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Abstract
With a large density of impurities or other lattice defects, the carrier transport
deviates substantially from the classical transport within the band. It is carried
within energy ranges (within the bandgap), which are determined by the defect
structure. Heavy doping produces predominant defect levels split into two impu-
rity bands. Below a density to permit sufficient tunneling, carrier transport
requires excitation into the conduction band; at higher defect density, a diffusive
transport within the upper impurity band becomes possible. At further increased
defect density, metallic conductivity within the then unsplit impurity band occurs.

In amorphous semiconductors, tunneling-induced carrier transport can take
place within the tail of states, which extend from the conduction or valence band
into the bandgap. Major carrier transport starts at an energy referred to as the
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mobility edge. With statistically distributed defects, only some volume elements
may become conductive. These volume elements widen at increasing tempera-
ture, eventually providing an uninterrupted percolation path through a highly
doped or disordered semiconductor with a density-related threshold of
conduction.

Conductance in organic semiconductors is governed by static and dynamic
disorder. Band conductance in small-molecule crystals shows a decreasing carrier
mobility at increased temperature with a power law similar to that of inorganic
semiconductors. Small-molecule or polymer semiconductors with dominating
static disorder show hopping conductance with a typically low but increasing
mobility at higher temperatures.

Keywords
Amorphous semiconductor � Band conductance � Dispersive transport � Heavy
doping � Hopping conduction � Hopping mobility � Impurity band �Mobility edge
� Organic semiconductor � Percolation � Phonon-activated conduction �
Tunneling-induced transport � Variable-range hopping

1 Impurity-Band Conduction

In addition to causing scattering, lattice defects can contribute directly to the
carrier transport in two ways. They permit direct quantum-mechanical exchange
of carriers from defect to defect (i.e., tunneling from one trap level to the next), or
by thermal ionization of a carrier from a trap level into the band, intermediate
transport within the band, and then a retrapping as shown in Fig. 1. The first type
of carrier transport is called tunneling or impurity-band conduction; the second
type is known as hopping conduction or phonon-activated conduction. These
types of carrier transport are of major importance in highly disordered, highly
doped, or amorphous semiconductors. For reviews, see Shklovskii and Efros
(1984) and Mott (1993).
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Fig. 1 (a) Impurity-band
conduction and (b) hopping
conduction in highly doped
semiconductors
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1.1 Concept of Impurity Bands

In a rather simple model, the overlapping hydrogen-like donor states can be used to
form a Hubbard band (Hubbard 1963), which is centered about their ground-state
energy. With partial compensation, there are Nd�Na free states in this Hubbard band,
and conduction can occur (Adler 1980). The band width ΔEB is given by the overlap

integral between equal centers at distance 1=
ffiffiffiffi
N3

p
, where N is the density of

uncompensated donors (= Nd�Na). This bandwidth is roughly equal to the interac-
tion energy

ΔEB ffi e2
ffiffiffiffi
N3

p

4πestate0
: (1)

The effective mass within this narrow impurity band is much larger than in the
adjacent carrier band; hence, the impurity-band mobility is usually quite small
(< 10�2 cm2/(Vs)). The mobility-effective mass in this impurity band should not
be confused with the effective mass of a Bloch electron within the conduction band,
which is hence related to each quasihydrogen state of the donor.

The carrier transport within such a narrow impurity band can no longer be
described by the Boltzmann equation. The carrier transport must now be evaluated
from the quantum-mechanical expectation value for the current, which is given by
the Kubo formula (Kubo 1956, 1957). A somewhat simplified version was devel-
oped by Greenwood (1958) in which the conductivity can be expressed as

σ ¼ �
ð
σ0 Eð Þ @f

@E
dE, (2)

with

σ0 Eð Þ ¼ 2π e2ħ2V
m2

n

g Eð Þf g2
ð
ψ � E0ð Þ @

@r
ψ Eð Þdr

����
����
2

, (3)

being proportional to g(E), the density of states, and the matrix element describing the
electron transitions from E to E0; f is the Fermi distribution function and V is the sample
volume. Equation 2 is referred to as the Kubo-Greenwood formula, which, when
evaluated for E = E0, gives the tunneling current between equivalent defect centers.

The distance between the impurities is not constant but fluctuates statistically; the
impurity band is therefor substantially undulated. It is broader where impurities are
closer together and narrower where they are more widely spaced.

Since there is no scattering during the tunneling process between adjacent defects,
the tunneling is essentially temperature-independent. Except for thermal expansion,
which has a small influence on the average distance between defects, and except for
the broadening of the defect levels with increased lattice oscillation, the trap
conductivity is almost temperature-independent when the Fermi level lies close to
the extended states. Trap conductivity is important in highly doped semiconductors,

1 Impurity-Band Conduction 1055



semiconducting glasses, and inorganic semiconductors, that is, in all semiconductors
with a high density of defects (see Sect. 4).

When carriers are created by optical excitation, trap conductivity persists to low
temperatures and has a quasi-metallic behavior (Mott and Davis 1979). We will now
describe in more detail the impurity band.

1.2 The Impurity Band

In semiconductors with high doping densities (> 1018 cm�3), shallow donors or
acceptors can come close enough (<100 Å) to each other so that their eigenfunctions
overlap significantly and therefore permit the exchange of carriers directly, without
the involvement of the adjacent bands. Consequently, the defect level is split and
develops into a narrow impurity band-see Fig. 1a. Such impurity-band formation is a
basic effect that occurs whenever a defect level is present at sufficient density. The
formation of an impurity band is widely applied in blocked-impurity-band devices,
where a heavily – but not degenerately – donor-doped layer creates an impurity
band; this region is used as an infrared-active layer in IR photo detectors, where an
incoming photon lifts an electron from the impurity band to the conduction band
(Haegel et al. 2003, Wang et al. 2015).

The term “band” should, however, be used with caution, as it requires a more
detailed density-of-states analysis and a distinction between localized and
delocalized states; the latter are true band states. In principle, the Anderson Model
(▶ Sect. 1.1 of chapter “Defects in Amorphous and Organic Semiconductors”)
should be used to obtain some information about the localization aspect of the states.
We will first discuss this behavior in a rather general fashion.

1.2.1 The Lifshitz-Ching-Huber Model
In the Lifshitz model, a statistical distribution of N identical potential wells is
analyzed to obtain a density-of-states distribution of these defect levels and to
identify a critical density at which the states within the center of the distribution
become delocalized (Lifshitz 1965). This model is a forerunner of the Mott version,
which is used to distinguish localized and nonlocalized states in band tails, see
▶ Sect. 1.2 of chapter “Defects in Amorphous and Organic Semiconductors” and
Sect. 4.1.

When two identical defect centers are brought together, they show a split of
eigenstates of the form

ψ s ¼
1ffiffiffi
2

p ϕ1 þ ϕ2ð Þ and ψ a ¼
1ffiffiffi
2

p ϕ1 � ϕ2ð Þ with Es � Ea ¼ 2I, (4)

where ϕ1 and ϕ2 are the wavefunctions of the two centers, Es and Ea are the energies
of the symmetric and antisymmetric states ψ s and ψa, respectively, and I is the
transfer integral (▶Eq. 2 of chapter “Defects in Amorphous and Organic Semi-
conductors”). When a third center is approaching at an arbitrary distance, it will not,
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however, participate in the resonance splitting. This is due to the fact that the doublet
of the two centers closest to each other is far enough apart to be out of resonance with
the third center. Hence, the Lifshitz model yields a band of localized states for
statistically distributed traps. Only when these defects are close enough to fulfill

N1=3r0 ffi 0:3, (5)

with r0 as the fall-off radius of the wavefunction of an isolated defect (= aqH for a
hydrogen-like defect) can delocalization of the states in the center of the band occur
(Ching and Huber 1982). This result is close to the Mott-Anderson result for
localization (see ▶Eq. 17 of chapter “Defects in Amorphous and Organic Semi-
conductors”. When interacting with each other, the splitting of the defect states also
gives rise to a splitting of this defect band, causing the density of states to have a
minimum near the center of the distribution.

1.2.2 Coulomb Gap and Mott Transition
The density minimum of the defect levels near the center of the density-of-states
distribution may become complete in (partially) compensated semiconductors with a
gap between filled and empty states. Such splitting is caused by the long-range
Coulomb interaction of localized electrons (Knotek and Pollak 1974; Efros and
Shklovskii 1975) and occurs at the position of the Fermi level. For an inclusion of
static screening, see Mazuruk et al. (1989); such screening affects the density of
states at the Fermi level and can replace the Coulomb gap by a dip in the density of
states.

It can be shown that the Coulomb gap appears only for localized states. When the
density of states becomes large enough, so that delocalization occurs (see below),
then the Coulomb gap disappears (Aronov et al. 1979; Altshuler et al. 1980).

The impurity band with localized states cannot contribute to the conductivity at
T= 0 K since it has an energy gap between filled and empty states. When the density
of impurities is increased to an extent that delocalization occurs at the Fermi level,
the gap disappears, and quasi-metallic conductivity is observed. This transition
within an impurity band is a Mott-transition and is related to a critical conductivity
that was termed by Mott as minimum metallic conductivity

σmin ffi 0:05
e2

ħ
N

1=3
Mott, (6)

where NMott is the critical doping density–see below (Mott and Davis 1979). The
Mott transition is observed to be smooth rather than abrupt, probably because of
density fluctuation of impurities.

For Si:P, the Mott-transition occurs at a critical donor density of
NMott = 3.7 � 1018 cm�3; for this example, we obtain σmin ffi 20 Ω�1 cm�1

(Rosenbaum et al. 1980) (see also ▶ Sect. 3.2 of chapter “Equilibrium Statistics of
Carriers”).
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Scaling When, for example, hydrogen-like donors are close enough to each other,
the donors’ electrons no longer belong to a certain donor, but are able to move freely
between donors even at T = 0 K, like electrons in a metal; that is, they belong to all
of the donors. Critical to this transition are three units of length: the inter-donor

distance 1=
ffiffiffiffi
N3

p
, the quasi-hydrogen radius aqH, and the mean free path λ – for a

diffusion-type of carrier migration. Their relative magnitude determines the type of
conductivity, and its discussion is a subject of the theory of scaling. For a recent
tight-binding analysis of localization in 3D to 1D systems with hopping matrix-
elements that decay exponentially in the separation distance between neighboring
sites, see Priour (2012); extended states in 3D are found to occur even for small
decay lengths, but the interval of energies supporting extended states decreases
exponentially for decreasing decay length.

Abrahams et al. (1979) suggested to use a dimensionless conductance of a cube of
length L rather than the conductivity

G ¼ σL� 2ħ
e2

, (7)

measured in elementary units of 2ħ/e2. They discussed the changes inG as a function
of L; it should change when L approaches atomic dimensions. They argued that the
scaling function

β Gð Þ ¼ @ ln G

@ ln L
(8)

is a universal function (Thouless 1974, 1980), which is ~1 for large conductances,
becomes zero at a critical conductance Gc, and turns negative for G< Gc–see Fig. 2.
Within this theory, Gc is a universal constant1 and indicates the transition between
metal-like and semiconductor-type conductivity. Here, Mott obtains for the critical
conductivity

σc ffi 0:03
e2

ħ aqH
, (9)

a value close to σmin given by Eq. 6, here for
ffiffiffiffiffiffiffiffiffiffiffi
NMott

3
p ffi 1=aqH:

Ioffe-Regel Rule For a further discussion of the concept of minimum metallic
conductivity, we start from a metal and look for candidates of lower and lower
mean free paths, that is, reduced conductivities. There are indications that with
increased lattice disturbance, lower conducting metals (such as liquid metals)
have a lower mean free path, but with a lower limit equal to the interatomic

1It should, however, depend on the microscopic atomic arrangement and on the coordination (Mott
and Kaveh 1985).
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distance. The Ioffe-Regel rule argues that the electron wavefunction cannot lose
phase memory faster than on the order of the interatomic distance a (Ioffe and
Regel 1960). This means that the conductivity of a metal cannot be smaller than
σ = e μ n, with n = a�1/3 and μ = (e/mn) τ = (e/mn) (a/vF). The Fermi-
momentum is given by ħ kF = mn vF = mn(3π

2n)1/3; hence, one obtains as min-
imum metallic (Ioffe-Regel) conductivity

σI-R ¼ 1ffiffiffiffiffiffiffi
3π23

p e2

ħa
¼ 0:32

e2

ħa
: (10)

In doped semiconductors, two changes need to be introduced:

1. Instead of the interatomic distance, the quasi-hydrogen radius applies
2. Only a certain fraction of the impurity-band states are extended states, which,

after Mott and Kaveh (1985), is on the order of 8.5%, yielding Eq. 9 as critical
conductivity in a semiconductor. For aqH ffi 30 Å, this critical conductivity is on
the order of 20 Ω�1 cm�1.

Carrier Localization in Strong Electric Fields When carriers are transported
in narrow bands, independent of how such bands are produced, carrier locali-
zation can occur when the electric field is strong enough. Here, stationary
electron states become localized in the direction of the electric field due to
reflection at the boundaries of the Brillouin zone (Wannier 1960). This causes
a Stark ladder, with the possibility of phonon-induced jumps between the levels
of this ladder (Hacker and Obermair 1970). Resonance effects occur when the
steps become equal to LO phonons (Maekawa 1970), causing current
oscillations.

Another possibility of carrier localization occurs for small polarons in strong
electric fields, where the mobility decreases with increasing field in the tunneling

0

ln G

Gc

1

bFig. 2 Scaling function
versus the dimensionless
conductance (Eq. 7) for a 3D
semiconductor
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regime (Böttger and Bryksin 1979, 1980). For electric-field-induced carrier locali-
zation in one-dimensional semiconductors, see Pronin et al. (1994).

2 Phonon-Activated Conduction

For sufficiently high densities of impurities, the carrier transport within an impurity
band occurs with a mean free path longer than the spacing of impurities. With less
doping, the defect levels will become localized, and conduction can occur in one of
two fashions:

1. By tunneling from one defect to the nearest neighboring defect of the same type
2. After thermal excitation into the adjacent band

Competition between these two processes is exponentially dependent on the
temperature, due to a minor T dependence of the former and an Arrhenius-type
dependence of the latter. At sufficiently high temperatures, the carrier transport via
the conduction or valence band predominates.

If the mean free path of carriers is given by capture at impurities rather than by
scattering, the conductivity can be described as a motion from one impurity center to
another, but with electron transport through the conduction band2 as illustrated in
Fig. 1b (Fritzsche and Cuevas 1960; Butcher 1972). It can also be described as due to
inelastic scattering at Coulomb-attractive centers, with phonon emission causing
carrier capture. The corresponding carrier mobility is thermally activated:

μ ¼ μ0exp �ΔEtrap

kT

� �
, (11)

where μ0 is an effective mobility given by equivalent scattering mechanisms of
carriers within the band, and ΔEtrap is the thermal activation energy of the trap.
Density Dependence of HoppingWhen the density of impurities increases, tunnel-
ing from center to center becomes more probable. The tunneling transport is
accomplished by hopping from one to the adjacent center, resulting in a conductivity

σhop ¼ σ0, hopexp �ΔEhop

kT

� �
, (12)

2In highly disordered semiconductors the motion may occur through excited states with greater
overlap of their eigenfunctions.
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with ΔEhop as the activation energy for hopping described below (Eq. 15) and with
the preexponential factor given by

σ0, hop ¼ σ00 exp
2rc
r0

� �
, (13)

where r0 is the fall-off radius of the impurity wavefunction (= aqH for quasi-
hydrogen impurities). It is ~90 Å for Ga in Ge and ~47 Å for Cu in Ge; Cu has a
larger ionization energy of ~40 meV. Also, rc is the critical radius to establish a
percolation path (see Sect. 4.2) from one electrode to the other, and can be estimated
(McInnes and Butcher 1979) as

rc ffi 0:865� 0:015ð ÞN�1=3, (14)

where N is the density of the specific impurities between which hopping occurs.
The computed relation of the resistivity ρ= σ�1 versus the mean separation of the

impurities is shown in Fig. 3a. The corresponding relation of the measured resistivity
for different donor densities Nd in GaAs is given in Fig. 3b (Shklovskii and Efros
1984); the solid curves gives the theoretical estimate according to Eqs. 13 and 14.
Activation Energy for Hopping When impurities are spaced close enough to permit
tunneling, the levels split to form a narrow band. Therefore, tunneling to arbitrary
neighbors usually requires a slight thermal activation energy (see Sect. 1.2.1). The
activation energy can be interpreted as the energy from the Fermi level to the energy of
the maximum of the density of empty-state distribution. Typically, it is on the order of a
fewmeVand can be approximated for low compensation (Efros et al. 1972) by ~60% of
the Coulomb energy at the average separation between the impurities:

0 8 16 24 32 0 2 4 6 8 10
10–4

100

104

108

1012
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10−4

100

102

104
ρ (

Ω
 c

m
)

ρ (
Ω
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m

)
2r/r0 (Nd

−⅓a)½

a b

n-GaAs

Fig. 3 (a) Calculated resistivity related to hopping conductivity as a function of the average
separation between impurities. (b) Hopping resistivity as a function of the donor density in
n-type GaAs (After Shklovskii and Efros 1984)
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ΔEhop ffi 0:61
e2

4π estate0

4π

3
N

� �1=3

: (15)

The experimental values for ΔEhop for Ge doped with P, Ga, or Sb are shown
together with the theoretical curves (Eq. 15) in Fig. 4.

With a distribution of defects in space and energy, the relation becomes more
complex and is relevant for amorphous semiconductors, see Sect. 4.3. For reviews,
see Mott and Davis (1979), Shklovskii and Efros (1984) and Mott (1993).

A special type of hopping conduction relates to the hopping of small polarons and
is discussed by Holstein (1959) and Schnakenberg (1968) (see also Sect. 5).

3 Heavily Doped Semiconductors

The basic concepts discussed in the previous sections apply also for highly doped
semiconductors, however, in a modified fashion relating to the specific level distri-
bution. This permits a number of more transparent theoretical approximations.

A semiconductor is heavily doped when the condition

N a3qH � 1 (16)

is fulfilled, which, dependent on the effective mass, is reached at vastly different
doping densities in various semiconductors. For instance, N a3qH ¼ 1 requires

N = 5 � 1015 cm�3 in n-type InSb and N = 3 � 1019 cm�3 in n-type Ge. In several
semiconductors, the highly doped regime cannot be obtained by diffusion doping,

0.5
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2.5

1.5 2.51.0 2.0 3.0
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Fig. 4 Activation energy for
hopping conduction in Ge
doped with P, Ga, or Sb. The
solid line is the theoretical
dependence (Eq. 14) (After
Shklovskii and Efros 1984)
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since clusters will form with limited solubility. Here, ion implantation or radiation
damage can be used.

We will give a short review of the phenomena related to heavy doping in the
following sections.

3.1 Intermediate Doping Range

The distinction between light and heavy doping can be made in relation to the
disappearance of the gap in the impurity band and the transition from an activated
semiconductivity to a quasi-metallic conduction (see Sect. 1.2.2). There is, however,
a large intermediate range between the Mott-transition atN a3qH ffi 0:02 (▶Eq. 64 of

chapter “Equilibrium Statistics of Carriers”) and the range of heavily doped semi-
conductors which starts at N a3qH ffi 1 . In this intermediate range, some of the

electrons are already delocalized.
The transition is related to the statistical distribution of the defects, which are frozen

in and are located within the ensemble of free electrons, even at low temperatures. We
will give some insight into this relation below. Other fluctuations are initiated at higher
temperatures ( fluctuons) and are reviewed by Krivoglaz (1974).
Density of States in Heavily Doped Semiconductors In highly doped semi-
conductors, there are two major contributions to the density of states: (1) the states
which are due to the extended eigenfunctions of the defects and (2) the states
which are due to the perturbation in the surrounding host lattice. The latter may be
described by analyzing the influence of heavy doping on free electrons. This
influence can be expressed by band-edge perturbation, through the modulation
of the band edges by the Coulomb potential of the defects (Kane 1963; Halperin
and Lax 1966). In highly doped semiconductors, clusters of charged impurities
often dominate. The charges of such clusters, however, are not Coulomb point
charges.

In turn, the potential fluctuation near charged impurities results in an inhomogeneous
distribution of electrons. When the potential fluctuation is smooth within the deBroglie
wavelength of free electrons, the electron gas can be described classically. Its density
varies according to the density of states, which is increased at positions near an attractive
center where the conduction band is lowered. Near attractive centers there will be more
carriers, while near repulsive centers there will be less of the corresponding type. With
high doping densities, the potential fluctuations will have a higher amplitude. Complete
state filling of the valleys occurs at sufficiently low temperatures, whereas higher parts
of the potential mountains extend above this “electron lake.”

The density of states now becomes space-dependent

g E, rð Þ dE ¼ 2mnð Þ3=2
2π2ħ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþ eV rð Þ

p
, (17)

with the fluctuating potential determined by a screened Coulomb potential
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V rð Þ ¼ e

4π estate0 r
exp � r

r0

� �
: (18)

When averaging over the space-dependent potential, we obtain from Eq. 17 the
density of states tailing into the bandgap (Lifshitz tail), as discussed in▶ Sect. 3.1 of
chapter “Optical Properties of Defects” and ▶ Sect. 1 of chapter “Defects in Amor-
phous and Organic Semiconductors”.

3.2 Degenerate and Highly Compensated Heavily Doped
Semiconductors

The highly doped semiconductor with shallow impurities is usually degenerate, i.e.,
the Fermi-level is shifted to well within the band. Depending on its position, the
“lake” of electrons rises within a hilly terrain to fill only the lowest valleys as little
lakes, or with a rising level connects more and more lakes until navigation from one
electrode to the other becomes possible. This behavior is similar to that of a
percolation conductivity, as described in Sect. 4.2.

When compensating a highly doped semiconductor, the level of the carrier lake
within the modulated band drops, which causes a substantial decrease of the
conductivity.

With sufficient compensation, the semiconductor reverts from metallic conduc-
tion to one with thermal activation over saddle points in the hilly terrain, as shown in
Figs. 5 and 6. Here, carriers cannot contribute to percolation since they occupy only
a small fraction of the volume, and tunneling is too expensive because of the high
barriers between the remaining small puddles.

In completely compensated semiconductors, the potential fluctuation can increase
further since the density of carriers is reduced below values, which are necessary for

Ec

Ev

EF

E

x

yE

Fig. 5 Two-dimensional representation of the band-edge fluctuation in highly doped semiconduc-
tors. Ec and Ev refer to average values of conduction and valence band edges. Red and blue circles
signify ionized donors and acceptors, respectively
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efficient screening. The maximum band fluctuation, however, is limited to Eg/2.
Here, with penetration through the Fermi level, the deep valleys again become filled
and screening reappears, thereby limiting any further increase in fluctuation of the
band edges. For the effect of random defect density on the Fermi level in highly
compensated semiconductors, see Donchev et al. (1997).

There is a large body of experimental and theoretical research on highly doped
semiconductors, including the influence of light (persistent photoconductivity -

Ryvkin and Shlimak 1973), of a magnetic field (quantum screening - Horring 1969,
Aronzon and Chumakov 1994), and of low-temperature conductivity.

The carrier transport in such macroscopically fluctuating potentials is similar
to that in semiconducting glasses (Ryvkin and Shlimak 1973, Overhof and
Beyer 1981). In the following sections, we will analyze such transport in more
detail.

4 Transport in Amorphous Semiconductors

The carrier transport in semiconducting glasses deserves a separate discussion
because of the lack of long-range order and the high density of defects specific to
the amorphous material. This does not permit simple translation of the effective-
mass picture and requires a reevaluation of carrier transport and scattering concepts.
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type Ge:As
(Nd = 8 � 1018 cm�3) as
function of the inverse
temperature (After Gadzhiev
et al. 1972)
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There are two aspects with direct influence on the carrier transport: (1) the strong
tailing of states into the bandgap, and (2) the absence of specific doping-induced
defects in amorphous chalcogenides.

The tailing of states from the band into the bandgap is rather smooth and does not
show a well-defined band edge. This necessitates a more careful analysis of the
mobility at different energies. At higher energies within the conduction band – i.e.,
closer to the surface of the Brillouin zone (see below for justification) – the electrons
are quasi-free, except for scattering events, and have a mean free path λ larger than
the interatomic spacing. Here, λ k	 1, and k may be used, albeit with some caution
(Mott and Davis 1979).

With decreasing electron energy, the scattering probability increases, with scat-
tering on potential fluctuations due to noncrystalline structures. Hence, the mean free
path becomes comparable to the interatomic distance, and λ k ffi 1. Here, k is no
longer a good quantum number.3 Substantial differences between the crystalline and
the amorphous semiconductor become important. Therefore, the carrier transport
must now be described in terms of a transport between localized states; the
Mott-Anderson localization threshold is reached (see▶ Sect. 1.2 of chapter “Defects
in Amorphous and Organic Semiconductors”).

In taking a slightly different point of view, we expect the band states near the edge
to become perturbed with a concurrent widening or narrowing of the bandgap,
depending on the local degree of disorder. With charging of these defects, the
Coulomb potential creates band undulations, as shown schematically in Fig. 5
(Böer 1972). In amorphous semiconductors with a much lower density of charged
centers, a similar mountainous profile of the near-edge band states results from the
local stress and other defect-induced perturbations.

When the Fermi- or quasi-Fermi level is moved above the lowest valleys of this
edge (discussed in more detail in Sect. 4.2), these valleys will fill up with carriers.
Assuming that only near the surface of such “lakes” a carrier transport is possible, one
recognizes that a continuous current can only flow when the Fermi-level rises enough
to permit a percolation path from one to the other electrode (Fig. 7a–c); much below
the “edge” carriers are trapped. We will now refine this roughly stated model.

4.1 The Mobility Edge

Carriers are able to travel readily when the eigenfunctions of traps overlap. There are
two arguments for a larger overlap of shallower traps: (1) they usually have a larger

3In a crystalline structure, k, when closer to the center of the Brilloin zone, represents points in real
space farther away from the unit cell; in this case long-range deviation from periodicity becomes
important. In contrast, when λ k ffi 1, the wavenumber is closer to the boundaries of the Brillouin
zone; wheras in real space, the corresponding points are closer to the unit cell and the structure of
the amorphous material resembles more that of a crystal.
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fall-off radius of their eigenfunctions and (2) they are more plentiful, diminishing the
intertrap distance. With an exponentially decreasing trap distribution, and with an
adequately large overlap of shallow traps, the carrier transport through such shallow
centers is almost band-like.

At slightly deeper trap levels, the carrier transport proceeds from trap to neigh-
boring trap and has a diffusive character, with a diffusion constant given by the
exchange frequency νtrap:

D ¼ νtrap a2trap
6

; (19)

here atrap is the distance between these traps.
Carriers in yet deeper traps will have to penetrate through increasingly thicker

barriers via tunneling. Finally, such carrier transfer via tunneling becomes negligible
and requires thermal excitation into higher states.

In summary, the type of carrier transport depends on the depth of the traps
between which such transport takes place. Carriers are significantly more mobile
in shallower traps. There is a major step in the mobility of carriers between
“localized” deeper and “extended” shallow trap states. This step at an energy Eμ is
referred to as the mobility edge; see also ▶ Sect. 1.3 of chapter “Defects in Amor-
phous and Organic Semiconductors”.

A material in which the Fermi level at T= 0 K coincides with the mobility edge is
called a Fermi glass. This material displays metallic conductivity.

The distance between two defect centers at the mobility edge is approximately
that of the nearest neighbors (Mott and Davis 1979), yielding for approximately
cubic atom configurations (see ▶ Sect. 3.1 and ▶Eq. 80 of chapter “Crystal
Defects”):

Dμ ffi νμ a2

6
, (20)

a b c

Fig. 7 Percolation regions (green), which become larger and interconnect with increasing energy
from (a) to (c), connect as puddles in a hilly terrain to form small and larger lakes when the water
level rises, finally leaving only small islands near the highest points of the terrain
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with the tunneling frequency νμ approximated by the atomic electron frequency

νμ ffi ħ
m0 a2

: (21)

We are not assuming hydrogen-like defects here. Therefore, tunneling is much
reduced, and the distance of defects centers between which tunneling becomes
significant can no longer be much larger than the normal interatomic distance a.
Using the Einstein relation, this yields, as an order of magnitude estimate for the
mobility at the mobility edge,

μedge ¼
e Dμ

kT
ffi e ħ

6m0kT
ffi 7:5� 300K

T

� �
cm2V�1 s�1
� �

, (22)

Electrons that are excited much above the mobility edge contribute to the current, as
they do in a crystal, by being scattered at defects, and usually have a mean free path that
is much larger than the interatomic distance. Electrons closer to the mobility edge
contribute via exchange interaction to neighboring traps, and electrons that have relaxed
much below the mobility edge contribute through tunneling or after thermal activation.

Since the mobility decreases very steeply at the mobility edge, whereas the
density of states does not, it is customary to identify the bandgap in amorphous
semiconductors as a mobility gap, i.e., the distance between the mobility edges for
electrons and holes.

4.2 Diffusive Carrier Transport and Percolation

We will now look a bit closer at the carrier transport around the mobility edge Eμ.
With decreasing trap energy Etrap, the trap density is reduced and the average
distance between these defects is increased. At any given energy, the distance will
fluctuate about an average value, making carrier transfer preferred in directions in
which the distance is shortest. With further decreasing Etrap, preferred paths become
rarer. The carrier has to move in a diffusive path along preferred intertrap connec-
tions. This indicates that the carrier motion, which was randomly diffusive at higher
energies, now becomes direction-selective toward the closest neighbor, thereby
reducing the effective diffusion constant. Finally, the path connecting the two
electrodes will be broken. From this point on, thermally activated conductivity
becomes the sole possibility for carrier transport.

The selection of paths between neighboring sites at the mobility edge is signif-
icant in that it is a determinant of the Hall mobility. In amorphous semiconductors,
the Hall effect cannot be calculated from Lorentz forces, but must be computed from
quantum-mechanical jump probabilities between localized states (Grünewald et al.
1981). Paths following the Lorentz force become slightly preferred. Because of this
structure-determined path selection, the Hall voltage becomes dependent on the
average microscopic geometry of the atomic arrangement. An anomalous sign of
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the Hall effect may occur at weak fields for the mean free path below a critical
magnitude (Okamoto et al. 1993). Mott (1991) has shown that the sign anomaly of
the Hall coefficient in α-Si:H should be expected when the disorder causing the
mobility edge originates from stretched bonds. With a scattering length of 20 Å in
such amorphous materials at the mobility edge, only 1% of the bonds need to be
stretched to produce such anomaly in the sign. Also preferred even- or
odd-numbered rings (see ▶ Sect. 3.1 of chapter “The Structure of Semiconductors”)
cause a sign reversal of the Hall effect for n- or p-type material (see Dresner 1983).
Percolation We return to the carrier transport near the mobility edge. When filling
traps by raising the Fermi-level, carrier diffusion is eased. This would appear
homogeneously throughout the semiconductor if it were not for the mountainous
profile of the potential, as illustrated in Fig. 5. Here, in a mountain, the mobility edge
is pushed above the Fermi-level, whereas in a valley, the Fermi-level lies above the
mobility edge. In these lakes, the mobile electrons show diffusive motion along the
surface of the lakes, but have to tunnel through the mountains. This type of transport,
which can be understood from classical arguments (Broadbent and Hammersley
1957), is commonly referred to as percolation. For a review, see Shante and
Kirkpatrick (1971) or Böttger and Bryksin (1985).

The analysis of percolation was facilitated by the simple model of Miller and
Abrahams (1960), using a network of random resistors and Kirchhoff’s law to
calculate the corresponding resistivity between the electrodes in a semiconductor
with percolating conductivity. Many aspects of carrier percolation can be discussed
in the frame work of fractal networks, i.e., a network of resistors in which a
statistically increasing number of the interconnecting resistors are omitted. Multi-
fractality in carrier transport at the mobility edge in amorphous semiconductors is
discussed by Huckestein and Schweitzer (1993).

4.3 Activated Mobility

Further below the mobility edge, the defect centers are sufficiently separated so that
tunneling between them can be neglected compared to the thermal excitation into
levels near the mobility edge. From here, electrons can be retrapped, excited again,
etc. This process can be described as thermally activated hopping4 and requires a
periodic interplay with phonons, i.e., carriers alternately absorb or emit phonons.
Consequently, the hopping mobility depends exponentially on the temperature. For
excitation from centers at an energy Etrap, we obtain

4Hopping conduction can also involve small polarons which move by hopping from site to site, ions
which hop from interstitial to interstitial site, electrons which hop between soliton-bound states in
one-dimensional conductors (acetylene) (Kivelson 1982), or Frenkel excitons in molecularcrystals
(see Sect. 5 and references in Böttger and Bryksin 1985).
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μhop ¼ μ0exp �Eμ � Etrap

kT

� �
: (23)

The thermally activated hopping mobility can be described in the form of a
diffusion relation (Butcher 1972):

μhop ¼
e Dhop

kT
¼ e

kT

νhop r2hop
6

: (24)

The thermally activated effective hopping frequency is given by

νhop ¼ ωphon

2π
exp �2

rhop
r0

�Whop

kT

� �
, (25)

whereWhop is the average energy difference between the two states for hopping, rhop
is the hopping distance, r0 is the radius of the center, and ωphon is an effective phonon
frequency to match the energies of initial and scattered states. For hops of distance
rhop, the corresponding hopping energy is given by the band width of centers located
at the Fermi energy ΔEB(EF), which in turn is given by

Whop ¼ ΔEB EFð Þ ¼ 3

4π r3hop gN EFð Þ , (26)

with gN (EF) (dimension eV�1 cm�3) the density of states for defects with an energy
at the Fermi level, from which such activation makes the largest contribution to the
mobility (see Mott 1969, Pollak 1972).
Variable Range Hopping In amorphous semiconductors with the Fermi level below
the mobility edge, thermal activation becomes essential to carrier transport. With
reduced temperature, the width of the energy band decreases, thereby involving less
centers, i.e., the distance between the active centers increases (Mott 1968, 1969).
The average hopping distance, which maximizes the hopping rate, is given by

rhop ¼ 3 r0
2π gN EFð Þ kT

� �1=4

: (27)

This results in a hopping frequency of

νhop / exp � C

kTð Þ1=4
 !

, withC ¼ 2
3

2π

� �1=4
1

r30 gN EFð Þ
� �1=4

: (28)

Introducing this relation into Eq. 23, we obtain a hopping mobility

μhop ¼ μ0exp � T0

T

� �
, (29)
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which is experimentally observed in some of the amorphous semiconductors (see
Fig. 8). In thin layers, the T�1/4 relation changes to a T�1/3 relation (Knotek et al.
1973). Here, percolation paths are cut open by the layer surfaces normal to the
current flow (Hauser 1975). For a review of hopping conduction, see Böttger and
Bryksin (1985); for variable-range hopping in n-channel α-SiGe quantum well
structures, see Shin et al. (1999).
Hopping Mobility of Polarons The strong interaction of trapped carriers with
phonons suggests the involvement of polarons in the carrier transport of amorphous
semiconductors (Emin 1975, Mott and Davis 1979). In certain amorphous semi-
conductors, the carrier transport may also be caused by hopping of bipolarons
(Schlenker and Marezio 1980, Elliott 1977, and Elliott 1978).
Dispersive Carrier Transport One of the most convincing arguments about the
carrier transport involving a quasi-exponential trap distribution stems from experi-
ments with excess carriers, e.g., injected or photo-excited carriers. These are trapped,
reemitted from shallow traps, retrapped, and so on; during the period between
trapping, they are mobile and drift in an electrical field. The first carriers that traverse
the device have not been trapped, followed by carriers that have been trapped once,
twice, etc. Consecutive trapping causes further slow-down of carrier traversal. When
being retrapped, energy is dissipated by emitting phonons, and successively deeper
traps are filled; from here escape is much slower. This behavior results in a typical
distribution of these excess carriers as a function of the time while in transit, in
agreement with the experiment. This confirms the intimate involvement of a trap
distribution in carrier transport.
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Transport with a nonconstant hopping rate due to multiple trapping of carriers
into progressively deeper states is referred to as dispersive transport. The change in
hopping rates effects the broadening of a generated carrier ensemble. We will return
to this subject when we discuss carrier kinetics in▶ Sect. 1.1.3 of chapter “Dynamic
Processes”. For a review, see Tiedje (1984).

4.4 Temperature Dependence of the Conductivity

The relative magnitude of the different contributions to the conductivity is a function of
the temperature. This is depicted in Fig. 9, in which the Fermi level remains pinned.

(a) At low temperatures (T1), only carriers near EF can contribute to the conductiv-
ity. Since pinning of the Fermi level requires a high density of defect states at EF,
such conductivity is similar to the impurity conduction in crystalline semicon-
ductors. We can distinguish two cases of this impurity conductivity:
(a1) The impurity density near EF is large enough to permit sufficient tunneling

within a band of width ΔE1; then impurity conduction similar to a
crystalline semiconductor dominates, with

σ ¼ σa1exp � ΔE1

2 kT

� �
: (30)

(a2) The impurity density is smaller and its bandwidth is larger than kT; then
variable-range hopping occurs with the characteristic (kT)�1/4 dependence:

σ ¼ σa2exp � Cffiffiffiffiffiffi
kT4

p
� �

, (31)
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Fig. 9 Typical carrier distributions resulting in three different modes of conductivity at tempera-
tures T1, T2, and T3
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with C as given by Eq. 28. Such a dependence is shown in Fig. 8.
(b) At medium temperatures (T2), sufficient carriers are excited into tailing states

near EA. They show sufficient overlap for tunneling, so that hopping is activated.
With ΔE2 as the activation energy for hopping, we obtain

σ ¼ σbexp �EA � EF � ΔE2

kT

� �
: (32)

However, since EA � EF is usually much larger than ΔE2, one observes a
constant slope in the ln(σ) versus 1/T diagram.

(c) At higher temperatures (T3), when sufficient carriers are excited into non-
localized, i.e., band states with an energy above the mobility-edge energy Eμ,
the conductivity is given by

σ ¼ σc exp �Eμ � EF

kT

� �
: (33)

(d) With further increasing temperatures, the mobility may increase sufficiently
above the saddle point between the undulating band edges to provide yet one
more significant contribution to the conductivity:

σ ¼ σd exp � E0
g

2kT

� �
, (34)

where E0
g is a shifted effective bandgap energy: the mobility gap related to the

mobility edges of electrons and holes. The pre-exponential factors are

σa2 ¼ e2ω N EFð Þ r2, (35)

for variable range hopping (see Eq. 27),

σb ¼ 0:03
e2

ħλi
, (36)

for hopping from tailing states, and

σa1
σc

�
¼ σmin ffi e2

2π2 ħaqH
ffi 610

aqH=Å
Ω�1 cm�1
� �

(37)

for band conductivity. Finally,

σd ¼
e2 gN E0

g

	 

kT τe

mn
(38)
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for conduction above the saddle points of the band edges. Here, σmin is the minimum
metallic conductivity (see Mott and Davis 1979), τe is the energy-relaxation time,

and gN E0
g

	 

is the joint density of states at E0

g, the shifted effective bandgap energy.

The type of predominant conductivity depends on material preparation (Connell
and Street 1980). This becomes rather sensitive in tetrahedrally bound amorphous
semiconductors, such as α-Ge:H or α-Si:H, where a wide range of σ(T ) behavior is
observed, depending on deposition parameters, doping, hydrogenation, and
annealing treatments (LeComber et al. 1972; Bullot and Schmidt 1987).

5 Charge Transport in Organic Semiconductors

Organic semiconductors comprise small-molecule crystals and polymers. Quite a
few of them have been obtained as single crystals and highly purified to obtain their
intrinsic semiconductor properties (▶Sect. 1.5 of chapter “The Structure of Semi-
conductors”). Most organic solids are excellent insulators and become semi-
conductive only after doping (Pope and Swenberg 1982). Also organic polymers
show semiconducting properties (Goodings 1976). They typically consist of poly-
mer chains with a semiconducting backbone. Organic semiconductors are employed
today in a wide field of applications, e.g., in organic LEDs (OLEDs) and displays,
radio-frequency tags, solar cells, and integrated devices (Sirringhaus et al. 1998); for
reviews see Hung and Chen (2002), Gather et al. (2011), Arias et al. (2010),
Peumans et al. (2003), and Hains et al. (2010).

Conductance in organic semiconductors is governed by disorder. Even in perfect
small-molecule crystals, the weak intermolecular van der Waals bonds give rise to a
dynamical disorder which affects the mobility of carriers. Highly pure single crystals
hence show generally an increase of mobility at decreased temperature. In contrast,
less ordered organic solids exhibit an decrease of the mobility at lower temperatures
due to localization of carriers and a required thermal activation for transport. We
consequently observe both band conductance and hopping conductance in organic
semiconductors.

Carriers in organic semiconductors couple strongly to molecular oscillations,
suggesting a polaron-state contribution (Spear 1974). An early review of the theory
of carrier mobility in organic semiconductors is given by Druger (1975). Karl (1984)
gives a critical review of mobility and other physical data for both one-component
and mixed organic semiconductors. A recent comprehensive review is given by
Bässler and Köhler (2012).

5.1 Band Conductance in Organic Crystals

Band conductance is found particularly in small-molecule crystals. These are pre-
dominantly van der Waals bonded (▶ Sect. 3.3 of chapter “Crystal Bonding”); some
of them have other bonding superimposed, such as ionic, hydrogen, and charge-
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transfer bonding. We distinguish single-component and two-component (charge-
transfer) semiconductors. The first group contains the classical organic semiconduc-
tors, such as the acenes (▶ Sect. 1.5 of chapter “The Structure of Semiconductors”),
which show comparatively high mobilities; the second group includes highly con-
ductive compounds, some of which show semiconductor-metal transitions and even
superconductivity (▶ Sects. 1.1 and ▶ 2 of chapter “Superconductivity”).

5.1.1 Single-Component and Two-Component Semiconductors
Single-Component Semiconductors. Single-component organic crystals are usu-
ally good insulators, but may become photoconductive with sufficient optical exci-
tation. The class of aromatic hydrocarbons like the acenes has been more thoroughly
investigated. They have bandgap energies between 2 and 5 eV (see ▶ Sect. 3 of
chapter “The Origin of Band Structure”) and are considered a class of
one-dimensional conductors (Kivelson and Chapman 1983), albeit with a compara-
bly small anisotropy ratio. The bandgap energy of organic semiconductors can rarely
be determined by optical absorption, since valence-to-conduction band transitions
are masked by transitions to excited molecular states referred to as excitons
(Davidov 1962), which lie within the bandgap and do not support charge transport.
Transport bandgap and optical bandgap are hence distinguished, see ▶ Sect. 4.1 of
chapter “Bands and Bandgaps in Solids.” The transport bandgap can be measured
directly from the threshold of intrinsic photoconductivity (Marchetti and Kearns
1970) or from photoelectron spectroscopy.

The mobility is usually low compared to inorganic semiconductors, for electrons
and holes typically in the 10�2 to 10 cm2/(Vs) range at 300 K, and falls with
increasing temperature.
Two-Component Semiconductors Two-component semiconductors consist of
pairs of complementary molecules with large differences in their redox properties:
the organic molecules with a low ionization energy acts as electron donors D and the
other molecules with a high electron affinity act as acceptors A. Such a combination
produces organic crystals that can show very low or vanishing activation energies
and comparatively high conductivities. The crystals are formed by a sandwich-like
stacking of planar molecules, where donors and acceptors form Dδ+Aδ–Dδ+Aδ–

structures, or they are located in separated stacks, i.e., the stacking contains
Dδ+Dδ+. . . and Aδ–Aδ–. . . complexes for segregated stacking with face-to-face stacks.
δ denotes the transferred charge per molecule in units of elementary charges. The
charge transfer (CT) may be incomplete, yielding two limiting cases: weak CT
complexes and strong CT complexes, also referred to as radical ion salts (Soos
1974).

In radical ion salts, an organic radical cation (such as perylene+) is combined
with a counter anion (such as a halogen or PF�6 ), or an organic radical anion (such as
TCNQ�) is combined with a counter cation. The solids have a pronounced ionic
character, i.e., δ is often close to 1; usually δ < 1 for conductive radical ion salts.

Charge-transfer complexes with δ significantly smaller than unity can show high
conductivities, caused by the incomplete charge transfer between D and A, which
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results for the ground state in partially filled bands. Typical donor and acceptor
molecules that form such charge-transfer crystals are given in Fig. 10. Many such
semiconductors have low-lying electronically excited states in which an electron is
transferred from D to A. The charge-transfer transition in the excited state5 may be
written as

D A ! DþA�with ECT ¼ ID � AA � C, (39)

where ID is the ionization energy of the donor and AA is the electron affinity of the
acceptor (both in the gas phase), and C is a Coulomb binding-energy of the excited
state. ECT is the “energy gap” between the ground state and the excited charge-
transfer state (Mulliken 1952).

The resulting structures are termed neutral charge-transfer crystals, typically
with stacks of alternating D and A molecules: DADADA. . . . The lowest excited
state is DADAD+A�DADA . . .; the respective activation energy for semiconductivity
is typically (Kuroda et al. 1962)

Es ffi 1

2
ECT: (40)

The incomplete electron exchange and consequently partially filled bands
results in a rather large semiconductivity – or even metallic conductivity. The
resistivity of these semiconductors lies between 102 and 106 Ω cm at room
temperature with a transfer-energy gap in the 0.1–0.4 eV range (Braun 1980).
The conductivity is usually highly anisotropic, with the electron transfer-integral in
the stacking direction typically a factor of 10 larger than in the direction
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Fig. 10 Structure of some
typical organic donor
and acceptor molecules in
charge-transfer crystals:
Tetrathiofulvalene (TTF),
Hexamethylenetetra-
selenofulvalene (HMTSF),
Tetracyanoquinodimethan
(TCNQ), N-
methylphenazinium (NMP),
Quinolinium (Qn)

5The excited state has essentially ionic charge character.
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perpendicular to the stacks (Keller 1977). Trapping is of minor importance in these
semiconductors with a high carrier density (Karl 1984). The charge-transfer crys-
tals provide an opportunity for fine tuning of the semiconductive properties by
replacing TTF-type donors and TCNQ-type acceptors with other similar molecules
(Bloch et al. 1977), which could render such materials attractive for some technical
applications.

5.1.2 Carrier Mobility in Pure Organic Crystals
Organic molecules show a strong structural relaxation on introducing a charge. The
band structure calculated for a crystal composed of weakly bonded neutral mole-
cules may hence not be preserved in the presence of carriers. As a rule of thumb,
band conductance occurs despite lattice relaxation if the transfer integral between
molecules is sufficiently large: a large transfer integral delocalizes the carrier
wavefunction over several molecules. A more quantitative estimate follows from
the widthW of the energy band for carrier transport. If the mean scattering time τ is
in the range or smaller than ħ/W, no wavevector k can be assigned to the carrier.
The description in terms of conduction in a band with dispersion E(k) hence
requires

τ 	 ħ
W

: (41)

The bands in organic crystals are rather narrow due to a small amount of
wavefunction overlap of π electrons, see ▶Sect. 4.1 of chapter “Bands and
Bandgaps in Solids”.” Typical bandwidths W are in the range of some hundred
meV (see Table 1), yielding τ > 10�15 s. If scattering results from molecular
relaxation, τ is given by the characteristic time of molecular vibration; the carrier
must leave the molecule before a significant relaxation and consequential trapping
can occur. Equation 41 then reads W 	 ħ/τ. This yields bandwidths of
100–200 meV, a condition reasonable well fulfilled for crystals of acenes and
comparable aromatic compounds.

A clear indication for band conduction is provided by the temperature depen-
dence of the mobility. In inorganic semiconductors scattering at acoustic phonons
leads to a T�3/2 dependence of the carrier mobility (▶Eq. 15 of chapter “Carrier
Scattering at Low Electric Fields”). A comparable decrease of mobility at higher

Table 1 Bandwidth W of
acene crystals for holes in
the valence band (HOMO)
and electrons in the
conduction band (LUMO)
(After Cheng et al. 2003)

Crystal

Bandwidth W

Valence band Conduction band

Naphthaline 409 372

Anthracene 509 508

Tetracene 626 503

Pentacene 738 728
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temperature is observed for the carrier mobility in organic crystals with band
conduction.

The mobility data in Fig. 11 show typical features of transport in organic crystals.
The temperature dependence at low electric field F is described by a power law

μ Tð Þ ¼ μ300K T
α, (42)

where μ300 K is the mobility at T = 300 K. The exponent α deviates somewhat from
the ideal value of�3/2, see Table 2. The mobilities do not depend on the value of the
electric field and show a pronounced anisotropy; the principal axes of the mobility
tensor deviate slightly from the crystallograpic crystal axes. Typical mobilities are on
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Fig. 11 Temperature dependence of the electron mobility (a) in a perylene crystal, and (b) in a
naphthalene crystal (After Warta et al. (1985) and Karl (2001))

Table 2 Mobility m in
units of cm2 V�1 s�1 for
organic crystals at 300 K
and exponent a of the
temperature dependence
according to Eq. 42

Crystal Direction

Electrons Holes

μ α μ α

Naphthalene a 0.62 �1.4 0.94 �2.8

b 0.64 �0.55 1.84 �2.5

c’ 0.44 +0.04 0.32 �2.8

Anthracene a 1.73 �1.45 1.13 �1.46

b 1.05 �0.84 1.84 �1.26

c’ 0.39 +0.16 0.32 �1.43

Perylene a 2.37 �1.78

b 5.53 �1.72

c’ 0.78 �2.15
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the order of 10�2. . . 10 cm2/(Vs). Data for a large number of organic semiconductors
are tabulated by Schein (1977); they decrease at higher temperature according to
Eq. 42 with 0 > α > �3.

At high electric field F, the mobility shows a sublinear velocity-field relation, see
Fig. 11a. The drift velocity of the carrier saturates at high fields, similar to the
transport in inorganic semiconductors discussed in ▶ Sect. 1.1 of chapter “Carrier
Scattering at High Electric Fields”.

5.2 Hopping Conductance in Disordered Organic
Semiconductors

Many organic compounds – small molecules or polymers – cannot be prepared as
single crystals. They are usually prepared as thin films by evaporating or spin
coating. The carrier mobility of these semiconductors is by orders of magnitudes
lower than that of crystalline semiconductors considered above. In these semi-
conductors, the static disorder dominates at most temperatures, and the mobility
increases for increasing temperature. The low coupling between the molecules in
the solid state leads to a strong localization of the carriers on a molecule; transport
occurs via a sequence of charge-transfer steps from one molecule to another,
similar to the hopping between defect states in inorganic semiconductors. The
transport properties are thus described by the formalism of hopping conductance
developed for amorphous inorganic semiconductors (Sect. 4): the charge carriers
are assumed to hop in a time-independent disordered energy landscape as illus-
trated in Fig. 5.

The basic difference between amorphous inorganic semiconductors and dis-
ordered organic semiconductors is the shape of the density of states (DOS). In an
amorphous solid, the DOS is found to have a mobility edge and a tail of localized
states with an exponentially decreasing distribution extending into the bandgap,
see ▶ Figs. 2 and ▶ 3 of chapter “Defects in Amorphous and Organic Semi-
conductors” and Sect. 4. In contrast, the DOS in organic materials has a Gaussian
shape:

g Eð Þ ¼ Gtotffiffiffiffiffi
2π

p
σ
exp

E� Ecenterð Þ2
2σ2

" #
, (43)

whereGtot is the total DOS, Ecenter is the center of the energy distribution, and σ is the
variance of the distribution (Bässler 1993). Hopping of carriers is determined by
both the energy difference ΔE and the spatial separation Δr of initial and final states;
in addition, hopping is affected by an electric field F.

The hopping rate νij between two localized states i and j depends on whether a
hop-up (") occurs with ΔE = Ej � Ei � eF(xj � xi) or a hop-down (#) with
ΔE < 0, where Ej and Ei are the energies within g(E) at F = 0. Adopting the
model of Miller and Abrahams (1960) we obtain
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νi j "ð Þ ¼ ν0 exp �2γ a
Δri j
a

� �
exp �Ej � Ei � eF xj � xi

� �
kT

� �
, (44)

νi j #ð Þ ¼ ν0 exp �2γ a
Δri j
a

� �
: (45)

Here the constant γ is the spatial decrease of the wavefunction (invers Bohr radius for
hydrogen-like wavefunctions), and a is the mean separation of localization sites. We
note that a hop-down does not require a thermal activation.

Analogous to transport in amorphous inorganic semiconductors different trans-
port regimes can be distinguished:

(a) Very low temperatures – nearest neighbor hopping: since kT
ΔE, the spatial
separation Δr controls the transfer, favoring next neighbors

(b) Low temperatures – variable-range hopping: the thermal energy kT allows for
hopping within a narrow energy band around Ecenter, thereby relaxing the
next-neighbor constraint

(c) Medium temperatures –hopping in a wider energy range: similar to (b) within a
wider energy band, possibly opening percolation paths which are not restricted
to next neighbors

(d) High temperatures – multiple trapping and release: carriers are excited from
localized to extended states above the mobility edge, where band transport takes
place until trapping at other localized states occurs. This regime requires a
material where extended states exist.

The model of Bässler (1993) results in a thermally activated mobility

μ ¼ μ0 exp � 2σ

3kT

� �2

þ C
σ

kT

	 
2
� Σ2

� � ffiffiffi
F

p" #
(46)

determined by the spread σ of the energy distribution in the conducting band, the
structural disorder parameter Σ, the applied electric field F, and the parameter
μ0 representing the mobility of the hypothetic not-disordered semiconductor at
high temperature. The field dependence of Eq. 46 is comparable to the
Poole-Frenkel effect (Frenkel 1938). For a more detailed review of various transport
models, see Noriega and Salleo (2012). A review on experimental techniques for
measuring transport properties is given by Coropceanu et al. (2007).
Polymers Typical examples of disordered organic semiconductors are the
one-dimensional organic polymers, such as polyacetylene, as the simplest member
(for cis-isomer see ▶ Fig. 15a of chapter “Crystal Bonding”), or the aromatic linear
polymer poly(para-phenylenevinylene) (▶ Fig. 16 g of chapter “The Structure of
Semiconductors”). Polyacetylene has been investigated most extensively – see the
review by Heeger and MacDairmid (1980). It can easily be doped with donors or
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acceptors, which are incorporated between the polymer chains of the trans isomer,
resulting in controlled changes of the conductivity over 13 orders of magnitude up to
3 � 103 Ω�l cm�l. At lower doping densities, devices with a pn junction can be
formed from polyacetylene. At high doping densities, i.e., above 1%, a
semiconductor-metal transition occurs. In the metallic state, polyacetylene has the
optical appearance of a highly reflecting metal.

The typical structure of organic polymers has a bond alternation between conju-
gated single and double bonds within the backbone of the chain, see ▶Sect. 3.3 of
chapter “Crystal Bonding”; in polyacetylene there are two CH groups per unit cell,
with one π electron for each CH group. At the boundary of two bond-alternation
sequences with different phase, an unpaired electron is created; this bond alternation
defect, illustrated in ▶ Fig. 14 of chapter “Defects in Amorphous and Organic
Semiconductors,” has attracted substantial interest as a manifestation of a soliton.
Such a soliton can be described as a kink in the electron-lattice symmetry, rather than
a spread-out transition; according minimum-energy calculations some spreading
occurs, typically over about 10 lattice constants, remaining unchanged during the
kink motion. Highly mobile, the soliton has a room-temperature hopping rate in
excess of 1013 s�1. The soliton seems to be responsible for a wide variety of unusual
electrical, optical, and magnetic properties of these polymers. A short review is
given by Heeger (1981).
Mobility in Polymers The mobility is widely measured using time-of-flight exper-
iments. Such studies of disordered organic semiconductors show both dispersive and
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Fig. 12 Hole mobility in derivatives of PPV. (a) Mobility in derivatives with different side groups
at zero electric field; OC1C10-PPV: R1 = CH3, R2 = C10H21; OC10C10-PPV: R1 = R2 = C10H21

(After Blom and Vissenberg 2000). (b) Dependence of the hole mobility on the electric field F for
MEH-PPV (R1= C8H16, R2= CH3) prepared without (a) and with application of an electric field of
3 and 6 kV/cm for b and c; after Shi et al. (2006)
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nondispersive components, depending on temperature, electric field, and chemical
purity. Nondispersive carrier mobilities show typical features (Bässler 1993): a field-
independent activated mobility at low fields, characterized by an activation energy,
and a field-dependent contribution in the form of a stretched exponential at high
fields F. These findings can in many cases be described by the empirical dependence

μ ffi μ0 exp � EA

kT
þ β

ffiffiffi
F

p� �
, (47)

with the zero-field mobility μ0, an activation energy EA, and the field-activation
factor

β ¼ B
1

kT
� 1

kT0

� �
; (48)

B and T0 are empirical parameters. Since polymers are stable only in a very limited
temperature range, the temperature dependence can often be described in this
interval by different relations, such as Eqs. 46 or 47.

The hole mobility of the poly(paraphenylene vinylene) (PPV) is shown in Fig. 12.
Holes dominate the current in many polymers. The polymer PPV is a prominent
compound due to its electroluminescence properties; PPV derivatives are soluble
and can be spin coated for, e.g., fabrication of organic LEDs. The mobility is
reasonably described by a log(μ) /T �2 dependence, although also an Arrhenius
dependence log(μ) /T �1 fits well (Blom et al. 1997); in the limited temperature
range a clear distinction is not possible. The activation energies EA for PPV deriv-
atives (Eq. 47) range between 0.3 and 0.5 eV, and widths σ of the Gaussian DOS
according to Eq. 46 are near 100 meV, with mean separations a of localization sites
in the range 1.1 . . . 1.7 nm (Blom and Vissenberg 2000). We note in Fig. 12 the
comparatively low mobility of disordered organic semiconductors and the charac-
teristic increase at higher temperature.

The enhancement of the mobility in an electric field is shown in Fig. 12b. The
dependence on F1/2 is well fulfilled. This behavior has also been observed from time-
of-flight measurements in many molecularly doped polymers and amorphous
glasses. An electrically induced polarization of MEH-PPV during the preparation
of films significantly enhances the mobility.

6 Summary

Carrier transport is generally influenced by defects; however, in highly doped or
disordered semiconductors, the carrier transport becomes induced by defects. If
doping produces a well-defined predominant defect level with increasing density,
it will split into two (bonding and antibonding) bands separated by an energy gap.
Below a density to permit sufficient tunneling, excitation from the filled, lower
impurity band into the conduction band is required for carrier transport. When the
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impurity band is wider than 2kT and the Fermi level lies in the middle of this band,
variable range hopping occurs: with decreasing T, the predominant excitation occurs
from a narrower range of width kT of these centers, and causes a semilogarithmic
slope /T1/4. With increased defect density, a diffusive transport within the upper
impurity band becomes possible; the conductivity in this band requires a small
activation energy to bridge the gap. With further increase of the defect density, the
carriers become delocalized, the gap disappears, and the conductivity within the
impurity band becomes metallic.

In amorphous semiconductors, a similar tunneling-induced carrier transport can
take place within the tail of states that extend from the conduction or valence band
into the bandgap, when the states are close enough to each other to permit significant
tunneling. Here carriers become delocalized. The edge at which delocalizing occurs
is referred to as the mobility edge. At this edge, major carrier transport starts; below
the mobility edge, carriers are trapped rather than being mobile.

With a statistical distribution of defects within semiconductors, at a given thresh-
old, only some volume elements become conductive. With increasing temperature
these volume elements will widen, will start to interconnect, and finally will provide
an uninterrupted path from electrode to electrode. Such percolation character is
typical for most of the conduction phenomena in highly doped or disordered semi-
conductors, which have a density-related threshold of conduction. The mobility of
carriers in such semiconductors is typically on the order of 10 cm2/(Vs) or lower. At
low temperatures it is determined by tunneling (hopping) from neighbor to neighbor
and is very sensitive to the density of defects and their distribution in space and
energy. At sufficiently high temperatures, carrier transport higher within the con-
duction or valence band may compete significantly with the conduction mechanisms
described above. This band conduction may have a mean free path compatible to the
one in crystalline semiconductors.

Organic semiconductors can be single-componentmaterials, which can be doped,
such as aromatic hydrocarbons (e.g., anthracene). These materials are good insula-
tors and show photoconductivity. Another group of single-component semiconduc-
tors is comprised of certain linear polymers, such as polyacetylene. With doping this
group can change its conductivity up to 13 orders of magnitude and can become
metallic in electrical behavior and optical appearance. Two-component semiconduc-
tors contain molecules or molecular layers, which act as donors and others which act
as acceptors. Variation of their donor/acceptor ratio can change the behavior from
highly compensated to n- or p-type, with a wide range of conductivities, depending
on the deviation from a donor to acceptor ratio of 1: 1. There is a great variety of such
crystals that exhibit a broad range of properties, including metallic conductivity and,
at low temperatures, superconductivity.

The carrier mobility in organic semiconductors is substantially lower than in good
semiconducting inorganic compounds and typically is in the 10�3 to 10 cm2/
(Vs) range. It is controlled by static and dynamic disorder. Small-molecule crystals
show band conductance with a decreasing carrier mobility at increased temperature;
it is affected by dynamic disorder and described by a power law similar to that of
inorganic semiconductors. Films of small-molecules or polymer semiconductors
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have dominating static disorder; they show hopping conductance with a typically
very low mobility, which increases at higher temperatures.
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