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Abstract
Characteristic for much of the electronic behavior in solids is the existence of
energy bands, separated by bandgaps. The bands are permitted for occupation
with carriers, and their origin can be described by two complementary models.
The proximity approach considers the effect of the neighborhood in a solid on the
energy levels of an isolated atom; this model is particularly suited for organic
semiconductors, amorphous semiconductors, and clusters of atoms. The period-
icity approach emphasizes the long-range periodicity of the potential in a crystal.
Electrons near the lower edge of a band in a crystal behave akin to electrons in
vacuum; the influence of the crystal potential is expressed by an effective electron
mass which increases with increasing distance from the band edge. This chapter
describes the basic elements of the electronic band structure in solids.
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1 Approaches for Modeling

Electronic transitions in energy and in space are the basic processes of interest in
semiconductor physics. The first group is responsible for the large variety of
excitation and de-excitation (recombination) processes; the second must be con-
sidered for carrier transport. Both are characterized by quantum-mechanical fea-
tures: the spectrum of electronic energy states (eigenstates), the distribution of
electrons over these states, and the interactions that cause changes in this
distribution.

The general principles that yield the spectrum of energy states typical for the solid
semiconductor are discussed first. The main features of this spectrum are obtained
using two apparently different models, which both are applied to describe crystals.
The first model, referred to as the proximity approach, starts from individual atoms
and its immediate neighborhood and expands with less and less attention to the
atomistic structure the further one extends from the origin. This approach is also
successfully used for amorphous semiconductors. The second model, the periodicity
approach, is at first view rather insensitive to the detailed properties of individual
atoms but considers the long-range periodicity of a crystalline lattice. Both yield
similar qualitative results: spectra of broad, permitted ranges of energy which, in
space, extend as bands throughout the entire semiconductor and which are inter-
spersed with forbidden ranges.

In this chapter both the proximity and the periodicity approach are presented, and
common features along with some of the differences in the results are pointed out.
The discussion starts from a rather heuristic description and introduces sequentially
more sophisticated elements.

1.1 The Proximity Approach

In a simple first step, the exchange of electrons between two atoms can be made
plausible by considering the splitting of eigenstates of degenerate oscillators, i.e.,
oscillator states having the same eigenfrequency, when they become coupled with
each other. This splitting increases as the coupling gets stronger, corresponding to a
closer approach of two atoms. The addition of more atoms of the same kind at
increased distances splits the energy levels into more levels which span a range of
energies. If the levels are spaced closely enough, Heisenberg’s uncertainty principle
no longer permits distinction between the individual levels.1 In this case, one obtains

1Applying ΔEΔt ffi ħ and relating Δt to the time an electron resides at a sufficiently high energy
level Eik (later identified as belonging to an upper band), an uncertainty ofΔE results. The timeΔt is
related to scattering (see ▶ Sect. 2 in chapter “Carrier-Transport Equations”); the electron is
removed from this level after λ/vrms � 10�12 s, yielding an uncertainty of ~1 meV, which is on
the same order as the splitting provided by only 104 atoms (assuming a band width of ~1 eVand an
equidistant splitting of 1 level per added atom – that is, within a crystallite of <100 Å diameter.
With larger crystallites the splitting is even closer and results in a level continuum.
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an allowed energy range in a sufficiently large cluster of atoms, instead of a discrete
energy-level spectrum of a single atom or an aggregate of a few atoms – see Fig. 5.
Since outer shell electrons can be exchanged more easily, the energy ranges created
from valence electrons will be wider than the ranges created from the shielded inner
electrons. The latter will more closely resemble the discrete eigenstates of isolated
atoms. Since the same atoms behave alike, this allowed energy range extends
throughout the crystal. In two dimensions (x,E) one therefore can draw allowed
energy bands separated by forbidden gaps (Fig. 1).

In Fig. 1 the total electron energy is drawn disregarding the potential energy that
an electron experiences when separated from an individual atom, which is shown in
Fig. 2 for a single atom (upper curve, in green) and for a small one-dimensional
cluster (blue curve). The band model emphasizes the collective behavior, i.e., the
sharing of the electron among the atoms of the cluster. The potential distribution
picture, on the other hand, emphasizes the localization of an electron within each
potential funnel. Both pictures are valid: the band picture is more relevant for higher
bands, while the potential picture is more relevant for lower (core) levels.

When the band picture is superimposed to the picture of the individual potentials
of many adjacent atoms (Fig. 3), we recognize that the semiclassical approach, in
which electrons may only move above potential barriers, is inappropriate, since
bands indicate that electronic exchange exists well below the crest of the barriers.
The origin of the electron transfer through such barriers is tunneling, i.e., a quantum-
mechanical exchange, – see ▶ Sect. 2.3 in chapter “Carrier Generation.”

This heuristic approach will now be expanded to motivate the formation of bands
in a more appropriate quantum-mechanical analysis. The analysis is first applied to a

Fig. 1 (a) Splitting of
eigenstates when two atoms
have approached each other.
(b) Simple band model of a
crystal consisting of many
atoms

Fig. 2 Potential energy of an
electron in an atom (green
curve) and of an electron in an
atomic cluster (blue curve);
red dots below the abscissa
indicate positions of atom
cores
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cluster of atoms that forms the building block of an amorphous semiconductor and
then to a periodic lattice.

1.1.1 Electronic Structure of Amorphous Semiconductors
The electron energy depends sensitively on the interatomic distance and bond angle,
as shown for a simple H2 and an H2O molecule in Fig. 4. The bonding and
antibonding curves reflect antiparallel and parallel spin of the electrons in the
bonds, respectively.

The electronic structure of an amorphous or crystalline solid can be obtained by
starting from an arbitrary atom and including more and more neighbors in an
appropriate configuration; the eigenfunctions of such a cluster are determined by
solving its Schrödinger equation. This is referred to as a tight-binding approach.
Solutions can be obtained numerically, using reasonable approximations (Reitz
1955; Heine 1980; Slater and Johnson 1972; Kaplan and Mahanti 1995 – see also

Fig. 3 Potential energy and eigenstates of electrons in (a) an atom and (b) a small crystal

Fig. 4 Electron energy as a function of (a) the interatomic distance of a hydrogen molecule and (b)
the bond angle in H2O
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chapter ▶ “Quantum Mechanics of Electrons in Crystals”). The analysis can be
described as that for a large molecule of, say, 20–50 atoms and delivers a spectrum
of energy eigenvalues that, when the cluster is large enough, presents a valuable
estimate of the energy bands of the solid.

Several Si atoms which form such a cluster produce the typical sp3 bonding
and antibonding states that are generated when the atoms are close enough – see
▶ Sect. 1.2 and ▶ Fig. 6 in chapter “Crystal Bonding.” For a small cluster of Si
atoms in an “amorphous configuration” (▶ Sect. 3.2 in chapter “The Structure of
Semiconductors”), we calculate an eigenvalue spectrum (Fig. 5a) and see that the
proximity to other Si atoms significantly changes and splits the atomic levels (shown
on the left). They are split by a large amount and are distributed unevenly in energy.
A much larger number of atoms, however, are required to create a truly band-like
level distribution. The spectrum changes significantly when hydrogen is added to
this cluster, which forms a bridging hydrogen structure (Ovshinsky and Adler 1978).
It removes states from the gap of α-Si and thereby increases the bandgap from 1.3 eV
for α-Si to 1.7 eV for the technically more interesting, hydrogenated α-Si:H
(Eberhart et al. 1982; Street 2005).

When more atoms of the same kind are incorporated within such a cluster, more
levels appear within the two bands, i.e., within the range of bonding and

Fig. 5 Electron energy-level distribution for bonding (valence band) and antibonding (conduction
band) states of a 17-atom cluster and optical density of states (see ▶ Sect. 1 in chapter “Band-to-
Band Transitions”) for (a) α-Si and (b) α-Si:H. Amorphous silicon α-Si is modeled by a Si-(SiH3)4
cluster denoted Si5(sat)12 with a central Si bond to 4 Si, each of which is saturated by 3 H. In the
hydrogenated cluster 1 H atom is substituted for 1 Si, yielding a SiH-(SiH3)3 cluster corresponding
to a Si:16% H alloy. Principal hydrogen-induced levels are marked in green and labeled according
to the H contribution in the molecular orbitals (After Johnson et al. 1980). The agreement with the
experimental bandgap of such a small cluster is spurious, however, and should not be over-
evaluated. The calculated bandgap depends substantially on the boundary conditions
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antibonding states. These bands have been labeled in Fig. 5 as the conduction and
valence bands; for more detailed definitions, see ▶ Sect. 1 in chapter “Bands and
Bandgaps in Solids.” The finite-cluster approach always overestimates the
bandgap energy, since, by necessity, this approach omits states present which
are far away from the center in k space and in direct bandgap materials (▶ Sect. 2
in chapter “Band-to-Band Transitions”) lie near the edges of the bandgap.

From these examples, we can deduce that some information about the energy
width of the upper energy bands and the bandgap can be obtained from clusters
containing only ~50 atoms in an appropriate structural configuration. That is, the
outer atoms must be kept artificially at positions they would attain when interacting
with the surrounding atoms within a much larger amorphous network of atoms. The
level distribution within a band, however, is poorly represented by such small
clusters. The incorporation of many more atoms presents major computational
problems for amorphous semiconductors; however, this problem becomes exceed-
ingly simple in the periodic lattice of a crystalline semiconductor. For more reading,
see Adler (1985), Agarwal (1995), Beeby and Hayes (1989), Shinozuka (1999), and
Singh and Shimakawa (2003).

1.2 The Periodicity Approach

The behavior of electrons in a semiconductor can be approximated by assuming that
they are nearly free electrons but interact with the periodic potential that simulates
the lattice. In order to distinguish the influence of this periodic potential, one should
first recall the behavior of a free electron with mass m0in vacuum. This is determined
by the solution of the Schrödinger equation

@2

@r2
ψ þ 2m0

ħ2
Eψ ¼ 0, (1)

which can be described by an electron wave

ψ rð Þ ¼ Aexp �ik � rð Þ, (2)

with A as an amplitude factor. The wavevector k relates to electron momentum and
energy as

k ¼ m0v

ħ
¼ p

ħ
, E ¼ m0

2
v2 ¼ p2

2m0

¼ ħ2k2

2m0

, (3)

or, more accurately, to the expectation value of the momentum given by

ph i ¼
ð1
�1

ψ� ħ
i

@

@r
ψ dr ¼ ħk

ð1
�1

ψ�ψ ¼ ħk: (4)

The wavevector k is the reduced wavevector – see the discussion later in this section
and Fig. 13. Hence, E(p) or E(k) is described by a three-dimensional paraboloid
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(by a parabola in one relevant coordinate) with one electronic parameter, the electron
rest mass m0.

Equation 2 represents an electron wave with a wavelength, the de Broglie
wavelength,2 of

λDB ¼ 2π

k
¼ h

pj j ¼
h

m0v
¼ 7:27

v cm=sð Þ cmð Þ (5)

or, when introducing the electron energy from Eq. 3,

λDB ¼ hffiffiffiffiffiffiffiffiffiffiffi
2m0E

p ¼ 12:26ffiffiffiffiffiffiffiffiffiffiffiffiffi
E eVð Þp Åð Þ: (6)

An electron in the lattice, i.e., when it is exposed to a periodic potential, no longer
behaves like a free particle: it experiences interference from the lattice potential
when, with increasing electron energy, its de Broglie wavelength becomes compa-
rable to the lattice constant. The ensuing Bragg reflections prohibit a further accel-
eration of the electron, described later in more detail. This simple discussion also
indicates the existence of a finite energy range, the energy band in a semiconductor.
Near the bottom band edges, the electron behaves to some extent like a free electron,
i.e., like a classical particle. The quantum-mechanical nature becomes evident when
it gains energy in an electric field or is forced to occupy higher states. At energies of
4 eV, the de Broglie wavelength is 6 Å, i.e., small enough to permit interference
effects within the periodic potential of the lattice. This plausibility argument can be
substantiated by describing the electron with a wave equation, the Schrödinger
equation, and by introducing into the Schrödinger equation a periodic potential V(r),

@2

@r2
ψ þ 2m0

ħ2
E kð Þ � V rð Þð Þ ψ ¼ 0: (7)

The solutions of this Schrödinger equation are so-called Bloch functions which
can be expressed as a linear combination of waves

ψn k, rð Þ ¼ un k, rð Þexp i k � rð Þ, (8)

with n as the band index specifying a certain band. The waves are plane waves with a
space-dependent amplitude factor un(k,r), which shows lattice periodicity (Bloch’s
theorem, 1928; see ▶ Sect. 1.2 in chapter “Quantum Mechanics of Electrons in
Crystals”). A one-dimensional schematic representation is given in Fig. 6 to indicate
the relationship between the lattice potential V(r) and the Bloch function ψn(k,r),

2The de Broglie wavelength is on the same order of magnitude as the uncertainty distance obtained
from Heisenberg’s uncertainty principle Δx � ħ/Δpx, which has the same form as λDB. This yields
uncertainty distances of 10 Å for thermal (free) electrons at room temperature.
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which contains un(k,r) and the plane wavefunction of the electron exp(ik � r), to
construct the electron wavefunction (Harrison 1980a).

Inserting Eq. 8 into Eq. 7, we obtain the result that solutions exist only for
certain ranges of the electron energy En(k), which are interspersed with energy
ranges in which real solutions do not exist. This confirms the previously obtained
results that the energy spectrum in a solid consists of alternating allowed and
forbidden energy ranges (energy bands). The periodic-potential approach, how-
ever, gives additional information that can be demonstrated readily in a simple
one-dimensional model.

1.2.1 The Kronig-Penney Model
An enormously simplified periodic potential V(x) is sufficient for introduction into Eq. 9
to show the typical behavior. This is the Kronig-Penney potential (Kronig and Penney
1931),3 which is shown in Fig. 7. Since the discussion of this behavior is rather
transparent, it will be used here for an introduction to the basic features of the bandmodel.

Introducing Eq. 8 into Eq. 7 for one relevant dimension, we see that u(x) must
satisfy

Fig. 6 A schematic representation of electronic eigenstates in a crystal. (a) The potential V(r)
plotted along a row of atoms; (b) u(k,r), which has the periodicity of the lattice; (c) a plane electron
wave, the real part of which is shown to construct the electron wavefunction; and (d) a Bloch
function; the state itself is complex, and only the real part is shown. The Bloch function is composed
of the product of (b) and (c)

3In one dimension, there are other periodic potentials for which the Schrödinger equation can be
integrated explicitly. V(x) = �V0 sech

2(γx) is one such potential, which yields solutions in terms of
hypergeometric functions (see Mills and Montroll 1970). The results are quite similar to the Kronig-
Penney potential.
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d2u

dx2
þ 2ik

du

dx
� k2 � 2m0 E� V xð Þ½ 	

ħ2

� �
u ¼ 0: (9)

We can split Eq. 9 after the introduction of the Kronig-Penney potential into two
differential equations: one for the bottom of the well and one for the top of the barrier
with a potential V = V0. The solutions in each part can be expressed as the sum of
two waves:

u1 xð Þ ¼ Aexp i α� kð Þx½ 	 þ Bexp �i αþ kð Þx½ 	 for 0 < x < a1
u2 xð Þ ¼ Cexp i β � kð Þx½ 	 þ Dexp �i β þ kð Þx½ 	 for � a2 < x < 0,

(10)

where α and β are the k values for a free electron in vacuum, for V = 0, and for a
constant barrier potential V0, respectively:

α ¼
ffiffiffiffiffiffiffiffiffiffiffi
2m0E

ħ2

r
and β ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 V0 � Eð Þ

ħ2

s
: (11)

The integration constants can be determined by the continuity requirements of u(x)
and its first derivatives at x = al and x = a2, which yield4

� α2 � β2

2αβ
sin αa1ð Þsinh βa2ð Þ þ cos αa1ð Þcosh βa2ð Þ ¼ cos kað Þ: (12)

Equation 12 provides the dispersion relation E(k) (E is contained in α and β).
The dispersion relation is the key to many discussions of electronic properties in

solids. Since the wavenumber k is proportional to the electron momentum (Eq. 3),
the dispersion equation relates the electron energy to mass and velocity, both of
which are essential for understanding the specific behavior of electrons in a semi-
conductor. This will be explained in detail in several of the following sections.

Fig. 7 Kronig-Penney
potential with V0 the barrier
height, al and a2 the well and
barrier widths, respectively

4For E > V0, the square root in β becomes imaginary. Introducing γ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 e� V0ð Þ=ħ2

q
and with

sinh(iγ) = i sinγ and cosh(iγ) = i cosγ, we obtain for higher electron energies a similar equation:

� γ2 þ α2

2αγ
sin γa2ð Þ sin αa1ð Þ þ cos γa2ð Þ cos αa1ð Þ ¼ cos kað Þ:

1 Approaches for Modeling 191



Equation 12 reveals that a sequence of allowed energy ranges (bands) is inter-
spersed with forbidden energy ranges: energy gaps are formed when the left-hand side
(LHS) of Eq. 12 exceeds�1, which are the limiting values of the equation’s right-hand
side. In Fig. 8 the hatched ranges show the energy bands; no solution of the
Schrödinger equation can be found between the bands for real values of k. This picture
describes a situation between a free electron in vacuum, where all energies are
permitted, and an electron bound to an isolated atom, where the permitted energy
ranges shrink to a set of discrete energy levels. The height and width of the potential
barriers and wells (al, a2, and V0) determine whether an electron behaves more like an
electron bound to a single atom (large a2/a1 and V0) or more like a free electron in
vacuum (small a2 and V0); see Fig. 9. In the latter example the permitted ranges extend
over a wider energy range.

More information can be deduced from the E(k) behavior within each of the
permitted energy ranges shown in Fig. 10. At the bottom of the first permitted energy
range, E(k) is nearly parabolic. Then Emoves with increasing k through an inflection

Fig. 8 Left-hand side (LHS)
of Eq. 12 as a function of
E (contained in α and β),
computed for a1 = 6 Å,
a2 = 1.2 Å, and V0 = 10 eV

Fig. 9 LHS as in Fig. 8, but for two different values of the parameter V0 (10 eV for curve labeled
“outer electrons” and 40 eV for “inner electrons” – other parameters as in Fig. 8), indicating the
reduced width of the permitted bands for higher potential barriers (i.e., for inner electrons that are
more tightly bound) represented by encircled green bars at the E axis
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point and, at the top of this range, becomes nearly parabolic again but with a negative
curvature.

Compared to the parabola of the free electron, the lower part of the E(k) curve is
raised. At the upper edge of the first allowed range, i.e., at k = �π/a, the curve
coincides again with the free electron parabola. The next permitted band starts after a
jump in E from E1 to E2 at k = �π/a and has a similar E(k) behavior as the first
energy band, except that the curvatures are larger at the bottom and top of the band.
The top is reached at k = �2π/a, where again a jump of E occurs, from E2 to E3, etc.
(Fig. 10). This behavior continues for higher bands with broader allowed bands,
gradually increased curvature at the bottom and the top, and narrower bandgaps.
Figure 10 also contains E(k) for the free electron (Eq. 3), which is parabolic in the
entire E(k) range.

This general behavior is independent of the actual shape of the periodic potential
as long as it has sufficient strength. Although periodicity of V(x) is a necessary – but
not sufficient – condition for energy bands with interspersed forbidden gaps, it so
happens that in solids, for inner shell electrons, the potential barriers are sufficiently
high to cause rather narrow, lower bands. Electrons at sufficiently high energies
occupy wider bands and behave more like free electrons: they can move readily
through the lattice. They will, however, be subject to interference with the periodic
lattice potential (see Sect. 2.2).

When analyzing the effect of a three-dimensional periodic potential and using a
real lattice potential, the actual E(k) behavior becomes more complex; however, it
still maintains the basic features of energy bands interspersed with bandgaps.
This fundamental behavior is the basis for the electronic behavior of semiconductors
and is described in more detail in many textbooks of solid state physics, e.g.,
Anderson (1963), Ashcroft and Mermin (1976), Bube (1992), Callaway (1976),
Fletcher (1971), Harrison (1980b), Haug (1972), Kittel (2007), Marder (2010), and
Ziman (1972).

Fig. 10 (a) As Fig. 8,
however, for a larger al/a2
ratio. (b) E(k) for a free
electron (parabola) and for a
Kronig-Penney potential in an
extended wavenumber E(k)
representation. Bottom
segments of the bands shown
at the right indicate the
increased curvature at the
edge of higher bands
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1.3 Periodicity Versus Proximity Approach

The proximity of a sufficient number of atoms and the periodic lattice structure
of a crystal both lead to allowed energy bands interspaced by bandgaps. We may
use one or the other picture to obtain further information about the band
structure.

The periodic lattice-structure approach is more suited for obtaining the specific E
(k) structure of the inner part of the band (near k = 0) which cannot be obtained from
the proximity approach. It reflects the symmetry of the lattice and allows for
obtaining the results in the most economical way. Its results, however, are restricted
to periodic lattices, i.e., to crystals. This refers specifically to interference phenom-
ena involving diffraction from further-than-nearest and next-nearest neighbor dis-
tances. These distances, however, can still be discerned in the x-ray diffraction of
amorphous semiconductors and therefore may also be expected to influence electron
behavior further away from k = 0.

The proximity approach can be used to obtain some information about the inside of
the bands for first orientation. However, the inadvertent inclusion of artificial states at
the surface of the cluster and the requirement for an extremely large cluster size to
provide band states close to the band edges have been the handicaps of this approach.

A supershell approach is sometimes used to avoid some of the shortcomings of
the periodic lattice and proximity approaches. This approach takes a cluster of
sufficient size and repeats it periodically until the entire crystal volume is filled. In
this way the mathematical methods developed for studying periodic lattices can be
used, while certain elements of an amorphous structure are included in the cluster.
The error due to the forced adjustment of each cluster can be minimized by
increasing the size of the cluster.

Many of these results are important for understanding the behavior of metals
(e.g., overlapping bands), but will not be discussed here. Other results relate to
semiconductors, including semiconductor-metal transitions (see ▶ Sect. 3 in chapter
“Equilibrium Statistics of Carriers”). Some heuristic examples of near-band-edge
properties are given below.

1.3.1 Band-Edge Fluctuation
The ideal periodicity of a crystal lattice can be modified for a number of reasons,
among them lattice oscillations or displaced lattice atoms. An amorphous semicon-
ductor, for example, may be described by having frozen-in large fluctuations of the
interatomic distances and bond angles. In some respects such structures are “almost
crystalline,” but with slightly changing lattice parameters, occurring particularly in
the third-neighbor distance and beyond; see Fig. 29 in chapter ▶ “The Structure of
Semiconductors”. The good short-range order in an amorphous semiconductor leads
to a band structure comparable to that of a perfectly ordered crystal; however, a
lattice with a different lattice constant causes a different E(k) with a different width
of allowed bands and gaps. Therefore, we expect variations of the band edges in time
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and space.5 Rather than being perfectly straight, the band edge becomes perturbed.
Over a time average, and the band edge appears to be fuzzed out (Fig. 11). For
further detail see chapter ▶ “Defects in Amorphous and Organic Semiconductors.”

1.3.2 Discrete Defect Level in the Bandgap
When a local deviation from the ideal lattice structure is sufficiently large, the
eigenstate of a disordered atom may lie within the bandgap. A plausibility argument
may be obtained from the proximity model.

Assume an extra atom is incorporated in an interstitial site of the lattice (later
discussed in ▶ Sect. 2.1 in chapter “Crystal Defects”). This extra atom is much
closer to its neighbors; the exchange frequency is substantially larger than that for
the nearest neighbors which yield the largest exchange frequency in an ideal lattice
(equivalent to the band edges). Thus, the eigenstates of this interstitial atom, here an
intrinsic point defect, and its nearest neighbors lie outside of the allowed bands of the
ideal lattice, i.e., within the bandgaps (Fig. 12).

Energy states within the gap are localized at the position of this lattice defect (x0
in Fig. 12) and play an important role in localizing (trapping) electrons in real
crystals (see ▶ Sect. 2 in chapter “Deep-Level Centers”) and in amorphous semi-
conductors. It also becomes reasonable to expect an energy distribution of such
localized (trap) levels in the gap near the band edge, when taking into consideration
that in crystalline and amorphous semiconductors a wide variety of lattice imper-
fections and lattice parameter variations are observed. In ▶ Sect. 3 of chapter
“Optical Properties of Defects” and in chapter ▶ “Defects in Amorphous and
Organic Semiconductors”we will return to this level distribution near the band edge.

Fig. 11 (a) Perturbed and (b) fuzzed-out band edges in a crystal with phonons and in an
amorphous semiconductor

5This concept must be used with caution, since k is a good quantum number only when electrons
can move without scattering over at least several lattice distances. That is certainly not the case in
most amorphous semiconductors near the “band edge” (see ▶ Sect. 4 in chapter “Carrier Transport
Induced and Controlled by Defects”). However, at higher energies further inside the band, there is
some evidence that the mean free path (▶ Sect. 2 in chapter “Carrier-Transport Equations”) is much
larger than the interatomic distance even in amorphous semiconductors. In bringing the two
approaches together, the argument presented here lacks rigor and has plausibility only in terms of
correspondence.
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2 The Reduced k Vector

A general feature of the solutions of the Schrödinger equation is the periodicity of E
(k), illustrated in Fig. 13b. The figure shows the periodicity in k along kx with a
period length of kxa = 2π. This means that a shift of the solution E(kx) by 2π/a in kx
represents the same behavior. Fig. 13a contains a copy of Fig. 10, indicating the
relation to the periodicity of E(k) shown in Fig. 13b. Any full segment of the periodic
representation is a reduced k-vector representation. One such segment is shown
within the first Brillouin zone in Fig. 13c, i.e., within – π/a < kx < π/a. For a three-
dimensional lattice, the reduced representation is discussed in ▶ Sect. 4 in chapter
“Quantum Mechanics of Electrons in Crystals.”

The reduced representation E(k) shows an alternating sign of the curvature at the
edge of each band at k = 0. It is positive for the first band, negative for the second,
etc. This interesting peculiarity occurs in real crystals in a somewhat similar fashion,
although is more complex because of a multiplicity of bands, as will be discussed in
▶ Sect. 1.2 in chapter “Bands and Bandgaps in Solids.”

It is instructive to look at an enlarged detail of Fig. 13 as shown in Fig. 14d. This
figure can be constructed from two parabolas of free electrons, shifted by 2π

a – a situation
that can be thought of by inserting a lattice into the vacuum, although with vanishing
lattice potential (an empty lattice– see ▶Sect. 4.1 in chapter “Quantum Mechanics of
Electrons in Crystals”). The electron in each reference system is described by its
corresponding parabola (subfigure 14c). When interacting through a periodic perturba-
tion potential of amplitude U0, the crossing of both E(k) parabolas is eliminated and a
splitting occurs with a gap of the order of j2 U0j, as shown in subfigures b and d.

2.1 Newtonian Description of a Quasi-Free Electron

In many discussions about electron behavior in solids, a classical particle picture is
used rather than the quantum-mechanical one of a wave packet; it is often more
intuitive. Electrons behave like little balls, “sliding down” a potential hill and
“scattering” upon collision with an atomic lattice defect. The picture is justified by
using Bohr’s correspondence principle near the bottom of the conduction band

Fig. 12 Simple intrinsic
atomic interstitial (i.e., an
atom being chemically
identical to the atoms of the
crystal) in an idealized lattice
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(the band in which electron conduction takes place). However, since not all of the
electron behavior can be described by this model, as explained in the previous
section, we can account for the modification by incorporating the information
obtained from its dual nature as a wave into one of its classical parameters –
its mass.

An electron, regarded as a classical (Newtonian) particle, has a momentum

p ¼ m0v and a kinetic energy E ¼ m0

2
v2 ¼ p2

2m0

: (13)

Relativistic effects are excluded here (i.e., v 
 c is assumed): the electron mass is its
rest mass m0. The velocity of such a particle changes with time in response to an
acting force F (Newton’s second law):

dp

dt
¼ m0

dv

dt
¼ F : (14)

On the other hand, an electron in vacuum, regarded as a wave, has

Fig. 13 Comparison
between: (a) extended
wavenumber k, (b) periodic,
and (c) reduced wavenumber
representations of E(k)
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a momentum p ¼ ħk and an energy E ¼ p2

2m0

¼ ħ2 k2

2m0

: (15)

When exposed to a force, such as that supplied by an electric field jEj, and with
F = �ejEj, its momentum increases accordingly:

dp

dt
¼ ħ

dk

dt
¼ F : (16)

When the electron is described as a wave packet, its velocity is the group velocity6

Fig. 14 (a) E(k) for a free electron. (b) Splitting of E(k) if a small periodic field is introduced. (c)
Free electron in an empty lattice. (d) E(k) of the original parabola, disturbed by the periodic-
potential perturbation (compare with Fig. 13a)

6In an infinite crystal, the electron (when not interacting with a localized defect) is not localized and
is described by a simple wavefunction (i.e., having one wavelength and the same amplitude
throughout the crystal). The probability of finding it is the same throughout the crystal (/ψ2).
When localized, the electron is represented by a superposition of several wavefunctions of slightly
different wavelengths. The superposition of these wavefunctions is referred to as a wave packet. A

moving electron is represented by a moving wave packet ψ ¼ 1
2δk

ðkþδk

k�δk
u x, kð Þexp i kx� ωtð Þð Þdk

which quickly spreads out over time. It has its maximum at a position x ¼ 1
ħ
@E
@k t, yielding for the

group velocity, i.e., the velocity of the maximum of the wave packet, vg ¼ @x
@t ¼ 1

ħ
@E
@k. With E = ħω,

we obtain vg ¼ @ω
@k .
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vg ¼ @ω

@k
¼ 1

ħ
@E

@k
: (17)

Applying Newton’s law to such an electron wave packet (in a relation similar to
Eq. 14),

m0

dvg
dt

¼ F , (18)

and with

dvg
dt

¼ 1

ħ
d

dt

@E

@k

� �
¼ 1

ħ
@2E

@k2
dk

dt
¼ 1

ħ2
@2E

@k2
F , (19)

we see by comparison with Eq. 18 that the factor preceding F has the dimension of
an inverse mass. This factor is proportional to the curvature of E(k).

2.2 The Effective Mass

If we want to retain the Newtonian behavior, we have to replace the electron mass m0

in Eq. 18 with the effective electron mass when comparing Eqs. 18 and 197:

m� ¼ ħ2

@2E

@k2

: (20)

This effective mass contains the peculiarities of the interaction of the electron with
the lattice (the superscript * distinguishes this mass from the rest mass). However, a
possibly important part caused by the adiabatic approximation (see Born-
Oppenheimer approximation ▶ Sect. 1.1 in chapter “Quantum Mechanics of Elec-
trons in Crystals”) is missing. The influence of this part is discussed in▶ Sect. 1.2 in
chapter “Carrier-Transport Equations” and can be described by a different effective
mass – the polaron mass.

From Fig. 10, we see that the effective electron mass at the lower edge of the third
band, here assumed to harbor free electrons (see ▶ Sect. 1.1 in chapter “Bands and
Bandgaps in Solids”), is smaller than the rest mass of a free electron, since the
curvature of E(k) is larger here. At higher energies within the band, this curvature
decreases, changes sign, and, at the upper edge of the band, becomes negative

7For the electron behavior, only expectation values can be given. In order to maintain Newton’s
second law, we continue to use ℏk (Eq. 15), which is no longer an electron momentum. It is well
defined within the crystal and is referred to as crystal momentum. We then separate the electron
properties from those of the crystal by using @2E/@k2 to define its effective mass.

2 The Reduced k Vector 199

https://doi.org/10.1007/978-3-319-69150-3_7#Sec2
https://doi.org/10.1007/978-3-319-69150-3_7#Sec2
https://doi.org/10.1007/978-3-319-69150-3_22#Sec3
https://doi.org/10.1007/978-3-319-69150-3_22#Sec3
https://doi.org/10.1007/978-3-319-69150-3_8#Sec2
https://doi.org/10.1007/978-3-319-69150-3_8#Sec2


(as shown in Fig. 15). Consequently, the effective electron mass increases, becomes
infinite near the center of an allowed band, and changes sign there. Coming from
negative infinity, the effective electron mass returns to a finite but negative value
which, at the top of the band, is of the same order of magnitude as at the bottom of
the band (Figs. 13 and 15). This behavior is repeated in the next band, except that the
sign sequence is exchanged. Here the effective mass is negative at k = 0; however,
the effective electron mass is always positive at the bottom of any band and negative
at the top. For lower bands, i.e., narrower bands, the value of the effective mass
becomes larger at the band edge.

When electrons accelerate substantially above the lower edge of the band in
sufficiently high fields, the de Broglie wavelength of the electron becomes smaller
and comparable to the interatomic lattice spacing. Here, interference effects of the
electron wave with the periodic lattice potential become important: Bragg reflection
becomes more prevalent, while more and more frequency components of the wave
packet are reflected. Therefore, further acceleration will become more difficult to
achieve; in the Newtonian model, the effective mass of the electron increases until,
near the center of the band, further acceleration stops. When the energy of the
electron is raised above the center of the band, the electron will decelerate in the
direction of the electric field until it reaches the top of the band, where it will come to
a standstill. The electron wave has then reached a perfect diffraction condition.8 It
can be described as a standing wave, composed of incoming and refracted waves of
exactly the same amplitude. With some caution we may describe the “recoil” of the

Fig. 15 (a) Typical E(k)
dependence for two simple
bands, and (b) derived
effective electron masses m*
within these permitted energy
bands. Actually, one
determines m*(k); this graph
is turned by 90� to show its
relation to the band model
shown at the left

8In theory, the electron will continue to accelerate in the opposite direction to the field and lose
energy, thereby descending in the band, and the above-described process will proceed in the reverse
direction until the electron has reached the lower band edge, where the entire process repeats itself.
This oscillating behavior is called the Bloch oscillation. Long before the oscillation can be
completed, however, scattering interrupts the process. Whether in rare cases (e.g., in narrow
mini-bands of superlattices or ultrapure semiconductors at low temperatures) such Bloch oscilla-
tions are observable, and whether they are theoretically justifiable in more advanced models
(Krieger and Iafrate 1986), is controversial. In three-dimensional lattices, other bands overlap and
transitions into these bands complicate the picture.
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lattice as being responsible for absorbing an increasing fraction of the electron
momentum when it is accelerated. The total momentum is thus still conserved, and
Newton’s law is fulfilled. When an electron wave impinges on a thin crystal layer in
an energy range in which the crystal is partially transparent for the electron, such
momentum transfer can be measured directly by changing the electron energy so that
diffraction occurs and part of the electron beam is reflected.

This qualitative picture also holds for more realistic periodic potentials, although
the quantitative relationship depends on many other factors. Each of the bands
usually consists of several branches which often overlap one another and may
show additional extrema (saddle points) in the first Brillouin zone, making the
dependence of the effective mass on the electron energy more complicated. Near
the band edge (for electrons), only one – perhaps degenerate – E(k) branch is present
in typical semiconductors, so that the above description holds rather well. This
branch can be split, for example, by crystal anisotropy or electric or magnetic fields.

In summarizing the much more involved behavior of an electron in such a
realistic band, we may wonder if we gained a more intuitive picture using the
particle model. If we recognize, however, that the electron will mostly reside close
to the bottom of the band, usually within a few kT, the model is quite helpful for an
analysis of a number of basic processes. The electron will behave here like a particle
with a constant effective mass; the value of this effective mass depends on the actual
lattice potential, i.e., on the chemical and crystallographic nature of the material
because these determine the shape of E(k). In ▶Sect. 4.5 of chapter “Carrier-
Transport Equations,” we present a more detailed description of the effective mass
for the application of this concept to carrier transport in typical semiconductors.

3 The Proximity Approach in Organic Crystals

Organic crystals are composed of molecules as building blocks instead of atoms
(▶ Sect. 1.5 in chapter “The Structure of Semiconductors”). The electronic band
structure of an organic semiconductor may therefore be derived from the proximity
approach (Fig. 3) by replacing energy levels of atomic orbitals with levels of
molecular orbitals. A schematic of the level scheme of an isolated single molecule
is shown in Fig. 16. If the molecule is electrically neutral and not a radical, it has an
even number of electrons. The highest occupied molecular orbital of the delocalized
π electrons (▶ Sect. 3.3 in chapter “Crystal Bonding”) in the conjugated molecule,
the so-called HOMO, refers to the electronic ground state of the molecule. It is
occupied by 2 electrons with opposite spin and hence a singlet state with total spin
S = 0, labeled S0 in Fig. 16 (valence states below S0 are not shown).

The first excited singlet state is S1. There exists also a triplet state labeled T1 with
parallel spin of the electron in the HOMO state and the electron in the excited state,
yielding a total spin S = 1; its energy is larger than that of S0. Further excited states
S2 and T2 may exist with an energy separation to S0 below the ionization energy Ig,
but the lifetime of an electron excited to such states is very small compared to that in
the states S1 and T1. Excited states S2 and T2 as well as the vibronic states of the
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molecule that couple to each of the electronic states are not shown in Fig. 16 for
clarity.

The molecule ground state in the gas phase is given by the ionization energy Ig.
This quantity represents the energy required to remove the most weakly bound
electron from the molecule and is readily accessible in experiment. Vice versa, if
an additional electron is bound to the molecule to form a negatively charged
molecular ion, an energy Ag, called electron affinity, is released. If the molecule is
ionized in the environment of a crystal lattice, the required energy Ic is smaller than
Ig, because negative and positive charges are now separated by a polarizable medium
with a dielectric constant (typically about 3). Ig is reduced by a polarization energy
Pp. Similarly, the electron affinity in a crystal is increased by a polarization energy Pn

to a value Ac. The molecular ion states are separated by an energy gap Eg, which for
Pp = Pn � P is given by (Karl 1974)

Eg ¼ Ic � Ac ¼ Ig � Ag � 2P ¼ 2Ic � Ig � Ag; (21)

see also Fig. 17. The energy gap and its position with respect to the vacuum level
depend on the spatial extent of the delocalized π electrons in the molecules of the
crystal; this dependence is illustrated for acenes in Fig. 17.

In an anthracene crystal the bandgap energy Eg is 4.1 eV; this energy is required
to remove an electron from the HOMO level to a quasi-free state of the molecule,
leaving a positive charge in the HOMO. The quasi-free state is the lowest unoc-
cupied molecular orbital, the LUMO level; in analogy to inorganic semiconduc-
tors, the energy of the LUMO in organic semiconductors is referred to as
conduction band, and that of the HOMO is called valence band. The S1 state
indicated in Fig. 16 lies below the LUMO level; in this state the electron is still
bound to this positive charge, forming a so-called exciton (see ▶ Sect. 1.1.2 of

Fig. 16 Schematic of the
energy levels of a single
molecule (gas phase, left) and
of a molecule crystal (right);
Ig, Ag, Ic, and Ac denote,
respectively, the ionization
energies I and electron
affinities A of the molecule in
the gas phase and in the
crystal; Pn and Pp signify the
polarization energies of an
electron and a hole in the
molecule crystal

202 The Origin of Band Structure

https://doi.org/10.1007/978-3-319-69150-3_14#Sec4


chapter “Excitons”); the excitation energy of the S1 exciton in anthracene is 1 eV
lower9 than Eg.

The polarization energy P in organic crystals has an electronic and a vibronic
component. If an electron is added to a molecule, the neighboring molecules are
polarized by the negative charge in their vicinity. The characteristic response time for
this electronic polarization is of the order of the oscillation period in an optical
transition. This time is much shorter than that of a vibronic oscillation; the electronic
polarization of the molecular neighborhood thus follows the movement of a quasi-
free electron, thereby affecting its effective mass. This influence is not related to the
effective mass of a quasi-free electron in an inorganic crystal discussed in Sect. 2.
The quasi-free electron in the LUMO and its surrounding polarization cloud com-
bined form a mobile quasiparticle referred to as (negative) polaron; correspondingly
a positive charge in the HOMO builds a positive polaron.10 We read from Fig. 17 that
the polarization energies of the negative and positive polaron are given by

Pn ¼ Ac � Ag

Pp ¼ Ig � Ic:
(22)

Both quantities are proportional to the polarizability of the organic molecules and are
much larger than in conventional semiconductors. Still polarons also occur in
inorganic semiconductors and are discussed in ▶ Sect. 1.2 of chapter “Carrier-
Transport Equations” in the framework of transport properties.

Fig. 17 Ionization energies
of the highest occupied level
and binding energies of the
lowest unoccupied level for
various oligoacenes in the gas
phase (left horizontal bars,
referring to Ig and Ag) and in
the crystalline state (right
bars, referring to Ic and Ac);
after Karl (1974)

9This energy difference represents the binding energy of the exciton; its value is much larger than
values found in inorganic semiconductors. A large binding energy corresponds to a strong spatial
localization, a typical feature of excitons in organic crystals.
10The polaron character of mobile carriers in organic crystal is often not explicitly considered; in
analogy to the quasiparticles of inorganic semiconductors, the carriers are simply termed electrons
and holes.
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The vibronic component of the polarization energy is related to a relaxation of the
crystal lattice in the environment of the charged molecule. The characteristic
response time is given by the period of a phonon oscillation and therefore much
longer than the electronic response. A consequence of the vibronic relaxation is a
decrease of the bandgap energy (in an anthracene crystal both Pn and Pp are
increased by 0.15 eV; consequently Eg decreases by 0.3 eV). The energy of Eg

before a lattice relaxation is called optical bandgap and that after relaxation adia-
batic bandgap.

The conductivity and the carrier mobility in organic semiconductors are generally
very low compared to inorganic semiconductors.11 This holds even if the electron
mobility in the LUMO level of a molecule is high. The reason is the weak
intermolecular contact in the organic crystal, schematically illustrated in Fig. 18.
The figure shows the potential energy and energy levels of electrons in a small
crystal comprising a chain of four molecules with three atoms each. Each occupied
molecular orbital is filled by two electrons with opposite spin. Above the core levels
near the atomic nuclei, the schematic indicates the occupied molecular-orbital levels
of electrons which are delocalized within the molecules, with the topmost HOMO
state. The filled HOMO and the empty LUMO levels of each molecule are separated
from those of neighboring molecules by a potential barrier. The barrier originates
from the weak intermolecular van der Waals interactions, leading to a predominant
localization of the HOMO and LUMO wavefunctions in each molecule. Height and
thickness of this barrier decide whether – in case of small barriers, corresponding to
strong intermolecular interaction – conduction and valence bands evolve from these
levels or not.

If the intermolecular barrier is low, bands similar to those in inorganic semi-
conductors are created as illustrated in Fig. 3. Higher barriers may still allow for

Fig. 18 Schematic of the
potential energy and electron
levels in a small organic
crystal

11The mobility of electrons is defined in ▶ Sect. 2.2 in chapter “Carrier-Transport Equations” by
μ = (q/m*)  τ, with effective mass m*, charge q, and a mean time τ between scattering events; in
organic crystals μ300K is usually below 1 cm2/(Vs), often orders of magnitude smaller, compared to
values of 103 cm2/(Vs) for inorganic semiconductors.
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conductivity by phonon-assisted hopping. The criteria for the occurrence of either
band conduction or hopping conduction derive from the mean time τ between
scattering events of a mobile carrier and the width W of the states for carrier
transport. For band conduction τ � ħ/W must apply. Often a decision whether or
not the criterion is met is difficult; a typical bandwidth of about 0.5 eV for oligoacene
crystals yields τ > 10�15 s, leading to a mean free path length of the carrier that
exceeds the crystal lattice constant.

4 Summary

The electronic band structure of solids is the most significant feature to understand
the electronic behavior of semiconductors. General features are described by the
proximity approach, which considers the effect of the immediate neighborhood in a
solid and, with gradually less attention, that of more distant atoms, on the energy
levels of an isolated atom. Similar results are obtained by the periodicity approach,
which considers the long-range periodicity of the crystal potential. The typical band
structure with alternating bands and bandgaps is characteristic for all solids, in
contrast to isolated atoms which show a discrete level spectrum. Details of the
band structure depend on the chemistry of the material and its atomic structure
(symmetry). Deviation from a periodic structure predominantly influences the
energy range near the band edges, while it has little influence near the center of
the bands.

Electrons near the lower edge of a band in a periodic lattice behave akin to
electrons in vacuum. The influence of the lattice is taken into account by ascribing an
effective mass to the carriers that, for typical semiconductors, is smaller than the
electron rest mass at the band edge and increases with increasing distance from the
band edge. In disordered or amorphous semiconductors, the band edge is fuzzy and
the electronic states become localized when extended sufficiently beyond the band
edge. In organic semiconductors a large polarization affects the effective mass of
carriers, accounted for in the polariton model; in the case of large intermolecular
barriers hopping conduction instead of band conduction occurs.
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