
ADOPT JaCaMo: Accountability-Driven
Organization Programming Technique

for JaCaMo

Matteo Baldoni1(B), Cristina Baroglio1, Katherine M. May2,
Roberto Micalizio1, and Stefano Tedeschi2

1 Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
{matteo.baldoni,cristina.baroglio,roberto.micalizio}@unito.it

2 Università degli Studi di Torino, Turin, Italy
{katherine.m.may,stefano.tedeschi}@edu.unito.it

Abstract. This work concerns the challenge of computational account-
ability in a multiagent setting where agents interact inside organizations.
We illustrate the requirements to realize accountability with the help of a
scenario. Then, we provide a characterization of computational account-
ability in terms of a few general principles. We introduce and explain the
ADOPT accountability protocol and show how it satisfies these princi-
ples with the help of model checking.

Keywords: Computational ethics · Accountability · Multiagent sys-
tems · Sociotechnical systems

1 Introduction

JaCaMo [6] is a conceptual model and programming platform that integrates
agents, environments, and organizations. It is built on the top of three platforms:
Jason [7] for programming agents, CArtAgO [22] for programming environments,
and Moise [19] for programming organizations. The aim of the framework is both
to integrate the cited platforms and to integrate the related programming meta-
models to simplify the development of complex multiagent systems. The presence
of an actual programming platform fills the gap between the modeling level and
the implementation level.

According to [18], the Moise+ organizational model, adopted in JaCaMo,
explicitly decomposes the specification of an organization into three different
dimensions. The structural dimension specifies roles, groups, and links between
roles in the organization. The functional dimension is composed of one (or more)
scheme(s) that elicits how the global organizational goal(s) is (are) decomposed
into sub-goals and how these sub-goals are grouped in coherent sets, called mis-
sions, to be distributed to the agents. Finally, the normative dimension binds the
two previous dimensions by specifying the roles’ permissions and obligations for
missions. One important feature of Moise+ [19] is to avoid a direct link between

c© Springer International Publishing AG 2017
B. An et al. (Eds.): PRIMA 2017, LNAI 10621, pp. 295–312, 2017.
https://doi.org/10.1007/978-3-319-69131-2 18



296 M. Baldoni et al.

roles and goals. Correspondingly, roles are linked to missions by means of per-
missions and obligations, which consequently maintain an independence between
the functional and structural specifications.

In the field of multiagent systems, individual and organizational actions have
social consequences, which require the development of tools to trace and evaluate
principles’ behaviors and to communicate good conduct. This concerns the value
of accountability. The independence between roles and goals in JaCaMo creates
difficulties when reasoning about accountability. Namely, problems result from a
scheme’s dynamic creation and group assignment that can happen when agents
are already playing associated roles. This means that agents, when entering into
an organization by adopting an organizational role, have no information about
what they could be obliged to do in the future because this information, related
to a specific scheme, may be not available or even not yet present. The aim of
this paper is to present an Accountability-Driven Organization Programming
Technique (ADOPT) that attempts to face the challenges of handling account-
ability computationally in an organization of agents. The main contribution is
to provide a notion of when accountability can be ascribed in an organization by
investigating the organization-construction process as well as to define a protocol
that ensures the design and construction of an accountability-supporting organi-
zation. The core of the analysis is the notion of role and the action of role adop-
tion (or enactment). With some conceptual modifications, we believe JaCaMo [6]
a particularly suitable platform for building in an accountability mechanism. On
the other hand, the principles by which we characterize accountability provide
a general account of accountability in organizational settings. The paper begins
with a scenario that explains in a practical way the lack of accountability and
its origin in systems realized by means of JaCaMo. Then, it provides a charac-
terization of computational accountability including five founding principles. It
describes ADOPT, an accountability protocol, and shows how it satisfies these
principles with the help of model checking.

2 Lack of Accountability: A Scenario in JaCaMo

In order to illustrate the accountability problem, we use, as a reference scenario,
an excerpt of the building-a-house example presented in [6]. An agent, called Gia-
como, wants to build a house on a plot. In order to achieve this goal, Giacomo
will have to hire some specialized companies and then ensure that the contrac-
tors coordinate and execute in the right order the various tasks and subgoals.
Each hired company must adopt a corresponding role in the organization. Roles
are gathered in a group that is responsible for the house construction. After goal
adoption, a company agent could be asked (through an obligation issued by the
organization) to commit to some “missions”. Now, let’s suppose that Giacomo
is a dishonest agent and wants to exploit the contracted companies in order to
achieve some purposes that are unrelated to the house construction. In particu-
lar, let’s suppose he wants to delegate a do_a_very_strange_thing goal to the agent
playing the plumber role. Giacomo’s exploitive plan would work because when an



Accountability-Driven Organization Programming Technique for JaCaMo 297

agent adopts a role in a group, that agent has no information about the kind of
tasks it could be assigned. Tasks are rather created independently of roles, and
are only subsequently associated with them.

In the example, the plumber agent reasonably will not have a plan to achieve
the do_a_very_strange_thing goal. Consequently, when the corresponding obligation
is created, it will not be fulfilled.

Given the above scenario, who could we consider accountable for the
inevitable goal failure of do_a_very_strange_thing? Should the agent playing the
plumber role be held accountable? The agent violated its obligation but could
not have reasonably anticipated the goal’s introduction, which effectively made
achievement impossible. Should Giacomo be held accountable since he intro-
duced an unachievable goal, however licit? Perhaps the system itself ought to
bear the brunt of accountability since it permits such unfair behavior? The sys-
tem, however, doesn’t know agent capabilities and cannot consequently make a
fair/unfair judgment call.

Listing 1.1 shows how the organization for the building-a-house scenario is
defined in Moise. The file contains: the structural, functional, and normative
specification.

Listing 1.1. Excerpt of the organization for building-a-house.
1 <organisational -specification id=" house_contruction"
2 ...
3 <structural -specification >
4 <role -definitions >
5 <role id=" house_owner" />
6 <role id=" building_company" />
7 <role id=" plumber" >
8 <extends role=" building_company "/>
9 </role >

10 ...
11 </role -definitions >
12 <group -specification id=" house_group">
13 <roles >
14 <role id=" house_owner" min ="1" max="1"/ >
15 <role id=" plumber" min ="1" max ="1"/ >
16 ...
17 </roles >
18 ...
19 </group -specification >
20 </structural -specification >
21 <functional -specification >
22 <scheme id=" build_house_sch">
23 <goal id=" house_built">
24 <plan operator =" sequence">
25 <goal id=" site_prepared" ttf ="20 minutes" />
26 ...
27 <goal id=" plumbing_installed" ttf ="20 minutes" />
28 ...
29 </plan >
30 </goal >
31 <mission id=" management" min ="1" max="1">
32 <goal id=" house_built "/>
33 </mission >
34 <mission id=" prepare_site" min ="1" max="1">
35 <goal id=" site_prepared" />
36 </mission >
37 <mission id=" install_plumbing" min ="1" max="1">
38 <goal id=" plumbing_installed" />
39 </mission >



298 M. Baldoni et al.

40 ...
41 </scheme >
42 </functional -specification >
43 <normative -specification >
44 <norm id="n1" type=" obligation" role=" house_owner"
45 mission =" management" time -constraint ="2 minutes" />
46 ...
47 <norm id="n8" type=" obligation" role=" plumber"
48 mission =" install_plumbing" />
49 ...
50 </normative -specification >
51 </organisational -specification >

Line 7, for instance, defines a plumber role that is included in the house_group group
at line 15. After the structural specification, we find the functional specification
with a build_house_sch scheme. Line 37 defines an install_plumbing mission composed
of the plumbing_installed goal. Finally, in the normative specification, norm n8 binds
the plumber role to the previously described mission. It’s important to notice that
this definition could change at runtime; in particular new schemes could be
dynamically generated and, for instance, associated with the house_group that will
become responsible for them.

Once the building phase is started, Giacomo creates a GroupBoard artifact,
called hsh_group, following the XML specification of the house_group. GroupBoard
artifacts are used to manage the lifecycle of specific group of agents. After that it
adopts the role house_owner, and asks the auction winners (see [6] for explanations
about the auction) to adopt the corresponding roles (!contract_winners). Finally,
after all agents have adopted their roles and the group is ready, a SchemeBoard
artifact called bhsch is created to manage the execution of the build_house_sch social
scheme.

When the company agents receive the request sent by Giacomo, they adopt
the roles by acting on the group artifact. From that moment on they could
be asked (i.e. obliged) to commit to some missions according to the norma-
tive specification. This phase is needed in order to form the group which will
become responsible of the scheme. For instance, agent companyA could be asked
to commit to install_plumbing with an obligation of the form obligation(companyA, n8

, committed(companyA, install_plumbing, bhsch), ...). Norm n8 is, indeed, the norm that
binds the plumber role with install_plumbing in the normative specification. When
the group is well-formed, agents inside it can be obliged to achieve the related
goals. Indeed, the main purpose of the SchemeBoard artifact is to keep track of which
goals are ready to be pursued and create obligations for the agents accordingly.
For instance, let’s assume the plumbing_installed goal is ready to be pursued; an
obligation obligation(companyA, ..., achieved(bhsch, plumbing_installed, companyA),...) will
be generated, provided that the companyA agent is playing the plumber role. Such
obligations are observed by the agents and the corresponding goals are automat-
ically created. Listing 1.2 shows an excerpt of the companyA agent. The obligation
creates the goal which is then achieved following the plan of line 20. As soon as
other goals are ready to be pursued, new obligations are created.



Accountability-Driven Organization Programming Technique for JaCaMo 299

Listing 1.2. Excerpt of code of the companyA agent.
1 ...
2 task_roles (" Plumbing", [plumber ]).
3 +! contract(Task ,GroupName)
4 : task_roles(Task ,Roles) <-
5 ...
6 lookupArtifact(GroupName , GroupId);
7 for (. member(Role , Roles)) {
8 adoptRole(Role)[artifact_id(GroupId)];
9 focus(GroupId)

10 }.
11 +obligation(Ag,Norm ,committed(Ag,Mission ,Scheme),Deadline)
12 : .my_name(Ag) <-
13 commitMission(Mission)[artifact_name(Scheme)].
14 +obligation(Ag,Norm ,achieved(Scheme ,Goal ,Ag),Deadline)
15 : .my_name(Ag) <-
16 ...
17 !Goal[scheme(Scheme)];
18 ...
19 goalAchieved(Goal)[artifact_name(Scheme)].
20 +! plumbing_installed // the organisational goal
21 (created from an obligation)
22 <- installPlumbing. // simulates the action

Fig. 1. Interaction between the companyA agent and the organization in the building-a-
house example.

Figure 1 reports the general interaction pattern, concerning role adoption
and mission distribution, instantiated on the companyA agent and plumbing. As
underlined by the authors, “[a] main advantage of this approach is that by simply
changing the scheme specification (which can be done by the designer or by the
agents themselves) at very high level, [. . . ] we will change the overall behavior
of the agent team without changing a single line of their code. [. . . ] This artifact
also manages the state of the obligations, checking, for instance, their fulfillment
or violations. This feature is very useful for Giacomo who wants to monitor the
execution of the scheme to ensure the house is built correctly and on time”. Now,
let’s suppose Giacomo is dishonest and wants to achieve some tasks, that are



300 M. Baldoni et al.

not related to house construction, by assigning them to the player of plumber
role. In particular, let’s suppose he wants to delegate a do_a_very_strange_thing goal
to the agent who is playing the plumber role (see Listing 1.3).

Listing 1.3. Organization specification involving do a very strange thing.
1 <functional -specification >
2 <scheme id=" build_house_sch">
3 <goal id=" house_built">
4 <plan operator =" sequence">
5 ...
6 <goal id=" do_a_very_strange_thing" ... />
7 ...
8 </plan >
9 </goal >

10 ...
11 <mission id=" install_plumbing" min ="1" max="1">
12 <goal id=" do_a_very_strange_thing" />
13 </mission >
14 ...
15 </scheme >
16 </functional -specification >

The only two lines that have been modified are Lines 6 and 12. This modification
is licit even if the group that will be responsible for the execution has been
already created. In fact, the GroupBoard artifact and the SchemeBoard artifacts
are created in different moments. The problem here is that the role definition
given in the structural specification of the organization says nothing about the
kind of capabilities (or requirements) an agent should have in order to play the
given role. Similarly, it is not specified what kind of tasks could be assigned to
the agent.

3 A Characterization of Organizational Accountability

Our interest in accountability primarily lies with its application as a design
property [3]; that is, we adopt the type of accountability that might be defined
as “an institutional relation or arrangement in which an agent can be held to
account by another agent or institution” [8]. Throughout our discussion, we will
make use of the term, forum, which is an investigative body that evaluates and
passes judgment on agents. As a design property, we consider integral the var-
ious steps to an accountability-as-a-mechanism relationship as described in [8]:
a forum must receive all information, including all causal actions, regarding a
given situation under scrutiny, the forum must be able to contextualize actions
to understand their adequacy and legitimacy, and finally the forum must be able
to pass judgment on agents. Our goal lies in automating the entire process, that
is, to create a structure that creates and collects contextualized, integral infor-
mation so that accountability can be determined from any future institutional
state.

One of the key difficulties in realizing our goal lies with the tricky notion
of contextualized action. In our own societies, contextualizing might entail an
examination of circumstances: for example, what should have a person done,
why didn’t she/he do that, what impact did her/his actions have, and given



Accountability-Driven Organization Programming Technique for JaCaMo 301

what the person had to work with, did she/he act in an exemplary fashion? The
same process in a MAS would be guided by the same type of questions, though
in order to facilitate their answers, we need to make use of different structures.
In particular, we need structures that allow assessing who is accountable with-
out actually infringing on the individual and private nature of agents. We can
determine action impact or significance by identifying the amount of disruption
it causes in terms of other agents and/or work affected.

We identify the following necessary-but-not-sufficient principles a MAS must
exhibit in order to support accountability determinations.

Principle 1. All collaborations and communications subject to considerations
of accountability among the agents occur within a single scope that we call orga-
nization.

In a word, situatedness. Accountability must operate in a specific context
because individual actions take on their significance only in the presence of
the larger whole. What constitutes a highly objectionable action in one context
could instead be worthy of praise in another. Correspondingly, a forum can
only operate in context and an agent’s actions must always be contextualized.
The same role in different contexts can have radically diverse impacts on the
organization and consequently on accountability attribution. When determining
attribution, thus, an organization will only take into account interactions that
took place inside its boundaries.

Placing an organizational based limit on accountability determinations serves
multiple purposes. It isolates events and actors into more manageable pieces so
that when searching for causes/effects, one need not consider all actions from the
beginning of time nor actions from other organizations. Agents are reassured that
only for actions within an organization will they potentially be held accountable.
Actions, thanks to agent roles, also always happen in context.

As illustrated in [10], accountability attribution consists in a rather complex
process involving an investigative forum to assess the situation and evaluate who
is accountable for what and to what degree1. The indispensability of the forum
becomes clear in our societies in which intrigue and complex motivations come to
bear. Luckily, a MAS greatly simplifies the matter, and our task takes the form
of ensuring all possible actions are accounted for and categorized with respect
to accountability, whose attribution will occur post-execution. The influence
of an unrealized goal on its resulting mission failure determine the degree of
accountability. For instance, should two agents fail to bring about their goals,
leading to the failure of another, both agents would bear half the accountability
for the consequent failure. Should only one agent cause the failure of a goal, that
agent would bear the full brunt of the accountability.

To adequately account for accountability by categorizing action, we must
deal with two properties within a given organization: (1) an agent properly
completes its tasks and (2) an agent does not interfere with the tasks of others.
The principles below deal more explicitly with the first property; that is, how to
1 In the present proposal accountability is crisp and either holds or does not hold.



302 M. Baldoni et al.

ensure that agents complete their tasks in a manner fair for both the agents and
the organization. The second property is also partially satisfied in our discussion
by ensuring that, in the presence of goal dependencies, the first agent in sequence
not to complete its goal will bear accountability, not only for its incomplete goal,
but for all dependent goals that will consequently remain incomplete. That is,
should an agent be responsible for a goal on whose completion other agents wait,
and should that agent not complete its goal, then it will be accountable for its
incomplete goal and for that goal’s dependents as well.

Principle 2. An agent can enroll in an organization only by playing a role that
is defined inside the organization.

As an organizational and contextual aid to accountability, roles attribute social
significance to an agent’s actions and can, therefore, provide a guide to the
severity of non-adherence.

Principle 3. An agent willing to play a role in an organization must be aware
of all the powers associated with such a role before adopting it.

Following the tradition initiated by Hohfeld [17], a power is “one’s affirmative
‘control’ over a given legal relation as against another.” The relationship between
powers and roles has long been studied in fields like social theory, artificial intel-
ligence, and law. Here we invoke a knowledge condition for an organization’s
agents, and stipulate that an agent can only be accountable for exercising the
powers that are publicly given to it by the roles it plays. Such powers are,
indeed, the means through which agents affect their organizational setting. An
agent cannot be held accountable for unknown effects of its actions but, rather,
only for consequences related to an agent’s known place in sequences of goals.
On the other hand, an agent cannot be held accountable for an unknown goal
that the organization attaches to its role, and this leads us to the next principle.

Principle 4. An agent is only accountable, towards the organization or another
agent, for those goals it has explicitly accepted to bring about.

An organization may not obligate agents to complete goals without prior agree-
ment otherwise we find ourselves in the unfortunate previously discussed sce-
nario in which an organization can insert goals irrelevant to a given role like
do_a_very_strange_thing in an agent’s obligations. In other words, an organization
must always communicate to each agent the goals it would like the agent to
pursue.

Principle 5. An agent must have the leeway for putting before the organization
the provisions it needs for achieving the goal to which it is committing. The
organization has the capability of reasoning about the requested provisions and
can accept or reject them.

Notice that with this principle we diverge from considerations in the field of
ethics regarding accountability in the presence of causal determinism [9,15], where



Accountability-Driven Organization Programming Technique for JaCaMo 303

even in the absence of alternate possibilities humans can be morally responsible
thanks to the significance of the choice to act. Finding the conversation funda-
mentally shifts when speaking of software agents, we consequently conclude that
accountability is not attributable in the presence of impossibilities. Correspond-
ingly, agents must be able to stipulate the conditions under which a given goal’s
achievement becomes possible, i.e. the agent’s requested provisions. The burden of
discovery for impossibilities, therefore, restsuponanagent collectivewhoannounce
them by their combined silence for a given goal. That is, a goal becomes effectively
impossible for a group of agents should no agent stipulate a method of achieve-
ment. Conversely, an agent also declares a goal possible the moment it provides
provisions to that goal. Should an uniformed agent stipulate insufficient provisions
for an impossible goal that is then accepted by an organization, that agent will be
held accountable because by voicing its provisions, it declared an impossible goal
possible. The opportunity to specify provisions, therefore, is fundamental in differ-
entiating between impossibilities and possibilities.

To illustrate the need for provisions to model accountability, we can imagine
an organization consisting of two members: one to prepare a wall, wall-preparer,
and another who paints the wall, painter. Their organization would give both
access rights to the wall and attribute to wall-preparer the goal of prepping the
wall, and to painter the goal of painting the wall. Without the possibility of stip-
ulating when goals are possible, perhaps wall-preparer fulfills its goal but whim-
sically paints a black stripe down the middle. Unfortunately, now painter has
inadequate materials and cannot realize its goal. Wall-preparer made painter’s
goal impossible. The impossibility, however, only came about at runtime. Should
painter stipulate provisions for its goal, it effectively qualifies possibility, permit-
ting accountability to work by guaranteeing an absence of impossibilities.

4 The ADOPT Accountability Protocol

We turn now to a MAS design-phase application of the above-mentioned account-
ability principles. Chopra and Singh explored a similar approach of design-phase
accountability in [12]. In their work, Chopra and Singh suggest that an actor
can legitimately depend on another to make a condition become true only when
such a dependency is formalized in an institutionalized expectation, whose struc-
ture describes expectations one actor has of another and whose inherently pub-
lic nature exerts normative power. To tackle accountability as a design prop-
erty, Chopra and Singh introduce the notion of accountability requirement as a
special case of institutionalized expectation. An accountability requirement is
a relation involving two principals, an account giver (a-giver) and an account
taker (a-taker). The a-giver is accountable to the a-taker regarding some con-
ditional expectation; namely, the expectation involves an antecedent condition
and a consequent condition. Usually, the consequent condition is pursued only
when the antecedent condition is true. In principle, if an accountability require-
ment is violated, the a-taker has a legitimate reason for complaint. The notion
of accountability requirement can be further refined in terms of commitments,



304 M. Baldoni et al.

authorizations, prohibitions, and empowerments [12]. Each of these relations has
specific implications in terms of who is accountable and for what reason. It is
worth noting that an a-giver is normally accountable for a specific condition
towards the whole group of agents in a MAS. That is, in an agent society, agents
are accountable for their actions towards the society as a whole. Rather than cre-
ating an accountability requirement between each possible pairs of a-giver and
a-taker, it is convenient to adopt the perspective by Chopra and Singh; namely,
considering both the agents and the organization as principals, between which
mutual expectations can be defined.

In other words, an organization is considered as a persona iuris [12], a legal
person that can be the a-giver or a-taker of an accountability requirement, as any
other principal represented by an agent. In addition, an organization will also
be the conceptual means through which complex goals are articulated in terms
of subgoals and distributed among a set of roles. An organization is, therefore,
a design element that allows one to specify: (1) what should be achieved by
the MAS (i.e., the organizational goals) and (2) what roles are included in the
organization and with what (sub)goals. As far as accountability is concerned, an
organization that shows the above features naturally satisfies Principles 1–3.

Our intuition is that in order to obtain accountability as a design property of
a MAS, the agents who are willing to be members of an organization enroll in the
organization by following a precise accountability protocol. The organization pro-
vides the context in which accountability requirements are defined. To define such
an accountability protocol, we rely on the broad literature about commitment-
based protocols and focus our attention on the accountability requirements that
can be expressed as (practical) commitments. Commitments have been studied at
least since the seminal works by Castelfranchi [11] and Singh [23]. A social com-
mitment is formally represented as C(x, y, p, q), where x is the debtor (a-giver, in
our case), that commits to the creditor y (a-taker) to bring about the consequent
condition q should the antecedent condition p hold. From the accountability point
of view, the a-giver is accountable when the antecedent becomes true, but the con-
sequent is false.

The gist of the accountability protocol is to make explicit the legal relation-
ships between the agent and the organization. These are expressed as a set of
(abstract) commitments, directed from organizational roles towards the organi-
zation itself, and vice versa. The first step captures the adoption of a role by an
agent. Let pwri,1, . . . , pwri,m be the powers that agent Agi, willing to play role
Ri, will get. Agi will commit towards the organization to exercise the powers,
given to it by the role, when this will be requested by the legal relationships it
will create towards other agents. In this way, the agent stipulates awareness of
the powers it is endowed with, becoming accountable, not only towards some
other agent in the same organization but also towards the organization itself,
of its behavior:

cpwri,1 :: C(Agi, Org,C(Agi, Z1, pwri,1), pwri,1)
. . .

cpwri,m :: C(Agi, Org,C(Agi, Zm, pwri,m), pwri,m)



Accountability-Driven Organization Programming Technique for JaCaMo 305

above Zj , j = 1, . . . ,m represent some roles or some (not necessarily different)
agents in the organization. These commitments represent the fact that, from an
accountability-based point of view, an agent, when exercising a power because
of a social relationship with some other agents, has some duties towards the
social institution which provides that power, too. Indeed, when an employee is
empowered by a manager to perform a given task on behalf of the company, the
result is not only a commitment of the employee with the manager, but also a
commitment of the employee with the company. An agent willing to play a role
is expected to create a commitment that takes the form:

cpwrRi
::C(Agi, Org, accept playerOrg(Agi, Ri), cpwri,1 ∧ · · · ∧ cpwri,m)

where accept playerOrg(Agi, Ri) is a power of the organization to accept agent,
Agi, as a player of role Ri.

Org, then, has the power to assign goals to the agents playing the various
roles through assignOrg. This is done through the creation of commitments by
which the organization promises to assign some goal to some agent should the
agent accept to commit to pursue the goal:

cassi,1 :: C(Org,Agi, cgi,1, provi,1 ∧ assignOrg(Agi, goali,1))
. . .

cassi,n :: C(Org,Agi, cgi,n, provi,n ∧ assignOrg(Agi, goali,n))

Above, cgi,k=1,...,n denote the commitments by whose creation the agent explic-
itly accepts the goals and possibly asks for provisions provi,k=1,...,n. Here, goali,k
is a goal the organization would like to assign to the agent Agi. The antecedent
condition of cgi,k has the shape provi,k ∧ assignOrg(Agi, goali,k), where provi,k
stands, as said, for a provision the agent requires for accomplishing the task, and
the consequent condition has the shape achieveAgi(goali,k):

cgi,1 :: C(Agi, Org, provi,1 ∧ assignOrg(Agi, goali,1), achieveAgi(goali,1))
. . .

cgi,n :: C(Agi, Org, provi,n ∧ assignOrg(Agi, goali,n), achieveAgi(goali,n))

Provisions are to be instantiated with those prerequisites that Agi discloses
as necessary for it to complete its job and that Org is expected to pro-
vide. On the agent side, these commitments are the means through which the
agent arranges the boundaries of its accountability within the organization. For
instance, painter, in our example above, is an agent hired in a painting organiza-
tion including also wall-preparer. A provision for painter to paint a wall could be
wall-prepared, a condition that is to be achieved by another agent from the same
organization, and that appears in the accountability requirements of its role.
Should wall-preparer behave maliciously (as in our example), painter would not
be accountable for not painting the wall as provision wall-prepared would be
missing. On the organization side, provisions are part of the information used to
decide whether to assign the goal to the agent (the internal decision processes of
an organization are outside the scope of the paper). An agent becomes obliged to



306 M. Baldoni et al.

achieve a goal only after this assignment so as to not violate the accountability
requirement. Finally, achieveAgi(gi,j) denotes that goal goali,j is achieved.

After these premises, we can now introduce the protocol that regulates the
enrollment of an agent, Agi, in an organization, Org, as a player of role, Ri, and
the subsequent assignment of goals to Agi carried out by Org.

(1) create(cpwrRi
)

(2) accept playerOrg(Agi, Ri)
(3) create(cpwri,1), . . . , create(cpwri,m)
(4) create(cassi,k), k = 1, . . . , n
(5) create(cgi,k), k = 1, . . . , n
(6) assignOrg(Agi, goali,k), k = 1, . . . , n
(7) provi,k, k = 1, . . . , n
(8) achieveAgi(goali,k), k = 1, . . . , n

An agent Agi, willing to play role Ri, makes the first step by creating the
commitment, cpwrRi

(1). By doing so it proposes itself as role player. It is worth
noting that the creation of cpwrRi

is possible only as a consequence of Principle 3,
by which an organization must disclose the powers associated with its roles. The
organization is free to decide whether to accept an agent as role player (2).
In case of acceptance the agent creates the commitments by which it becomes
accountable with the organization of the use of its powers (3). Step (4) allows
the organization to communicate the goals it wishes to assign to the agents. The
agents are expected to accept them by creating the corresponding commitments
of Step (5), thereby knowing which goals it may be asked to achieve at Step (6).
Steps (7) and (8) respectively allow the organization to satisfy the provisions,
and the agent to communicate goal achievement.

Principle 1 finds an actualization in the fact that all the mentioned commit-
ments are created within a precise organization instance. When Org accepts Agi
as a player for role Ri, the enrollment of the agent is successfully completed.
After this step, the agent operates in the organization as one of its members.
This satisfies Principle 2, for which an agent is a member of an organization only
when it plays an organizational role. Principles 4 and 5 find their actualization in
terms of the commitments cgi,k’s. Principle 4 demands that an agent is account-
able only for those goals it has explicitly accepted to bring about. The creation
of one of the commitments cgi,k represents the acceptance of being responsible,
and hence accountable, for the goal occurring in the commitment consequent
condition. Principle 5 states that an agent must have the leeway to negotiate
its own duties, which we obtain in two ways. First, the agent creates its own
commitments, which means that the mission commitments might cover just a
subset of the goals. Second, the agent can make explicit provisions for each role
goal.

4.1 Verifying ADOPT

Driven by the five fundamental principles we have identified, we have proposed
an accountability protocol to achieve accountability as a design property in a



Accountability-Driven Organization Programming Technique for JaCaMo 307

MAS. We now wish to verify that the proposed protocol actually adheres to the
five principles. Notably, in this paper we have used commitments as a means
for specifying accountability requirements; that is, for specifying what a prin-
cipal (either an agent or the whole organization) can legitimately expect from
others, and vice versa. This choice has some important design consequences. In
order to create the commitment cpwrRi

, an agent willing to play role Ri must
be aware both of the organization Org and of the role itself within Org together
with the powers pwri,1, . . . , pwri,n associated with Ri. This means that: (1) the
organization must exist, (2) roles must be defined in the context of an organi-
zation, and (3) powers associated with roles must be known at the time of role
enactment. When these elements are all known to an agent before joining an
organization, the system implicitly satisfies the accountability Principles 1, 2, 3,
and 5. In other words, these principles are structurally satisfied by the adoption
of commitments as a means to represent accountability requirements. The only
principle that is still to be verified is Principle 4: an agent is only accountable
for those goals for which it has taken an explicit commitment. The verification
of this principle demands consideration of the dynamics of the accountability
protocol in order to check whether such a principle is ever violated. We do this
by translating Principle 4 into a set of CTL formulae and by verifying with a
model checker whether the protocol satisfies these properties.

For the sake of discussion, we present here the CTL formulae in an abstract
way, assuming the existence of only one agent willing to play the unique role,
which can exert only one power, in a given organization. Provisions are not
addressed explicitly, but the following discussion can be extended to treat them
as well. Let us assume that the agent has already created the commitment,
cpwrRi

. As noted above, this is only the first step of enactment. In fact, to
complete the enactment phase, the organization has to accept the agent. Only
after this second step is the agent obliged to commit to the powers associated
with the role. The following two properties capture this aspect of Principle 4.

AG(enactment → AF(commit pwr)) (1)
A(¬commit pwr U enactment) (2)

AG(enactment → AF(A(commit pwr U exert goal))) (3)

Formula (1) specifies that whenever the enactment occurs (enactment) the agent
will create the commitment to exert the power pwr as and when it will be
expected by another principal Z (i.e., either another agent in the organization, or
the organization itself). Formula (2), on the other hand, specifies that the agent
will not commit to a exert a power until the organization completes enactment
through acceptance. The second formula is required because we want to avoid
situations in which an agent commits to use a power until it is endowed with
the power itself. Finally, Formula (3), means that an agent remains committed
to use the powers until it will actually need to use them.

So far, we have just modeled the properties that a proper role enactment
phase must satisfy. The key aspect of Principle 4, however, is about the actual
achievement of an organizational goal. Goals are issued by Org dynamically



308 M. Baldoni et al.

according policies which fall outside the scope of our discussion. What we want
to verify is that an agent commits to goals that, although assigned by Org, have
been previously accepted by the agent and are achievable with the powers that
Org endows the agent with. This is expressed by the following CTL formulae.

A(¬commit goal U publish goal) (4)
AG(commit goal → AF assign goal) (5)

AG(assign goal → AF(exert pwr)) (6)

Formula (4) means that an agent will not commit to a goal until it is published by
the organization. Note, however, that when the organization publishes a goal,
the agent has the free choice of accepting the goal. However, when the agent
commits to a goal previously published by the organization, the organization
is then obliged to assign the goal to the agent, this is modeled in Formula (5).
Finally, Formula (6) means that whenever a goal is assigned to an agent, the
agent will attempt to achieve the goal by exerting the power it has previously
committed to. Of course, in practical situations, the agent may fail to achieve
the goal, but from the point of view of ADOPT, and of Principle 4, the agent
has done its job if it has, at least, tried to achieve the goal by using its powers.
Determining the causes of a failed goal could involve various forms diagnostic
reasoning, such as [20,21], which, although relevant for the accountability point
of view, are left to future work. It is possible to show that our accountability
protocol satisfies these CTL properties.

4.2 Applying ADOPT to the Building-a-House Scenario

We now show how the ADOPT protocol can be applied to the building-a-house
example introduced above. First of all, ADOPT requires the existence of an
organization where roles and powers associated with roles are disclosed. Here we
focus on the role plumber and on its power install plumbing. Then, an agent,
here companyA, willing to play the role at issue should create the following two
commitments, as a first step of the enactment phase:

cpwrp :: C(companyA,Org, accept playerOrg(companyA, plumber), cpwrinst p)
cpwrinst p :: C(companyA,Org, cp, install plumbing)

By creating the nested commitment on top, cpwrp, the company accepts to be
accountable with the organization for the power to install the plumbing within
the organization itself, if it is accepted as plumber. Acceptance is completed by
the creation of a set of specific commitments, each one concerning a single power.
Here we have only one such commitment (cpwrinst p) because the role gives
the agent only one power. The antecedent condition cp of such a commitment
amounts to C(companyA, Owner, install plumbing) that binds the company
towards a role Owner (of the future house) in the same organization. Thus,
the nested commitment raises accountability for installing the plumbing to the
organizational level.



Accountability-Driven Organization Programming Technique for JaCaMo 309

Then, the organization dynamically assigns goals to its members; i.e., agents
who were accepted as role players. In particular, ADOPT assumes that an orga-
nization will assign a goal to an agent only if the agent is aware of the goal and
accepted it. Also in this case, we use commitments to formalize the relationship
between the organization and the agent. Specifically, in our example Org assigns
the goal to perform install plumbing by means of the commitment cassip:

cassip :: C(Org, companyA, cgg ip,
provg ip ∧ assignOrg(companyA, install plumbing))

cgg ip :: C(companyA,Org, provg ip ∧ assignOrg(companyA, install plumbing),
achievecompanyA(install plumbing)

In words, Org commits to assign the goal to companyA and to supply the related
provisions (provg ip) if the agent takes a commitment (cgg ip) to pursue the
goal, given those provisions and if the goal is assigned to it. Here provisions are
assumed to be the result of a negotiation phase which is outside the scope of the
paper; of course, it may be possible that no provision is requested. If companyA
accepts the mission (i.e., goal and provisions), it creates commitment cgg ip, and
this will detach commitment cassip. This is the pivotal aspect of the ADOPT
proposal: companyA becomes accountable towards Org because it assumes vol-
untarily the responsibility of bringing about a goal in case that goal will ever be
assigned to it. Org is now expected to assign companyA goal install plumbing for
discharging its commitment. In the example, Org will also have to bring about
provisions in order to discharge its commitment towards companyA.

Now, companyA is obliged by the detached commitment cgg ip to bring about
the goal install plumbing. This goal can be achieved by using the power companyA
has acquired, and has committed to use, when it joined the organization by
issuing the commitments cpwrp and cpwrinst p during the enactment phase. If
the goal is not achieved because power install plumbing is not exerted, compa-
nyA can be held accountable for the violation of cpwrinst p and cgg ip. Namely,
companyA can be held accountable because it didn’t even attempt to bring about
a task it had committed to when it had adopted the role. On the other hand,
if the organization assigns an unexpected goal to companyA, let us say goal,
do a very strange thing, this does not detach any commitment and, consequently,
companyA is not obliged to do anything. It is worth noting that thanks to the
ADOPT protocol we can immediately identify the behavior of the organization
as a violation of the accountability property. In fact, because of Principle 4, the
organization is not authorized to issue goals to agents that are not committed
to bring about those goals.

5 Discussion

Our work with JaCaMo highlights a conceptual challenge in the concept of
role and a role’s central place in responsibility and accountability (in the form
of “role-following responsibility”) as illustrated by [13]. To a certain degree,
decoupling a role from an organizational execution essentially negates the role’s



310 M. Baldoni et al.

function to limit its operational domain. As illustrated with building-a-house,
without prior agreement of what exactly a role means in a particular organi-
zational context, we can force a role to mean whatever we want so long as the
language matches. The consequent dynamism of roles makes automatic consid-
erations of accountability impossible to conclude. In our construction of compu-
tational accountability, roles represent a division of responsibility and pattern of
interaction that serve the investigative forum to assign accountability.

The accountability protocol allows design-phase incorporation of account-
ability (1) by excluding that the organization changes the goals assigned to roles
after agents enacted them and (2) by allowing agents to make their provisions
explicit. As one way to enforce a behavior that respects the protocol, one could
modify JaCaMo’s conceptual model and implementation so that it follows the
five principles. The modification would be possible since JaCaMo relies on oblig-
ations, which can be used to represent detached commitments. Another way is
to introduce proper monitors that, if needed, can check protocol adherence. This
calls for the realization of a kind of artifact that can monitor the interaction,
represent the social state (made of the existing commitments), and track its
evolution. This kind of system could be realized by means of 2COMM [1,2].

The resulting accountability-supporting organization has affinities with the
model of social structures defined in [14], which describe a whole made up of parts
that are organized by specific relationships. Wholes and parts are all entities,
and parts can be wholes themselves. The social structure has causal properties
(that is, it can affect the world) in its own right. Such properties (also known as
powers), synchronically emerge only with the constitution of a social structure.
Even in the presence of all individual members, if the structure’s characterizing
relationships are absent, so too are the previously mentioned properties. In this
framework, it is easy to see that accountability is, indeed, an emergent property
of a social structure (organization). Like all emergent causal properties of a
social structure, it co-exists with the causal powers of its parts (the agents),
whose acts are affected by the ways in which they are organized, so generally
events are multiply determined.

If we adapt the approach to roles developed in [4,5] in which roles essentially
define an organization, accountability takes on functional implications for the very
definitional existence of the organization. Should some roles remain unfulfilled, an
organization would correspondingly find itself in definitional crisis. As illustrated
in [16], role fulfillment means continual realization of role relationships, that is, a
role’s duties and obligations. Accountability allows an organization some recourse
in crisis and a method of expressing the relative importance its roles play. Armed
with the knowledge of relative responsibility and therefore importance in the col-
lective, an organization enables role-playing agents to make informed decisions
should conflicts arise and to make their own cost/benefit analysis should an agent
not wish to not perform its function.

A mechanism based on commitments presents numerous conceptual advan-
tages for accountability. An agent is able to specify the exact social context in
which it can fulfill the specified goal, g. It effectively announces to the organization,



Accountability-Driven Organization Programming Technique for JaCaMo 311

Org, that should its requirements become true, itwill be accountable for fulfilling g.
Essentially the commitments require pre-execution knowledge of expectations and
requirements both on the part of the organization and of the agent, which satisfies
accountability’s foreknowledge requirement. Commitments can therefore provide
indications of responsibility, as a pre-execution assignment,whichwill then, thanks
to the exhaustive definitions of pre andpost conditions, provide a directmapping to
accountability post execution. Since the agent, Ag, by design creates the commit-
ment to the organization, the agent, not the organization, specifies its requirements
to satisfy the goal, g. Casual determinism consequently cannot manifest because
agentAg stipulates the exact social circumstances in which it can operate and real-
ize g. Moreover, role relationships become explicit through the provision stipula-
tion, which will later provide a basis for role-adherence determination. The com-
mitment structure therefore provides the necessary characteristics for beginning
to speak of accountability.

Acknowledgments. This work was partially supported by the Accountable Trust-
worthy Organizations and Systems (AThOS) project, funded by Università degli Studi
di Torino and Compagnia di San Paolo (CSP 2014). The authors warmly thank the
reviewers for their constructive and helpful comments which helped revising the paper.

References

1. Baldoni, M., Baroglio, C., Capuzzimati, F.: A commitment-based infrastructure
for programming socio-technical systems. ACM Trans. Internet Technol. 14(4),
23:1–23:23 (2014)

2. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Commitment-based agent
interaction in JaCaMo+. Fundamenta Informaticae (2017, to appear). http://
www.di.unito.it/∼argo/papers/2017 FundamentaInformaticae.pdf

3. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability. In: Proceedings of the AI*IA Workshop on Deep Understanding
and Reasoning: A Challenge for Next-generation Intelligent Agents 2016. CEUR
Workshop Proceedings, vol. 1802, pp. 56–62. CEUR-WS.org (2017)

4. Baldoni, M., Boella, G., van der Torre, L.W.N.: Interaction between objects in
powerJava. J. Object Technol. 6(2), 5–30 (2007)

5. Boella, G., van der Torre, L.: The ontological properties of social roles in multi-
agent systems: definitional dependence, powers and roles playing roles. Artif. Intell.
Law 15, 201–221 (2007)

6. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

7. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason, vol. 8. Wiley, Hoboken (2007)

8. Bovens, M., Goodin, R.E., Schillemans, T. (eds.): The Oxford Handbook of Public
Accountability. Oxford University Press, Oxford (2014)

9. Braham, M., van Hees, M.: An anatomy of moral responsibility. Mind 121(483),
601–634 (2012)

http://www.di.unito.it/~argo/papers/2017_FundamentaInformaticae.pdf
http://www.di.unito.it/~argo/papers/2017_FundamentaInformaticae.pdf


312 M. Baldoni et al.

10. Burgemeestre, B., Hulstijn, J.: Design for the values of accountability and trans-
parency: a value-based argumentation approach. In: van den Hoven, J., Vermaas,
P.E., van de Poel, I. (eds.) Handbook of Ethics, Values, and Technological Design:
Sources, Theory Values and Application Domains. Springer, Netherlands (2015).
doi:10.1007/978-94-007-6994-6 12-1

11. Castelfranchi, C.: Commitments: from individual intentions to groups and organi-
zations. In: ICMAS, pp. 41–48. The MIT Press (1995)

12. Chopra, A.K., Singh, M.P.: The thing itself speaks: accountability as a foundation
for requirements in sociotechnical systems. In: IEEE 7th International Workshop
RELAW, p. 22. IEEE Computer Society (2014)

13. Conte, R., Paolucci, M.: Responsibility for societies of agents. J. Artif. Soc. Soc.
Simul. 7(4) (2004). http://jasss.soc.surrey.ac.uk/7/4/3.html

14. Vass, D.E.: The Causal Power of Social Structures: Emergence Structure and
Agency. Cambridge Univ Press, Cambridge (2010)

15. Frankfurt, H.G.: Alternate possibilities and moral responsibility. J. Philos. 66(23),
829–839 (1969)

16. Guarino, N., Welty, C.: Evaluating ontological decisions with OntoClean. Commun.
ACM 45(2), 61–65 (2002)

17. Hohfeld, W.N.: Some fundamental legal conceptions as applied in judicial reason-
ing. Yale Law J. 23(1), 16–59 (1913)

18. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organi-
sations with organisational artifacts and agents. Auton. Agent. Multi Agent Syst.
20(3), 369–400 (2010)

19. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: programming issues at the system and agent levels. Int.
J. Agent Oriented Softw. Eng. 1(3/4), 370–395 (2007)

20. Micalizio, R., Torasso, P.: Agent cooperation for monitoring and diagnosing a
MAP. In: Braubach, L., Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009.
LNCS (LNAI), vol. 5774, pp. 66–78. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04143-3 7

21. Micalizio, R., Torasso, P.: Cooperative monitoring to diagnose multiagent plans.
J. Artif. Intell. Res. 51, 1–70 (2014)

22. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston (2009). doi:10.1007/
978-0-387-89299-3 8

23. Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell.
Law 7(1), 97–113 (1999)

http://dx.doi.org/10.1007/978-94-007-6994-6_12-1
http://jasss.soc.surrey.ac.uk/7/4/3.html
http://dx.doi.org/10.1007/978-3-642-04143-3_7
http://dx.doi.org/10.1007/978-3-642-04143-3_7
http://dx.doi.org/10.1007/978-0-387-89299-3_8
http://dx.doi.org/10.1007/978-0-387-89299-3_8

	ADOPT JaCaMo: Accountability-Driven Organization Programming Technique for JaCaMo
	1 Introduction
	2 Lack of Accountability: A Scenario in JaCaMo
	3 A Characterization of Organizational Accountability
	4 The ADOPT Accountability Protocol
	4.1 Verifying ADOPT
	4.2 Applying ADOPT to the Building-a-House Scenario

	5 Discussion
	References




