3, transducers in Chapter 7, Mealy automata in
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Chapter 10, Turing machines in Chapter 9, but also cellular automata in Chapters 10
and 11.

The study of normal numbers is another representative illustration of the numer-
ous connections existing between numbers, sequences, computability, dynamical
systems, probability, arithmetics, and algebra. Several (fast) effective constructions
of normal numbers and of absolutely normal numbers are provided in Chapter 7,
with the speed of convergence to normality being also considered. The analysis of
the computational complexity is obtained by counting the number of mathematical
operations required to output the first £ digits of the expansion of the computed
number in a designated base. Moreover, in Chapter 7, normality is also expressed
in terms of non-compressibility by a bounded-to-one nondeterministic transducer,
according to [56], together with further generalizations. The degree of randomness
in the expansions is investigated in Chapter 8 under a dynamical viewpoint.
Normality is discussed both from a topological and from a measure-theoretic
viewpoint, by stressing the fact that normality corresponds to genericity for an
invariant measure of maximal entropy. The symbolic dynamical systems considered
in this chapter are assumed to fulfill the specification property and thus to have a
unique measure of maximal entropy. Constructions by concatenations of words are
then provided.

Dynamical systems and computation are known to have closed connections.
Indeed, numerous computational models benefit from being viewed as a dynamical
system, whereas the ability to encode computations in various dynamical systems
provides information on their complexity and predictability. As an illustration
of this interplay, Hochman’s breakthrough [294, 295] on sofic multidimensional
subshifts has shown how computability theory is needed for their understanding
(see also [79, Chap. 9]). The main techniques in this framework rely on the use of
Turing machines that can be encoded by tilings. These topics will be developed in
Chapter 9 where the interactions between symbolic dynamics, substitution tilings,
computability, and group combinatorics are stressed: subshifts are considered here
both as computational models and discrete models for dynamical systems, and the
decidability of the Domino Problem is reinterpreted as a group property. Different
notions of effectiveness in subshifts defined over groups are also discussed. Recall
that the emptiness problem for subshifts of finite type is equivalent to the domino
problem, that is, the problem of tiling the plane with Wang tiles. Note that Wang
tilings are also considered as a tool for the understanding of the behavior of
automaton (semi)groups, such as developed in Chapter 10, where Wang tilesets are
associated with complete and deterministic Mealy automata.

Combinatorics on words deals with problems that can be stated in a noncom-
mutative monoid such as construction and properties of infinite words, k-automatic
and k-regular sequences, unavoidable regularities or patterns, factorization and
colorings, etc. Word combinatorics is a quite recent subject in discrete mathematics.
One can trace it back to the early twentieth century with the works of Thue, dealing
with repetition-free words, and then in the 1930s with Morse and Hedlund, with
their fundamental work on symbolic dynamics. The expansion of this research topic
is mostly due to Schiitzenberger in France and Novikov and Adjan in former Russia.
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Several important problems in combinatorics on words (e.g., pattern avoidance
of various forms such as squares, cubes, fractional, abelian powers, binomial
powers, etc.) are explored and often solved by developing algorithmic methods.
In particular, Chapter 5 is devoted to existence (or nonexistence) results for infinite
words avoiding a repetition, a pattern, or even a formula. The size of a language
of words avoiding some repetition pattern is also considered. Morphic words play
a crucial role in this context. This approach complements the formal methods of
Chapter 3. Another recurrent topic in combinatorics deals with factorization and
coloring problems such as in Ramsey theory. Chapter 6 is about monochromatic
factorizations of nonperiodic words and presents striking connections with topolog-
ical compactification, Hindman’s finite sums theorem, partition regularity of IP sets
(an IP set is a set of natural numbers which contains all finite sums of some infinite
set), and the Milliken—Taylor theorem.

Groups are ubiquitous in this book. They provide dynamical systems such as
developed in Chapter 9, which deals with decidability problems (domino problem)
involving subshifts of finite type on a finitely generated group. Group actions are
considered in Chapter 11 with the notion of self-similarity, a notion which occurs
in geometry, algebra, holomorphic dynamics, and computer science. The common
language is the one of finite automata such as developed in Chapter 10. Self-
similarity is interpreted in group theory as a group that contains permuted copies of
itself as a group. Constructions using finite automata have allowed the developments
of spectacular and unexpected group zoologies. They have permitted the proof of
existence of finitely generated groups with intermediate growth using the automaton
group of Grigorchuk or with nonuniform exponential growth, etc. Two classes of
(semi)groups are considered in Chapter 10, namely, automatic and automata groups.
Growth issues are also naturally considered in Chapters 10 and 11. The notion of
amenability for group actions, whose study is thoroughly developed in Chapter 11,
is again a striking example of the interaction between combinatorics, dynamics,
group theory, functional analysis, probability, etc. Amenability for a group G acting
on a set X can be formulated in terms of the existence of a G-invariant mean on
subsets of X.

Let us conclude our brief presentation of the book with numeration systems.
In a generic way, a numeration system allows the expansion of numbers as words
over an alphabet of digits. A numeration system usually is either defined by
an algorithm providing expansions or by an iterative process associated with a
dynamical system. So again, words are demonstrating their representation power.
Among the various questions related to the expansions of numbers, we have chosen
to develop two focused viewpoints on S-numeration (i.e., numeration systems with
non-integer bases), namely, connections with logic in Chapter 3 and normality issues
in Chapter 8.

Parts of the material developed in this book were presented during the fourth
CANT (Combinatorics, Automata and Number Theory) school that was organized
at the Centre International de Rencontres Mathématiques (CIRM) from 28 Novem-
ber to 2 December 2016 in Marseille. We thank the CIRM for supporting this
event.
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We now give, by order of appearance, abstracts of every chapter. Chapter 1 is
a general introduction where the main notions that will occur in this book are
presented. The reader may skip this chapter in a first reading and use it as a reference
if needed.

Chapter 2 by Michael Coons and Lukas Spiegelhofer
Number Theoretic Aspects of Regular Sequences

We present a survey of results concerning regular sequences and related objects.
Regular sequences were defined in the early 1990s by Allouche and Shallit
as a combinatorially, algebraically, and analytically interesting generalization of
automatic sequences. In this chapter, after a historical introduction, we follow the
development from automatic sequences to regular sequences, and their associated
generating functions, to Mahler functions. We then examine size and growth
properties of regular sequences. The last half of the chapter focuses on the algebraic,
analytic, and Diophantine properties of Mahler functions. In particular, we survey
the rational-transcendental dichotomies of Mahler functions, due to Bézivin, and of
regular numbers, due to Bell, Bugeaud, and Coons.

Chapter 3 by Emilie Charlier
First-Order Logic and Numeration Systems

The Biichi-Bruyere theorem states that a subset of N is b-recognizable if and only
if it is b-definable. This result is a powerful tool for showing that many properties
of b-automatic sequences are decidable. Going a step further, first-order logic
can be used to show that many enumeration problems of b-automatic sequences
can be described by b-regular sequences. The latter sequences can be viewed
as a generalization of b-automatic sequences to integer-valued sequences. These
techniques were extended to two wider frameworks: U-recognizable subsets of IN¢
and B-recognizable subsets of R?. In the second case, real numbers are represented
by infinite words, and hence, the notion of B-recognizability is defined by means
of Biichi automata. Again, logic-based characterizations of U-recognizable (resp.
B-recognizable) sets allow us to obtain various decidability results. The aim of this
chapter is to present a survey of this very active research domain.

Chapter 4 by Jason Bell
Some Applications of Algebra to Automatic Sequences

We give an overview of the theory of rings satisfying a polynomial identity and use
this to give a proof of a characterization due to Berstel and Reutenauer of automatic
and regular sequences in terms of two properties, which we call the shuffle property
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and the power property. These properties show that if one views an automatic
sequence f as a map on a free monoid on k-letters to a finite subset of a ring, then the
values of f are closely related to values of f on related words obtained by permuting
letters of the word. We use this characterization to give answers to three questions
from Allouche and Shallit, two of which have not appeared in the literature. The final
part of the chapter deals more closely with the shuffle property, and we view this
as a generalization of regular sequences. We show that sequences with the shuffie
property are closed under the process of taking sums, taking products; in addition
we show that there is closure under a noncommutative product, which turns the
collection of shuffled sequences into a noncommutative algebra. We show that this
algebra is very large, in the sense that it contains a copy of a free associative algebra
on countably many generators. We conclude by giving some open questions, which
we hope will begin a more careful study of shuffled sequences.

Chapter 5 by Pascal Ochem, Michaél Rao, and Matthieu
Rosenfeld
Avoiding or Limiting Regularities in Words

It is commonly admitted that the origin of combinatorics on words goes back to
the work of Axel Thue in the beginning of the twentieth century, with his results
on repetition-free words. Thue showed that one can avoid cubes on infinite binary
words and squares on ternary words. Up to now, a large part of the work on the
theoretic part of combinatorics on words can be viewed as extensions or variations
of Thue’s work, that is, showing the existence (or nonexistence) of infinite words
avoiding, or limiting, a repetition-like pattern. The goal of this chapter is to present
the state of the art in the domain and also to present general techniques used to
prove a positive or a negative result. Given a repetition pattern P and an alphabet,
we want to know if an infinite word without P exists. If it exists, we are also
interested in the size of the language of words avoiding P, that is, the growth rate
of the language. Otherwise, we are interested in the minimum number of factor P
that a word must contain. We talk about limitation of usual, fractional, abelian, and
k-abelian repetitions and other generalizations such as patterns and formulas. The
last sections are dedicated to the presentation of general techniques to prove the
existence or the nonexistence of an infinite word with a given property.

Chapter 6 by Caius Wojcik and Luca Zamboni
Coloring Problems for Infinite Words

Given a finite coloring (or finite partition) of the free semigroup <7 over a set &7,
we consider various types of monochromatic factorizations of right-sided infinite
words x € &/ In 2006, Brown asked the following question in the spirit of Ramsey
theory: Given a nonperiodic infinite word x = xxx3--- with values in a set <7,
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does there exist a finite coloring ¢ : &/ — C relative to which x does not admit
a g-monochromatic factorization, i.e., a factorization of the form x = wujupus---
with ¢(u;) = @(u;) for all i,j > 1? We give an optimal affirmative answer to this
question by showing that if x = x;xpx3--- is an infinite nonperiodic word with
values in a set .«7, then there exists a 2-coloring ¢ : &/ — {0, 1} such that for any
factorization x = ujuouz - -+, we have @(u;) # ¢(u;) for some i # j. Some stronger
versions of the usual notion of monochromatic factorization are also introduced and
studied. We establish links, and in some cases equivalences, between the existence
of these factorizations and fundamental results in Ramsey theory including the
infinite Ramsey theorem, Hindman’s finite sums theorem, partition regularity of IP
sets, and the Milliken—Taylor theorem.

Chapter 7 by Verdnica Becher and Olivier Carton
Normal Numbers and Computer Science

Emile Borel defined normality more than one hundred years ago to formalize
the most basic form of randomness for real numbers. A number is normal to a
given integer base if its expansion in that base is such that all blocks of digits of
the same length occur in it with the same limiting frequency. This chapter is an
introduction to the theory of normal numbers. We present five different equivalent
formulations of normality, and we prove their equivalence in full detail. Four of the
definitions are combinatorial, and one is in terms of finite automata, analogous to the
characterization of Martin-Lo6f randomness in terms of Turing machines. All known
examples of normal numbers have been obtained by constructions. We show three
constructions of numbers that are normal to a given base and two constructions of
numbers that are normal to all integer bases. We also prove Agafanov’s theorem
that establishes that a number is normal to a given base exactly when its expansion
in that base is such that every subsequence selected by a finite automaton is also
normal.

Chapter 8 by Manfred Madritsch
Normal Numbers and Symbolic Dynamics

The present chapter takes a dynamical viewpoint on normal numbers. Starting with
a description of the link between dynamical systems and numeration systems, we
present the concept of normal and non-normal numbers providing two different
views on the dynamics of the system. Normal numbers are “normal” with respect
to randomly chosen objects, whereas non-normal numbers and extreme variants
thereof are examples of general objects, from a topological viewpoint. In the
following sections, we present how to obtain maximal randomness as well as
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constructions of numbers with a given degree of chaos. Then we turn our attention
to non-normal numbers. Since they are not completely random, we have to find a
different measurement for analyzing their structure. The Hausdorff dimension will
provide us with an interesting parameter in this context.

Chapter 9 by Nathalie Aubrun, Sebastian Barbieri, and
Emmanuel Jeandel
About the Domino Problem for Subshifts on Groups

From a classical point of view, the domino problem is the question of the existence
of an algorithm which can decide whether a finite set of square tiles with colored
edges can tile the plane, subject to the restriction that adjacent tiles share the same
color along their adjacent edges. This question has already been settled in the
negative by Berger in 1966; however, these tilings can be reinterpreted in dynamical
terms using the formalism of subshifts of finite type, and hence, the same question
can be formulated for arbitrary finitely generated groups. In this chapter, we present
the state of the art concerning the domino problem in this extended framework.
We also discuss different notions of effectiveness in subshifts defined over groups,
that is, the ways in which these dynamical objects can be described through Turing
machines.

Chapter 10 by Ines Klimann and Matthieu Picantin
Automaton (Semi)groups: Wang Tilings and Schreier Tries

Groups and semigroups generated by Mealy automata were formally introduced in
the early 1960s. They revealed their full potential over the years, by contributing to
important conjectures in group theory. In the current chapter, we intend to provide
various combinatorial and dynamical tools to tackle some decision problems all
related to some extent to the growth of automaton (semi)groups. In the first part, we
consider Wang tilings as a major tool in order to study and understand the behavior
of automaton (semi)groups. There are various ways to associate a Wang tileset with
a given complete and deterministic Mealy automaton and various ways to interpret
the induced Wang tilings. We describe some of these fruitful combinations, as well
as some promising research opportunities. In the second part, we detail some toggle
switch between a classical notion from group theory—Schreier graphs—and some
properties of an automaton group about its growth or the growth of its monogenic
subgroups. We focus on polynomial activity automata and on reversible automata,
which are somehow diametrically opposed families.
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Chapter 11 by Laurent Bartholdi
Amenability Groups and G-Sets

This text surveys classical and recent results in the field of amenability of groups,
from a combinatorial standpoint. It has served as the support of courses at the
University of Géttingen and the Ecole Normale Supérieure. The goals of the text
are to be as self-contained as possible, so as to serve as a good introduction for
newcomers to the field; to stress the use of combinatorial tools, in collaboration
with functional analysis, probability, etc., with discrete groups in focus; to consider
from the beginning the more general notion of amenable actions; and, lastly, to
describe recent classes of examples and, in particular, groups acting on Cantor sets
and topological full groups.

Paris, France Valérie Berthé
Liege, Belgium Michel Rigo
August 2017
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Chapter 1 ®
General Framework Creck or

Valérie Berthé and Michel Rigo

Abstract This introductory chapter briefly presents some of the main notions that
appear in the subsequent chapters of this book. We recap a few definitions and
results from combinatorics on groups and words, formal language theory, morphic
words, k-automatic and k-regular sequences, and dynamical systems. Our aim is not
to be exhaustive. The reader can consult this chapter when studying other parts of
this book.

1.1 Conventions

The set of nonnegative integers (respectively integers, rational numbers, real
numbers, and complex numbers) is written N (respectively, Z, Q, R, and C). In
particular, the set N is {0, 1,2, ...}. We use the notation [, j] for the set of integers
{i,i + 1,...,j}. The floor of a real number x is |x] = sup{z € Z | z < x},
whereas {x} = x — |x] stands for the fractional part of x. Recall that [-] denotes
the ceiling function, i.e., [x] = inf{z € Z | z > x}. The characteristic sequence
xx of a set X C N takes its values in {0, 1} and satisfies yx(n) = 1 if and only if
n e X.

Let us recall the notation about asymptotics. Let f, g : R — R be two functions.
The definitions given below can also be applied to functions defined on another
domain like R.,, N or Z. We assume implicitly that the following notions are
defined for x — +o00. We write f € 0(g), if there exist two constants x; and
C > 0 such that, for all x > xo, [f(x)] < Clg(x)|. We also write f < g or
g > f,orelse g € £2(f). Note that we can write either f € 0(g) or f = O(g).
Be aware that in the literature, authors sometimes give different meanings to the
notation £2(f). Here we consider a bound, for all large enough x, but there exist
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variants where the bound holds only for an increasing sequence (x,),>o of reals,
i~e~’ lim SUPy— + 00 Ig(x)l/[f(x)l > 0.

If g belongs to O(f) N £2(f), i.e., there exist constants xy, C1, C, with C;, C; > 0
such that, for all x > xg, C1|[f(x)| < |g(x)| < C2|f(x)], then we write g € O(f). As
an example, the function x* + sin 6x is in @(x?) and x?| sin(4x)| is in &' (x?) but not
in ©(?).

1.2 Algebraic Structures

We briefly recall the basic definitions of monoid, (semi)group, (semi)ring, field,
ideal, vector space, and module.

Definition 1.2.1. Let S be a set equipped with a single binary operation
*:5x5 -8,

It is convenient to call this operation a multiplication over S, and the product of
x,y € Sis usually denoted by xy.

If this multiplication is associative, i.e., for all x,y,z € S, (xy)z = x(yz), then the
algebraic structure given by the pair (S, ) is a semigroup.

If, moreover, multiplication has an identity element, i.e., there exists some
element 1 € S such that, for all x € 5, x1 = x = 1x, then (S, x) is a monoid.

In addition if every element x € S has an inverse, i.e., there exists y € S such
that xy = 1 = yx, then (S, *) is a group.

Definition 1.2.2. A semiring is a set R equipped with two binary operations + and -
such that

1. (R, +) is a commutative monoid with identity element 0.
2. (R,-) is a monoid with identity element 1.

3. The product is distributive with respect to the sum.

4. Forallr e R,O-r=0=r-0.

If, moreover, - is commutative, then the semiring is said to be commutative. A ring
is a semiring where (R, +) is a commutative group. A field is a commutative ring
where (R, -) is a group.

Definition 1.2.3. A (two-sided) ideal of a ring (R, +, ) is a nonempty subset I of
R, such that (I, +) is a subgroup of (R, +) and for all i € I and all » € R, i - r and
r-ibelong to /.

Definition 1.2.4. Let K be a field with identity element 1 for its multiplication. A
vector space over K is a set V equipped with a binary operation + : VxV — V
such that (V, +) is a commutative group and a binary operation - : K x V — V such
that, for all k, £ € K and all x,y € V,
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cke(€-x) = (k) -x
lex=x
Lk+l) - x=k-x+L-x
Ckex+y)=k-x+k-y

W =

A K-module is similarly defined but it is built over a ring K instead of a field.

We now consider natural notions specific to group and semigroup theory (see
also Section 9.3.1 for further basic definitions on group theory and Chapter 11).

For a given property & of groups (abelian, free, nilpotent, soluble, .. .), group G
is called virtually & if G contains a finite-index subgroup satisfying property 4.
See also Definition 9.3.36 and Section 9.3.4.1 for properties of virtually free groups
such as the decidability for the word problem (Theorem 9.3.37).

Schreier graphs generalize Cayley graphs. Let G be a group generated by S
and acting on a set X, the vertices of its Schreier graph (depending on §) are the
elements of X, and there is an edge from x to y if y is the image of x under the
action of some element of S. By considering the action of the group on itself by right
multiplication, this graph coincides with its Cayley graph. See also Definition 10.3.1
and Section 11.3.

Let G be a finitely generated group with a generator system given by § =
{g1....,8&mn} The length of g € G (with respect to S) is the smallest integer £ such
that g can be represented by a product of the form

_ oxl +1
g_gl,l .”gi[ s

i.e., the length of the shortest decomposition of g. The growth of the group G (with
respect to S) is the map

ys: N = N, n— Card{g € G | ds(g) < n},

where ds(g) is the length of g with respect to S. This definition can be made
independent of S by noticing that the growths corresponding to two generating sets
are equivalent [409]. Note that a finite group has a bounded growth, an infinite
abelian group has a polynomial growth, and a non-abelian free group has an
exponential growth. The growth of a finitely generated group can also be seen as
the growth of its Cayley graph: we count the vertices which are within distance n of
the identity element. This notion is considered in Sections 10.3.4.1, 11.3.1, and 11.4.

1.3 Words

This section is intended to give basic definitions about words either finite or infinite.
Words are ubiquitous when encoding a piece of information. As an example, a finite
word over the alphabet of digits {0, ...,k — 1} can be seen as the k-ary expansion
of an integer. On the other hand, an infinite word over {0, 1} could be used as the
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characteristic sequence for a subset of N. For material not covered here, see the
classical Lothaire’s textbooks on finite or infinite words and their properties are
[385-387]. Also see Allouche and Shallit’s book [14] about automatic sequences
or, Queffélec’s book [488] for a dynamical point of view. For a quick overview, the
reader can have a look at the chapter [150] or the tutorial [75]. The book [504] is
also intended to serve as introductory lecture notes on the subject.

1.3.1 Finite Words

An alphabet is a finite nonempty set. Its elements are called symbols or letters.

Definition 1.3.1. A (finite) word over X is a finite sequence of letters from X.
The empty sequence is called the empty word and it is denoted by . The sets of
all finite words (respectively, finite nonempty words) over X' are denoted by X*
(respectively, X*). Aword w = wowy---w,_; where w; € ¥, 0 < i < n, can be
seen as a functionw : {0, 1,...,n—1} — X in which w(i) = w; for all i. The empty
word is the word whose domain is the empty set.

Letu = up---u,—; and v = vy -- - v,—1 be two words over X'. The concatenation
of u and v is the word w = wg -+ - wy,4,—1 defined by w; = u; if 0 < i < m, and
w; = V;—,, otherwise. We write u - v or simply uv to express the concatenation of u
and v. The concatenation (or catenation) of words is an associative operation, i.e.,
given three words u, v and w, (uv)w = u(vw). Hence, parenthesis can be omitted. In
particular, the set X* (respectively, X *) equipped with the concatenation product
is a monoid (respectively, a semigroup).

The length of a word w, denoted by |w|, is the number of occurrences of the letters
in w. In other words, if w = wow, - - w,,_; withw; € X,0 <i < n, then |w| = n. In
particular, the length of the empty word is zero. The set of words of length k (respec-
tively, at most k) over X is denoted by X* (respectively, ¥ =K). For a € ¥ and
w e X*, we write |w|, for the number of occurrences of a in w. Therefore, we have

wl =" |wla.

aex

If u and v are two words over X' such that |u|, = |v|, for all @ € X, then u is
obtained by permuting the letters of v: u and v are said to be abelian equivalent.
These are anagrams.

A word u is a factor of a word v (respectively, a prefix or a suffix), if there
exist words x and y such that v = xuy (respectively, v = wuy, or v = xu). A
factor (respectively, a prefix or a suffix) u of a word v is called proper if u # v
and u # ¢. Prefixes and suffixes are sometimes called initial and terminal factors.
Thus, for example, if w = concatenation, then con is a prefix, ate is a
factor, and nation is a suffix of w. If w = wq---w, and u is a factor of w such
that u = w;---Wjy),—1, we say that u occurs in w at position i. For instance, in
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abbabaabbaab, the factor ab occurs at positions 0, 3, 6, 10. The set of factors of
u (respectively, of prefixes of u) is denoted by Fac(u) (respectively, Pref(u)).

The mirror (sometimes called reversal) of a word u = ug-- - u,,—; is the word
U = Up—1 -+ Up. It can be defined inductively on the length of the word by € = ¢
and au = ita fora € ¥ and u € X*. Notice that for u,v € X*, uv = vu. A
palindrome is a word u such that # = u. For instance, the palindromes of length at
most 3 in {0, 1}* are €, 0, 1,00, 11, 000, 010, 101, 111.

1.3.2 Infinite Words

Instead of considering finite sequences of elements belonging to an alphabet X,
considering infinite sequences of elements in X' is also relevant.

Definition 1.3.2. An (one-sided right) infinite word is a map from N to X. If w is
an infinite word, we often write

W =apa1ay--- ,

where each a; € X'. The set of all infinite words of X is denoted X'* (one can also
find the notation X™).

Example 1.3.3. Consider the infinite word X = xoxix;--- where the letters x; €
{0, ..., 9} are given by the digits appearing in the usual decimal expansion of 7= — 3,

+o0
T—3= in 1071,
i=0

ie., x = 14159265358979323846264338327950288419 - - - is an infinite word.

The notions of factor, prefix, or suffix introduced for finite words can be extended
to infinite words. Factors and prefixes are finite words, but a suffix of an infinite word
is also infinite. We still make use of the notation Fac(w) and Pref(w).

Definition 1.3.4. The language of the infinite word x is the set of all its factors. It
is denoted by Fac(x). The set of factors of length n occurring in x is denoted by
Fac,(x).

Definition 1.3.5. The complexity function, or factor complexity, of an infinite word
x maps n € N onto the number py(n) = Card(Fac,(x)) of distinct factors of length
n occurring in X.

Example 1.3.6. The Thue-Morse word t = tyf,t, - - - (ubiquitous word encountered
in combinatorics on words [18]) can be defined over {a, b} by 7, = a if and only if
there is an even number of ones in the base-2 expansion of n > 0. Otherwise stated,
if the sum of base-2 digits of n is even. Thus a prefix of t is given

abbabaabbaababbabaababbaabbabaab:-- .
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If we replace a with 1 and b with 0, then we get the characteristic sequence yg of
the set of integers whose sum of base-2 digits is even. The factor complexity of the
Thue—-Morse word t is well known [107, 391]. See also [78, p. 225] where a chapter
is devoted to the factor complexity of morphic words. We have

(n) = dn—2.2"—4, if2.2"<n<3.2™
PRV =Y on v a.2m—2, if3.2" <n<4.2m

Definition 1.3.7. A two-sided or bi-infinite word is a map from Z to X. The set of
all bi-infinite words is denoted ® ¥ (one can also find the notation X%).

Definition 1.3.8. An infinite word x = xox; - - - is (purely) periodic if there exists a
finite word u = ug - - - ug—1 7 € such thatx = u®, i.e., forall n > 0, we have x, = u,
where n = dk + r with r € {0, ...,k — 1}. An infinite word x is eventually periodic
(or ultimately periodic) if there exist two finite words u,v € X*, with v # € such
that x = uvvv--- = uv®. Notice that purely periodic words are special cases of
eventually periodic words. For any eventually periodic word x, there exist words
u, v of shortest length such that x = uv®, then the integer |u| (respectively |v]) is
referred to as the preperiod (respectively period) of x. An infinite word is said to be
nonperiodic if it is not eventually periodic.

Let us mention the next result called Morse-Hedlund theorem.

Theorem 1.3.9. Let w be an infinite word over a finite alphabet. The word w is
eventually periodic if and only if there exists some integer N such that py(N) < N.

Among the nonperiodic words of low factor complexity, Sturmian words play
a special role and have been extensively studied. An infinite word X is Sturmian
if px(n) = n + 1 for all n > 0. Note that Sturmian words are over a 2-letter
alphabet. For general references, see [386, Chapter 2] or [487, Chapter 6]. They
will be considered in Chapter 6.

Definition 1.3.10. An infinite word X is recurrent if all its factors occur infinitely
often in x. It is uniformly recurrent if it is recurrent and for every factor u of x, for
the infinite set

{10 < < il <
of positions where u occurs in X, there exists a constant C, such that, for all j > 1,

i —i" < C,.
Note that, by Furstenberg’s theorem, for any infinite word w, there is a uniformly
recurrent word r over the same alphabet such that every finite factor of r is a factor
of w, i.e., Fac(r) C Fac(w) (see Theorem 4.4.9).
Let x be an infinite word, the function Ry : Fac(x) — N U {oco} maps a factor
u of x to the smallest k such that every factor of x of length k contains u, or co if
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no such k exists. Otherwise stated, an infinite word x is uniformly recurrent, if for
every factor u of x, Ry is finite. The recurrence function maps n € N to

Rx(n) = max Rx(u).
U€L,(x)

Otherwise stated, if x is uniformly recurrent, then for every factor of length n of x,
Rx(n) is finite and u occurs in all factors of length Ry(n) of x.

Assume that X' is totally ordered: (X, <). Let X, y be two infinite words over X.
We say that x is lexicographically less than y if there exists N such that x; = y; for
alli < N and xy < yy.

Definition 1.3.11. One can endow X'“ with a distance d defined as follows. Let
X, y be two infinite words over X. Let x A y denote the longest common prefix of x
and y. Then the distance d is given by

o, ifx =y,
dx.y) = 2~ ¥l otherwise.

This notion of distance extends to X'Z. Notice that the topology on X' is the product
topology (of the discrete topology on X'). The space X'“ is a compact Cantor set,
that is, a totally disconnected compact space without isolated points. Since X' is a
(complete) metric space, it is therefore relevant to speak of convergent sequences of
infinite words. The sequence (z,),>0 of infinite words over X' convergestox € X%,
if for all € > 0, there exists N € N such that, for all n > N, d(z,,x) < €. To express
the fact that a sequence of finite words (w,),>0 over X converges to an infinite word
y, it is assumed that X is extended with an extra letter ¢ ¢ X'. Any finite word w,
is replaced with the infinite word w,ccc---, and if the sequence of infinite words
(Wyccc - -+ )u>0 converges to y, then the sequence (w,),>o i8 said to converge to y.

Let (u,)n>0 be a sequence of nonempty finite words. If we define, for all £ > 0,
the finite word v, as the concatenation ugu; - - - ug, then the sequence (v¢)¢>o of finite
words converges to an infinite word. This latter word is said to be the concatenation
of the elements in the infinite sequence of finite words (u,),>0. In particular, for a
constant sequence u, = u foralln > 0, vy = u**! and the concatenation of an
infinite number of copies of the finite word u is denoted by u®.

We have discussed the fact that a (finite) word u may appear as a factor of an
infinite word x. It may occur a finite number of times, infinitely often, or even in
such a way that Ry (u) is finite. But we could also introduce the frequency of a factor
u occurring in x as the following limit, if it exists,

Card ({i <n—|u| | x;- - Xjprjy—1 = u
lim ({i<n—lul| Flul—1 }).

n—>+00 n

For instance, for the infinite word w = 010011 0%14 0% 18 0'16... where we have
longer and longer blocks of consecutive zeroes followed by longer and longer blocks
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of ones. The frequencies of 0 and 1 do not exist. Frequency appears naturally in
the definition of normal numbers given below. See also Theorem 1.6.10 about the
frequency of symbols in automatic sequences and morphic words. Frequencies are
also considered in Chapter 5 in the framework of repetitions, and in Chapter 7 and 8
in the framework of normality.

1.3.3 Number Representations

We refer the reader to Frougny’s chapter [386] or to [227] for a general presentation
of numeration systems. The book [503] can also serve as an introduction to the
subject. We also mention the survey [36]. More details are also discussed in
Section 3.2 of this book.

Let k > 2 be an integer. Let us recall how base-k expansion of integers may be
computed. For any positive integer #, there exist £ > 0 such that X* < n < k‘*! and
unique coefficients ¢y, ..., c¢ € {0, ...,k — 1} such that

¢
n:Zcikiandc[ £0.

i=0

The coefficients ¢y, ..., cy can be computed by successive Euclidean divisions. Set
no := n. We have ng = ¢, k! +ny withn, <k andfori = 1,...,0,n; = co—i K1+
niy+1 with ni4) < k=i, The word ¢; - - - ¢ is said to be the k-ary representation or k-
ary expansion of n (sometimes called greedy representation) and denoted by rep,, (n).
If dy - - - dy is a word over an alphabet of digits included in Z, we define

l
valy(d ---do) = Y _di k.
i=0

If one replaces the sequence (k"),>o with an increasing sequence (U,).>o of integer
such that Uy = 1, then a similar algorithm may be applied. The corresponding
U-expansions are over the alphabet {0, ..., supf%] — 1}. One finds the general
terminology positional numeration system. It is also possible to extend the proce-
dure to represent real numbers. Let x € (0, 1). There exists a decomposition of the
form

+o0
X = Z ¢k
i=1

where ¢; € {0,...,k — 1} for all i > 1. If we forbid sequences where ¢; = k — 1
for all large enough i, then the sequence (c;);>1 is unique. Given x € [0, 1), the
algorithm in Table 1.1 provides the corresponding sequence (c;);>o of digits.
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Table 1.1 An algorithm for
computing the base-k expansion
of x € [0, 1).
i< 0
y<x
REPEAT FOREVER

ci < lky]

y < {ky}

INCREMENT |
END-REPEAT.

In this algorithm, we iterate a map from the interval [0, 1) onto itself, i.e.,
T :[0,1) — [0, 1),y = {ky} (1.1)

and the value taken by the image determines the next digit in the expansion. This
yields a dynamical system such as discussed in Section 1.7. The interval [0, 1) is
thus split into k subintervals [j/k, (j + 1)/k), forj = 0,...,k— 1. Foralli > 0,
if T}(x) belongs to the subinterval [j/k, (j + 1)/k), then the digit ¢; occurring in
rep () is equal toj. It is indeed natural to consider such subintervals. If y belongs to
[i/k, (j4+1)/k), then ky has an integer part equal to j and the map 7 is continuous and
increasing on every subinterval [j/k, (j+ 1)/k). Note also that the range of T} on any
of these subintervals is [0, 1). So applying T} to a point in one of these subintervals
can lead to a point belonging to any of these subintervals (later on, we shall introduce
some other transformation, e.g., B-transformations, where a restriction appears on
the intervals that can be reached). So to speak, the base-k expansion of x can be
derived from the trajectory of x under Ty, i.e., from the sequence (7} (x))n>o0.

As an example, consider the base k = 3 and the expansion of x = 3/10. The
point lies in the interval [0, 1/3); thus the first digit of the expansion is 0. Then
T5(3/10) = 9/10 lies in the interval [2/3, 1); thus the second digit is 2. If we apply
again T3, we get T7(3/10) = {27/10} = 7/10, which belongs again to [2/3,1)
giving the digit 2. Then T3(3/10) = 1/10 giving the digit 0 and finally 7%(3/10) =
3/10. So rep;(3/10) = (0220)*.

A natural generalization of base-k expansion (discussed in Section 3.6 and in
Example 8.1.2) is to replace the base k with a real number 8 > 1. In particular, the
transformation T, will be replaced by the so-called B-transformation. Note that we
shall be concerned with expansions of numbers in [0, 1). If x > 1, then there exists
a smallest d such that x/B¢ belongs to [0, 1). It is therefore enough' to concentrate
on [0, 1).

Definition 1.3.12 (8-Expansions). We will only represent real numbers in the
interval [0,1). Let 8 > 1 be a real number. The representations discussed here

'If the B-expansion of x/B¢ is dod, - - -, then using an extra decimal point, the expansion of x is
conveniently written dy - - - d¢—; ®dgdy4 - - - . Note that the presentation in Chapter 1 is not entirely
consistent with our present treatment if x belongs to [0, 1/(8 — 1)] \ [0, 1).
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are a direct generalization of the base-k expansions. Every real number x € [0, 1)
can be written as a series

+o00
x=Y ¢ p! (1.2)
i=0

where ¢; belong to {0, [8] — 1}. Note that if § is an integer, then [f] —1 = — 1.
For integer base-b expansions, a number may have more than one representation,
namely, those ending with 0® or (b — 1)®. For a real base 8, we obtain many more
representations. Consider the Golden mean ¢, which satisfies > — ¢ — 1 = 0, and
thus

1 1 1

g =gt g =0
As an example, the number 1/¢ has thus infinitely many representations as a power
series with negative powers of ¢ and coefficients 0 and 1:

1 1 1 1 1 1 1 1 1 1

A

A

PR

To get a canonical expansion for a real x € [0, 1), we just have to replace the
integer base b with B and consider the so-called S-transformation

T :[0.1) = [0.1), x — {Bx}

in the algorithm from Table 1.1. For i = 0, 1,.. ., the idea is to remove the largest
integer multiple ¢; of B7"~! and then repeat the process with the remainder and the
next negative power of B to get (1.2). Note that ¢; is less than [B] because of the
greediness of the process. Otherwise, one could have removed a larger multiple of
the power of § at a previous step. The corresponding infinite word cyc; - - - is called
the B-expansion of x and is usually denoted by dg(x). Any word dod, --- over a
finite alphabet of nonnegative integers satisfying

+o00
X = Zdiﬂ_[_l
i=0

is said to be a B-representation of x. Thus, the B-expansion of x is the
lexicographically maximal word among the -representations of x.

The greediness of the algorithm can be reformulated as follows.

Lemma 1.3.13. A word dod; --- over {0, ..., [B] — 1} is the B-expansion of a real
number x € [0, 1) if and only if, for all j > 0,
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+o00
Zdiﬂﬂ;l <p7.
i=j

Proposition 1.3.14. Let x, y be real numbers in [0, 1). We have x < y if and only if
dg(x) is lexicographically less than dg(y).

1.3.4 Normality

Now that number representations and the frequency of a factor have been intro-
duced, we can define normal numbers.

A real number x is simply normal with respect to base b > 2 if in the base-
b expansion of x (which is an infinite word over {0,...,b — 1}), the frequency
of every digit d € {0,1,...,b — 1} exists and is equal to 1/b. Furthermore x is
normal in base b if it is simply normal with respect to the bases b, b?, b*,.... An
equivalent definition is to say that for all kK > 1 and every word u = u; ...y €
{0,1,...,b—1}*, the frequency of u in the base-b expansion of x exists and is equal
to 1/b*. A real number x is absolutely normal if x is normal to every integer base
greater than or equal to 2.

Normality can also be expressed in terms of uniform distribution modulo 1 [578]
(see Section 7.6 for corresponding definitions). Indeed, a real number x is normal to
base b if and only if the sequence (¥/'x);>( is uniformly distributed modulo 1.

These notions were introduced by Borel [99] and are discussed in Chapters 2, 7,
and 8. In particular, constructions of normal numbers are provided in Sections 7.7
and 7.8. See also Theorem 7.4.1 (the so-called Hot Spot Lemma according to [101])
for a further convenient characterization of normality in terms of limsups instead
of limits. For a dynamical viewpoint, see Section 8.2, where the definition of a
normal number is transferred to symbolic dynamical systems, and constructions
with concatenation of words for languages with specification are provided.

1.3.5 Repetitions in Words

In combinatorics on words, a question that naturally arises is to study the repetitions
that should occur or may be avoided in words. See in particular Chapter 5 and
Chapters 4 and 5 in [79].

Concatenating a word w with itself k times is abbreviated by w*. In particular,
w? = ¢. Furthermore, for an integer m and a word w = wyw» - --w,, where w; € X
for 1 <i < n (here it is convenient to start indexing with 1), the rational power

Wm/n
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is wiwiw, -« - w,, where m = gn + r for 0 < r < n. For instance, we have
(abbab)®/® = abbababba .

Consider definitions that have to do with repetitions in words. A square is a
nonempty word of the form xx, where x € X'*. An example of a square in English
is the word murmur with x equal to mur. An overlap is a word of the form axaxa,
where @ € ¥ and x € X¥*. The word alfalfa is an example of an overlap in
English with x equal to 1£. It is obvious that every overlap has a square as prefix.
For any positive integer k > 2, a k-power is a nonempty word of the form x*. Thus a
2-power is a square, and a 3-power is a cube. A nonempty word that is not a k-power
for any k > 2 is primitive.

Let us say a few words about avoidance (which is the topic of Chapter 5). It is
an easy exercise to show that over a 2-letter alphabet, every word of a length of at
least 4 contains a square. This raises several questions. Over a 3-letter alphabet, can
we build longer words with no square as a factor? In particular, does there exist an
infinite word with no square in it? Also over a 2-letter alphabet, if squares cannot be
avoided, could we avoid cubes or even overlaps?

We say that a word w (finite or infinite) is square-free (or avoids squares) if no
factor of w is a square. A finite or infinite word is overlap-free if it contains no
factor that is an overlap. Thue [563] was the first to show the existence of an infinite
overlap-free binary word. The Thue—Morse word (see Example 1.3.6) is overlap-
free. See [79, Chapter 4] for more on avoidable repetitions and regularities in words.
More generally, a (finite or infinite) word is k-power-free (or avoids k-powers) if
none of its factors is a k-power. For instance, one can check that abbabaabbaab
is overlap-free. (It is indeed a prefix of the Thue—-Morse word). The goal of Chapter 5
is to present general techniques to prove positive or negative results about the
appearance of a repetition pattern. The general question is to know whether an
infinite word without a given pattern exists over an alphabet of a given size. Another
question is to consider the growth function (in the sense of Definition 1.5.7) of the
language of finite words avoiding a particular pattern.

Many variations on these topics exist. For instance, an abelian square is a word of
the form uv where 1 and v are abelian equivalent. One can check that over a 3-letter
alphabet, every long enough finite word contains an abelian square.

In Chapter 6, the addressed question is this: given a nonperiodic word x € X'¢,
does there exist a finite nonempty set C and a mapping ¢ : ¥+ — C such that for
each factorization X = ujupus3 - - - there exist i,j > 1 such that ¢(i;) 7# @(u;)?

1.4 Morphisms

Infinite words of particular interest can be obtained by iterating morphisms of free
monoids. They have many interesting combinatorial properties and can be generated
by a simple mean.
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Definition 1.4.1. Amap i : ¥* — A*, where X and A are alphabets, is called a
morphism if h satisfies h(xy) = h(x)h(y) for all x,y € X*. In particular, we have
h(e) = e. When ¥ = A, morphisms are also called substitutions.

A morphism may be specified by providing the values h(a) for all a € X. For
example, we may define the morphism ¢ : {0, 1}* — {0, 1}* by

0~ 01
1+~ 10. (1.3)

This morphism is often referred to as the Thue—Morse morphism. The domain X'*
of a morphism # is easily extended to the set X of (one-sided) infinite words. Let
h: X* — A* be amorphism and x = xpxx; - - - be an infinite word over X'. Simply
consider the sequence of finite words (A(xo - - - x,,)) >0 Of images of the prefixes of x.
The limit of this sequence is 4(x). In particular, if 4 : ¥* — X* and x is an infinite
word such that 4(x) = x, then X is said to be a fixed point of h.

A morphism & : ¥* — X* such that i(a) = ax for somea € ¥ and x € X*
with hi(x) # € for all i is said to be prolongable on a. The Thue-Morse morphism ¢
given by (1.3) is prolongable on 0 (and also on 1). The first few iterations of ¢ are

1(0) = 01

2(0) = 0110

£(0) = 01101001

*(0) = 0110100110010110

Since |#(0)| = |¢(1)| = 2, we have [#"(0)| = 2" for all n > 0. It is easy to prove that
£"(0) is a proper prefix of #**1(0), and thus the sequence (#'(0)),>o converges to an
infinite word. So we get the fixed point of ¢

t?(0) = 0110100110010110--- .

One can prove that the fixed point *(0) is the Thue—Morse word introduced in
Example 1.3.6.

More generally, if & : X¥* — X* is a morphism prolongable on a, we may then
repeatedly iterate & to obtain the infinite fixed point

h°(a) = axh(x) K (x) B> (x)--- .

This infinite word is said to be purely morphic.

The factor complexity of purely morphic word is well known. The next result
was stated by Pansiot in [467] and then generalized in [468]. For a comprehensive
presentation, see [78, Section 4.7]. Recall that the case of eventually periodic words
is settled by Morse—Hedlund theorem.
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Theorem 1.4.2. Let w be a pure morphic word. If w is not eventually periodic, then
its factor complexity py belongs to @ (n), ©(nloglogn), O(nlogn), or O(n?).

Definition 1.4.3. A morphism % is non-erasing if h(a) # € for all a € X.
Otherwise it is erasing. A morphism is k-uniform if |h(a)| = k for all a € X; it
is uniform if it is k-uniform for some k. A 1-uniform morphism is often said to be a
letter-to-letter morphism or a coding.

The Thue—Morse morphism # given in (1.3) is 2-uniform.

Example 1.4.4 (Fibonacci Word). Another significant example of a purely morphic
word is the Fibonacci word. It is obtained from the non-uniform morphism defined
over the alphabet {0, 1} by o : 0 — 01,1 — 0,

0“(0) = (x,)n=0 = 0100101001001010010100100101001001010010100- - - .

It is a Sturmian word and can be obtained as follows. Let ¢ = (1 + +/5)/2 be the
Golden mean. For all n > 1, if |(n + 1)¢p| — |n¢| = 2, then x,_; = 0; otherwise
Xp—1 = 1.

An infinite word x over A is morphic if there exists a purely morphic word y over
X and a morphism g : ¥* — A* such that x = g(y).

We can always restrict ourselves to non-erasing prolongable morphisms and
codings. This result was already stated in [154]. J.-J. Pansiot also considered this
result in [466]. For a proof, see [14]. An alternative short proof is given in [298].
This result is also discussed in detail in [134] and [146].

Theorem 1.4.5. Let f : X* — X™* be a (possibly erasing) morphism that is
prolongable on a letter a € X. Let g : X* — I'* be a (possibly erasing)
morphism. If the word g(f”(a)) is infinite, there exists a non-erasing morphism
h : A* — A* prolongable on a letter ¢ € A and a coding j : A* — I'* such

that g(f®(a)) = j(h®(c)).

1.5 Languages and Machines

Formal languages theory is mostly concerned with the study of the mathematical
properties of sets of words. For a comprehensive exposition on regular (or rational)
languages and automata theory, see, for instance, Sakarovitch’s book [518]. For the
connections with infinite words, see [476]. For an overview see the chapter [590].
Finally see [555], Hopcroft and Ullman’s classic book [301], or its updated version
[300] for general books on formal languages theory.
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1.5.1 Languages of Finite Words

Let X' be an alphabet. A subset L of X* is said to be a language. Since a language
is a set of words, we can apply all the usual set operations like union, intersection,
or set difference: U, N, or \. The concatenation of words can be extended to define
an operation on languages. If L, M are languages, LM is the language of the words
obtained by concatenation of a word in L and a word in M, i.e.,

IM ={uv |ueclL,veM;}.

We can of course define the concatenation of a language with itself, so it permits us
to introduce the power of a language. Let n € N, X be an alphabet, and L C X* be
a language. The language L" is the set of words obtained by concatenating n words
in L. We set L° := {e}. In particular, we recall that X" denotes the set of words
of length n over X, i.e., concatenations of n letters in X'. The (Kleene) star of the
language L is defined as

L= Jr.

i>0

Otherwise stated, L* contains the words that are obtained as the concatenation of
an arbitrary number of words in L. Notice that the definition of Kleene star is
compatible with the notation X* introduced to denote the set of finite words over
Y. We also write L=" as a shorthand for

n
==\ L.
-

Note that if the empty word belongs to L, then L=" = L". We recall that X =" is the
set of words over X of length at most n.

Example 1.5.1. Let L = {a, ab,aab} and M = {a, ab, ba} be two finite languages.
We have

I* = {aa, aab, aaab, aba, abab, abaab, aaba, aabab, aabaab}
and
M? = {aa, aab, aba, abab, abba, baa, baab, baba} .
One can notice that Card (L?) = (Card L)? but Card (M?) < (Card M)?. This is due
to the fact that all words in L? have a unique factorization as concatenation of two

elements in L, but this is not the case for M, where (ab)a = a(ba). We can notice
that
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L* = {a}* U{a"ba?b---a"ba"™' | Yn > 1,iy,...,i, > 1, iy > 0}.
Since languages are sets of (finite) words, a language can be either finite or
infinite. For instance, a language L differs from @ or {€} if and only if the language
L* is infinite. Let L be a language, we set LT = LL*. The mirror operation can also
be extended from words to languages: L = {u | u € L}.

Definition 1.5.2. A language is prefix-closed (respectively suffix-closed) if it con-
tains all prefixes (respectively suffixes) of any of its elements. A language is
factorial if it contains all factors of any of its elements.

Obviously, any factorial language is prefix-closed and suffix-closed. The con-
verse does not hold. For instance, the language {a"b | n > 0} is suffix-closed but
not factorial.

Example 1.5.3. Connected with the Thue—Morse word (see Example 1.3.6), the set
of words over {0, 1} containing an even number of ones is the language

E={we{0,1}*||w/; =0 (mod 2)}
= {¢,0,00, 11,000,011, 101, 110, 0000, 0011, . . .}.

This language is closed under mirror, i.e., L = L. Notice that the concatenation
E{1}E is the language of words containing an odd number of ones and EU E{1}E =
E({e} U{1}E) = {0, 1}*. Notice that E is neither prefix-closed, since 1001 € E but
100 ¢ E, nor suffix-closed.

Definition 1.5.4. The set of factors of a language L is denoted as Fac(L), whereas
the set of prefixes of a language L is denoted as Pref(L). The notation w™'L stands
for w™ 'L = {u | wu € L}.

If a language L over X' can be obtained by applying to some finite languages
a finite number of operations of union, concatenation, and Kleene star, then this
language is said to be a regular language. This generation process leads to regular
expressions which are well-formed expressions used to describe how a regular
language is built in terms of these operations.

Note that the Chomsky—Schiitzenberger hierarchy introduced in the theory of
formal languages provides a classification depending on the machine needed to
recognize an infinite language of finite words. From a computational perspective,
the simplest languages are the regular languages. They are accepted (or recognized)
by finite automata, and described by regular expressions. One then has context-
free languages that are recognized by non-deterministic pushdown automata,
context-sensitive languages recognized by linear-bounded non-deterministic Turing
machines, and lastly, recursively enumerable languages recognized by Turing
machines. See Section 2.1.2 for a similar hierarchy for Mahler functions and regular
sequences.

From the definition of a regular language, the following result is immediate.
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Theorem 1.5.5. The class of regular languages over X is the smallest subset of
25" (for inclusion) containing the languages @, {a} for all a € X and closed under
union, concatenation, and Kleene star.

Example 1.5.6. For instance, the language L over {0, 1} whose words do not contain
the factor 11 is regular. It is called the Golden mean shift. This language can be
described by the regular expression L = {0}*{1}{0,01}* U {0}*. Otherwise stated,
it is generated from the finite languages {0}, {0, 01}, and {1} by applying union, con-
catenation, and star operations. Its complement in X'* is also regular and is described
by the regular expression X*{11}X*. The language E from Example 1.5.3 is
also regular; we have the following regular expression {0}*({1}{0}*{1}{0}*)*
describing E.

Definition 1.5.7. Let L C X™* be a language over the alphabet X'. The growth
function of L is the map

gr:N—>N, n— Card(LN X").

In particular, g, (n) < (Card X')" for all n > 0. Note that the complexity function
of an infinite word x (see Definition 1.3.5) is exactly the growth function of the
language Fac(x) of x.

1.5.2 Formal Series

Let R be a semiring (see Definition 1.2.2). We can consider a map m from X* to R.
This map can be represented as a formal series

S = Z mw)w.

wex*

This means that the coefficient (S, w) of the series S for the word w is given by m(w).
The sets of those formal series is denoted by R{{X*)) and has a semiring structure
for the two operations defined as follows:

S+T,w)=(S,w)+ (T,w)

and

(ST.w) = Y (S.u)(T.v).

UV=w

In particular, a finite word w of length n can be factored in n + 1 concatenation
products. This means that the sum above is finite. When R is limited to the Boolean
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semiring B, then B({X™*)) is just the set of languages over X. As a prominent
example, Mahler functions are studied in details in Chapter 2.

1.5.3 Codes

A subset X C X is a code if every word in X* has a unique factorization with
factors in X, i.e.,

(X1 X = Y1 Y Xlse ey Xy V1 - -V €X) = (m=n and x; = y; Vi).

As an example, the set X = {a, ab, ba} is not a code because the word aba has two
X-factorizations: a(ba) and (ab)a. The language {a'b | i > 0} is clearly a code. For
an introduction to codes, see Bruyere’s chapter in [386].

Let X be a set of words where no word in X is a proper prefix of another word
in X. Then X is said to be a prefix code. The terminology of code comes from the
following proposition.

Proposition 1.5.8. A subset X C X7 is a code if and only if any morphism f :
I'* — X* induced by a one-to-one correspondence (i.e., bijection) from I' to X is
one to one (injective).

The notion can be extended to deal with infinite words. A subset X C X7 is
an w-code if every word in X'“ has at most one factorization with words in X. As
an example, X = {a,ab, bb} is a code but it is not an w-code. The infinite word
abbb - - - has two X-factorizations (a, bb, bb, . ..) and (ab, bb, bb, . . .).

1.5.4 Automata

As we shall briefly explain in this section, the regular languages are exactly the
languages recognized by finite automata. We start with non-deterministic automata
in Definition 1.5.9, then we present the deterministic ones in Definition 1.5.13.
Finally, we introduce automata with output in Definition 1.5.17. The notions
recalled here will be used in particular in Section 7.5 in connection with normality,
and in Chapter 10 with the notion of Mealy automaton.

Definition 1.5.9. A finite automaton is a labeled graph given by a 5-tuple &/ =
(Q, X ,E,I, T) where Q is the (finite) ser of states, E C Q x X* x Q is the finite set
of edges defining the transition relation, I € Q is the set of initial states, and T is
the set of terminal (or final) states. A path in the automaton is a sequence

(qo-uo, g1, u1s - -« Gr—1, Ui—1, qk)
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such that, for alli € {0, ...,k — 1}, (¢i, u;, qi+1) € E, ug - - - ug—1 is the label of the
path. Such a path is successful if gy € I and g, € T. The language L(<) recognized
(or accepted) by < is the set of labels of all successful paths in 7.

Any finite automaton &/ gives a partition of X* into L(&/) and X* \ L(%).
When depicting an automaton, initial states are marked with an incoming arrow
and terminal states are marked with an outgoing arrow. A transition like (g, u, r) is

represented by a directed edge from ¢ to r with label u, ¢ -

Example 1.5.10. In Figure 1.1 the automaton has two initial states p and r and three
terminal states g, r, and s. For instance, the word ba is recognized by the automaton.
There are two successful paths corresponding to the label ba: (p, b, q,a,s) and

. . b
(p,b,p,a,s). For this latter path, we can write p — p %, 5. On the other hand,
the word baab is not recognized by the automaton.

Example 1.5.11. The automaton in Figure 1.2 recognizes exactly the language E of
the words having an even number of 1 from Example 1.5.3.

Definition 1.5.12. Let & = (Q, X, E, I, T) be a finite automaton. A state ¢ € Q is
accessible (respectively co-accessible) if there exists a path from an initial state to
q (respectively from ¢ to some terminal state). If all states of .2 are both accessible
and co-accessible, then 7 is said to be trim.

Fig. 1.1 A finite automaton.

Fig. 1.2 An automaton recognizing words with an even number of 1.
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Definition 1.5.13. A finite automaton &/ = (Q, X, E, I, T) is said to be determin-
istic (DFA) if it has only one initial state g, if E is a subset of Q x X x Q and for
each (g,a) € Q x X there is at most one state r € Q such that (¢,a,r) € E.
In that case, E defines a partial function 6., : Q x ¥ — Q that is called the
transition function of <. The adjective partial means that the domain of &, can
be a strict subset of Q x Y. To express that the partial transition function is total,
the DFA can be said to be complete. To get a total function, one can add to Q a
new “sink state” s and, for all (¢,a) € Q x X such that §. is not defined, set
8./(q,a) := s. This operation does not alter the language recognized by /. We can
extend &, to be defined on Q x X* by 8,/(q,€) = gand, forall¢g € Q,a € ¥, and
ue X* §y(q,au) = §.4(8.7(q,a),u). Otherwise stated, the language recognized
by o is L(&/) = {u € X¥* | 8./(qo,u) € F} where ¢ is the initial state of .o/
If the automaton is deterministic, it is sometimes convenient to refer to the 5-tuple
o =(0,%,8,,1,T).

As explained by the following result, for languages of finite words, finite
automata and deterministic finite automata recognize exactly the same languages.
The following result is referred to as Rabin—Scott theorem [489].

Theorem 1.5.14. If L is recognized by a finite automaton <7, there exists a DFA
which can be effectively computed from </ and recognizing the same language L.

A proof and more details about classical results in automata theory can be found
in textbooks like [300, 518] or [539]. For standard material in automata theory, we
shall not refer again to these references below.

One important result is that the set of regular languages coincides with the set
of languages recognized by finite automata. The following result is referred to as
Kleene’s theorem [349].

Theorem 1.5.15. A language is regular if and only if it is recognized by a
(deterministic) finite automaton.

Observe that if L and M are two regular languages over X', then L N M, L U M,
LM, and L\ M are also regular languages. In particular, a language over X is regular
if and only if its complement in X* is regular.

Example 1.5.16. The regular language L = {0}*{1}{0,01}* U {0}* introduced in
Example 1.5.6 is recognized by the DFA depicted in Figure 1.3. Notice that the state
s is a sink: a non-terminal state and all transitions remain in s.

1 07]

=000

Fig. 1.3 A DFA accepting words without factor 11.
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We introduce the notion of automaton with output (see also more generally
Definition 7.5.1 for the notion of a transducer). It generalizes the classical DFA:
if the output function takes at most two values, then it is a DFA. The extra output
function will take care of the extra coding.

Definition 1.5.17. A deterministic finite automaton with output or DFAO for short
is given by a 5-tuple & = (Q, qo, A, 8, u) where Q is a finite set of states, gy € Q
is the initial state, § : Q x A — Q is the transition function, and p : Q — B is the
output map (where B is some finite set).

Finite automata accepting languages of infinite words are not presented here.
Biichi automata (where an accepting run goes infinitely often through an accepting
state) are introduced in Section 3.6.

1.6 Sequences and Machines

1.6.1 Automatic Sequences

We now consider how finite automata can be used to generate sequences with values
in a finite alphabet, namely, we present the automatic sequences. As we shall soon
see, they are particular morphic words and are deeply linked with the integer base-
k numeration system. They were introduced by A. Cobham [156] under the name
uniform tag sequences. Automatic sequences will appear in Chapters 2, 3, and 4. See
in particular Section 2.2 for definitions, properties and examples, and connections
with Mahler functions. We will recall that automatic sequences may be obtained as
the image under a coding of the fixed point of a k-uniform morphism. Equivalently,
for all n > 0, the nth symbol of such a sequence is the output of a deterministic
finite automaton with output fed with the k-ary expansion of n.

Definition 1.6.1. Let & > 2. Consider an infinite word w = g(f*(a)) where f :
XY* — X* is a k-uniform morphism prolongable on ¢ and g : ¥* — I'*is a
coding. We say that w is k-automatic.

Observe that |f"(a)| = k" for all n > 0. We first consider the “internal sequence,”
i.e., the fixed point X = f®(a) = xox;x»---. Let j such that k < j < k?; then
Jj=kg+rwithl < g < kand 0 < r < k. The symbol x; is the (» 4+ 1)st symbol
occurring in f(x,). As depicted in Figure 1.4, this simply comes from one iteration
of the k-uniform morphism.

We obtain the following result by induction on m > 0. Even though it is not
surprising, it has an important consequence about how the word can be obtained.

Lemma 1.6.2. Let j such that k" < j < k™t for some m > 0. Thenj = kq + r
with k"' < g < k" and 0 < r < k and the symbol x; is the (r + 1)st symbol
occurring in f(x,).
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a — abc
f14 b cbe

c — bca

Fig. 1.5 A 3-uniform morphism and the associated automaton .27

The quotient |j/k| of the Euclidean division of j by k is denoted by j DIV k. So
to speak, for any symbol x; occurring in X = f*(a), we can track its history: x; has
been produced by f from x;pyv . The latter symbol appears itself in the image by f
of x( prv &) pIv &> and so on and so forth.

Note that if the base-k expansion of j is rep,(j) = c¢;--:cico, then the base-
k expansion of j DIV k is ¢;---c;. This simple observation permits one to easily
track the past of a given symbol by considering the prefixes of rep, (j). Consider, for
instance, the symbol t,g occurring in the Thue—Morse word:

t = 01101001100101T01001011001101001 - - - .

Since rep,(28) = 11100, this symbol comes from t;4 because rep,(14) = 1110.
Then t;4 appears in the image of t;, itself appearing in the image of t; and finally in
the image of t;.

But Lemma 1.6.2 provides some extra knowledge. Let j such that j = kg + r with
k< q < k™and 0 < r < k, for some m > 0. We have just explained how x;
comes from x,. But the knowledge of x, and r entirely determines x;. It is thus time
to explain where does the term of automatic sequence come from.

We can associate with a k-uniform morphism f : X¥* — X* and a lettera € X,
aDFA @ = (¥, a,[0,k — 1], 8;, ) where 8;(b, i) = wp; if f(b) = wp o+ Wp 1.
Note that the alphabet X' is the set of states of this automaton.

Example 1.6.3. Consider the morphism f and the associated automaton depicted in
Figure 1.5.

The next propositions explain the terminology of automatic sequences.
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Proposition 1.6.4. Let x = f®(a) = xox; --- with f a k-uniform morphism. With
the above notation, for all j > 0,

xj = 8p(a,rep())) -

Proof. This is a direct consequence of Lemma 1.6.2. O
The converse also holds.

Proposition 1.6.5. Let (X, a, [0,k—1], 68, X') be a DFA such that §(a,0) = a. Then
the word X = xox1x - -+ defined by x; = 8(a, rep(j)), for all j > 0, is the fixed point
of a k-uniform morphism f prolongable on a where f(b) = §(b,0)---8(b,k— 1) for
allb e X.

Proof. This is again a direct consequence of Lemma 1.6.2. O

The reader will object that we have not taken into account that an extra coding
can be applied to x = f(x). This does not require many changes. We simply have
to make use of automata with output as stated below in Cobham’s theorem on
automatic sequences [156].

Theorem 1.6.6. Let w = woww, -+ be an infinite word over an alphabet I'. It is
of the form g(f®(a)) where f : X* — X* is a k-uniform morphism prolongable on
a€ Xandg: X* — I'* is a coding if and only if there exists a DFAO

(X, a,[0,k—=1],6,u: X > 1)

such that §(a,0) = a and, for all j > 0, w; = (8(a, rep,(j))).

Proof. Proceed as above and the coding g coincides with the output function u. 0O

Example 1.6.7. From the morphism ¢ given in (1.3) generating the Thue—Morse
word, we derive the automaton depicted in Figure 1.2. Again considering 28,
which is written 11100 in base 2, if we start from the initial state p and we read
consecutively the symbols in rep, (28) from left to right, then we follow some path
in the automaton, and the state ¢ finally reached gives the symbol tyg. The output
function maps p to 0 and ¢ to 1.

Example 1.6.8. Let us consider a more intricate example where a coding, and thus
an output function, is used. The morphism f and the coding g are given in Figure 1.6.
The corresponding automaton is represented on the right of the same figure. We have

f“(a) = acabaccaacababacacabaccaaccaacab---

and

g(f*(a)) = 00010000000101000001000000000001 - - - .
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Fig. 1.6 A 2-uniform morphism, a coding and the corresponding DFAO.

b ¢

)
(T

f< -......-...- ‘ >f

u

Fig. 1.7 Iterating a 2-uniform morphism.

Again, the jth symbol in g(f“(a)) can be readily obtained from rep,(j) fed to the
DFAO represented in Figure 1.6 where the states contain the information about the
value of the output function.

Now we turn to the factors occurring in an automatic sequence w = g(x), where
X is a fixed point of the k-uniform morphism f : ¥* — X*. Let u be a factor of
length 7 occurring in x. There exists i such that X~ < n < k'. Note that |[f/(b)| = k'
for all b € X'. We consider the factorization of x into consecutive blocks of length
k' of the form f/(b). Therefore, the factor u either occurs inside some f?(b) or it
overlaps two images, i.e., u occurs in f'(bc) for some letters b, ¢ € X. Actually, there
exist two letters b and c such that f/(bc) = pus with |p| < k. This last condition tells
us that  starts inside f(b). Such a simple observation, where we look backwards
at the images of the morphism, as suggested by Figure 1.7, is sometimes called a
desubstitution. It provides us with an upper bound on the number of factors of length
n that may occur in x: the number of pairs of letters (b, c) is (Card X)? and u should
start in one of the k' symbols of f(b). Therefore, the number of factors of length n
in X is at most

(Card ¥)*k' < (Card )’ kn.

We can even replace (Card X)? with py(2) because only the factors bc occurring in
x give factors of the form f7(b)f'(c) occurring in x = f(x). Since applying a coding
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g cannot increase the number of factors, we get
Card(Fac(x) N X") > Card{g(u) | u € Fac(x) N X"},

and so we have obtained the following result.
Theorem 1.6.9. Let w be a k-automatic sequence. Then pw(n) is in O (n).
A proof of the following result can be found in [14, Section 8.4].

Theorem 1.6.10. If the frequency of a letter in a morphic sequence exists, then it
is an algebraic number. If the frequency of a letter in an automatic sequence exists,
then it is a rational number.

To conclude this section, we present another characterization of k-automatic
sequences. This is not the last one; in Chapter 3, Section 3.3, a logical character-
ization of k-automatic sequences will be discussed, whereas Chapter 4 will provide
an algebraic characterization in terms of polynomial identities (see Corollary 4.5.3).

Definition 1.6.11. Let k£ > 2 be an integer. Given a sequence s = (s5(1))n>0, We
define a particular set of subsequences called the k-kernel of s

Ker(s) := {(s(k'n+1)yz0 [ € >0, 0 <r <k} .

An equivalent definition of the k-kernel is to introduce k operators of k-decimation
acting on the set of sequences and defined, for r € {0, ...,k — 1}, by

Prr((s()nz0) = (s(kn +1))nz0 .

Thus Kery(s) is the set of sequences of the form

Py © O Py, ((S(n))nZO) (1.4)

forallm>O0andry,...,r, €{0,...,k— 1}. These decimation operators are close
to the Cartier operators discussed in Chapter 2. The following result appeared in
Eilenberg’s book [211]. Note that if a sequence ¢ belongs to Kery(s), then py (¢)
also belongs to Ker(s).

Theorem 1.6.12. A sequence is k-automatic if and only if its k-kernel is finite.

Example 1.6.13. The 2-kernel of the Thue—Morse sequence contains exactly two
sequences (the sequence itself and its “complement”). Indeed, let s,(n) be the sum
of digits of the binary expansion of n, we have

52(2n) = sp(n), $22n+1) =s2(n) + 1. (1.5)
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1.6.2 Regular Sequences

We have seen that k-automatic sequences may be defined through the finiteness of
their k-kernel (Theorem 1.6.12). This characterization is used to extend the notion to
sequences taking infinitely many values. Allouche and Shallit considered sequences
taking values in a ring R containing a commutative Noetherian ring R’ (i.e., every
ideal of R’ is finitely generated). Examples of such rings R’ are given by all finite
rings, all principal ideal domains, and in particular Z, the ring of polynomials
with coefficients in a field, or all fields. We may consider linear combinations with
coefficients in R’ (R'-linear combinations) of sequences in R™. Endowed with point-
wise addition and multiplication by an element in R’, the set RN has a R’-module
structure: if 7 = (r(n)),>0 and s = (s(n)),>o belong to R and « belongs to R/,
then, forall n € N,

(r +5)(n) = r(n) + s(n)
and

(x-r)(n) =a-r(n).

In this short section, we mainly consider sequences in 7N ie,R=R = 7. We
will encounter regular sequences in Chapters 2, 3, and 4 of this book. To have
stand-alone chapters, these notions will also be repeated there. In Chapter 3 (see
in particular Section 3.4.1), k-regularity will be extended to sequences taking values
in a semiring.

Regular sequences appeared in [16]. Many examples are given in [15]. See also
[14, Chapter 16] and the updated version of Berstel and Reutenauer’s book [77]
where a chapter is devoted to regular sequences and linked with rational series.

Let M be a R-module and a subset X C M. The submodule generated by X is the
intersection of all submodules of M containing X. It is denoted by (X). It is the set
of all finite R-linear combinations of elements in X. A module is finitely generated
(over R) when it is generated by a finite set (i.e., it is the R-span of a finite set). One
also says that the module is of finite type or even finite over R. Note that the finite
set of generators is not necessarily a basis.

Definition 1.6.14. Letk > 2 be an integer. A sequence s = (s(n)),>0 taking integer
values is k-regular if the Z-module generated by its k-kernel (Kery(s)) is finitely
generated, i.e., there exists a finite number of sequences in 7N

t1 = (t1(7)nz0, ..., te = (te(n))ux0
such that
(Kerr(s)) = (t1,..., ).

In particular, every sequence in Kery(s) is a Z-linear combination of the #s. For all
i>0and forall r € {0, ..., k" — 1}, there exist integers ¢; 1, . . ., ¢;¢ such that



1 General Framework 27

¢
Vn>0, skkin+r)= Zci‘i tj(n).
j=1

One can consider another point of view. A sequence is said to be k-regular
if its orbit under the action of the operators of k-decimation remains in a finite
dimensional vector space. Indeed, Z is included in fields such as Q, R, or C. Thus
the sequences can be seen as elements of Q™ which is a Q-vector space.

Remark 1.6.15. The original definition in [16] was formulated differently. Let R be
a ring containing a commutative Noetherian ring R'. A sequence s = (s(n)),>0 in
R is (R’,k)-regular if there exists a finite number of sequences in R™

t1 = (t1(7)nx0, ..., te = (t¢(n))nx0

such that every sequence in Ker,(s) is an R’-linear combination of #, ..., #. Thus
the definition means that (Kery(s)) C (#,..., #¢). Otherwise stated, (Ker(s)) is a
submodule of a finitely generated R’-module (in general, this does not imply that
the submodule itself is finitely generated). Since R’ is assumed to be Noetherian,
one can show that every submodule of a finitely generated R’-module is finitely
generated”, and thus (Kery(s)) is finitely generated. This was the point of view
adopted in Definition 1.6.14. In particular, if the setting does not assume that R’
is Noetherian (in particular, if R or R’ is a semiring), then Definition 1.6.14 would
be stronger than simply requiring (Ker(s)) C (#1,..., ).

Example 1.6.16. The base-2 sum-of-digits function s, gives the sequence
(52(M)n=0 = 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3.4,... .

(Notice that we can interchange the words function and sequence and also speak
of k-regular functions when defined over N.) Clearly this sequence is unbounded:
52(2" — 1) = n for all n. Nevertheless, in view of (1.5), the Z-module generated by
its 2-kernel is generated by the sequence (s (n)),>o itself and the constant sequence
(1)1120-

Obviously, every k-automatic sequence is k-regular.

Proposition 1.6.17. Let s be a sequence taking finitely many different values, i.e.,
there exists a finite alphabet X such that s € X®. Let k > 2. The sequence is
k-automatic if and only if it is k-regular.

There is an intermediate class of sequences between k-automatic and k-regular
sequences [130].

2An R’-module M is Noetherian if every submodule of M is finitely generated. Let R’ be a
Noetherian ring. An R’-module M is Noetherian if and only if it is finitely generated.
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Definition 1.6.18. Let k > 2 be an integer. The map rep, is extended to N x N as
follows. For all m,n € N,

rep,(m, n) = (OM —|repy ('")lrepk (m), oM~ Irepy (”)lrepk(n))

where M = max{|rep,(m)|, [rep,(n)|}. The idea is that the shortest word is padded
with leading zeroes to get two words of the same length.

A sequence (s(n)),>o of integers is said to be k-synchronized if the language
{rep,(n,s(n)) | n € N} is accepted by some finite automaton reading pairs of digits.

As an example, the complexity function (px(n)).>o of a k-automatic sequence x
is k-synchronized [522]; we refer to Proposition 3.4.16. More results of this form
are provided in Section 3.4. For results on the growth of regular sequences, see
Section 2.3.

Proposition 1.6.19. Let s be a sequence taking finitely many different values, i.e.,
there exists a finite alphabet X such that s € X®. Let k > 2. The sequence is
k-automatic if and only if it is k-synchronized.

Similarly to recognizable formal series, with every k-regular sequence
(s(n))u=0 € ZN is associated linear representation (X, i, v). There exist a positive
integer r, a row vector A € Z'" and a column vector v € Z"™!, a matrix-valued
morphism u : {0,...,k— 1} — Z™ such that

s(n) = Apu(co -+~ co)v
for all ¢;,....co € {0,....k — 1}* such that valy(c;---co) = Y._ycikl = n.
The converse also holds, if there exists a linear representation associated with the
canonical k-ary expansion of integers (one has to take into account the technicality
of representations with leading zeros), then the sequence is k-regular. See, for
instance, [14, Theorem 16.2.3]. As a corollary, the nth term of a k-regular sequence
can be computed with |log, (n) | matrix multiplications.

Proof. Lets = (s(n)),>0 € Z" be a k-regular sequence. By definition, there exists a
finite number of sequences 11, . . ., t; such that (Kery(s)) = (11, ..., t;). In particular,
each #; is a Z-linear combination of elements in the k-kernel of 5. We have finitely
many £, so t1, ..., t; are linear combinations of finitely many elements in Kery(s).
Thus we can assume that (Ker(s)) is generated by finitely many elements from
Kery (s) itself. Without loss of generality, we will now assume that 71, . . ., t; belong
to Kery(s).

From (1.4), forall r € {0, ...,k —1}and alli € {1,..., £}, pr.(;) is a sequence
in Kery(s), and thus, there exist coefficients (A,)1;, . .., (Ar)¢; such that

¢
Prr(ti) = Z(Ar)j,i .

J=1
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Notice that A, is an £ x £ matrix. Roughly, if we were in a vector space setting, this
means that the matrices A, represent the linear operators oy, in the basis #1, ..., ;.
Let p > 0 be an integer. Notice that if rep, (p) = 7y, - - - 7o, then s(p) is the first term,
i.e., corresponding to the index 0, of the sequence

(5B + P)uz0 = Prr ©++ © P, ((5(1))nz0) -

We will use the fact that oy, is linear, i.e., if «, B are coefficients and v, w are two
sequences, then o (@v + Bw) = api(v) + Bpr.(w). It is easy to see that
¢
Pk,rg ©°* © Pk.ry (ti) = Z(Aro “““ Arm)j.i I

J=1

If we have the following decomposition of s (in a vector space setting, we would
have a unique decomposition of s in the basis #1, . .., ;)

£
s = ZO’,‘ t;
i=1

then, by linearity,
¢ ¢ ¢
O 4 puzo =D 0i Y (Ar oo Aii G()az0 = Y 75 (1(n)nzo
=1 j=1 j=1

where

01

Oy

O

For a reader familiar with rational series, the previous result can be reformulated
as follows. A sequence s(n) is k-regular if and only if the formal series
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> s(val(w)w
we{0,....k—1}*

is recognizable (with the terminology of [77]; see Definition 3.4.1).

Example 1.6.20. For the sum-of-digits function given in Example 1.6.16, the
sequence s, = (s2(7))n>0 has a (base-2) linear representation given by

A=(01),M(i)=(1?),u=((l)).

We let 1 denote the constant sequence. It does not belong to the 2-kernel of s»,
but it belongs to the Z-module generated by it because it is equal to ps1(s2) — $2.
Nevertheless, it is enough to see that p; o(1) = p2,1(1) = 1 and take s, and 1 as
generators to proceed as in the proof above. From the following relations we derive
the two columns of matrix (0)

p20(52) =1-55+0-1, pro(1)=0-55+1-1
and for (1)
p21(s2) =1l-s5+1-1, pp(1)=0-55+1-1.

The vector A is given by s,(0) = 0 ans 1(0) = 1. The vector v is obtained from
s3 = 1-5, 4+ 0- 1. To compute 5,(19), observe that rep,(19) = 10011. Thus we
compute

(0 1) pOROEORORD (g) =3.

Example 1.6.21. A less trivial example is considered in [201] by counting the
number of odd numbers in the first n rows of the Pascal triangle. This sequence
has a (base-2) linear representation given by

)L=(Ol),u(0)=((3)?),u(1)=((1)_56),v=((1)).

Remark 1.6.22. In [15, Section 6], a practical procedure to guess relations a
possibly k-regular sequence will satisfy is described. Consider a sequence (s(7)),>0.
The idea is to construct a matrix in which the rows represent truncated versions
of elements of the k-kernel of (s(n)),>0, together with row reduction. Start with
a matrix having a single row, say, corresponding to the first m elements of the
sequence. Then repeatedly add subsequences of the form (s(k‘n 7)), not linearly
dependent of the previous stored sequences. From this, you have candidate relations
that remain to be proven.
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Fig. 1.8 The periodic function ¢ on [0, 1].

Considering again the sum-of-digit function, Delange [191] showed that the
summatory function of s, exhibits a particular behavior (also see [14, Thm. 3.5.4]).

N—1

1 1

N E s2(j) = ElogzN—i-%(logzN) (1.6)
Jj=0

where ¢ is a continuous nowhere differentiable periodic function of period 1
(Figure 1.8).

General results do exist for summatory function of k-regular sequences. The
result below can be found in [14, Thm. 16.4.1].

Theorem 1.6.23. Let a = (a(n)),s0 and b = (b(n))u>0 be k-regular sequences.
Then c = a x b, where, for alln > 0, c(n) = Z?:o a; b,—;, is k-regular.

Corollary 1.6.24. Let a = (a(n)),>0 be a k-regular sequence. The sequence of
partial sums
i=0 n>0

Proof. One simply takes for b the constant sequence (1),>0 in Theorem 1.6.23. O

is k-regular.

A linear representation of the summatory sequence can easily be deduced
from the linear representation of the sequence itself, see [201, Lemma 1] or
Proposition 2.2.11 in Chapter 2. Let us state the following result obtained by Dumas
[201, 202] (see also Theorem 2.3.13).
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Theorem 1.6.25. Let k > 2 be an integer. The summatory function of a k-regular
sequence (u(n)),>o with a linear representation given by the matrices I, ..., [i—1
admits an asymptotic expansion which is a sum of terms of the form

log, N\ .
Nogep ( Oi/; ) £iflogc N </>(10gk N)

for the eigenvalues pe'® of I' := I'y + -+ + I't—_; whose modulus p is larger than
the joint spectral radius of I, ..., I't—1 and where m is an integer bounded by the
maximal size of a Jordan block associated with pe’® and ¢ is a periodic function
of period 1. For this asymptotic expansion, there is an error term in O (N'°%") for
every r larger than the joint spectral radius of the matrices Iy, ..., [j—;.

Definition about the joint spectral radius will be given in Chapter 2; see also
Chapter 11.8.1. Similar results are also discussed by Drmota and Grabner in [78,
Theorem 9.2.15]. Let us also mention another result (see [14, Theorem 3.5.1]) with
stronger assumptions but avoiding error terms. In this result, if v belongs to C,

1
then the notation ||v|| stands for the Euclidean norm of v defined by (ZLI |v,~|2) .

Moreover, if M is a square matrix of dimension d with entries in C, then by ||M||
we mean the L2 norm, which is the matrix norm associated with the usual Euclidean
norm on C* by the formula [|M|| = sup =, ||Mx]|.

Theorem 1.6.26. Let k > 2 be an integer. Suppose there exist an integer d > 1, a
sequence of vectors (V,)u>0, V, € C4, defined by

v
v,?
Vn = . ,
id)
n
and k square matrices Iy, I, ..., I't— of dimension d such that

1. Viggr =LV, foralln > 0andallr,0 <r <k

2. ||Vl = O(logn).

3. There exist a d X d matrix A and a constant ¢ > 0 such that either ||A|| < ¢ or
A is nilpotent, such that I' == Iy + 11+ -+ I} =cl + A.

The matrix I" being clearly invertible, if || || < 1, then there exists a continuous

function G : R — C? of period 1 such that

D V=N + ¢ A)%NG (logy N) .

0<n<N
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1.7 Dynamical Systems

There are two main types of dynamical systems, namely, topological ones and
measure-theoretic ones. Dynamical systems will be considered in particular in
Chapters 8,9, and 11.

1.7.1 Topological Dynamical Systems

Definition 1.7.1. A topological dynamical system (X,T) is defined as a compact
metric space X together with a continuous map 7 defined onto the set X.

We are interested in iterating the map T, and we look at the orbits O (x) of x € X
defined as

O(x) ={T"(x):n € N}.

under the action T'. The trajectory of x € X is the sequence (7" (x)),>o0.

A topological dynamical system (X, T') is minimal if, for all x in X, the orbit of
X, i.e., the set {T"x | n € N}, is dense in X. Let us note that if (X, S) is a subshift,
and if X is furthermore assumed to be minimal, then X is periodic if and only if X is
finite.

Two dynamical systems (X;,7;) and (X,,7,) are said to be fopologically
conjugate (or topologically isomorphic) if there exists an homeomorphism f from
X onto X, which conjugates 7' and 7>, that is:

foTi =Tyof.

If f is only onto, then (X1, T7) is said to factor onto (X3, T3), (X2, T») is a factor of
(X1, Ty), and f is called a factor map.

1.7.2  Measure-Theoretic Dynamical Systems

We have considered here the notion of dynamical system, that is, a map acting on
a given set, in a topological context. This notion can be extended to measurable
spaces; we thus get measure-theoretic dynamical systems. For more details, one can
refer, for instance, to [579]. See also Section 11.11.3.

Definition 1.7.2. A measure-theoretic dynamical system is defined as a system
(X, %, 10, T), where £ is a o-algebra, i a probability measure defined on %, and
T : X — X is a measurable map which preserves the measure u, i.e., for all B € %,
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w(T~Y(B)) = w(B). Such a measure is said to be T-invariant and the map T is said
to preserve the measure L.

The transformation T (or the system (X, %, u, T)) is ergodic if for every B € #
such that 77! (B) = B, then B has either zero measure or full measure.

Let (X,T) be a topological dynamical system. A topological system (X, T)
always has an invariant probability measure. The case where there exists only one
T-invariant measure is of particular interest. A topological dynamical system (X, T)
is said to be uniquely ergodic if there exists one and only one T-invariant Borel
probability measure over X. In particular, a uniquely ergodic topological dynamical
system yields an ergodic measure-theoretic dynamical system.

A measure-theoretic ergodic dynamical system satisfies the Birkhoff ergodic
theorem, also called individual ergodic theorem. Let us recall that the abbreviation
a.e. stands for “almost everywhere”: a property holds almost everywhere if the set of
elements for which the property does not hold is contained in a set of zero measure.

Theorem 1.7.3. Let (X, B, i, T) be a measure-theoretic dynamical system. Let f €
L'(X, R). Then the sequence (% ZZ;(I) f o T),>0 converges a.e. to a function f* €
L'(X,R). One has f* o T = f* a.e. and Jxf*dw = [ f du. Furthermore, if T is
ergodic, since f* is a.e. constant, one has:

n—1
1 —dad.e.
VfeL'X.R), - foT* i—»[fdu.
n n—>00 X
k=0

Note that the notions of conjugacy and factor between two topological dynamical
systems extend in a natural way to the measure-theoretic context.

1.7.3 Symbolic Dynamics

Let us introduce some basic notions in symbolic dynamics. For expository books

on the subject, see [167, 348, 381, 475] and [488]. For references on ergodic theory,

also see, e.g., [579]. These notions will be central in particular in Chapters 8 and 9.
Let S denote the following map defined on X'“, called the one-sided shift:

S((n)n=0) = (Xnt1)n=0 -

In particular, if x = xpx;x;--- is an infinite word over X, then for all n > 0, its
suffix x,x,+1 --- is simply $"(x). The map S is uniformly continuous, onto but not
one to one on X'“. This notion extends in a natural way to X Z Tn this latter case,
the shift S is one to one. We thus get symbolic dynamical systems. Here symbolic
refers to the fact that they are defined on words.

The definitions given below correspond to the one-sided shift, but they extend in
a natural way to the two-sided shift.
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Definition 1.7.4. Let x be an infinite word over the alphabet X'. The symbolic
dynamical system associated with x is then defined as the shift orbit closure
(0(x),S), where 0(x) € X is the closure of the orbit O(x) = {S"x | n € N}
of x.

In the case of bi-infinite words, we similarly define '(x) = {S"x | n € Z} where
the (two-sided) shift map is defined on XZ. The set Xy := €'(x) is a closed subset
of the compact set X“; hence it is a compact space and S is a continuous map acting
on it. One checks that, for every infinite word y € X'“, the word y belongs to Xx
if and only if L(y) € L(x). For a proof, see [488] or Chapter 1 of [487]. Note that
m is finite if and only if x is eventually periodic. Moreover, if x is an infinite
word, (Xx, S) is minimal if and only if X is uniformly recurrent. Indeed, w is a factor
of x, we write

ox) = sl

neN

and we conclude by a compactness argument.

Generic examples of symbolic dynamical systems are provided by subshifts (also
called shifts for short). Let Y be a closed subset of X' that is stable under the action
of the shift S. The system (Y, S) is called a subshift. The full shift is defined as
(X®,S). If Y is a subshift, there exists a set # C X* of finite words such that an
infinite word x belongs to X if and only if none of its factors belongs to .%. A subshift
X is called a subshift of finite type if one can choose the set .% to be finite. A subshift
is said to be sofic if the set .% is a regular language. A subshift (X, S) is said to be
periodic if there exist x € X and an integer k such that X = {x,Sx,...,S5*x = x}.
Otherwise it is said to be aperiodic.

For the more general case of a group G acting on configurations in X©, see
Chapter 9. Elements of X¢ can be considered as colorings of a group G by a finite
alphabet X. The set of configurations X¥'¢, endowed with the product topology, is a
compact space on which we define the shift transformations: for every g € G, the
shift S¢ translates a configuration x € X'¢ through S¢(x), = Xo—1;, for every h € G.
In this framework, subshifts are exactly subsets of A® that are both shift-invariant
and closed for the product topology.

Example 1.7.5. The set of infinite words over {0, 1} of Example 1.5.6 which do not
contain the factor 11 is a subshift of finite type, whereas the set of infinite words
over {0, 1} having an even number of 1 between two occurrences of the letter 0 is a
sofic subshift which is not of finite type.

Definition 1.7.6. Let Y be a subshift. For a word w = wy - - - w,, the cylinder set
[w]istheset{y € Y | yo = wo,...,¥r = W;}.

The cylinder sets are clopen (open and closed) sets and form a basis of open sets
for the topology of Y. Furthermore, one checks that a clopen set is a finite union of
cylinders. In the bi-infinite case, the cylinders are the sets
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wvly = eY|yi=uwy=v, —-u<i=-1,0=<j=<v-1}
and the same remark holds.
Then the topological entropy h(X) of the symbolic dynamical system (X, S)

measures the richness of its language L, defined as the set of factors of elements
in X. It is defined as

1
h(X) = lim —In|LN X"|.
n—oo n

It is closely related to the growth rate of the language L defined as lim sup,_, o, |[L N
2”|% and considered in Chapter 5.



Chapter 2 ®
Number Theoretic Aspects of Regular Qe
Sequences

Michael Coons and Lukas Spiegelhofer

Abstract We present a survey of results concerning regular sequences and related
objects. Regular sequences were defined in the early 1990s by Allouche and Shallit
as a combinatorially, algebraically, and analytically interesting generalization of
automatic sequences. In this chapter, after an historical introduction, we follow the
development from automatic sequences to regular sequences, and their associated
generating functions, to Mahler functions. We then examine size and growth
properties of regular sequences. The last half of the chapter focuses on the algebraic,
analytic, and Diophantine properties of Mahler functions. In particular, we survey
the rational-transcendental dichotomies of Mahler functions, due to Bézivin, and of
regular numbers, due to Bell, Bugeaud, and Coons.

2.1 Introduction

The concept of “number” is central to mathematics and paramount to number theory.
From the mathematical standpoint, one of the most important ways to view and treat
numbers is algebraically, that is, to consider the integers as the ring Z under the
operations addition and multiplication and the rationals Q as the field of fractions
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of Z. Of course, from there interest is extended to the algebraic numbers, the
field Q of numbers, which are zeroes of polynomials with integer coefficients. The
study of algebraic numbers and their properties is a continual fount of results and
questions that for centuries has provided the foundational structures of mathematics
and will—beyond doubt—form a significant part of these foundations for centuries
to come.

The numbers of the preceding paragraph are abstract and in that sense do not
really need to be represented. Yet, when one wishes to give an example of an integer,
say 2 or 10 or 1729, one must write something down; if you wish to use only tick
marks, treating the example 1729 will require large amounts of both time and space.
Thus we have adopted the base system, with base 10—the number of fingers the
average human has—as the most popular base for humans. The concept of “base
expansion” is inseparable from modern computation and is fundamental to computer
science. The use and importance of base expansions (predominantly binary) has
become even more important with the advent of digital computers.

For those of us with interests at the interface of mathematics and theoretical com-
puter science, the characterization of relationships between the algebraic viewpoint
and the base-expansion viewpoint is an extremely important and interesting area
of research. Two specific questions stand out here and form the backdrop of our
chapter.

2.1.1 Two Important Questions

The first is an old question of Borel [99] concerning the probabilistic properties
(probabilités dénombrables) of base expansions of real algebraic numbers.

Question 2.1.1 (Borel, 1909). Is the base expansion of an irrational algebraic real
number normal?

Recall that a real number x is called simply normal to the base k (or k-simply
normal) if each of 0,1, ...,k — 1 occurs in the base-k expansion of x with equal
frequency 1/k. This number x is then called normal to the base k (or k-normal)
provided it is K"-simply normal for all positive integers m, and the number x is just
called normal if this is true for all integers k > 2.

While Borel’s question is asked from the standpoint of probability, Hartmanis
and Stearns [285] were interested in the—at least morally related—question of
computability. To state their question, we remind the reader that a real number x
is computable in real time provided there is a multitape Turing machine that can
compute the first n bits of x in time &' (n).

Question 2.1.2 (Hartmanis and Stearns, 1965). Do there exist irrational algebraic
real numbers which are computable in real time?

Presumably, the answers to these questions are “yes” and “no,” respectively,
though we stress here that our presumption is extremely presumptive. These
presumptive answers reflect the well-observed notion that algebraic manipulations
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tend to do strange things to base expansions. In fact, compared to what is expected,
very little is known about the digital properties of real algebraic numbers. For those
interested, Bugeaud’s recent work [119] provides a comprehensive exposition.

While Questions 2.1.1 and 2.1.2 are posed to study the digital properties of real
algebraic numbers, in this chapter, we concern ourselves with a flipped version of
these questions: what are the number theoretic properties of real numbers whose
expansions are highly structured?

Real numbers with eventually periodic base expansions are the simplest numbers
and sequences one can consider in our context. These numbers are not normal,
are computable, and of course are algebraic—they are the zeroes of linear poly-
nomials. This perceived exception to Questions 2.1.1 and 2.1.2 is why the word
“irrational” appears in these questions. Indeed, the rational numbers are in many
ways fundamentally different from the irrational algebraic numbers. For examples,
see Dirichlet’s approximation theorem and Roth’s theorem [514] on the irrationality
exponent of algebraic numbers. The digital properties of rational numbers have been
almost completely classified (up to some deep questions about the orbits of primitive
roots).

From a computational point of view, the next step is to consider real numbers
whose base-k expansion is k-automatic' for some integer k > 2. This is where things
become extremely interesting. In fact, here the base starts to matter. Recall that if a
number is rational, then its base expansion is eventually periodic in every base. This
is not true for numbers that are k-automatic for some integer k = 2. Cobham [155]
showed that if a real number is both k-automatic and /-automatic for two integers k
and [ that are multiplicatively independent?, then that real number is rational.

This difference from rationals continues with the complexity of base expansions.
For a rational written in base k, the number of strings of digits of length n that occur
in the expansion is bounded by a constant, while for a k-automatic real number, the
number of strings can increase with n. But not too fast, this number is &'(n) (see
Theorem 1.6.9), and so an automatic number is not normal since a normal number
must have all k" possible strings occur.

For Borel’s question, it may seem hopeful to then wonder if the set of automatic
numbers contains an irrational algebraic number, but the negative answer to this
question, which became known somewhat as the Cobham-Loxton—van der Poorten
conjecture, was settled® by Adamczewski and Bugeaud in 2007 [3].

Theorem 2.1.3 (Adamczewski and Bugeaud). The base expansion of an irra-
tional real algebraic number cannot be output by a finite automaton.

IFor a detailed account of automatic sequences, see the monograph of Allouche and Shallit [14].
See also Section 1.6.1.

2Two integers k and [ are multiplicatively independent provided log k/ log [ is irrational.

3This result is inherent in the work of Cobham. In the 1980s, Loxton and van der Poorten [389]
claimed to have proved that an automatic number is either rational or transcendental, but a few
unresolvable flaws were found in their argument. This is why their name is associated with the
conjecture.
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2.1.2 Three (or Four) Hierarchies in One

According to Loxton [388], “the result about the decimal expansion of algebraic
irrationals and finite automata suggests an alternative theoretical approach to
randomness. We can try to assign a measure of computational complexity to a
sequence by means of the following hierarchy:

(LO) [eventually] periodic sequences,

(L1) [...] sequences generated by finite automata,

(L2) sequences generated by automata with one push-down store,

(L3) sequences generated by non-deterministic automata with one push-down
store, and

(L4) sequences generated by Turing machines.

Essentially, the n-th term of an [automatic] sequence is computed from the input n
without any memory of earlier terms. A push-down store allows an arbitrary number
of terms of the sequence to be stored and recalled later, the first one in being the last
one out. Two push-down stores are equivalent to the doubly infinite tape of a Turing
machine, which explains why the classification stops as it does. A random sequence
is now one which cannot be generated by any machine less powerful than a Turing
machine.”

The well-informed reader will recognize Loxton’s hierarchy as a subset of the
Chomsky—Schiitzenberger hierarchy of formal languages (see also Section 1.5.1).
This type of language-theoretical hierarchy, while classical and certainly of interest,
lacks the mathematical structure to delve into such arithmetic questions that we will
address here—especially at the higher levels of the hierarchy.

We present here a more natural hierarchy for such questions based on the work
of Mahler and the generalization of automatic sequences presented by Allouche
and Shallit. This hierarchy will be one of sequences, numbers, and functions
simultaneously. From the standpoint of integer sequences, the Mahler hierarchy is
as follows:

(MO) eventually periodic sequences,

(M1) automatic sequences,

(M2) regular sequences,

(M3) coefficient sequences of Mahler functions, and

(M4) integer sequences®.

Levels (M0) and (M1) are taken from Loxton’s hierarchy. Regular sequences were
introduced in 1992 by Allouche and Shallit [17]. See also Section 1.6.2. Following

4We make no comment on the randomness properties of integer sequences, but will be content with
their generality as is.
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their treatment’, let C denote the field of complex numbers and define the k-kernel
of f: Z>y — C as the set

Kerp(f) := {{f(K'n + r)}us0 : £ = 0,0 < r <k} (2.1)

Definition 2.1.4 (Allouche and Shallit). Let ¥ > 1 be an integer. A sequence
f taking values in C is called k-regular provided the C-vector space (Ker(f))c
spanned by Ker,(f) is finite dimensional over C.

Allouche and Shallit introduced regular sequences as a direct generalization of
automatic sequences based on the k-kernel. Their generalization rests on a result of
Eilenberg [211], who showed the following.

Theorem 2.1.5 (Eilenberg). A sequence f is k-automatic if and only if Kery(f) is
finite.

While the notion of k-regularity is certainly worth studying in its own right,
it becomes much more important when viewed as a bridge between the areas of
theoretical computer science and number theory. As Allouche and Shallit showed,
this notion is a direct extension of that of automatic sequences. Moreover, it is
an extension that is algebraically, analytically, and arithmetically interesting and
important.

The algebraic properties start with a correspondence between regular sequences
and finite sets of matrices. Indeed, Allouche and Shallit [17, Lemma 4.1] (see also
Section 1.6.2) showed that for a Noetherian ring R, an R-valued sequence f is k-
regular if and only if there exist a positive integer d, a finite set of matrices <y =
{Ao, ..., Ar_1} € R and vectors v,w € R? such that

fn) =wA;--Ayv, (2.2)
where (n); = iy - - - iy is the base-k expansion of n.
The analytic importance comes via a result of Becker [61] relating regular

sequences to Mahler functions. Recall the following definition; see the works of
Mahler [403-405, 407].

Definition 2.1.6. A power series F(z) € C[[z]] is k-Mahler for an integer k = 2
provided there is an integer d = 1 and polynomials ay(z),...,a,(z) € C[z] with
ap(z)aq(z) # 0 such that

a(FR) + ai(FE) + - + aiFE) = 0. (2.3)

5 Allouche and Shallit gave a more general treatment for sequences taking values in Noetherian
rings. In our applications, the most important settings are those of the integers and complex
numbers, depending on the type of result presented. For our purposes, for results on sequences
and numbers, the integers will be the standard setting, and for results on power series those with
complex coefficients will be the most important.
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The minimal such d is called the degree of the Mahler function.

The above mentioned result of Becker states that if {f(n)},=0 is a k-regular
sequence, then the generating function F(z) = )_,-,f(n)z" is a k-Mahler function.
This established that those sequences in level (M3) contain those in (M2).

The arithmetic interest and importance of k-regular sequences are precisely the
content of this chapter. We will present properties and results to this effect in
the context of the Mahler hierarchy. It is important to note that while the Mahler
hierarchy is stated in terms of sequences, it can be stated in term of numbers and
functions as well.

Definition 2.1.7. If a sequence {f(n)},>¢ is k-automatic (resp. k-regular), then we
call the generating function F(z) = }_,-,f(n)z" k-automatic (vesp. k-regular) as
well and refer to F(z) as a k-automatic function (resp. a k-regular function).

In this way, the levels (M1)-(M4) of the Mahler hierarchy can be translated to a
hierarchy of functions as:

(M1) automatic functions,
(M2) regular functions,
(M3) Mahler functions, and
(M4) general power series.

The “number” version of the hierarchy is stated mutatis mutandis using the
following definition.

Definition 2.1.8. Letk > 2 and b = 2 be integers. If F(z) is a k-automatic function
(resp. k-regular or k-Mabhler), then we call the special value F(1/b) a k-automatic
number (resp. k-regular or k-Mahler).

Note that our notion of k-automatic number is more general than the traditional
definitions; we call something an automatic number if it is the special value of an
automatic function. In most of the literature, a real number is called k-automatic
if its base-k expansion can be produced by an automaton. This is not the case for
all of the numbers in our class. For example, the number ZnZO 372" ig 2-automatic
under our definition, though its base-2 expansion is not 2-automatic. Being able to
treat such numbers is just one example of the strength and generality of using the
framework of the Mahler hierarchy.

2.2 From Automatic to Regular to Mahler

In this section, we describe automatic and regular sequences based on their k-kernel
and develop their properties as coefficient sequences of Mahler functions. We first
recall the definitions from the context of the k-kernel with a little more generality
than the previous section, then we give many simple properties and provide some
examples.
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Fig. 2.1 The 2-automaton 0 0
that produces the
Thue—Morse sequence.

2.2.1 Definitions

We take Eilenberg’s result (Theorem 2.1.5) as our definition of automaticity.

Notation 2.2.1. Unless otherwise specified, a sequence f will be one that takes
values in a commutative ring R, which when necessary to avoid complication will
be taken as a subring of the complex numbers.

Definition 2.2.2. A sequence f is k-automatic if and only if Ker,(f) is finite.

Example 2.2.3. The canonical example of an automatic sequence is the Thue—
Morse sequence. The Thue-Morse sequence {t(n)},=o over the alphabet {—1, 1}
is given by #(n) := (—1)*™ where s(n) is the number of 1s in the binary expansion
of the number 7. Using this definition, it is immediate that the sequence {¢(n)},=¢ is
2-automatic. That is, there is a deterministic finite automaton that takes the binary
expansion of n as input and outputs the value #(n); see Figure 2.1.

To show that ¢ is 2-automatic using the Eilenberg-inspired definition based on
the k-kernel, it is enough to note that t(2n) = #(n) and #(2n 4+ 1) = —t(n), so that
Ker;(¢) has only two elements, namely, the sequences #(n) and —z(n).

As stated by Allouche in Shallit in their foundational paper [17], “unfortunately,
the range of automatic sequences is necessarily finite, and this restricts their
descriptive power.”

Definition 2.2.4. The sequence f taking values in a ring R is k-regular provided the
k-kernel of f is contained in a finitely generated R-module.

Example 2.2.5. Let {s(n)},=¢ be Stern’s diatomic sequence, which is determined
by the relations s(0) = 0, s(1) = 1, and for n = 0, by

s2n) = s(n), and s2n+1)=sn)+s(n+1).

These recursions immediately imply that the 2-kernel of s is contained in the Z-
module generated by {s(n)},>0 and {s(n + 1)},>0, so that s is 2-regular. Note that s
takes infinitely many values as well—s(2"+1) = n+1—so that s is not 2-automatic.

The definition of k-regularity implies that there are a finite number of sequences
fi,....fs such that each element of the k-kernel of f is an R-linear combination
of fi,...,fs. This finite number of sequences can be taken in many ways, though
two of these ways stand out. The first is to use an R-module basis for the R-module
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generated by the k-kernel of f. This is useful for proving results where minimality or
irreducibility is important. The second is to take a spanning set directly from the k-
kernel itself. This set is useful for more combinatorial results since it provides useful
and usable recurrences, especially for manipulating sums. We record this result in
the following lemma, the proof of which can be found in [17], though it is a worthy
(and easy) exercise for the reader wishing to sharpen their teeth a bit on these ideas.

Lemma 2.2.6 (Allouche and Shallit). The following are equivalent:

(a) fis k-regular,
(b) the R-module generated by Kery(f) is generated by a finite number of elements

of Ker(f),
(c) there exists an integer E such that for all e; > E, each subsequence f(k%n 4 a;)
with 0 < a; < k% can be expressed as an R-linear combination

Fm+a) =y cyf Wn+ by).

i

where hjj < Eand 0 < b < khi,

(d) there exist an integer d and d sequences f = fi, ... ,fq such thatfor 1 <i <d
the k sequences fi(kn + a), 0 < a < k, are R-linear combinations of the f;,
(e) there exist an integer d, d sequences f = fi,....f; and k matrices

Ao, .... A1 € R such that if vin) = [fi.....f4]". then v(kn +a) = A v(n)
forO<a<k

One of the most fundamental and important characterizations of k-regular
sequence is their matrix formulation [17, Lemma 4.1] (see also Section 1.6.2).

Lemma 2.2.7 (Allouche and Shallit). A sequence f is k-regular if and only if there
exist a positive integer d, a finite set of matrices o = {Ao, ..., A1} C R4 and
vectors v,w € R? such that

f) = wA;---Ayv, 2.4)

where (n); = iy - - io is the base-k expansion of n.

Proof. We prove only the right-hand implication; the other is left as an exercise for
the reader.

Suppose that f is k-regular and (n); = i,---ip is the base-k expansion of n. By
Lemma 2.2.6(e), there exist an integer d, d sequences f = fi,...,f; and k matrices
Ao, ..., Ay € R such that if v(n) = [fi.,....f4]", then v(kn + a) = A,v(n) for
0 <a < k. Since f = fi, setting v := v(0) and e; :=[10 --- 0]”, we have that for
each n = 0 that

f(n) = efA;,--- Ay v.

Setting w := e; gives the desired result. O



2 Number Theoretic Aspects of Regular Sequences 45

Definition 2.2.8. Let f be a k-regular sequence taking values in the ring R. If &% =
{Ao, ..., Ar_1} € R s afinite set of matrices and v, w € R? vectors such that

fn) = WA Ay,

where (n); = i - - - ip is the base-k expansion of n, then we call the tuple (w, <7, v)
the linear representation of f.

Example 2.2.9. As we saw in a previous example, the Stern sequence is 2-regular.
Using Lemma 2.2.6(e) and following the notation of Lemma 2.2.7, one can show
that the Stern sequence has linear representation

(roamens= [ {12}

We define the convolution of two sequences f and g by

frgm) =Y fi)gl).

i+j=n

The following result, which provides for the algebraic structure of the set of
k-regular sequences, is due to Allouche and Shallit [17, Theorem 3.1 and Corol-
lary 3.2], though we offer here a slightly different proof.

Theorem 2.2.10 (Allouche and Shallit). The set of k-regular sequences forms a
ring under standard addition and convolution.

Proof. Tt is clear that the set of k-regular sequences forms a group under addition.

To see that the set is closed under convolution, let f and g be two k-
regular sequences, whose k-kernels are contained in the R-modules generated
by fi.f2,....fs and g1, g2, . .., 8., respectively. To prove the theorem, it is enough
to show that the k-kernel of f % g is contained in the R-module

Co=({{(fi* &)z 1 1 S i< d1 << elf)y

To see this, suppose that ¢ € Kery(f * g) and that £ > 0 and (0 < r < k%) are such
that c(n) = (f » g)(kn+ r) forall n > 0. Then there are oy, ..., g, B1,.... B €R
such that

d

fn+r) =3 afin) and gkn+r =73 pgn).
j=0

i=0
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Now
cn) = (f*k'n+r) =) fka+rgk(n—a)+r)
a=0
n d e
=> > afi@ ) Bigin—a)
a=0 i=0 j=0
d e n
=Y > aip Y _fla)gn—a)
i=0 j=0 a=0
d e
=Y > aiBi(fi x g)(n) (2.5)
i=0 j=0
is an element of C, which proves the theorem. 0O

Equality (2.5) essentially gives a description of the matrix representation of
the k-regular convolution f * g, but working this out can in practice be extremely
complicated—the bookkeeping involved is nothing short of a nightmare. From the
number-theoretic perspective, the most useful special case of convolution is 1 * f,
which is the sequence of partial sums of f. Fortunately, in this case the details are
not so unfriendly. The following result is due to Dumas [201, Lemma 1], which we
reproduce here with a few fixed typos.

Proposition 2.2.11 (Dumas). Letf be a k-regular sequence, with matrix presenta-
tion as in (2.4). Then the sequence g(m) = (1 x f)(m) = Y_, <, <, f (1) is k-regular
and

g(m) = x"Gj, - Gyy.

where (m); = is .. .io, X' := [01xq WT], y7 := [V] Oyxq] and for b € {0, ..., k—1},

SN
" By —Byit —Ag Iyxa |’

where B, := ZIE;LAL;forb =0,....k—1andB; := 0.

Proof. Let m = 1 be an integer with (m); = b,b,—1---by, and write g(m) :=
Y 1<n<mf (). It is quite clear that

g(m) =XT( > A(n)k)v =x"| > [ > A YA v @6

1<n<m o<i<r \1<j<b; Jwl<i
wel0,....k—1}*



2 Number Theoretic Aspects of Regular Sequences 47

where we use that convention that if b; = 0, then lejsbi A; =0, and wheni = 0,

Now, in the notation presented in the statement of the proposition, it is quite clear
that

Bi= > A,

where our above convention is preserved since we understand BY = I;x,. Also, we
note that

By —By+1 —Ag = Z A,

1<j<b;

where again our above convention is preserved since for b; = 0, we have By — B —
AO = 0.

With this information of the preceding paragraph, we interpret the equality (2.6)
as

g(m) = x" ( > Bo—By11 —Ag) Bg) v. 2.7)

o0<is<r
But this is exactly the output of the matrix representation for g(m) as described in
the statement of the proposition. O

The importance of the ring structure under addition and convolution begins with
the following immediate corollary of Theorem 2.2.10.

Corollary 2.2.12 (Allouche and Shallit). The set of k-regular functions forms a
ring under standard addition and multiplication.

This importance continues with the relationship to Mahler functions as provided
by Becker [61]. Following Becker, we require the following definition and lemma
regarding the Cartier operators.

Definition 2.2.13. Given a positive integer k > 2, we define the Cartier operators
Ao, ..., A1 2 C[g]] — C[[z]] by

A; (Z c(n)z”) = Z clkn + 0)7",

n=0 n=0
fori=0,...,k—1.
Lemma 2.2.14. Let F(2),G(z) € C[[Z]]. Fori =0, ...,k — 1 we have

(a) A(F(Z)G(2)) = F(2) Ai(G(2)), and
(b) F(z) = Y iy 2 Ai(F)(Z),
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where Ai(F)(Z") is understood as Ai(F(z)) evaluated at 7%, so that if F(z) =
Y us0f (W2 then Ai(F)(Z) = 3,50 f (kn 4 )2

Proof. This is left as an exercise. O
Theorem 2.2.15 (Becker). A k-regular function is a k-Mahler function.

Proof. For convenience, we will assume that the k-regular function takes values in
the complex numbers. This proof can be easily modified to give a result for any
Noetherian ring R provided you work with the field of fractions of R.

Letf = fi,...,fs be a basis for the C-vector space spanned by the k-kernel of f
and set F;(z) 1= ), fi(n)z". Further, define the C(z)-vector space V by

V.= ({Fi(Z) = 1, . ,d})@(z),
so that the set {F;(z) : i = 1,...,d} is a basis for V, and define the operator
@V — C(z)

by ®(G(z)) = G(z¥). We claim that V = & (V).
To show that V C @ (V) we note that foreachi = 1,...,d

k—1

Fi(x) =) > filkn+ )y,

j=0 n=0

and since each {f;(kn + j)},>0 is in the k-kernel of f, it is a C-linear combination of
the basis sequences fi, . . . , fz. Thus we may write

d
Fi(x) = Y pij()F;(x) (2.8)

j=1

where for each 7, j we have p; j(x) € C[x] and degp; ;(x) < k — 1. But since {F;(2) :
i=1,...,d} is abasis for V, we thus have that {F;(z*) :i = 1,...,d} spans ®(V),
and so the relationship in (2.8) shows that V. C @(V).

For the other inclusion, we set F(x) := [F|(x),...,Fy(x)]" and note that (2.8)
gives

F(x) = A()F(), (2.9)

where A(x) = (pij(x)i<ij<a € ClX]™?. Also, since {Fi(z) : i = 1,...,d}
is a basis for V, the matrix A(z) is nonsingular; if this were not the case, there
would be a vector v(z) € C(z)? such that v(z)A(z) = 0 so that by (2.9) we
would have v(z)F(z) = 0, contradicting that the coordinates of F(z) are C(z)-linear
independent—they form a basis of V. Thus also
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AQ)7'F(z) = F(&),

whence @(V) C V, showing that V = &(V).

We note that the arguments of the previous two paragraphs also show that since
V has dimension d, F(z) € V, and ®(V) C V, the d + 1 functions F(z), F(z"), ...,
F (zkd ) € V are C(z)-linearly dependent, meaning there are polynomials ay(z), ...,
a,4(z) € Clz] such that

d
> a@FE) =o0. (2.10)

=0

Of course, to prove the theorem, we must show that one has such a relationship with

aop(z) # 0.

Indeed, as Becker points out [61, p. 273], if one has a functional equation (2.10)
with gj(z) # 0 with j > 0 minimal, then we can just “shift” it down to one smaller
J by applying one of the Cartier operators, since from Lemma 2.2.14(a) we have for
a=0,...,k—1that

d d
0= A Y a@FC) | = Au(@@) FE ),
i=j j

i=j
where we are guaranteed from Lemma 2.2.14(b) that for at least one
a=0,...,k— 1, the polynomial A,(a;(z)) is nonzero. O

This argument can be adjusted to prove the following stronger form of Becker’s
theorem, and so we state it here as a corollary.

Corollary 2.2.16. If R is a Noetherian ring and F(z) € R|[z]] is k-regular for an
integer k = 2, then there is an integer d = 1 and polynomials ay(z), . . ., aq(z) € R[z]
with ayg(z)aq(z) # 0 such that

a0@)F ) + a1 QF(E) + -+ + as2)F () = 0.
That is, F(2) is k-Mahler satisfying a Mahler functional equation with coefficients
in the ring R[z].
The most important case in the above corollary is the case of R = Z.

Example 2.2.17. Let s again denote the Stern sequence and set S(z) :=
> w0 5(m)Z". Using the definition of s, we have

8(z) =z Z s@2m)z?" 4z Z s2n 4 1)z !

n=0 n=0

= zZs(n)zz” + Zs(n)zz’“r2 + ZS(” 1 1)+?

n=0 n=0 n=0
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= 28(z%) + °S(?) + Z s(n)z>"

n=0

=S@)(1+z+7),
which gives that the generating function S(z) satisfies the 2-Mahler equation

S@2) — (22 +z+ 1)S(E) = 0.

2.2.2 Some Comparisons Between Regular and Mahler
Functions

Becker’s result, Theorem 2.2.15 above, shows that every regular function is a Mahler
function. The converse of Becker’s result is not true, which we can show as a
consequence of the following result.

Proposition 2.2.18. The sequence {a"},>¢ is k-regular if and only ifa = 0 or a is
a root of unity.

Proof. One direction is simple, since if a = 0 or a root of unity, the sequence of
powers is periodic and hence k-regular.

For the other direction, assume {a"},>¢ is k-regular. Then there exist an integer r
and integers Ag, ..., A,_1, not all zero, such that

i /\jaki” =0.

j=0

Now we use the Vandermonde determinant identity, which states that

by B2 - B
Lby b2 e b
det| . . . L= l_[ (bj — by).
.. . .. 0<i<j<m
1 by b2 - b

It follows that the sequences {b}},>o are linearly independent if and only if the

numbers by, by, . . ., b, are distinct. Hence the numbers 1, a*,a*, ..., a* are not all
. . j 1 . . .

distinct, and we must have @ = a* for some j # I. Thus either a = 0 or a is a root

of unity. O

Example 2.2.19. The function 1/(1—2z) is k-Mahler for every & but is not k-regular
for any k. To see this, note that inside the disk of radius 1/2 centered at zero, we
have that
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1
Fi)i= —— = 27"
@ 1-2z7 Z ¢

n=0

By Proposition 2.2.18, the sequence {2"},>¢ is not k-regular for any k. But it is quite
easy to check that F(z) = 1/(1 — 2z) satisfies the Mahler equation

(1 —22)F(z) — (1 = 2YF() =0,

for any k, so that F(z) is k-Mabhler for each k.

In fact, Example 2.2.19 suggests the following result concerning the degree of
rational Mahler functions.

Proposition 2.2.20. If R(z) is a nonzero rational function, then it is a k-Mahler
function of degree 1 for every positive integer k = 2.

Proof. Now write R(z) = p(z)/q(z) for nonzero polynomials p(z) and ¢(z). Then
R(z) satisfies the k-Mahler equation

p(@)q(@)R(2) — p(2)q()R(E) =0,

which is of degree 1. O

While not all Mahler functions are regular functions, there are some describable
families. For example, Becker showed that if F(z) is k-Mahler and the coefficient
ap(z) of F(z) in the functional equation is a nonzero constant, then F(z) is k-regular.

Theorem 2.2.21 (Becker [61]). Let F(z) € Cl[z]] be a k-Mahler function satisfy-
ing

d
> a@F () =0,
i=0

where 0 # ay(z) € Cand a,(2), . ..,aq4(2) € Clz]. Then F(z) is k-regular.

Proof. Without loss of generality, we may assume that ay(z) = —1, since we may
just divide by the appropriate complex number if needed. Thus,

d
F@) =Y a@FE). @.11)
i=1

Set H := max{dega;(z) : i = 1,...,d}, and let V be the C-vector space generated
by the functions

Gii(2) :=ziF(zkj) i=0,....H;j=0,...,d).
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Fora = 0,...,k — 1 we have A,(G;(z)) € V. To see this, note that if j =
1,...,d, then by Lemma 2.2.14(a) we have

AJZF(E)) = F(& A eV,

since A,4(z') is a monomial (possibly a constant) of degree at most H. If j = 0, then
we use the functional equation (2.11) and Lemma 2.2.14(a) to obtain

d

d
Aa(ZiF(Z)) = Z A, (Ziae (Z)F(zkz)) _ Z A, (Zia( (Z)) F(Zké—l).
=1

(=1

Since for each combination of i and ¢, deg z'a,(z) < 2H, we have deg A,(z'a;(z)) <
2H/k < H, so that A,(Z'F(z)) € V.

Since A,(V) C V foreacha = 0,...,k — 1, we have that V is mapped into
itself for any element in the semigroup A := ({Ay,..., Ay—1}). Since V is finite
dimensional and F(z) € V, we have that the set A(F(z)) (the semigroup A evaluated
at F(z) for each element) generates a finite-dimensional C-vector space. But, using
the definitions of regularity and the Cartier operators, this is possible if and only if
F(z) is k-regular. O

Theorem 2.2.21 is a simplified version of the following result of Dumas, which
we will use in the proof of Theorem 2.2.24. Its proof can be attained by an argument
almost identical to the proof of Theorem 2.2.21; for details see Dumas’s thesis [200,
Theorem 24].

Theorem 2.2.22 (Dumas). Let F(z) € Cl[z]] be a power series satisfying

d
Y aF(E) = E@),

i=0

where 0 # ayp(z) € C, a1(2),...,aq4(z) € Clz], and E(z) is k-regular. Then F(z) is
k-regular:

Sometimes functions satisfying a Mahler functional equation with ay(z) = 1 are
called k-Becker; for example, see Adamczewski and Bell [2]. Becker conjectured
that a result very similar to Theorem 2.2.21 holds for all regular functions.

Conjecture 2.2.23 (Becker). 1If F(z) is a k-regular function, then there exists a k-
regular rational function r(z) such that the function F(z)/r(z) satisfies a Mahler
functional equation with ay(z) = 1.

Theorem 2.2.24 (Structure Theorem, Dumas [200]). A k-Mahler function is the
quotient of a series and an infinite product which are k-regular. That is, if F(z) is
the solution of the Mahler functional equation

a0(D)F () + a1Q)F () + -+ + aq(2)F') = 0,
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where ay(z)aq(z) # 0, the a;(z) are polynomials, then there exists a k-regular series
H(z) such that

H(z)

F(z) = =———————.
(Z) HjZO F(Zk})

where ay(z) = pz°I'(z), with p # 0 and I'(0) = 1.
Proof. Suppose that F(z) = ), - f(n)Z" satisfies
a(@)F (@) + a1@FE) + - + ai)F () = 0,
where ay(z)ay(z) # 0, the a;(z) are polynomials, and for each i = 0,...,d let §;

be the order of a;(z) at z = 0, where we let §; = 0 if a;(z) = 0, and define the
polynomials b;(z) by a;(z) = z%bi(z). Further, let

kéo — 81 k89 — 6, k48 — 84
D := max { &, , N el P
k—1 -1 ki —1

and define the polynomial

D—6y
p@) = f(m)",
n=0
so that there is a power series Fp(z) such that
F(z) = p(2) + "% Fp(). 2.12)

Combining this with the Mahler functional equation and separating the i = 0 term,
we have

d d
P FpR) = =) ai@pE) =Y Fbi@Fp(), (2.13)
i=0 i=0
where
Ai=8 +KD—-68+1)
We claim that A; = D + 1 foreachi = 1,...,d. To see this, note that for each
i=0,...,dwehave
kisy — &; kisy — 8; 1
D= . = — + — -1,
ki—1 ki—1 ki—1

which gives the desired lower bound on A; after some rearrangement.
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Since each A; = D + 1 and the left-hand side of (2.13) is divisible by z°*!, we
have that the polynomial >"%_ a;(z)p(z¥) is also divisible by z”*!, so we may write

d

Y ai@pE) =PTER)

i=0
for some polynomial E(z). Thus we have that

d .
bo(2)Fp(2) = —E@) — »_ 2" PVbi(2)Fp(2). (2.14)
i=0
Now let p be the nonzero number such that
a(z) = 20bo(z) = pz*I'(2),

with I"(0) = 1, and set

G@) = Fo@ [ [ ).

=0

Thus we may write (2.14) as

d i
G@ =—p 'EQ[]r@) —p ' YO b [T rE) | 6.
izl i=0 j=0
_ (2.15)
The infinite product P(z) := [];5, I'(z") is k-regular by Theorem 2.2.21 since it
satisfies the Mahler functional equation

P(z) — I'(2)P() = 0.

Combining this with Theorem 2.2.22, (2.15) gives that G(z) is k-regular.
Using the definition of G(z) and (2.12), we have

G(z)

— D—dp+1
F(z) = p(2) +2 oo T &)’

Setting H(z) := p(2) [1:s0 I’ (Z)+72~5+1G(z), we have both that H(z) is k-regular,
since the set of k-regular functions form a ring, and also that
H(z)

F) = =t
(Z) 1—[]20 F(Zk})

which is the desired result. O
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2.3 Size and Growth

The range of automatic sequences is finite, so questions of size and growth
concerning automatic sequences are typically uninteresting. Regular sequences can
take an infinite number of values. Three immediate questions that arise are as
follows: (1) How slow can an unbounded regular sequence grow? (2) Are there
good upper bounds for such sequences? (3) What is the maximum possible growth?

2.3.1 Lower Bounds

When considering the question of the growth of a regular sequence, from the lower
bound perspective, it is worth noting that any such result will be an “infinitely often”
result at best. For example, there are regular sequences that are unbounded, yet take
the value 1 infinitely. The Stern sequence s is a great witness to this property. As we
have stated previously, s(2" + 1) = n + 1, so that the Stern sequence is unbounded,
yet also, s(2") = 1 for all n. Similar results hold for the valuation function vy (n),
which is the largest integer m such that X divides n; vy is clearly unbounded, and it
takes each nonnegative integer value an infinite number of times.

In 2014, an “infinitely often” lower bound-type result was given by Bell, Coons,
and Hare [65]. We present their result with proof here.

Theorem 2.3.1 (Bell, Coons, and Hare). Letk = 2. Iff : N — Z is an unbounded
k-regular sequence, then there exists ¢ > 0 such that |f(n)| > clog n infinitely often.

Lemma 2.3.2. Let k = 2 be an integer, let Ay, . .., Ar—1 be d x d integer matrices,
and let B be the semigroup generated by Ay, . .., Ar—1. Then either A is finite or
there is some S € % and fixed vectors v and w € C? such that |w'S"v| = n for all
sufficiently large n.

Proof. Suppose that & is infinite. Then since £ is finitely generated, a result of
McNaughton and Zalcstein [414] gives that there is some S in % such that the
matrices S, S?, 83, . .. are all distinct. Let p(x) be the characteristic polynomial of S.
Then p(x) is a monic integer polynomial. If p(x) has a root A that is strictly greater
than 1 in modulus, then S has an eigenvector v such that Sv = Av. Pick a nonzero
vector w such that w'v = C # 0. Then |w”S"v| = |C| - |A|" = n for n sufficiently
large.

If, on the other hand, all the roots of p(x) are at most 1 in modulus, then all
nonzero eigenvalues of S are algebraic integers with all conjugates having modulus
1; hence, they are roots of unity. Let Y be a matrix in GL4(C) such that T := Y~!SY
is in Jordan form, where we take Jordan blocks to be upper triangular. Then each
Jordan block in T is of the form J;(A) with A either zero or a root of unity and i > 1.
Since S does not generate a finite subsemigroup of %, there is some root of unity
w and some m > 1 such that T has a block of the form J,,(w). We may assume,
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without loss of generality, that J,,(w) is the first block occurring in T. Then the
(1,2)-entry of T" is nw"~! and so |e] T"e,| = n for every n. In particular, we have

lefY™'8"Ye,| = n

for every n. Taking w’ = el Y~! and v = Ye, gives the result. O

Proof (of Theorem 2.3.1). Let k = 2 be an integer, and suppose that f : N — Z is
an unbounded k-regular sequence. Given a word w = iz---ip € {0,...,k— 1}*, as
stated previously, we let [w]; denote the natural number n = i;k*+- - -+ i1k +io. The
Z-submodule of all Z-valued sequences spanned by Ker(f) is a finitely generated
torsion-free module and hence free of finite rank. Let {{g1 () }nz0, - - -, {ga(n) },,;0}
be a Z-module basis for the Z-module spanned by Ker,(f). Then for each i €
{0,1,...,k— 1}, the functions g, (kn + i), ..., gs(kn + i) can be expressed as Z-
linear combinations of g1(n), ..., gs(n), and hence there are d x d integer matrices
Ao, ..., Ar_; such that

[g1(n). ..., ga(M)]A; = [g1(kn + i), ..., ga(kn 4 i)]

fori =0,...,k—1andall n = 0. In particular, if i, - - - iy is the base-k expansion
of n, then [g1(0),...,84(0)]A;, - A;y = [g1(n), ..., ga(n)]. (We note that this holds
even if we pad the base-k expansion of n with zeros at the beginning.) We claim that
the Q-span of the vectors [g;(7), ..., ga(i)]”, as i ranges over all natural numbers,
must be all of Q7. Indeed, if this were not the case, then their span would be a proper
subspace of Q¢, and hence the span would have a nontrivial orthogonal complement.
In particular, there would exist integers ci, . . ., ¢4, not all zero, such that

cigi(m) + -+ csga(n) =0

for every n, contradicting the fact that g;(n), ..., gs(n) are linearly independent
sequences.

Let o7 denote the semigroup generated by Ay,...,As—;. Then we have just
shown that there exist words X1, ..., X, in & such that

[810). . ... 8a(0)]X. ... [81(0). . . .. g4 (0)]Xy

span QY. Now, if <7 is finite, then {g;(n)},>0,....{ga(n)}=0 take only finitely
many distinct values. Since {f(n)},>0 is a Z-linear combination of {g;(n)},>0, .- -,
{ga(n)},=0, we see that it too takes only finitely many distinct values, which
contradicts our assumption that it is unbounded. Thus &/ must be infinite. By
Lemma 2.3.2, there exist Y € ./ and vectors X,y € C? such that [x"Y"y| > n
for all n sufficiently large.

By construction, we may write x| = Zjaj[gl(o),...,gd(o)]Xj for some
complex numbers «;. Then
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XTYn = Zaj[gl(O), ey gd(O)]Xan.
J

Let u; be the word in {0, 1, ...,k — 1}* corresponding to X;, and let y be the word
in {0, ...,k — 1}* corresponding to Y; that is, u; = i,---ip where X; = A, -+ A;;
and similarly for y. Then we have

(£1(0), ..., 2aOIX;Y" = [g1([upy"]x), - - -, ga([upy" )]

Write y" = [B1, ..., Ba]. Then

x'Y'y = Zaiﬁjgj([uiyn]k)-

ij

By assumption, each of {g;(n)},>o0,...,{gs(n)}s=0 is in the Z-module generated
by Kery(f), and hence there exist natural numbers py,...,p; and q,...,q; with
0 < ¢gu < kP form = 1,...,tsuch that for each s = 1,...,d we have g;(n) =

Z§=1 Vi (K’in + g;) for some integers y; ;. Then

XYy =Y iy [y ve),

ij.

where vy is the unique word in {0, 1, ...,k — 1}* of length p, such that [v/]x = g.
Let K =}/ loil - |Bjl - e |- Then since |x’Y"y| = n for all n sufficiently large,
there is some Ny > 0 such that for n > Ny some element from

{{V([uiynvj]k)|}I120: i = 17 ces da] = 17 ) t}}

is at least n/K.

We let M denote the maximum of the lengths of uy,...,uy,y,v1,..., v, Then
each of [uy" vy < kKM for n > 2. Hence we have constructed an infinite set of
natural numbers N = N, := [u;y"vj] such that |[f(N)| > log,(N)/2K and so taking
c = (2MK log k)~!, we see that [f(N)| > clog N for infinitely many N. O

The above proof actually shows something a bit more specific. It shows for an
unbounded k-regular sequence that there exist words uy,..., Uy, Y, V1,..., Uy €
{0,1,...,k— 1}* and a constant ¢y > 0 such that for all sufficiently large n there
exist an i and j such that [f([u;y"v;]c)|] = con. Here for a word w = is---ip €
{0,1,...,k— 1}*, we have written [w]; = i;k* + --- + ip. This can be thought of
as a type of “pumping lemma” for attaining unbounded growth. This argument will
prove quite useful when we consider good upper bounds in the next section.
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2.3.2 Upper Bounds

The question of upper bounds was first addressed by Allouche and Shallit [17,
Theorem 2.10] in their original paper introducing regular sequences.

Theorem 2.3.3 (Allouche and Shallit). Letf be a k-regular sequence with values
in C. Then there is a constant ¢ such that f (n) = O (n°).

Proof. We use the matrix version of regular sequences as given by Lemma 2.2.7. In
particular, let d be a positive integer, <% = {Ao, ..., A1} C C™>d and v,w e C4
be vectors such that

f() = wiA; Ay,
where (n); = i, - - - iy is the base-k expansion of n.
Let || - || be a (submultiplicative) matrix norm, iy - - - i be the base k expansion of
n, and
¢ :=max{|[v[l, [wl. [|Aoll, ... [[Ax=1]}.
Then
s
s+3
@< vl Iwll-T Tl < e
j=0
Using the bound s < log, n with some rearrangement gives the result. O

In recent work, Coons [163] determined the optimal constant ¢ for which
Theorem 2.3.3 holds. Its description requires a few definitions, the first of which
formalizes what is meant by “optimal” in this context.

Definition 2.3.4. Let k > 1 be an integer and f : Z>o — C be a (not eventually
zero) k-regular sequence. We define the growth exponent of f, denoted GrExp(f), by

1
GrExp(f) := lim sup M.
n—00 1 gn
Fm#0

Definition 2.3.5. The spectral radius of a square matrix is the maximal absolute
value of eigenvalues of the matrix. The joint spectral radius of a finite set of matrices
o = {Ag,Ai,...,Ar—1}, denoted p(¥), is defined as the real number

p(/) =limsup _ max _[[AyA; - A, ]I,

00 0Ki0.ils..in—1 <k—1

where || - || is any (submultiplicative) matrix norm.
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The joint spectral radius was introduced by Rota and Strang [513] and has a
wide range of applications. See Rota and Strang [513] also for details about the
independence of the matrix norm in the definition. For an extensive treatment, see
Jungers’s monograph [315].

Theorem 2.3.6 (Coons). Letk = 1 and d = 1 be integers and f : 7y — C
be a (not eventually zero) k-regular sequence. If <7 is any collection of k integer
matrices associated to a basis of the C-vector space (Kery(f))c, then

log p() = GrExp(f),

where log, denotes the base-k logarithm.

Before moving on with the needed preliminary results for the proof of this
theorem, we describe what it means for a collection of k integer matrices to be
associated to a basis of the C-vector space (Ker (f))¢. This is all taken in the context
of Lemma 2.2.7 that provides for a set of matrices %% coming from Lemma 2.2.6(e).
In particular, given a word w = i;---iy € {0,...,k — 1}*, we let [w]; denote the
natural number 7 such that (n), = w. Let {{f (n) },=0 = {g1(") }uz0, - . -, {€a (M) }n=0}
be a basis for the C-vector space (Ker(f))c. Then for each i € {0,1,...,k— 1},
the sequences {gi(kn + i)}n=0, ..., {gs(kn + i)},=0 can be expressed as C-linear
combinations of {g;(n)},=o0,-..,{gs(n)}n=0, and hence there is a set of d x d
matrices % = {Ao, ..., A1} with entries in C such that

Ailgi(m),....ga)" = [gilkn + i), ..., galkn + i)]"

fori =0,...,k—1andall n = 0. In particular, if i - - - i is the base-k expansion of
n,then A, ---A; [21(0), ..., 24(0)]" = [g1(n),...,ga(n)]". (We note that this holds
even if we pad the base-k expansion of n with zeros at the beginning.)

Definition 2.3.7. We call a set of matrices <, as constructed in the previous
paragraph, a set of matrices associated to a basis of (Kery(f))c. In general, if %
is any set of matrices for which there are vectors w and v such that f has linear
representation (w, %y, v), then we call the set %y a set of matrices associated to f.

The first step in the proof of Theorem 2.3.6 is to modify the proof of Theo-
rem 2.3.3 to include the notion of the joint spectral radius. This is done by appealing
to a result, which we record here as Lemma 2.3.8; it can be found as Proposition 4
of Blondel et al. [90], though it was first given in the original paper of Rota and
Strang [513].

Lemma 2.3.8. Let k = 1 be an integer and o7 = {Ay, Ay, ..., Ar—1} be a finite set
of matrices. Given ¢ > 0 then there is a submultiplicative matrix norm || - || such
that |A;|| < p(&) + ¢ foreachi € {0,1,...,k—1}.

With this lemma in hand, it is quite easy to give a tight upper bound for the
optimal constant for Theorem 2.3.3.
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Proposition 2.3.9. Let k = 2 be an integer and f : 7>y — C be a k-regular
function. For any € > 0, there is a constant ¢ = c(g) > 0 such that for alln = 1,

Il

———— <¢
nlogi(p(h)+e) = 77

where o7 is any set of matrices associated to f.

Proof. Let e > 0 be given and let | - || be a matrix norm such that the conclusion of
Lemma 2.3.8 holds. Then

@) < V- Iwl- T TIAG < I Wl - (o() + ),

J=0

where the base-k expansion of n is is - - - ip. Using the bound s < log, n with some
rearrangement gives the result. O

As it turns out, if % is any set of matrices associated to f and 7% is any set of
matrices associated to a basis of (Ker(f))c, then p(2%) < p(%), though the proof
of this statement is only apparent after validating Theorem 2.3.6.

Lemma 2.3.10. Let k = 1 be an integer and o/ = {Ag, Ay, ..., A1} be a finite
set of matrices. If ¢ > 0 is a real number, then there is a positive integer m and a
matrix A, -+ A such that

(p() = )" < p(Aiy-~Ay,_,) < (p() +&)".

Proof. By using the properties of limits, this is a direct consequence of the definition
of the joint spectral radius. Details are left as an exercise. O

Restricting to a set of matrices associated to a basis of (Kerx(f))¢ allows us to
provide the lower bound analogue of Proposition 2.3.9.

Proposition 2.3.11. Let k = 2 be an integer and f : 7>y — C be a k-regular
function. For any € > 0, there is a constant ¢ = c(g) > 0 such that for infinitely
many n = 1,

If (n)]

_— c,
Aoz —e) =

where <y is any set of matrices associated to a basis of (Ker(f))c.

Proof. As in the proof of Theorem 2.3.1, we follow the argument of Bell, Coons,
and Hare (see p. 198 of [65]).

Let k = 2 be an integer, suppose that f : Z>y — C is an unbounded k-regular
sequence, and 2 = {Ao,...,Ar—i} be a set of matrices associated to a basis

T Winz0 = {81(M}nz0. - .. . {8a(n)}n=0} of the C-vector space (Ker(f))c.
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Let ¢ > 0 be given. Then by Lemma 2.3.10 there is a positive integer m and a
matrix A = A, ---A;,_, such that p(A) > (p(=7) — &)”. Let A be an eigenvalue of
A with |A| = p(A). Then there is an eigenvector y such that Ay = Ay. Pick a vector
x such that x”y = ¢; # 0. Then

Im—1

[XTA"Y| = Jer] - IAI" = led] - p(A)" > Jei - (p() — €)™ (2.16)

We claim that the C-span of the vectors [g(i), ..., gq(i)], as i ranges over all
natural numbers, must span all of C4. 1f this were not the case, then their span would
be a proper subspace of C?, and hence the span would have a nontrivial orthogonal
complement. In particular, there would exist ¢y, ..., c; € C, not all zero, such that

cigi(m) + -4 csg4(n) =0

for every n, contradicting the fact that g;(n), ..., gs(n) are C-linearly independent
sequences.

Let (%) denote the semigroup generated by the elements of 7. We have just
shown that there exist words X, ..., X, in (27) such that

(8100), ..., 84(0)]X1, ... [81(0), ..., 84(0)]Xq4
span C¢.
Now consider x” A"y as described in the paragraph ending with (2.16). The

following lines are as in the proof of Theorem 2.3.1. By construction, we may write
xI' = Zj a;[g1(0), ..., g4(0)]X] for some complex numbers ;. Then

XA =" a)[51(0). ... 2a(O)X,A"

Let u; be the word in {0, 1,...,k — 1}* corresponding to X; and let y = i,,—; -+ io
be the word in {0, ...,k — 1}* corresponding to A; that is, y = i,,— ---ip where
A=A ---A;,_, and similarly for u;. Then we have

[£1(0), ..., ga(OIXA" = [g1([uy"]s). - - -, ga([upy" 1]

Write y7 = [B1...., Ba]. Then

x A"y = Z a;Bigi([u:y"k).
ij

By assumption, each of {g|(n)},>0,-..,{ga(n)}s=0 is in the C-vector space gen-
erated by Kery(f), and hence there exist natural numbers py,...,p; and gy, ..., q;
with 0 < gy < kPt for £ = 1,...,t such that for each j = 1,...,d, we have

gi(n) = ZIZ=1 Ve f (kPtn + gq¢) for some constants y; ; € C. Then
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X'A"y = aiBjyef (" velo).
ijit
where vy is the unique word in {0, 1, ...,k — 1}* of length p, such that [v/]x = g¢.

Let K =Y, leil - |B] - |ye|. Then since [x"A"y| = |c1] - (p() — )™ for all n,
some element from

{If(upvel)| :i=1,....d L =1,....1}}

is at least (|c1|/K) - (p(%) — &)™ for each n. Set ¢5 := |¢1|/K.
If M = max{|u;|, |v¢| :i=1,...,d, £ =1,...,t}, then

N = [ui(im—l ---io)"vg]k < k2M+nm’

so that log, (N) — 2M < nm. Thus, by the finding of the previous paragraph, there
are infinitely many N such that

LG 1) I
PRI~ (p(s) — &) N ~ (pliaf) — o)™

which is the desired result. O

Proof (of Theorem 2.3.6). For a given ¢ > 0, Proposition 2.3.9 implies that

Il

n—00 plog(p(H)+2e) T

3

and Proposition 2.3.11 implies that

lim su M =00
ISP  om (o) —2e)

Taken together these give
log,(o(w) — 2¢) < GrExp(f) < log,(p(<%) + 2¢).

Since ¢ can be taken arbitrarily small, this proves the theorem. O

Example 2.3.12. For the Stern sequence s, one has
GrExp(s) = log, ¢,

where ¢ = (14 V5) /2 is the golden ratio. This follows from work of Reznick [501,
Theorem 5.13]. See also, Calkin and Wilf [124] and Coons and Tyler [165].
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Before moving on, we note the works of Dumas [201, 202] concerning the
asymptotic expansion of the summatory functions of regular sequences. Among
many results and useful algorithms, his results have the flavor of the following
theorem [201, Theorem 1].

Theorem 2.3.13 (Dumas). Letf be a k-regular function with linear representation
(W, <, v). Then

s) =Y [ ~ Y n” (logzk ) exp(it? 1ogg m) Wy ¢y (log ) + O(n),

j<n a>ax
20,9

where exponents o and angular variables O are real numbers, the numbers £ are
nonnegative integers, and the functions ¥ are 1-periodic functions. Specific details
can be found in Dumas’ work [201].

2.3.3 Maximum Values and the Finiteness Property

Determining the maximum values of regular sequences remains a mysterious area,
though it is related to a very interesting and important open question regarding the
joint spectral radius. As examples and results surrounding this area are sparse, in
this section, we will present a motivating extended example—Stern’s sequence—as
a way to frame some questions.

Recall from Example 2.2.5 that Stern’s diatomic sequence is 2-regular and
defined by the relations s(0) = 0, s(1) = 1, and for n = 0, by

s2n) = s(n), and s2n+1)=s(n)+s(n+1).
The first few values of the sequence are
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,8,3,7,4,5, 1, ...

The Stern sequence, like essentially all observed regular sequences, has a limiting
distribution between consecutive powers of 2 (powers of k" for k-regular sequences
for some appropriate r). In fact, if one looks at the plot of the points (n,s(n))
for n between consecutive powers of 2, the picture seems to have asymptotically
stabilized; see Figures 2.2 and 2.3.

In particular, note the stabilizing two maximums in the each of the plots in
Figures 2.2 and 2.3. It is easy to show that the Stern sequence is palindromic
between consecutive powers of 2, so we may focus on just the first maximum. (The
maximum is in fact attained at at most two points, which we state here without
proof.) We will use the defining recursions to classify and get a bound on this
maximum value.
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Fig. 2.2 Stern’s diatomic sequence in the intervals [2”, 2”'“] forn=9,11,13,15.
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Fig. 2.3 Stern’s diatomic sequence in the interval [2!7, 218].

To this end, for m = 0 define
M,, ;= max{s(n) : n € [2",2"11)}.

Then, by observation, we have that My = 1, M} = 2, and M, = 3.

For m = 3 we note that s(2n + 1) = s(n) = s(2n), so that the maximum value
always occurs at an odd index 2n+ 1 € [2’", 2”"“). Of course, like for all numbers,
for this value 2n + 1, one of n or n + 1 is even, so that the recursion for odd indices
gives
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Mm < Mm—l + Mm—2~
But, combining this inequality with the fact that My = 1 and M, = 2, gives that
M, < Fqo,

where Fy is the k-th Fibonacci number. This inequality is actually an equality, which
we will now show.

Proposition 2.3.14. The maximal value of the Stern sequence in the interval
[2’", 2m+1) is the Fibonacci number F,,,, and this value occurs at n = (2m+2 —

(_1)m+2)/3_

Proof. We have already shown above that M,, < F,,4,, so it remains only to show
that there is an integer n € [2’", 2’"“) such that s(n) = F41.

To this end, set &,, ;= (2’"+2 — (—1)'"+2)/3. It is clear that ¢, € [2’", 2’"'“) and
that

20, + 1 if mis even;

OUm+1 = . .
20, — 1 if mis odd,

therefore by the recurrence for s we have

s(ay) + s(ay + 1) = s(o) + sQay—1)  if mis even;
S(am+l)

s(oy — 1) + s(ay) = sQopy—1) + s(oy,)  if misodd

= S(‘xm—]) + S(C(m).

By induction, it follows that s(c,,,) = F,,4+2, which is exactly what we set out to
show. |

The binary forms

[(1 O)”‘/zl]2 if m is even;
Uy 1=
[(10)(’"—1)/211]2 if m is odd

of the integers o, here are a point of interest. They are of the form w*u for some
words u and w and some integer k. This implies something even more interesting for
the normalized graph of the Stern sequence between consecutive powers of two. To
be clear, we state the generalizations of these ideas as a series of formal questions.

Question 2.3.15. Let f be a k-regular sequence. Is there an integer M = 1, such that
f (suitably normalized to the box [0, 1]?) has a limit when taken between powers of
k™? That is, the normalized picture of the points (n,f(n)), where n € [k™/ kMU+D],
converges.
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Question 2.3.16. Let f be an integer-valued k-regular sequence. If f is not an
automatic sequence, is there a positive integer M such that

max lf(n)| < max f(n)|?

JMm < <M (m~+1) 1 JM(m+1) <p<gMm+2) —1

Question 2.3.17. Suppose that Question 2.3.16 has a positive answer and that f is an
integer-valued k-regular sequence. Is it true that there are words u,w € {0, ...,k —
1}* such that one of the maximum values oy, of |[f(n)| in [kM", kM +D] satisfies
ay,, = w'u for some increasing sequence of integers n,, and infinitely many m?

The careful reader will notice that Questions 2.3.16 and 2.3.17 have the added
assumption that f is integer-valued. This assumption cannot be removed completely
as the questions have negative answers when one looks at general real-valued
sequences. In fact, this line of questioning is related to an open question regarding
the joint spectral radius (see Definition 2.3.5) of a finite set of matrices.

Definition 2.3.18. A finite set of matrices .o/ is said to have the finiteness property
provided there is a specific finite product A;, - -+ A;, _, of matrices from &7 such that
p(Aiy -+ Ay, )™ = p().

im—1

Arising from the work of Daubechies and Lagarias [179], Lagarias and Wang
[367] conjectured that the finiteness property holds for all finite sets of real matrices,
though this was shown to be false—hence the negative answer to the generalization
of Question 2.3.17 for real-valued regular sequences. The existence of counterex-
amples was first shown by Bousch and Mairesse [102] (see also [91, 360]), and
a constructive counterexample was recently given by Hare, Morris, Sidorov, and
Theys [284]. Their counterexample is reminiscent of the Stern sequence, and so we
give it here to add a little connective flavor to the questions.

Example 2.3.19 (Hare, Morris, Sidorov, and Theys). Let t denote the sequence of
integers defined by 7o = 1, 71, 70 = 2, and 7,41 = 7,T—1 — Ty— forall n = 2, and
let F,, be the nth Fibonacci number for n = 0. Define the real number « € (0, 1] by

(—1)”F,,+1
Tn—
Oy 1= l_[ (1 - ) .

n=>1 TnTn+1

Then this infinite product converges unconditionally, and the set

(Loa] 17

does not have the finiteness property.

Note that the number
o = 0.7493265463303675579439619480913446720913273702360643173 . . .,

and it is unknown if «, is irrational, though it is suspected.



2 Number Theoretic Aspects of Regular Sequences 67

It is an open and interesting question to determine if all finite sets of rational
matrices satisfy the finiteness property. The current best result toward this conjecture
is that of Jungers and Blondel [316], who showed that the finiteness property holds
for all finite sets of rational matrices provided it holds for all pairs of matrices with
entries in {—1, 0, 1}. Restricting to the case of nonnegative rational matrices, Jungers
and Blondel [316] could reduce {—1, 0, 1} to the set {0, 1}.

As a fact related to Question 2.3.15, we want to show that there are only few
large values of s(n) in the interval [2",2"+!), compared to the maximal value
M,, = F,+,. First, we note that the mean value of s(r) in such an interval equals
(3/2)™, which can be proved by induction. What we want to show is that there are
in fact exponentially few integers n in [2’”, 2’”+1) such that s(n) = eM,,, for any
& > 0. By definition of the mean value and the nonnegativity of s(n), the number
N of such integers satisfies NeM,,/2" < (3/2)™; therefore, N < 3"/(M,,e) <K
(3/9)" /e, where ¢ is the golden ratio. Since ¢ is strictly larger than 3/2, there are
exponentially few integers n such that s(n) is large. This leads us to the following
proposition for the graph of s(n) in dyadic intervals [2,2"+!), normalized to
[0, 1]?. We define functions f,, from [0, 1] to [0, 1] by

1
Fiyo

fax) = s(Zm + LZ’”xJ).

Proposition 2.3.20. The sequence {f,,}m=0 of functions converges to zero almost
everywhere.

Proof. By the above considerations, there is an K < 1 such that
A{x € [0,1] : fu(x) = &}) < K" /e,

where A is the Lebesgue measure. It follows that
A({x €[0,1] : 3m = M such that f,,(x) = ¢})

=2 (U{xe [0.1] 2 fu() = s}) < D A 0.1 £u() = &})

m=M m=M

1 1 KM
< - K"=——.
Z 8]_[(
m=M

Setting Ay (e) = {x € [0,1] : fu(x) < eforallm = M}, we obtain A(Ay) =
1 —KM/(e(1 — K)). It follows that

1= A(U AM> = A(B,),

M=1
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where
B, = {x €[0,1] : 3M = 1 such that f;,(x) < ¢ for all m = M}.
Therefore
A(x € [0,1] : fru(x) —> O0as m — oo}) = A(ﬂBg) = A(mBl/n) =1. O
e>0 n=1

In fact, we conjecture the following more precise statement.

Conjecture 2.3.21. The sequence {f;,} =0 of functions converges pointwise, and the
limit is nonzero if and only if x € [0, 1] is of the form x = a/(3-2°) for some integers
a=lands = 0.

Another interesting question concerns values of s(n) near the mean value (3/2)".
Lansing [369] studies the quantity

HA,m) = 2%‘{2’” <n<2s(n) = 1(3/2)*“}‘

and notes that the data “suggests that H(A, m) converges to a smooth function, but
it is not clear if it actually does.” This statement is based on the behavior for some
small values of m. We used randomly chosen integers in the interval [2’", 2'"“) for
some larger m in order to guess the asymptotic behavior. Our experiments suggest
that H(A, m) converges to zero for all A > 0.

We finish this section with a remark concerning the distribution of the values of
s(n). Heuristically, the method of obtaining s(n) by a matrix product is (formally)
similar to studying the product of independent identically distributed random
variables. The question therefore suggests itself: is the distribution of the values
s(n) in dyadic intervals [2’", 2’”“) close to a log-normal distribution? We leave this
as another open question.

2.4 Analytic and Algebraic Properties of Mahler Functions

In this section, we consider the properties of regular functions and Mahler functions
viewed as functions of a complex variable. In particular, we will address questions of
convergence, analytic behavior, and rationality. In particular, the results will lead to a
proof of Bézivin’s theorem [83] that an irrational Mahler function is transcendental.
The arguments in this section follow closely those of Bell, Coons, and Rowland
[66], who gave an alternative proof of Bézivin’s result.
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2.4.1 Analytic Properties of Mahler Functions

Allouche and Shallit’s upper bound on regular sequences, Theorem 2.3.3, yields the
following as an immediate corollary.

Proposition 2.4.1. A regular function F(z) converges inside the unit circle.

This proposition can be used to give an alternative proof that there are Mahler
functions that are not regular.

Example 2.4.2 (Example 2.2.19 Revisited). Recall from Example 2.2.19, the func-
tion 1/(1 — 2z) is k-Mahler for each k. But z = 1/2 is a singularity of the function,
so it does not converge everywhere inside the unit circle. Hence it is not k-regular
for any k by Proposition 2.4.1.

Dumas’ structure theorem, Theorem 2.2.24, yields the following immediate
corollary, which we note here as a proposition.

Proposition 2.4.3. Let k = 2 be an integer and let F(z) € Cl[z]] be a k-Mahler
function. Then F(z) has a positive radius of convergence.

Proof. Denote by B(0, r) the open ball of radius » > 0 centered at the origin. Let
k = 2 be an integer and F(z) € C[[z]] be a k-Mahler function satisfying, say,

d
> a4@FE) =0,

J=0

for aj(z) € Clz], ao(z)aq(z) # 0. Proposition 2.4.1 states that a k-regular series
is analytic in the unit disk, so Theorem 2.2.24 gives that F(z) converges in
B(0,r), where r € (0,1) is the minimal distance from O to a nonzero root of
ap(2)(z—1). ]

It is quite easy to see that all polynomials are regular functions, and so they are
all Mahler functions as well. As it turns out, polynomials are precisely the set of
entire Mahler functions—and so also the set of entire regular functions.

Theorem 2.4.4. Let k = 2 be an integer and F(z) € C|[z]] be a k-Mahler function.
If F(2) is entire, then F(z) is a polynomial.

Proof. Let k = 2 be an integer and F(z) € C[[]] be an entire k-Mahler function
satisfying

d
Y a@FE) =0,

=0
for aj(z) € Clz] with ap(z)aq(z) # 0. Write

d—1

FE) ==Y “f—(Z)F(z"’ ). 2.17)

=0 aq(z)
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Pick L > 1 such that all of the zeros of a,(z) are in the open disk, B(0, L), of
radius L centered at the origin. Notice that since the a;(z) are polynomials, there is
an N > 1 and a constant C > 1 such that for |z] = L, we have

aq(z)

max { } < Clz|™; (2.18)
0<i<d—1

in particular, the value N = maxo<;<q—1{deg a;(z), 2} is sufficient.
For £ = 0 denote

My = max {[F )| : e = 24},

where L is as chosen above. Using (2.17), (2.18), and the maximum modulus
theorem, we have for j > d that

M; < (d+ DO )Moy < cd+ DI M.
Thus recursively, we have for each n > d that
M, < My_y(C(d + 1))"LM"""

But since L > 1, this implies that there is some constant b > 0 such that forn > d
we have

M, < L.
Now let m = b + 2 be a natural number, fix an o € C and consider

1 F
F(’7171)(()[) = (Z) dZ,
27i J,, (z—oa)™

where ¥, is the circle of radius L with n large enough so that « is inside the circle
of radius L*' /2 centered at the origin. Then for all 7 on y,, we have that

|2
) < |z—al.

Thus for n large enough, we have

v/

Recall that m = b + 2 so that the above gives that



2 Number Theoretic Aspects of Regular Sequences 71

2m

|F(m_l)(0l)| < ﬁ

Since 7 can be taken arbitrarily large, we have that F"~D(a) = 0. Buta € C was
arbitrary, and so F"~V(z) is identically zero; hence F(z) is a polynomial. O

2.4.2 Rational-Transcendental Dichotomy of Mahler
Functions

Using Theorem 2.4.4 one can prove a rational-transcendental dichotomy of Mahler
functions; see Bézivin [83].

Theorem 2.4.5 (Bézivin). Letk = 2 be an integer and F(z) € C[[z]] be a k-Mahler
function. If F(z) is algebraic, then F(2) is a rational function.

In fact, since algebraic functions have only a finite number of singularities (see
Flajolet and Sedgewick [224, Section VIIL.7.1]), Theorem 2.4.5 is a consequence of
the upcoming Theorem 2.4.7. First we record a lemma, the proof of which is left as
an exercise, though it can be found in the paper of Bell, Coons, and Rowland [66].

Lemma 2.4.6. Letk = 2 be an integer and let F(z) € C[[z]] be a k-Mahler function.
The function F(z) is meromorphic if and only if it has finitely many singularities.

Theorem 2.4.7. Let k = 2 be an integer and F(z) € C[[z]] be a k-Mahler function.
If F(2) has only finitely many singularities, then F(2) is a rational function.

Proof. Let k = 2 be an integer and F(z) € C[[z]] be a k-Mahler function satisfying

d
> aFE) = 0. (2.19)

Jj=0

for a;(z) € Clz] with ag(z)aqs(z) # 0. If F(z) has only finitely many singularities,
then since by Lemma 2.4.6 it is meromorphic, there is a nonzero polynomial ¢(z) €
Clz] such that g(z)F(z) is entire. Forj € {0,...,d — 1} set

1 &
— [ [4") € Clz].
q(@) 1:[0

qi(2) =
Multiplying (2.19) by H?:o q(Z*) € C[z], we then have that

d . .
> 4229 FE) = 0.

j=0
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where since ¢(z) is not identically zero we have that a(z)qo(2)aq(z)qi(z) # 0.
Hence ¢(z)F(z) is an entire k-Mahler function and thus, by the preceding lemma, a
polynomial. This proves that F(z) is a rational function. O

One can actually do a lot better as Randé showed in his thesis [492].

Theorem 2.4.8 (Randé). Let k = 2 be an integer and F(z) € C[[z]] be a k-Mahler
function. Then F(z) is a rational function, or it has the unit circle as a natural
boundary.

Recall that a function is differentiably finite (or D-finite) provided it satisfies
a linear homogeneous differential equation with polynomial coefficient. Since D-
finite functions can have only a finite number of singularities (see Flajolet and
Sedgewick [224, Section VIL.9.1]), Randé’s result implies the following corollary.

Corollary 2.4.9. Let k = 2 be an integer and F(z) € C[[z]] be a k-Mahler function.
If F(z) is D-finite, then F(z) is a rational function.

It is an open and very interesting question to determine where Mahler functions
fall in the diffeo-algebraic hierarchy. Of particular interest is whether an irrational
Mabhler function can satisfy an algebraic differential equation. A function that does
not satisfy an algebraic differential equation is called hypertranscendental.

Question 2.4.10. Is it true that an irrational Mahler function is hypertranscendental?

For Mabhler functions of degree one, this question has been mostly answered by
Bundschuh [120], though any sort of general result for other degrees remains open.

2.5 Rational-Transcendental Dichotomy of Regular Numbers

While the rational-transcendental dichotomy of regular (and Mahler) functions is
more or less straightforward as shown in the previous section, the dichotomy at the
level of their special values was much more elusive.

Adamczewski and Bugeaud [3] showed that a real automatic irrational number is
transcendental, and Bell, Bugeaud, and Coons [63] generalized their result to show
that if F(z) is a regular function, then the value F(1/b), for any integer b > 2, is
either rational or transcendental. In this section, we provide a simplified version of
the result of Bell, Bugeaud, and Coons.

Theorem 2.5.1 (Bell, Bugeaud, and Coons). Let F(z) € Z|[[z]] be a k-regular
power series and b = 2 be a positive integer. Then either F(1/b) is rational or it is
transcendental.

We take as our starting point Equation (2.9). To this end, let F(z) be a k-regular
function and let F(z2) := [F(z) = F1(z), ..., F4(2)]" be the vector of functions that
form a basis for the Q(z)-vector space V in the proof of Theorem 2.2.15, and recall
that (2.9) gives
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F(z) = AQF(Z), (2.20)

where A(z) = (a;j(z)/B)i<ij<a € Qz]™? is a nonsingular matrix of polynomials
a;j(z) € Z(z) of degree at most k — 1 and B is a nonzero positive integer.

We will require some additional notation. In particular, in this section we take
all complex matrix norms || - || to be the operator norm, i.e., |Al| = supyy=; [AV[,
where the norm of a vector v is the ordinary Euclidean norm. Also, we let v :
Q((x)) = Z U {oo} be the valuation defined by v(0) = oo and

v < > Cnx”) ‘= inf{i : ¢; # 0}

n=—m

when ) - c.x" € Q((x)) is a nonzero Laurent power series (this valuation will
also be used in further sections).

Lemma 2.5.2. Let F(z) satisfy (2.20) and H := max; j<qideg a;;(z)}. Then there
are ¢ > 0, polynomials P1(2), ..., P4(2), Q(z) € Z[z] of degree at most (d — 1)(d +
2)H with Q(0) = 1, and a positive constant C = C(e) such that fori € {1,...,d}
we have

Fi(t) — Pi(1)/Q(1)| < Cr@+2H
fort € (0,¢).

Proof. For i € {1,2,...,d}, the theory of simultaneous Padé approximation (see
the monograph Rational Approximations and Orthogonal Polynomials by Nikishin
and Sorokin [445, Chapter 4] for details) provides polynomials P;(z) and Q(z) of
degree each bounded by (d — 1)(d + 2)H, and Q(0) = 1, such that

v (Q(Z)Fi(Z) — Pl‘(Z)) = d(d + 2)H
Fori € {l1,...,d}, we thus have

P;i(2) )
V| Fi(z) - —— ] =d(d+2)H.
( 0(2)

Since Q(0) = 1 and by Proposition 2.4.1 each of F|(z),..., F,(z) converges
inside the unit disk, F;(z) — P;(z)/Q(z) is analytic inside B(0,r) fori € {1,...,d}
for some r > 0 since Q(0) = 1. Hence there exist power series G1(z), ..., G4(2)
that are analytic inside B(0, r) such that

Pi(z) d(d+2)H
Fi(z) = == = "1 Gy(2)
0(2)
fori e {l,...,d}. Lete € (0, r). Then there is a positive constant C such that

|G|(Z)|""’ |Gd(Z)| <C
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for |z| < . Thus fori € {1,...,d},

(1)

F; ([) _ < Ctd(d+2)H

whenever 7 € (0, €). O

Having established the first rational approximations to our vector of regular
functions, we now establish a family of good rational approximations, which will
be used in the proof of Theorem 2.5.1.

Lemma 2.5.3. Let F(z) satisfy (2.20) and H := max;j<q{dega;j(z)} and let t €
(0, 1). Then for each n = 0, there are polynomials Py ,,(z), ..., Pa.(2), 0,(z) € Z[Z]
satisfying:

(i) max;<i<a{deg Pin(z),deg 0n(2)} < ((d +2)(d — 1) + D HK";

(ii) Qu(z) = B"Qo(e");
(iii) there exists an € > 0 and positive constants Cy = Cy(e) and C, = C;(&), not

depending on t, such that for i € {1,...,d} and for all n sufficiently large we
have Q,(t) # 0 and

Fi(t) — Pi,(1)/ Qu(0)] < Ci Cpr?@H2HE

whenever t € (0,&) and in particular the order of vanishing of Fi(t) —
P;i,(t)/O(t) at t = 0 is at least d(d + 2)Hk".

Proof. By Lemma 2.5.2, there are ¢ > 0, polynomials P; ¢(z), ..., Ps0(2), Qo(z) €
Z]z] of degree at most (d + 2)(d — 1)H with Qy(0) = 1, and a positive constant C
such that for i € {1,...,d} we have

|Fi(t) = Pi(1)/ Qo()| < Cr@*2H

whenever ¢ € (0, ¢).
We define

Ro(2) := [P10(2)/Q0(2). ... Pao(2)/Qo(2)]" (2.21)

and forn = 1, we take
R,(2) = A@R,_1 (). (2.22)

We note that there exist integer polynomials P;,(z) for i € {1,...,d} and Q,(z)
such that

(@) Ry(2) = [P1,(2)/0n(2),. ... Pun(2)/Cu(@];
(b) Ou(z) =B-0u_1(") forn= 1.
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From (b), we immediately get Q,(z) = B"Qo(z""). Since the entries of A(z) are all
polynomials of degree at most H, we see that if we define

dn = d Pin vd n ’
lrgggl{ eg Pin(z),deg 0,(2)}

then (2.22) gives d,, < kd,—; + H. By induction we see, using the fact that dy <
(d—1)(d + 2)H, that

dy <d(d+2)H-K'+HK" "+ +k+1)

k-1
=Kdy+ H-——— < (d=D@d+2) + DHK".  (2.23)

By assumption,
F(x) = AWF ),
and hence for n = 1 we have
F() — R, (1) = AQAGH) A" (FE) — Ro(¥)).

Then for n sufficiently large, we have *' < &. Hence if ¢; denotes the d x 1
column vector whose i-th coordinate is 1 and all other coordinates are zero, then

IFi0) = Pia 0/ Q0] =[] (F(0) =R, 1)
TAOAW) AT )EE) — Ry

< 1) ~ra )] T Jace
£=0
< C/artdrHe ﬁ [ac).
=0

Since each of the entries in A(z) is a polynomial with rational coefficients, there is
a positive constant Cy (independent of #) such that

[T ae] <ci
{=0

foralln > 1 and any ¢ € (0, 1). Hence we have

|Fi(t) — Pia()/ Qu(t)| < CVdCaTDHK
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foralli € {1,...,d} and all n sufficiently large. To see that this gives the statement
about the order of vanishing at r = 0, note that if F;(r) — P;,,(t)/Q.(¢) has a zero of
order £ at t = 0, then we can write F;(f) — P;,,(t)/Q,(?) as t*G(¢) where G(0) # 0.
It follows that there is a neighborhood of zero such that |£*G(r)| > |G(0)||¢|*/2 for
t in this neighborhood. Letting ¢ approach 0 from the right and using the fact that

IFi(t) = Pin(t)/ Qu(D)] < CVdCH I
gives £ = d(d + 2)Hk" and so F;(t) — P;,(t)/Q,(f) has a zero at t = 0 of order at
least d(d + 2)Hk". O

With these preliminaries in hand, we are ready to proceed with the proof of
Theorem 2.5.1. We will use the following version of the p-adic Schmidt subspace
theorem due to Schlickewei [528].

Theorem 2.5.4 (p-Adic Schmidt Subspace Theorem). Letn = 2, ¢ > 0, and

let pi1,...,ps be distinct prime numbers. Further, let Li oo, ..., Ly 0o be linearly
independent linear forms in X, ...,X, with algebraic coefficients in C, and for
j=1,...,s let Llypj, .. .,Ln,pj be linearly independent forms in X1, ..., X, with

algebraic coefficients in @1,,_. Consider the inequality

s
ILico(X), .y Lyoo(X)] - l_[ IL1p; (%), ooy Loy ()] < [IX[7°, (2.24)
j=1
with x € 7". There are a finite number of proper linear subspaces Ty, ..., T, of Q"

such that all solutions of (2.24) liein Ty U --- U T;.
Proof (of Theorem 2.5.1). Let F(z) satisfy (2.20). By Lemma 2.5.3, there exist
polynomials Pj ,,(x), ..., Pg,(x), Q,(x) € Z[x] such that

0u(x) = B"Qo(x"), (2.25)

and constants C;, C, > 0 such that fori € {1, ..., d} and for sufficiently large n, we
have Q,(1/b) # 0 and

Pu(1/D)| _ _CiG

F(1/b) — 0,(1/b) | = bda+2me

Let D be the smallest positive integer such that
Pn = ka”Pd.n(l/b) and qn ‘= kanQn(l/b)
are both integers, and so we have

C1Cylgnl
IQn F(l/b) _pn| < bd(TOZ)Hk” (226)
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Recall, by Lemma 2.5.3, we have
deg Py (x) < degQ,(x) <d(d+ HH
so that also D < d(d + 1)H. Also by (2.25), we have that deg Qy(x*") = D. Write
D
Qo) := Y an,
i=0

and assume, without loss of generality, a; # O for each i (the general case follows
mutatis mutandis). Note that by (2.25) we have that

D

Z a;pP=

i=0

D
<B" Z |ai|b(D_i)k” < Canka” ,
=0

|9 = B"

where C, = Z?:o |a;| > 0 is a positive constant. Thus for n large enough, since
d = 2 we have

_ QG(CBY"p I CiG(CB) ]

|an(1/b) _pﬂl ~ bd(d-‘rZ)Hk" - dekn < pHE" . (227)

We now setup to apply the p-adic Schmidt subspace theorem, suppose that £ :=
F(1/b) is algebraic and for x = (xi,...,xpy2) € ZPF2 set

Li,oo(x) =X (ief{l,...,D+1}),

and
D+1
Lptrco(X) =& in + Xp+2-
i=1
Also for each prime p dividing b set
Li,x):=x;, (i€{l,....D+2}).
For n € N denote

Sy = (B"aph®*", B"a;pP~V¥" .. B'ap,—p,) € 7°T2.

Then (2.27) gives for large enough » that

ILp+2.00(S0)] < -
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Also, we have that

D
. D(D+1)
ILico(8) -+ Lot1.oo(s0)| = [ [ B'lalp™ < C:B”b™ 7 ¥,
i=0

where Cs := []24" |ai| + 1 = 0is a positive constant.

For primes p dividing b, we have

D+2

D
[TTTizol, < [TT 18",

i=1 plb i=0 plb

< 12[ l_[ |, = 12[ l_[pfvp(b)-ik” _

i=0 plb i=0 pl|b

where for [ [, [Lp+2,(sn)|, we used the trivial bound of 1.
To bound ||s, ||, we note first that since |Lp+2.00(s,)| < b=, we have

D
pal < E1B" | ap® | 4 b
i=0
Thus
D D+2
||Sn||D+2 — Z |Bnaib(D—1)k + |pn|D+2
i=0
D D D+2
<3 |Bap P (|s|B" 3 ap® | b—Hk")
i=0 i=0
D D D+2
< (Z [B'aib ™| + (18" 3 aib®™ | + b‘”k") ,
i=0 i=0

and so there is constant C4 > 0 such that ||s, || < C4B"b¥". Thus for a given & > 0,
we have that

1

C¢ Ben peDk" < ”S" ”_8'
4

Now set ¢ = %. Then putting these bounds together gives for n large enough
that
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|L].OO (Sn), e LD+2,OO(SI1)| : 1_[ |L].p(sn)’ ey LD+2.p(sn)|p

plb
C3 BDn B C3 BDn Ci Bt bsDk” _ C3 BD"Ci B e .
pHk T T pHKT T CepenpeDkT T p{H—eD)K" “lsall™ < llsall™

for n large enough, since H = 1 as long as F(x) is not identically 1 (in which case
F(1/b) is rational and the theorem holds anyway).
Thus for n large enough, the (D + 2)-tuples s, are solutions to the system,

_ 1
|L1.00(sﬂ)7 e LD+2.00 (Sn)| : 1_[ |Ll.p(sn)v e LD+2.p(Sn)|p < ”Sn ” w,
plb

which, by the p-adic Schmidt subspace theorem, lie in finitely many proper linear
subspaces of QP+2. Hence there exists a nonzero (D + 2)-tuple (cg, ..., 0py1) €
QP*2, such that for n large enough

D
aoB"agh™" + Z“iBnaib(D_i)k’l —apt1pn = 0.

i=1

Dividing by g, and taking the limit as n — oo, we have
g —ap+1§ =0,

so that § = F(1/b) € Q, which completes the proof of the theorem. O

Remark 2.5.5. In very recent work, Adamczewski and Faverjon [4] have extended
the results of Adamczewski and Bugeaud [3] and Bell, Bugeaud, and Coons [63] to
the best possible. They have shown that a Mahler function evaluated at an algebraic
number is either rational or transcendental. Moreover, their proof avoided the use of
Schmidt’s subspace theorem!

2.6 Diophantine Properties of Mahler Functions

In our final section, we look at the Diophantine properties of Mahler functions. We
first look at how well a Mahler function can be approximated by rational functions.
We then use that information to present the universal transcendence test for Mahler
functions due to Bell and Coons [64]. Finally, we focus on the approximation of
Mahler functions with algebraic functions.
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2.6.1 Rational Approximation of Mahler Functions

Suppose we have a rational solution to (2.3). Our first result of this section gives
bounds on the degrees of the numerator and the denominator of a rational Mahler
function. This result can be found in Bell and Coons [64, Proposition 2].

Proposition 2.6.1. Let F(z) = P(2)/Q(z) be a rational k-Mahler function satisfy-
ing (2.3) with gcd(P(z), Q(z)) = 1 and set H := max{dega;(z) : i = 0,...,d}.
Then

deg O(z) < [H(k— 1)/ (k"' =2k + 1),
and
deg P(z) < degQ(z) + |H/K ' (k—1)].
Proof. Write F(z) = P(z)/0Q(z) with gcd(P(z), Q(z)) = 1. Since F(z) is a power
series, Q(0) # 0. Then we have
d . .
Y ai@PE)/QE) = 0.
i=0
In particular, if we multiply both sides by
d—1 .
R(z) == l—[ o),
j=0
we see that Q(zkd ) must divide ad(z)P(zkd )R(z). Since ged(P(z),Q0(z)) = 1, we
then have that Q(z*') divides ay(z)R(z). Let D denote the degree of Q(z). Then
considering degrees, we have
kD < degay(z) + degR(z) <H + D+ kD + --- + k"' D.
In other words, (k% — k! —... —1)D < H. Since
K=k 1=k =k =)/ k—=1) =k (k—2)/(k—1),
if k > 2, we have

D < H(k—1)/k(k—2).

If k = 2, then all we getis D < H. In any case, setting
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A(H, k,d) := [H(k —1)/(k%" =2k + 1) ],

we have D = deg Q(z) < A(H, k,d).

Similarly, we can bound the degree of P(z), but this is slightly more subtle.
Suppose that F(z) = P(z)/Q(z) has a pole at z = oo of order M > 0 with
Mk~" + H < Mk?. Since F(z) satisfies (2.3), we have

d—1
FEag@) = = a@F @), (2.28)
i=0

Now, the right-hand side of (2.28) has a pole at z = oo of order at most k*~'M + H,
and the left-hand side of (2.28) has a pole at z = oo of order at least k“M. Since
the equality (2.28) must hold, we conclude that Mk?~! + H > Mk’ and so M <
H/(k? — k%="). In other words,

deg P(z) < degQ(z) + H/k* (k- 1),

which finishes the proof. O

2.6.2 A Transcendence Test for Mahler Functions

While we can bound the degrees of the numerator and the denominator of a rational
Mabhler function, unfortunately, deciding whether a general power series is a rational
function is still not effectively determinable. After all, one can imagine that the
function is very close to some rational function, and one must go very far out when
looking at its coefficients to see that it is irrational. Fortunately, as Bell and Coons
showed [64, Lemma 1], deciding whether a Mahler function is a rational function is
effective.

Lemma 2.6.2. Let F(z) be a Mahler function satisfying (2.3) and as before set
H = max{dega;(z) : i = 0,...,d}. If P(2)/Q(z) is a rational function with
Q(0) # 0 and the degrees of P(z) and Q(z) are strictly less than some positive
integer k, then F(z) — P(z)/Q(z) is either identically zero or it has a nonzero
coefficient of 7' for some i < H + k - k4T /(k — 1).

Proof. Suppose not. Then F(z) — P(z)/0(z) = zT(z) for some nonzero power
series T'(z) with T(0) nonzero and some M > H + i - k%! /(k — 1). Then we have

d

d
Y ai@PE)/0CE) =Y a1, (2.29)

i=0 i=0
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Notice the right-hand side of (2.29) has a zero of at least order M at z = 0. On
the other hand, we can write the left-hand side of (2.29) as a rational function with
denominator Q(z)Q(z") - - Q(z') and numerator

d
Y ai@PE)R(2),
i=0
where Ri(z) = || Q(zkj). Thus the numerator of the left-hand side of (2.29)

when written in lowest terms has degree at most H + (k¢ + --- + k + 1). But
this can occur only if the left-hand side of (2.29) is identically zero since M >
H + (k" —1)/(k — 1), a contradiction. O

Proof (of Universal Test for Transcendence of Mahler Functions in Figure 2.4). Let
M be the matrix formed in Step 2 of the universal transcendence test described in
Figure 2.4.

Suppose that M does not have full rank. Then there is a nonzero row vector
q:=[q0,91,--.,qi] such that q - M = 0. In other words,

(QK + qe—12+ -+ qoZK)F(Z)

has the property that 0 is the coefficient of 7' for i = «,...,k + H + « (k! —
1)/ (k — 1); that is, there is a polynomial P(z) of degree less than k such that

Universal test for transcendence of Mahler functions.

Let k> 2 and d > 1 be integers and F(z) be a k-Mahler function satisfying
a(F () +a (F (5 +-+ai@)F () =0,
for polynomials ay(z),...,a4(z) € C[z]. Set H := max{dega;(z) : i=0,...,d} and
K= [H(k—1)/ (k" =2k 1) |+ [H/K (k= 1) + 1.
Step 1. Compute the coefficient, (i), of z' of F(z) for

i=0,1,....k +H+x&™M —1)/(k—1).
Step 2. Form the
(1K) % (1 H 4 k(6 = 1)/ (k- 1))
matrix M whose (i, j)-entry is f(i+ j —2).

Step 3. Put this matrix in echelon form and verify whether it has full rank (i.e., rank equal to
14+x).

Step 4. If it does, then F(z) is transcendental; otherwise it is rational.

Fig. 2.4 Universal test for transcendence of Mahler functions of Bell and Coons.
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(g + qe—12+ -+ + qo?)F(2) — P(z)

has a zero of order at least k + H + k(k‘"' —1)/(k — 1) at z = 0. Then P(z)
must have an order of zero at z = 0 that is at least as great as the order of zero of
0(2) := g« + qe—1z2+ -+ -+ qoz* at z = 0. This means that P(z)/Q(z) can be reduced
to be written as a ratio of polynomials of degree less than « with the denominator
being nonzero at z = 0 and such that F(z) — P(z)/Q(z) has a zero at z = 0 of order
at least H + « (k%! — 1) /(k — 1). Lemma 2.6.2 gives then that F(z) — P(z)/Q(z) is
identically zero and hence F(z) is rational.

Conversely, if F(z) is rational, then we write F(z) = P(z)/Q(z) with the degree
of P(z) and Q(z) less than « and use Q(z) to provide a nonzero row vector q as above
withq-M = 0. O

2.6.3 Algebraic Approximation of Mahler Functions

The main result presented in this subsection is the recent result of Coons [164]
concerning a zero order estimate for the difference of a Mahler function with an
algebraic function.

As before, let v : C((z)) = Z U {oo} be the valuation defined by v(0) := oo and

v (Z cnz”) = min{i : ¢; # 0}

when ), c,z" is nonzero. Also, for G(z) an algebraic function with minimal
polynomial P(z,y) € C[z,y], we call the value deg, P(z,y) the degree of G(z), and

we call the value exp (deg, P(z,y)) the height of G(z).

Theorem 2.6.3 (Coons). If F(z) is an irrational k-Mahler function of degree dr
and height A, and G(z) is an algebraic function of degree at most n and height at
most Hg, then

dr+1 __ 1

k
v(F(z) — G(z)) <(dr+1)-Ap-n¥t 4 -logHg - nr.

k—1

The order of Coons’s bound is very similar to that of previous results on
zero estimates of Mahler functions, though those focused on upper bounds for
v(Q(z, F(z))) for polynomials Q(z,y) € Clz, y] and used quite deep methods, relying
on the elimination-theoretic method of Nesterenko [443, 444]; see Becker [60],
Nishioka [447], and Topfer [566]. The approach taken by Coons is quite elementary
and easily lends itself to exposition.

The case of rational functions was given by Bell’s and Coons’s result of
the previous section (see Proposition 2.6.1). It is translated to the language of
Theorem 2.6.3 as the following.
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Lemma 2.6.4 (Bell and Coons). Let F(z) be an irrational k-Mahler function of
degree dp and height A, and let P(z)/ Q(z) be any rational function with Q(0) # 0.
Then

dp+1 _
v (F(z) - %) <Ar+ Tll - max{deg P(z),deg O(z)}.

Theorem 2.6.3 is the generalization of this result to approximation by algebraic
functions of arbitrary degree. To prove this generalization, we use a resultant
argument.

Lemma 2.6.5. Let f(z) and g(z) be two algebraic functions of degrees at least 2
satisfying polynomials of degrees Ay and Ag with coefficients of degree at most 5¢
and 8, respectively. Then the algebraic function f(z) + g(z) satisfies a polynomial
of degree

Aptg < Ardg
with coefficients of degree
8f+g < Sng + SgAf.

Proof. This result follows by using the Sylvester matrix to calculate a certain
resultant. For R aring and P, Q € R[y] with

deg, P deg, O
P(y)= > py and Q0= > g
i=0 i=0

the resultant of P and Q with respect to the variable y is denoted by res, (P, Q) and
may be calculated as the determinant of the (deg, O + deg, P) x (deg, O + deg, P)
Sylvester matrix; that is

Do P1 P2 " Ddeg, P
Do P1 P2ttt Ddeg, P

I'eSy(P, Q) = det pO pl pZ T pdegy.P ,

q0 41 92 *** qdeg, 0
q0 91 92 " Gdeg, Q

q0 q1 q2 " qdeg, 0

where there are deg, Q rows of the coefficients of P and deg, P rows of the
coefficients of Q. Now suppose R = C|[z, x], so that the entries of the above Sylvester
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matrix are polynomials in the variables z and x, and set D(x, z) := res, (P, Q). Since
polynomial degrees are additive, using the Leibniz formula for the determinant, we
have immediately that

deg, D(x,z) < deg, Qdeg, P + deg, Pdeg, O (2.30)
and
deg, D(x,z) < deg, Qdeg, P + deg, Pdeg, Q. (2.31)

The lemma now follows immediately by combining (2.30) and (2.31) with the
fact that given algebraic functions f(z),g(z) € CI[[z]] and polynomials Ps(z,y),
Py(z,y) € Clz,y] with P¢(z,f) = P4(z, g) = 0, the algebraic function f(z) + g(z) is
aroot of the polynomial res,(Pf(z, y), Pg(z, x —y)) viewed as a polynomial inx. 0O

Using Lemma 2.6.4 as the result for algebraic functions of degree 1, we now
focus on algebraic functions of degree at least 2.

Lemma 2.6.6. Let ay(2),...,aq(z) be polynomials of degree at most A. If G(z) €
Cl[z]] is an algebraic function of degree Ag = 2 satisfying a minimal polynomial
with coefficients of degree at most 84, then the function

d
Mg(z) ==Y ai(z)G(E")

i=0

is an algebraic function satisfying a polynomial of degree Ay, < A‘é“ whose
coefficients have degree

K —1
8- AL

Sug <@+ DA- AL 4 -

Proof. Since G(z) is an algebraic function, so is Z;l:o a;i(z)G(z"). One can easily
gain information about the sum using the theory of resultants.

To get an upper bound on v(M(z)), we apply the idea of the previous paragraph
by including the terms G;(z) := a;(z)G(z*') one at a time. To do this, let

P6(2.y) = gacy ¢ + -+ g1y + &

be the minimal polynomial of G(z). Here we have denoted the degree of G(z) by
Ag. Set 8 := deg, P;(z,y). Then

PG, (z,y) = ai(@)*°P6(Z, y/ai(2))

is a polynomial with Pg,(z, Gi(z)) = 0, where, of course, we only form this
polynomial when a;(z) # 0. Here, we have that Pg, (z, y) is still minimal with respect
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to the degree of y, but there is no guarantee that it is minimal with respect to the
degree of z for this degree of y. However, we do have that the minimal polynomial
of Gi(z) divides Pg,(z,y) and the quotient is just a polynomial in z. In any case, the
above gives that

Ag, := deg, Pg,(z,y) = deg, Pg(z.y) = Ag (2.32)
and
8, := deg, Pg,(z,y) < AAg + k'8g. (2.33)

The lemma now follows by combining (2.32) and (2.33) with Lemma 2.6.5. |

Lemma 2.6.7. Let G(z) € Cl[z]] be an algebraic function of degree at least 2
satisfying the polynomial Pg(z,y) = a,(2)y" + an—1(2)y""" + -+ + a1 (2)y + ao(2).
with ap(z) # 0. Then v(G(2)) < v(ao(2)). In particular, v(G(z)) < deg, Pg(z,y).

Proof. Since Pg(z,y) is a minimal polynomial, we have ag(z) 7 0. We thus have,
identically,

(an(2)G@)"™" + ai-1()G(R)" > + -+ + a1(2)) G(2) = —ap(2).
The fact G(2), a,(z), . .., ao(z) € C[[z]] then gives
V(a6 + a1 (2GR + -+ + a1(2)) + v(G(R) = v(ap(2)),

which proves the lemma, since each of the terms is a nonnegative integer. O

Proof (of Theorem 2.6.3). Let F(z) be a k-Mahler function satisfying (2.3) of degree
dr and height Ar and let G(z) be an algebraic function of degree at most n and height
at most Hg. Since by Lemma 2.6.4, the theorem holds for n = 1, we may assume
without loss of generality that n > 2.

Set M := v(F(z) — G(z)), and write

F(z) — G(z) = MT(2),
where T'(z) € C[[z]] with T'(0) # 0. Then also
Y a@FE) =) aiGE) =) adMTE),
i=0 i=0 i=0
which since F(z) satisfies (2.3) reduces to

d d
Mo(2) =) ai@G(E) = =) ai@ZMT().

i=0 i=0
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This immediately implies that
V(F(z) — G(2) = M < v (Mg(2) < Smg»

where the last inequality follows from Lemma 2.6.7. By definition, §¢ = log Hg,
hence applying Lemma 2.6.6 proves the theorem. O

The most important term in the inequality of Theorem 2.6.3 is the rightmost
term. One of the most important questions in the algebraic approximation of Mahler
functions concerns the degree of n in this term. The current best known upper bound
is dr, but a lower value may be true. In particular, one may expect a ‘“Roth-type”
upper bound.

Question 2.6.8. If F(z) is an irrational Mahler function and G(z) is an algebraic
function of degree at most n and height at most H; where log Hg = n = 1, then is
there a constant ¢ > 0 such that v(F(z) — G(z)) < c¢-log Hg - n?
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First-Order Logic and Numeration Qe
Systems

Emilie Charlier

Abstract The Biichi-Bruyére theorem states that a subset of N is b-recognizable
if and only if it is b-definable. This result is a powerful tool for showing that
many properties of b-automatic sequences are decidable. Going a step further, first-
order logic can be used to show that many enumeration problems of b-automatic
sequences can be described by b-regular sequences. The latter sequences can be
viewed as a generalization of b-automatic sequences to integer-valued sequences.
These techniques were extended to two wider frameworks: U-recognizable subsets
of N and B-recognizable subsets of R?. In the second case, real numbers are
represented by infinite words, and hence, the notion of B-recognizability is defined
by means of Biichi automata. Again, logic-based characterization of U-recognizable
(resp. B-recognizable) sets allows us to obtain various decidability results. The aim
of this chapter is to present a survey of this very active research domain.

3.1 Introduction

In computer science and in mathematics in general, we are concerned with the
following questions: How do we have sets of numbers at our disposal? How can we
manipulate them? Which sets of numbers should be considered simple? In which
sense? In order to approach such questions, we first need to represent numbers.
The basic consideration is as follows: properties of numbers are translated into
syntactical (or combinatorial) properties of their representations. This is where
numeration systems come into play. For example, the famous theorem of Cobham
(and Semenov for its multidimensional version) tells us that nontrivial properties of
numbers are dependent on the base we choose.

In this chapter, we will consider multidimensional subsets of numbers whose sets
of representations are accepted by finite automata. Representations of numbers will
always be taken from one of the following families of numeration systems: the unary
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systems, the integer bases b > 2, and, more generally, the positional numeration
systems based on increasing sequences U = (U,),>0, the abstract numeration
systems S based on regular languages, and finally the real bases 8 > 1. Depending
on the cases, we shall refer to such sets as 1-recognizable sets, b-recognizable sets,
U-recognizable sets, S-recognizable sets, and S-recognizable sets.

Many descriptions of recognizable sets were given in various works [78, 96,
113, 114, 211, 503]. Here, we focus on characterizations of recognizable subsets
(first of N and then of RY) in terms of first-order logic. We start by presenting
the Biichi-Bruyere theorem, which states that a subset of N? is b-recognizable
if and only if it is b-definable, that is, definable by a first-order formula of the
structure (N, 4, V;,) where V}, is a base-dependent predicate (see below for formal
definitions). We explain how this result turns out to be a powerful tool for showing
that many properties of b-automatic sequences are decidable. We illustrate our
purpose with many examples of decidable problems on b-automatic sequences.
Going a step further, we show that first-order logic can also be used to prove
that many enumeration problems of b-automatic sequences can be described by
b-regular sequences. The latter sequences are at the core of Chapters 2 and 4. First-
order logic is also mentioned in Chapters 9 and 10 in the context of the domino
problem and of Wang tiles.

In the last (and longest) part of this chapter, we give an extensive presentation
of (multidimensional) S-recognizable sets of real numbers. Those sets are defined
by means of Biichi automata. Again, we give a logic-based characterization of these
sets and show how we can use it to obtain various decidability results. We end
by showing the links between the so-called B-self-similar sets, the attractors of
some (base-dependent) graph-directed iterated function systems, and certain sets
recognizable by Biichi automata. Let us mention here that the numeration systems
in real bases 8 > 1 are referred to as the main motivation of Chapter 7.

Besides these logic-based characterizations and their applications, we mention
(usually without proofs) various results concerning recognizable sets. Among them,
in the vein of Eilenberg’s result [211], we explicitly list the possible growth func-
tions of (unidimensional) S-recognizable sets. Let us emphasize that this is done in
the very general framework of abstract numeration systems and, thus, encompasses
the previous known results about b-recognizable sets only. In particular, this result
permits us to exclude right away a huge amount of (unidimensional) subsets from
the class of S-recognizable sets, and further, it also permits us to exhibit many
subsets which are never S-recognizable, that is, no matter which abstract numeration
system we choose. Finally, let us mention that along the lines, we present four open
problems.

3.2 Recognizable Sets of Nonnegative Integers

Finite automata may be seen as the simplest devices. They have only finite memory,
and they are only able to read words and accept or reject them in the end. Regular
languages, i.e., languages accepted by finite automata, form the bottom level of
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Chomsky—Schiitzenberger hierarchy. For this reason, it makes sense to consider the
following definition of “simple sets” of numbers. A subset X of N is said to be
recognizable with respect to a given numeration system rep: N — A* if the language

{rep(n) | n € X} C A*

is accepted by a finite automaton.

In order to be able to recognize multidimensional sets of numbers by means of
finite automata, we need to represent tuples of numbers by finite words. The classical
way to manage this is to introduce a padding symbol, which allows each component
to be represented by words of the same length. A subset X of N’ is recognizable
with respect to a numeration system rep: N — A™* if the language

{(rep(n1), ..., rep(na))* | (n1,...,ng) € X} € (AU {#)HD*,

where # is some padding symbol, is accepted by a finite automaton.
Formally, for alphabets Ay, ..., A, and for a letter #, the padding map (-)#:AT X
coXAY = (AU {#)) x -+ x (Aqg U {#}))" is defined by

(Wl, ey Wd)# = (#m—lwl ‘Wl sy #m_lwdlwd),

where m = max{|w|,. .., |wg|}. In this way, from a subset R of the monoid A} x
.-+ X A}, we create a language

RY = {(wi,....wa)" | (wi.....wg) € R} C (A1 U{#}) x -+ x (A4 U {#})*.

In particular, if # ¢ UflzlA,-, then no word in R* contains the letter (#, .. ., #).
Here and throughout the chapter, d designates a dimension, i.e., an integer greater
than or equal to 1. We will also use the notation

#=G@#,....#), 0=0(0,...,0), *=(*,...,%),
N——— N’ N ——’

d times d times d times

where # and * are fixed symbols.

3.2.1 Unary Representations

Perhaps the simplest way of representing a natural number 7 is to repeat a symbol
n times. This approach presents an obvious drawback: it requires way too much
memory space in practice to store a number and, even worse, to do computations
with them. Even though they are highly unpractical, unary representations are of
some theoretical interest, for example in computability theory. Let a be some fixed
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symbol. The unary numeration system rep,: N — a* is defined by rep, (n) = a”" for
all n € N. The set of all possible representations is L; = rep;(N) = a*.

Definition 3.2.1. A subset X of N? is 1-recognizable if the language rep,(X) is
regular.

In dimension 1, the 1-recognizable sets are exactly the finite union of arithmetic
progressions, as they correspond to regular languages over a unary alphabet. In the
multidimensional case, it is already more complicated to capture the essence of 1-
recognizable sets; see Section 3.2.5.

3.2.2 Integer Bases

Throughout this chapter, b designates an integer greater than or equal to 2.

The integer base b numeration system rep,:N — A,* is defined as follows:
positive integers n are represented by finite words rep,(n) = c¢---cico over the
alphabet A, = {0, 1,...,b — 1} obtained from the greedy algorithm:

¢
n= Zc,- b'.
i=0

By convention rep,(0) = &. The greedy algorithm only imposes having a nonzero
leading digit c¢, and the set of all greedy (or canonical) b-representations is

Ly = rep,(N) = A} \ 04;.

We may also consider non-greedy b-representations. The evaluation map
val,: N* — N is defined by valy(ce---cicp) = Zf:o c;bi. Any word ¢ -+-cjco €
IN* such that val,(c; - - - cjcp) = n is called a b-representation of n.

We extend the definitions of the functions rep, and val, to the multidimensional
setting as follows (and we keep the same notation):

rep,: NY — (AD*, (..., nq) > (rep,(m), .. ., rep,(ng))°
valy: (ND)* — N9, (wy, ..., wy) > (valy(wi), ..., val,(wy)).
Let us emphasize that the components of rep,(n) are padded with zeros. Also note

that (wy,...,wg) € (N9)* implies that |w;| = --- = |wy].
The following proposition is a generalization of Proposition V.3.1 in [211].

Proposition 3.2.2. Let # be a symbol not belonging to Ap. For any subset X of N,
the following are equivalent:

1. The language rep,(X) is regular.
2. The language 0*rep,(X) is regular.
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There exists a regular language L C (A)* such that 0*(0*)™'L = 0*rep, (X).
There exists a regular language L < (A bd)* such that val,(L) = X.

The language {(rep,(n1), . .., rep,(na))* | (n1,...,ng) € X} is regular.

The language #*{(rep(n1), ... ,repy(na))* | (n1,...,ny) € X} is regular.
There exists a regular language L € ((Ap U {#)N)* such that

NS AW

#(#) 'L = #{(rep,(m1), . ... rep,(n))* | (n1,....,ng) € X}.

Proof. If no word of a language L. € A™* starts with a specific letter a € A, then
L is regular if and only if a*L is as well. This shows 1 <= 2and5 <= 6.
For 1 = 4, take L = rep,(X). For 4 = 3, observe that if X = val,(L)
for some regular language L € (A,9)*, then 0*(0*) 'L = 0*rep,(X). 3 = 2is
clear. For 5 = 7, take L = {(rep,(n),...,rep,(na))* | (n1,...,n4) € X}.
7 == 6 is clear. Finally we show 1 <= 5. Given a DFA accepting
{(repy(n1), ... ,rep,(na))* | (n1,...,n4) € X}, we modify it by replacing every #
with 0 in every transition. The resulting automaton is an NFA accepting rep,,(X).
Now suppose that .7 is a DFA accepting rep,(X). We modify ./ by replacing
every transition labeled (ay,...,a,) € Abd with k components equal to 0 with 2¢
transitions obtained by placing either 0 or # in every component where there was a
0. Let & denote the resulting DFA. Now we can build a DFA ¢ accepting the words
in ((A, U {#))%)* such that, in every component, each occurrence of # is preceded
by # or by nothing, and the last occurrence of # is not followed by 0. The language
{(repy(n1), ... ,1epy(na))* | (n1,...,nq) € X} is the intersection of the languages
accepted by # and ¢’; hence, it is regular. O

Definition 3.2.3. A subset X of N? is b-recognizable if any of the assertions of
Proposition 3.2.2 is satisfied.

Remark 3.2.4. The integer base b numeration systems have the remarkable property
that N is h-recognizable since 0*rep, (NY) = (Abd)*. It is also true that val;1 X) =
0*rep, (X) for any subset X of N?. The latter fact was actually used in the proof of
Proposition 3.2.2 (it is needed in the implication 4 —> 3).

It is equivalent to say that the characteristic sequence yx:N¢ — {0,1} is b-
automatic:

Definition 3.2.5. A sequence x: NY — N is b-automatic if there exists a finite
deterministic automaton with output (DFAO for short) .#Z = (Q, qo,Abd ,6,A,7)
such that, for all n € N¥, x(n) = 7(8(qo, rep,(n))).

Note that a DFAO being finite by definition, the image of a b-automatic
sequence is necessarily finite. Therefore, b-automatic sequences may be viewed as
multidimensional infinite words over a finite alphabet A.

Example 3.2.6. The DFAO of Figure 3.1 generates the sequence 011010111 ---
when reading the greedy 2-representations of the nonnegative integers.

Proposition 3.2.7. Let X be a subset of N¥. Then X is b-recognizable if and only if
Xx is b-automatic.
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Fig. 3.1 A DFAO generating some 2-recognizable set

Proof. In order to build a DFAO generating yx starting from a DFA accepting
rep,(X), it suffices to output 1 when ending in a terminal state and to output O
when ending in a nonterminal state. In particular, the obtained DFAO outputs 0 if we
enter a non-greedy b-representation. The other direction works well because N¢ is b-
recognizable. By declaring terminal those states outputting 1 and nonterminal those
states outputting 0, we obtain a DFA that might accept non-greedy b-representations
as well. But if L is the accepted language of this DFA, then val,(L) = X (which is
the fourth item in Proposition 3.2.2). O

Similarly, we have the following result.

Proposition 3.2.8. Let A be a finite alphabet and let x:N? — A. Then x is b-
automatic if and only if every subset x~'(a) of N (for a € A) is b-recognizable.

Proof. In order to build DFAs accepting a language L such that val(L) = x~'(a)
starting from a DFAO generating x, it suffices to declare a state to be final if and
only if the corresponding output is a. For the other direction, let A = {ay, ..., a},
and for each i, let .#; = (Q;, qo,,-,Fi,Abd, 8;) be a DFA accepting 0*rep, (x ! (a;)).
Let # = M, X --- x M. For all n € N?, the state reached from the initial state
(qo.1, - - -, qoyx) after reading rep,(n) contains exactly one final component (in some
;). We define 7(qy, . ..,qr) = a; if there is exactly one i such that ¢; € F; (t is
undefined on other states). Then the DFAO obtained from .# and t generates x. O

One way to describe the b-recognizable sets is to study their growth functions.

Definition 3.2.9. For a subset X of N, we let tx(n) denote the (n + 1)st term of X.
The map tx: N — N is called the growth function of X.

Theorem 3.2.10. [2]11] Any b-recognizable subset X of N satisfies either

limsup (tx(n + 1) — tx(n)) < +o0, or

n—-+00

t 1
lim sup X(n——” > 1.

n—>—+o00 tx(n)

Thanks to this result, examples of sets that are not b-recognizable for any b have
been exhibited. The set {n* : n € N} of squares is such an example.

There are several equivalent definitions of b-recognizable sets using logic,
morphisms, finiteness of the b-kernel, or formal series. We refer the reader to the
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survey [114] for an extensive presentation. The equivalence with b-definable sets
will be discussed in Section 3.3.

3.2.3 Positional Numeration Systems

A positional numeration system rep;: N — A7 is based on an increasing sequence

U:N — N such that U(0) = 1 and Cy = sup; (ng)l)] < +o00. Positive integers
n are represented by finite words rep,,(n) = c;---cico over the alphabet Ay =

{0,1,...,Cy — 1} obtained from the greedy algorithm:

¢
n= Zci U().
i=0

By convention rep;,(0) = ¢. The greedy algorithm imposes having a nonzero lead-
ing digit ¢, and that, for every 0 <j < ¢, Zé:o c¢;iU@@) < UG+ 1). A description of
the set of all greedy (or canonical) U-representations Ly = rep;(N) highly depends
on the base sequence U. The evaluation map is valy:N* — N, ¢;---cicp
Zf=0 ¢; U(i). Any word ¢ ---cjco € N* such that valy(cg---cico) = n is called
a U-representation of n.

Example 3.2.11. 1f U:i +— b, then we recover the integer base b numeration
systems presented in the previous section.

Example 3.2.12. The positional numeration system rep, based on the Fibonacci
sequence F:IN — N definedby F(0) = 1, F(1) =2and F(i+2) = F(i+ 1)+ F(i)
for i € N, is called the Zeckendorf numeration system [592]. Zeckendorf proved
that the set of all greedy F-representations is the language of the finite words over
{0, 1} that do not begin in 0 and that do not contain the word 11 as a factor: Ly =
1{0,01}* U {¢}. This language is accepted by the DFA of Figure 3.2.

Again, we extend the definitions of rep; and valy to the multidimensional
setting:

repy: NY — (AD*, (n1,...,n4) = (repy(n1), ... repy(ng))°

valy: (NDY* — NY, (wy, ..., wg) — (valg(wy), ..., valy(wyg)).

Fig. 3.2 A DFA accepting the Zeckendorf representations of nonnegative integers
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We give the statement of the following proposition without proof since it is
similar to that of Proposition 3.2.2.

Proposition 3.2.13. Let # be a symbol not belonging to Ay. For any subset X of N,
the following are equivalent:

1. The language rep(X) is regular.
2. The language 0*rep;(X) is regular.
3. There exists a regular language L C (Aljl)* such that

0*(0*)"'L = 0*rep, (X). (3.1)
4. The language {(rep; (n1), ..., 1epy(na))* | (n1,...,ny) € X} is regular.
5. The language # {(rep,(n1), . ..,repy(na))* | (n1,...,nq4) € X} is regular.

6. There exists a regular language L C ((Ay U {#)%)* such that
#(#)7'L = #{(repy(m), ... .repy ()" | (n1....,ng) € X}

Observe that we lost the fourth characterization of Proposition 3.2.2. For integer
bases, the non-greedy representations are only those with leading zeros. For
positional numeration systems, there are other kinds of non-greedy representations.
For example, 100 and 11 are both F-representations of 3. In general, if X € N and
LC (@A 5’)* are such that X = valy (L), then we do not know that (3.1) holds for the
same L.

Definition 3.2.14. A subset X of N? is U-recognizable if any of the assertions of
Proposition 3.2.13 is satisfied.

Let us mention two open problems concerning positional numeration systems.
The first one was already reported in [78, Chapter 2]. As far as we know, the best
results achieved in this area are those of [297].

Problem 3.2.15. Characterize those positional numeration systems rep,; such that
N is U-recognizable.

Here we propose another related problem. However, an answer to any of these
two problems does not seem to provide a straightforward answer to the other. We
first give a remark.

Remark 3.2.16. For any subset X of N?, we have rep;,(X) = Val;l (X) Nrepy(N9).
Therefore, whenever N is U-recognizable (and hence N’ is as well), then for any
subset X of N, the regularity of valj;' (X) implies that of rep, (X). However, there
is no evidence that the converse should be true.

Problem 3.2.17. Characterize those positional numeration systems rep;; such that,
for any subset X of N, the regularity of rep,(X) implies that of Vala1 X).
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3.2.4 Abstract Numeration Systems

In this very general framework, the question is reversed. We first choose a language
L, the basic assumption being that L is regular, and then we declare L to form the set
of all valid representations of nonnegative integers, with the rule:

Vn,meL, n<m <> reps(n) < reps(m).

Formally, an abstract numeration system S is given by a regular language L over
a totally ordered alphabet (A, <). A nonnegative integer n is represented by the
(n 4+ 1)st word in L in radix (or genealogical) order <. The question is now to —
efficiently — describe the map n — repg(n), which of course depends on the choice
of S.

Definition 3.2.18. A subset X of N? is S-recognizable if the language

{(repg(n1), . ... reps(na))* | (n1,...,na) € X} € (AU {#)%)*

is regular, where # is some padding symbol not contained in the numeration
alphabet A.

Note that, for a fixed S, the choice of padding the representations to the right or
to the left is arbitrary and gives two different notions of S-recognizability. At first
glance, one could think that we just have to consider the reversed representations,
but the numeration language L might not be closed under reversal, and even if
it were, then the order of the representations could change. Recall that if w =
aip -y, then w = Ajy| *++d1-

Example 3.2.19. Consider S = (a*b* U a*c*, a < b < c¢). Then the pair (6, 9)
is represented by (#2) = (#) (%) (). If we had chosen a right padding instead,

aaa

(6.9) would have been represented by (<), which is not equal to (#2¢)™ = ().
In fact, the latter word is not even the S-representation of any pair of nonnegative

integers since ca does not belong to the numeration language.

Abstract numeration systems encompass positional numeration systems having a
regular numeration language; see Problem 3.2.15. The next example illustrates that
the converse is not true.

Example 3.2.20. We saw that the set X = {n? : n € N} is not b-recognizable for
any b. However, this set is S-recognizable for the abstract numeration system S of
Example 3.2.19 since repy(X) = a*.

More generally, we have the following result.

Theorem 3.2.21 ([502, 554]). For any polynomial P € Q[x] such that P(IN) € N,
there exists an abstract numeration system S such that P is S-recognizable.
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Describing the S-recognizable subsets of N is not easy in general. In the vein
of Theorem 3.2.10, the following result, which we give without proof, lists the
possible growth orders of such sets. These growth orders depend on the growth
of the numeration language, which is either polynomial or exponential as shown by
the following lemma.

For any language L over an alphabet A and any nonnegative integer n, we let
v (n) denote the number of words of length less than or equal to n in L.

Lemma 3.2.22. For all regular languages L, there exist p,c € N and
a,ao,...,a,—1 € Rso withp,a > 1 such that

Vie{0,...,p—1}, vi(np + i) ~a;n‘@" (n— +00). (3.2)

Proof. The formal series ano v, (n)x" are N-recognizable for all regular languages
L; see, for instance, [77]; also see Section 3.4.1. Since (v..(n)),>0 are nondecreasing
sequences, the lemma follows from [520, Theorem I1.10.2]. 0O

Theorem 3.2.23 ([147]). Let S = (L, A, <) be an abstract numeration system and
let X be an infinite S-recognizable subset of N. Suppose that (3.2) holds and that
Vi€ {0,....q— 1}, Viepsx)(ng +j) ~ bin " (n — +00), (3.3)

or some q,d € N and some 8, by, ...,b,—1 € R>g with q, B > 1. Whenever B > 1,
q q > q
we have

log({/a)

tx(n) = O((log(n)~¥nf), withf = m.

If B =1, then

tx(n) = O(ni (Ya)?"').

If moreover g = 1, then
c n\1/d
tx(n) = O(ni (o) T,

Definition 3.2.24. Two real numbers « and § different from 1 are said to be
multiplicatively dependent if @ = " for some r € Q, or, equivalently, if % € Q.
Otherwise, « and B are said to be multiplicatively independent.

The following corollary of Theorem 3.2.23 considers the case of a polynomial
numeration language.

Corollary 3.2.25. Let S = (L, A, <) be an abstract numeration system built on a
polynomial regular language, and let X be an infinite S-recognizable subset of IN.
Then tx(n) = O(n") for some rational r > 1.
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Proof. By Lemma 3.2.22, the growth functions vz (n) and Viep,(x)(n) satisfy (3.2)

and (3.3), respectively. The fact that L is polynomial means thate = 1. As 1 < 8 <

o, we have B = 1 as well. Then from Theorem 3.2.23, we obtain ty(n) = O (n4).
O

By Theorem 3.2.21, we know that any set of the form {n* | n € N}, with k € N,
is S-recognizable for some S. In the constructions of [502, 554], the numeration
languages are of polynomial growth. Consider the base 4 numeration system,
whose numeration language is of exponential growth. By Theorem 3.2.23, if X =
valy ({1, 3}*), then tx(n) = ©(n?). Indeed, with the notation of Theorem 3.2.23, we
havea =4,8=2,p=¢g = 1(hencef =2),andc =d = 0.

Proposition 3.2.26. For every rational number r > 1, there exists an abstract
numeration system S built on a polynomial regular language and an infinite S-
recognizable subset X of N such that ty(n) = ©(n").

Proof. Fix arational number r > 1. Write r = § where c and d are positive integers.

Define % to be the bounded language ajaj ---a;. We have v, (n) = (’Hlfl) for all
£ > landn € N (e.g., see [149, Lemma 1]). Let S be the abstract numeration system
built on 4, with the order a; < a, < -+ < a., and let X = valg(4%,) (since ¢ > d,
we have %, C %,). Hence we have v, (n) = (”jc) and Veep x)(n) = (”:d) for all

n € N. Then from Theorem 3.2.23, we obtain ty(n) = @(ni) = O(n"). O
Theorem 3.2.23 also allows us to exhibit subsets of N which are not S-

recognizable for any abstract numeration system S. For example, let C = {C, |

n € N} denote the set of Catalan numbers C, = nJlrl (2:) As is well known, we

have C, ~ ﬁ; (n — +o00), which does not correspond to any of the forms

described by Theorem 3.2.23. Hence, for all S, the set C is not S-recognizable.

3.2.5 The Cobham—Semenov Theorem

So far we have introduced several numeration systems and have considered the
question of describing recognizable sets of nonnegative integers within a fixed
numeration system. The celebrated theorem of Cobham concerns, on the contrary,
sets of numbers that are simultaneously recognizable in different integer bases.
Cobham’s theorem and its numerous generalizations are the subject of several
surveys [114, 206]. Nevertheless, due to the importance of this result and its
relevance to the subject of the present chapter, we briefly discuss it in this short
section.

Definition 3.2.27. Semi-linear subsets of N are the finite unions of sets of the form
Po + PiN + -+ 4+ p¢N, where po, pi.....pr € N

Recall that b and b’ are multiplicatively independent if 11;’:((}5’,)) ¢ Q; see
Definition 3.2.24.
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Theorem 3.2.28 (Cobham-Semenov [155,536]). Let b and b’ be multiplicatively
independent integer bases. If a subset of N¢ is simultaneously b-recognizable and
b'-recognizable, then it is semi-linear.

As semi-linear sets are b-recognizable for all integer bases b, we obtain that a
subset of N is b-recognizable for all b > 2 if and only if it is semi-linear. Note that
we cannot replace b > 2 by b > 1 as, for example, the linear set X = {(n,2n) | n €
N} = (1,2)N is not 1-recognizable.

We have just argued that the family of 1-recognizable sets is distinct from that of
semi-linear sets. It is worth noticing that 1-recognizable sets also do not correspond
to the so-called recognizable subsets of N¢, which are the subsets X of N for which
the equivalence relation ~x over N’ defined by

x~yy <= (VzeN) x+zeX < y+z€eX)

has finite index. For example, the diagonal D = {(n,n) | n € N} is 1-recognizable
but not recognizable as (m,0) ~p (n,0) if and only if m = n. On the other hand,
it is true that the recognizable subsets of N are all 1-recognizable. More precisely,
we have the following result.

Theorem 3.2.29 ([144]). A subset X of N is S-recognizable for all abstract
numeration systems S if and only if it is 1-recognizable.

3.3 First-Order Logic and b-Automatic Sequences

In this section, we present an equivalent definition of b-automatic sequences in
terms of logic. It is given by the Biichi-Bruyere theorem. This criterion is of high
interest since it represents a powerful tool in order to show that many properties of
b-automatic sequences are decidable.

3.3.1 b-Definable Sets of Integers

A (logical) structure . = (S, (R;)) consists of a set S, called the domain of the
structure, and countably many relations R; C S4%_where the d;’s are positive integers,
called the arities of the R;’s.

A first-order formula is defined recursively from

 variables xi, xp, x3, . . . describing elements of the domain S,
* the equality =,

* the relations given in the structure .7,

¢ the connectives V, A, = , <= ,—,

 the quantifiers V, 3 on variables.
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Example 3.3.1. The Presburger arithmetic is described by the first-order formule
of the structure (N, +). See Section 3.7.

Let . be a logical structure whose domain is S. For a first-order formula
o(xy,...,x9) of &, we let

Xy ={(s1,...,50) €SY| S E @(s1,...,50)}

A subset X of S is definable in . if there exists a first-order formula ¢ (xy, . . ., x,)
of . such that X = X, i.e., such that, for all (s, ...,s4) € s, o(s1,...,84) is true
if and only if (sy,...,ss) € X.

We shall use particular notation for constant relations and for functional relations.
A constant relation is a relation of the form {c}. It will be simply denoted c. A
functional relation is a binary relation R such that for any s € S, there is at most
one t € S with (s,7) € R. Such a relation R will be denoted f: S — S where it is
understood that f(s) = ¢ if there exists ¢ € S such that (s, f) € R and f(s) is undefined
otherwise.

Definition 3.3.2. A subset X of N is b-definable if it is definable in the logical
structure (N, 4, V},), where + is the ternary relation defined by x + y = zand V}, is
the function defined by V,,(0) = 1, and for x a positive integer, V}(x) is the largest
power of b dividing x.

Example 3.3.3. One has V,(9) = 1 and V,(24) = 8.

3.3.2 The Biichi-Bruyere Theorem

Theorem 3.3.4 ([112, 115]). A subset X of N is b-recognizable if and only if it is
b-definable. Moreover, both directions are effective.

For a detailed proof of this result, we refer the reader to [114]. We only sketch
the idea of their proof here. They work with automata accepting reversed b-
representations of numbers. From a DFA recognizing X least significant digit first,
that is, such that it accepts a language L € (A)* satisfying X = {val,(w) | w €
L}, they construct a first-order formula ¢ of the structure (N, +,V,) defining X.
Conversely, given a first-order formula ¢ of the structure (N, +, V;,) defining X,
they build a DFA accepting all the reversed b-representations of the elements in X,
that is, accepting the language (rep, (X))~ 0*.

3.3.3 The First-Order Theory of (N, +, V) Is Decidable

As a corollary of the Biichi-Bruyere theorem, the first-order theory of (N, 4, V) is
decidable: given any closed first-order formula of (N, +, V;,), we can decide whether
it is true or false in N. As this corollary has a nice short proof, we give it here.
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Since there is no constant in the structure, a closed formula of (N, +,V,) is
necessarily of the form Ix¢(x) or Vx¢(x). The set X, is b-recognizable by the Biichi-
Bruyere theorem. This means that we can effectively construct a DFA accepting
rep,(X,). The closed formula Ixgp(x) is true if rep,(X,) is nonempty and false
otherwise. As the emptiness of a regular language is decidable [301], we can decide
if Ixg(x) is true.

The case Vxg(x) reduces to the previous one since Vxg(x) is logically equivalent
to —3x—¢(x). We can again construct a DFA accepting the b-representations of X—,.
The language it accepts is empty if and only if the closed formula Vx¢(x) is true.

3.3.4 Applications to Decidability Questions for b-Automatic
Sequences

Proposition 3.3.5. If we can express a property P(n) of an integer n using quanti-
fiers, logical operations, the operations of addition and subtraction, and comparison
of integers or elements of a b-automatic sequence x, then InP(n), 3°nP(n), and
VnP(n) are decidable.

We just have to convince ourselves that those properties P can all be expressed by
a first-order formula of (N, +, V,,). If x: N? — N is b-automatic, then, for all letters
a occurring in x, the subsets x~' (a) of N are b-recognizable by Proposition 3.2.8.
Hence they are definable by some first-order formule v, of (N, +,V,) by the
Biichi-Bruyeére theorem: v,(ny,...,ny) is true if and only if x(n,...,ny) = a.
Therefore, we can express that x(my,...,my) = x(ni,...,ny) by the first-order
formula p(my, ..., mg,ny,...,ng) of (N, +, V,):

o(my,...,mg,ny,...,ng) = \/(wa(ml,...,md)/\wa(nl,...,nd)).

In practice, given a DFAO ./ computing x: N¢ — N, we can directly com-
pute a DFA recognizing the tuples (my,...,mg.ny,...,ng) € N> such that
x(my,...,my) = x(ny,...,ng). We compute the product of automata &' x <7,
thus reading tuples of size 2d, and simulate (my, ...,my) on the first component
and (ny, ..., ny) on the second component, and we accept if the outputs of o7 after
reading rep, (my, ..., my)" and rep,(ni, . .., ny)* are the same and reject otherwise.

In fact, Theorem 3.3.4 allows us to prove a stronger result than the decidability of
such properties of b-automatic sequences. What we obtain is that the characteristic
sequences of those properties are themselves b-automatic. The following proposi-
tion is far from being exhaustive. It only aims to give a flavor of the properties that
can be handled by using this technique. For similar results, we refer to [12, 148]. A
finite word is unbordered if no proper prefix equals a suffix. A palindrome is a finite
word equal to its reversal: w = Ww.
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Fig. 3.3 DFAO generating the regular paperfolding sequence

Proposition 3.3.6. Let x: N — N be a b-automatic sequence. Then the following
sequences y:IN — {0, 1} are also b-automatic:

e y(i) = 1 if and only if x has an overlap at position i

e y(i) = 1 if and only if x has an unbordered factor of length i
e y(i) = 1 if and only if x has a square at position i

e y(i) = 1 if and only if x has a palindrome at position i.

Some properties of interest of automatic sequences are not expressible by a
first-order formula of (N, +, V}) as the following proposition shows. The regular
paperfolding sequence

0010011000110110001001110011011000100110001101110010011 - --

is the 2-automatic sequence computed by the DFAO of Figure 3.3.

Proposition 3.3.7 ([523]). If x is the paperfolding sequence, then the predicate “x
has an abelian square at position i of length 2n” is not expressible in (N, +, V5).

This method for deciding first-order expressible properties of b-automatic
sequences is very bad in terms of complexity. In the worst case, we have a tower of
exponentials in the number of states of the given DFAO whose height is the number
of alternating quantifiers of the first-order predicate. Nevertheless, this procedure
was implemented by Mousavi and works efficiently in many cases. His open source
software package is called Walnut [426]. It can be used in practice in order to
prove (and reprove) many results about some particular b-automatic sequences, in a
purely mechanical way [248-250].

3.4 Enumeration

The object of this section is to study enumeration problems about b-automatic
sequences. It turns out that the sequences (a(m)),en that count the number of
n € N such that P(m,n) is true, for any first-order predicate P of the logical
structure (N, +, V;,), are indeed b-regular sequences; this is Theorem 3.4.15. We
first introduce b-regular sequences over an arbitrary semiring K (also see Chapters 2
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and 4). Then we focus on the semirings N and Ny, := N U {oo}. We discuss
N-recognizable and No,-recognizable formal series and their connections to finite
automata. This, together with the Biichi-Bruyere theorem, allows us to prove that
counting various quantities related to b-automatic sequences gives rise to b-regular
sequences. Finally, we discuss the particular case of b-synchronized sequences and
show that, in general, the same techniques cannot be used to show that the obtained
sequences are b-synchronized: some of them are, whereas some others are not.

3.4.1 b-Regular Sequences

A formal series S is a map from A* to K, where A is a finite alphabet and K is a
semiring. The image of a word w is denoted (S, w), as is customary. We also use the
notation S = ) .« (S, w) w.

Definition 3.4.1. Let A be a finite alphabet and K be a semiring. A formal series
S:A* — K is K-recognizable if there exist an integer m > 1, vectors A € K xam
y € K™, and a morphism of monoids u:A* — K™ such that, for all w € A*,
(S,w) = Au(w)y. The triple (A, w, y) is called a linear representation of S, and we
say it is of size, or of dimension, m.

The family of K-recognizable series has many stability properties. We list here
(without proofs) only those we will explicitly use for our purpose. For more on
K-recognizable series, we refer the reader to [77].

The characteristic series of a language L € A*is y; := ), ., w. It can be viewed
as a map from A* to K for any semiring K (as any semiring contains 0 and 1).

Proposition 3.4.2. For any language L, the following assertions are equivalent.

1. L is regular.
2. xr is N-recognizable.
3. For all semirings K, i is K-recognizable.

The Hadamard product of two formal series S and 7 is their term-wise product:
SOT =" ,enx(S,w)(T,w)w. In particular, S © yr = Y, (S, w) w.

Proposition 3.4.3. IfS:A* — K is a K-recognizable series and L C A* is a regular
language, then S © y is K-recognizable.

Proposition 3.4.4. Every formal series S:A* — K with only finitely many terms
(S,w) # 0 is K-recognizable.

It follows from the previous two propositions that two formal series that differ
only in a finite number of words are either both K-recognizable or both not K-
recognizable.

We will need the following lemma.
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Lemma 3.4.5. Let S:A* — K be a K-recognizable series, B C A be a nonempty
sub-alphabet, and w: A — B be a letter-to-letter morphism. Then the series T: B* —
K defined by

T=Y Swrw=y (Y Sw)w

uEA* weEB* UEA™
w(u)=w

is K-recognizable.

Proof. Let (A, u,y) be a linear representation of S, say of size m. Define a
morphism w':B* — K™ by p'(b) = > ,ea na=p (@) for each b € B. By
induction on [w|, we easily get that /(W) = 3 cax 1= H(u) for all w € B*.
Therefore, (A, i/, y) is a linear representation of T for all w € B*,

MWy =) Apwy =Y (Su)=(T.w).
e e

O

By an abuse of notation, we sometimes write ) ..« x(n)rep,(n) instead
(ng))* is the series S: (A, U {#}) 9)* — K defined by (S,w) = x(ny,...,ny) if
w = (rep,(n1), . .., rep,(ng))* for some ny,...,n; € N and (S, w) = 0 otherwise.

Proposition 3.4.6. Let # be a symbol not belonging to A,. For any sequence
x:N? — K, the following assertions are equivalent.

1. ZWE(Abd)* x(val,(w)) w is K-recognizable.

2. ) aene X(m) rep,(n) is K-recognizable.

3. There exists a K-recognizable series S: (Abd)* — K such that, for alln € N9,
(S, 1ep,(n)) = x(m).

4. There exists a K-recognizable series T: (A, U {#)9)* — K such that, for all
ni,...,ng €N, (T, (repy(n1), . .., rep,(na))*) = x(ny, ..., ng).

5. an ngen X1, ... ng) (repy(ny), . ... ,rep,(nq))* is K-recognizable.

.....

Proof. 1 = 2: We have

Go := Z x(n) rep,(n) = Z x(valy(W) W O Xrep, ey

neNd wE(Abd)*

As N9 is b-recognizable, we obtain I = 2 from Proposition 3.4.3.

The implication 2 = 3 is clear.

3 — 1 A 4: Assume that 3 holds and let S: (Abd)* — K be a K-recognizable
series such that, for all n € N9, (S,rep,(n)) = x(n). Let (A, u,y) be a linear
representation of S, say of size m.
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First, let A’ = [1 0 --- 0] € N0 FDp/i (4, 0)* — Ne+HDxtD pe the
morphism defined by

100 0 [Au(a)]

"(0) = 0 ! = 0 fi 0

wO=1 ol PO e || e
0 0

and y’ = [Ay y]T € NO"*D*I Then, for allw € (A,%)*, X'/ (w)y’ = x(valy(w));
hence, Zwe(Abd)* x(valy(w)) w is K-recognizable, which is 1.

Second, we define a morphism p”: ((A, U{#})%)* — K™ by u"(a) = w(mw(a))
forall a € (A, U {#})?, where 7: (A, U {#))¢ — Abd is the letter-to-letter morphism
defined by

a;, ifa; ##,

(m(ay,...,aq9)); =
: ) 0. ifa; =#

Then, for all w € ((4, U {#1)%)*, we have Au"(w)y = Au(r(w))y = (S, m(w)).
Thus 4 holds, as the formal series

T = Z (S, t(w))w

WwE((ApU{#H)*
is K-recognizable and such that, for allm = (ny,...,ny) € N9,

(T (repy (m1), ..., repy(n4))") = (S. rep, () = x(n).

4 = 5:LetT: ((A,U{#)Y)* — K besuch that, foralln = (ny,...,ng;) € N,
(T, (rep,(n1), . . ., rep,(n4))*) = x(n). Since N is b-recognizable, the language

Ly := {(rep,(n1), ... ,rep,(na))* | n1,...,ng € N}

is regular by Proposition 3.2.2. As the formal series

Gy = Z x(ny,...,ng) (repb(nl),...,repb(nd))#

satisfies Gy = T O i, it is K-recognizable if T is as well by Proposition 3.4.3.
5 == 2: Suppose that Gy is K-recognizable. By Lemma 3.4.5, the series

R= Y Gurw= Y (Y  Guuw)w

ue((Ap Ut ) * we@,H*  ue((ApUH)h*
m(u)=w
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is K-recognizable. As, for allm = (ny,...,ny) € N9,

Rrep,m) = Y Gruwy= Y  (Gpu
ue((ApUithH* u€Ly
7 (u)=rep; (n) 7 (u)=repy,(n)

= (Gy. (repy(m). .. . . rep, (n4))") = x(m),

we obtain Go = RO rep, ne); hence, Gy is K-recognizable by Proposition 3.4.3. O

Definition 3.4.7. A sequence x: N¢ — K is (K, b)-regular if any of the assertions
of Proposition 3.4.6 is satisfied.

Thanks to the following elementary lemma, we can equivalently consider rever-
sals of representations, i.e., starting with the least significant digit. Here @ denotes
the transpose of the matrix ¢, and 7x is the morphism defined by 1 (a) = ;Z(Z) for
each letter a.

Lemma 3.4.8. If a formal series S:A* — K admits the linear representation
(A, . y), then the reversal series S 1= Y c,«(S,W)w admits the linear repre-
sentation (Y, 1L, A).

Proof. For all w = aj---ay, € A}, /ﬁ) = (ulay a))” =

(wlap) - plan)™ = plar) - mlap) = Blar) - ilap) = filar---aw) =

T(w), hence (S, w) = (S, W) = Au()y = Ap()y)™ =T p) L = TEWw) A.
O

In what follows, the semiring K will be either N or Noo = NU {oco} with 0-c0 =
0. Let us mention the following result, a proof of which can be found in Chapter 2.

Proposition 3.4.9 ([17]). If x: N — N is an (N, b)-regular sequence, then there
exists some ¢ € N such that x(n) € O(n°).

3.4.2 N-Recognizable and N.-Recognizable Formal Series

We have the following useful characterizations of N-recognizable and N-recogni-
zable formal series. Here 7; denotes the projection onto the ith component.

Theorem 3.4.10. Let S:A* — N. The following assertions are equivalent.

1. S is N-recognizable.
2. There exists a regular language L C (A x A)* (where A is a finite alphabet) such
that, for all w € A™, (S, w) equals the number of 7 € L with m,(z) = w.

Proof. 1 == 2. Suppose that S is N-recognizable. We consider

S,w), ifw#e,

0, ifw=e.

S:A* 5> N, wi
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Then S’ is N-recognizable as it is a finite modification of S. Let (A, u,y) be a
linear representation of §” of size n. We may suppose, without loss of generality,
that A = [1 0---0] and y = [0---0 1]7. Indeed, let A’ = [1 0---0] € NI*"+2),
Y =1[0---01]" € N2> and p/: A* — NOFT2X0+2) be the morphism defined
by

0 [Au(@)] [Ap(a)y]
0
=1 || |pn@y]||. foracA.
0
0[0---00 0

Then (A, i/, y’) is a linear representation of " of size n + 2.
Let #Z = (Q,qo, F,A x Q, ) be the DFA defined as follows. Let

m = max a);;
a€A M( )l‘]

1<ij<n
and

O={Gr|1<i<n 1<r<m

qo = (17 1)

F={nr)|1<r<m}

5((1’ r)’ (av (j» S))) = (j» S) if 1 =s= /‘L(a)ii'

So 8((i,r), (a, (j,s))) is not defined if s > p(a);, and not every state in Q is
necessarily accessible. We show by induction on |w/| that t(w); equals the number
of paths of label z with 7;(z) = w from (i,r) to {(j,s) | 1 < s < m} (for any
1 < r < m). Let P;j(w) denote the number of such paths. The base case w = ¢ is

clear as ju(¢e) is the identity matrix of size n, and P;;(¢) is equal to 1 if i = j and to
Oelse. Fora € Aand x € A*,

Pii(a) = Card{s | 8((i,r), (a, (k,s))) = (k,s)} = w(@)i.

and
plax)y =y p(@ap(y = Y Pix(@)Pyj(x) = Pijlax),
k=1 k=1

where we have applied the induction hypothesis to x. Now if L is the language
accepted by .7, then, for all w € AT, (S,w) = (§',w) = Auw)y = u(w), =
Pi,(w) = Card{z € L | m1(2) = w}.
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2 = 1. Suppose that .#Z = (Q, q1, F,Ax Q, §) is a DFA accepting a language
L C (A x A)* such that, for all w € AT, (S, w) equals the number of z € L with
m(z) = w.Let Q = {q1,...,q,}. Define A = [1 0---0] € N>,y € N™! be
such that y;; = lif g; € Fand y;; = 0if ¢; ¢ F. Let j(a); be the number of
paths of label z with 7, (z) = a from ¢; to g;, and let u: A* — N be the induced
morphism. It is easy to see that, for all w € A*, p(w); is the number of paths of
label z with 71 (z) = w from g; to g;. Then, for all w € AT,

Ap(wyy = 3 pw)y = Cardiz € L| m(2) = w} = (S.w).

1<j<n
qj'GF

This proves that S is N-recognizable (whatever the value (S, €) is). O

We sometimes want to count quantities that might be unbounded in certain
entries, as, for example, the length of the longest square (or k-power, overlap,
palindrome, unbordered factor, etc.) beginning at position i.

Proposition 3.4.11. IfS:A* — N is Noo-recognizable, then it is N-recognizable.

Proof. Letn>1,A € D\llog(", y € D\Igl, and a morphism of monoids p: A* — NZX"
such that, for all w € A*, (S,w) = Au(w)y. As, for all w € A*, (S,w) € N, any
occurrence of oo in the computation of Au(w)y must belong to a multiplication
with 0. Hence we can modify A,y, u to A/, y’, ' by replacing any occurrence of
oo by 0. In this way, ' € N7y e N /: A* — N and, for all w € A*,
(S,w) = A1/ (w)y’. This shows that S is N-recognizable. O

Lemma 3.4.12. IfS:A* — Neo is Noo-recognizable, then the language {w € A* |
(S, w) = oo} is regular.

Proof. Let (A, u,y) be a linear representation of S. Consider the set {0, p, oo}
(where p is any symbol, intended to represent positive integers). We endow this set
with a structure of commutative semiring as follows: 0+0 =1,p+0=p+p =p,
p+too =o00+00 =00,0:-0=p-0=200-0=20,p-p = p,and
p-00 = 00-00 = 00. Define a morphism of semirings t:Noo, — {0, p, 00}
by 7(0) = 0, t(n) = p forn € N\ {0}, and 7(c0) = oo. Now we define a
DFA . = (Q,qo, F.,A,§) as follows: Q = {0,p, 00", g0 = [t(A11)--- T(A1)],
F={qeQ|qltyn)-t(ya)]"} = oo}, and 8(q,a) = q (v(1(@)y))1<ij<n- We
have §(go,w) € F < t(Au(w)y) = 0o < (S,w) = Au(w)y = oo. This
proves that .# accepts {w € A* | (S,w) = oo}. O

Theorem 3.4.13. Let S: A* — Noo. The following assertions are equivalent.

1. S is Noo-recognizable.

2. There exists a regular language L C ((A U {#}) x A)* (where# ¢ A and A is a
finite alphabet) such that, for all w € AT, (S, w) equals the number of z € L with
14(711(2)) = w, where T4 is the morphism defined by a +— a for a € A and # + ¢.
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Proof. 1 == 2. Suppose that S is Ngo-recognizable. By Lemma 3.4.12, the
language L; = {w € A* | (S,w) = oo} is regular. Now, the series S = S ©
X{weA*|(S.w)#oc) 18 N-recognizable by Propositions 3.4.3 and 3.4.11. From Theo-
rem 3.4.10, we get a regular language L, C (A x A)* (for some alphabet A) such
that, for all w € AT, (§',w) = Card{z € L, | mi(z) = w}. Leta € A and let # ¢ A.
Then define Lz = {z € (A U {#}) x A)* | m1(z) € Li#*, m2(z) € a*}. Clearly L; is
regular, and, for allw € A", (S,w) = Card{z € L, U L3 | t4(m,(z)) = w}.

2 = 1. Suppose that L C ((A U {#}) x A)* is such that, for all w € AT,
(S,w) = Card{z € L | ws(m(z)) = w} and that #Z = (Q,q;,F,A,§) is a DFA
accepting L. Let Q = {q1, ..., q,). For each a € A U {#}, we define a matrix D, €
N as follows: (D,);; equals the number of letters b € A such that §(g;, (5)) = g;.
Then any finite path in .# labeled z with ta(71(z)) = ay - - - ag, with the a;’s in A, is
of the form

(1) (8) €O ()0 () (9 (2) s (0 (D) (2) - (3)

where e could be anything. Now, let D = Y",_, D, € N2X". Then the computation
(DD, DD,, --- DD,,D);; returns the number of such paths from ¢; to g;. Let A =
[10---0] € N and y € N"™! be defined by y;; = 1if ¢; € F and y;; = 0 if
qi ¢ F.Let u: A* — N2X" be the morphism defined by u(a) = DD, for a € A, and
let y’ = Dy. Then, forallw = a;---a; € AT,

(S,w) = Card{z € L | ta(1(2)) = w}

= Y (DDyDD,,--DD, D)y

1<j<n,qj€F
= An(ar---ag)Dy
= Auw)y'.

This shows that S is Neo-recognizable (whatever the value (S, €) is). O

3.4.3 Counting b-Definable Properties of b-Automatic
Sequences Is b-Regular

We are now able to prove the main result of this section, namely, Theorem 3.4.15.
Proposition 3.4.14. If x: N? — N is (Noo, b)-regular; then it is (N, b)-regular.

Proof. Suppose that x: NY — N is (Nuo, b)-regular. Then Zwe(Abd)* x(val,(w)) w
is Neo-recognizable. By Proposition 3.4.11, the latter formal series is indeed IN-
recognizable since (S, w) = x(val,(w)) € N for all w € (A,)*. Hence x is (N, b)-
regular. O
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Theorem 3.4.15. If X is a b-definable subset of N, then the sequence a: N¢ —
Neo defined by

Y(ni,....ng) € N, a(ny,...,ng) = Cardfm e N | (ny,...,ng,m) € X}, (3.4

is (Noo, b)-regular. If moreover a(N%) C N, then a is (N, b)-regular.

Proof. By Theorem 3.3.4, X is b-recognizable. So, the language

L = {(rep,(m). . ...tep,(na+))* | (n1,....n4s1) € X}

is regular by Proposition 3.2.2. Then, for all ny,...,n; € N,

a(ny,...,ng) = Card{z € L | my,_4(z) € #*(repy(m1), ..., rep,(n4))"}

.....

.....

defined by a + a fora € A and # +— ¢. Then S is Neo-recognizable by Theo-
rem 3.4.13. As (S, (rep,(n1), . . ., rep, (na))*) = a(n, ...,ng) foralln,,...,ng € N,
we obtain that a is (N, b)-regular by Proposition 3.4.6.

The fact that a is (N, b)-regular if a(N) € N follows from Proposition 3.4.14. O

As an application, the factor complexity of a b-automatic sequence is (N, b)-
regular.

Proposition 3.4.16. The factor complexity n — Card(L,(x)) of a b-automatic
sequence x:IN — N is (N, b)-regular.

Proof. Let x:N — N be a b-automatic sequence. For all n € N, Card(L,(x)) =
Card{i e N | Vj < i, x())---xG+n—1) # x(@)---x(i+n—1)}. Now let X =
{G,n) | Vj <i, 3t <n, x(j+1) # x(i + 1)}. Then X € N? is b-definable by
Theorem 3.3.4, and, for all n € N, we have Card(L,(x)) = Card{i € N | (i,n) € X};
hence, the factor complexity of x is (N, b)-regular by Theorem 3.4.15. O

In a similar manner, we can show the following. In order not to overburden the
text, we do not define these counting functions here and refer the interested reader
to [148].

Proposition 3.4.17. Let x:IN — N be a b-automatic sequence.

* The function that maps n to the number of squares (or palindromes, unbordered
factors, k-powers) of x beginning at position n is (Neo, b)-regular.
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o The recurrence function of x is (Neo, b)-regular.

e The appearance function of x is (N, b)-regular.

o The separator length function of x is (N, b)-regular.

o The permutation complexity of x is (N, b)-regular.

o The periodicity function of x is (N, b)-regular.

* The function that maps n to the number of unbordered factors of length n of x is
(N, b)-regular.

Using the same technique, it can be shown that all these quantities are either O(n)
or infinite for at least one 7.

Proposition 3.4.18. Let X be a b-definable subset of N?, and let a: N — N be the
sequence defined by a(n) = Card{m € N | (n,m) € X} for all n € N. Then either
a(n) = oo for some n € N or a(n) = O(n).

Proof. If L € N is such that for all (m,n) € X, |rep,(m)| < |rep,(n)| + L, then for
all n € N, a(n) < bn. If a is not O(n), then for all L € N, there exists (m,n) € X
such that |rep,(m)| > |rep,(n)| + L. Therefore (rep,(m), #<rep,(n)) € rep,(X)* for
some K > L. As X is b-definable, there is a DFA accepting rep,(X)*. By choosing
L equal to the number of states of this DFA and applying the pumping lemma, we
obtain infinitely many elements (m’, n) in X. This means that a(n) = oo. O

It seems more difficult to obtain similar enumeration results in the multidimen-
sional setting. For example, what about the following question?

Problem 3.4.19. Must the function f: N> — N that counts the number of rectangu-
lar factors of size m x n in a bidimensional b-automatic sequence be (N, b)-regular?

3.4.4 b-Synchronized Sequences

The family of b-synchronized sequences lies in between the families of b-automatic
sequences and b-regular sequences; see Proposition 3.4.21 and Theorem 3.4.23
below. Therefore, a natural question in the context developed in the present chapter
is whether (various) enumeration problems about bh-automatic sequences can or
cannot be described by b-synchronized sequences.

Definition 3.4.20. A sequence x:INY — N is b-synchronized if its graph, i.e., the
subset

G, :={(mn,...,ng,x(ny,...,ng)) | ny,...,ng € N}

of N¥*1, is b-recognizable.

Proposition 3.4.21. Let A be a finite subset of N and let x:N? — A. Then x is
b-synchronized if and only if it is b-automatic.
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Proof. Foreacha € A, x"'(a) = {(n1,...,ny) € N | (n1,...,n4,a) € G,} and
G, = U ea (x7'(a) x {a}). Therefore, the result follows from Proposition 3.2.8 and
Theorem 3.3.4. O

Note that the use of Theorem 3.3.4 in the previous proof is somewhat superfluous
since we could easily build finite automata recognizing the fibers x~!(a) and the
graph G,.

We have the following useful lemma.

Lemma 3.4.22. If x:N? — N is a b-synchronized sequence, then there is a b-
definable subset X of Nt such that, for all ny,....,ng € N, x(ny,...,ng) =
Card{m € N | (ny,...,nq4,m) € X}.

Proof. Let x be a b-synchronized sequence. Then G, is b-definable by The-

orem 3.3.4. Therefore, the subset X = {(n,...,n4,m) € INd+1 | m <
x(ny,...,ng)} = {(ny,...,ng,m) € Na+1 | 3¢ (n1,...,n4,¢) € Gyandm < £} is
b-definable as well, and of course x(ny,...,ny) = Card{m € N | (ny,...,ny,m) €
X} forallny,...,ng € N. O

Theorem 3.4.23. Any b-synchronized sequence is (N, b)-regular.

Proof. This is a consequence of Lemma 3.4.22 and Theorem 3.4.15. O
Proposition 3.4.24. If x:N — N is b-synchronized, then x(n) is O(n).

Proof. The result is a consequence of Lemma 3.4.22 and Proposition 3.4.18. O

We saw in Proposition 3.4.16 that the factor complexity of a b-automatic
sequence is (N, b)-regular. In fact, we have the more precise following result, which
we give without proof.

Proposition 3.4.25 ([522]). Let x: N — N be a b-automatic sequence. Then the
factor complexity of x is b-synchronized.

In view of Propositions 3.4.18 and 3.4.24, one might think that all the quantities
of Proposition 3.4.17 are in fact b-synchronized. However, it is not the case.

Proposition 3.4.26. Let X = {2/ | i € N}. Then yx is 2-automatic, but the function
that counts the number of unbordered factors of length n of yx is not 2-synchronized.

Proof. As rep,(X) = 10*, we get that yx is 2-automatic. Let y:N — N be
the function that maps n to the number of unbordered factors of length n of yyx.
Suppose that y is 2-synchronized, i.e., that its graph G, = {(n,y(n)) | n € N} is
2-recognizable. Then rep,(G) is accepted by some DFA ./ . For all integers n > 2,
we have y(2" + 1) = n + 2; hence, (10"~"'1, 0"~lo220+lrep, (n 4 2)) is accepted
by .# . By choosing n — |log,(n + 2)] to be larger than the size of .#, the result
follows from an application of the pumping lemma. O
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3.5 First-Order Logic and U-Automatic Sequences

In order to be able to provide a logical framework for positional numeration systems,
we encounter two major problems:

e In general, N is not U-recognizable.
* In general, the addition is not recognized by finite automaton.

Theorem 3.5.3 below shows that a nice setting is given by the so-called Pisot
numeration systems.

Definition 3.5.1. A Pisot number is an algebraic integer greater than 1 such that all
of its Galois conjugates have moduli less than 1.

Definition 3.5.2. A positional numeration system repy; is Pisot if the base sequence
U satisfies a linear recurrence whose characteristic polynomial is the minimal
polynomial of a Pisot number.

Theorem 3.5.3 ([113, 232]). Ifrep is a Pisot numeration system, then the sets N
and {(x,y,7) € N* | x + y = z} are U-recognizable.

Definition 3.5.4. A subset of N? is U-definable if it is definable in the logical
structure (N, +, V), where Vi (0) = 1, and for x a positive integer, Vi (x) denotes
the smallest U; occurring in the greedy U-representation of x with a nonzero
coefficient.

Example 3.5.5. We have Vp(11) = 3 and V¢(26) = 5.

Theorem 3.5.6 ([113]). Ifrepy is a Pisot numeration system, then a subset of N9 is
U-recognizable if and only if it is U-definable. Consequently, the first-order theory
of (N, +, Vy) is decidable.

As an application, one can prove (and reprove, or verify) many results about the
Fibonacci word

f =01001010010010100101001001010010 - - -

(which is the fixed point of 0 +— 01, 1 > 0). Indeed, the Fibonacci word f is an
F-automatic sequence as it is generated by the DFAO of Figure 3.4 whenever the
inputs are the Zeckendorf representations of nonnegative integers.

Fig. 3.4 A DFAO generating the Fibonacci word
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Here are some concrete applications (among many others), all of which have
been shown in a purely mechanical way [427]. Again, in order not to overburden
the text, we give no definition but one. An infinite word is linearly recurrent if there
exists a constant C such that the distance between any two occurrences of any factor
x is at most C|x|. For the missing definitions (neither included here nor in Chapter 1),
we refer the interested reader to [427].

e fis not ultimately periodic.

* f contains no fourth powers.

* fisreversal invariant.

e fis linearly recurrent.

¢ Characterizations of the squares (or cubes, antisquares, palindromes, antipalin-
dromes) occurring in f.

e Characterizations of the least periods of factors (or unbordered factors, Lyndon
factors, special factors) of f.

* Computation of the critical exponent and initial critical exponent of f.

* The lexicographically least element in the shift orbit closure .7 (f) is Of.

In a similar fashion, one can also obtain results concerning the Tribonacci word
t = 01020100102001020100101020100102010102 - - -

(which is the fixed point of 0 — 01, 1 — 02, 2 — 0) [428]. In this case, we work
within the positional numeration system based on the sequence U: N — N defined
byU@©)=1, U(l)=2, UR)=3andUn+3)=Un+2)+Umn+1)+ Un)
forn e N.

We end this section by a problem.

Problem 3.5.7. Do the results on enumeration of b-automatic sequences described
in this section extend to Pisot numeration systems?

3.6 First-Order Logic and Real Numbers

In general real numbers are represented by infinite words. In this context, we
consider Biichi automata, which allows us to define a notion of (base-related)
recognizability of multidimensional sets of reals. In the continuity of the ideas
developed so far, we will show that the so-called -recognizable sets can again
be characterized in terms of first-order logic, which will provide us with decision
procedures for various problems concerning those sets.
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3.6.1 Biichi Automata

Biichi automata are defined as NFAs, but the acceptance criterion has to be adapted:
an infinite word is accepted if it labels a path going infinitely many times through
an accepting state. In the present chapter, we always assume that a Biichi automaton
is finite. Without loss of generality, we also always assume that there is only one
initial state.

Example 3.6.1. The Biichi automaton of Figure 3.5 accepts the infinite words over
{a, b} containing finitely many a’s.

Subsets of AN are called w-languages, and w-regular languages are defined
as w-languages which are accepted by (finite) Biichi automata. Regular languages
and w-regular languages share some important properties: their families are closed
under Boolean operations, morphic image and inverse image under a morphism.
Nevertheless, they differ in some other aspects. One of them is determinism. As
with DFAs, we can define deterministic Biichi automata. But one has to be careful
as the family of w-languages that are accepted by deterministic Biichi automata is
strictly included in that of w-regular languages.

Example 3.6.2. No deterministic Biichi automaton accepts the w-language
accepted by the Biichi automaton of Figure 3.5.

For more on automata reading infinite words, see [476]. Let us stress that,
contrary to the present chapter, Biichi automata are not considered finite by default
in [476].

3.6.2 Real Bases 8

Throughout the text, 8 designates a real number greater than 1. For a real number x,
any infinite word u = uy - - - ugug * U_ju—p --- with £ > 0, u; € C for all i < £ where
C is a finite subset of Z and such that

valg(u) := Z u Bl = x

—oo<i<{

is a B-representation of x. In general, this is not unique.
Note that f-numeration systems are also presented in Chapter 8.1.

5.8

Fig. 3.5 A (nondeterministic) Biichi automaton
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Example 3.6.3. Consider x = ¢~!, where ¢ is the Golden Ratio. The words u =
0 001111---, v = 0% 0101010---, and w = 0 * 10 are all B-representations
of x.

For x > 0, among all B-representations of x, we distinguish the B-expansion
dg(X) = Xg--X1X0 % X_1X_p
which is obtained by the greedy algorithm: we fix the minimal £ € N such that

x = Z x; B and, foralli < £, x; > 0,

—oo<i<{

and, forall k < £,

Z xl'ﬂi<,3k+l.

—oo<i<k

The digits x; then belong to the alphabet Ag = {0, ..., [B] — 1}. One has x; # 0 if
and only if x > 1 and real numbers in [0, 1) have a §-expansion of the form 0 x u
with u € AY. In particular, dg(0) = 0 % 0“.

In order to deal with negative numbers, a denotes the integer —a for all @ € Z.
Moreover we write W0 = UV, u * 0 = i x U, and 1 = u. For x < 0, the B-expansion
of x is defined as

dp(x) = dp(—x).

WeletAg = {0,1,...,[B] — 1} and Ag = Ag U Ag (with O = 0).
Now let us define the B-expansion of a vector x of R?.

Definition 3.6.4. Letx = (xi,...,x,) be a vector in R¢. We define the B-expansion
of x as being the word dg(x) over the alphabet A ﬁd U {%} that belongs to 0*dg(x;) x
0*dg(x3) x - -+ x 0*dg(x,) and that does not start with 0 except if |x;| < 1 for all i,
in which case we consider the word starting with Ox.

Otherwise stated, the B-expansions of each component are synchronized by
possibly using some leading zeros in such a way that all the » symbols occur at
the same position in every B-expansion.

Example 3.6.5. Consider X = (x1,x;) = (1+4‘/§, 2 4+ /5). We have

dy(x) = 0000x100100---
T 1000%000000---

where the first ¢p-expansion is padded with some leading zeros. Now we consider an

example where all the components have moduli less than one. Withy = (x1,x,) =
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0%x100100---
d = _ _
'M = 0,0T00T0-..

where the two ¢-expansions start with one symbol 0 followed by *.

We let Sg(R?) be the topological closure of 0*dg(R). For uxv € (Z%)* x(24)N
with finitely many possible digits, we define valg(uxv) to be the vector in R4
obtained by evaluating each component of uxv.

Definition 3.6.6. For X C R, we define Sg(X) as Sg(X) = Sp(R?) Nvaly' (X). For
x € R?, the elements in Sg(x) are called the quasi-greedy -representations of x.

Here and throughout the text, we write Sg(x) instead of Sg({x}). Note that B-
expansions are particular quasi-greedy fB-representations.

Remark 3.6.7. If B is an integer, then Sg(X) is the set of all B-representations of
elements in X. Otherwise stated, when B is an integer, any B-representation is a
quasi-greedy S-representation.

Proposition 3.6.8. Let X C RY. Then X is closed if and only if S 8(X) is closed.

Proof. Suppose first that X is closed. Then val;' (X) is closed since the function
valg: (A;)Jr*(;\ §)? — R?is continuous. As Sg(R?) is closed by definition, we
obtain that Sg(X) = Sg(R?) N valy' (X) is closed as well.

Conversely, suppose that Sg(X) is closed, and let x™ be a sequence of X
converging to some X. By the pigeonhole principle, there exists a subsequence x*")
of x™ such that, for all n, x*) — x has a constant sign (potentially 0) on each
component. Then the sequence dg(x*™)) converges to some uxv € Sg(X). The
function valg being continuous, we have valg(uxv) = X, and hence x € X. This
proves that X is closed. O

As usual, we let d (1) denote the lexicographically greatest w € NN not ending
in 0” and such that valg(0 » w) = 1. The infinite word dg‘(l) has the property
of being the supremum of all its shifted sequences; see, for instance, [386]. For all
bases B > 1, one has dg(1) = 1%x0®, whereas the definition of d/’g (1) indeed depends
on fB. The following theorem is known as Parry’s theorem or Parry’s criterion. A
proof of this result can be found in [386].

Theorem 3.6.9 (Parry [469]). Let u = ug---ujug x u—yu—y--- with £ > 0 and
u; € Nforalli <{. Then

u€0*dp(R*) < Vk <L, way—,--- < dg (1), and

u e Sp(R*) < Vk <L, way—--- < dg(1).
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Example 3.6.10. We continue Example 3.6.3. We have d;( 1) = (10)®. Thanks to
Parry’s theorem, the ¢-expansions of real numbers in [0, 1) are of the form 0 * u,
where u € {0, 1}™ does not contain 11 as a factor and does not end in (10)®. So the
¢-expansion of x is w, but both v and w belong to Sg(x).

The following proposition characterizes which real numbers admit quasi-greedy
pB-representations other than those of the form 0‘dg(x): they are exactly the real
numbers in the set {/% | x € Zg, i € N}, where Zg is the set of the so-called 8-
integers. The notion of B-integers will be central in Section 3.6.5 and thus deserves
a proper definition.

Definition 3.6.11. A real number x is a B-integer if dg(x) is of the kind u » 0“. The
set of B-integers is denoted by Zg.

Proposition 3.6.12. Let x € [0,1). If dg(x) = 0 * x;---x,0° with k > 1 and
X 7# 0, then Sg(x) = 0"{dg(x), 0 % x1 -+ xp—1 (X — l)d;(l)}, and Sg(x) = 0*dg(x)
otherwise.

Proof. Let u x v € Sg(x). As x € [0,1), we have u € OF. If v does not end
in d;(l), then u x v € 0"dg(x) by Theorem 3.6.9. Suppose now that v ends in
dg(l) = dd,---.Let m > 0 be minimal such that v = vy ... v,,,dg(l). Then m > 1
and v,, < d;. We claim that dg(x) = 0 % vy -+-v,—1 (v, + 1)0“. By minimality of
m, for all 1 <j < m, we have

U nd(1) < d3(1) < dy - dyegr (1),

hence vj... v, < di - dp_jy1. fvj.. . V1 < di--dj, then v .. V1 (Vs +
1)0® < d;(l). Ifvj... V1 = di -+ dp—j, then v, < dy—j1 and vj. .. V1 (U +
N0 <dy -+ dy—j410° < d;(l). As valg(0* vy« - Vy—1 (v, +1)0%) = x, we obtain
the claim by Theorem 3.6.9.

Now we suppose that dg(x) = 0 % x;---x;0° with &k > 1 and x; # 0
(in particular, x > 0). From the previous paragraph, we obtain that Sg(x) <
0*{dg(x), Oxxy -+ xp—1 (X — l)d; (1)}. The other inclusion holds by Theorem 3.6.9.

If dg(x) = 0 * 0“, then x = 0 and Sg(0) = 0 » 0“. Finally we suppose that
dg(x) does not end in 0“. From the first paragraph, we obtain that if u x v € Sg(x),
then # € 0T and v does not end in d;(l). This proves Sg(x) = 0*dg(x). O

Corollary 3.6.13. Let x € RZ° and let d;(l) =didy---.

o Ifdg(x) = x¢---xp*xx_1 -+ X0 € A,s+ *Aﬁ’” with x_j # 0, then
Sp(x) = 0"{dp(x), x¢ -+ X0 * X—1 -+ Xpp1 (xp — Ddida -+ }

e Ifdg(x) = x5 0F % 02 € AT« AL with x, # 0, then

B B

Sg(x) = 0%{dg(x), x¢ -+ Xpq1 Ok — D)y -+ di * dpgrdi42- -}
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* Sg(x) = 0%dg(x) in all other cases.

Moreover, we have Sg(—x) = Sg(x).

3.6.3 pB-Recognizable Sets of Real Numbers

Definition 3.6.14. A subset X of R is -recognizable if Sg(X) is w-regular.

The following result shows that leading zeros do not affect the 8-recognizability
of a subset. We omit the proof as it is similar to that of Proposition 3.2.2.

Proposition 3.6.15. Let X C RY. The following are equivalent:

* Xis B-recognizable. ~ 5

« Sp(X)N ((Aﬂd \ {0})(Aﬁd)**(Aﬂd)“’ U 0*(Aﬁd)“’) is w-regular.

o There exists an w-regular language L (A;)*‘*(;\ﬁd)“’ such that 0%(0*)7'L =
Sp(X).
We also have the following nice criterion.

Proposition 3.6.16. Two fB-recognizable subsets of R? coincide if and only if they
have the same ultimately periodic quasi-greedy B-representations.

Proof. The result follows from the well-known fact that two w-regular languages
are equal if and only if they have the same ultimately periodic elements [476]. O

In the case of closed subsets of R, we can require additional conditions on the
Biichi automata recognizing them.

Proposition 3.6.17. A B-recognizable subset X of R? is closed if and only if Sg(X)
is accepted by a deterministic Biichi automaton all of whose states are final.

Proof. Tt is easily seen that an w-regular language L is closed if and only if it is
accepted by a deterministic Biichi automaton in which each state is final (see, e.g.,
[476, Proposition 3.9]). Then the result follows from Proposition 3.6.8. O

‘We note that, in our context of Biichi automata recognizing sets of real numbers,
the final/non-final status of the states occurring before an edge labeled % has no
impact on the accepted language.

Definition 3.6.18. A Parry number is a real number B greater than 1 for which
d;(l) is ultimately periodic.

Proposition 3.6.19. If B is Parry, then a subset X of R? is B-recognizable if and
only if dg(X) is w-regular.

Proof. For the sake of clarity, we do the proof for d = 1. Let X C R. First note that
dg(X) is w-regular if and only if 0*dg(X) is as well. By Corollary 3.6.13, we have
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0*dg(X) = Sp(X) \ {u v € A" x AP | uv ends in dj(1) or in d5 (1)}.

As f is a Parry number, {u x v € A;" x A? | uv ends in dg(1) orin dg(1)} is an
w-regular language. This shows that dg(X) 1s w-regular if Sg(X) is as well.
Conversely, as d; (1) = dd; - - - is ultimately periodic, the two w-languages

Li={() ) GED (L) (L) lueAf veAs a0}

L2={(Z)(afl)(6?1) (c(l)x)( )(dkg—l)(dk+2) |u€Aﬂ»a7éO k e N}.
are w-regular. By Corollary 3.6.13, we have

Sp(X) =0"dg(X) U nz((Ll UL, UL ULy) N (0*dg(X) x (Aﬁ U {*})“’)).

This proves that Sg(X) is w-regular if dg (X) is as well. O

As a consequence of Propositions 3.6.16 and 3.6.19, we obtain the following
result.

Proposition 3.6.20. If B is Parry, then two B-recognizable subsets of R¢ coincide
if and only if they have the same ultimately periodic B-expansions.

3.6.4 Weakly B-Recognizable Sets of Real Numbers

We now consider particular B-recognizable sets of real numbers, namely, the
weakly B-recognizable subsets. We note that we have chosen to respect the original
terminology of [95, 384], even though the property of being weakly -recognizable
is in fact stronger than being f-recognizable. This terminology comes from the fact
that weak Biichi automata are less expressive than Biichi automata: not all w-regular
languages are accepted by weak Biichi automata.

Definition 3.6.21. A Biichi automaton is said to be weak if each of its strongly
connected components contains either only final states or only nonfinal states.

Definition 3.6.22. A subset X of R? is weakly B-recognizable if Sg(X) is accepted
by a weak deterministic Biichi automaton.

The advantage of weak deterministic Biichi automata is that they admit a
canonical form [384, 551]. Therefore, they can be viewed as the analogues of
DFAs for infinite words. Moreover, the family of w-languages accepted by weak
deterministic Biichi automata is closed under the Boolean operations of union,
intersection, and complementation [408, 551]. However, let us stress that weak
Biichi automata cannot be determinized. For example, the Biichi automaton of
Figure 3.5 is clearly weak, but as already pointed out, there is no deterministic
Biichi automaton accepting the same w-language. This has important consequences
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Fig. 3.6 A weak deterministic Biichi automaton accepting S, (R)

in our work, namely, for the choice of Definition 3.6.22, which is highlighted by the
following remark.

Remark 3.6.23. Tt is not true that a subset X of R? is weakly B-recognizable if
and only if dg(X) is accepted by a weak deterministic Biichi automaton, even
when f is an integer base. Indeed, the set R is weakly 2-recognizable as S>(R)
is accepted by the weak deterministic Biichi automaton of Figure 3.6. Yet we
have S»(R) \ 0*d>(R) = {0,1}" % {0, 1}*1®. Since the family of w-languages
accepted by weak deterministic Biichi automata is closed under intersection and
complementation, if d,(R) were accepted by a weak deterministic Biichi automaton,
then {0, 1}*1° would be as well, which is known to be not true as already mentioned
in Example 3.6.2. This remark has to be compared with Proposition 3.6.19.

It is interesting to note that, for closed subsets of R?, the concepts of B-
recognizability and weak -recognizability actually coincide.

Proposition 3.6.24. A closed subset of R is B-recognizable if and only if it is
weakly B-recognizable.

Proof. This is a straightforward consequence of Proposition 3.6.17. O

The following result is a consequence of Theorem 3.6.9. We first fix some
notation that will be useful here and in the proof of Theorem 3.6.29 below. For
r € R, we define sign(r) to be + if r > 0 and — else. If x = (x1,...,x4) € R4,
then sign(x) = (sign(x;),...,sign(xy)). For X € R? and s € {+,—}¢, we define
Xs = {x € X | sign(x) = s}).

Proposition 3.6.25. If B is a Parry number, then R? is weakly B-recognizable.

Proof. As a consequence of Theorem 3.6.9, a DFA & is canonically associated
with any Parry number 8. For details on the construction of <73, we refer the reader
to [386]. This DFA accepts the language of factors of those infinite words u such
that 0 » u = dg(x) for some x € [0, 1). All states of .74 are final (as any prefix of a
factor is again a factor). Moreover, <74 has a loop labeled O on its initial state.

Given s € {+,—}9 we build a weak deterministic Biichi automaton .7 s
accepting Sg((R)). Then the union of those 2¢ w-languages will be Sg(R?), which
will still be accepted by a weak deterministic Biichi automaton since the class of
w-languages accepted by such automata is closed under union.

We construct the automaton «7g s by considering two copies of o7g x --+ x /g
(d times), one for the f-integer part and one for the fS-fractional part of the -
representations. For each state ¢ of g x --- x /g, we let (g, int) (resp. (g, frac))
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denote the state of <73 5 that corresponds to ¢ in the B-integer (resp. B-fractional)
part copy. In all labels of transitions of both copies of @75 x - - - X @73, we replace the
ith component by its opposite value if s; = —, and we leave it unchanged otherwise.

The initial state of &Qfﬂ,s is a new additional state i and, for each transition labeled
acA ﬁd from the initial state to any state (g, int) of the S-integer part copy of
afg X+ -+ x g, there is a new transition labeled a from i to (g, int). The terminal states
are all states (g, frac). We complete %/ s by adding, for each state g of .a/g x - - - x @7,
a transition from (g, int) to (g, frac) labeled . O

Example 3.6.26. The canonical DFA .7 is depicted in Figure 3.7. The determinis-
tic Biichi automaton depicted in Figure 3.8 accepts the w-language S;(R="). Note
that the two ¢-representations v and w of ¢! of Example 3.6.3 are accepted as they
are both quasi-greedy, whereas u is not.

Theorem 3.6.27 provides a decomposition of weakly S-recognizable subsets
into their S-integer and B-fractional parts. In the case where the base f is an
integer, this decomposition is in fact independent of the chosen integer base; this
is Theorem 3.6.29.

To express this decomposition, we introduce the following notation. For x € Z4,
we let repg(x) be defined by dg(x) = repg(x)x0”. Note that by Corollary 3.6.13,

we have that, for all x € Z‘é, Sp(x)N((A ﬁd)**O‘”) = 0*repg (x)x0”. Symmetrically,
foru € A;, we let valg (1) = valg(u%x0®).

Recall that a Biichi automaton is said to be ftrim if it is accessible and
coaccessible, i.e., each state can be reached from the initial state and from each state

Fig. 3.7 The canonical DFA 7

Fig. 3.8 A deterministic Biichi automaton accepting S (R=?)
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starts an infinite accepting path. From any given Biichi automaton, we can easily
build another Biichi automaton which is trim and accepts the same w-language.
Moreover, if the original Biichi automaton is weak (resp. deterministic), the obtained
trim Biichi automaton is as well.

Theorem 3.6.27. Any weakly B-recognizable subset X of R is a finite union of sets
of the form X' + X¥ where X' C Zg is such that repg X" c (Aﬁd)* is regular and
Xt € [0, 1] is weakly B-recognizable.

Proof Let X € RY and let & = (Q, qo,;\ﬂd U {x},F,§) be a trim deterministic
Biichi automaton accepting Sg(X). No infinite path (starting from any state) of ./
contains more than one occurrence of the letter x. Hence, the set of states Q can be
divided into two parts: Q| containing the states occurring before transitions labeled
* and Q, containing the states occurring after those transitions. Note that ' C Q5.
Let qi, ..., gn be the states of O, that can be reached (in one step) by reading the
letter . Without loss of generality, we assume that the w-languages accepted from
q1,...,qny are pairwise distinct. This implies that, for all u € 0*rep s(XN Z‘é) and all
€ € N, qo-0‘ux = qo-ux.Foreachi, 1 <i < m,wedefine X! = {valg(u) | go-ux =
gi}, and XF' = {valg(O%v) | v is accepted from ¢;}. We have X = U™ X! + XF.
Now, for each i, 1 < i < m, we consider the DFA &; = (Ql,qo,;\ﬁd,Fi,Sl) and
the Biichi automaton %; = (Qz,q,-,Aﬂd,F, 8;), where F; = {g € Q1 | ¢- % = q;}
and & (resp. 8,) is equal to the original transition function § restricted to the domain
01 xA ﬂd (resp. Qs X A ﬁd). Then the language accepted by Z; is 0*repg (X7) and the
w-language accepted by %; is Sp(XI) N (0xA ﬁw). It is now easy to modify %; to
obtain a deterministic Biichi automaton accepting Sg(XF). Finally, if in addition </
has the property of being weak, then the same is true for the obtained deterministic
Biichi automata accepting Sg (X). O

Remark that, in the previous proof, it is not true that the union X = U (X! +X7T)
is disjoint as a Biichi automaton for Sg(X) accepts all quasi-greedy B-represen-
tations of elements in X.

Example 3.6.28. In the Biichi automaton of Figure 3.8, the infinite paths corre-
sponding to the ¢-representations dy (1) = 1 0” and 0 * d; (1) =0%(01)* of 1 go
through the two different edges labeled x. This means that, in the decomposition of
Theorem 3.6.27 corresponding to X = R=°, the number 1 belongs to all of the sets
X'+ Xx*.

The following result is a stronger version of Theorem 3.6.27 in the restricted
case of integer bases. Indeed, in Theorem 3.6.29 below, the sets in the union are
independent of the base b, whereas this is not the case in the previous theorem.
Unfortunately, this stronger result does not generalize to real bases as in general Zg
differs from Zg if B # B’, even for multiplicatively dependent B, B’. For example,
2€Z,p\2Z,.
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Theorem 3.6.29. Any subset X of R is a finite union of sets of the form X' + X*
with X! € 7¢ and X¥ C [0, 1] and such that rep,(X") is regular and X* is weakly
b-recognizable for all b for which X is weakly b-recognizable.

Proof. LetX C R“. With the notation introduced before Proposition 3.6.25, we have
X == USE{-I—.—}‘I XS,

and if o7 is a deterministic Biichi automaton accepting Sj(X), then the w-languages
S,(X;s) are accepted by the deterministic Biichi automata obtained from .27 by only
keeping those edges whose labels have sign s. For the sake of simplicity, we suppose
that X € (R=%)4. (If we had X C (R%), for some s # (+,..., +) (d times), then we
would have to discuss the sign of each component separately, which is just a tedious
adaptation of what follows.)

Fori € N’ we define F(X,i) = {x € [0,1]¢ |i+x € X} and I(X,i) = {i € N’ |
F(X.,i) = F(X,i")}. Then let C(X) = {I(X.i) | i € N¢ and F(X,1) # @}. We have

x= J I+ FX.i).
I(X.D)eC(X)

Now suppose that .7 is a weak trim deterministic Biichi automaton accepting
Sp(X). Let go be the initial state of <7 and let ¢y,..., g, be the states of .o/ that
can be reached (in one step) by reading the letter x. Without loss of generality,
we may suppose that the w-languages accepted from the states ¢i,...,q, are
pairwise distinct. We consider the same decomposition of X as in the proof of
Theorem 3.6.27:

— 1 F
x=J& +x0),

J=1

with X' = {val,(0xv) | v is accepted from ¢;} and X] = {valy(u) | qo - ux = g;}.
From the proof of Theorem 3.6.27, we know that, for each j, rep, (X; ) is regular and
that X" is weakly b-recognizable.

Let us show that the two exhibited decompositions of X are actually the same. In
particular, the obtained decomposition will be independent of the base b, which will
prove the result. To obtain the correspondence between the two decompositions, it is
enough to show that, for all u € A; and allj € {1,...,m}, the following assertions
are equivalent:

L. qo - ux = gj.
2. F(X,val,(n)) = X]F.
3. I(X, valy(u) = X].

As of accepts all the b-representations of the elements of X and the w-languages
accepted from the states ¢, ..., q, are pairwise distinct, the subsets XF . ,Xg
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and X!, ..., X! are pairwise distinct. Therefore, we only have to show 1 = 2 A
3. Suppose that g - ux = ¢;. If x = val,(0%xv) and v is accepted from g;, then
uxv € L(</); hence, x + val,(u) € X. Conversely, let x € [0, 1]¢ such that x +
valy(u) € X. Then there exists v € A} such that x = val,(0xv). As .o/ accepts
all the b-representations of the elements of X, we have uxv € L(</). Because &/
is deterministic, v is necessarily accepted from g;; hence, x € XJF . This proves 2;
hence, we have obtained 1 <= 2. Now, leti € I(X, val,(u)). Then F(X,i) =
F(X,valy(u)) = X['. From 2 = 1, we obtain go - rep,(i)x = ¢;; hence, i € X].
Finally, leti € Xj’ . Then i = val,(«') with go - W' = g;. From 1 == 2, we obtain
F(X,i) = F(X, val,(u)); hence, i € I(X, val,(«)). Hence we have 3, which ends the
proof. O

3.6.5 First-Order Theory for Mixed Real and Integer Variables
in Base B and Biichi Automata

In order to obtain an analogue of the Biichi-Bruyere theorem for real numbers
represented in base B, we need a suitable logical structure for defining the so-called
B-definable subsets of R?. In this section we present the chosen logical structure.

Definition 3.6.30. Fora € A 8> we define a binary relation Xg , as follows. Suppose
thatx,y € R with dg(x) = x¢ -+~ X * X_1X_2 - - -, then X ,(x,y) if and only if y = B
for some i € Z, and eitheri > £ anda = O ori < £ and x; = a.

In other words, Xg ,(x, y) is true whenever y is an integer power of the base 8 and
the digit in “0dg(x) corresponding to this power is a. The notation “0 means that
we add infinitely many zeros to the right of the greedy representation dg(x). Note
that here we use the notation Xg ,(x, y) for (x,y) € Xg 4.

Recall that Zg is the set of B-integers; see Definition 3.6.11.

Definition 3.6.31. A subset of R? is B-definable if it is definable by a first-order
formula of

(R, +, <,Zp,Xp),

where Xj is the finite collection of binary predicates {Xg, | a € Aﬂ}.
Remark 3.6.32. x = 01is defined by x + x = x.

Remark 3.6.33. The property of being an integer power of S is definable in
(R, +,< ,Xp): xisapowerof B <= Xg(x,x). Note that the letter 1 always
belong to Ag since B > 1. If x is a power of $, then one can define the next (or the
previous) power of 8 as follows:
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¥ = px < (¥ is a power of B)
A > x)
A (Vy)((yisapowerof B A y>x) = y>X).
By adding the constant 1 to the structure, we can also define the properties of

being a positive or negative power of B by adding x > 1 or x < 1, respectively.
Consequently, any constant power of f is definable in (R, +, <, 1, Xg).

Lemma 3.6.34. The structures (R, +, <,1,Xg) and (R, +, <, Zg, Xp) are equiva-
lent.

Proof. On the one hand, z = 1 can be defined in (R, +, <, Zg, Xg) by the formula
ze€lg N [(Vx)((erﬂ A x>0) == sz)].
On the other hand, the set Zg can be defined in (R, +, <, 1, X;):

z€Zg < (Vy)[(visanegative power of ) = Xp0(z.y)].

Remark 3.6.35. Multiplication (or division) by B is S-definable:

y=Bx & (VD) )\ Kpalr.b) = Xpa(y.pD))].

aEAﬁ

Note that X ,(x, b) implies that b is an integer power of 8. Consequently, multipli-
cation (or division) by a constant power of § is S-definable.

Remark 3.6.36. The structures (R, 4+, <,1) and (R, 4+, <,Z) are not logically
equivalent : z = 1 is definable in (R, +, <,Z), whereas z € Z is not definable
in (R, 4, <, 1); see Proposition 3.6.38.

Let us characterize the subsets of R? that are definable in (R, +, <, 1) and in
(R, 4+, <, Z), respectively. We will make use of the following important result.

Theorem 3.6.37 ([221]). The structure (R,+,<,1) admits the elimination of
quantifiers.

A rational polyhedron of R? is the intersection of finitely many half-spaces
whose borders are hyperplanes whose equations have integer coefficients. These
sets are sometimes referred to as convex polytopes. Note that a rational polyhedron
is not necessarily bounded.

Proposition 3.6.38. The subsets of R? which are definable in (R, 4+, <, 1) are
the finite unions of rational polyhedra. In particular, the subsets of R which are
definable in (R, +, <, 1) are the finite unions of intervals with rational endpoints.
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Proof. From Theorem 3.6.37, a subset X of R? is definable in (R, 4, <, 1) if and
only if it can be expressed by a finite Boolean combination of linear constraints
with rational coefficients. Now consider an equivalent formula in disjunctive normal
form. This gives us the desired result. O

We end this section by a characterization of those subsets X of R? which are
definable in (R, 4+, <, Z). Note that the proof of this characterization depends on a
subsequent result (namely, Theorem 3.6.44).

Theorem 3.6.39. A subset X of R is definable in (R, +,<,Z) if and only if it is a
finite union of sets of the form X' + X¥, with X' C 7¢ definable in (Z,+, <) and
XF [0, 1)¢ definable in (R, +., <, 1).

Proof. Suppose that X = X! 4+ X where X/ C 7¢ is definable in (Z, +, <) and
XF € [0,1])¢ is definable in (R, +, <, 1). By Remark 3.6.36, X’ is definable in
(R, 4+, <.Z).If ¢(y1.....yq) is a first-order formula of (Z, +, <) defining X/, then
OO, Yd) Ay1 € Z A+ ANyg € Z is a first-order formula of (R, +, <,7)
defining X!, Thus the predicate (xi,...,xy) € X is definable in (R, +, <,Z) by
) Fy)@z) -Gzt =i+ A AXg = Yo+ 2a A1, V) €
X' A (z1,...,24) € XT). Finite unions of definable sets are always definable, in any
structure.

For the other direction, suppose that X C R? is definable in (R, 4+, <,7Z). By
Theorem 3.6.44, X is weakly b-recognizable for all b. By Theorem 3.6.29, X is a
finite union of sets of the form X/ + X, where X’ C 7 is such that rep,(X’)
is regular and X* C [0, 1]¢ is b-recognizable for all b. Then, by Theorem 3.2.28
(which can be adapted to Z¢ in a straightforward way), each X’ is semi-linear, hence
definable in (Z, 4+, <), and by Theorem 3.6.45, each X¥ is definable in (R, 4+, <,1).

O

Note that we have used Theorem 3.6.29, which is a stronger version of Theo-
rem 3.6.27. Indeed, we need the sets in the decomposition of X to be independent of
the base b.

Finally, in the particular case of bounded subsets of R, we have the following
characterizations.

Corollary 3.6.40. For any bounded subset X of R%, the following assertions are
equivalent.

1. X is definable in (R, +, <, 7).
2. X is definable in (R, +, <, 1).
3. X is a finite union of rational polyhedra.

Proof. This follows from Proposition 3.6.38 and Theorem 3.6.39. O
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3.6.6 Characterizing 3-Recognizable Sets Using Logic

The following theorem can be viewed as an analogue of Theorem 3.3.4 for real
numbers represented in real bases 8. Let us emphasize that the base  needs be a
Pisot number in order to recognize the addition. We do not present here the details
of the normalization in real Pisot bases, but the interested reader is referred to [145,
231].

Theorem 3.6.41 ([145]).

o If B is a Parry number, then every B-recognizable subset of R? is B-definable.
 If B is a Pisot number, then every B-definable subset of R? is B-recognizable.

In the context of the present chapter, the relevant direction is given by the
second assertion. Indeed, our aim is to build suitable DFAs starting from formule
expressing various properties of §-recognizable sets of numbers, in order to decide
whether a given set satisfies a given property. For this reason, we only give a proof
of the second assertion of Theorem 3.6.41. The interested reader will find a proof of
the other direction in [145].

Proof (of the second assertion). The proof goes by induction on the length of the
formula defining X. It is sufficient to discuss the logical operations —¢, ¢ V ¥, Ix¢
as all others can be obtained from these three. At each step of the induction, we need
to obtain Biichi automata for Sg(X)), ..., Sg(X,), where X1, ..., X, are the current
subsets of R in the recursive definition of X. Let @, ¥ be such that X,, X C R,
We have Sg(X-,) = Sg(R?) \ Sp(X,) and Ss(Xpvy) = Sp(X,) U Sp(Xy). If B is
a Biichi automata accepting Sg(Xy) where ¢ contains a free variable called x, then
the w-language L accepted by the Biichi automata obtained from % by deleting the
component corresponding to x in every label is such that 0*(0*) 'L = Sg(Xay).
The induction step then follows from Propositions 3.6.15 and 3.6.25 and from
the stability of w-regular languages under Boolean operations and projection on
components.

Let us verify that the atomic formule of (R, + <, Zg, Xg) are all B-recognizable.
We need B to be a Pisot number only for the addition to be B-recognizable
[229]. Now we suppose that B is a Parry number. By Proposition 3.6.25, R? is B-
recognizable for any dimension d. Let ¢ be a Biichi automaton accepting dg(R?)
(such an automaton exists by Proposition 3.6.19). The w-languages dg({(x,y) €
R* | x = y}) and ds({(x,y) € R*> | x < y})) are accepted by the intersections
of ¢4 with the Biichi automata of Figures 3.9 and 3.10, respectively. We have
dg(Zg) = dg(R) N (Aﬂ)"' * 0”. For each a € Aﬂ, dg(Xg ) is accepted by the
intersection of ¢ with the Biichi automaton represented in Figure 3.11. Finally, in
order to start the induction process, we have to build Biichi automata accepting
Sp({(x.y.2) € R* [ x +y = 2}), Sp({(x,y) € R* | x < y}), Sp(Zp), and Sp(Xg..),
which can be done thanks to Proposition 3.6.19. O
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{(a,a) |a € g U{x}}

g

Fig. 3.9 A Biichi automaton for the equality

{(a,a) |ae/1,3u{*}} (4g XAB)U{(*,*)}

_>8 {(a,b) € A x Ag | a < b} 8

Fig. 3.10 A Biichi automaton for the order

{(6,0) | b Ag} {(b,0) | b g}

{(b,0) [ be g} {(b,0) | bedg}

Fig. 3.11 A Biichi automaton for Xg ,

Corollary 3.6.42. If B is a Pisot number, then the first-order theory of (R, +,
<,Zg,Xp) is decidable.

Proof. A closed first-order formula of (R, +, <, Zg, Xg) is of the form Jxp(x) or
Vx¢(x). By Theorem 3.6.41, the sets X, = {x € R | ¢(x) is true} and X—, = {x €
R | ¢(x) is false} are B-recognizable. As the emptiness of an w-regular language is
decidable [476], we can decide whether X, is nonempty (resp. X—, is empty) and,
thus, whether Ixp(x) (resp. Vxp(x)) is true. O

Like Theorem 3.3.4, this result has many applications: any property of S-recogni-
zable sets that can be expressed by a first-order predicate in the structure (R, +,
<,Zg,Xp) is decidable. For example, it is decidable whether a B-recognizable
subset of R is a subgroup of R¢ with respect to the addition. As another example,
we are also able to decide topological properties of §-recognizable sets. Note that,
in this context, interesting examples of compact f-recognizable sets are given
by a class of fractal sets, called B-self-similar sets [1]. Indeed, it follows from
Theorem 3.6.56 below that B-self-similar sets are S-recognizable when S is Pisot.
This fact is highlighted in Remark 3.6.59.
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Proposition 3.6.43. If 8 is Pisot, then the following properties of B-recognizable
subsets X of R? are decidable: X has a nonempty interior, X is open, X is closed, X
is bounded, X is compact, X is dense.

Proof. Suppose that f is Pisot and let X be a 8-recognizable subset X of R? and let
¢ be a first-order formula of (R, 4+, <, Zg, Xg) defining X. For (xi,...,x4) € R4 and
e > 0, welet B(xy, ...,xz ¢) denote the set {(y;,...,vq) € R | —e < x; —y; <
&N -+ AN —& <xy—yy < &}. Clearly, the predicate (yy,...,yq) € B(xy,...,X4,€)
is expressible by a first-order formula of (R, +, <, ng,Xﬁ). Then, we can express
that X has a nonempty interior by the formula

@)+ @) (pCrr. o ox) A [ > 0) (Fyn)-+- (V)
((yl,...,yd) € B(xy,...,x4,8) = §0(y1,...,yd)):|>.

It is open if and only if

(V) (V) (g, oxa) = [@e > 0) (V) -+ (V)
(015 va) €B(xy, ..., x0.8) = (p(yl,...,yd))]).
It is closed if and only if it is not open. It is bounded if and only if
@R > 0) (Vx1)~--(‘v’xd)(<p(x1,...,xd) — (x1,...,%) € B(O,. ..,O,R)).

It is compact if and only if it is closed and bounded. Finally, it is dense if and only if

(Vx1) - (V) (Ve > 0)@y1) - @ya) (@O1s - ya) A G1s--..ya) € B(xi,....xq4.€)).

As those properties of X are all expressible by a closed first-order formula of
(R, +, <, Zg, Xg), they are decidable by Corollary 3.6.42. O

We note that, thanks to Proposition 3.6.17, the property of being closed can be
directly verified from a Biichi automaton recognizing the set under consideration.
Indeed, given a Biichi automaton accepting Sg(X), we can effectively compute a
DFA accepting Pref(Sg(X)). Then, by Proposition 3.6.8, this DFA seen as a Biichi
automaton accepts Sg(X) if and only if X is closed. As it is decidable if two
Biichi automata accept the same w-language [476], we can decide whether a -
recognizable set X is closed.
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3.6.7 Analogues of the Cobham—Semenov Theorem for Real
Numbers

Several analogues of Cobham’s theorem were obtained in the context of integer
base b representations of real numbers. In this section, we list some of them without
proof. We will show the connections between these results, as well as with The-
orem 3.6.61. This connection is achieved by using graph-directed iterated function
systems (GDIFS) and allows us to provide extensions of the abovementioned results:
Theorem 3.6.50 extends to R?, Theorem 3.6.61 extends to a large class of GDIFS,
and the logical characterization of b-recognizable sets of reals used for proving
Theorem 3.6.46 extends to the so-called Pisot real bases.

Theorem 3.6.44 ([95]). Let b and b’ be integer bases with different sets of prime
divisors. A subset of R¢ is simultaneously b-recognizable and b'-recognizable if and
only if it is definable in (R, +, <, 7).

The hypothesis of sharing no prime divisors is stronger than that of being
multiplicatively independent. In order to obtain an analogue of the Cobham theorem
for multiplicatively independent integer bases, we need an extra hypothesis, which
is the weak b-recognizability.

Theorem 3.6.45 ([94]). Let b and b’ be multiplicatively independent integer
bases. A subset of [0, 1] is simultaneously weakly b-recognizable and weakly b'-
recognizable if and only if it is definable in (R, 4, <, 1).

Note that, together with Theorems 3.6.29 and 3.2.28, Theorem 3.6.45 implies the
following result.

Theorem 3.6.46 ([94)). Let b and b’ be multiplicatively independent integer bases.
A subset of R? is simultaneously weakly b-recognizable and weakly b'-recognizable
if and only if it is definable in (R, +, <, Z).

In the particular case where d = 1 and we consider only compact subsets of
[0, 1], Theorem 3.6.45 is indeed another formulation of Theorem 3.6.50 below. To
state this result, we need a definition first.

Definition 3.6.47. A subset X of [0, l]d is b-self-similar if it is closed, and there are
finitely many sets of the form

X —t)n[o,1)¢

fora € Nand t € ([0,5%) N Z)<.

Example 3.6.48. The Pascal triangle modulo 2 (see Figure 3.12) is 2-self-similar. It
is the closure of the set {%(m, n) | (Z) = 1 mod 2, £ > |rep,(m,n)|}.

Example 3.6.49. The Menger sponge (see Figure 3.13) is 3-self-similar. It is the
closure of the set of points x € [0, 1]* such that rep;(x) does not contain any of the
digits (0,1, 1), (1,0, 1), (1,1,0), (1,1, 1).
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Fig. 3.12 The Pascal triangle modulo 2

Fig. 3.13 The Menger sponge

Theorem 3.6.50 ([1]). Let b,b’ > 2 be multiplicatively independent integers. A
compact subset of [0, 1] is simultaneously b-self-similar and b'-self-similar if and
only if it is a finite union of closed intervals with rational endpoints.

The object of the next section is to study the connection between Theo-
rems 3.6.45 and 3.6.50.

3.6.8 Linking Biichi Automata, B-Self-Similarity and GDIFS

We generalize Definition 3.6.47 to real bases 8. The set of polynomials in 8 with
integer coefficients is denoted by Z[B]. Note that it is not equal to the set Zg of
B-integers as, for example, d,(¢ — 1) = 0 %« 10, hence ¢ — 1 € Z[¢p] \ Z,.

Definition 3.6.51. A subset X of [0, E1=1]" is B-self-similar if it is closed, and
there are only finitely many sets of the ff‘)rm

81— l]d’

(,B“X—t)ﬂ[O, 5

fora € Nand t € ([0, 18151 go) N Z[g])”.
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Definition 3.6.52. A graph-directed iterated function system (GDIFS for short) is
given by a 4-tuple

(V, E, Xy, veV), (¢., e€E))

where (V, E) is a connected digraph such that each vertex has at least one outgoing
edge, for each v € V, X, is a metric space and, for each e € E,;, ¢.: X, - X, is a
contraction map, where E,, denotes the set of edges in E from u to v.

Theorem 3.6.53 ([208, 306]). For each GDIFS (V, E, (X,, v € V), (¢., e € E))
on complete metric spaces X,, there is a unique list of nonempty compact subsets
(Ky, u € V) such that, forallu € V, K, C X, and

k.= U ¢k

vEV e€Ey,

Definition 3.6.54. The attractor of a GDIFS on complete metric spaces is the list
of nonempty compact subsets from Theorem 3.6.53.

We will use the following result.

Theorem 3.6.55 ([70, 231]). The sets [ﬁicl , ﬂi]] N Z[B] are finite for all ¢ € N if
and only if B is a Pisot number.

Theorem 3.6.56 ([145]). Let B be a Pisot number. For any compact subset X of
[0 [B1-1
E) IB_

1
1. There is a Biichi automaton <f over the alphabet Aﬂd such that valg (0xL(#)) =
X.
2. X belongs to the attractor of a GDIFS on R¢ whose contraction maps are of the
form X — ’%t with t € Aﬂd.
3. X is B-self-similar.

]d, the following are equivalent:

Proof. 1 — 2.Let <&/ = (0, qo, F, Aﬂd, 8) be a trim Biichi automaton such that
valg(0xL(2/)) = X. Because X is closed and valg is continuous, we may suppose
that Q = F, i.e., that all states are final. The GDIFS on R? we build is obtained
from .o/ by replacing each label t € A by the contraction map x — **. For
all ¢ € Q, let L, denote the set of infinite words accepted from ¢ in &/, and let
X, = {valg(0Oxw) | w € L,}. We claim that (X,, g € Q) is the attractor of this
GDIFS. This is sufficient as X = X,,. The fact that </ is trim and contains only
final states implies that the subsets X, are closed and nonempty. Moreover, they
-1

satisfy X, € [0, [g%]d Then, by Theorem 3.6.53, it suffices to show that the list

(X,, g € Q) satisfies

Ve Q. X,=|J UlX,,th).

B
€0 t
g qa>p
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This follows from the following two observations:

VgeQ. L= U tL,
pEQ
valﬂ(O*w) +t
5 )

2 = 1.Let (K,, v € V) be the attractor of a GDIFS on R? whose contraction
maps are of the form x +— XT—H witht € A ﬂd and suppose that X = K, for some v, €

Vw e (Af)°. Vte A, valg(Oxtw) =

V. Let & be the Biichi automaton (V, vy, V, A ﬂd, 8) where the transitions correspond
to the edges of the GDIFS in which we have replaced the labels XTH by t. As the
underlying digraph of a GDIFS is connected and such that there is at least one
outgoing edge starting from each vertex, the Biichi automaton <7 is trim. Then,
from the proof of I = 2, we obtain that K, = {valg(0xw) | w € L,} for all
v € V (where L, is defined as before); hence, X = {valg(0xw) | w € L(#)}.

2 = 3.Let(K,, v € V) be the attractor of a GDIFS on R whose contraction

maps are of the form Si: X XTH witht € A ﬁd, and suppose that X = K, for some

vo € V. For all vertices u and v, we let E', denote the set of words of length £