Chapter 10

Carbon Losses from Respiration
and Emission of Volatile Organic
Compounds—The Overlooked Side
of Tree Carbon Budgets

Roberto L. Salomén, Jesus Rodriguez-Calcerrada and Michael Staudt

Abstract The balance between photosynthetic carbon (C) assimilation and C loss
via respiration (R), emission of volatile organic compounds (VOCs), and rhi-
zodeposition determines plant net primary production and controls to a large extent
ecosystem C budgets. Compared to photosynthesis, the physiology, environmental
control and ecological importance of processes involving C release from trees have
been less studied; it is the purpose of this review to address these questions in oak
trees with special focus on R and VOC emissions. Mass-based leaf dark R scales
positively with specific leaf area, nitrogen content and photosynthetic capacity, and
it is normally greater in deciduous species than evergreen sclerophyllous ones. Leaf
dark R increases with temperature, and is constrained by water shortages; however,
the magnitude of these responses may vary at different temporal scales. Similarly, R
in woody tissues increases with temperature, although in a hysteretic manner during
a diel period. On a seasonal basis, besides temperature, water availability becomes
the main abiotic driver of woody tissue R as drought stress down-regulates main-
tenance and growth metabolic processes in stems and roots. Respiration in foliar
and woody tissues is expected to account for about half of photosynthesis; never-
theless, R can largely fluctuate with ontogenetic, biotic and abiotic factors inde-
pendently of C uptake. Volatile organic compounds have multiple roles in
plant-environment interactions and plant-plant signalling. Oak genus is one of the
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strongest emitter of isoprenoids, which are the most important VOCs released from
plants. Most oak species release isoprene constitutively; however, several oak
species distributed around the Mediterranean (mostly evergreen) do not produce
isoprene, but alternatively emit monoterpenes or lack constitutive emissions of
VOCs. The rate of emission of VOCs from leaves increases with leaf temperature
and irradiance, being the derived C loss relative to photosynthesis about 1%, except
during heat waves when this percentage may increase up to 5%. Emission of VOCs
is constrained by drought-stress to a lesser extent than leaf photosynthesis, thus the
relative C loss through VOCs also increases with drought severity. Overall, the
hypothesis of homeostatic ratios between plant C gain and C loss, an artefact of our
better understanding of photosynthesis in comparison to all these processes that
encompass tree C loss, should be revisited to better understand C cycling in oaks
and to better predict oak physiological performance under climate change scenarios.

10.1 Introduction

The advance in the understanding of our environment is largely driven by the
development of suitable technologies to quantify and explain the subject of study.
Research in plant carbon (C) cycling clearly illustrates how methodological feasi-
bility has driven knowledge in a particular direction (K&rner 2015): As leaves can
be easily enclosed in sealed chambers and gas exchange measured with an array of
sophisticated systems (Hunt 2003), research on leaf C assimilation has traditionally
held a predominant role in studying tree C budgets to the detriment of C efflux from
other tree organs. Atmospheric CO, is assimilated by plants through photosynthesis
(P) and part of it is released back to the atmosphere and soil through respiration (R),
emission of volatile organic compounds (VOCs) and rhizodeposition. The differ-
ence between C assimilation and C loss is known as net primary production
(NPP) and represents the net gain of C to be invested in plant growth, maintenance,
defence, reproduction or storage. Net primary production is a key output of
dynamic global vegetation models to predict C exchange between terrestrial
ecosystems and the atmosphere. Net primary production is commonly calculated as
the difference between P and R (e.g. Waring et al. 1998; Luyssaert et al. 2007; Piao
et al. 2010; Rambal et al. 2014):

NPP =P — R (10.1)

In this equation, P is a well-known process mechanistically described more than
35 years ago (Farquhar et al. 1980), whereas R is a comparatively understudied C
flux, despite its predominant role in ecosystem C balance (Valentini et al. 2000;
Amthor 2000). Moreover, VOCs and rhizodeposits are commonly ignored in this
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conceptual framework despite evidence of a non-negligible contribution to tree C
loss (Jones et al. 2004; Bracho-Nunez et al. 2013; Sindelarova et al. 2014).
Equation (10.1) should be therefore further developed to integrate all C fluxes
between the plant and its environment:

NPP = P — R — VOCs — rhizodeposits (10.2)

The biological significance of processes involving C release for survival and
regeneration is unquestionable. Briefly, the mitochondrial oxidation of C substrates
in all plant living cells produces reducing power [e.g. NAD(P)H from NAD(P)*], C
skeleton intermediates, and usable energy (ATP) from ADP and inorganic phos-
phate to fulfil metabolic requirements. During the numerous reactions of mito-
chondrial respiration CO, is formed, a fraction of which is released to the
atmosphere, and another recycled within chloroplasts. VOCs are organic chemicals
emitted from all plant organs that play multiple roles in plant reproduction, plant
protection, and plant-plant signalling; whereas rhizodeposits consist of a wide range
of compounds involved in plant nutrition, plant defence, and signalling between
plant roots and surrounding organisms of the rhizosphere.

The genus Quercus comprises more than 600 species including deciduous and
evergreen trees and shrubs adapted to a broad range of environmental conditions,
from semi-arid Mediterranean evergreen woodlands to sub-boreal, temperate and
subtropical deciduous forests (Mabberley 2008). Due to its wide distribution in the
Northern hemisphere, Quercus spp. are extensively surveyed in physiological
research and constitute an excellent taxonomic group to study the variability in R
and the emission of VOCs among different plant functional types and across
environmental conditions. In this chapter we want to draw the attention to an
important side of plant C budget that has largely been overlooked in oak species:
the release of C from the plant to the environment. We will focus on R and VOCs
emission due to the scarce literature on oak rhizodeposition. We aim at (i) ex-
plaining the variability in R and VOCs emission among different oak species, along
gradients of environmental conditions, and at different temporal scales; (ii) high-
lighting the relative contribution of R and VOCs emission to oak C budgets;
(iii) and summarizing information on the chemical typology, mechanisms of syn-
thesis and release, and ecophysiological significance of VOCs among oak species.

10.2 Plant Respiration

Plant R consists on the mitochondrial oxidation of C substrates to produce usable
energy, reducing power, and C skeleton intermediates with the consequent release
of CO, as a reaction product. Plant R is commonly simplified by a single equation
developed in the early 1970s, in which R is partitioned into growth and mainte-
nance processes (McCree 1970; Thornley 1970):
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R = Rg+ Ry = gG + mgW (10.3)

where R is respiration rate (mol CO, sfl), R and Ry are growth and maintenance
respiration rates (mol CO, sfl), G is growth rate (g new biomass sfl), W is living
biomass (g dry mass), gg is growth respiration coefficient (mol CO, (g new bio-
mass) ') and mg is maintenance respiration coefficient (mol CO, (g dry biomass)
sH. Despite the magnitude of R, ca. 35 to 80% of P (Amthor 2000), substantial
improvements in the mechanistic understanding of respiration are still lacking since
the early 1970s (Cannell and Thornley 2000; Amthor 2000; Thornley 2011).
Respiratory processes continue to be simplified by the growth-and-
maintenance-respiration paradigm, and we are far from understanding respiration
at the same detail as we do for photosynthesis (Farquhar et al. 1980). Gifford (2003)
stated that “plant respiratory regulation is too complex for a mechanistic repre-
sentation in current terrestrial productivity models for carbon accounting and
global change research”. This idea seems to be tacitly accepted and given that the
rates of enzymatic reactions involved in R are temperature-dependent, plant R is
commonly estimated from a single equation derived from Arrhenius Kkinetics
(Davidson et al. 2006):

R = Ry x Qu(T —Ty)/10 (10.4)

where R is the respiration rate at temperature T, Ry, is the respiration rate at a basal

temperature T}, and Q, is the relative increase in respiration rate corresponding to
a 10 °C temperature rise. Hence dynamic global vegetation models often estimate
plant R from temperature data—neglecting other biotic and abiotic regulators of
plant R such as water availability, C and nutrient supply, and energy demand—to
quantify C fluxes and pools at the global scale (Smith and Dukes 2013; Fatichi et al.
2014). Alternatively, R is sometimes assumed to be a constant fraction of P at the
tree scale (Waring et al. 1998; Van Oijen et al. 2010). Nevertheless, there is
growing evidence that C cycling is not uniquely driven by C assimilation
(“source-driven”), but also by abiotic constraints to plant growth and cell mainte-
nance processes (“sink-driven”) (see Korner 2015 for a review), as recently
observed in Q. ilex (Lempereur et al. 2015), which challenges the assumption of
homeostatic R:P ratios. Consequently, we are unable to accurately estimate plant R
at different temporal and spatial scales, and to comprehensively understand the
regulation of the plant respiratory physiology despite its primary role in tree C
cycling, productivity and survival (Atkin and Macherel 2009).

In this section, we distinguish between leaf and woody tissues to better sum-
marize current knowledge on oak R. The physiological functioning of an organ is
determined by its particular anatomy and structure, and thus leaves and woody
tissues have different energy requirements and C-related expenditures derived from
respiratory processes. Moreover, dissimilar methodological approaches to quantify
R in different organs have contributed to further distance R research between leaves
and woody tissues.
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10.2.1 Leaf Respiration

10.2.1.1 Physiology and Variability Among Species

Leaf R is mostly dependent on the availability of ADP, C substrates—lipids, amino
acids and mostly carbohydrates—and the amount, position and protein content of
mitochondria within leaf cells, particularly mesophyll cells, whose contribution to
total leaf R in some species is >90% (Long et al. 2015). Data compilations from
plant species across the globe evidence that mass-based leaf dark respiration (Rg)
rates—more easily measured and typically higher than leaf R rates in light condi-
tions (Zaragoza-Castells et al. 2007)—are positively related with specific leaf area
(SLA), leaf nitrogen (N) concentration and photosynthetic capacity (P.x) (Reich
et al. 1998; Wright et al. 2006; Reich et al. 2008; Atkin et al. 2015). In the first case,
the relationship is due to the lower proportion of structural components in
high-SLA leaves; in the second, to the higher amount of respiratory enzymes
present in leaves with high N concentrations. Finally, the correlation of Ry with
Poax can reflect the role of Py, in providing the mitochondria with respiratory C
substrates, or the importance of N for synthesizing both respiratory and photo-
synthetic enzymes.

Because oak species encompass a wide gradient of leaf functional characteristics,
primarily abridged in the separation of broad-leaf evergreen and deciduous oaks,
variability in leaf Ry rates among oak species is also large and partly related with
climate conditions. Taking as example the 13 oak species included in the global
database of respiration GlobResp (Kattge et al. 2011; Atkin et al. 2015), both area- and
mass-based leaf Ry varied by approximately sevenfold. Global patterns across broad
climatic gradients evidence that plant species from cold sites exhibit higher rates of
leaf Ry than those from warmer sites at a comparable measurement temperature, a
pattern that holds for oak species (Kattge et al. 2011; Atkin et al. 2015). Further, plant
species from dry sites tend to have higher leaf Ry rates than those from mesic sites
(Atkin et al. 2015), with this difference being only partly explained by differences in
SLA or P,,,x (Wright et al. 2006). Some adaptations to stress, such as high rates of
metabolite turnover can result in high respiratory costs in processes of cell mainte-
nance and repair in cold, high-light or arid environments (Wright et al. 2006; Atkin
etal. 2015). Similarly, high N investment in repair compounds could also explain why
individuals from colder and drier populations of Q. ilex exhibited higher leaf main-
tenance respiratory costs than those from warmer and wetter populations when grown
under the same conditions (Laureano et al. 2008). However, different evolutionary
selection pressures, including abiotic and biotic stress factors and competition for
resources have shaped the respiratory metabolism in different ways, which precludes a
straightforward relationship of leaf Ry with stress resistance. As such, some leaf
structural and chemical adaptations to stress, such as low N concentrations and low
biomass allocation to metabolic components, can result in low leaf Ry rates in
long-lived, sclerophyllous leaves of some oaks growing in nutrient-poor or drought-
prone sites. At a comparable temperature of 25 °C, mass-based leaf Ry was lowest in
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Fig. 10.1 Theoretical representation of the plant respiration (R) response to shifts in temperature
(a, b) and water availability (c) at different temporal scales. Respiration exponentially increases
with temperature at any temporal scale; however, thermal acclimation (commonly observed in
leaves) leads to lower respiratory capacity of tissues grown under warm conditions (a, adapted
from Atkin and Tjoelker 2003). Hysteresis between R and temperature over diel cycles has been
observed for stem R, but not for leaf dark R (even if leaf R at a given temperature is usually lower
in light than dark conditions) (b, adapted from Salomoén et al. 2016b). Improved water status at
night-time increases stem R under constant temperature on a diel basis, whereas stem R
progressively decreases when water availability becomes limiting on a seasonal basis, as
theoretically illustrated during the drought event (the beginning of the drought is represented by
the vertical arrow) (¢, adapted from Saveyn et al. 2007b). Shaded areas indicate night-time
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the Mediterranean evergreen Q. ilex (4.0 nmol CO, g71 sfl) and highest in the de-
ciduous Q. alba and Q. rubra (25-27 nmol CO, g71 s~ 1). This is consistent with low
P.ax Of sclerophyllous leaves, and the positive relationship between P, and leaf Ry
(Wright et al. 20006).

10.2.1.2 Response to Environmental Changes at Different Time Scales

Within species, Ry varies in relation to ontogeny and environmental changes. As
oak leaves progressively stop growing, both in lamina area and thickness, Ry
decreases rapidly and reaches a phase in which fluctuations are not due to onto-
genetic changes but mostly to climatic shifts; eventually, when leaves start to
senesce, Ry starts to decline again markedly due to remobilization of leaf N and
degradation of the respiratory machinery (Collier and Thibodeau 1995; Miyazawa
1998; Xu and Baldocchi 2003; Rodriguez-Calcerrada et al. 2012). Ontogenetic
variations over the leaf life span make that, for comparative purposes, measure-
ments of Ry are typically made in non-senescent mature leaves that have fully
expanded. However, the responses of leaf physiology and Ry to climatic shifts can
vary as affected by ontogeny and age, something that clearly merits more research
to improve C balance models (Niinemets 2014).

The plasticity of Ry to air temperature, irradiance or water and nutrient avail-
ability is considerable in oak species. Multiple changes occur in the respiratory
metabolism in response to the need of the tree to adjust the production of respiratory
products to shifting demands imposed by environmental changes. This plasticity in
the respiratory metabolism—reflected in varying rates of Rs—allows trees to
orchestrate whole-plant plasticity and overcome periods of sub-optimal growing
conditions. Two of the most important drivers of leaf physiology over the leaf life
span are temperature and water availability.

Changes in temperature elapsed over hours, days, months or years affect the rates of
R4. However, the magnitude of the change in Ry rates depends on the time scale of
temperature changes. Short-term raises in temperature provoke an exponential
increase in leaf R that is typically higher than that occurred over longer term warming
periods due to the thermal acclimation of the respiratory metabolism (Reich et al.
2016). This process of acclimation involves a reversible decline in the activity of
respiratory enzymes. Frequently, the respiratory capacity (i.e. intercepts of respiratory
temperature response curves) differs across temporal scales, probably due to shifts in
the amount of mitochondria or mitochondrial enzymes. The consequence of this is that
R4 measured at prevailing ambient temperature barely changes over broad, long-term
changes in temperature (see Fig. 10.1a for an illustration of this phenomenon, and Slot
and Kitajima 2015 for a recent review of the process across biomes and experimental
conditions). The thermal acclimation of leaf R (more easily and frequently examined
in dark than light conditions, i.e. Ry) is a general response of healthy, non-growing oak
leaves (e.g. Bolstad et al. 2003; Lee et al. 2005; Zaragoza-Castells et al. 2008;
Rodriguez-Calcerrada et al. 2011) that may accompany different thermal photosyn-
thetic adjustments to balance leaf net C gain with C needs in the new environment
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(Way and Yamori 2014; Slot and Kitajima 2015). The extent of the thermal accli-
mation of R4 varies among species and with leaf developmental status, magnitude of
temperature change (Slot and Kitajima 2015) and interaction with other abiotic factors
such as irradiance (Bolstad et al. 1999) or soil water availability (Turnbull et al. 2001;
Rodriguez-Calcerrada et al. 2011).

Despite the importance of C losses for leaf and plant C balance, very few studies
have examined the impacts of temporal soil water fluctuations on Ry in oak species.
Most of these studies have been conducted on the drought-tolerant, widespread
Mediterranean oak Q. ilex (e.g. Rodriguez-Calcerrada et al. 2011; Varone and
Gratani 2015). The results of these studies are consistent with the drought-induced
decline in leaf R4 and increase in leaf R4/P ratio that is generally reported for other
plant species (see review of Atkin and Macherel 2009). The main reasons behind
this short-term decline in leaf Ry are: (i) a reduction in the amount of mitochondrial
protein and (ii) a reduction in enzymatic activity due to limited turnover of ATP to
ADP (associated to down-regulation of energy consumption processes) or limited
flow of triose phosphate from chloroplasts into mitochondria (associated to
impaired P). The complex regulation of leaf R makes that, as it happens in response
to temperature, leaf Ry does not necessarily exhibit the same response to drought
over short- and long-term time scales. However, few studies have examined how
long-term decreases in soil water availability affect leaf R and C balance in oak
trees (Turnbull et al. 2001; Rodriguez-Calcerrada et al. 2011; Sperlich et al. 2016).
In southwestern Europe, two parallel throughfall-reduction experiments have been
set up in two Q. ilex forest stands to study the long-term effects of increased drought
on foliar respiratory rates. Rodriguez-Calcerrada et al. (2011) observed that leaf Ry
decreased in response to seasonal decline of leaf water potential similarly in trees
subjected to normal and 7-year reduced throughfall, so that leaf R4 was lower in the
trees that had experienced a reduction in throughfall and a greater decline of leaf
water potential during the dry season, but did not differ between treatments at
optimal soil water conditions. These results and those of Limousin et al. (2010) on
the nature of photosynthetic limitations in the same species and experimental site
suggested that 7 years of increased drought had not modified the physiology of leaf
mesophyll cells. In another Q. ilex stand subjected to a longer period of rain
reduction (14 years) of similar intensity, Sperlich et al. (2016) found the same lack
of treatment effect on leaf Ry, but a significant increase in leaf R during daytime in
trees receiving less rain, suggesting that the reorganization of the respiratory
metabolism depends on the duration of increased drought. Collectively, the results
suggest that drought-induced declines in leaf R over short time periods seemingly
change to drought-induced increases in leaf R as trees adapt to increased drought
(Turnbull et al. 2001; Rodriguez-Calcerrada et al. 2011; Atkin et al. 2015; Sperlich
et al. 2016), however, more studies are needed to understand long-term responses of
leaf R to drought.
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10.2.2 Stem and Root Respiration

10.2.2.1 How to Estimate It? Methodological Constrains to Measure
Woody Respiration

Although stems and roots constitute the largest fraction of biomass in woody
species, especially in large trees (Poorter et al. 2012), our knowledge of woody R is
by far less advanced compared with that of leaf R. The main obstacle to understand
R in woody tissues remains in the difficulty to accurately measure it. Radial CO,
efflux to the atmosphere (E,) from stems and roots, which can be measured with
cuvettes surrounding the monitored organ, is commonly assumed to equal the rate
of R of these organs. Nevertheless, locally respired CO, in roots and stems can
either diffuse to the soil or the atmosphere, respectively, or alternatively accumulate
within woody tissues due to substantial barriers to radial gas diffusion offered by
outer tissues. Accordingly, concentrations of internal CO, in xylem (xylem [CO,])
range from <1 to 26%, values one to two orders of magnitude higher than atmo-
spheric [CO,]. As xylem [CO,] builds up inside the tree, it dissolves in the sap
solution until equilibrium between gaseous and liquid phases is reached according
to Henry's law; respired CO, moves upward in the transpiration stream, and
eventually diffuses to the soil or the atmosphere elsewhere (see Teskey et al. 2008;
Rodriguez-Calcerrada et al. 2015b for reviews). Internal transport of respired CO,
has therefore resulted in significant misestimation of woody R from measurements
of E4, as consistently observed in several oak species (McGuire and Teskey 2002;
Teskey and McGuire 2002; Bloemen et al. 2014; Salomoén et al. 2016b).

An additional constraint that hinders direct measurements of woody R is the
re-assimilation of internal CO, by chloroplast-containing woody tissues (see Avila
et al. 2014 for a review). For instance, recycling of respired CO, transported
through the xylem offset 19 and 70% of C respiratory losses in branches of Q. alba
and stems of Q. robur, respectively (Coe and McLaughlin 1980; Berveiller et al.
2007). To solve this issue, woody P is commonly disabled by using opaque cuv-
ettes; nevertheless, woody P above and below the cuvette might induce axial dif-
fusion of internal CO, that would decrease E, within the monitored segment, as
observed in Q. robur stems during the dormant season (Saveyn et al. 2008).
Additional difficulties arise when measuring root R due to inaccessibility of root
systems and the unclear discrimination between autotrophic and heterotrophic
respiration from measurements of soil CO, efflux (Hanson et al. 2000). All these
limitations hinder the establishment of a widely accepted methodological approach
to systematically measure woody R.

10.2.2.2 Response to Environmental Changes at Different Time Scales

Due to the few studies on woody R in oaks, the influence of abiotic drivers (mainly
temperature and water availability) on woody R is summarized independently of
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any intrageneric classification. In a study with seven oak species grown under
uniform conditions, Martinez et al. (2002) did not find any intrinsic difference in
root R attributable to the evergreen or deciduous character of the species. Likewise,
potential differences in woody R ascribed to the ring-porous or diffuse-porous wood
anatomy of oaks remain untested, despite their differential wood phenology and
growth (Pérez-de-Lis et al. 2016).

The temperature sensitivity of woody R, expressed as the change in R that
occurs over 10 °C (Qqq) ranges from 1.4 to 3.1 in oak species, with mean values
close to two (i.e., R rates double for an increase in temperature of 10 °C,
Table 10.1), as similarly observed for a variety of species in leaves and roots (see
Atkin and Tjoelker 2003 and references therein). On a diel basis, woody R increases
along the day with increasing temperatures and decreases at night-time exhibiting a
characteristic hysteresis (Table 10.1; Fig. 10.1b). Several factors have been sug-
gested to cause the day-time depression in temperature-normalized stem R observed
in oaks: (i) internal transport of respired CO, with the transpiration stream at
day-time (Negisi 1982; McGuire and Teskey 2002; Teskey et al. 2008), (ii) en-
hanced metabolic activity of woody tissues owing to improved water status at
night-time (Negisi 1982; Saveyn et al. 2007a; Salomoén et al. 2016b), (iii) lagged
temperature transmission and/or delayed radial CO, diffusion due to physical
barriers presented by peripheral tissues (Rodriguez-Calcerrada et al. 2014), and
(iv) refixation of respired CO, nearby the darkened monitored stem segment at
day-time (Saveyn et al. 2008). At a seasonal scale, the down-regulation of tem-
perature-normalized R with increasing temperatures across the year (Atkin and
Tjoelker 2003) has the potential to reduce C loss through woody R. The thermal
acclimation of leaf R (Fig. 10.1a) is a well-documented phenomenon in oaks (see
previous sub-section) that has been less studied in woody tissues. A meta-analysis
across 44 forested ecosystems, six of them dominated by oak species, supports the
hypothesis of thermal acclimation of R in roots (Burton et al. 2008): An attenuated
rate of temperature-driven increase in root R across ecosystems (Q;o = 1.6) was
observed in comparison to short-term fluctuations within individual stands
(Q10 = 2-3). Likewise, lower rates of temperature-normalized root R were regis-
tered in experimentally heated plots in mixed hardwood forests co-dominated by Q.
velutina, although the concomitant effect of soil drying along with soil heating
could not be discarded as a driver of R reductions (Burton et al. 2008). Thermal
acclimation of R rates in stems may also occur in oak species such as Q. ilex
(Rodriguez-Calcerrada et al. 2014), but literature is much scarcer in this regard.
Again, the concomitant increase in temperature with summer drought in some
ecosystems hinders to unequivocally ascribe seasonal reductions in stem R to
thermal acclimation, given that water shortages constrain stem growth and asso-
ciated respiratory costs in this widespread Mediterranean oak (Lempereur et al.
2015). The different temperature sensitivity of metabolic processes involved in
maintenance and growth R (Amthor 2000) complicates the study of acclimation of
maintenance R to abiotic stress in sites where secondary growth varies amply
throughout the year. Accordingly, higher Qo values observed in stems of Q.
accutisima during the colder non-growing season relative to the warmer growing
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Table 10.1 Temperature sensitivity of stem and root respiration (Q;0) in Quercus species

Organ Species Q1o Hysteresis® | References
Stem Q. accutisima 2.2 Yang et al. (2012b)
Q. alba 1.5- v Edwards and Hanson (1996), Li et al.
2.4 (2012)
Q. ilex 1.5- v Rodriguez-Calcerrada et al. (2014)
2.5
Q. mongolica 2.1- Wang et al. (2010), Yang et al. (2012a)
24
Q. petraea 1.6 Rodriguez-Calcerrada et al. (2015a)
2.1
Q. prinus 2.4 v Edwards and Hanson (1996)
Q. pyrenaica 1.4- v Rodriguez-Calcerrada et al. (2015a),
2 Salomon et al. (2016b)
Q. robur 1.9- v Saveyn et al. (2007a, b, 2008)
2.8
Q. serrata 2.1 v Miyama et al. (2006)
Q. velutina 1.6 Li et al. (2012)
Roots® | Q. accutisima 2.8 Luan et al. (2011)
Q. serrata 2.4 Dannoura et al. (2006)
mixed stand
Q. cerris 2.2 Rey et al. (2002)
Quercus-Carya 3.1 Burton et al. (2002)
stand
Mixed Quercus 2.4 Burton et al. (2002)
stand

Studies in which a hysteretic relationship between temperature and respiration has been reported
(V). Empty spaces denote studies in which this phenomenon was not evaluated. "Root respiration
integrates CO, originated from fine and coarse roots as well as root-associated microorganisms
present in the rhizosphere

season were attributed to the greater temperature sensitivity of maintenance pro-
cesses (Yang et al. 2012b) rather than to the potential effect of thermal acclimation
of R.

Oak species subjected to drought stress commonly show reduced R as a con-
sequence of constrained growth and metabolic activity. This effect has been
observed at the ecosystem (Reichstein et al. 2002; Unger et al. 2009; Rambal et al.
2014), organ (Saveyn et al. 2007b; Rodriguez-Calcerrada et al. 2014), and cellular
level (Saveyn et al. 2007a). During a diel cycle, night-time reduction in the vapour
pressure deficit and transpiration lead to replenishment of water reservoirs within
woody tissues (Steppe et al. 2006), as observed in Q. ilex (Salomoén et al. 2017).
Increase in cell turgor facilitates cell expansion and growth (Lockhart 1965), which
in turn may lead to enhanced rates of overall R. This hypothesis of growth respi-
ration mainly confined to night-time hours is supported by substantial night-time
increases in both E, and xylem [CO,] observed in Q. robur stems under relatively
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constant temperature across 24 h (Fig. 10.1c; Saveyn et al. 2007a, b). During the
course of a year, progressive soil drying in summer was found to constrain fine root
turnover (Lopez et al. 2001) and stem growth (Lempereur et al. 2015) in Q. ilex.
Impeded growth and down-regulation of maintenance processes likely explains
typical reductions in woody R when water becomes limiting (Fig. 10.1c), as
observed in roots of Q. cerris (Rey et al. 2002), Q. robur (Molchanov 2009), and
mixed oak stands (Burton et al. 2002), as well as in stems of Q. ilex
(Rodriguez-Calcerrada et al. 2014) and Q. robur (Saveyn et al. 2007b). Drought-
induced reductions in R suggest a threshold in soil water content below which
woody R becomes largely driven by water availability and independent of tem-
perature (e.g. Reichstein et al. 2002; Rey et al. 2002). Likewise, sharp increases in
xylem [CO,] observed in Q. robur and Q. pyrenaica stems after rain events fol-
lowing dry periods (Saveyn et al. 2007b; Salomoén et al. 2016a) provide further
evidence of drought-driven constraints to woody R. On the other hand, reduced
resistance to radial CO, diffusion due to reduced water content of peripheral woody
tissues as the soil dries out (Teskey et al. 2008; Salomon et al. 2016b) may partially
explain increases in stem and root CO, efflux during mild drought in oak trees (e.g.
Edwards and Hanson 1996; Dannoura et al. 2006; Molchanov 2009). Such
conflicting results evidence our deficient understanding of drought effects on woody
R. At an inter-annual timescale, acclimation of stem R to long-term increased
drought was not observed in Q. ilex after eight years of experimental
throughfall-reduction (Rodriguez-Calcerrada et al. 2014). Further research in this
line would be necessary to test potential down-regulation of woody R to prolonged
drought in order to better predict C cycling at the whole-tree level under changing
climate regimes.

10.2.3 Relative Importance of R for Tree Carbon Budgets

Ecosystem R (Rgco) determines ecosystem C balance in a wide range of envi-
ronmental conditions (Valentini et al. 2000). Ecosystem R can be biometrically
partitioned into leaf, stem and soil R by measuring samples of each component in
chambers and upscaling the measurements to the stand level. The broad range of
variation in the contribution of each component to Rgco is partly due to stand
structure, composition and age, but also to uncertainties in calculations. First,
estimations of annual leaf respiratory C losses at the stand scale range from 3 to
37% of Rgco in oak forests (Table 10.2). At an intra-annual scale, the largest
contribution of leaf R to Rgco generally occurs when new leaves expand; the
lowest contribution can occur at peak summer drought in some evergreen
Mediterranean forests (Rodriguez-Calcerrada et al. 2012). Second, the high pro-
portion of parenchyma in the wood of oak species can make C losses from stems
potentially important in oak-dominated ecosystems. The contribution of stem R to
REgco in pure and mixed oak stands ranges between 5 and 38% on an annual basis,
with mean values of ca. 15% (Table 10.2). The highest contribution of stem R to
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Rgco occurs in spring coincident with high stem growth rates in temperate and
continental climates (Curtis et al. 2005; Miyama et al. 2006), and before water
becomes limiting in the case of drought-prone Mediterranean regions
(Rodriguez-Calcerrada et al. 2014). Third, soil R is the largest respiratory C flux to
the atmosphere (Valentini et al. 2000) and accounts for 48-85% of Rgco in oak
forests (Table 10.2). Ambiguous discrimination between heterotrophic (microbes
and soil fauna) and autotrophic sources of soil CO, efflux hinders accurate esti-
mations of root R. Assuming an average contribution of soil R to Rgco of 67%
(Table 10.2), and a mean contribution of root R to soil R of 50% (Hanson et al.
2000; Burton et al. 2008), root R would account for 33% of Rgco. More conser-
vative contributions of root R to soil R observed in oak stands—ranging from 15 to
40% (Reichstein et al. 2002; Rey et al. 2002; Unger et al. 2009; Luan et al. 2011)—
would reduce the contribution of root R to Rgco to 10-27%, respectively.
Furthermore, it is worth noting that neglecting internal fluxes of root respired CO,
through xylem results in substantial underestimation of root R rates when these are
estimated via soil CO, efflux measurements; underestimation ranges from 2 to 18%
in Quercus species (Bloemen et al. 2014; Salomoén et al. 2015) and reach up to 50%
in other taxa (Aubrey and Teskey 2009). Overall, these estimates evidence the
important role of autotrophic R in plant and ecosystem C budgets and further
highlight the need of more experimental research on plant R to improve the
accuracy of dynamic global vegetation models.

10.3 Volatile Organic Compounds (VOCs)

Plants produce a large array of metabolites whose vapor pressures are high enough
(approx. > 0.01 kPa) to become volatilized under ambient temperature conditions.
All plant organs, namely flowers and fruits, foliage, stem and roots can release
VOCs. Flower and leaf emissions are by far the best investigated ones. However, in
the last decade increasing research has been afforded to root emissions, whose
ecological roles in soil biotic interactions are only in the beginning to be appreci-
ated (see e.g. Weissteiner et al. 2012; Delory et al. 2016). VOCs are emitted from
plant organs either constitutively or temporarily following induction by stress
factors. This classification is however not straightforward, because the emissions of
constitutive VOCs are also up and down-regulated by environmental factors
including stress events (Pefiuelas and Staudt 2010).

Phytogenic VOCs are mainly composed of C and hydrogen plus occasionally
other elements such as oxygen, nitrogen and sulphur, or more rarely halogens. Once
emitted the C skeleton of VOCs reacts gradually with oxidants in the atmosphere to
form ultimately CO,, thus closing the carbon cycle. However, a substantial portion
of intermediate products may be removed from the atmosphere via dry and wet
deposition. Products from VOC oxidation can condense with each other and other
atmospheric constituents and contribute to the formation of secondary organic
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aerosols, which have important impacts on climate forcing and human health
(Hallquist et al. 2009).

10.3.1 Metabolic Origins and Ecological Importance

Of the thousands existing plant VOCs, the majority belongs to three biosynthetic
classes, fatty acid derived volatiles, volatile aromatic compounds and volatile ter-
penoids (isoprenoids). The most prominent fatty acid-derived VOCs are Green Leaf
Volatiles (GLVs) that are formed from the breakdown of free fatty acids by
lipoxygenase and hydroperoxide-lyase enzymes (Matsui 2006). GLVs comprise
mainly mono-unsaturated C6 alcohols, aldehydes and acetate esters that are
potentially emitted from all plant species. GLV are emitted in high amounts only
after exposure to stresses such as wounding, herbivore attack, extreme temperatures
or acute ozone exposure. Upon stress GLVs are formed and emitted within seconds
to minutes and rapidly disappear when the stress ceases (e.g. Staudt et al. 2010).
Volatile aromatic compounds derive from the shikimate pathway (benzenoids and
phenylpropanoids). They are most common in flower scents (Schiestl 2010).
However, recent studies made at plant and canopy levels emphasize that consid-
erable amounts of benzenoids are also emitted from vegetative tissues in particular
under stress conditions (Misztal et al. 2015). Volatile isoprenoids are classified
according to the number of C5 units they have: C5 hemiterpenes, C10 monoter-
penoids and C15 sesquiterpenoids. In planta, isoprenoids are synthesized within
two distinct pathways, the 2-methyl-erythritol-4-phosphate pathway operating in
plastids and the mevalonate pathway operating in the cytosol, endoplasmic retic-
ulum and peroxisomes (Lu et al. 2016 and references therein). Volatile isoprenoids
can also be secondarily formed from the breakdown of higher isoprenoids such as
homoterpenes (Tholl et al. 2011) and apocarotenoids (Walter et al. 2010). The
quantity and quality of emitted isoprenoids and aromatic compounds inherently
differ among plant taxa. The hemiterpene isoprene is the most important VOC
released from terrestrial vegetation. Globally ca. 600 Tg (10'? g) of isoprene are
annually emitted, which is about 2/3 of the total biogenic VOC release (Sindelarova
et al. 2014). However, only about 30% of vascular plants emit isoprene from their
foliage (Fineschi et al. 2013). Oaks, poplars and willows figure among the strongest
isoprene emitters (Kesselmeier and Staudt 1999).

In addition to the volatiles of these three major classes, a number of short-chain
oxygenated volatiles (collectively called OVOCs) are frequently observed in plant
emissions such as methanol, formaldehyde, formic acid, ethanol, acetaldehyde,
acetic acid, methyl acetate, acetone, ethylene and methylglyoxal. These have dif-
ferent metabolic origins and occur rather universally in plants. For instance
methanol is formed during cell wall formation and is therefore particularly released
during the growing period (Bracho-Nunez et al. 2011; Brilli et al. 2016). With an
estimated annual emission of ca. 130 Tg, methanol is the second important phy-
togenic VOC worldwide (Sindelarova et al. 2014). Emissions of ethanol and the
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equivalent C2 aldehyde and acid are mostly associated with fermentation during
hypoxia (Kreuzwieser and Rennenberg 2013). Many of these OVOCs are also
secondarily formed during the oxidation of primary emitted higher VOCs such as
terpenes (e.g. Gaona-Colman et al. 2016).

Diverse ecological functions have been attributed to VOC production in plants.
The attraction of pollinators and seed dispersers by flower and fruit scents is an
essential driver of sexual reproduction and evolution in many plant species (Schiestl
2010). Further, numerous studies have shown that plant volatiles induced by her-
bivore or pathogen attacks have toxic, repellent or aposematic effects, or attract
predators and parasitoids of the attackers and thereby contribute to limit damages to
plants (see e.g. Van Loon et al. 2000). So far, such functions are largely unknown
for oaks. Oaks are wind pollinated and a potential role of volatiles in sustaining
acorn dispersal has rarely been documented (e.g. Verdu et al. 2007). Only few
studies have reported that herbivory or pathogen attack affect quantitatively and/or
qualitatively the volatile production from oaks (Staudt and Lhoutellier 2007; Paris
et al. 2010; Copolovici et al. 2014). A study with Q. robur suggests potential
beneficial effects of herbivory-induced VOCs against the European oak leaf roller
(Ghirardo et al. 2012). On the other hand, Vuts et al. (2016) demonstrated that
volatiles of Q. robur can attract the two-spotted oak buprestid, a bark beetle that
causes severe damages in European oak forests.

The possible function of the constitutive isoprene production in chloroplasts (or
analog monoterpenes) is still a matter of debate. With regard to biotic stress, a study
using transgenic isoprene emitting Arabidopsis plants has shown that isoprene can
disturb the attraction of a parasitic wasp to volatiles from herbivore-infested plants.
Thus, by troubling VOC-mediated trophic interactions of neighbouring species,
isoprene emitters could promote their interspecific competitiveness (Loivaméki
et al. 2008). However, since isoprene is one of the most common background-VOC
in the atmosphere, insects may rapidly adapt to avoid such interferences in host
recognition (Miiller et al. 2015). The major function of isoprene is thought to
reinforce the resistance to abiotic stresses, in particular to oxidative and high
temperature stress (see e.g. Loreto and Schnitzler 2010). The most pertinent results
supporting these hypotheses were achieved with transgenic plants, either isoprene
synthase over-expressing mutants of the non-isoprene emitting species Arabidopsis
(Sasaki et al. 2007; Velikova et al. 2012) and tobacco (Vickers et al. 2009b; Tattini
et al. 2014) or isoprene synthase silenced mutants of the isoprene emitting species
poplar (Behnke et al. 2007, 2010). However, several studies using the same or other
transgenic mutants reported conflicting results with respect to these hypotheses
(Behnke et al. 2009, 2012; Palmer-Young et al. 2015). Further, it is uncertain that
the improved resistance to abiotic stress in isoprene emitters is, as initially
hypothesized, due to direct effect of isoprene by scavenging oxidants or stabilizing
membrane structure. In fact, isoprene dissolves too little in bio-membranes to
efficiently change membrane conformation (Harvey et al. 2015) and is only fairly
suitable to scavenge oxidants due to its moderate reactivity (Atkinson and Arey
2003; Palmer-Young et al. 2015) and the high toxicity of reaction products
(Cappellin et al. 2017; Matsui 2016 and references therein). More likely, the
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physiological effects of isoprene are indirect by taking part in the plant’s stress
signalling network (Vickers et al. 2009a; Vanzo et al. 2016). In any case, the
genetically engineered absence or presence of isoprene synthase in mutants causes
transcriptomic, proteomic and metabolic changes in various metabolic pathways
even under non-stress conditions, including the biosynthesis of phenyl-propanoids
and lipids that affects the composition and ultrastructure of chloroplast membranes
(Velikova et al. 2015; Harvey and Sharkey 2016). Numerous other VOCs than
isoprene have shown to be involved in within-plant and between-plant stress sig-
nalling, among which diverse GLVs, aromatic compounds and higher isoprenoids
(Havaux 2014; Delory et al. 2016; Matsui 2016).

10.3.2 Diversity of VOCs in Oak Species

The great majority of oak species hitherto screened for VOC emission has been
found to release isoprene constitutively at high rates from its foliage (up to several
tenths of nmol m™2 sfl). However, several oak species with distribution around the
Mediterranean do not produce isoprene, but produce either monoterpenes in high
amounts or shown no constitutive VOC emissions. These exceptions are mostly but
not exclusively evergreen oaks and belong all to the two very closely groups Cerris
and Ilex (Welter et al. 2012; Monson et al. 2013). Diversification of isoprene
emission in oaks has been mainly observed at species and higher taxon levels and
more rarely at population level. So far, inherent intra and/or inter population
variability in the quantity or quality of constitutively produced VOC has not been
reported within isoprene emitting oak species (Welter et al. 2012; Steinbrecher et al.
2013). By contrast in monoterpene emitting species, compositional diversification
(i.e. chemotypes) has been frequently observed within and among populations
(Staudt et al. 2001b, 2004; Loreto et al. 2009; Welter et al. 2012). In addition, a few
low or non-emitting individuals were detected in some monoterpene emitting
populations. Conversely, dual isoprene/monoterpene emitting oak individuals seem
to be extremely rare in natural oak populations (Staudt et al. 2004). This is
somewhat surprising, because many oaks can hybridize with each other resulting in
widespread genetic introgression or rise of new species (e.g. Valbuena-Carabana
et al. 2007). For example, the endemic oak Q. afares (Algerian oak) is considered to
be a stabilized hybrid between Q. suber and Q. canariensis. Yet, Q. afares produces
exclusively monoterpenes (Welter et al. 2012) as one of its parent species (Q.
suber), but seems to have completely lost or suppressed the VOC production
capacity of its second parent Q. canariensis, which produces only isoprene. These
findings indicate that qualitative diversification in the monoterpene production
capacity occurs frequently and has no or only minor consequences for the com-
petitiveness of the trees. By contrast, the loss or gain of isoprene synthesis happens
more rarely during species evolution, possibly because it requires co-evolving
compensatory mutations to overcome failures in metabolic homeostasis.
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10.3.3 Response to Environmental Changes at Different
Time Scales

Unlike for CO, and water vapor, the foliar exchange of VOCs is less constrained by
stomatal conductance. This is due to their generally low gas phase concentrations
inside the leaves, which allow changes in the diffusive resistance by stomata move-
ments to be compensated by concomitant changes in the concentration gradients
between the substomatal cavity and the outer atmosphere. Nevertheless, many
OVOCs are at least partly under stomatal control either because these VOCs are
transported with the transpiration stream and/or because these VOCs dissolve effi-
ciently in liquid phase, which in turn delays the re-equilibrium of the gaseous con-
centration in the apoplast in response to stomata movements (Niinemets et al. 2002).
In any case, all VOC emissions are strongly modulated by external factors, above all
temperature, which governs the VOC’s vapor pressures and diffusion velocities, in
addition to metabolic processes involved in the VOC release (Staudt et al. 2017b). In
oaks, the major bulk of the emitted VOCs (constitutive isoprene and monoterpenes) is
directly regulated by their synthesis rate inside the chloroplasts, which in turn depends
on the availability of primary substrates coming from light-dependent photosynthetic
processes. Recent studies on poplar suggest that most of the short-term variation of
isoprene emission is due to limitations in the availability of reduction power from
photosynthetic electron transport (Rasulov et al. 2016 and references therein). Thus,
constitutive isoprene and monoterpene emissions from oaks, and perhaps also
stress-induced de novo synthesized emissions of sesquiterpenes, are strongly and
almost instantaneously modulated by both temperature and light (e.g. Staudt and
Lhoutellier 2011). The shape of the emission response to light resembles that of net
photosynthesis; i.e. a rectangular hyperbola approaching an asymptote at high light
values (Staudt and Bertin 1998). By contrast, the temperature response exhibits a
shape typical for the temperature dependence of enzyme-catalyzed reactions
(Fig. 10.2). In addition to these fast responses, light and temperature modulates the
oak’s overall emission capacity over the seasons with changing weather conditions
(e.g. Pier and McDuffie 1997; Staudt et al. 2002, 2003, 2017a) mostly via the
expression of genes of rate-limiting enzymes (Schnitzler et al. 1997; Fischbach et al.
2002; Lavoir et al. 2009). Constitutive isoprenoid emissions from oaks are also
influenced by other environmental factors such as ozone (Velikova et al. 2005),
atmospheric CO, concentration (Loreto and Sharkey 1990; Staudt et al. 2001a) or
shortage and excess of soil water (Bertin and Staudt 1996; Staudt et al. 2002, 2008;
Rodriguez-Calcerrada et al. 2013; Bourtsoukidis et al. 2014; Saunier et al. 2017).

10.3.4 Relative Importance for Tree Carbon Budgets

Given that in oaks almost all primary C substrate used in the biosynthesis of volatile
isoprenoids comes from ongoing photosynthesis, the C loss associated with
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emission can be expressed as the ratio of mol emitted C to mol assimilated C. As
shown in Fig. 10.2, the instantaneous C loss varies much with changing tempera-
ture but little with light. Under most conditions the instantaneous C loss of
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Fig. 10.2 Effects of temperature (left) and light intensity (photosynthetic photon flux density
(PPFD), right) on monoterpene emission (upper graphs), photosynthesis (middle graphs) and the
resulting relative carbon loss from monoterpene emission (C loss, lower graphs) in Q. ilex leaves.
Temperature effect was measured at a PPED of about 315, 615 and 2000 pmol m 2 s~'. Light
effect was measured at a temperature of about 15, 25, 30 and 41 °C. Data were compiled from
Staudt and Bertin (1998)
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assimilated C by constitutive isoprenoid emissions will be less than 1%. However,
during heat spells, the C loss can substantially increase, especially when combined
with drought events. In fact, isoprenoid emissions from oaks are less sensitive to
water shortage than photosynthesis. The emissions decrease only when drought is
severe while under mild drought they remain stable or even increase (Fig. 10.3). As
a result, VOC emissions from oaks may significantly drain photosynthetic C and
energy during conditions in which other sinks associated with growth are inhibited.
In addition to constitutively produced isoprenoids, new volatiles induced by abiotic
or biotic stresses may further exhaust the tree’s C resources. The exact C loss by
these emissions is difficult to assess since stress usually induces a wealth of
high-molecular, very reactive trace compounds (many of which remain undetected)
that are emitted sporadically. Generally, the emission rates reported for
stress-induced VOCs are lower than those for strong constitutive isoprenoid
emissions. For instance, in Q. ilex leaves VOC emissions induced by gypsy moth
infestation (mainly sesquiterpenes and homoterpenes) accounted for about 10% of
the total foliar VOC release (Staudt and Lhoutellier 2007).

The emissions of OVOCs from foliage have often been neglected when esti-
mating C losses by VOC emission, because their accurate measurement requires
different techniques to that of common VOCs. However, as mentioned above, many
of them are ubiquitous plant volatiles that can be emitted at quite high rates, such as
methanol. By combining PTR-MS technique with classical GC-MS, Bracho-Nunez
et al. (2013) determined a large range of VOC exchange in 28 plant species, among
which three oak species. At standard light and temperature conditions, mean C loss
of net-photosynthesis by VOC emission ranged between 1.4 and 3.7%, with
methanol and acetone contributing between 5 and 66% to the total VOC release.
The quantities of VOCs released from roots and stem tissues are only poorly known
and to our knowledge have never been reported for oaks. Nevertheless, Weissteiner
et al. (2012) identified more than 60 VOCs in the headspace of washed healthy and
damaged roots of young Q. petraea x Q. robur trees, of which 13 compounds were
consistently released. Asensio et al. (2007) investigated the VOC exchange of soil
in a Q. ilex forest and concluded that it represented 0.003% of the total C emitted by
soil as CO,.

On the other hand, there is increasing awareness that VOC exchanges can be
bidirectional at least for some OVOCs and hence compensation points in VOC
concentration exist, above which VOCs are taken up by plants (Niinemets et al.
2014; Matsui 2016 and references therein). For example, Staudt et al. (2000)
observed bidirectional exchanges of acetic acid from diverse plant species, with net
emissions dominating during day-time and net depositions dominating during
night-time. For Q. ilex, the average deposition rate observed in darkness was more
than half of the average emission rate observed under illumination (0.41 and
0.72 ng C m s~ ', respectively). Furthermore, secondary VOCs produced during
atmospheric oxidation can be taken up by the vegetation and metabolized, thus
possibly recovering parts of the C lost by emission (Karl et al. 2010; Park et al.
2013). Bidirectional above-canopy VOC fluxes have been recently measured by
Schallhart et al. (2016) in a mixed oak forest during the early summer season. These
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Fig. 10.3 Plot of isoprenoid emissions, photosynthesis and resulting relative C losses from
isoprenoid emissions against predawn water potential during two drought experiments on Quercus
pubescens (a, isoprene emitter) and Quercus suber (b, monoterpene emitter). Oak saplings were
exposed to one or two consecutive drying cycles for Q. pubescens and Q. suber, respectively. Gas
exchange measurements were made under the same standard light and temperature conditions
(1000 pmol m 2 s~! PPED; 30 °C). Lines are best fits on C-loss data assuming an exponential
relationship for Q. pubescens (R* = 0.92; Rodriguez-Calcerrada et al. 2013) and Q. suber
(R? = 0.67; Staudt et al. 2008)

authors observed an average net VOC efflux to the atmosphere of 41.8 nmol C m™>

s ' which accounted for a bit less than 2% of the net uptake of CO,. This number
likely represented the upper limit of VOC-related C loss in that study site, because
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the measurements were conducted during the season when the emission capacity for
constitutive isoprenoids reaches usually its maximum. Continuous online year-long
measurements of total VOC exchanges at plant or canopy levels are still sparse due
to methodological constraints. As an exception, Brilli et al. (2016) have monitored
by eddy covariance both VOC and CO, exchanges over a temperate poplar plan-
tation throughout a whole growing season. Although poplar is, similar to most
temperate oak species, a strong isoprene emitter, they observed a relatively small
net VOC flux of ca. 1 g m 2 per growing season accounting for about 0.8% of the
net ecosystem CO, exchange. Earlier studies extrapolated discontinuous VOC
emission/flux measurements by means of generic emission models to assess their
weight relative to annual ecosystem C budget. For example Kesselmeier et al.
(2002) estimated the annual C loss by VOC emission from an evergreen oak
Mediterranean forest being 0.45% of their annual GPP.

10.4 Rhizodeposition

The rhizosphere is a highly populated environment. There are thousands of
non-volatile organic compounds released by roots that mainly consist of carbohy-
drates, amino acids, vitamins, lipids, and a wide variety of secondary metabolites
and proteins. Rhizodeposits can alter the physico-chemical soil properties and play
important roles in the interactions of the plant with microbes or competing plant
species (Bais et al. 2004; Bashir et al. 2016). As example, phenolic compounds help
roots to deter the attack of pathogens (Lanoue et al. 2010); flavonoids facilitate the
mutualistic symbiosis with mycorrhizal fungi (Nagahashi et al. 2010); the synthesis
and release of some enzymes increase the availability of phosphorus forms that are
absorbable by the roots (Dakora and Phillips 2002); while the exudation of phos-
pholipids by root tips can reduce the surface tension of the soil solution and
enhance the uptake of water and nutrients (Read et al. 2003). Similar interactions
might exist in the rhizosphere of oak trees. However, the function and chemical
profiling of rhizodeposits have been rarely studied within this genus. One of the
scarce studies documents the effect of herbivory on C rhizodeposition in 2-year-old
Q. rubra seedlings (Frost and Hunter 2008): It was observed that foliar herbivory
reduced C allocation to fine roots whilst root exudation was actively regulated to
maintain constant rates of C rhizodeposition, likely to sustain nutrient supply to
microbes.

Rhizodeposition is affected by edaphic and environmental factors (reviewed by
Nguyen 2009). The abundance of soil microorganisms substantially enhances the
allocation of C assimilates to the rhizosphere. Besides, soil texture affects microbial
activity, nutrient cycling, and soil physical properties, so that rhizodeposition
increases in loam and clay soils due to their higher fertility and the smaller size of
soil pores that facilitate the flow of organic compounds. Regarding climatic con-
ditions, rhizodeposition is expected to increase during drought stress (Henry et al.
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Rygas = 3-37% Reco
Rstem= 5-38% Reco
Reoor= 10-27% of Reco
(Reco= Ra + Ry)

Fig. 10.4 Simplified schematic of tree carbon (C) budget in an oak forest. Net primary production
can be estimated as the difference between photosynthesis (P) and overall C loss. Tree C loss
occurs via emission of volatile organic compounds (VOCs), autotrophic respiration (R,), and
rhizodeposition of organic compounds. Autotrophic respiration is partitioned into leaf, stem and
root respiration (R gar, Rstem and Rgreor, respectively) and is expressed as a fraction of
ecosystem respiration (Rgco), which additionally integrates heterotrophic respiration (Ry) of
living organisms in the soil

2007), and seems to be unaffected by changes in atmospheric [CO,] (Nguyen
2009).

For experimental simplicity, research on rhizodeposition has focussed on
herbaceous plants and young tree seedlings (<2 months old; reviewed by Jones
et al. 2009), so that any extrapolation to large trees would be biased by the potential
effect of plant age on C allocation patterns (Nguyen 2009). Assessments on the
contribution of C rhizodeposits to plant C budgets is an experimentally elusive task,
mainly because of the technical limitation that the soil imposes for the quantifi-
cation of C flow through the rhizosphere, and the natural abundance of soil
microorganisms that promptly assimilate rhizodeposits. We are aware of only one
study in which the contribution of C rhizodeposits to tree C budgets has been
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surveyed in oak species. In mature trees of Q. serrata and Q. glauca, C loss via root
exudation was proportional to that of root R (10%) on a root-weight basis, and
accounted for 3% of NPP (Sun et al. 2017). Similarly, studies on annual herbs and
tree seedlings using isotopic tracers estimate that the portion of C assimilated
through photosynthesis and lost via rhizodeposition ranges between 2 and 11%
(Jones et al. 2009; Preece and Pefiuelas 2016). However, these rough estimates
should be taken with caution due to the uncertain origin and fate of C within the
rhizosphere (Jones et al. 2009). Finally, there is increasing evidence that roots of
autotrophic plants can take up amino-acids hence assimilating organic C and
nutrients (reviewed by Schmidt et al. 2013). This mixotrophic behaviour has been
observed in Q. petraea roots during spring, when the strong C demand for growth
before budburst cannot completely rely in new assimilates (Bréda et al. 2013), thus
adding further complexity to the estimation of net C loss belowground.

10.5 Conclusions

Carbon assimilation traditionally occupies a predominant role in the study of tree C
cycling, whereas processes involved in the C release from the plant to the atmo-
sphere are comparatively understudied. Respiration, emission of VOCs and rhi-
zodeposition constitute therefore the overlooked side of tree C budgets, included
those of oak trees. The ecological importance, physiology and environmental
control of R and VOC emissions in oak species have been reviewed; a simplified
schematic of the tree C budget in oak—dominated stands is presented in Fig. 10.4.
Autotrophic R is expected to consume half of the assimilated C, with respiration—
to—photosynthesis ratios ranging between 35 and 80%. The relative contribution of
leaves, stems and roots to the overall C respiratory expenditure largely fluctuates
according to stand structure, composition and age (Table 10.2). The C loss asso-
ciated with VOC emissions accounts for about 1% of gross P. This percentage may
increase up to 5% during heat waves and under drought stress (Figs. 10.2 and 10.3),
and even more if VOCs emitted from flowers, fruits, stems and roots are taken into
account. Rhizodeposits represent an additional and non-negligible source of tree C
loss. However, scarce literature on oak rhizodeposition discourages attempts to
provide a rough quantitative estimation. Furthermore, environmental—induced
fluctuations in oak R and VOC emissions are not necessarily proportional to
fluctuations in C assimilation. Thus, the assumption of homeostatic ratios between
C loss and C gain should be revisited as it might lead to erroneous predictions on
the strength of oak stands as C sinks in a climate changing world, conclusion that
could be extrapolated to other tree taxa. A comprehensive understanding of oak C
loss comparable to that of photosynthesis would be therefore necessary to accu-
rately assess oak C cycling in scenarios of climate change.
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