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Abstract. We present ABAplus, a system that implements reasoning
with the argumentation formalism ABA+. ABA+ is a structured argu-
mentation formalism that extends Assumption-Based Argumentation
(ABA) with preferences and accounts for preferences via attack reversal.
ABA+ also admits as instance Preference-based Argumentation which
accounts for preferences by reversing attacks in abstract argumentation
(AA). ABAplus readily implements attack reversal in both AA and ABA-
style structured argumentation. ABAplus affords computation, visuali-
sation and comparison of extensions under five argumentation semantics.
It is available both as a stand-alone system and as a web application.

1 Introduction

Approaches to preferences in abstract argumentation (AA) [9] and structured
argumentation [3] can be roughly classified as follows: 1. discarding attacks
from attackers that are less preferred than attackees (see e.g. [1] for AA and
ASPIC+ [16,17] for structured argumentation); 2. reversing attacks from attack-
ers that are less preferred than attackees (see Preference-based Argumentation
Frameworks (PAFs) [2] for AA and Assumption-Based Argumentation with Pref-
erences (ABA+) [7] for structured argumentation); 3. comparing extensions by
aggregating preferences over their elements (see e.g. [2] for AA and [21] for
structured argumentation); 4. incorporating numerical weights of arguments or
attacks into the definition of semantics (see e.g. [5] for AA and [12] for structured
argumentation). Implementations of several approaches in classes 1. and 4. exist
(see Sect. 6), but, to the best of our knowledge, implementations of approaches
in classes 2. and 3. are lacking. In this paper, we present an implementation of
approaches in class 2., i.e. implementation of attack reversal in both AA and
structured argumentation with preferences.

Our system, ABAplus, implements reasoning with the recently proposed for-
malism ABA+ [7]. ABA+ extends Assumption-Based Argumentation (ABA)
[6,20] with preferences and is the only structured argumentation formalism (to
the best of our knowledge) to reverse attacks in structured argumentation due to
preferences. To implement attack reversal in structured argumentation, ABAplus
uses a semantics-preserving mapping from ABA+ to AA and employs an off-the-
shelf AA implementation, namely ASPARTIX [10], for determining extensions.
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To this end, we advance a new mapping from ABA+ frameworks to AA frame-
works, which we call assumption graphs. In addition, we identify a novel property
of ABA+ frameworks, called Weak Contraposition, which distinguishes a class
of ABA+ frameworks in semantic correspondence with their assumption graphs.
Subject to Weak Contraposition, assumption graphs guarantee a correct repre-
sentation and implementation of ABA+ (as well as ABA) under five semantics,
and are used in ABAplus to provide concise graphical visualisation and compar-
ison of ABA+ (as well as ABA) frameworks.

To implement attack reversal in AA, ABAplus relies on a semantics-
preserving mapping from PAFs into ABA+. To this end, we consider a simple
mapping from PAFs to ABA+ frameworks, showing that ABA+ admits PAFs
as instances. Thus, ABAplus readily implements attack reversal in AA with
preferences too.

ABAplus is freely available at https://github.com/kcyras/ABAplus as a
stand-alone system, and at http://www-abaplus.doc.ic.ac.uk as a web appli-
cation.

2 Background

ABA+. We base the background on ABA+ on [7].
An ABA+ framework is a tuple (L,R,A,̄ ¯̄ ,�), where:

• (L,R) is a deductive system with L a language and R a set of rules of the
form ϕ0 ← ϕ1, . . . , ϕm with m � 0 and ϕi ∈ L for i ∈ {0, . . . , m}; ϕ0 is the
head and ϕ1, . . . , ϕm the body of the rule; if m = 0, then ϕ0 ← ϕ1, . . . , ϕm

has an empty body, and is written as ϕ0 ← �, where � �∈ L;
• A ⊆ L is a non-empty set of assumptions;
• ¯̄̄ : A → L is a total map: for a ∈ A, a is referred to as the contrary of a;
• � is a preorder (i.e. reflexive and transitive) on A, called a preference relation.

As usual, the strict (asymmetric) counterpart < of � is given by α < β iff
α � β and β � α, for any α and β. (We assume this for all preorders in this
paper.) For assumptions a, b ∈ A, a � b means that b is at least as preferred as
a, and a < b means that a is strictly less preferred than b.

Assumptions in ABA+ model defeasible information. For instance, assump-
tions can represent beliefs of an agent. In such a case, preferences in ABA+ can
be seen to represent the relative degrees of belief.

Example 1 (Preferences over beliefs). At a party, Zed is having a discussion
about the outcome of a possible referendum in the Netherlands on whether to
remain in the EU. Two of his interlocutors, Ann and Bob, have diverging views
on the outcome of the referendum. Ann claims that the Dutch would vote to
leave, whereas Bob maintains that they would vote to stay. Suppose Zed knows
that Ann likes big claims based on dubious assumptions, so he trusts Bob more
than Ann. This preference information should conceivably lead Zed to accepting
Bob’s argument, rather than Ann’s.

https://github.com/kcyras/ABAplus
http://www-abaplus.doc.ic.ac.uk
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We model Zed’s knowledge as an ABA+ framework F = (L,R,A,̄ ¯̄ ,�) with

– L = {a, b, leave, stay},
– R = {leave ← a, stay ← b},
– A = {a, b},
– a = stay, b = leave,
– a � b, b � a.1

Here, assumptions a and b stand for believing in Ann and Bob, respectively.
Rules leave ← a and stay ← b represent the statements of Zed’s interlocutors: for
instance, leave ← a represents that if Zed were to believe in Ann, the outcome
of the referendum would be the Dutch leaving the EU. The contraries indicate
which information is conflicting: for instance, the contrary of b being leave models
that the Dutch leaving the EU—leave—conflicts with believing in Bob—b.2 The
degree of Zed’s beliefs is represented through the preference a < b (i.e. a � b,
b � a), which means that Zed trusts Ann strictly less than he trusts Zed.

Throughout the paper, we assume as given a fixed but otherwise arbitrary
ABA+ framework F = (L,R,A,̄ ¯̄ ,�), unless specified otherwise.

We next give notions of arguments (as deduction trees) and attacks in ABA+.
An argument for ϕ ∈ L supported by A ⊆ A and R ⊆ R, denoted A �R ϕ,

is a finite tree with: the root labelled by ϕ; leaves labelled by � or assumptions,
with A being the set of all such assumptions; the children of non-leaves ψ labelled
by the elements of the body of some ψ-headed rule in R, with R being the set of
all such rules. A � ϕ is a shorthand for an argument A �R ϕ with some R ⊆ R.

Let A,B ⊆ A. Then A ⊆ A <-attacks B ⊆ A, denoted A �< B, iff

• either there is an argument A′ � b, for some b ∈ B, supported by A′ ⊆ A,
and �a′ ∈ A′ with a′ < b;

• or there is an argument B′ � a, for some a ∈ A, supported by B′ ⊆ B, and
∃b′ ∈ B′ with b′ < a.

We call <-attack formed as in the first bullet point above a normal attack, and
<-attack formed as in the second bullet point above a reverse attack. If it is
not the case that A <-attacks B, we may write A ��< B. (We will adopt an
analogous convention for other attack relations in this paper.)

To illustrate, in F from Example 1, {a} ‘tries’ to attack {b}, but is prevented
by the preference a < b. Instead, {b} <-attacks {a} (and also {a, b}) via reverse
attack. Likewise, {a, b} <-attacks both itself and {a} via reverse attack.

1 As a preorder, � has to be reflexive, but for brevity purposes we often omit to specify
the reflexive instances of any preorder.

2 Other ways of formalising such examples in ABA are possible; we chose a natural
and simple representation. Generally, knowledge representation in argumentation
(and other formalisms) may be a complex problem, discussion of which is beyond
the scope of this paper.
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We next give auxiliary notions that will be used to define ABA+ semantics.
Let A ⊆ A. The conclusions of A is Cn(A) = {ϕ ∈ L : ∃ A′ � ϕ, A′ ⊆ A}.

We say that A is closed iff A = Cn(A)∩A. We say that F is flat iff every A ⊆ A
is closed. We assume ABA+ frameworks to be flat, unless specified otherwise.

Note that F from Example 1 is flat: no assumption can be deduced from the
empty set of assumptions, so Cn(∅) = ∅; the only assumptions deducible from
{a} and {b} are a and b, respectively, so both {a} and {b} are closed; clearly, A
is closed; hence, all sets of assumptions are closed.

Further, for A ⊆ A, we say that: A is <-conflict-free iff A ��< A; also, A
<-defends A′ ⊆ A iff for all B ⊆ A with B �< A′ it holds that A �< B; and
A is <-admissible iff it is <-conflict-free and <-defends itself.

We consider the following five ABA+ semantics. A set E ⊆ A, also called an
extension, is:

• <-complete iff E is <-admissible and contains every set of assumptions it
<-defends;

• <-preferred iff E is ⊆-maximally <-admissible;
• <-stable iff E is <-conflict-free and for all b ∈ A\E it holds that E �< {b};
• <-ideal iff E is ⊆-maximal among sets of assumptions that are <-admissible

and contained in all <-preferred sets of assumptions;
• <-grounded iff E is a ⊆-minimal <-complete set of assumptions.

Throughout the paper, σ ∈ {grounded, ideal, stable, preferred, complete},
and we assume that <-σ denotes any of the above ABA+ semantics.

To illustrate with Example 1, it is easy to see that {b} is a unique <-σ
extension of F , leading Zed to accept Bob’s argument, just as intended.

Note well that ABA+ conservatively extends ABA in that, when preferences
are absent, ABA+ frameworks behave exactly like ABA frameworks [7]. There-
fore, our implementation of ABA+ will be an implementation of ABA too.

Abstract Argumentation (AA). We base the background on AA on [9].
An AA framework is a pair (Args,�) with a set Args of arguments and

a binary attack relation � on Args. Notions of conflict-freeness, defence and
admissibility, as well as semantics of σ extensions, are defined verbatim as for
ABA+, but with sets of arguments replacing sets of assumptions and with �
replacing �<.

Preference-Based Argumentation Frameworks (PAFs). We base the
background on PAFs on [2].

A Preference-based Argumentation Framework (PAF) is a tuple (Args,�,�),
where (Args,�) is an AA framework and � is a preorder over Args. Given a
PAF (Args,�,�), its repaired framework is an AA framework (Args, ↪→) such
that for a, b ∈ Args, a ↪→ b iff

• either a � b and a ⊀ b,
• or b � a and b ≺ a.
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The attack formed as in the second bullet pertains to attack reversal in AA.
From now on, unless specified otherwise, we assume a PAF (Args,�,�) as

given, and denote its repaired framework by (Args, ↪→).
Semantics of PAFs is defined via the semantics of their repaired frameworks:

E ⊆ Args is a σ extension of (Args,�,�) iff E is a σ extension of (Args, ↪→).

Example 2. Zed’s knowledge as in Example 1 can be modelled as a PAFs as
follows. The arguments in Args = {a, b} represent the statements of Zed’s inter-
locutors, and the attacks a � b, b � a represent the conflict between the two
statements. The preference of Bob’s argument over Ann’s argument is expressed
by a ≺ b. For the resulting PAF (Args,�,�), the attack a � b is reversed in
(Args, ↪→) to yield only b ↪→ a. So (Args,�,�) has a unique σ extension {b}.

3 Implementing Attack Reversal in ABA+

The idea behind implementing attack reversal in ABA+ is to use a mapping
from ABA+ to AA that preserves semantic correspondence, and then use an off-
the-shelf AA solver, particularly ASPARTIX, to compute extensions of ABA+

frameworks by computing extensions of the corresponding AA frameworks. In
this section, we provide one such mapping.

3.1 Assumption Graphs

Given an ABA+ framework, we construct its assumption graph—an AA frame-
work with arguments being either singleton sets of assumptions, or sets of
assumptions supporting (ABA+) arguments for contraries of assumptions, and
with the attack relation being �< restricted to those arguments, as follows.

Definition 1. Let D be the collection of sets of assumptions that support argu-
ments for contraries of assumptions, i.e. D = {S ⊆ A : S � a, a ∈ A}. The
assumption graph of F is an AA framework G = (Args, ↪→) with

• Args = D ∪ {{a} : a ∈ A},
• ↪→ =�< ∩ (Args × Args),

where �< is the <-attack relation of F .

Example 3. Consider the ABA+ framework F = (L,R,A,̄ ¯̄ ,�) with

– L = {a, b, c, e, d, f},
– R = {d ← a, c, e ← b, c},
– A = {a, b, c},
– a = e, b = d, c = f ,
– a < b (i.e. � is a preorder with a � b, b � a).
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In F , {b, c} supports an argument for the contrary e of a, and no assumption
in {b, c} is strictly less preferred than a. Thus, {b, c} <-attacks {a}, as well as
any set containing a, via normal attack. On the other hand, {a, c} (supporting an
argument for the contrary d of b) is prevented from <-attacking {b}, due to the
preference a < b. Instead {b}, as well as any set containing b, <-attacks {a, c}
via reverse attack. Overall, F has a unique <-σ extension, namely E = {b, c},
with conclusions Cn(E) = {b, c, e}.

The assumption graph G = (Args, ↪→) of F has Args = {{a}, {b}, {c}, {b, c},
{a, c}} and attacks {b, c} ↪→ {a}, {b, c} ↪→ {a, c}, {b} ↪→ {a, c}, and is depicted
below (here and henceforth, dashed arrows indicate normal attacks, dotted arrows
indicate reverse attacks and solid arrows indicate <-attacks that are both normal
and reverse).

{a} {b}{c} {a, c}

{b, c}

(Args, ↪→) has a unique σ extension E = {{b}, {c}, {b, c}}. Note that
⋃ E = E.

In Example 3, the following semantic correspondence between ABA+ frame-
works and their assumptions graphs holds: E ⊆ Args is a σ extension of (Args, ↪→)
iff E =

⋃ E is a <-σ extension of F . However, this correspondence does not hold
in general, as the following example shows.

Example 4. Modify the ABA+ framework F from Example 3 by removing the
rule e ← b, c from R to obtain the ABA+ framework F ′ = (L,R′,A,̄ ¯̄ ,�) with
R′ = R \ {e ← b, c}. Observe that, in F ′, all singleton sets of assumptions
{a}, {b} and {c} are <-unattacked, and hence <-defended by any set. However,
{a, b, c} is not <-conflict-free, as {a, c} � b. Consequently, no set A ⊆ A can
contain all sets of assumptions it <-defends and be <-conflict-free at the same
time. Thus, F ′ has no <-complete extensions. Meanwhile, the assumption graph
G′ of F ′ (depicted below) has a unique complete extension {{a}, {b}, {c}}.

{a} {b}{c} {a, c}

In the next section, we identify a property of ABA+ frameworks, called the
Axiom of Weak Contraposition,3 satisfaction of which allows to preserve seman-
tic correspondence between ABA+ frameworks and their assumption graphs.

3.2 Weak Contraposition

The following axiom concerns contrapositive reasoning as understood in classical
logic and is (strictly) weaker than contraposition as defined for ASPIC+ in [17].
3 Our notion of ‘weak contraposition’ bears no relationship with the notion by the

same name used e.g. in [15], inspired by conditional entailment in Deontic Logic.
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Axiom. (L,R,A,̄ ¯̄ ,�) satisfies the Axiom of Weak Contraposition
(WCP for short) just in case for all A ⊆ A, R ⊆ R and b ∈ A it holds
that

if A � b and there exists a′ ∈ A such that a′ < b,
then, for some a ∈ A which is �-minimal such that a < b, there is Aa � a,
for some Aa ⊆ (A \ {a}) ∪ {b}.
This axiom insists on contrapositive reasoning when an argument involves

assumptions less preferred than the one whose contrary it supports. In essence,
WCP plays the role of ensuring that, in a conflict arising from assumptions, con-
traries and rules, preferences help to pinpoint a culprit assumption that should
be argued against. A culprit is identified as being least preferred among the
assumptions that are used to derive the contrary of an assumption which is
more preferred than those assumptions. In this way, WCP ensures an <-attack
against such a culprit assumption from (some of) the rest of the assumptions.

As an illustration, consider F from Example 3. We find {a, c} � b and a < b,
where a is �-minimal in {a, c} with a < b. We also find {b, c} � a, where
{b, c} = ({a, c} \ {a}) ∪ {b}. It is thus easy to see that F satisfies WCP. By
contrast, in F ′ from Example 4, we find {a, c} � b and a < b, but there is no
Aa � a with Aa ⊆ ({a, c} \ {a}) ∪ {b} = {b, c}; hence, F ′ violates WCP.

Note well that ABA+ frameworks with empty preferences (which can be seen
as ABA frameworks) satisfy WCP trivially.

We next show that ABA+ frameworks satisfying WCP are in semantic cor-
respondence with their assumption graphs, in the following sense. (We omit
lengthy proofs for space reasons.)

Theorem 1. Suppose F = (L,R,A,̄ ¯̄ ,�) satisfies WCP and let G = (Args, ↪→)
be the assumption graph of F with Args = D ∪ {{a} : a ∈ A}, where D = {S ⊆
A : S � a, a ∈ A}, as in Definition 1.

– If E ⊆ A is a <-σ extension of F , then {S ∈ D : S ⊆ E} ∪ {{a} : a ∈ E}
is a σ extension of G;

– If E ⊆ Args is a σ extension of G, then
⋃ E is a <-σ extension of F .

For illustration, we saw in Example 3 that the assumption graph G of F has
a unique σ extension E = {{b}, {c}, {b, c}}, and E =

⋃ E = {b, c} is a unique
<-sigma extension of F . We also saw that WCP is necessary in Theorem 1:
in Example 4, the assumption graph G′ of F ′ has a unique complete extension
{{a}, {b}, {c}}, while F ′ has no <-complete extensions.

Theorem 1 provides a theoretical underpinning for the ABAplus system which
we will describe in Sect. 5. Before that, we discuss how an ABA+ framework that
violates WCP to begin with, can be modified by adding new rules so as to satisfy
WCP.
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3.3 Enforcing WCP

Adding rules to an ABA+ framework which violates WCP so that the framework
with additional rules satisfies WCP is called enforcing WCP. In this section we
detail how to enforce WCP on an ABA+ framework.

A situation where an argument satisfies the antecedent of WCP while the
consequent is false is called an instance of WCP-violation (instance of WCP-v,
for short). More formally:

Definition 2. A � b is an instance of WCP-v just in case

– ∃a′ ∈ A such that a′ < b, and
– for no a ∈ A which is �-minimal such that a < b there is Aa � a, for some

Aa ⊆ (A \ {a}) ∪ {b}.
As an illustration, in F ′ from Example 4, {a, c} � d is an instance of WCP-v.
For WCP to be satisfied, it suffices, for every instance of WCP-v, to ensure

one additional argument for the contrary of some single �-minimal assumption
among those less preferred than the one whose contrary an instance of WCP-v
is an argument for. We call any such �-minimal assumption a witness:

Definition 3. Let A � b be an instance of WCP-v and let a ∈ A. Then a is a
witness to A � b just in case a is �-minimal such that a < b.

So, in F ′ from Example 4, a is a witness to the instance of WCP-v {a, c} � d.
A witness to an instance of WCP-v can be seen as a candidate assumption

with regards to which an additional argument is needed in order to satisfy WCP.
This can be achieved by adding enforcing rules, defined as follows.

Definition 4. Let A � b be an instance of WCP-v and a ∈ A a witness to
A � b. Say A = {a1, . . . , an}, where a = ai for some i. The enforcing rule,
denoted by a ← A \ a, b, is the rule a ← a1, . . . , ai−1, ai+1, . . . , an, b.

In Example 4, for the only instance of WCP-v {a, c} � d and its sole witness
a, the enforcing rule is e ← b, c.

WCP can be enforced by adding an enforcing rule for every instance of WCP-v
and its witness, as shown next.

Theorem 2. Let (L,R,A,̄ ¯̄ ,�) be an ABA+ framework and let V be the set of
instances of WCP-v (in (L,R,A,̄ ¯̄ ,�)). For any A � b ∈ V , let

RA�b ={a ← A \ a, b is an enforcing rule : a ∈ A is a witness to A � b}

be the set of enforcing rules for A � b. Let f be a function, defined for finite non-
empty sets, that selects any one element from a given set. The ABA+ framework
(L,R ∪ R′,A,̄ ¯̄ ,�), where R′ = {f(RA�b) : A � b ∈ V }, satisfies WCP.
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Proof. Let A � b be any instance of WCP-v (in (L,R,A,̄ ¯̄ ,�)) and let a ∈ A be
a witness to A � b. The rule a ← A\a, b guarantees that in (L,R∪R′,A,̄ ¯̄ ,�) we
can find the argument (A \ {a})∪{b} �{a←A\a,b} a. Note that no such argument
can result in an instance of WCP-v (in (L,R ∪ R′,A,̄ ¯̄ ,�)), precisely because
the witness a is �-minimal. Therefore, (L,R ∪ R′,A,̄ ¯̄ ,�) satisfies WCP.

For illustration, to enforce WCP on F ′ from Example 4, add the enforcing
rule e ← b, c to R′ to obtain F from Example 3, which satisfies WCP.

Several remarks regarding WCP are in place.
First, note well that enforcing WCP on an ABA+ framework does in gen-

eral change its semantics. For instance, F ′ from Example 4 has no <-complete
extensions, whereas F from Example 3 obtained by enforcing WCP on F ′ has a
unique <-complete extension. Using preferences to identify a culprit assumption
to be argued against, and thus changing the semantics of an ABA+ framework, is
one of the objectives of enforcing WCP. Precisely this allows to obtain semantic
correspondence between ABA+ frameworks and their assumption graphs.

Second, observe that using WCP does not amount to ‘making attacks sym-
metric’. Indeed, consider A � {b} and let A � b be an instance of WCP-v with
a witness a′ ∈ A such that a′ < b. Making this attack symmetric means imposing
{b} �< A. However, WCP does not require {b} �< A. Instead, WCP requires
that (A \ {a′}) ∪ {b} � a′, which in general amounts to (A \ {a′}) ∪ {b} �< {a′}
(and hence (A \ {a′}) ∪ {b} �< A).

Third, the �-minimality of a witness assumption in enforcing WCP is crucial.
In particular, it saves from generating redundant arguments when enforcing the
axiom. For instance, consider F = (L,R,A,̄ ¯̄ ,�) with R = {c ← a, b}, A =
{a, b, c} and a < b < c.4 The argument {a, b} � c is an instance of WCP-vİf
�-minimality were not required in the conditions of the consequent of WCP,
one could end up choosing b and adding the rule b ← a, c to R so as to generate
the argument {a, c} � b in F ′ = (L,R ∪ {b ← a, c},A,̄ ¯̄ ,�). This would result
in {a, c} � b making the antecedent of the WCP true (because a < b) while
keeping the consequent false, thus yielding an instance of WCP-v in F ′. Thus,
to enforce WCP, one would need to ensure existence of yet another argument,
for example, {b, c} � a, by, for instance, adding the rule a ← b, c. By contrast,
choosing a (necessarily �-minimal) witness to begin with, i.e. a, and adding a
single rule, say the enforcing rule a ← b, c, generates the argument {b, c} � a in
F ′′ = (L,R ∪ {a ← b, c},A,̄ ¯̄ ,�). Thus, the instance of WCP-v in question is
eliminated in F ′′ and no further instances of WCP-v are obtained in F ′′.

The fourth remark concerns other ways to enforce WCP on a given ABA+

framework. For example, given an instance of WCP-v A � b with a witness a ∈
A, one could add the rule a ← � to obtain the argument ∅ �{a←�} a as required
to eliminate the instance of WCP-v in question, at the same time avoiding to
create additional instances. This particular way seems rather ad hoc and also
quite radical with respect to knowledge representation: it seems unintuitive to
4 Unless specified otherwise, we omit L and ¯̄̄ , and adopt the following conventions:

unless x appears in either A or R, it is different from the sentences appearing in A
or R; thus, L consists of all the sentences appearing in R, A and {a : a ∈ A}.
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have assumptions immediately ‘rejected’ (by arguing for their contraries from the
empty set) just because they are involved in the argumentative process of arguing
for contraries of more preferred assumptions. In contrast, enforcing WCP as in
Theorem 2 is the least restrictive way that ensures satisfaction of WCP while
leaving the user the option to restrict the knowledge further, if needed.

Finally, observe that, technically, imposing WCP on a flat ABA+ framework
may yield a non-flat ABA+ framework. Indeed, consider (L,R,A,̄ ¯̄ ,�) with
L = {a, b, c, x, y}, R = {x ← a}, A = {a, b, c}, a = c, b = x, c = y, a < b. We
find {a} � b and a < b, so to enforce WCP, we need an argument S � a, for
some S ⊆ {b}. Whatever the support S, we get an argument S � c, whence S is
not closed. Note, however, that this behaviour can be easily avoided and flatness
guaranteed. Indeed, instead of defining the contrary mapping ¯̄̄ : A → L to
map assumptions into elements of the language, we can assign new symbols for
contraries of assumptions, while retaining the same behaviour (semantically) of
ABA+ frameworks: for each assumption a we take a new symbol ac not in L, and
define the contrary mapping C so that C(a) = ac; then, for any intended contrary
x of a in L, we add a rule ac ← x. We omit the details due to lack of space,
and assume, without loss of generality, that enforcing WCP on an arbitrary flat
ABA+ framework always yields a flat ABA+ framework that satisfies WCP.

4 Implementing Attack Reversal in PAFs

In this section, following the way ABA admits AA as an instance [19], we show
how ABA+ admits PAFs as instances. As a result, implementing attack reversal
in ABA+ will automatically give a way to implement attack reversal in PAFs.

To instantiate an ABA+ framework with (Args,�,�), we map each argu-
ment a ∈ Args into an assumption a ∈ A, together with a new symbol a for the
contrary, map each attack a � b into a rule b ← a, and transfer the preference
ordering � to constitute �, as follows.

Definition 5. Given a PAF (Args,�,�), an ABA+ framework correspond-
ing to (Args,�,�) is FPAF = (L,R,A,̄ ¯̄ ,�) with:

• L = Args ∪ {a : a ∈ Args, a �∈ Args};
• R = {b ← a : a � b};
• A = Args;
• for a ∈ A, a is the contrary of a;
• �=�.

Note that F from Example 1 is an ABA+ framework corresponding to the
PAF (Args,�,�) from Example 2.

Henceforth, FPAF is an ABA+ framework corresponding to (Args,�,�).
Note that FPAF is necessarily flat. However, FPAF need not in general satisfy

WCP. Nonetheless, given that all (ABA+) arguments for contraries in FPAF are
supported by singleton sets, every instance of WCP-v {a} � b (with a < b) has
a unique witness a, so that enforcing WCP on FPAF as in Theorem 2 yields a
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unique ABA+ framework F ′
PAF which has the same <-attack relation as FPAF:

for A,B ⊆ A, A �< B iff A �′
< B, where �< and �′

< are <-attack relations
of FPAF and F ′

PAF, respectively.
Observe further that since all (ABA+) arguments for contraries in FPAF are

supported by singleton sets, attacks in (Args,�,�) coincide with <-attacks in
FPAF (in that for a, b ∈ Args, a ↪→ b iff {a} �< {b}). We thus obtain the follow-
ing correspondence result, which says that, under any semantics σ, every PAF is
an instance of ABA+, and that determining extensions of (Args,�,�) amounts
to determining extensions of FPAF, which amounts to determining extensions of
FPAF with WCP enforced.

Theorem 3. Let (Args,�,�) be a PAF, FPAF be an ABA+ framework corre-
sponding to (Args,�,�), and E ⊆ Args. E is a σ extension of (Args,�,�) iff
E is a <-σ extension of FPAF iff E is a <-σ extension of F ′

PAF, where F ′
PAF is

obtained by enforcing WCP on FPAF as in Theorem2.

To illustrate Theorem 3, (Args,�,�) from Example 2 has a unique σ exten-
sion {b}, and this is precisely the unique <-σ extension of the corresponding
ABA+ framework F from Example 1.

Theorem 3 implies that by implementing ABA+, the ABAplus system
described in the next section can readily compute σ extensions of PAFs.

5 ABAplus

ABAplus, both a stand-alone system an a web application, implements reason-
ing in (flat) ABA+ (and its instances, including PAFs) subject to WCP. In this
section, we describe and illustrate ABAplus. First, we describe the web applica-
tion as well as the back-end of ABAplus. Then, we illustrate the use of ABAplus
(as well as ABA+) with a pair of examples that show how preferences over goals
and rules can be accommodated in ABA+ through preferences over assumptions.

5.1 System Description

To compute extensions of F = (L,R,A,̄ ¯̄ ,�), ABAplus feeds the assumption
graph G = (Args, ↪→) (Definition 1) of F into ASPARTIX to compute extensions
of G and maps the extensions obtained to extensions of F . Such strategy is sound
and complete, given that extensions of F and G are in one-to-one correspondence
(Theorem 1), as long as ASPARTIX correctly computes the extensions of AA
frameworks under any semantics σ. The following is a summary of how both the
stand-alone system and the web application of ABAplus work.

Web Application. The web application http://www-abaplus.doc.ic.ac.uk
takes a single ABA+ framework F as input in the Prolog-like format:

• myAsm(a). specifies that a is an assumption from A;

http://www-abaplus.doc.ic.ac.uk
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• contrary(a, x). specifies that x ∈ L is the contrary a of assumption a;
• myRule(h, [b1, . . . , bn]). specifies that h ← b1, . . . , bn is a rule from R;
• myPrefLE(b, a). specifies, for assumptions a, b, that b � a;
• myPrefLT(b, a). specifies, for assumptions a, b, that b < a.

The input can either be entered in a textbox or uploaded as a file (.pl exten-
sion). Upon loading an ABA+ framework, its assumption graph is computed
and visualised as follows. 1. Nodes hold sets of assumptions. 2. Arrows represent
attacks: dashed arrows for normal attacks, dotted arrows for reverse attacks,
solid arrows for <-attacks that are both normal and reverse. 3. An extension
under any semantics can be selected to be highlighted. 4. A second graph can be
displayed with any extension (under any semantics) highlighted for comparison.

Back-End. ABAplus back-end parses the Prolog-like representation of F into
Python format. The next steps are as follows.

1. The input F is pre-processed: (a) checking if F is flat; (b) calculating and
updating F with the transitive closure of �; (c) checking whether the strict
counterpart < of (the updated) � is asymmetric; (d) computing (ABA+)
arguments for contraries of assumptions (bottom-up) to check whether F
satisfies WCP, and if not, enforcing WCP as in Theorem2.

2. Generation of Args goes thus (a top-down recursive procedure is used to find
the sentences that could label argument trees until assumptions are found):
(a) For every assumption a ∈ A, store {a} in Args;
(b) For every assumption a ∈ A, generate all arguments for a and store the

supports of those arguments in Args.
3. Generation of ↪→ goes thus:

(a) For every a ∈ A, for every B � a, check if ∃b ∈ B such that b < a: (i) if
no, store B ↪→ {a}; (ii) else, store {a} ↪→ B;

(b) For any A′,B′ ∈ Args such that {a} ⊆ A′ and B ⊆ B′, (i) if B ↪→ {a},
store B′ ↪→ A′; (ii) if {a} ↪→ B, store A′ ↪→ B′.

4. The assumption graph G = (Args, ↪→) thus constructed is fed to ASPARTIX
(using clingo and DLV ASP solvers), represented via Prolog-like sentences:

• arg(A). represents an argument A ∈ Args;
• att(A, B). represents an attack A ↪→ B.

5. For every semantics σ ∈ {grounded, ideal, stable, preferred, complete}, σ
extensions of G are computed.

6. Each σ extension E of G is unpacked into a <-σ extension E =
⋃ E of F .

Tools. ABAplus uses the following tools: Python 3.4.3; Gunicorn 19.6;
Clingo 4.5.4; DLV (“deductive database system”) version 17/12/2012; encod-
ings of semantics (stable.dl, ideal.dl, comp.dl, prefex gringo.lp, ground.dl) from
ASPARTIX system page; D3 (graph visualisation) 3.5.17.
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5.2 Examples

In this section, we exemplify the use of ABA+ and ABAplus in two different
scenarios. Specifically, in addition to having illustrated in Example 1 how pref-
erences over beliefs are accommodated in ABA+, we now consider how prefer-
ences over assumptions in ABA+ can be used to model preferences over goals
and rules. This illustrates how ABAplus supports computations pertaining to
reasoning with preferences not only over beliefs and abstract arguments (by
indirectly implementing PAFs), but also over goals and rules.

Preferences over goals express that certain goals are more desirable to be
achieved in a particular situation. Goals in ABA+ can be represented via assump-
tions, whence preferences over assumptions represent preferences over goals.

Example 5 (Preferences over goals). Consider ABAplus as a system to schedule
meetings. Imagine a user who needs to schedule a meeting on one of two sug-
gested time slots, t1 and t2. Suppose that t1 is the time when the user usually
has lunch, and that t2 covers the user’s standard coffee break. The user prefers
to have lunch as usual over scheduling the meeting, but also deems the meeting
to be more important than having coffee.

In ABA+, we can represent the situation as follows. Let m, l and c be assump-
tions standing for having the meeting, lunch and coffee, respectively. Further,
let t1 and t2 be assumptions standing for the two time slots in question. The
rules t1 ← l and t2 ← c express that having lunch and coffee as usual make the
two respective time slots unavailable. Additionally, the rule m ← t1, t2 expresses
that the meeting will not be scheduled if none of the time slots are available.
Finally, user’s preferences are expressed by letting c < m < l: having lunch as
usual is (strictly) more important than scheduling the meeting, which is in turn
(strictly) more important than taking a coffee break at a standard time.

The resulting ABA+ framework, call it F , can be input into ABAplus via
the following specification:

myAsm(c).
myAsm(l).
myAsm(m).
myAsm(t1).
myAsm(t2).

contrary(c, c).
contrary(l, l).
contrary(m, m).
contrary(t1, t1).
contrary(t2, t2).

myRule(t1, [l]).
myRule(t2, [c]).
myRule(m, [t1, t2]).
myPrefLT(c, m).
myPrefLT(m, l).

Given this input, ABAplus recognizes that F does not satisfy WCP: there is
{c, l} � m with c < m, but there is no argument for c at all. Thus, ABAplus
informs the user accordingly, and proposes to automatically enforce WCP on F .
ABAplus enforces WCP by adding the rule c ← m, l, which expresses that having
lunch and the meeting prevents having coffee. This results into a new framework,
call it F ′. ABAplus then determines that F ′ has a unique σ extension {m, l, t2},
with conclusions {m, l, t2, t1, c}, which indicate that the meeting should be sched-
uled at time t2, at the expense of having coffee. The outcome of feeding F into
ABAplus is depicted in the screenshot in Fig. 1 (cropped by cutting out the part
with the editable window for the input).
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Fig. 1. Screenshot of ABAplus outcome for ABA+ framework F from Example 5

Preferences over rules indicate which rules should be followed in case appli-
cation of multiple rules is impossible. In ABA+, preferences over rules can be
expressed by adding new assumptions that stand for the applicability of the
rules, and by imposing preferences over those assumptions.

Example 6 (Preferences over rules). Consider two general rules regarding
healthy living: ‘if you can afford it, you should follow a healthy diet’ and ‘if
you can afford it, you should exercise regularly’. These two rules can be repre-
sented in ABA+ as d ← c and e ← c, where e and d stand for exercising and diet,
respectively, and the sentence c stands for affordability. Suppose that you are
not able to both eat healthily and exercise regularly, as these habits require more
time than you can afford. This can be considered as a constraint and modelled
via the rule c ← d, e.

Suppose that a certain authority declares that exercising regularly is more
important than eating healthily. Thus, a preference of the second rule over the
first rule can be formed, and given that you cannot follow both rules, you should
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prefer exercising regularly. In ABA+ this preference can be modelled as follows.
First, add new assumptions a and b representing the applicability of the two
rules. Second, modify e ← c and d ← c into new rules d ← a, c and e ← b, c,
respectively. Finally, add the preference a < b over the new assumptions.

Overall, the ABA+ framework representing this information is the framework
F from Example 3, but with the additional rule c ← d, e. ABAplus determines
that it satisfies WCP and has a unique <-σ extension {b, c}, with conclusions
Cn({b, c}) = {b, c, e}, which suggest exercising regularly.

6 Related Work

We discuss argumentation systems that account for preferences of some form.
Note that none of them implements attack reversal in argumentation.

TOAST5 [18] is a web application implementing (an early version [17] of) the
structured argumentation formalism ASPIC+. TOAST computes and visualises
ASPIC+ arguments, attacks and extensions (under four semantics). In contrast
to ABAplus, TOAST accommodates preferences over defeasible rules, but not
over premises, even though ASPIC+ allows preferences over premises. TOAST
lifts preferences from defeasible rules to arguments, whence attacks from less
preferred arguments are discarded, rather than reversed. TOAST features rule
transposition, which is related to contraposition. ABAplus instead enforces WCP.

Gorgias-B6 is a stand-alone system implementing Gorgias [14]—an argumen-
tation formalism based on logic programming without negation as failure [8],
combining preferences and abduction. Given an application scenario, Gorgias-B
guides the user through a decision problem by incremental refinements, where
the user is presented with several (usually conflicting) alternatives (i.e. argu-
ments, which amount to sets of rules) and is asked for preference information
in order to determine which attacks succeed: a variant of discarding attacks is
employed. Reasoning outcomes are evaluated essentially via preferred semantics,
in contrast to multiple semantics available in ABAplus.

Gorgias-B asks the user to input preferences on the go whenever needed to
solve conflicts, whereas ABAplus takes user information at once and provides
reasoning outcomes, without the need for the user to specify any further infor-
mation. Nonetheless, it may be a useful feature of ABAplus to be able to query
the user for preferences. We leave this for future work.

DeLPclient7 is a web application implementing reasoning in Defeasible Logic
Programming (DeLP) [11]. It allows to specify logic programs with strict and
defeasible rules, and preferences over the latter, which are accounted by discard-
ing attacks. Given a program, DeLPclient answers queries and can also provide
explanations of the answers in terms of arguments and counter-arguments for
the warrant status of the query. We plan to explore in the future whether expla-
nations could be implemented in ABAplus.
5 http://toast.arg-tech.org.
6 http://gorgiasb.tuc.gr/index.html.
7 http://lidia.cs.uns.edu.ar/delp client.

http://toast.arg-tech.org
http://gorgiasb.tuc.gr/index.html
http://lidia.cs.uns.edu.ar/delp_client
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Carneades8 [13] is a web application and a stand-alone system implementing
the argumentation formalism of the same name [12]. Carneades supports weights
on arguments (which are instantiations of argumentation schemes), and employs
proofs standards and weighting functions to balance arguments and evaluate
their acceptance via grounded semantics. Carneades also visualises argument
graphs and indicates structural links within.

ConArg9 [4] is a web application and a stand-alone system implementing
Weighted Argumentation Frameworks (WAFs) [5]. ConArg allows for specify-
ing (via graphical interface) WAFs—AA frameworks with weights on attacks—
and computes their extensions under various semantics. Weights on attacks are
accounted for by specifying budgets of how much conflict (within extensions) can
be tolerated and defence can be relaxed.

7 Conclusions

We presented the system ABAplus that implements ABA+ (and by extension,
ABA), a formalism of structured argumentation with preferences. ABAplus
implements attack reversal in ABA+ as well as its instances, particu-
larly Preference-based Argumentation Frameworks (PAFs). More specifically,
ABAplus applies a new principle of Weak Contraposition (WCP) on flat ABA+

frameworks, computes their extensions, visualises and allows for juxtaposing
their assumption graphs. The theoretical backbone of the system is a semantics-
preserving mapping from ABA+ to abstract argumentation (AA), which allows
to use off-the-shelf AA solvers (particularly, ASPARTIX) to determine exten-
sions of ABA+ (as well as ABA) frameworks. ABAplus is a freely available
stand-alone system and a web application.

We aim to analyse the scalability and performance of ABAplus and to use it
in applications of reasoning with preferences. It would also be interesting to find
other classes of ABA+ frameworks (possibly satisfying WCP) and/or mappings
to e.g. AA that allow to determine ABA+ extensions via AA or other formalisms
(e.g. answer set programming). Implementing non-flat ABA+ frameworks is a
future research direction too. In addition to studying whether features of some
other systems implementing argumentative reasoning with preferences can be of
use in ABAplus (as discussed in Sect. 6), we plan to implement the following
features: (a) relaxed syntactic requirements for input; (b) saving ABA+ frame-
works on the server; (c) query-based interface and computations; (d) interactive
graphical representations; (e) improved session data handling. Finally, we have
outlined possible uses of ABAplus in a number of settings. In the future we plan
to investigate fully fledged applications of the system in general and in med-
ical settings, e.g. to support reasoning with (possibly conflicting) guidelines and
clinical pathways as well as preferences derived from resource constraints.

8 http://carneades.fokus.fraunhofer.de/carneades.
9 http://www.dmi.unipg.it/conarg.

http://carneades.fokus.fraunhofer.de/carneades
http://www.dmi.unipg.it/conarg
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