
Challenge Accepted:
QUAD Meets MOCHA2017

Alexander Potocki(B), Daniel Hladky, and Martin Voigt

Ontos GmbH, Leipzig, Germany
{alexander.potocki,daniel.hladky,martin.voigt}@ontos.com

Abstract. Native RDF (http://www.w3.org/RDF/) stores have been
making enormous progress in closing the performance gap compared to
relational database management systems (RDBMS). But this small gap,
however, still prevents the adoption of RDF stores in scenarios for large-
scale enterprise applications. We solve this problem with our native RDF
store QUAD and its fundamental design principles. It is based on a vector
database schema for quadruples and it is realized by facilitating various
index data structures. QUAD also comprises approaches to optimize the
SPARQL query execution plan by using heuristic transformations. In
this short paper, we briefly introduce QUAD and sketch in which tasks
of the Mighty Storage Challenge we will attend to benchmark the current
performance capabilities.

Keywords: RDF · SPARQL · Index · Query optimization · Bench-
marking

1 Introduction

Over the past few years, we have seen explosive growth in the dissemination
and use of semantic data. Initially, the traditional application fields of semantic
technologies were areas as medicine, bioinformatics, public administration with
their Linked Open Data portals. For the further establishment in other domains
on enterprise-scale reliable and efficient solutions for storing and querying per-
manently increasing volumes of semantic data are the main foundation. Here,
the Mighty Storage Challenge will contribute to a big extent.

Our goal is to provide an universal and customizable solution for storing
semantic data that is efficient concerning its performance, does not require the
use of a relational DB and translation of SPARQL into SQL. It needs to support
recommendations of the World Wide Web Consortium (W3C) as RDF, SPARQL
1.1 [2], and SPARQL protocol1. Our RDF store QUAD [1] is the result of our
ongoing research and development. In this introductive paper, we briefly describe
our QUAD and explain how we are participating in the Mighty Storage Challenge
to benchmark and compare the performance of our solution to other available
stores.
1 http://www.w3.org/standards/semanticweb/.

c© Springer International Publishing AG 2017
M. Dragoni et al. (Eds.): SemWebEval 2017, CCIS 769, pp. 16–20, 2017.
https://doi.org/10.1007/978-3-319-69146-6_2

http://www.w3.org/RDF/
http://www.w3.org/standards/semanticweb/


Challenge Accepted: QUAD Meets MOCHA2017 17

2 Related Works

Developing an RDF database, every developer faces some challenges. The two
main problems are the following.

First, the choice, conceptualization, and development of a complete index set
on SPO2 triples or SPOG (see footnote 2) quadruples are complex. A series of
works by Harth et al. [3–5], Baolin et al. [6], Weiss et al. in [7], and Abadi et al. [8]
demonstrate similar methods of constructing them, using prefix search, reduce
the full set of indices. Pursuing the elaboration of the multiple-index approach
proposed in [3,9] and improved in the Hexastore solution [7], we have created
a database structure supporting certain permutations of a set of elements for
quads within SPOG (see footnote 2) relations.

The second challenge is the conceptualization and development of a query
execution plan (QEP [14]). Several researchers formerly addressed the fundamen-
tal issues. Neumann et al. [10,11] proposed the query optimizer which mostly
focuses on join order when generating execution plans and uses dynamic pro-
gramming for the plan enumeration, with a cost model based on RDF-specific
statistical synopses. Stocker et al. [12] presented SPARQL query optimization
methods based on static optimization using the Basic Graph Pattern (BGP)
method to optimize triple pattern join sequences. Gomathi et al. [13] described
a multi-query optimization process that splits an input query into clusters using
the K-means method based on the common sub-expression in the queries con-
stituting an input set of queries. During our research, we examined equivalent
query plan transformations based on heuristic rules worked out using compu-
tational complexities of algorithms for implementing operations, experimentally
as well as through the observation of the system response times for various QEP
configurations. This research direction was the most promising for us so that we
have developed a set of heuristics never published in other works. We employ
them for the static optimization of the original QEP.

3 QUAD: Design and Implementation

QUAD follows the generally accepted design of databases, which is sketched in
Fig. 1. In order to receive and process queries from client applications, QUAD
implements SPARQL 1.1 Protocol3. Before making a request to QUAD, any
client application must authenticate itself using Digest Access Authentication4

protocol. After the authentication process, QUAD creates a client session object
and associates an access descriptor or, so called, authorization token with it,
which determines the availability of particular data for subsequent client queries.
Only then SPARQL queries are ready to be parsed and converted to the iterator
tree in the SPARQL Engine module. The authorization token is accounted for
by placing additional filter iterators in the tree. Leaf iterators are connected to
2 Here, “S” stands for Subject, “P” for Predicate, “O” for Object, and “G” for Graph.
3 https://www.w3.org/TR/sparql11-protocol/.
4 https://en.wikipedia.org/wiki/Digest access authentication.

https://www.w3.org/TR/sparql11-protocol/
https://en.wikipedia.org/wiki/Digest_access_authentication


18 A. Potocki et al.

Fig. 1. Architectural design of QUAD.

a set of indexes that store different slices of the RDF data (Index24 ), as well
as to the indexes of the literal values (Vocabulary). Indexes are implemented
using the BTree algorithm. The nodes of the BTree are represented by blocks of
memory or pages of given size specified during the configuration of the QUAD
database. Each block has its unique numeric identifier. The Virtual Memory
subsystem provides access to the pages by their identifiers and also caches them
using the 2Q buffer cache algorithm (Johnson et al. [15]). The Page Storage
subsystem is responsible for loading and uploading data to permanent storage.
This subsystem uses direct access to storage devices, bypassing the operating
system’s file cache to maximize performance. The Index Tracker tracks any
changes to pages during the insertion, deletion or modification of data in BTree
indexes. These changes are encoded by a set of incremental instructions, which
in turn are stored on permanent storage by the Command Journal subsystem.
These records, called the transaction log, can be used to restore the database in
the event of an emergency shutdown.

As Fig. 1 illustrates, QUAD follows a component-based database design. Each
component is described by its interface. The implementation details of the com-
ponent are hidden from the other ones. Instances of components have unique
identifiers. These identifiers serve to bind them to each other. The component
life-cycle and their binding are managed by a specially developed framework that
implements naming services, state storage services, and configuration services.
QUAD is implemented in C++11 with intensive use of generic programming
techniques. The architecture and operation system abstraction layer is performed
mainly using the Boost library5. Assembly and testing were carried out on Linux

5 http://www.boost.org/.

http://www.boost.org/


Challenge Accepted: QUAD Meets MOCHA2017 19

operating systems (Ubuntu and CentOS), Windows and Android, X86-64 and
ARMv06 platforms.

4 Evaluation

To evaluate the performance of QUAD and compare it with other well-known
RDF storages, we are going to participate in the MIGHTY STORAGE CHAL-
LENGE competition - ESWC 2017 6. This competition offers four types of tasks,
for a comprehensive assessment of the performance of RDF storage. 1, 2 and
4 of these tasks are the general tests of intensive loading of RDF data in par-
allel mode and query execution over this data. These test scenarios emulate
the database operating modes in real business tasks. The third task is related
to the evaluation of the efficiency of storing versioned RDF data. QUAD does
not contain any particular versioning implementations, so we can only emulate
versioning using named graphs for different versions of RDF data. Since this
approach is not efficient and may only offer a baseline performance, QUAD does
not challenge this task.

For the competition, we prepared a special version of QUAD, configured
and packed it into a docker image. The contest does not involve data durability
testing, so we’ve disabled transaction journaling. For non-blocking data reads
during the write operations, we activated the MVCC7. Almost all RAM is used
for the index page cache. The number of threads executing simultaneous requests
to the database corresponds to the number of processor cores in the system.

5 Conclusion and Further Work

In this introductive paper, we give a brief overview of our RDF store QUAD for
the interested readers of the MOCHA2017 papers. If our native RDF store fits
the challenge requirements, we are looking forward to the invitation to the tasks
1, 2 and 4 in order benchmark the already prepared dockerized version.

Besides the challenge, our ongoing work is to add features, stabilize them
and boost the overall performance of QUAD. Regarding the latter, our primary
focus is the development of a RDF data store cluster, which is geared towards the
multi-platform processing of very-large-scale RDF datasets larger than 1 billions
of triples. Therefore, we facilitate the concept of the parallel deployment of
independent, full-featured RDF stores instance with a shared vocabulary index.
Such an approach will prohibit the multiple storages of the same literal values
in different stores, as well as to have a unique identification of RDF entities
across all RDF stores in the cluster. One of the principal challenges in building a
distributed database is QEP planning. Delays in transferring data between hosts
can significantly reduce query performance. Hence, we developed a particular
statistical index, which radically reduces the amount of data sent.

6 https://project-hobbit.eu/challenges/mighty-storage-challenge.
7 https://en.wikipedia.org/wiki/Multiversion concurrency control.

https://project-hobbit.eu/challenges/mighty-storage-challenge
https://en.wikipedia.org/wiki/Multiversion_concurrency_control


20 A. Potocki et al.

Acknowledgments. This work was partially supported by the BMWi project SAKE
(Grant No. 01MD15006).

References

1. Potocki, A., Polukhin, A., Drobyazko, G., Hladky, D., Klintsov, V., Unbehauen,
J.: OntoQuad: native high-speed RDF DBMS for semantic web. In: Klinov,
P., Mouromtsev, D. (eds.) KESW 2013. CCIS, vol. 394, pp. 117–131. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41360-5 10

2. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. Technical report, W3C
Recommendation (2013). https://www.w3.org/TR/sparql11-query/

3. Harth, A., Decker, S.: Optimized index structures for querying RDF from the web.
In: LA-WEB (Latin American Web Congress) (2005)

4. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: a federated repository
for querying graph structured data from the web. In: Aberer, K., et al. (eds.)
ASWC/ISWC -2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-76298-0 16

5. Harth, A., Decker, S.: Yet Another RDF Store: Perfect Index Structures for Storing
Semantic Web Data With Context, DERI Technical report (2004)

6. Baolin, L., Bo, H.: HPRD: a high performance RDF database. In: Li, K., Jesshope,
C., Jin, H., Gaudiot, J.-L. (eds.) NPC 2007. LNCS, vol. 4672, pp. 364–374.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74784-0 37

7. Weiss, C., Karras, P., Bernstein, A.: Sextuple Indexing for Semantic Web Data
Management. PVLDB 1(1), 1008–1019 (2008)

8. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable semantic web data
management using vertical partitioning. In: VLDB, pp. 411–422 (2007)

9. Wood, D., Gearon, P., Adams, T.: Kowari: a platform for semantic web storage
and analysis. In: XTeGh (2005)

10. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. J. VLDB 19(1), 91–113 (2010)

11. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1),
647–659 (2008)

12. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: WWW 2008, pp. 595–
604. ACM, New York (2008)

13. Gomathi, R., Sathya, C.: Efficient optimization of multiple SPARQL queries.
IOSR J. Comput. Eng. (IOSR-JCE) 8(6) (2013), pp. 97–101 (2013). www.iosr
journals.org, e-ISSN: 2278–0661, p- ISSN: 2278–8727

14. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
25(2), 73–170 (1993)

15. Johnson, T., Shasha, T.: 2Q: A low overhead high performance buffer management
replacement algorithm. In: Proceedings of the 20th International Conference on
Very Large Data Bases (VLDB 1994), San Francisco, CA, USA, pp. 439–450 (1994)

http://dx.doi.org/10.1007/978-3-642-41360-5_10
https://www.w3.org/TR/sparql11-query/
http://dx.doi.org/10.1007/978-3-540-76298-0_16
http://dx.doi.org/10.1007/978-3-540-74784-0_37
http://www.iosrjournals.org
http://www.iosrjournals.org

	Challenge Accepted: QUAD Meets MOCHA2017
	1 Introduction
	2 Related Works
	3 QUAD: Design and Implementation
	4 Evaluation
	5 Conclusion and Further Work
	References


