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Chapter 1
Oaks and People: A Long Journey
Together

Eustaquio Gil-Pelegrín, José Javier Peguero-Pina
and Domingo Sancho-Knapik

Abstract Genus Quercus L. has been closely associated to humans throughout the
history, with empirical evidences of such relationship before the appearance of
Homo sapiens strictly speaking. Since then, mankind has obtained different basic
resources from oaks, from acorns as food, charcoal for metal melting or wood as
key material for different works. Such relation has been especially strong in some
areas where oaks are considered as “tree of life” or “people’s species”. Moreover,
the interest of scientists in the study of this genus has provided a lot of new
discovers in different areas of the socalled plant sciences. Genus Quercus, com-
prising more than 400 species found throughout the Northern Hemisphere in a lot of
contrasted habitats, have been the case study in many papers about taxonomy,
palaeobotany, plant physiology or basic and applied ecology. This fact is sum-
marized in this chapter, serving as a preface to this book.

Mankind has established a close relationship with oaks, which are deeply rooted in
the folklore, mythology or even religion of many human cultures (Ciesla 2002;
Chassé 2016; Out 2017). In fact, Goren-Inbar et al. (2000) recovered Quercus
sp. rests among the “edible species” found in the Acheulean (Middle Pleistocene,
780,000 years ago) archaeological site of Gesher Benot Ya’aqov (Israel). In a later
study, Goren-Inbar et al. (2002) went beyond and suggested that hominins popu-
lation that occupied this site during this period consumed acorns from Q. cal-
liprinos and Q. ithaburensis. So, this evidence dates such relationship between oaks
and “human” transcends our existence as Homo sapiens.

The practise of acorn eating by human hunter-gatherer cultures has been well
documented by archaeologists since the Palaeolithic (Cacho 1986; Chassé 2016).
Many other archaeological evidences seem to indicate the importance of acorns
eating for the survival of pre-Neolithic cultures of the eastern Mediterranean Basin
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(Natufian), living under a Mediterranean-type climate with associated oak wood-
lands (e.g. McCorriston 1994; Olszewski 2004). This dietary resource remained
very important for sedentary cultures, as evidenced by many archaeological sites
corresponding to Pre-Roman cultures of the Iberian Peninsula (Pereira-Sieso and
García-Gómez 2002). Moreover, the consumption of acorns by people during
famine moments, associated to poor harvests, is reported until the 18th century
(García-Gómez et al. 2002).

A well-known example of ancestral dependence on the resources offered by oaks
is given also by the native cultures of southeastern USA (Fagan 2004). Anderson
(2007) used the expression “bread of life” for acorns, due to their paramount
importance for the indigenous diet of this region. However, this author went further
when defined such relationship, since he also proposed the expression “tree of life”
for oaks in their relation with these cultures due to the many other benefits they
obtained from these trees. In the same direction, Long et al. (2016) proposed to
consider Q. kelloggii as a “cultural keystone” species for the indigenous cultures of
California and Oregon, in the sense that Garibaldi and Turner (2004) gave to this
concept. These indigenous managed traditionally oak forests (Anderson 2005),
even with the use of fire to control the dominance of conifers (Ciesla 2002;
Anderson 2007), yielding a mutual benefit for humans and oaks, as part of their
“traditional ecological knowledge” (Long et al. 2016).

The use nowadays of different resources offered by Quercus species to the
inhabitants in the “Middle Hills” of Central Himalaya (Shrestra et al. 2013) is
another example of the complex dependence between oak woodlands and humans.
The many resources that people obtains from these forest communities are so extent
that Singh and Singh (1986) used the term “people’s species” for oaks living in this
region, with a very special mention to the banj oak (Q. leucotrichophora). As is
indicated by these authors, the oak woodlands in Central Himalaya offer different
benefits for humans, such as forage for cattle, firewood, or compost from leaves to
manure the crop fields. Moreover, at a landscape scale, the existence of oaks is
clearly related to the amount and quality of spring water, besides the critical
influence on soil conservation in a territory of high slopes. However, this complex
relationship is fragile and the sustainability is dependent on the exploitation
intensity. Shrestra et al. (2013) analysed the coexistence of oaks and humans in
Nepal, with especial reference to the situation of Q. semecarpifolia stands. They
indicated that, while the presence of humans in these “Middle Hills” of the Central
Himalaya goes back several millennia, a severe increase in the Nepal population
(due to growth and migration) during the last century has dealt to a sobreexplotation
of these habitats, with negative effects on forest structure, regeneration and species
diversity associated to these ecosystems (Christensen and Heilmann-Clausen 2009).
The existence of a high disturbance due to human pressure on these forests has been
also pointed out in other areas of the Central Himalaya, severely reducing the
viability and the area of banj oak forests (Singh et al. 2014).

In the Iberian Peninsula, a particular exploitation regime of the mediterranean
woodlands is the development of cleared oak forests or savannah-like woodlands of
Quercus ilex subsp. rotundifolia or Q. suber, constituting the so-called “dehesas” in
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Spain or “montados” in Portugal (Rodriguez-Estevez et al. 2012). This agrosil-
vopastoral system, as considered in Olea and San Miguel-Ayanz (2006), allows
humans to obtain different resources from this anthropogenic habitat since the
Neolithic (López-Sáez et al. 2007). The maintenance of a traditional extensive pig
farming based on an autochthonous porcine breed foraging acorns during the
“montanera” is one of the most important benefits obtained from these woodlands
(Rodríguez-Estévez et al. 2009). The consumption of acorns has a positive influ-
ence on the lipid profile of the carcasses (Cava et al. 1997), which confers a high
quality and value-added to those pork products obtained and, hence, to the “dehesa”
(Gaspar et al. 2007). However, this agrosilvopastoral system is threatened by severe
processes of oak decline, severely affecting the oak stands since the beginning of
the 1980s (Gil-Pelegrín et al. 2008). This particular oak decline process, frequently
called “seca”, has a proven biological component, with the fungal species
Phytophthora cinnamomi Rands. as the recognised agent since the very first studies
(Brasier et al. 1993; Tuset et al. 1996). To date the concern is maintained, as death
of holm and cork oaks persists until now (Avila et al. 2016).

Obviously, oaks have been a source of wood for millennia, and evidences of that
are found in different archaeological sites (e.g. De’Athe et al. 2013; Out 2017;
Ruiz-Alonso et al. 2017). In some areas, as northern Spain, different studies indicate
a continuous use of deciduous Quercus species as firewood during several mil-
lennia, from the early Neolithic to the early Bronze Age (Ruiz-Alonso et al. 2017).
Other archaeological sites allow interpreting the wood of Quercus species in a
burial context, giving a symbolic value to this genus in many areas of Europe
during the Neolithic and subsequent ages (Out 2017). The study of Iron-Age sites in
the United Kingdom suggested that humans established a management of oak
stands to obtain a regular source of woodland for metalworking (De’Athe et al.
2013). This management is based on the high capability of Quercus species for
resprouting after cutting (Giovannini et al. 1992), with the production of many
small stems in short rotation cycles, which length depends on the species and
environmental conditions (Corcuera et al. 2006). This practise, known as coppicing,
has been regularly used over time (Barberó et al. 1990), to the extent that this
coppice stands are the most common structure in oak woodlands of southern
Europe (Serrada et al. 1992; Amorini et al. 1996; Montes et al. 2004). As stated by
Cañellas et al. (1994), the traditional practice of coppicing has been reduced since
the middle of the 20th century in many areas of Spain, due to important sociological
changes that implied a drastic reduction in the demand of firewood or charcoal. This
fact leads to the existence of many overaged coppice stands of different Quercus
species with a reduced growth (Cañellas et al. 1996). Moreover, Corcuera et al.
(2006) found that this reduced growth has a negative effect on the hydraulic con-
ductivity of the stems together with a higher vulnerability to water stress during the
summer drought period. A progressive transformation of these oak coppices into
high forest by thinning may have positive effects on tree growth and soil water
availability (Fedorová et al. 2016) or even a greater tolerance to droughts
(Rodríguez-Calcerrada et al. 2011).
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Oak wood have been also a basic resource through the history as key material for
naval construction (e.g. Giachi et al. 2017). It has been documented a massive
demand for timber as raw material for the respective fleets during the Modern Age
(mainly during the 15th and 16th centuries) in Portugal (Reboredo and Pais 2014)
and Spain (Wing 2012), which gave a strategic importance to the oak woodlands
there. Furthermore, the use of oak barrel in winemaking is a crucial practice to
ensure a high quality of the final product, as oak wood adds different compounds
that contribute to improve the wine flavour and colour (e.g. Chira and Teissedre
2013). In this sense, the so-called “American oak” (Quercus alba), the “French
oak” (Q. robur and Q. petraea) and Q. pyrenaica (Jordão et al. 2006) are the most
common species for barrel cooperage, with a differential influence on wine char-
acteristics (see Chira and Teissedre 2015). Additionally, a bottle of good wine is
corked with a very particular product obtained also from the bark of a very concrete
Quercus species. Effectively, the properly called cork oak (Q. suber) has tradi-
tionally provided the key material for that purpose, indicating that oaks play an
outstanding role in the process of wine-making.

Another important contribution of oaks to the economy in many areas of
southern Europe (Italy, France and Spain) and Australia are the production of edible
fungi of very high added value and internationally related to the haute cuisine
(Reyna and García-Barreda 2014) We are particularly referring to the hypogeous
fruiting body of different species of the genus Tuber, the so-called truffles, in
mycorrhizal symbiosis with different Quercus species, with Q. ilex as the most
common host. As stated by Aumeeruddy-Thomas et al. (2012), gathering these
mushrooms is a recognised and documented activity in France since the Middle
Age. Concerning Tuber melanosporum, one of the “quintessential truffle” (Reyna
and García-Barreda 2014), it can be artificially produced in planted truffle orchards
since the 19th century (Olivier et al. 1996) in many areas under Mediterranean-type
climates. In Spain, truffle production has been a new opportunity in areas suffering
from severe problems of depopulation (e.g. the province of Teruel), which adds a
social value to truffle and to the Quercus species, without which this cultivation
would not be possible.

Thus, genus Quercus has been culturally and economically linked to humans
since millennia. But, otherwise, oaks have been food for thought in plant sciences
as this book reflects. Quercus L. (Fagaceae) has an outstanding role in the vege-
tation of the Northern Hemisphere and can be considered the most diverse Northern
Temperate tree genus. It comprises ca. 400 tree and shrub species distributed among
contrasting phytoclimates, from temperate and subtropical forests to mediterranean
evergreen woodlands (Manos et al. 1999; Kremer et al. 2012). More specifically,
oaks live in a great variety of environments, from subalpine forests (e.g. the Alborz
Mountains in northern Iran) to semiarid forests (Afghanistan, the Mediterranean
region and western North America) and riparian and swamp forests in different
parts of the world (for example wetlands of Florida, Alabama, or the riparian forests
of the Danube river), even touching the Tropics in SE Asia and Central South
America. Exploring this complexity is an opportunity and also a challenge for
naturalists.
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This wide geographical range and phytoclimatic diversity has a direct expression
in terms of taxonomic complexity. A considerable number of studies about phy-
logeny of oaks have been carried out in order to get an overview about this large
modern diversity of oaks (see Chap. 2 for a comprehensive review). Up to now, all
of the successive infrageneric classifications of Quercus have recognized the same
major groups (see Denk and Grimm 2010 and references therein). In Chap. 2 of this
book, Denk et al. propose a revised classification of Quercus based on pollen
morphology that includes two subgenera, Quercus and Cerris. On the one hand,
subgenus Quercus comprises 5 sections: section Ponticae, section Virentes, section
Protobalanus, section Quercus, and section Lobatae. On the other hand, subgenus
Cerris comprises 3 sections: section Cerris, section Ilex, and section
Cyclobalanopsis. Subgenus Cerris is confined to the Old World, while subgenus
Quercus is distributed throughout Northern Hemisphere.

Genus Quercus is an ancient lineage of Fagaceae whose first records are pollen
grains of the late Paleocene age, as described in Chap. 3 by Barrón et al. Since the
Eocene, oaks diversified and spread throughout the Northern Hemisphere. As
today, they inhabited very different environments, both temperate and cold-tem-
perate regions (suggesting an unequivocal Arctotertiary origin) or tropical and
subtropical realms (indicating a Palaeotropical origin). However, one particular
group of fossil Quercus species, those belonging to section Cyclobalanopsis (sensu
Denk et al. in Chap. 2 of this book and formerly subgenus Cyclobalanopsis), always
shows a tropical-subtropical distribution, being common on the Paleotropical
Tethyan shores of North America and Eurasia during great part of the Cenozoic.
The analysis of the information given by the palaeontological records in contrast
with the present distribution and ecology of closely related species may serve for a
good reconstruction of the palaeoecology of the Northern Hemisphere since the
Cenozoic.

The ecological importance and functional diversity of genus Quercus has been
also addressed in many ecophysiological studies concerning the response of dif-
ferent oak species to several abiotic stress factors. Chapter 4, by Cavender-Bares
and Ramírez-Valiente, explores the adaptative response of an interesting study case
in a particular lineage of American oaks, namely the live oaks (Quercus section
Virentes Nixon), with species such as Quercus virginiana, Q. geminata, Q. fusi-
formis or Q. oleoides. Several of these live oaks span the Tropical-Temperate divide
(Koehler et al. 2012), which implies the existence of different conditions of water
availability besides different temperature registers during winter, including freezing
values. These authors offer new insights about the existence of local adaptative
responses within species in terms of withstanding both drought and freezing.
Moreover, they also report interspecific differences in this set of closely phyloge-
netically related species with similar physiognomic features.

The existence of a drought period during summer, due to the combination of a
temperature monthly maximum and a precipitation minimum is the most distinctive
characteristic of the Mediterranean-type climates. Chapter 5, by Gil-Pelegrín et al.,
delves into the ecophysiological features of the many Quercus species inhabiting
areas under this particular climate, as compared with oaks from areas with
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Temperate, wet Tropical and dry Tropical climates. In this chapter, two very dif-
ferent mediterranean oaks are recognised and compared: (i) evergreen and sclero-
phyllous species (e.g. Quercus ilex) and (ii) malacophyllous or semi-sclerophyllous
winter deciduous oaks (e.g. Quercus faginea). The coexistence of these two leaf
habits in mediterranean oaks seems to be the consequence of different paleogeo-
graphical origins, with winter-deciduous (from an Arctotertiary geoflora) and ev-
ergreen (from the Palaeotropical geoflora) co-occurring in a complex patchwork. In
most mediterranean areas, the balance has tipped in favor of evergreen species
(such as Quercus ilex subsp. rotundifolia) through the ancestral alteration of the soil
by humans, as these species with a longer leaf life span seem to better response to
the splitted vegetative period induced by summer drought and winter cold. The leaf
life span in Quercus species under mediterranean-type climates is the central aim of
Chap. 6, where Escudero et al. state that the most striking difference among
Quercus species inhabiting these areas is the dichotomy represented by the de-
ciduous and evergreen habits, which major implications in terms of leaf anatomy,
carbon gain, cost construction and maintenance.

Quercus L. has been proposed as an outstanding genus to understand how
hybridation and introgression influence the evolution of plants. Thus, in Chap. 7,
López de Heredia et al. revised several evidences of ancient introgressions between
two mediterranean evergreen oaks, namely Q. ilex and Q. suber, and update esti-
mations of present hybridation rates. These authors concluded that these processes
seem to be a very relevant mechanism explaining some distribution and ecological
patterns of these species, especially during glaciations.

Concerning the hydraulic conductivity of the xylem, genus Quercus has been the
object of many studies since the very first steps in the study of this key topic in tree
functioning, both from anatomical and biophysical or physiological points of view.
Some of the seminal ideas proposed by Zimmermann (1983), such as the archi-
tecture of the water-conduction pathway of a tree or the segmentation hypothesis
were early explored in species of Quercus (e.g. Cochard and Tyree 1990; Lo Gullo
and Salleo 1993). In Chap. 8, Robert et al. explore the bibliography concerning the
xylem anatomy in oak species, focussing on the overall variation in the xylem
structural and functional features, with special incidence on the different perfor-
mance of the ring-porous (with few wide vessels) and diffuse-porous wood (with
numerous narrow vessels) within this genus.

Oaks have also been subject of study in several processes related to CO2 as-
similation (mesophyll conductance and photosynthesis in Chap. 9) and loss (res-
piration and volatile organic compounds emission in Chap. 10). Moreover, it should
be noted that oaks are main targets in seminal papers concerning the implemen-
tation of new methodologies and techniques for the estimation of mesophyll con-
ductance. Thus, the method based on the simultaneous measurement of gas
exchange and chlorophyll fluorescence parameters was firstly used in Q. ilex (Di
Marco et al. 1990) and Q. rubra (Harley et al. 1992). This method was firstly
compared with the stable carbon isotope fractionation technique (Evans et al. 1986)
for both species by Loreto et al. (1992). More recently, the validation of mesophyll
conductance modelled on the basis of anatomical characteristics has been carried
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out in several deciduous and evergreen oak species (Tomás et al. 2013;
Peguero-Pina et al. 2016, 2017). These studies in different Quercus species have
reinforced the prevailing role of leaf anatomy in mesophyll conductance and net
CO2 assimilation, as stated by Peguero-Pina et al. in Chap. 9. Oaks also constitute
an excellent taxonomic group to study the variability in carbon losses from respi-
ration and the emission of volatile organic compounds among different plant
functional types and environmental conditions (see Chap. 10 by Salomón et al.).
These authors conclude that, besides carbon assimilation, it would be necessary a
comprehensive understanding of carbon loss in oaks to accurately assess carbon
cycling in current and future scenarios of climate change. In other cases, some
physiological mechanisms have also been firstly showed in Quercus species, such
as some photo protective mechanisms stated in Chap. 11 by García-Plazaola et al.
Thus, a xanthophyll cycle involving the so-called “lutein epoxide cycle” was
described for the first time in non-parasitic woody plants by García-Plazaola et al.
(2002) in eight oak species. In line with this, Peguero-Pina et al. (2009) found that
Q. ilex and Q. coccifera showed a drought-mediated chronic photoinhibition and an
overnight retention of de-epoxidated forms of xantophyll cycle (i.e. anteraxanthin
and zeaxanthin).

Villar et al., in Chap. 12, show how long Quercus provides an interesting study
case for analysing the traits involved in growth processes, due to the high variability
of functional traits there found, following the postulates of the leaf economics
spectrum. In this chapter, it is evidenced that seedlings of Quercus species were
characterized, among other traits, by a low relative growth rate (RGR) and a high
root mass ratio (RMR), while leaf dry mass per area ratio (LMA) explains most of
the differences in RGR among oak species. Moreover, the proportion of biomass in
leaves and roots decreased with tree size, by contrast increasing the biomass in
stems. According to this, bigger trees grow more slowly. In spite of this, the authors
conclude that seedling RGR under controlled conditions is positively related with
that of adult trees in the field. Such conclusion offers a way for comparative studies
at a wide scale.

Chapter 13, by Rodríguez-Calcerrada et al., evidences how much oaks have been
threatened in many areas of the world, trough massive oak decline processes which
have affected species belonging to clearly separate taxonomic groups, with different
leaf habit and/or physiological performance. This fact has promoted the concern of
foresters and scientific community about the different oak decline processes
reported in Central Europe and Northeastern USA since the 18th and 19th centuries
(Millers et al. 1989; Thomas 2008). Since then and up to now, more episodes of oak
decline were reported over a wide range of sites in most forested places of the
northern hemisphere, including deciduous and evergreen species, as described in
Chap. 13 by Rodríguez-Calcerrada et al. These authors note that most oak decline
episodes have been observed after extreme climatic events (severe droughts, wa-
terlogging or after consecutive events of winter freezing), but they have also been
associated to different pathogens and site conditions. In most cases, the interaction
of at least two stress agents, where one of them is often an extreme climatic event,
has triggered important outbreaks of decline.

1 Oaks and People: A Long Journey Together 7



In order to preserve the oak woodlands from vanishing, if these massive decline
processes become more frequent, the improvement of new seedling recruitment
may be a challenge to be solved. In genus Quercus, the inherent biological limi-
tations to the natural regeneration of oaks, and especially in a degraded landscape
by human intervention, makes their natural expansion quite difficult. For this rea-
son, it is necessary the implementation of techniques to facilitate this process in an
artificial way (as is reviewed in Chap. 14 by Pemán et al.), from cultivation methods
in the nursery phase to the final installation in the field.

This book also highlights the overall importance of oaks from an ecological
viewpoint (see Chap. 15 by Madrigal-González et al.). Madrigal-González et al.
state that oak forests are highly valued ecosystems from the viewpoint of human
economical and cultural interests, and their distribution and physiognomy has been
greatly modulated by humans since the Neolithic (Barbero et al. 1990).
Madrigal-González et al. in Chap. 15 also conclude that, not only climatic fluctu-
ations, but also agricultural intensification and, more recently, widespread agri-
cultural land abandonment associated with human migration from rural to urban
areas are recognized as major forces leading to recent oak encroachment, expansion
or decline in different European regions.

Acknowledgements We thank Elena Martí Beltrán, Rut Cuevas Calvo, Oscar Mendoza Herrer,
José Sánchez Mesones and Francisco Garín García for their disinterested and kind collaboration in
different tasks during the realization of this book.
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Chapter 2
An Updated Infrageneric Classification
of the Oaks: Review of Previous
Taxonomic Schemes and Synthesis
of Evolutionary Patterns

Thomas Denk, Guido W. Grimm, Paul S. Manos, Min Deng
and Andrew L. Hipp

Abstract In this chapter, we review major classification schemes proposed for oaks
by John Claudius Loudon, Anders SandøeØrsted,William Trelease, Otto Karl Anton
Schwarz, Aimée Antoinette Camus, Yuri Leonárdovich Menitsky, and Kevin C.
Nixon. Classifications of oaks (Fig. 2.1) have thus far been based entirely on mor-
phological characters. They differed profoundly from each other because each tax-
onomist gave a different weight to distinguishing characters; often characters that are
homoplastic in oaks. With the advent of molecular phylogenetics our view has
considerably changed. One of the most profound changes has been the realisation that
the traditional split between the East Asian subtropical to tropical subgenus
Cyclobalanopsis and the subgenus Quercus that includes all other oaks is artificial.
The traditional concept has been replaced by that of two major clades, each com-
prising three infrageneric groups: a Palearctic-Indomalayan clade including Group
Ilex (Ilex oaks), Group Cerris (Cerris oaks) and Group Cyclobalanopsis (cycle-cup
oaks), and a predominantly Nearctic clade including Group Protobalanus (interme-
diate or golden cup oaks), Group Lobatae (red oaks) and Group Quercus (white oaks,
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with most species in America and some 30 species in Eurasia). In addition, recent
phylogenetic studies identified two distinct clades within a wider group of white oaks:
the Virentes oaks of North America and a clade with two disjunct endemic species in
western Eurasia andwestern North America,Quercus pontica andQ. sadleriana. The
main morphological feature characterising these phylogenetic lineages is pollen
morphology, a character overlooked in traditional classifications. This realisation,
along with the now available (molecular-)phylogenetic framework, opens new ave-
nues for biogeographic, ecological and evolutionary studies and a re-appraisal of the
fossil record. We provide an overview about recent advances in these fields and
outline how the results of these studies contribute to the establishment of a unifying
systematic scheme of oaks. Ultimately, we propose an updated classification of
Quercus recognising two subgenera with eight sections. This classification considers
morphological traits, molecular-phylogenetic relationships, and the evolutionary
history of one of the most important temperate woody plant genera.

2.1 History of Classifications of Oaks

In his original work, Carl von Linné listed 14 species of oaks from Europe and
North America: the white oaks Q. alba, Q. æsculus (= Q. petraea (Matt.) Liebl.), Q.
robur, and Q. prinus (status unresolved); the red oaks Q. rubra, Q. nigra, and Q.
phellos; the Cerris oaks Q. cerris, Q. ægilops (= Q. macrolepis Kotschy), Q. suber;
and the Ilex oaks Q. ilex, Q. coccifera, Q. gramuntia (= Q. ilex), and Q. smilax
(= Q. ilex) (Linné 1753). This number had increased to 150 species when Loudon
(1838, 1839) provided the first infrageneric classification of oaks recognising ten
sections based on reproductive and leaf characters. Eight of Loudon’s sections
(Albæ, Prinus, Robur; Nigræ, Phellos, Rubræ; Cerris; Ilex) were based on species
described by Linné (Fig. 2.1). New additions were the (fully) evergreen
south-eastern North American “Live Oaks”, sect. Virentes; and the “Woolly-leaved
Oaks”, sect. Lanatæ, of Nepal (including an Ilex oak and a species that was later
recognised as a cycle-cup oak). Loudon’s classification is remarkable in one aspect:
he established the fundamental subdivision of European oaks (his sections Cerris,
Ilex, and Robur). This subdivision, although modified, occurs in nearly all later
classifications and corresponds to clades in most recent molecular-phylogenetic

cFig. 2.1 Classification schemes for Quercus from Loudon to Nixon. Colour coding denotes the
actual systematic affiliation of species included in each taxon: of the ‘Old World’ or ‘mid-latitude
clade’ section Cyclobalanopsis (cycle-cup oaks, yellow), section Cerris (Cerris oaks; orange), and
section Ilex (Ilex oaks; green); and of the ‘New World’ or ‘high-latitude clade’ section Quercus
(white oaks s.str.; blue), sections Virentes (cyan) and Ponticae (dark blue), section Protobalanus
(intermediate oaks; purple), and section Lobatae (red oaks; red). Colour gradients are proportional,
i.e. reflect the proportion of species with different systematic affiliation included in each taxon.
Names in bold were treated as genera. Note: Menitsky (1984) and Trelease (1924) only treated the
Eurasian and American oaks, respectively, and provided classifications in (nearly) full agreement
with current phylogenies
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trees (cerroid, ilicoid, and roburoid oaks; cf. Denk and Grimm 2010; A. Hipp and
co-workers, work in progress).

Ørsted (1871) can be credited for recognising an important Asian group of oaks
hardly known at the time of Loudon and originally associated with Cyclobalanus
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(= Lithocarpus): the cycle-cup oaks of subtropical and tropical East Asia, which
Ørsted considered distinct from Quercus as genus Cyclobalanopsis, within his
subtribe Quercinae (Fig. 2.1). This concept was adopted by later researchers (e.g.
Camus 1936–1938; Nixon 1993; as subgenera) and is still used for the Flora of
China (Huang et al. 1999; Flora of China 2016). Within the second genus of the
Quercinae, Quercus, Ørsted recognised five subgenera with a total of 16 sections
and about 184 species. His work is the first to treat oaks in a global context;
Loudon, and later Camus, Trelease, and Menitsky, treated the Nearctic and
Palearctic-Indomalayan taxa independently.

In the early 20th century, two competing classification concepts emerged, which
were henceforth used by researchers (partly until today). The central/eastern
European tradition followed in principle the classification system of Schwarz (1936),
whereas the western/southern European tradition relied on the monographic work of
Camus (1936–1938, 1938–1939, 1952–1954). A decade earlier, Trelease (1924)
provided a comprehensive treatment of the American oaks listing about 371 species
(nearly half of them new) in 138 series and three subgenera/sections (Fig. 2.1):
Leucobalanus (white oaks), Erythrobalanus (red oaks), and Protobalanus (inter-
mediate oaks). Thus, he established the tripartition of the genus in the Americas
(sections Quercus, Lobatae, Protobalanus; (Jensen 1997; Manos 1997; Nixon and
Muller 1997). Camus and Schwarz (partly) followed Trelease regarding the classi-
fication of the American oaks, but disagreed with respect to the oaks of Eurasia and
North Africa, specifically on how to classify the American oaks in relation to their
Eurasian counterparts. Camus followed Ørsted’s general scheme, but recognised a
single genus Quercus with the two subgenera Cyclobalanopsis and Quercus. She
downgraded Ørsted’s subgenera in Quercus to sections (Fig. 2.1). Schwarz (1936)
also followed in principle the concepts of Ørsted, but raised Ørsted’s categories,
erecting a two tribe system (Cyclobalanopsideae, Querceae) with two genera each
(Cyclobalanopsis + Erythrobalanus, Macrobalanus + Quercus). A novelty in the
system of Schwarz was the subgenus Sclerophyllodrys (Fig. 2.1), in which he
accommodated many sclerophyllous oaks of Eurasia, Trelease’s subgenus
Protobalanus (including an Asian series Spathulatae), and six evergreen series of
Trelease’s subgenus Erythrobalanus. Another major difference relative to Camus
was that Schwarz adopted Ørsted’s global concept by grouping North American and
Eurasian white oaks in the same sections (Dascia, Gallifera, Prinus, Roburoides).

The most recent monographic work towards a new classification of oaks was the
one of Menitsky (1984, translated into English in 2005) dealing with Asian oaks
(Fig. 2.1). Except for a single species (Q. suber), Menitsky placed all Ilex oaks in
subgenus Heterobalanus, while Cerris oaks (except for Q. suber) formed one of the
two sections in subgenus Quercus (the other section included the white oaks).
Menitsky’s account is the only morphology-based system that correctly identified
the natural groups of Eurasian oaks confirmed later by palynological and molecular
data. In the same way, Trelease’s sections of American oaks also have been con-
firmed as natural groups.

The latest and currently most widely used (e.g. Govaerts and Frodin 1998; see
also www.wikipedia.org and www.internationaloaksociety.org) classification is by
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Nixon (1993), published as a review. Nixon adopted the concept of Camus but
merged her sections Cerris, which comprised Cerris and Ilex oaks, and Euquercus,
comprising the remaining Ilex oaks and the white oaks, into a single section
Quercus. According to this latest modification of Ørsted’s more than 150 years old
scheme, the genus Quercus is divided into two subgenera, the cycle-cup oaks
(Cyclobalanopsis) and all remaining oaks (Quercus). Subgenus Quercus includes
two natural sections, one comprising the red oaks (sect. Lobatae) and one com-
prising the intermediate oaks (sect. Protobalanus), and a heterogeneous, artificial,
northern hemispheric section Quercus including all white oaks, Cerris and Ilex oaks
(Fig. 2.1).

2.2 Change in Criteria for Classification

There are two major causes for the differences in the traditional, morphology-based
classifications of oaks: (1) the weighing of morphological characters, (2) the geo-
graphic regions considered. Convergent morphological evolution is a common
phenomenon in the genus Quercus and the Fagaceae in general (Oh and Manos
2008; Kremer et al. 2012). For instance, Loudon’s (1838) descriptions for the
distantly related sections Ilex (Eurasian Q. ilex and relatives) and Virentes (North
American Q. virens Ait. [= Q. virginiana Miller], a white oak relative) are essen-
tially identical. For similar reasons, Ørsted (1871) included a section Ilex in his
subgenus Lepidobalanus (white oaks in a broad sense), while expanding this sec-
tion to include evergreen North American white oaks (the sect./subsect. Virentes of
Loudon, Trelease, Camus, etc.) On the other hand, the Himalayan Ilex oak Q.
lanata was included in Ørsted’s section Prinus of North American white oaks. The
assumption that leaf texture can be used to assign species to higher taxonomic
groups on a global scale supports Schwarz’ largely artificial subgenera (and genera
to some degree). Using the descriptions by Trelease, the Eurasian Ilex oaks would
still fall in his subgenus Protobalanus, and the same is true for the descriptions in
Nixon (1993) and the Flora of North America (Manos 1997).

Nixon’s concept of a section Quercus including all white, Cerris and Ilex oaks
primarily relies on the basal position of aborted ovules in these groups. Much
earlier, de Candolle (1862b) noted this feature as being variable in different oak
species, and Camus (1936–1938, p. 40f) emphasised that this trait is stable not only
within a species, but also characterises groups of species (but see general
descriptions in Menitsky 1984). Nixon also adopted Camus’ concept of subgenus
Cyclobalanopsis (aborted ovules always apical; but see general description pro-
vided by Huang et al. 1999). Apical abortive ovules are also found in most but not
all subsections of sect. Erythrobalanus (the red oaks) and in the castanoid genera.
Therefore, Nixon suggested that basal abortive ovules are a synapomorphy of his
sect. Quercus. Subsequent work has shown that the position of aborted ovules in the
mature seeds of Quercus is the result of different developmental processes and less
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stable than originally assumed (Borgardt and Pigg 1999; Borgardt and Nixon 2003;
Deng et al. 2008) (Table 2.1).

The only two classification schemes that recognised the same groups later
recovered in molecular studies are those by Trelease (1924) and Menitsky (1984).
Notably, these monographs were restricted to American and Eurasian oaks,
respectively. Therefore, they did not run the risk of creating artificial groups
including morphologically similar but unrelated Old World and New World
species.

2.3 Changing from Morphology to Molecules

The first molecular phylogeny of Quercus including a comprehensive oak sample is
the one of Manos et al. (2001) based on sequences of the nuclear ITS region and
plastid RFLP data. While Manos et al.’s molecular phylogeny included only a
limited sample of Old World species, it challenged the traditional views of Ørsted
until Nixon. Instead, the intermediate and white oaks grouped with the red oaks,
forming the ‘New World Clade’, but not with the Cerris and Ilex oaks. The latter
formed an ‘Old World Clade’ that later would be shown to include the cycle-cup
oaks (Manos et al. 2008). While the red oaks and cycle-cup oaks were resolved in
well-supported and distinct clades within their respective subtrees, the situation
appeared more complex for Camus’ section Cerris (including a few Ilex oaks) and
the white oaks (Manos et al. 2001). The lack of unambiguous support may be one
reason, why morphologists and oak systematists did not readily implement the new

Table 2.1 Different contributions of placenta and funiculus to the position of aborted ovules in
mature seeds of Quercus

Section Quercus
Ponticae
Virentes

Lobatae Protobalanus Cyclobalanopsis Cerris Ilex

Position
of aborted
ovules

Basal Apical
Type I

Apical, basal,
or lateral

Apical
Types I, III

Apical, basal
or lateral
Type II

Basal or
lateral
Types II,
III

Placenta Sessile Elongated ? Elongated Sessile
(compressed)

Sessile or
elongated

Funiculus Sessile Sessile ? Sessile or
elongated

Sessile or
elongated

Sessile or
elongated

Type I: apical/lateral aborted ovules by elongated placenta, Type II: by elongated funiculus, Type III:
both elongated placenta and funiculus. Other Fagaceae (Castanea, Castanopsis, Lithocarpus,
Trigonobalanus) have Types I & III aborted ovules. All other Fagaceae have apical aborted ovules.
Information compiled from Borgardt and Pigg (1999), Borgardt and Nixon (2003), Deng (2007), Deng
et al. (2008), and Min Deng, unpublished data
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evidence (e.g. Borgardt and Nixon 2003; le Hardÿ de Beaulieu and Lamant 2010;
see also www.internationaloaksociety.org). The other reason is probably that the
two new clades lacked compelling, unifying morphological traits.

Plastid gene regions commonly used in plant phylogenetics turned out to be less
useful for inferring infrageneric and inter- to intraspecific relationships in oaks. This
is mainly because the plastid genealogy is largely decoupled from taxonomy and
substantially affected by geography (e.g. Neophytou et al. 2010, 2011; Simeone et al.
2016; Pham et al. 2017). Using genus- to family-level plastid data sets, even when
combined with nuclear data, oaks are consistently recognised as a diphyletic
group. This is best illustrated in Manos et al. (2008): one moderately supported main
clade comprises the ‘New World Clade’ of oaks and Notholithocarpus, a monotypic
Fagaceae genus of western North America; the other major clade comprises the
Eurasian Fagaceae Castanea and Castanopsis, and the ‘Old World Clade’ of
Quercus. The phenomenon is also seen in broadly sampled plastid data sets and can
produce highly artificial molecular phylogenies (e.g. Xiang et al. 2014; Xing et al.
2014) as discussed in Grímsson et al. (2016). Nevertheless, all currently available
plastid data reject the traditional subdivision into two subgenera Cyclobalanopsis
and Quercus: the overall signal (e.g. Manos et al. 2008) is in line with the ‘New
World/Old World Clade’ concept introduced by Oh and Manos (2008).

In view of the problems encountered with plastid sequence data, oak molecular
phylogenetics concentrated on nuclear-encoded sequence regions. Nine years after
the study by Manos et al. (1999), the first ITS phylogeny was confirmed and sup-
plemented by data from a single-copy nuclear gene region, the Crabs Claw (CRC)
gene (Oh and Manos 2008). Denk and Grimm (2010) provided an updated Fagaceae
ITS tree including more than 900 individual sequences of oaks (including c.
600 newly generated for western Eurasian species taking into account substantial
intra-individual variation). Their data on the 5S intergenic spacer (over 900
sequences), a multicopy nuclear rDNA gene region not linked with the ITS region,
supported three groups of western Eurasian oaks as originally conceived by
Menitsky (1984). Hubert et al. (2014) compiled new data from six single-copy
nuclear gene regions and combined the new data with ITS consensus sequences
(based on Denk and Grimm 2010) and CRC sequence data (Oh and Manos 2008).
Most recently, Hipp et al. (2015) showed a tree based on a large, nuclear reduced
representation next-generation sequencing (RADseq) data set. All these data sets and
analyses support the recognition of two, reciprocally monophyletic groups of oaks
(Fig. 2.2) that can be formalised as two subgenera with eight phylogenetic lineages
(Hubert et al. 2014; Hipp et al. 2015), accepted here as sections that match the
morphological groups originally perceived by Trelease (1924) and Menitsky (1984):

• Subgenus Quercus, the ‘New World clade’ (Manos et al. 2001) or
‘high-latitude clade’ (Grímsson et al. 2015; Simeone et al. 2016), including

– the North American intermediate oaks, section Protobalanus (= Trelease’s
subgenus of the same name);

– the western Eurasian-western North American disjunct section Ponticae;
– the American “southern live oaks”, section Virentes;
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– all white oaks from North America (= Trelease’s subgenus Leucobalanus)
and Eurasia (= Menitsky’s section Quercus), section Quercus; and

– the North American red oaks, section Lobatae (= Trelease’s subgenus
Erythrobalanus).

• Subgenus Cerris, the exclusively Eurasian ‘Old World clade’ (or ‘mid-latitude
clade’), including

– the cycle-cup oaks of East Asia (including Malesia), section
Cyclobalanopsis (former [sub]genus Cyclobalanopsis of Ørsted, Camus,
Schwarz, Menitsky, and Nixon);

– the Ilex oaks, section Ilex (= Menitsky’s subgenus Heterobalanus minus Q.
suber); and

– the Cerris oaks, section Cerris (= Menitsky’s section Cerris plus Q. suber).

Fig. 2.2 Revised sectional classification of oaks and diagnostic characters of lineages. The basic
phylogenetic relationships of the six infrageneric groups of oaks are shown, formalised here as
sections in two monophyletic subgenera, subgenus Cerris (‘Old World’ or ‘mid-latitude clade’)
and subgenus Quercus (‘New World’ or ‘high-latitude clade’). Section-specific traits in bold;
subgenus-diagnostic traits indicated at the respective branches of the schematic phylogenetic tree
(Hubert et al. 2014; Hipp et al. 2015). Most traits are shared by more than one section of oaks
including non-sister-lineages (normal font); they evolved convergently or are potentially
plesiomorphic traits. Some are variable within a section as indicated by (semi-)proportional pie
charts. Nonetheless, each section can be diagnosed by unique, unambiguous character suites. Note:
‘yes’ (green) and ‘no’ (red) refers to whether the mentioned trait is observed or not in members of
the section, but should not be generally viewed as derived or ancestral
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2.4 Revised Subgeneric and Sectional Classification
of Oaks

The following information for diagnostic morphological characters for the recog-
nised groups of oaks is based mostly on information provided in Trelease (1924),
Camus (1936–1938, 1938–1939, 1952–1954), Schwarz (1936, 1937), Menitsky
(1984), le Hardÿ de Beaulieu and Lamant (2010), and the Floras of China (Huang
et al. 1999) and North America (Flora of North America Editorial Commitee 1997).
Information on pollen morphology is from Rowley et al. (1979), Solomon (1983a,
b), Rowley and Claugher (1991), Rowley (1996), Rowley and Gabarayeva (2004),
Denk and Grimm (2009), Makino et al. (2009), and Denk and Tekleva (2014).
Updated information on the position of aborted ovules and the relative contributions
of placenta and funiculus to it is from Borgardt and Nixon (2003), Deng et al.
(2008), and Min Deng (unpublished data).

If no reference is provided, most monographers (Trelease 1924; Schwarz 1936;
Camus 1936–1938; Schwarz 1937; Camus 1938–1939, 1952–1954; Menitsky
1984) agreed on a particular character. Trelease (1924) emphasised the importance
of wood characters for delimitation of major groups of American oaks. According
to Trelease (1924), Menitsky (1984), and Akkemik and Yaman (2012) the type of
wood porosity and presence or absence of tyloses plugging vessels of early-wood
are clade-specific to some degree.

Group-specific traits are highlighted by italics (see also Fig. 2.2).

2.4.1 Genus Quercus

1753, Sp. Pl., 1: 994.
Lectotype: Quercus robur L. (selected by Britton and Brown, Ill. Fl. N. U.S. ed.

2. 1: 616, 7 Jun 1913; confirmed by Green, in Sprague, Nom. Prop. Brit. Bot.: 189,
Aug 1929)

Trees 20–30(–55) m high, or shrubs; monoecious, evergreen or deciduous;
propagating from seeds (saplings) or, occasionally, vegetative propagation (ram-
ets); bark smooth or deeply furrowed or scaly or papery, corky in some species;
wood ring-porous or (semi) diffuse-porous, tyloses common in vessels of
early-wood or rarely present; terminal buds spherical to ovoid, terete or angled, all
scales imbricate; leaves spirally arranged, stipules deciduous and inconspicuous or
sometimes retained until the end of the vegetative period; lamina chartaceous or
coriaceous, lobed or unlobed, margin entire, dentate or dentate with bristle-like
extensions; primary venation pinnate; secondary venation eucamptodromous,
brochidodromous, craspedodromous, semicraspedodromous, or mixed; intersec-
ondary veins present or absent; inflorescences unisexual in axils of leaves or bud
scales, usually clustered at base of new growth; staminate inflorescences lax,
racemose to spicate; pistillate inflorescence usually stiff, a simple spike, with
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terminal cupule and sometimes one to several sessile, lateral cupules; staminate
flowers subsessile, in dichasial clusters of 1–3(–7) (section Cyclobalanopsis) or
solitary; subtending bracts persistent or caducous, commonly longer than the
perianth, sepals connate to varying degrees forming a shallowly or deeply lobed
perianth, stamens (2–)6(–15), anthers short or long, apically notched or apiculate to
mucronate, pistillodes reduced and replaced by a tuft of silky hairs; pollen monad,
medium-sized or small (size categories according Hesse et al. 2009), 3-colp(or)ate,
shape prolate, outline in polar view trilobate or rounded, in equatorial view elliptic
to oval, tectate, columellate; pollen ornamentation (micro) rugulate, (micro)
rugulate-perforate, or (micro) verrucate, (micro)verrucate-perforate; foot layer dis-
continuous or continuous, of even or uneven thickness; pistillate flower one per
cupule, with 1–2 subtending bracts, sepals connate, (3–)6(–9) lobed, either situated
directly on the tip of the ovary or on the perianthopodium (stylopodium); carpels
and styles 3–6, occasionally with staminodes, styles with a broad stigmatic surface
on adaxial suture of style (less prominent in section Cyclobalanopsis); ovules
pendent, anatropous or semi-anatropous; position of aborted ovules apical, basal,
or lateral depending on whether or not the placenta and/or funiculus are secondarily
elongated; fruit a one-seeded nut (acorn) with a proximal scar, fruit maturation
annual or biennial, nut one per cup, round in cross-section, not winged, cotyledons
free or fused; endocarp glabrous or tomentose; cup covering at least base of nut,

Fig. 2.3 Geographic distribution of the eight sections of Quercus. Distribution data from Browicz
and Zieliński (1982), Menitsky (1984), Costa Tenorio et al. (2001), Deng (2007), Fang et al.
(2009), and Manos (2016)
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with lamellate rings or scaly; scales imbricate and flattened or tuberculate, not or
weakly to markedly reflexed; chromosome number X = 12. Around 400 species
mostly in the Northern Hemisphere (Fig. 2.3).

2.4.2 Subgenus Quercus

Receptor-independent sporopollenin masking rugulae in mature pollen grains
(Rowley and Claugher 1991; Rowley 1996).

2.4.2.1 Section Protobalanus (Intermediate Oaks)

Quercus section Protobalanus (Trelease) Schwarz, Notizbl. Bot. Gart.
Berlin-Dahlem, 13/116: 21 (1936)

Quercus subgenus Protobalanus Trelease, in Standley, Contr. US Natl. Herb.
23:176 (1922).—Quercus section Protobalanus (Trelease) Camus, Les Chênes, 1:
157 (1938).—Quercus section Protobalanus (Trelease) Schwarz, Notizbl. Bot.
Gart. Berlin-Dahlem, 13/116: 21 (1936) p.p.

Type: Quercus chrysolepis Liebm. (Trelease, Proc. Natl. Acad. Sci. 2: 627,
1916; confirmed by Nixon, Ann. Sci. For. 50, suppl. 1: 32s, 1993)

Stamens 8–10, with apiculate apices (Trelease 1924); pollen ornamentation
weakly verrucate, perforate (Denk and Grimm 2009); footlayer thick and contin-
uous (Denk and Tekleva 2014); styles short to long, elliptic in cross-section;
stigmata abruptly dilated; stigmatic surface extending adaxially along stylar suture
(Trelease 1924; Manos 1997); fruit maturation biennial (Trelease 1924; Camus
1952–1954; Manos 1997); endocarp tomentose (Trelease 1924; Camus 1952–1954;
Manos 1997); position of abortive ovules basal, lateral or apical, can be variable
within a single plant (Manos 1997); cup scales triangular and fused at the base,
thickened and compressed into rings, often tuberculate and obscured by glandular
trichomes, with sharp angled tips; leaf dentitions spinose; wood diffuse porous,
tyloses rarely present in vessels of early-wood (Trelease 1924).

Five species in southwestern North America and northwestern Mexico (Manos
1997).

2.4.2.2 Section Ponticae

Quercus section Ponticae Stefanoff., Ann. Univ. Sofia, ser. 5, 8: 53 (1930)
Quercus ser. Sadlerianae Trelease, Oaks of America: 111 (1924).—Quercus

subsect. Ponticae Menitsky (Stefanoff) A.Camus, Bull. Soc. Bot. Fr., 81: 815
(1934).—Quercus ser. Ponticae Schwarz, Notizbl. Bot. Gart. Berlin-Dahlem, 13/
116: 11 (1936).

Lectotype (here designated): Quercus pontica K.Koch
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Shrubs or small trees, rhizomatous; number of stamens mostly 6 (Trelease 1924;
Camus 1952–1954); pollen ornamentation verrucate (Denk and Grimm 2009);
footlayer of variable thickness and perforate (Denk and Tekleva 2014); staminate
catkins up to 10 cm long; styles short, fused or free, elliptic in cross-section;
stigmata abruptly or gradually dilated (Schwarz 1936); fruit maturation annual;
endocarp glabrous; position of abortive ovules basal; cotyledons free; cup scales
slightly tuberculate with sharp angled apices, occasionally with attenuated tips
(Trelease 1924; Gagnidze et al. 2014); leaves evergreen or deciduous, chestnut-like,
stipules large, persistent or early shed, number of secondary veins 10–15(–25),
dentate, teeth simple or compound (in Q. pontica), sharply mucronate or with
thread-like, curved upwards extension; leaf buds large, bud scales loosely attached
(Trelease 1924; Schwarz 1936; Menitsky 1984); wood ring porous or diffuse
porous, large vessels commonly plugged by tyloses.

Two species in mountainous areas of north-eastern Turkey and western Georgia
(Transcaucasia) and in western North America (northern-most California,
southern-most Oregon; Trelease 1924; Menitsky 1984; Gagnidze et al. 2014)
(Fig. 2.3).

2.4.2.3 Section Virentes

Quercus section Virentes Loudon, Arbor. Frut. Brit., 3: 1730, 1918 (1838).
Quercus ser. Virentes Trelease, Oaks of America: 112 (1924).
Type: Quercus virens Aiton (= Q. virginiana Mill.)
Trees or rhizomatous shrubs; pollen ornamentation verrucate (Denk and Grimm

2009); footlayer of variable thickness and perforate (Denk and Tekleva 2014);
styles short, fused or free, elliptic in cross-section; stigmata abruptly or gradually
dilated (Schwarz 1936); fruit maturation annual; cup scales narrowly triangular, free
or fused at the base, thinly keeled and barely tuberculate with sharp angled apices;
leaves evergreen or subevergreen (Trelease 1924; Nixon and Muller 1997); wood
diffuse porous, tyloses abundant in large vessels (Trelease 1924); cotyledons fused
(de Candolle 1862a; Engelmann 1880); germinating seed with elongated radicle/
epicotyl forming a tube (Nixon 2009); hypocotyl region produces a tuberous
fusiform structure.

Seven species in south-eastern North America, Mexico, the West Indies (Cuba),
and Central America (Muller 1961; Cavender-Bares et al. 2015) (Fig. 2.3).

2.4.2.4 Section Quercus (White Oaks)

Quercus section Albae Loudon, Arbor. Frut. Brit., 3: 1730 (1838).—Quercus
section Prinus Loudon, Arbor. Frut. Brit., 3: 1730 (1838).—Quercus section Robur
Loudon, Arbor. Frut. Brit., 3: 1731 (1838).—Quercus section Gallifera Spach,
Hist. Nat. Veg., 11:170 (1842).—Quercus section Eulepidobalanus Oerst.,
Vidensk. Meddel. Naturhist. Foren. Kjøbenhavn 1866, 28: 65 (1866–1867) p.p.—
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Quercus section Macrocarpae Oerst., Vidensk. Meddel. Naturhist. Foren.
Kjøbenhavn 1866, 28: 68 (1866–1867).—Quercus section Diversipilosae C.K.
Schneid., Handb. Laubholzk., 1: 208 (1906).—Quercus section Dentatae C.K.
Schneid., Handb. Laubholzk., 1: 209 (1906).—Quercus section Mesobalanus A.
Camus, Bull. Soc. Bot. Fr., 81: 815 (1934).—Quercus section Roburoides Schwarz,
Notizbl. Bot. Gart. Berlin-Dahlem 13: 10 (1936).—Quercus section Robur
Schwarz, Notizbl. Bot. Gart. Berlin-Dahlem 13: 12 (1936).—Quercus section
Dascia (Kotschy) Schwarz, Notizbl. Bot. Gart. Berlin-Dahlem 13: 14 (1936).

Stamens � 7 (Trelease 1924; Camus 1936–1938, 1938–1939); pollen orna-
mentation verrucate (Denk and Grimm 2009); footlayer of variable thickness and
perforate (Denk and Tekleva 2014); styles short, fused or free, elliptic in
cross-section; stigmata abruptly or gradually dilated; stigmatic surface extending
adaxially along stylar suture (all authors; best illustrated in Schwarz 1936); fruit
maturation annual; endocarp glabrous or nearly so; cotyledons free or fused;
position of abortive ovules basal (de Candolle 1862b; confirmed/accepted by later
authors), placenta and funiculus sessile; cup scales triangular, free or fused at the
base, thickened, keeled and often tuberculate with sharp angled apices, occasionally
with attenuated tips; leaf dentitions typically without bristle-like, aristate tips; wood
ring porous, large vessels in (early-)wood commonly plugged by tyloses (Trelease
1924; see Akkemik and Yaman 2012).

Ca. 146 species in North America, Mexico, Central America, western Eurasia,
East Asia, and North Africa (Nixon and Muller 1997).

2.4.2.5 Section Lobatae (Red Oaks)

Quercus section Lobatae Loudon, Hort. Brit., 385 (1830).
Quercus section Integrifoliae Loudon, Hort. Brit., 384 (1830) p.p.—Quercus

section Mucronatae Loudon, Hort. Brit., 385 (1830) p.p.—Quercus section Rubrae
Loudon, Arbor. Frut. Brit., 3: 1877 (1838; see also Loudon 1839).—Quercus
section Nigrae Loudon, Arbor. Frut. Brit., 3: 1890 (1838; see also Loudon 1839).—
Quercus section Phellos Loudon, Arbor. Frut. Brit., 3: 1894 (1838; see also Loudon
1839).—Quercus section Erythrobalanus Spach, Hist. veg. Phan., 11:160 (1842).
—Quercus subgenus Erythrobalanus (Spach) Oerst., Vidensk. Meddel. Naturhist.
Foren. Kjøbenhavn, 28: 70 (1866–1867).—Erythrobalanus (Spach) O.Schwarz (as
genus), Notizbl. Bot. Gart. Berlin-Dahlem 13: 8 (1936).

Lectotype: Quercus aquatica (Lam.) Walter (= Q. nigra L.) (Nixon, Ann. Sci.
For. 50, suppl.1: 30s, 1993).

Pistillate perianth forming a characteristic flange (Schwarz 1936, Fig. 2.1;
Nixon 1993; Jensen 1997); number of stamens � 6 (Trelease 1924; Camus 1952–
1954); pollen ornamentation verrucate (Denk and Grimm 2009); footlayer of
variable thickness and perforate (Denk and Tekleva 2014); styles elongated, linear,
outcurved, elliptic in cross-section; stigmata slightly dilated, spatulate to oblong;
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stigmatic surface extending adaxially along stylar suture (Trelease 1924); peri-
anthopodium conical, often annulate (Trelease 1924); fruit maturation biennial,
rarely annual (le Hardÿ de Beaulieu and Lamant 2010); endocarp tomentose;
cotyledons free or sometimes basally fused; position of abortive ovules apical or
rarely lateral to basal (de Candolle 1862b; Trelease 1924), placenta sessile or
elongated, funiculus sessile; cupule fused with peduncle forming a ‘connective
piece’ (compare Denk and Meller 2001) for Fagus), connective piece covered with
small scales similar to those on the cupule; cup scales triangular and free, mostly
thin, membranous and smooth with broadly angled tips; leaf teeth and lobes typ-
ically with bristle-like extensions, teeth reduced to bristles in entire or nearly entire
leaves; wood ring-porous or semi ring-porous, late-wood markedly porous, tyloses
in vessels of early-wood rarely present (Trelease 1924).

Ca. 124 species in North America, Mexico, Central America, and Colombia in
South America (Jensen 1997).

2.4.3 Subgenus Cerris

Quercus subgenus Cerris Oerst., Vidensk. Meddel. Naturhist. Foren. Kjøbenhavn
1866, 28: 77 (1866–1867).

Rugulae visible in mature pollen grains or weakly masked (Solomon 1983a, b;
Denk and Grimm 2009; Makino et al. 2009; Denk and Tekleva 2014).

2.4.3.1 Section Cyclobalanopsis

Quercus sect. Cyclobalanopsis (Oerst.) Benth. & Hook. f., Gen. Plant. 3, 408
(1880).

Cyclobalanopsis Oerst. (as genus), Vidensk. Meddel. Naturhist. Foren.
Kjøbenhavn 1866, 28: 77 (1866–1867), nom. conserv.—Quercus sect.
Cyclobalanopsis (Oerst.) Benth. & Hook. f., Gen. Plant. 3, 408 (1880).—Quercus
subgenus Cyclobalanopsis (Oerst.) Schneider, Ill. Handb. Laubholzk. 1, 210 (1906).

Type: Quercus velutina Lindl. ex Wall., non Lam. (vide Farr and Zijlstra 2017).
Staminate flowers in groups of 1–3(–7) along inflorescence axis (Menitsky 1984;

Nixon 1993); stamens 5–6 (Huang et al. 1999) to 10–15 (Ohwi 1965); pollen
ornamentation vertical-rugulate (Denk and Grimm 2009); footlayer thick and
continuous or of variable thickness and perforate (Denk and Tekleva 2014); styles
short to very short (<3 to <1 mm), elliptic in cross-section; stigmata dilated, sub-
capitate; stigmatic surface not forming a prominent stigmatic groove (Camus 1936–
1938; Menitsky 1984; Nixon 1993; Huang et al. 1999); perianthopodium annulate
with 3–5 distinct rings (Schwarz 1936); fruit maturation annual or biennial (Camus
1936–1938; le Hardÿ de Beaulieu and Lamant 2010); endocarp tomentose or rarely
glabrous (Camus 1936–1938); cotyledons free; position of abortive ovules apical
(Camus 1936–1938; Menitsky 1984) [note: according to Huang et al. (1999) the
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position is variable, but no details are provided in the species descriptions], placenta
elongated reaching the apical part of the seed, where vascular bundles enter the seed
and the aborted ovules, funiculus sessile or with short petiole; cupule with con-
centric lamellae; leaves evergreen; leaf dentitions with bristle-like extensions or
not; wood diffuse porous, tyloses very rarely present in vessels of early-wood
(Menitsky 1984).

Ca. 90 species in tropical and subtropical Asia including the southern Himalayas
(Huang et al. 1999).

2.4.3.2 Section Ilex

Quercus section Ilex Loudon, Arbor. Frut. Brit., 3: 1730, 1899 (1838).
Quercus subgenus Heterobalanus Oerst., Vidensk. Meddel. Naturhist. Foren.

Kjøbenhavn 1866, 28: 69 (1866–1867).—Quercus subgenus Heterobalanus
(Oerst.) Menitsky, Duby Azii, 89 (1984) [Oaks of Asia, 133, (2005)].—Quercus
section Heterobalanus (Oerst.) Menitsky, Duby Azii, 89 (1984) [Oaks of Asia, 134,
(2005)].—Quercus subsection Ilex (Loudon) Guerke sensu Menitsky, Duby Azii,
97, (1984) [Oaks of Asia, 151, (2005)].

Type: Quercus ilex L.
Stamens 4–6 (Schwarz 1937); pollen ornamentation rugulate (Denk and Grimm

2009); footlayer thick and continuous or of variable thickness and perforate (Denk
and Tekleva 2014); styles medium-long, apically gradually dilated, recurved,
v-shaped in diameter; stigmata slightly subulate; stigmatic surface extending
adaxially along stylar suture (Schwarz 1937; Menitsky 1984); fruit maturation
annual or biennial (Camus 1936–1938, 1938–1939; Menitsky 1984; le Hardÿ de
Beaulieu and Lamant 2010) [note that observations by Menitsky partly differ from
those of Camus and le Hardÿ de Beaulieu and Lamant]; endocarp tomentose
(Schwarz 1936; Camus 1936–1938, 1938–1939; Schwarz 1937; Menitsky 1984);
cotyledons free; position of the abortive ovules basal or lateral, placenta and
funiculus sessile or elongated; cup scales triangular, free or fused at the base, mostly
thin, membranous, often keeled and tuberculate with sharp angled apices, occa-
sionally with slightly raised tips or narrowly triangular, well-articulated, thickened
with elongated recurved tips (as in Q. alnifolia, Q. baronii, Q. coccifera, Q.
dolicholepis); leaves evergreen, dentitions spinose or with bristle-like extensions;
wood diffuse porous, tyloses rarely present in vessels of early-wood (Menitsky
1984).

Ca. 36 species in Eurasia and North Africa (Menitsky 1984; Denk and Grimm
2010; Deng et al. 2017).

2.4.3.3 Section Cerris

Quercus section Cerris Dumort., Florula Belgica: 15 (1829).
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Quercus section Cerris Loudon, Arbor. Frut. Brit., 3: 1730 (1838).—Quercus
section Eucerris Oerst., Vidensk. Meddel. Naturhist. Foren. Kjøbenhavn 1866, 28:
75, nom. illeg. (1867).—Quercus section Erythrobalanopsis Oerst., Vidensk.
Meddel. Naturhist. Foren. Kjøbenhavn 1866, 28: 76 (1867).—Quercus section
Castaneifolia O.Schwarz, Feddes Repert., 33: 322 (1934).—Quercus section
Vallonea O.Schwarz, Feddes Repert., 33: 322 (1934).—Quercus section Aegilops
(Reichenb.) O.Schwarz, Notizbl. Bot. Gart. Berlin-Dahlem, 13/116: 19 (1936).

Type: Quercus cerris L.
Number of stamens 4–6; pollen ornamentation scattered verrucate (Denk and

Grimm 2009); footlayer of variable thickness and perforate (Denk and Tekleva
2014); styles elongated, outcurved, pointed, v-shaped in diameter; stigmatic area
linear; stigmatic surface extending adaxially along stylar suture; fruit maturation
biennial, variable only in Q. suber (Camus 1936–1938; le Hardÿ de Beaulieu and
Lamant 2010); endocarp tomentose (Camus 1936–1938); cotyledons free; position
of abortive ovules basal, lateral or apical (de Candolle 1862b; Camus 1936–1938;
Schwarz 1937; Menitsky 1984), placenta sessile, funiculus sessile or elongated; cup
scales narrowly triangular, well-articulated, thickened and keeled with elongated,
well-developed recurved tips; leaf dentitions typically with bristle-like extensions;
wood (semi-)ring-porous, tyloses in vessels of early-wood present but not common
(Trelease 1924; Akkemik and Yaman 2012).

Ca. 13 species in Eurasia and North Africa (Menitsky 1984).

2.5 Infrasectional Classification: The Big Challenge

The main challenge for oak systematics in the coming years will be a meaningful
classification below the sectional rank. Nuclear-phylogenomic data (Hipp et al.
2015) within Quercus recover subclades that occur in well-defined biogeographic
regions (e.g. western North America, eastern North America, western Eurasia, East
Asia etc.), a sorting not so clear from traditional sequence data. Only two New
World-Old World disjuncts are recognised (e.g. section Ponticae, section Quercus;
McVay et al. 2017). Ongoing phylogenomic work (Hipp et al. 2014, 2015, 2017;
McVay et al. 2017) is beginning to reveal structure within the sections Lobatae and
Quercus that corresponds to regional diversity within the Americas. Preliminary
phylogenetic analyses suggested that the early evolutionary branches of Lobatae
include many of the lobed-leaf species groups of North America (Hipp et al. 2015).
The first branch, however, comprises the seven Californian taxa (Agrifoliae sensu
Trelease), followed by various groups containing mostly temperate species that sort
out into well-defined subclades. For section Quercus, analyses suggest some
uncertainty at the base of the clade, specifically regarding the position of the
Eurasian subclade. Previous morphology-based treatments of the Eurasian white
oaks (‘roburoids’) suggested close affinities to certain eastern North American
species, like Q. montana Willd. (series Prinoideae of Trelease), based on a similar
(e.g. ‘prinoid’) leaf morphology (Axelrod 1983). In the most recent time calibrated
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tree (Hipp et al. 2017; McVay et al. 2017) the roburoids are nested within the white
oak (s.str.) clade and diverged at around 25–30 Ma (Oligocene) from a North
American, fully temperate clade including the type species of the section Quercus
(Q. alba) and morphologically similar species such as Q. montana (see also Pearse
and Hipp 2009). Dispersed pollen provide evidence for the presence of the white
oak s.l. lineage (pollen types found today in sections Quercus and Ponticae but not
Virentes) in the middle Eocene of western Greenland and the Baltic amber region of
northern Europe (Grímsson et al. 2015, 2016). Hence, the early radiation of this
lineage involved the North Atlantic land bridge. Pollen and leaf fossil evidence
from Eocene and Oligocene strata in East Asia further indicate migration from
North America via the Bering land bridge. The expansion of this East Asian branch
of white oaks (early roburoids) gave rise to the (modern) western Eurasian robur-
oids. This is in some agreement with the latest dated tree proposing a crown age of
ca. 15–20 Ma for the roburoids. By that time, the final radiation within the North
American white oaks (s.str.; section Quercus) might have been completed (Hipp
et al. 2017).

Lack of resolution using traditional sequence data, e.g. identical ITS variants
found in North American and Eurasian white oaks, and the relative young inferred
root (stem) and crown ages of the roburoids can be explained by recent episodic
migration from North America to Europe across the North Atlantic land bridge in
addition to probably (very) large population sizes of temperate (white) oaks.
Ancient hybridisation between roburoids and section Ponticae has been identified
as one possible source of potentially misleading phylogenetic data (McVay et al.
2017).

However, the current, partly preliminary results also indicate that (sub)sections/
series recognised in the monographs of Trelease, Camus, and Menitsky do not
always correspond to groups identified when using molecular sequence data. In
some cases, the molecular-defined groups may seem counterintuitive. For example,
the western Eurasian Ilex oaks Quercus alnifolia, Q. aucheri, Q. coccifera and Q.
ilex are resolved as a monophyletic group (Denk and Grimm 2010; Hipp et al.
2015), but were placed into two subgenera and three sections by Schwarz (1936),
and two sections and three subsections by Camus (1936–1938, 1938–1939) and
Menitsky (1984) due to conspicuous differences in indumentum, leaf margin, and
cup scales. Similar mismatches between traditional classification and DNA-based
groups are encountered for all large infrageneric groups and will pose a major
challenge when searching for morphological criteria to subdivide sections within
oaks. For example, while it has long been noticed that characters of the indumentum
of the abaxial leaf surface provide valuable information for species delimitation
(Manos 1993; Nixon 2002; Tschan and Denk 2012; Deng et al. 2015, 2017), these
characters appear to have evolved convergently in related and unrelated groups
(Tschan and Denk 2012; Deng et al. 2017).
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2.6 Fossil Record

Section Protobalanus—In addition to pollen of section Lobatae, Grímsson et al.
(2015) found dispersed pollen similar to pollen of section Protobalanus in middle
Eocene deposits of western Greenland. Unambiguous leaf fossils and dispersed
pollen of section Protobalanus are known from the latest Eocene-earliest Oligocene
Florissant Formation (ca. 34 Ma; Bouchal et al. 2014). The section had a western
and northern North American distribution during the Paleogene and became
restricted to western North America during the Neogene.

Section Ponticae—Miocene and Pliocene leaf fossils assigned to Quercus
pontica miocenica Kubát have traditionally been compared with the extant Q.
pontica (e.g. Andreánszky 1959; Gagnidze et al. 2014). Presently, these fossils are
included within the fossil-species Q. gigas Göppert, a fossil representative of
section Cerris (Walther and Zastawniak 1991; Kvaček et al. 2002). These leaf
remains and early Cenozoic fossils from Arctic regions (see Grímsson et al. 2016)
are superficially similar to leaves of section Ponticae but lack the characteristic
dentition of Q. pontica. Hence, there is currently no reliable fossil record of this
section because chestnut-like foliage might have evolved in parallel in various
modern and extinct lineages of Fagaceae or represents the ancestral state within
genus Quercus or subgenus Quercus.

Section Virentes—For similar reasons as outlined above for section Ponticae
there is no reliable fossil record of this modern section.

Section Quercus—Leaf fossils from middle Eocene deposits of Axel-Heiberg
Island, Canadian Arctic (ca. 45 Ma; McIver and Basinger 1999) most likely belong
to section Quercus. The leaf fossils are strikingly similar to the extant East Asian
Quercus aliena Blume var. acutiserrata Maxim. ex Wenzig. From the roughly
coeval Baltic amber of northern Europe, Crepet (1989) described in situ pollen of
male flowers, which may represent section Quercus. Fagaceous remains from the
Baltic amber are currently revised by Eva-Maria Sadowski, Göttingen, and may
represent more than one section of Quercus. The leaf fossil-taxon Quercus krask-
inensis Pavlyutkin from the early Oligocene of the Primorskii Region (Pavlyutkin
2015) is similar to the material from Axel-Heiberg Island and most likely belongs to
section Quercus. The Paleogene radiation of the white oak lineage might have
involved both the Bering and the North Atlantic land bridges. Lobed oaks of section
Quercus are also known from the Oligocene of Central Asia and Northeast Asia
(e.g. Krishtofovich et al. 1956; Tanai and Uemura 1994), and North America
(Bouchal et al. 2014). Hence, the section had a scattered distribution during the
Paleogene that included low, mid-, and high latitudes. In the Neogene, section
Quercus was widespread across the entire Northern Hemisphere (Borgardt and Pigg
1999).

Section Lobatae—Oldest fossils that can securely be assigned to section Lobatae
are dispersed pollen from the middle Eocene of western Greenland (latest Lutetian
to earliest Bartonian, 42–40 Ma). The pollen shows a sculpturing found today only
in members of section Lobatae (Grímsson et al. 2015). A further record of
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entire-margined, lanceolate foliage with preserved epidermal structures from middle
Eocene (48–38 Ma) deposits of Central Europe—described as Quercus subher-
cynica (Kvaček and Walther 1989) and originally assigned to section Lobatae—
was subsequently transferred to the extinct genus Castaneophyllum, a fossil-genus
for which morphological affinities to certain castaneoid genera have been estab-
lished using leaf epidermal characteristics (Kvaček and Walther 2010 [2012]). For
North America, Daghlian and Crepet (1983) described cups and acorns associated
with lobate leaves from the Oligocene (Rupelian, ca. 30 Ma) Catahoula Formation
in Texas (Quercus oligocenensis). Markedly similar leaf records from the early
Oligocene of northeast Asia, Quercus sichotensis Ablaev et Gorovoj, Q. ussuriensis
Krysh., Q. arsenjevii Ablaev et Gorovoj, and Q. kodairae Huzioka assigned to
section Cerris (Tanai and Uemura 1994; Pavlyutkin 2015) clearly also belong to
section Lobatae. Hence, the section had a mid- to high latitude northern hemi-
spheric distribution during the Paleogene; during the Neogene it was present in
Europe (Jähnichen 1966; Kovar-Eder and Meller 2003) and North America.

Section Cerris—The earliest unambiguous record of section Cerris, Quercus
gracilis (Pavlyutkin) Pavlyutkin, comes from early Oligocene leaf fossils from the
Russian Far East (Pavlyutkin et al. 2014). In western Eurasia, earliest evidence of
section Cerris comes from dispersed pollen from late Oligocene/ early Miocene (ca.
23 Ma) deposits of Central Europe (Kmenta 2011). The section has a rich Neogene
fossil record in Eurasia (e.g. Mai 1995; Song et al. 2000; Yabe 2008).

Section Ilex—The Paleogene record of Ilex oaks is so far limited to dispersed
pollen from East Asia (Hainan Island, China, Changchang Formation,
Lutetian-Bartonian, ca. 40 Ma; Hofmann 2010; Spicer et al. 2014) and Central
Europe (Germany, Rupelian, ca. 33 Ma; Denk et al. 2012). From the Changchang
Formation, Spicer et al. (2014) also reported leaf morphotypes (OTUs 68 and 71)
that most likely belong to section Ilex. There is also leaf fossil evidence of section
Ilex from 26 Ma strata in Tibet (Zhou Zhekun, personal communication).
Section Ilex has a rich fossil record in Neogene deposits across Eurasia (e.g. Denk
et al. 2017).

Section Cyclobalanopsis—Quercus paleocarpa (Manchester 1994) cupules and
nuts from the Eocene (Lutetian, ca. 48 Ma) of western North America are possibly
the oldest fossils belonging to section Cyclobalanopsis, but without preserved
stigmas the assignment of these fruits remains ambiguous. Additionally, fossilised
fruits of Cyclobalanopsis nathoi from the middle Eocene of Japan (Huzioka and
Takahashi 1973) may belong to section Cyclobalanopsis based on the shape of
nuts. Hofmann (2010) reported dispersed pollen grains from the middle Eocene of
Hainan Island, China (Changchang Formation, Lutetian-Bartonian, 48–38 Ma;
Spicer et al. 2014). From the Changchang Formation, Spicer et al. (2014) also
reported leaf morphotypes (OTUs 61, 62 [partly], 63, 67) that most likely belong to
section Cyclobalanopsis. From the Oligocene of south-western China, several
fossil-species based on leaf impressions have been assigned to cycle cup oaks
(Writing Group of Cenozoic Plants of China [WGCPC] 1978). Evidence for
assignment to section Cyclobalanopsis is based on the number, arrangement, and
course of secondary veins, the dentition, and the attenuate leaf apex (e.g. Q.
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parachampionii Cheu and Liu; Q. paraschottkyana Wang and Liu). This section
has a Paleogene record in mid to low latitude East Asia and western North America,
while it is restricted to Asia during the Neogene (e.g. Jia et al. 2015). No reliable
records are known from Europe.

2.7 Conclusion and Outlook

Recent molecular phylogenetic studies consistently suggest two major clades within
oaks, one comprising three Old World groups (sections Cyclobalanopsis, Ilex, and
Cerris), the other comprising three New World groups (sections Protobalanus,
Virentes, and Lobatae,) and two northern hemispheric groups (sections Ponticae
and Quercus). This is in contrast to the established view that Cyclobalanopsis oaks
are sister to the remainder of the genus Quercus. The reason for this conflict is that
morphological characters evolved convergently in all major groups of oaks and
even outside oaks in other Fagaceae (e.g. concentric cupula rings). Important
conserved morphological and diagnostic characters are pollen sculpturing and
ultrastructure (Fig. 2.2).

Based on the new molecular and morphological evidence the infrageneric
classification of Quercus is revised. A major challenge for future studies will be the
molecular and morphological circumscription of infrasectional groups and their
biogeographic and ecological characterisation. In this context, comparative mor-
phological investigations of the seed ontogeny will be important to document the
distribution of type I, II and III developmental pathways of aborted ovule positions
(Table 2.1) across all sections. Some characters that have been described mainly on
the basis of herbarium material, such as the annual or biennial mode of maturation,
need to be reinvestigated in the field. In (fully) evergreen species of sections Ilex,
Protobalanus, and Cyclobalanopsis, the fruiting twigs do not produce new growth
in the second year after pollination (pseudo-annual maturation sensu Nixon 1997)
and therefore may erroneously be interpreted as annual. In a number of
high-mountain species of section Ilex, maturation may take much longer than
previously assumed, with time periods of up to three to four years between polli-
nation and mature seeds (Min Deng, unpublished data). Considering the oak fossil
record, it is noteworthy that Paleogene plant-bearing deposits from East Asia and
the Far East have so far been understudied. Once recovered, this fossil record
should contribute to a better understanding of the emergence of major groups within
oaks.
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Appendix 2.1

At https://doi.org/10.6084/m9.figshare.5547622.v1, we provide an electronic
appendix including the following information (which may be subject to future
updates): (i) an overview of earlier systematic schemes for oaks (genera, subgenera,
sections) in comparison to the new classification; (ii) diagnostic morphological
traits reported by earlier taxonomists extracted from the original literature; (iii) a
comprehensive list of formerly and currently accepted species of oaks, compiled
from the cited oak monographs and complemented by further data sources.
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Chapter 3
The Fossil History of Quercus

Eduardo Barrón, Anna Averyanova, Zlatko Kvaček,
Arata Momohara, Kathleen B. Pigg, Svetlana Popova,
José María Postigo-Mijarra, Bruce H. Tiffney, Torsten Utescher
and Zhe Kun Zhou

Abstract The evolution of plant ecosystems during the Cenophytic was complex
and influenced by both abiotic and biotic factors. Among abiotic forces were tec-
tonics, the distribution of continents and seas, climate, and fires; of biotic factors
were herbivores, pests, and intra- and interspecific competition. The genus Quercus
L. (Quercoideae, Fagaceae) evolved in this context to become an established
member of the plant communities of the Northern Hemisphere, commencing in the
Paleogene and spreading to a diverse range of environments in the later Cenozoic.
Its palaeontological record, dominated by leaves and pollen, but also including
wood, fruits and flowers, is widespread in Eurasia and North America.
Consequently, a great number of species have been described, from the 19th cen-
tury to the present day. Although Quercus is currently an ecologically and eco-
nomically important component of the forests in many places of the Northern
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Hemisphere and Southeastern Asia, no comprehensive summary of its fossil record
exists. The present work, written by an international team of palaeobotanists,
provides the first synthesis of the fossil history of the oaks from their appearance in
the early Paleogene to the Quaternary.

3.1 Introduction

Genus Quercus Linnaeus 1753
1753—Quercus, Linné. Species Plantarum Vol. 2, p. 995
1870–1872—Quercus, Schimper. Traité de Paléontologie végétale Vol. 2, p. 616
Diagnosis (sensu Schimper): Arbores, rarius frutices, pro more sylvas vastas

efformantes. Folia alternantia, petiolata, caduca (in regione frigidiore) vel per-
sistentia (in regione calidiore), membranacea, subcoriacea, et coriacea, quam
maxime variablia, margine simpliciter vel repetito-lobata, lobulata, crenata, den-
tata vel subspinosa, rarius integra, sæpius anguste incrassato-marginata, laevia vel
pubescentia, pinnatinervia; nervo medio plus minus valido ad apicem producto,
nervis secundariis craspedodromis, camptodromis in foliis integris, mixtis in foliis
pro parte integris and pro parte dentatis vel crenatis. Flores masculi in amento
gracili solitarii, rarius ternati, perigonio regulariter vel irregulariter 4–7—lobato;
flores feminei gemmacei, axillares, in rachi communi sessiles, bracteis et squamulis
multiseriatis imbricatis, in cupulam (involucrum) floris basin recipientem connatis.
Fructus e cupula solida squamosa vel zonata nunquam spinosa, et e glande plus
minus emersa vel subinclusa constans.

Oaks (Quercus L., Fagaceae) are woody angiosperms known to humans from
prehistoric times (Pereira Sieso and García Gómez 2002). Currently, they are one of
the most significant and diverse elements in Northern Hemisphere forest ecosys-
tems (Fig. 3.1), comprising ca. 400–500 species of trees and shrubs in North and
Central America, Colombia, Eurasia and northern Africa (Nixon 1997; Govaerts
and Frodin 1998). Their highest diversity occurs in Central America and Southeast
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Asia, with a lower number of species in western America, western Eurasia and the
Mediterranean (Nixon 2006; Simeone et al. 2016).

Oaks are common or even dominant species in a wide variety of habitats,
including temperate deciduous forests, subtropical and tropical savannas, cloud
forests, tropical montane forests and Mediterranean vegetation (Nixon 2006).
Quercus is also economically significant in temperate and (sub-) tropical areas of
the Old and the New Worlds (Camus 1936–1954). Their fruits are widely exploited
for food by both people and livestock and their woods are used for construction and
fuel (Nixon 2006). These are the reasons for the early botanical (i.e. de Candolle
1862), and palaeobiological interest in the genus (Schimper 1870–1872; de Saporta
1888; Zittel 1891).

Currently, Quercus is placed in the subfamily Quercoideae of the Fagaceae,
together with Castanea Mill., Castanopsis (D. Don) Spach, Chrysolepis Hjelmq.,
Lithocarpus Blume, and Trigonobalanus Forman. Its infrageneric classification has
been a matter of controversy (e.g. Camus 1936–1954; Schwarz 1936; Menitsky
1984; Nixon 1993). Traditionally, oaks were classified in two subgenera:
Cyclobalanopsis (Oersted) Schneider (cycle-cup oaks) and Quercus L. (scale-cup
oaks). Subgenus Cyclobalanopsis is restricted largely to subtropical and tropical
regions in Southeast Asia (Fig. 3.2) and can be distinguished by fruit morphology
and DNA-based evidence (Manos et al. 1999). Subgenus Quercus is divided in

Fig. 3.1 Modern distribution of the genus Quercus modified from Camus (1936–1954) and
Manos et al. (1999). Selected northern localities with the presence of fossils belonging to oaks: 1.
Early/middle Miocene, Seldovia Point, Alaska (Wolfe 1980), 2. Early Miocene, Sanctuary
Formation, Central Alaska (Leopold and Liu 1994), 3. Early Eocene, Princeton Chert, British
Columbia, Canada (Grímsson et al. 2016), 4. Oligocene, Ruby Basin, Montana, USA (Lielke et al.
2012), 5. Middle Eocene, Qeqertarsuatsiaat Island, Greenland (based on pollen, Grímsson et al.
2016), 6. Oligocene, Dunaevskiy Yar, Siberia, Russia (Iljinskaja 1982), 7. Miocene,
Kozhevnikovo, Siberia, Russia (Iljinskaja 1982), 8. Late Eocene, Duktylikich River,
Kamchatka, Russia (Budantsev 1997)
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three sections: Lobatae Loudon (red oaks; North and South America; Fig. 3.3),
Protobalanus (Trelease) Schwarz (intermediate oaks from western North America;
Fig. 3.3) and Quercus L. (white oaks: Eastern and Western Hemispheres) (Nixon
1993; Manos et al. 1999).

According to Nixon (1993) two groups of white oaks (groups Ilex and Cerris),
both included currently in section Quercus, need more analysis to confirm their
final taxonomic status. This classification has been widely accepted and used over
the last twenty-five years. However, Denk and Grimm (2009, 2010) recently pre-
sented a new classification in which six informal infrageneric units are recognized:
a first subgroup includes the Quercus group Quercus (white oaks), group Lobatae
(red oaks) and group Protobalanus (golden cup oaks) and a second subgroup is
formed by the group Ilex (Ilex oaks), group Cerris (Cerris oaks) and group
Cyclobalanopsis (cycle cup oaks).

Tracing the evolution of the genus Quercus in the fossil record is a complex
matter. Although the genus possesses a consistent set of reproductive features, it
also exhibits marked vegetative variation (Tucker 1974; Manos et al. 1999).
Intraspecific morphological variation within living Quercus is not uncommon and
hybridization may play a significant role in these patterns (Manos et al. 1999;

Fig. 3.2 Modern distribution of Quercus subgenus Cyclobalanopsis (in grey; modified from Xu
et al. 2016) and presence of fossil oaks in East Asia (Section Quercus = yellow diamond,
Subgenus Cyclobalanopsis = green hexagon, Section Heterobalanus = blue triangle)
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Nixon 2006). For this reason, phylogenetic relationships based only on leaf mor-
phology are not completely reliable. Some authors believe that pollen ornamenta-
tion is the only morphological character that unambiguously can be used to
distinguish extant members of most groups, except for the Quercus and Lobatae
groups that share the same pattern (Denk and Grimm 2010).

The first attribution of fossil to Quercus was made by Schimper (1870–1872),
who focused on leaf features and included the genera Trigonobalanus and
Lithocarpus in his concept of Quercus. In Late Cretaceous and Paleocene floras,
different leaves with a general fagaceous morphology have been assigned to extinct
genera such as Dryophyllum Debey ex Saporta and Quercophyllum Fontaine (Mai
1995). However, their systematic affinities are in need of thorough re-examination.

Fossil leaves, with and without cuticle, wood, pollen, fruits and flowers
belonging to Quercus are common in Oligocene through Quaternary floras of the
Northern Hemisphere. Given the abundance of leaves in the fossil record of oaks, it
would be remiss not to note the difficulty of distinguishing species of closely related

Fig. 3.3 Modern distribution of the American endemic sections Lobatae (in blue) and
Protobalanus (in red; the green colour corresponds to the area where the species of the two
sections are both present), modified from Camus (1936–1954) and Manos et al. (1999). Species of
the section Lobatae are also present in Colombia. During the Cenozoic, section Lobatae was
widespread in Europe and Western Asia (see the text). Section Protobalanus was always restricted
to western North America with early occurrences in 1. Montana during the Eocene–Oligocene
border and Oligocene (Becker 1969) and 2. Idaho during the Oligocene and late Miocene (Axelrod
1998; Buechler et al. 2007)
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Quercus based on foliage, both among extant oaks and particularly in the fossil
record where identifications are frequently based upon one or a few specimens.
Clearly, given the morphological variability in living oaks, it is quite possible that
many of the established fossil taxa do not represent true biological species and may
be misassigned. Consequently, the number of fossil species of oaks is most likely
exaggerated, and in many cases, these fossil species need a serious revision.

To date, no synthesis of Quercus exists that integrates palaeobotanical and
palynological data with palaeogeographic, palaeoecological and palaeoclimatic
changes throughout the Cenozoic and Quaternary. The aims of the present work
are: (1) to clarify the true first occurrences of the genus on all continents, (2) to
summarize the main species of Quercus considered to be of ecological or taxo-
nomic importance in the Paleogene and Neogene, and (3) to reconstruct the main
traits of the palaeoecological role and evolution of Quercus over the Cenozoic.

3.2 Methodology

Fossil oaks are usually identified by means of leaves and pollen grains and less
commonly, by woods, fruits and flowers. Systematists working with extant plants
can study hundreds of herbarium specimens and sample populations. Consequently‚
they can circumscribe both parent species and the morphological intermediates
among them that form a hybrid complex and use morphometrics to establish the
boundaries of the species within the complex (e.g., Jensen et al. 1993) to create
hypotheses that can be tested with molecular studies. However, this is not possible
in the fossil record. Thus one can but sympathize with Chaney (1944, p. 342) in his
reflections upon of Quercus winstanleyi Chaney from the Troutdale Flora: “There
are times in the life of every paleontologist when difficulties involved in the sound
treatment of his material become insurmountable. At such times it is necessary to
make decisions which are not wholly consistent with all the known facts, and which
may be at variance with the best taxonomic procedure. Such a compromise seems
inescapable in the case of the oak leaves of the Troutdale flora, which we are
describing as a new species in spite of close resemblances to previously described
Tertiary oaks.”

We recognize two major limitations of the present synthesis that may be con-
fusing to readers. Firstly, in some cases we have accepted the literature as it stands
without attempting to verify the identifications of individual fossils. Further, many
species are based on very brief diagnoses and limited material. For instance,
Axelrod (1998) names six new species using very short paragraphs of description,
based upon one or a very few, often incomplete, specimens. Consequently, we have
not included many references in our summation, especially those from older lit-
erature, where fragments of leaves were often used for describing new species that
currently need revision. This is a conservative, but probably a more accurate
approach.
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Secondly, we have not addressed the larger question of whether certain existing
fossil species can continue to stand alone, or should be synonymized, as suggested
by previous authors. The species synonymies are well exemplified in the case of the
famous Miocene flora from Oehningen (Switzerland). At this site, Heer (1853,
1856, 1859) described around forty species of oaks from leaf remains. After an
intensive revision made by Hantke (1965), the number of the species were reduced
only to five. One need only look at the tremendous thought and time that Chaney
and Axelrod (1959) spent in re-assigning previously described specimens of
Quercus to species (pp. 164–172), and the associated systematic revisions (pp. 219–
222) to appreciate the enormity of such a task.

Even following such work, uncertainties still exist. Leckey and Smith (2015), in
their review of the geologic history of gall wasps in western North America,
specifically note that (pp. 237–238): “Following the opinions of previous workers,
Q. hannibali and Q. dayana are considered to be synonyms of Q. pollardiana
(Axelrod 1983; Fields 1996), although other authors continue to use the name Q.
hannibali (Buechler et al. 2007)”. Further, Fields (1996) has suggested in his Ph.D.
thesis that Q. consimilis Newberry be subsumed in Q. simulata Knowlton, and
Buechler et al. (2007) placed Q. winstanleyi Chaney as a junior synonym of Q.
columbiana Chaney. As if such uncertainties at the species level were not confusing
enough, there is the question of whether the widespread western North American
species Q. simulata should be assigned to Lithocarpus or Castanopsis (Fields
1996).

From these observations, it is clear that particularly the foliage of fossil oaks is
ripe for an in-depth revision, although this could be an immense task. It may be
aided in the present day by more detailed and innovative approaches to the iden-
tification of foliar remains (Huff et al. 2003; Ellis et al. 2009) such as the epidermal
studies (see e.g., Kvaček and Walther 1989; Walther and Zastawniak 1991). It is
also possible that insights from palaeoentomology may provide some guidance, as
cynipoid gall wasps have tight host relationships with Quercus (Diéguez et al.
1996; Stone et al. 2009) and have a distinct fossil record (Erwin and Schick 2007;
Liu et al. 2007b; Holden et al. 2015; Leckey and Smith 2015). Thus, while we
provide a summation of the known record, we recognize it is fraught with errors
that will be corrected by future research.

In most cases, the description of fossil material includes a comparison with one
or more living species, allowing provisional assignment of the fossil to a section of
the genus. In cases where conflicts have occurred in the literature, we have not
ascribed the fossil to a section. Clearly, given the morphological variability in living
oaks, it is quite possible that many of the established fossil taxa do not represent
true biological species and may be mis-allied to section. Indeed, Bouchal et al.
(2014, p. 1339) note that some leaf species that earlier authors assigned to section
Quercus (Q. dumosoides MacGinitie, Q. mohavensis Axelrod) can in fact not
“unambiguously be referred” to either section Quercus or Lobatae. We therefore
emphasize that, in the following summation, assignments to section based upon
leaves are based upon several levels of assumption, and are open to revision with
further study.
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The fossil wood record is usually defined to genus, but some wood anatomical
features can delimit intrageneric types (see e.g., Pl. 3.8-10). Wiemann et al. (1998)
were able to group 30 species of extant temperate oaks from North America into
three wood types: the live oaks (e.g., Q. virginiana L.), the white oaks, both of
section Quercus, and the red oaks, of section Lobatae. Wood of the live oaks is
diffuse porous or semi-ring-porous (and difficult to distinguish from that of the
fagaceous genus Lithocarpus Blume), while the red and white oak types are ring
porous, but can be separated on the basis of vessel and ray features.

Most pollen records are not offered in sufficient detail to permit sectional
assignment and are thus treated as a record of the genus. Recent work by Bouchal
et al. (2014) building on advances in the study of oak pollen by Denk and Grimm
(2009) provides taxonomically useful resolution of fagaceous pollen in western
North America and Europe at the sectional level through a detailed, same grain,
LM/SEM analysis of micromorphological features. This approach leads the way to
future re-analysis of other reports of Quercus pollen allowing sub-generic
resolution.

Palaeoclimates were determined using the coexistence approach (CA) method
(Mosbrugger and Utescher 1997; Utescher et al.2014), employing ClimStat soft-
ware and the Palaeoflora database (Utescher and Mosbrugger 2015). The latter
contains climate information for more than 1800 extant plant taxa at the global
scale.

Specimens were photographed from the following institutions: University of
Washington, Burke Museum of Natural History and Culture, USA; Florida
Museum of Natural History, Gainesville, Florida, USA; University of South
Alabama, Mobile, Alabama‚ USA; University of California at Santa Barbara,
California, USA; Arizona State University, Tempe, Arizona‚ USA; Museo
Geominero (IGME), Museu de Geologia de Barcelona and Museu de Geologia del
Seminari de Barcelona, Spain; Museum für Naturkude, Stuttgart, Germany;
National Museum, Prague, Czech Republic; Hungarian Natural History Museum,
Budapest, Hungary; Komarov Botanical Institute, St. Petersburg, Russia; National
Museum of Nature and Science, Kyoto, Japan; Laboratory of Palaeoecology,
Xishuangbanna, Tropical Botanical Garden, Chinese Academy of Sciences, China.

3.3 Results

The oldest mesofossil of fagaceous affinity is Archaefagaecea Takahashi, Friis,
Herendeen and Crane from the early Coniacian of Japan (Takahashi et al. 2008).
Friis et al. (2011), also report the presence of fossil flowers with distinctive faga-
ceous characters from Santonian strata, indicating that the Fagaceae was present by
the mid–Late Cretaceous.
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3.3.1 The Cretaceous and Paleocene record

3.3.1.1 North America

Santonian and Campanian (Late Cretaceous) mesofossils of fagaceous affinities
have been described from eastern North America. These include the Santonian
Antiquacupula sulcana Sims et al. (1998) and Protofagacea allonensis Herendeen
et al. (1995), staminate flowers, associated fruits and cupules from the Campanian
in central Georgia. Additional fruits and flowers are known from the Campanian of
Massachusetts (Taylor et al. 2012). The most common Cretaceous fossils attributed
to Quercus in North America are leaves, particularly in the older literature, e.g.,
Q. wardiana Lesquereux from the Cenomanian Dakota Formation of Kansas
(Lesquereux 1892) and Black Hills, South Dakota (Ward 1899). None of
Lesquereux’s species occur in the Cenozoic (LaMotte 1952).

Wang (2002) reviewed the angiosperm leaf record of the Dakota Formation, but
offered few synonymies and updates of Lesquereux’s material. The only Quercus-
related occurrence he discussed is that of the leaf type Quercophyllum tenuinerve
Fontaine. Quercophyllum is a form genus created by Fontaine (1889) to include leaf
remains similar to those of Quercus. Species of this genus have been identified in
Late Cretaceous floras from North America and Europe (e.g., Dorf 1942; Nĕmejc
and Kvaček 1975; Váchová and Kvaček 2009).

In more recent literature, Bell (1957) described Quercus richardsonii from the
Turonian–Santonian Comox Coal Field in the Nanaimo Group of Vancouver
Island, British Columbia, Canada. However, recent accounts of megafloral
assemblages of this region do not mention this or any other species of Quercus
(e.g., Jonsson and Hebda 2015). In the Late Cretaceous Eagle Formation of
Montana, Van Boskirk (1998) cites Quercus leaves but these have not been con-
firmed. In his review of the Cretaceous floras of the Rocky Mountains, Crabtree
(1987) recognizes forms assignable to Fagales by the early Campanian but does not
specify any assignments to Quercus. Quercus viburnifolia? cited by Dorf (1942)
from the Late Maastrichtian Lance Formation is listed by LaMotte (1952), as also
occurring in the Paleocene Denver Formation of Golden, Colorado. However,
recent treatments of the Denver Formation lack Quercus (Barclay et al. 2003),
raising the likelihood this report is erroneous. Lozinsky et al. (1984) refer to the
occurrence of cf. Q. viburnifolia and cf. Dryophyllum leaves in the upper
Coniacian–Santonian Crevasse Canyon Formation in association with dinosaurs
from the overlying McRae Formation of south central New Mexico. They cite two
unpublished master’s theses (Lozinsky 1982; Wallin 1983) without further sub-
stantiation. We could find no further reference to Quercus in this area.

Recently, dispersed pollen attributed to Fagaceae has been described in the
Campanian of Elk Basin (Wyoming) as Paraquercus campania by Grímsson et al.
(2016). This pollen shows similarities with both Eotrigonobalanus and Quercus.

Paleocene reports of Quercus leaves in North America are known largely from
the work of Roland Brown from localities in Wyoming, North Dakota, Montana
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and Colorado and include five species: Q. sullyi Newberry, Q. groenlandica Heer,
Q. macneili R.W. Brown, Q. yulensis R.W. Brown and Q. asymmetrica Trelease
(Brown 1962; Budantsev and Golovneva 2009). Manchester (2014) reviewed these
occurrences. He united Q. sullyei with similar forms described as Dicotylophyllum
flexuosum (Newberry) Wolfe, Meliosma longifolia (Heer) Hickey, and Dyrana
(Newberry) Golovneva, in the form taxon Dyrana flexuosa and suggested them to
be of possible platanaceous affinity (Wolfe 1966; Hickey 1977; Golovneva 2000;
Manchester 2014). Manchester (1999) reassigned Q. groenlandica to
Fagopsiphyllum groenlandicum (Heer) Manchester for fagaceous leaves that cannot
be assigned to genus. This “Quercus” taxon has also been reported from the
Bighorn Basin of Wyoming (Wing et al. 1995). The last three species Manchester
recognized informally as “Quercus” macneili, “Quercus” yulensis and “Quercus”
asymmetrica with the provision that the assignment of these fossils, even at the
level of family, is suspect in the absence of the “unequivocal cupulate fruits”
distinctive of the family in the associated sediments. Another Paleocene report of
Quercus (Benammi et al. 2005) is based upon pollen from an unpublished Master’s
thesis (Altamira-Areyán 2002) and requires further validation.

3.3.1.2 Europe and Western Asia

To date, no Cretaceous remains are attributable to the Quercus in Europe. The
earliest evidence of fossils related to this genus indicates a late Paleocene age.
However, some of these occurrences are suspect. One of the few late Paleocene
sites that can be verified is that of Ménat, France (originally thought to be Eocene,
the Ménat site is now dated by K-Ar to ca. 56 Ma; Vincent et al. 1977; Michon and
Merle 2001). From this locality, leaves have been assigned to Q. lonchitis Unger, Q.
parceserrata Saporta and Marion or Q. provectifolia Saporta. Some macroremains
from the Heer collection from Ménat were also attributed to catkins and acorns of
Quercus (Laurent 1912). Within these fossils, two leaves in excellent state of
preservation have been identified as Quercus subfalcata Friedrich, which occurred
with Platanus schimperi Saporta and Marion and other taxa such as
Palaeocarpinus-Craspedodromophyllum, Casholdia and a Sassafras-like morpho-
type (Piton 1940; Kvaček 2010). Q. subfalcata could be the earliest occurrence of
the genus in Europe if its taxonomic status can be confirmed.

Quercus is clearly present in Europe at the Paleocene–Eocene transition (ca.
55 Ma) at St. Pankraz (Austria), which was placed in the northwestern Tethyan
realm (Hofmann et al. 2011). These authors identify Quercoidites, pollen related to
Quercus infrageneric group Ilex sensu Denk and Grimm (2009). Quercus formed
part of communities of megathermal (e.g. Lannea, Arecaceae, Chloranthaceae,
Icacinaceae) and mesothermal taxa (e.g. Eotrigonobalanus, Ilex, Parthenocissus).
The authors state that the palynoflora represents a “warm temperate evergreen-
deciduous forest”, which can be classified as a kind of subtropical flora with
temperate elements, typical of a warm and wet, but not tropical climate. Although
the St. Pankraz pollen shares a number of similarities with pollen of extant members

48 E. Barrón et al.



of group Ilex, Denk et al. (2012) note that this pollen cannot with certainty be
assigned to this group.

3.3.1.3 Eastern Asia

Quercus cretaceoxylon Suzuki and Ohba is the first fossil record of Quercus-type
wood from East Asia, which was described from the Upper Cretaceous of the Upper
Yezo Group in Mikasa City, Hokkaido, Japan (Suzuki and Ohba 1991). This taxon,
described from a piece of silicified wood, exhibits typical red-oak type wood with
distinct ring porosity and radial arrangement of medium to small, round,
thick-walled latewood pores. It also presents transition from early to latewood
gradual, abundant tracheids and wood parenchyma.

In northern Asia the first occurrence of “Quercus” is Q. tsagajanica Pojark. from
the lower Paleocene of Bureinskyi Tzagayan (Far Eastern Russia). This species
shows rounded or oval leaves with small, sharp teeth (Iljinskaja 1982). Likewise,
isolated “Quercus” fossils have been cited from the Upper Cretaceous of
Kazakhstan as Q. buroinensis Shilin (1983). According to Iljinskaja (1982), the
generic identification is doubtful because of its poor preservation. Moreover, in
several Late Cretaceous localities of Kazakhstan, two pollen species have been
attributed to oaks, Q. aurita Bolkhovitina and Q. sparsa (Mart.) Samoil (Boitzova
and Panova 1966). However, these pollen grains need evaluation using modern
techniques.

Possible early evidence for oaks in Asia comes from leaf materials recovered in
the early Paleocene of the Russian Far East (Primorje) being assigned to the genus
only (localities Sobolevka, Augustovska; Akhmetiev 1988; Kodrul 1999). The
same strata provided also pollen materials (Quercus sp.). The palynological record
of oaks became more diverse in this region from the Ypresian, including various
morphotypes (Quercus conferta Kit. [=Q. frainetto Ten.], Q. forestdalensis Trav.,
Q. graciliformis Boitz., Q. gracilis Korth.; Pavlyutkin and Petrenko 2010) that are,
however, not referable to any extant taxonomic group.

In light of our survey, we agree with authors such as Jones (1986), Zhou (1993)
and Xing et al. (2013) that pre-Paleogene, and perhaps pre-Eocene occurrences of
Quercus macroremains are generally represented by poorly preserved fossils that
lack critical features needed for certain identification and need to be treated with
caution.

3.3.2 North America: Eocene through Pliocene

Currently, North America hosts three sections of the genus Quercus:
(i) Section Lobatae (the “red oaks”; Fig. 3.3), represented by 35 species dominantly
of eastern North America with six species in North America west of the Rocky
Mountains; (ii) Section Protobalanus (the “intermediate oaks”), represented by 4
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species, all western North American (Fig. 3.3), and (iii) Section Quercus (the
“white oaks”) represented by 51 species, 22 of which occur west of the Rocky
Mountains (Flora of North America 1997). These three sections are represented in
the North American fossil record, as well as the endemic Asian section
Cyclobalanopsis (the “ring-cupped oaks”; Manchester 1994) and possibly the
Eurasian group Cerris (Becker 1969).

In general terms, the Paleogene and Neogene fossil record of Quercus is dom-
inated by leaf specimens in western North America, particularly in the Oligocene
through Pliocene, and generally by pollen records in eastern North America (cf.
Ochoa et al. 2012; Baumgartner 2014), reflecting the relative paucity of Cenozoic
deposits yielding megafossils in the East. Petrified woods are known from several
Eocene and Neogene sites in western North America (Wheeler and Manchester
2002; InsideWood 2004 onwards; Wheeler and Dillhoff 2009). Wood is even rarer
in the East, except for the Miocene of Vermont (Spackman 1949) and an informal
report from the Oligocene of east Texas (Singleton 2001).

Records of fruits are uncommon, ranging from the middle Eocene acorn from
Clarno, Oregon (Plate 3.1 2; Manchester 1994) and the late Eocene of Oregon
(Manchester and McIntosh 2007) and the LaPorte Flora of California (Plate 3.1 5;
Tiffney, unpublished) to Oligocene forms in Texas (Daghlian and Crepet 1983; Crepet
1989) and Oregon (Bridge Creek flora; Meyer and Manchester 1997), Miocene spec-
imens fromWashington (Borgardt and Pigg 1999; Plate 3.1 4‚ 6), Vermont (Plate 3.1 3;
Tiffney 1994) and the Miocene/Pliocene of Tennessee (Liu 2011).

3.3.2.1 The Eocene Records

The Early to Middle Eocene

Unequivocal evidence of Quercus in the fossil record lies with acorns. The oldest
North American acorn known to date is Quercus paleocarpa Manchester, from the
middle Eocene Clarno Formation of Oregon (*44 Ma; Manchester 1994, Plate 3.1
2). The Clarno acorns have involucral scales arranged in concentric rings, a feature
that occurs in both the Asian Quercus subgenus Cyclobalanopsis, as well as in the
genus Lithocarpus. However, Manchester (1994) suggests their assignment to
Cyclobalanopsis based on the presence of woody, rather than papery involucral
scales. Leaves (Manchester 1981) and wood (Scott and Wheeler 1982; Wheeler and
Manchester 2002) consistent with Quercus are also known from Clarno.

The Clarno flora is often compared with coeval European floras, including the
Eocene London Clay (Reid and Chandler 1933; Collinson 1984) and the middle
Eocene flora of Messel, Germany (Collinson et al. 2012). One might also include
the permineralized middle Eocene Princeton chert of British Columbia and the
Appian Way flora of Vancouver Island (Mindell et al. 2007, 2009; Pigg and
DeVore 2016). It is interesting that of these floras, Fagaceae appears only at Clarno
and Appian Way, in contrast to the other families shared by these floras (Pigg and
DeVore 2016).
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Additional reproductive structures are known from the middle Eocene in the
Southeast. Quercus oligocenensis Daghlian and Crepet is an incomplete staminate
catkin from the middle Eocene Claiborne Formation of Tennessee (Wang et al.
2013). This taxon was first described from the Oligocene Catahoula Formation of
Texas, which shares many floral elements with the Claiborne Formation (DeVore
et al. 2014). The Claiborne Formation also provides the oldest record of Quercus
pollen in the Southeast (Frederiksen 1981, 1988; Graham 1999a; Burnham and
Graham 1999). In the Northwest, the microthermal assemblages of Republic,
Washington and other Okanogan Highlands localities, now recognized as latest
early Eocene, contain fagaceous leaves (Greenwood et al. 2016). However, acorns
have not been recovered from this area and the assignment of the leaves to par-
ticular genera within the Fagaceae is “not unequivocal” (Gandolfo 1996). No
evidence exists at these localities for acorns or leaves that could be assigned con-
clusively to Quercus (KB Pigg, Personal observation). MacGinitie (1969), in
describing the early to middle Eocene Green River flora, dismissed earlier reports of
Q. castaneopsis Lesquereux and Q. drymeja Unger as unsupported, but recognized
two new species, Q. cuneatus MacGinitie and Q. petros MacGinitie, comparing
these to modern species in sections Quercus and Lobatae respectively.

Pollen assigned to Quercus has been listed as occurring in the Republic,
Princeton (“Allenby”), McAbee, Hat Creek and Horsefly floras by Moss et al.
(2005). It has also been reported and illustrated from McAbee, British Columbia,
based on light microscopy (Dillhoff et al. 2005) and from the Princeton Chert,
British Columbia using SEM single-grain studies (Grímsson et al. 2016). No cor-
responding, unequivocal megafossil remains are known at these sites. At higher
latitudes in North America, the pollen type Quercoidites is reported from the
Alaskan Eocene (Frederiksen et al. 2002; Bouchal et al. 2014). The presence of
Quercus or a Quercus-like plant at high latitudes is further supported by foliage
(Basinger 1991; McIver and Basinger 1999) and pollen (McIntyre 1991) from the
middle Eocene Buchanan Lake Formation of Axel Heiberg Island, Northwest
Territories and pollen from the middle Eocene Margaret Formation of Ellesmere
Island (Jahren 2007; Eberle and Greenwood 2012), and west Greenland (Grímsson
et al. 2015).

The middle Eocene leaf record of Quercus is scant in part because of the
difficulty in distinguishing leaves of Quercus from those of other fagaceous genera.
Fagaceous leaves with features of both Quercus and the modern chestnut Castanea
Mill. have been difficult to distinguish from one another, although Quercus leaves
have a fimbrial vein that is lacking in Castanea (Manchester 1999). This situation
has led to the need for caution in assigning leaves to these taxa, especially early in
their evolutionary history. An example is provided by MacGinitie (1941), who
identified Quercus nevadensis MacGinitie leaves from the Chalk Bluffs and
Buckeye Flat sites in the Central Sierra Nevada, California. He compared this
species to Q. glauca Thunberg and Q. hiananensis Merrill, but also noted its
similarity to Castanopsis and suggested that it “…may possibly represent fossils of
that genus”. In Chalk Bluffs he also lists Q. distincta Lesq. and Q. eoxalapensis
MacGinitie. In both cases their modern relative species are in the section Lobatae.
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Thus it appears that section Lobatae is present in the middle Eocene in southeastern
(Claiborne Formation; Wang et al. 2013) and western (Chalk Bluffs; MacGinitie
1941) North America and subgenus Cyclobalanopsis (Manchester 1994) in western
North America.

Fossil oak wood from the middle Eocene is known from Clarno and Post
(Oregon) and was assigned to Quercinium crystallifera Scott and Wheeler, a spe-
cies with features found within Fagaceae and with noted similarities to extant
evergreen oaks “of the Quercus/Lithocarpus wood type” (InsideWood 2004
onwards; Wheeler et al. 2006). Additionally, an acorn with apparently whorled
scales is reported from Post (Manchester and McIntosh 2007).

The middle Eocene Yellowstone Fossil Forest yields both early reports of leaves
(Knowlton 1899) and of permineralized woods (Wheeler et al. 1978; Pl. 3.2 8–10).
Wood at Yellowstone is identified as Quercinium Unger emend. Brett. Quercinium
was considered originally to represent ring porous woods with two types of rays
(Unger 1842). Brett (1960) recognized that fossil woods assigned to this genus are
similar to both those of modern evergreen species of Quercus and those of
Lithocarpus. He emended the genus to include fossil woods with the anatomical
features that characterize these two wood types.

Wheeler et al. (1978) placed one Yellowstone species in Quercinium amethys-
tianum Wheeler, Scott and Barghoorn, and reexamined material of a second spe-
cies, Q. lamarense Knowlton emend. Wheeler, Scott and Barghoorn. Both species
are considered to be “evergreen oaks” and “indistinguishable from Lithocarpus”.
Wheeler et al. (1978) also summarize earlier species described from Yellowstone,
including Q. knowltonii Felix (Felix 1896) and Quercus rubida Beyer (Beyer
1954). Q. knowltonii is inadequately known for comparison with other species,
whereas Q. rubida is ring-porous and thus unlike the other forms known from
Yellowstone. The affinity of this last taxon with Fagaceae is not clear.

The Late Eocene

The late Eocene Florissant Fossil Beds of central Colorado (34 Ma) contain a
well-studied megafossil (MacGinitie 1953; Manchester 2001) and palynomorph
flora (Bouchal et al. 2014), both of which document the occurrence of Quercus.
MacGinitie (1953) identified the presence of nine separate species from a variety of
Florissant localities, all based upon leaves. In his review of these, Manchester
(2001) recognized leaves only to the level of Quercus spp. Bouchal et al. (2014)
reviewed these leaves and concluded that, while three of these species were likely
not Quercus, the six others included representatives of sections Quercus, Lobatae,
Protobalanus, with two species resembling extant species in both Quercus and
Lobatae.

Pollen from Florissant was initially studied by Leopold and Clay-Poole (2001)
who found two forms, one “typical” Quercus type, and a second, prolate form they
referred to “Quercoid, long axial pollen” based on light microscopy. They sug-
gested that the “quercoid” pollen might be an extinct genus. Pollen was examined
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using SEM as well as light microscopy by Bouchal et al. (2014). Taken in parallel
with the leaf record, these authors suggested the presence of sections Quercus,
Lobatae, Protobalanus and Quercus/Lobatae. Additionally, they confirmed the
presence of the subgenus Cyclobalanopsis, potentially supporting Manchester’s
(1994) report from the Clarno Formation that indicated the presence of this section
in the Paleogene of North America.

Platen (1908) described three species of wood of the evergreen oak type from the
late Eocene of California: Quercinium anomalum, Q. solderderi, and Q. wardii.
Q. anomalum was later reassigned to Quercoxylon anomalum (Platen)
Mädel-Angeliewa (Mädel-Angeliewa 1968), while Quercinium wardii was reas-
signed to Lithocarpoxylon wardii (Platen) Suzuki and Ohba (InsideWood 2004 and
onward). The morphogenus Quercoxylon was described by Kräusel (1939)
including fossil wood resembling Quercus/Lithocarpus. InsideWood accepts the
two transfers to Quercoxylon but refers to Lithocarpoxylon as a synonym.

3.3.2.2 The Oligocene

A great number of oak species have been described in Oligocene North American
floras, mainly from leaf remains. Becker monographed several floras in closely
adjacent Oligocene basins in southwestern Montana, reporting 9 taxa (Becker 1961,
1969, 1973). More recent work (Lielke et al. 2012) confirms that these floras fall at
the Eocene–Oligocene boundary or the early Oligocene. From the Ruby Basin,
Becker (1961) recognized Q. brooksi Becker, Q. consimilis Newberry, Q. convexa
Lesq., and Q. mohavensis Axelrod. From the Beaverhead Basins and the York
Ranch Flora (Becker 1969, 1973), five species that are widespread and are also
common in the Neogene have been described: Q. eoprinus Smith, Q. prelobata
Condit, Q. pseudolyatra Lesq., Q. winstaleyi Chaney (=Q. columbiana Chaney per
Buechler, et al. 2007), and Q. dispersa (Lesq.) Axelrod.

The posited modern relatives of these species include members of sections
Lobatae, Protobalanus and Quercus. Interestingly, Q. prevariabilis Becker that was
described in the Beaverhead Basins, was compared with five living species, four of
which (Q. acutissima Carruthers, Q. chinensis Bunge, Q. variabilis Blume, Q.
bungeana F. B. Forbes [a synonym of the preceding] and Q. chenii Nakai), are all
of group Cerris. One living relative species (Q. serrata Thunb.) was in section
Quercus. If the dominant group of modern relatives is correct, this is the only record
of group Cerris we are currently aware of in North America.

From the Early Oligocene Bridge Creek flora of Oregon, Meyer and Manchester
(1997) recognized leaves of Quercus berryi Trelease at three localities, and Q.
consimilis Newberry at seven localities. Additionally they recognized acorns and
cupules at 5 localities as Quercus spp., and suggested their affinities with either
sections Lobatae or Quercus.

In his study of the middle Oligocene Lower Haynes Creek Florule (Idaho),
Axelrod (1998) recognized six new species: Q. bilobata Axelrod, Q. castormontis
Axelrod, Q. haynesii Axelrod, Q. lemhiensis Axelrod, Q. moyei Axelrod, and
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Q. snookensis Axelrod, all based on leaves. Of these, two are allied with section
Protobalanus, one with Quercus and three left with unclear affinities. Three of these
are based upon a single leaf and a fourth upon two specimens. Additionally,
Axelrod reports Q. predayana MacGinitie of section Protobalanus.

Likewise, trigonobalanoid, castaneoid and fagaceous remains occur together in
the Catahoula Formation near Huntsville, east Texas (Daghlian and Crepet 1983;
Crepet 1989; DeVore et al. 2014). There, staminate catkins, leaves, acorns and
woods related to Quercus were collected. Q. oligocenensis was described from
staminate catkins. It possesses in situ pollen and exhibits perianth with features of
extant members of section Lobatae (red oaks). Leaves, placed in Q. catahoulaensis
Daghlian and Crepet, have the aristate tips on their lobes that are also characteristic
of red oaks. In contrast, the acorns found at the Huntsville site, designated
Q. huntsvillensis Daghlian and Crepet, have cupulate scales more like those of
white oaks, suggesting both sections (Lobatae and Quercus) were present in the
Oligocene in eastern Texas (Daghlian and Crepet 1983; Crepet 1989; DeVore and
Pigg 2010; DeVore et al. 2014). The Catahoula Formation also has yielded petrified
wood compared to that of extant Q. virginiana (“live oak”) from Jasper County,
east Texas (Singleton 2001). However, confirmation of the details of this material is
needed.

3.3.2.3 The Neogene

Western North America

Based on primarily on leaves, the fossil record of Quercus indicates it was thor-
oughly established in the central Rocky Mountains in the later Paleogene with
sections Lobatae, Protobalanus, Quercus and, possibly, group Cerris present
(Becker 1961, 1969, 1973; Bouchal et al. 2014). The Neogene record is dominated
by leaf floras preserved in ash fall and aqueous settings from the Pacific Northwest
to southern California, but it is notable that these Neogene records generally cease
at the western margin of the Rocky Mountains, although rare records of Quercus
pollen occur in the Neogene of Colorado and Wyoming (Leopold and MacGinitie
1972).

Acorns occur as compressions in Neogene floras (e.g., Condit 1944; Smiley and
Rember 1985) but are often not well enough preserved to permit identification to
section or comparison with living species. Axelrod assigned several acorns from the
Miocene of Nevada to Q. hannibali Dorf of section Protobalanus, although these
exhibit varying degrees of detail (see Axelrod 1956 [pl. 28, Fig. 6], 1985 [pl. 25,
Fig. 7], 1991 [pl. 12, Figs. 4–5]). Others offer better preservation, e.g. acorns in
their cups attached to a twig from the Miocene Succor Creek Flora illustrated in
Taylor and Taylor (1993, Fig. 22.89; Plate 3.1 1).

Borgardt and Pigg (1999) examined over 120 specimens of acorns from the
middle Miocene of Washington. These are preserved in exquisite detail, including a
range of developmental stages from very small, presumably young (or possibly
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aborted) fruits to mature ones containing embryos. Of these, 55 specimens were
serially sectioned (Plate 3.1 4, 6). Twenty-six were assigned to Q. hiholensis
Borgardt and Pigg, of section Quercus, based on the superior position of the sur-
viving and developed ovule, position of the stylopodium, and the shape of the
involucre scales. Within the white oaks, Q. hiholensis is interpreted as an annual
fruiting oak on the basis of its reduced perianth parts, in contrast to the larger,
interlocking perianth segments of biennial fruiting oaks (Borgardt and Pigg 1999).
The remaining specimens were designated as Quercus sp.

The Neogene wood record for western North American Quercus includes several
Miocene and Pliocene localities. Platen (1908) reported Q. lesquereuxii from the
Pliocene of California; this was later reassigned to Quercoxylon lesquereuxii
(Platen) Mädel-Angeliewa (Mädel-Angeliewa 1968). Webber (1933) described
Quercus ricardensis Webber from the Pliocene Ricardo Formation of southern
California and compared it with the wood of living Q. agrifolia Née (section
Lobatae). Boeshore and Jump (1938) described Quercinium album from the late
Miocene Payette Formation of Idaho allying it with Section Quercus. Prakash
identified three types of oak wood from the middle Miocene Vantage floras of
Washington. The first (Prakash and Barghoorn 1961a) was Quercus leuca Prakash
and Barghoorn, compared with Q. alba L. of section Quercus. The second (Prakash
and Barghoorn 1961b) was Q. sahnii Prakash and Barghoorn, allied with section
Lobatae, and the third (Prakash 1968) as Quercoxylon compactum Prakash.

In their subsequent revision of the Vantage woods, Wheeler and Dillhoff (2009)
suggested these three species were variations of a single type that they referred to
Q. leuca Prakash and Barghoorn of section Quercus. They also remarked that other
informal reports of red oak woods from the Columbia Plateau basalts needed to be
verified by further investigation. Other reports of fossil Quercus wood in western
North America exist (e.g., Call and Tidwell 1988; mid–late Miocene of Nevada).

The two most commonly reported leaf species in the Neogene (Quercus han-
nibali Dorf and Q. simulata Knowlton) both first appear in at the Eocene–Oligocene
boundary in Montana (Becker 1969), but are widespread in the Miocene. Q. han-
nibali occurs in a minimum of 17 Neogene floras including seven floras in Nevada
(Plate 3.2 3), five in California, two in Idaho and three in Oregon, and survives to
3.5 Ma in California. Its suggested affinity is with section Protobalanus. Q. sim-
ulata occurs in a minimum of 22 Neogene floras including eleven in Nevada, four
in California, four in Oregon, two in Idaho and one in Washington and lasts until
7 Ma in Nevada. However, while Q. simulata and its likely synonym Q. consimilis
Newberry (Becker 1969; Fields 1996) are widely attributed to Quercus in the older
literature, there is much uncertainty about the placement of these species. Several
authors have allied Q. simulata (Axelrod 1956; Graham 1965; Becker 1969) and
Q. consimilis (Becker 1961) with Q. myrsinaefolia Blume and Q. salicina Blume
(=Q. stenophylla Makino) of subgenus Cyclobalanopsis. However, Axelrod (1985)
rejected comparison to members of Cyclobalanopsis and instead compared some
examples of Q. simulata to Q. chrysolepis Liebmann in section Protobalanus, while
reassigning others to Lithocarpus Blume. Rember (1991) proposed the new com-
bination Lithocarpus simulata (Knowlton) Rember. In an extensive review of the
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Plate 3.1 1 Quercus hannibali Dorf. Acorns in attachment to small twig. Middle–late Miocene
Succor Creek Flora of Idaho and Oregon, USA. Courtesy of Patrick F. Fields and Darlene and
Howard Emry, collectors. Photo courtesy of Steven R. Manchester. Scale: 10 mm. 2 Quercus
paleocarpa Manchester. Middle Eocene Clarno Formation, Oregon, USA (see Manchester 1994).
Photo courtesy of Steven R. Manchester. Scale: 5 mm. 3 Quercus sp. Middle Miocene Brandon
Lignite, Vermont, USA (see Tiffney 1994). Photo courtesy of Bruce H. Tiffney. Scale: 5 mm. 4
Quercus hiholensis Borgardt and Pigg (Paratype), Middle Miocene Yakima Canyon, Washington,
USA. Longitudinal section of anatomically preserved young acorn (see Borgardt and Pigg 1999
for details) Specimen UWBM B4101/93-1. University of Washington, Burke Museum of Natural
History and Culture. Photo courtesy of Kathleen B. Pigg. Scale: 1 mm. 5 Quercus sp. Late (?)
Eocene La Porte Flora, California, USA. Photo courtesy of Bruce H. Tiffney. Scale: 2.5 mm. 6
Quercus hiholensis Borgardt and Pigg (Holotype), Middle Miocene Yakima Canyon, Washington,
USA. Longitudinal section of mature acorn, showing internal anatomy (see Borgardt and Pigg
1999). Specimen UWBM B4101/55126. University of Washington, Burke Museum of Natural
History and Culture. Photo courtesy of Kathleen B. Pigg. Scale: 2.5 mm
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species, Fields (1996) suggested that it is not clear if the affinity of Q. simulata/
consimilis lies with Quercus, Castanopsis or Lithocarpus. Because of this uncer-
tainty, we have not included occurrences of Q. simulata or Q. consimilis in
recounting the diversity of species and sections in the following paragraph.

Of the species of Neogene Quercus that we have tallied (and we emphasize that
this summation is not complete), 13 occur only at a single locality. Five of these
species occur in floras in California. Idaho, Nevada, Oregon and Washington each
have two floras hosting a unique species. Another 17 Neogene species occur in two
to seven floras: twelve in California, four in Nevada, three in Oregon and two in
Idaho and one in Alaska. It is of note that, of the 30 species that first appear in the
Neogene, about half (16) appear between 18 and 15 Ma, another ten between
13.5 Ma and *11 Ma, three at *9 Ma and one at 6 Ma.

Of the species that appear between 18 and 15 Ma, six are ascribed to section
Quercus, six to section Lobatae and four to section Protobalanus. Of these early
species in section Protobalanus, three first appear in California and one in Nevada.
Six species in section Lobatae first appeared between 18 and 15 Ma in California,
Nevada and Oregon, while two species in section Quercus first appeared in
California and two in Oregon, and single species first appearing in Idaho and
Alaska. Of the ten species that appeared between *12 and *9 Ma, seven first
appeared in California, six of which were in section Quercus. From this limited data
set, it would not appear possible to infer any patterns of changing sectional diversity
through the Neogene or across geography.

This pattern of diversification of new species in the Miocene of western North
America could be quite reasonably interpreted as reflecting an evolutionary radia-
tion of oaks involving all three sections. However, it also possible that this apparent
diversification could result from a taphonomic bias that creates a false timing signal.
This was a time of active volcanism and tectonic changes in western North America
creating ash falls and depositional basins. Consequently, it is possible that the
upsurge in new species reflects the greater availability of preservational environ-
ments, and in fact, some or many of the species might have evolved earlier but not
been preserved. Certainly, Oligocene and earliest Miocene floras are not as
numerous west of the Rocky Mountains as are middle and later Miocene floras.

Eastern and Central North America

The Neogene record is represented largely by pollen in eastern North America.
Further, there is a lack of fossil Neogene floras in the central portion of the con-
tinent. Consequently, it is difficult to track the dynamics of the changing ranges of
the various sections of the genus on a continental basis. Pollen of Quercus is
widespread in the Neogene of eastern North America from the Gulf Coast along the
Atlantic coast to New England (see Hall et al. 1980; Ochoa et al. 2012, Appendix F;
Baumgartner 2014). While widespread, the current data lack the precision to
identify the sections present.
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Fruits are reported in three cases. One morphology of acorn, accompanied by
three types of leaves, occurs in the late Miocene Brandywine flora of Maryland
(McCartan et al. 1990), although neither fruit nor foliage are attributed to section.
Similarly, two apparent acorn morphologies are present in the late early Miocene
Brandon Lignite of Vermont, both tentatively attributable to section Lobatae
(Tiffney 1977), however these have not been studied in detail (Plate 3.1 3). These
are accompanied by wood (Spackman 1949) and pollen (Traverse 1955). Quercus
virginiana Mill. leaves and associated acorns are also noted from the Miocene/
Pliocene Gray Site flora of eastern Tennessee (Liu 2011; Ochoa et al. 2012;
Baumgartner 2014). These occurrences of Q. virginiana post-date the postulated
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divergence date for Quercus section Quercus, subsection virentes, suggested by
Cavender-Bares et al. (2015).

Berry (1909, 1916) noted three species of leaves of Quercus from the Miocene
Calvert Cliffs Formation of Virginia and Washington D.C., allying two with section
Quercus and the third, Q. lehmanni Hollick, with section Lobatae, previously
reported from the Calvert formation of Maryland (Hollick 1904). Stults et al. (2016)
report leaves of sections Quercus and Lobatae from the Miocene Hattiesburg
Formation of Mississippi and Stults and Axsmith (2015, Table 4) reported leaves of
Q. virginiana (section Quercus), and Q. cf. nigra L. and Q. falcata Michaux (both
section Lobatae) from the mid-Pliocene Citronelle Formation of Alabama (see
Plate 3.2 1–2). Berry (1952) summarizes the Pleistocene occurrences of 14 species
of Quercus from the coastal plain of eastern North America. Of the 11 living
species, all are native to eastern North America today.

Central North America has only a few, rare Neogene plant sites, the best known
of which is the middle Miocene Kilgore Flora of Nebraska (MacGinitie 1962). This
flora hosts four species of Quercus, three in section Quercus and one in section
Lobatae. Of these four, two are unique to the Kilgore Flora, one, Q. remingtoni
Condit also occurs in the Miocene (Condit 1944) and Pliocene (Axelrod 1980) of
California, and the last one, Q. argentum Knowlton (which has been synonymized
with Q. turneri) also occurs in the late Miocene of Nevada (Axelrod 1940).
Quercus is conspicuously absent from the Mio-Pliocene floras of the Ogallala
Formation of the High Plains (Chaney and Elias 1936; Thomasson 1987; Gabel

JPlate 3.2 1 Quercus falcata Michaux leaf. Pliocene Citronelle Formation, Alabama, USA. Photo
courtesy of Brian Axsmith. Scale: 10 mm. 2 Quercus virginiana Miller leaf. Pliocene Citronelle
Formation, Alabama, USA. Photo courtesy of Brian Axsmith. Scale: 10 mm. 3 Quercus hannibali
Dorf leaf. Early Miocene Buffalo Canyon Flora, Nevada, USA (see Axelrod 1991). Photo courtesy
of Bruce H. Tiffney. Scale: 5 mm. 4 Pollen of Quercopollenites sp. SEM detail of the scabrate to
verrucate ornamentation of the same pollen grain shown in Fig. 7. Late Miocene La Cerdanya
Basin, Eastern Pyrenees, Spain (see Barrón 1996). Photo courtesy of E. Barrón. Scale: 2 lm. 5
Light microscope photomicrograph of an individual pollen grain of Quercopollenites granulatus
Nagy. Late Miocene La Cerdanya Basin, Eastern Pyrenees, Spain. Photo courtesy of E. Barrón.
Scale: 10 lm. 6 Light microscope photomicrograph of an individual pollen grain of Quercoidites
microhenrici (Potonié) Potonié, Thomson and Thiergart ex Potonié. Late Oligocene As Pontes
Basin, NW Spain (see Casas-Gallego 2017). Photo courtesy of M. Casas-Gallego. Scale: 5 lm. 7
SEM photomicrograph of an individual pollen grain of Quercopollenites sp. Late Miocene La
Cerdanya Basin, Eastern Pyrenees, Spain (see Barrón 1996). Photo courtesy of E. Barrón. Scale:
10 lm. 8 Quercus amethystianum Wheeler, Scott and Barghoorn. Tangential section through
wood showing large and small vessels, wide and narrow rays and fibers. Eocene Amethyst
Mountain, Yellowstone National Park, USA, Photo from InsideWood, Fagaceae, 2054A. Courtesy
of Elisabeth A. Wheeler. Scale: 20 lm. 9 Quercus amethystianum Wheeler, Scott and Barghoorn.
Radial section through wood showing ray (at left), vessel elements (at right) and crossfield pitting.
Eocene Amethyst Mountain, Yellowstone National Park, USA, Photo from InsideWood,
Fagaceae, 2054A. Courtesy of Elisabeth A. Wheeler. Scale: 20 lm. 10 Quercus amethystianum
Wheeler, Scott and Barghoorn. Tangential section through wood showing large ray. Eocene
Amethyst Mountain, Yellowstone National Park, USA, Photo from InsideWood, Fagaceae,
2054A. Courtesy of Elisabeth A. Wheeler. Scale: 20 lm
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et al. 1998), and the early Pliocene Pipe Creek Flora of Indiana (Farlow et al. 2001;
Shunk et al. 2008; Ochoa et al. 2016).

Central America

Currently Quercus occurs in upland portions of Central America, south to the
northern Andes. The history of this spread is currently recorded by a sparse pollen
record. The oldest, though possibly suspect, record is from the early middle
Miocene Mendez Flora of northern Chiapas, Mexico (Graham 1999b). This is
followed by Miocene-Pliocene records from the Padre Miguel Group of Guatemala
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and the Mio-Pliocene Gatun Formation of Panama (Graham 1999b). In the
northernmost Andes (near Bogota), the first appearance of the genus is at
478,000 years ago, becoming established by 330,000 years ago (Van’t Veer and
Hooghiemstra 2000).

3.3.3 Europe and Western Asia: Eocene through Pliocene

In the European continent, the genus Quercus is represented currently by 25–29
species grouped in the subgenus Quercus in groups Ilex (=Sclerophyllodrys), Cerris
and Quercus (Schwartz 1964). The latter comprises the highest number of taxa (ca.
18 species) and it is widely widespread in Europe, including emblematic species in
Europe such as Q. robur. Regarding the Ex-USSR territory, its modern flora has
only 18 native species, all of them belonging to subgenus Quercus. Groups Ilex and
Cerris are mainly distributed in the Mediterranean region and include a few ev-
ergreen taxa (e.g., Q. ilex and Q. suber) (Schwartz 1964).

3.3.3.1 The Eocene

The fossils assigned to Quercus for the Eocene show that the genus was well
diversified and widespread during this period in Europe. The earliest occurrences
come from the Arctic regions of Greenland.

The first occurrence of Quercus in this area is indicated by McIntire (1991), who
mentions the occurrence of pollen of the section Lobatae/Quercus in the Axel
Heiberg Island, ca. 45 Ma. From the same sediments, McIver and Basinger (1999)
identified as “?Trigonobalanus”, a set of leaves and cupules that could be also

JPlate 3.3 1 Quercus alexeevii Pojarkova. Late Oligocene of Ashutas, Kazakhstan. Komarov
Botanical Institute, St. Petersburg, Russia: coll. 2113, sample 1335. Scale: 5 mm. 2 Quercus
palaeoserrata Iljinskaja. Early-middle Miocene of Kiin-Kerish, Zaisan Depression, East
Kazakhstan. Komarov Botanical Institute, St. Petersburg, Russia: coll. 4337, sample 206. Scale:
5 mm. 3 Quercus protopontica Iljinskaja. Early-Middle Miocene of Kiin-Kerish, Zaisan
Depression, East Kazakhstan. Komarov Botanical Institute, St. Petersburg, Russia: coll. 4337,
sample 124. Scale: 5 mm. 4 Quercus kiinkerishica Iljinskaja. Early-Middle Miocene of
Kiin-Kerish, Zaisan Depression, East Kazakhstan. Komarov Botanical Institute, St. Petersburg,
Russia: coll. 4337, sample 138. Scale: 5 mm. 5 Cupule of Quercus sibirica Dorof. Oligocene of
Dunaevskiy Yar, Western Siberia, Russia. Komarov Botanical Institute, St. Petersburg, Russia:
sample 47/4. Scale: 2.5 mm. 6 Acorn of Quercus sibirica Dorof. Oligocene of Dunaevskiy Yar,
Western Siberia, Russia. Komarov Botanical Institute, St. Petersburg, Russia: sample 47/3. Scale:
2.5 mm. 7 Quercus pseudocastanea Göppert emend. Walther and Zastawniak. Early-Middle
Miocene of Kiin-Kerish, Zaisan Depression, East Kazakhstan. Komarov Botanical Institute, St.
Petersburg, Russia: coll. 2113, sample 1394. Scale: 5 mm. 8 Quercus sosnowskyi Kolakovskii.
Pliocene, of Meore-Atara, Abkhaziya. Komarov Botanical Institute, St. Petersburg, Russia: coll.
441, sample 184. Scale: 5 mm
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related to section Lobatae/Quercus as well as cupules with attached nuts in asso-
ciation with Castanea, Fagus and Trigonobalanopsis (Grímsson et al. 2015).

In the western Greenland, in the Aamaruutissaa Member (Lutetian–Bartonian,
ca. 42–40 Ma), seven different pollen types belonging to Quercus have been
identified, which show a clear and notable diversity of the genus since the middle
Eocene (Grímsson et al. 2015). This palynological record has been related with four
different “groups” into the genus: Quercus, Lobatae, Protobalanus and Ilex.
According to Grímsson et al. (2015), the presence of the group Ilex would be
related to an old lineage of this group on the Island.

In central Europe first evidence for pollen related to Quercus (Quercoidites
microhenrici; extinct group of Quercoideae, often related to the genus Quercus),
comes from the late Paleocene of the Polish Lowlands (Grabowska 1996) and from
early Eocene marine strata (Ypresian, NP 12, ca. 51 Ma) of the Wursterheide Well
(N Germany) (Meyer 1989). Quercopollenites asper (Thomson & Pflug)
Kohlman-Adamska and Ziembinska-Tworzydlo, possibly related to the section
Lobatae, was reported from the Messel oil shale, S Germany (ca. 47 Ma; Lenz et al.
2011), and middle Eocene lignite seams of the Helmstedt open cast mine (Lenz
2000).

The first possible European occurrence of Quercus on the basis of cuticular
studies is of middle Eocene age. Quercus subhercynica Walther & Kvaček is
described from a lauroid leaf fragment from sediments from the Königsaue mine of
Germany (Kvaček and Walther 1989). However, this record is regarded as
ambiguous in light of re-examination (Kvaček, personal observation). Quercus
haraldii Knobloch and Kvaček has been described from the Eocene of the Staré
Sedlo Formation in Central Europe. However, the precise diagnosis of these leaves
(Knobloch and Konzalová 1998) also remains uncertain.

Quercus is first recognized in the Iberian Peninsula from pollen grains of the
middle Bartonian Collbàs Formation (Ebro Basin) (Cavagnetto and Anadón 1996).
In the late Eocene (Priabonian), pollen of Quercus has also been identified in the
Ebro Basin (Cavagnetto and Anadón 1996) as well as in a dry area of Central
Europe (Krutzsch et al. 1992). Dry phases of the Bartonian–Priabonian transition
could have been influential in the spread of the xerophilous lineages of oaks
(Cavagnetto and Anadón 1996).

Woods related to Quercus occur beginning in the Eocene (Gregory et al. 2009),
and are included mostly in the fossil genus Quercoxylon (e.g., Privé 1975). The
earliest occurrence in Europe of Quercoxylon (Q. sempervirens Gottwald) is from
the Eocene of Germany (Gottwald 1966). Eocene fossil wood assigned to
Quercinium has also been reported from Great Britain, for instance Quercinium
porosum Brett, a silicified wood from the sands of the Woolwich and Reading
Series, and Q. pasanioides Brett, a calcified wood from the London Clay (Brett
1960).

Staminate catkins and stellate trichomes with clear affinities with Quercus are
preserved in Baltic ambers (middle Eocene, ca. 44 Ma sensu
Kosmowska-Ceranowicz 1987) of northern Europe and Russia. Staminate flowers
of Quercus meyeriana (Göppert and Berendt) Unger and Q. taeniato-pilosa
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Conwentz were described and figured by Conwentz (1886), Friis and Crepet (1987)
and Sadowsky et al. (2015). However, according to Nixon (1993), these fossils
need further investigation since they occur in association with fruits of
trigonobalanoid aspect.

A diverse array of leaf species of Quercus commonly occurs in the Eocene floras
of Eurasia. Borsuk (1956) indicates the existence of two species, Q. rectinervis
Borsuk and Q. olafsenii Heer, in the early Eocene of Sakhalin. Beginning in the
mid-late Eocene, records of the genus are widespread in Eurasia and locally played
an important role in the ecosystems. One of the most commonly distributed oaks
from the late Eocene of the European part of Russia was Q. pseudoneriifolia
Vikulin. This common species is related to the section Lobatae, and has linear
lanceolate leaves with an entire margin (Vikulin 2011). The stratigraphic range of
this species extends into the late Miocene in European Russia, northern of
Kazakhstan, Ukraine, Georgia and Azerbaijan (Avakov 1979; Iljinskaja 1982).

In the Eocene of northern Kazakhstan, several common species with sclero-
phyllous leaves were described, including Q. korniloviae Makul. from the middle
Eocene of Karasor and Q. takyrsoriana Makul. from the late Eocene of Takuirsor
(Iljinskaja 1982). However, oaks are not present at the end of Eocene in the eastern
part of Kazakhstan where floras were dominated by Dryophyllum. This genus
completely disappeared at the turn of the Eocene–Oligocene and was replaced in
the early Oligocene by a wide variety of Fagaceae including numerous oaks such as
Q. palaeoserrata Iljinskaja (Plate 3.3 2), Q. protopontica Iljinskaja (Plate 3.3 3),
Q. kiinkerishica Iljinskaja (Plate 3.3 4) and Q. zaisanica Iljinskaja (Iljinskaja 1991).
These species were characterized by elongated to ovate, toothed leaves similar to
those of the recent East Asian Q. serrata Thunb. and Q. mongolica C. Koch.

Pollen grains of Quercus are common in several localities of the late Eocene of
Kazakhstan, including Q. conferta Boitzova, Q. gracilis Boitzova, Q. graciliformis
Boitzova and Q. sparsa Boitzova (Boitzova and Panova 1966). Likewise, oak
pollen has been cited in the late Eocene of the Ob-Irtysh interfluve in the West
Siberian Plain (Kondinskaya and Yudina 1989). Q. graciliformis and Q. gracilis are
characteristic of many other late Eocene localities of Ukraine, Caucasus,
Kazakhstan, Siberia and the Far East. These two species replaced more ancient
pollen complexes in the Priabonian and disappeared in the early Oligocene. This
change may reflect the climatic cooling at the Eocene–Oligocene border.

3.3.3.2 The Oligocene

Quercus has been identified in a significant number of Oligocene European sites. It
has been reported in Bouches du Rhône, Provence (France), but without further
taxonomic detail or precise age (Chateneuf and Nury 1995), occurring with
mesophilous taxa such as Acer, Ulmus, Carpinus, Juglandaceae, Liquidambar,
Fagus, Cornus, Castanea, etc. Gastaldo et al. (1998) indicated the occurrence of
pollen and leaves of Quercus in the Oligocene materials of the Thierbach member
of the Weißelster Basin (Germany) in association with riparian and mesophilous
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elements. Pollen belonging to groups Cerris and Ilex has been found in fossil floras
from Altmittweida (Saxony, Germany) forming part of late Oligocene–early
Miocene riparian and swamp forest environments around lakes and marshes which
surrounded mesophytic forests (Kmenta and Zetter 2013). In northwest Germany
(Lower Rhine Basin) Quercoidites henrici/microhenrici and Quercopollenites
asper are regularly present in continental to shallow marine Chattian strata of the
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so-called Lower Seam Group, Köln Fm (Von der Brelie et al. 1981). In Denmark,
Oligocene Quercus pollen was found in association with Fagus and Betula pollen
(Larsson et al. 2010). Pollen grains referrable to the Quercus (robur type) and group
Cerris (cerris/crenata type) are reported from the Enspel Maar Lake deposits (W
Germany, late Oligocene, MP 28) (Hermann 2007). Pollen grains found in the
opencast mine at Cospuden (Germany) indicate the presence of two lineages in
Quercus: Ilex and Quercus/Lobatae (Denk and Grimm 2009, 2010) that is in
agreement with the evidence of the macrofossil record (Denk et al. 2012). The
pollen from Cospuden assigned to the group Ilex would be the earliest evidence of
this group for Europe.

For southwestern Europe, pollen attributed to Quercus is represented by
Quercoidites microhenrici (Potonié) Potonié, Thomson and Thiergart ex Potonié
(Plate 3.2 6), Quercopollenites granulatus Nagy, Quercopollenites rubroides
Kohlman-Adamska and Ziembińska-Tworzydło, Verrutricolporites irregularis
Roche and Schuler, and V. theacoides Roche and Schuler in the Rupelian of the
northwestern Iberia (Casas-Gallego 2017). Likewise, a palynological record
assigned to the Q. ilex-coccifera type (Sarral Formation) has been cited for the Ebro
basin (Cavagnetto and Anadón 1996).

Ovate-lanceolate leaves with an entire margin have been related to a large
number of oak species (e.g., de Saporta 1865, 1867; Sanz de Siria 1992). For
example, leaves of this type are found at the early Oligocene Cervera site (Ebro
Basin, Spain) where an oak-laurel forest vegetation developed (Sanz de Siria 1992;
Barrón et al. 2010). Leaf remains attributed to Quercus were assigned to seven
different species, but require a comprehensive revision that assesses cuticular
features.

Cuticular studies reveal that many of the supposed laurel-like oak species cannot
be confidently attributed to Quercus. According to Kvaček and Walther (1989),

JPlate 3.4 1 Quercus mediterranea Unger. Late Miocene of Erdőbénye-Barnamáj, Hungary.
Hungarian Natural History Museum, Budapest, Hungary: specimen BP 54.83. Photo courtesy of
Boglárka Erdei. Scale: 10 mm. 2 Quercus hispanica Rérolle emend. Barrón, Postigo-Mijarra and
Diéguez. Late Miocene La Cerdanya Basin, Eastern Pyrenees, Spain. Museo Geominero, Madrid,
Spain: specimen MGM 1046 M. Scale: 10 mm. 3 Quercus faginea Lam. Pleistocene, Tubilla del
Agua outcrop, Burgos, Spain. Collection of R. Iglesias-González: specimen TAG-TP-85. Photo
courtesy of Raúl Iglesias-González. Scale: 10 mm. 4 Quercus drymeja Unger. Late Miocene La
Cerdanya Basin, Eastern Pyrenees, Spain. Museu de Geologia de Barcelona, Barcelona: specimen
MGB V9522. Scale: 10 mm. 5 Quercus drymeja Unger. Late Miocene La Cerdanya Basin,
Eastern Pyrenees, Spain. Museo Geominero, Madrid, Spain: specimen MGM 1064 M. Scale:
10 mm. 6 Impression of a cupule of Quercus sp. occurring with leaves of Quercus rhenana. Early
Miocene Most Basin, Vršovice, Louny Distric, North Bohemia, Czech Republic (see Kvaček and
Hurník 2000). National Museum, Prague, Czech Republic: specimen NM G 1937. Photo courtesy
Zlatko Kvaček. Scale: 3 mm. 7 Quercus rhenana (Kräusel and Weyland) Knobloch and Kvaček.
Early Miocene Bílina mine, Most Basin, North Bohemia, Czech Republic. National Museum,
Prague, Czech Republic. Photo courtesy of Zlatko Kvaček. Scale: 10 mm. 8 Quercus neriifolia A.
Braun ex Unger. Late Miocene La Cerdanya Basin, Eastern Pyrenees, Spain. Museu de Geologia
del Seminari de Barcelona, Barcelona: specimen MGSB 69428. Photo courtesy of Evaristo
Aguilar. Scale: 10 mm
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Quercus lyellii Heer, from the European Oligocene, is now included into the
morphogenus Dryophyllum Debey ex Saporta as D. furcinerve (Rossmässler)
Schmalhausen forma lyellii (Heer) Kvaček and Walther (i.e., Eotrigonobalanus
furcinervis). The fossil genus Dryophyllum includes leaves that were believed
initially to be fagaceous, but are now partially considered within the Juglandaceae
(Jones and Dilcher 1988; Jones et al. 1988).
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Quercus rhenana (Kräusel and Weyland) Knobloch and Kvaček is a well-known
evergreen oak with laurel-like leaves (Plate 3.4 7), cyclocytic stomata and massive
hair-bases. According to Knobloch and Kvaček (1976) and Kvaček and Walther
(1989), it belongs most probably to the section Lobatae and was distributed in
Central Europe from the Oligocene to the middle Miocene. This species had
importance in the formation of Miocene lignites (Kovar-Eder et al. 1998). It
inhabited river-banks and swampy areas, sometimes as the dominant species
(Kvaček 1998; Kovar-Eder et al. 2001). The presumed ancestor of this species was
the Oligocene Q. praerhenana Walther and Kvaček, which differs by the archi-
tecture of its leaves and the lack of trichomes on its cuticle (Walther 1999).

European Oligocene oaks with toothed leaf margins are mainly referred to Q.
lonchitis Unger and Q. praekubinyii Walther and Kvaček, both of which have been
compared to the group Cerris (Mai and Walther 1991; Walther 1999). These
species inhabited mixed mesophytic forests with more than 50% evergreen ther-
mophilous elements. Similarly, Q. cerverensis Sanz de Siria was an element of the
Iberian evergreen sclerophyllous-laurophyllous formations together with Lauraceae
and Fabaceae during the early Oligocene (Sanz de Siria 1992). The Oligocene Q.
pseudoalexeevii Vikulin, from European Russia, possessed sharp teeth (Vikulin
1987). This species was replaced in the mid-Oligocene–Miocene of the east Russia
and Kazakhstan by Q. alexeevii Pojarkova (Plate 3.3 1) that showed rather similar
leaves (Iljinskaja 1982). The record of Q. furuhjelmii? Heer from the late Oligocene
of Kazakhstan and Western Siberia seems to be the first one for oaks with robur-
like leaves. According to Menitsky (1969), it could be the possible ancestor of the
modern section Quercus. Cupules of this section attributed to the species Q.
parazaisanica Iljinskaja and perhaps to Q. sibirica Dorof (Plate 3.3 5–6) have been

JPlate 3.5 1 Cuticle of Quercus roburoides Gaudin showing anomocytic stomata and hair basis.
Pliocene of Frankfurt, Germany. Forschungsinstitut Seckenberg, Frankfurt am Main, Germany.
Specimen: SM B 11805.2. Photo courtesy Zlatko Kvaček. Scale: 50 lm. 2 Cuticle of the same
specimen (SM B 11805.2) of Quercus roburoides showing stellate hairs. Photo courtesy of Zlatko
Kvaček. Scale: 50 lm. 3 Mummified leaf of Quercus roburoides Gaudin. Pliocene of
Willershausen, Germany. Forschungsinstitut Seckenberg, Frankfurt am Main, Germany.
Specimen: SM B 11831. Photo courtesy of Zlatko Kvaček. Scale: 10 mm. 4 Quercus
praeerucifolia Straus. Pliocene of Willershausen, Germany. Staatliches Museum für Naturkude
in Stuttgart, Germany. Specimen: SM B 15142. Photo courtesy of Zlatko Kvaček. Scale: 10 mm. 5
Quercus roburoides showing detail of stellate hairs seen in Fig. 3.2. Photo courtesy of Zlatko
Kvaček. Scale: 50 lm. 6 Quercus praeerucifolia Straus. Pliocene of Willershausen, Germany.
Staatliches Museum für Naturkude in Stuttgart, Germany. Specimen: SM B 151413. Photo
courtesy of Zlatko Kvaček. Scale: 10 mm. 7 Mummified leaf of Quercus praecastaneifolia
Knobloch. Pliocene of Willershausen, Germany. Staatliches Museum für Naturkude in Stuttgart,
Germany. Specimen: SM B 11850. Photo courtesy of Zlatko Kvaček. Scale: 10 mm. 8 Quercus
pseudorobur Kováts (Holotype). Late Miocene of Erdőbénye-Barnamáj, Hungary. Hungarian
Natural History Museum, Budapest, Hungary: specimen BP 62.21.1. Photo courtesy of Boglárka
Erdei. Scale: 10 mm. 9 Quercus kubinyii (Kováts ex Ettingshausen) Berger (Syntype). Late
Miocene of Erdőbénye-Barnamáj, Hungary. Hungarian Natural History Museum, Budapest,
Hungary: specimen BP 64.95.1. Photo courtesy of Boglárka Erdei. Scale: 10 mm
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Plate 3.6 1 Quercus kobatakei Tanai and Yokoyama. Eocene-Oligocene, Kobe, Hyogo, Japan.
National Museum of Nature and Science, Kyoto, Japan. Specimen: NSM PP-26969. Photo
courtesy of Dr. Atsushi Yabe. Scale: 10 mm. 2 Quercus sichotensis Ablaev and Gorovoi.
Eocene-Oligocene, Kobe, Hyogo, Japan. National Museum of Nature and Science, Kyoto, Japan.
Specimen: NSM PP- 16357. Scale: 10 mm. 3 Quercus ussuriensis Kryshtofovich. Early
Oligocene, Wakamatsuzawa, Hokkaido, Japan. National Museum of Nature and Science,
Kyoto, Japan. Specimen: NSM PP- 16353. Scale: 10 mm. 4 Quercus ishikariensis Tanai. Late
middle Eocene, Yubari, Hokkaido, Japan. National Museum of Nature and Science, Kyoto, Japan.
Specimen: NSM PP- 10585. Scale: 10 mm. 5 Quercus kitamiana Tanai. Early Oligocene,
Wakamatsuzawa, Hokkaido, Japan. National Museum of Nature and Science, Kyoto, Japan.
Specimen: NSM PP- 10635. Scale: 10 mm. 6 Cyclobalanopsis ezoana Tanai. Early Oligocene,
Wakamatsuzawa, Hokkaido, Japan. National Museum of Nature and Science, Kyoto, Japan.
Specimen: NSM PP- 10634. Scale: 10 mm. 7 Cyclobalanopsis nagatoensis Tanai and Uemura.
Late Oligocene, Noda, Yamaguchi, Japan. National Museum of Nature and Science, Kyoto, Japan.
Specimen: NSM PP- 10374. Scale: 10 mm

68 E. Barrón et al.



found in the Oligocene of Kazakhstan and Western Siberia, respectively (Iljinskaja
1982, 1991).

European Oligocene woods assigned to Quercoxylon also have been identified.
Examples include Q. intermedium Petrescu and Velitzelos from Romania (Iamandei
et al. 2012) and Q. bavaricum Selmeier and Q. lecointrei Gazeau & Koeniguer from
France (Limagne at Bussières, Puy-de-Dôme) (Privé-Gill et al. 2008). The earliest
woods assigned to Quercus from North Africa (Sahara and Egypt) are of Oligocene
age (Biondi et al. 1985), namely Quercoxylon retzianum Kräusel, which is known
only from the Petrified Forest of El Cairo (Kräusel 1939; El-Saadawi et al. 2011).
This taxon formed part of a plant community in which taxa currently widespread in
savanna environments of Africa were common (e.g. Bombacoxylon,
Terminalioxylon, Dalbergioxylon or Detarioxylon). Another post-Eocene species
also described for the North Africa (Algeria) is Q. gevinii Boureau
(Dupéron-Laudoueneix and Dupéron 1995). Quercinium has been recorded in the
Oligocene of several localities of Azerbaijan as Q. uniradiatum (J. Felix) Jarm., but
cannot be attributed to a particular section of Quercus (Iljinskaja 1982).

3.3.3.3 The Neogene

Evergreen oaks with laurel-like leaves are prominent in the early Miocene. For
example, Q. neriifolia A. Braun ex Unger is a poorly studied species related to the
section Lobatae (Plate 3.4 8), which was found at several locations of southern
Europe (Brambilla and Penati 1987; Barrón et al. 2014). In the Pannonian of
Eastern Styria (Austria), Kovar-Eder and Hably (2006) described the species
“Quercus” rhenanasimilis which is similar to Q. rhenana but with different
cuticular features. Likewise, in the Piazencian of Meximieux (eastern France), de
Saporta and Marion (1876) described the species Q. praecursor that they related to
the holm oak (Q. ilex, group Ilex). Quercus praecursor has sclerophyllous laminae
and is one of the last oaks with laurel-like leaves in the Neogene of Europe.
Unfortunately, the lack of epidermal studies prevents us from being able to relate
Q. praecursor to a particular section of extant oaks.

The occurrence of a ring-cupped oak, Cyclobalanopsis stojanovii Palamarev and
Kitanov, in the early Pliocene of the Beli Brjag coal Basin (Bulgaria) is remarkable
(Palamarev and Kitanov 1988). This species has elliptical leaves with a serrate
margin and craspedodromous venation. It is considered as an endemic of the me-
sophytic Pliocene East European forests, which were distinguished by numerous
species of Fagaceae (Palamarev and Ivanov 2003).

The oaks with toothed or lobed leaf-margins of the group Cerris such as
Q. kubinyii (Kovats ex Ettingshausen) Berger (Plate 3.5 9), inhabited Europe from
the early Miocene (Burdigalian) (Teodoridis and Kvaček 2006; Mai 2007) to the
Piazencian (Roiron 1992), and are an important element of the Neogene European
floras. This species has been also found in the early Miocene of Western Siberia, the
middle Miocene of Ukraina and the late Miocene of Abkhasia (Iljinskaja 1982;
Shvaryova and Mamchur 2003). It inhabited both riparian and mesophytic
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environments, as well as forests with a mixture of deciduous and palaeotropical
broad-leaved elements (Kovar-Eder et al. 2001). According to Kvaček et al. (2011),
the living relatives of Q. kubinyii are Q. libani Oliv. from Western Asia, and
Q. variabilis Blume and Q. acutissima Carruth. from China.

Oaks of the group Cerris diversified in Europe through the Neogene, resulting in
a range of toothed or lobed leaf species (Knobloch and Velitzelos 1986; Stephyrtza
1990; Striegler 1992). Q. gigas Göppert emend. Walther and Zastawniak (=Q.
czeczottiae Hummel, Q. pontica miocenica Kubát) and Q. pseudocastanea Göppert
emend. Walther and Zastawniak (Plate 3.3 7) were probably the most relevant oaks
in the leaf assemblages. Both species lived in Europe and Ukraina from the middle
Miocene to the early Pliocene (Iljinskaja 1982; Hummel 1983; Walther and
Zastawniak 1991; Worobiec and Lesiak 1998). Quercus pseudocastanea was also
widespread throughout Russia, northern Caucasus, Armenia, Georgia, Kazakhstan,
Abkhazia and western Siberia (Iljinskaja 1982; Shvaryova and Mamchur 2003).
The first record of Q. pseudocastanea comes from the late Oligocene of Kazakhstan
and Bashkiria (Russia) (Iljinskaja 1982). In addition, Q. cf. pseudocastanea has
been found in the late Pliocene of the Czech Republic (Bůžek et al. 1985).
Sometimes Q. kubinyii, Q. pseudocastanea and Q. gigas occur together in the same
late Miocene localities of Central and southern Europe (Knobloch 1969, 1988;
Meller 1989; Martinetto et al. 2007).

Quercus cruciata Al. Braun in Stitzenberger and Q. buchii Weber from the
Oligocene and Miocene of Europe originally considered members of sections
Quercus or Lobatae (Hantke 1965) have been excluded from the genus Quercus
and transferred on account of differences in the epidermal structure to the fossil
genus Pungiphyllum of uncertain affinities (Frankenhäuser and Wilde 1995).

One of the most widespread pre-Mediterranean elements in Europe was
Q. mediterranea Unger (Plate 3.4 1). It first appears in the upper Oligocene
(Palamarev 1989) and is a typical floral component during the Neogene in all of
Europe. This species shows a set of leaf features that remain fairly stable throughout
the Neogene of western Eurasia (Denk et al. 2017). It was a sclerophyllous, ev-
ergreen tree (Kvaček et al. 2002) whose epidermal structure and leaf morphology
suggest affinities to the recent Q. coccifera L. of the group Ilex (Kvaček and
Walther 1989). In Southern Europe, Q. mediterranea usually co-occurs with
Q. drymeja Unger (Kvaček et al. 1993, 2002; Barrón et al. 2016) from the early/
middle Miocene boundary (Kovar-Eder et al. 2004).

Quercus drymeja was also a sclerophyllous tree showing very polymorphic
leaves (Plate 3.4 4–5; Barrón 1998). The early Miocene specimens attributed to
Q. drymeja are very similar to those of Q. lonchitis Unger (e.g. Knobloch and
Kvaček 1981), which is a species retained for European late Paleogene oaks
(Kvaček et al. 1993). The stratigraphic distribution of Q. drymeja is almost identical
to that of Q. mediterranea. Living relatives of both species are within the group Ilex
(Denk and Grimm 2010). According to Denk et al. (2017), Quercus drymeja and
Q. mediterranea should be considered as part of a morphotype complex that formed
forests in fully humid or summer-wet climates. In several places, these two species
occur during the middle Miocene together with other sclerophyllous species of oaks
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such as Q. zoroastri Unger (e.g. Kovar-Eder et al. 2004; Kvaček et al. 2011).
However, Q. zoroastri is now included into the morphotype complex of Q. drymeja
(as morphotype Q. drymeja zoroastri, see Denk et al. 2017).

It is also interesting to note that Q. drymeja and Q. mediterranea were associated
with pre-mediterranean oaks in the late Miocene. On the one hand, they occur
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together with Q. hispanica Rérolle emend. Barrón, Postigo-Mijarra and Diéguez in
Western Europe (Plate 3.4 2; Grangeon 1953, 1958; Barrón 1998; Barrón et al.
2016). Q. hispanica is similar to several southern European extant species
belonging to the section Quercus, especially Q. humilis Mill., Q. faginea Lam.
spp. faginea and Q. lusitanica Lam (Barrón et al. 2014). On the other hand,
Q. drymeja and Q. mediterranea frequently appear together with Q. sosnowskyi
Kolakovskii in the late Miocene of the Eastern Mediterranean area (Kvaček et al.
2002; Palamarev and Tsenov 2004; Velitzelos et al. 2014). Quercus sosnowskyi has
been related with the cork oak (Q. suber L., group Cerris) by virtue of its epidermal
features, leaf shape and cupules. Q. suber is an emblematic Mediterranean ever-
green, sclerophyllous tree which now inhabits southwestern Europe and the North
of Africa (Magri et al. 2007). However, Q. sosnowskyi is also a characteristic
Neogene element of the Balkan-soutwest Asian area (Plate 3.3 8; Palamarev and
Ivanov 2003). Kolakovskii (1964) considers this extremely polymorphic species as
a possible link between the Chinese and Mediterranean oaks since it dominated a
special type of sclerophyllous forest in the late Miocene of Abkhazia.

From the late Miocene, deciduous red oak (roburoid) species of the section
Quercus inhabited mesophytic forests. The most frequent species in Europe were
Q. pseudorobur Kováts (Plate 3.5 8) and Q. roburoides Gaudin (Plate 3.5 1–3, 5)
while Q. kodorica Kolakovskii was common in Abkhazia (Iljinskaja 1982; Van der
Burgh 1993; Hably and Kvaček 1998; Knobloch 1998; Kvaček et al. 2008;
Teodoridis et al. 2015). The two first species differ in cuticular aspects and can be
related to the extant Q. petraea (Mattuschka) Lieblein and Q. hartwissiana Steven.
During the Pliocene, roburoid species are usually associated with oaks of the group

JPlate 3.7 1 Quercus tibetensis Xu, Su and Zhou. Late Miocene of Tibet, China. Xishuangbanna,
Tropical Botanical Garden, Chinese Academy of Sciences, China. Specimen: 2014009. Scale:
10 mm. 2 Quercus praedelavayi Xing and Zhou (Holotype). Late Miocene of Xianfeng flora,
central Yunnan province, southwestern China (see Xing et al. 2013). Xishuangbanna, Tropical
Botanical Garden, Chinese Academy of Sciences, China. Specimen: HLT 450A. Scale: 10 mm. 3
Quercus sinomiocenica Hu and Chaney, Late Miocene Xiaolongtan Formation of Yunnan, China.
Nanjing Institute of Geology and Palaentology, Chinese Academy of Sciences, China. Specimen:
nj198503. Scale: 10 mm. 4 Quercus tenuipilosa Hu and Zhou. Late Pliocene Ciying Formation in
Kunming, Yunnan province, southwestern China. Kunming Institute of Botany, Chinese Academy
of Sciences, China. Specimen: HST254 HLT. Scale: 10 mm. 5 Quercus tenuipilosa Hu and Zhou.
Late Pliocene Ciying Formation in Kunming, Yunnan province, southwestern China. Kunming
Institute of Botany, Chinese Academy of Sciences, China. Specimen: HST 751. Scale: 10 mm. 6
Quercus preguyavaefolia Tao. Late Pliocene, Yunnan, China. Paleoecology Laboratory,
Xishuangbanna, Tropical Botanical Garden, Chinese Academy of Sciences, China. Specimen:
YP 109. Scale: 10 mm. 7 Quercus preguyavaefolia Tao. Late Pliocene, Yunnan, China.
Paleoecology Laboratory, Xishuangbanna, Tropical Botanical Garden, Chinese Academy of
Sciences, China. Specimen: YP109 YP 10901. Scale: 10 mm. 8 Quercus praedelavayi Xing and
Zhou (Holotype, counterpart). Late Miocene of Xianfeng flora, central Yunnan, China.
Xishuangbanna, Tropical Botanical Garden, Chinese Academy of Sciences, China. Specimen:
HLT 450B. Scale: 10 mm
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Cerris such as Q. kubinyii, Q. praecastaneaefolia Knobloch (Plate 3.5 7) or
Q. praeerucifolia Straus (Plate 3.5 4, 6).

At the end of the Pliocene, leaves similar to recent species such as Q. coccifera,
Q. ilex, Q. cerris L, Q. canariensis Willd., Q. robur L. and Q. suber have been
described by several authors (Depape 1912; Iljinskaja 1982; Roiron 1992). The lack
of epidermal studies prevents us from confirming these identifications with cer-
tainty. However, the presence of red oaks in the Pleistocene of Europe and North
Africa is accepted by a number of palaeobotanists (see e.g., Arambourg et al. 1953;
Follieri 1979; Roiron 1983; Martinetto et al. 2014).

Quercus is identified from pollen grains throughout the Neogene (Plate 3.2 4–7).
The pollen species Quercoidites henrici (Potonié) Potonié, Thomson and Thiegart
ex Potonié and Q. microhenrici (Potonié) Potonié, Thomson and Thiegart ex
Potonié, (Plate 3.2 6) usually recorded from the Paleogene to Pliocene (e.g., Benda
1971; Chateauneuf 1972; Sittler and Schuler 1974; Solé de Porta and de Porta 1977;
Valle and Civis 1978; Pais 1979; Sittler 1984; Kohlman-Adamska 1993; Alcalá
et al. 1996; Alcalá 1997; Barrón et al. 2006; Stuchlik et al. 2014), may represent
ancient thermophilous oak types of unknown affinity (Doláková 2004; Stuchlik
et al. 2014).

Pollen of section Quercus was recorded in the early/middle Miocene transition
of Poland (Stuchlik et al. 2014). Quercopollenites porasper (Pflug)
Kohlman-Adamska & Ziembińska-Tworzydło was described in the locality of
Chłapowo. This form was similar to the pollen of Q. robur L. while
Quercopollenites sculptus Kohlman-Adamska & Ziembińska-Tworzydło and
Q. granulatus (Plate 3.5), may be related to Q. petraea and Q. frainetto Ten. From
the middle Miocene, pollen of the section Lobatae (Quercopollenites asper [Pflug
and Thomson in Thomson and Pflug] Kohlman-Adamska & Ziembińska-
Tworzydło and Q. rubroides Kohlman-Adamska & Ziembińska-Tworzydło) is
recorded in central, eastern and southern Europe (Alcalá et al. 1996; Ashraf et al.
1996; Slodkowska 2004; Ivanov et al. 2007; Stuchlik et al. 2014). In central
European early to middle Miocene lignite deposits such as the Rhenish Main Seam,
Lower Rhine Basin (Germany), both morphotypes may attain very high proportions
of over 50% of non-bisaccate pollen (Von der Brelie 1968), and have a clear affinity
to wet forest swamp vegetation including as well Taxodium (Huhn et al. 1997).

The pollen type Quercus ilex-coccifera also has been identified in Neogene
sediments (e.g., Bessedik 1984, 1985; Zheng 1990; Jiménez-Moreno et al. 2005;
Jiménez-Moreno and Suc 2007). In the Langhian of Northern Africa (Northeastern
Tunisia) pollen of Q. ilex-coccifera type and Q. suber is very common, suggesting
the source plants were important components of the sclerophyllous forest (Moktar
and Mannaï-Tayech 2016). However, the lack of illustrations of this pollen type in
the most consulted works prevents us to relate it to the group Ilex. Recently, pollen
of the group Ilex was identified in the Portuguese Piacenzian (Vieira et al. 2011)
with Scanning Electron Microscopy (SEM).

Generally, the pollen of Quercus becomes common in palynological assem-
blages in the middle Miocene. It can comprise up to 15% of assemblages in the
Langhian (Bessedik 1984; Kohlman-Adamska 1993; Gardère and Pais 2007;
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Jiménez-Moreno 2006), and can exceed this value from the Serravalian
(Jiménez-Moreno 2006; Barrón et al. 2010). In the Piacenzian, the Mediterranean
seasonality was established in South Europe (Suc and Cravatte 1982; Bessais and
Cravatte 1988). Late Pliocene pollen spectra thus present conspicuous percentages
of evergreen Quercus that sometimes surpass the values of deciduous oaks in
several sites of the Mediterranean region (Suc 1980; Barrón et al. 2010;
Jiménez-Moreno et al. 2013).

Oak fruits (acorns) are common in the European late Neogene (e.g., Plate 3.4 6).
Different types of acorns have been described in older works (see e.g. Göppert
1855; Massalongo and Scarabelli 1859; de Saporta 1888; Grangeon 1958).
However, most of the fruits studied correspond to the group Cerris and the section
Quercus (Günther and Gregor 1997). Frequently, acorns are represented by frag-
ments of cupules whose identification is problematic. Generally, they are not
attached to leafy twigs, and are usually detached from their cupules.

Several types of cupules have been found that have conspicuous scales that
relate them to the group Cerris (Iljinskaja 1982; Hummel 1983; Walther and
Zastawniak 1991). These include Q. kustanaica Kornilova and Q. popovii
Kornilova from the early Miocene of Kazakhstan; Q. cerrisaecarpa Kolakovskii
and Q. microcerrisaecarpa Kolakovskii from the late Miocene of Abkhazia; and
Q. sapperi (Menzel) Mai ex Hummel, Q. variabilis Hummel and Q. microcer-
risaecarpa from the late Miocene and early Pliocene of Poland. The Polish species
have also been found associated with Q. kubinyii in the Pliocene of Hungary (Hably
and Kvaček 1997). Roburoid oaks of the section Quercus are well represented by
cupules of Q. robur and Q. petraea types in late Miocene and Pliocene of Central
and South Europe (Van der Burgh 1997; Martinetto 2015).

The morphogenus Quercoxylon has been cited widely in the Neogene (e.g.
Böhme et al. 2007; Iamandei et al. 2011). For example, in the late Miocene of
Goznica (SW Poland), Dyjor et al. (1992) described a specimen of Quercoxylon
sp. that may be related to Q. cerris. A large number of European Miocene fossil
woods related to Quercus were described as Quercoxylon bavaricum Selmeier, a
form that has been related to the extant Q. robur (Iamandei et al. 2011). In the
Tortonian of Portugal and the Pliocene of the Northwestern Spain, woods attributed
to the cork oak (Q. suber) were identified in older studies (de Carvalho 1958;
Losa-Quintana 1978). However, these woods should be revised in comparison with
other species of the group Cerris. Occurrences of Neogene woods in the territory of
ex-USSR are not numerous. They are limited to two Ukrainian species of
Quercinium, Q. rossicum Merckl. and Q. montanum (Merckl.) J. Felix (Iljinskaja
1982).

3.3.4 East Asia: Eocene through Pliocene

The Flora of China considers Quercus and Cyclobalanopsis as separate genera
(Huang et al. 1999) based on whether the cupule is imbricate-scaled or lamellate,
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respectively (Camus 1936–1954). However, other sources often consider
Cyclobalanopsis a subgenus of Quercus, as we do here. Today China is the current
center of diversity for Subgenus Cyclobalanopsis with 69 species in subtropical and
tropical areas (Fig. 3.2), of which 43 are endemic. In addition, there are 35 species
of the subgenus Quercus in China, with 15 of them endemic (Huang et al. 1999).
Fifteen oak species now inhabit Japan. Seven of these belong to the subgenus
Quercus and 8 to the subgenus Cyclobalanopsis, with two species of
Cyclobalanopsis endemic to Japan.

3.3.4.1 The Eocene

In Japan the earliest, unequivocal occurrence of Quercus is Cyclobalanopsis naitoi
Huzioka from the late middle Eocene (early Bartonian) Ube flora in western Japan,
represented by leaves and compressed acorns (Huzioka and Takahashi 1970; Tanai
1995). The second oldest record is Q. ishikariensis Tanai (leaves, Plate 3.6 4) and
Q. sp. (cupule) from the Ikushunbetsu Formation (middle Bartonian) in Ishikari,
Hokkaido (Tanai 1995). Tanai (1995) assigned Q. ishikariensis to the group Cerris
based on its areoles formed by thick veins, although veinlets with branching were
not preserved. A specimen formerly described as Q. kushiroensis Tanai from the
late Bartonian Shakubetsu Formation in Kushiro (Hokkaido), was reidentified to
Q. ishikariensis (Tanai 1970, 1995). Another Quercus record from the Ikushunbetsu
Formation displays a bowl-shaped cupule with an outer surface that has no sign of
concentric rings and appears to be covered by short appressed scales; this was
referred to the subgenus Quercus, excluding the group Cerris, by Tanai (1995).

Quercus pollen is also well represented in Eocene sediments from Hokkaido
with its abundance clearly influenced by the Terminal Eocene Climate Cooling
(Sato 1994). Oak pollen decreased while Tsuga pollen increased, from the middle
Eocene Ishikari Group to the late Eocene Poronai Group.

Quercus occurs in China from the early Eocene as the palynological record of
Quercoidites indicates (Quan et al. 2012a). From the middle Eocene, oak pollen
became abundant in the region (Zhang 1995). However, macroremains are rare.
Two fossil leaves from the middle Eocene Jijuntun Formation were identified as
Quercus sp. in Funshun and Huadian in Northeast China (Writing Group of
Cenozoic Plants of China 1978; Manchester et al. 2005; Quan et al. 2012b), and
appear most similar to the group Cerris. Quercus leaf fossils from the Huadian
formation (Manchester et al. 2005; Quan et al. 2012a) were identified as cf.
Quercus berryi Trelease by Manchester et al. (2005). At present, there are no other
Eocene Quercus records from other regions of East Asia.

3.3.4.2 The Oligocene

The latest Eocene–earliest Oligocene fossil floras of the Kobe Group, in western
Japan, includes diverse Quercus morphotypes that have close affinity with modern
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species found in East Asia and beyond. Quercus miovariabilis Hu and Chaney has
lanceolate leaves with many aristate-tipped teeth, traits representative of modern
East Asian species of the group Cerris, including Q. variabilis Blume, Q. acutis-
sima Carruth., and Q. chenii Nakai. This species occasionally is associated with
fossil cupules with slender scales projecting outward (Hori 1976, 1987). Quercus
miovariabilis has a long stratigraphic distribution, being well represented in fossil
assemblages between the Oligocene and Pliocene.

Another species belonging to group Cerris is Q. ussuriensis Kryshtofovich
(Plate 3.6 3), which has a wide, oblong lamina with an inequilateral base, deltoid
teeth with short, aristate tips, and irregular branching veinlets. These characteristics
are similar to modern Q. macrolepis Kotschy and Q. pyrami Kotschy (=Quercus
ithaburensis Decne subsp. macrolepis [Kotschy] Hedge and Yalt) of southeastern
Europe and Western Asia (Tanai and Uemura 1994). Q. ussuriensis occurs in
Oligocene localities in North Korea, southern Primorye, and Hokkaido (early
Oligocene Wakamatsuzawa locality).

Lobed-leafed species of Quercus with a close affinity with sections Prinus
(=group Quercus sensu Denk and Grimm 2009) and Quercus of East Asia, char-
acterize the Kobe flora and other Oligocene floras in Northeastern Asia.
Q. sichotensis Ablaev and Gorovoi, reported from Kobe, Hokkaido
(Wakamatsuzawa) and southern Primorye (Plate 3.6 2), has leaves with four to six
pairs of deeply compound lobes with narrow sinuses extending close to the midvein
and subsidiary teeth. Its leaf shape and venation patterns are similar to North
American section Prinus (Q. alba L., Q. macrocarpa Michx. and Q. garryana
Douglas ex Hook) and south European section Quercus (Q. pyrenaica Willd. and
Q. frainetto Ten.) (Tanai and Uemura 1994). Quercus kobatakei Tanai and
Yokoyama described from the Kobe Group (Plate 3.6 1; Tanai and Yokoyama
1975) also has deeply lobed leaves but more broadly opened sinuses with rounded
bases, similar to modern section Prinus such as Q. alba and Q. lyrata Walter of
eastern North America. Tanai and Uemura (1994) included Q. pseudolyrata
reported from the Oligocene in southern Primorye (Klimova 1976) into Q. koba-
takei. Quercus kodairae Huzioka has dentate margins with large, lobe-like teeth
with acute tips, similar to Q. petraea of the section Quercus in Europe (Tanai and
Uemura 1994), and was widely distributed during the Oligocene in North Korea
and Primorye. In addition, a fossil wood reported from the Kobe Group exhibits
white oak (section Prinus) type (Terada and Handa 2009).

Taxa belonging to section Prinus that resemble East Asian species are also
reported from the Oligocene. Quercus protoserrata Tanai and Onoe, which is
similar with modern Q. serrata Murray, is widely distributed in East Asia and is
reported from the Kobe Group (Hori 1976, 1987). Quercus kitamiana Tanai (Plate
3.6 5) described from the early Oligocene in Wakamatsuzawa (Hokkaido), has a
narrow, obovate leaf with an acute base and dentate margin, except for part of the
lower one-thirds or one-fourths of the blade, which is entire; this species is similar
to extant Q. griffithii Hook and Thomson ex Miquel and Q. aliena Blume of East
Asia and modern Q. prinus Willd. of eastern North America (Tanai 1995).
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Four species of subgenus Cyclobalanopsis recorded from the Oligocene in Japan
include taxa that also occur in the Neogene and are referable to modern East Asian
species: (i) C. mandraliscae (Gaudin) Tanai (Hori 1976, 1987), reported for the
Kobe Group, has a lanceolate lamina with serrated margins, similar to modern
C. longinus (Hayata) Schottky of Taiwan; (ii) C. ezoana Tanai (Plate 3.6 6),
described from the Wakamatsuzawa flora (late Rupelian) in Hokkaido, has an
elliptic lamina with more than 15 thick secondary veins and small, sharp teeth and
possible tomentose undersurface, resembling Quercus oxyodon Miq. and
Q. lamellosa Sm. of central and southwestern China (Tanai 1995); (iii) C. naga-
toensis Tanai and Uemura (Plate 3.6 7) described from the Noda flora (earliest
Chattian) in western Japan is characterized by an entire margin and reticulate
tertiary venation, and it is closely related to the modern Quercus hui Chun of S.
China (Tanai and Uemura 1991). On the other hand, (iv) C. protoacuta (K. Suzuki)
Huzioka and Uemura has an attenuate apex, entire margin, and highly developed fine
veins, and it is closely related to the modern Quercus acuta Thunb. from Japan
(Uemura et al. 1999).

The fossil record ofQuercus in the Oligocene from other Asian countries is limited.
Three species have been recorded in the early Oligocene strata of Kazakhstan:Quercus
alexeevii Pojarkova, Q. drymeja Unger and Q. cf. cerris L. (Zhilin 1989). Q. alexeevii
and Q. drymeja were found in the Ascheayrykian flora, whereas the three species
together occurred in the Murunchink flora (Zhilin 1989). Two Quercus fossil species,
Q. kodairae Huzioka and Quercus sp. were reported from Sanhe flora of northeastern
China (Guo and Zhang 2002).Q. kodairae was widely distributed in North Korea and
Japan in Oligocene as well (Guo and Zhang 2002).

3.3.4.3 The Neogene

In early–middle Miocene times, the Russian Far East was characterized by oaks
with roburoid and castanoid leaves. Quercus ussuriensis is related to the group
Cerris (Iljinskaja 1982). Quercus bersenevii Ablaev and Iljinskaja, Q. sinomioce-
nica Hu and Chaney (Plate 3.7 3) and Q. praemongolica Ablaev and Iljinskaja, are
all related to the section Quercus (Iljinskaja 1982; Ablaev and Vassiliev 1998).
However, Iljinskaja (1982) had misgivings about the taxonomic relationship of
Q. praemongolica since it was found in association with cupules that are not typical
for section Quercus. During the middle Miocene of this region, section Quercus
was represented by the castanoid-like leaves species Q. protoserrata Tanai and
Onoe, which was also widespread in the Neogene of Japan (Pavlyutkin 2005).

Quercus sichotensis, which had robur-like leaves, was probably one of the
species that made up the first stage of differentiation of the section Prinus (now
integrated into section Quercus; Nixon 1993) during the middle–late Miocene of
Rettichovka and Kraskino (Far East) (Menitsky 1984). At the same time, the
castanoid-like taxon Q. miocrispula Huzioka was recorded for Chiornaya Rechka
(Iljinskaja 1982). To date, there is no evidence for the genus in High Arctic
Cenozoic sites of the Russian Far East.
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Throughout China, at least 64 species have been recorded based on macrofossils.
Among these, three groups are recognized based on leaf characteristics. All species
of the first group, Quercus subgenus Quercus, have toothed margins, with either
dentate teeth (teeth with their axes perpendicular to the axis of the leaf margin, e.g.,
Q. mongolica Fisch. ex Ledeb., Q. dentata Thunb.), or serrated teeth (teeth with
their axes inclined toward the leaf margin, e.g., Q. miovariabilis), or with long
spines (margin with long sharp teeth formed by the secondary vein extending into
the tooth and fusing with it). The tertiary veins may be slightly convex or straight
percurrent or forked occasionally. Most of this group was distributed throughout the
North of China, similar to the current distribution of deciduous Quercus species in
this territory.

In the fossil floras of China, the second type of Quercus represented by leaves is
the group Cerris. Cerris, which has been represented so far only by leaf impres-
sions (e.g., Hu and Chaney 1940; Zhou 1993). The first occurrence of a fruit of this
group is the compression of an acorn with imbricate scales from the middle
Miocene of Shandong province, which was referred to Q. cf. cerrisaecarpa (Song
et al. 2000). This specimen can be compared with the extant Q. acutissima Carruth.,
Q. chenii Nakai and Q. variabilis Blume.

The third group of Quercus recognized in China is section Heterobalanus
(=group Ilex sensu Denk and Grimm 2009) of the subgenus Quercus that includes
oaks with sclerophyllous and obovate leaves. Leaf apices are rounded and the leaf
margins are mainly entire or with a few spinose teeth in some species. Their
midveins generally display a zigzag pattern and are branched at the apex, and
secondary veins are branched near the margin; the third order veins are weakly
percurrent and predominantly alternate (Zhou et al. 1995). These characteristics
make this section easily distinguishable from other Chinese species. Several species
such as Q. preguyavaefolia Tao (Plate 3.7 6–7; Tao et al. 2000) of this section
exhibit leaves similar to some Mediterranean sclerophyllous evergreen oaks, such
as Q. ilex and Q. suber. Section Heterobalanus has currently 9–11 species with a
core distribution in the Himalayas-Hengduan Mountains where they have left an
abundant Neogene fossil record and they are still the dominant species (Zhou et al.
2007). In this area, the oldest records of section Heterobalanus are Q. namlingensis
Li and Guo and Q. wulongensis Li and Guo (Zhou 1992). Both are from middle
Miocene formations (15 Ma) of Namling, Xizang (Li and Guo 1976). Fossils
related to this section have also been reported from the late Miocene Xiaolongtan
and Xiangfeng floras in Yunnan (SW China) (Xia et al. 2010; Xing 2010).

Pollen also indicates that oaks were widespread in China. For example, three
species, one of them related to the subgenus Cyclobalanopsis, were identified in the
late early to early middle Miocene of Shandong province (Liu and Leopold 1992);
four species (Quercopollenites asper, Quercoidites henrici, Q. microhenrici and
Q. minor) were recognized in the sediments of Yunnan (Yao et al. 2011); and three
morphotaxa of deciduous origin, two of evergreen habits and three oaks whose
habit is uncertain were found in the Zhejiang province (Liu et al. 2007a). In pollen
spectra from lower and middle Miocene sites of central Japan, evergreen Quercus
occasionally forms the dominant element, together with Carya and Liquidambar,
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and exhibits a higher percentage than deciduous Quercus (Yamanoi 1989). The
diversity of Quercus pollen grains would suggest that there were numerous oak
species growing in China during Miocene times (Wang 1994).

In the late Pliocene, oaks of the section Heterobalanus became the main com-
ponents of the floras of Yingping, Eryuan, and Lanping, all of which are located in
the Hengduan Mountains, on the eastern margin of the Himalayas. Based on the
fossil history and anatomical and physiological characteristics of section
Heterobalanus, Zhang et al. (2005) hypothesized how this group of Quercus came
to dominate forest ecosystems in the Hengduan Mountains. They proposed that the
section Heterobalanus originated in subtropical, broadleaf forests. As the climate
cooled with the uplift of the Hengduan Mountains (Zhou 1993), it produced an
unfavorable environment for most broadleaved evergreen trees. However, these
oaks had xerophytic leaf characteristics, such as dense hairs, thick cuticles, lignified
epidermal cell walls and cuticles, and a low stomatal density (Zhou et al. 2003).
Thus, they may have been well adapted for the environmental change and become a
dominant species in the forested regions (Zhou and Coombes 2001). Although the
physiological and ecological adaptation of evergreen sclerophyllous Quercus has
long interested ecologists (He et al. 1994), the ecophysiology of montane plants in
the Hengduan Mountains has not been well studied (Terashima et al. 1993). Recent
molecular research (Du et al. 2016; Meng et al. 2017) supports the hypothesis of
Zhou et al. (2007), that when the mountains uplifted, this oak group was able to
colonize the mountain niches.

In modern oaks, cupule scale characteristics are a key feature used to distinguish
the two oak subgenera, however fossils of cupules are rare in this area. Ring-cupped
oaks can also be distinguished from other oaks based on their leaf characteristics.
Most ring-cup oaks have an elliptical leaf shape and are in the mesophyll size range.
The margins may be entire or serrated or with short spines. The secondary veins are
uniform and parallel, and the tertiary veins are strongly percurrent.

In some cases, the trichomes are useful to distinguish species; e.g., Q. delavayi
Franch., Q. glauca Thunb., and Q. schottkyana Rehder and E.H. Wilson are very
similar in leaf shape, size, and vein pattern, but have different trichome charac-
teristics. Leaves of Q. delavayi have dense, yellow, fascicular trichomes, which can
be distinguished from those of Q. glauca and Q. schottkyana, which have only
single hairs. Fortunately, the bases of trichomes can be preserved in the cuticle of
some fossils, and they can help identify fossil Quercus and recognize their nearest
living relatives.

Xing et al. (2013) found fascicular trichome bases in late Miocene fossils and
they were able to identify as Q. praedelavayi Xing and Zhou (Plate 3.7 2, 8). Hu
et al. (2014), in contrast, described similar late Pliocene fossils with unicellular and
multicellular trichome bases that they included in the species Q. tenuipilosa Hu and
Zhou (Plate 3.7 4–5). The nearest living relative of these two Neogene species is
Q. delavayi.

Six Quercus species records belonging to subgenus Cyclobalanopsis were
reported from early Miocene (21–16.5 Ma) Jinggu flora (Writing Group of
Cenozoic Plants of China 1978), Yunnan, southwest China. All of them, including
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Q. decora Tao, Q. lahtenoisii Colani (=Dryophyllum relongtanense Colani),
Q. parachampionii Chen and Liu, Q. parahelferiana Chen and Tao, Q. parschot-
tkyana Wang and Liu, and Quercus sp. were identified from leaf impressions
(Writing Group of Cenozoic Plants of China 1978). These appear to have occupied
subtropical evergreen broad-leaf to temperate forests (Mehrotra et al. 2005).

A ring-cupped oak, Quercus tibetensis Xu, Su and Zhou was reported from Tibet
(Plate 3.7 1) from strata that were considered to be of late Miocene age. The
occurrence of this species seems indicate the presence of subtropical forests in the
core area of the Qinghai–Tibetan Plateau Tibet in the late Miocene (Xu et al. 2016).
Today, most species of ring-cupped oaks live in forests in tropical or subtropical
climates, although a few are temperate. Most species are distributed in deciduous
and evergreen broad-leaf forests and deciduous broadleaf mixed forests near the
northern border of the subtropical zone in China.

Neogene Quercus specimens found commonly in Japan became increasingly
similar to extant taxa of the same area. The percentage of species with
entire-margined leaves in the early Miocene floras persisted through temperature
fluctuations between warmer (ca. 21–19 and 17–15 Ma) and cooler (23–21 and
19–17 Ma) stages (Tanai 1991; Momohara in press). Species of subgenus
Cyclobalanopsis were major components of fossil floras alongside other evergreen
broad-leaved trees in Honshu during warmer stages (Tanai 1961). In addition to
C. protoacuta and C. mandraliscae already noted from the Oligocene, C. nathorsti
Kryshtofovich, C. protosalicina Suzuki, and C. praegilva Kryshtofovich are rela-
tives of modern C. glauca, C. salicina, and C. gilva Blume, respectively, These
species were common in early and middle Miocene floras and are found occa-
sionally in late Miocene and Pliocene floras. Deciduous oaks, such as Q. mio-
variabilis and Q. protoserrata, were more dominant in warmer stage assemblages
than cooler ones.

Morphotypes assignable to group Ilex are recorded from the early Miocene
Yoshioka flora in southern Hokkaido. Q. elliptica Tanai et Suzuki has coriaceous,
elliptic leaves with entire margins or sometimes small teeth near the apex, similar to
Q. phylliraeoides A. Gray in east Asia and Q. chrysolepis Liebm. in western North
America (Tanai and Suzuki 1963). Q. koraika Tanai, with ovate and
aristate-serrated leaves, is similar to modern Q. tarokoensis Hayata in Taiwan, is
included in this flora. This species also has been described from the middle
Miocene in Korea (Tanai and Suzuki 1963).

Pollen shows that evergreen oaks were significant in the late middle Miocene to
the earliest late Miocene of the Himi area of Toyama Prefecture in Central Japan
(Wang et al. 2001). Deciduous Quercus that dominates current temperate forests in
Japan increased from the late middle to late Miocene. In addition with Q. proto-
serrata, species include Q. protoaliena Ozaki, related to modern Q. aliena Blume,
Q. miocrispula Huzioka, related to modern Q. crispula Blume (=Q. mongolica
Fisch. ex Ledeb.), and Q. protodentata Tanai et Onoe, related to modern Q. dentata
Thunb (Uemura 1988). During the late Miocene, a conspicuous decrease of both
deciduous and evergreen oak pollen types were recorded in Central Japan (Wang
et al. 2001).
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3.4 Biogeographical and Palaeoclimatic Implications

Today, subgenus Quercus occurs in the Northern Hemisphere and has its core
distribution in cool to warm temperate climates. At its southern limit, the subgenus
occurs at higher elevations. Subgenus Cyclobalanopsis, which had a much wider
distribution throughout the Cenozoic, is now restricted to eastern and southeastern
Asia where it extends to the lowlands and thus touches the tropical climate realm
(Fig. 3.2).

The northern border of the distribution of Quercus generally follows a zonal
orientation roughly coinciding with the 2 °C mean annual temperature isotherm
(Global Biodiversity Information Facility; http://www.gbif.org). In Europe, the
effect of the Gulf Stream Current permits the genus to extend further north—up to
63°N in Scandinavia (cf. Atlas Florae Europaeae). In contrast, on the Pacific coast
of Eurasia, 48°N is not exceeded. Modern oaks tend to avoid extremely continental
climate conditions of the continental interior with summer drought and very cold
winters (with mean temperature of the coldest month—CMT <20 °C).

Oak species may tolerate a considerable variety of habitats and climates. Group
Cerris includes species adapted to seasonal drought and hence are native to regions
with Mediterranean type climates. In the Koeppen-Geiger climate system (Peel
et al. 2007), subgenus Quercus has its main distribution in cool to warm temperate
climates, partly fully humid (indicated as: Dfa, Dfb, Cfa, Cfb), or seasonally dry as
Sub-Mediterranean and Mediterranean (Csb, Csa) and the snow climates with hot
summers of Asia Minor and the Caucasus (Dsa, Dsb). In Central America, oak
species may exist under equatorial winter dry climates (Aw) but mainly at higher
altitudes.

In parallel with the current day, oaks were often an important component of the
Cenozoic plant communities, dominating leaf assemblages of western North
America and Europe. For example, oak specimens comprised 42.4 and 65.1% of the
leaves collected from the Miocene Sucker Creek and Trout Creek floras of Oregon,
respectively (Graham 1965), and over 44% of the Eastgate and 85% Middlegate
floras of the Miocene Nevada (Axelrod 1985). In Europe, Q. rhenana and
Q. sosnowskyi predominate in several paleofloras (Kovar-Eder et al. 2001; Kvaček
et al. 2002).

In addition, numerous oak species can coexist in a given flora. Seven species
were recorded in the Miocene Tehachapi flora from California (Axelrod 1939)
including four species of the section Quercus and three of the Protobalanus; six
species co-occur in the Miocene Mascall flora of Oregon (Chaney 1959; Chaney
and Axelrod 1959), including 2 species each representing sections Quercus,
Protobalanus and Lobatae, and also six in the Pliocene Sonoma flora of California
(Dorf 1930; Axelrod 1944) including 3 species of section Quercus, 2 of section
Protobalanus and one of section Lobatae; five to six species have been identified in
the Spanish Miocene of La Cerdanya Basin (Barrón et al. 2014); and five species
coexist in the Miocene floras from Temblor in California (Renney 1972), the Pickett
Creek in Idaho (Buechler et al. 2007) and Yatağan Basin in Turkey (Güner et al.
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2017), and also five in the Pliocene Mount Eden and Broken Hill floras of
California (Axelrod 1950, 1980).

In western Eurasia, conditions close to tropical (paratropical) existed at times in
the earlier Paleogene. In these settings, oaks were rare and their assignment to
modern sections difficult. For example, Quercoxylon sempervirens Gottwald is
described from the Lutetian Upper Seam of Helmstedt, Germany (Wilde 1989), and
Quercus sp. from the Barthonian Grés à Palmiers in southern France
(Vaudois-Miéja 1985). Using the Koeppen-Geiger climate system (Peel et al.
2007), the Coexistence Approach (CA)-based climate reconstructions reveals the
cool end of tropical (Af) to the warm end of warm temperate perhumid
(Cfa) Koeppen-Geiger climate for both sites (mean annual temperature [MAT]:
22–25 °C; cold month mean [CMT]: Lutetian 17–23 °C, Barthonian: 15–17 °C;
mean precipitation of the warmest month [MPwarm]: 120–190 mm). Vegetation
reconstruction at the level of Plant Functional Types (PFTs) reveals subtropical rain
and laurel forest for the Helmstedt flora and warm, mixed evergreen-deciduous
forest for the Grés à Palmiers palaeoflora (Utescher and Mosbrugger 2007), coin-
ciding with the CA-based climatic values. The presence of oaks under the very
warm conditions existing in western Eurasia in the earlier Paleogene is noteworthy
when discussing the origin of the genus, however the implications for the subse-
quent diversification of the genus are unclear.

Oligocene evergreen, laurophyllous oak species belonging to section Lobatae
(e.g., Q. neriifolia, Q. lyellii, Heer, Q. armata Saporta, Q. oligodonta Saporta)
together Q. praerhenana, recovered from various late Oligocene to Burdigalian
sites of Central Europe (including Lusatian Basins), existed under warm temperate
conditions (MAT 15–17 °C; CMT 5–10 °C) (see Walther 1999; Grein et al. 2013;
Table 3.1).

Although the group Ilex includes species that are today restricted to summer-dry
climates, the morphology of Q. drymeja of the Oligocene and Miocene more closely
resembles East Asian species and hence is not considered to represent an indicator of
Mediterranean type climate (Velitzelos et al. 2014). Q. neriifolia is either interpreted
as being part of the zonal vegetation (e.g., Chattian of Bobov Dol, Bulgaria; see
Bozukov et al. 2009), or as swamp forest element (PangaionRange,Miocene, Greece;
see Velitzelos et al. 2014), comparable to the ecology of various modern red oaks
(e.g.,Q. laurifoliaMichx,Q. nigra L.,Q. phellos L.). CA-based climate estimates for
the Chattian Bobov Dol site, located in the eastern part of the Tethyan Archipelago
and including Q. drymeja and Q. neriifolia, exemplify humid, warm temperate Cfa
climate conditions (MAT ca. 16–21 °C; CMT ca. 8–14 °C;mean annual precipitation
[MAP] ca. 1200–1300 mm; MPwarm ca. 90–170 mm; Table 3.1).

Oaks underwent a substantial radiation in the Neogene of western Eurasia
(Fig. 3.4). Among the species emerging in the earlyMiocene,Q. rhenanamight have
had an affinity to thermophilous wetland vegetation existing in central and Eastern
Europe and the Central Paratethys, where the taxon was part of thermophilous,
dominantly broadleaf evergreen vegetation, the so-called “Mastixioid Floras” (Mai
1995). Most of the early Miocene species are referred to the groups Cerris and Ilex,
e.g., Q. ilicoides, Q. kubinyii and Q. mediterranea. Among these thermophilous and
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sclerophyllous oaks, Q. ilicoides, whose nearest living relative is in the group Ilex,
may tolerate Mediterranean type of climate; but with an MP warm range of 0–
116 mm (Palaeoflora database), these taxa are not necessarily indicative of significant
seasonal drought. Thus, their occurrence in the palaeobotanical record does not
contradict the suggested overall persistence of permanently humid (Cfa) climates in
western Eurasia during the early Miocene (Bruch et al. 2011). One of the more
important middleMiocene species of the groupCerriswasQ. pseudocastanea. It was
common in the mixed mesophytic forest vegetation of Central Europe, the Central
Paratethys realm and the northern Mediterranean (Mai 1995) but may have had also
an affinity to deciduous riverside forests (Belz 1992; Walther and Eichler 2010).
A Messinian site in the northern Mediterranean Integrated Plant Record
(IPR) vegetation analysis (Kovar-Eder and Kvaček 2007; Kovar-Eder et al. 2008)
including Q. pseudocastanea reveals a transitional vegetation type between
“Broad-leaved Evergreen Forest” and “Mixed Mesophytic Forest” (abbreviated:
BLEF/MMF) (Monte Tondo, Tossignano; Teodoridis et al. 2015). Another common
species of the group Cerris, Q. gigas, was part of the deciduous lowland vegetation
widespread in the Pannonian realm in cooler climatic phases (Utescher et al. 2017).

Table 3.1 Important European Cenozoic oak taxa and their palaeoclimatic conditions

Species MAT
min

MAT
max

CMT
min

CMT
max

MAP
min

MAP
max

MMP
drymin

MMP
drymax

Q. petraea 9.3 20.5 −2.7 13.5 826 1187 24 63

Q. pubescens 13.3 13.9 2.2 3.8 979 998 – –

Q. roburoides 11.2 16.5 −1.3 8.7 897 1151 24 56

Q. ilicoides 13.3 21.1 0 13.3 823 1355 42 61

Q. drymeja 12.2 20.5 −0.5 13.3 735 1437 19 66

Q. kubinyii 12.2 20.8 −0.1 14.8 759 1613 8 67

Q.
pseudocastanea

11.6 21.1 −0.5 13.3 735 1355 11 59

Q.
mediterranea

12.2 19.5 0.4 13.3 735 1356 21 62

Quercus ex. gr.
Ilex

13.3 17.4 2.2 8.3 823 1206 23 24

Q. gigas 13.3 21.1 −0.1 13.3 867 1355 32 43

Q. trojana foss. 13.3 16.5 −0.1 5.8 867 1231 24 56

Q. suber foss. 13.7 18.3 7.4 10.9 735 1333 11 59

Q. cerris foss. 13.3 16.5 0.1 5.8 867 1179 32 51

Q. neriifolia 13.4 21.8 −0.5 13.3 700 1613 11 64

Q. lyellii 15.6 21.1 1.8 12.6 439 1360 5 43

Q. rhenana 15.6 20.5 2.7 14.8 810 1362 25 51

Palaeoclimatic ranges considering their lowest (min) and highest (max) limits for mean annual
temperature (MAT), mean temperature of the coldest month (CMT), mean annual precipitation
(MAP), and mean precipitation of the driest month (MMPdry). These are based on palaeoclimate
reconstructions using the Coexistence Approach (CA) for a total of 178 sites (mainly NECLIME
datasets published in PANGAEA (http://www.pangaea.de)
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Late Miocene roburoid oaks of the sectionQuercus such asQ. roburoides commonly
occur in Europe in theMessinian to Pliocene deciduous hardwood riverside forests of
the Lower Rhine Basin, Germany (Belz 1992; Van der Burgh 1993).

Regarding most recent exchange between Old and New World lineages of oaks,
Hubert et al. (2014) suggested the occurrence of “phases of unhindered gene flow
via the North-Atlantic Land Bridge in Group Quercus until at least 8 Ma (Denk
et al. 2010) and Beringia until the latest Pliocene or Pleistocene interglacials”. The
record of Quercus in eastern North America is consonant with possible geographic
exchange across the North Atlantic through the late Miocene. However, the
Alaskan palynological record, while recording Quercoidites in the Eocene
(Frederiksen et al. 2002), suggests that the genus disappeared from Alaska by about
12 Ma, last appearing in the Betulaceae zone, Polygonaceae subzone, of White
et al. (1999). The current megafossil record of Quercus in the Alaskan Neogene
consists of Q. furuhjelmi Heer of the early to early middle Miocene (Wolfe 1980;
Wolfe in Lathram et al. 1965; Wolfe in Leopold and Liu 1994), a species compared
with living Q. sadleriana R. Brown, Q. prinoides Willd. and Q. mongolica Fisch.
ex Ledeb, all of section Quercus. This suggests that the last potential Beringian
exchange would have occurred earlier in the Miocene.

Subsequent reports from central and eastern North America (e.g., Berry 1952;
MacGinitie 1962; Tiffney 1977; Liu 2011; Stults and Axsmith 2015; Stults et al.
2016) indicate the continued presence of both sectionsQuercus and Lobatae through
the rest of the Tertiary in eastern North America. In addition, sections Lobatae and
Quercus similarly continue to be present through the rest of the Neogene in western
North America, but in parallel with other mesic elements, are increasingly confined to
more westerly occurrences, responding to the cooling and drying trends of the later
Tertiary (Axelrod 1973; Schierenbeck 2014; Bouchal et al. 2014). It is possible that
these climatic changes also influenced three other oak taxa. It appears that species of
section Protobalanus, if anything, adapted to these changes, remaining restricted to
southwestern North America (Fig. 3.3), where warmer and dryer climates are the
norm. By contrast, it is possible that the representatives of subgenusCyclobalanopsis
(present in the mid-late Eocene) and group Cerris (possibly present at the
Eocene-Oligocene border) were confined to the west at the outset, and were suffi-
ciently moisture-loving and thermophilic that they, like many other taxa present in the
Paleogene of thewest coast of NorthAmerica, went regionally extinct at the end of the
Paleogene in response to climatic change (Wolfe 1978, 1985). However, we note that
Buechler et al. (2007) suggested that Q. oberlii Buechler, Dunn and Rember of the
Miocene of Idaho (which they compared to species in section Lobatae) was also
compared with Q. saliciana Blume of East Asia, a member of section
Cyclobalanopsis. In Western Eurasia, the macrofossil record of Cyclobalanopsis is
characterized by low diversity (Fig. 3.4). A single species probably related to this
subgenus, namely Cyclobalanopsis stojanovii Palamarev and Kitanov, is intermit-
tently reported in eastern Paratethys realm since the early Oligocene (Palamarev and
Ivanov 2003). The possibly lastest record of this subgenus in western Eurasia dates to
the early Pliocene (Bozukov et al. 2011).
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During the Quaternary, oaks were affected by successive glaciations, resulting in
the appearance of recent species (e.g., Plate 3.4 3). Today, northern latitudes are
inhabited by deciduous species, while evergreen taxa appear in tropical-subtropical
and Mediterrranean areas. This most recent history is largely dominated by paly-
nological records, as macrofossils are uncommonly reported (e.g., Berry 1952;
Postigo-Mijarra et al. 2007; Iglesias-González 2015). The recent anthrophic dis-
turbance of terrestrial ecosystems, especially in the Northern Hemisphere, has led to
the disappearance of some populations of Quercus and a reduction of the range of
others. Consequently, some populations of Quercus have become extinct or are
seriously endangered. One example of this was the communities of Quercus-
Carpinus from the Canary Islands that became extinct when humans arrived on the
islands around 3000 years BP (De Nascimento et al. 2009).

3.5 Conclusions

1. Although Quercus has been reported from the Cretaceous (e.g. Quercophyllum
or Quercus cretaceoxylon), the earliest possible occurrence of Quercus in the
fossil record is in the Paleocene. The Paleocene European macrofossil Quercus
subfalcata Friedrich, which still need a confirmation of its taxonomic status,
could be the earliest occurrence of the genus. Currently, Quercoidites pollen
grains in the Late Paleocene (ca. 55 Ma) at the St Pankraz site (Austria) is the
unequivocally earliest evidence of the genus.

Fig. 3.4 Species diversity of Cenozoic oaks ofWestern Eurasia based on floral lists of a total of 237
fossil sites (most of them NECLIME data sets published in PANGAEA; http://www.pangaea.de)
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2. The earliest evidence of Quercus in North America is Quercus paleocarpa,
from the middle Eocene Clarno formation of Oregon (ca. 44 Ma), which is
related to the subgenus Cyclobalanopsis. Likewise, the first record from East
Asia corresponds to the middle Eocene Cyclobalanopsis naitoi from western
Japan, which is represented by leaves and acorns. The middle Eocene Quercus
ishikariensis Tanai from Japan may be the first occurrence of the group Cerris.

3. In general terms, the Palaeogene leaf fossil record of Quercus is scant, a fact
probably related to the difficulty in distinguishing leaves of Quercus from those
of other fagaceous genera, especially Castanea.

4. The paleobotanical record shows that the genus was well diversified since the
Late Paleogene in North America including the subgenus Cyclobalanopsis and
the sections Quercus, Lobatae and Protobalanus.

5. Many of the species described from leaves in Paleogene sediments (e.g.,
Europe and North America) need further studies in order to confirm their
taxonomic status. In Europe, the species Q. rhenana (laurel-like leaves) and Q.
lonchitis, Q. praekubinyii and Q. pseudoalexeevii (toothed leaf margins) are of
particular interest.

6. Since the mid-late Eocene, oak records occur frequently in the territory of the
former USSR, and Quercus clearly played locally an important role in these
ecosystems (e.g., Q. pseudoneriifolia).

7. In late Eocene, sections Quercus, Lobatae and Protobalanus as well as the
ring-cupped oaks, all were present in North America whereas sections Lobatae
and the subgenus Cyclobalanopsis occurred in Europe.

8. From the early Oligocene, group Cerris diversified in Eurasia. However, it
became extinct in North America by the Neogene.

9. Section Protobalanus appeared in the Eocene of North America and seems to
be always limited to this continent.

10. Deciduous oaks were common in northern temperate regions in the Paleogene.
The southern part of the North Hemisphere was inhabited by evergreen oaks in
warmer climates. Palynological data indicate that sections Quercus, Lobatae
and Protobalanus as well as the group Ilex were already present in middle
Eocene Arctic localities.

11. The Neogene fossil record of Quercus in western North America is primarily
dominated by leaves. The two most common leaf species were Q. hannibali
and Q. simulata. The affinities of Q. simulata have been debated and it may
represent another genus of Fagaceae.

12. Sclerophyllous evergreen oaks of the groups Cerris and Ilex (=Heteroblanus)
were important elements of Pre-Mediterranean vegetation of central and south
Europe during the Neogene. Some significant species for this period were Q.
gigas, Q. pseudocastanea, Q. kubinyii, Q. mediterranea and Q. drymeja. The
subgenus Cyclobalanopsis is also present in Europe (as C. stojanovii) in the
Pliocene.

13. Also in the Neogene, Heterobalanus species colonize the Chinese Himalayas
and Hengduan Mountains where cold and xeric environmental conditions
developed.
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14. The late Oligocene records of Quercus furuhjelmii? Heer from Kazakhstan and
Western Siberia seem to be the first one for oaks with deciduous, roburoid
leaves. Due to the progressive Neogene climate cooling, these trees, which
mainly belonged to section Quercus, colonized southern areas, replacing sub-
tropical evergreen oak species. Oaks with robur-like leaves became common in
Europe from the late Miocene.

15. Representatives of the subgenus Cyclobalanopsis disappeared from North
America probably by the late Paleogene, and Europe at the end of the Neogene.
Now, this subgenus is present only in East Asia.

16. The genus Quercus was a common element of the Cenozoic ecosystems
inhabiting temperate and tropical/subtropical environments of the North
Hemisphere. It attained an almost modern distribution in the Neogene.

17. An occurrence of “phases of unhindered gene flow” via the North Atlantic Land
Bridge in section Quercus until at least 8 Ma and Beringia until the latest
Pliocene of even Pleistocene interglacials has been suggested. The fossil record
does not contradict the North Atlantic connection, but suggests that the
Beringian route was closed to Quercus by 12 Ma.

18. Fossil wood attributed to Quercinium and Quercoxylon is recorded since the
Eocene. Staminate catkins and stellate trichomes are much more scant. In both
cases, paleoecological or taxonomic conclusions from these macroremains are
very difficult to establish.

19. Carpological, cuticular and new SEM studies are necessary to trace the evo-
lution of this genus over the Cenozoic.
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Chapter 4
Physiological Evidence from Common
Garden Experiments for Local Adaptation
and Adaptive Plasticity to Climate
in American Live Oaks (Quercus
Section Virentes): Implications
for Conservation Under Global Change

Jeannine Cavender-Bares and José Alberto Ramírez-Valiente

Abstract Climate is known to be a critical factor controlling the broad-scale dis-
tribution of plants but often the physiological basis for species distribution limits is
not well understood, nor is the extent to which populations within species are
locally adapted to climate. Reciprocal transplant experiments designed to test for
local adaptation are difficult to conduct and interpret in long-lived species, like
oaks. Linking the physiological tolerances of species to their climatic distributions
is an alternative approach to understanding adaptation to climate, and is important
in predicting future distributions of species under changing climatic conditions.
Here we synthesize a series of studies in a single lineage of American oaks that span
the temperate tropical divide and encompass a range of precipitation and edaphic
regimes, to determine (1) the physiological basis for adaptation to seasonal winter
and seasonal drought and (2) the variation among populations that associated with
climate variation and can be interpreted as local adaptation. We focus primarily on a
series of common gardens that allow us to determine the genetically based differ-
ences in functional and physiological traits as well as the genetically based
responses to contrasting temperature or precipitation regimes. We show that vari-
ation in freezing tolerance among closely related species is greater than variation
among populations within species. Nevertheless, freezing tolerance varies pre-
dictably with climate of origin and is negatively associated with growth rate. In
contrast, drought tolerance mechanisms vary more among populations within a
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single species, at least for the most widely distributed species, Quercus oleoides,
than between species. Within this species, climate of origin predicts a suite of leaf
physiological traits, and there is evidence for evolutionary trade-off between des-
iccation avoidance and desiccation resistance. Combined, these results show evi-
dence for local adaptation to both freezing and drought stress within species, as well
as adaptive differentiation between closely related species, despite phylogenetic
conservatism in functional traits and highly similar physiognomy across the
American live oak clade. The results inform conservation efforts aimed at pre-
venting extinction of tree species in the face of global change.

4.1 Introduction

A central biological question under rapidly changing global climatic conditions is
the extent to which species are locally adapted to climate. Climate is a driving force
in evolution (Etterson 2004a; Jump et al. 2006; Ramírez-Valiente et al. 2010; Shaw
and Etterson 2012), even though niche conservatism is widespread (Crisp et al.
2009b; Wiens et al. 2010). Physiological traits that are linked to tolerance of
seasonal temperature variation and water availability are known to vary consider-
ably among woody taxa and are thought to delimit species distributions across
climatic gradients in both temperate and tropical biomes (Larcher 1960, 2000; Sakai
and Larcher 1987; Koerner and Larcher 1988; Engelbrecht and Kursar 2003; Tyree
et al. 2003; Brodribb and Holbrook 2006; Engelbrecht et al. 2006). Such traits are
likely to be under strong selection in relation to climate. We have used a small
“model clade” of live oaks (Quercus section Virentes Nixon) that span a range of
climates from the temperate zone to the tropics to examine evidence for adaptive
evolution in response to seasonal winter and seasonal drought. The evolutionary
history and ecological distribution of the live oaks are well understood, providing a
platform for investigation of adaptive change. More broadly, the oaks of the
Americas contribute a large fraction of the total forest biomass and woody diversity
of North America in both the US and Mexico (Cavender-Bares 2016). Climate
change scenarios predict warmer climates in southern and southeastern regions of
eastern North America and drier climates in most regions of Mexico Central
America by 2100 (IPCC 2007), but the seasonal timing of decreases in rainfall are
uncertain (Karmalkar et al. 2008). We used the live oaks as a system to address the
question of whether variation between populations and between species in both
sensitivity to chilling and freezing stress and resistance to drought corresponds to
the climate of origin. We compare our studies of the American live oaks, trees
adapted to wet summers and either dry or cold winters, to parallel work on old
world Mediterranean oak species, which also experience seasonality in precipitation
and temperature but are adapted to cold temperatures that are seasonally offset from
low rainfall. These oaks are similar in appearance and many functional attributes
but display important physiological and phenological differences as a consequence
of the contrasting patterns in seasonality.
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Our goal was to examine evidence for local adaptation to climate using a series
of common garden experiments, where environmental variation was limited and
individual plants were randomized across this variation. Distinguishing between
plasticity and genetically-based variation has important implications for under-
standing range limits and how plants respond to changing environments. As part of
these investigations, we tested for environmentally-induced changes in resistance to
cold and to drought in plants grown under contrasting and experimentally manip-
ulated climate regimes (temperature or precipitation). These experiments allowed us
to examine plasticity in response to contrasting climatic regimes and to evaluate
evidence in support of adaptive plasticity. We examined variation within and
among species in response to freezing stress in five of the live oaks but focused on
the two most widespread species, Quercus virginiana (temperate biome) and
Quercus oleoides (tropical biome). In examining adaptation to drought and sea-
sonality in precipitation, we focused primarily on Quercus oleoides, which spans a
range of precipitation regimes, all of which fall within the classification of
seasonally-dry tropics. We planted common gardens in the field and also recipro-
cally transplanted populations to test directly for local adaptation and supplemented
water at two times during the year to decipher consequences of water limitation. We
review these common garden studies to synthesize what we have learned about
genetically based variation within and among closely related species of this lineage
in response to the range of climatic variation that it encompasses. We suggest future
steps needed to (1) better understand the evolution of climate responses in oak
ecosystems and the evolutionary potential of oaks to adapt to increasing drought
severity expected in future decades and (2) provide guidance on conservation to
prevent extinction of threatened oaks.

4.2 The Live Oaks, Quercus Section Virentes,
as a Study System

The live oaks consist of seven species of interfertile brevideciduous or semiever-
green oaks that span the tropical temperate divide in southern USA, Mexico and
Central America and the Caribbean (Muller 1961; Nixon 1985; Nixon and Muller
1997; Cavender-Bares et al. 2015) (Fig. 4.1).

Q. virginiana and Q. oleoides are the two most broadly distributed members of
the live oaks. Q. virginiana extends from the outer banks of southern Virginia and
North Carolina in the U.S. into northern Mexico, and Q. oleoides extends from
northern Mexico to northwestern Costa Rica. We hypothesized that the wide range
of climatic variation encountered by the two species throughout their ranges has led
to both interspecific and intraspecific variation as a consequence of adaptation to
contrasting climates. The majority of the work we present on population-level
differentiation is within and between these two species.
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Fig. 4.1 The live oaks, Virentes, are a monophyletic lineage of interfertile American oaks that
span the southeastern US, Mexico, Central America and the Caribbean and occur across a range of
climates that vary in both minimum temperature and precipitation. The live oaks fall within the
white oak group (Nixon and Muller 1997; Cavender-Bares et al. 2015). Shown are the geographic
distributions of the seven species in the lineage, their phenotypes, and their climatic distribution in
terms of mean annual precipitation (cm) and minimum temperature of the coldest month (°C).
Modified from Cavender-Bares et al. (2015)
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4.3 Adaptation to Winter Stress: Species and Population
Responses to Freezing Under Different Climate
Regimes

Freezing is considered a major barrier to migration and a strong selective force
(Sakai and Weiser 1973; Larcher 2000; Cavender-Bares 2005; Zanne et al. 2014).
Freezing temperatures can cause lethal injuries in living plant tissues, and the ability
of different species to avoid or tolerate freezing stress through various mechanisms
can go a long way in explaining their geographic distributions (Parker 1963; Burke
et al. 1976). Live oaks are likely strongly limited by freezing, given that they are not
deciduous. Deciduousness is a very common adaptation to freezing winters, and has
evolved repeatedly in oaks (Hipp et al. 2017). However, the live oaks are restricted
to mild climates and are considered evergreen or brevideciduous, but not deciduous,
in taxonomic treatments (Miller and Lamb 1985; Nixon 1985; Nixon and Muller
1997). While they occur in the temperate zone, they are found only in climates
where winters are fairly mild but where subzero temperatures are nevertheless
frequent. Tree species, such as the live oaks, that remain active during winter are
subject to freezing of living and nonliving tissues. Freezing can cause intracellular
ice formation, which can kill the cells, or extra-cellular ice formation, which may
lead to cellular dehydration and cell membranes damage (Fujikawa and Kuroda
2000).

We tested the hypothesis that populations at different latitudes within species are
differentially adapted to cold and freezing stress. However, given the tendency for
phylogenetic conservatism in traits (Ackerly and Reich 1999; Wiens et al. 2010),
we hypothesized that, alternatively, populations within species could be equally
tolerant of cold and freezing, due to ancestral acquisition and conservatism of such
traits, even though only some populations currently experience these stresses. The
ability to cold acclimate is itself an evolved trait, and the capacity to undergo
morphological shifts that protect against freezing damage is characteristic of tem-
perate species. We therefore anticipated that the growth climate would influence the
freezing response, and exposure to winter temperatures would lead to cold accli-
mation in populations adapted to cold such they would show less damage in
response to freezing stress.

In an initial controlled environment experiment with two populations of both Q.
virginiana (temperate species) and Q. oleoides (tropical species), Cavender-Bares
(2007) found ecotypic differentiation in cold and freezing sensitivity between
populations within species and between species across a latitudinal gradient, when
grown under either tropical or temperate growth conditions. In response to short
term freezing, both the North Carolina and Florida populations from the temperate
Q. virginiana showed small losses of photosynthetic function (dark acclimated
quantum yield, assessed as variable to maximum chlorophyll fluorescence, Fv/Fm),
24 h after freezing at −10, −5, −2 °C compared to before freezing. In contrast,
Belize and Costa Rica populations from the tropical Q. oleoides showed very large
losses in photosynthetic function after freezing at −10 °C. However, the extent of
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damage to the photosynthetic apparatus was a consequence of growing conditions,
and populations within Q. virginiana showed different degrees of damage,
depending on climate of origin. Plasticity in the responses of populations to
freezing stress is an important adaptation. Plasticity is adaptive if it results in a
higher fitness across environments (van Kleunen and Fisher 2005). The case for
claiming adaptive plasticity for increased freezing tolerance in response to cold
exposure is not disputed. The widely observed changes in cell wall properties and
other functions that reduce intracellular freezing and frost damage among most
freezing tolerant plants, called “cold acclimation,” increases plant survival
(Steponkus 1984; Wisniewski and Ashworth 1985; Huner et al. 1993;
Cavender-Bares 2005). Cold acclimation encompasses the range of physiological
and morphological changes that occur in response to chilling and prepare a plant to
encounter freezing stress. Overall, Q. virginiana plants showed an ability to cold
acclimate, while Q. oleoides populations did not. When grown in a tropical treat-
ment exposed to consistently warm growth conditions both Q. virginiana popula-
tions showed greater loss of photosynthetic function when exposed to decreasing
minimum temperatures, as indicated by a decline in Fv/Fm, than when acclimated to
three months of winter chilling (Fig. 4.2a, b). Across populations and species, the
decline in Fv/Fm under both climate conditions corresponded to climate of origin.
Under the tropical treatment (Fig. 4.2a), while both populations in both species
suffered declines in Fv/Fm after freezing at −10 °C, the northern most population
from North Carolina showed only a minimal decline in Fv/Fm and plants in the
Florida population of Q. virginiana showed an intermediate response at −10 °C.
The ability of Q. virginiana populations grown in the temperate treatment to cold
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Fig. 4.2 Effects of minimum temperature (0, −2, −5, and −10 °C) on recovery of photochemical
efficiency in dark leaves a in plants grown under warm conditions all year (tropical treatment), and
b in plants acclimated to cold temperatures (temperate treatment). Dark Fv/Fm was measured on
leaves of branches with a stem submersed in water before and 24 h after a dark freezing cycle.
Immediately after the freezing cycle, branches were placed in a dark cabinet at room temperature.
Plants were measured in February. c Percentage of leaf loss during the interval between November
and February in the tropical and temperate growth treatments. Q. virginiana is represented by
triangles (open = North Carolina; closed = Florida), and Q. oleoides is represented by circles
(open = Belize; closed = Costa Rica). Redrawn from Cavender-Bares (2007)
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acclimate was apparent from the lack of decline in Fv/Fm, even at −10 °C. In
contrast, the two Q. oleoides populations showing very large declines under both
treatments with values of Fv/Fm that dropped below 0.2 at −10 °C.

We also observed a striking difference in leaf abscission in responses to cold
exposure both between populations within Q. virginiana and between the two
species that corresponded to latitude (Fig. 4.2c), which again demonstrates adaptive
plasticity. Abscission in response to cold provides evidence for evolution towards
deciduousness. The northern population of Q. virginiana from NC lost nearly 60%
of its leaves in response to prolonged cold exposure that reached 4 °C at night,
while the Florida population abscised less than 40% compared to only 6% for all
populations in the tropical treatment. Meanwhile, the tropical Q. oleoides showed
only approximately 10% abscission in response to the same cold exposure, and not
significantly different from the abscission rate in the tropical treatment.

In a second study (Cavender-Bares et al. 2011), we again found genetically
based differences in freezing sensitivity between Q. virginiana and Q. oleoides;
although variation within species was not significant in this case. As before, Fv/Fm

was measured in a replicated controlled environment experiment under tropical and
winter-treated temperate conditions, before freezing and 12 h after freezing at −5,
−7 and −10 °C. Critical freezing temperatures (the freezing temperature at which
Fv/Fm = 0.4) were more negative for Q. virginiana than Q. oleoides, indicating
higher freezing tolerance in the temperate species. However, populations within
species did not differ significantly (Fig. 4.3c). In the temperate treatment, where
plants were acclimated to cold temperatures for three months prior to freezing, all
Q. virginiana populations showed an increase in freezing tolerance relative to when
they were grown in consistently warm conditions. Q. oleoides populations showed
no ability to increase freezing tolerance when exposed to cold.

In the most extensive study of the series examining freezing tolerance, Koehler
et al. (2012), tested maternal families from multiple populations within five species
of the Virentes for freezing tolerance and response to cold exposure (Fig. 4.4). In
this study we used the electrolyte leakage method to examine intracellular cell death
of stems in response to freezing, as well as loss of chlorophyll function in leaves, as
before. Minimum temperatures in the climate of origin of maternal families across
all species strongly predicted freezing tolerance, cold acclimation ability, and
growth rates. Maternal families from climates with colder winters had slower
growth rates and greater freezing tolerance than those from milder climates. As a
consequence, we found evidence for an evolved trade-off between freezing toler-
ance and growth rate, such that the maternal families from warmer latitudes within
and across species showed faster growth rates but lower freezing tolerance than the
maternal families from colder latitudes. Live oaks from lower latitudes had much
high freezing tolerance and ability to acclimate to freezing, but lower growth rates
in the absence of cold stress.

In a study on the same species, populations and maternal families,
Ramírez-Valiente et al. (2015) found significant variation among populations and
species, as well as increasing anthocyanin content with minimum temperature in the
climate of origin. The maternal families with higher freezing tolerance (Fig. 4.4)
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had lower anthocyanin accumulation (Fig. 4.5). Our interpretation is that maternal
families with lower freezing tolerance use anthocyanins as a general protective
mechanism in response to cold, by attenuating light and/or neutralizing reactive
oxygen species to diminish the risk of photodamage under low temperatures
(Pietrini et al. 2002; Gould 2004; Hughes et al. 2012).

Tropical Treatment

Temperate Treatment

(a) (c)

(b) (d)

Fig. 4.3 Genetically based differences in freezing sensitivity between Q. virginiana and Q.
oleoides. The dark-acclimated quantum yield of photosynthesis (Fv/Fm) was measured in a
common garden experiment under a tropical conditions and b winter-treated temperate conditions,
before freezing and 12 h after freezing at −5, −7 and −10 °C. Asterisks indicate temperatures and
treatments for which the two species were significantly different (a = 0.05). Small symbols to the
right in b indicate dark-acclimated Fv/Fm values of leaves warmed at 22 °C for 48 h. c Climatic
distributions showing the percentage of herbarium record occurrences at each temperature for the
mean minimum temperature in the coldest month. These occurrence localities were used in the
Maxent model to predict climatic distributions for Q. oleoides and Q. virginiana, which showed
that minimum temperature was an effective climate variable for predicting species occurrence and
was significantly different between the species (P < 0.0001). d A *3 °C difference in critical
freezing temperatures between the two species was apparent. Quadratic curves fitted to Fv/Fm

responses of individuals to three freezing temperatures (not shown) allowed the prediction of
critical freezing temperatures (the freezing temperature at which Fv/Fm = 0.4) for each population.
Redrawn from Cavender-Bares et al. (2011)
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All of these studies provide clear evidence for adaptive divergence in freezing
tolerance and the ability to acclimate to cold winters among species with contrasting
climates of origin. Within Q. virginiana, we also found adaptive differentiation
among populations in cold acclimation ability and freezing tolerance. In other
words, families and populations within the species have different levels of adaptive
plasticity in response to cold, depending on climate of origin. The ability to increase
freezing tolerance after cold exposure is entirely absent in the tropical species, Q.
oleoides, and remains untested in Q. brandegeei and Q. sagraena in Cuba. Lacking
freezing and cold tolerance, which is hypothesized to be maintained at significant
metabolic cost (Burke et al. 1976; Guy 2003; Savage and Cavender-Bares 2013).
This lack of cold acclimation ability and freezing tolerance, more generally, helps
explain why Q. oleoides appears to use anthocyanins as a general mechanisms to
reduce photoprotective stress under cold conditions, particularly in young leaves
(Ramírez-Valiente et al. 2015). Our current working hypothesis is that the live oaks
lost freezing tolerance after radiation into Mexico and Central America, given that
the oaks colonized the temperate zone first (Hipp et al. 2017). The alternative
possibility is that the live oaks originated in tropical climates and gained freezing
tolerance. Regardless, these studies demonstrate population level local adaptation in
freezing tolerance in the widely distributed temperate Q. virginiana, and either
adaptive loss of freezing tolerance and cold acclimation ability in the tropical Q.
oleoides, or adaptive acquisition of these attributes in Q. virginiana. Molecular
evidence from candidate genes lends support to the hypothesis that the live oaks
lost freezing tolerance, given strong conservatism and purifying selection in a core
gene responsible for cold acclimation ability (Meireles et al. 2017). In these same
populations of Q. virginiana and Q. oleoides, we studied two cold response can-
didate genes ICE1, a key gene in the cold acclimation pathway, and HOS1, which
modulates cold response by negatively regulating ICE1. Meireles et al. (2017)
found that that HOS1 experienced recent balancing selection. This finding indicates
that evolution has favored diversity in cold tolerance modulation through balancing
selection in HOS1, perhaps due to the range of climatic environments the species
experience across their ranges. At a deeper evolutionary scale, a codon based model
of evolution revealed the signature of negative (or purifying) selection in ICE1. In
the same analysis, three positively selected codons were identified in HOS1, pos-
sibly a signature of the diversification of Virentes into warmer climates from a
freezing adapted lineage of oaks. It thus appears that, while evolution has favored
diversity in cold tolerance modulation through balancing selection in HOS1, it has
maintained core cold acclimation ability, given evidence for purifying selection in
ICE1.
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4.4 Species and Population Responses to Water
Availability Under Different Climate Regimes

Water limitation is a second major barrier in the ability of plants to occupy a given
biome and accounts for major shifts in the Earth’s species composition (Pennington
2006; Crisp et al. 2009a; Anderegg et al. 2016). Within the same climatic zone,

Fig. 4.4 Minimum temperature of the coldest month in the climate of origin predicts leaf a and
stem b freezing tolerance in maternal families grown under nonstressed tropical (gray) and after
exposure to cold temperatures in temperate conditions (black) based on leaf decline in Fv/Fm after
freezing at −10 °C and stem index of injury after freezing at −15 °C. Minimum temperature of the
coldest month further predicts leaf cold acclimation ability ((tropical-temperate)/tropical for
decline in Fv/Fm after freezing at −10 °C) c and stem cold acclimation ability ((tropical-
temperate)/tropical for index of injury after freezing at −15 °C) d. e and f show the trade-offs
between growth rate (absolute growth rate, AGR) in tropical and temperate conditions and freezing
tolerance across maternal families from four live oak species. Leaf freezing tolerance and stem
freezing tolerance are both higher in maternal families within and among species with lower
growth rates. Species: Q. virginiana, squares; Q. geminata, crosses; Q. fusiformis, circles; Q.
oleoides, triangles. Redrawn from Koehler et al. (2012). Regressions are shown as least squares
fitted lines
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water limitation can be caused by topographic variation and soil type. In these
cases, water availability and soil fertility often covary (Cavender-Bares et al. 2004).
Quercus virgininiana and Quercus geminata, two co-occurring temperate live oak
species, known to be sister species, occur in contrasting soils and hydraulic regimes
in the southeastern US (Cavender-Bares and Pahlich 2009). They provide a good
test of sympatric divergence in function in relation to microhabitat water avail-
ability. Quercus virginiana occurs on moister and richer soils than Q. geminata
based on ecological studies in Florida (Myers 1990; Cavender-Bares et al. 2004) as
well as taxonomic treatments of the species (Kurz and Godfrey 1962; Nixon and
Muller 1997). Cavender-Bares et al. (2004) found significant niche differentiation
across soil types between the two species based on soil moisture and soil fertility
(pH, calcium content, exchangeable NH4 and NO3, and exchangeable P). Q. vir-
giniana occurrs on moister, more nutrient rich, and higher pH sites than Q. gem-
inata. Quercus virginiana also has a broader distribution across the range of
variation in all of the edaphic factors relative to Q. geminata (Cavender-Bares and
Pahlich 2009). When sympatric Florida populations of each species that occur in
different microhabitats are grown in a common environment, Q. virginiana has
faster growth and higher photosynthetic rates per gram of leaf tissue than
Q. geminata, corresponding to its more resource rich native habitat. The resource
allocation patterns of Q. virginiana support its faster growth strategy; it has thinner
leaves (higher specific leaf area, SLA) and allocates more to leaf area relative to
total plant biomass, thus maximizing light capture and total plant photosynthetic
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Fig. 4.5 a Means for populations (within species) under temperate (black) and tropical (gray)
treatments for anthocyanin concentration measured in the reddest leaf of the plants. Bars indicate
standard errors. Different letters indicate significant differentiation (P < 0.05) within the temperate
and tropical treatments. Populations: Q. fusiformis (circles), TX_FUS—Texas; Q. geminata
(diamonds), FLN_GE—Northern Florida; NC_GE—North Carolina; Q. oleoides (triangles),
CR_OL—Costa Rica; BZ_OL—Belize; MX_OL—Mexico; Q. virginiana (squares), FLS_VIR—
Southern Florida; FLN_VI—northern Florida; LA_VIR—Louisiana; TX_VIR—Texas; NC_VIR
—North Carolina. b Relationship between anthocyanins and minimum temperatures of the coldest
month in the source of origin of the maternal families under temperate (black) and tropical (gray)
treatments. Q. fusiformis (circles), Q. geminata (diamonds), Q. oleoides (triangles) and Q.
virginiana (squares). Points represent mean maternal-family values
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capacity. Quercus virginiana also allocates less to root mass than shoot mass. In
contrast, the slower growth strategy of Q. geminata is accompanied by a greater
investment in roots relative to shoots and lower allocation to leaf area per unit
biomass. Lower evaporative surface area and greater proportional belowground
biomass permits Q. geminata to conserve water. This conservative strategy matches
the lower water availability in their native habitat. Based on measurements from
stems naturally grown in the field, Q. virginiana has higher stem specific hydraulic
conductance than Q. geminata and lower Huber values than Q. geminata
(Cavender-Bares and Holbrook 2001). The significant functional differentiation
between the species observed both in common gardens and in naturally occurring
populations corresponds to habitat differentiation and provides evidence for adap-
tive divergence between these sympatric sister species. Adaptive differentiation
must have either occurred in sympatry, a possibility given contrasting phenology
and flowering times (Cavender-Bares and Pahlich 2009) or in allopatry prior to
secondary contact. In a subsequent series of studies, we found similar kinds of
adaptive differentiation within a single species that spans a range of climates and
soils as we explain in Sect. 4.5.

4.5 Intraspecific Variation in Seasonally-Dry Tropical
Climates in the Widely Distributed Tropical Live Oak,
Quercus Oleoides

Across latitudes, variation in the timing and amount of precipitation establishes
contrasting selection pressures that may be anticipated to lead to adaptive differ-
entiation in populations and local adaptation. Yet it is not well understood the
extent to which local adaptation occurs in long-lived tree species. Maintenance of
high genetic variation and plastic responses to the environment are other important
means of persisting in variable environments, particularly when generation times
are long and an individual tree may experience a range of environments throughout
the course of its lifespan (Shaw and Etterson 2012; Meireles et al. 2017). Quercus
oleoides is a long-lived species widely distributed in seasonally dry tropical forests
(SDTFs) of Central America. This species usually forms mono-dominant stands and
influences local hydrologic budgets and soil conservation (Boucher 1981; Klemens
et al. 2011). It is considered to have a evergreen or brevi-deciduous leaf habit
depending on the population of origin (Muller 1942). This species is a useful study
system to explore evolution of drought resistance strategies in SDTFs because it
spans a large gradient of dry-season aridity and wet season rainfall in the region.
Here we review and synthesize the main findings from recent studies relative to the
drought response exhibited by Q. oleoides to seasonal water variation.

Vast areas in tropical latitudes are characterized by seasonally dry climates,
which are particularly abundant in Mesoamerica. Seasonally dry tropical forests
(SDTFs) in this region exhibit nearly constant temperatures throughout the year but
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have marked variation in precipitation. Usually, rainfall exhibits a bimodal distri-
bution with maximums in June and October and minimums between March and
April. The length of the dry season might vary between two and seven months, and
its severity is variable across the region. Xeric environments can also experience
drought events during the wet season (Ananthakrishnan and Soman 1989; Nicholls
and Wong 1990).

In an initial study of local adaptation to contrasting precipitation regimes using a
reciprocal transplant experiment within Costa Rica, Deacon and Cavender-Bares
(2015) found that upland and lowland populations of Q. oleoides both had higher
fitness, in terms of both growth and survival, in upland environments, where pre-
cipitation was higher and water limitation less severe during the dry season. The
results clarified that water was more limiting to fitness in the lowland environment
than in the upland. A later field common garden study in the same lowland region
again showed that water limitation during the dry season reduced seedling fitness
from both the upland and lowland populations by decreasing survival. Furthermore,
water supplementation at the low elevation site during the dry season resulted in an
increase in emergence of seedlings and subsequent fitness from seeds produced late
in the season (Center et al. 2016). The upland and lowland Costa Rican populations
originate from environments that span the full range of precipitation variation
across the entire species range. However, in two separate transplant experiments,
we found no evidence of local adaptation of these two populations within Costa
Rica through reciprocal transplanting, despite barriers to gene flow that could have
permitted it (Center 2015; Deacon and Cavender-Bares 2015). In the latter study
Center (2015), reciprocal transplanting included populations and sites in the upland
and lowland regions in Costa Rica as well as in a very xeric region in southern
Honduras. However, even including this broader span of populations we found no
evidence for local adaptation, although biotic factors may have interfered (Center
2015). Detecting local adaptation under complicated field conditions in long-lived
species is difficult, however, and sometimes better evidence can be obtained for
adaptive differentiation in physiological function in controlled environments.

Making inferences about local adaptation based on functional differentiation in
traits requires a clear understanding of the expectations for how traits should vary
with climatic and soil conditions. Seasonally dry tropical forests in Central
MesoAmerica are typically dominated by trees with very different leaf life spans,
including drought deciduous and evergreen species (Borchert et al. 2002; Givnish
2002; Bowman and Prior 2005; Klemens et al. 2011; Vico et al. 2015). Deciduous
species usually have thin leaves with high specific leaf area, short life spans and
high investment in photosynthetic tissues per leaf mass. For this reason, they are
thought to sustain high photosynthetic rates in the wet season under high soil water
potentials but to abscise their leaves in the drought season to reduce water loss via
transpiration (Reich and Borchert 1984; Eamus and Prichard 1998). Theoretical
models predict that this acquisitive resource-use strategy is beneficial for carbon,
nutrients and water balances in SDTFs when the dry season is longer or more
severe because it maximizes carbon uptake and nutrient use when water is not
limiting and minimizes water loss during the long dry season
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(Cornelissen et al. 1996; Givnish 2002; Bowman and Prior 2005; Poorter and
Markesteijn 2008). In contrast, as the dry season becomes shorter or less severe, a
conservative resource use strategy with increased drought tolerance is hypothesized
to be beneficial for species that inhabit SDTFs because it allows carbon assimilation
throughout the entire year including during the dry season (Oertli et al. 1990;
Niinemets 2001; Read and Sanson 2003; Wright et al. 2005; Bowman and Prior
2005; Poorter et al. 2009; Markesteijn et al. 2011). In general, a conservative
resource use strategy is associated with leaves with greater investment in structural
components with low SLA, high leaf thickness and high lignin concentration (Reich
2014). These leaves have lower photosynthetic rates but can maintain function
much longer (Parkhurst and Loucks 1972; Fetcher 1981; Niinemets 2001; Read and
Sanson 2003; Markesteijn et al. 2011). Species that use resources conservatively
also tend to possess adaptations traits that allow them to be functionally active at
low soil water potentials such as adaptations that reduce xylem cavitation (e.g.,
narrow vessels with resistant pit membranes, high stem wood density) and traits that
maintain leaf turgor (Brodribb et al. 2003). Photoprotection is also expected to vary
with leaf lifespan and exposure to dry season drought (Demmig-Adams and Adams
2006; Savage et al. 2009). To the extent that leaves remain functional during the dry
season, they would be expected to increase xanthophyll pigments that aid in energy
dissipation when water becomes limiting, stomatal conductance declines and
photosynthesis quenches less of the incoming absorbed solar radiation.

In several common garden studies testing for ecophysiological differentiation
among populations, Ramírez-Valiente et al. (2015), Ramírez-Valiente and
Cavender-Bares (2017) and Ramírez-Valiente et al. (2017) demonstrated evolu-
tionary divergence in leaf functional traits among populations of Q. oleoides from
contrasting precipitation regimes that vary in dry season length and severity. They
found, somewhat counterintuitively, that more mesic populations tend to face
greater water stress because they maintain functional leaves for longer during the
dry season. Ramírez-Valiente et al. (2015) observed that in response to drought,
Q. oleoides populations originating from mesic areas increased the de-epoxidation
rates of the xanthophyll cycle more than xeric populations (Fig. 4.6). They showed
that differences in physiological mechanisms, particularly the activation of the
xanthophyll cycle, were much higher among populations within species than among
different species. The nature of variation within and among species thus contrasts
that observed for freezing tolerance, which showed greater differentiation between
species than within them. Differences in SLA among Q. oleoides populations were
also higher than differences observed among live oak species. This study showed
for the first time that populations from more mesic areas tended to have more
sclerophyllous leaves with higher capacity for photoprotection in this tropical oak
(Ramírez-Valiente et al. 2015). The interpretation is that the mesic populations
maintain leaves for longer during the dry season and need to continue to maintain
function with increasing water stress.

Consistent patterns of variation in leaf thickness and specific leaf area with the
index of moisture in the location of the source populations were found in multiple
common garden studies in both the greenhouse and in the field (Ramírez-Valiente
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and Cavender-Bares 2017; Ramírez-Valiente et al. 2017). Regardless of the location
of the experiment, watering treatment and sampled populations, a consistently
negative association between specific leaf area and the index of moisture of the
source has been observed (Fig. 4.7). Differences in SLA among populations were
mainly due to leaf thickness and to a lesser extent to leaf density. In fact, a positive
association between leaf thickness and the index of moisture of the source were also
observed across studies (Ramírez-Valiente and Cavender-Bares 2017;
Ramírez-Valiente et al. 2017).

These studies further revealed that Q. oleoides populations had similar values of
stomatal conductance and water use efficiency (WUE) (Ramírez-Valiente and
Cavender-Bares 2017; Ramírez-Valiente et al. 2017) but significantly differed in
water potential at the turgor loss point and leaf abscission in response to drought.
Differences in these two traits were again associated with the climate of origin,
consistent with variation in leaf morphology. Overall, our findings reveal that
populations from more mesic sites have smaller sclerophyllous leaves (lower SLA
and higher thickness) and greater drought tolerance (lower ptlp) (Fig. 4.8a) than
populations from more xeric sites, which have larger mesophyllous leaves (higher
SLA and lower thickness) and increase leaf abscission in response to drought
(Fig. 4.8b). Since populations had similar stomatal conductance and WUE, leaf
senescence in response to drought may have been favored in populations from more
xeric soil conditions as a means of reducing water loss (Jonasson et al. 1997; Condit
et al. 2000; Franklin 2005; Stevens et al. 2016). The increased drought tolerance
and more durable leaves observed in the most mesic areas within the distribution
range of Q. oleoides would allow maintaining photosynthetic activity under lower
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water potentials. Thus, the association between drought resistance strategies, leaf
morphology and climate of populations for Q. oleoides agrees with the postulates
by the resource-use hypothesis in SDTFs (Borchert 1994; Medina 1995; Condit
1998; Givnish 2002; Bowman and Prior 2005; Choat et al. 2007; Tomlinson et al.
2013; Vico et al. 2015). Our findings for Q. oleoides are consistent with temporal
studies, which show that decreasing rainfall in the dry season enhances the relative
abundance of deciduous species in tropical dry forests over time (Enquist and
Enquist 2011) and by spatial analyses at small scales, which show that dry de-
ciduous species preferentially occupy drier microhabitats than evergreen species
(Comita and Engelbrecht 2009). In sum, these findings suggest that water avail-
ability is a key factor driving the spatial and temporal dynamics of functional
strategies in the tropics and provide experimental evidence that selection has
favored an increase in deciduousness with increasing dry season severity in
Quercus oleoides.
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Fig. 4.7 Relationship between specific leaf area and the index of moisture (Precipitation −
potential evapotranspiration) in Quercus oleoides seedlings established in three common garden
experiments: a Greenhouse experiment (red: dry treatment, blue: well-watered treatment)
(Ramírez-Valiente and Cavender-Bares 2017), b Field experiment a, established in Honduras in
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means. Bars indicate standard errors. Index of moisture values are population means in the climate
of origin
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4.6 Comparison of the Seasonally Dry Tropical
Q. Oleoides to Mediterranean Oaks

It is interesting to note that the trends observed in Q. oleoides are opposite to those
reported by Barlett et al. (2012) at global scale, who found a positive relationship
between water availability and ptlp in a metanalysis. This inconsistency across
studies probably reflects contrasting patterns in the evolution of drought tolerance
among- and within-biomes. Differences in ptlp among functional types within
biomes are broadly documented (Bartlett et al. 2012). In fact, species adapted to
avoid or escape from dry seasons usually exhibit lower drought tolerance (increased
osmotic potentials and turgor loss points) in dry tropical and temperate ecosystems
(Medina 1995).

Our results also contrast with those found in intraspecific studies on evergreen
oak species from seasonally-dry temperate zones (i.e. Mediterranean-type ecosys-
tems), which show that populations from xeric climates with long dry seasons have
a conservative resource-use strategy (Gratani et al. 2003; Ramírez-Valiente et al.
2010, 2014; Niinemets 2015). We speculate that the differences in the patterns of
variation of functional traits between tropical and Mediterranean oaks are probably
related to temperatures in the wet season. In Mediterranean-type ecosystems carbon
assimilation is limited by both water deficit in summer and low temperatures in
winter (Larcher 2000; Nardini et al. 2000; Cavender-Bares 2005; Flexas et al. 2014;
Granda et al. 2014; Niinemets 2016). In contrast to Mediterranean ecosystems,
which have cold winters, in seasonally-dry tropical ecosystems, temperature is not a
limiting factor for photosynthesis in the wet season. Mediterranean species face a

Fig. 4.8 a Relationship between the index of moisture (Precipitation − potential evapotranspi-
ration) and water potential at the turgor loss point (ptlp) in one-year old Quercus oleoides seedlings
established in a greenhouse experiment (red: dry treatment, blue: wall-watered treatment)
(Ramírez-Valiente and Cavender-Bares 2017). Circles represent population means. Bars indicate
standard errors. b Relationship between the index of moisture (Precipitation − potential
evapotranspiration) and leaf abscission in one-year old Quercus oleoides seedlings established in a
greenhouse experiment (red: dry treatment, blue: wall-watered treatment). Redrawn from
Ramírez-Valiente and Cavender-Bares (2017). Circles represent population means. Bars indicate
standard errors
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range of severity in drought stress in summer and mild to more significant freezing
stress in winter. Across species of Mediterranean oaks, generally, those with longer
leaf lifespans, including the evergreen Q. ilex (holm oak), which maintains its
leaves for well over two years, and Q. suber (cork oak), which maintains leaves for
well over one full year, have much lower SLA than species with shorter leaf
lifespans, including the deciduous species such as Q. afares and Q. faginea, from
northern Africa, (Fig. 4.9a). Species with lower SLA also have lower leaf nitrogen
concentration and are much more resistant to freezing (Cavender-Bares et al. 2005).
This direction of variation in these traits is consistent with leaf economic spectrum.
Within the two evergreen species, Q. ilex and Q. suber, the nature and severity of
seasonal stress drives leaf variation either in the same direction as the LES or in the
opposite direction, similar to Q. oleoides. We hypothesize that a conservative
resource-use strategy with long leaf life span, thick leaves, high density tissues and
high water use efficiency is beneficial in terms of carbon, nutrient and water balance
for species inhabiting areas with long dry seasons and cold winters. Thick leaves
with higher investment in structural tissues are more resistant to water stress but
also to freezing temperatures (Cavender-Bares 2005; Granda et al. 2014). They
have higher construction costs but might be offset by a longer payback interval
(Williams et al. 1989; Eamus and Prichard 1998).

The patterns of response to cold and drought found in oak species that inhabit
seasonally-dry areas as well as those that span the temperate-tropical divide provide
key results to understand patterns of resource-use strategies in oaks. For example, in
the Mediterranean evergreen oak species, Q. suber, one of the studied populations
exhibited higher SLA than expectations based on its low precipitation in summer.
That “outlier” population was located in the southernmost area of their distribution
ranges in the Iberian Peninsula (Cadiz province, Spain), characterized by mild

Fig. 4.9 a Specific leaf area (SLA, cm2 g−1) in relation to leaf lifespan for four Mediterranean
species from northern Africa and southern Europe, grown and measured in a common garden in
France, showing species means and standard errors from sampled individuals. Modified from
Cavender-Bares et al. (2005). b Relationship between summer precipitation and SLA in
seven-year-old saplings of Quercus suber established in a field common garden experiment
(Ramírez-Valiente et al. 2010). Circles represent population means. Bars indicate standard errors.
c Relationship between the index of moisture and specific leaf area (SLA) in seedlings of five
populations of Quercus ilex from contrasting climates (data from García-Nogales et al. 2016).
Circles represent population means. Bars indicate standard errors
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temperatures in winter. Q. suber from this location was also found to be highly
sensitive to low temperatures in winter (Aranda et al. 2005). Similar results have
been reported for the evergreen oaks Q. ilex. In a recent study with five holm oak
populations, García-Nogales et al. (2016) found that populations from the Iberian
Peninsula characterized by cold winters tended to have a positive association
between SLA and precipitation, indicating that mesic populations had higher SLA
as observed in Q. suber and Q. faginea. In contrast, southern populations from
North Africa with significantly lower index of moisture had higher SLA than
Iberian populations, following the pattern shown by Q. oleoides in the seasonally
dry tropical forest, where winter is absent.

4.7 Population Differentiation in Growth
and Photosynthesis

Despite the strong population patterns observed for leaf morphology and drought
resistance strategies, our results for growth and photosynthetic rates were not
consistent across studies. In analyses performed with data from four common
garden trials established in Honduras, we found population-level differentiation in
height growth (Fig. 4.10). Populations from areas with longer or more severe dry
seasons had higher growth rates in height than mesic populations, which agrees
with the resource-use hypothesis for SDTFs. However, the reverse pattern of
variation was also observed. Specifically, the results derived from a greenhouse
experiment with five Q. oleoides populations revealed a positive association
between growth rates and the index of moisture (Ramírez-Valiente and
Cavender-Bares 2017), contrary to expectations based on the resource-use
hypothesis. One possibility for this unexpected positive association between the
index of moisture and growth could be the influence of the Rincón population,
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a mesic isolated population from Costa Rica. This population showed an out-
standing growth rate in this experiment. In fact, once it was removed from the
analysis, the relationship between the index of moisture and growth rate became no
longer significant (R = 0.330, P = 0.001 including Rincón vs. R = −0.066,
P = 0.578 excluding Rincón). Rincón de la Vieja is a high elevation population
from Costa Rica that exhibits a marked neutral genetic differentiation relative to
lowland populations (Deacon and Cavender-Bares 2015). This isolation could have
leaded the evolution of particular traits conferring high relative growth rates in this
population, even though we detected no fitness advantage in this population.

Patterns of population-level variation for photosynthetic rates were not consis-
tent with the resource-use hypothesis. Populations from xeric areas did not show
higher photosynthetic rates as expected. Furthermore, SLA was negatively asso-
ciated with Amass or relative growth rate (RGR) under well-watered conditions in
different studies (Ramírez-Valiente et al. 2017). Xeric populations undergo a short
period of water deficit (July–August) within the wet season during which, precip-
itation is lower than potential evapotranspiration. This “little dry season” has an
impact on physiology of species similar to the actual dry season. It is possible that
this ‘little dry season’ may have constrained the evolution of increased Amass and
RGR under favorable conditions of water and have promoted some leaf drought
resistance during the wet season in xeric populations of Q. oleoides that experience
this unpredictable water shortage (Choat et al. 2007). Consistent with this idea, we
found a positive relationship between turgor loss point (ptlp) and index of moisture
when Q. oleoides grew under well-watered conditions and the lack of plasticity in
ptlp in response to water availability for xeric populations (see also next section).

4.8 Plasticity in Response to Drought

In long-lived species, plasticity is a critical means of surviving spatial and temporal
environmental variation and may be more important than local adaptation in tol-
erating seasonal stress. Studies on Q. oleoides have showed a high phenotypic
plasticity to water availability in growth rates, gas exchange, leaf morphology and
photochemistry (Ramírez-Valiente et al. 2015, 2017; Ramírez-Valiente and
Cavender-Bares 2017). Unlike in the case of cold acclimation discussed earlier,
whether the plasticity we observed in this suite of traits is adaptive and therefore
able to evolve in response to natural selection does not have an easy answer.
Several studies on annual or short-lived species have shown an association between
plasticity in response to water availability (or other resource) and fitness (Sultan
1995; Dudley 1996; Sultan 1996; Donohue et al. 2000). Plasticity is also considered
adaptive if genotypes of a given species differ in phenotypic plasticity and the
direction of the response is consistent with expectations based on the environment.
Studies on Q. oleoides found population-level differentiation in plasticity of three
functional traits: photoprotective pigments, water potential at the turgor loss point
and leaf abscission that was associated with the index of moisture of the
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populations. Specifically, we found that populations originating from mesic areas
tended to have higher plasticity in the de-epoxidation rates of the xanthophyll cycle
(Fig. 4.11a) and higher capacity of osmoregulation (i.e. high plasticity in the water
potential at the turgor loss point) (Fig. 4.11b) whereas populations from more xeric
populations had higher plasticity in leaf abscission (which is probably associated
with leaf life span) (Fig. 4.11c). These observations together with the fact that the
direction of the phenotypic change is consistent with expectations based on the
response to drought suggest that phenotypic plasticity is adaptive for these traits and
could be subjected to natural selection. A trade off between plasticity in drought
avoidance via leaf abscission with plasticity in drought tolerance via osmotic
adjustment, suggests that plants have evolved flexibility in one kind of response or

Fig. 4.11 a Plasticity (D) in the de-epoxidation state of the xanthophyll cycle (D = dry
treatment − well-watered treatment) in relation to the index of moisture. Points represent family
means means. Redrawn from Ramírez-Valiente et al. (2015). Circles represent family means.
Plasticity (D) in turgor loss point b and leaf abscission c (D = dry treatment − well-watered
treatment) in relation to the index of moisture of the population. Points represent population
means. Bars indicate standard errors. d Relationship between plasticity in water potential at turgor
loss point (ptlp) and plasticity in leaf abscission (D = dry treatment − well-watered treatment).
Points represent population means. Bars indicate standard errors. b–d are redrawn from
Ramírez-Valiente and Cavender-Bares (2017)
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the other but not both (Fig. 4.11d). It is important to point out, however, that the
variation in the response patterns within each of the populations is quite high,
reinforcing other work in this system showing high diversity within populations
(Center 2015; Deacon and Cavender-Bares 2015; Cavender-Bares et al. 2011).

4.9 Response of Oaks to Past Climate Change Provides
Lessons for the Future

Understanding the physiological limits of species, and the nature of variation within
and among species, is critical to understanding species responses to climate change
and in providing guidelines for conservation. To the extent to which species are
composed of locally adapted populations with narrow climatic tolerances, on one
extreme, or of populations that have little variation among them but broad climatic
tolerances, at the other extreme, different conservation strategies are required. There
are real limits to adaptive potential in long-lived organisms relative to the rate of
climate change. Even during past climatic changes that occurred during the
expansion of the desert and Mediterranean biomes some 5-million years ago, evi-
dence is mounting that a live oak species, Quercus brandegeei (Fig. 4.12c, d),
currently found only in the Cape region of southern Baja California, underwent
severe range retraction in response to increased drought (Cavender-Bares et al.
2015). Coalescence models using molecular data indicate that the species once
occupied a much more extensive range and had a population size >100-fold larger
than its current population size. The species underwent range contraction as the
Earth continued to cool and dry forming both Mediterranean and desert ecosystems
globally. Rather than adapting to the novel climatic regime, now inhabited largely
by desert and chaparral species, Q. brandegeei became a relictual population
restricted to the edges of the ephemeral river beds in the Cape of Baja California. It
is now an IUCN red-listed species.

4.10 Evolutionary Potential of Oak Populations

Future work in this system is aimed at addressing the adaptive potential of the live
oaks to respond through genetic change to future climate change, a topic of
increasingly highlighted importance (Etterson 2004a, b, 2008; Davis et al. 2005;
Shaw and Etterson 2012). The genetic architecture of traits determines the potential
rate of adaptive evolution in response to a changing environment. Response to
natural selection requires genetic variation for traits (Falconer and Mackay 1996),
although genetic correlations of various kinds can enhance or impede the rate of
evolutionary change (Etterson and Shaw 2001). In particular, volutionary change
can be enhanced if the sign of a genetic correlation follows the direction of selection
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but impeded if these are antagonistic. Facilitating or antagonistic relationships
between the genetic architecture of traits and the direction of selection can occur
between different life history stages (Schluter et al. 1991), between pairs of traits in
a single life history stage (Conner and Via 1992; Caruso 2004) and between trait
expression in different environments (Dickerson 1955; Via 1993; Etterson 2004b).
Future work elucidating the underlying genetic architecture of physiological traits at
different life history stages and as expressed in different environments will help
predict the potential for evolutionary responses of these important long-lived spe-
cies to future climates. Parallel to these efforts, advances in deciphering the genes
and gene expression patterns associated with adaptations to climate is critical;
important progress in oak systems has been made recently (Gugger et al. 2016,
2017). Understanding the nature and distribution of physiological and genome-wide
variation within species facilitates conservation efforts. To that end, we are working
with botanical gardens to link the knowledge we have gained to help them with
in situ and ex-situ conservation of threatened oak species.

Fig. 4.12 a Photographs of the common garden experiment in Honduras, b the greenhouse
experiment at the University of Minnesota, and c, d of the endangered Quercus brandegeei in the
Cape region of Southern Baja California, Mexico
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4.11 Conclusions

We synthesized evidence from a series of common garden studies for adaptive
differentiation in physiological function both within and among closely related
species in response to low temperature and drought. While direct experimental
evidence for local adaptation to climatic variation associated with precipitation is
lacking, the pattern of trait variation as well as the direction of plasticity are con-
sistent with local adaptation to climate and adaptive plasticity. That nature of the
variation in function that exists within and among populations has conservation
implications. From these studies we have learned that the variation represented in
the species cannot be captured within a single location. At the same time, variation
in freezing tolerance is greatest between species, despite important evidence for
population differentiation within Q. virginiana. In contrast, variation in drought
tolerance, in some cases, is greater among populations within a species than
between species of live oaks. The patterns may depend on the degree and nature of
climatic variation that the populations within a species encounter. And despite clear
evidence for evolution in response to climate, the case of Q. brandegeei demon-
strates that even after 5 million years of exposure to drought conditions, the species
maintains its conserved niche in well-drained soils with seasonal water availability,
unable to migrate into the surrounding desert. As a consequence, it is a relictual
species that will very likely perish without human intervention. The work synthe-
sized here is fundamental to understanding and protecting the oaks, a critical group
of species that contributes much to human well-being.

Acknowledgements The studies represented here were funded by grants from the University of
Minnesota and the National Science Foundation (IOS: 0843665) to J.C-B. and a fellowship from
the Severo Ochoa excellence program to J.A.R-V.

References

Ackerly DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed
plants: a comparative test using independent contrasts. Am J Botany 86:1272–1281

Ananthakrishnan R, Soman MK (1989) Statistical distribution of daily rainfall and its association
with the coefficient of variation of rainfall series. Int J Climatol 9:485–500

Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016)
Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced
tree mortality across the globe. Proc Nat Acad Sci 113:5024–5029

Aranda I, Castro L, Alia R, Pardos JA, Gil L (2005) Low temperature during winter elicits
differential responses among populations of the Mediterranean evergreen cork oak (Quercus
suber). Tree Physiol 25:1085–1090

Bartlett MK, Scoffoni C, Sack L (2012) The determinants of leaf turgor loss point and prediction
of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 5:393–405

Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical
dry forest trees. Ecology 75:1437–1449

130 J. Cavender-Bares and J. A. Ramírez-Valiente



Boucher DH (1981) Seed predation by mammals and forest dominance by Quercus oleoides, a
tropical lowland oak. Oecologia 49:409–414

Bowman D, Prior L (2005) Why do evergreen trees dominate the Australian seasonal tropics?
Austr J Bot 53:379–399

Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate:
two types of response. Plant Cell Environ 29:2205–2215

Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV (2003) Relations between stomatal
closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ
26:443–450

Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing injury in plants. Ann Rev
of Plant Physiol 27:507–528

Caruso CM (2004) The quantitative genetics of floral trait variation in Lobelia: potential
constraints on adaptive evolution. Evolution 58:732–740

Cavender-Bares J (2005) Impacts of freezing on long-distance transport in woody plants. In:
Holbrook MN, Zwieniecki M (eds) Vascular transport in plants. Elsevier Inc., Oxford,
pp 401–424

Cavender-Bares J (2007) Chilling and freezing stress in live oaks (Quercus section Virentes): intra-
and interspecific variation in PS II sensitivity corresponds to latitude of origin. Photonsynth
Res 94:437–453

Cavender-Bares J (2016) Diversity, distribution and ecosystem services of the North American
Oaks. Int Oaks 27:37–48

Cavender-Bares J, Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in
sympatric evergreen and deciduous oaks with, contrasting habitats. Plant Cell Environ
24:1243–1256

Cavender-Bares J, Pahlich A (2009) Molecular, morphological, and ecological niche differenti-
ation of sympatric sister oak species, Quercus virginiana and Q. geminata (Fagaceae). Am J
Bot 96:1690–1702

Cavender-Bares J, Kitajima K, Bazzaz F (2004) Multiple trait associations in relation to habitat
differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005) Summer and winter
sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of
cooccurring Mediterranean oaks that differ in leaf lifespan. New Phytol 168:597–612

Cavender-Bares J, Gonzalez-Rodriguez A, Pahlich A, Koehler K, Deacon N (2011)
Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from
the tropics to the temperate zone. J Biogeogr 38:962–981

Cavender-Bares J, Gonzalez-Rodriguez A, Eaton DAR, Hipp AAL, Beulke A, Manos PS (2015)
Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): a
genomic and population genetics approach. Mol Ecol 24:3668–3687

Center A (2015) Physiological and fitness consequences of seasonal rainfall variation in
neotropical live oak seedlings (Quercus oleoides): implications for global change. University
of Minnesota, Saint Paul

Center A, Etterson JR, Deacon NJ, Cavender-Bares J (2016) Seed production timing influences
seedling fitness in the tropical live oak Quercus oleoides of Costa Rican dry forests. A J Bot
103:1407–1419

Choat B, Sack L, Holbrook N (2007) Diversity of hydraulic traits in nine Cordia species growing
in tropical forests with contrasting precipitation. New Phytol 175:686–698

Comita L, Engelbrecht B (2009) Seasonal and spatial variation in water availability drive habitat
associations in a tropical forest. Ecology 90:2755–2765

Condit R (1998) Ecological implications of changes in drought patterns: shifts in forest
composition in Panama. Clim Change 39:413–427

Condit R, Watts K, Bohlman S, Pérez R, Foster R, Hubbell S (2000) Quantifying the
deciduousness of tropical forest canopies under varying climates. J Veg Sci 11:649–658

Conner J, Via S (1992) Natural selection on body size in Tribolium: possible genetic constraints on
adaptive evolution. Heredity 69:73–83

4 Physiological Evidence from Common Garden Experiments … 131



Cornelissen JHC, Diez PC, Hunt R (1996) Seedling growth, allocation and leaf attributes in a wide
range of woody plant species and types. J Ecol 84:755–765

Crisp M, Arroyo M, Cook L, Gandolfo M, Jordan G (2009a) Phylogenetic biome conservatism on
a global scale. Nature 458:754–756

Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ (2009b) Phylogenetic biome
conservatism on a global scale. Nature 458:754–756

Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology
86:1704–1714

Deacon NJ, Cavender-Bares J (2015) Limited pollen dispersal contributes to population genetic
structure but not local adaptation in Quercus oleoides forests of Costa Rica. PLoS ONE 10:
e0138783

Demmig-Adams B, Adams WW (2006) Tansley review: photoprotection in an ecological context:
the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

Dickerson G (1955) Genetic slippage in response to selection for multiple objectives. Cold Spr
Harb Symp Quant Biol 20:213–224

Donohue K, Messiqua D, Pyle EH, Heschel MS, Schmitt J (2000) Evidence of adaptive
divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in
Impatiens capensis. Evolution 54:1956–1968

Dudley SA (1996) The response to differing selection on plant physiological traits: evidence for
local adaptation. Evolution 50:103–110

Eamus D, Prichard H (1998) A cost-benefit analysis of leaves of four Australian savanna species.
Tree Physiol 18:537–545

Engelbrecht BMJ, Kursar TA (2003) Comparative drought-resistance of seedlings of 28 species of
co-occurring tropical woody plants. Oecologia 136:383–393

Engelbrecht BMJ, Dalling JW, Pearson TRH, Wolf RL, Galvez DA, Koehler T, Tyree MT,
Kursar TA (2006) Short dry spells in the wet season increase mortality of tropical pioneer
seedlings. Oecologia 148:258–269

Enquist B, Enquist C (2011) Long-term change within a Neotropical forest: assessing differential
functional and floristic responses to disturbance and drought. Glob Chang Biol 17:1408–1424

Etterson JR (2004a) Evolutionary potential of Chamaecrista fasciculata in relation to climate
change I. Clinal patterns of selection along an environmental gradient in the Great Plains.
Evolution 58:1446–1458

Etterson JR (2004b) Evolutionary potential of Chamaecrista fasciculata in relation to climate
change: II. Genetic architecture of three populations reciprocally planted along an environ-
mental gradient in the Great Plains. Evolution 58:1459–1471

Etterson JR (2008) Evolution in response to climate change. In: Carroll S, Fox C
(eds) Conservation biology: evolution in action. Oxford University Press, Oxford, p 145

Etterson J, Shaw R (2001) Constraint to adaptive evolution in response to global warming. Science
294:151–154

Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Prentice Hall, New York
Fetcher N (1981) Leaf Size and Leaf Temperature in Tropical Vines. Am Nat 117:1011–1014
Flexas J, Diaz-Espejo A, Gago J, Gallé A, Galmés J, Gulías J, Medrano H (2014) Photosynthetic

limitations in Mediterranean plants: a review. Environl Exp Bot 103:12–23
Franklin D (2005) Vegetative phenology and growth of a facultatively deciduous bamboo in a

monsoonal climate. Biotropica 37:343–350
Fujikawa S, Kuroda K (2000) Cryo-scanning electron microscopic study on freezing behavior of

xylem ray parenchyma cells in hardwood species. Micron 31:669–686
Givnish TJ (2002) Adaptive significance of evergreen vs. deciduous leaves: solving the triple

paradox. Silva Fenn 36:703–743
Gould K (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves.

J Biomed Biotechnol 2004:314–320
Granda E, Scoffoni C, Rubio-Casal A, Sack L, Valladares F (2014) Leaf and stem physiological

responses to summer and winter extremes of woody species across temperate ecosystems.
Oikos 123:1281–1290

132 J. Cavender-Bares and J. A. Ramírez-Valiente



Gratani L, Meneghini M, Pesoli P, Crescente M (2003) Structural and functional plasticity of
Quercus ilex seedlings of different provenances in Italy. Trees 17:515–521

Gugger PF, Cokus SJ, Sork VL (2016) Association of transcriptome-wide sequence variation with
climate gradients in valley oak (Quercus lobata). Tree Genet Genom 12:15

Gugger PF, Peñaloza-Ramírez JM, Wright JW, Sork VL (2017) Whole-transcriptome response to
water stress in a California endemic oak, Quercus lobata. Tree Physiol 37:632–644

Guy CL (2003) Freezing tolerance of plants: current understanding and selected emerging
concepts. Can J Bot 81:1216–1223

Hipp AL, Manos PS, González-Rodríguez A, Hahn M, Kaproth M, McVay JD, Avalos SV,
Cavender-Bares J (2017) Sympatric parallel diversification of major oak clades in the Americas
and the origins of Mexican species diversity. New Phytol. doi:10.1111/nph.14773

Hughes NM, Burkey KO, Cavender-Bares J, Smith WK (2012) Xanthophyll cycle pigment and
antioxicant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm
evergreen species. J Exp Bot 63:1895–1905

Huner NPA, Oquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis,
photoinhibition and low-temperature acclimation in cold tolerant plants. Photosynth Res
37:19–39

IPCC (2007) Climate Change 2007: the physical science basis. contribution of working group i to
the fourth assessment report of the intergovernmental panel on climate change. Cambridge
University Press, New York

Jonasson S, Medrano H, Flexas J (1997) Variation in leaf longevity of Pistacia lentiscus and its
relationship to sex and drought stress inferred from leaf d13C. Funct Ecol 11:282–289

Jump A, Hunt J, Peñuelas J (2006) Rapid climate change-related growth decline at the southern
range edge of Fagus sylvatica. Glob Change Biol 12:2163–2174

Karmalkar AV, Bradley RS, Diaz HF (2008) Climate change scenario for Costa Rican montane
forests. Geophys Res Lett 35. doi:10.1029/2008GL033940

Klemens JA, Deacon NJ, Cavender-Bares J (2011) Pasture recolonization by a tropical oak and the
regeneration ecology of seasonally dry tropical forests. In: Dirzo R, Young HS, Mooney HA,
Ceballos G (ed) Seasonally Dry Tropical Forests. Island Press/Center for Resource Economics,
pp 221–237

Koehler K, Center A, Cavender-Bares J (2012) Evidence for a freezing tolerance—growth rate
trade-off in the live oaks (Quercus series Virentes) across the tropical-temperate divide. New
Phytol 193:730–744

Koerner C, Larcher W (1988) Plant life in cold climates. In: Long SP, Wodward FI (eds) Plants
and temperature. Society of Experimental Biology, Cambridge, pp 25–57

Kurz H, Godfrey RK (1962) Trees of Northern Florida. University of Florida, Gainesville
Larcher W (1960) Transpiration and photosynthesis of detached leaves and shoots of Quercus

pubescens and Q. ilex during desiccation under standard conditions. Bull Res Counc Isr
8:213–224

Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants.
Plant Biosyst 134:279–295

Markesteijn L, Poorter L, Paz H, Sack L, Bongers F (2011) Ecological differentiation in xylem
cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ
34:137–148

Medina E (1995) Diversity of life forms of higher plants in neotropical dry forests. In: Bullock S,
Mooney H, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press,
Cambridge, pp 221–242

Meireles JE, Beulke A, Borkowski D, Romero-Severson J, Cavender-Bares J (2017) Balancing
selection maintains diversity in a cold tolerance gene in broadly distributed live oaks. Genome
in press

Miller HA, Lamb SH (1985) Oaks of North America. Naturegraph Publishers Inc, Happy Camp,
California

Muller CH (ed) (1942) The central American species of Quercus. United States Department of
Agriculture, Washington, DC

4 Physiological Evidence from Common Garden Experiments … 133

http://dx.doi.org/10.1111/nph.14773
http://dx.doi.org/10.1029/2008GL033940


Muller SC (1961) The origin of Quercus fusiformis small. J Linn Soc 58:186–192
Myers RL (1990) Scrub and High Pine. In: Myers RL, Ewel JJ (eds) Ecosystems of Florida.

University of Central Florida Press, Orlando, pp 150–193
Nardini A, Salleo S, Gullo MAL, Pitt F (2000) Different responses to drought and freeze stress of

Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147
Nicholls N, Wong KK (1990) Dependence of rainfall variability on mean rainfall, latitude, and the

Southern Oscillation. J Clim 3:163–170
Niinemets Ü (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness

in trees and shrubs. Ecology 82:453–469
Niinemets Ü (2015) Is there a species spectrum within the world-wide leaf economics spectrum?

Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New
Phytol 205:79–96

Niinemets Ü (2016) Does the touch of cold make evergreen leaves tougher? Tree Physiol
36:267–272

Nixon KC (1985) A Biosystematic Study of Quercus Series Virentes (the live oaks) with
Phylogenetic Analyses of Fagales, Fagaceae and Quercus, Ph.D. Thesis. University of Texas,
Austin

Nixon KC, Muller CH (1997) Quercus Linnaeus sect. Quercus White oaks. In: Flora of North
America Committee (ed) Flora of North America, North of Mexico. Oxford University Press,
New York, pp 436–506

Oertli JJ, Lips SH, Agami M (1990) The strength of sclerophyllous cells to resist collapse due to
negative turgor pressure. Acta Oecologica 11:281–289

Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537
Parker J (1963) Cold resistance in woody plants. Bot Rev 29:123–201
Pennington RT (2006) Neotropical Savannas and seasonally dry forests: plant diversity,

biogeography, and conservation. CRC Press, Taylor & Francis Group, New York
Pietrini F, Iannelli M, Massacci A (2002) Anthocyanin accumulation in the illuminated surface of

maize leaves enhances protection from photo-inhibitory risks at low temperature, without
further limitation to photosynthesis. Plant, Cell Environ 25:1251–1259

Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of
variation in leaf mass per area (LMA): a meta‐analysis. New Phytol 182:565–588

Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree
species. Biotropica 40:321–331

Ramírez-Valiente JA Cavender-Bares J (2017) Evolutionary trade-offs between drought resistance
mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).
Tree Physiol 1–13. doi:10.1093/treephys/tpx1040

Ramírez-Valiente JA, Sánchez-Gómez D, Aranda I, Valladares F (2010) Phenotypic plasticity and
local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under
different water availabilities. Tree Physiol 30:618–627

Ramírez-Valiente J, Valladares F, Sánchez-Gómez D, Delgado A, Aranda I (2014) Population
variation and natural selection on leaf traits in cork oak throughout its distribution range. Acta
Oecol 58:49–56

Ramírez-Valiente JA, Koehler K, Cavender-Bares J (2015) Climatic origins predict variation in
photoprotective leaf pigments in response to drought and low temperatures in live oaks
(Quercus series Virentes). Tree Physiol 35:521–534

Ramírez-Valiente JA, Center A, Sparks SP, Sparks KL, Etterson JR, Longwell T, Pilz G,
Cavender-Bares J (2017) Population-level differentiation in growth rates and leaf traits in
seedlings of the neotropical live oak Quercus oleoides grown under natural and manipulated
precipitation regimes. Front Plant Sci 8:585

Read J, Sanson GD (2003) Characterizing sclerophylly: the mechanical properties of a diverse
range of leaf types. New Phytol 160:81–99

Reich PB (2014) The world‐wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol
102:275–301

134 J. Cavender-Bares and J. A. Ramírez-Valiente

http://dx.doi.org/10.1093/treephys/tpx1040


Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the
lowlands of Costa Rica. J Ecol 61–74

Sakai A, Larcher W (1987) Frost survival of plants: responses and adaptations to freezing stress.
Springer-Verlag, Berlin

Sakai A, Weiser CJ (1973) Freezing resistance of trees in North America with reference to tree
regions. Ecology 54:118–126

Savage JA, Cavender-Bares J (2013) Phenological cues drive an apparent trade-off between
freezing tolerance and growth in the family Salicaceae. Ecology 94:1708–1717

Savage J, Cavender-Bares J, Verhoeven A (2009) Habitat generalists and wetland specialists in the
genus Salix vary in their photoprotective responses to drought. Funct Plant Biol 36:300–309

Schluter D, Price TD, Rowe L (1991) Conflicting selection pressures and life history trade-offs.
Proc Roy Soc B 246:11–17

Shaw RG, Etterson JR (2012) Rapid climate change and the rate of adaptation: insight from
experimental quantitative genetics. New Phytol 195:752–765

Steponkus PL (1984) Role of the plasma membrane in freezing injury and cold acclimation. Annu
Rev Plant Physiol 35:543–584

Stevens N, Archibald S, Nickless A, Swemmer A, Scholes R (2016) Evidence for facultative
deciduousness in Colophospermum mopane in semi-arid African savannas. Austr Ecol
41:87–96

Sultan SE (1995) Phenotypic plasticity and plant adaptation. Acta Bot Neerl 44:363–383
Sultan SE (1996) Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology

77:1791–1807
Tomlinson K, Poorter L, Sterck F, Borghetti F, Ward D, Bie S, Langevelde F (2013) Leaf

adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three
continents. J Ecol 101:430–440

Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical
seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol
132:1439–1447

Van Kleunen M, Fischer M (2005) Constraints on the evolution of adaptive phenotypic plasticity
in plants. New Phytol 166:49–60

Via S (1993) Adaptive phenotypic plasticity: target of by-product of selection in a variable
environment? Am Nat 142:352–365

Vico G, Thompson S, Manzoni S, Molini A, Albertson J, Almeida-Cortez J, Fay P, Feng X,
Guswa A, Liu H, Wilson T, Porporato A (2015) Climatic, ecophysiological, and phenological
controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology
8:660–681

Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI,
Davies TJ, Grytnes JA, Harrison SP, Hawkins BA, Holt RD, McCain CM, Stephens PR (2010)
Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett
13:1310–1324

Williams K, Field CB, Mooney HA (1989) Relationships among leaf construction cost, leaf
longevity, and light environment in rain-forest plants of the genus Piper. Am Nat 133:198–211

Wisniewski ME, Ashworth EN (1985) Changes in the ultrastructure of xylem parenchyma cells of
peach (Prunus persica) and red oak (Quercus rubra) in response to a freezing stress. Am J Bot
72:1364–1376

Wright IJ, Reich PB, Cornelissen JH, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH,
Niinemets U, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005) Modulation of
leaf economic traits and trait relationships by climate. Glob Ecol Biogeogr 14:411–421

Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara
BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ,
Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J,
Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of
angiosperms into freezing environments. Nature 506:89–92

4 Physiological Evidence from Common Garden Experiments … 135



Chapter 5
Oaks Under Mediterranean-Type
Climates: Functional Response to Summer
Aridity

Eustaquio Gil-Pelegrín, Miguel Ángel Saz, Jose María Cuadrat,
José Javier Peguero-Pina and Domingo Sancho-Knapik

Abstract Mediterranean-type climates are characterized by warm or hot summers,
mild or cold winters and, especially, by the existence of a summer drought period
driven by the low or even nule precipitation during this season. Mediterranean-type
climates are represented in different areas of the world, both in the Northern and the
Southern Hemisphere. Specifically, regarding the existence of Quercus under these
climatic conditions, two main geographical areas should be considered, namely the
Mediterranean Basin in the Palearctic and California (USA) and Baja California
(Mexico) in the Nearctic. Despite the relatively low geographical extension of the
areas occupied by oaks under this type of climate, it has deserved its own phyto-
climatical entity since the first geobotanical synthesis at a global scale. Although
evergreen and sclerophyllous oak species are widely assumed as a prototype of
mediterranean oaks, both palaeoecological evidences and present biogeographical
analysis confirm the co-existence of this oak type with winter-deciduous species of
the same genus. In this chapter, the different advantages and disadvantages of both
phenological patterns (evergreeness and winter-deciduousness) are presented.
Moreover, the strategies for saving water through the overall leaf size reduction, the
stomatal control of water losses or some xeromorphic traits for a further reduction
of transpiration are also shown. Finally, the development of a high resistance to
drought-induced cavitation, as a way for coping with low water potential during dry
periods, is discussed.

E. Gil-Pelegrín (&) � J. J. Peguero-Pina � D. Sancho-Knapik
Centro de Investigación y Tecnología Agroalimentaria de Aragón, Gobierno de Aragón,
Unidad de Recursos Forestales, Avda. Montañana 930, 50059 Saragossa, Spain
e-mail: egilp@cita-aragon.es

M. Á. Saz � J. M. Cuadrat
Departamento de Geografía y Ordenación del Territorio, Universidad de Zaragoza,
50009 Saragossa, Spain

© Springer International Publishing AG 2017
E. Gil-Pelegrín et al. (eds.), Oaks Physiological Ecology. Exploring the Functional
Diversity of Genus Quercus L., Tree Physiology 7,
https://doi.org/10.1007/978-3-319-69099-5_5

137



5.1 Key Features of Mediterranean-Type Climates
Worldwide

The Mediterranean-type climates include a set of sub-varieties with common char-
acteristics: presence of warm or hot summers, mild or cold winters and a rainfall
regime characterized by a severe summer drought (Lionello et al. 2006). Total rainfall
exceeds 300 mm on average (Grove et al. 1977), although it is not unusual to find
locations with values above 2000 mm due to the influence of orography (Cuadrat
et al. 2007). Less than 20% of the annual precipitation occurs during summer, while
more than 50% of it falls during the cold season (Deitch et al. 2017).

The typical monthly temperature and precipitation regime of the
Mediterranean-type climates of the Northern Hemisphere is shown in Fig. 5.1, with
an aridity period during summer that can be also extended from late spring to early
autumn, and a high concentration of precipitation during winter. The combination
of a maximum of temperature and a minimum of precipitation induces the summer
aridity period that better charactherizes the Mediterranean-type climates (Walter
1985; Breckle 2002). The aridity period is defined as the time-span where the
temperature values are above the precipitation values in a Gaussen-type ombroth-
ermic diagram as shown in Fig. 5.1 (P = 2T). Köppen classified these climates as
Cs (Köppen 1936), although subdivided into Csa and Csb according to the tem-
perature of the warmer month (above or below 22 °C respectively).

Fig. 5.1 Typical Mediterranean-type climate (Northern Hemisphere) with warm and dry summers
and mild and rainy winters (a). b, c and d show the mean, maximum and minimum monthly
temperature values respectively extracted from a set of more than 2000 points with Cs climate
from those in Appendix 5.1. e and f show the monthly precipitation and vapour pressure deficit
(VPD) respectively from the same set of points. g shows the difference between 2P and T,
indicating aridity (pink area) according to Gaussen (see text for details)
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Beyond this common feature of the Mediterranean-type climates, with the
existence of a dry period during summer, a high variability is registered in the
precipitation or temperature values among localities. Box plots of Fig. 5.1b–e have
been calculated taking into account the mean temperature and precipitation data of
the WorldClim V2.0 database (Fick and Hijmans 2017), extracted from a set of
more than 2000 points with a Cs climate (Peel et al. 2007) and confirmed presence
of Quercus species (data set in Appendix 5.1). The climatic variability, although
also observed in the thermal regime (Fig. 5.1b–d), is especially extreme when
precipitation is considered (Fig. 5.1d). Regarding aridity, Fig. 5.1g, which shows
the distribution of arid months according to the criterium above described, evi-
dences that summer months are expected to be arid in most if not all the analyzed
points, even extending this aridity period far from the early autumn in some
locations. The variability in the atmospheric dryness (estimated as vapour pressure
deficit, thereafter VPD, kPa) is quite high among sites under Mediterranean-type
climates (Fig. 5.1f). Maximum values above 4 kPa during mid summer are found in
some locations, while VPD remains below 2 kPa in others during the same period.
The outstanding importance of this parameter will be considered below in this
chapter in terms of water losses by transpiration and the mechanisms developed by
different Quercus species to cope with such high atmospheric demand during the
hottest days of the summer.

The regions under Mediterranean-type climates represent a relatively small
proportion of the continental areas of the world, if compared with other type of
climates. Moreover, they appear fragmented in different territories of the Northern
and Southern Hemispheres. Despite these facts, it must be highlighted that this
climate has deserved its own phytoclimatic consideration. In this sense, Schimper
(1903) dedicated a chapter of his “Plant Geography upon a Physiological Basis”, a
very early phytogeographical synthesis of the vegetation of the earth, to the
so-called “District of the warm temperate belts with moist winters”, where the
author included those areas under Mediterranean-type climate (namely
Mediterranean Basin, Cape Region, South and West Australia, California and
Chile). Later, Walter (1985) proposed the Zonobiome IV, “of sclerophyllic
woodlands” or “Zonobiome of the arido-humid winter rain region”(Breckle 2002),
while Rivas-Martínez et al. (2011) proposed the consideration of Macrobioclimate
for this climatic type.

As mentioned before, there are several regions in the world that show these
climatic characteristics, always located on the western face of the continents in both
hemispheres between 30° and 40° of latitude (Lionello et al. 2006). Specifically,
Mediterranean-type climates can be found in (i) regions of Europe, Africa and Asia
surrounding the Mediterranean Basin (excluding Egypt, Libya and most part of
Tunisia) and extending to the south of Turkey and northern Syria; (ii) the Pacific
shore of North America, extending through the state of California in USA and New
California in Mexico; (iii) the central coast of Chile; (iv) a large area of western and
southern Australia; and (v) the Cape region of South Africa.

These regions are located near the latitudinal limit between temperate and
tropical latitudes, in areas where the shift of the subtropical high pressure cells to
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higher latitudes during summer causes atmospheric stability and, as a consequence,
the absence of rainfall. In addition to the typical dry summer, a high frequency of
meteorological droughts (García-Ruiz et al. 2011) associated to high atmospheric
pressures is frequent during spring and autumn. Besides, the influence of high
pressures during the winter associated to the strong cooling of the earth surface in
the Eurasian and American continents can also induce dry periods during winter. At
the same time, the presence of cold air masses in the middle troposphere can favour
atmospheric instability and, as a consequence, events of intense rainfall
(Serrano-Muela et al. 2013). In addition, cold and heat waves are not rare in areas
under Mediterranean-type climates, associated to the latitudinal displacement of air
masses with very contrasted temperatures. The consequences on natural systems,
anthropic activities and human health of such cold or heat waves have been widely
recognised (Trigo et al. 2005).

Despite the apparent severity of this climate for life, these regions are especially
rich in terms of biological diversity (Cowling et al 1996). Variations in (i) the time
distribution of precipitation, (ii) the length of the aridity period, (iii) the annual
thermal amplitude or (iv) the frequency of extreme events, produce a complex
mosaic of environments. Such diversity of climatic variations in space favours the
existence of different species of animals and plants that have been able to develop
physiological, morphological or behavioral adaptative responses. However, the
current physiognomy and floristic composition of the vegetation in areas under
Mediterranean-type climate cannot be fully understood without considering the
human influence. The five regions under Mediterranean-type climate above indi-
cated are characterized by an intense human occupation that radically transformed
the primitive landscape., Some of the most advanced societies in history have been
developed in the Mediterranean Basin (Büntgen et al. 2011), with an enormous
capacity for influencing and modifying the natural environment. Moreover, such
changes in soil occupation, through its effect on the albedo, could have altered the
regional atmospheric circulation in the Mediterranean Sea and influenced some
aspects of the climate, at least since 4000 BP (Reale and Dirmeyer 2000).
Nevertheless, the human land use has also contributed to enhance the diversity of
ecological situations and, as a consequence, the current interest in these landscapes
(Lasanta et al. 2016). In this context, the coexistence of mediterranean-type oaks,
both evergreen and winter-deciduous, will be discussed below.

5.2 Mediterranean-Type Climates and Oaks: The Areas
of Northern Hemisphere Under This Climate

Although five regions are recognised as representative of Mediterranean-type cli-
mate (see above), the aim of this chapter is to focus on the response of oak species
to the environmental constrains imposed by this climatic type. The areas with
presence of Quercus spp. under Mediterranean-type climate are those of the
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Northern Hemisphere, namely Mediterranean Basin and the pacific shores in
California (USA) and Baja California (Mexico).

5.2.1 Mediterranean Basin

Mediterranean Basin is the region with the most heterogeneous climatic regime
among the areas under such climatic type, with an outstanding influence of the
orography and the thermal and dynamic behavior of the sea masses (Bethoux et al.
1999). The annual precipitation ranges from 400 to 800 mm, with a mean annual
temperature ranging from 16 to 19 °C (García Ruiz et al. 2013). The relief of the
Mediterranean Basin is associated with the Alpine Orogeny, especially active in the
areas between the African and Eurasian plates. There are several geographical
factors related to the latitudinal situation of the Mediterranean Basin that are
superimposed to the atmospheric patterns: (i) differences in altitude between
mountains and valleys, (ii) the proximity to the sea masses and (iii) the exposure to
westerlies, All these factors induce the existance of a complex climatic mosaic and
extreme climatic gradients (Castro-Díez et al. 1997).

Although the existence of dry summers and rainy winters is a common feature of
the climate in the Mediterranean Basin, the genesis of thermal anticyclones inside
the continents during winter (Wallen 1970) can drastically reduce the precipitation
registered during the colder months of the year, producing a second precipitation
minimum (Cuadrat et al. 2007). This situation can be persistent if the winter high
pressures cell located in Siberia comes in contact with the Azores high tropical cell.
In fact, the lack of winter precipitation during two consecutive years has been
related to episodes of massive oak decline in the Iberian Peninsula (Corcuera et al
2004b). The influence of high pressures disappears during the spring, with the
arrival of fronts of humid air from the Atlantic. Thus, this season is the wettest
period of the year in most areas of the Mediterranean Basin, especially in the
Iberian Peninsula. Apart from that, the strong cyclonic activity of the Mediterranean
sea and the high temperatures of the water mass after the summer heating provoke
abundant precipitation in other areas of the Mediterranean Basin, especially in the
coastal areas of the eastern Iberian peninsula, Italy and Greece.

The climate in the Mediterranean Basin is affected by atmospheric patterns at a
global scale. There are a great amount of studies demonstrating the influence of NAO
(North Atlantic Oscillation) on winter precipitation in the western Mediterranean
Basin (Hurrell et al. 2004) as well as the EA (East Atlantic pattern) on precipitation
anomalies in the eastern areas (Krichak and Alpert 2005). The influence of ENSO (El
Niño-Southern Oscillation) seems also to be important on winter precipitation in the
eastern Mediterranean Basin (Pozo-Vázquez et al. 2001), although some evidences
of positive influence on autumn precipitation have been also found in some western
territories, such as Spain and Morocco (Mariotti et al. 2002). The influence of other
teleconnection patterns have also been proposed, namely the “Mediterranean
Sea-Caspian Pattern”, the “Southern Europe-North Atlantic Pattern” and the
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“Western Mediterranean Oscillation” (Lionello et al. 2006), but further research is
needed to confirm their impact on the climate in this area.

5.2.2 Pacific Shore of USA and Mexico: California
and Baja California

The Mediterranean climate in California (USA) is located from the Pacific coastal
regions to the piedmont of Sierra Nevada, including a large fragment of the Central
Valley, where climate becomes warmer and drier. There are also areas under
Mediterranean-type climate in northern Baja California (Mexico), with warm and
dry summers, mild winters, high interannual variability of precipitation and high
frequency of severe droughts. Climatic gradients in this region are related to
changes in latitude, proximity to the Pacific Ocean, altitude and continentality.
Mediterranean-type climates are also largely influenced by the pressure systems of
the Pacific Ocean and the high and low pressure cells of the interior of the American
continent. The location of the “Pacific High”, an extensive area of high pressures
related to its subtropical latitudinal position, is responsible of the summer drought
and the north-south gradient of precipitation. Its gradual shift in winter allows the
arrival of humid fronts associated with the atmospheric dynamic of the temperate
zone. The rainfall is higher when the fronts reach the foothills of the coastal
mountain ranges and Sierra Nevada (Bryson and Hare 1974).

There are also other patterns of general circulation at a cyclonic scale that affect
the Mediterranean-type climates of this region, such as ENSO, Pacific Decadal
Oscillation (PDO) and Pacific North American Pattern (PNA). During positive
ENSO phases, dry and warm conditions are expected in the north of California and
Oregon while the north-south dipole causes wet anomalies in Southern Californa
(Trouet et al. 2009). During negative ENSO phases, the opposite climatic condi-
tions are registered (Trouet et al. 2009). PDO seems to have a greater influence on
climatic variability at temporal decadal scales (Mantua et al. 1997). Finally, PNA,
that determines the circulation in the middle layers of the troposphere, causes a
movement of the cyclonic systems towards the north or the south of the analyzed
area modifying the annual patterns of precipitation (Wallace and Gutzler 1981).

5.3 Climatic Transitions in Mediterranean Areas

As stated before, despite the common feature of a summer drought period,
Mediterranean-type climates are quite diverse, with a marked influence on the phys-
iognomy of the vegetation. From a phytoclimatic perpective, and taking in mind the
presence of different oak species, the genuine Mediterranean-type climate can evolve
towards (i) warmer and drier sub-climates, in transition to arid ones (Fig. 5.2a),
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(ii) milder and more humid ones, in transition to temperate climates (Fig. 5.2b) or
(iii) drier and cooler variants, closer to the typical steppe climates (Fig. 5.2c).

These climatic transitions can be expressed in terms of Walter’s Zonobiomes
(Walter 1985; Breckle 2002) (Fig. 5.3). According to this classification, the
Zonobiome IV or “Zonobiome of the Sclerophyllic Woodlands” is considered the
genuine Mediterranean-type climate, and Q. ilex the representative oak species.
When aridity increases, in a progressive transition to Zonobiome III or “Zonobiome
of Hot Deserts”, Q. ilex would be substituted by Q. coccifera, which is present in
areas of semi-arid climates (Vilagrosa et al. 2003a, b, 2010). The transition to
Zonobiome VI or “Zonobiome of Deciduous Forests” would imply a shorterning of
the summer aridity period, a cooler winter and an overall higher precipiation. Most
of the Iberian Peninsula can be considered to be under this transitional climate, with
small leaved, winter-deciduous oaks, such as Q. faginea (Sánchez de Dios et al.
2009). The transition to dry but cooler conditions, towards the Zonobiome VII or
“Zonobiome of Steppes and Cold Deserts” should imply the dominance of some
oak species that are able to withstand such cold climatic subtypes, such as Q. ilex
subsp. rotundifolia in the western Mediterranean Basin and Q. baloot in south-
western Asia.

5.4 The History of Oaks Under Mediterranean-Type
Climates. Is There a Single Prototype
of Mediterranean Quercus?

Areas under Mediterranean-type climates sustain a significant part of the world’s
terrestrial biomass, net primary productivity and biodiversity with almost the 20%
of the known vascular plant species diversity on Earth (Atjay et al. 1979;

Fig. 5.2 Climograms of transition zones within the mediterranean climate to arid (a), temperate
(b) and cold steppe (c). Zonobiomes according to Walter´s classification (Breckle 2002)
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Valiente-Banuet et al. 2006), conferring to these areas a current great importance.
However, from a geological time scale, Mediterranean-type climates could be
considered nearly negligible, as the paleontological evidences suggest a relatively
recent development (Ackerly 2009; Rundel et al. 2016). Most authors considered
that summer drought that characterized this type of climate was not established on
the Northern Hemisphere until the end of the Tertiary—beginning of the
Quaternary (between 7 and 2.8 Million year depending on the region) (Suc 1984;
Verdú et al. 2003; Jiménez-Moreno et al. 2010; Millar 2012).

Long before the development of the Mediterranean-type climates, at the
beginning of the Tertiary, the current mediterranean regions like in many other parts
of the world had a warm and wet climate characterized by a precipitation regime
distributed throughout the year (Verdú et al. 2003; Valiente-Banuet et al. 2006;
Ackerly 2009; Millar 2012). Under these humid climatic conditions, the vegetation
in these areas of the Northern Hemisphere was formed by rich oak-laurel-madrone
evergreen woodlands (Valiente-Banuet et al. 2006) where sclerophyllous taxa
occurred as minor elements (Axelrod 1975, 1989), constituting in most cases the
understory of these woodlands (Valiente-Banuet et al. 2006). During the Early
Tertiary, arid climates and dry environments started to develop (Millar 2012) and
laurophyllous forests had to adapt to these new conditions (Axelrod 1977). While a
lot of plant species became extinct, evergreen sclerophyllous shrubs present in the
understory expanded geographically (Valiente-Banuet et al. 2006). The resulting
type of flora can be compared with the current evergreen sclerophyllous
broad-leaved forest in China (Suc 1984; Rundel et al. 2016) or with the rain forest
in Southern Mexico (Millar 2012).

Fig. 5.3 Transition from Zonobiome IV to more arid (III), humid-colder (VI) and colder
(VII) conditions and species of Quercus characteristic of these transitions. Zonobiomes according
to Walter´s classification (Breckle 2002). See text for details
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Arid climates and dry environments continued to develop during the
Middle-Late Tertiary, modifying the composition of the flora (Millar 2012). In this
time, some authors already stated the common presence of sclerophyllous leaves
corresponding to “ilex” or “suber” oaks type in Southern Europe (Kovar-Eder
2003) and to “chrysolepis” type in Western USA (Retallack 2004). Afterwards, at
the end of the Tertiary, with this general palaeoclimatic trend towards greater
aridity, summer precipitation started to decrease in the current mediterranean areas
(Axelrod 1973; Suc 1984). The change to Mediterranean-type climates led sur-
viving taxonomic components of the ancient flora, including some of the most
abundant modern genera, such as Quercus L. (Valiente-Banuet et al. 2006), to seek
refuge in today’s current mediterranean areas (Axelrod 1975). Furthermore, current
xerophitic taxa present in southern Europe (Quercus ilex-type, Phillyrea, Olea,
Cistus, Pistacia) rose by degrees to higher frequencies and appear to have been the
most resistant to the new climatic conditions (Suc 1984). A similar situation
occurred in California, when the intensification of Mediterranean-type climates
derivated in a dominance of evergreen Quercus species (Millar 2012). That is, the
archetypal evergreen sclerophyllous oak that lives under arid conditions in con-
temporary communities of mediterranean regions might have its origin in
pre-mediterranean lineages that existed during the Tertiary in a belt around North
America and Eurasia, where the climate was warm and wet (Herrera 1992; Verdú
et al. 2003; Valiente-Banuet et al. 2006).

Not only evergreen sclerophyllous Quercus species like Q. ilex or Q. chrysolepis
inhabit the current northern hemisphere mediterranean regions. Deciduous oaks like
Q. faginea or Q. lobata also coexist under a Mediterranean-type climate regime.
According to Mai (1991), there was also a temperate broad-leaved deciduous veg-
etation (the so-called Arctotertiary Flora) that occupied high northern latitudes both
in North America and in Eurasia in the Early Tertiary. Ancestors of the current white
and black oaks (Quercus and Lobatae groups respectively, according to Denk and
Grimm 2009) seem to have been part of this flora (Nixon 2002; Kovar-Eder 2003).
During the Middle and Late Tertiary, a global trend in the decrease of temperatures
caused a shift of this deciduous vegetation towards southern latitudes (Mai 1991;
Kovar-Eder 2003). This implied the appearance of arctotertiary elements in the
mediterranean areas (Mediterranean Basin and California) prior to the onset of
Mediterranean-type climates (Axelrod 1973; Kovar-Eder 2003; Ackerly 2009). The
current existence of deciduous oak types living under Mediterranean-type climates
might have implied a subsequent adaptation of the arctotertiary oak ancestors to the
spreading dry Mediterranean regime, in opposition to the pre-adapted evergreen
sclerophyllous (Suc 1984; Blumler 1991; Nixon 2002; Peguero-Pina et al. 2016a).
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5.5 Co-occurrence of Evergreen and Winter-Deciduous
Oaks Under Mediterranean-Type Climates

Nowadays there are two types of oaks cohabiting in the current mediterranean regions
of the Northern Hemisphere: the more acknowledged broadleaved evergreen sclero-
phyllous type and the scarcely recognized winter-deciduous malacophyllus type
(Barbero et al. 1992; Castro-Díez and Montserrat-Martí 1998; Damesin et al. 1998;
Mediavilla and Escudero 2004). The former has been commonly associated to the
archetype of the Mediterranean-type climate (Walter 1985) and has served to develop
the concept of “convergent evolution” between mediterranean regions (Mooney and
Dunn 1970; Cody and Mooney 1978; Shmida 1981; Shmida and Whittaker 1984).
Nevertheless, evergreen sclerophyllous oaks can also be found in non Mediterranean-
type climates (Poudyal et al. 2004; Zhang et al. 2005; Singh et al. 2006), being
important components of the vegetation in several regions (such as Arizona, Mexico,
Northern Pakistan, India, Nepal and Afghanistan) that receive their precipitation
maximum in summer (Blumler 2005 and references therein). The winter-deciduous
type, in spite of being less recognized, can also be considered an adaptation-type to
extreme summer drought as effective as the evergreen type (Blumler 1991; Barbero
et al. 1992; Scarascia-Mugnozza et al. 2000). In fact, winter-deciduous oaks are often
dominant inmany areas of California (Barbour 1988; Griffin 1971, 1973, 1977; Vankat
1982) and theMediterranean Basin, especially in the eastern areas (Barbero et al. 1992;
Radoglou1996).Moreover, some species such asQ. ithaburensis, can be found in some
of the most arid Mediterranean-subtype climates (Dufour-Dror and Ertas 2004). The
coexistence of both types of oaks under mediterranean conditions was already reported
by Schimper (1903) and further evidenced by other authors (Tognetti et al. 1998;
Nardini et al. 1999; Manes et al. 2006; Montserrat-Martí et al. 2009). Appendix 5.1
shows how both types of Quercus species can be found in locations under genuine
Mediterranean-type climates (e.g. Csa, Csb), to such an extent that is hard to assume a
single prototype of “mediterranean oak”. Furthermore, this co-occurrence has been
pointed out to be one of the distinctive features of the Mediterranean Biome (Givnish
2002; Baldocchi et al. 2010; Noce et al. 2016).

Although a general explanation for the coexistance of both mediterranean oaks -
evergreen and winter deciduous—deserves more research, it can be broadly
assumed that such co-occurrence is a matter of local variations in climate or in soil
characteristics. Thus, mediterranean deciduous oaks would be able to dominate
those sites characterized by relatively higher precipitation and lower winter tem-
perature (Chabot and Hicks 1982) and/or those zones with heavier and fertile soils
that can maintain high levels of water content (Salleo et al. 2002; Moreno et al.
2011). On the contrary, evergreen oaks may be restricted by competition or pre-
dominate in the dryest places and/or coarse, rocky, or infertile substrates that
promote low soil water contents (Blumler 1991; Gasith and Resh 1999; Manes et al
2006; Di Paola et al. 2017). In this sense, Q. ilex, as a genuine evergreen oak, which
can grow on a variety of climates and substrata in its western distribution area in the
Mediterranean Basin (Barbero et al. 1992), does not succesfully compete with
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co-occurring winter deciduous Quercus species, such as Q. faginea, except under
conditions of poor soil development (Peguero-Pina et al. 2015). According to this
idea, the coexistance of both types of mediterranen oaks would be possible in a
heterogeneous environment, while homogenity should imply the dominance of a
single type in the landscape.

As a consequence of the paramount importance of soil water in the occurrence of
evergreen or winter deciduous oaks in areas under Mediterranean-type climates, the
human action along the centuries constitutes a crucial factor explaining most pre-
sent distribution patterns (Dufour-Dror and Ertas 2004). Records of human influ-
ence on Quercus species distribution are already found since 6000 BP, where
forests of deciduous oaks started to be replaced by evergreens in the western
Mediterranean Basin (Follieri et al. 1988; Reille and Pons 1992; Riera-Mora and
Esteban-Amat 1994). These replacements may be due to erosion and degradation of
the substrate that harms deciduous species for the benefit of evergreens. An
example of this replacement was reported by Peguero-Pina et al. (2015), who found
that stands of deciduous Quercus subpyrenaica living in scarce soils suffered
premature withering, while evergreen Q. ilex stands remained intact. In a different
way, the distribution of an oak species can also be favoured by human activity if the
species is usable by humans. This is the case of Q. suber, which niche in the
western Mediterranean Basin has been enlarged at the expense of Q. canariensis
(Urbieta et al. 2008). That is, human activity can influence the distribution pattern at
local or regional scale. Moreover, Sánchez de Dios et al. (2009) predicted that
climatic and environmental changes, accelerated by human activity, could reduce
dramatically the submediterranean territories of the Iberian Peninsula and, there-
fore, the extension of the submediterranean oaks Q. pubescens, Q. pyrenaica and
Q. faginea. These authors stated, with appropiate prudence, that the reduction could
have a serious impact on biodiversity.

The co-occurrence of evergreen and winter-deciduous Quercus species offers the
opportunity for studying the role of these two phenological patterns from a func-
tional perspective (Kikuzawa 1991), especially under the environmental constrains
imposed by the Mediterranean-type climate (Montserrat-Martí et al. 2009).
Effectively, winter-deciduousness is the prevailing leaf habit in areas under
Temperate climate with cold winters (Walter 1985; Breckle 2002), as leaf shedding
before the winter colds has been long recognized as a mechanism for evading the
physiological drought imposed by low temperatures (Schimper 1903). The absence
of leaves during the winter months restricts the photosynthetic activity to the warm
period, which is expected to be favourable enough for a winter-deciduous oak in
terms of carbon gain. Peguero-Pina et al. (2016a) described the typical environ-
mental conditions imposed by the Temperate climate using Q. robur as a reference.
Under the summer conditions that characterize the genuine habitat for this species
—mild temperatures, high water availability and low VPDmax—oaks can support a
high leaf area, both in terms of leaf size and number of leaves per shoot. This fact
enables this species to achieve a very favourable carbon gain during the vegetative
period. As soil and atmospheric drought increase in the transition to the areas under
Mediterranean-type climate at lower latitudes, these genuine temperate species are
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substituted by the so-called “submediterranean” oaks (Himrane et al. 2004; Sánchez
de Dios et al. 2009). In the Iberian Peninsula, the existance of certain summer
aridity (as the balance between precipitation and evapotranspiration) and VPDmax

close to 3 kPa are considered of paramount importance for explaining the substi-
tution of Q. robur by Q. faginea, with much lower values of leaf area (Peguero-Pina
et al. 2016a). However, in spite of the outstanding benefits for reducing transpi-
ration in drier climates, a reduced leaf area also diminishes the photosynthetic
potential of this species. Effectively, the severe reduction in transpiring leaf area,
together with the possible existance of water strees during the vegetative period in
the submediterranean areas (Corcuera et al. 2004a, b; Pasho et al. 2011;
Peguero-Pina et al. 2015), causes an overall decrease of the net assimilation during
the vegetative period (Peguero-Pina et al. 2016a). Thus, the vegetative period may
be reduced to a few weeks in spring and autumn (Montserrat-Martí et al. 2009),
when the environmental conditions do not limit the photosynthetic activity (Abadía
et al. 1996; Mediavilla and Escudero 2003). The reduction in photosynthesis during
the driest days of the summer has been reported in several winter deciduous
mediterranean Quercus species of Europe or North America, or “submediterranean”
oaks in the term here used (Damesin and Rambal 1995; Xu and Baldocchi 2003;
Poyatos et al. 2008; Siam et al. 2009). In fact, Montserrat-Martí et al. (2009)
suggested that a phenological advance in bud bursts and a delayed leaf shedding in
mediterranean winter deciduous oaks would allow a prolongation of the leaf
life-span, while increasing the chance of suffering early frosts. This idea, which
may be of paramount relevance to understand the ecology of transitional areas
under Mediterranean-type climates, deserves further empirical evidences taken into
account a wider spectrum of winter deciduous mediterranean oaks.

The access to deep water in well-developed soils has been proposed as the
ecological mechanism explaining the survival of winter-deciduous oaks in areas
with certain summer aridity (Esteso-Martínez et al. 2006; Urbieta et al. 2008;
Moreno et al. 2011). A further increase in the summer aridity due to climatic factors
(González-Rebollar et al. 1995; del Río and Penas 2006) or to an exacerbated water
scarcity due to soil degradation (Blondel and Aronson 1995; Salleo et al. 2002;
Corcuera et al. 2005a; Peguero-Pina et al. 2014) is widely associated to a substi-
tution of winter-deciduous oaks by evergreen species in areas under
Mediterranean-type climates.

However, under such circumstances, even evergreen oaks are not always able to
keep a maximum photosynthetic activity throughout the vegetative period.
A significant reduction in carbon gain during the driest period, as compared to the
maximum values recorded in unstressed specimens, has been widely reported in
these species (Faria et al. 1998; Limousin et al. 2010a; Vaz et al. 2010). The
shortening of the growing season due to summer drought is accentuated by the low
temperatures during the winter, which severely impaired the photosynthetic activity
in mediterranean evergreen oaks (García-Plazaola et al. 1999; Corcuera et al.
2005a, b). In fact, such combination of two stress periods (summer drought and
winter frost) and two favourable seasons (spring and autumn) can be considered the
real essence of the Mediterranean-type climate concerning the ecophysiology of the
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woody vegetation (Mitrakos 1980; Castro-Díez and Montserrat-Martí 1998;
Montserrat-Martí et al. 2009). The need for splitting the vegetative activity into
these two favourable periods (in the sense given by Kikuzawa 1991) may confer a
functional advantage to evergreen species such as Q. ilex, as leaves from the
previous year can start to contribute to the overall plant carbon gain as soon as the
temperature rises in the spring (Corcuera et al. 2005b), well before the average bud
burst date reported in this species (Castro-Díez and Montserrat-Martí 1998; Ogaya
and Peñuelas 2003). Under such circumstances, 1-year old leaves in Q. ilex (i.e.
those produced in the previous spring) positively contribute to the whole canopy
carbon assimilation (Escudero and Mediavilla 2003), even though different ageing
processes would reduce the photosynthetic rate (Niinemets et al. 2005) as compared
to that recorded for current-year leaves (Mediavilla and Escudero 2003). As a
possible consequence of their long lifespan, it has been suggested that evergreen
leaves need to be structurally reinforced to withstand biotic or abiotic damages
(Turner 1994; Poudyal et al. 2004), which has been proposed as the reason
explaining their higher LMA (Gonzalez-Zurdo et al. 2016). As further described,
this idea could establish a link between the condition of sclerophyllous and ever-
green in these mediterranean oaks.

5.6 Sclerophylly in Mediterranean Oaks.
Functional Explanations

Evergreen sclerophyllous woody plants have long been regarded as one of the most
typical components of the mediterranean-type vegetation (Walter 1985). Among
them, different oak species with sclerophyllous leaves are principal constituent of
such woodlands and/or shrubsland in many areas of the Mediterranean Basin
(Barbero et al. 1992, Bozzano and Turok 2003), Southern Asia (Meher-Homji
1973) or California (Goulden 1996). This convergence in foliar attributes among
different areas under Mediterranean-type climates around the world (Barbour and
Minnich 1990; Cowling and Witkowski 1994; Cowling et al. 1996) has induced the
search for a common factor explaining such response in woody plants and their
dominance under the ecological conditions imposed by this climate. However, the
functional association between sclerophylly and the Mediterranean-type climate has
been controversial since the first geobotanical synthesis of the distribution of
vegetation types over the earth’s surface.

In this sense, Schimper (1903) wrote one of the earliest physiological approxi-
mations to the “botanical geography” at a global scale. This author, when described
the so-called “mild temperate districts with winter rain and prolonged summer-
drought” (areas under Mediterranean-type climate, as we consider in this chapter),
stated that theywere inhabited by “evergreen xerophylous” trees and shrubs with stiff,
thick and leathery leaves (sclerophyllous). This seminal proposal, that established a
link between sclerophylly (condition of having hard leaves) and xeromorphism
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(morphological or anatomical responses to live in a dry or physiologically dry
habitat), has been subjected to a continuous discussion (e.g. Loveless 1962; Beadle
1966; Seddon 1974; Oertli et al. 1990; Turner 1994; Salleo and LoGullo 1990;
Nardini et al. 1996; Salleo et al. 1997). In fact, the controversy about the adaptive role
of sclerophylly continues in the present century (Lamont et al. 2002; Read et al. 2006;
Verdú et al. 2007; Rubio de Casas et al. 2009; Read et al. 2016).

The existence of a summer drought period has long been recognised as a severe
ecological constrain for plant life in Mediterranean-type climates (Peñuelas et al.
1998; Joffre et al. 2007; Medrano et al. 2008; Nardini et al. 2014; Niinemets and
Keenan 2014). This evidence has induced to consider that hard leaves of the
mediterranean woody plants can be a functional adaptation to withstand water stress
during the drought period (Mooney and Dunn 1970; Levitt 1980; Mooney 1982;
Savé et al. 1999; Sardans and Peñuelas 2013) in a climate with a severe seasonality,
in accordance with Schimper’s interpretation of sclerophylly (Lamont et al. 2002).

In order to perform a deep analysis of sclerophylly, it should be taken into
account that this is a term that refers to a textural feature of the leaves. So, scle-
rophyllous leaves would be harder, stronger, tougher or stiffer than “soft” or
malacophyllous leaves (Read and Sanson 2003). To obtain a quantitative value for
such leaf trait, different mechanical analysis through fracture tests must be done
(Lucas and Pereira 1990; Choong et al. 1992; Aranwela et al. 1999; Westbrook
et al. 2011; Onoda et al. 2011). However, one of the more widespread index of
sclerophylly used in ecophysiological studies is the ratio of leaf dry weight to leaf
area (Cowling and Campbell 1983; Witkowski and Lamont 1991; Cowling and
Witkowski 1994; Salleo and LoGullo 1990; Salleo et al. 1997; Groom and Lamont
1999), or Leaf Mass per Area (hereafter LMA) as the most common designation.
Although this ratio does not directly reflect mechanical properties but mass allo-
cation and related processes (Onoda et al. 2011; Read et al. 2016), it may be used as
a good proxy of them, as different studies have revealed (Choong et al. 1992;
Edwards et al. 2000; Read and Sanson 2003; Westbrook et al. 2011). So, most of
the studies concerning sclerophylly in mediterranean plants do really deal with
differences in LMA.

Although some authors have given a threshold value for sclerophylly in terms of
LMAvalues (Salleo and LoGullo 1990; Flexas et al. 2014), it must be better considered
as a relative index for comparative studies. In this sense, Corcuera et al. (2002) com-
pared different Quercus species grown under the same environmental conditions, in
terms of leaf morphology (leaf area and LMA) and parameters derived from
pressure-volume curves. In this study, the different species were a priori grouped in
three different categories according to their phytoclimate sensuWalter (1985), namely:
(i) mediterranean oaks (Q. agrifolia, Q. chrysolepis, Q. coccifera, Q. ilex ssp. ilex,
Q. ilex ssp. ballota = Q.ilex ssp. rotundifolia, Q. suber); (ii) transitional
nemoro-mediterranean oaks (Q. cerris, Q. faginea Q. frainetto, Q. pyrenaica); and
(iii) nemoral oaks (Q. alba, Q. laurifolia, Q. nigra, Q. petraea, Q. robur, Q. rubra,
Q. velutina). The average LMA value for mediterranean oaks in this study reached
150 g m−2, which is higher than 120 g m−2, the threshold value suggested by Flexas
et al. (2014) for true sclerophytes. Mean LMA value of transitional
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nemoro-mediterranean oaks was close to 80 g m−2, while the nemoral oaks showed a
mean value lower than 70 g m−2. Villar and Merino (2001) also reported values for
different Quercus species from 3 different habitats, with a strong correspondence with
the classification by Corcuera et al. (2002). Thus, the values for evergreen oaks from
“xeric” or “mesic” mediterranean forests (Q. agrifolia, Q. coccifera,
Q. rotundifolia = Q. ilex ssp. rotundifolia, Q. suber) were higher—mean ca.
160 gm−2—than those for deciduous oaks from “mesic” mediterranean forests
(Q. douglasii, Q. faginea, Q. keloggii, Q. lobata, Q. pyrenaica)—mean ca.
112 g m−2—and from temperate forests (Q. rubra), with a LMA around 83 g m−2.
Furthermore, the mean LMA value for the whole species of the “xeric mediterranean
forest” in the study of Villar and Merino (2001) was the higher among the different
habitats compared, besides the leaf construction cost when expressed on an area basis
(g glucose m−2).

In fact, values close or higher than 200 g m−2 have been reported for Q. ilex
(Bussotti et al. 2002; Villar-Salvador et al. 2004; Serrano et al. 2005) or Q. coc-
cifera (Castro-Díez et al. 1997; Vilagrosa et al. 2003a; Rubio de Casas et al. 2009).
At the other end of the scale, values close or lower than 50 g m−2 have been
obtained for European temperate oak species, such as Q. petraea and Q. robur
(Burghardt and Riederer 2003, Withington et al. 2006; Giertych et al. 2015). It can
be accepted therefore that evergreen oaks living in areas under Mediterranean-type
climate have sclerophyllous leaves, assuming LMA and sclerophylly as closely
linked, especially when compared with winter deciduous from Temperate climates
where water availability during the vegetative period is not limited. Besides the rise
of LMA in oaks from climates with water scarcity during the vegetative period,
other studies have evidenced a within-species increase of LMA for Q. ilex prove-
nances in the drier sites of their natural range (Castro-Díez et al. 1997; Bussotti
et al. 2002; Ogaya and Peñuelas 2007; Niinemets 2015), which may support the
Schimper’s proposal. Do these empirical evidences confirm the seminal idea pro-
posed by Schimper (1903), implying the association between sclerophylly and
xeromorphism in these evergreen Quercus species? This question, which has been
recognised as one of the most ancient controversies in ecology (Groom and Lamont
1997; Lamont et al. 2002), is far from being answered with a common consensus,
as the functional association between sclerophylly and xeromorphism in the
mediterranean oaks has not been perfectly established up until now.

Awidely accepted alternative hypothesis to explain sclerophylly comes from some
classic studies of the flora and vegetation of the Australian Continent (Beadle 1953;
1954) where the existence of soils with low phosphorus content are common
(Kooyman et al. 2017). Since the first studies by Beadle (1953; 1954), the identifi-
cation between xeromorphism and sclerophylly in the vegetation growing in low
fertile soils has been a matter of discussion. Thus, Beadle (1966) used the term “low
fertility xeromorphs” for these plant species with sclerophyllous leaves of the
Australian Flora. This author considered that these Australian sclerophylls were not
xerophytes, as the sclerophylly in these plants was not a response to water scarcity but
an accentuation of some leaf features through a reduction in leaf area. Loveless (1961)
defined sclerophyllous leaves according to their relative proportion offibre content to
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protein content. This ratio, the so called “Loveless sclerophylly index”, gives an
estimation of the ratio of cell wall to cell content and were found to be higher under
limited phosphate uptake. Furthermore, Loveless (1962) offered a functional inter-
pretation to the link between phosphorus availability and sclerophylly. So, sclero-
phylly could be interpreted as the consequence (or the “expression”, in the words of
the author) of a plant metabolism adapted to low phosphate uptake due to the
importance of this macronutrient for protein synthesis. Since this interpretation, other
papers have supported the idea that sclerophylly is a response to oligotrophic soils
(Sobrado and Medina 1980; Gonçalves-Alvim et al. 2006). However, this proposal
fails when explaining the existence of sclerophyllous vegetation in some areas under
Mediterranean-type climate with a relatively high nutrient content (cf. Verheye and de
la Rosa 2005; Sardans and Peñuelas 2013) or the prevalence of mesophytic (low
LMA) vegetation in different forest ecosystems where a limited phosphorus supply
has been found to reduce productivity (Knox et al. 1995; Sardans et al. 2004; Zhu et al.
2013). Furthermore, Cavender-Bares et al. (2004), when studied the habitat differ-
entiation among co-occurring Quercus species growing in North Central Florida
(USA), did not find a significative correlation between soil phosphorus content and
LMA in these oaks with contrasting leaf traits.

Besides summer drought or the presence of poor soils, winter temperature is
another outstanding factor of paramount importance for the physiognomy of the
Mediterranean Flora, as firstly reported by Mitrakos (1980, 1982). Effectively,
previous phytoclimatical classification considered Mediterranean-type climates as
affected by dry summer but mild winters (cf. Schimper 1903), disregarding the
existence of many continental areas where the vegetative activity of genuine
Mediterranean evergreen plants, such as Q. ilex, is limited by low temperatures
during winter (Corcuera et al. 2005b). One direct effect of low temperatures could
be a rise in LMA in such evergreen oaks, e.g. Q. ilex and Q. suber, as suggested by
Oliveira and Peñuelas (2002), Ogaya and Peñuelas (2007) and González-Zurdo
et al. (2016). In our opinion, the proposal that LMA can be explained by low winter
temperatures needs to be supported by physiological studies offering a mechanistic
explanation for this empirical evidence.

Niinemets (2016) explored some functional reasons that could explain a higher
LMA in plants under cold climates, considering the effect of whole leaf thickening
and/or cell wall thickening, both factors positively modifying LMA (Westbrook
et al. 2011). The higher amount of water content per area in thicker leaves would
affect the freezing rate of the leaf tissues or the incidence of ice formation during the
freeze-thaw cycles in the stability of cell membranes. Moreover, thicker cell walls
could constitute a mechanical advantage during the process of cell desiccation
while freezing. Effectively, evergreen mediterranean oaks show values of cell wall
thickness higher than those reported in winter deciduous Quercus species
(Peguero-Pina et al. 2016a, 2017a, b). Furthermore, both data in Fig. 5.4 and in
Table 5.1 reflect that leaf thickness is also especially high in the Mediterranean
evergreen oaks when a large set of Quercus species from different habitats but
growing under the same environmental condition (common garden) are compared.
However, those Quercus species grouped as “evergreen arid” in Fig. 5.4, such as
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Q. miquihuaensis or Q. hypoxantha, also showed a high LMA in spite of not being
affected by winter frost, neither in their natural habitats nor in the common garden
where they are grown. In the same way, the variation range in LMA found by
Cavender-Bares et al. (2004) in 17 co-ocurring Quercus species of North Central
Florida cannot be considered a differential response to low winter temperatures.

Cell wall thickness and whole leaf thickness can also be considered a physio-
logical response to cope with the conditions imposed by the summer in
Mediterranean-type climates (Peguero-Pina et al. 2016b, 2017a), as will be dis-
cussed below. In fact, Ogaya and Peñuelas (2007), when compared a large set of
Q. ilex population of Catalonia (Northeastern Spain), concluded that LMA was
higher “in the drier sites and especially in the colder sites”. Assuming that the same
leaf attributes can guarantee a good performance both during the summer drought
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Fig. 5.4 Box-plot representation of leaf mass area (LMA), leaf thickness and leaf area from a
survey of 76 oak species living in a common garden under a humid temperate climate (Jardín
Botánico de Iturrarán 43° 13′N, 02 °01′W, 70 m a.s.l., Gipuzkoa, Spain). Species were classified
according with their leaf habit and climate origin in one of the following groups: deciduous
temperate (DEC TEM), deciduous mediterranean (DEC MED), evergreen mediterranean (EVE
MED), evergreen arid (EVE ARID), evergreen tropical (EVE TROP) and evergreen temperate
(EVE TEM) (See Apendix 5.1 for species classification)
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and the winter frost periods, such leaf traits modifying LMA can be interpreted as a
concomitant response to the different stress factors affecting the evergreen
mediterranean flora.

Therefore, one single ecological factor does not seem to provide an unam-
biguous response to the existence of oak species with high LMA under
Mediterranean-type climate, perhaps because sclerophylly may be a syndrome
(Fonseca et al. 2000; Read and Sanson 2003; Read et al. 2016) in response to
different adaptive factors (Nardini 1996; Read et al. 2006). In this sense, an
interesting proposal interpreted the sclerophylly as a sum of anatomical features
aimed to increase the leaf mechanical resistance to withstand damages (Turner
1994; Read and Sanson 2003; Westbrook et al. 2011; Read et al. 2016), due to
abiotic factors (Niklas 1999; Poudyal et al. 2004) and/or biotic factors, with a
particular reference to insect herbivory (Grubb 1986; Wright and Vincent 1996;
Ribeiro and Basset 2007; Peeters et al. 2007; Barbosa and Fernandes 2014).
According to this proposal, the selection pressure for becoming tough, through an
increased sclerophylly, should be higher in long-lived leaves and in habitats
imposing a limited supply of resources (Turner 1994). Effectively, it has been
reported a LMA value for evergreens higher than those measured in deciduous
species (John et al. 2017 and references therein). Regarding to this, a shift in LMA
has been explained through an increased leaf reinforcement by a higher accumu-
lation of structural carbohydrates (Mediavilla et al. 2008). From our own results,
and as it is shown in Fig. 5.4 and Table 5.1, a higher LMA was found in evergreen
oak species than in winter deciduous ones when growing in a common garden, with
independence of their natural habitat. These data may confirm the seminal proposal
of Turner (1994) about sclerophylly and leaf defence.

This explanation about sclerophylly, when applied to the mediterranean oaks,
would be able of integrate, in fact, most of the circumstances affecting the leaves of
such species: (i) a limited access to water and nutrients, (ii) a short vegetative period
imposed by cold winters and dry summers and (iii) the need for extending the leaf
life-span to exploit the most favourable climatic period through the year (Corcuera
et al. 2005b). However, this interpretation of sclerophylly, in spite of its apparent
robustness, faces with the finding that the defence against phytophagus insects can

Table 5.1 Mean values ± SE of leaf mass area (LMA), leaf thickness and leaf area from a survey
of 76 oak species living in a common garden under a humid temperate climate

LMA Thickness (mm) Area (cm2)

DEC TEM 77 ± 5 a 0.119 ± 0.007 a 73.8 ± 12.2 a

DEC MED 89 ± 4 a 0.149 ± 0.09 a 23.2 ± 3.6 b

EVE MED 148 ± 12 b 0.218 ± 0.015 b 6.0 ± 1.0 c

EVE ARID 123 ± 11 b 0.225 ± 0.010 b 6.7 ± 1.1 c

EVE TROP 122 ± 10 b 0.203 ± 0.011 b 17.8 ± 2.9 b

EVE TEM 122 ± 5 b 0.199 ± 0.006 b 18.4 ± 3.9 b

DEC deciduous, EVE evergreen, TEM temperate, MED Mediterranean, ARID arid, TROP tropical.
Letters indicate statistically significant differences (Tukey test, P < 0.05)
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also be also achieved by the accumulation of deterrent substances in the leaf tissues
(Feeny 1970; Levin 1976; Bernays 1981; Gonçalves-Alvim et al. 2006; Read et al.
2009), independently of leaf toughness. Even more, some authors have suggested
that such chemical defence should be more significant for the leaf defence than the
mechanical reinforcement (Kouki and Manetas 2002; Onoda et al. 2011).

From a global perspective, sclerophylly might be better considered as a
non-specific response affecting different vegetation types under particular con-
straining factors, which may help to understand the complexity of this
long-standing debate. It may worth focussing again the debate to the sclerophyllous
oak species under Mediterranean climate, revisiting the Schimper (1903) proposal
from a physiological more than a phytogeographical perspective. With this aim, a
detailed examination of LMA as a proxy of sclerophylly must be done.

A high LMA may be the consequence of a high leaf thickness, a high accu-
mulation of dense tissues or both (Onoda et al. 2011). Figure 5.6 evidences how
leaf thickness increases with LMA in the whole set of oak species, with evergreen
oaks showing the higher values of LMA and leaf thickness (Table 5.1; Fig. 5.5).
A thicker leaf might have some functional advantages, especially under the con-
ditions imposed by the Mediterranean-type climate. In this sense, Peguero-Pina
et al. (2016b) found (i) a lower maximum stomatal conductance (gs,max), (ii) a
higher leaf thickness but (iii) an equal net photosynthesis per area (AN) in
Q. coccifera plants living under mediterranean conditions when compared with the
same species grown under a humid temperate climate. The reduced gs,max is a
consequence of a partial closure of the stomatal pore with epicuticular waxes
(Roth-Nebelsick et al. 2013), and allows this species to significantly reduce the
water losses under the high VPD experienced during summer in a
Mediterranean-type climate. The goal of keeping a constant AN values in spite of a
drastic reduction in the CO2 uptake via the stomata is achieved through a higher
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amount of protein content per area in a thicker mesophyll. In addition, a study
comparing different Q. ilex provenances (Peguero-Pina et al. 2017b) showed that
AN is positively correlated with leaf thickness, as a greater leaf volume in thicker
leaves were associated with a greater leaf nitrogen content and a higher maximum
velocity of carboxylation (Vc,max). This idea is in accordance with Niinemets
(2015), who also reported increases in leaf nitrogen content per area with leaf
thickness and LMA in Q. ilex. Moreover, Peguero-Pina et al. (2017a) have found
that the leaf thickening of evergreen mediterranean oaks could be a way for
achieving high AN values through the improvement of the mesophyll conductance
to CO2 by different anatomical modifications.

Thus, leaf thickening in mediterranean evergreen oaks would yield adaptive
advantages in terms of CO2 uptake and water losses under dry atmospheres,
although implying a concomitant rise in LMA, and besides the above mentioned
effect on frost resistance in the cold locations. Anyway, evergreen arid, evergreen
tropical and evergreen temperate oak species do not differ statistically in LMA with
evergreen mediterranean oaks in a common garden survey (Table 5.1; Fig. 5.4).
How long the arguments given above for the evergreen mediterranean species can
be extrapolated to the other groups or not deserves further investigation.

The shape of the fitting curve in Fig. 5.6 suggests a saturation response of leaf
thickness as LMA increases, which could indicate a further rise in density by dry
mass accumulation per area once the highest thickness values are raised. It should
be noted that the highest individual values recorded for LMA are those found in
mediterranean evergreen species (Fig. 5.6). Moreover, the small plot in the upper
left side of Fig. 5.6 shows that the mediterranean evergreen group has the highest
LMA mean value (in spite of the lack of statistical significance) among the ever-
green oaks from all habitats considered. This fact may be interpreted as a higher
densification of leaf tissues in mediterranean evergreen oaks. Which are these other
ways of densification of leaf tissues and how can be interpreted as a way for coping
with the conditions imposed by Mediterranean-type climates?

Oertli (1986) gave a functional interpretation of sclerophylly in terms of resis-
tance to the collapse of leaf cells when subjected to dehydration far below their
turgor loss. According to this author, smaller cells or cells with thicker walls (both
inducing a higher density) could withstand substantial negative turgor pressure
(higher than 1.6 MPa), buffering the negative effects of such collapse of the cell
wall (cytorrhysis). Oertli et al. (1990) proposed that the mechanism based on
avoiding cytorrhysis would be considered “an adaptation to suboptimal moisture
conditions”, as may be the case of Mediterranean plants. This idea has been recently
revisited by Ding et al. (2014), who insisted on the benefits of developing tissues
with small cell size under water stress conditions. According to these authors,
negative turgor pressure may be considered as a desiccation avoidance mechanism
in plants of arid zones besides osmotic adjustment, without the need for investment
of metabolic resources. The negative impact of leaf cell collapse under negative
water potential may be associated to the physical damage of the cell membrane
during cell buckling and polyelectrolyte leakage (Farrant 2000). Such strong
deformation in the cell shape during dehydration was evidenced by cryo-SEM
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imaging of cell shape changes during dehydration in Q. muehlenbergii
(Sancho-Knapik et al. 2011; Zhang et al. 2016) in Q. rubra, two deciduous oaks
from Temperate climates with low LMA values. Figure 5.7 shows a group of
mesophyll cells of Q. muehlenbergii below the turgor loss point, with evident
signals of cell buckling and tension of the plasmodesmata. The specific resistance to
such deformation in the mesophyll cells could explain the differences in the leakage
of polyelectrolytes with leaf desiccation between temperate (Epron and Dreyer
1992) and mediterranean Quercus species (Vilagrosa et al. 2010).

Another possible link between leaf sclerophylly, by increasing leaf density, and
the ability for coping with drought may be established through the functional
importance of the bulk elastic modulus at full turgor (emax) in the plant water
relationships (Niinemets 2001). A higher emax would also allow a higher drop in
leaf water potential for a given symplasmic water loss, with evident benefits in
water limited conditions (Corcuera et al. 2002; Singh et al. 2006). Salleo and
LoGullo (1990) and Burghardt and Riederer (2003) reported a high positive cor-
relation between LMA and emax, which should indicate that denser tissues could
also be more rigid in terms of Pressure-Volume relationships. This idea fails to fully
explain all the empirical evidences found in the Mediterranean woody flora, with
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some findings that suggest a lack of correlation between LMA and emax (LoGullo
et al. 1986; Nardini et al. 1996). Nevertheless, two circumstances should taken into
consideration: (i) to the extent of our present knowledge, emax depends on the
rigidity of mesophyll cell walls (Nardini et al. 1996 and references therein) and
(ii) LMA may also be dependent on other anatomical features and not only the
consequence of a cell wall thickening (inducing a higher rigidity) in the living
tissues of the mesophyll. So, in order to further study this relationship, LMA and
emax data obtained from the literature for different Quercus species were plotted
(Fig. 5.8), yielding a non-linear relationship between both parameters. In this plot,
the species are grouped into temperate and mediterranean, and these last grouped
again into evergreen and winter deciduous. In this relation, the low LMA values of
deciduous temperate oaks are associated with low values of emax. The other extreme
is occupied by the evergreen mediterranean oaks, which show the highest values for
these parameters. As LMA reaches higher values, further increases in this parameter
does not imply a proportional increase in emax, suggesting the existence of other
factors that may influence LMA without further effects on the PV relationships.

In order to determine a mechanistic trade-off between LMA and emax, a leaf
feature that simoultaneously affects both parameter should be explored. Such fea-
ture could be the thickness of the mesophyll cell wall, which reaches a higher value

Fig. 5.7 Detailed Cryo-SEM micrograph of the spongy mesophyll in a leaf of Q. muehlenbergii
below turgor loss point. Note the evidenced cell buckling and the tension in plasmodesmata. Scale
bar 20 lm
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in evergreen mediterranean oaks than in winter deciduous oaks (Peguero-Pina et al.
2016a, 2017a). When the cell wall thickness of mesophyll cells was plotted against
emax (Peguero-Pina et al. 2017b), a strong positive correlation between both
parameters was found, which open the possibility for further studies to confirm this
relationship and its possible role in the ecophysiological response of plants to
Mediterranean habitats.

Some studies have analysed the functional role of other dense tissues that
contribute to increase LMA. Thus, Salleo et al. (1997) studied the possible role of
dense tissues as an apoplastic water source that could “migrate” to the symplast in
diurnal cycles. In fact, the role of these dense tissues (sclerenchyma or colenchyma)
in terms of their contribution to the inner water pathway among leaf tissues
(Heide-Jorgensen 1990) should be considered, as they are especially developed in
leaves of evergreen mediterranean oaks (Fig. 5.9).

Finally, a high vein density would also increase the LMA due to the anatomical
features of the bundle and its associated tissues. Scoffoni et al. (2011) found that
leaves with a higher major vein density (the sum of the density of the first, second
and third order veins) showed higher resistance to drought-induced cavitation,
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classification into groups according to Appendix 5.1
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which was confirmed by Nardini et al. (2012a) in different Quercus and Acer
species. In the same direction, Nardini et al. (2012b) found that a higher LMA
paralleled a higher investment of dry matter to transport ability in sun leaves with
respect to shade leaves of Q. ilex. A higher major vein density in the populations of

Fig. 5.9 Transverse section
of the mesophyll leaf of the
deciduous temperate Quercus
robur (a), deciduous
mediterranean Q. broteroi (b),
evergreen mediterranean
Q. ilex subsp. rotundifolia (c),
evergreen arid Q. hintoniorum
(d) and evergreen tropical
Q. rugosa (e). Bright areas
mainly coincide with thick
cell walls in epidermal
structures, vascular bundles
and bundle sheath extensions
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Q. ilex from xeric areas within its distribution range was evidenced by Peguero-Pina
et al. (2014). The transversal sections in Fig. 5.9 also indicate a lower vein density
in Q. robur, as a representative temperate oak, than in the evergreen congeneric
species, especially when compared with Q. ilex. This fact implicitly may relate a
higher LMA derived from a higher vein density with a better tolerance to the water
stress experienced under the arid conditions of the mediterranean summer.

In essence, the sclerophyllous leaves of mediterranean oaks can be regarded as a
“non-specific” response to many ecological factors inducing such response, in spite
of the existence of several links among LMA and critical traits for plants living in
dry climates (such as leaf thickness, wall thickness of the mesophyll cells, emax or
major veins density). This fact may ultimately confirm or support the ancient
interpretation of the sclerophylly in mediterranean areas given by Schimper (1903).

5.7 Leaf Size Reduction in Mediterranean Oaks

From a global perspective, it has been long considered that an increase of dryness,
in the sense of its effect on plant physiology, promotes the reduction in leaf size
(Schimper 1903). Therefore, an association between small leaves and dry habitats is
usually reported (Dolph and Dilcher 1980; Givnish 1987; Sultan and Bazzaz 1993;
Gibson 1998; McDonald et al. 2003; Ackerly 2004; Peguero-Pina et al. 2014). In
this way, plant species should have the greatest leaf size in the tropics, with a
decrease towards the subtropics, an increase towards warm temperate forests, and a
decrease towards the poles (Givnish 1976). In accordance with the leaf size pattern
of this author, a study of leaf morphology in Europe vegetation revealed that small
leaves appeared mostly in warm climates of South Europe while large leaves were
most abundant in cool climates of the North (Traiser et al. 2005). Focusing on
Quercus, Corcuera et al. (2002) found the same trend: oak species from
Mediterranean-type climates had smaller leaf areas than oaks from Nemoral or
Temperate climates. When comparing a broader set of oaks and climatic types
(Figs. 5.4 and 5.5), the evergreen mediterranean species and those from arid cli-
mates show the smallest leaf size, supporting the global trend of leaf reduction
under drought conditions. In fact, leaf reduction in mediterranean oaks has been
proposed as one of the key traits that allow these species to withstand water deficit
(Baldocchi and Xu 2007; Peguero-Pina et al. 2014).

A reduction in leaf size is associated with higher major vein densities
(MVD) (Fig. 5.10) and higher leaf resistance to hydraulic conductivity losses
(Scoffoni et al. 2011). These authors stated that, for all else being equal, a higher
major vein density would allow a more safety water transport due a higher
redundancy. Thus, when the linear relationship between leaf area and leaf water
potential at 80% loss of conductivity (PLC80) provided by Scoffoni et al. (2011) is
applied to the mean leaf area values of Fig. 5.5, temperate oaks would have a leaf
PLC80 value of −0.7 MPa, deciduous mediterranean and tropical oaks a value
around −2 MPa, whereas the PLC80 values for evergreen mediterranean and arid
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oaks would be −6 MPa. The empirical results in Peguero-Pina et al. (2015), when
compared cavitation in leaves of Q. ilex and Q. subpyrenaica (evergreen and winter
deciduous respectively), seems to confirm this idea. Thus, the larger leaves from
deciduous temperate group would have less resistance to drought-induced cavita-
tion than the other four groups of oaks studied. Evidently, further studies are needed
to empirically confirm this hypothesis.

The development of small leaves either by reducing leaf width and length or by
increasing lobation (McDonald et al. 2003) has been also related with high levels of
radiation and high temperatures (Fonseca et al. 2000; Ackerly et al. 2002). A small
leaf has a thinner leaf boundary layer that facilitates a sensible heat loss enabling a
more rapid convective cooling in warm climates (Baldocchi and Xu 2007; Nicotra
et al. 2008; Vogel 2009; Yates et al. 2010). This phenomenon has been study by
Baldocchi and Xu (2007) by comparing the temperate Quercus alba and the
Mediterranean Q. douglasii. These authors showed that the smaller leaves of
Q. douglasii remain up to 2 °C cooler than the larger leaves of Q. alba under high
light conditions. In this chapter we compare Q. robur, a deciduous temperate oak
against Q. faginea and Q. pyrenaica, two deciduous mediterranean oaks
(Fig. 5.11). The computation of the leaf energy balance in the three species (www.
landflux.org/resources/Ecofiz_Tleaf_K2_v3.xls, Kevin Tu, U.C. Berkeley), for a
windspeed of 1 m s−1 and 700 W m−2 of short-wave radiation, yielded a certain
leaf temperature (TLeaf) for a given leaf length (d) and environmental conditions (air
temperature and air relative humidity). This computation show that an increase in
d implies a concomitant increase in TLeaf under the environmental conditions
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typical of a Temperate climate in the three species under consideration. According
to Dreyer et al. (2001), this fact may benefit the leaf functioning in terms of leaf
photosynthetic capacity by reaching a better thermal regime for some processes
related to carbon gain. In a mediterranean environment, Q. robur would follow the
same trend, which may cause a serious overheating problem if TLeaf achieve 40 °C,
value considered to be near the upper limit of viable temperatures (Baldocchi and
Xu 2007; and references therein). This problem could be mitigated by reducing
drastically its leaf size. On contrary, Q. faginea and Q. pyrenaica show a phe-
nomenon of leaf cooling which is higher as d increases (Fig. 5.11). This cooling
effect is due to the combination of i) the high stomatal conductance (gs) of these
species and ii) the high VPD that allows a high water evapotranspiration. This effect
on leaf temperature should persist as soil moisture kept available and VPD did not
reach very high values. As we assume that water vapour concentration inside the
leaf is temperature dependent (Nobel 1991), a lower leaf temperature associated to a
possible leaf cooling should reduce the driving force for transpirational water losses
and contribute to water saving.
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If soil deficit (Peguero-Pina et al. 2015) or high VPD values (Mediavilla and
Escudero 2004) induce stomatal closure, the water losses by transpiration would not
be high enough to keep this effect of leaf cooling, and a leaf overheating could be
developed (Gibson 1998). In fact, the results from the model evidence a small
overheating (ΔT = + 1.2 °C) in the small-leaved evergreen mediterranean Q. ilex
(d = 10 mm) under “mediterranean conditions” (VPD = 3 kPa, Tair = 30 °C) due
to the low gs (160 mmol H2O m−2 s−1). Such overheating is much lower than the
one calculated for Q. robur (ΔT = + 4.1 °C), partly due to the higher value of gs in
Q. ilex (160 mmol H2O m−2 s−1) than in Q. robur (90 mmol H2O m−2 s−1 at
VPD = 3 kPa and Tair = 30 °C, or “mediterranean conditions”) and also due to the
smaller leaf size in the evergreen oak (d = 40 mm in Q. robur and d = 10 mm in
Q. ilex).

Finally, the reduction in leaf size also decreases the total leaf area per shoot,
which should induce a shift in the leaf specific hydraulic conductivity (LSC, ratio of
stem conductivity to leaf area, kg m−1 s−1 MPa−1), increasing the ability for sup-
plying water to the transpiring leaves in dry atmospheres (Martínez-Vilalta et al.
2009; Peguero-Pina et al. 2011). This is the case of Q. ilex subsp. rotundifolia,
which lives in more xeric habitats than Q. ilex subsp. ilex. A higher LSC was found
in Q. ilex subsp. rotundifolia (Peguero-Pina et al. 2014), mainly due to the
adjustment in single leaf area, more than by reducing the number of leaves per
shoot, shoot sapwood area or the specific conductivity of the xylem (Ks,
kg m−1 s−1 MPa−1). Something similar was found when the Temperate Q. robur
was compared with the Mediterranean Q. faginea (Peguero-Pina et al. 2016a). In
spite of the large difference found in hydraulic conductivity (Kh, kg m s−1 MPa−1)
between both species (ca. seven times higher in Q. robur), Q faginea reached
similar values of LSC by reducing fourfold its leaf size. That is, an adjustment
between hydraulic conductivity and whole-shoot leaf area contributes to withstand
Mediterranean conditions, especially high VPD (see Fig. 5.1f).

5.8 Leaf Stomatal Conductance. Water Saving and Water
Spending Strategies

The stomatal conductance (gs, mmol H2O m−2 s−1) of a plant estimates the rate of
transpiration or water loss through the leaf stomata of that plant per unit leaf area.
This parameter is a function of the stomatal density, stomatal size and stomatal
aperture (Franks and Beerling 2009), with maximum values when stomata are fully
open (gs,max). Considering that gs,max occurs when a particular plant is living under
non-stressed conditions (well watered soil, low VPD and saturating irradiance)
(Epron and Dreyer 1993), we have compiled gs,max values from the literature for
different Quercus species. When comparing these gs,max values (Fig. 5.12), we
observe that the mean value found in the deciduous mediterranean group
(470 ± 35 mmol H2O m−2 s−1) is statistically higher (p < 0.05) than those found
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in the other two groups analyzed (266 ± 30 mmol H2O m−2 s−1 for deciduous
temperate and 243 ± 14 mmol H2O m−2 s−1 for evergreen mediterranean). The
high value found in deciduous mediterranean oaks can be considered counterin-
tuitive, assuming that these oak species are able to survive in dry climates.
However, when the whole leaf transpiration (mmol H2O s−1 per leaf) is considered,
the evident reduction in leaf size in these deciduous mediterranean species com-
pensate for the higher gs,max, yielding a similar value of whole leaf tranpiration than
the one calculated for temperate oaks, although still higher than that for evergreen
mediterranean species (Fig. 5.12). According to Mediavilla and Escudero (2003),
these different strategies can be interpreted in terms of the concepts of water saver
and water spender (Levitt 1980).

On the one hand, the deciduous mediterranean oaks would be considered water
spender as they have higher values of gs,max, higher transpiration rates (Fig. 5.12)
and, furthermore, a lower stomatal sensitivity to atmospheric dryness (Mediavilla
and Escudero 2003). In fact, while Q. faginea starts to close stomata above 3 kPa,
Q. ilex subsp. rotundifolia starts the stomatal closure at 2 kPa (Fig. 5.13). A more
efficient conductive system that allows a faster water supply to the leaves (Nardini
et al. 1999; Sisó et al. 2001; Lo Gullo et al. 2005; Kröber et al. 2014) is needed to
maintain the high transpiration in atmospheres with moderate or high VPD
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(2015), Peguero-Pina et al. (2015, 2016a, b, 2017a, b)
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(Nardini et al. 1999). The high transpiration rates may be coupled with a high
photosynthetic rate and growing capacity under Mediterranean conditions (Levitt
1980; Blumler 1991; Mediavilla and Escudero 2003; Flexas et al. 2014) in spite of
their lower leaf longevity. Nevertheless, being a water spender could lead to a more
rapid consumption of soil water reserves (Mediavilla and Escudero 2004). The
depletion of the soil water content should imply the development of more negative
soil water potential that will induce the reduction of gs,max through the effect on the
leaf water potential at predawn (Fig. 5.13; Acherar and Rambal 1992), with the
consequent reduction in photosynthesis. For this reason, this strategy may require
the existance of a large enough source of soil water during the vegetative period
associated to deep and well-developed soils (Peguero-Pina et al. 2015).

On the other hand, the evergreen mediterranean oaks would be comparatively
considered as water savers, due to the more conservative water-use characteristics:
lower gs,max, lower transpiration rates and higher stomatal sensitivity to VPD
(Figs. 5.12 and 5.13). This ability for maintaining a better control of the water
losses, besides their higher tolerance to low soil water availability (Acherar and
Rambal 1992; Blumler 1991), would be the in the base of the present predominance
of evergreen mediterranean oaks in many areas under Mediterranean-type climates
(Archibold 1995). However, the handicap of this group would be their lower
photosynthetic rates (Levitt 1980; Mediavilla and Escudero 2003; Flexas et al.
2014), which make them less competitive under non-stress conditions.
Nevertheless, these rates might be slightly compensated with the longer leaf life
span that allows these species to start the photosynthetic activity as soon as
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conditions are favourable. Together with these evergreen mediterranean oaks, other
evergreen species living in xeric climates might share the same water saving
behaviour. This is the case, for example, of Q. turbinella, an evergreen species
living in semiarid non-Mediterranean environments of south-western USA that also
shows low leaf conductances (Ehleringer and Smedly 1988; Ehleringer and Phillips
1996).

5.9 Mechanism for a Further Reduction of Stomatal
Conductance: Waxes and Trichomes

Some studies have revealed that the water saving strategy in evergreen mediterranean
oaks goes further the common mechanisms to reduce the stomatal conductance.
Some species, such as Quercus coccifera, which is able to survive in the most arid
Mediterranean-subtype climates (see Fig. 5.3), can develop leaf epidermal structures
to reduce gs,max (Roth-Nebelsick et al. 2013). These structures are accumulations of
epicuticular waxes in the protruding surface of the guard cells (Fig. 5.14). Waxes
encrypt stomata, simulating a roof, and drastically reduce the effective pore dimen-
sions. Consequently, this reduction in the pore area (from 30 to 5 lm2) causes a
permanent strong decrease in gs,max which leads to a high decrease in transpirational
water loss. Furthermore, Peguero-Pina et al. (2016b) showed that Q. coccifera only
develops these structures when habits in xeric areas (with high VPD). Under a
Temperate climate the waxes produced by the leaf do not reduce the pore dimension
as much as in Mediterranean-type climates, suggesting a plasticity of stomatal pro-
tection in relation to contrasting plant growth climatic conditions. Epicuticular waxes
covering the stomatal rim have also been reported in other Quercus species, such as
Q. arizonica (Scareli-Santos et al. 2013) or in Q. infectoria (Panahi et al. 2012a) and
different taxa of the Q. brantii complex (Panahi et al. 2012b). Although the role of
such epicuticular waxes it is not a matter of discusion in these studies, the habitat of
these species may suggest a similar role than in Q. coccifera.

Other leaf epidermal structures commonly found in many species of the genus
Quercus are trichomes (Hardin 1979; Morales et al. 2002; Panahi et al. 2012a, b;
Scareli-Santos et al. 2013; He et al. 2014). These structures can be found scarcely
distributed along the ribs, on the axil tufts, throughout the leaf blade or creating a
continuous and dense layer both on the adaxial (upper) and abaxial (lower) side of
the leaves in many oak species (Fig. 5.14). Trichomes are described in a widely set
of plants with several and different functions, such as plant defence against her-
bivores and pathogens, mechanical protection to abrasion, or absorption of water
and nutrients (Wagner et al 2004; Bickford 2016; and references therein). Among
these functions, the role of a dense layer of trichomes in the abaxial surface (where
the stomata are present) has been considered in this genus a way for reducing the
water flow to the atmosphere, and so, a xeromorphic adaptation to dry environ-
ments (He et al. 2014). Hardin (1979) indicated that individuals of the same oak
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species showed a denser leaf trichome layer when living in drier habitats.
Moreover, from the comparison of the leaf abaxial pubescence in a wide set of oaks
from different climate-types (Fig. 5.15), it can be concluded that: (i) oak species
from habitats with some kind of aridity (during summer or winter) seem to be
frequently pubescent beneath and (ii) the frequency of oak species showing a dense
layer of trichomes in the abaxial side is higher in mediterranean and arid evergreen
oaks. Could this result support the idea of a dense abaxial leaf pubescence as a
xeromorphic trait in Quercus?

To the extent of our knowledge, and according to previous studies concerning
this topic, the possible role of trichomes in water saving are at present merely
speculative (Wagner et al. 2004). The trichome covering has proposed to modify
the leaf boundary layer, which could increase the leaf diffusion resistance to water
loss in the abaxial side (Ripley et al. 1999; Benz and Martin 2006). However, other
authors rejected the effect of these structures in the boundary layer of leaves
(Johnson 1975) or, though recognising a possible influence, suggested a minor
effect on whole leaf transpiration (Ehleringer and Mooney 1978). More recently, it
has been shown that the increment in the boundary layer resistance seems to be
negligible compared with the resistance imposed by other components of the dif-
fusion pathway (mesophyll, stomata, cuticle). In fact, Roth-Nebelsick et al. (2009)
concluded that trichomes inside the stomatal crypt of Banksia ilicifolia had no

Fig. 5.14 Stomatal encryption with epicuticular waxes in Quercus coccifera (a, b). Details of the
leaf abaxial trichome layer in Q. ilex supsp. rotundifolia (c, d). Upper (a, c) and lateral (b, d) views
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significant influence on transpiration. Moreover, Schreuder et al. (2001) indicated
that the trichome layer could stimulate the transition from a laminar to a turbulent
flow implying an increase in the water transport conductance. In addition, a study
on Proteaceae did not find the same relation between the presence of trichomes
covering the stomata and aridity, suggesting that a dense hair layer covering the
areas with stomata are not clearly associated to dry climates (Jordan et al. 2008).
With these scarce and contradictory studies, more research is needed (e.g. taking
into account the trichomes density) in order to clarify if the abaxial trichome layer
(i) decreases the water conductance (helping the evergreen mediterranean oaks as
water savers), (ii) is totally insignificant, or (iii) increases the water conductance
(favouring the water-spender role of deciduous mediterranean).

However, some positive effects of leaf trichomes for plants living under dry and
sunny climates have been proposed. The role of trichomes in the optical properties
of the leaf has received an especial attemption (Johnson 1975). In this way, leaf
pubescence, which is able to reduce leaf absorptance of solar radiation by
increasing leaf reflectance (Ehleringer 1984), causes a reduction of leaf tempera-
tures and water losses (Ehleringer et al. 1976, 1981; Ehleringer and Björkman 1978;
Ehleringer and Mooney 1978; Ehleringer 1981; Pérez-Estrada et al. 2000). This
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effect would make sense when trichomes densely cover the adaxial face of the leaf,
due to the predominance of the solar incidence in the upper leaf side, but also in the
abaxial face to avoid excessive absorption of ground radiation (Jonhson 1975).
Trichomes located adaxially have also been considered as protective structures
against excessive UV-B radiation (Grammatikopoulos et al. 1994; Karabourniotis
and Bornman 1999; Savé et al. 2000; Manetas 2003) and excessive photosynthetic
active radiation (Morales et al. 2002). These authors found that the presence of
trichomes in the adaxial leaf surface of Q. ilex subsp. ballota was an important
structural mechanism to reduce the susceptibility to photodamage preserving the
photochemistry apparatus, as also reported in other mediterranean plant species
(Galmés et al. 2007). This feature, besides the contribution of trichomes in water
uptake through the leaf surface (Fernández et al. 2014), make adaxial trichomes of
Q. ilex subsp. ballota leaves efficient structures under mediterranean xeric condi-
tions. That is, adaxial trichomes can give protection against the excess of light
energy due to high levels of irradiance and help in the foliar water uptake in sites
with scarce precipitations that might not recharge the soil during summer.

Brewer and Smith (1997) suggested that repelling moisture away from the
epidermis and, consequently, from stomatal pores, would reduce the interference of
a layer of a liquid water with CO2 uptake through the stomata. This implies that the
presence of an abaxial trichome layer in oak species such as Quercus ilex
subsp. rotundifolia, which seems to be highly hydrophobic (Fernández et al. 2014),
may serve as a way to ensure the free movement of CO2 inside the leaf in habitats
prone to induce accumulation of water, such as foggy mountain areas. This may
also explain the existence nowadays of such features in oaks that live under rainy
habitats. Taking this into account and knowing that evergreen oaks existed before
mediterranean xeric conditions, the hypothetic abaxial trichomes pre-adaptation to
moist environments could serve afterwards in mediterranean Quercus history as a
xeromorphic feature to cope with dry atmospheres. This is a matter that should be
tested in further research.

5.10 Minimum Conductance. The Role of Cuticle
and Leaf Size

The cuticle is a thin continuous membrane that terrestrial plants have developed to
act as a barrier against uncontrolled water loss (Riederer and Schreiber 2001). This
membrane consists of a polymer matrix (cutin), polysaccharides and associated
solvent-soluble lipids (cuticular waxes) (Holloway 1982; Jeffree 1996), which make
the cuticle efficient for water saving, translucent for photosynthetic radiation
absorption, flexible and self-healing. Despite the cuticle role as an important water
barrier, there is still a movement of water through the cuticle between the outer cell
wall of the epidermis and the atmosphere adjacent to the plant that gives to the
cuticle certain water permeability (Riederer and Schreiber 2001). This movement is
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based in a simple diffusion process along a gradient of the chemical potential of
water. Individual water molecules are sorbed at one interface, follow a random path
across the cuticle in a mostly lipophilic chemical environment and are desorved at
the other interface (Frisch 1991; Riederer and Schreiber 2001; Kerstiens 2006). In
this sense, the degree to which cuticles transmit water is called “cuticular perme-
ance” (P). When the cuticle surface has stomata, as happens in leaves, the term
often used is “minimum conductance” (gmin, mol m−2 s−1) (Kerstiens 1996), which
could be defined as the conductance of the leaf surface when stomata are com-
pletely closed.

According to Riederer and Schreiber (2001), xeromorphic plants growing in
Mediterranean-type climates have lower values of cuticular permeance than de-
ciduous plant species from Temperate climates. Focusing on Quercus, Fig. 5.16
reveals only a slight difference of gmin values between evergreen mediterranean and
deciduous temperate oaks. Among deciduous oaks, no difference was noticed
between mediterranean and temperate species. However, when the total leaf area
per shoot is considered in order to calculate the amount of water transmitted
through the cuticle at shoot level (Emin shoot, mmol s−1), the differences between
groups are magnified (Fig. 5.16). Emin shoot values of evergreen mediterranean oaks
are much lower than deciduous oaks values; and even, the values of the deciduous
mediterranean oaks are lower than those deciduous oaks from Temperate climates.
In this sense, although gmin in mediterranean oaks is only slightly lower than in
temperate oaks, the lower total leaf area per shoot of mediterranean oaks induces a
lower amount of water loss per shoot, which may benefit these species for with-
standing water deficits.

5.11 Resistance to Cavitation

The constrain for plant growth or even survival imposed by summer drought in
Mediterranean-type climates has promoted the search for common xeromorphic
features in the flora under this climate (Thompson 2005; Medrano et al. 2008;
Nardini et al. 2014). However, the existence of multiple strategies to withstand the
summer drought among mediterranean woody plants, which therefore implies
different functional traits, has been revealed in many papers (e.g. LoGullo and
Salleo 1988; Vertovec et al. 2001; Ackerley 2004; Iovi et al. 2009; Bussotti et al.
2014), even when mediterranean Quercus species were compared (Salleo and
LoGullo 1990; Salleo et al. 2002). The xylem vulnerability to drought-induced
embolism (Sperry and Tyree 1988) can be explored in order to search for a single,
common trait, that should confer a best performance under drought conditions in
woody plant species (e.g. Bhaskar and Ackerley 2006; Pratt et al. 2007; Blackman
et al. 2010). Maherali et al. (2004) compared the value of the xylem tension
(MPa) inducing a loss of 50% of hydraulic conductivity (the socalled W50, P50 or
even PLC50) in 167 woody from different “vegetation types”, namely
“Mediterranean”, “Desert”, “Temperate Forest and Woodland”, “Tropical Dry
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Forest” and “Tropical Rain Forest”. According to these authors, plants from the
“Mediterranean” vegetation type showed the lower median W50 (ca. −5.5 MPa),
followed by the group constituted by the “Desert” plants (ca. −4.5 MPa). This fact
can be regarded as an indication of the noteworthy importance of this parameter in
habitats affected by drought periods, such as those under Mediterranean-type cli-
mates. A wider global analysis allowed Choat et al. (2012) to find a significant
relationship between the species W50 and the mean annual precipitation in their
respective origins, with a lower resistance in those woody plants from areas with
higher rainfall. However, Maherali et al. (2004) reported a very high variability in
W50 within groups, including the Mediterranean group, where species with values
close to −2 MPa besides other with values lower than −8 MPa are shown.

In the same way, Jacobsen et al. (2007a, b) reported a variation range of 10 MPa
in W50 among co-occurring mediterranean shrubs of the California chaparral and
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Fig. 5.16 Leaf minimum conductance (gmin) and shoot minimum transpiration (Emin shoot) of five
evergreen mediterranean oaks (EVE MED), three deciduous mediterranean (DEC MED) and three
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Jacobsen et al. (2009) among shrubs from different Mediterranean-type regions of
the earth. Nardini et al. (2014) plotted the W50 of different Mediterranean woody
species contained in the dataset of Choat el al (2012). In a similar way, besides the
finding of a convergence in the mean values between geographical origins (namely
the Mediterranean Basin and the California Chaparral), Nardini et al. (2014) also
reported a range of variation around 8 MPa in W50 which evidences the lack of a
common response among all the mediterranean plant species in terms of this
physiological threshold.

Concerning Quercus species, Vilagrosa et al. (2012) showed a good correlation
between W50 and the length of the aridity period according to the Gaussen-type
ombrotermic diagram (see Fig. 5.1), a good proxy of the intensity of the climatic
restriction to plant growth during the vegetative period (e.g. Peguero-Pina et al.
2016a). In fact, those species from the most xeric areas in the Mediterranean Basin
showed a lower (more negative) W50, such as Q. coccifera (W50 value close to
−7 MPa, Vilagrosa et al. 2003b), which is able to inhabit semi-arid areas of
southeastern Iberian Peninsula (up to 7 months of aridity). Pinto et al. (2012) also
suggested that evergreen oaks, Q. suber and Q. ilex in their study, registered lower
(more negative) W50 values than temperate oaks. A meta-analysis using published
data of W50 for different Quercus species of the world revealed that W50 in tem-
perate species is higher (less negative) than in evergreen mediterranean (Figs. 5.17
and 5.18). However, the boxplots of the values clearly indicate a higher dispersion
in these last species, evidenced by the width of the interquartile and interdecil
ranges and the outliers at both extremes. This fact confirms the results by Maherali
et al. (2004) and Nardini et al. (2014), and induces to consider that a lower W50 is
not a common trait in mediterranean oaks. From these data, it can be assumed the
existence of evergreen mediterranean oaks with W50 as high as or even higher than
temperate species. On the contrary, it is also true that the most negative values of
W50 so far published in genus Quercus correspond to evergreen species inhabiting
Mediterranean areas (Vilagrosa et al. 2003b; Peguero-Pina et al. 2014). The high
resistance to drought-induced embolism in many of these evergreen oaks, as sug-
gested by theirW50 values, can be regarded as an adaptation for withstanding severe
droughts in the more xeric areas under Mediterranean-type climate, due to climatic
but also to edaphic factors (Gil-Pelegrín et al. 2008; Peguero-Pina et al. 2015).

The high dispersion in W50 among the mediterranean evergreen oaks (ca.
6 MPa) can also be found at within-species level. Thus, in Q. berberidifolia, the
value of W50 ranges from −0.7 MPa (Jacobsen et al. 2014) and −1.5 MPa
(Jacobsen et al. 2007a) to −2.6 MPa (Bhaskar et al. 2007) and even −5.1 MPa
(Jacobsen et al. 2007b). A wide variation range has been also published for Q. ilex,
from ca. −2 MPa (Martínez-Vilalta et al. 2002) to −7.1 MPa in Q. ilex subsp. ro-
tundifolia (Peguero-Pina et al. 2014). Nardini et al. (1996) considered Q. ilex to be
“very vulnerable” to cavitation, suffering this phenomenon through the year in
northeastern Italy. The high intraspecific variability in W50 in Q. ilex has not a
simple explanation. Pinto et al. (2012) analysed the possible influence of (i) the
methodology used to obtain the vulnerability curve, (ii) the age of the plant and the
growth conditions or the (iii) existence of a genetic variability in this species, as
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suggested by Corcuera et al. (2004a, b). The information published so far suggests
that Q. ilex can be hardly considered a homogeneous taxon, both from an eco-
physiological (Niinemets 2015; Peguero-Pina et al. 2014) or genetic perspective
(Michaud et al. 1995; Lumaret et al. 2002), even within any of the presumed
subspecies (Leiva and Fernández-Alés 1998; Pesoli et al. 2003; Valero-Galván
et al. 2011, 2013). In fact, this evergreen oak is sorted in the lower extreme of
drought tolerance, together with Q. pedunculiflora, among the oaks form Greece
(Radoglou 1996; and references therein). The conception of this species as “very
vulnerable” contrast with that concerning the most western populations of Q. ilex
(David et al. 2007; Limousin et al. 2010b; Vaz et al. 2010; Andivia et al. 2012;
Peguero-Pina et al. 2015), where this species is assumed to occupy dry areas in the
Mediterranean region. A certain correspondence can be found with the phylo-
geography of Q. ilex (Lumaret et al. 2002), with a predominance of the subspecies
rotundifolia in the western area (Iberian Peninsula, northwestern Africa), and the
published data or references to the vulnerability to drought-induced embolism. So,
most this variation found in this taxa may be attributable to the existence of two
different ecological performance within the whole Q. ilex distribution area
(Corcuera et al. 2004a, b; Gil-Pelegrín et al. 2008), which have adapted to con-
trasting habitats during their evolution.

In spite of the importance of W50 as a proxy of the tolerance to drought-induced
embolism, Urli et al. (2013) found that the water potential inducing a critical and
non recuperable hydraulic failure in angiosperms was more negative than W50

values, being close to the water potential which induces the loss of 88% of the stem
hydraulic conductivity (the socalled W88 or P88). When this parameter is plotted,
comparing temperate and evergreen mediterranean oaks (Fig. 5.17), it can be seen
how much higher is the difference between these two groups as compared with that
situation observed when W50 is considered. The distribution of the W88 values
(Fig. 5.18) allows visualizing the difference between the two groups. In this case,
and unlike the situation observed in the plots showing W50 values (Figs. 5.17 and
5.18), the interquartile and interdecil ranges do not overlap and only two lower
outliers of evergreen Mediterranean overlap with the interquartile range of tem-
perate species. These two low values for W88 were also reported for Q. ilex, the
taxon with the higher variability in terms of hydraulic vulnerability performance, as
above discussed. The very high (more negative) values for W88 of mediterranean
oaks, and according to Urli et al. (2013), clearly indicate an overall response of this
group of Quercus species to withstand severe drought in their natural habitats. In
fact, besides the values for Mediterranean evergreen species, Bhaskar et al. (2007)
also reported a W88 value of −10.5 MPa in Q. sebifera, an oak species living in dry
areas of Eastern Sierra Madre (Mexico).

The published data for deciduous mediterranean oaks (namely Q. faginea,
Q. frainetto, Q. pubescens, Q. pyrenaica and Q. subpyrenaica) point out that the
mean value (± SE) for W50 and W88 was found to be −3.4 (0.012) and −5.9 (0.062)
MPa, respectively. These data would allow considering these species able to
withstand a higher level of drought than the most genuine winter deciduous tem-
perate ones, which is in accordance to their habitat climatic conditions. However, a
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high variability is found within this group, especially when W88 is considered. The
lowest values for this parameter have been published for Q. pubescens (−3.2 MPa,
Tognetti et al. 1999) and Q. pyrenaica (−4 MPa, Corcuera et al. 2006). However,
Tognetti et al. (1998) and Choat et al. (2012) reported a value much more negative
for Q. pubescens (ca. −5.5 MPa), and Esteso-Martínez et al. (2006) found a W88

value of −5.65 MPa for Q. faginea. Finally, it should be noted that the lower (more
negative) values have been reported for Q. frainetto (−8.23 MPa, Iovi et al. 2009)
and Q. subpyrenaica (−8.7 MPa, Peguero-Pina et al. 2015). The values reported in
these two last species are very similar to the highest values found in evergreen
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Fig. 5.17 Mean values ± SE (upper) and box-plot (lower) of stem water potential at 50% (W50)
and 88% (W88) loss of conductivity for oak species belonged to the deciduous temperate (DEC
TEM) and evergreen mediterranean (EVE MED) groups. Letters indicate statistically significant
differences (Tukey test, P < 0.05). Climatic classification of the species involved in this figure is
shown in Appendix 5.1. Data from Cochard and Tyree (1990), Cochard et al. (1992), Lo Gullo and
Salleo (1993), Tyree and Cochard (1996), (1999), Martínez-Vilalta et al. (2002), Vilagrosa et al.
(2003a), Corcuera et al. (2004a), Brodribb et al. (2003), Esteso-Martínez et al (2006), Hacke et al.
(2006), Maherali et al. (2006), Bhaskar et al. (2007), Jacobsen et al. (2007a, b), Li et al. (2008),
Iovi et al. (2009), Limousin et al. (2010b), Christman et al. (2012), Nardini et al. (2012), Pinto
et al. (2012), Sperry et al. (2012), Vaz et al. (2012), Paddock et al. (2013), Tobin et al. (2013), Urli
et al. (2013), Jacobsen et al. (2014), Peguero-Pina et al. (2014), (2015), Venturas et al. (2016a, b).
When values are not reported by authors, they were estimated from the graphical reinterpretation
of the published vulnerability curves
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mediterranean oaks and would indicate an extreme resistance to suffer an irre-
versible hydraulic failure. The condition of “transitional species”, as suggested in
Corcuera et al. (2002) from the parameters derived from PV curves, can be rein-
forced by their performance in terms of vulnerability to drought-induced embolism.
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Appendix 5.1

List of Quercus species (scientific name, infrageneric group according to Denk and
Grimm (2009) and distribution) used in the figures of the chapter. Species are
classified into six groups according to: (i) their leaf habit (evergreen or winter
deciduous) and (ii) their climatic distribution conditions (Temperate, Tropical,

Fig. 5.18 Individual values of stem water potential at 50% (W50) and 88% (W88) loss of
conductivity for deciduous temperate (DEC TEM, blue) and evergreen mediterranean (EVE MED,
red) oak species. Data as in Fig. 5.17. Note the great variability in the individual values found for
Quercus ilex (indicated in the figure by an asterisk). Climatic classification of the species involved
in this figure is shown in Appendix 5.1
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Mediterranean or Arid). For this purpose, geographical distribution coordinates for
each species were obtained from herbarian data (Appendix 5.2) and overlapped on
the climatic Köppen map. Köppen categories and zonobiomes sensu Walter (in
brackets) are classified in four main groups: (i) temperate, without dry season
(green); (ii) tropical, dry winter (blue); (iii) mediterranean, dry summer (red); and
(iv) arid, arid (orange). For each group, represented by a particular colour, Köppen
categories are listed according to their respective relevance.

Appendix 5.2

List of data sources for species distribution.

– Archbold Biological Station (www.archbold-station.org)
– California State Parks (https://www.parks.ca.gov)
– CNPS Inventory Database (www.rareplants.cnps.org/simple.html)
– Delta State University (www.deltastate.edu)- Harvard University Herbaria

(https://huh.harvard.edu/pages/digital-resources,kiki.huh.harvard.edu/databases)
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– Desert Botanical Garden Herbarium Collection (https://www.dbg.org/desert-
plant-research-center)

– Eastern Michigan University Herbarium (www.emich.edu/biology/facilities/
herbarium.php)

– Fairchild Tropical Botanic Garden Virtual Herbarium (www.virtualherbarium.
org)

– Global Biodiversity Information Facility (GBIF) (http://www.gbif.org)
– Herbarium WU Institute of Botany, University of Vienna (http://herbarium.

univie.ac.at)
– Illinois Natural History Survey (www.inhs.illinois.edu)
– Intermountain Herbarium Utah State University (http://intermountainbiota.org)
– Instituto Nacional de Tecnología Agraria y Alimentaria. INIA (http://wwwx.

inia.es/herbario/herbarioweb/default.asp?tabla=quercus)
– Kathryn Kalmbach Herbarium (www.gbif.org/dataset)
– Mountains Restoration Trust (www.mountainstrust.org-New York Botanical

Garden (https://www.nybg.org)
– New York Botanical Garden Vascular Plant Database (http://sciweb.nybg.org/

science2/hcol/allvasc/index.asp)
– Royal Botanical Garden Edinburgh (www.rbge.org.uk)
– Southwest Environmental Information Network-SEINet Arizona-New Mexico

Chapter (http://swbiodiversity.org/seinet/collections)
– The Jepson Herbarium, University of California Berkeley (http://ucjeps.

berkeley.edu/interchange)
– Plant Atlas. USF Water Institute, University of South Florida (http://www.

plantatlas.usf.edu/)
– Tall Timbers Research Station University of Southern Mississippi Herbarium

(http://www.herbarium.bio.fsu.edu)—UCLA Herbarium (https://sites.lifesci.
ucla.edu/eeb-herbarium/)—University of Arizona Herbarium (https://cals.
arizona.edu/herbarium/content/specimens)

– University of British Columbia Herbarium (www.biodiversity.ubc.ca/museum/
herbarium)

– University of Florida Herbarium (https://www.floridamuseum.ufl.edu/herbarium)
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Chapter 6
Coexistence of Deciduous and Evergreen
Oak Species in Mediterranean
Environments: Costs Associated
with the Leaf and Root Traits
of Both Habits

Alfonso Escudero, Sonia Mediavilla, Manuel Olmo, Rafael Villar
and José Merino

Abstract The geographic distribution of deciduous versus evergreen woody spe-
cies has been intensively investigated, but the ecological significance of both leaf
habits is still far from being fully understood. The purpose of this chapter is to
review the factors that are related with the carbon gain of deciduous and evergreen
oak species under Mediterranean environmental conditions. We will focus on the
morphological, anatomical and chemical adaptations of evergreens necessary to
guarantee leaf survival during the unfavorable part of the year. We will review the
information available about the construction and maintenance costs associated with
the leaf traits of deciduous and evergreen oak species. Moreover, we will compare
these traits with those of non-Mediterranean oaks and species belonging to other
families. One central leaf trait is the leaf mass per area (LMA), which depends on
the leaf anatomy and chemical composition. Differences in LMA are related to
photosynthesis and the costs of construction and maintenance. We will assess the
differences in these traits between deciduous and evergreen oaks, the aim being to
understand the coexistence of both leaf habits in certain environments.
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6.1 Introduction

The differentiation between the deciduous and evergreen leaf habits in woody species
has been a focus of research for many investigators. In particular, the geographic
distribution of communities dominated by deciduous or evergreen species suggests
that the two habits must have different requirements. However, the patterns of geo-
graphic distribution of both habits are complex with apparently inconsistent changes
with latitude, which in some cases may seem paradoxical (Givnish 2002). In addition,
although there are evident geographic patterns in the dominance of the different leaf
habits, spatial and temporal variation in resource supply within a stand are often
sufficiently intense to permit the success of different strategies (Reich 2014).
Accordingly, deciduous and evergreen species are frequently present in the same sites
(Van Ommen Kloeke et al. 2012), which implies that they should be able to resist the
competition of species having the other leaf habit.

Different models have been developed to explain the geographic distribution of
deciduous and evergreen species. In general, deciduous species are favored wher-
ever the seasonal difference in the net rate of whole plant return from leaves adapted
to the favorable season versus the unfavorable season is large (Reich et al. 1992;
Givnish 2002). However, in strongly seasonal climates, short favorable seasons and
long unfavorable ones should lead to dominance by evergreens with prolonged leaf
life span and sclerophyllous structure, because under these circumstances it is
difficult for a leaf to pay back its construction costs by photosynthetic gain during a
single season since the favorable period is too short (Reich et al. 1992; Kikuzawa
1995). Models also suggest that as the maximum photosynthetic rate increases, leaf
longevities should become shorter (Kikuzawa 1995), because high initial C as-
similation rates allow for shorter payback times. Accordingly, evergreen commu-
nities should dominate regions that are always relatively unfavorable due to low
fertility and/or water availability (Reich et al. 1992; Givnish 2002). Finally, the
optimal leaf longevity should also decrease as the rate of decrease in photosynthesis
with leaf aging becomes higher; whereas when construction costs increase, leaf
longevities should increase (Kikuzawa 1995).

Given the above predictions, Mediterranean environments have been considered
traditionally as a typical habitat for evergreen sclerophyllous species. Mediterranean
climates are characterized by rainfall that occurs mainly in winter and drought during
summer, which result in negative correlations of rainfall with temperature and light
availability. This peculiarity of Mediterranean climates should lead to relatively low
seasonality in the net potential return from photosynthesis (Givnish 2002), because
photosynthesis would be limited by low temperatures during cold seasons and by low
water availability during warm periods. Under these circumstances, evergreens
should be favored. In addition, stomatal limitations in response to low soil water
availability might lead to reduced maximum photosynthetic rates. High light inten-
sities during the growing season and low vegetation densities (Flexas et al. 2014)
should permit deep penetration of light into the canopy, leading to a slow deterioration
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of the light environment of the older leaves as new, younger leaf layers are added to the
canopy (Ackerly and Bazzaz 1995; Reich et al. 2009). This should also favor the
evergreen habit because older leaves may still attain relatively high photosynthetic
rates, in comparison with the new leaves. Finally, sclerophylly is a frequent trait in
Mediterranean woody species, apparently because it affords protection against
drought stress during theMediterranean summer. Sclerophyllous leaves have a higher
leaf mass per area (LMA) than those of malacophylls (Turner 1994) and this should
imply higher construction costs, at least when expressed per unit leaf area (Villar and
Merino 2001).

However, Mediterranean regions are extremely variable both spatially and
temporally, exhibiting different degrees of canopy cover, and a wide range of soil
moisture availability and temperature over the course of a year (Baldocchi et al.
2010). In addition, contrary to common assumptions, Mediterranean woody species
present photosynthetic capacities similar to those of other biomes (Flexas et al.
2014). Accordingly, the predominance of conditions favorable to sclerophyllous
evergreens is not as general as previously supposed, and this probably explains the
variety of leaf habits present in the Mediterranean environments. In particular, in
both Europe and North America, Mediterranean environments present a rich array
of oaks (Quercus spp.) with different leaf habits and leaf life spans (Baldocchi et al.
2010), as well as varying photosynthetic capacities.

In our study, we have compiled data from the literature on 115 woody species
from different taxonomic groups and geographic origins, to analyze the possible
differences between Quercus species belonging to Mediterranean and
non-Mediterranean environments and between deciduous and evergreen leaf habits.
We collected data on leaf traits, leaf chemistry, phenology, and maximum
gas-exchange rates together with data on fine roots from different sources (un-
published data and published papers). References for data used in these surveys are
listed in the Appendix.

Our main objective was to understand the differences in leaf and root traits
between deciduous and evergreen oak species in Mediterranean regions, which may
explain the coexistence of both leaf habits. Moreover, we compared these traits as
well as leaf phenological patterns with those of oaks belonging to
non-Mediterranean areas and with those of species belonging to other families.

One fundamental leaf trait is the LMA, which depends on the leaf anatomy and
chemical composition (Fig. 6.1). Differences in LMA are associated with photo-
synthesis and the costs of construction and maintenance. We will assess the dif-
ferences in these traits between deciduous and evergreen oaks, with the aim of
understanding the coexistence of both leaf habits in certain environments.

6 Coexistence of Deciduous and Evergreen Oak … 197



6.2 Comparison of Leaf Phenology Among Different Leaf
Habits

Despite the well-known existence of a double limitation in Mediterranean climates,
arising from low winter temperatures and summer drought (Mitrakos 1980), most
analyses of the ecophysiology of woody species in Mediterranean environments
have focused on the limitations to plant performance derived from drought and heat
stress during summer. Much less attention has been dedicated to the limitations to
photosynthesis owing to cold stress during the winter and to the adaptations needed
for leaf survival during winter in evergreen Mediterranean species. Only recently,
have several papers (Ogaya and Peñuelas 2007; González-Zurdo et al. 2016a)
described intense changes in the leaf traits of evergreen species as a response to
winter temperature gradients, and this suggests that future research should focus
more on the effects of low temperature on leaf traits (Niinemets 2016). Furthermore,
among the different leaf habits present in Mediterranean environments, most
attention has been devoted to evergreens, despite the fact that in the Mediterranean
environments of the Northern Hemisphere numerous deciduous oak species occupy
ample extensions, both in Europe and in North America (Table 6.1).

In fact, many of the Mediterranean deciduous species occupy habitats with
severe drought during summer. The widespread abundance of winter-deciduous
species in warm Mediterranean climates has frequently attracted the attention of
researchers, both in the Mediterranean regions of North America: “Surprisingly,
winter-deciduous species are often dominant where summer drought is especially
severe” (Blumler 2015), and in the Mediterranean Basin: “It could be expected that
most of the Mediterranean tree species will be evergreen, but they consist of only
about 50% of the tree species in Israel” (Ne’eman and Goubitz 2000). Given that
many oak species exhibit great plasticity in their leaf phenological patterns
(Ne’eman 1993; García Nogales et al. 2016), if the selective pressure in favor of the
evergreen habit under warm Mediterranean conditions were so intense as generally
supposed, the deciduous habit should have been rapidly replaced.

In addition, despite the severe summer drought stress typical of most
Mediterranean regions, many deciduous tree species in this area exhibit patterns of
leaf phenology similar to those of other deciduous species from temperate climates

Fig. 6.1 Conceptual diagram
of the relationships between
the leaf traits that will be
discussed in the chapter
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with less severe drought stress and lower winter temperatures. The dates of leaf
unfolding and leaf fall of deciduous Mediterranean oaks do not differ excessively
from those of their counterparts from non-Mediterranean temperate regions
(Table 6.2). In fact, other genera of deciduous trees typical of Mediterranean cli-
mates also maintain phenological patterns similar to those of winter-deciduous
species from colder climates (Table 6.2). If we assume that the times of leaf
emergence and abscission in deciduous plants are selected to maximize the
expected whole-plant return per unit leaf mass per season (Givnish 2002), the
similitudes between Mediterranean and non-Mediterranean deciduous species in
their spring and autumn phenology suggest that in both areas spring and summer
conditions for photosynthesis should also be relatively similar.

Actually, leaf unfolding tends to be slightly earlier in Mediterranean climates in
comparison with oak species from colder climates, probably as a response to the
higher temperatures in spring (Table 6.2). However, oak species often experience
embolisms if there are frosts after leaf flush (Tyree and Cochard 1996). As a
consequence, species typical of colder sites under Mediterranean conditions in the
Iberian Peninsula, such as Q. pyrenaica, tend to have late leaf-out times, very
similar to those of Central European species. The mean dates of leaf senescence
indicate that Mediterranean oaks are able to keep their leaf biomass during the dry
season, whereas other Mediterranean winter-deciduous plants, like many members

Table 6.1 List of Mediterranean oak species from Europe and North America

Evergreen Deciduous

North America Europe North America Europe

Q. ajoensis Q. alnifolia Q. douglasii Q. afares

Q. agrifolia Q. calliprinos Q. kelloggii Q. canariensis

Q. berberidifolia Q. coccifera Q. lobata Q. cerris

Q. brandegeei Q. ilex Q. faginea

Q. cornelius-mulleri Q. suber Q. frainetto

Q. cedrosensis Q. infectoria

Q. chrysolepis Q. ithaburensis

Q. dumosa Q. lusitanica

Q. durata Q. macrolepis

Q. engelmannii Q. pubescens

Q. garryana Q. pyrenaica

Q. john-tuckeri Q. trojana

Q. palmeri

Q. pacifica

Q. parvula

Q. sadleriana

Q. turbinella

Q. tomentella

Q. wislizeni
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of the Rosaceae family, tend to lose part of their leaf area during late summer in
response to the severe drought stress typical of this part of the year. This results in
mean dates of leaf abscission that are earlier than those of deciduous Mediterranean
oaks (Table 6.2). This anticipation of leaf loss is compensated by earlier dates of
leaf unfolding, owing to the high resistance to late frosts of these species (Duhme
and Hinckley 1992). The behavior of the deciduous oak species implies that they
are able to obtain a positive carbon (C) balance also during the most stressing part
of the drought season. In fact, eddy-flux based measurements in Mediterranean
ecosystems dominated by deciduous oaks reveal that significant C assimilation rates
are maintained throughout the dry season (Kuglitsch et al. 2008; Ma et al. 2011).
Probably, this summer activity is due to the capacity of Mediterranean trees to
produce deep roots that obtain water from deep soil layers (Canadell et al. 1996).
Even on rocky soils, roots of oak trees have been observed penetrating through
fissures and cracks (David et al. 2004). In several species the mechanism of
“hydraulic lift” has been demonstrated to release water from deep soil layers into
upper soil layers during the night (Prieto et al. 2012). Given that most annual

Table 6.2 Approximate dates (DOY) of leaf unfolding and leaf fall in deciduous species

Species Leaf unfolding Leaf fall Canopy duration

Mediterranean oak species
Quercus canariensis 90 365 275

Quercus douglasii 78 320 242

Quercus faginea 94 326 232

Quercus ithaburensis 82 341 260

Quercus pyrenaica 128 329 201

Mean 94 336 242

Non-Mediterranean oak species
Quercus petraea 120 310 190

Quercus robur 116 304 188

Quercus rubra 129 307 178

Mean 122 307 185

Shrub Mediterranean species
Pyrus bourgaeana 71 210 139

Crataegus monogyna 87 263 176

Sambucus nigra 78 324 247

Mean 79 266 187

Other Mediterranean trees
Fraxinus angustifolia 108 329 221

Celtis australis 90 313 223

Pistacia terebinthus 134 312 178

Acer monspessulanum 89 297 208

Mean 105 313 208

Canopy duration in days
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precipitation in Mediterranean environments is concentrated in winter when the low
potential evapotranspiration allows a surplus of water to infiltrate into deep soil
layers, the mechanism of hydraulic lift may significantly increase the amount of
water transpired during summer (Canadell et al. 1996; Kurz-Besson et al. 2006).

In addition, the photosynthetic apparatus of many Mediterranean species seems
to be resistant to high summer temperatures and water stress (Daas et al. 2008).
A pattern common to different plant species is that metabolic impairment does not
limit photosynthesis until the water stress is severe (i.e. maximum daily stomatal
conductance below 0.10–0.15 mol H2O m−2 s−1) (Flexas et al. 2004). In addition,
although periods with very low maximum daily stomatal conductances are usual
under dry Mediterranean conditions, the recovery of photosynthesis after the stress
period is usually rapid (Galmés et al. 2007; Bongers et al. 2017).

One evident advantage of the evergreen habit under Mediterranean conditions is
that the possession of a year-round green canopy allows significant levels of C
assimilation to be attained during winter, when the deciduous species are inactive
(Hollinger 1992; Givnish 2002; Van Ommen Kloeke et al. 2012). However,
although some instantaneous measurements suggest that the rates of C assimilation
may be relatively high during winter months (e.g. Asensio et al. 2007; Bongers
et al. 2017), when the amounts of C assimilated are calculated for more extended
periods of time, the winter contribution to the annual total is usually modest. For
example, even in warm low-altitude sites of the Mediterranean Basin, the contri-
bution of the November–April period amounted to no more than 20% of the total
annual gross primary production achieved by an evergreen canopy (calculated from
data reported in Allard et al. 2008; Garbulsky et al. 2008; Kuglitsch et al. 2008).
Although air temperatures during the Mediterranean winter at low-altitude sites are
not especially low, the short photoperiod may be a strong limiting factor at this time
of the year (Givnish 2002). Obviously, at colder sites, the winter contribution to
total productivity should be even lower.

Accordingly, the extended period for photosynthesis implies only a modest
advantage in terms of total annual production. Given that keeping a green leaf
canopy during winter has associated maintenance costs and costs of leaf adaptations
to freezing (Van Ommen Kloeke et al. 2012), the final balance of the evergreen
habit strictly depends on the exact quantification of the costs associated with it.

6.3 The Leaf Economics Spectrum in Deciduous
and Evergreen Oaks

The coexistence of deciduous and evergreen species means that both leaf habits
must perform similarly under the same environmental conditions. The competition
between the two leaf habits can be suitably analyzed in the context of the “leaf
economics spectrum” (Wright et al. 2004). In most cases, the evergreenness is
achieved by a longer leaf duration that allows the overlapping of several leaf
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cohorts in the crown. Leaf life span is a pivotal trait in the carbon-fixation ‘strategy’
of a species (Wright et al. 2002). Species with a long leaf life span usually exhibit
high leaf mass per area (LMA), low nutrient concentrations per unit leaf mass, and
slow gas-exchange rates (Reich et al. 1999; Poorter et al. 2009). These traits form a
spectrum of “leaf economics”, which has been analyzed by many researchers
(Wright et al. 2004; Wright and Sutton-Grier 2012; Edwards et al. 2014; Reich
2014; Díaz et al. 2016). We can expect that evergreen and deciduous Mediterranean
tree species should maintain trends along the leaf economics spectrum similar to
those described by the above-mentioned authors. To analyze the position of
Mediterranean tree species along the spectrum, we have compiled data available in
the literature.

One important limitation for interspecific comparisons that involve differences in
leaf habit is that much of the information available in the literature has been
obtained with small plants growing in controlled environments (Bassow and Bazzaz
1998; Valladares et al. 2004). This may constitute a problem if we try to extrapolate
the results obtained to mature specimens, because many leaf traits tend to change
along ontogeny. If the ontogenetic trends were of similar magnitude for different
plant functional types, the interspecific differences observed at the seedling stage
could be extrapolated to the mature stage. However, the ontogenetic changes tend to
be stronger for species with longer leaf life span at maturity (Mediavilla et al. 2014),
which means that predictions of plant performances, based on data obtained from
studies limited to a part of the life cycle, should be made with caution (Cornelissen
et al. 2003). For this reason, we have calculated the species means separately for
those studies based on seedling traits. By comparing the trait values obtained for
seedlings and mature specimens within each species, we can estimate the ontoge-
netic change observed for the different leaf traits, for each species, as 100 � (trait
value in mature trees − trait value in seedlings)/(trait value in seedlings)
(Table 6.3).

As we can see, most leaf traits, as well as the maximum gas-exchange rates,
changed along ontogeny. Mature trees produced leaves with greater thickness and
LMA. Despite the interspecific trend of high-LMA leaves to have lower nitrogen
(N) contents per unit mass (Nmass) (Reich et al. 1992; Wright et al. 2004), mature
trees tended to have higher Nmass values; accordingly, the contents of N per unit
area were approximately 50% greater in mature trees compared to their counterparts
from the seedling stage. The concentrations of structural carbohydrates also tended
to increase along ontogeny, but the lignin concentrations maintained the opposite
trend. The larger amounts of N per unit area in mature trees resulted in much higher
photosynthetic rates per unit leaf area (Aarea). However, in the case of evergreens,
the effect on Aarea of the increase in Narea with the age of trees was almost com-
pensated by a pronounced decrease in maximum stomatal conductance. Given the
different ontogenetic trends, the comparison of the two leaf habits differs depending
on the stage addressed. Frequently, comparisons made at the seedling stage provide
scarce differences in gas-exchange rates between deciduous and evergreen species
(Acherar et al. 1991; Acherar and Rambal 1992; Lo Gullo et al. 2003). By contrast,
at the adult stage the differences tend to be much larger (Tretiach 1993; Mediavilla
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and Escudero 2003; Flexas et al. 2014). For this reason, the results provided in
Figs. 6.2, 6.3, and 6.4 refer exclusively to mature specimens.

As observed by many authors (Reich et al. 1992; Wright et al. 2004), the
maximum photosynthetic rates of each species were negatively related to leaf life
span in the whole set of species. This negative relationship was especially tight
when CO2 assimilation rates were expressed per unit leaf mass and less clear,
although still significant, when expressed per unit leaf area (Fig. 6.2a, b).

The negative relationship between leaf life span and instantaneous assimilation
rates per unit mass (Amass) followed a power function (linear when both variables
were log-transformed). Given this relationship between the two variables, several
authors have postulated its slope as a measure of the effects of leaf duration on the
CO2 assimilated throughout the life of the leaf. A slope equal to −1 in the log–linear
relationship between leaf longevity and Amass would mean that the product of
instantaneous assimilation rate � leaf life span, which may constitute a crude
estimation of total assimilation at the end of the life of the leaf, is independent of the
leaf life span (Westoby et al. 2000). A slope greater than −1 (less negative) would
imply that cumulative C assimilation increases with leaf life span (Reich et al. 1992;

Fig. 6.2 Relationships between leaf life span and a photosynthetic rate per unit of area (Aarea);
b photosynthetic rate per unit of mass (Amass) for all species; c all oaks and d Mediterranean oaks.
The slopes of the regressions were calculated as Standardized Major Axis Regressions using
SMATR (Warton et al. 2006). Ns Non significant; **P < 0.01; ***P < 0.001. The significance of
the slope’s difference from –1 is also shown
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Westoby et al. 2000). The slope calculated for the whole set of species used in this
review (Fig. 6.2b) was not significantly different from –1 for the mass-based
relationships. Similar relationships between leaf life span and Amass were found
when the range of species used was limited to oak species, although the slope of the
relationship decreased slightly (Fig. 6.2c), but it was not significantly different from
1. Similarly, the log-log plot of Amass and leaf life span calculated only for
Mediterranean oaks provided a slope very close to −1 (Fig. 6.2d), which means that
the lengthening leaf duration exactly compensates the concomitant decrease in
instantaneous assimilation capacity. These results differ from those obtained by
other authors, who found that the photosynthetic rate changed at roughly the −2/3
power of leaf longevity (Reich et al. 1992; Givnish 2002), implying that leaf
lifetime C assimilation would increase with leaf life span. Given that the present
analysis includes only broadleaf species with a relatively short range of leaf life
span, our results suggest that, when we compare species within a limited range of
leaf duration, CO2 assimilation throughout the leaf life is independent from leaf
duration, which could explain the coexistence of deciduous and evergreen species
in many environments. Instantaneous CO2 assimilation tends to decrease with leaf
age. The inclusion of this effect should contribute to reducing the slope, because the
instantaneous assimilation rate averaged for the different leaf cohorts present in the

Fig. 6.3 Boxplot diagrams depicting the main leaf traits of the different plant functional types.
The box in each box plot shows the median and the lower and upper quartile, and the whiskers
show the range of variation. Identification of functional types: ODM Mediterranean deciduous
non-oak spp; OEM Mediterranean evergreen non-oak spp; OSDM Mediterranean semideciduous
non-oak spp; QDM Mediterranean deciduous oak spp; QDN Non-Mediterranean deciduous oak
spp; QEM Mediterranean evergreen oak spp; QEN Non-Mediterranean evergreen oak spp
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crown should be lower for species with long leaf life span (Mediavilla and Escudero
2003). However, again the limited range of leaf life spans in our set of species
means that even in the evergreen species with the longest leaf life span the pro-
portion of old leaves in the crown is relatively low.

The similar capability for leaf C fixation of Mediterranean species differing in
leaf life span (Fig. 6.2) is also apparent at the ecosystem level. Eddy-flux based
measurements in Mediterranean ecosystems provide very similar values of gross
primary production for oak species such as Q. douglasii (Ma et al. 2007), Q. suber
(Pereira et al. 2007), and Q. cerris and Q. ilex (Maselli et al. 2006), thus revealing
that different leaf habits may perform similarly under Mediterranean conditions.
These results are also in line with those found in the dehesas (savanna-like
ecosystems) of the Iberian Peninsula, where acorn production has great economic
importance. In these systems, evergreen species usually have greater acorn pro-
duction than deciduous species (Martín Vicente et al. 1998), which gives the
impression that the evergreen leaf habit is advantageous under Mediterranean
conditions. However, total production (fruits plus litter) per species cover (a sur-
rogate of the species net primary production) is similar for species differing in leaf
life span (Martín Vicente et al. 1998 and unpublished data), which could help to
explain the coexistence of evergreen and deciduous habits in the same habitats.

Fig. 6.4 Boxplot diagrams depicting the gas exchange rates of the different plant functional types.
The box in each box plot shows the median and the lower and upper quartile, and the whiskers
show the range of variation. gs, stomatal conductance. Identification of functional types as in
Fig. 6.3
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The negative relationship between leaf duration and photosynthetic capacity may
be interpreted as being the consequence of a trade-off between leaf traits that confer
persistence and those that maximize instantaneous productivity (Reich et al. 1997;
Warren and Adams 2000; Takashima et al. 2004). Similarly, a strong negative effect
of a high LMA on photosynthetic rates per unit leaf mass has been observed in
many studies (Reich et al. 1997, 1999). The leaf N concentration is one of the main
leaf traits that determine photosynthetic capacity. A high concentration of structural
components contributes to increasing leaf resistance and leaf duration (Villar et al.
2006). However, high concentrations of structural components per unit leaf mass
contribute to the dilution of N, and this should reduce photosynthetic rates and N
use efficiency (Vitousek et al. 1990; Lloyd et al. 1992). Thus, high photosynthetic
rates per unit leaf mass basis are necessarily associated with short leaf life span
because a high assimilation rate requires high N concentrations and consequently
low LMA and thus low concentrations of structural components. All these traits
contribute to increasing the vulnerability to herbivory and physical hazards of
leaves with a short leaf life span (Wright and Cannon 2001; Shipley et al. 2006;
Poorter et al. 2009). Accordingly, several traits of evergreen leaves may help to
explain the negative effects of a long leaf life span on instantaneous assimilation
rates.

6.4 Leaf Traits Differ Between Deciduous
and Evergreen Oaks

We have summarized the main morphological leaf traits typical of different plant
functional types in Mediterranean and non-Mediterranean environments (Fig. 6.3).
For some traits, we did not find data for several of the species included.
Accordingly, the average values for the different plant functional types reported in
Fig. 6.3 were obtained with different sets of species. This explains the inconsis-
tencies between the values obtained for some traits. For example, in some cases the
Narea values are inconsistent with the mean values obtained for Nmass and LMA, as
Narea = Nmass � LMA. Despite this, we have preferred to include the data available
for each trait.

The LMA and leaf thickness tended to be greater for evergreen and semide-
ciduous species. The means of the different functional types were significantly
different for LMA (P < 0.0001) and marginally different (P = 0.07) for leaf
thickness, according to one-way analysis of variance. However, non-Mediterranean
evergreen oak species tended to exhibit lower LMA values in comparison with their
counterparts from Mediterranean environments, although we must acknowledge
that most of the data on non-Mediterranean evergreen oaks were obtained from a
single study on Quercus species typical of Florida (Cavender-Bares et al. 2004). By
contrast, there were no clear differences in LMA between typically evergreen
Mediterranean species and semi-deciduous shrubs (mostly, different species of the
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genus Cistus). Most of the species of this genus are classified as semi-deciduous
because they tend to lose a significant part of their leaf biomass during drought
periods (Harley et al. 1987; Villar and Merino 2001). A greater LMA has been
interpreted as a trait aimed at guaranteeing leaf survival, acting as protection against
different environmental factors such as drought or attack by herbivores (Turner
1994; Niinemets 2001). However, according to the results of the present analysis,
an elevated LMA in semi-deciduous species does not seem to be an efficient
mechanism to guarantee leaf survival during periods of drought stress. In a recent
review, Bartlett et al. (2012) conclude that there is no evidence of a mechanistic
linkage of LMA with drought tolerance and that sclerophylly is not necessarily a
mechanism of drought adaptation. However, Hallik et al. (2009) found a positive
correlation between LMA and drought tolerance (according to the habitat of the
different species). Also, de la Riva et al. (2016) found that species with high LMA
were associated with habitats with low water availability, but the trait most closely
associated with water availability was leaf density, which was higher in drier
habitats. By contrast, the resistance to leaf drought damage and premature loss
during summer was not related to LMA in the study of Günthardt-Goerg et al.
(2013), since Quercus pubescens, a typical deciduous Mediterranean tree with
comparatively high LMA, had more drought injury and leaf mass shedding than the
non-Mediterranean deciduous Q. petraea under the experimental conditions in the
study of these authors.

On the other hand, the tendency of LMA to increase as a response to increased
winter cold in evergreen species has been repeatedly observed (Niinemets 2016).
Although, usually, Mediterranean environments are assumed to have moderate cold
stress, the responses of LMA to winter cold have also been reported for several
species in these climates (Ogaya and Peñuelas 2007; González-Zurdo et al. 2016a).

The means of the different functional types were also significantly different for
leaf N (P < 0.0001), both per unit mass (Nmass) and per unit area (Narea), with
evergreen species showing lower Nmass, probably because of dilution of the N
content in a larger mass per unit area (Fig. 6.3). Mediterranean oaks tended to
maintain greater N concentrations in comparison with oak species with the same
leaf habit from non-Mediterranean climates. This difference may reflect the ten-
dency of deciduous species in regions with a shorter favorable period for photo-
synthesis (i.e. Mediterranean regions) to have higher leaf N concentrations than
deciduous species in more favorable environments (Kikuzawa et al. 2013). In turn,
this trait of deciduous Mediterranean species constitutes indirect evidence that,
despite the similarity in phenological patterns, drought stress contributes to short-
ening the favorable period for photosynthesis in Mediterranean environments. The
differences were especially marked for Narea, because of the combination in
Mediterranean oaks of elevated N concentrations and high LMA.

The evergreens maintained lower maximum gas-exchange rates (A) than the
deciduous and semi-deciduous species (Fig. 6.4). The differences were especially
pronounced when gas-exchange rates were expressed per unit leaf mass
(P < 0.0001). By contrast, the differences in A per unit area between functional
types were not statistically significant (P = 0.446), similar to the results reported by
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Hallik et al. (2009). The Mediterranean deciduous oaks tended to exhibit higher
photosynthetic capacity than non-Mediterranean oak species of the same habit,
which may constitute compensation for the limitation of total C assimilation derived
from the drought stress during part of the Mediterranean summer (Hallik et al.
2009; Baldocchi et al. 2010). Other non-oak deciduous Mediterranean species
achieved maximum gas-exchange rates similar to those of the deciduous oaks
(Fig. 6.4). The semi-deciduous species, which experience some losses of leaf area
during the most-stressed part of the season (Gulías et al. 2009), tended to exhibit
maximum photosynthetic rates that were even higher than those of the deciduous
oaks, at least when expressed per unit leaf area (Fig. 6.4). The patterns of stomatal
conductance (gs) are similar to those of Aarea, gs being higher in deciduous oaks
than in evergreen oaks (Fig. 6.4). In fact, the differences in Aarea are well explained
by differences in gs (Quero et al. 2006).

6.5 Causes of Differences in LMA

Despite its ecological relevance, LMA is still somewhat of a biological black box.
We need to understand which traits cause the variation in LMA, and what the
functional consequences are in terms of leaf physiology and longevity. We therefore
aimed to break down LMA into its underlying anatomical components, following
the approach shown in Fig. 6.5. At the whole leaf level, LMA is factorized into two
components: (1) leaf thickness and (2) leaf density (LD), the amount of dry mass per
unit leaf volume. The LMA is equal to the product of leaf thickness (LT) and leaf
density (LD) (Witkowski and Lamont 1991). As we have described before, within
the genus Quercus, evergreen leaves have a higher LMA than deciduous ones
(Fig. 6.3; Table 6.4), as has been found in many studies (Castro-Diez et al. 1997;
Villar and Merino 2001). We found that evergreen leaves have significantly higher
LT and LD than deciduous leaves (Table 6.4), which accounts for the higher LMA
of evergreens. Similar results have been found in other studies (Castro-Diez et al.
1997; Villar and Merino 2001; Prior et al. 2003; Wright et al. 2005; Mediavilla et al.
2008). In fact, LMA was positively correlated with both LT and LD (Fig. 6.6). The
relationships between LMA and both LT and LD reveal that for evergreen oaks the
variation in LMA was better explained by variation in LD, but for deciduous oaks
the variation in LMA was mainly due to variation in LT (Fig. 6.6).

To determine the anatomical causes of the differences in LT and LD between the
leaves of deciduous and evergreen oaks (Fig. 6.5) we compiled data of the
anatomical structure of different species of Quercus (21 deciduous and 14 ever-
green), considering the main tissues: epidermis (upper and lower), mesophyll
(palisade and spongy), vascular tissue and sclerenchyma, and air spaces (Fig. 6.7).

Our aim was to know which tissues are related to changes in LT and LD, in
order to explain the causes of differences in LMA (Castro-Diez et al. 1997; Villar
et al. 2013). In the case of LT, its increase is mainly due to an increase in the
mesophyll thickness (Fig. 6.8a). Also, the LT increase is related to an increase in all
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Fig. 6.5 Conceptual diagram of the anatomical characteristics that can affect LT (leaf thickness)
and LD (leaf density), which may affect the variation in leaf mass per area (LMA). Vascular tissue
includes also the sclerenchymatous tissue

Table 6.4 Mean values ± standard deviation of different leaf traits related to the structure and
anatomy in evergreen and deciduous oaks

Evergreen Deciduous Signif.

LMA (g m−2) 147.6 ± 51.8 72.8 ± 28.5 ***
Leaf thickness (µm) 235.8 ± 66.1 143.3 ± 39.1 ***
LD (g mL−1) 0.6 ± 0.2 0.5 ± 0.1 ***
Epidermis (µm) 29.9 ± 10.7 28.2 ± 8.0 –

Mesophyll (µm) 169.7 ± 61.0 113.3 ± 32.7 ***

Vasc + Scl. tissue (µm) 36.1 ± 29.0 14.4 ± 10.2 a
Air-spaces (µm) 27.0 ± 10.0 23.5 ± 7.9 –

The statistical significance is shown in bold (a 0.1 > P > 0.05, ***P < 0.001)

Fig. 6.6 Relationships of leaf mass per area (LMA) with a leaf thickness (LT) and b leaf density
(LD) for Quercus species differing in leaf habit (evergreen and deciduous). The R2 and the
significance of the regression are shown (***P < 0.001)
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tissues, except the air spaces -which remain constant throughout the range of LT.
These trends were also found in other studies (Castro-Diez et al. 1997; de la Riva
et al. 2016).

In the case of LD, it is more appropriate to relate it to the proportion of the
tissues than to the absolute values of the thickness of the tissues (Villar et al. 2013).
The density of the leaf was related positively to the proportion of vascular and
sclerenchyma tissue and negatively to the proportion of air spaces (P < 0.05),
similar to Villar et al. (2013). This could be due to the specific density of the air
spaces (zero) and to the high density of vascular tissue (1.40 g cm−3; indirect
estimates of Poorter et al. 2009). Therefore, an increase in the proportion of air
spaces will decrease the leaf density, the opposite being true in relation to the
vascular and sclerenchymatic tissue.

The effect of leaf anatomy on variation in LMA is due to the joint effect of LT
and LD. As LMA increases, the proportion of vascular and sclerenchyma tissue

Fig. 6.7 Representative cross sections of the leaves of several species a the evergreen Quercus
ilex ssp. ilex, b the evergreen Quercus coccifera and c the deciduous Quercus faginea. The bars
represent 50 µm. Photographs from de la Riva et al. (2016)

Fig. 6.8 Relationships between a leaf thickness and the thickness of the different tissues and
b leaf mass per area (LMA) and the proportion of the different tissues for oak species. The R2 and
the significance of the regression are shown (*P > 0.05; **P < 0.01; ***P < 0.001)
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increases and the proportion of air spaces decreases (Fig. 6.8b)—which could be
due to the effects of LD as it was explained before.

An increase in vascular and sclerenchyma tissue improves the leaf support and
structure, and may confer on the leaf a better structural defense (Poorter et al. 2009).
A decrease in the proportion of air spaces can result in lower conductance of the
mesophyll and therefore a decrease in photosynthetic activity (Niinemets et al.
2009; Flexas et al. 2012). Thus, these results confirm that variation in LMA can be
explained by differences in leaf tissues and that these differences have consequences
for the structure and functioning of the leaf.

6.6 Differences in Construction and Maintenance Costs

6.6.1 Construction Costs

The active organs (leaves and roots) of evergreen species differ from the deciduous
ones in the putative structural and chemical characteristics which confer resistance
to physical stress (i.e. to loose of shape as a result of either summer water loss or
low winter temperatures) or biological stress (enzymatic endowments) derived from
their greater exposure to herbivores and pathogens. These supplementary endow-
ments required for the growth of the evergreen organs, and the high specific cost of
the synthesis of some of the fractions involved (lignin, wax, proteins; Penning de
Vries et al. 1974), would inevitably result in high organ construction costs.

However, in the case of leaves, the pattern of the cost of construction of the
different species and leaf habits is quite homogeneous, with mean values around
1.50 g glucose g−1 (Fig. 6.9b). Possible explanations for this are the following.
First, the differences between deciduous and evergreen leaves in the concentration
of structural components are not very great (Mediavilla et al. 2008). This suggests
that the high toughness of evergreen leaves (around two times that of deciduous
ones) is the result not just of their chemical composition (i.e. lignin or other
structural fractions) but also of the spatial distribution of cell wall constituents
(Gallardo and Merino 1993; Lucas et al. 2000) and their greater thickness (Fig. 6.3;
Table 6.4). Second, the concentrations of the different chemical fractions in the
organ are not independent but are correlated in relation to their physiological and/or
structural roles. Thus, there are positive correlations between expensive and inex-
pensive fractions (such as phenols and ash) and negative correlations between either
inexpensive fractions (such as ash and cellulose) or expensive ones (such as waxes
and proteins); all together, these tend to homogenize the construction costs of the
different leaf types, keeping them close to the mean values (Chapin 1989; Poorter
and Jong 1999; Villar and Merino 2001; Martinez et al. 2002a).

Besides, there exists a negative correlation between the concentration of struc-
tural lipids, such as cutin or wax (the most expensive fractions to synthesize) and
the concentration of cellulose (the most inexpensive fraction to synthesize), which
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Fig. 6.9 Differences in a LMA, b leaf construction cost per unit of mass (CCmass) and c leaf
construction cost per unit of area (CCarea) for Quercus species or other species differing in leaf
habit (deciduous, evergreens and semideciduous). Identification of functional types as in Fig. 6.3
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contributes to the existence of differences in the construction cost, in leaves
(Gallardo and Merino 1993; Villar and Merino 2001) or roots (Martínez et al.
2002a). A rather high lipid concentration explains the slightly higher construction
cost of semideciduous leaves (1.55 g glucose g−1) (Fig. 6.9b) (Villar and Merino
2001).

In accordance with all the above, the differences in construction costs on an area
basis are just a reflection of the differences in LMA (Fig. 6.9a) displayed by the leaf
types, since CCarea = CCmass � LMA. Thus, because of their higher LMA, the
leaves of evergreen oaks have higher construction costs than those of deciduous
oaks (242 vs. 162 g glucose m−2; Fig. 6.9c); the species other than oaks follow the
same pattern, while leaves of semideciduous species show the highest CCarea (344 g
glucose m−2), mainly because they have the highest LMA.

Besides, fine roots of evergreen oaks, with both a higher wax concentration
(about two-times higher) and a lower cellulose concentration than those of decid-
uous oaks (Table 6.5), show the highest CCmass (1.78 vs. 1.57 g glucose g−1). The
fine roots of semideciduous species, with a wax concentration similar to that of the
fine roots of evergreen ones but with a higher cellulose concentration exhibit an
intermediate value (1.69 g glucose g−1) (Martínez et al. 2002a).

6.6.2 Maintenance Costs

The energy expenses associated with organ maintenance are mainly related to the
importance of the enzymatic endowments involved in processes such as gradient
maintenance, transport, replacement and reparation of endangered cellular struc-
tures, and defense against free radicals, herbivory and pathogens. This explains the
significant relationships between N concentration (a surrogate of the concentration

Table 6.5 Comparison of the mean chemical composition (mg g−1 dry mass) and construction
cost (g glucose g−1) of fine roots, grouped by life form and leaf habit

Life
forms

Leaf habit Pro Lip Phe Cel Lig Wax TNC Ash Construction
cost

Shrubs Semi-deciduous 53 27 45 508a 129 139 35 62 1.69

Trees Evergreen 46 23 87 361b 167 196aa 23 97 1.78a

Deciduous 69 29 80 458a 145 86bb 30 104 1.57b

Data from Martínez et al. (2002a)
Pro Proteins; Lip Lipids; Phe Phenols; Cel Cellulose; Lig Lignin; Wax Wax; TNC Total
non-structural carbohydrates
Single letters: P < 0.05; double letters: P < 0.01
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of enzymatic endowments) and maintenance respiration in leaves and roots
(Fig. 6.10).

There was no difference in the fine root maintenance cost between evergreen and
deciduous oak species (Table 6.6) (Martínez et al. 2002b). By contrast, the main-
tenance cost of deciduous oak leaves was almost two-times higher than that of
evergreen ones (14.0 vs. 8.7 mg glucose g−1 day−1; Fig. 6.11a), probably because
of their higher enzymatic endowments (higher N concentration, Fig. 6.10a), with
the rest of the species types following the same pattern. However, when expressed
on an area basis, the higher LMA of the evergreen leaves compensates for the
differences in maintenance cost on a mass basis; all this results in a similar main-
tenance cost (around 1 g glucose m−2 day−1; Fig. 6.11b) for the two leaf habits. The
leaves of semideciduous species, with a CMmass similar to that of deciduous species
and an LMA similar to that of evergreen ones, show the highest maintenance cost
(1.79 g glucose m−2 day−1). This agrees with the ecology of this species type,
which is characterized by habitats that are water stressed in summer and by very
shallow root systems (Martínez et al. 1998), together resulting in severe water stress

Fig. 6.10 Relationships between maintenance cost (mg glucose g−1 day−1) and nitrogen
concentration (%) in leaves (a) (Villar and Merino, unpublished) and fine roots (b) (Martínez
et al. 2002b). (*P > 0.05; **P < 0.01; ***P < 0.001)

Table 6.6 Maintenance cost (mg glucose g−1 dry mass d−1) for roots of evergreen and deciduous
species

Species Leaf habit Maintenance cost (mg glu g−1 d−1)

Q. pyrenaica Deciduous 11.7

Q. canariensis Deciduous 7.2

Q. faginea Deciduous 10.1

Q. suber Evergreen 10.6

Q. ilex spp. ballota Evergreen 8.8

Q. coccifera Evergreen 8.1

Q. fruticosa Deciduous 6.2

From Martínez et al. (2002b)

6 Coexistence of Deciduous and Evergreen Oak … 215



during the summer months (Merino et al. 1976; and unpublished) and probably
quite high defense endowments; all this explains why they have the highest
maintenance cost.

It is important to point out that the maintenance cost values considered in the
present discussion were gathered from individuals growing in laboratory condi-
tions, free of temperature, water, or nutrient stress. However, the maintenance
respiration of Quercus species increases in response to environmental stress
(Laureano et al. 2016), as a consequence of greater resource allocation to defensive
endowments (i.e. antioxidant enzymatic systems) (Tausz et al. 2007) and homeo-
static control (i.e. higher alternative oxidase activity) (Ribas-Carbo et al. 2005).

The respiratory alternative oxidase (AOX) plays a relevant role in defense
against reactive oxygen species (Millenaar and Lambers 2003; Challabathula et al.
2016) generated in regular physiological processes or induced by extreme tem-
peratures, high light, and water and nutrient limitations (see, for example, Watanabe
et al. 2016). However, its low efficiency results in supplementary energy expenses
and, thus, in higher rates of maintenance respiration (maintenance respiration
increases as AOX activity does; Florez-Sarasa et al. 2007). In the case of the fine
roots of oaks, AOX activity (the fraction of electrons flowing through the AOX
pathway in stress-free conditions) is significantly higher in deciduous species than
in evergreen species (32% vs. 21% of the total root respiration; Table 6.7)
(Martínez et al. 2003), This implies an extra cost for the roots of these species,
which is already included in their maintenance respiration (Table 6.6). Besides, the
maximum potential value of AOX activity in roots is similar in both leaf habits
(around 50% of total respiration, Table 6.7); but, since evergreen species have
active organs throughout periods of the year characterized by high degrees of stress,
AOX activities close the potential maximum—associated with low winter tem-
peratures or summer water and nutrient limitations—should be expected. A rough
calculation considering the low efficiency of AOX, its maximum potential activity,
and the root maintenance values of evergreen roots (Fig. 6.10b) shows a 5%
maintenance respiration increase; a percentage that, if extended to leaves and

Fig. 6.11 Leaf maintenance cost a per unit of mass (CMmass) and b per unit of area (CMarea).
Identification of functional types as in Fig. 6.3

216 A. Escudero et al.



computed along the unfavorable seasons, would increase significantly the mainte-
nance energy expenses of evergreen species.

In a different line, it is important to point out that light inhibits dark respiration in
photosynthetic tissues (Kok effect) (Kok 1948), since the utilization of ATP and
NADPH generated directly from photosynthesis decreases the energy requirements
of catabolic origin, and thus the respiration rates. In Mediterranean deciduous and
evergreen leaves, inhibition of respiration by light can reach 100 and 75%,
respectively, even at low light intensities (around 400 lmol m−2 s−1) (Villar and
Merino 1995). This is as expected, since the higher photosynthetic rates of de-
ciduous species (Fig. 6.4b) would result in greater availability of ATP and NADPH
and, consequently, in lower demands for respiratory energy. A rough calculation
considering these percentages and the leaf maintenance cost values in Fig. 6.11
shows a 12% decrease in maintenance respiration of fully developed deciduous
leaves and a decrease of between 9% and (if considering the light extinction in the
canopy) 6% in the case of evergreen ones; this indicates higher energy expenses for
evergreen leaf maintenance.

In summary, the organs (leaves and roots) of evergreen oaks (and of other
evergreen species) have higher construction costs than those of deciduous ones and
maintenance costs that are similar; although the latter could be increased for ev-
ergreen species, if considering the AOX activity during the unfavorable seasons of
the year. Evergreens also display a lower degree of inhibition of respiration by light
(lower energy savings). All these factors indicate that the evergreen organs are more
expensive in terms of energy requirements.

6.6.3 Payback Time

To have a better idea of the benefit of one leaf strategy over the opposite, we have
made simple calculations about the carbon balance for the leaf over its leaf-life
span. For that, we have calculated the quotient between the cost of construction
(CC) and the net benefit (calculated as the difference between the rate of photo-
synthesis and respiration). This ratio can give us an idea of the potential of
amortization of the investment in the leaves or what is called pay-back time

Table 6.7 Fraction (as a percentage of total respiration) of electrons flowing through the
cytochrome oxidase (COX) and alternative oxidase (AOX) pathways in stress-free conditions and
potential maximum electron flow through the AOX pathway (AOX Potential Activity), in roots of
evergreen and deciduous Quercus species

Respiratory components

Species AOX potential activity (%) COX activity (%) AOX activity (%)

Deciduous 48.9 68.5 ± 1.8** 32.0 ± 2.2***

Evergreen 47.4 79.3 ± 0.8** 20.7 ± 0.8**

**P < 0.01, ***P < 0.001 (ANOVA)
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(Williams et al. 1989; Eamus and Prichard 1998). The construction cost has been
considered in a simple way as LMA � 0.5 (an average concentration of C in the
leaf of 50%). We recognize that these calculations are very simple, since the rates of
photosynthesis and respiration can vary throughout the life of the leaf, as well as
with the environmental conditions. However, it can give us a broad idea of the
potential amortization of the investment in the leaves.

We found that the leaves with greater longevity have a greater payback time
(Fig. 6.12); that is to say, more time is necessary to amortize the cost of con-
struction of these leaves. This relationship is mainly due to the fact that the leaves
with the longest life-span have a high cost of construction (R2 = 0.46, P < 0.001,
Fig. 6.12b), as hypothesized by Kikuzawa (1995). However, a shorter payback time
was not related to a higher carbon gain, contrary to the hypothesis of Kikuzawa

Fig. 6.12 Relationships
between a leaf life span and
payback time, b construction
costs and c estimated C gain
per unit leaf area
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(1995). This can be explained by the fact that there is not a big change in the
photosynthetic rate (Aarea) between deciduous and evergreen oaks (Fig. 6.4); the
change is related mostly to the LMA, which determines a greater change in
the construction cost (Fig. 6.9c) for evergreens. However, this higher LMA for
evergreens will be an important advantage to resist environmental hazards (e.g.
herbivory, pathogens, drought, and cold) (Poorter et al. 2009; González-Zurdo et al.
2016a, b).

6.7 Conclusions

Mediterranean environments present a variety of leaf forms that coexist under the
special conditions typical of this climate. The most striking difference among the
woody species inhabiting these areas is the dichotomy represented by the deciduous
and evergreen habits. As seen by other authors, this dichotomy affects a large
number of leaf traits of the different habits, which exhibit pronounced differences in
leaf morphology, anatomy, and physiology. Although the information available is
still fragmentary, a clear picture emerges that the large differences between leaf
habits may finally lead to similar C fixation capabilities for the species that coexist
in Mediterranean environments. More research is needed to understand the
responses of the different foliar strategies to temporal and geographic changes in
these environmental conditions if we want to make predictions about the responses
of Mediterranean plant communities to eventual climatic changes in the future.
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Chapter 7
The Role of Hybridization on the Adaptive
Potential of Mediterranean Sclerophyllous
Oaks: The Case of the Quercus
ilex x Q. suber Complex

Unai López de Heredia, Francisco María Vázquez and Álvaro Soto

Abstract Gene flow among closely related species is a not so unusual event,
especially in plants. Hybridization and introgression have probably played a rele-
vant role in the evolutionary history of the genus Quercus, for instance in the
post-glacial northwards migration of European white oaks. In the same way, hy-
bridization between the Mediterranean sclerophyllous oaks Q. ilex and Q. suber
could have been determinant for the survival of the latter species during glaciations.
In this chapter, evidences of the ancient introgression between these two species are
revised, as well as estimations of current hybridization rates, which are very likely
underrated. Pre-zygotic and post-zygotic limitations to introgression between
Q. suber and Q. ilex are described. Finally, the effects of hybridization and intro-
gression on cork quality, and the suitability of Q. ilex—Q. suber as a model system
for the study of introgression and the maintenance/restoration of species boundaries
within the genus are briefly discussed.

7.1 Hybridization and Introgression in Oaks

Hybridization, i.e. the combination between different species by means of sexual
reproduction, is a common process in nature that can play a key role in the evo-
lution of plants, where is more spread than in animals: 25% of plant taxa versus
10% of animal taxa are thought to be subjected to hybridization processes
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(Mallet 2005). In many plant systems, hybridization has even led to the apparition
of new species, via polyploidy (Stebbins 1974), or, in other cases, due to the
inability of hybrids to backcross with the parent species because unequal pairing of
the chromosomes (Arnold 1997), has caused reproductive isolation of hybrids.

In other species, however, interspecific barriers are more diffuse, and back-
crossing of hybrids is possible. Introgression is the transfer of genes from one
species to another, as a consequence of interspecific hybridization followed by
backcrossing with one of the parental species. Gene transfer has relevant implica-
tions in the evolution, because the diversity produced by introgression far exceeds
the one produced by mutations (Anderson 1949). The effects of hybridization and
introgression may be relevant for low-size populations or for species at risk of
extinction, or may increase the ability to colonize new habitats (Potts and Reid
1988; Petit et al. 2004). Moreover, hybridization and introgression are evolutionary
forces that have facilitated the stabilization or emergence of species, and, occa-
sionally, have produced populations with more competitive genomes and with a
greater ecological range (Sexton et al. 2009), thus providing adaptive solutions to
environmental changes (Rieseberg et al. 2003).

For hybridization to occur in nature, it must exist reproductive compatibility
between the pairs of species that produce hybrids, which is only possible if species
are phylogenetically close. In addition, hybridization normally occurs in areas
where species with compatible genomes coexist, and environmental and pheno-
logical factors enable effective gene flow (Sork and Smouse 2006).

Quercus L. is a relevant genus in the debate about the extent of hybridization and
introgression on the evolution of plants (Anderson 1949; Whittemore and Schaal
1991; Rieseberg and Wendell 1993), on the assessment of the ecological factors
limiting hybridization in nature (Stebbins 1950; Muller 1952; Barton and Hewitt
1985; Rushton 1993), and served as a model to re-define the species concept based
upon ecological criteria (Burger 1975; Van Valen 1976). From an adaptive point of
view, introgression in oaks could have played an important role in northwards
migration of European white oak species from southern refugia after the last
Würmian glacial period (Petit et al. 1997, 2004). In the same way, in adverse
environmental conditions, hybrids of some Mediterranean sclerophyllous oaks
could have shown better fitness that at least one of the parental species, while
subsequent backcrossing with this species would have led to the recovery of the
“pure” character of the species (López de Heredia et al. 2007a). This process, also
known as adaptive introgression, consists in allele transfer between different species
through subsequent backcrosses; therefore, one species acquires specific traits from
another, enabling adaptation to adverse environmental conditions and increasing the
ecological specific range of the species (Arnold and Martin 2006).

Hybridization does not always generate obvious hybrids, and complicates the
traditional taxonomy treatment of genus Quercus. In many sympatric areas where
several oak species coexist, the concept of multispecies has been adopted (Dodd and
Rafii 2004; Peñaloza-Ramírez et al. 2010). Hence, some authors considered a hybrid
origin for some species such as Q. subpyrenaica (Q. faginea � Q. pubescens)
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(Himrane et al. 2004), Q. afares (Q. suber � Q. canariensis) (Mir et al. 2006), or
Q. marianica C.Vicioso (Q. canariensis � Q. faginea) (Vila-Viçosa et al. 2014).

The presence of fertile oak hybrids resulting from interspecific crossing between
the more than 500 species recognized in the genus is well-known, and has been
extensively documented (Govaerts and Frodin 1998). The inter-sectional hybrids in
Quercus L., are frequently sterile, such as Q. robur (Sect. Robur) cross to Q. suber
(Sect. Cerris) or Q. faginea (Sect. Galliferae) cross to Q. suber (Vázquez et al.
2015). Among the more than 300 oak hybrids (nothotaxa) that have been
acknowledged, 70% of them are fertile, capable to generate viable offspring, and
showing ability to backcross. Therefore, new generations of fertile individuals with
viable offspring (F2, F3…) are produced in mixed populations, to the extent of not
being able to distinguish introgressed from pure progenies, depending on the degree
of kinship (Staudt et al. 2004).

Hybridization in oaks is facilitated or supported by various environmental and
functional factors, but, at the same time, other factors may limit its effects on the
populations, and the integrity of the species is largely maintained. In the one hand,
oaks are anemophilous and allogamous, and frequently show phenological overlap
between species, facilitating inter-species fertilization. On the other hand, there are
also barriers in oaks that prevent hybridization, such as physical limitations, cli-
matic and environmental conditions during the breeding process (Cecich and
Haenche 1995; Sever et al. 2012), or gametic incompatibility between individuals
of the same or of other species (Yacine and Bouras 1997).

7.2 Hybridization and Introgression in the Q. ilex x suber
Complex

Cork oak (Q. suber) and holm oak (Q. ilex) are two ecologically, economically,
environmentally and socially relevant species that are key elements in open oak
woodlands from the westernMediterranean basin (“dehesas” in Spain; “montados” in
Portugal). Here, cork oak is exploited to extract cork, while the sweet acorns from
holm oak constitute an essential portion of the pig livestock feed. Both species are
included into distinct infrageneric groups (Ilex and Cerris), and can be easily dis-
tinguished according to morphological traits of bark, cupules of the acorns, or leaves
(Amaral Franco 1990). Cork oak is named after its very thick, corky bark (see below,
Sect. 7.3), and it presents also medium to large leaves of up to 8.5 cm, with annual
and biennial fruit production. The high diversity of phenotypic characters of holm oak
in the Mediterranean has led some authors to identify two different species/
subspecies. Continental holm oaks with frequently spinescent short leaves, and sweet
acorns from Western Mediterranean, have been integrated into Quercus rotundifolia
Lam. (= Quercus ilex L., subsp. ballota (Desf.) Samp.) (Amaral Franco 1990;
Vázquez et al. 1993), whileQuercus ilexL. (= Quercus ilex subsp. Ilex L)., represents
the holm oak forests of temperate climates with oceanic influence from the
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Mediterranean Basin, and shows longer leaves (more than seven secondary pairs of
nerves), and bitter acorns (Rafii et al. 1991; Peguero-Pina et al. 2014).

In addition to phenotypic differences, both species have contrasting ecological
requirements. Cork oak is more hygrophilous and thermophilous than holm oak (at
least than Q. rotundifolia), with the former occurring in areas with 400 mm of
annual precipitation, and mean temperatures above 0 °C, and the latter inhabiting
areas with hardly 350 mm of annual precipitation, and marked temperature oscil-
lations. Probably the most determinant ecological factor to explain the current
distribution of both species is the acidophilus character of cork oak, which hampers
the occurrence of the species on calcareous soils. On the contrary, holm oak is
tolerant to many growing conditions. Thus, cork and holm oak ecological
requirements overlap to a great extent, and both species form mixed forests in the
siliceous or decarbonated areas from the Western Mediterranean. The presence of
individuals with intermediate morphological characteristics in these regions has
long been known (Colmeiro and Boutelou 1854; Laguna 1881; Borzi 1881;
Natividade 1936; Camus 1936–1954). These hybrids, that received the names of
Quercus � morisii Borzí, or Quercus � avellaniformis Colmeiro & E. Boutelou,
are described as having strongly cracked bark, glabrescent leaves of light green
tone, fruits with conical cupules with free bracts, and viable flavour acorns. More
detailed micro-morphological and anatomical characters are related to the presence/
absence and distribution of foliar trichomes (Vázquez 2013), the characteristics of
floral organs, with hairs typical of cork oaks in the anthers’ teaks. However, the
only way to confirm the hybrid character of the species is by analyzing the genetic
composition of the candidate hybrids with molecular methodologies.

7.3 Hybridization at Regional and Local Scales. Molecular
Approaches

Detection, quantification and evaluation of hybrids in the Q. ilex � suber system
using molecular methodologies was approached in the first decade of the twentieth
century by several independent research groups. Phylogeographic patterns based
upon chloroplast DNA (cpDNA), which is maternally inherited in oaks, and has a
low mutation rate, suggested the existence of past hybridization events. These early
studies showed higher cpDNA diversity in Q. ilex than in Q. suber. According to
these studies, Q. ilex had three cpDNA lineages shared with Q. coccifera (López de
Heredia et al. 2007b) that have been extended to five in a recent study that sampled
the easternmost population of the species, along with other oak members of the
Group Ilex (Q. coccifera (Mediterranean Basin), Q. alnifolia (Mediterranean
Basin), Q. aucherii (Near East), Q. baloot (Asia), and Q. floribunda (Asia)) more
intensively (Vitelli et al. 2017). For Q. suber, however, a single cpDNA lineage was
found, showing little variation between eastern and western populations (Jiménez
et al. 2004; Lumaret et al. 2005; López de Heredia et al. 2007b; Magri et al. 2007;
Pulido Neves da Costa 2011). The consistence of cpDNA lineages for both species
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is shown when analyzing the correspondence of some of the haplotypes found by
López de Heredia et al. (2007b) with mitochondrial DNA (mtDNA), which is also
maternally inherited, and has even lower mutation rate than cpDNA (Fig. 7.1).
The four cpDNA haplotypes found for suber lineage showed a single mitotype,
while the more diverse i-c I lineage (lineage Euro-Med V from Vitelli et al. 2017),
which is shared by Q. ilex and Q. coccifera of the western range of the species,
presented four mitotypes. The remaining ilex cpDNA lineages, also shared with
Q. coccifera, corresponded with a single mitotype each.

While many sympatric populations from the western (i.e. Portugal, western
Spain, Morocco, southwestern France) and eastern distribution ranges of Q. suber
(i.e. southeastern France, the Italian peninsula, Sardinia, Corsica, Sicily, Algeria,
Tunisia) showed specific plastidial DNA lineages consistent with the taxonomic
identification, the aforementioned studies detected extensive cpDNA lineage
sharing in sympatric populations from eastern Iberian Peninsula (Jiménez et al.
2004), and the Balearic Islands (López de Heredia et al. 2005) (Fig. 7.2).
Specifically, these Q. suber populations, which are mainly located in sub-optimal
sites for this acidophilus species, showed only ilex cpDNA lineages. An ancient
hybridization of Q. suber with Q. ilex followed by backcrossing and introgression,

Fig. 7.1 Correspondence of cpDNA and mtDNA haplotypes. Chloroplast DNA haplotypes are
depicted in López de Heredia et al. (2007b). Suber lineage cpDNA haplotypes correspond with a
single mitotype (M6), while Ilex cpDNA lineages, also present in Q. coccifera, are more diverse,
and show correspondence with six mitotypes (one for each of the eastern lineages i-c II and III, and
four for the western lineage i-c I)
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may explain the complete displacement of the suber lineage exactly in the central
range of Q. suber distribution. As we have said before, Q. ilex is a much more
tolerant species than Q. suber in terms of cold, drought resistance and soil com-
position; therefore, extensive hybridization in an adverse environmental context, for
instance in the glacial pulses of the Holocene, may have had an adaptive role for Q.
suber. Hybridization is more likely to occur with Q. suber acting as pollen donor
(see Sect. 7.1), so that hybrids would carry ilex chloroplast. Successive pollinations
of these presumably better adapted hybrids by Q. suber would have yielded
introgressed cork oaks with ilex chloroplast. However, simulation studies suggested
that the complete disappearance of suber haplotypes is possible even in lack of
selection due to stochastic demographic processes when there is a lower relative
effective population size of Q. suber versus Q. ilex, and/or strong asymmetries to
gene flow (Soto et al. 2008). In the rest of the distribution range of Q. suber,
evidences of ancient introgression with Q. ilex are not so clear as in the case of the
populations from eastern Spain. However, together with Q. suber individuals
bearing a suber cpDNA lineage, ilex cpDNA lineages were also found in some Q.
suber populations from western Iberia, but in a significantly lower proportion.
Among other possible causes, the fact that lineage suber has not been completely
displaced by lineage ilex in these western populations could be due to a more recent
hybridization.

But, have the traces of hybridization found for cpDNA a parallel in nuclear
DNA? The answer to this question is not trivial. The analysis of nuclear ribosomal
ITS sequences and dominant markers such as AFLPs (López de Heredia et al.
2007b; Coelho et al. 2006) showed that both species were clustered in robust

Fig. 7.2 Chloroplast DNA lineage proportion in 23 sympatric populations of Q. suber and Q. ilex
(modified from López de Heredia et al. (2007b)). Notice that some populations in eastern Spain
and the Balearic Islands lack lineage suber (in red), while other populations show a variable
presence of lineage ilex (in blue). In light green, the distribution range of Q. suber. These results
are consistent with those obtained for nuclear EST2T13, and TrnS/PsbC cpDNA haplotypes from
Pulido Neves da Costa (2011)
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separate groups, even those samples that showed evidence of ancient hybridization
and introgression at the cpDNA level. However, if contemporary hybridization is
going on, as suggested by hybrids detected in the field and in those mixed popu-
lations where suber and ilex lineages co-exist, a more detailed analysis of nuclear
hybridization at a local scale using co-dominant molecular markers would provide
new insights in the extent of introgression.

Early studies using allozymes on hybrids (Elena-Rosselló et al. 1992; Oliveira
et al. 2003) had found very limited levels of introgression. The use of higher
resolution markers, such as nuclear microsatellites, i.e. simple repeated motifs
consisting of 1–6 base pairs that can be found in both coding and non-coding
regions, were used together with Bayesian clustering methodologies to quantify the
extent of hybridization in mixed stands of Q. suber and Q. ilex. For instance, Soto
et al. (2003) used a set of six nuclear microsatellites (nSSR) developed in other oak
species for the identification of F1 hybrids obtained in controlled crosses. Later on,
the same authors added new nSSRs to the set of markers used for population
genetics and gene flow analysis in holm and cork oak (Soto et al. 2007).
Unfortunately, those molecular markers revealed a high proportion of shared alleles
between both species, and a much lower level of diversity in cork oak than in holm
oak, yielding just a moderate exclusion power. Nevertheless, these markers, com-
bined with Bayesian approaches, have been applied for the identification of hybrid
and introgressed individuals in the field (Burgarella et al. 2009). The analysis of
seven mixed and five cork oak pure populations, using as reference the allele
frequencies for the whole distribution range of cork oak, provided an estimation of
a very low introgression rate, below 2%. This result was consistent with the results
obtained with allozymes (Elena-Rosselló et al. 1992).

More interestingly, Burgarella et al. (2009) pointed out to the possibility of
bidirectional introgression, identifying presumably introgressed individuals also
among the trees phenotypically classified as holm oaks. These results suggest that
phenological, and even pre- and post-zygotic barriers (see below), do not avoid
completely backcrosses and introgression towards Q. ilex.

Simulation analysis using the allele frequencies for this set of markers, and
further application of Bayesian approaches for the detection of introgression in
virtual individuals with known pedigree, have revealed that this set of markers is
insufficient for a reliable estimation of advanced introgression (individuals resulting
from one or several backcrosses with the parental species) (Pérez Rodríguez 2008;
López de Heredia and Soto 2017), and that current introgression very likely could
have been underestimated in previous studies.

A microsatellite analysis of the progeny from four hybrid adult trees identified in
a mixed stand in Central Spain revealed that three of them were preferentially
pollinated by cork oak, while for the remaining hybrid the probable pollen donors
were holm oaks (López de Heredia et al. 2017a). This result is consistent with the
species that occurs more frequently in the vicinity of the hybrid trees. Thus,
backcrossing direction could be driven by pollen availability and abundance,
although backcrossing “preferences” due to genomic and epigenetic incompatibil-
ities cannot be discarded.
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7.4 Reproductive Success and Hybrid Phenotypes

In the previous section, we have seen how hybridization and introgression in mixed
forests of cork and holm oak could have been underestimated up to date. We will
focus now on the impact of hybridization on the resulting phenotypes of first
generation hybrids and backcrosses, at individual levels, and on the integrity of the
species. Hybrid phenotypes have been traditionally identified by taxonomists as the
phenotypes of individuals that show intermediate characters, based upon the pre-
mise of the polygenic control of morphological traits with simple additive effects
(Rieseberg et al. 2007). However, establishing hybrid ancestry may not be
straightforward considering only intermediate characters by several reasons
(López-Camaal and Tovar-Sánchez 2014): (1) the correlation of morphological
traits that reduces the number of characters to identify different species; (2) the
mode of inheritance and segregation of genes associated to morphological traits;
(3) the effect of the environment on morphological expression, i.e. plasticity and
epigenetics; and (4) the retention of plesiomorphic character states of ancestral
populations in closely related species, that may originate intermediate phenotypes
as well (Rieseberg 1995; Judd et al. 2002; Arnold and Martin 2006).

The limitations derived from the correlation of morphological traits may be
overcome by selecting the best characters discriminating between species using, for
instance, multivariate analysis on a sufficient number of individuals. However, a
proper analysis of genetic and epigenetic determinants of morphological expression
can only be accomplished in controlled conditions, by analyzing full- or half-sib
progenies. However, it is not easy to obtain such progenies, since the path from
flowering of the parents to the adult reproductive stage of Q. ilex x suber hybrids
and backcrosses presents pre-zygotic and post-zygotic barriers that will compro-
mise the success of the hybridization event.

7.4.1 Pre-zygotic Barriers. Pollination and Fertilization
in Hybrids

Several endogenous and exogenous factors may prevent zygote formation, and
therefore compromise subsequent acorn production. Among these factors, the most
evident ones occur to prevent pollination, and are those related with the pheno-
logical overlap of flower production between cork and holm oaks, being both of
them monoecious protandrous species. Environmental conditions are fundamental
in the dispersion, viability and germination of the pollen grains. The most effective
conditions for the viability and germination of pollen grains are 80% of relative
humidity, and temperatures of 25–29 °C for holm and cork oak, respectively
(Vázquez et al. 1996).

Flowering phenology of the species may vary between sites and years, and
consequently, the overlapping of male and female flowers of both species may also
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vary. Quercus ilex flowers from mid-February to late-March in southwestern
Iberian Peninsula (Boavida et al. 2001; Gómez-Casero et al. 2007; Varela et al.
2008), extending this period until the end of May in some areas from north-eastern
Spain (Castro-Díez and Montserrat-Martí 1998; Ogaya and Peñuelas 2004;
Montserrat-Martí et al. 2009), and including the possibility of a second flowering
period in autumn (Vázquez et al. 1992; Ducousso et al. 1993). Quercus suber
flowers from early-April to mid-May in Portugal (Boavida et al. 2001; Varela et al.
2008), and may flower earlier in central Spain (Díaz-Fernández et al. 2004;
Gómez-Casero et al. 2007). In some areas, such as northwestern Iberia, cork oak’s
leaf burst and flowering may be delayed until June (Jato et al. 2002). Occasionally,
autumn flushes may produce a secondary flowering event in cork oak, but there is
no evidence that this leads to acorn production (Eriksson et al. 2017). To complicate
the picture, biennial acorn maturation is also possible in cork oak, even in the same
tree that produces annual maturation acorns (Díaz-Fernández et al. 2004).

It must be stressed out that the flowering behavior of the two species in mixed
populations is usually marked by great differences in time. Therefore, and for western
Iberia, early cork oak male flowers can pollinate late female holm oak flowers, but the
probability of the opposite process is reduced (Varela and Valdiviesso 1996;
Elena-Rosselló and de la Cruz 1998). However, comparative studies for flower
phenology on mixed stands in Portugal have shown that the opportunity for
cross-pollination could have occurred in both directions (Varela et al. 2008). In the
case of mixed populations in north-eastern Spain, flowering seems to overlap for
longer periods, increasing the chances for hybridization to occur. To our knowledge,
the only study that monitored the flowering phenology of a hybrid individual com-
pared to cork and holm oaks from the same population was performed in central
Spain in spring 2006 (Perea García-Calvo 2006). The results of this study showed
that male catkin production took place before in holm oak (before May 15th) than in
cork oak and the hybrids (betweenMay 15th and June 1st), pointing to a more similar
phenological behavior of the hybrid and cork oaks. However, although these results
support the preferential hybridization of cork oak acting as pollen donor and suggest
the possibility of backcrossing to produce advanced generation introgressed indi-
viduals, they should be interpreted with caution because they were obtained from
only one hybrid individual in a single year.

However, the discordance between pollen release and stigma receptivity periods
is not the only pre-zygotic barrier to hybridization, and relevant post-pollination
barriers to interspecific crosses have been suggested. To complete the fertilization
process, the pollen tube progresses through the style after the pollen grain arrives
the stigma of the male flower. Boavida et al. (1999), while studying the progamic
phase of cork oak, reported a sequential arrest of pollen tubes along the style, thus
providing preliminary evidence for a pollen tube competition mechanism. For
Q. ilex-Q. suber intraspecific crosses, although some prezygotic interaction may
occur at the style, the most important interaction takes place at the ovary, where
additional phenomena related to the inability of pollen tubes to penetrate the
transmitting tissue after microspore germination were shown by Boavida et al.
(2001). These authors reported significantly higher success rate in the interspecific
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crosses for Q. suber acting as pollen donor rather than as female parent due to
differential growth of the pollen tubes of both species. Notwithstanding, as we have
seen before, there is gaining evidence that suggests that the success of bi-directional
hybridization could be more spread than previously thought.

7.4.2 Post-zygotic Barriers: Acorn Germination and
Seedling Development

When fertilized female flowers do not abort, acorns are formed and mature in the
tree the very same autumn. First generation hybrid acorns are constituted normally
and are able to germinate; however, adult hybrids have been identified at extremely
low frequency in natural populations (Oliveira et al. 2003; Burgarella et al. 2009;
López de Heredia et al. 2017a). Analysis of the progeny of hybrid individuals
localized in natural populations has shown that viable acorns are produced by
hybrids. However, germination percentages of hybrid progenies are significantly
lower (<60%), and show larger variation between families for hybrid progenies than
for pure species, where germination rate is in general >80% (Fig. 7.3).

The processes underlying lack of germination are difficult to decipher. The main
abiotic cause of acorn mortality is in situ desiccation in winter, as suggested for Q.
ilex (Joët et al. 2016). For cork oak, it was shown that genes related to response to
drought and water transport were mostly represented during early and last stages of
acorn development, when tolerance to water desiccation is possibly critical for
acorn viability (Miguel et al. 2015). Although differential behavior of Q. ilex and Q.
suber has been regarded in terms of germination and epicotyl emergence rates at
diverse target moisture content of the embryos (Salomón et al. 2012), there is no
reason to assert that the recalcitrant behavior of acorns could be more or less
pronounced in hybrid backcrosses than in pure progenies. According to our
experimental observations, some acorns that germinate and produce taproots are

Fig. 7.3 Germination rates
of half-sib progenies of
hybrids, Q. ilex and Q. suber
from four populations in
Spain
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however unable to initiate stem differentiation, and die few months after germi-
nation. A significant effect of stressful environmental conditions that result in
fluctuating asymmetry of acorns was argued to explain the strong developmental
selection that resulted in fertilization failure and abortion in holm oak (Díaz et al.
2003). In our controlled experiments with hybrid progenies, however, the stress is
likely produced by interspecific genetic incompatibilities that probably lead to the
modification of the epigenetic systems controlling germination and initial devel-
opmental stages, as has been suggested for hybrids of Arabidopsis (Zhu et al.
2017).

At initial stages of seedling development, a relationship between acorn size and
seedling growth and survival has been reported for both cork (Ramírez-Valiente
et al. 2009) and holm oak (Bonito et al. 2011). For hybrid progenies, however, low
correlation was found between acorn size (estimated as the volume of an ellipsoid)
and seedling dimensions (height and slenderness ratio) one and two years after
sowing (Fig. 7.4).

Hybrid seedlings present very diverse phenotypes. In the aerial part, a percentage
of individuals are constituted normally from the shoot apical meristems and the leaf
primordia. Seedlings may resemble the phenotypes of pure species, or present
transgressive traits possibly due to epistasis, heterosis, and/or developmental
instability. Seedlings of abnormal phenotypes in hybrid progenies of Q. ilex x suber
are frequent. Among these, we can cite seedlings with multiple stems or strong
ramification patterns, seedlings that lack leaves or present small micro-leaves, dwarf
seedlings without apparent apical growth, and seedlings showing extremely
asymmetric leaves (Fig. 7.5a–f). In other cases, heterosis is manifested in leaf size

Fig. 7.4 Low correlation between acorn volume and slenderness ratio and height of one and two
years-old backcrossed seedlings, respectively
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or growth, with hybrids showing superior performance than pure species
(Fig. 7.5g). These results are consistent with findings for other species complexes.
The phenotypic analysis of F1 hybrids in 46 plant taxa showed 44.6% of inter-
mediate characters, while 45.2% of the characters in hybrids were similar to either
parental species, and 10.2% presented transgressive characters (Rieseberg and
Ellstrand 1993).

The mechanisms underlying abnormal phenotype formation in hybrids are
related to genetic incompatibilities that modify the epigenetic system that controls
the differentiation of the apical shoot meristem and the leaf primordia (Lodha et al.
2013; Iwasaki et al. 2013). Axis development and polarity specification of flat
bifacial leaves require a network of genes for transcription factor-like proteins and
small RNAs. For instance, the development of asymmetric leaves in Arabidopsis is
produced by repression of key genes in the regulation of the proximal–distal leaf
length (class 1 KNOX homeobox genes -BP, KNAT2-), and in the establishment of
adaxial–abaxial polarity (ETT/ARF3 and ARF4) (Machida et al. 2015; Matsumura
et al. 2016). Possibly, similar disruptions of such regulatory networks due to
genomic incompatibilities are behind the production of abnormal phenotypes in the
Q. ilex x suber complex.

The number of seedlings showing malformations varies with ontogenic changes.
Although is not a generalized process, seedlings lacking leaves during the first year
of life are able to produce leaves at more advanced life-stages, while extremely

Fig. 7.5 Illustrative examples of abnormal phenotypes in half-sib progenies of Q. ilex x suber.
a two-guides seedling with abnormal stem development from the shoot apical meristem. b seedling
lacking leave development from leaf primordia. c, d, e seedling with several degrees of abnormal
leaf development. f seedling showing strong ramification patterns, and small asymmetric leaves.
g seedling outperforming for growth and leaf size, possibly due to heterosis
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asymmetric leaves seem to have shorter life-spans than normal leaves, thus falling
from the seedlings earlier (López de Heredia et al. 2017b) (Fig. 7.6). The effect on
the hybrid population is that malformed phenotypes are filtered from the popula-
tion. Although not verified in field experiments, early expressed abnormality
probably results in lower fitness of the hybrid seedlings, and in higher mortality
rates than pure species.

7.4.3 Effects of Hybridization on Cork

Bark is probably the most discriminant phenotypic character between cork and
holm oaks in the adult stage. The most common model of bark development in
Quercus species is based upon the rhytidome concept. A rhytidome is formed when
successive phellogens differentiate to produce intricate suberized cell layers
(phellem) that enclose heterogeneous cortical tissues (parenchyma, fibers, etc.) and
collapsed phloem cells, thus producing irregular outer bark (Fig. 7.7). This type of
outer bark has been described for American oak species (Howard 1977), Q. robur
(Trockenbrodt 1991), Q. petraea (Gricar et al. 2015), Q. faginea (Quilhó et al.
2013), and Q. cerris (Sen et al. 2011), and is also present in Q. ilex. For Q. suber,
however, this bark model is not valid, and the outer bark is due to the differentiation
of a single phellogen that rather than producing a rhytidome, generates new layers
of suberized cells each year (Graça and Pereira 2004). This bark differentiation

Fig. 7.6 Number of normal
and malformed individuals in
half-sib progenies of four
hybrids (IS, LG1, LG2, ZLR),
four holm oaks (I1, I2, I3, I4),
and four cork oaks (S1, S2,
S3, S4), in four- (b) and
two-years-old (a) seedlings.
Lower proportions of
individuals showing abnormal
phenotypes are scored for
older seedlings
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model results in a thick regular suberized material with extraordinary protective and
insulation properties that may contain also lignified cells with thick walls, called
phelloids (Fig. 7.8).

Cork is a unique feature of Q. suber, and is one of the most important products
exploited in the Mediterranean countries due to its high economic and social value
in rural areas. Cork is a hydrophobic renewable raw material that protects the tree
against water loss, pathogen attacks or fire, and presents good technological
properties with industrial application (Pausas et al. 2009). It is constituted mainly
by dead, empty cells with their cell walls covered with suberin, a substance partially
similar to lignin and cutin. Although suberin composition has been profusely
studied (Franke and Schreiber 2007; Schreiber 2010; Serra et al. 2014), and several
genes involved in cell wall suberization have been described (Barberon et al. 2016;
Soler et al. 2007; Pollard et al. 2008; Serra et al. 2010; Soler et al. 2011), the
developmental factors leading to the formation of a long-living phellogen and a
thick, continuous phellem remain elusive.

Traditionally, it has been considered that bark of F1 hybrids is not suitable for
cork extraction, and that bad quality cork comes from individuals with a certain
degree of introgression (Natividade 1936; Llensa de Gelcén 1943; Varela et al.
2008). Early studies of the bark anatomy of Q. ilex x suber hybrids revealed
segregation of bark characters, with some hybrids showing barks resembling those
of Q. ilex, others with corky barks, and some others with intermediate character-
istics (Natividade 1936). The same study depicted the phellem of hybrids as
forming a rhytidome, like in Q. ilex, but with considerable thickness of the suc-
cessive phellem layers, like in Q. suber. In addition, the author reported significant
intra-individual variability in bark anatomy of hybrids. Differences in bark are

Fig. 7.7 Quercus ilex L. bark. a Detail of the trunk of a holm oak. b and c. Microphotographs of
Q. ilex rhytidome showing the successive, thin periderms under visible (b) and UV light (c), where
autofluorescence of suberin is detected
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hardly noticeable during the first years of life of seedlings, when a single phellogen
is differentiated. In three years-old seedlings of hybrids, no significant differences in
phelloderm development, nor in the phelloderm/phellem thickness ratio were
found, while only slight differences in phellem thickness were scored. In older
individuals, however, the results by Natividade (1936), have been recently con-
firmed by microscope bark analysis in branches of different age of hybrids and pure
species (Díez Morales 2016) (Table 7.1).

However, a preliminary analysis of a higher number of adult hybrid individuals
shows noticeable differences in their barks. While most individuals show a rhyti-
dome with successive, thin phellems, more similar to holm oaks, other individuals
present barks mainly formed by a thick phellem, similar to that of cork oak (Soto
et al. unpublished). Interestingly, a high variability in bark structure has been
observed even within the same individual. In individuals with rhytidome we can
find, within the same section of the bark, areas with very thin phellems and other
areas with thicker phellems, usually near the lignified radii (Fig. 7.9). It is difficult
to determine if these thicker phellems are derived from more active and/or from
longer-living phellogens. Anyway, differences in the development of phellems are

Fig. 7.8 Quercus suber L. bark. a Detail of the trunk of a cork oak, with the lower part debarked
few years ago. b and c Microphotographs of Q. suber thick periderm, with inclusions of lignified
phelloids, under visible (b) and UV light (c)
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Table 7.1 Characteristics of the outer bark in Q. ilex, Q. suber, and four hybrid individuals.
Modified from Díez Morales (2016)

Q. ilex Q. suber Ilicioid
hybrid

Suberoid
hybrid

Ilicioid
hybrids

Suberoid
hybrid

Successive
separate
phelogenes

y n y n y n

Phellem
thickness

Thin Massive Thin Thick Thin Thick

Pheloids Isolated Grouped Isolated Grouped Isolated Grouped

Phellem
annual
rings

n y n y n y

Lignified
phellem
rings

n y n y n y

Other
structures

Independent
peridems

n Llenticels,
independent
periderms

n Independent
periderms

n

Fig. 7.9 Microphotographs of the bark of a hybrid individual under visible (a, c) and UV (b,
d) light. a and b show an area with thick periderms. c and d show an area with successive, thin
periderms. The non-lignified cells comprised between successive periderms also present suberin
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very likely due to epigenetic modifications. It is also noteworthy the partial
suberization of the cells comprised between successive phellems in these individ-
uals. This fact has not been reported before, and does not appear in cork or in holm
oaks.

7.5 Conclusions

In conclusion, hybridization and introgression between Q. ilex and Q. suber are
natural processes that, although not being the rule, have probably been underesti-
mated, and which could have played a key role in the evolution of these species.
Quercus ilex and Q. suber conform a very good system to study hybridization in
genus Quercus, because, even if they may share the same habitat, they are suffi-
ciently divergent in morphological, phenological, and phylogenetic terms to pro-
vide better estimates of the effect of hybridization in the phenotypes than other more
phylogenetically inter-related oak systems, such as the European white oaks
(Kremer 2002). The application of next generation sequencing (NGS) technologies,
and more powerful bioinformatic analysis pipelines to explore the genomes of the
F1 individuals and their progenies will shed light on the way of inheritance of
genomic blocks, the species limits, the genomic incompatibilities and the reversion
to parental phenotypes. In the same way, these individuals constitute an excellent
material for the analysis of the genomic and epigenetic basis of cork formation, and
could provide a good starting point for breeding programs focused on cork quality
and adaptability of the species.
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Chapter 8
The Anatomy and Functioning
of the Xylem in Oaks

Elisabeth M. R. Robert, Maurizio Mencuccini
and Jordi Martínez-Vilalta

Abstract Because of its economic and ecological importance, the genus Quercus
has been relatively intensively studied for its anatomical and hydraulic character-
istics, having often been testing ground for development of methods and hypotheses
related to tree structure and function. However, despite long-withstanding interest,
we are still far from having obtained a clear understanding of the hydraulic func-
tioning of the species within this genus, the occurrence of trade-offs among various
xylem properties and the prevalence of syndromes of characters under different
environmental conditions. We conducted a review of the xylem anatomical literature
of the genus Quercus, an undertaking that does not appear to have been carried out
before. We also updated existing quantitative databases of vessel diameter and
density, volumetric fractions of parenchyma, wood density and xylem hydraulic
properties, to synthesise the main patterns of variation in the hydraulic architecture
and functioning of the genus. We found that ring-porous (deciduous) species have
lower wood density, higher hydraulic conductivity, xylem that is more vulnerable to
embolism and lower Huber values compared to diffuse-porous (evergreen) species.
We also report systematic differences among taxonomic groups, with species of
sections Quercus and Lobatae having smaller but more numerous vessels, lower
wood density, more vulnerable xylem, higher conductivity and lower Huber values
as opposed to species of section Cerris. Many of these trends appeared to map onto
environmental differences across the three main biomes where Quercus species are
found, i.e. the temperate, the Mediterranean/semi-arid and the tropical biomes.
Although limited by the coverage of the empirical data, our compilation contributes
to characterise the hydraulic architecture and functioning of the genus as a function
of taxonomic grouping, biome, ring-porosity and leaf phenology. Future investi-
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gations can benefit by the identification of the main factors responsible for these
patterns and their likely ecological significance.

8.1 Introduction

The xylem is the internal water transport system of plants that links water-absorbing
roots to the pores inside the leaves where evaporation takes place. The discipline
studying the biophysical and physiological processes controlling how water moves
inside the xylem is named hydraulics. Despite having a primary focus on water
movement in the xylem, hydraulics also often examines jointly aspects related to
the functioning of other hydraulic systems in the stem or in other organs, i.e. root
water uptake, radial water transport across the stele, radial water transfer in leaves
outside the last xylem conduits up to the sites of evaporation and transport of
carbohydrates in the phloem (Tyree and Ewers 1991). Because of its fundamental
focus on structural features, hydraulics shares a lot of ground with studies of
anatomy and it is often at the interface between these two disciplines that scientific
progress has been made.

Studies of the wood anatomy and the hydraulics of the genus Quercus have been
instrumental in advancing our understanding of the physiological ecology of plant
water transport, vulnerability to embolism and plant hydraulic architecture across
the plant kingdom. Some of the very early experimental measurements of the
physiological bases of plant hydraulic performance were carried out on species of
the genus Quercus, thereby allowing inferences to be made regarding the realized
ecological niches of various species in the field. The first vulnerability curves to
drought stress published for a species of the genus Quercus was for current-year
twigs and petioles of Quercus rubra (Cochard and Tyree 1990). The authors
employed both hydraulic and acoustic techniques and did not find systematic dif-
ferences in vulnerability between the two studied organs. Older stems were not
examined because “stems had to be cut longer then the longest vessel, and in older
stems this meant that we would have to dehydrate stems several meters in length”,
an issue we are still grappling with today (see Sect. 8.3.1). More vulnerability
curves in response to drought stress followed suit for European oaks (Quercus
petraea, Quercus robur and Quercus pubescens—Cochard et al. 1992).

In another relevant early paper, Sperry and Sullivan (1992) reported curves of
vulnerability to embolism after freeze-thaw cycles in Quercus gambelii. In it, the
authors adopted a comparative approach (contrasting diffuse-porous, ring-porous
and coniferous species) and highlighted how small tensions above −0.2 MPa were
sufficient to embolize 90% of the xylem in the ring-porous Q. gambelii following a
single freeze-thaw cycle, whereas embolism in diffuse-porous Betula and Populus
species was much lower and almost non-existent in several conifers under the same
conditions. Lo Gullo and Salleo (1993) were the first researchers to employ acoustic
emissions in Mediterranean Quercus ilex to detect loss of hydraulic conductance,
documenting subsequent recovery following an irrigation event overnight. They

262 E. M. R. Robert et al.



also investigated the relative sensitivities of this species to freezing and summer
drought stresses using hydraulic techniques. Lo Gullo et al. (1995) combined
hydraulic techniques with anatomical and staining approaches to determine the
relative sensitivities of conduit size in twigs of Quercus cerris (larger conduits
tended to be more vulnerable), an issue examined also earlier on by Cochard and
Tyree (1990) in Q. rubra. The concepts of ‘hydraulic constriction zones’ and
‘hydraulic segmentation’ proposed by Zimmermann only a few years before (1983)
were also tested experimentally in the early’ 90s. Already in 1996, issues related to
potential methodological artefacts began to be discussed. In a comparative early
analysis of the hydraulics of the genus, Tyree and Cochard (1996) reported that they
could not replicate the vulnerability curve for Q. ilex published by Lo Gullo and
Salleo (1993). Their (Tyree and Cochard 1996) figure 1 gives W50 values (the water
potential at which 50% of the maximum hydraulic conductivity is lost) of −2.9 and
−5.7 MPa showing a difference between the two studies of almost 3 MPa. Similar
differences have been reported later on by other authors (see Sect. 8.3.1).

It is now generally accepted that studies of xylem anatomy and of hydraulic
architecture are integral components of the characterization of a species’ ecological
niche. A comparative review of the hydraulics of the genus Quercus has not been
attempted since the early work already cited by Tyree and Cochard (1996), which
was limited to six species, while xylem anatomy of oaks has not been reviewed
recently. Regarding hydraulics, Tyree and Cochard (1996) concluded their review
by stressing the existence of a correlation across species between vulnerability to
drought-induced embolism and other indices of drought stress tolerance, while at
the same time stating that significant levels of summer embolism are probably
avoided in most situations, thanks to an efficient coordination between hydraulic
transport system and stomatal control of water loss in leaves. It is therefore obvious
already from this initial review (Tyree and Cochard 1996) that a full interpretation
of the significance of anatomical and hydraulic relationships in trees needs to
incorporate an understanding also of leaf physiology, particularly photosynthesis
and stomatal conductance. We therefore recommend reading this chapter in con-
junction with the relevant other chapters in this book.

Our objectives for this review were four-fold. Firstly, we reviewed the main
elements of vessel anatomy that impinged on xylem function and that allowed a
comparative analysis of the genus Quercus relative to other angiosperms. We
focussed on vessel diameter and its relationship with vessel density, the length of
oak water-transporting vessels, the degree of vessel isolation in the wooden matrix
(or its reverse, i.e. vessel grouping) and the structure and micro-anatomy of pits
(because of their central role in controlling the spread of air emboli) after which we
briefly discussed the occurrence of tyloses and their structural and physiological
significance. Secondly, we examined tissue-level properties outside of vessel
anatomy, i.e. the occurrence and significance of radial and axial parenchyma, and of
tracheids and fibres. We ended this section with an overview of the main patterns of
variation across the genus in wood density, a central variable that often relates to
other physiological and ecological properties. Thirdly, because of the occurrence of
very long vessels in oaks, we dedicated a whole section to a critical examination of
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the major methodological issues related to the measurement of hydraulic efficiency
and hydraulic safety in the genus Quercus. Here, we touched on various potential
artefacts occurring during hydraulic measurements and we discussed the evidence
that these artefacts may have occurred in Quercus studies. Fourthly and lastly, we
examined the major patterns that have been found across the genus in hydraulic
safety (as quantified by xylem W50), hydraulic efficiency (as quantified by the
sapwood-specific hydraulic conductivity, KS,max), minimum values of leaf water
potentials encountered in the field (Wmin, which partly is an indicator of the max-
imum levels of soil drought stress encountered at the peak of the seasonal droughts
and partly depends on rooting strategies and stomatal behaviour) and the Huber
value (HV, the ratio between cross-sectional sapwood and leaf area distal to the
section, a measure of relative allocation between xylem and leaves).

Because of heterogeneity in data availability, we adopted an opportunistic
approach to the content and structuring of the chapter sections. In some cases, our
observations primarily have a qualitative nature, attempting to summarise and
interpret the variability encountered in the primary literature and place it in context
of the species’ broader characteristics. In some instances, however, collation of data
from the primary literature has already been carried out and global databases are
available. In these more fortunate cases (e.g. vessel diameter and density, par-
enchyma content, wood density, xylem W50, KS,max, Wmin and HV), we carried out a
quantitative analysis across the whole genus, focusing on the existence of broad
inter-specific patterns. In all these cases, we recognise that our conclusions have a
preliminary nature and are primarily limited by the quality and quantity of the
available data in the literature.

We also examined the hypothesis that traits are coordinated with one another,
thereby supporting the idea that hydraulic strategies represented by syndromes of
coordinated traits can be identified within the genus. We examined trends in these
various traits in relation to other biological properties of the species, i.e. taxonomic
grouping (sub-genera Cyclobalanopsis and Quercus, and within this last sub-genus,
sections Quercus, Lobatae, Cerris, Mesobalanus and Protobalanus), ring-porosity
(classed into ring-porous and diffuse-porous) and leaf phenology (evergreen versus
deciduous leaf habit). Finally, we classified all the species we examined into three
broad biome classes (tropical, temperate and Mediterranean/semi-arid), following
an early biome classification employed for hydraulic traits (Choat et al. 2012).
Classification into taxonomic groups and leaf phenology largely follows the
Wikipedia list of Quercus species (Wikipedia 2017). We recognise that all these
classifications are problematic. For ring-porosity, we followed the literature and for
dubious cases (semi-ring-porousness), we attempted a classification based on the
prevailing opinions from the literature. Where appropriate, we highlighted potential
problems associated with the classification we adopted. The following online
databases were consulted to resolve borderline cases: The Plant List (2013),
Encyclopedia of Life, Wikipedia, Oaks of the World (Hélardot 1987 onwards),
eFloras (2008), Tropicos and The Wood Database. Species that The Plant List
(2013) classified as belonging to the genera Cyclobalanus, Cyclobalanopsis or
Lithocarpus were excluded from the analyses. In Table 8.1, we list the taxonomic
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section, biome, ring-porosity type, leaf phenology type and mean values of the
selected traits of all the oak species for which we show data in this chapter.

8.2 Functional Wood Anatomy

For this section, we explored the variability of the major functional wood traits
within the genus Quercus and compared structural trait characteristics with other
angiosperm genera. Vessel anatomy (ring-porosity, vessel dimensions, vessel
packing, network connectivity and tyloses—Sect. 8.2.1) and tissue properties
(parenchyma, tracheids and fibres and wood density—Sect. 8.2.2) are discussed.

8.2.1 Vessel Anatomy

8.2.1.1 Ring-Porosity

Whether deciduous or evergreen, Quercus wood often shows distinct growth rings
allowing for dendrochronological analyses. The longest continuous tree-ring
chronology in the world is an oak chronology from Southern Germany dating back
till 8480 BC (Friedrich et al. 2004; Haneca et al. 2009; Wilson 2010). Although the
clearness of the ring boundaries is generally very high for deciduous oak trees from
temperate regions due to very pronounced ring-porousness (i.e. large vessels at the
beginning of the growing season in contrast to small vessels at the end of it—
Wheeler et al. 1989), it might be far less evident how to correctly distinguish annual
ring borders for evergreen oaks from Mediterranean or subtropical climates (see
some examples in Fig. 8.1). However, several successful attempts have been made
(e.g. Cherubini et al. 2003; Gea-Izquierdo et al. 2009) and it has been proven by
Campelo et al. (2010) that time series of vessel lumen size in Q. ilex trees from
Catalonia (Spain) bear climatic signals that can be used for dendrochronology and
climate reconstruction in combination with the more classical tree-ring width data,
creating opportunities for oak species falling within the gradient from
semi-ring-porousness (i.e. intermediate condition between ring-porousness and
diffuse-porousness—Wheeler et al. 1989) to diffuse-porousness (i.e. homogenous
vessel size distribution over the growth rings—Wheeler et al. 1989). The rela-
tionships deciduousness/ring-porousness and evergreenness/diffuse-porousness are
often but not always true within the Quercus genus (see some examples in
Table 8.1). In the quantitative analyses conducted for this chapter, the relation of
ring-porosity to other hydraulic traits is examined since it is a crucial aspect of oak
xylem structure and thus hydraulics.
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8.2.1.2 Vessel Size and Density

Conduit size and density are perhaps the two most widely measured anatomical
characteristics of trees. These two traits have a direct impact on xylem hydraulic
efficiency, particularly through the fourth-power relationship between lumen
hydraulic conductivity and conduit diameter (Tyree and Zimmermann 2002).
Vessel size and density define the lumen fraction of a wood section (via their
multiplication) and the variation in vessel composition within the potential transport
space (their ratio). A global dataset complied by Zanne et al. (2010) revealed that
hydraulic conductivity is more sensitive to changes in the total lumen fraction than
to changes in the size to number ratio, all other factors being equal. However, the
vessel composition ratio was the driving factor for potential conductivity differ-
ences across species.

To assess vessel characteristics of oaks in comparison with other angiosperm
species, we extended the dataset of Zanne et al. (2010) with data from Jacobs
(2013) and with anatomy data present in an updated version of the global xylem
traits database (Choat et al. 2012) (Table 8.1). Values were averaged at the species
level prior to analysis. Only measurements conducted on stems were considered, as
measurements on other organs were extremely rare. It should be noted, however,
that the few studies measuring vessel dimensions in stems and roots of the same oak
individuals have reported much wider conduits in the latter organ, particularly in

Fig. 8.1 Exemplary transverse sections of ring-porous Quercus pubescens (left) and
diffuse-porous Quercus ilex (right) branch wood taken from trees growing at a dry (top) and a
wet (bottom) location in Catalonia, Spain. Classification of the study sites into dry or wet was
based on species-specific terciles in the range of average annual precipitation over potential
evapotranspiration ratios. Sections are about 20 micrometres thick and were stained with a
safranine–astra blue mixture. Images are 1.1 by 0.7 mm (top, left) and 2.2 by 1.4 mm (top, right
and bottom)

272 E. M. R. Robert et al.



deep roots, consistent with results for other plant groups (Martínez-Vilalta et al.
2002; McElrone et al. 2004). The mean vessel diameter in deep (7–20 m) roots of
Quercus fusiformis and Quercus sinuata was around 100 lm, with maximum
values over 200 lm that allowed seeing the conduits with the naked eye (McElrone
et al. 2004).

According to our dataset, average vessel diameter (Dmean) in oak stems is
62 ± 5 lm (N = 42 species) (mean ± SE; calculated in all cases after
back-transformation from log-transformed data) and the average vessel density
(Ncond) is 19 ± 4 conduits�mm−2 (N = 30 species). The former value is close to the
average for non-oak angiosperm species (68 ± 1 lm, N = 2204 non-oak species in
Zanne et al. 2010), whereas vessel density is clearly lower for oaks relative to other
angiosperms (38 ± 1 conduits�mm−2, N = 2204 non-oak species). However, these
comparisons must be interpreted with care, particularly for vessel diameters, as
there are substantial methodological differences in how this variable can be mea-
sured, which were not accounted for in our compilation from disparate literature
sources. If only the data from the Zanne et al. (2010) database are considered,
including 13 oak species, the low average vessel density for oaks was supported
(19 ± 4 conduits�mm−2 for oaks), whereas vessel diameter appeared to be larger for
oaks (99 ± 18 lm) than for other angiosperms.

We assessed the effect of taxonomic grouping, species biome, ring-porosity and
leaf phenology on log(Dmean) and log(Ncond) using linear models with one
explanatory variable at a time (as the strong association among them prevented
including them in a single, multiple regression model). For vessel diameter, only
taxonomic section had a significant effect (P < 0.001), with species from the
Cyclobalanopsis (N = 3) and Cerris (N = 11) groups having larger vessels than
those in sections Quercus (N = 20) and Lobatae (N = 7). The only species in
section Mesobalanus (Quercus frainetto) had the smallest vessels. The effect of
taxonomic section was also significant for vessel density (P = 0.015), with sections
Mesobalanus (N = 1) and Quercus (N = 13) having higher values than
Cyclobalanopsis (N = 3), whereas Cerris (N = 11) and Lobatae (N = 2) had
intermediate values. The only other variable with a significant effect on oak vessel
density was biome (P < 0.001). Temperate (N = 8) and Mediterranean/Semi-arid
species (N = 14) had higher conduit density than tropical species (N = 8). Larger
vessels in the Cyclobalanopsis and Cerris groups are probably associated with
higher vulnerability to freezing-induced embolism (Davis et al. 1999), although
these differences are not reflected in clear bioclimatic segregation among phylo-
genetic sections (Cavender-Bares et al. 2004).

We assessed the relationship between vessel size and density after converting
vessel diameter into area, for consistency with previous work and because the
product of vessel area and density is a direct measure of the lumen fraction (Zanne
et al. 2010). Oak species occupy a substantial range of the angiosperm space in the
relationship between vessel area and density, although they tend to cluster towards
the lower vessel density end (Fig. 8.2). Interestingly, oaks tend to have small
vessels for a given vessel density, relative to other angiosperms, implying a lower
lumen fraction. The fact that oak species tend to be located far from the packing
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limit indicates the importance of the ground tissue, whether genetically defined or
as an adaptation for survival (Jupa et al. 2016), and the tendency of the genus
towards xylem structures that provide high mechanical support. The relationship
between vessel area and density for oaks was not affected by taxonomic grouping,
species biome, ring-porosity or leaf phenology.

8.2.1.3 Vessel Length

Vessel length is a key trait in woody plant hydraulics due to its defining role in
affecting both hydraulic safety and efficiency (Lens et al. 2011; Jacobsen et al.
2012). Jacobsen et al. (2012) found average vessel length in the Fagaceae to be
smaller than 0.2 m, as was the case for most of the 31 studied species. However,
oaks are often mentioned as being long-vesselled (e.g. Q. gambelii and Quercus
prinus—Hacke et al. 2006; Q. robur—Cochard et al. 2010; Q. ilex—
Martínez-Vilalta et al. 2002 and Martin-StPaul et al. 2014; Quercus variabilis—Pan
et al. 2015). Comparative studies show indeed that Q. gambelii has much longer
vessels than Betula occidentalis and Populus tremuloides (Sperry and Sullivan
1992) and that Q. robur had the longest vessels in a group of ten woody angios-
perms (Cochard et al. 2010). Sperry and Sullivan (1992) show a length distribution
of Q. gambelii vessels in which almost 40% falls in the 5–10 cm length class and
5% in the 65–70 cm maximum class. But Quercus vessels are not always the

Fig. 8.2 Relationship
between mean vessel area and
mean vessel density for oak
species represented on top of
the scatterplot for all
angiosperms (the latter
obtained from Zanne et al.
2010). Both variables are
(natural) log-transformed.
Symbol shapes distinguish
between deciduous and
evergreen oak species. The
solid line indicates the
standardized major axis
regression between the two
variables (slope = −0.97).
The dashed line indicates the
packing limit, corresponding
to a lumen fraction of 1
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longest. The maximum vessel length of Q. ilex (0.45 ± 0.01 m) is only second in a
list of nine studied species, after Eucaluptus camaldulensis (0.52 ± 0.06 m)
(Trifilò et al. 2015). Q. rober had similar maximum vessel length compared to Vitis
vinifera and Populus trichocarpa in a study where its mean vessel length was also
the same as for V. vinifera but six times larger than in P. trichocarpa (Venturas
et al. 2016). In Table 8.2, we extended the mean and maximum vessel length data
coverage provided in Appendix S1 of Jacobsen et al. (2012). It must be noticed that
different measurement methods can generate different outcomes even in the same
individuals (Pan et al. 2015; Oberle et al. 2016) and that within-tree and
within-species variability might be larger than considered so far (Wang et al. 2014;
Zhang and Holbrook 2014; Pan et al. 2015).

8.2.1.4 Vessel Grouping

Oak wood is known for having a high degree of solitary vessels, arranged in a
diagonal/oblique (intermediate between radially and tangentially) or a dendritic
pattern (Wheeler et al. 1989; Johnson et al. 2014; InsideWood 2004 onwards;
Ellmore et al. 2006; Sano et al. 2008; Mencuccini et al. 2010; Kim and Daniel
2016a; Venturas et al. 2016). Mencuccini et al. (2010) classified Q. petraea and Q.
robur as species with an overall random vessel distribution (as opposed to aggre-
gated or uniform) with the note that there is a difference between the early-wood
(random) and the late-wood (clustered) vessel distribution in these ring-porous
species. Three-dimensional analysis of roots of Q. fusiformis showed that only 1
(shallow roots) to 6 (deep roots) % of the vessels were connected to other vessels, a
finding that is likely related to the high resistance to embolism of this species’ roots
relative to other species with more vessel connections (Johnson et al. 2014). In
addition, dye experiments in saplings of Q. rubra showed high sectoriality and low
potential radial flow, attributed to the low degree in radial and tangential vessel
interconnections (Ellmore et al. 2006). Lateral connections between vessels and
their surrounding non-vascular cells such as ray parenchyma and vasicentric tra-
cheids might thus ensure network connectivity, as has been observed for Quercus
suber (Sousa et al. 2009) and other Mediterranean oak species (Q. ilex, Quercus
pyrenaica and Quercus faginea—cf. Sousa et al. 2009).

8.2.1.5 Pits

The structural variability of intervessel pits—the tiny cavities in the secondary cell
walls that allow water and air passage between adjacent vessels (Sperry and Tyree
1988; Choat et al. 2008; Jansen et al. 2009; Schenk et al. 2015)—has not been
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extensively studied in general, with oaks not being an exception. This is mainly due
to the minuscule nature of pits and the difficulty to access them (mostly by electron
microscopy). Table 8.3 gives an overview of the published data on oak pit features
(intervessel and other pit types) that play a role in determining how easily liquid or
air can pass from one cell to another within the transport network (Lens et al. 2011).

Table 8.2 Mean and maximum vessel length data of Quercus species as found in literature

Species Sample information Mean vessel
length (m)

Maximum
vessel length
(m)

References

Quercus
agrifolia

Stems from adult
shrubs

1.96 Jacobsen et al. (2007)

Quercus alba Branches from adult
trees

0.1153 Cochard and Tyree
(1990)

Model estimate 0.025 Oberle et al. (2016)

Quercus
berberidifolia

Stems from adult
Shrubs

0.1779 1.60 Jacobsen et al. (2007),
Hacke et al. (2009)

Quercus
gambelii

Branches from adult
trees

0.1656 0.65 − 0.70 Sperry and Sullivan
(1992)

Stems from adult
trees

Hacke et al. (2006)

Quercus ilex Stems from adult
trees

0.96 ± 0.07 Martínez-Vilalta et al.
(2002)

Current year
resprouts

0.86 0.75 − 1.00 Martin-StPaul et al.
(2014)

Stems of young
trees (>15y)

0.45 ± 0.01 Trifilò et al. (2015)

Quercus
prinus

Stems from adult
trees

0.1571 Hacke et al. (2006)

Quercus
robur

Terminal shoots 1.34 ± 0.38 Cochard et al. (2010)

Branches from
young trees

0.109 ± 0.019 0.830 ± 0.186 Venturas et al. (2016)

Quercus
rubra

Branches from adult
trees

0.1159 Cochard and Tyree
(1990)

Model estimate 0.075 Oberle et al. (2016)

Quercus
variabilis

Stem from mature
trees (method 1a)

0.1059 ± 0.0077 Pan et al. (2015)

Stem from mature
trees (method 1b)

0.2106 ± 0.0075 Pan et al. (2015)

Stem from mature
trees (method 2)

0.4549 ± 0.0065 Pan et al. (2015)

Quercus
velutina

Model estimate 0.06 Oberle et al. (2016)

Quercus
wislizenii

Stems of adult
shrubs

1.45 Jacobsen et al. (2007)

The table is an extended version from Jacobsen et al. (2012) (Appendix S1)
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Intervessel Pits—Arrangement and Size

According to the available information, intervessel pits in oaks mostly seem to be
alternately organised, i.e. in diagonal rows (Wheeler et al. 1989; InsideWood 2004
onwards; Jansen et al. 2009). However, Ellmore et al. (2006) reported the oval and
widely scattered pits of Q. rubra to only be vaguely alternate and intervessel pits in
the roots of Q. fusiformis were observed to be mostly alternate but occasionally also
scalariform or gash-like (Johnson et al. 2014). In a comparative study on 26
hardwood species, average pit diameter of Q. robur fell within the top half of all
observed values (5.9 lm, species range: 2.1–7.6 lm) (Jansen et al. 2009) and in
comparison to poplar (Populus tomentiglandulosa), Quercus serrata had wider pit
apertures (Ahmed et al. 2011). Vessel walls of Q. rubra branches were for 12%
occupied by intervessel pits (Ellmore et al. 2006) and roots of Q. fusiformis for 6–
7% (Johnson et al. 2014). However, Christman et al. (2012) found only 7% of the
intervessel pits in Q. gambelii to be air-seeding. It has been suggested by these
authors that ring-porous species such as Q. gambelii compensate their large leak-
iness probability at the pit level that comes with the highly efficient, large vessels in
their early-wood, with a low degree of vessel connectivity, thicker pit membranes
or with refilling (Christman et al. 2012).

Intervessel Pits—Pit Membranes

Pore sizes in intervessel pit membranes have a large effect on both the hydraulic
conductivity of the xylem and its vulnerability to embolism (Wheeler et al. 2005).
Dye experiments in Q. rubra confirmed that pitting alone cannot explain inter-
vascular liquid transfer pointing to the role of pit membrane porosity (Ellmore et al.
2006). Jansen et al. (2009) found pit membranes of Q. robur to be without visible
pores on Scanning Electron Microscopy (SEM) images, in contrast to most other
studied hardwood species, and observed a species characteristic pit membrane
thickness (Table 8.3) that fell within the average thickness of 100–300 nm. In the
roots of Quercus fusilis, pit membranes did not show any visible pores either
(Johnson et al. 2014). Theoretically estimated pit membrane pore diameters were
0.134 ± 0.02 lm for shallow and 0.167 ± 0.02 lm for deep roots (Johnson et al.
2014). Pit membranes were thicker in deep than in shallow roots, accounting for a
larger portion of the overall xylem hydraulic resistance (Johnson et al. 2014).

Other Pit Types

Sano et al. (2008) studied other pit types and found that pit pairs between vessels
and fibres and between vessels and vasicentric tracheids were frequently present in
Quercus crispula (vessel-tracheid connections: 88.2 pairs per 10,000 lm2 on the
radial wall for early-wood and 49.0 for late-wood), with the pit membranes
observed as sheet-like, homogeneous and without visible pores. Bordered pits were
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observed between vessels and tracheids in Q. robur by Kim and Daniel (2016a).
The high density of vessel-fibre/tracheid connections in Q. crispula, in contrast to
other studied species, was attributed to the species’ high degree of solitary vessels,
with tracheary elements thus supposed to contribute to the transpiration flow (Sano
et al. 2008).

There is a consistent structural difference in pits between fibres and pits between
tracheids that can be attributed to their functional roles in support and conduction,
respectively (Sano and Jansen 2006). Interfibre pits were found to be smaller than
4 lm and very often showed simple or multiple perforations (studies on Q. crispula
and Q. robur, Sano and Jansen 2006; Kim and Daniel 2016a). Intertracheid pits in
Q. crispula on the other hand were larger than 4 lm and their membranes were
densely and evenly packed with microfibrils, only for 10% showing sparsely
packed microfibril regions at the membrane periphery (Sano and Jansen 2006).
Thickened walls have also been observed in bordered tracheid pits of Quercus
hypoleucoides (Adaskaveg et al. 1995).

Pits in Q. robur were found to be half-bordered between tracheary elements and
parenchyma cells and simple between parenchyma cells (Kim and Daniel 2016a).
Roots of Q. fusiformis showed scalariform vessel-parenchyma pitting, interspersing
and surrounding inter-vessel and vessel-tracheid alternate pitting (Johnson et al.
2014). Heavily encrusted parenchyma pit membranes were observed in Q. serrata
(Ahmed et al. 2011). Early- and late-wood of Q. robur were contrasting in the
abundance of pits associated with axial and radial parenchyma, with the former
being more abundant in the earlywood and the latter being more abundant in the
late-wood (Kim and Daniel 2016a).

Pit membrane chemistry showed large variability, both between pit types and
between early- and late-wood in Q. robur (Kim and Daniel 2016a, b). However, the
functional significance of this variability is yet to be elucidated. It was suggested
that the presence of hemicelluloses in the inter-tracheid and tracheid-vessel pits
could play a similar role as pectin, i.e. mediate pit membrane porosity through
changes in ion concentrations (Kim and Daniel 2016a, b).

8.2.1.6 Tyloses

Tyloses are oily secondary metabolites that contain phenolic substances and ter-
penoids (Kuroda 2001). In Quercus macrocarpa tyloses, a lignin content of ca.
28% has been measured (Obst et al. 1988). Tyloses are produced by the ray par-
enchyma and oxidize and polymerize in the vessel lumen in absence of water, thus
in vessels that already are air-filled (Kuroda 2001). Cochard and Tyree (1990)
studied tylose formation in ring-porous oaks (Quercus alba and Q. rubra) and
discovered that early-wood vessels start getting filled with tyloses in the first winter
after their formation, i.e. at the end of the growing season, to be fully blocked by
tyloses by the next summer. Late-wood vessels on the other hand remained free of
complete blockage for several years (Cochard and Tyree 1990). In Q. robur a wide
protective layer, thought to play a role in tyloses formation, was only observed
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inside axial and ray parenchyma of early- but not of late-wood (Kim and Daniel
2016b). Tylose-filled early-wood vessels after the growing season have been
reported for several ring-porous species (Kitin and Funada 2016) and for the fol-
lowing oaks: Quercus castaneaefolia (Safdari et al. 2008) and Q. variabilis (Kim
and Hanna 2006; Pan et al. 2015). Tyloses were moreover commonly present in the
wood of Q. suber (Sousa et al. 2009) and in the heartwood of Q. robur (Fromm
et al. 2001; Sorz and Hietz 2006), being used as a potential criterion to define
sapwood depth (Fromm et al, 2001; Sohara et al. 2012). Babos (1993) found tyloses
in early-wood vessels to be increasing from stump (16 cm: 5.02%) upwards (12 m:
12.58%). Tylose formation can also be linked to wounding and pathogen infesta-
tion. In Q. petraea more sealed early-wood vessels were found in diseased tree
trunks as compared to healthy ones (Babos 1993). Tyloses formation has also been
observed in Q. crispula and Q. serrata trees after infestation by the fungus
Raffaelea sp. (Kuroda 2001). Although supposed to be protective, the tyloses could
not prevent the expansion of the fungus in the study of Kuroda (2001).

8.2.2 Tissue Properties

8.2.2.1 Parenchyma

Aggregate rays, i.e. large units of clustered ray parenchyma, are not unique to oaks
but are uncommon in trees and they typically occur in Fagaceae (Carlquist 2001).
This typical wood structure element can often be spotted with the naked eye in oak-
made furniture or building parts. Together with the small rays and the axial par-
enchyma tissue, the large aggregated rays form the long-living (2–200 years)
(Spicer and Holbrook 2007), elastic fraction of oak wood volumes, likely providing
oxygen to the cambial zone and the bark (Spicer and Holbrook 2005) and defining
the start of heartwood formation upon death (Spicer and Holbrook 2007). Internal
water storage and water release has been linked to these elastic storage compart-
ments, with the thickness of parenchyma cell walls playing an important role in the
storage capacity (Jupa et al. 2016). However, in juvenile xylem from excised plant
parts of five temperate tree species among which Q. robur, the importance of
capillary compartments in water storage and release was much larger than that of
parenchyma cells (Jupa et al. 2016). It is thus far unclear if this also stands for adult
trees in natural conditions (Jupa et al. 2016). Jupa et al. (2016) compared the
ring-porous Q. robur to diffuse-porous non-Quercus species and concluded that,
contrary to the expectations, ring-porous wood does not seem to stand out in water
storage and release capacity.

We employed the global dataset assembled by Morris et al. (2015) to examine
existing data for radial, axial and radial plus axial parenchyma volumetric fractions
for the genus Quercus. We found 24, 14 and 14 species of the genus Quercus for
which data were available for the volumetric fractions of radial parenchyma, axial
parenchyma and radial plus axial parenchyma, respectively. Given the small sample
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size, it is impossible to draw any definitive conclusions about large-scale patterns.
Overall, fractions of radial parenchyma in oaks varied between a minimum of 9%
and a maximum of 34% (median of 21%), axial parenchyma varied between 11 and
26% (median of 21%) and total radial plus axial parenchyma varied between 24 and
46% (median of 42%). This compares with equivalent figures for the rest of the
angiosperms of 2 and 68% (median of 17%), 0 and 74% (median of 11%) and 6 and
99% (median of 35%), respectively. Hence, the little available data do not show any
unusual patterns for oaks relative to other angiosperms. The only discernible pattern
in the dataset specifically for Quercus was that section Lobatae had significantly
greater fractions of axial and radial plus axial parenchyma (but not radial par-
enchyma on its own) compared to Quercus, but given the limited sample size,
caution needs to be exercised regarding the significance of this conclusion.

Few studies compare oak parenchyma content between organs or between trees
growing under different environmental conditions, and if within-genus structural
differences are observed, experimental proof for their possible functional signifi-
cance is generally lacking. In saplings of Q. robur, Q. petraea and Q. pubescens,
the density of non-ray parenchyma cells was slightly increased in drought-exposed
individuals (Fonti et al. 2013). The authors suggest a role in embolism repair, more
needed in dry conditions. Stokke and Manwiller (1994) found higher ray par-
enchyma content in roots, followed by branches and stems in Quercus velutina,
proposing it to be related to the carbohydrate storage function of roots.

Besides in day-to-day tree physiology, xylem parenchyma also plays an
important role in wood decay (e.g. Deflorio et al. 2009), wound reactions (Schmitt
and Liese 1993, 1995) and pathogen infestations (Morris et al. 2016). The par-
enchyma tissue is often the place where trees are attacked by pathogens (or para-
sites) while at the same time parenchyma tissue is responsible for tyloses formation
in reaction to infestation. Some example regarding oak species can be found in
Kuroda (2001, Q. serrata and Q. crispula—ambrosia beetle Platypus quercivo-
rous), Brummer et al. (2002, Q. robur—Phytophthora quercina), Miric and
Popovic (2006, Q. robur and Q. petraea—fungus Chondrostereum purpureum),
Medeira et al. (2012, Q. suber—Phytophthora cinnamomi), Ebadzad et al. (2015,
Q. ilex and Q. suber—P. cinnamomi) and Cocoletzi et al. (2016, Quercus germana
—mistletoe Psittacanthus schiedeanus).

8.2.2.2 Tracheids and Fibres

Wood fibres are known to provide mechanical support and are supposed to offer
protection against vessel collapse (Metcalfe and Chalk 1983; Hacke et al. 2001;
Jacobsen et al. 2005; Jupa et al. 2016). They also play a role in the trees’ water
household (Jupa et al. 2016). Fibres as well as fibre-tracheids and tracheids can
store water and thus contribute to the sapwood water storage and release capacity as
has been proven for Q. robur by Jupa et al. (2016). This makes fibre and tracheid
lumen size and pit characteristics important structural traits in tree hydraulics.
Together with the vessel and parenchyma fraction, the fibre fraction defines the
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density of a wood volume (Preston et al. 2006), mainly through the ratio of wall
thickness to lumen size (Martínez-Cabrera et al. 2009; Zieminska et al. 2013). Fibre
dimensions in oaks are found to vary with tree age, location within the tree and
growth conditions (e.g. Lei et al. 1996; Leal et al. 2006; Yilmaz et al. 2008).

8.2.2.3 Wood Density

Wood density (WD, dry mass per fresh volume, g cm−3) is the basic measurement
of the content of dry biomass within the green (or fresh) volume of a tree. It
provides important ecological and physiological insights for foresters, ecologists
and physiologists. Wood density varies between 0 and an upper limit of about
1.5 g cm−3, which is the density of the wooden matrix alone (Whitehead and Jarvis
1981; Siau 1984). Different tree species can allocate different amount of carbon to
produce their xylem structure, and an obvious trade-off emerges between the
allocation to ‘cheap’ wood with lower construction costs to produce greater vol-
umes of wood versus the allocation of ‘expensive’ wood with higher costs which
might result in lower volumes being produced. Physiologically, across-species
differences in wood density have been linked to differences in mechanical prop-
erties of wood (Young’s modulus, stiffness, resistance to splitting, etc.), in
hydraulic properties of the xylem (vulnerability to embolism, conductive efficiency,
hydraulic capacitance), in defence against attacks by pathogens, in canopy archi-
tecture and in the ratio of leaf area to stem cross-sectional area (all of which are
comprehensively reviewed by Chave et al. 2009). Ecologically, studies have often
found negative relationships between wood density and either growth rates and/or
likelihood of mortality in the field (e.g. Martínez-Vilalta et al. 2010). Therefore, it is
important to examine general trends in wood density across the genus Quercus as a
whole to determine whether broad patterns can be identified.

To do so, we employed existing compilations (Zanne et al. 2009; Chave et al.
2009) and enlarged that dataset by examining recent papers that collated wood
density values for species not represented there (i.e. Cavender-Bares et al. 2004;
Aiba and Nakashikuza 2009; Miles and Smith 2009; Návar 2009). Multiple entries
for each species were averaged and all subsequent analyses were carried out using
only species means. We recognise that significant limitations are present when
wood density values are pooled across from a heterogeneous literature.
Nonetheless, we agree with earlier authors (Chave et al. 2009; Zanne et al. 2010;
and discussions therein) that these consolidation exercises have value in themselves
and can provide novel insights.

Overall, we found wood density values for 99 oak species, with a relatively even
spread across the three biomes (26 tropical, 50 temperate and 23 Mediterranean/
semi-arid). The spread across sections of the genus was less even (19 in
Cyclobalanopsis, 43 in Quercus, 29 in Lobatae, 5 in Cerris, 1 in both Mesobalanus
and Protobalanus; we could not find any reference allowing classing Quercus
sideroxyla within the genus). For the genus as a whole, wood density varied
between 0.51 and 0.88 g cm−3, with a median value of 0.67 g cm−3.
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The distribution of wood density values for the rest of the angiosperms has a
minimum of 0.08, a maximum of 1.39 and a median of 0.60 g cm−3, therefore
suggesting that the genus Quercus occupies a fairly central position within the
overall distribution of angiosperm wood density values, perhaps shifted towards
values slightly above the mean. We log-transformed wood density values for all
subsequent analyses to achieve normality of distribution. A very highly significant
difference in log(WD) was found according to phenology (P = 0.1.3 e−8, N = 98;
Fig. 8.3), with evergreen species (N = 49) having on average higher wood density
values than deciduous ones (N = 49 as well; back-transformed means of 0.72
versus 0.62 g cm−3, respectively). A highly significant difference was also found
with regard to wood porosity. Ring-porous species (N = 43) had a significantly
lower wood density compared to diffuse-porous (0.64 vs. 0.71 g cm−3 respectively,
P = 0.009, N = 15, Fig. 8.3). Compared to section Cerris (WD = 0.73), section
Quercus and, especially Lobatae had significantly lower wood density (0.66 and
0.62 g cm−3, P = 0.037 and P = 0.002, respectively). Finally, a significant differ-
ence was also found among biomes (P = 0.0002, N=99). Quercus species from the
temperate biome (WD = 0.65) had significantly lower wood density compared to

Fig. 8.3 Wood density box-and-whisker plots for two main grouping criteria, i.e. ring-porosity
(diffuse- versus ring-porous) and leaf phenology (deciduous vs. evergreen). The dataset consisted
of 98 Quercus species. Data were obtained from the primary literature and from existing
compilations (see text for further details). In both cases, the differences between the two groups
were highly significant (P = 0.009 and P = 0.1.3e−8, respectively). The thick line gives the
median, the edges of the box are the lower and upper quartile, while the two whiskers extend up to
1.5 times the interquartile range from the top/bottom of the box to the furthest datum within that
distance
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those from the tropical (WD = 0.73), but not the Mediterranean/semi-arid biomes
(WD = 0.65).

Overall, the data support the idea that evergreen sub-tropical species with
diffuse-porous wood, especially of section Cerris, have higher wood density values
than deciduous ring-porous oaks of the temperate and Mediterranean biomes,
especially those of the Lobatae section. It is likely that these differences in wood
density also map onto additional hydraulic features (see Sect. 8.3), such that
variability in wood density across oaks species better equip those with higher values
for life under drier conditions.

8.3 Xylem Hydraulics

The xylem provides a low resistance pathway for water movement from the roots to
the evaporation sites in leaves (Tyree and Zimmermann 2002). By supplying water
to the leaves, it is a key element controlling plant water relations and stomatal
responses, determining plant transpiration and assimilation rates (Sperry et al. 2017)
and, ultimately, plant productivity and resistance to major stress factors such as
freezing and droughts (Tyree and Sperry 1989; Brodribb 2009). The hydraulic
properties of the xylem are usually summarized using two parameters, character-
izing hydraulic efficiency and safety. Hydraulic efficiency corresponds to maximum
transport capacity, and it is usually expressed as the sapwood-specific hydraulic
conductivity under fully hydrated conditions (KS,max). KS,max is quantified as the
water flow through a wood segment per unit pressure gradient driving the flow,
divided by the cross-sectional area of wood (Melcher et al. 2012). Hydraulic safety
refers to the susceptibility to (drought-induced) embolism, as measured from vul-
nerability curves expressing how KS declines as the water potential becomes more
negative, indicating more stressful conditions. Several methods have been used to
establish vulnerability curves, the most widely used being bench dehydration, air
injection and centrifugation (Cochard et al. 2013). Vulnerability curves are fre-
quently summarized using one single parameter: the xylem water potential inducing
a 50% loss of hydraulic conductivity (W50).

Here, we assembled a database of oak xylem hydraulic measurements starting
with all oak entries in the Choat et al. (2012) functional xylem traits database,
completed with Google Scholar searches of papers published after the compilation
of the original dataset. Our analyses focus on KS,max and W50 values measured in
stems, as data from other organs (roots and leaves) are scarce. In addition, we only
considered direct hydraulic measures of KS,max and W50; that is, indirect measures
based on conduit sizes (for KS,max) or acoustic emissions (for W50) were discarded.
Overall, we compiled data on stem KS,max and P50 for 41 and 32 oak species,
respectively (Table 8.1), corresponding to a total of 89 individual vulnerability
curves.
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8.3.1 Measuring Xylem Hydraulic Properties in Oaks

The measurement of xylem hydraulic properties in oaks is problematic for several
reasons. Firstly, as already mentioned in the introduction, long vessels result in a
substantial proportion of open vessels in measured wood segments. This leads to
overestimations of both KS,max (by not accounting for the resistance of pit mem-
branes in open vessels; Melcher et al. 2012) and vulnerability to embolism (by
exaggerating the percent loss of conductivity at a given pressure). The latter effect is
not only caused by the overestimation of KS,max but also because open, water-filled
vessels are likely to be emptied immediately when subjected to any positive
pressure, thus underestimating individual KS measurements. Although this potential
issue was recognized more than 20 years ago (Cochard and Tyree 1990; Sperry and
Saliendra 1994; Martínez-Vilalta et al. 2002), it has received renewed attention in
recent years (e.g. Cochard et al. 2010, 2013; Sperry et al. 2012; Hacke et al. 2015).
The resulting artefact in vulnerability curves is supposed to affect mostly the
air-injection and centrifugation techniques, and can be minimized by measuring
KS,max once open vessels have been emptied (through slight pressurization or gentle
spinning; Sperry and Saliendra 1994; Alder et al. 1997). However, a limitation of
this approach is that wider and longer vessels tend to be more vulnerable to
embolism (Hargrave et al. 1994; Cai and Tyree 2010) and thus the population of
vessels remaining once open conduits have been emptied may not be representative
of the whole xylem. The bench dehydration technique is much less affected by these
effects if sampled branches are longer than the longest vessels. However, even this
technique, frequently considered the ‘gold standard’ to establish vulnerability
curves, may be prone to related artefacts when measurement segments are cut under
tension (Wheeler et al. 2013; Torres-Ruiz et al. 2015; but see Trifilò et al. 2014;
Venturas et al. 2015).

A second issue, particularly relevant for ring-porous species and, therefore,
many oaks, concerns the reference starting point for vulnerability curves. Initial
KS,max estimation is frequently done after flushing to remove any previously
embolized vessels. However, flushing may refill conduits that were not functional
in vivo, particularly in ring-porous species where only the most recent growth ring
is functional. It has been recommended to work only with current-year shoots or
exclude older growth rings (e.g. by gluing) before measurements are made in
ring-porous species (Cochard et al. 2013). Another option is to sample in the wet
season, before substantial embolism has developed, and consider the native KS

obtained under this conditions as a reasonable estimate of KS,max.
The combination of the methodological issues described in the previous para-

graphs is likely to have resulted in a huge variability inW50 estimates for oaks, even
within species. A large portion of this variability is associated to the shape of
vulnerability curves: ‘sigmoidal’ curves generally having lower P50 (more resistant
xylem) than ‘exponential’ curves (Cochard et al. 2013). Our data for oaks mirror the
results obtained by Cochard et al. (2013) in that the vast majority of vulnerability
curves obtained with the dehydration technique are reasonably sigmoidal in shape
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(36 out of 39), whereas this is not the case for other methods (3 out of 35 for the
static centrifuge, 1 out of 4 for the cavitron, 7 out of 11 for air-injection). Our
database includes eight oak species (ring-porous and diffuse-porous) for which both
shapes of curves have been measured. There is a striking difference in the estimated
W50 values between curve types for these species, with W50 values being always
more negative for sigmoidal curves, by as much as 1.8 MPa on average (P < 0.001;
Fig. 8.4). Differences between curve shapes correspond to differences among
methods, with vulnerability curves obtained by dehydration generally showing
more negative W50 values (Fig. 8.4). Although KS,max values were only reported for
both curve types in four of the previous species, there was no consistent difference
between curve types for this variable, suggesting that the differences in W50 were
not necessarily associated with biased KS,max estimates.

While we share the view that exponential vulnerability curves are not necessarily
wrong (Sperry et al. 2012), it seems hard to believe that the huge variability
observed within species in the shape of vulnerability curves and associated W50

values is real. In addition, some of the extreme W50 values obtained from expo-
nential vulnerability curves (11 curves with P50 > −0.5 MPa, many for Q. gam-
belii) seem difficult to reconcile with the ecophysiology of the species, for which
midday leaf water potentials are likely to be substantially lower than this value even
under well-watered conditions (e.g. minimum water potential of −2.2 MPa reported

Fig. 8.4 Effect of vulnerability curve shape (upper panel: E, exponential; S, sigmoidal) and
vulnerability curve method (lower panel: AD, air injection; CA, cavitron; CE, static centrifuge;
DH, dehydration) on estimated vulnerability to embolism (W50) for eight species in which both
types of vulnerability curve shapes have been obtained. Species: ber, Quercus berberidifolia; emo,
Quercus emoryi; gam, Quercus gambelii; gri, Quercus grisea; ile, Quercus ilex; pub, Quercus
pubescens; rob, Quercus robur; rub, Quercus rubra
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in Schwilk et al. 2016; but see Taneda and Sperry 2008). Direct imaging techniques
such as X-ray computed microtomography (microCT) are promising to solve this
vexing issue (Cochard et al. 2015), and have recently been applied to measure the
vulnerability to embolism of Q. robur, a ring-porous oak (Choat et al. 2016). The
W50 obtained for living, intact Q. robur plants using microCT was −4.2 MPa, much
lower than the W50 values obtained in the same study using the cavitron or static
centrifuge techniques (−1.4 and −0.5 MPa, respectively), and also much lower than
values reported in other studies using the centrifuge (−1.4 MPa, Cochard et al.
1992) and even the bench dehydration method (−2.8 MPa, Venturas et al. 2016).
However, even microCT seems to give highly variable vulnerability curves within
species (Nardini et al. 2017) and concerns have been raised about the correct
interpretation of microCT results (Hacke et al. 2015). In addition, we note that as
promising as the microCT technique is by being able to measure and visualize
embolized conduits non-invasively, it does not directly measure the hydraulic
impact of embolism. Studies modelling water transport in the xylem network show
that conductivity is lost faster than the number of vessels (or the estimated theo-
retical conductivity in cross-sections) as water potential declines (Loepfe et al.
2007; Martínez-Vilalta et al. 2012), which could result in overestimating the re-
sistance to embolism when using microCT (relative to purely hydraulic methods).

Before all these methodological issues are completely settled and standardized
protocols are developed (Jansen et al. 2015), it can only be recommended that
extreme care is taken at applying methodological protocols to measure hydraulic
properties of oaks, and that different methodologies are compared whenever pos-
sible. In the following sections, we have taken an agnostic approach, using all data
included in our database but always separating the W50 values obtained from sig-
moidal and exponential vulnerability curves.

8.3.2 An Overview of Oak Vulnerability to Embolism

The average stem vulnerability to embolism (W50) for the 32 oak species included
in our dataset is −2.5 ± 0.3 MPa (mean ± SE), ranging from −0.5 MPa for Q.
fusiformis (McElrone et al. 2004) and Quercus turbinella (Hacke et al. 2006) to
−7.0 MPa for Quercus coccifera (Vilagrosa et al. 2003). This overall mean is close
to the general average for angiosperms as reported in Choat et al. (2012)
(−2.9 ± 0.1 MPa, N = 361 species excluding oaks). However, if only sigmoidal
vulnerability curves are included W50 declines to −3.6 ± 0.3 MPa (N = 18 spe-
cies), which suggests that the oak genus may be a relatively resistant one within
angiosperms. Root vulnerability to embolism has been only measured in seven oak
species, with an average W50 of −1.1 ± 0.2 MPa. Note, however, that the shape of
all reported root vulnerability curves is exponential, except for two curves measured
on Q. ilex by Limousin et al. (2010). When root and stem P50 were compared
pairing the values by species and considering only studies in which both organs had
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been measured (mixed-effects model), the difference between organs was only
marginally significant (P = 0.05), with root W50 being more vulnerable by 0.4 MPa
on average.

We studied how stem W50 depends on taxonomic grouping, species biome,
ring-porosity and leaf phenology. Due to limitations in sample size and close
correspondence between some of these variables (e.g. most ring-porous oaks are
deciduous) we assessed the effect of each variable separately, and thus our analyses
are only meant to uncover broad associations. In all analyses the shape of the
vulnerability curve (sigmoidal vs. exponential) was considered as a co-variate. Our
results show that section Cerris has significantly lower (more resistant)W50 than the
Quercus or Lobatae sections (P = 0.04 in both cases), whereas the only species in
the section Mesobalanus (Q. frainetto) showed intermediate values. This is con-
sistent with two of the three species in section Cerris being Mediterranean ever-
green oaks adapted to dry habitats (Q. coccifera and Q. suber). No significant
difference was observed among biomes, although Mediterranean/semi-arid species
tended to have lower (more negative) W50. Ring-porous oaks were more vulnerable
to embolism (modelled W50 = −2.1 ± 0.2 MPa, N = 22; compared to
−3.2 ± 0.4 MPa for diffuse-porous species, N = 6). Similar differences were
observed between deciduous (−2.1 ± 0.2 MPa, N = 19) and evergreen species
(−2.8 ± 0.3 MPa, N = 13), although in this case the effect was only marginally
significant (P = 0.06). Overall, the data are consistent with evergreen,
diffuse-porous oaks occupying drier habitats being able to withstand more negative
water potentials (being more drought tolerant) than species from wetter
environments.

The results we showed are in line with earlier studies showing an association
between oak species traits and their distribution along gradients of water availability
(Monk et al. 1989; Villar-Salvador et al. 1997; Corcuera et al. 2002;
Cavender-Bares et al. 2004), albeit some studies report contrasting associations for
sympatric species (e.g. Knops and Koenig (1994) found that deciduous species
were more drought tolerant).

Freezing-induced xylem embolism is an additional element that needs to be
considered when relating xylem traits with oak distribution. The relatively wide
xylem vessels of oaks, together with the well-known relationship between conduit
size and vulnerability to freezing-induced embolism has been linked with the
absence of oaks from cold climates prone to late frosts (Tyree and Cochard 1996).
Within oaks, several studies have shown that deciduous species, which tend to have
wider xylem vessels, are more vulnerable to freezing-induced embolism than ev-
ergreen species (Cavender-Bares and Holbrook 2001; Cavender-Bares et al. 2005),
mimicking the patterns obtained for drought-induced embolism. Differences in
freezing-induced embolism are also influenced by evolutionary lineage, with white
oaks (section Quercus) being more vulnerable to freezing than live oaks (all ev-
ergreen) than red oaks (section Lobatae, including both evergreen and deciduous
species) (Cavender-Bares and Holbrook 2001).
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8.3.3 Hydraulic Conductivity and the Hydraulic
Safety–Efficiency Trade-Off

The average stem KS,max for the species included in our dataset is
2.0 ± 0.3 kg m−1 MPa−1 s−1 (N = 41 species; values calculated after
back-transformation from log-transformed data). The individual species values
range from 0.3 kg m−1 MPa−1 s−1 (Q. coccifera; Vilagrosa et al. 2003) to
6.3 kg m−1 MPa−1 s−1 (Quercus aliena; Fan et al. 2011), and have a markedly
right-skewed distribution. Consistent with the relatively large vessels of oaks (see
Sect. 8.2.1), their average KS,max is larger than the overall mean for angiosperms
(1.5 ± 0.1 kg m−1 MPa−1 s−1, N = 573 species excluding oaks; data from Gleason
et al. 2016). Root KS,max is only available for seven species, with an overall average
of 7.1 ± 0.9 kg m−1 MPa−1 s−1, significantly higher than the value measured on
stems for these same species (P = 0.004; mixed-effects model of log(KS,max)).

As before, we also modelled log(KS,max) as a function of taxonomic grouping,
species biome, ring-porosity and leaf phenology. The results reveal significantly
higher stem KS,max for species in section Lobatae (N = 15) than in section Cerris
(N = 3) (P = 0.01), with Quercus species (N = 23) showing intermediate values
(no data available for section Mesobalanus). However, these results should be taken
with care because only three representatives of the section Cerris were included
(Quercus acutissima, Q. coccifera and Q. suber). Temperate species (N = 23) have
higher KS,max than Mediterranean/semi-arid species (N = 14) (P = 0.02), with the
four measured tropical species showing intermediate values. We also observed
marginally higher KS,max in ring-porous (N = 26) relative to diffuse-porous species
(N = 7) (P = 0.08). There was no difference in KS,max between deciduous and
evergreen species (N = 22 and 19 species, respectively).

Data for oaks show clear indications of a hydraulic safety–efficiency trade-off,
with a positive exponential relationship between W50 and KS,max (Fig. 8.5). This
effect is highly significant (P = 0.001, overall R2 = 0.42 when the effect of vul-
nerability curve type is accounted for in the model, N = 29 species) and particularly
clear for species with sigmoidal vulnerability curves, whereas no relationship
between W50 and KS,max was detected for species with exponential vulnerability
curves (Fig. 8.5). This clear trade-off (at least when considering sigmoidal curves)
contrasts with the poor relationship observed when all angiosperms are considered
(R2 = 0.05 according to Gleason et al. 2016). We did not find evidence for the
clustering of oak species in the low efficiency–low safety corner, contrary to what
has been found in previous studies covering a wider range of species (Gleason et al.
2016).
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8.3.3.1 Huber Value and Relationships Between Allocation
and Hydraulic Conductivity

The balance between water supply by the xylem and water demand by the canopy is
mediated primarily by the relative allocation to these two tissues, a quantity vari-
ably named leaf-sapwood area ratio (leaf area divided by sapwood area) or Huber
value (HV, sapwood area divided by leaf area, Tyree and Ewers 1991). This allo-
cation ratio is central to the interpretation of all measurements of plant hydraulics
and water relations, because any estimate of the capacity of the xylem to efficiently
conduct water per unit of sapwood area (i.e. KS,max) depends on the total
cross-sectional area through which water flows and the area of the leaves distal to
this section that transpires this water. In addition to the balance between water
supply and demand, the Huber value affects also indirectly the balance between
vulnerability to embolismW50 and the minimum water potentialWmin that plants are
willing to sustain, because at constant values of KS,max andW50, greater allocation to
leaf area relative to cross-sectional sapwood area will increase the demand on the
xylem and the tension that the conductive system is expected to work under (e.g.
Gleason et al. 2016). Several compensating mechanisms may allow plants to avoid
or moderate the emerging trade-off between hydraulic safety and efficiency that was
discussed in the previous section and which appears to be present also in Quercus.
One important mechanism of compensation is the one involving the Huber value.

We considered therefore the relationships between the hydraulic traits mentioned
above and Huber value. Consistent with a global relationship found elsewhere for

Fig. 8.5 Relationship
between hydraulic safety
(W50) and efficiency (natural
log of KS,max) for 29 oak
species. Symbol colour
indicates differences between
vulnerability curve shapes
(exponential vs. sigmoidal).
The positive relationship
between the two variables is
highly significant (P = 0.001,
overall R2 = 0.42 when the
effect of vulnerability curve
type is accounted for in the
model)
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angiosperms (Rosas et al. unpubl.), a negative relationship was also found here
between Huber value and maximum specific conductivity KS,max, although the
relationship for the genus Quercus was only marginally significant (P < 0.001 for
the global relationship and P = 0.10 for the 31 oak species documented here,
Fig. 8.6). Although only marginally significant, the negative relationship in oaks
suggests the occurrence of compensation mechanisms between high allocation to
supporting sapwood area and formation of a highly conductive xylem. Neither of
the two slopes were significantly different from b = −1.00 (i.e. 95% CI = −0.94 to
−1.13 for all angiosperms and −0.83 to −1.69 for the oaks). Given that the
leaf-specific conductivity KL equals the product between KS,max and HV, a slope of
−1.0 is expected if all oak species had on average a constant KL resulting in a
perfect compensation. Obviously, more data across a larger sample of Quercus
species are required to determine the degree of robustness of the relationship given
here and therefore whether the genus Quercus also show compensation between
water transport efficiency per unit of cross-sectional area and relative allocation
between leaf area and sapwood area.

We then modelled HV as a function of various grouping factors, as done in other
sections above. Logarithmic transformation into log(HV) was required to achieve
normality. A significantly lower stem HV was found for species in section Lobatae
(N = 13) and marginally Quercus (N = 18) than in section Cerris (P = 0.03 and

Fig. 8.6 Relationship between the (natural) logarithm of Huber value and the (natural) logarithm
of the maximum specific hydraulic conductivity for 375 non-oak angiosperms (Rosas et al.
unpubl.) and for 31 Quercus species. Oak species are separated according to their phenology
(evergreen vs. deciduous). The P-values refer to the significance of the negative relationships
shown for the two datasets. Lines were fitted by standardised major axis regression
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P = 0.08, respectively), but only one representative of the section Cerris was
present (Q. coccifera), so this relationship is very weak despite its level of sig-
nificance. No difference was found between temperate species (N = 21), tropical
(N = 1) and Mediterranean/semi-arid species (N = 10). A significantly lower HV

(P = 0.006) was found in ring-porous (N = 21) than in diffuse-porous species
(N = 3), consistent with the (marginally) higher KS,max found in ring-porous species
(Sect. 8.3.3). Deciduous species (N = 17) had significantly lower HV (P = 0.013)
than evergreens (N = 15).

8.3.3.2 Hydraulic Safety Margins and Drought Responses

Our data for oaks shows a strong coordination between the minimum leaf water
potential measured for a given species (Wmin) and its vulnerability to embolism
(P50) (P < 0.001, overall R2 = 0.67 when the effect of vulnerability curve type is
accounted for in the model, N = 25 species) (Fig. 8.7), consistent with previous
reports at community (e.g. Pockman and Sperry 2000; Martínez-Vilalta et al. 2002;
Jacobsen et al. 2007) and global levels (Choat et al. 2012). Interestingly, the slope
of this relationship for oaks appears to be similar to the global slope for angios-
perms, whereas the intercept is smaller (Fig. 8.7), implying narrower hydraulic

Fig. 8.7 Relationship between hydraulic safety (W50) and minimum leaf water potential (Wmin)
for 25 oak species. Symbol colour indicates differences between vulnerability curve shapes
(exponential vs. sigmoidal) and symbol shape distinguishes between leaf phenology (deciduous vs.
evergreen). The overall linear fit to the data is shown as a continuous black line. The dotted line
indicates the global fit for angiosperms from Choat et al. (2012), and the dashed line is the 1:1
relationship
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safety margins (HSM) for oaks. The relatively narrow hydraulic safety margins for
oaks are robust to differences in the shape of vulnerability curves. The slope of the
relationship, however, must be interpreted with caution, as our data shows no
significant relationship between Wmin and W50 for exponential curves, whereas the
slope of the relationship for sigmoidal curves is highly significant and steeper (1.3,
95% confidence intervals: 0.8–1.8) than the overall slope for angiosperms (0.8;
Choat et al. 2012). A slope >1 implies that the hydraulic safety margin is narrower
for species having lower W50 or experiencing more negative Wmin.

The relationship between Wmin and W50 was similar for temperate and
Mediterranean/semi-arid oak species, even though the latter species tended to have
lower Wmin and W50 and, thus, be located towards the bottom-left corner of the
graph (not shown). On the other hand, the compiled oak data show a marginal effect
of leaf phenology on the relationship between Wmin and W50 (P = 0.071), with both
species types having similar slopes but evergreen species having narrower hydraulic
safety margins (0.9 MPa on average) (Fig. 8.7). This result and particularly the fact
that hydraulic safety margins are nearly always negative for evergreens (regardless
of the shape of the vulnerability curve) is rather counter-intuitive. Note, however,
that these narrower hydraulic safety margins for evergreens do not arise from
greater vulnerability to embolism (rather the opposite, as we have seen before) but
from lower minimum water potentials at a given xylem vulnerability. This pattern
suggests either a more risk-averse strategy for deciduous species or adaptations in
other parts of the soil-plant-atmosphere-continuum allowing evergreen species to
sustain proportionally greater xylem stress. These adaptations may include a higher
Huber value and, thus, higher leaf-specific hydraulic conductivity KL in evergreens
(e.g. Cavender-Bares and Holbrook 2001) or systematic differences in stomatal or
rooting behaviour. As shown in the previous section, across 32 species a trend of
increased Huber value in evergreen species was indeed found, supporting the
explanation above.

8.4 Concluding Remarks

Oak species are very diverse in their ecology and life history, and this diversity is
also reflected in their xylem anatomy and function. In this chapter, we have
reviewed the main aspects of the xylem structural properties at vessel and tissue
level, as well as the hydraulics of oaks. We have done so by combining qualitative
reviews from the primary literature when data availability is relatively low or
disperse, with quantitative syntheses for the variables for which consolidated
databases already existed, some of which have been expanded substantially. We
admit that by working with heterogeneous data sources generally covering a small
percentage of overall oak diversity, as well as by ignoring intra-specific variability
(our analyses are focused at the species level), we are making important assump-
tions that may limit our capacity to draw general conclusions. Despite these caveats,
some general patterns emerged that are summarized in the following paragraphs.
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Some of these patterns appeared to be specific for oaks and, in our opinion, merit
further investigation.

From a wood anatomical perspective, oaks are characterized by relatively low
vessel density and medium to high vessel sizes, which result in low lumen fractions
and, everything else being equal, high mechanical strength. Although hydraulic
conductivity is highly sensitive to the lumen fraction (Zanne et al. 2010), oaks do
not seem to pay an important price in terms of transport efficiency, as they are
characterized by relatively high sapwood-specific hydraulic conductivity (KS,max)
relative to other angiosperms. This is likely related to the presence of long vessels in
many oak species and it might be related to relatively high permeability of their
inter-vessel pit connections. Long vessels contribute towards increasing the con-
nectivity of the xylem network (sensu Loepfe et al. 2007). However, the high
percentage of solitary vessels, characteristic of oaks, has the opposite influence. The
net effect of these two patterns on the connectivity of the xylem network remains to
be elucidated as is the role of tracheids in conduction. High KS,max in oaks tends to
be associated with high investment in leaf area per unit of cross-sectional sapwood
area (low Huber value), similar to the pattern observed when all angiosperms are
considered.

Oak vulnerability to embolism (W50) appears to be extremely variable, and its
measurement is plagued with methodological issues that limit our capacity to draw
general conclusions. Many published values appear hard to recognize with the
known ecology of the species, but even when all data were pooled together (while
accounting for methodological effects in models) some clear patterns emerged.
Firstly, a strong safety–efficiency trade-off between KS,max and W50 was observed
for oaks, much clearer than the pattern reported when all angiosperm species were
considered. Secondly, oaks followed a similar relationship betweenW50 and the leaf
minimum water potential experienced in the field (Wmin) to the one reported for
angiosperms (Choat et al. 2012) but with even narrower hydraulic safety margins.
Importantly, this pattern held even when only sigmoidal vulnerability curves were
considered. This result has important implications in the context of increased fre-
quency and intensity of extreme drought events under ongoing climate change,
which has already affected several oak species worldwide (see Chapter on drought-
induced oak decline in this book). At the same time, however, many oak species
show high resprouting capacity, frequently resulting in fast recovery after canopy
dieback (e.g. Lloret et al. 2004).

With regards to patterns of variation within the Quercus genus, we report
consistent differences among taxonomic groups, particularly between sections
Quercus and Lobatae, on the one hand, and Cerris, on the other. The former
sections had smaller but more numerous vessels, lower wood density, more vul-
nerable xylem and generally higher conductivity (KS,max). These differences do not
necessarily agree with expected relationships between wood anatomy and function,
as high densities of smaller vessels are normally interpreted as an indicator of high
resistance to embolism (e.g. Pfautsch et al. 2016), illustrating the complexities of
making this type of generalizations even when comparing phylogenetically close
species within the same genus. These consistent differences among taxonomic
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groups were partially reflected in broad scale biogeographic patterns, with tem-
perate oak species having higher conduit density and lower wood density than
tropical species. Temperate oak species had also higher conductivity (KS,max) than
Mediterranean/semi-arid species, and tended to be more vulnerable to embolism,
consistent with the expectations based on differential drought exposure in these
different biomes.

Ring-porosity and leaf phenology are highly associated in oaks, with most ev-
ergreen species being diffuse-porous and most deciduous species being ring-porous.
In agreement with this, we frequently observed consistent patterns when assessing
the effects of these two variables. Although we did not observe clear patterns in
vessel anatomy between these groups, probably reflecting limited sample size and
methodological heterogeneity, we found clear differences in wood density and
hydraulic traits. Ring-porous (deciduous) species had lower wood density, higher
hydraulic conductivity (KS,max) and were more vulnerable to xylem embolism,
consistent with expectations based on the fact that these species do not generally
occupy dry environments. How these patterns relate with other stress factors (e.g.
low temperatures) and with overall plant resource-use strategies is an important
question that merits further investigation.
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Chapter 9
The Role of Mesophyll Conductance
in Oak Photosynthesis: Among-
and Within-Species Variability

José Javier Peguero-Pina, Ismael Aranda, Francisco Javier Cano,
Jeroni Galmés, Eustaquio Gil-Pelegrín, Ülo Niinemets,
Domingo Sancho-Knapik and Jaume Flexas

Abstract Oak species show a wide range of variation in key foliage traits deter-
mining the leaf economics spectrum, including the leaf dry mass per unit area
(LMA) and photosynthetic capacity. Though it is well known that stomatal con-
ductance plays a major role in determining maximum rates of carbon assimilation,
other factors such as mesophyll conductance to CO2 (gm) can constrain the rate of
photosynthesis and, under certain conditions, be the most significant photosynthetic
limitation. First, this chapter addresses the differences in the photosynthetic limi-
tations imposed by gm between deciduous and evergreen oak species, covering the
role of variations in several leaf anatomical traits determining the variability in gm
and photosynthetic capacity. This analysis emphasizes that cell-wall thickness of
mesophyll cells and the chloroplast surface facing intercellular air spaces are the
two main anatomical traits contributing to changes in gm, and as consequence have
a high relevance in the carbon fixing capacity of leaves within the genus Quercus.
The second part of the chapter analyses the within-species variation of gm and
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photosynthesis rate in oaks as related to long-term variations in site climate (genetic
and plastic variability) and to shorter-term variation in environmental drivers (e.g.
drought stress and light availability) and during leaf ontogeny. The results of this
analysis demonstrate a very high variability within-species across species range and
in response to shorter-term environmental drivers, ultimately underlying the success
of several Quercus species in many ecosystems worldwide.

9.1 Introduction

9.1.1 A Synopsis About the Photosynthesis in C3 Plants

The vast majority of plants and, ultimately, the ecosystem primary productivity on
Earth depend on the fixation of atmospheric CO2 from the atmosphere by green
tissues, in the process termed photosynthesis. Photosynthesis needs the energy from
the sun to reduce the molecule of CO2 into phosphorylated sugars that may be
exported out of the leaf. Significantly, the study of photosynthesis is often divided
into the processes that are directly regulated by the light absorption (light reactions),
which involve the production of ATP and NADPH in the thylakoid membrane, and
those in the chloroplastic stroma catalysed by enzymes of the Calvin-Benson cycle
that use the products of the former for the fixation of CO2 (dark reactions) (Emerson
and Arnold 1932). Photosynthesis relies on sunlight, but it can also be considered as
a diffusion process, because CO2 from the atmosphere has to diffuse into the leaf as
the CO2 concentration in the air spaces of the leaf mesophyll and further in the
chloroplast stroma where photosynthesis takes place is smaller than that in the
external air. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase
(Rubisco) that is responsible for CO2 fixation into the first organic carbon inter-
mediate is the driving force depleting chloroplastic CO2 concentration, and thus,
generating this gradient. Other photosynthetic organisms with active CO2 con-
centrating mechanisms, e.g. C4 grasses, are able to increase the CO2 concentration
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inside the chloroplasts above the ambient (Raven and Beardall 2016), but oaks
belong to the older group of plants performing C3 photosynthesis where as in any
enzymatic process the rate of carbon fixation depends on the availability of sub-
strate. Furthermore, O2 competes for the active site of Rubisco with CO2 and for
any O2 fixation 0.5 CO2 is emitted as consequence of photorespiration, fostering the
decrease of net carbon fixation at low concentration of CO2 inside the chloroplasts
(Laing et al. 1974).

According to the biochemical model of leaf photosynthesis (Farquhar et al.
1980), the net CO2 assimilation rate (AN) is hyperbolically dependent on the
availability of CO2 at the chloroplast stroma (Cc). In plants with the C3 photo-
synthetic mechanism, including all Quercus species, two different parts are
described along the AN–Cc response curve: at low Cc, AN is limited by Rubisco
activity and Cc, while at high CO2 where the AN–Cc response starts to saturate, AN

is limited by the regeneration of the RuBP, to which CO2 is bound. RuBP regen-
eration, in turn, is limited by the rate of photosynthetic electron transport that
increases hyperbolically with increasing light intensity. Under the current CO2

atmospheric concentration (Ca) and saturating light, AN is limited by the activity of
Rubisco and is mathematically expressed as:

AN ¼ BðCc � 0:5O=SC=OÞkccat
Cc þKair

C

� Rd ð9:1Þ

where B is the concentration of active Rubisco sites, O is the concentration of
oxygen in the chloroplast stroma (assumed to be in equilibrium with that in the
atmosphere), SC/O is the Rubisco specificity factor for CO2/O2, kcat

c is the car-
boxylase maximum turnover rate of Rubisco, Kc

air is the Rubisco Michaelis-Menten
affinity constant for CO2 under atmospheric conditions, and Rd is the rate of
mitochondrial respiration. Apart from Rd, Eq. 9.1 demonstrates that the photo-
synthetic CO2 assimilation rate in C3 plants depends on two main components:
(i) the diffusive component: Cc, which is determined by the efficiency of transfer of
CO2 from the atmosphere to the sites of carboxylation and the leaf capacity for CO2

fixation, and (ii) the biochemical component (B, SC/O, kcat
c and Kc

air), related to the
abundance, activation state and catalytic traits of Rubisco. The present chapter deals
with the role of mesophyll conductance (gm) governing the CO2 transfer from the
leaf sub-stomatal cavities to the chloroplasts and, thus, strongly controlling pho-
tosynthesis in oaks.

9.1.2 The Diffusion Factor: Leaf Mesophyll
Conductance to CO2

Two resistances dominate the pathway from the atmosphere to the sites of car-
boxylation. The first is the stomata, which regulates the diffusion of CO2 from the
atmosphere to the sub-stomatal cavities and the diffusion of H2O in the opposite
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direction. The following equation, derived from Fick’s first law of diffusion, relates
the stomatal conductance (gs) and the photosynthetic CO2 assimilation rate:

AN ¼ ðCa � CiÞgs ð9:2Þ

where Ca and Ci are the atmospheric and sub-stomatal CO2 concentrations,
respectively.

The second part of the CO2 pathway within the leaves is the diffusion of CO2

from the sub-stomatal cavities to the sites of carboxylation, and consists of resis-
tances in both the gaseous and liquid phases through intercellular air spaces, cell
walls, plasmalemma and chloroplast envelope, and cytosol and chloroplast stroma.
All these resistances are collectively referred as the mesophyll resistance and its
inverse, the mesophyll conductance (gm). Analogously to Eq. 9.2, the relationship
between gm and AN is expressed as:

AN ¼ ðCi � CcÞgm ð9:3Þ

Evidence has accumulated that gm is finite and variable, and that spans widely
among plant functional groups with contrasting leaf structural properties (Flexas
et al. 2008, 2014). For instance, gm is typically higher in annual plants, intermediate
in deciduous plants and lower in evergreens (Flexas et al. 2014). Actually, gm
correlates with leaf structural properties such as the leaf dry mass per unit area
(LMA) (Flexas et al. 2008; Niinemets et al. 2009a, b), but also, at a lower structural
scale, with the mesophyll and/or chloroplast surface area directly exposed to
intercellular air spaces (Tosens et al. 2012a; Tomás et al. 2013; Peguero-Pina et al.
2017a), and due to the structural effects, gm can also change with chloroplast
movements that promotes higher exposed chloroplast surface (Tholen et al. 2008).

Nevertheless, gm also shows a plastic behavior independently of structural controls,
both in the long (days, weeks) and short (minutes, hours) term in response to many
environmental variables, including light, temperature, water and CO2 availability in a
similar manner than gs does (Flexas et al. 2008). Consequently, while the structure sets
the physical limit formaximumvalues ofgm, rapid adjustments ofgmcan be attributable
to rapid biochemical processes. The most likely candidates for the most dynamic gm
changes are carbonic anhydrase and aquaporins, which facilitate the dissolution and
diffusion of CO2 in the mesophyll compartments (Gillon and Yakir 2000; Heckwolf
et al. 2011; Pérez-Martín et al. 2014; Sade et al. 2014; Niinemets et al. 2017).

A finite and variable gm has important implications for plant ecology and
resource use efficiency. From a global perspective, the leaf economics spectrum
(LES) describes the coordinated variations in leaf structural, chemical and photo-
synthetic characteristics (Wright et al. 2004). LES runs from the low return end,
characterized by low nitrogen content per dry mass (Nm), low photosynthetic
capacity per leaf dry mass (Amass), and high LMA and high leaf longevity, to the
high return end characterized by opposite variation in these key leaf traits (Fig. 9.1;
see also Wright et al. 2004). Moreover, the LES underpinned by leaf anatomical
changes is associated with trade-offs in leaf functional performance (reviewed
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recently in Onoda et al. 2017). Among these trade-offs are the structural controls on
gm, in particular, leaf thickness and density, i.e. the components of LMA
(Niinemets 1999), which set a limit to the maximum gm in agreement with LES
(Onoda et al. 2017). Therefore, interspecific differences in gm are aligned with the
spectrum of ecological strategies arising from LES: fast-growing, high photosyn-
thetic capacity and high gm species from resource-rich environments versus
slow-growing, low photosynthetic capacity and low gm species with a high per-
sistence under environmental stress and low resource availabilities.

As CO2 diffusion into the leaf is inevitably bound to the loss of water through
the stomata, use of water is intimately related to CO2 fixation. From Eqs. 9.2 and
9.3 it follows that AN can be increased by rising gs, gm or both. However, increasing
gs would decrease the ratio AN/gs, and therefore the intrinsic water use efficiency,
and thus, be the strategy for the species in the fast end of the economics spectrum.
In contrast, increasing gm/gs would favor AN/gs and improve the performance in
drought-prone environments (Flexas et al. 2013, 2016).

9.2 Oak Photosynthesis in the Context of the Worldwide
Leaf Economics Spectrum

Apart from global variation in leaf traits across all species discussed above, there
are important variations in foliage characteristics among species within given genus
driven by evolutionary adjustments to environment. Furthermore, there are major
trait variations within species driven by both plastic and ecotypic variations to site
climate (Vasseur et al. 2012; Violle et al. 2012; Niinemets 2015, 2016a). Due to

Fig. 9.1 The log-scale relationships between photosynthetic capacity per leaf dry mass (Amass)
and leaf dry mass per unit area (LMA) (left panel) and nitrogen content per dry mass (Nm) (right
panel). White dots represent the original dataset in Wright et al. (2004), with more than 1000
species from all over the world. Red dots are data for different Quercus species, and green dots
data for Quercus ilex only

9 The Role of Mesophyll Conductance in Oak Photosynthesis … 307



differences in selection pressures and environmental heterogeneity, trait variation in
within-species economic spectra might somewhat differ from the global trends in
trait variation in the worldwide LES (Niinemets 2015; Harayama et al. 2016).

A meta-analysis of leaf trait variation among 39 Quercus species (altogether 203
observations obtained from the dataset of Maire et al. 2015) demonstrated a major
variation in all key leaf traits with LMA varying 6.3-fold, Nm by 4.2-fold and Amass

by 8.2-fold (Fig. 9.1). In comparison with the global LES, different Quercus data
primarily positioned to the intermediate to lower return end of the spectrum
(Fig. 9.1), covering still a high span within the full LES, but consistent with the low
growth rate and conservative resource use of Quercus species (Reich 2014). This
result provides a nice demonstration of how evolutionary modifications within a
single genus have resulted in coordinated variation in leaf traits, suggesting that
LES is a result of convergent evolution of leaf traits.

Apart from convergence, species ecological strategies, e.g. drought and shade
tolerance, can significantly affect LES patterns (Hallik et al. 2009). In fact, analysis of
leaf trait data for the Mediterranean evergreen Q. ilex—the species with the best data
coverage within the Quercus genus—indicates that there is still room for differen-
tiation within the general global trends of LES. Even within this single species, LMA
varied 2.1-fold, Nm 4-fold and Amass 3.1-fold, and the trait variations were apparently
part of the global LES (Fig. 9.1), i.e. similar variations as those described by
Niinemets (2015). Yet, the position of leaf traits in bivariate relationships indicates
that Q. ilex clearly operates at the lower return end of Quercus genus. Furthermore,
Amass versus Nm response in Q. ilex was shallower than that for the global response
and for all Quercus considered together (Fig. 9.1), suggesting that increases in nu-
trient availability only moderately enhance photosynthesis for this lower return end
species. This evidence collectively indicates that LES is a valuable concept sum-
marizing the overall variation in leaf traits within Quercus genus, but also that more
species-level analyses are needed to gain insight into the effects of ecological
strategies on species deviations from genus-level and global LES.

The recent study by Onoda et al. (2017) has highlighted some mechanistic traits
underlying the observed LES, including nitrogen allocation to Rubisco versus cell
walls, anatomical traits and mesophyll conductance to CO2 (gm). These authors
concluded that, globally, gas diffusion limitations associated with low gm and thick
cell walls in species with large LMA explained low photosynthesis in such species
better than concomitantly lower N allocation to Rubisco. The fact that the Amass

versus Nm response was shallower in Q. ilex than the Amass versus LMA response
also suggests that, at least for this species, gm is more limiting for photosynthesis
than enzymatic processes associated with carboxylation. Indeed, Peguero-Pina et al.
(2017b) have confirmed that gm is by far the most limiting factor for photosynthesis
in a collection of Q. ilex provenances, and Peguero-Pina et al. (2017a) have shown
that this is a general pattern across Quercus species with different leaf life span. The
next sections of this chapter are devoted to explain how mesophyll conductance
restricts photosynthesis in Quercus species, and how gm in Quercus species is
regulated at the leaf anatomical level.

308 J. J. Peguero-Pina et al.



9.3 Mesophyll Conductance Constraining Photosynthetic
Activity: Evergreen Versus Deciduous Oak Species

The increasing interest of plant physiologists on the role of mesophyll conductance
to CO2 (gm) in the photosynthetic process is reflected in the number of studies
published in recent years addressing the ecophysiological significance of gm and its
regulatory mechanisms (see Flexas et al. 2012 and references therein). Up to now,
gm has been estimated for more than 100 species from all major plant groups,
mainly for Spermatophytes (angiosperms and gymnosperms), with only very few
data for ferns, liverworts and hornworts (Flexas et al. 2012; Carriquí et al. 2015;
Tosens et al. 2016).

The number of studies concerning gm in Quercus is also relatively limited, in
spite of the great ecological importance of this genus in the Northern Hemisphere
(Breckle 2002). Specifically, gm has been estimated in ca. 20 evergreen and
deciduous oak species, from different sections, climates and geographic locations
(see Table 9.1 and references therein). Regarding the deciduous species, several
authors have studied gm variations in some of the most representative oaks widely
distributed under temperate-nemoral climate both in Europe (Q. robur and
Q. petraea) and North America (Q. rubra). Moreover, the role of gm in the pho-
tosynthetic activity has been also analyzed in deciduous oaks occurring under
Mediterranean-type climates, such as Q. faginea, Q. canariensis, Q. pyrenaica,
Q. pubescens and Q. garryana. On the other hand, regarding evergreen oaks, a
large number of studies have looked at gm in Q. ilex (see Table 9.1 and references
therein), a keystone Circum-Mediterranean tree species which displays a huge
morphological and functional variability (Peguero-Pina et al. 2014, 2017b;
Niinemets 2015). Recently, Peguero-Pina et al. (2017a) have compared the pho-
tosynthetic traits and the different photosynthetic limitations in seven representative
Mediterranean oaks from Europe/North Africa and North America. Besides
Mediterranean oaks, gm has been also estimated in other evergreen oak species from
warm temperate or tropical mountain climates from East Asia (Table 9.1). Overall,
these studies collectively indicate that gm plays a key role in the photosynthetic
process of Quercus species, being in many cases the most limiting factor for carbon
assimilation.

LMA is one of the most important functional traits that clearly separates ever-
green and deciduous oaks (Abrams 1990; Corcuera et al. 2002). There is a general
consensus that an increased LMA would negatively affect the mass-based photo-
synthetic performance of the plant (see Sect. 9.1.2 in this chapter) (Wright et al.
2004, 2005), which has been associated to a higher investment in
non-photosynthetic tissues and/or a lower efficiency of the photosynthetically active
mesophyll (Niinemets et al. 2009a, b; Hassiotou et al. 2010). However, when
considered globally, the relationship between LMA and area-based net CO2

assimilation (AN) is less clear and could be modulated by the influence of both
diffusive and biochemical factors (e.g. Peguero-Pina et al. 2017a, b).
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In oaks, a meta-analysis of photosynthetic traits indicated that there were no
significant differences in AN between evergreen and deciduous species (altogether
19 Quercus species), despite higher LMA in the evergreens (Fig. 9.2, P < 0.01).
Stomatal conductance (gs) did not differ between evergreen and deciduous oak
species (Fig. 9.2), but gm was lower for evergreen oak species (Fig. 9.2, P < 0.1).
On the other hand, the maximum velocity of carboxylation (Vc,max) and maximum
capacity for photosynthetic electron transport (Jmax) were slightly higher for
evergreens, although the differences were not statistically significant (Fig. 9.2).
Flexas et al. (2014) found that Mediterranean evergreen plants compensate their
lower gm with a larger Vc,max to reach similar AN values to other plant groups.
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Fig. 9.2 Leaf dry mass per unit area (LMA), net CO2 assimilation rate (AN), stomatal conductance
for H2O (gs), mesophyll conductance (gm), maximum velocity of carboxylation (Vc,max) and
maximum capacity for photosynthetic electron transport (Jmax) for evergreen (EVE) and deciduous
(DEC) Quercus species (see Table 9.1 for data sources). Data are mean ± SE. Asterisk and triple
asterisk indicate significant differences between groups at P < 0.1 and P < 0.01, respectively
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Moreover, these authors also stated that both lower gm and higher Vc,max were
associated with larger LMA in Mediterranean evergreen plants. The predominant
role of both diffusive and biochemical factors in oak photosynthesis was also
evidenced by the existence of statistically significant relationships between AN and
gm (R2 = 0.29, P < 0.05) and between AN and Vc,max (R

2 = 0.36, P < 0.05) across
the compiled set of data (Fig. 9.3).

Besides these general trends, the striking absence of differences in AN between
evergreen and deciduous oaks despite the great differences in LMA can be
explained by considering the contrasting relationships found between LMA and
photosynthetic traits for each group (Fig. 9.4). In evergreen oaks, we found that AN

positively scaled with LMA (R2 = 0.44, P < 0.05), which could be related to the
existence of a synergistic effect caused by (i) the absence of influence of LMA on
gm and (ii) the strong positive influence of LMA on Vc,max (R2 = 0.79, P < 0.05)
(Fig. 9.4). Therefore, although gm is the most limiting factor for AN in many
evergreen species (Roupsard et al. 1996; Piel 2002; Flexas et al. 2014; Galmés et al.
2014; Niinemets and Keenan 2014), Vc,max would allow evergreen oaks reaching
similar values of net assimilation rate than those in deciduous species. The
explanation for the compensating greater Vc,max with increasing foliage robustness
in evergreen oaks could be a higher content of nitrogen per area, probably as a
result of overall greater number of cell layers and greater leaf volume in thicker
leaves (Niinemets 1999, 2015; Flexas et al. 2014; Peguero-Pina et al. 2017b), or a
higher proportional investment of nitrogen in photosynthetic enzymes within leaves
than in other evergreen woody species (Harayama et al. 2016). However, given that
the fractional investment of N in Rubisco is typically less in leaves with greater
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Fig. 9.3 Relationships between mesophyll conductance (gm) and net CO2 assimilation rate (AN)
(left panel) and between maximum velocity of carboxylation (Vc,max) and net CO2 assimilation rate
(AN) (right panel) for deciduous (DEC) and evergreen (EVE) Quercus species (data sources in
Table 9.1)
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LMA, the latter possibility seems less likely (Niinemets 1999; Onoda et al. 2017).
On the other hand, in deciduous oaks, a negative relationship was found between
LMA and gm (R2 = 0.40, P < 0.1; Fig. 9.4) By contrast, no significant relationships
were found between LMA and Vc,max and between LMA and AN (Fig. 9.4). In other
words, the possible “benefits” of increased LMA observed in evergreen oak species
were apparently absent in deciduous ones, further underscoring the contrasting trait
correlation networks.

In summary, deciduous oaks showed a negative scaling between gm and LMA,
which could be explained by (i) an increase in the resistance of the CO2 gas-phase
conductance associated with greater leaf thickness and density as LMA increases
(Niinemets et al. 2009a, b; Hassiotou et al. 2010; Tosens et al. 2012a; Tomás et al.
2013) and (ii) an increase in the resistance of the CO2 liquid-phase conductance due
to the thicker cell walls observed in species with high leaf density (Peguero-Pina
et al. 2012; Tosens et al. 2012a; Tomás et al. 2013). However, although these
generic limitations to gm would be also present in evergreen oaks as LMA
increases, we did not find a relationship between LMA and gm for this group of
species. This fact seems to indicate the existence of other anatomical compensatory
factors at cell-level that can counteract the negative influence of LMA in gm in
evergreen oaks as discussed in the next section.

9.4 The Role of Leaf Anatomy in the Variability
of gm in Quercus

As stated above, gm is often the most significant photosynthetic limitation, and its
variability is strongly driven by different leaf structural traits, such as LMA (Flexas
et al. 2012; Galmés et al. 2014; Niinemets and Keenan 2014). Besides LMA, there
are other leaf anatomical traits that quantitatively determine the variability in gm and
photosynthetic capacity among species and that can modulate the relationships of
gm with LMA, leaf thickness, leaf density and cell-wall thickness (see Fig. 9.5).
Among these traits, different studies have demonstrated major roles of the packing
of mesophyll cells relative to the distance and position of stomata, the mesophyll
and chloroplast surface area exposed to intercellular air space per unit leaf area
(Sm/S and Sc/S, respectively), and the chloroplast size (Terashima et al. 2011;
Tosens et al. 2012b; Tomás et al. 2013).

Regarding oaks, a few studies have analysed how leaf anatomy and ultrastructure
affect interspecific variability in gm and photosynthetic capacity. Hanba et al. (1999)
analyzed the influence of mesophyll thickness on gm for several evergreen tree species
in Japanese warm-temperate forests, includingQ. glauca andQ. phillyraeoides. These
authors found that leaveswith thickermesophyll (e.g.Q. phillyraeoides) tended to have
larger Sm/S values and smaller volume ratio of intercellular air spaces (i.e. lower
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mesophyll porosity), which implied a greater gm in thicker leaves with higher LMA
values. In this context, Peguero-Pina et al. (2017a) compared the morphological,
anatomical and photosynthetic traits and the share of different photosynthetic limita-
tions in seven Mediterranean oaks from Europe/North Africa (Q. coccifera, Q. ilex
subsp. rotundifolia, Q. ilex subsp. ilex and Q. suber) and North America (Q. agrifolia,
Q. chrysolepis and Q. wislizeni) with contrasting LMA values. They observed that gm
was the most limiting factor for carbon assimilation in these species, accordingly, the
variation in AN across species mainly resulted from the interspecific differences in gm.
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Moreover, they also found a good correlation betweenmeasuredgm from combined gas
exchange and chlorophyll fluorescencemeasurements (according toHarley et al. 1992)
and simulated gm estimated from anatomical measurements (Niinemets and Reichstein
2003; Tosens et al. 2012b). This confirms the main role of structural traits in deter-
mining photosynthetic differences among theseQuercus species. The detailed analysis
of the contributions of ultracellular and cellular components indicated that even the
most limiting component for CO2 diffusionwas the cellwall thickness in all species, but
differences ingmandANcould beprimarily attributed to differences inSc/S (seeFig. 6 in
Peguero-Pina et al. 2017a). An increase in Sc/S was achieved through higher values of
Sc/Sm and/or Sm/S, and the increase of the latter was due to an increase in mesophyll
thickness and LMA (Peguero-Pina et al. 2017a) similarly to the study of Hanba et al.
(1999).

The leading role of leaf anatomy in determining gm and AN has also been
reported for deciduous Quercus species (Peguero-Pina et al. 2016a). Comparing the
anatomical and photosynthetic traits of two deciduous oaks from western Eurasia
(Q. robur and Q. faginea), they found that the higher photosynthetic capacity of Q.
faginea was partly explained by variation in several leaf anatomical traits that
decreased the resistance to CO2 diffusion in the liquid phase (higher Sm/S and Sc/
S and lower chloroplast thickness) (Peguero-Pina et al. 2016a).

9.5 Within-Species Variation of Mesophyll Conductance
and Photosynthesis in Quercus

9.5.1 Genetic Factors

Only few studies have looked at the intraspecific variability in gm among cultivars
of several agronomic (Barbour et al. 2010; Galmés et al. 2013; Muir et al. 2014),
among mutants or genotypes of plant model species such as Arabidopsis thaliana
(Easlon et al. 2014), and among different clones or natural genotypes of forest tree
species (Soolanayakanahally et al. 2009; Théroux-Rancourt et al. 2015;
Milla-Moreno et al. 2016). This intraspecific variability according to different
genetic backgrounds within the same species could be relevant as observed for
other functional traits such as water use efficiency inferred from carbon isotopic
discrimination in response to drought (Roussel et al. 2009; Ramírez-Valiente et al.
2010), respiration of roots and leaves (Boolstad et al. 2003; Laureano et al. 2008),
functionality of photochemistry in response to freezing or water stress (Aranda et al.
2005; Cavender-Bares 2007; Koehler et al. 2012; Camarero et al. 2012) or even
plasticity in morpho-functional traits to light environment (Balaguer et al. 2001).
However, information on gm variability within Quercus is much scarcer, and up to
the present, only a few studies have compared variation in gm across
naturally-occurring genotypes in the Mediterranean evergreen species Q. ilex and in
the temperate deciduous species Q. robur.
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Different studies have underscored the great variability exhibited by Q. ilex
across its circum-Mediterranean distribution, both in terms of morphological and
ecophysiological traits such as xylem resistance to drought-induced embolism (see
Peguero-Pina et al. 2014 and references therein). In fact, as stated in Sect. 9.2, this
species has the best functional data coverage within the Quercus genus, showing a
major variation in foliage structural, chemical and photosynthetic traits (Niinemets
2015). Thus, Varone et al. (2016) found a range in gm spanning between 0.09 and
0.06 mol m−2 s−1 across five ecotypes of Q. ilex from Italy grown in the same
environmental conditions. In line with this, Peguero-Pina et al. (2017b)
observed that the ecotypic variation of photosynthetic characteristics within
seven Q. ilex provenances from Spain and Italy was driven by changes in
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316 J. J. Peguero-Pina et al.



ultrastructural/biochemical mesophyll traits. Specifically, their study demonstrated
that within-species differences in AN in Q. ilex could be attributed to a synergistic
effect between (i) the variation in gm, by means of changes in several leaf
anatomical traits, mainly cell wall thickness, chloroplast thickness and Sc/S, and
(ii) the variation in Vc,max associated with changes in nitrogen content per area. On
the other hand, in contrast to the results found for Q. ilex, the genetic control of gm
was not observed by Roussel et al. (2009) in a full-sib family of Q. robur.

9.5.2 Environmental Factors: Light Availability
and Water Stress

9.5.2.1 Light Availability

The variation in light availability is among the most conspicuous features of plant
canopies (Niinemets et al. 2015) and leads to significant acclimatory changes in leaf
anatomy that translate to modifications in leaf functional traits such as gm and AN

(Terashima et al. 2011; Tosens et al. 2012b). Leaves growing in the forest under-
story usually present lower gm values than sun leaves (Hanba et al. 2002; Warren
et al. 2007; Flexas et al. 2008) and the decreased photosynthetic capacity is con-
sidered a common phenomenon in plants growing in the understory (Montpied
et al. 2009). Regarding oaks, within-canopy variation in foliage structural and
photosynthetic traits in Q. ilex has been studied by Niinemets et al. (2006), who
found that gm scaled positively with growth irradiance (Qint) for current-year and
1-year-old leaves of Q. ilex. The same results were observed by Cano et al. (2013)
when studied the deciduous Q. petraea growing in a dense mixed forest with Fagus
sylvatica. These authors hypothesized that this phenomenon would be explained by
a light-dependent increase in Sm/S and Sc/S associated to increases in leaf thickness.
Such adaptive modifications in response to light availability were observed by
Peguero-Pina et al. (2016c), who compared gm and anatomical traits of Abies
pinsapo needles grown in the open field and in the understory, and by Tosens et al.
(2012b), who looked at gm and associated anatomical traits in Populus tremula
grown under different light availabilities. Similarly, Cano et al. (2011) found that
leaves of Q. petraea and Q. pyrenaica grown under high light showed greater AN

and gm values than those grown under low light. On the contrary, AN and gm in Q.
coccifera did not exhibit a plastic response to changes in Qint, despite the plasticity
showed in several anatomical leaf traits (Peguero-Pina et al. 2016b). This
non-plastic response might be explained by a trade-off between (i) an increased
conductance of the gas phase (due to the higher fraction of the mesophyll tissue
occupied by intercellular air spaces and lower mesophyll thickness) and (ii) a
reduced conductance of the liquid phase (due to the lower Sm/S) in Q. coccifera
leaves grown under low Qint when compared with leaves grown under high Qint.
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9.5.2.2 Water Stress

Different studies have suggested that reduced gm is one of the main factors limiting
photosynthetic activity under water stress conditions (Flexas et al. 2004, 2012;
Cano et al. 2014; Niinemets and Keenan 2014), including different Quercus spe-
cies. Regarding deciduous oaks, this topic has been studied in Q. robur and Q.
petraea, two of the most representative oaks widely distributed in Europe under
temperate-nemoral climate (www.euforgen.org). Grassi and Magnani (2005)
observed that gm declined in response to drought in Q. robur, pointing out the
importance of this photosynthetic component in the response of photosynthesis to
water stress in oaks. In line with this, Cano et al. (2013) showed that gm decreased
due to summer drought in Q. petraea and hypothesized that this fact could be
related to changes in aquaporin conductance and/or carbonic anhydrase expression
instead of anatomical changes. It should be noted that, to the best of our knowledge,
this is the only study addressing the impact of water stress on gm according to leaf
position with the canopy. These authors concluded that the effect of water stress on
AN were more important in shaded leaves than in sun-exposed leaves, and although
the intensity of water stress was moderate a clear trend revealed that stomatal
limitation was more important in leaves from the top canopy, but mesophyll and
biochemical limitations dominated the decrease of AN in the shaded canopy.
Regarding evergreen oaks, some studies have dealt with the response of gm to
drought in Q. ilex. For instance, Limousin et al. (2010) and Gallé et al. (2011) found
that gm and AN decreased markedly with soil water stress during summer, with a
high degree of co-regulation between both traits in this species. More recently,
Zhou et al. (2014) compared the response of photosynthetic traits of Q. ilex to water
stress with other Mediterranean (Q. pubescens) or temperate-nemoral (Q. robur)
deciduous oaks. This study found that the decrease of gm associated with water
stress was influenced by the different climate of origin, as species from more mesic
habitats (Q. robur) experienced larger rates of decline of gm than those from more
xeric habitats (Q. ilex and Q. pubescens). In any case, although drought-induced gm
decrease is a common response in Quercus species, more research is needed to
elucidate the underlying anatomical and/or biochemical factors that would explain
the drought-dependent reduction in gm.

9.5.3 Leaf Ageing

Major changes in leaf structure and physiology occur during leaf growth and se-
nescence (Niinemets et al. 2012). In particular, in young developing leaves, gm is
limited by low Sc/Sm and tight packing of leaf gas phase, and gm further increases
with leaf maturation (Tosens et al. 2012b). With leaf senescence, leaf photosyn-
thetic capacities declines due to coordinated dismantling of the components of leaf
photosynthetic machinery and this is associated with decreased gm (Evans and
Vellen 1996), but changes in gm during leaf growth and senescence have not yet
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been studied in oaks. On the other hand, in evergreen species, there are important
modifications in foliage functional traits through leaf life span (Niinemets et al.
2012; Niinemets 2016b; Kuusk et al. 2017). To the best of our knowledge, only
Niinemets et al. (2005, 2006) have considered the age-dependent decline in gm in
older leaves of evergreen oak species. They demonstrated that gm is much lower in
older (0.015–0.04 mol CO2 m−2 s−1) than in younger leaves (0.05–0.1 mol CO2

m−2 s−1) of Q. ilex, and concluded that net CO2 assimilation is more constrained by
gm in older leaves (2–5-year old) compared with current-year and one-year-old
leaves. As discussed by Niinemets et al. (2005), the mechanistic explanation for this
decrease in gm and photosynthetic potential with leaf age may be related to (i) a
decrease in Sc/S and (ii) an increase in cell wall lignification and total amount of cell
wall. Because older leaves comprise often more than 50% of canopy leaves in
evergreen species, such age-dependent changes in the functional leaf activity in
evergreens are important to consider in predicting the whole canopy photosynthesis.

9.6 Concluding Remarks

This chapter demonstrates large inter- and intraspecific variation in foliage photo-
synthesis potential and gm in Quercus species. The variation in leaf functional traits
within Quercus species is broadly consistent with the worldwide leaf economics
spectrum (Wright et al. 2004), but Quercus species typically allocate to the lower
return end of the leaf economic spectrum. This is consistent with the evidence that
most Quercus species are early- to mid-successional and moderately to very
drought tolerant (Niinemets and Valladares 2006). Nevertheless, consistent with
this broad ecological niche range, there is evidence of functional differentiation of
Quercus species within the worldwide leaf economics spectrum.

The genetic (ecotypic) variation among genotypes from different parts of species
range appeared to be a relatively moderate determinant of gm in Quercus, but data
are very limited, and clearly, more common garden studies on variation of foliage
photosynthetic traits among different genotypes across species range is needed to
gain an insight into the extent of genetic variation in gm and associated structural
and physiological traits in oaks. Data coverage of plastic changes in gm and
associated traits in response to differences in light availability, to water stress and in
leaves of different age is also limited, although a major variation, several-fold for
gm, has been demonstrated for several oak species. Yet, the sources of this plastic
variation remain larger unknown and we conclude that more information is needed
about how the plastic modifications in gm to changes in environmental drivers and
leaf age in oak species are driven by changes in leaf anatomy and ultrastructure.
Moreover, how far the plasticity of different anatomical factors responsible for
plastic modifications in gm is species-dependent is a high-priority topic for further
research.
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Chapter 10
Carbon Losses from Respiration
and Emission of Volatile Organic
Compounds—The Overlooked Side
of Tree Carbon Budgets

Roberto L. Salomón, Jesús Rodríguez-Calcerrada and Michael Staudt

Abstract The balance between photosynthetic carbon (C) assimilation and C loss
via respiration (R), emission of volatile organic compounds (VOCs), and rhi-
zodeposition determines plant net primary production and controls to a large extent
ecosystem C budgets. Compared to photosynthesis, the physiology, environmental
control and ecological importance of processes involving C release from trees have
been less studied; it is the purpose of this review to address these questions in oak
trees with special focus on R and VOC emissions. Mass-based leaf dark R scales
positively with specific leaf area, nitrogen content and photosynthetic capacity, and
it is normally greater in deciduous species than evergreen sclerophyllous ones. Leaf
dark R increases with temperature, and is constrained by water shortages; however,
the magnitude of these responses may vary at different temporal scales. Similarly, R
in woody tissues increases with temperature, although in a hysteretic manner during
a diel period. On a seasonal basis, besides temperature, water availability becomes
the main abiotic driver of woody tissue R as drought stress down-regulates main-
tenance and growth metabolic processes in stems and roots. Respiration in foliar
and woody tissues is expected to account for about half of photosynthesis; never-
theless, R can largely fluctuate with ontogenetic, biotic and abiotic factors inde-
pendently of C uptake. Volatile organic compounds have multiple roles in
plant-environment interactions and plant-plant signalling. Oak genus is one of the
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strongest emitter of isoprenoids, which are the most important VOCs released from
plants. Most oak species release isoprene constitutively; however, several oak
species distributed around the Mediterranean (mostly evergreen) do not produce
isoprene, but alternatively emit monoterpenes or lack constitutive emissions of
VOCs. The rate of emission of VOCs from leaves increases with leaf temperature
and irradiance, being the derived C loss relative to photosynthesis about 1%, except
during heat waves when this percentage may increase up to 5%. Emission of VOCs
is constrained by drought-stress to a lesser extent than leaf photosynthesis, thus the
relative C loss through VOCs also increases with drought severity. Overall, the
hypothesis of homeostatic ratios between plant C gain and C loss, an artefact of our
better understanding of photosynthesis in comparison to all these processes that
encompass tree C loss, should be revisited to better understand C cycling in oaks
and to better predict oak physiological performance under climate change scenarios.

10.1 Introduction

The advance in the understanding of our environment is largely driven by the
development of suitable technologies to quantify and explain the subject of study.
Research in plant carbon (C) cycling clearly illustrates how methodological feasi-
bility has driven knowledge in a particular direction (Körner 2015): As leaves can
be easily enclosed in sealed chambers and gas exchange measured with an array of
sophisticated systems (Hunt 2003), research on leaf C assimilation has traditionally
held a predominant role in studying tree C budgets to the detriment of C efflux from
other tree organs. Atmospheric CO2 is assimilated by plants through photosynthesis
(P) and part of it is released back to the atmosphere and soil through respiration (R),
emission of volatile organic compounds (VOCs) and rhizodeposition. The differ-
ence between C assimilation and C loss is known as net primary production
(NPP) and represents the net gain of C to be invested in plant growth, maintenance,
defence, reproduction or storage. Net primary production is a key output of
dynamic global vegetation models to predict C exchange between terrestrial
ecosystems and the atmosphere. Net primary production is commonly calculated as
the difference between P and R (e.g. Waring et al. 1998; Luyssaert et al. 2007; Piao
et al. 2010; Rambal et al. 2014):

NPP ¼ P� R ð10:1Þ

In this equation, P is a well-known process mechanistically described more than
35 years ago (Farquhar et al. 1980), whereas R is a comparatively understudied C
flux, despite its predominant role in ecosystem C balance (Valentini et al. 2000;
Amthor 2000). Moreover, VOCs and rhizodeposits are commonly ignored in this
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conceptual framework despite evidence of a non-negligible contribution to tree C
loss (Jones et al. 2004; Bracho-Nunez et al. 2013; Sindelarova et al. 2014).
Equation (10.1) should be therefore further developed to integrate all C fluxes
between the plant and its environment:

NPP ¼ P� R� VOCs� rhizodeposits ð10:2Þ

The biological significance of processes involving C release for survival and
regeneration is unquestionable. Briefly, the mitochondrial oxidation of C substrates
in all plant living cells produces reducing power [e.g. NAD(P)H from NAD(P)+], C
skeleton intermediates, and usable energy (ATP) from ADP and inorganic phos-
phate to fulfil metabolic requirements. During the numerous reactions of mito-
chondrial respiration CO2 is formed, a fraction of which is released to the
atmosphere, and another recycled within chloroplasts. VOCs are organic chemicals
emitted from all plant organs that play multiple roles in plant reproduction, plant
protection, and plant-plant signalling; whereas rhizodeposits consist of a wide range
of compounds involved in plant nutrition, plant defence, and signalling between
plant roots and surrounding organisms of the rhizosphere.

The genus Quercus comprises more than 600 species including deciduous and
evergreen trees and shrubs adapted to a broad range of environmental conditions,
from semi-arid Mediterranean evergreen woodlands to sub-boreal, temperate and
subtropical deciduous forests (Mabberley 2008). Due to its wide distribution in the
Northern hemisphere, Quercus spp. are extensively surveyed in physiological
research and constitute an excellent taxonomic group to study the variability in R
and the emission of VOCs among different plant functional types and across
environmental conditions. In this chapter we want to draw the attention to an
important side of plant C budget that has largely been overlooked in oak species:
the release of C from the plant to the environment. We will focus on R and VOCs
emission due to the scarce literature on oak rhizodeposition. We aim at (i) ex-
plaining the variability in R and VOCs emission among different oak species, along
gradients of environmental conditions, and at different temporal scales; (ii) high-
lighting the relative contribution of R and VOCs emission to oak C budgets;
(iii) and summarizing information on the chemical typology, mechanisms of syn-
thesis and release, and ecophysiological significance of VOCs among oak species.

10.2 Plant Respiration

Plant R consists on the mitochondrial oxidation of C substrates to produce usable
energy, reducing power, and C skeleton intermediates with the consequent release
of CO2 as a reaction product. Plant R is commonly simplified by a single equation
developed in the early 1970s, in which R is partitioned into growth and mainte-
nance processes (McCree 1970; Thornley 1970):

10 Carbon Losses from Respiration and Emission of Volatile Organic … 329



R ¼ RG þ RM ¼ gRG þ mRW ð10:3Þ

where R is respiration rate (mol CO2 s
−1), RG and RM are growth and maintenance

respiration rates (mol CO2 s
−1), G is growth rate (g new biomass s−1), W is living

biomass (g dry mass), gR is growth respiration coefficient (mol CO2 (g new bio-
mass)−1) and mR is maintenance respiration coefficient (mol CO2 (g dry biomass)−1

s−1). Despite the magnitude of R, ca. 35 to 80% of P (Amthor 2000), substantial
improvements in the mechanistic understanding of respiration are still lacking since
the early 1970s (Cannell and Thornley 2000; Amthor 2000; Thornley 2011).
Respiratory processes continue to be simplified by the growth-and-
maintenance-respiration paradigm, and we are far from understanding respiration
at the same detail as we do for photosynthesis (Farquhar et al. 1980). Gifford (2003)
stated that “plant respiratory regulation is too complex for a mechanistic repre-
sentation in current terrestrial productivity models for carbon accounting and
global change research”. This idea seems to be tacitly accepted and given that the
rates of enzymatic reactions involved in R are temperature-dependent, plant R is
commonly estimated from a single equation derived from Arrhenius kinetics
(Davidson et al. 2006):

R ¼ Rb � Q10 T� Tbð Þ =10 ð10:4Þ

where R is the respiration rate at temperature T, Rb is the respiration rate at a basal
temperature Tb, and Q10 is the relative increase in respiration rate corresponding to
a 10 °C temperature rise. Hence dynamic global vegetation models often estimate
plant R from temperature data—neglecting other biotic and abiotic regulators of
plant R such as water availability, C and nutrient supply, and energy demand—to
quantify C fluxes and pools at the global scale (Smith and Dukes 2013; Fatichi et al.
2014). Alternatively, R is sometimes assumed to be a constant fraction of P at the
tree scale (Waring et al. 1998; Van Oijen et al. 2010). Nevertheless, there is
growing evidence that C cycling is not uniquely driven by C assimilation
(“source-driven”), but also by abiotic constraints to plant growth and cell mainte-
nance processes (“sink-driven”) (see Körner 2015 for a review), as recently
observed in Q. ilex (Lempereur et al. 2015), which challenges the assumption of
homeostatic R:P ratios. Consequently, we are unable to accurately estimate plant R
at different temporal and spatial scales, and to comprehensively understand the
regulation of the plant respiratory physiology despite its primary role in tree C
cycling, productivity and survival (Atkin and Macherel 2009).

In this section, we distinguish between leaf and woody tissues to better sum-
marize current knowledge on oak R. The physiological functioning of an organ is
determined by its particular anatomy and structure, and thus leaves and woody
tissues have different energy requirements and C-related expenditures derived from
respiratory processes. Moreover, dissimilar methodological approaches to quantify
R in different organs have contributed to further distance R research between leaves
and woody tissues.
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10.2.1 Leaf Respiration

10.2.1.1 Physiology and Variability Among Species

Leaf R is mostly dependent on the availability of ADP, C substrates—lipids, amino
acids and mostly carbohydrates—and the amount, position and protein content of
mitochondria within leaf cells, particularly mesophyll cells, whose contribution to
total leaf R in some species is >90% (Long et al. 2015). Data compilations from
plant species across the globe evidence that mass-based leaf dark respiration (Rd)
rates—more easily measured and typically higher than leaf R rates in light condi-
tions (Zaragoza-Castells et al. 2007)—are positively related with specific leaf area
(SLA), leaf nitrogen (N) concentration and photosynthetic capacity (Pmax) (Reich
et al. 1998; Wright et al. 2006; Reich et al. 2008; Atkin et al. 2015). In the first case,
the relationship is due to the lower proportion of structural components in
high-SLA leaves; in the second, to the higher amount of respiratory enzymes
present in leaves with high N concentrations. Finally, the correlation of Rd with
Pmax can reflect the role of Pmax in providing the mitochondria with respiratory C
substrates, or the importance of N for synthesizing both respiratory and photo-
synthetic enzymes.

Because oak species encompass a wide gradient of leaf functional characteristics,
primarily abridged in the separation of broad-leaf evergreen and deciduous oaks,
variability in leaf Rd rates among oak species is also large and partly related with
climate conditions. Taking as example the 13 oak species included in the global
database of respirationGlobResp (Kattge et al. 2011;Atkin et al. 2015), both area- and
mass-based leaf Rd varied by approximately sevenfold. Global patterns across broad
climatic gradients evidence that plant species from cold sites exhibit higher rates of
leaf Rd than those from warmer sites at a comparable measurement temperature, a
pattern that holds for oak species (Kattge et al. 2011; Atkin et al. 2015). Further, plant
species from dry sites tend to have higher leaf Rd rates than those from mesic sites
(Atkin et al. 2015), with this difference being only partly explained by differences in
SLA or Pmax (Wright et al. 2006). Some adaptations to stress, such as high rates of
metabolite turnover can result in high respiratory costs in processes of cell mainte-
nance and repair in cold, high-light or arid environments (Wright et al. 2006; Atkin
et al. 2015). Similarly, highN investment in repair compounds could also explainwhy
individuals from colder and drier populations of Q. ilex exhibited higher leaf main-
tenance respiratory costs than those fromwarmer and wetter populations when grown
under the same conditions (Laureano et al. 2008). However, different evolutionary
selection pressures, including abiotic and biotic stress factors and competition for
resources have shaped the respiratorymetabolism in different ways, which precludes a
straightforward relationship of leaf Rd with stress resistance. As such, some leaf
structural and chemical adaptations to stress, such as low N concentrations and low
biomass allocation to metabolic components, can result in low leaf Rd rates in
long-lived, sclerophyllous leaves of some oaks growing in nutrient-poor or drought-
prone sites. At a comparable temperature of 25 °C, mass-based leaf Rd was lowest in
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Fig. 10.1 Theoretical representation of the plant respiration (R) response to shifts in temperature
(a, b) and water availability (c) at different temporal scales. Respiration exponentially increases
with temperature at any temporal scale; however, thermal acclimation (commonly observed in
leaves) leads to lower respiratory capacity of tissues grown under warm conditions (a, adapted
from Atkin and Tjoelker 2003). Hysteresis between R and temperature over diel cycles has been
observed for stem R, but not for leaf dark R (even if leaf R at a given temperature is usually lower
in light than dark conditions) (b, adapted from Salomón et al. 2016b). Improved water status at
night-time increases stem R under constant temperature on a diel basis, whereas stem R
progressively decreases when water availability becomes limiting on a seasonal basis, as
theoretically illustrated during the drought event (the beginning of the drought is represented by
the vertical arrow) (c, adapted from Saveyn et al. 2007b). Shaded areas indicate night-time
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the Mediterranean evergreen Q. ilex (4.0 nmol CO2 g
−1 s−1) and highest in the de-

ciduousQ. alba and Q. rubra (25–27 nmol CO2 g
−1 s−1). This is consistent with low

Pmax of sclerophyllous leaves, and the positive relationship between Pmax and leaf Rd

(Wright et al. 2006).

10.2.1.2 Response to Environmental Changes at Different Time Scales

Within species, Rd varies in relation to ontogeny and environmental changes. As
oak leaves progressively stop growing, both in lamina area and thickness, Rd

decreases rapidly and reaches a phase in which fluctuations are not due to onto-
genetic changes but mostly to climatic shifts; eventually, when leaves start to
senesce, Rd starts to decline again markedly due to remobilization of leaf N and
degradation of the respiratory machinery (Collier and Thibodeau 1995; Miyazawa
1998; Xu and Baldocchi 2003; Rodríguez-Calcerrada et al. 2012). Ontogenetic
variations over the leaf life span make that, for comparative purposes, measure-
ments of Rd are typically made in non-senescent mature leaves that have fully
expanded. However, the responses of leaf physiology and Rd to climatic shifts can
vary as affected by ontogeny and age, something that clearly merits more research
to improve C balance models (Niinemets 2014).

The plasticity of Rd to air temperature, irradiance or water and nutrient avail-
ability is considerable in oak species. Multiple changes occur in the respiratory
metabolism in response to the need of the tree to adjust the production of respiratory
products to shifting demands imposed by environmental changes. This plasticity in
the respiratory metabolism—reflected in varying rates of Rd—allows trees to
orchestrate whole-plant plasticity and overcome periods of sub-optimal growing
conditions. Two of the most important drivers of leaf physiology over the leaf life
span are temperature and water availability.

Changes in temperature elapsed over hours, days,months or years affect the rates of
Rd. However, the magnitude of the change in Rd rates depends on the time scale of
temperature changes. Short-term raises in temperature provoke an exponential
increase in leaf Rd that is typically higher than that occurred over longer termwarming
periods due to the thermal acclimation of the respiratory metabolism (Reich et al.
2016). This process of acclimation involves a reversible decline in the activity of
respiratory enzymes. Frequently, the respiratory capacity (i.e. intercepts of respiratory
temperature response curves) differs across temporal scales, probably due to shifts in
the amount ofmitochondria ormitochondrial enzymes. The consequence of this is that
Rd measured at prevailing ambient temperature barely changes over broad, long-term
changes in temperature (see Fig. 10.1a for an illustration of this phenomenon, and Slot
and Kitajima 2015 for a recent review of the process across biomes and experimental
conditions). The thermal acclimation of leaf R (more easily and frequently examined
in dark than light conditions, i.e. Rd) is a general response of healthy, non-growing oak
leaves (e.g. Bolstad et al. 2003; Lee et al. 2005; Zaragoza-Castells et al. 2008;
Rodríguez-Calcerrada et al. 2011) that may accompany different thermal photosyn-
thetic adjustments to balance leaf net C gain with C needs in the new environment
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(Way and Yamori 2014; Slot and Kitajima 2015). The extent of the thermal accli-
mation of Rd varies among species and with leaf developmental status, magnitude of
temperature change (Slot andKitajima 2015) and interactionwith other abiotic factors
such as irradiance (Bolstad et al. 1999) or soil water availability (Turnbull et al. 2001;
Rodríguez-Calcerrada et al. 2011).

Despite the importance of C losses for leaf and plant C balance, very few studies
have examined the impacts of temporal soil water fluctuations on Rd in oak species.
Most of these studies have been conducted on the drought-tolerant, widespread
Mediterranean oak Q. ilex (e.g. Rodríguez-Calcerrada et al. 2011; Varone and
Gratani 2015). The results of these studies are consistent with the drought-induced
decline in leaf Rd and increase in leaf Rd/P ratio that is generally reported for other
plant species (see review of Atkin and Macherel 2009). The main reasons behind
this short-term decline in leaf Rd are: (i) a reduction in the amount of mitochondrial
protein and (ii) a reduction in enzymatic activity due to limited turnover of ATP to
ADP (associated to down-regulation of energy consumption processes) or limited
flow of triose phosphate from chloroplasts into mitochondria (associated to
impaired P). The complex regulation of leaf R makes that, as it happens in response
to temperature, leaf Rd does not necessarily exhibit the same response to drought
over short- and long-term time scales. However, few studies have examined how
long-term decreases in soil water availability affect leaf R and C balance in oak
trees (Turnbull et al. 2001; Rodríguez-Calcerrada et al. 2011; Sperlich et al. 2016).
In southwestern Europe, two parallel throughfall-reduction experiments have been
set up in two Q. ilex forest stands to study the long-term effects of increased drought
on foliar respiratory rates. Rodríguez-Calcerrada et al. (2011) observed that leaf Rd

decreased in response to seasonal decline of leaf water potential similarly in trees
subjected to normal and 7-year reduced throughfall, so that leaf Rd was lower in the
trees that had experienced a reduction in throughfall and a greater decline of leaf
water potential during the dry season, but did not differ between treatments at
optimal soil water conditions. These results and those of Limousin et al. (2010) on
the nature of photosynthetic limitations in the same species and experimental site
suggested that 7 years of increased drought had not modified the physiology of leaf
mesophyll cells. In another Q. ilex stand subjected to a longer period of rain
reduction (14 years) of similar intensity, Sperlich et al. (2016) found the same lack
of treatment effect on leaf Rd, but a significant increase in leaf R during daytime in
trees receiving less rain, suggesting that the reorganization of the respiratory
metabolism depends on the duration of increased drought. Collectively, the results
suggest that drought-induced declines in leaf R over short time periods seemingly
change to drought-induced increases in leaf R as trees adapt to increased drought
(Turnbull et al. 2001; Rodríguez-Calcerrada et al. 2011; Atkin et al. 2015; Sperlich
et al. 2016), however, more studies are needed to understand long-term responses of
leaf R to drought.
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10.2.2 Stem and Root Respiration

10.2.2.1 How to Estimate It? Methodological Constrains to Measure
Woody Respiration

Although stems and roots constitute the largest fraction of biomass in woody
species, especially in large trees (Poorter et al. 2012), our knowledge of woody R is
by far less advanced compared with that of leaf R. The main obstacle to understand
R in woody tissues remains in the difficulty to accurately measure it. Radial CO2

efflux to the atmosphere (EA) from stems and roots, which can be measured with
cuvettes surrounding the monitored organ, is commonly assumed to equal the rate
of R of these organs. Nevertheless, locally respired CO2 in roots and stems can
either diffuse to the soil or the atmosphere, respectively, or alternatively accumulate
within woody tissues due to substantial barriers to radial gas diffusion offered by
outer tissues. Accordingly, concentrations of internal CO2 in xylem (xylem [CO2])
range from <1 to 26%, values one to two orders of magnitude higher than atmo-
spheric [CO2]. As xylem [CO2] builds up inside the tree, it dissolves in the sap
solution until equilibrium between gaseous and liquid phases is reached according
to Henry´s law; respired CO2 moves upward in the transpiration stream, and
eventually diffuses to the soil or the atmosphere elsewhere (see Teskey et al. 2008;
Rodríguez-Calcerrada et al. 2015b for reviews). Internal transport of respired CO2

has therefore resulted in significant misestimation of woody R from measurements
of EA, as consistently observed in several oak species (McGuire and Teskey 2002;
Teskey and McGuire 2002; Bloemen et al. 2014; Salomón et al. 2016b).

An additional constraint that hinders direct measurements of woody R is the
re-assimilation of internal CO2 by chloroplast-containing woody tissues (see Ávila
et al. 2014 for a review). For instance, recycling of respired CO2 transported
through the xylem offset 19 and 70% of C respiratory losses in branches of Q. alba
and stems of Q. robur, respectively (Coe and McLaughlin 1980; Berveiller et al.
2007). To solve this issue, woody P is commonly disabled by using opaque cuv-
ettes; nevertheless, woody P above and below the cuvette might induce axial dif-
fusion of internal CO2 that would decrease EA within the monitored segment, as
observed in Q. robur stems during the dormant season (Saveyn et al. 2008).
Additional difficulties arise when measuring root R due to inaccessibility of root
systems and the unclear discrimination between autotrophic and heterotrophic
respiration from measurements of soil CO2 efflux (Hanson et al. 2000). All these
limitations hinder the establishment of a widely accepted methodological approach
to systematically measure woody R.

10.2.2.2 Response to Environmental Changes at Different Time Scales

Due to the few studies on woody R in oaks, the influence of abiotic drivers (mainly
temperature and water availability) on woody R is summarized independently of
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any intrageneric classification. In a study with seven oak species grown under
uniform conditions, Martinez et al. (2002) did not find any intrinsic difference in
root R attributable to the evergreen or deciduous character of the species. Likewise,
potential differences in woody R ascribed to the ring-porous or diffuse-porous wood
anatomy of oaks remain untested, despite their differential wood phenology and
growth (Pérez-de-Lis et al. 2016).

The temperature sensitivity of woody R, expressed as the change in R that
occurs over 10 °C (Q10) ranges from 1.4 to 3.1 in oak species, with mean values
close to two (i.e., R rates double for an increase in temperature of 10 °C,
Table 10.1), as similarly observed for a variety of species in leaves and roots (see
Atkin and Tjoelker 2003 and references therein). On a diel basis, woody R increases
along the day with increasing temperatures and decreases at night-time exhibiting a
characteristic hysteresis (Table 10.1; Fig. 10.1b). Several factors have been sug-
gested to cause the day-time depression in temperature-normalized stem R observed
in oaks: (i) internal transport of respired CO2 with the transpiration stream at
day-time (Negisi 1982; McGuire and Teskey 2002; Teskey et al. 2008), (ii) en-
hanced metabolic activity of woody tissues owing to improved water status at
night-time (Negisi 1982; Saveyn et al. 2007a; Salomón et al. 2016b), (iii) lagged
temperature transmission and/or delayed radial CO2 diffusion due to physical
barriers presented by peripheral tissues (Rodríguez-Calcerrada et al. 2014), and
(iv) refixation of respired CO2 nearby the darkened monitored stem segment at
day-time (Saveyn et al. 2008). At a seasonal scale, the down-regulation of tem-
perature-normalized R with increasing temperatures across the year (Atkin and
Tjoelker 2003) has the potential to reduce C loss through woody R. The thermal
acclimation of leaf R (Fig. 10.1a) is a well-documented phenomenon in oaks (see
previous sub-section) that has been less studied in woody tissues. A meta-analysis
across 44 forested ecosystems, six of them dominated by oak species, supports the
hypothesis of thermal acclimation of R in roots (Burton et al. 2008): An attenuated
rate of temperature-driven increase in root R across ecosystems (Q10 = 1.6) was
observed in comparison to short-term fluctuations within individual stands
(Q10 = 2–3). Likewise, lower rates of temperature-normalized root R were regis-
tered in experimentally heated plots in mixed hardwood forests co-dominated by Q.
velutina, although the concomitant effect of soil drying along with soil heating
could not be discarded as a driver of R reductions (Burton et al. 2008). Thermal
acclimation of R rates in stems may also occur in oak species such as Q. ilex
(Rodríguez-Calcerrada et al. 2014), but literature is much scarcer in this regard.
Again, the concomitant increase in temperature with summer drought in some
ecosystems hinders to unequivocally ascribe seasonal reductions in stem R to
thermal acclimation, given that water shortages constrain stem growth and asso-
ciated respiratory costs in this widespread Mediterranean oak (Lempereur et al.
2015). The different temperature sensitivity of metabolic processes involved in
maintenance and growth R (Amthor 2000) complicates the study of acclimation of
maintenance R to abiotic stress in sites where secondary growth varies amply
throughout the year. Accordingly, higher Q10 values observed in stems of Q.
accutisima during the colder non-growing season relative to the warmer growing
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season were attributed to the greater temperature sensitivity of maintenance pro-
cesses (Yang et al. 2012b) rather than to the potential effect of thermal acclimation
of R.

Oak species subjected to drought stress commonly show reduced R as a con-
sequence of constrained growth and metabolic activity. This effect has been
observed at the ecosystem (Reichstein et al. 2002; Unger et al. 2009; Rambal et al.
2014), organ (Saveyn et al. 2007b; Rodríguez-Calcerrada et al. 2014), and cellular
level (Saveyn et al. 2007a). During a diel cycle, night-time reduction in the vapour
pressure deficit and transpiration lead to replenishment of water reservoirs within
woody tissues (Steppe et al. 2006), as observed in Q. ilex (Salomón et al. 2017).
Increase in cell turgor facilitates cell expansion and growth (Lockhart 1965), which
in turn may lead to enhanced rates of overall R. This hypothesis of growth respi-
ration mainly confined to night-time hours is supported by substantial night-time
increases in both EA and xylem [CO2] observed in Q. robur stems under relatively

Table 10.1 Temperature sensitivity of stem and root respiration (Q10) in Quercus species

Organ Species Q10 Hysteresisa References

Stem Q. accutisima 2.2 Yang et al. (2012b)

Q. alba 1.5–
2.4

✓ Edwards and Hanson (1996), Li et al.
(2012)

Q. ilex 1.5–
2.5

✓ Rodríguez-Calcerrada et al. (2014)

Q. mongolica 2.1–
2.4

Wang et al. (2010), Yang et al. (2012a)

Q. petraea 1.6
2.1

Rodríguez-Calcerrada et al. (2015a)

Q. prinus 2.4 ✓ Edwards and Hanson (1996)

Q. pyrenaica 1.4–
2

✓ Rodríguez-Calcerrada et al. (2015a),
Salomón et al. (2016b)

Q. robur 1.9–
2.8

✓ Saveyn et al. (2007a, b, 2008)

Q. serrata 2.1 ✓ Miyama et al. (2006)

Q. velutina 1.6 Li et al. (2012)

Rootsb Q. accutisima 2.8 Luan et al. (2011)

Q. serrata
mixed stand

2.4 Dannoura et al. (2006)

Q. cerris 2.2 Rey et al. (2002)

Quercus-Carya
stand

3.1 Burton et al. (2002)

Mixed Quercus
stand

2.4 Burton et al. (2002)

aStudies in which a hysteretic relationship between temperature and respiration has been reported
(✓). Empty spaces denote studies in which this phenomenon was not evaluated. bRoot respiration
integrates CO2 originated from fine and coarse roots as well as root-associated microorganisms
present in the rhizosphere
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constant temperature across 24 h (Fig. 10.1c; Saveyn et al. 2007a, b). During the
course of a year, progressive soil drying in summer was found to constrain fine root
turnover (López et al. 2001) and stem growth (Lempereur et al. 2015) in Q. ilex.
Impeded growth and down-regulation of maintenance processes likely explains
typical reductions in woody R when water becomes limiting (Fig. 10.1c), as
observed in roots of Q. cerris (Rey et al. 2002), Q. robur (Molchanov 2009), and
mixed oak stands (Burton et al. 2002), as well as in stems of Q. ilex
(Rodríguez-Calcerrada et al. 2014) and Q. robur (Saveyn et al. 2007b). Drought-
induced reductions in R suggest a threshold in soil water content below which
woody R becomes largely driven by water availability and independent of tem-
perature (e.g. Reichstein et al. 2002; Rey et al. 2002). Likewise, sharp increases in
xylem [CO2] observed in Q. robur and Q. pyrenaica stems after rain events fol-
lowing dry periods (Saveyn et al. 2007b; Salomón et al. 2016a) provide further
evidence of drought-driven constraints to woody R. On the other hand, reduced
resistance to radial CO2 diffusion due to reduced water content of peripheral woody
tissues as the soil dries out (Teskey et al. 2008; Salomón et al. 2016b) may partially
explain increases in stem and root CO2 efflux during mild drought in oak trees (e.g.
Edwards and Hanson 1996; Dannoura et al. 2006; Molchanov 2009). Such
conflicting results evidence our deficient understanding of drought effects on woody
R. At an inter-annual timescale, acclimation of stem R to long-term increased
drought was not observed in Q. ilex after eight years of experimental
throughfall-reduction (Rodríguez-Calcerrada et al. 2014). Further research in this
line would be necessary to test potential down-regulation of woody R to prolonged
drought in order to better predict C cycling at the whole-tree level under changing
climate regimes.

10.2.3 Relative Importance of R for Tree Carbon Budgets

Ecosystem R (RECO) determines ecosystem C balance in a wide range of envi-
ronmental conditions (Valentini et al. 2000). Ecosystem R can be biometrically
partitioned into leaf, stem and soil R by measuring samples of each component in
chambers and upscaling the measurements to the stand level. The broad range of
variation in the contribution of each component to RECO is partly due to stand
structure, composition and age, but also to uncertainties in calculations. First,
estimations of annual leaf respiratory C losses at the stand scale range from 3 to
37% of RECO in oak forests (Table 10.2). At an intra-annual scale, the largest
contribution of leaf R to RECO generally occurs when new leaves expand; the
lowest contribution can occur at peak summer drought in some evergreen
Mediterranean forests (Rodríguez-Calcerrada et al. 2012). Second, the high pro-
portion of parenchyma in the wood of oak species can make C losses from stems
potentially important in oak-dominated ecosystems. The contribution of stem R to
RECO in pure and mixed oak stands ranges between 5 and 38% on an annual basis,
with mean values of ca. 15% (Table 10.2). The highest contribution of stem R to
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RECO occurs in spring coincident with high stem growth rates in temperate and
continental climates (Curtis et al. 2005; Miyama et al. 2006), and before water
becomes limiting in the case of drought-prone Mediterranean regions
(Rodríguez-Calcerrada et al. 2014). Third, soil R is the largest respiratory C flux to
the atmosphere (Valentini et al. 2000) and accounts for 48–85% of RECO in oak
forests (Table 10.2). Ambiguous discrimination between heterotrophic (microbes
and soil fauna) and autotrophic sources of soil CO2 efflux hinders accurate esti-
mations of root R. Assuming an average contribution of soil R to RECO of 67%
(Table 10.2), and a mean contribution of root R to soil R of 50% (Hanson et al.
2000; Burton et al. 2008), root R would account for 33% of RECO. More conser-
vative contributions of root R to soil R observed in oak stands—ranging from 15 to
40% (Reichstein et al. 2002; Rey et al. 2002; Unger et al. 2009; Luan et al. 2011)—
would reduce the contribution of root R to RECO to 10–27%, respectively.
Furthermore, it is worth noting that neglecting internal fluxes of root respired CO2

through xylem results in substantial underestimation of root R rates when these are
estimated via soil CO2 efflux measurements; underestimation ranges from 2 to 18%
in Quercus species (Bloemen et al. 2014; Salomón et al. 2015) and reach up to 50%
in other taxa (Aubrey and Teskey 2009). Overall, these estimates evidence the
important role of autotrophic R in plant and ecosystem C budgets and further
highlight the need of more experimental research on plant R to improve the
accuracy of dynamic global vegetation models.

10.3 Volatile Organic Compounds (VOCs)

Plants produce a large array of metabolites whose vapor pressures are high enough
(approx. � 0.01 kPa) to become volatilized under ambient temperature conditions.
All plant organs, namely flowers and fruits, foliage, stem and roots can release
VOCs. Flower and leaf emissions are by far the best investigated ones. However, in
the last decade increasing research has been afforded to root emissions, whose
ecological roles in soil biotic interactions are only in the beginning to be appreci-
ated (see e.g. Weissteiner et al. 2012; Delory et al. 2016). VOCs are emitted from
plant organs either constitutively or temporarily following induction by stress
factors. This classification is however not straightforward, because the emissions of
constitutive VOCs are also up and down-regulated by environmental factors
including stress events (Peñuelas and Staudt 2010).

Phytogenic VOCs are mainly composed of C and hydrogen plus occasionally
other elements such as oxygen, nitrogen and sulphur, or more rarely halogens. Once
emitted the C skeleton of VOCs reacts gradually with oxidants in the atmosphere to
form ultimately CO2, thus closing the carbon cycle. However, a substantial portion
of intermediate products may be removed from the atmosphere via dry and wet
deposition. Products from VOC oxidation can condense with each other and other
atmospheric constituents and contribute to the formation of secondary organic
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aerosols, which have important impacts on climate forcing and human health
(Hallquist et al. 2009).

10.3.1 Metabolic Origins and Ecological Importance

Of the thousands existing plant VOCs, the majority belongs to three biosynthetic
classes, fatty acid derived volatiles, volatile aromatic compounds and volatile ter-
penoids (isoprenoids). The most prominent fatty acid-derived VOCs are Green Leaf
Volatiles (GLVs) that are formed from the breakdown of free fatty acids by
lipoxygenase and hydroperoxide-lyase enzymes (Matsui 2006). GLVs comprise
mainly mono-unsaturated C6 alcohols, aldehydes and acetate esters that are
potentially emitted from all plant species. GLV are emitted in high amounts only
after exposure to stresses such as wounding, herbivore attack, extreme temperatures
or acute ozone exposure. Upon stress GLVs are formed and emitted within seconds
to minutes and rapidly disappear when the stress ceases (e.g. Staudt et al. 2010).
Volatile aromatic compounds derive from the shikimate pathway (benzenoids and
phenylpropanoids). They are most common in flower scents (Schiestl 2010).
However, recent studies made at plant and canopy levels emphasize that consid-
erable amounts of benzenoids are also emitted from vegetative tissues in particular
under stress conditions (Misztal et al. 2015). Volatile isoprenoids are classified
according to the number of C5 units they have: C5 hemiterpenes, C10 monoter-
penoids and C15 sesquiterpenoids. In planta, isoprenoids are synthesized within
two distinct pathways, the 2-methyl-erythritol-4-phosphate pathway operating in
plastids and the mevalonate pathway operating in the cytosol, endoplasmic retic-
ulum and peroxisomes (Lu et al. 2016 and references therein). Volatile isoprenoids
can also be secondarily formed from the breakdown of higher isoprenoids such as
homoterpenes (Tholl et al. 2011) and apocarotenoids (Walter et al. 2010). The
quantity and quality of emitted isoprenoids and aromatic compounds inherently
differ among plant taxa. The hemiterpene isoprene is the most important VOC
released from terrestrial vegetation. Globally ca. 600 Tg (1012 g) of isoprene are
annually emitted, which is about 2/3 of the total biogenic VOC release (Sindelarova
et al. 2014). However, only about 30% of vascular plants emit isoprene from their
foliage (Fineschi et al. 2013). Oaks, poplars and willows figure among the strongest
isoprene emitters (Kesselmeier and Staudt 1999).

In addition to the volatiles of these three major classes, a number of short-chain
oxygenated volatiles (collectively called OVOCs) are frequently observed in plant
emissions such as methanol, formaldehyde, formic acid, ethanol, acetaldehyde,
acetic acid, methyl acetate, acetone, ethylene and methylglyoxal. These have dif-
ferent metabolic origins and occur rather universally in plants. For instance
methanol is formed during cell wall formation and is therefore particularly released
during the growing period (Bracho-Nunez et al. 2011; Brilli et al. 2016). With an
estimated annual emission of ca. 130 Tg, methanol is the second important phy-
togenic VOC worldwide (Sindelarova et al. 2014). Emissions of ethanol and the
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equivalent C2 aldehyde and acid are mostly associated with fermentation during
hypoxia (Kreuzwieser and Rennenberg 2013). Many of these OVOCs are also
secondarily formed during the oxidation of primary emitted higher VOCs such as
terpenes (e.g. Gaona-Colmán et al. 2016).

Diverse ecological functions have been attributed to VOC production in plants.
The attraction of pollinators and seed dispersers by flower and fruit scents is an
essential driver of sexual reproduction and evolution in many plant species (Schiestl
2010). Further, numerous studies have shown that plant volatiles induced by her-
bivore or pathogen attacks have toxic, repellent or aposematic effects, or attract
predators and parasitoids of the attackers and thereby contribute to limit damages to
plants (see e.g. Van Loon et al. 2000). So far, such functions are largely unknown
for oaks. Oaks are wind pollinated and a potential role of volatiles in sustaining
acorn dispersal has rarely been documented (e.g. Verdú et al. 2007). Only few
studies have reported that herbivory or pathogen attack affect quantitatively and/or
qualitatively the volatile production from oaks (Staudt and Lhoutellier 2007; Paris
et al. 2010; Copolovici et al. 2014). A study with Q. robur suggests potential
beneficial effects of herbivory-induced VOCs against the European oak leaf roller
(Ghirardo et al. 2012). On the other hand, Vuts et al. (2016) demonstrated that
volatiles of Q. robur can attract the two-spotted oak buprestid, a bark beetle that
causes severe damages in European oak forests.

The possible function of the constitutive isoprene production in chloroplasts (or
analog monoterpenes) is still a matter of debate. With regard to biotic stress, a study
using transgenic isoprene emitting Arabidopsis plants has shown that isoprene can
disturb the attraction of a parasitic wasp to volatiles from herbivore-infested plants.
Thus, by troubling VOC-mediated trophic interactions of neighbouring species,
isoprene emitters could promote their interspecific competitiveness (Loivamäki
et al. 2008). However, since isoprene is one of the most common background-VOC
in the atmosphere, insects may rapidly adapt to avoid such interferences in host
recognition (Müller et al. 2015). The major function of isoprene is thought to
reinforce the resistance to abiotic stresses, in particular to oxidative and high
temperature stress (see e.g. Loreto and Schnitzler 2010). The most pertinent results
supporting these hypotheses were achieved with transgenic plants, either isoprene
synthase over-expressing mutants of the non-isoprene emitting species Arabidopsis
(Sasaki et al. 2007; Velikova et al. 2012) and tobacco (Vickers et al. 2009b; Tattini
et al. 2014) or isoprene synthase silenced mutants of the isoprene emitting species
poplar (Behnke et al. 2007, 2010). However, several studies using the same or other
transgenic mutants reported conflicting results with respect to these hypotheses
(Behnke et al. 2009, 2012; Palmer-Young et al. 2015). Further, it is uncertain that
the improved resistance to abiotic stress in isoprene emitters is, as initially
hypothesized, due to direct effect of isoprene by scavenging oxidants or stabilizing
membrane structure. In fact, isoprene dissolves too little in bio-membranes to
efficiently change membrane conformation (Harvey et al. 2015) and is only fairly
suitable to scavenge oxidants due to its moderate reactivity (Atkinson and Arey
2003; Palmer-Young et al. 2015) and the high toxicity of reaction products
(Cappellin et al. 2017; Matsui 2016 and references therein). More likely, the
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physiological effects of isoprene are indirect by taking part in the plant’s stress
signalling network (Vickers et al. 2009a; Vanzo et al. 2016). In any case, the
genetically engineered absence or presence of isoprene synthase in mutants causes
transcriptomic, proteomic and metabolic changes in various metabolic pathways
even under non-stress conditions, including the biosynthesis of phenyl-propanoids
and lipids that affects the composition and ultrastructure of chloroplast membranes
(Velikova et al. 2015; Harvey and Sharkey 2016). Numerous other VOCs than
isoprene have shown to be involved in within-plant and between-plant stress sig-
nalling, among which diverse GLVs, aromatic compounds and higher isoprenoids
(Havaux 2014; Delory et al. 2016; Matsui 2016).

10.3.2 Diversity of VOCs in Oak Species

The great majority of oak species hitherto screened for VOC emission has been
found to release isoprene constitutively at high rates from its foliage (up to several
tenths of nmol m−2 s−1). However, several oak species with distribution around the
Mediterranean do not produce isoprene, but produce either monoterpenes in high
amounts or shown no constitutive VOC emissions. These exceptions are mostly but
not exclusively evergreen oaks and belong all to the two very closely groups Cerris
and Ilex (Welter et al. 2012; Monson et al. 2013). Diversification of isoprene
emission in oaks has been mainly observed at species and higher taxon levels and
more rarely at population level. So far, inherent intra and/or inter population
variability in the quantity or quality of constitutively produced VOC has not been
reported within isoprene emitting oak species (Welter et al. 2012; Steinbrecher et al.
2013). By contrast in monoterpene emitting species, compositional diversification
(i.e. chemotypes) has been frequently observed within and among populations
(Staudt et al. 2001b, 2004; Loreto et al. 2009; Welter et al. 2012). In addition, a few
low or non-emitting individuals were detected in some monoterpene emitting
populations. Conversely, dual isoprene/monoterpene emitting oak individuals seem
to be extremely rare in natural oak populations (Staudt et al. 2004). This is
somewhat surprising, because many oaks can hybridize with each other resulting in
widespread genetic introgression or rise of new species (e.g. Valbuena-Carabaña
et al. 2007). For example, the endemic oak Q. afares (Algerian oak) is considered to
be a stabilized hybrid between Q. suber and Q. canariensis. Yet, Q. afares produces
exclusively monoterpenes (Welter et al. 2012) as one of its parent species (Q.
suber), but seems to have completely lost or suppressed the VOC production
capacity of its second parent Q. canariensis, which produces only isoprene. These
findings indicate that qualitative diversification in the monoterpene production
capacity occurs frequently and has no or only minor consequences for the com-
petitiveness of the trees. By contrast, the loss or gain of isoprene synthesis happens
more rarely during species evolution, possibly because it requires co-evolving
compensatory mutations to overcome failures in metabolic homeostasis.
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10.3.3 Response to Environmental Changes at Different
Time Scales

Unlike for CO2 and water vapor, the foliar exchange of VOCs is less constrained by
stomatal conductance. This is due to their generally low gas phase concentrations
inside the leaves, which allow changes in the diffusive resistance by stomata move-
ments to be compensated by concomitant changes in the concentration gradients
between the substomatal cavity and the outer atmosphere. Nevertheless, many
OVOCs are at least partly under stomatal control either because these VOCs are
transported with the transpiration stream and/or because these VOCs dissolve effi-
ciently in liquid phase, which in turn delays the re-equilibrium of the gaseous con-
centration in the apoplast in response to stomata movements (Niinemets et al. 2002).
In any case, all VOC emissions are strongly modulated by external factors, above all
temperature, which governs the VOC’s vapor pressures and diffusion velocities, in
addition to metabolic processes involved in the VOC release (Staudt et al. 2017b). In
oaks, the major bulk of the emitted VOCs (constitutive isoprene andmonoterpenes) is
directly regulated by their synthesis rate inside the chloroplasts, which in turn depends
on the availability of primary substrates coming from light-dependent photosynthetic
processes. Recent studies on poplar suggest that most of the short-term variation of
isoprene emission is due to limitations in the availability of reduction power from
photosynthetic electron transport (Rasulov et al. 2016 and references therein). Thus,
constitutive isoprene and monoterpene emissions from oaks, and perhaps also
stress-induced de novo synthesized emissions of sesquiterpenes, are strongly and
almost instantaneously modulated by both temperature and light (e.g. Staudt and
Lhoutellier 2011). The shape of the emission response to light resembles that of net
photosynthesis; i.e. a rectangular hyperbola approaching an asymptote at high light
values (Staudt and Bertin 1998). By contrast, the temperature response exhibits a
shape typical for the temperature dependence of enzyme-catalyzed reactions
(Fig. 10.2). In addition to these fast responses, light and temperature modulates the
oak’s overall emission capacity over the seasons with changing weather conditions
(e.g. Pier and McDuffie 1997; Staudt et al. 2002, 2003, 2017a) mostly via the
expression of genes of rate-limiting enzymes (Schnitzler et al. 1997; Fischbach et al.
2002; Lavoir et al. 2009). Constitutive isoprenoid emissions from oaks are also
influenced by other environmental factors such as ozone (Velikova et al. 2005),
atmospheric CO2 concentration (Loreto and Sharkey 1990; Staudt et al. 2001a) or
shortage and excess of soil water (Bertin and Staudt 1996; Staudt et al. 2002, 2008;
Rodríguez-Calcerrada et al. 2013; Bourtsoukidis et al. 2014; Saunier et al. 2017).

10.3.4 Relative Importance for Tree Carbon Budgets

Given that in oaks almost all primary C substrate used in the biosynthesis of volatile
isoprenoids comes from ongoing photosynthesis, the C loss associated with
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emission can be expressed as the ratio of mol emitted C to mol assimilated C. As
shown in Fig. 10.2, the instantaneous C loss varies much with changing tempera-
ture but little with light. Under most conditions the instantaneous C loss of

Fig. 10.2 Effects of temperature (left) and light intensity (photosynthetic photon flux density
(PPFD), right) on monoterpene emission (upper graphs), photosynthesis (middle graphs) and the
resulting relative carbon loss from monoterpene emission (C loss, lower graphs) in Q. ilex leaves.
Temperature effect was measured at a PPFD of about 315, 615 and 2000 µmol m−2 s−1. Light
effect was measured at a temperature of about 15, 25, 30 and 41 °C. Data were compiled from
Staudt and Bertin (1998)
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assimilated C by constitutive isoprenoid emissions will be less than 1%. However,
during heat spells, the C loss can substantially increase, especially when combined
with drought events. In fact, isoprenoid emissions from oaks are less sensitive to
water shortage than photosynthesis. The emissions decrease only when drought is
severe while under mild drought they remain stable or even increase (Fig. 10.3). As
a result, VOC emissions from oaks may significantly drain photosynthetic C and
energy during conditions in which other sinks associated with growth are inhibited.
In addition to constitutively produced isoprenoids, new volatiles induced by abiotic
or biotic stresses may further exhaust the tree’s C resources. The exact C loss by
these emissions is difficult to assess since stress usually induces a wealth of
high-molecular, very reactive trace compounds (many of which remain undetected)
that are emitted sporadically. Generally, the emission rates reported for
stress-induced VOCs are lower than those for strong constitutive isoprenoid
emissions. For instance, in Q. ilex leaves VOC emissions induced by gypsy moth
infestation (mainly sesquiterpenes and homoterpenes) accounted for about 10% of
the total foliar VOC release (Staudt and Lhoutellier 2007).

The emissions of OVOCs from foliage have often been neglected when esti-
mating C losses by VOC emission, because their accurate measurement requires
different techniques to that of common VOCs. However, as mentioned above, many
of them are ubiquitous plant volatiles that can be emitted at quite high rates, such as
methanol. By combining PTR-MS technique with classical GC-MS, Bracho-Nunez
et al. (2013) determined a large range of VOC exchange in 28 plant species, among
which three oak species. At standard light and temperature conditions, mean C loss
of net-photosynthesis by VOC emission ranged between 1.4 and 3.7%, with
methanol and acetone contributing between 5 and 66% to the total VOC release.
The quantities of VOCs released from roots and stem tissues are only poorly known
and to our knowledge have never been reported for oaks. Nevertheless, Weissteiner
et al. (2012) identified more than 60 VOCs in the headspace of washed healthy and
damaged roots of young Q. petraea � Q. robur trees, of which 13 compounds were
consistently released. Asensio et al. (2007) investigated the VOC exchange of soil
in a Q. ilex forest and concluded that it represented 0.003% of the total C emitted by
soil as CO2.

On the other hand, there is increasing awareness that VOC exchanges can be
bidirectional at least for some OVOCs and hence compensation points in VOC
concentration exist, above which VOCs are taken up by plants (Niinemets et al.
2014; Matsui 2016 and references therein). For example, Staudt et al. (2000)
observed bidirectional exchanges of acetic acid from diverse plant species, with net
emissions dominating during day-time and net depositions dominating during
night-time. For Q. ilex, the average deposition rate observed in darkness was more
than half of the average emission rate observed under illumination (0.41 and
0.72 ng C m−2 s−1, respectively). Furthermore, secondary VOCs produced during
atmospheric oxidation can be taken up by the vegetation and metabolized, thus
possibly recovering parts of the C lost by emission (Karl et al. 2010; Park et al.
2013). Bidirectional above-canopy VOC fluxes have been recently measured by
Schallhart et al. (2016) in a mixed oak forest during the early summer season. These
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authors observed an average net VOC efflux to the atmosphere of 41.8 nmol C m−2

s−1 which accounted for a bit less than 2% of the net uptake of CO2. This number
likely represented the upper limit of VOC-related C loss in that study site, because

Fig. 10.3 Plot of isoprenoid emissions, photosynthesis and resulting relative C losses from
isoprenoid emissions against predawn water potential during two drought experiments on Quercus
pubescens (a, isoprene emitter) and Quercus suber (b, monoterpene emitter). Oak saplings were
exposed to one or two consecutive drying cycles for Q. pubescens and Q. suber, respectively. Gas
exchange measurements were made under the same standard light and temperature conditions
(1000 µmol m−2 s−1 PPFD; 30 °C). Lines are best fits on C-loss data assuming an exponential
relationship for Q. pubescens (R2 = 0.92; Rodríguez-Calcerrada et al. 2013) and Q. suber
(R2 = 0.67; Staudt et al. 2008)
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the measurements were conducted during the season when the emission capacity for
constitutive isoprenoids reaches usually its maximum. Continuous online year-long
measurements of total VOC exchanges at plant or canopy levels are still sparse due
to methodological constraints. As an exception, Brilli et al. (2016) have monitored
by eddy covariance both VOC and CO2 exchanges over a temperate poplar plan-
tation throughout a whole growing season. Although poplar is, similar to most
temperate oak species, a strong isoprene emitter, they observed a relatively small
net VOC flux of ca. 1 g m−2 per growing season accounting for about 0.8% of the
net ecosystem CO2 exchange. Earlier studies extrapolated discontinuous VOC
emission/flux measurements by means of generic emission models to assess their
weight relative to annual ecosystem C budget. For example Kesselmeier et al.
(2002) estimated the annual C loss by VOC emission from an evergreen oak
Mediterranean forest being 0.45% of their annual GPP.

10.4 Rhizodeposition

The rhizosphere is a highly populated environment. There are thousands of
non-volatile organic compounds released by roots that mainly consist of carbohy-
drates, amino acids, vitamins, lipids, and a wide variety of secondary metabolites
and proteins. Rhizodeposits can alter the physico-chemical soil properties and play
important roles in the interactions of the plant with microbes or competing plant
species (Bais et al. 2004; Bashir et al. 2016). As example, phenolic compounds help
roots to deter the attack of pathogens (Lanoue et al. 2010); flavonoids facilitate the
mutualistic symbiosis with mycorrhizal fungi (Nagahashi et al. 2010); the synthesis
and release of some enzymes increase the availability of phosphorus forms that are
absorbable by the roots (Dakora and Phillips 2002); while the exudation of phos-
pholipids by root tips can reduce the surface tension of the soil solution and
enhance the uptake of water and nutrients (Read et al. 2003). Similar interactions
might exist in the rhizosphere of oak trees. However, the function and chemical
profiling of rhizodeposits have been rarely studied within this genus. One of the
scarce studies documents the effect of herbivory on C rhizodeposition in 2-year-old
Q. rubra seedlings (Frost and Hunter 2008): It was observed that foliar herbivory
reduced C allocation to fine roots whilst root exudation was actively regulated to
maintain constant rates of C rhizodeposition, likely to sustain nutrient supply to
microbes.

Rhizodeposition is affected by edaphic and environmental factors (reviewed by
Nguyen 2009). The abundance of soil microorganisms substantially enhances the
allocation of C assimilates to the rhizosphere. Besides, soil texture affects microbial
activity, nutrient cycling, and soil physical properties, so that rhizodeposition
increases in loam and clay soils due to their higher fertility and the smaller size of
soil pores that facilitate the flow of organic compounds. Regarding climatic con-
ditions, rhizodeposition is expected to increase during drought stress (Henry et al.
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2007), and seems to be unaffected by changes in atmospheric [CO2] (Nguyen
2009).

For experimental simplicity, research on rhizodeposition has focussed on
herbaceous plants and young tree seedlings (<2 months old; reviewed by Jones
et al. 2009), so that any extrapolation to large trees would be biased by the potential
effect of plant age on C allocation patterns (Nguyen 2009). Assessments on the
contribution of C rhizodeposits to plant C budgets is an experimentally elusive task,
mainly because of the technical limitation that the soil imposes for the quantifi-
cation of C flow through the rhizosphere, and the natural abundance of soil
microorganisms that promptly assimilate rhizodeposits. We are aware of only one
study in which the contribution of C rhizodeposits to tree C budgets has been

Fig. 10.4 Simplified schematic of tree carbon (C) budget in an oak forest. Net primary production
can be estimated as the difference between photosynthesis (P) and overall C loss. Tree C loss
occurs via emission of volatile organic compounds (VOCs), autotrophic respiration (RA), and
rhizodeposition of organic compounds. Autotrophic respiration is partitioned into leaf, stem and
root respiration (RLEAF, RSTEM and RROOT, respectively) and is expressed as a fraction of
ecosystem respiration (RECO), which additionally integrates heterotrophic respiration (RH) of
living organisms in the soil
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surveyed in oak species. In mature trees of Q. serrata and Q. glauca, C loss via root
exudation was proportional to that of root R (10%) on a root-weight basis, and
accounted for 3% of NPP (Sun et al. 2017). Similarly, studies on annual herbs and
tree seedlings using isotopic tracers estimate that the portion of C assimilated
through photosynthesis and lost via rhizodeposition ranges between 2 and 11%
(Jones et al. 2009; Preece and Peñuelas 2016). However, these rough estimates
should be taken with caution due to the uncertain origin and fate of C within the
rhizosphere (Jones et al. 2009). Finally, there is increasing evidence that roots of
autotrophic plants can take up amino-acids hence assimilating organic C and
nutrients (reviewed by Schmidt et al. 2013). This mixotrophic behaviour has been
observed in Q. petraea roots during spring, when the strong C demand for growth
before budburst cannot completely rely in new assimilates (Bréda et al. 2013), thus
adding further complexity to the estimation of net C loss belowground.

10.5 Conclusions

Carbon assimilation traditionally occupies a predominant role in the study of tree C
cycling, whereas processes involved in the C release from the plant to the atmo-
sphere are comparatively understudied. Respiration, emission of VOCs and rhi-
zodeposition constitute therefore the overlooked side of tree C budgets, included
those of oak trees. The ecological importance, physiology and environmental
control of R and VOC emissions in oak species have been reviewed; a simplified
schematic of the tree C budget in oak—dominated stands is presented in Fig. 10.4.
Autotrophic R is expected to consume half of the assimilated C, with respiration—
to—photosynthesis ratios ranging between 35 and 80%. The relative contribution of
leaves, stems and roots to the overall C respiratory expenditure largely fluctuates
according to stand structure, composition and age (Table 10.2). The C loss asso-
ciated with VOC emissions accounts for about 1% of gross P. This percentage may
increase up to 5% during heat waves and under drought stress (Figs. 10.2 and 10.3),
and even more if VOCs emitted from flowers, fruits, stems and roots are taken into
account. Rhizodeposits represent an additional and non-negligible source of tree C
loss. However, scarce literature on oak rhizodeposition discourages attempts to
provide a rough quantitative estimation. Furthermore, environmental—induced
fluctuations in oak R and VOC emissions are not necessarily proportional to
fluctuations in C assimilation. Thus, the assumption of homeostatic ratios between
C loss and C gain should be revisited as it might lead to erroneous predictions on
the strength of oak stands as C sinks in a climate changing world, conclusion that
could be extrapolated to other tree taxa. A comprehensive understanding of oak C
loss comparable to that of photosynthesis would be therefore necessary to accu-
rately assess oak C cycling in scenarios of climate change.
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Chapter 11
Photoprotective Mechanisms in the Genus
Quercus in Response to Winter Cold
and Summer Drought

José Ignacio García-Plazaola, Antonio Hernández,
Beatriz Fernández-Marín, Raquel Esteban, José Javier
Peguero-Pina, Amy Verhoeven and Jeannine Cavender-Bares

Abstract The photosynthetic apparatus must cope with the excess energy when
light exceeds what plant can use. Under these conditions, plants, including oaks,
can activate an array of “photoprotection mechanisms”, which are crucial to
understand the relationships between plants and their environment. First, this
chapter gives a general description of the different photoprotection mechanisms that
operate at several levels: (i) the reduction of light collection by chlorophylls, (ii) the
enhancement of the metabolic use of light energy absorbed, (iii) the enhancement of
the dissipation of the absorbed energy as heat, and (iv) the mechanisms for pre-
venting and repairing oxidative damage (Sect. 11.1). These photoprotection
mechanisms are subsequently analyzed in detail for evergreen oaks exposed to
winter stress (Sect. 11.2) and for both deciduous and evergreen oaks under
drought-stress conditions (Sect. 11.3), with particular emphasis on the role of free
and enzymatic antioxidants, xanthophyll cycles and sustained engagement of dis-
sipation. Afterwards, the chapter addresses with the need of photoprotection in
deciduous oaks during autumn senescence associated to the risks of chlorophyll
degradation and reactive oxygen species (ROS) generation (Sect. 11.4).
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11.1 Photoprotection in Leaves, the Basics

Whenever light exceeds what plants can use, the photosynthetic apparatus has the
unavoidable need to get rid of the excess energy by activating an array of “pho-
toprotection mechanisms”. Photoprotection is foundational to understand the rela-
tionships between plants and their environment and it has been recently reviewed
by several authors (e.g. Goss and Lepetit 2015; Ruban 2016; Wobbe et al. 2015).
Basically, photoprotection mechanisms operate at several hierarchic levels that first,
reduce light collection by chlorophylls (Sect. 11.1.2); second, enhance the meta-
bolic use of light energy absorbed (Sect. 11.1.3); third, enhance the dissipation of
the absorbed energy as heat (Sect. 11.1.4); and fourth, prevent and repair oxidative
damage (Sect. 11.1.5).

11.1.1 Dealing with Light Excess in Quercus Canopies

Applying a shade tolerance index that ranges from 0-untolerant to 5-maximum
tolerance, Niinemets and Valladares (2006) classified 57 oak species as interme-
diate shade-tolerant or shade-intolerant species (index 1–3.5), reaching scores lower
than those of the traditionally considered shade-tolerant genus, such as Abies,
Picea, Acer or Fagus (index 4–5) (Fig. 11.1). As a consequence of this limited
shade-tolerance, Quercus seedlings usually regenerate in the understory of rela-
tively open canopies, but cannot compete under deep shade with seedlings of more
shade-tolerant species, such as beech (Hansen et al. 2002). To survive in such open
understories, oak seedlings have to be able to dynamically adjust photosynthetic
activity and photoprotection mechanisms to changes in light environment, such as
those generated by canopy opening, while maintaining a high photosynthetic gain
(Hansen et al. 2002; Naidu and De Lucia 1997). However, even among Quercus
species, the degree of such plasticity differs, with the more shade-tolerant being less
plastic and more susceptible to high light (Rodríguez-Calcerrada et al. 2007).

11.1.2 Decreasing Light Absorption: Morphological
and Biochemical Adjustments

When light interception by photosynthetic cells is in excess of what plants can use,
it can be reduced efficiently through the development of plastic morphological
modifications. Most of them are slowly reversible in the short-term and they can be
grouped in two main categories: (1) changes in leaf anatomy and morphology (leaf
and petiole angle, lamina size, leaf rolling, chloroplast movements) and (2) changes
in leaf reflectance (pubescence, wax deposition, accumulation of red pigments) and/
or regulation of antenna size. A comparative examination of the leaves developed in
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the outer (sun) and inner (shade) crown of a well-developed Quercus tree imme-
diately reveals most of these characters, particularly in the more plastic species such
as Q. velutina or Q. coccifera. Thus, when developed in a sunny position, leaves are
thicker, with more layers of palisade parenchyma and higher epidermal cell
thickness (Ashton and Berlyn 1994). Leaf angle also responds to canopy position
and, for example in Q. coccifera, there is considerable variation in this character,
with steeper leaves in the upper canopy and more horizontal shade leaves (Rubio de
Casas et al. 2007). Leaf rolling is also common among Mediterranean Quercus
species and it increases with irradiance within the canopy, reducing the effective
light-interception area (Niinemets 2007). At the biochemical level, irradiance
acclimation within Quercus canopies is reflected by a shift to higher values of
chlorophyll (Chl) a/b and Carotenoid/Chl ratios in more exposed positions (Hansen
et al. 2002). As Chl b is only present in light harvesting complexes (LHCs) and
carotenoids are mostly involved in photoprotection, these trends are indicative of a
change from efficient light harvesting under low irradiance to high capacity for
energy dissipation in sunny positions.

Other foliar traits that greatly affect leaf interaction with the environment are
pubescence (presence of hairs) and glaucescence (presence of waxes). The presence
of a hairy epidermis increases both the thickness of the boundary layer (Bacelar
et al. 2004) and the leaf hydrophobicity (Brewer et al. 1991) and reduces the
susceptibility to herbivory (Karioti et al. 2011). In Q. ilex, adaxial trichomes can
also contribute to water absorption thanks to their high hydrophilicity (Fernández
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Fig. 11.1 Relationship between shade tolerance and drought tolerance indexes in Quercus species
in the context of northern hemisphere trees and shrubs. Database published by Niinemets and
Valladares (2006), (see the original publication for details on index calculation). Light grey
symbols show data from all species included in the database, black symbols correspond to
deciduous Quercus species, and white symbols to evergreen species
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et al. 2014). However, the exact selective pressure that makes a plant species
pubescent is difficult to demonstrate. Independently of what is the main function of
trichomes, pubescence always generates a change in the spectral properties of
leaves (Holmes and Keiller 2002) increasing light reflectance at all wavelengths of
the spectrum and consequently, reducing leaf absorptance up to 50% in some
species (Ehleringer 1982).

In the case of Quercus species, trichomes are mainly present in the abaxial leaf
surface, but some species (i.e.: Q. ilex, Q. pyrenaica, Q. pubescens, Q. macran-
thera) have trichomes in the adaxial side of their leaves, at least during the early
stages of their development (Bussotti and Grossoni 1997; Hardin 1979). An
unavoidable consequence of the presence of leaf trichomes is that the uniform
photon scattering at all wavelengths caused by the hairy surface reduces light
reaching the mesophyll (Karabourniotis and Bornman 1999). For example, when
trichomes were mechanically removed from Q. ilex leaves, reflectance decreased by
5% (Morales et al. 2002). Furthermore, this treatment also enhanced susceptibility
to photoinhibition, demonstrating the photoprotective role of leaf pubescence for
this species (Morales et al. 2002). Similarly, reflectance from hairless species such
as Q. coccifera is on average 5% lower than in Q. ilex (Morales et al. 2002). In
agreement with a protective role, it has been shown that in Q. ilex pubescence is
higher in xeric ecotypes compared to mesic ones (Camarero et al. 2012). Apart from
their role in protection against excessive radiation, trichomes also contribute in Q.
ilex to attenuate UVA and UVB protection thanks to the presence of flavonoids
(Karabourniotis and Bornman 1999). However, this is probably not the main factor
determining pubescence, as shown by the decrease in leaf hair density with
increasing elevation (and consequently UV exposure) in Q. ilex (Filella and
Peñuelas 1999).

In some Quercus species, leaf reddening is conspicuous at certain developmental
stages. The question of the functional role of leaf reddening (caused by the accu-
mulation of anthocyanins, carotenoids or betacyanins) has been tackled by a sur-
prisingly high number of studies (reviewed in Chalker-Scott 1999; Hughes 2011;
Steyn et al. 2002). Two main hypotheses have been tested in those studies: red
pigments act as light filters reducing the irradiance reaching the photosynthetic cell
layers, or alternatively, red molecules act as antioxidants. An alternative hypothesis,
not related to photoprotection is that red colouration in leaves represents a type of
communication signal between plants and insects (Archetti et al. 2008). This
hypothesis has been experimentally tested in Q. coccifera by Karageorgou and
Manetas (2006). These authors showed that green leaves were more damaged by
herbivore insects with little differences on photoinhibition between both pheno-
types. Despite the role in bio-communication, the photoprotective hypothesis is also
supported in Quercus species by the fact that anthocyanins appear during critical
phenological periods such as leaf expansion in Q. coccifera (Manetas et al. 2003) or
Q. ilex (Brossa et al. 2009) and autumn senescence in Q. rubra (Lee et al. 2003) or
Q. palustris (Boyer et al. 1988) (see also Sect. 11.4.2); but also in response to low
temperature stress in evergreen Quercus species (Ramírez-Valiente et al. 2015) (see
Sect. 11.2.1). Such anthocyanin accumulation is triggered by light, and
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consequently is not observed when senescing leaves are artificially shaded (Lee
et al. 2003). Furthermore, when comparing young leaves from red and green
phenotypes of Q. coccifera, the higher photochemical efficiency of first, together
with their shade-like phenotype (Manetas et al. 2003), support that shading gen-
erated by the accumulation of such pigments enhances photoprotection during leaf
expansion.

11.1.3 Metabolic Dissipation

Another mechanism that can reduce over-excitation of the photosynthetic
machinery is to enhance the metabolic use of the light energy absorbed by processes
as photorespiration, the cyclic electron transport,the water-water cycle or/and the
chlororespiration. All these processes act as alternative electron sinks, thus pre-
venting damage to the photosynthetic apparatus (Ort and Baker 2002).

Photorespiration results in a light-driven loss of CO2 from cells that are simul-
taneously fixing CO2 by the Calvin cycle. Photorespiratory reactions can dissipate
the energy excess either directly (by ATP, NAD(P)H and reduced ferredoxin) or
indirectly (e.g., via alternative oxidase and providing an internal CO2 pool) (Voss
et al. 2013). This process has been described also for species of the genus Quercus
in response to different stress factors (see Sect. 11.3.1) as: (i) water stress in Q. ilex
(Tsonev et al. 2014), (ii) drought stress in Q. suber, Q. ilex and Q. coccifera
(Peguero-Pina et al. 2009), (iii) low temperature in Q. guyavifolia (Huang et al.
2016a), (iv) high temperature in Q. ilex (Peñuelas and Llusia 2002) and (v) high
temperature combined with high CO2 in resprouts from Q. ilex (Pintó-Marijuan
et al. 2013). In the latter, photorespiration was showed to be dependent on CO2

concentration (Pintó-Marijuan et al. 2013). These data suggest that photorespiration
provides a “safety-valve” for excess energy to avoid photochemical damage when
CO2 assimilation is inhibited (Peñuelas and Llusia 2002), thus preventing accu-
mulation of reactive oxygen species (ROS) (Voss et al. 2013). The leaf internal CO2

pool provided by photorespiration supports the Calvin cycle and isoprenoid
biosynthesis (Peñuelas and Llusia 2002).

Chlororespiration also might play a role in the regulation of photosynthesis by
modulating the activity of cyclic electron flow around photosystem (PS) I (Peltier
and Cournac 2002). Besides, it has been described as a protective mechanism based
on the induction of chloroplast NAD(P)H dehydrogenase by stressful treatments
(e.g. Öquist and Huner 2003; Streb et al. 2005). This protective role was studied in
winter-acclimated Q. ilex and Q. suber, whose leaves produced zeaxanthin (Z) in
darkness (possibly by creation of a chlororespiratory pH-gradient), contributing to
winter hardening. (Brüggemann et al. 2009). Cyclic electron flow around PSI and
water-water cycle have been found to be involved in winter photoprotection of
evergreen Asian oaks Q. douglasii and Q. guyavifolia (Huang et al. 2016b).
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The Mehler reaction, that reduces oxygen to superoxide anion (O2
−), and sub-

sequently to water by the ascorbate-glutathione pathway (described in Sect. 11.1.5.)
is other major sink for the electrons from the photosynthetic electron transport
chain.

11.1.4 Enhancing Dissipation

Once light has been absorbed, the first site of photoprotection is within the LHCs
themselves. If light is excessive and excited Chl is unable to drive photochemistry,
then the lifetime of the singlet state is extended, resulting in a higher yield of triplet
state formation. This is undesirable because energy transfer from triplet Chl to
oxygen generates singlet oxygen (1O2), a highly reactive type of ROS. However, in
addition to driving photochemistry, excited Chl can return to the ground state by the
emission of light (chlorophyll fluorescence) or by the harmless emission of heat
(safe thermal dissipation of excess absorbed light energy), a process that is mod-
ulated by the xanthophyll cycles. The latter route is a major component of pho-
toprotection, also termed non-photochemical quenching (NPQ) as it results in an
easily measurable quenching of chlorophyll fluorescence (Müller et al. 2001;
Murchie and Niyogi 2011). Two xanthophyll cycles associated to the thermal en-
ergy dissipation have been described in higher plants so far: the ubiquitous vio-
laxanthin-zeaxanthin cycle (VAZ-cycle) and the taxonomically restricted lutein
epoxide-lutein cycle (LxL-cycle) (Esteban and García-Plazaola 2014).

The regulation of energy dissipation through NPQ associated to the VAZ-cycle
is one of the main photoprotective mechanisms described in higher plants (Niyogi
1999). The cycle involves inter-conversions between three carotenoids in the thy-
lakoid membrane: violaxanthin (V), antheraxanthin (A) and zeaxanthin (Z). Under
excess light, the efficient PSII light-harvesting antenna is switched into a photo-
protected state in which the potentially harmful excess of absorbed energy is
thermally dissipated. Changes occur rapidly and reversibly, enhanced by the
de-epoxidation of V to Z via A. This mechanism has been described in many
Quercus species in response to different stress factors (see Sects. 11.2.2 and 11.3.2
for a more detailed description of the regulation of NPQ by these stresses): (i) the
excess of light (e.g. Q. suber, García-Plazaola et al. 1997; Q. ilex, Corcuera et al.
2005a; Q. alba, Wang and Bauerle 2006; Q. petraea, Rodríguez-Calcerrada et al.
2007; Q. coccifera, Peguero-Pina et al. 2013); (ii) summer drought (e.g. Q. coc-
cifera, Peguero-Pina et al. 2008; Q. ilex and Q. suber, Peguero-Pina et al. 2009),
and (iii) winter stress due to low temperatures (e.g. Q. ilex, Corcuera et al. 2005b;
Camarero et al. 2012; Q. myrsinaefolia, Yamazaki et al. 2011).

The light-driven inter-conversions between lutein epoxide (Lx) and lutein (L) in
the thylakoid membrane, constitutes the LxL-cycle (Fig. 11.2). This cycle operates
concurrently with the VAZ-cycle (Esteban and García-Plazaola 2014). Lutein
epoxide de-epoxidation enhances the already large pool of L in leaves, giving rise
to newly formed L molecules (ΔL) (Nichol et al. 2012). In darkness, the
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epoxidation back from DL to Lx operates at two modes: one “completed”, in which
the initial Lx pool is restored in minutes or hours, and one “truncated”, in which DL
remains for a longer period (days or weeks). The latter, has been widely described
in leaves of the genus Quercus: Q. ilex, (Llorens et al. 2002); Q. ilex, Q. coccifera,
Q. robur, Q. faginea and Q. suber, (García-Plazaola et al. 2002); Q. rubra
(García-Plazaola et al. 2003a). In addition, the “truncated” LxL-cycle has been
also described in the enclosed buds of some woody plants, as Q. robur, when
bud-burst takes place (García-Plazaola et al. 2004). The regulation of energy dis-
sipation through NPQ is, as in the case for the VAZ-cycle, associated to the
operation of LxL-cycle (Esteban and García-Plazaola 2014). Indeed, faster
engagement of NPQ in leaves with ΔL not containing A + Z prior to light exposure
was described in Q. rubra under light stress (García-Plazaola et al. 2003a). The
ecophysiological significance of this “truncated” LxL-cycle in species of the genus
Quercus relies on the fact that Lx de-epoxidation may represent an emergency
mechanism of special relevance for long-term downregulation of photosynthetic
efficiency, supplementing retention of Z + A and their sustained engagement in
energy dissipation in response to prolonged environmental stress, in cases of winter
or summer acclimation (Llorens et al. 2002; García-Plazaola et al. 2002) or sudden
exposure to high light, as the generation of forest gaps or budbreak (Esteban and
García-Plazaola 2014). Thus, the combination of both cycles increases the plasticity
of photoprotective responses in Quercus species.

11.1.5 Antioxidant and Repair Mechanisms
(Free and Enzymatic Antioxidants)

Environmental stress conditions that result in restricted CO2 fixation rates can
induce an imbalance between the generation and utilization of photosynthetic
electrons. Thus, whenever excess excitation energy is not safely removed,
photo-oxidative damage can occur due to an enhanced formation of ROS in the
chloroplasts (Hernández et al. 2012). Besides the oxidation of different molecules
(i.e. lipids, proteins, sugars, nucleic acids), ROS may also impair the PSII repair
process through the inhibition of the de novo synthesis of PSII proteins (primarily
the D1 protein) (Takahashi and Badger 2011). To cope with this situation,
chloroplasts possess non-enzymatic and enzymatic antioxidant defense mecha-
nisms. These mechanisms detoxify ROS and maintain an adequate cellular redox
balance (Mittler 2002), alleviating the inhibition of PSII repair (Takahashi and
Badger 2011).

The general operating mechanism of non-enzymatic, low molecular weight,
antioxidants consists in the donation of electrons or hydrogen atoms to the oxi-
dizing agent. For example, carotenoids as xanthophylls and carotenes can act as
direct scavengers of ROS and stabilize the light-harvesting complexes within the
thylakoid membranes (Bassi and Caffarri 2000). Tocopherols (Toc) are also
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lipophilic antioxidants, and are able to donate single electrons to lipid peroxyl
radicals, preventing the propagation of lipid peroxidation chains in thylakoids
(Munné-Bosch 2005). Other plant molecules such as lipoic acid, anthocyanins,
(poly)phenols, melatonine and tocotrienols have also been described to have
antioxidant activity, but their relevance in vivo has not been fully determined.
Ascorbate is the most abundant antioxidant in Quercus leaves (García-Plazaola
et al. 1999a, b, 2000) and a substrate for ascorbate peroxidase (APX) that detoxifies
H2O2. It is also involved in the regeneration of (oxidized) tocopheryl radical to Toc,
and is a co-substrate for V de-epoxidase in the VAZ-cycle.

Enzymatic antioxidants are proteins that use electron donors, mainly antioxi-
dants and NAD(P)H, either to eliminate ROS or to regenerate “burned” (oxidized)
antioxidants (Hernández et al. 2012). Among others, antioxidative enzymes include
glutathione reductase (GR), monodehydroascorbate reductase (MDAR), catalase
(CAT), APX and other peroxidases. The interaction with non-enzymatic antioxi-
dants such as ascorbate (Asc) and glutathione (GSH) plays a central role in the
chemical and metabolic destruction of ROS. Ascorbate is considered as the key
compound of O2

− and H2O2 removal in the chloroplast, and the ascorbate-
glutathione cycle constitutes a powerful pathway to maintain Asc in its reduced
form by using GSH as an electron donor (Noctor and Foyer 1998). Another large
group of non-enzymatic antioxidants are the superoxide dismutases (SODs), which
constitute the first line of defense against ROS, catalyzing the decomposition of O2

−

in chloroplasts and other organelles (Alscher et al. 2002).
Several studies have dealt with the role of non-enzymatic and enzymatic an-

tioxidants in different Quercus species. In particular, the changes in antioxidant
concentration under several stress factors have been analyzed, such as drought in
deciduous (e.g. Q. robur, Schwanz and Polle 2001; Q. pubescens, Gallé et al. 2007)
and evergreen species (e.g. Q. coccifera and Q. ilex, Baquedano and Castillo 2006)
(see also Sect. 11.3.3), winter stress in evergreens (e.g. Q. ilex, Corcuera et al.
2005a; Cyclobalanopsis helferiana, Zhu et al. 2009) (see also Sect. 11.2.3), and
other factors such as pollutants (e.g. Q. ilex, Munné-Bosch et al. 2004). In general

JFig. 11.2 Concurrent operation of LxL- and VAZ-cycles in Quercus. In non-stressed leaves, the
LxL- and VAZ-cycles remained in the epoxidated forms, Lx and V shown (shown in green). These
carotenoids can be synthesized by novo from L and Z respectively (shown in grey). Under
environmental stress or sunlight, the light harvesting antenna is switched into a photoprotected
state, in which Lx and V are de-epoxidated to the de-epoxidated forms (L and A + Z respectively;
shown in orange). In the case of LxL-cycle, Lx enhances the already large pool of L in leaves,
giving rise to newly formed L molecules (ΔL). The potentially harmful excess of absorbed energy
can be then dissipated thermally (NPQ). When the leaf is again without stress or in darkness,
A + Z is epoxidated-back to V, restoring the initial V pool (minutes or hours). However, in the
LxL-cycle, DL remains for a longer period (days, months), giving rise to the “truncated”
LxL-cycle (dashed arrow). If the stress is sustained for a long time, a faster engagement of NPQ
occurs then in leaves, activated by the truncated LxL-cycle (ΔL) and without any dissipation
through A + Z. The combination of both cycles, with different mode and kinetics of operation
increases the plasticity of NPQ in Quercus species
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positive responses of antioxidant pools to those stress factors confirm the important
role of this strategy in the battery of photoprotective defense mechanisms in
Quercus.

11.2 Photoprotection in Evergreen Oaks During Winter

11.2.1 When and Where Evergreen Oaks Are Exposed
to Winter Stress?

Many oak species are evergreen, sub-evergreen or brevideciduous, meaning that
they maintain leaf function for most or all of the year. Evergreen species occur in all
of the major lineages and across all the continents of their distribution in the
Northern Hemisphere, including in Asia, Europe, North Africa and North and Meso
America. In the Americas, in the southeastern United States, California and in
northern, high elevation regions of Mexico, in some areas of the Mediterranean
basin, and in high mountains in Asia, numerous oaks are exposed to chilling and
freezing temperatures. While these different regions experience contrasting climatic
regimes, they are similar in having thermal seasonality marked by warm summers
and relatively cold winters. Plants with evergreen leaves, which are not pro-
grammed to senesce and abscise in response to cold temperatures, require mech-
anisms to protect the photosynthetic apparatus during freezing. This allows them to
benefit in terms of carbon gain by maintaining function under mild freezing stress.
Mediterranean oaks have been the subject of considerable study in the
Mediterranean basin and California; these regions experience cold wet winters and
hot dry summers, in contrast to the southeastern US and northeastern Mexico,
where summers are hot and wet and winters are cold and dry. Nights in the
Mediterranean region of southern Europe and North Africa frequently reach
freezing temperatures during winter months (December, January and February) but
only rarely extend below −10 °C. Leaf photochemistry is known to be impaired by
night-time freezing temperatures as a result of impairment of enzymatic processes
involved in photosynthesis. Acclimation to cold temperatures in overwintering
evergreen oaks species has been linked to increases in antioxidants and xanthophyll
pigments (García-Plazaola et al. 1997, 1999a, b; Brüggemann et al. 2009) (see
Sect. 11.2.2), as well as changes in the composition of PS II antenna and increases
in cyclic electron transport that allow increased quenching of absorbed light (Öquist
and Huner 2003). In a common garden in the Mediterranean region of France,
where two evergreen (Q. ilex and Q. suber) and two deciduous (Q. afares and Q.
faginea) were grown for almost two decades, evergreen species showed important
differences in cold acclimation ability and protection of the photosynthetic appa-
ratus (Cavender-Bares et al. 2005). In the two evergreen species, photosynthetic
function in leaves showed a strong acclimation response during winter, which
protected the leaves even at −15 °C. This did not occur in the deciduous species.
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Starch and lipid content increased in the evergreen species, and sugar content
increased in Q. ilex, the most freezing tolerant species, consistent with changes
associated with cold acclimation to stabilize membrane structure and function.
These changes appeared to be coordinated with hydraulic function, such that spe-
cies with long-lived leaves had greater protection of both the photosynthetic
apparatus and xylem transport.

In general, species responses to chilling and freezing were predicted by their
climates of origin. Thus for example, in another common garden experiments with
the American live oaks, which maintain green leaves throughout the year, diver-
gences in response to cold were tested for by examining PS II photosynthetic yield
(DF/FM′) and NPQ under chilling or warm growing conditions after short-term
exposure to three temperatures (6, 15 and 30 °C) and under moderate light
(400 µmol m−2 s−1). Without cold acclimation (tropical treatment), the most
northern population of the species occurring in areas with cold winters, Q. vir-
giniana, showed the highest photosynthetic yield in response to chilling tempera-
tures (6 °C). With cold acclimation, Q. virginiana populations showed greater NPQ
under chilling temperatures than the tropical Q. oleoides populations, suggesting
enhanced mechanisms of photoprotective energy dissipation in the species adapted
to cold winters. In a subsequent experiment that included more species from this
lineage, species from climates with cold winters again showed greater leaf-level
freezing tolerance than the tropical species, Q. oleoides, as indicated by changes in
maximal photochemical efficiency of PSII (FV/FM) under continuous dark envi-
ronments after freezing at −10 °C (Koehler et al. 2012; Cavender-Bares et al.
2011). At the population level, the degree of their loss of photosynthetic function
depended on the mean minimum temperature of their climate of origin.
Interestingly, seedlings originating from warmer climates had higher anthocyanin
concentration in leaves when grown under cold winter conditions but did not
exhibit a higher de-epoxidation state (Ramírez-Valiente et al. 2015).

Photoprotection mechanisms against chilling in Asian oaks have only been
studied in a couple of species native to savanna-valleys and high elevations (above
3000 m.a.s.l.) of Southwest China: C. helferiana and Q. guyavifolia (Zhu et al.
2009; Huang et al. 2016a, b). These species are exposed to below zero temperatures
during winter (mostly at night). When freezing night temperatures reduce or inhibit
photosynthesis, energy dissipation, photorespiration and alternative electron flow
acquire a key role in the photoprotection of photosynthetic apparatus (Huang et al.
2016a). All together, these mechanisms allow an efficient performance and pro-
tection of PSII of Asian oaks during winter.

In summary, the presence of a cold season in their habitat of origin together with
a proper period of acclimation represent the two main factors explaining when and
where Quercus evergreen species are able to successfully deal with winter stress.
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11.2.2 Sustained Energy Dissipation Under Winter Stress

Evergreen oaks growing in areas where temperatures drop below freezing have
been shown to employ sustained thermal energy dissipation during the winter
months (García-Plazaola et al. 1999b, 2003b; Martínez-Ferri et al. 2004).
Sustained thermal energy dissipation is characterized by reductions in maximal
photochemical efficiency that correlates with overnight retention of the
de-epoxidized forms of the VAZ and LxL-cycles: Z, A and ΔL (García-Plazaola
et al. 2002). It is thought that this mechanism represents a sustained form (or forms)
of thermal energy dissipation that protects the photosynthetic apparatus from excess
excitation pressure during conditions of high light and low temperatures that occur
during winter (Adams et al. 2004; Verhoeven 2014). This type of sustained dissi-
pation has been widely observed in other evergreens acclimated to winter condi-
tions. The mechanism(s) of sustained thermal dissipation are not fully understood,
however dark retention of A and Z, as well as reorganization of photosynthetic
proteins including increases in early light induced proteins (ELIP) are likely
involved (Verhoeven 2014).

Studies on Mediterranean evergreen oak species have reported winter values of
FV/FM ranging from 0.4 to 0.7, correlating with retention of A + Z, such that values
for AZ/VAZ range from 0.3 to 0.7 (García-Plazaola et al. 1999a, 2003b;
Martínez-Ferri et al. 2004), while in alpine Asian oaks winter values of FV/FM can
be even lower (around 0.1) (Zhu et al. 2009; Huang et al. 2016b). This pattern is
consistent with winter induced sustained thermal dissipation occurring in these
species. In fact, dramatic increases in sustained dissipation were demonstrated to
occur upon exposure to sudden drops in temperature (García-Plazaola et al. 2003b).
However, observations that during winter, FV/FM values continued to decrease
while AZ/VAZ remained the same, suggest that processes other than sustained
thermal dissipation are likely also causing winter declines in FV/FM, possibly
including some sustained photo-damage (Martínez-Ferri et al. 2004). Additionally,
pool sizes of xanthophyll cycle pigments as well as L and b-carotene (b-Car) have
also been shown to increase during winter in Mediterranean oak species, suggesting
an increased capacity for photoprotection (García-Plazaola et al. 1999a, 2003b;
Martínez-Ferri et al. 2004).

In a study comparing co-occurring deciduous and evergreen oaks in northern
Florida, a region with cold but mild winters, short-term chilling stress (without prior
cold acclimation) resulted in greater than 50% reduction in maximum photosyn-
thesis, 60–70% reduction in electron transport rate and irreversible quenching of
PSII fluorescence in both species (Cavender-Bares et al. 1999). However, the
kinetics of recovery after combined high light exposure and chilling showed that the
evergreen species exhibited greater photoprotective quenching (qE) and less irre-
versible quenching (qI) than the deciduous species. Higher photoprotective capacity
may be inherent in evergreen oaks compared to deciduous oaks even without cold
acclimation.
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11.2.3 Antioxidants: Responses of Free and Enzymatic
Antioxidants to Winter Stress

Studies examining the antioxidant responses of cold tolerant Quercus species to low
temperatures have demonstrated that responses vary considerably depending upon
both species and the particular environmental conditions encountered
(García-Plazaola et al. 1999a, 2000, 2003b; Corcuera et al. 2005a). In a study
comparing winter to spring antioxidant content in Q. ilex, a high synthesis of Asc
(without significant effects on a-Toc and GSH) occurred in winter (2–3 fold over
spring on a leaf area basis, García-Plazaola et al. 1999a). However, in another study
comparing a cold with a mild winter, the most highly induced antioxidant in the
coldest winter was a-Toc, being 400 and 60% higher (on an area basis) than the
mild winter in Q. coccifera and Q. ilex respectively (García-Plazaola et al. 2003b).
In this study, a decrease in Asc content was observed in both species in the coldest
winter relative to the mild one.

A study examining enzymatic antioxidants in Q. ilex dealing with winter stress
reported an induction in GR and MDAR activity in winter, but a weak response of
other antioxidant enzymes (CAT, SOD, APX, García-Plazaola et al. 1999a).
Interestingly, both GR and MDAR use NADPH as electron donor, which is a sink
for photosynthetic electrons, minimizing overexcited photosynthetic electron chain
and ROS production. The authors concluded that MDAR activity plays a central
role in the Asc regeneration. A weak response of APX, GR, SOD and guaiacol
peroxidase has been also reported for Q. ilex in its upper altitudinal extreme in the
Iberian Peninsula (Corcuera et al. 2005a), which could mean that the constitutive
activity of these enzymes is enough to cope with oxidative stress at low tempera-
tures. Similarly, enhanced activity of GR, SOD and particularly of MDAR have
also been described in Asian oak C. helferiana during chilling period (Zhu et al.
2009).

Antioxidant contents in response to winter stress can change, not only depending
on chilling severity, but also on internal (ecotype, leaf ontogeny) and external
factors (time of the day, irradiance). In this sense, García-Plazaola et al. (1999b)
reported that the antioxidant content in Q. ilex (Asc, GSH, a-Toc) was constitu-
tively higher in sun than in shade leaves during winter. Besides, it decreased
sensitively along a sunny day, showing antioxidant content is dynamic and it
changes depending on consumption and regeneration. Furthermore, an
age-dependent tocopherol accumulation has been observed in woody plants
including oaks (Hansen et al. 2002), but its physiological meaning is unknown.

Additionally, provenances of ecotypes also condition antioxidant content, and
commonly, ecotypes adapted to colder climates evolve higher antioxidant content.
In a common garden study with Q. ilex from three contrasting Mediterranean
climatic provenances (semiarid, cold and oceanic), Camarero et al. (2012) observed
that the highest content of a-Toc occurred in Q. ilex seedlings from the coldest
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provenance, which supports the role of this antioxidant in cold adaptation.
García-Plazaola et al. (2000) also reported an increase in VAZ and b-Car (in a Chl
ratio) in Mediterranean Q. ilex growing in an altitudinal gradient in winter, but the
response in other antioxidants was not so evident.

Overall, studies suggest that climate has been a key factor in shaping species and
population differences in winter stress antioxidant response in Quercus. Despite the
remarkable diversity in the antioxidant strategies followed by different species,
generally, enhanced hydrophilic antioxidants (particularly MDAR) together with
increased Z (and a-Toc in some cases) could summarize oak antioxidant response
to winter stress.

11.3 Photoprotection in Drought-Stressed Quercus

Drought leads to water deficit in the leaf tissue, which affects many physiological
processes such as photosynthesis. Stomatal closure is a common response to
drought stress in Quercus species (e.g. Mediavilla and Escudero 2003;
Peguero-Pina et al. 2009), as a way of minimizing water loss at the expense of
reducing net CO2 assimilation. Under this situation, when light incident on the leaf
surface exceeds largely the amount that can be used for photosynthesis, different
mechanisms allow the protection of the photosynthetic apparatus both dissipating
excess of light as heat (Demmig-Adams and Adams 2006) or decreasing ROS
formation. Photoprotective mechanisms have been described for both evergreen and
deciduous Quercus species in response to moderate or severe drought stress con-
ditions, although with some differences among them.

11.3.1 Functional Differences Between Deciduous
and Evergreen Species Under Drought

The photoprotective mechanisms of deciduous Quercus species under drought
stress have been analyzed since the 1990s. Thus, several studies have dealt with this
topic in Q. robur and Q. petraea, two of the most representative oaks widely
distributed in Europe under temperate-nemoral climate (www.euforgen.org). Both
Q. robur and Q. petraea have developed effective photoprotective mechanisms to
withstand mild water deficit (Epron et al. 1992; Schwanz et al. 1996), although both
species seem unable to effectively cope with severe drought stress in terms of
photoprotection (Epron and Dreyer 1992; Schwanz and Polle 2001). Nevertheless,
deciduous oak species are not exclusive of the humid climates, but they are also
present in more xeric habitats with summer drought, i.e. the so-called
“nemoro-Mediterranean oaks” (Corcuera et al. 2002). Among them,
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Q. pubescens, which has a wide distribution range including most of central and
southern Europe (www.euforgen.org), is able to withstand and survive extreme
summer droughts (Damesin and Rambal 1995). The tolerance of this species to
water stress has been related to the existence of efficient photoprotective mecha-
nisms, as showed by Marabottini et al. (2001), Gallé et al. (2007), Contran et al.
(2013) and Hu et al. (2013). Other “nemoro-Mediterranean oaks” such as Q. cerris
and Q. frainetto also exhibited efficient photoprotective mechanisms in response to
drought stress (ca. −3 MPa, Wolkerstorfer et al. 2011).

The photoprotection mechanisms have also been studied in drought-stressed
evergreen oaks, mainly in those species occurring under Mediterranean-type cli-
mates (i.e. the so-called “Mediterranean oaks”, Corcuera et al. 2002). Although
photoprotective mechanisms are strong enough in these species, the performance of
their photosynthetic machinery in response to an intense summer stress period
varied markedly among them, as showed by Peguero-Pina et al. (2009) for
Q. coccifera, Q. ilex and Q. suber. Apart from the “Mediterranean oaks”, few
studies have dealt with photoprotective mechanisms in other evergreen oaks. Zhu
et al. (2009) reported that Cyclobalanopsis helferiana—a resilient species that can
survive in the savannas in the hot-dry valleys in SW China—was highly tolerant to
severe drought stress (ca. −4 MPa at predawn) due to the existence of photopro-
tective mechanisms that resembled the performance of “Mediterranean oaks”
explained below (see Sects. 11.3.2 and 11.3.3 for details). Recently,
Ramírez-Valiente et al. (2015) found that four evergreen oaks (Q. virginiana,
Q. geminata, Q. fusiformis and Q. oleoides) included in a group of species called
Quercus series Virentes from southern USA, Mexico and Central America, living
under contrasting climatic conditions, developed photoprotective mechanisms when
exposed to drought stress.

In conclusion, both deciduous and evergreen Quercus species occurring under
contrasting climates implement different photoprotective mechanisms under
drought stress. Regardless of this common performance, some evergreen (e.g. Q.
coccifera and Q. ilex) and deciduous (e.g. Q. pubescens) oaks living under
Mediterranean-type climates seem to be better adapted for withstanding severe
drought periods. By contrast, deciduous oaks from temperate-nemoral climates
have developed effective photoprotective mechanisms only to withstand mild water
deficit, being unable to effectively cope with the severe water scarcity experienced
by evergreen species. This differential physiological performance under water stress
might play an important role in tree mortality and landscape formation in the
context of future climate projections, which suggest that the proportion of land
surface under extreme drought can be dramatically increased by the end of the
present century (Xu et al. 2013).
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11.3.2 Energy Dissipation and Xanthophyll Cycles Under
Drought

During a drought episode, the dissipation as heat (thermal dissipation) of part of the
absorbed energy acquires a crucial role in the photoprotection of the photosynthetic
apparatus preventing the accumulation of ROS. Independent of the leaf strategy,
both deciduous and evergreen oaks use thermal dissipation as an important alle-
viation mechanism under water limitation conditions. The vast majority of works,
where thermal energy dissipation was studied in drought-stressed oaks, has been
conducted in Europe but a few examples from North America are found in the
bibliography. Despite the existence of two xanthophyll cycles (VAZ and
LxL-cycles) in Quercus species (García-Plazaola et al. 2002), very little knowledge
is available regarding the relevance of LxL-cycle and thermal dissipation during
drought in oaks (Llorens et al. 2002).

Deciduous oaks normally display lower values of NPQ under drought conditions
than evergreen species do. An example is provided by Mahall et al. (2009) when
comparing two Mediterranean oak species under field conditions in southern
California: seedlings of Q. agrifolia (evergreen) showed NPQ of 3.09 at the end of
summer 2002, while co-occurring Q. lobata (deciduous) seedlings showed values
of 1.91. Similar examples can be found in the Mediterranean Basin: i.e. compare
Q. ilex NPQ values of 3.8 against values of the deciduous Q. humilis (NPQ = 3.0)
under severe drought (Gulías et al. 2002). Compared to Mediterranean oaks,
“nemoro-Mediterranean species” generally show lower NPQ values under moderate
water stress. In this regard, Q. pubescens increased NPQ only from 0.7 (when well
watered) to 1.7 under imposed drought during summer 2004 (Gallé et al. 2007).
NPQ values, however, can be enhanced after previous drought events as it is shown
in the same work: a drought episode during the next summer (2005) in the same
trees induced an increase of NPQ that reached values of up to 5 (Gallé et al. 2007).
Also in Q. petraea, a reversible decrease of photochemical efficiency (probably
related to an enhanced AZ/VAZ) was shown to prevent photoihnnhibitory damage
under moderate water stress with a predawn water potential below −2 MPa (Epron
et al. 1992).

In evergreen Quercus species, sustained de-epoxidation of xanthophylls can be
induced during a prolonged drought event: i.e. 3 weeks without irrigation during
the summer led to very high AZ/VAZ morning-levels c.a. 0.8 in Q. coccifera
seedlings (Peguero-Pina et al. 2008). This photoprotective mechanism could be
related to a low intra-thylakoid lumenal pH and efficiently prevented photoin-
hibitory damage. Both dynamic and chronic photoinhibition have been observed
during water stress in Q. coccifera and Q. ilex (Baquedano and Castillo 2006). And
although the responsiveness of photoprotective mechanisms will partly depend on
the climate of origin, heterogeneity of responses can also be found within evergreen
oaks of the same climatic region (i.e. Mediterranean). Thus, Q. ilex and Q. coccifera
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tended to sustain a chronic photoinhibition evidenced by a decrease in predawn FV/
FM values to 0.3–0.4 and an overnight retention of A + Z at water potentials below
−6 MPa (Peguero-Pina et al. 2009). This was interpreted by these authors as an
additional photoprotective mechanism that preserved the photosynthetic pigment
machinery after a long summer stress period. By contrast, FV/FM in Q. suber
remains at high values around 0.7 and most of the midday A + Z were converted
into V during the night, irrespective of the degree of water stress (Peguero-Pina
et al. 2009). In line with this, García-Plazaola et al. (1997) did not find changes in
predawn FV/FM and the VAZ pool was maintained in a highly epoxidated state at
predawn under drought stress in Q. suber. A similar performance was found by Zhu
et al. (2009) for the evergreen C. helferiana in response to severe drought stress, i.e.
a down-regulation of PSII activity characterized by gradually NPQ increases with
an overnight retention of A + Z.

In summary, drought generally triggers an increase of NPQ in oaks when leaf
predawn water potential falls below −2 to −3 MPa. Commonly, this rise in NPQ is
mainly, although not completely, related to the de-epoxidation of xanthophylls: i.e.
A + Z and NPQ correlate well in sun leaves (García-Plazaola et al. 1997). The
highest NPQ values have been recorded for Mediterranean evergreen oaks: i.e.
NPQ of up to 10 was measured in adult Q. suber trees subjected to three consec-
utive years of severe drought (ca. −4 MPa at predawn) (Grant et al. 2010). Also
acclimation, due to either provenance (i.e. xericity of the site) or seasonal accli-
mation (i.e. end of dry season) and hardening after repeated periods of drought, are
able to induce a progressive increase in VAZ pool, de-epoxidation state of xan-
thophylls (i.e. AZ/VAZ values) and NPQ (Grant et al. 2010; Camarero et al. 2012;
Ramírez-Valiente et al. 2015). All these mechanisms efficiently reduce the risks of
photodamage under drought conditions in oaks.

11.3.3 Role of Free and Enzymatic Antioxidants Against
Drought

Non-enzymatic and enzymatic antioxidant defense mechanisms detoxify ROS and
maintain an adequate cellular redox balance under drought stress conditions in
order to avoid photo-oxidative damage (Hernández et al. 2012). The role of an-
tioxidants in drought-stressed Quercus has been studied mainly in conjunction with
other photoprotective mechanisms, such as VAZ and LxL-cycle, both in deciduous
and evergreen species. Specifically, several studies have dealt with interspecific
variations in the concentration and/or activity of different antioxidants and its
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influence on the differential physiological performance of oak species under water
stress.

The first studies about this topic were published during the 1990s, in which Q.
robur experienced a reduction in SOD and catalase activities when subjected to
mild drought stress (ca. −1 MPa) (Schwanz et al. 1996). Furthermore, even under
severe drought (ca. −3 MPa at predawn), Schwanz and Polle (2001) did not find a
photoprotective response of antioxidants in Q. robur because the key enzymes
involved in antioxidant protection (i.e. SOD) declined and oxidation of Asc and
GSH increased under these conditions. Contrary to these findings, Hu et al. (2013)
stated that, under similar conditions, this species enhanced its leaf Asc and thiol
levels as the most drought-sensitive species in response to an increase in ROS
production when compared with Q. petraea and, specially, Q. pubescens. The latter
species maintained high amounts of antioxidants (mainly Asc and a-Toc), mini-
mizing oxidative stress and irreversible damage in leaves under severe drought
conditions (ca. −4 MPa at predawn) (Gallé et al. 2007). Similar results were found
by Contran et al. (2013), who stated that Q. pubescens reacted to water deficit by
increasing antioxidant enzyme activity, avoiding ROS toxic effects. The tolerance
of this species to water shortage in terms of foliar antioxidant status has also been
evidenced by Marabottini et al. (2001) and Hu et al. (2013). For these reasons, Q.
pubescens is considered as a drought-tolerant species when compared with Q. robur
and Q. petraea. In this regard, Q. cerris and Q. frainetto—two deciduous oaks that
co-occur with Q. pubescens—increased three times the a-Toc content during
summer in response to drought stress (ca. −3 MPa, Wolkerstorfer et al. 2011).
However, these authors could not explain whether the observed accumulation of
a-Toc contributed to the protection against the photo-oxidation.

Evergreen oaks, specially those species occurring under Mediterranean-type
climates, show efficient antioxidant defenses against drought stress. Faria et al.
(1996) found that SOD and APX activities in Q. suber were high enough to cope
with the increase in ROS under reversible stressful conditions of midday, providing
an additional mechanism for energy dissipation. Baquedano and Castillo (2006)
found midday dynamic photoinhibition in water-stressed Q. coccifera and Q. ilex
plants (ca. −1.5 MPa at predawn) coupled with a significantly increase in the total
antioxidant activity and in the Asc pool. In an additional study on Q. ilex, Nogués
et al. (2014) found a sustained increase in non-enzymatic (total Asc and phenolic
compounds) and enzymatic antioxidants (APX and GR) in response to drought
stress (ca. −2.5 MPa at midday). According to these authors, this may indicate the
activation of defense responses for scavenging ROS produced under increasing
limitations of primary metabolism, and to ultimately avoid stronger oxidative
damage in the photosynthetic apparatus of Q. ilex. Besides Mediterranean oaks,
Zhu et al. (2009) found that SOD and glutathione peroxidase showed a sustained
high activity during the driest period of the year (ca. −4 MPa at predawn) for
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C. helferiana, a drought-resistant evergreen oak occurring in SW China. This high
activity of antioxidant system could efficiently scavenge ROS and protect the
photosynthetic apparatus from oxidative injury.

In conclusion, both free and enzymatic antioxidants play an important role in
photoprotection against drought in Quercus species. However, although some
evergreen species seem to display higher antioxidant protection, more comparative
studies are needed to elucidate the role of environmental factors in antioxidant
activity in oaks.

11.3.4 Synergic Effect of Drought and Heat Waves

Climatic observation of the last century reveals a trend to a higher frequency and
intensity of “extreme climatic events” such as severe drought episodes, intense
rainfall events or heat waves (IPCC 2014). The term “extreme climatic event” is
debatable and its meaning may depend on the organism, the issue or the scale of
analysis (see Smith 2011 for an ecological revision). From a meteorological point of
view, a heat wave could be defined as an extraordinary event of abnormally high
temperatures above the 90th percentile (for a location and season), persisting for at
least 3 days (based on the definition from Pezza et al. 2012). Heat waves can have a
high impact in ecosystems, particularly when co-occurring with a period of drought,
due to their potential to directly or indirectly trigger irreversible changes in them.
One of the most severe heat waves in the last century (see “list of heat waves, 2016”
for a complete list of most significant heat waves over the last century) was the
summer heat wave of 2003, which affected western and central Europe. This was
the hottest episode in the last 180 years, reaching temperatures up to 6 °C above the
long-term average and, additionally occurred on a year of considerable drought,
with annual precipitation 50% below the average (Luterbarcher et al. 2004; Stott
et al. 2004). Besides its extremity in magnitude, the European heat wave of 2003
affected different “Temperate-Nemoral” and Mediterranean ecosystems dominated
by Quercus species. Thus, many of the works available in the literature correspond
to this scenario. Nevertheless, the unpredictability of heat waves, limits the avail-
ability of field data to those obtained during the course of studies that were already
in course when a heat wave event occurred (referred to as “opportunistic studies” in
Smith 2011). Hence, in this section, manipulative experiments dealing with the
interaction of heat and drought and their effects on photoprotective responses of
Quercus species have also been included to build up a complete overview of the
synergistic effects of heat waves and drought over Quercus photoprotection
strategies.

Water availability is the main factor determining the effects of a heat wave over a
population of Quercus. This statement could be expected from a merely physical
point of view since transpirative cooling alleviates heating, preventing leaves to
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reach lethal temperatures. This premise is reinforced by field works: i.e. even
extraordinary hot episodes as the European heat wave of 2003 did not affect the
growth of Q. robur if water supply from the soil was available (Wilkinson et al.
2012). Similarly, Q. rubra seedlings are able to increase their biomass under
imposed artificial heat waves of up to +6 °C above control whenever water supply
is assured, while low soil moisture content itself induces a decrease of biomass
(Ameye et al. 2012; Bauweraerts et al. 2013). In that sense, biogeographical and
topological location (type of substrate and its capability for water retention, ele-
vation, orography and its interaction with fog or cloud retention, wind, etc.) as well
as species-dependent tolerance to drought, determine the consequences of extre-
mely hot and dry episodes (Bertini et al. 2011; Contran et al. 2013). Thus, higher
mortality and reduced growth experienced by Q. petraea changed oak forests
towards a new stand composition where the more drought-tolerant Turkey oak Q.
cerris has became dominant after the summer of 2003 in Italy (Bertini et al. 2011).

In addition to a proper water supply, some other factors can buffer or mitigate the
effect of episodes of simultaneous heat and drought in oaks. This is the case of
canopy buffering-effect over the understory plants and seedlings. As an example,
during August 2003, maximum temperatures were on average up to 3 °C cooler
under the oak forest canopy of the Southern Swiss Alps than in open areas. When
compared to other forest types, only the beech forests produced a greater cooling
effect (Renaud and Rebetez 2009). Also elevated CO2 (i.e. 700 ppm) seems to
mitigate the effect of heat waves and drought stress in Quercus in a supposed
scenario of future atmospheric conditions (Ameye et al. 2012).

In a broad sense, Quercus species could be generally considered as tolerant to
the combined effect of heat waves and drought (Gallé et al. 2007; García-Plazaola
et al. 2008; Haldimann et al. 2008; Ameye et al. 2012; Bauweraerts et al. 2013;
Contran et al. 2013). Photoprotective barriers of many Quercus species start with
structural passive-protection of leaves: i.e. many species are covered by a more or
less dense hairy surface which reduces light absorption by photosynthetic cell
layers (see Sect. 11.1.2 for details). Leaves of Q. ilex, which is typically considered
as a plastic species, show higher density of adaxial trichomes in xeric habitats than
when growing on continental sites or in mesic sites (Camarero et al. 2012). As a
constitutive and less dynamic leaf property, density and structure of foliar hairs
could have its main meaning in terms of long-term acclimation and ecological stress
memory, more than in the immediate response to an acute and quick event such as a
heat wave. Nevertheless, morphological acclimation to a more xeric and/or hot
environment may provide advantages against a sudden episode of extreme tem-
perature (such as heat wave).

At the chloroplast level, most species down-regulate the photochemical effi-
ciency to prevent photo-oxidative damage. Thus, DF/FM′ decreased 88% at midday:
i.e. DF/FM′ values fell from 0.8 at sunrise to 0.1 at midday during the heat wave
2003 in Q. pubescens (Haldimann et al. 2008). The decrease is more acute if trees
were previously exposed to a heat wave as it has been shown in controlled heat
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wave experiments of consecutive +12 °C episodes with Q. rubra (Bauweraerts
et al. 2014). Also predawn FV/FM can experience a progressive decrease when trees
are exposed for several days to unusually high temperatures combined with low
water availability (Gallé et al. 2007). This down-regulation of photochemistry can
be attributed, at least in part, to enhanced de-epoxidation and higher pools of VAZ
and LxL-cycles during the stress (García-Plazaola et al. 2008; Haldimann et al.
2008) and it seems to be related to reorganization of thylakoid membranes but not
to changes in the amount of LHC II proteins, at least in Q. pubescens (Haldimann
et al. 2008). Under these conditions, heat dissipation is enhanced and high NPQ
kept during stress. Additionally, excitation pressure can decrease by a combined
Chl loss and Chl a/b increase (García-Plazaola et al. 2008; Haldimann et al. 2008;
Contran et al. 2013), although these effects are species-dependent and related to the
severity and extent of the heat wave. The antioxidant system can also enhance, in
particular a-Toc, for which a dramatic enhancement has been described in response
to extreme heat (García-Plazaola et al. 2008). In some species as is the case of
Q. ilex, some monoterpenes as a-pinene, seem to be involved in the thermotoler-
ance of the leaves through the antioxidative protection of membranes (Copolovici
et al. 2005) while other volatiles, such as isoprene, can confer thermotolerance
through mechanisms independent of the antioxidant response (Peñuelas et al. 2005).

In sum, an efficient down regulation of photochemical efficiency together with
an up regulation of NPQ, and an enhanced antioxidative response, allow most
Quercus species to effectively protect their photosynthetic apparatus against the
combined effects of heat and drought, although the effect of drought superimposed
with a severe heat wave can kill many Quercus trees within a population in a short
time-lapse of days or weeks (Haldimann et al. 2008; Bertini et al. 2011). The
additional die-back of further individuals in the following years due to weakness
and predisposition to succumb to biotic or abiotic menace must be also considered,
and both immediate and delayed effects of heat waves plus drought are able to
strongly affect the composition of the ecosystem (Breda and Badeau 2008; Bertini
et al. 2011).

11.4 Photoprotection During Autumn Senescence

11.4.1 The Risks of Chlorophyll Degradation and Leaf
Senescence

In winter-deciduous oak species, leaf senescence involves a highly coordinated
process of remobilization of nutrients that is triggered by the shortening photope-
riod and decreasing temperatures characteristic of autumn conditions (Rosenthal
and Camm 1996; Hoch et al. 2001; Keskitalo et al. 2005; Fracheboud et al. 2009).
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The most visible sign of autumn is the dramatic change in leaf pigment content
resulting from chlorophyll degradation, while carotenoids are retained longer, and
in some species anthocyanins are produced. Pigment changes are accompanied by
decreases in photosynthesis, however, maximal photochemical efficiencies are
retained at high levels until very late in autumn when chlorophyll contents are quite
low, suggesting that the chlorophyll that is retained during senescence resides in
functional photosynthetic centers (Adams et al. 1990; Keskitalo et al. 2005; Moy
et al. 2015). In contrast to photosynthesis, respiration is maintained later into
autumn in order to provide energy needed for remobilization of leaf nutrients prior
to leaf abscission (Adams et al. 1990; Collier and Thibodeau 1995; Hoch et al.
2001; Keskitalo et al. 2005). The process of disassembly and degradation of the
photosynthetic apparatus must occur in a manner that prevents the accumulation of
damaging reactive oxygen species that might preclude optimal nutrient resorption
(Matile et al. 1999; Lee et al. 2003). Therefore, photoprotective strategies are an
important component of the process of leaf senescence.

11.4.2 Why Leaves Turn Red?: Anthocyanic and Acyanic
Oaks

Much of the beauty of autumn resides in the immense variation in color of leaf
foliage among species, with colors varying from reds to yellows. According to
Hoch et al. (2001) among oaks there are 9 species that produce high amounts of
anthocyanins during autumn (all in North America) and 10 species in which
anthocyanin production is nonexistent, low or infrequent (split between North
America and Europe). The synthesis of anthocyanins during autumn occurs after
chlorophyll degradation has begun and the pigments accumulate in the vacuoles of
upper palisade cells (Hoch et al. 2001; Lee et al. 2003). The anthocyanins are
hypothesized to serve as a light screen during autumn senescence (see
Sect. 11.1.2.), which protects the photosynthetic apparatus during the period of
nutrient resorption (Hoch et al. 2001, 2003; Lee and Gould 2002; Lee et al. 2003).

11.4.3 Coordinate Operation of Photoprotection
Mechanisms in Senescing Leaves

The mechanisms of photoprotection during autumn senescence have not been
particularly well studied. Pigment studies have demonstrated that carotenoids are
degraded more slowly than chlorophylls affecting in a photoprotective capacity
during the degradation process (Adams et al. 1990; Lee et al. 2003; Keskitalo et al.
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2005). Additionally, the accumulation of anthocyanins, discussed above, likely
serves a photoprotective role. A study monitoring both carotenoids and antho-
cyanins found no difference in the rate of degradation of carotenoids in anthocyanic
and acyanic species (Lee et al. 2003), suggesting that carotenoid based photopro-
tection likely functions in all species. Few studies have been conducted using
methods that differentiate individual carotenoids. The available data show that in
aspen and sugar maple, the VAZ-cycle pigments were retained in higher abundance
than other carotenoids, while in an oak species (Q. bicolor) the VAZ-cycle pig-
ments were retained at relatively high levels only in early stages of autumn
senescence, while L was retained in higher abundance than other carotenoids in late
autumn (Keskitalo et al. 2005; Moy et al. 2015). Additionally, the oak species was
shown to accumulate the PsbS protein in early autumn, which did not occur in the
maple, suggesting a role for increased xanthophyll associated energy dissipation in
early autumn in the oak (Moy et al. 2015). These studies suggest that there is
variation among species in the strategies used for photoprotection during autumn
senescence.

11.5 Concluding Remarks

This chapter has outlined that oaks are remarkably plastic and diverse (both inter-
and intra-specifically) in terms of morphological and biochemical photoprotective
mechanisms (Fig. 11.3), providing tolerance to winter cold and summer drought.
These unfavourable climatic conditions are indeed, the key factor in shaping
Quercus distribution and stress responses, being particularly Mediterranean ev-
ergreen oaks more resilient to them. Future climate change scenarios predict
warmer and dryer environmental conditions in most of the distribution range of
Quercus, detailed physiological studies are, therefore, essential to anticipate to the
ecological responses. However, most of the information available nowadays
comes from a few Mediterranean species, being holm oak (Q. ilex) the one most
intensively studied. We conclude then that several knowledge gaps should be
filled into get a more complete and global perspective of the group in all its
distribution range: (i) photoprotective mechanisms and their ecological signifi-
cance in Asian oaks are understudied, (ii) the role of L (considering the
LxL-cycle) in the development of NPQ has received little attention in species of
the genus and (iii) few is still known regarding thylakoid proteins and energy
dissipation mechanisms in Quercus.
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Chapter 12
Growth and Growth-Related Traits
for a Range of Quercus Species Grown
as Seedlings Under Controlled Conditions
and for Adult Plants from the Field

Rafael Villar, Paloma Ruiz-Benito, Enrique G. de la Riva,
Hendrik Poorter, Johannes H. C. Cornelissen and José Luis Quero

Abstract Forests and shrublands occupy a large area in the world (c. 31% of the
total continental area) and in Spain (c. 36% of the area), in which around 30% of
forests are formed by Quercus species. Therefore, the ecosystem services provided
by Quercus species are critical to human well-being. Thus, it is essential to
understand how Quercus species grow and how they will respond to global change.
Bringing together data of comparative growth experiments with seedlings, field data
and allometric equations developed for adult plants, our main objectives for this
chapter are: (1) to quantify the relative growth rates (RGR) and growth components
of seedlings of Quercus species and compare them to values of woody species
belonging to other families; (2) to characterise biomass allocation patterns in leaves,
stem and roots and RGR in Quercus adults; (3) to understand how temperature,
precipitation, tree size and tree density affect the RGR of adult Quercus species; and
(4) to compare the RGR of seedlings and adults, and identify which functional traits
can explain the differences in RGR. Compared to woody species from other fam-
ilies, seedlings of Quercus species were characterized by low RGR and specific leaf
area (SLA), a high proportion of biomass invested in roots (RMF, root mass
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fraction) and a large seed mass. One of the most important traits explaining dif-
ferences in RGR among seedlings of Quercus species was the leaf area ratio (LAR,
total leaf area per unit of total biomass). In Quercus species, the fraction of biomass
in leaves (LMF) and roots (RMF) decreased with tree size, while the proportion of
biomass in stems (SMF) increased. Thus, for a tree with 20 cm diameter at breast
height, the values of LMF were only between 0.01 and 0.05 (i.e. 1–5% of total
biomass invested in leaves) and SMF ranged from 0.50 to 0.80. RGR values of
adult Quercus species were highly variable, due to differences in tree size, stand
density and abiotic factors. Tree size and density negatively affected RGR, so
bigger trees tend to grow more slowly. However, the variation in RGR explained by
temperature and/or precipitation was relatively low (<7% of total variation).We
observed a positive relationship between the RGR of seedlings in controlled con-
ditions and those of adults in the field. Furthermore, median RGR values of adult
plants for Quercus species were positively related to SLA and leaf nitrogen. To sum
up, Quercus species differ in RGR and key leaf traits from other woody species and
the RGR of adult trees depend on tree size, density, temperature and precipitation.
Our results suggest that climate change synchronised with density might affect
future trends on the growth of Quercus species.

Abbreviations

DBH Diameter at breast height
LAR Leaf area ratio
LMF Leaf mass fraction
MAP Mean annual precipitation
MAT Mean annual temperature
NAR Net assimilation rate
RGR Relative growth rate
RGRB Relative growth rate based on biomass
RGRDBH Relative growth rate based on diameter
RGRH Relative growth rate based on height
RMF Root mass fraction
SLA Specific leaf area
SMF Stem mass fraction

12.1 Introduction

Plant growth is a complex process, which depends on the balance between capture
and loss of carbon and nutrients (Lambers et al. 1998; Poorter et al. 2013). Growth
can be measured in absolute or relative units (Paine et al. 2012): the absolute
growth rate is the increase of biomass per time (e.g. g day−1), and the relative
growth rate (RGR) is the increase of biomass per unit of biomass and time
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(e.g. mg g−1 day−1). In general, it is accepted that for comparative purposes it is
more appropriate to use RGR as this allows to compare different species on a
relative scale (Villar et al. 2008; Rees et al. 2010; Ruiz-Benito et al. 2015). In
absolute terms, a large plant increases more in biomass than a small plant just
because it is larger, although the growth rate per unit biomass (RGR) is probably
lower (Poorter and Garnier 1999). Absolute growth values can be particularly
interesting to study the role of plants in storage of C and nutrients, for example in
the dynamics of the carbon cycle.

As primary producers, plants determine the main energy inputs into an ecosystem,
energy on which all other trophic levels depend. Because the light energy fixed by
plants is stored in carbon-based molecules, plants play an important role in the
C-cycle, acting over time both as a sink and a source (Dixon et al. 1994). Human
activity is strongly increasing the concentration of CO2 in the atmosphere, which has
led to fertilisation and episodes with increased growth during 20 th century (Nabuurs
et al. 2003). However, there is great concern that the positive effects of carbon fer-
tilisation might be offset by the negative effects of climate change (Ciais et al. 2005;
IPCC 2014; Ruiz-Benito et al. 2014b; Nabuurs et al. 2013). As forests can be an
important sink for C at the intermediate time scale, it is important to understand the
role of forests as carbon sources and sinks (Pan et al. 2011).

Forests and shrublands are critical ecosystems, which occupy a large area in the
world (31% of the total continental area, FAO 2012) as well as in Spain (36% of the
area, Ruiz de la Torre 1990). In Spain, circa 30% of the total basal area of tree
trunks is formed by Quercus species (Spanish Forest Inventory, SFI). Quercus
forests in the Iberian peninsula vary from Mediterranean evergreen broadleaved
forests dominated by Quercus ilex (holm oak) and Q. suber (cork oak) to
Sub-Mediterranean deciduous broadleaved forests dominated by Q. faginea and Q.
pyrenaica and Atlantic deciduous broad-leaved forests dominated by Q. robur and
Q. petraea (Fig. 12.1) (Gómez-Aparicio et al. 2011). Quercus forests are a struc-
tural component to Iberian vegetation and if the environmental conditions are
favourable they are the successional endpoint of many pine forests with which they
coexist, alternate and segregate (see e.g. Costa et al. 1997; Zavala and Zea 2004).

In the last decades, an enormous effort has been made to characterise the structure,
density and composition of Spanish forests through the Spanish Forest Inventories
(SFI, Villanueva 2004). The SFI is performed on permanent plots every decade,
allowing to estimate individual tree growth under field conditions at large spatial
scales (see e.g. Gómez-Aparicio et al. 2011). There are few studies that have estimated
tree growth rates based on biomass in the field, which is mainly due to the difficulties
of estimating above- and belowground biomass which requires destructive methods
(Poorter et al. 2012a). Therefore, most studies on forests estimate tree growth by using
proxies based on increases in height and/or diameter or stem volume (e.g. Chaturvedi
et al. 2011). The extensive nature of the SFI measurements (e.g. 20,080 individuals of
Quercus ilex have beenmeasured in 6914 different plots in the second census) allow to
study the role of underlying abiotic factors (e.g. temperature and precipitation), tree
size and tree density in how they affect the growth and mortality of individuals (see
e.g. Gómez-Aparicio et al. 2011; Ruiz-Benito et al. 2013).

12 Growth and Growth-Related Traits for a Range … 395



In contrast to the few data of RGR obtained in the field for adult plants, many
studies have been done with seedlings grown under controlled conditions with
close-to-optimal levels of water and nutrients (Cornelissen et al. 1996; Antúnez
et al. 2001; Ruíz-Robleto and Villar 2005; Lopez-Iglesias et al. 2014). The main
objective of these studies was to understand the intrinsic causes of variation in RGR
between different species. Other studies aimed to understand how the growth of
Quercus seedlings was affected by different abiotic factors (light, water and
nutrients) (Quero et al. 2006; Sánchez-Gómez et al. 2006; Pérez-Ramos et al. 2010;
González-Rodríguez et al. 2011). It can be expected that RGR values obtained for
seedlings grown under controlled conditions differ from those in adults under field
conditions. These growth differences might be due to differences in ontogeny and/or
the approach used. For example, it is generally known, that RGR values decrease
with plant size (Evans 1972; Hunt 1982; Metcalf et al. 2003; Rees et al. 2010)
because plants become increasingly inefficient when they are larger. This may be

Fig. 12.1 Examples of oak forests in the Iberian Peninsula: a Quercus suber (cork oak) forest
under use; notice the lack of understory as management strategy to facilitate traditional cork
extraction. b Quercus ilex subsp. ballota (holm oak) under a “dehesa” regime (Mediterranean-like
savanna), where a low oak density and open spaces without shrubs are managed to promote
pasture. c Quercus canariensis (Algerian oak) in the Natural Park of Los Alcornocales. d Quercus
suber (cork oak) and Quercus canariensis (Algerian oak) mixed forest where the later is restricted
to the bottom part of the valley due to a lower drought-tolerance. (Credits: all pictures by JL.
Quero)

396 R. Villar et al.



due to several factors such as shelf-shading, tissue aging and increased allocation to
structural components (Rees et al. 2010). Nonetheless, RGR values of adult plants
may still be useful for comparative purposes. Field data at large scales as forest
inventories provides a high representativeness and, therefore, relevance for existing
forests, whereas controlled experiments are generally orthogonal ensuring causality
and capture the process of interest (Ratcliffe et al. 2016). However, if the ranking of
growth and growth-related traits from comparative studies under controlled con-
ditions is well correlated with those obtained from plants in the field, we could
advantageously use the wealth of data from controlled studies for careful and
informed extrapolation (Poorter et al. 2015).

In the case that we find differences in RGR between Quercus and non-Quercus
woody species it is of high relevance to understand the intrinsic causes of these
differences. RGR has traditionally been decomposed into two underlying compo-
nents: the leaf area ratio (LAR, the ratio between the total leaf area and total dry
biomass) and the net assimilation rate (NAR, biomass gain per unit area and time;
Evans 1972; Poorter et al. 2013). Thus, RGR = LAR � NAR. In turn, LAR can be
decomposed into the specific leaf area (SLA, leaf area per leaf dry biomass) and leaf
mass fraction (LMF), being LAR = SLA � LMF. Many studies have concluded
that variation in the morphological factor (LAR) is more important than the
physiological factor (NAR) to explain interspecific variation of RGR (Poorter and
van der Werf 1998; Galmes et al. 2005). However, some studies have found the
variation in NAR to be more important than in LAR (Reich et al. 1998; Poorter and
Garnier 1999; Shipley 2002). In addition, many studies with woody species have
concluded that a very easy-to-measure variable, such as the specific leaf area (SLA),
is a good predictor of maximum RGR (Lambers and Poorter 1992; Cornelissen
et al. 1996; Khurana and Singh 2000; Antúnez et al. 2001). However, other studies
point out that light conditions can influence which variable is more related to RGR
(LAR or NAR). Thus, Veneklaas and Poorter (1998) found that in low light, LAR
explained most of the interspecific differences in RGR, whereas at high light,
differences in NAR were more important. Gibert et al. (2016) have found that there
is a shift in the direction of correlation between growth rates and traits across
ontogenetic stages. Thus, for example, specific leaf area was found to be correlated
with RGR in seedlings but not in adult plants (Gibert et al. 2016). The variation in
RGR between species will also be affected by other traits such the leaf nitrogen
concentration (N) (Huante et al. 1995; Cornelissen et al. 1997; Villar et al. 2006,
2008). All these characteristics (morphological, physiological and/or phenological)
of the species that directly or indirectly influence growth, reproduction and survival
are broadly called functional traits (Violle et al. 2007). So far, we have insufficient
insight in what causes the differences in RGR and functional traits among Quercus
species as compared to other woody species.

Here, our aim is to characterise RGR patterns of seedlings and adults for the
most common Quercus species in the Iberian Peninsula and further investigate the
relationships with functional traits and the underlying drivers. We used individual
data of seedlings under controlled conditions and adults from the Spanish National
Forest Inventory. Our specific objectives were: (1) to identify the differences in
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RGR and functional traits between Quercus species and other non-Quercus species
under controlled conditions, (2) to characterise the biomass allocation patterns (leaf,
stem and root) and RGR in Quercus species under field conditions; (3) to analyse
how abiotic factors (mean annual temperature and/or annual precipitation) and tree
size affect the growth of adults of Quercus species under field conditions, and (4) to
compare the ranking of the RGR of seedlings across a range of Quercus species
with those of adults grown in the field and to understand which functional traits
explain the differences in RGR.

12.2 Differences in RGR and Functional Traits Between
Quercus and Non-Quercus Species Under Controlled
Conditions

We used data from two studies in which a range of Quercus and woody non-
Quercus species were grown under controlled conditions, with the aim to compare
RGR and several functional traits between these two groups (Cornelissen et al.
1996; Villar et al. 2008). For the comparisons we separately analysed deciduous
and evergreens species, as leaf habit has a strong influence on functional traits
(Cornelissen et al. 1996; Villar et al. 2006; Poorter et al. 2009). The study of
Cornelissen et al. (1996), which we name study 1 here, comprised a total of 97
woody species, of which 10 belonged to the genus Quercus. In this experiment,
seedlings were grown for 21 days after the first true leaves had unfolded in a
growth chamber at 135 µmol m−2 s−1 for 14 h per day (daily light integral
6.8 mol m−2 day−1). The study of Villar et al. (2008), which we call study 2,
combined data from two comparable studies (Antúnez et al. 2001; Ruíz-Robleto
and Villar 2005), together comprising 24 woody species of which seven are
Quercus species. In study 2, the seedlings were grown in a greenhouse with a total
daily light integral of 31.6 mol m−2 day−1 during 124 days.

Quercus species differed in a number of functional traits compared to other
woody species (Fig. 12.2). Quercus species, both evergreen and deciduous, had
lower values of RGR and SLA than other evergreen and deciduous woody species
(Fig. 12.2a, b, c, d). Quercus species were also characterized by a high fraction of
biomass present in roots (RMF) and a large seed mass (Fig. 12.2e, f, g, h). Low
RGR and SLA are typical of resource-conservative species (Diaz et al. 2004;
Wright et al. 2004). The low values of RGR may be due to the low LAR of Quercus
species (Fig. 12.3a, b), as a result of both low leaf mass fraction (LMF) and low
specific leaf area (SLA). SLA and LMF are important factors that contribute to the
regulation of plant photosynthesis and growth (Poorter and Remkes 1990; Antúnez
et al. 2001). Thus, lower values of these traits imply a low leaf area displayed per
unit total plant mass invested and consequently a low photosynthetic capacity per
unit total plant mass (Reich et al. 1997). The advantage of plants with an inherently
low SLA is that it promotes long-lived foliage, which have longer time to pay-off
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the construction cost of leaves (Wright et al. 2004; Escudero et al. 2017). This
strategy, which promotes the duration and nutrient use efficiency over potential
growth rates, is energetically and competitively more efficient in stressed environ-
ments (Reich et al. 1997). In addition, the low leaf area/total plant mass ratio (LAR)
on a whole-plant basis and net assimilation (NAR) of Quercus species can also be
explained by the high proportion of biomass present in roots (around 40%) com-
pared to other woody species (around 20%) (Fig. 12.2e, f). The strong investment in
roots makes the investment in leaves very low compared to that of non-Quercus
species (Figs. 12.2e, f and 12.3g, h). A greater proportion of roots may constitute an
advantage to resist drought, allowing access to a greater amount of water in the soil,
which can confer higher survival rates under adverse conditions (Lloret et al. 1999).

One of the most important factors explaining the differences in RGR among
Quercus species was the leaf area ratio (LAR) in both studies (Fig. 12.3a, b). Also,
for non-Quercus species RGR was positively related to LAR. However, the rela-
tionship between RGR and the physiological component (NAR) was different for
both studies (it was positively related in study 2, but no significant relationship was
found in study 1 (Fig. 12.3c, d), neither for Quercus nor for non-Quercus species.
These different results may in part be due to the different growth conditions in the
two experiments (for example the high light conditions in the study 2). Interspecific
variation in RGR was nearly significantly related to variation in in study 2, but it
was not significant for study 1 for species. In the case of the species, the variable
that better explained variation in RGR was LAR (Fig. 12.3a, b) and SLA
(Fig. 12.3e, f) for both studies.

Another important functional trait in which Quercus differed with respect to
other species was the seed mass. Quercus species have seeds that are four to six
times greater than those of non-Quercus woody species with which they coexist
(Fig. 12.2g, h). The seed mass determines the carbohydrate and nutrient reserves
that the seedling has when it germinates. A large seed mass has certain advantages
during the early stages of the seedling, since it allows to survive situations with a
low carbon gain, such as shade conditions (Quero et al. 2007). A large seed will
also imply that the seedlings have larger biomass (Quero et al. 2007;
González-Rodríguez et al. 2010; Pérez-Ramos et al. 2010). Large seeds can confer a
competitive advantage because it allows access to limiting resources (e.g. water,
nutrients, light) and it will promote higher survival (Lloret et al. 1999).

It is important to notice that also withinQuercus species, there is a high variability
in functional traits, mainly because of clear differences between deciduous and ev-
ergreen (Fig. 12.2; Antúnez et al. 2001;Wright et al. 2004; Villar et al. 2006). In fact,
in Quercus species of the Iberian Peninsula there is an economics spectrum of func-
tional traits (de laRiva et al. 2014).On the one hand, there are specieswith a strategy of
conservative-use of resources, which present slow growth but are tolerant to envi-
ronmental stresses such as drought. This is the case of Q. ilex, which has leaves with
low SLA and low concentration of chlorophyll and nitrogen, high wood density and
roots with low specific root area (de la Riva et al. 2014). At the other extreme, there are
specieswith a strategy of acquisitive use of resources,with greater growth capacity but
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Fig. 12.2 Mean values ± standard deviation for a, b relative growth rate (RGR), c, d specific leaf
area (SLA), e, f root mass fraction (RMF), and g, h seed dry mass of Quercus species and other non-
Quercus woody species measured in seedlings under controlled conditions. Figures on the left (study
1) are from the experiments of Cornelissen et al. (1996) and figures on the right (study 2) are from
Villar et al. (2008). Species were classified according to their leaf habit (deciduous and evergreen)
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Fig. 12.3 Relationship between relative growth rate (RGR) and a, b the leaf area ratio (LAR), c,
d the net assimilation rate (NAR), and e, f the specific leaf area (SLA); and the relationship
between the root mass fraction and leaf mass fraction g, h of Quercus species and non-Quercus
woody species measured in seedlings under controlled conditions. Figures on the left (study 1) are
from Cornelissen et al. (1996) and figures on the right (study 2) are from Villar et al. (2008)
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with a lower tolerance to environmental stresses (e.g. drought), as it is the case of Q.
robur (de la Riva et al. 2014).

In summary, compared to woody species from other families, seedlings of
Quercus species showed a low RGR and specific leaf area (SLA), a high proportion
of biomass invested in roots (RMF, root mass fraction) and a large seed mass. One
of the most important traits explaining differences in RGR among seedlings of
Quercus species was the leaf area ratio (LAR, total leaf area per unit of total
biomass), which is the product of SLA and LMF (the leaf proportion).

12.3 Biomass Allocation and Relative Growth Rate
of Quercus Species Under Field Conditions

Field data of biomass allocation and RGR in adults are very scarce, due to the
difficulties to obtain the root biomass. To know how biomass allocation to leaves,
stems and roots differed between Quercus species under field conditions and how it
can be affected by the tree size, we used the allometric equations of Montero et al.
(2005). These equations are based on several adults plants of each species (between
23 to 141), in which the aboveground (leaves and stems) and belowground (roots)
biomass was measured, along with tree height and stem diameter at breast height.
The explained variation of the allometric relationships between total biomass (also
for leaf, stems and roots) and tree diameter was very high for all Quercus species
(R2 between 0.90 to 0.97, Montero et al. 2005).

We used these allometric equations for trees present in permanent and unman-
aged plots from the Spanish Forest Inventory (SFI) belonging to each of the six
Quercus species to calculate the relative growth rate of adult trees. The SFI does a
systematic sampling throughout the entire forest area of Spain approximately every
ten years (Villaescusa and Díaz 1998; Villanueva 2004). The plots measured during
the second census (SFI2, in the years 1986–96), were revisited during the third SFI
(SFI3, 1997–2007), with a mean difference between both sampling of 11 years. For
each individual, the species is recorded, and measurements of their height and
diameter at breast height (DBH) are taken. We aimed to understand how biomass
allocation to leaves, stems and roots changes with tree diameter. We found that the
leaf and root mass fraction (LMF and RMF, respectively) decreased with tree size
(Fig. 12.4a, c), while the proportion of stem (SMF) increased with tree size
(Fig. 12.4b; Villar et al. 2014), in accordance with general observations (Veneklaas
and Poorter 1998; Poorter et al. 2015). Apart from this overall pattern, we found
that the dynamics of the various species were not fully similar (Fig. 12.4). For
example, the decrease in LMF with tree size was very pronounced for Q. faginea,
but less noticeable for Q. canariensis. When compared to other Quercus species, Q.
canariensis had opposite slope for SMF (negative) and RMF (positive) with tree
size. We currently do not have any explanation for this pattern. If we consider an
average tree of 20 cm in diameter, the LMF values are between 0.01 and 0.05 (this
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implies 1–5% of total biomass invested in leaves), those of SMF between 0.50 and
0.80 (50–80% in stems) and those of RMF between 0.20 and 0.40 (20 and 40% in
roots) (Fig. 12.4).

Data of RGR for adult individuals of Quercus under field conditions were cal-
culated using the census data of the SFI. In the SFI all the trees are individually
identified and remeasured and, therefore, it is possible to calculate a relative growth
rate based on the diameter and/or height for each individual. To calculate RGR
values, we selected individuals of the six most common Quercus species (Q.
canariensis, Q. faginea, Q. ilex, Q. pyrenaica, Q. robur and Q. suber) with the
following criteria: (i) trees should be alive in the two SFI censusus; (ii) DBH in
SFI2 was greater than 200 mm, (iii) changes in DBH and height between consec-
utive inventories should be greater than or equal to 0; and (iv) trees should come
from unmanaged plots, with no evidence of cutting or thinning and no evidence of
being plantations between the consecutive inventories. Since the plots cover the
entire area of Spain, the environmental conditions of the plots are very different in
terms of temperature, precipitation and soil type. For example, the mean annual
temperature for plots with Quercus species varies between 5.7 °C (Logroño, North
Spain) and 18 °C (Seville, South Spain) and the annual precipitation ranges from
200 mm (Almería, South Spain) to 2500 mm (Galicia, North of Spain). Therefore,
it is expected that these different conditions and resources affect the growth of
Quercus individuals under field conditions. We found that mean annual precipi-
tation (MAP) showed a negative relationship with mean annual temperature
(MAT), but the relationship was weak (R2 = 0.06; P < 0.001).

Estimates of relative growth rate in mature trees in field conditions are relatively
complicated. To measure growth, the best unit of measure is biomass but, given the
difficulties in obtaining biomass data from leaves, stems and especially roots, there
are not many observational studies that measure RGR based on biomass. Therefore,
non-destructive, more practical measures are used in the field, such as the tree
height and/or diameter. These variables have been measured systematically in the
Spanish National Forest Inventories and other studies, so that by comparing con-
secutive inventories we can obtain individual estimates of RGR based on height and
diameter. We used data of the second and third inventory (SFI2 and SFI3) to
calculate the RGR of each individual in three different ways: (i) based on the
increase in height (RGRH, m m−1 year−1); (ii) based on the increase in DBH
(RGRDBH, cm cm−1 year−1), and (iii) based on the estimated whole plant biomass
(RGRB, mg g−1 year−1). RGR was calculated using the following formula:
RGR = [Ln (X2) − Ln (X1)]/[time 2 − time 1], with X being the variable in which
RGR is estimated (height, DBH or biomass), subscripts 2 and 1 refer to mea-
surements at times 2 and 1 and the difference in time (time 2 − time 1) is the period
in years between SFI2 and SFI3 (generally 11 years).

To estimate the total biomass (above and belowground) of the individual trees in
each plot, we applied the allometric equations of Montero et al. (2005). In spite of
the limitations of these equations (e.g. they do not take into account that the
biomass allocation to the different organs of the tree may be affected by the
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Fig. 12.4 a Leaf mass
fraction (LMF), b stem mass
fraction (SMF) and c root
mass fraction (RMF) as a
function of tree diameter at
breast height for six species of
Quercus. Data from Montero
et al. (2005)
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environmental factors, Poorter et al. 2015), this approach allows the comparison
between the six Quercus species.

We expected that RGR values expressed in different dimensions would be
similar. However, the correlation between RGRH and RGRDBH found for the six
Quercus species was very low (Fig. 12.5). Although there was a significant rela-
tionship (P < 0.0001) between RGRH and RGRDBH for all species except for Q.
canariensis (P = 0.08), the percentage of variation in RGRH explained by RGRDBH

was very low (between 1.2 and 2%, Fig. 12.5). This suggests that there are large
differences between growth estimates based on height and diameter, and, therefore,

Fig. 12.5 Relationship between relative growth rate based on height (RGRH) and diameter
(RGRDBH) for the six species of Quercus

12 Growth and Growth-Related Traits for a Range … 405



the conclusions based on one or another variable could be rather different. This
result could partly be determined by competition, especially for light, and the fact
that climatic conditions affect the allometric relationships in trees (e.g. Lines et al.
2012). On the one hand, some individuals could invest more in height and not in
diameter, and vice versa depending on the environmental conditions. On the other
hand, the precision in the estimation of the height in species with irregular crowns
makes the calculation of the RGRH a parameter with a degree of error greater than
the error for RGRDBH. Also, the changes of tree height and tree diameter along tree
age could differ. In this sense, Poorter et al. (2012b) found that tree height reached
an asymptote with age for all Quercus species. Overall, our results indicate the
importance of estimating the tree growth considering both tree height and diameter
or stem volume, and that these RGR values could strongly vary depending on the
climatic and structural conditions of the plot.

As the RGR values in terms of biomass are calculated on the basis of the
diameter using the equations of Montero et al. (2005), the correspondence of the
RGRDBH and RGRB is exactly the same. We found that RGRB in the field were
very variable within species (from 0 to 90 mg g−1 year−1), showing a wide overlap
across the six species considered (Fig. 12.6). This large variability may be due to
the large number of factors that can affect RGR, such abiotic factors (e.g. tem-
perature, precipitation or nutrient availability) or biotic factors (e.g. competition,
herbivory, management) (Gómez-Aparicio et al. 2011; Paine et al. 2015).

We conclude that in the six Quercus species, the fraction of biomass in leaves
(LMF) and roots (RMF) decreased with tree size, while the proportion of biomass in
stems (SMF) increased. Thus, for a tree with 20 cm diameter at breast height, the
values of LMF were only between 0.01 and 0.05 (i.e. 1–5% of total biomass
invested in leaves). The estimates of RGR based on height were very different than
those based on biomass. RGR values of adult Quercus species were highly variable,
due to differences in tree size, stand density and abiotic factors.

Fig. 12.6 Median values of
relative growth rate (RGR)
based on estimated biomass
increment, in six species of
Quercus. Data are from the
Spanish Forest Inventory and
the allometric equations from
Montero et al. (2005). Bars
indicate the upper and lower
quartile
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12.4 Sources of Variation in RGR Under Field
Conditions: The Role of Abiotic Factors, Tree Size
and Density

Frequently, water availability is one of the major limiting factors for growth in
Mediterranean environments (Galmes et al. 2005), but also variation in temperature
could be an important factor (Gómez-Aparicio et al. 2011). To understand the
influence of these two climatic factors (precipitation and temperature) in RGR, we
performed multiple linear regressions (MLR) per each species using RGRB as
dependent variable and mean annual temperature (MAT, °C) and mean annual
precipitation (MAP, mm) as independent variables. In general, we found that both
abiotic factors had a significant effect on RGR for most Quercus species, but the
joined explained variance of both factors on RGR was very small (between 0.1 to
7%, Table 12.1). Paine et al. (2015) also found that relative growth rate based on
height increment was weakly related to potential evapotranspiration (which sum-
marizes the joint ecological effects of temperature and precipitation). Apparently,
other factors as nutrient availability, soil texture, plot (density) and tree attributes
(size) also modulate RGR under field conditions.

We also found different patterns among Quercus species in relation to the effect
of climatic factors on RGR. Water limitation can influence the RGR in each species
differently, which seems to be the result of differences in the variation in NAR,
LAR, LMR and SLA between species (Galmes et al. 2005). Hence, different
responses and adaptation to environmental constraints might exist. While RGR of
Q. faginea and Q. canariensis show no clear or even a negative relationship with
temperature and precipitation (Table 12.1), other deciduous species like Q. pyre-
naica showed clear associations with climatic factors: RGR was *40 mg g−1

year−1 in areas with overall temperatures higher than 14 °C and precipitation of
1600 mm, and no growth (*0) in areas below 14 °C and 700 mm (Fig. 12.7). This
result accords with southern distribution limit of these species (Sierra de Cardeña

Table 12.1 Multiple linear regressions of relative growth rate based on biomass (RGRB) with
mean annual temperature (MAT) and mean annual precipitation (MAP) for the six Quercus species
growing in field conditions

Species n Intercept b MAT b MAP R2

Quercus canariensis 171 77.036*** −2.274** −0.021** 0.067 ***

Quercus faginea 1121 18.805*** 0.178 ns −0.0022 ns 0.001 ns

Quercus ilex 6913 14.563*** −0.384*** 0.0083*** 0.034***

Quercus pyrenaica 1612 −2.149 ns 1.787*** 0.0058*** 0.061***

Quercus robur 1113 21.407*** 1.579*** −0.0077*** 0.014***

Quercus suber 2285 13.521*** 0.383* 0.0018 ns 0.002 a

The values the number of plots (n), the intercept, the slope of MAT (b MAT) and of MAP (b
MAP), the R2 and the significance are shown. ns, non significant, a 0.01 > P > 0.05; *P < 0.05;
**P < 0.01; ***P < 0.001
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and Montoro Natural Park and Sierra Nevada National Park), where regeneration
can become a bottleneck of forest dynamics (Ninyerola et al. 2009). Indeed, many
recent efforts of reforestation of Q. pyrenaica seedlings in Sierra de Cardeña had
failed probably due to the sever summer drought of the last years (José Manuel
Quero, personal communication). For the evergreen species we found different

Fig. 12.7 Multiple linear regressions of relative growth rate based on biomass (RGRB) with mean
annual temperature (MAT) and mean annual precipitation (MAP) for the six Quercus species
growing in field conditions
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responses to climate. On the one hand, Q. ilex had a wide range of temperature and
precipitation where it can grow well (Fig. 12.7). In any case, the low RGR of Q.
ilex even under better conditions of MAT and MAP (just to 20 mg g−1 year−1) may
be related to its conservative traits (low SLA, high wood density). On the other
hand, Q. suber, is restricted to acidic soils (Hidalgo et al. 2008), generally dis-
tributed in the western part of Iberian Peninsula, where there are higher values of
MAP than in the eastern part (Instituto Geográfico Nacional 2017); suggesting that
precipitation is not restricting growth of this species (Table 12.1; Fig. 12.7).

In summary, we found significant effects of MAT and MAP on RGR but the
explanatory power of these two environmental factors was low (smaller than 7%).
Other factors such as nutrient availability, soil texture and plot density and tree
attributes (size) can also be related to variation in RGR under field conditions.

In this sense, RGR decreased significantly (P < 0.001) with tree size in all
species. Larger trees tend to grow more slowly (Fig. 12.8), similar to that found in
other studies (Ryan et al. 2004; Coates et al. 2009, Gómez-Aparicio et al. 2011).
Noteworthy is the low leaf mass fraction of the trees (for a tree of 20 cm in
diameter, LMF values range from 0.01–0.03, thus 1–3%). In addition, the pro-
portion of leaves decreases with tree size for all Quercus species (Fig. 12.4). In the
review of Poorter et al. (2015) a similar pattern was found for numerous tree
species, with a low percentage of leaf and with an almost linear decrease of LMF
with plant size. Ryan et al. (2004) found that the decline in Eucalyptus forest
production with age was due to the combined effect of a decrease in photosynthesis
and a greater carbon cost due to increased allocation to roots and leaf respiration.
Our results suggest that the decrease in RGR with the increase of tree size could be
caused by a decrease in LMF and that, therefore, there is proportionally less leaf

Fig. 12.8 Variation of the
relative growth rate based on
biomass (RGRB) and stem
diameter (DBH, diameter at
breast height, cm) for adult
trees of six species of
Quercus, obtained from
observational data from the
Spanish Forest Inventory and
the allometric equations of
Montero et al. (2005)

12 Growth and Growth-Related Traits for a Range … 409



area to perform photosynthesis. An additional important explanatory factor may be
that an increasing proportion of the xylem is no longer metabolically active but has
a negative effect of RGR by inflating the mass basis on which RGR is expressed.
This is especially true for the heartwood, the proportion of which increases with age
and size. How much the proportion of heartwood varies and thereby affects RGR
among Quercus species is an interesting area of future research.

RGR values were also negatively affected by the basal area of the plot (except
for Q. canariensis), which reflects the negative effect of tree competition. The basal
area is the area of a given section of land that is occupied by the cross-section of
tree trunks and stems at the breast height, and therefore is a variable related to tree
competition. To understand which of the factors exert a higher effect on RGR, we
performed multiple linear regressions per species using RGRB as dependent vari-
able and mean annual temperature (MAT, °C) and mean annual precipitation
(MAP, mm), tree size (DBH) and basal area of the plot as independent variables.
The comparison of the standardized coefficients (beta) for each factor showed that
tree size and basal area of the plot exert a larger and more negative effect on RGR
than abiotic factors such as MAT and MAP (Fig. 12.9). We also found that the R2

of the models was much higher (between 0.08 to 0.38) that those models which
only considered abiotic factors (Table 12.1).

In summary, in Quercus species growing in the field, tree size and density
negatively affected RGR, so bigger trees tend to grow more slowly. However, the
variation in RGR explained by temperature and/or precipitation was relatively low
(<7% of total variation).

Fig. 12.9 Values of the
standardized coefficients (beta
values) of the multiple linear
regressions per species using
RGRB as dependent variable
and mean annual temperature
(MAT, °C) and mean annual
precipitation (MAP, mm), tree
size (DBH, cm) and basal area
(m2 ha−1) of the plot as
independent variables. The
values of R2 of the multiple
linear regressions are also
shown
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12.5 Comparison of RGR in Adults and Seedlings
of Quercus Species and Their Relationships
with Functional Traits

To test if the values of RGR under controlled conditions are representative of those
measured under field conditions, we have compared both measurements. Despite
the high variability in RGR under field conditions, we estimated the median values
per species. The ranking of RGR for the six species considered was: Q. ilex < Q.
canariensis < Q. faginea < Q. suber < Q. pyrenaica < Q. robur (Fig. 12.6).

To compare the RGR under controlled and field conditions, we calculated the
maximum RGR under field conditions. To do this, we considered the diametric
category of 20–40 cm of DBH, which is the category that shows the maximum
RGR values (Fig. 12.8), and calculated the median values for this category. To
know if these differences in RGR between species were related to functional traits,
we collected data of SLA and leaf N concentration of individuals in the field from
Wright et al. (2004) and our own data (de la Riva et al. 2014). We found that RGR
in the field was significantly correlated (P < 0.05) with SLA and leaf N concen-
tration (Fig. 12.10a, b). The construction of plant tissues of woody Mediterranean
species implies a trade-off between mechanical support and storage of water and
nutrients (Pratt et al. 2007). Plants allocate nitrogen, according with their require-
ments, to produce enzymes and pigments that control different plant processes (i.e.,
photosynthesis, respiration, growth) at a cellular scale (Ghimire et al. 2017). Hence,
plants with thinner leaves and higher SLA have high photosynthetic rates per unit
mass and high net CO2 exchange rates, which implies necessarily, from a physi-
ological point of view, a high allocation of leaf N to achieve a high Amass (Poorter
1989; Reich et al. 1997; de la Riva et al. 2016).

When comparing RGRs of seedlings with those of adults (measured in diameter
classes of 20–40 cm), a positive trend and nearly significant (P = 0.11) was
observed for the six species considered (Fig. 12.10c). It is necessary to emphasize
the difference of units: in seedlings the RGR range was 10–20 mg g−1 day−1 and in
trees the range was between 16 and 30 mg g−1 year−1, possibly due to the limitation
of resources (water and nutrients) that is common in natural conditions and to the
short growth period in field conditions as well as to the larger size of field plants, all
of which contribute to a lower RGR (Metcalf et al. 2003; Rees et al. 2010).

In summary, we observed a positive trend between the RGR of seedlings in
controlled conditions and those of adults in the field. Median RGR values of adult
plants for Quercus species were positively related to SLA and leaf nitrogen.
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Fig. 12.10 Relationship
between the relative growth
rate based on biomass (RGRB,
mg g−1 year−1) of adult
individuals measured under
field conditions with respect
to: a specific leaf area (SLA,
m2 kg−1), b leaf nitrogen
concentration (N field, %),
and c the relative growth rate
measured under controlled
conditions and in seedlings
(mg g−1 day−1). SLA and N
data are from individuals
growing in the field from
Wright et al. (2004) and de la
Riva et al. (2014). Note the
difference in units of RGR in
adults (mg g−1 year−1) and
seedling (mg g−1 day−1). The
values of RGRB were
calculated for the trees
between 20–40 cm of
diameter (DBH) to have the
maximum values of RGRB

under field conditions and
avoid the effect of tree size on
RGRB of adult individuals
measured under field
conditions
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12.6 Conclusions

As compared to other woody species, Quercus species are characterized by relatively
low relative growth rates, low specific leaf area, high root mass fractions and large
seeds. One of the most important factors explaining the differences in relative growth
rate between Quercus species in both seedlings and adults was the differences in leaf
area ratio and the specific leaf area. Data of biomass allocation under field conditions
showed that the proportion of leaf and root decreaseswith tree size,while the proportion
of stem increases. Under field conditions,Quercus species showed a great variability in
the relative growth rates, which is due to differences in tree size and basal area and—to a
lesser extent—due to climatic conditions (temperature and precipitation). Larger trees
grew more slowly, which could be explained by a decrease in the proportion of leaves
with tree size as well as the increasing proportion of non-respiring xylem in the
heartwood. In contrast, temperature and precipitation exert a low effect on the relative
growth rate. Other environmental factors such as nutrient availability and soil depth can
also affect growth under field conditions. Nonetheless, the RGR of seedlings grown
under controlled conditions can be partially extrapolated to adult trees under field
conditions, which highlights the importance of using both approaches for a better
understanding of the causes of differences growth and related traits inQuercus species.
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Chapter 13
Drought-Induced Oak Decline—Factors
Involved, Physiological Dysfunctions,
and Potential Attenuation by Forestry
Practices

Jesús Rodríguez-Calcerrada, Domingo Sancho-Knapik, Nicolas
K. Martin-StPaul, Jean-Marc Limousin, Nathan G. McDowell
and Eustaquio Gil-Pelegrín

Abstract The increasing duration and intensity of drought is precipitating wide-
spread episodes of forest decline around the world, possibly in combination with
other climatic (e.g. soil water logging) and land-use (e.g. fire and coppicing sup-
pression) changes that have been occurring through the last century.
A meta-analysis of physiological data compiled from recent data bases indicates
that, comparatively to other species, oaks are mostly tolerant to drought and
anisohydric, although also relatively vulnerable to severe water stress. The suc-
cession of droughts in unmanaged overcrowded stands is affecting many physio-
logical processes associated with water transport and carbon metabolism and
making trees more susceptible to further abiotic and biotic stresses. Although oaks
maintain large reserves of nonstructural carbohydrates (NSC) in comparison with
other tree species, water restrictions to net carbon gain in declining trees can reduce
NSC reserves and favor the sudden or more progressive death of trees. In view of
correlative and process-based vegetation model simulations, oaks in the
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southern-most part of their range can undergo extinctions in the future due to
increases in temperature and drought. Hence, managing forests so as to increase
acorn production and seedling recruitment is a necessary task to increase adapt-
ability of oak forests to Global Change. Different silvicultural alternatives can
improve the physiological status of residual trees and be employed to mitigate the
sensitivity of oak forests to drought in the short and long run. However, more
studies are needed to understand and mitigate oak decline.

13.1 Oak Decline—Definition and Worldwide Extent

Tree decline refers to a visible lack of “vigor” of mature individuals that, by age,
should be exhibiting near optimal performance. The process of decline involves a
complex series of phenotypic changes that reflect the response of trees to often
multiple interacting abiotic and biotic stress factors. The term refers to a continuum
of tree decay, since incipient symptoms characterized by low growth, branch die-
back, leaf shedding and reduced foliage area, to more severe conditions of almost
complete defoliation, growth stagnation and stem dieback. At the forest scale the
term is used to refer to forest stands with a variable proportion of trees showing
symptoms of decline or being dead. Climate and land use change, together with an
increasing awareness of its consequences are fueling reports of forest decline
throughout the world (Allen et al. 2015).

The first records of oak decline that were verified by archival reports started to
appear in Central Europe and North eastern United States of America (USA) during
the 18th and 19th centuries respectively (Millers et al. 1989; Thomas 2008). Later,
from the 1900s to the 1970s, more episodes of oak decline were reported in these
and other adjacent areas such as North eastern and western Europe or Central USA.
During this time the type of oaks that experienced decline were mostly deciduous
oaks, in particular those from groups Quercus (white oaks) and Lobatae (mainly
red, but also black and scarlet oaks) (Millers et al. 1989; Thomas 2008). Since the
1980s, episodes of decline started to be frequently reported over a wide range of
forests of the northern hemisphere, including those of deciduous species from
group Cerris (Halász 2001) and evergreen species such as Q. ilex from group Ilex
(Lloret et al. 2004). Records of oak decline appeared in Southern Europe (Amorini
et al. 1996; Desprez-Loustau et al. 2006), North Africa (Brasier 1996),
Western USA (Rizzo et al. 2002; Guo et al. 2005; Coleman and Seybold 2008),
Mexico (Tainter et al. 2002), Colombia (Ciesla and Donaubauer 1994), China
(Gottschalk and Wargo 1997) and Japan (Nakajima and Ishida 2014) (Fig. 13.1).
Today, oak decline is a very important issue for society due to the extreme
importance of oaks in the culture, history and economy of the affected countries
(Gil-Pelegrín et al. 2008; Fei et al. 2011). However, the causes and functional basis
of oak decline remain unclear.
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Most oak decline episodes have been observed after extreme climatic events
(e.g. heat waves or severe droughts), or after consecutive events of winter freezing
and waterlogging or drought (Millers et al. 1989; Führer 1998 and references
therein; Peñuelas et al. 2001; Lloret et al. 2004). Oak decline has also been asso-
ciated to different pathogens and site conditions. However, in most cases, none of
these factors have acted alone. The simultaneous or subsequent interaction of at
least two stress agents, where one of them is often an extreme climatic event, has
triggered important outbreaks of decline (Pedersen 1998; Guo et al. 2005;
Desprez-Loustau et al. 2006; Thomas 2008; McDowell et al. 2011). Although oaks
are displacing less stress-tolerant species in response to climatic changes occurring
in some regions (Carnicer et al. 2014; McIntyre et al. 2015), the on-going and
projected increase in intensity and frequency of extreme climatic events (Planton
et al. 2008) threatens oak performance in many others, especially those where oaks
are already in marginal climatic conditions. The problematic sexual regeneration of
oak species may further jeopardize adaptability of oak forests to ongoing climatic
changes. It is essential that more research is devoted to understand the mechanisms
and interactive nature of factors involved in tree decline and regeneration, also in
scenarios of elevated air CO2 concentrations, to project and mitigate future impacts
of Global Change on forest health.

13.2 Factors Predisposing to Oak Decline

Different frameworks have been proposed to explain tree death from an ecophys-
iological perspective (e.g. Selye 1936; Manion 1991; McDowell et al. 2008;
Mitchell et al. 2015). All of them argue that growth in sub-optimal conditions
predisposes trees to decline and make them more vulnerable to climatic factors such
as drought or unusual temperatures that may kill the trees, in association or not with
pathogen outbreaks. Edaphoclimatic features (e.g. rainfall, and soil nutrient

Fig. 13.1 Map showing the areas of oak decline records since the 18th century. References are
within the text
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concentrations, depth or slope), anthropogenic alterations of the habitat (e.g. soil
compaction or pollution), and previous/current management of forest stands (e.g.
fire suppression or stand overcrowding) all determine tree competition and vigor,
and thus tree vulnerability to abiotic and biotic stresses. Trees growing in conditions
far from optimal are generally more prone to decline, and consequently high
mortality rates have been observed in forests at marginal edaphoclimatic conditions,
such as ridges with shallow soils (Thomas et al. 2002; Leuzinger et al. 2005;
Fig. 13.2). Meanwhile, the decreasing exploitation of forests for wood products
appears to have accelerated tree responses to climate warming and drying in some
regions over the 20th century (Doleẑal et al. 2010). The physiological mechanisms
by which both factors—climate and land use change—predispose oaks to decline
have some common patterns.

13.2.1 Climate

Repeated and protracted climatic stresses such as drought, waterlogging, freezing,
or abnormally elevated temperatures all induce phenotypic changes in trees that
may either reduce their subsequent vulnerability to drought, or increase it and

Fig. 13.2 Trees of Q. pyrenaica exhibiting reduced growth, little ramification and profuse branch
dieback in a steep area with shallow soil in Central Spain
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jeopardize tree survival in the long run. The occurrence of extremely cold winter
temperatures followed by summer drought stress is a relevant example of how
sequential climatic perturbations can trigger oak decline. While large vessels
embolize every winter in ring-porous oaks (Zimmermann 1983), extremely cold
winters can also cause the embolism of relatively small vessels. When this is
followed by a harsh summer drought impeding latewood formation, water transport
relies on large vessels of earlywood more prone to embolize, and hydraulic failure
can provoke leaf shedding, shoot dieback and eventually death if trees are weak-
ened by other factors (Auclair et al. 1992; Führer 1998; Helama et al. 2016).
Another example of how climatic perturbations exacerbate the sensitivity of trees to
subsequent stresses is the succession of periods of soil water excess and deficit. The
decline of European oak species has been linked to deficient soil aeration caused by
waterlogging and flooding; altered soil concentrations of O2 and CO2 inhibit root
growth (Gaertig et al. 2002), while high soil water content favors root infection by
pathogenic fungi (Brasier 1996). These factors weaken the tree and make it more
susceptible to subsequent drought than trees thriving in well aerated soils.
Moreover, any climatic stress causing permanent photoinhibition of photosynthesis
or leaf wilting can demand an increased allocation of resources to repair or replace
damaged tissues at the cost of those available for defense (see next section).

13.2.2 Land-Use Changes

The relationship of man with nature has changed dramatically over the 20th cen-
tury. The emergence of new construction materials and energy sources reduced the
consumption of oak products (e.g. charcoal, timber, firewood …) and modified the
exploitation and management of oak forests. Over the past century the frequency
and intensity of both harvestings and wildfires have been reduced, with the con-
sequence that the structure and composition of forests have changed (Flatley et al.
2015; Oak et al. 2016). Today, many stands are overcrowded with relatively old
oak trees increasingly dominated by more competitive, later-successional species
that weaken the vigor of oaks and increase their susceptibility to other stress factors.
One example of how land-use changes have favored tree decline is observed in
abandoned oak coppices. Because of the typical resprouting ability of oaks, cop-
picing—the repeated cutting down of stems of trees able to resprout from their roots
or stumps—was a widespread practice in oak forests. The abandonment of cop-
picing has been suggested as a factor causing stem growth stagnation and dieback
in these stands. When the stems of coppiced trees of Q. pyrenaica exceed a certain
age, stems start to display symptoms of decline at anatomical, physiological and
morphological levels, e.g., short, little ramified stems with narrow tree rings of
absent latewood, higher xylem embolism vulnerability, and higher growth sensi-
tivity to drought than in younger stems (Corcuera et al. 2006; Salomón et al. 2017).
Centuries of coppicing have favored the development of multi-centennial, huge,
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and shallow root systems that result in higher root to shoot ratios in coppiced than
non-coppiced trees (Canadell and Rodà 1991; Salomón et al. 2016). The dispro-
portionate root system of coppiced trees entails a high respiratory cost belowground
(Salomón et al. 2015) that may reduce carbohydrate availability to growth or fruit
production and render trees more susceptible to drought, similarly as to starch-
depleted shrubs succumb to drought after resprouting (Pratt et al. 2014). Moreover,
the increasing biomass of the root system over decades of coppicing could be
related to the observed decline in the amount of taproots and their rapid tapering,
which confine the root system to the first 60–100 cm of soil (Zadworny et al. 2014;
Salomón et al. 2016). The deep taproots of oaks can facilitate access to deep
soil water layers and somewhat attenuate the impact of interannual rainfall
fluctuations on tree water status (Rambal 1984; Joslin et al. 2000; Querejeta et al.
2007). Research on the plasticity of root growth and architecture in adult oak trees
are scarce (e.g. Canadell and Rodà 1991; Di Iorio et al. 2005; Montagnoli et al.
2012); more research is needed on the way individual roots and entire root systems
adjust to land use changes, given the importance of plasticity in vertical rooting
patterns in determining oak susceptibility to ongoing changes in rainfall
(Joslin et al. 2000).

13.3 Functional Alterations Occurring Through Drought-
Induced Oak Decline

Drought is one of the main factors related to oak mortality in recent decades (Allen
et al. 2015). Increased warming and drought severity projected for many regions
where oaks are dominant could exacerbate ongoing episodes of decline, even in
cold and wet regions (Helama et al. 2016). In general, the velocity and magnitude of
tree decline depends on the intensity, duration, timing and recurrence of drought
periods and on the physiological status of trees. Before dying, some trees exhibit
strong phenotypic changes in response to chronic, moderate droughts that pro-
gressively weaken the tree, until it finally succumb to drought or any other abiotic
or biotic stress (Franklin et al. 1987; Manion 1991). On the other hand, sudden
episodes of oak die-off can also occur without trees showing any prior sign of
physiological stress. The occurrence of a drought period of extreme intensity and/or
duration can exceed the limits of certain physiological attributes key to survival,
with possibly less vigorous trees dying from less acute abiotic stresses or pathogen
outbreaks (Fig. 13.3). Tree death involves in these cases fewer factors (Mitchell
et al. 2015).

The central role that water and carbon play in plant functioning has led to the
hypothesis that tree hydraulic and carbon economy are the main factors around
which to outline the physiological frameworks of tree mortality. For example,
McDowell et al. (2008) proposed a conceptual mechanistic framework in which the
importance of hydraulic and carbon related mechanisms in drought-induced tree
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death depended on the stomatal sensitivity to water stress among species: isohydric
species exhibiting rapid stomatal closure in response to water stress would be more
susceptible to die from the exhaustion of carbon substrates necessary for respiratory
processes, whereas anisohydric species exhibiting a less sensitive stomatal closure
would die from hydraulic failure. Further works have provided partial support to
this hydraulic framework. In a review of all existing drought manipulation studies,

Fig. 13.3 Illustrative schematics of drought-induced decline. Lower panels contain some of the
phenotypic changes that usually occur in a progressive process of decline. Trees experiencing
repeated events of drought start to exhibit symptoms of crown transparency from defoliation and
reduced leaf production. This generally limits fine root survival and growth. However, increasing
carbon allocation below ground may transiently increase the ratio of fine root area to leaf area ratio
(fRAI/LAI). Leaf area index (LAI) can progressively decrease due to leaf shedding and reduced
ramification. Carbon limitations to root growth and associated mycorrhiza reduce water and
nutrient uptake, which may further reduce carbon available to growth and synthesis of defense
compounds. Defoliation and increasing resistance to water uptake reduce canopy transpiration and
sap flow. However, this does not necessarily affect leaf physiology or concentration of
non-structural carbohydrates (NSC) or nitrogen (N). The decline in leaf area may balance the
decline in water transport so that leaf-specific hydraulic conductivity (Kh) and water potential (Ww)
may remain relatively unaffected until crown dieback and restrictions to water transport are severe.
All along this process of decline, intertwined carbon and water restrictions to plant metabolism
may lead to the death of the tree, which can benefit other species able to exploit the residual
resources. Top panels reflect that sudden oak death can occur at any time along this sequence of
decline following climatic and/or biotic perturbations; while relatively vigorous trees will succumb
to extreme to severe perturbations, trees weakened by drought can succumb to simultaneous
perturbations of just moderate to mild intensity
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hydraulic failure was a ubiquitous feature, and carbon starvation a frequent feature,
of mortality during drought (Adams et al. in revision).

The sequence and relative importance of functional changes leading to tree death
is likely to vary among species depending on their tolerance and plasticity to
successive or simultaneous stresses. The genus Quercus includes hundreds of
species with highly variable physiology and ecological requirements. However,
there are some features particular to oaks that can shape the mortality spiral in this
genus. In general, oaks are tolerant to drought and fire, and poorly tolerant to
waterlogging (Niinemets and Valladares 2006; Table 13.1). These ecological fea-
tures are driven by some typical physiological and anatomical traits, among which
the most characteristic are the large tap-root system, root to shoot ratio, NSC
reserves and size of the xylem parenchyma. These traits are collectively related to
relatively high wood respiration rates and resprouting ability, low stem growth, and
infrequent mast crops (Abrams 1990; Dey 1995; Langley et al. 2002; Zhu et al.
2012; Rodríguez-Calcerrada et al. 2015; Salomón et al. 2016; Table 13.1). The
need of maintaining sufficient NSC levels belowground to resprout after aerial
perturbations is likely to impinge on the responses of oaks to drought. In particular,
maintaining a large amount of xylem parenchyma cells alive requires that tissue
water stress is minimized under drought or that leaf net carbon gain, phloem
transport, and sucrose unload in the roots are all relatively resistant, and/or carbon
sink activities and associated respiratory costs relatively sensitive to water stress.
Some responses of oaks to drought are consistent with this hypothetical view. For
example, the deep root system of oaks allows for the uptake of water from deep wet
layers when shallower layers are dry, which helps maintaining leaf water supply,
cell turgor and stomatal conductance during drought (Abrams 1990; Epron and
Dreyer 1993; Martin-StPaul et al. 2017). This is consistent with the trend of oaks to
exhibit higher predawn and midday leaf water potential and higher stem xylem
vulnerability to cavitation than other species during drought (Table 13.1). However,
a relatively high xylem vulnerability to cavitation (Choat et al. 2012) is at odds with
the relatively anisohydric behavior of oaks reported by Klein (2014) and
Martinez-Vilalta et al. (2014). Methodological issues when measuring hydraulic
conductivity may play a role in this inconsistency (see below).

In any case, the variability in plant functional attributes related with drought
tolerance (e.g. turgor loss point and embolism resistance) is rather large across oak
species (Corcuera et al. 2002; Bartlett et al. 2012; Martin-StPaul et al. 2017), and
there are insufficient observations so as to discriminate how the process of decline
in oak differs from that in other botanical groups.

13.3.1 Acclimation to Single Drought Events

Acclimation to drought involves the regulation of numerous metabolic pathways
affecting a plethora of processes. One of the very first responses of plants to soil
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(and air) drought is the closing of stomata. This reduces water losses, but also the
CO2 concentration inside the leaves and chloroplasts. The primary metabolism is
also rapidly altered towards the synthesis of amino acids and soluble sugars, which
participate in stress signaling and act as compatible solutes reducing cell osmotic
potential. Tissue water relations change through osmotic adjustment, elastic
adjustment or water redistribution between symplastic and apoplastic compartments
to minimize the loss of turgor and/or volume of living cells (Parker and Pallardy
1988). However, the growth of all plant organs declines with drought. Shoot, leaf
and fine root production decreases at different rates due to the different sensitivity of
each organ to drought stress and their uncoupled growth patterns (Teskey and
Hinckley 1981; Harris et al. 1995; Arend et al. 2011), which can transiently
enhance root to shoot or root to leaf ratios under moderate drought. The specific
root length and number of tips of fine roots can even increase with increasing

Table 13.1 Results of t-tests comparing means (with standard deviation) and
Mann-Wilcoxon-Whitney tests comparing medians (with interquartile range around the median)
of different ecophysiological features between oaks and other species compiled in several global
data bases

Variable N Mean Median Sources

All Oak All Oak Diff All Oak Diff

Tolerance to
drought
(unitless
from 0 to 5)

806 58 2.88
(1.06)

3.76
(1.03)

**** 2.88
(1.69)

3.92
(1.61)

**** Niinemets and
Valladares
(2006)

Wgs50
(MPa)

69 11 −1.87
(0.76)

−2.87
(0.58)

*** −1.75
(0.88)

−2.90
(0.57)

*** Klein (2014)

P50 (MPa) 480 22 −3.38
(2.50)

−2.34
(1.66)

** −2.80
(2.93)

−1.93
(1.59)

* Choat et al.
(2012)

Min. Wpd
(MPa)

150 17 −3.52
(2.06)

−2.87
(1.31)

• −3.01
(3.30)

−2.55
(1.84)

ns Plaut et al. (in
prep.)

Min. Wmd
(MPa)

150 17 −4.35
(1.97)

−3.65
(1.29)

• 4.00
(3.33)

−3.05
(1.44)

ns Plaut et al. (in
prep.)

r, slope of
the midday
versus
predawn

102 13 0.86
(0.21)

0.89
(0.12)

ns 0.90
(0.20)

0.91
(0.13)

ns Martinez-Vilalta
et al. (2014)

Total NSC
in stems
(mg/g)

2216 202 74.7
(61.4)

81.0
(31.5)

* 59.5
(67.5)

86.1
(38.6)

**** Martinez-Vilalta
et al. (2016)

Variables tolerance to drought [unitless from lowest to maximum value (0–5)]; Wgs50 midday leaf water
potential inducing 50% stomata closure; P50 xylem water potential inducing a 50% loss of hydraulic
conductivity in stems; Min. Wpd minimum predawn leaf water potential ever reported in the literature;
Min. Wmd minimum midday leaf water potential ever reported in the literature; r slope of the midday vs.
predawn leaf water potential; and total nonstructural carbohydrates (NSC) in stems. N number of taxa,
except for Total NSC in stems accounting for the number of observations, with several observations per
species
****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; •p < 0.1
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seasonal drought due to altered carbon allocation patterns (Coll et al. 2012).
However, wood—and particularly latewood in ring porous species—is generally
negatively affected by drought (Woodcock 1989; Corcuera et al. 2004, 2006;
Doleẑal et al. 2010); whereas xylem features change towards reducing water
transport efficiency (e.g. via smaller vessels—Corcuera et al. 2004; Fonti et al.
2013).

Also the rates of carbon exchange decline with drought due to photosynthetic
and respiratory limitations, as well as impaired synthesis of volatile organic com-
pounds (Rodríguez-Calcerrada et al. 2013). The nature of photosynthetic limitations
changes from diffusional to biochemical and photochemical as drought stress
increases (Limousin et al. 2010; Cano et al. 2013), with permanent photoinhibition
of the photosystem II generally occurring only at very low water potentials (Méthy
et al. 1996; Rodríguez-Calcerrada et al. 2007), due to the decrease in chlorophyll
concentrations and increase in carotenoid concentrations that take place in leaves to
balance the energy budget (Haldimann et al. 2008). The nature of respiratory
limitations is less clear, with drought-induced decreases in energy demand being a
likely factor in ADP limitation of respiration (Rodríguez-Calcerrada et al. 2013).
The early reduction in carbohydrate sinks—mainly from growth attenuation—off-
sets subsequent photosynthetic limitations and helps to maintain NSC reserves
nearly unchanged until drought stress is severe (McDowell 2011;
Rodríguez-Calcerrada et al. 2017).

Collectively, these changes allow for a relatively fast recovery of water potential
and gas exchange after the end of the drought period. However, when the drought
period is long and/or acute, and leaf water potential drop to very low values,
photoinhibition of the photosystem II and eventually leaf wilting and shedding can
ensue, thus delaying or impairing the complete restoration of plant’s functionality at
the end of the drought period. The magnitude of these short-term responses varies
among oak species and populations as a function of their adaptation to drought,
with mesic oak species and populations being less tolerant to drought than those
inhabiting drier regions (Abrams 1990; Corcuera et al. 2002).

13.3.2 Response to Recurrent Droughts—The
Interrelationship of Mechanisms in Tree Decline

As trees experience more frequent and/or more intense periods of drought,
molecular and organ-level responses appear to scale up progressively to the whole
tree and eventually the stand level. Martin-StPaul et al. (2013), by comparing Q.
ilex forest stands spanning a regional gradient of aridity with a stand subjected to
8 years of throughfall exclusion, observed increased ratios of sapwood and fine root
area relative to leaf area index in the drier stands, which contributed to maintain the
minimum water potential within safety margins across all stands; leaf- and
stem-level variables such as leaf mass per area or xylem water potential causing
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50% loss of hydraulic conductivity were also similar across stands and treatments.
More studies are needed to understand long-term responses of oaks to drought.
Nonetheless, a reduction in leaf area is a ubiquitous response to drought which
results from intertwined carbon and hydraulic limitations (Baldocchi and Xu 2007;
Limousin et al. 2009). The leaf area deployed by an oak tree with preformed growth
(i.e. having the shoot primordia of the next flush protected in buds) in a given year
is in balance with the climate of the previous year via leaf number and with the
climate of the current year via leaf area (Alla et al. 2013). When high evaporative
demand and transpiration result in depletion of soil water reserves, trees respond to
hydraulic limitations to water supply via leaf shedding to avoid catastrophic xylem
embolism. In addition, intertwined carbon and hydraulic limitations during bud
formation can result in fewer shoots and leaves in response to recurrent droughts
(Limousin et al. 2012). Leaf shedding, reduced ramification, and reduced number
and area of leaves may contribute to maintain leaf-specific hydraulic conductivity
and net photosynthetic CO2 uptake per unit leaf area rather constant across stands of
variable summer drought intensity (Limousin et al. 2009; Martin-StPaul et al.
2013). However, once trees show more obvious symptoms of decline (i.e. severe
crown transparency, minimal growth and branch dieback), organ-specific physiol-
ogy is more likely to be affected. It has been observed that leaf predawn water
potential, relative water content, stomatal conductance and net photosynthetic CO2

uptake are lower in declining than non-declining trees (Thomas and Hartmann
1996; Corcobado et al. 2013). Fine root mortality and increasingly smaller xylem
rings prevent the ever-decreasing canopy foliage from receiving enough water to
sustain leaf gas exchange. The process of decline does rarely revert; however,
foliage recovery has been reported to occur in oaks exhibiting severe crown dieback
(Dwyer et al. 2007).

A common response to drought is a reduction in height and diameter growth
(although rainfall-exclusion field experiments have evidenced a variable sensitivity
of growth; Hanson et al. 2001; Rodríguez-Calcerrada et al. 2011; Rosas et al. 2013).
The degree to which plant growth is limited by drought controls the usage of carbon
in respiration and the extent of carbon allocated to storage of NSC reserves in
stems, roots and lignotubers (Trumbore et al. 2015; Rodríguez-Calcerrada et al.
2017). However, despite metabolic down regulation, the inevitable use of carbo-
hydrates in respiration may eventually result in carbon substrates reaching limiting
concentrations for respiration (and life) over long or frequently repeated periods of
drought. Concentrations of NSC can remain relatively high in trees with incipient
symptoms of decline, and decrease together with NSC pools in severely declining
trees (Galiano et al. 2012; Rosas et al. 2013).

On the other hand, restrictions to carbon gain and NSC storage feed forward on
limitations to water transport and tolerance to xylem tension by reducing the
potential for refilling, the production of latewood, and the thickness of cell walls of
vessels relative to their lumen size (Bréda et al. 2006; Eilmann et al. 2009). The
reduction (or absence) of latewood reflects the sensitivity of wood production to
summer drought stress (Lempereur et al. 2015), and at the same time increases the
probability to suffer xylem cavitation, given the positive relationship between
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vessel size and cavitation risk within species (Zimmerman 1983). Hence, another
general acclimation response of oaks to drought is the reduction of vessel size
(Eilmann et al. 2009; Fonti et al. 2013). Xylem embolism has a primary role in plant
dehydration and is probably one of the latest phenomena occurring in stems before
they succumb to death (Rodríguez-Calcerrada et al. 2017; Adams et al. in revision).
Embolism resistance is thus a relevant trait to assess the drought resistance of
species (Bartlett et al. 2012; Table 13.1). However, recent research has raised
doubts regarding embolism resistance measurements in long-vessel species such as
oaks (Martin-StPaul et al. 2014). Even if recent methodological progress based on
embolism visualization in intact plants now allows monitoring long-vessel species
for embolism resistance (Cochard et al. 2015; Venturas et al. 2017), very few data
are so far available for oaks (e.g. Bartlett et al. 2012), with a recent study on the
topic suggesting that oaks are probably far more embolism resistant than previously
expected (Martin-StPaul et al. 2017; Table 13.1). The interrelationship between
water- and carbon-related processes is also evidenced by drought-induced carbon
restrictions to fine root growth and mycorrhizal associations feeding forward on
further limitations to water and nutrient uptake (Jönsson 2006; Coll et al. 2012;
Gessler et al. 2016).

Trees can die once drought acclimation limits are exceeded. Intertwined
hydraulic and carbon limitations can cause not just the die-back of the stems, but
the inability of root living tissues to produce new stems and resprout (Figs. 13.3
and 13.4). Nevertheless, trees rarely die from drought stress alone. The phenotypic
adjustments to drought enhance the susceptibility of trees to other biotic (and
abiotic) factors that ultimately act as mortality agents (see next section). A trade-off
between allocation of carbon (and energy and nutrients) to drought-acclimation vs
defense can explain the higher susceptibility of drought-acclimated trees to con-
current or successive attacks of pathogens and insects.

13.3.3 The Role of Other Living Organisms in Tree Decline

Pathogens are frequently the proximate cause of massive oak death (see Thomas
2008) and must therefore be taken into consideration when trying to establish an
etiology of the process at a global scale.

Fungal species of the genus Diplodia have been associated to decline of
mediterranean oak species in Europe (Luque and Girbal 1989), North Africa
(Linaldeddu et al. 2013) and North America (Lynch et al. 2010). The “Oak Wilt
Disease” that has been threatening populations of oaks in many areas of the USA
since the early 20th century (Lewis 1978) is essentially considered a vascular wilt
produced by Ceratocystis fagacearum (Lewis and Oliveira 1979; Wilson 2005;
Juzwik et al. 2008 and references therein). This fungus invades the outermost
vascular tissues (French and Stienstra 1980), impairing the adequate xylem flow.
The pathogeny of this fungus was confirmed since the first studies on this disease
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(Lewis 1978). To explain the wide spread of the problem in a relatively short period
of time, Juzwik et al. (2008) consider two main hypotheses: (i) that human-induced
promotion of dense stands of highly sensitive red oaks in areas where less sensitive
species formerly dominated (McDonald 1995; Wilson 2005) has fueled attacks of
C. fagacearum, an endemic pathogen in the USA which had minor effects on north
American oak forests before, or (ii) that C. fagacearum originates from Mexico,
Central America, or northern South America where oak species richness is par-
ticularly high.

Phytophthora is involved in the decline of a wide range of tree species world-
wide, including many Quercus spp. P. ramorum has affected Q. agrifolia,
Q. kelloggii and Q. parvula in California (McPherson et al. 2001; Rizzo et al.
2002); P. quercina has affected Q. robur and Q. petraea in Central Europe (Jung
et al. 1999; Jönsson-Belyazio and Rosengren 2006) and P. cinnamomi, indigenous
to the New Guinea-Celebes region and Southern Africa (Brasier et al. 1993), has
been associated with decline of Q. ilex and Q. suber in southern Europe (Brasier
1996; Gallego et al. 1999; Scanu et al. 2013), of Q. alba in USA (Balci et al. 2010;
McConnell and Balci 2014; Hubbart et al. 2016) and of Q. glaucoides,
Q. peduncularis and Q. salicifolia in Mexico (Tainter et al. 2002). The main
damage caused by the different Phytophthora species to oak trees is the loss of fine
roots and small woody roots (Jung et al. 1999; Jönsson-Belyazio and Rosengren

Fig. 13.4 Unidentified dead oak tree in a mixed deciduous oak stand with clear symptoms of
decline in central Spain
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2006; Balci et al. 2010; Pérez-Sierra et al. 2013), and, therefore, the reduction of the
capacity to explore the soil for water and nutrients. This directly implies a weak-
ening of the oak and an increase of the risk of decline (Pérez-Sierra et al. 2013). For
example, the inoculation of Q. ilex seedlings with P. cinnamomi reduced the leaf
water content, net CO2 assimilation and protein abundance (Sghaier-Hammami
et al. 2013). Despite the direct involvement of Phytophthora spp. in the weakening
of oaks through the destruction of the root system, the decline and mortality
associated with these pathogens has been described as a complex disease triggered
by several interacting environmental factors (Scanu et al. 2013). It is a common
observation that this pathogen is more frequently isolated in areas with high soil
water content, as this is a critical factor in the infection of the tree root system (Balci
et al. 2010). Such evidence has promoted the idea that soil water excess may be as
detrimental as severe drought for tree pathogen infection (Hubbart et al. 2016). The
most accepted mechanism explaining the incidence of the pathogen in
Mediterranean oak stands implies the alternation of periods of high and low soil
water content (Brasier et al. 1993; Gallego et al. 1999; Corcobado et al. 2013). The
periods of soil wetness would promote the spreading of the infection by favoring
the motility of flagellated Phytophthora spores, while the infected tree—with a
reduced root system—could be less suited for withstanding the subsequent drought
(Corcobado et al. 2014a). More recently, a “feed-back loop hypothesis” has been
proposed by Corcobado et al. (2015), where the root rot induced by P. cinnamomi
reduces tree water use, so increasing soil wetness and chances of further fungal
infection.

Root rot associated to different fungi of the genus Armillaria has been proposed
as a possible factor contributing to oak decline (Luisi et al. 1996), particularly in the
Missouri Ozark forests (Bruhn et al. 2000; Kelley et al. 2009). High mortality in
these forests, particularly of red oaks Q. coccinea and Q. velutina (Shifley et al.
2006; Kabrick et al. 2007) reflects the high sensitivity of these “red oaks” to
Armillaria (Bruhn et al. 2000) and their human propagation at the expense of other
less sensitive tree species since the early 1900s (Kabrick et al. 2008). Moreover, it is
likely that water stress predisposes trees to suffer from Armillaria infection because
(i) the incidence of oak death in this area is correlated with episodes of drought (Fan
et al. 2012), and (ii) Armillaria is considered an opportunistic pathogen that invades
weakened trees (Marçais and Bréda 2006). Vice versa, the infection by Armillaria
can feed forward on the susceptibility of trees to further stresses. For example,
Q. robur trees infected by Armillaria gallica were more susceptible to defoliation
(Marçais and Bréda 2006).

The fungal species Biscogniauxia mediterranea has also been proposed as a
factor explaining oak decline in drought-prone areas (Vannini et al. 1996).
This endophytic fungus, although considered a facultative saprophyte living on
dead tissues (Ju et al. 1998; Anselmi et al. 2004; Vannini et al. 2009), becomes a
parasite under some circumstances, especially when the host tree is suffering from
water stress (Vannini and Scarascia Mugnozza 1991; Luque et al. 2000;
Desprez-Loustau et al. 2006; Capretti and Battisti 2007; Vannini et al. 2009;
Linaldeddu et al. 2010). As a mechanistic link between drought and the pathogeny
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of B. mediterranea, Vannini and Valentini (1994) suggested that xylem vessels
embolized due to water stress were the path for the spreading of the fungal hyphae.

Plant-eating insects have been directly associated to different processes of
massive oak death since the early 20th century in Europe (Gibbs and Greig 1997)
and the late 19th century in north-America (Millers et al. 1989). Bark and wood
boring insects, mainly beetles belonging to the Cerambycidae, (e.g. Cerambyx
cerdo), Curculionidae (e.g. Scolytus intricatus) and Buprestidae (e.g. Agrilus
biguttatus), have been recognised as inciting factors in some of the main episodes
of oak decline during the last decades (see Sallé et al. 2014 an references therein).
The succession of climatic extremes could be responsible for the increasing oak
damage by wood boring species of Agrilus or Cerambyx in Europe and North
America that were almost innocuous in the past (see Haavik et al. 2015 for a
comprehensive review). These beetles cause a severe reduction in water transport to
the crown due to damage and embolization of xylem vessels. Moreover, they often
act as vectors of other microorganisms that contribute to oak death. The “Acute Oak
Decline”, a newly described phenomenon that is threatening different populations
of Q. robur and Q. petraea in the United Kingdom, is explained through the
combined action of the buprestid Agrilus biguttatus (Brown et al. 2014; Denman
et al. 2014) and bacteria (Denman et al. 2012; Brown et al. 2016). The ambrosia
beetle Platypus quercivorus is considered as the main vector species (Kuroda 2001;
Yamasaki et al. 2016) of the fungus Raffaelea quercivora (Kubono and Ito 2002).
This association has been proposed to explain the high mortality of different
Quercus species in the so-called “Japanese Oak Wilt” (Nakajima and Ishida 2014).
In a similar way, Platypus cylindrus has been proposed as a vector of species of the
genus Raffaelea (Inacio et al. 2008) and of Biscogniauxia mediterranea in the
Iberian Peninsula (Inacio et al. 2011).

Crown defoliation by insects is also a recurrent causal factor in explaining
massive oak decline (Gibbs and Greig 1997; Siwecki and Ufnalski 1998). The
gypsy moth Lymantria dispar L. has received particular attention due to its impact
on large areas of Eurasia (Milanović et al. 2014) and North America (Tobin and
Whitmire 2005), where it was introduced in the 19th century (Hunter and Elkinton
2000; Haavik et al. 2015). Thomas et al. (2002) stated that European temperate oak
species, such as Q. robur or Q. petraea, are expected to experience several defo-
liation episodes through their life cycle. In fact, as is reflected in Gieger and
Thomas (2005), oak stands in wide areas of Central Europe can be exposed to full
crown defoliations every decade. Isolated events of defoliation may not prevent
healthy oaks to produce new leaves from stored reserves. However, consecutive
defoliations caused by or in concurrency with climatic perturbations, such as
abnormally intense droughts, will drastically weaken the tree and induce massive
decline (Thomas et al. 2002).

A positive feed-back is established between tree weakening—by severe defoli-
ations, by climatic stress, or both—and the probability of being colonized and/or
damaged by biotic agents (Marçais and Bréda 2006). The nature of this enhanced
susceptibility to pathogens of trees weakened by stress has generally an anatomical
and chemical origin. Drought-induced reductions in tissue water content and
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photosynthesis affect the nutritional quality of trees and their attractiveness to
fungal pathogens and herbivorous insects depending on their feeding guilds
(Huberty and Denno 2004; Rouault et al. 2006). For example, drought-induced
shifts in the metabolome of Q. ilex, specifically towards osmoprotection and
antioxidation via increased leaf concentration of soluble sugars stimulated attraction
to herbivores (Rivas-Ubach et al. 2014). Moreover, drought-induced defoliation and
increased nitrogen allocation to crown vs. stem can lead to higher soluble nitrogen
concentrations in tree leaves (Mattson and Haack 1987; Gessler et al. 2016). As
nitrogen is generally limiting for many insects, increased available nitrogen during
water stress could result in improved growth of folivorous insects (Jactel et al. 2012
and references within). Besides host attractiveness to insects, water stress can also
affect host metabolism and resistance to pests and pathogen damages.
Concentrations of secondary metabolites are often higher in foliage of
water-stressed trees (Rouault et al. 2006; Sallé et al. 2014), which can affect larval
performance of Lepidoptera such as Operophtera brumata on Q. robur (Buse and
Good 1996). In agreement with the ‘growth–differentiation balance’ hypothesis
(Herms and Mattson 1992), without any drought stress, carbohydrates produced by
photosynthesis are mainly allocated to growth and development of new foliage,
while production of defensive chemicals has a lower priority. Under moderate water
stress, the carbohydrates can be redirected to the synthesis of defensive secondary
chemicals (such as phenolic and terpenoid compounds), so that trees become more
resistant to insect attacks (Herms and Mattson 1992). However, under severe
drought, exhaustion of water and carbon reserves can ensue and result in lower
constitutive resistance to attacks by bark beetles (Rouault et al. 2006; McDowell
et al. 2011; Jactel et al. 2012).

In addition to these biochemical changes, less straightforward changes in
response to water stress can occur that increase the probability of an oak to be
colonized by a biotic agent. For example, higher leaf temperatures provoked by
stomatal closure in response to water stress can increase the rate of insect attack
(Mattson and Haack 1987). Finally, it has also been suggested that acoustic signals
emitted during the drought-induced cavitation of xylem conduits attract wood
boring beetles (Rouault et al. 2006).

Biotic interactions within the context of mortality go beyond the role of insects
or pathogens in killing weakened trees. The interaction of bacteria, viruses and
endophytic or mycorrhizal fungi with tree physiology is an interesting area of
research. These organisms can improve the physiological capacity of plants to cope
with other pathogenic microorganisms, herbivores, or even abiotic stresses such as
drought (Moricca and Ragazzi 2008; Xu et al. 2008). However, the nature of
symbiotic relationships can change from mutualistic to parasitic depending on
environmental conditions (Moricca and Ragazzi 2008). The modulation of the
abundance and composition of symbiotic microorganisms caused by drought is one
unexpected way by which this stress can predispose or lead trees to suffer from
decline. Probably in relation to limitations in NSC export and fungal development,
the degree of root ectomycorrhizal colonization decreases with decreasing soil
water availability (Coll et al. 2012), which may have important consequences for
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the tree water and nutrient status. For example, Querejeta et al. (2009) observed
strong interannual variations in the degree of root colonization by ectomycorrhizal
fungi in xeric hill sites of Q. agrifolia stands, and discussed that a decrease in
rainfall in the future could affect nitrogen uptake by mycorrhizal symbionts of trees
in dryland oak woodlands. Although a clear relationship between oak decline and
mycorrhizal symbiosis has not always been found (e.g. Lancellotti and Franceschini
2013), some studies have reported higher ectomycorrhizal abundance in the healthy
Q. ilex trees in Spanish woodlands affected by oak decline (Corcobado et al.
2014b). Corcobado et al. (2014b) considered that a higher crown transparency in
declining Q. ilex trees should have a direct negative effect on ectomycorrhizal
symbiosis by reducing photosynthetic carbon gain and carbon allocation
belowground.

Multiple, complex interactions among abiotic and biotic factors modulate the
physiology of trees along the spiral of changes that precedes death of declining trees
(Manion 1991). In this sense, Corcobado et al. (2014b) suggested that
non-mycorrhizal tips might be the “entry points” for Phytophthora cinnamomi
when invading the root system of Q. ilex in Spanish woodlands, establishing in this
way a further step in the explanation of such causal complexity.

13.4 Modeling the Future of Oak Forests in a Context
of Global Change

The distribution of oak species is expected to change largely and rapidly in the near
future due to global change. Correlative and process-based models are the two main
types of numerical tools that have been used to assess climate change impacts on
forests (Pearson et al. 2004; Morin and Thuiller 2009; Cheaib et al. 2012; Adams
et al. 2013). While correlative models simulate the species realized niche,
process-based models (PBMs) are built to predict the potential species niche (Morin
and Thuiller 2009). Although simulations from correlative models do not always
match simulations from PBMs, these agree in the prediction that tree species,
including oaks, will migrate toward the north in America and the North-East in
Europe to track their niche and escape to warming and increased drought predicted
for mid latitudes and the Mediterranean (Czúcz et al. 2011; Cheaib et al. 2012;
Hanewinkel et al. 2012).

Correlative models rely on the statistical association between environmental
variables (computed from climate and land-use variables) and maps of spatial
distributions of species presence; they can be applied to many species to compute
their probability of presence in various environmental conditions. Projections
performed with correlative models often lead to drastic changes in tree distributions
for temperate, sub-boreal and Mediterranean oak species (Morin and Thuiller 2009;
Cheaib et al. 2012; Hanewinkel et al. 2012). Results obtained for North American
temperate and sub-boreal regions (Morin and Thuiller 2009), different regions of
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Europe (Czúcz et al. 2011; Cheaib et al. 2012) and all Europe (Hanewinkel et al.
2012) indicate that oaks will track their current niche by moving toward the north
where climate will become warmer, and suffer extinctions in the southern-most part
of the range due to increases in temperature and drought. By studying the response
to climate change of different European species with correlative models,
Hanewinkel et al. (2012) projected an important decline in most temperate tree
species in Europe. European beech and pine forests were predicted to decline the
most in favor of different oak species, which is line with historic trends reported
from forest inventory data (Carnicer et al. 2014). For example, in Europe, Q. robur
is projected to increase in northern-most latitudes at the cost of more cold-adapted
species, while the drought adapted Q. ilex is projected to extend over mid-latitudes
where water scarcity is expected to increase over the next decades at the cost of
more drought-sensitive species.

Alternative to the correlative models, PBMs rely on relatively well-described
mechanisms underpinning tree growth, survival, reproduction and migration. PBMs
generally predict a lower impact of climate change on oak distribution ranges than
correlative models (e.g. Morin and Thuiller 2009; Cheaib et al. 2012). One of the
causes of such discrepancy is the effect of raising air CO2 concentrations, which is
not accounted for in correlative models, but that systematically translates into a
stimulation of photosynthesis and a decrease in drought stress in PBMs including a
photosynthesis algorithm (Davi et al. 2005; Keenan et al. 2011; Cheaib et al. 2012).
Another important process driving species niche in PBMs is phenology (Chuine
and Beaubien 2001). Oaks are often predicted to leaf out earlier in the future, and
thus to have a longer growing season (Vitasse et al. 2011). However these effects
may be offset by drought or species chilling requirements, topics which are still
poorly understood and accounted for in models (Chuine 2017). Only the most
common European and American oak species have been simulated with PBMs, so
there is a need to study more species and to improve several physiological processes
needed in models. These include hydraulic mechanisms leading to plant dehydra-
tion (Sperry and Love 2015), or species chilling requirements (Chuine 2017),
migration (Saltré et al. 2015) and genetic adaptation (Oddou-Muratorio and Davi
2014).

13.5 Forestry Practices that Can Mitigate Oak
Decline—Functional Bases

Forestry practices are the main tool to alleviate oak decline (Spittlehouse and
Stewart 2003; Clatterbuck and Kauffman 2006; Wang et al. 2013; Fig. 13.5). With
the aim of improving the vigor of trees and so mitigate the extent or risk of decline,
different harvesting alternatives can be applied to oak stands suffering or projected
to suffer from decline. In view of the dramatic changes in the climate that are
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projected for this century, it is important that more research is devoted to under-
stand how different forestry practices affect the vigor of adult trees and enhance
sexual regeneration in forest stands of different levels of decline.

13.5.1 Practices Aimed at Improving the Vigor of Adult
Trees

(a) Thinning increases irradiance and the availability of soil water and nutrients for
residual trees (Aussenac 2000). This increase in resources availability is
reflected in a better physiological status of residual trees, which exhibit less
negative leaf water potentials during the dry season (Bréda et al. 1995); and
higher stem diameter growth (Bréda et al. 1995; Rodríguez-Calcerrada et al.
2011), latewood production (Corcuera et al. 2006), xylem hydraulic conduc-
tance (Bréda et al. 1995), transpiration (Bréda et al. 1995; Asbjornsen et al.
2007) and photosynthesis (Moreno and Cubera 2008) than those from
unthinned stands. Hence, thinning might be a useful practice to mitigate
drought stress, and the impact of oak decline in the future (Johnson et al. 2009).
Thinning resulted to be an effective practice in reducing the proportion of sites
with moderate to high risk of decline in the Ozark Highlands in central North
America at short- to long-term temporal scales, although less effective than
other harvesting practices such as clearcutting and group selection cutting
causing larger openings in the canopy (Wang et al. 2013). The degree of
decline of trees is likely to affect the outcome of the thinning. Because
weakened trees are likely to exhibit a less sensitive response to thinning than
more vigorous trees, suppressed trees with a high risk of decline should be first
in priority of removal (Johnson et al. 2009).

Fig. 13.5 Summary of forestry practices potentially useful to mitigate oak decline
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However, the benefits of thinning in preventing or mitigating oak decline at large
scales depends in part on its effect on NSC concentrations. The increased photo-
synthesis rates that follow thinning may be balanced by the increased use of NSC in
growth and reproduction. Thus, a decline in NSC levels can ensue and jeopardize
the capacity of trees to face perturbations or stress factors for several years after
thinning, e.g. via limited NSC available for synthesis of defense compounds (López
et al. 2009). Dwyer et al. (2007) did not observe any improvement in decline after
14 years of removing trees with slight to moderate crown dieback; and Johnson
et al. (2009) did not observe that thinning reduced the incidence of oak decline in
the Missouri Ozark forests. Future research should also consider the clonal rela-
tionships among stems in stands of resprouting origin to avoid an unnecessary loss
of genetic diversity. Moreover, by removing most stems of a multi-stemmed tree, a
root to shoot imbalance could transiently arise and limit (or impair) any physio-
logical improvement in the remaining stems.

(b) Canopy pruning is unlikely to be a suitable practice to slow down oak decline.
This practice is commonly applied in some savanna-like woodlands to obtain
firewood and enhance acorn production (Alejano et al. 2008). However,
pruning does not necessarily result in increased stem growth, and can even
reduce growth when applied at severe intensities (Martín et al. 2015).
Moreover, cut surfaces opened by pruning demand an extra consumption of
carbohydrates for healing that can temporarily enhance susceptibility to other
stresses, and are an avenue through which pathogenic microorganisms can
easily penetrate into the tree (Dujesiefken et al. 2005; Denman et al. 2010). To
the best of our knowledge, pruning has not been extensively tested as a tool to
prevent or mitigate oak decline anywhere. Somehow the removal of stems in
thinned multi-stemmed trees would be a sort of pruning, with the same benefits
and problems associated.

(c) Alternative treatments have to be tested in the management of oak decline. In
ancient clonal trees with multiple stems connected by the root system, the
isolation of the root system around a single stem could lower its root to shoot
imbalance and increase above ground NSC and acorn production (Camarero
et al. 2004). The same effect could be achieved by girdling selected stems in
multi-stemmed trees; girdled stems would accumulate NSC above the girdled
zone and produce more acorns (see Rivas et al. 2007 for application to branches
of fruit trees). Furthermore, the inoculation of endophytes or chemical cocktails
could be a promising practice to recover the vigor of weakened trees, partic-
ularly those of significant cultural or aesthetic value. However, this line of
research remains understudied and unadvised on a forest-wide basis
(Clatterbuck and Kauffman 2006).
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13.5.2 Practices Aimed at Favoring Sexual Regeneration

The profuse asexual regeneration of oak species contrasts with their problematic
sexual regeneration (Hodges and Gardiner 1993). Besides measures to prevent or
reduce decline of mature trees, measures to promote sexual regeneration are needed
to enlarge the genetic pool and adaptability of oak species to ongoing climatic
changes (Lefèvre et al. 2014) and so ensure the sustainability of oak forests in the
longer run.

Natural regeneration of many oak species has been reported to be problematic:
acorn production is subject to intermittent masting events—which might become
sparser for oaks as the climate becomes drier (Sork et al. 1993; Dey 1995; Ogaya
and Peñuelas 2007; Pérez-Ramos et al. 2015)—and seedling survival is low due to
multiple stresses and competition (Pulido et al. 2013; Anninghöffer et al. 2015).
Silvicultural treatments such as prescribed burns, pruning and/or thinning favor
sexual regeneration by stimulating flower and acorn production, acorn survival, and
seedling survival and growth via enhanced photosynthesis (Kruger and Reich
1997a, b; Alejano et al. 2008; Rodríguez-Calcerrada et al. 2011). The elimination of
competition from fire-sensitive species by means of prescribed burns could be a
feasible option to maintain oak populations in mesic sites otherwise prone to be
dominated by fire-sensitive faster growing species (Kruger and Reich 1997a).
However, the menace of climate change urges to study the success of
classic silvicultural treatments on regeneration under experimentally
manipulated conditions of soil water availability, air CO2 concentration
and/or other environmental cues (Leuzinger et al. 2005; Rodríguez-Calcerrada
et al. 2011).

Sowing of acorns and planting of young seedlings are viable options to assist
sexual regeneration; however, the success of these practices is often low, particu-
larly when failing to exclude mammalian herbivorous, or to account for micro-
habitat and timing of plantations, or quality of plant material, among other factors.
Of particular importance for initial seedling growth and survival is the microsite of
sowing/planting. Open microsites generally favor seedling growth, but can nega-
tively affect survival and recruitment. In dry to semi-arid regions, high radiation and
belowground competition with herbaceous species exacerbate soil drought stress
and may cause massive xylem cavitation, photoinhibition of photosynthesis and
metabolic impairment in oak seedlings (Gordon and Rice 2000;
Rodríguez-Calcerrada et al. 2007; Pérez-Ramos et al. 2013). In more fertile and
humid places, the success of oak regeneration in open sites is jeopardized by
competition with fast growing herbaceous species (Harmer and Morgan 2007).
Initial survival increases with increasing shading, however, the shade-intolerant
nature of most oak species prevents that seedlings establish at low irradiance levels
existing below a dense overstory canopy cover. The low morphological (Farque
et al. 2001) and physiological (Ponton et al. 2002) plasticity to light availability
limits light harvesting, water and nitrogen use efficiency, and carbon reserves
available to grow and withstand defoliation and other stresses in dense understories
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(Hodges and Gardiner 1993; Kim et al. 1996; Beier et al. 2005). Moreover, in dense
forests of sub-humid and dry regions, throughfall interception and soil water uptake
by overstory trees can make seedlings to suffer from both shade and drought stress,
with multiple field studies reporting lower leaf predawn water potential in uncut
than thinned stands (Rodríguez-Calcerrada et al. 2007; Parker and Dey 2008;
Prévosto et al. 2011). Hence, in general, sowing of acorns and plantations of
seedlings should be conducted in forest understories and gaps where canopy cover
is sufficient to moderate radiation and ameliorate soil physico-chemical properties
(including root mycorrhizal infection; Dickie et al. 2007), but does not provide
excessive shade or competition for belowground resources; this optimal light
availability ranges from 20 to 50% of full sunlight among species and populations
(Gardiner and Hodges 1998; Gardiner et al. 2001; Kaelke et al. 2001; Rey Benayas
et al. 2005). How ongoing climatic changes will alter the role of overstory canopy
in facilitating seedling establishment is a question that deserves more research.
In a field study in south Europe, throughfall reduction shifted optimal microsites
for survival of Q. ilex towards denser, more shaded microsites (Pérez-Ramos et al.
2013).

For its importance in plant survival, great attention must be paid to the nutri-
tional status and size of plant material used in reforestation. Multiple works have
concluded that nitrogen fertilization of container plants in the nursery increases
chances of field survival (e.g. Andivia et al. 2012; Villar-Salvador et al. 2012). In
humid regions where interspecific competition for light is an important driver of
regeneration, nitrogen fertilization can benefit transplanted plants by increasing
their size at the time of transplant, and photosynthesis and growth later on. In
seasonally dry regions, water is a limiting resource for plantation success. Some
works have suggested that high plant size can be detrimental to transplant success in
these regions, so that prior to transplant, it is desirable to reduce watering, air
temperatures and/or fertilization to stop growth and avoid an excessive area of
transpiring foliage that might affect plant water status after the transplant (Gazal and
Kubiske 2004). However, a growing body of literature suggests that fertilized plants
having both higher plant size and tissue nutrient concentrations are more likely to
overcome the dry season, with fertilization resulting in less negative leaf water
potentials during summer drought in some oak species (Villar-Salvador et al. 2012).
The higher transplant success of vigorous plants in seasonally dry regions is gen-
erally explained by the higher root development and growth capacity compared to
smaller, hardened plants (Grossnickle 2005).

Finally, one factor that is being given increasing consideration in reforestation
plans is the use of plant material from provenances adapted to near-future projected
climatic conditions instead of or mixed with material from local provenances. In
relation to warmer and drier conditions projected for some regions, acorns from
southern, rear-edge populations might be the most appropriate material to use in
reforestations of higher-latitude, more humid populations in the near future (Aitken
and Bemmels 2016). The preservation of marginal oak populations could therefore
be crucial to species conservation.
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Chapter 14
Physiological Keys for Natural
and Artificial Regeneration of Oaks

Jesús Pemán, Esteban Chirino, Josep María Espelta,
Douglass Frederick Jacobs, Paula Martín-Gómez,
Rafael Navarro-Cerrillo, Juan A. Oliet, Alberto Vilagrosa,
Pedro Villar-Salvador and Eustaquio Gil-Pelegrín

Abstract Oak forests can naturally regenerate from seed or from sprouts. Both
strategies result in the establishment of a tree layer, but they involve a crucial
difference: i.e. regeneration from seeds affects population genetics while sprouting
assures the recovery of biomass after a disturbance but it does not involve sexual
reproduction. In addition the two regeneration mechanisms differ in their com-
plexity and are affected by different constraints: i.e. regeneration from seed is a
more intricate pathway with several potential bottlenecks (e.g. seed and micro-sites
availability, predation, seedling-saplings conflicts) while sprouting is a much more
straightforward process benefiting from the presence of an already established root
system and more independent from environmental stochasticity. Ultimately, re-
generation from seeds or sprouts will result in contrasting forest structures
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(respectively, high-forests and coppices) with a different functioning and dynamics
and requiring particular forestry practices. When natural regeneration is not pos-
sible, oak forest restoration must be done using artificial regeneration by seeding or
planting (traditionally, both methods have been recommended), provided that acorn
predators are controlled. Although similar results have been obtained with regard to
survival, under Mediterranean conditions, shoot growth patterns clearly differ for
both methods. Indeed, one-year seedlings often discontinue their shoot elongation
shortly after transplanting, especially under drought or competition. At this time, a
new taproot and fine lateral roots are formed. This observation suggests that the
seeding and planting techniques may bear different consequences with regard to
root system development, which may ultimately affect seedling establishment.
Survival and growth planted seedlings depends on morphological and physiological
attributes (Burdett in Can J For Res 20:415–427, 1990; Villar-Salvador et al. in
New For 43:755–770, 2012; Grossnickle in New For 43:711–738, 2012).
Cultivation techniques strongly determine the functional attributes of seedlings by
manipulating the amount of resources (water, mineral nutrients, light, space) and
the conditions (temperature, growing medium pH, photoperiod) for seedling
growth. Consequently, how seedlings are cultivated impacts on the performance of
forest plantations. Cultivation practices improve the ‘‘seedling physiological
potential’’, increasing the chances of survival immediately after field planting. Each
of these has an influence and interacts with the others (Ketchum and Rose in
Interaction of initial seedling size, fertilization and vegetation control. Redding,
CA, pp 63–69, 2000), which should be taken into consideration when evaluating a
reforestation proposal; otherwise, artificial forest regeneration often results in
unacceptably poor seedling performance. Planting date and site preparation, since
they increase water availability, have been shown to be the factors most relevant to
the survival of Mediterranean species. However, in less restrictive conditions, the
use of less intensive soil preparation, on dates more favorable to the initial growth
of the seedlings in the field, might be more efficient. Similarly, the use of tree
shelters in oaks plantations is under debate, as its effects are species and environ-
mental dependent. A better understanding of the ecophysiological seedling response
under the microenvironment of the tree shelter is needed to improve the
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management of this protection tool. On the other side, the effects of cultivation
practices can be linked closely to newly established seedlings (the post-planting
phenological cycle), and such benefits are ephemeral in nature; thus, the effects of
cultivation practices have their greatest importance during the initial growing
seasons (1–2 years), diminishing with time.

14.1 Natural Regeneration

14.1.1 Regeneration from Seed

Probably, natural regeneration of oaks (Quercus sp.) from seed has received more
attention than any other tree species from plant ecologists and forest practitioners.
Several studies have highlighted the apparent paradox of a genus dominant in
forests of the Northern Hemisphere but with the general perception of some diffi-
culties to regenerate from seeds (see among others: Retana et al. 1999; Marañón
et al. 2004; Pérez-Ramos et al. 2012). Factors that constrain the sexual regeneration
of trees appear during the sequential interaction among different processes: i.e. seed
production, predation, dispersal, and, finally, seedling establishment, and these
pathways are particularly intricate in the case of oaks with numerous bottlenecks
and ontogenic conflicts (Zavala et al. 2011; Pérez-Ramos et al. 2012).

Concerning seed production, oaks show strong variation in masting behaviour:
namely, the synchronous and intermittent production of large and nil acorn crops
over wide areas (Espelta et al. 2008; Koenig et al. 2016). Strikingly, although many
studies have emphasized that this bizarre reproduction pattern should follow an
“economy of scale” principle: i.e. the production of infrequent bumper crop epi-
sodes should be more beneficial than moderate and continuous reproductive events
(Kelly and Sork 2002), we still lack empirical evidences of its ultimate positive
effect on oak recruitment (but see Oddou-Muratorio et al. 2011 for beech).
Notwithstanding this, there is consensus on the role of masting to reduce
pre-dispersal acorn predation (see for granivorous insects Bonal and Muñoz 2007;
Espelta et al. 2008; Xia et al. 2016). Yet losses can still be high (e.g. 60% in a given
year per Leiva and Fernández-Alés 2005), and ultimately, contribute to constrain
seed availability and seedling recruitment (Espelta et al. 2009a, b; Muñoz et al.
2014). Whatever the evolutionary origin of masting in oaks it has been shown that
weather conditions play a major role as proximate cues for synchrony and vari-
ability in reproduction (e.g. rainfall in Pérez-Ramos et al. 2010, or even “weather
packages” in Fernández-Martínez et al. 2017, see also Koenig et al. 2016). Apart
from particular weather cues, oaks require a minimum initial threshold of resources
accumulated and an increase in their potential photosynthetic activity prior to the
production of a mast event (Sánchez-Humanes et al. 2011; Fernández-Martínez
et al. 2015). These bumper crops often result in a decrease in leaf area due to crown
self-thinning after the masting episode (Camarero et al. 2010, but see
Sánchez-Humanes et al. 2011; Fernández-Martínez et al. 2015).
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Once acorns have escaped pre-dispersal predation by insects, even though oaks
benefit from seed dispersal mostly by vertebrates, they lack “legitimate” dispersers:
i.e. those not destroying part of the seed crop. In fact, both birds (e.g. jays) and
scatter-hoarding rodents (e.g. mice) play a dual role as dispersers and consumers
when they mobilize acorns (Hollander and Vander Wall 2004). Interestingly, their
decision may shift depending on tree location and phenology (Sunyer et al. 2014),
seed traits (Muñoz et al. 2012), state (Perea et al. 2012); environmental context such
as shrub cover (Perea et al. 2011) and even, seed dispersers’ fear of predators
(Sunyer et al. 2013). To summarize, it has been shown that likelihood of acorn
predation increases around isolated trees, for smaller seeds, in areas with low
understory cover and when rodents perceive the risk of predators (Sunyer et al.
2013) or competitors for that food resource (González-Rodríguez and Villar 2012).
Ultimately these changes in the behaviour of acorn dispersers towards predation are
another source of uncertainty that may also reduce seedling recruitment. In addition,
as acorns are highly nutritious they are also the food source for other animals that
will further reduce seed availability (e.g. wild boar in Gómez and Hódar 2008;
Sunyer et al. 2015).

In the soil, acorns require protection from desiccation and frost damage
(Esteso-Martínez and Gil-Pelegrín 2004), and thus germination is enhanced if
buried under soil or litter in shady places (e.g. under a nurse shrub), especially in
harsh climates (e.g. Mediterranean-type). Thus, for Mediterranean species decidu-
ous, seedlings tend to exhibit higher root length and area, lower leaf area, and
higher N content than evergreen conspecifics (Espelta et al. 2005). These differ-
ences further enlarge in a gradient of increasing aridity: i.e. evergreen oaks reduce
their specific leaf area, while deciduous oaks increase their root-shoot as two dif-
ferent responses to cope with water stress (Espelta et al. 2005, see also Cotillas et al.
2016). Recently established seedlings may benefit from shade, especially in drier
sites (e.g. Mediterranean areas in Gómez-Aparicio et al. 2008; Esteso-Martínez
et al. 2010), and therefore they survival has been observed to increase when
established under the canopy of more pioneer species (e.g. pines in Gómez 2003)
during succession. In fact, this evidence has been the basis for the traditional
method of planting oaks under the shelter of pine plantations to recover oak forests
(Gómez-Aparicio et al. 2009). Once spontaneously established, seedlings can often
remain as “stunted seedlings” in a sort of advanced regeneration (see Marañón et al.
2004 for Q. ilex). This is due to a seedling-sapling conflict concerning the most
suitable conditions for survival and growth, as seedlings require an increase in light
intensity (e.g. gap opening) to reach the sapling stage and progress (Zavala et al.
2011).

Probably, the perception that regeneration from acorns is somewhat difficult in
oaks is linked to the fact that the reported interactions between dispersers’ beha-
viour and environmental variables for seedling recruitment are highly
context-dependent and their output may largely vary in different ecological sce-
narios (Fig. 14.1). In general, in sparse or fragmented oak forests, with low cover,
the role of acorn dispersal towards safe sites becomes more important as it is the
presence of shrubs or other trees (e.g. pines) that may facilitate seedling
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establishment. Conversely, in mixed or more continuous oak forests, the successful
recruitment of seedlings may be more dependent on seed availability, the dynamics
of gap formation and the mobilization of acorns to these sites. Clearly, a more
comprehensive understanding of the factors that limit regeneration from acorns
would benefit from a comparison of regeneration along these environmental and
forest structure gradients (see Gómez-Aparicio et al. 2008; Pérez-Ramos et al.
2010, 2012).

14.1.2 Regeneration from Sprouts

Most oaks, as for other species in the Fagaceae family (e.g. Castanea, Fagus,
Corylus), are able to resprout after an acute stress or physical damage, and for some
species, this process is their main regeneration mechanism after disturbances (see
for Mediterranean oaks Espelta et al. 2012). Resprouting—i.e. the production of
new sprouts from buds protected in the stump, root collar, roots or branches is
driven by the combined effect of changes in hormonal levels and environmental
conditions (e.g. light, moisture, temperature) after a stress or damage (Verdaguer
et al. 2001; Pascual et al. 2002; Espelta et al. 1999). Concerning the role of

Fig. 14.1 Relative importance of factors constraining natural regeneration of oaks from acorns
depending on different forest structures and according to the literature. (−) = Low relevance, (+) =
High relevance, (=) = Neutral. See the main body text for a detailed explanation of each factor
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hormones, resprouting onset has been observed to be related to changes in the levels
of growth hormones, in particular auxin [notably indole-3-acetic acid (IAA)] and
cytokinins (CTK) that are synthesized primarily in opposite plant compartments:
i.e. growing stem tips and root tips, respectively (Cline 1991). As shown by Vogt
and Cox (1970) for Q. alba and Q. palustris the application of IAA in the stump
inhibited the development of suppressed buds. Similarly, Zhu et al. (2014) showed
for coppiced Q. aquifolioides in southwestern China, that CTK concentrations and
CTK/IAA ratios in the stump were positively correlated with resprouting ability.
Concerning the physical environment, several factors have been observed to con-
strain the activation of sprouts in oaks (for the negative effects of shading, see
Gracia and Retana 2004; Kabeya and Sakai 2005). In addition to a high CTK/IAA
ratio, resprouting requires the mobilization of stored reserves to support the initial
growth before leaves are fully photosynthetically active. However, there is still
some controversy concerning which nutrient or resource is the more limiting for
this process. On the one hand, some experiments have indicated that previously
accumulated nitrogen is more critical than starch reserves in Q. ilex roots to sustain
resprouting (El Omari et al. 2003). On the other hand, other studies have shown that
resprouting ability is largely determined by the initial carbohydrate pool in roots
(e.g. Q. crispula in Kabeya and Sakai 2005, Q. aquifolioides in Zhu et al. 2012).
While onset of resprouting is determined by the levels of growth hormones and the
initial mobilization of stored resources, there are a myriad of other factors that will
influence the vigour of this process: (i) type, season, intensity and frequency of
disturbance, (ii) species-specific and individual characteristics (e.g. age, size), and
(iii) local characteristics influencing site quality (climate, soil and topography).

The first factor influencing resprouting vigour is the type of disturbance. In spite
of the lack of comparative studies analysing the influence of the type of disturbance
on the resprouting process under similar conditions (but see Bonfil et al. 2004),
indirect evidence based on the survival and regrowth of oaks suggests that fire is the
physical damage that causes the greatest mortality among individuals (Espelta et al.
1999; Bonfil et al. 2004), and the lowest resprouting vigour (i.e. Hmielowski et al.
2014) in comparison to other types, such as clear-cutting or herbivory (Espelta et al.
2003, 2006). The more negative effect of fire has been attributed to the physical
destruction it may cause to part of the bud-bank in comparison to other distur-
bances, rather than to physiological differences. Indeed, the study of the variations
in the physiology of resprouts originated after fire and after tree fall in Q. ilex,
revealed no differences among them in any of the measured variables (Fleck et al.
1996a) and thus, concluded that whatever the cause of topkill, this was not relevant
for the physiology of the resprouts (Fleck et al. 1996b). In addition to the type of
disturbance, the season when it occurs has often been stressed as a relevant factor
that may condition resprouting vigour, with two general conclusions. First,
resprouting vigour in oaks is higher after disturbances occurring during the dormant
than during the growing-season (Ducrey and Turrel 1992; Hmielowski et al. 2014).
Second, for those species inhabiting areas where a harsh period occurs during the
growing season—e.g. dry and hot summers in Mediterranean-type climates—re-
sprouting vigour is much lower for “late season disturbances”, occurring towards
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the end of summer (Bonfil et al. 2004). This constrain has been attributed to the
lower reserves of resources available to sustain resprout growth (N and P in
Peguero and Espelta 2011, see also Kays and Canham 1991; Canadell and
López-Soria 1998; Saura-Mas and Lloret 2009; Hmielowski et al. 2014). Therefore,
coppicing of oak woodlands has been traditionally conducted during the dormant
season (Buckley and Mills 2015). Frequency is the third characteristics of the
disturbance regime that affects resprouting, and several studies have emphasized a
decrease in resprouting vigour (survival, growth) after repeated disturbances,
especially when they occur at a short time interval (see for Q. suber in
Díaz-Delgado et al. 2003, Q. ilex and Q. cerrioides in Bonfil et al. 2004). Similar to
the effects of seasonality, the negative effects of repeated and frequent disturbances
have been attributed to the depletion of the bud bank and the exhaustion of the
resource involved in the initial growth of resprouts (Espelta et al. 2012).

In addition to the influence of the characteristics of the disturbance regime (type
of disturbance, season and frequency) in resprouting vigour, there have been
reported important species-specific differences among oak species and effects of
individual characteristics (age, size) in the success of this process. Species-specific
differences may appear at very early stages during ontogeny depending on the
location of dormant buds. For example, because of the presence of underground
dormant buds, Q. suber seedlings can resprout even when aerial biomass is
removed below the cotyledons, while Q. ilex and Q. humilis will resprout only from
buds located above the cotyledonary node (Verdaguer et al. 2001, see also Pascual
et al. 2002). Species-specific differences in the number and size of resprouts are also
observed at more mature stages: i.e. evergreen Q. ilex trees tend to produce more
numerous but shorter resprouts after fire while the co-existing deciduous Q. cer-
rioides produces less but taller resprouts after the same type of disturbance (Espelta
et al. 2003). To what extent these particular differences may benefit each species
under different disturbance scenarios has not been explored, yet it has been argued
that having a larger bud bank (i.e. producing more resprouts) would be more
beneficial under more intense and repeated disturbance events while producing less
but taller resprouts may help to compete with other tree species during later stages
of succession (Bonfil et al. 2004, see also Gracia et al. 2002; Salomón et al. 2013).

Whatever the species-specific means to resprout, the process is also influenced
by the size of the individual prior to the disturbance event (Espelta et al. 1999;
Cotillas et al. 2009, 2016; Catry et al. 2010; García-Jiménez et al. 2017). In general,
resprouting vigour tends to be higher in larger sized individuals, probably because
they possess a larger bud-bank and their roots are able to mobilize more resources
(Quevedo et al. 2007; Catry et al. 2010; Cotillas et al. 2016) and therefore, larger
genets produce resprouts that are thicker and larger (Espelta et al. 2003). Yet the
positive effect of size seems to have an upper limit and shifts with ageing toward the
production of less resprouts with shorter height and the reduction of genetic
diversity in the stands (Ducrey and Boisserie 1992, but see Valbuena-Carabaña and
Gil 2017). Stool stagnation and degradation has been attributed to abundant for-
mation of root grafts and the accumulation of a huge amount of living tissues in the
root systems of old individuals that are expensive to maintain, consume high
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amounts of resources, and result in limited growth of the aerial part (Landhäusser
and Lieffers 2002; Salomón et al. 2015). Finally, local characteristics shaping site
quality (climate, soil and topography) will also influence resprouting ability in oaks.
For example, under a Mediterranean-type climate, characterized by severe water
shortage, resprouting has been observed to be favoured in north versus south slopes
and in deep vs. shallow soils, owing probably to the higher water stress faced in the
latter conditions (López-Soria and Castells 1992; Espelta et al. 2003). Similarly, in
mountain areas, resprouting ability decreases with increasing altitude owing to the
decrease in the root biomass and root non-structural carbohydrates pool size (Zhu
et al. 2012). Although several factors can constrain resprouting success, their
development is much faster than that of seedlings and this has led to use of cop-
picing to harvest oak forests. To maintain high growth rates, oak resprouts take
advantage of their ability to mobilize resources from roots (N in El Omari et al.
2003), increased water availability (Fleck et al. 1998), enhanced photosynthesis,
leaf conductance and Rubisco activity (Fleck et al. 1996a, 2010).

14.2 Artificial Regeneration

Seeding and planting are the artificial regeneration methods used in oak forest
restoration programs (Dey et al. 2008; González-Rodríguez et al. 2011b; Oliet et al.
2015). The success of seedling establishment depends on several general factors
such as genotype, plant-plant and plant-animal interactions, and site conditions
(Grossnickle and Heikurinen 1989; Burdett 1990; Margolis and Brand 1990; Landis
et al. 2010) and other factors depending on the regeneration method selected. Seed
size and defence against acorn predators are other factors affecting direct seeding
success (Quero et al. 2007; Sage et al. 2011; St-denis et al. 2013; Pesendorfer 2014;
Castro et al. 2015) while plant attributes, especially root system attributes, nutrition
(Davis and Jacobs 2005; Grossnickle 2012) or cold hardiness among other factors
(Mckay 1997; Landis et al. 2010) also affect planting success.

When using direct seeding, germination is the key process driving seedling
establishment. Mediterranean oaks usually germinate in autumn, developing a
strong taproot that normally grows several centimetres in length within a few weeks
after germination (Pardos 2000; Johnson et al. 2001; Pemán et al. 2006). Root
architecture has been defined as the spatial configuration of the root system and is
characterized by its diversity and plasticity (Lynch 1995). Diversity among species
and genotypes and plasticity is a consequence of soil environmental factors,
physiography or disturbances of shoot architecture (Di Iorio et al. 2005;
Siegel-Issem et al. 2005; Tamasi et al. 2005; Chiatante et al. 2006). Root archi-
tecture of Holm oak (Quercus ilex subsp. ballota), after the first growing season
under optimal conditions, consists in a dual root system with a strong deep and
orthogeotropic taproot, with a length of more than 90 cm (Pemán and Gil-Pelegrín
2008). This main root is branched with an unequal development of lateral roots
depending of root depth (Riedacker et al. 1982; Johnson et al. 2001) and has been
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described as a dual root system. This system allows water uptake from deep soil
horizons during drought episodes and from the upper soil horizons in wet seasons,
especially when water has not reached deep horizons after the summer drought
(Rambal 1984; Canadell and Zedler 1995). The first reference to the dual root
system corresponds to Cannon (1914) when he studied three species of oaks in
California.

Early development of the taproot in xeric habitats is directly correlated with
successful establishment as this ensures water uptake and nutrient supply during the
dry periods. Initial daily taproot growth may reach 0.7 cm day−1 for Quercus ilex
(Pemán and Gil-Pelegrín 2008), similar to that described for Q. robur and Q. suber
(Riedacker and Belgrand 1983; Pardos 2000). This high growth rate allows Holm
oak taproot to reach 2/3 of the annual length at 60 days after germination
(Fig. 14.2). Soil environmental properties control growth and development of root
systems, with soil moisture content being one of the most important. Pardos (2000)
found, for Quercus suber, that daily taproot growth decreased from 0.85 to
0.66 cm day−1 according to water availability and Canadell et al. (1999) showed,
for Q. ilex, the loss of the orthogeotropic taproot pattern in mesic environments.

When planting is used, the key process limiting seedling establishment is to
overcome planting stress or transplant shock (Rietveld 1989; Jacobs et al. 2009;
Close et al. 2013; Grossnickle and El-Kassaby 2016). One of the main causes of
this process is water stress, resulting from: (i) limited exploration capacity of the
soil for water uptake by the confinement of the roots to the planting hole, (ii) poor
root—soil contact, and/or (iii) low root permeability caused by the reduced number
or short length of fine roots (Kozlowski and Davies 1975; Sands 1984; Burdett
1990; Haase and Rose 1993). These deficiencies can be overcome when seedlings

Fig. 14.2 Evolution of holm oak (Quercus ilex subsp. ballota) root growth from direct seeding in
three periods of time after germination (Pemán and Gil-Pelegrín 2008)
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initiate new root growth following planting. Therefore, seedling capacity to initiate
rapidly new roots will determine seedling survival and growth (Simpson and
Ritchie 1997; Grossnickle 2005; Villar-Salvador et al. 2012).

Cultivated seedlings can be classified into bareroot and container stocktypes,
which are produced with different cultivation techniques. Bareroot seedlings are
cultivated directly in the field and the seedlings must be removed from the soil by
cutting the roots at some depth. After seedling lifting, roots are usually free of soil.
Container seedlings are grown in pots or cells of variable size, which makes the
roots to bind the growing medium into a cohesive structure termed plug (Landis
1995).

Container characteristics affect the architecture of seedling root system. For
example, ribs or slits on the cell inner walls prevent root spiralling, and holes in the
base facilitate drainage and encourage air pruning of roots (Landis 1990). Continual
air pruning limits the main root growth by shortening its length to the depth of the
container and preventing the development of replacement taproots. The confining of
lateral roots in the container and their downward growth generates an ortho-
geotropic lateral root system rather than the more usual plagiotropic one that
originates after taproot air pruning (Riedacker et al. 1982).

Root development of container seedlings under site conditions during the first
growing season after planting keeps the root pattern generated inside the container,
developing an orthogeotropic lateral root system and few plagiotropic or
sub-horizontal roots at upper of seedling plug. Quercus ilex seedlings grown in
mini-rhizotrons during the first growing season after planting, showed a variable
number of orthogeotropic primary roots, 11–38, reaching a depth between 70 and
80 cm and a horizontal extension between 38 and 45 cm (Fig. 14.3). Therefore, the
decision of seeding or planting generates, as first consequence, the development of
seedlings with different root architecture as has been described in Quercus ilex
(Table 14.1). Roots generated by planting are thicker and longer than those from
seeding but less efficient for the low values of specific root length (Table 14.1).
This parameter is often used either as an overall index of root thickness or as an
estimator of the benefit (length) to cost (dry weight) ratio of the root system.

Root architecture is usually linked with water acquisition and nutrient supply
(Lynch 1995) and a strong positive correlation between root hydraulic conductance
and specific root length is in agreement with the view that hydraulic architecture
conforms to the ‘energy minimization’ principle (West 1999). This strong corre-
lation suggests that root systems characterised by less massive roots per unit length
have a higher hydraulic conductance (North and Nobel 1991; Steudle and
Meshcheryakov 1996; Rieger and Litvin 1999). According to the composite
transport model (Steudle 2000), root water supply to the shoot may change
according to the shoot demand owing to an adjustment of root hydraulic conduc-
tance. Root hydraulic conductance of Q. ilex may vary in response to external
(drought or salinity) or internal factors such as nutritional state, water status, water
demand and root morphology (Pemán et al. 2006) (Table 14.2).

Seasonal root hydraulic conductance per leaf unit surface area (KRL) changes as
reported by Nardini (Nardini et al. 1998b) indicate that Q. ilex presents a maximum
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efficiency in water uptake during the spring, when the soil is still wet, and minimum
efficiency in November as a consequence of freezing stress. The decrease of these
values in summer with respect to spring has been explained by the vulnerability of
this species to drought. Changes in root morphology, as a consequence of root
length growth restrictions, also implies strong variation in root hydraulic

Fig. 14.3 Comparasion of the root architecture of Quercus ilex subsp. ballota developed in
mini-rhizotrons, under optimal conditions, after the first growing season, according to the selected
artificial regeneration method: seeding (left) and planting (right) (straight line = 10 cm)

Table 14.1 Root morphological parameters of Quercus ilex subsp. ballota generated by seeding
or planting after the first growing season under optimal conditions (mean ± SE)

Root
volume
VR (cm3)

Root
diameter
DR (mm)

Total root
length
LR (cm)

Dry root
weight
DRW (g)

Specific root
length
SRL (m g−1)

Seeding 4.3 (0.3) 5.7 (0.3) 617 (59) 5.7 (0.3) 3.7 (0.37)

Planting 9.1 (1.7) 7.3 (0.3) 957.4
(128.47)

10.6 (1.0) 1.2 (0.1)

Pemán and Gil-Pelegrín (2008)
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conductance, which could be a result of greater suberization of roots limiting their
growth up to 20 cm in depth (Pemán et al. 2006). Low permeability of coarser
roots, together with an unbalanced root to shoot ratio, is one of the main causes of
transplanting stress, which may affect seedling establishment in field conditions
(South and Zwolinski 1996). In summary, there are morphological and functional
differences in development of seedling root systems as result of establishment
techniques (seeding or planting), with root systems developed by seeding being
more efficient in water uptake. This result suggests that the modification of root
growth patterns brought about by commercial forest containers may influence
establishment in the field.

14.2.1 Seed and Plant Quality

14.2.1.1 Seed Quality

Acorns are recalcitrant seeds (Fansworth 2000; Bonner 2008b) and so viability
depends on maintaining a high moisture content. Because acorns are large seeds
and seedling size is tightly coupled to seed size (Jurado and Westoby 1992), acorns
result in large seedlings compared with small-seed species at the same ontogenetic
stage. Poor acorn quality reduces the number of emerged seedlings and seedling
vigor, which can impair reforestation success if acorns are directly seeded into the
field, and reduce the yield of nurseries and the quality of cultivated seedlings. The
quality of acorns depends on its moisture content, size and infestation by insects.

Moisture content on a fresh weight basis of ripened acorns ranges between 40
and 55% at maturity depending on the species (Bonner and Vozzo 1987).
Desiccation of acorns reduces and delays germination (Connor et al. 1996; Connor
and Sowa 2003; Ganatsas and Tsakaldimi 2013) and is an important factor hin-
dering oak recruitment (Joët et al. 2013). Acorn desiccation is directly related to the

Table 14.2 Quercus ilex root hydraulic conductance per leaf unit surface area (KRL)

Treatment KRL

10−5 kg s−1 m−2 MPa−1
References

Seasonal changes May
August
November

3.53
1.9 to 2.3
0.3

Nardini et al.
(1998a)

Freeze stress Stressed
Non-stressed

0.4
3

Nardini et al.
(1998b)

Ectomycorrhizas Tuber
melanosporum

Inoculate
Non-inoculated

3.7
2.9

Nardini et al.
(2000)

Root morphology
(Root growth restrictions in
depth)

No restrictions
20 cm

3.2
1.2

Pemán et al.
(2006)
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surface of xylem vascular bundles in the cupule scar and the thickness of the
vascularized layer in the pericarp (Xia et al. 2012a). Similarly, oaks whose acorns
desiccate rapidly also take up water faster. Neither the presence of cuticular wax nor
the thickness of the cuticle or the palisade layer in the pericarp was shown to be
related to desiccation of acorns (Xia et al. 2012b). The moisture content at which
acorn viability is reduced widely differs among Quercus species (Table 14.3).
Acorn viability in most oaks is strongly reduced at high moisture (>30%) but some
species can tolerate lower moisture levels (20%). In general, acorns are unviable
when their moisture content is <15–18% but the oaks of the Quercus section lose
their viability at higher moisture than the oaks of the Lobatae section (red and black
oaks) (Bonner 2008b). Consequently, Bonner (2008a) recommends that acorn
moisture during storage should be at least 30% for the Section Lobatae oaks and
45–50% for the American oaks of the Section Quercus.

Table 14.3 Acorn moisture content [(Fresh weight − Dry weight)/(Dry weight) � 100; Bonner
1981] at which maximum germination or viability is reduced to half (M50) and completely lost
(M0) in several Quercus species

Species M50 (%) M0 (%) References

Q. alba 30 20–25 Connor and Sowa (2003)

Q. alnus 34 31 Anagiotos et al. (2012)

Q. coccifera 23 16 Ganatsas and Tsakaldimi
(2013)

Q. fabric 33 24 Tian and Tang (2010)

Q. humilis 18 13 Ganatsas and Tsakaldimi
(2013)

Q. ilex 30–32 18–22 Joët et al. (2013),
Villar-Salvador et al. (2013a)

Q. lamellosa 43 26 Xia et al. (2012a)

Q. macrocarpa 38 13–15 Schroeder and Walker (1987)

Q. nigra 15
30

10–15
22

Bonner (1996)
Connor et al. (1996)

Q. pagoda 13–17 11 Sowa and Connor (2003)

Q. rubra 16–20 11–15 Pritchard (1991)

Q. robur 35 (acorns stored
for 100 days)
22 (fresh acorns)

27
15

Finch-Savage et al. (1996)

Q. schottkyana 23 11 Xia et al. (2012a)

Q. vulcanica 19 11 Tilki and Alptekin (2006)

Quercus section oaks
(white oaks)
Lobatae section oaks
(black and red oaks)

25–30
15–20

Bonner (2008a)
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High moisture content prevents acorns from being desiccated or stored well
below freezing temperatures for long term storage. It also causes high acorn res-
piration even at cool temperature, which prevents acorns from being stored in
airtight containers. Although in some studies acorns have been stored for 3–5 years
with little vigor loss (Suszka and Tylkowski 1980), acorn storage for more than
2 years under large scale management conditions is impracticable. If acorn moisture
is preserved, cold storage can speed seedling emergence and uniformity (Merouani
et al. 2001; Bonner 2008a; Doody and O’Reilly 2008). Merouani et al. (2001)
reported that cold storage of Q. suber acorns for 6 months also increased seedling
tap root length but reduced chlorophyll concentration compared to seedlings cul-
tivated from fresh acorns.

Acorns should be stored at temperatures ranging from −3 to 4 °C. Storing down
to −3 °C will not harm most oak species. Q. durandii, Q. nigra and Q. pagoda
maintained higher vigor when stored at −2 °C than at 4 °C while the opposite
occurred in Q. virginiana (Connor and Sowa 2002). Acorn freezing tolerance
importantly differs among species. The deciduous oaks, Q faginea,Q. pyrenaica and
Q. petraea had 50% frost injury (LT50) at −5, −6.9 and −8.2 °C, respectively while
LT50 in the evergreen oaks, Q. ilex and Q. coccifera were −9.2 and −10.6 °C,
respectively (Guthke and Spethmann 1993; Esteso-Martínez and Gil-Pelegrín 2004).

Seed lots of around 20 kg can be stored in low density polyethylene bags with a
wall thickness of 75–100 µm. This wall thickness allows for relatively low
water-vapor permeability but high permeability to gases (Lauridsen et al. 1992).
Thinner polyethylene bags should be avoided because they are too weak and
permeable to moisture vapor (Bonner 2008a). Acorns should not be stored wet to
avoid rotting and special care must be afforded to desiccation during acorn transport
and cleaning before storage. Soaking of Q. robur acorns can increase germination
especially if acorns suffer slight desiccation after short storage. This increase in
germination has been related to water leaching of germination inhibitors such as
ABA (Doody and O’Reilly 2008).

Another component of acorn quality is its size. Independently of the nursery
cultivation method, increase in acorn size results in larger oak seedlings (Rice et al.
1993; Navarro et al. 2006; Quero et al. 2007; Pesendorfer 2014) and larger acorns
tend to have higher germination than small acorns (Pesendorfer 2014). Compared to
seedlings emerging from small acorns, seedlings produced from large acorns
recover better from herbivory (Bonfil 1998) and usually have higher short-term
survival and growth in deep shade (Ke and Werger 1999; Quero et al. 2007), under
competition (Rice et al. 1993) and under cold and drought stress conditions (Aizen
and Woodcock 1996; Ramírez-Valiente et al. 2009). However, Navarro et al.
(2006) did not find any effect of Q. ilex acorn size on field survival in a
direct-seeding trial. González-Rodríguez et al. (2011a) concluded that for four
Mediterranean oak species the seedling size effect rather than the reserve and the
metabolic effect (see Leishman et al. 2000) was the main mechanism explaining the
high performance of seedlings grown from large acorns under hazard conditions.
A similar result was concluded for Quercus lobata (Sage et al. 2011). This means
that large oak seedlings are frequently more resistant to stress factors than small
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seedlings (Ramírez-Valiente et al. 2009; Villar-Salvador et al. 2012). These results
may make large acorns more attractive for maximizing forestation success than
seeding small acorns. But selecting only large acorns may have long-term draw-
backs in forestation as it can narrow genetic diversity of new populations, especially
if large acorns are recollected in a few close individuals (Burgarella et al. 2007) or
in small forest patches. Burgarella et al. (2007) suggest that the most effective acorn
harvest design in large oak stands should include at least 20–30 scattered trees,
distributed in a few high-distant groups (separated by hundreds of meters) and the
trees within each group separated tens of meters.

Acorns are predated by several insects, most of which develop their larval phase
inside the seed (Bonner 2008b). Infested acorns have lower germination and
emerged seedlings are smaller than non-infested acorn (Leiva and Fernández-Alés
2005; Xiao et al. 2007; Lombardo and McCarthy 2009). The chance of an infested
acorn to germinate and produce a viable seedling increases with acorn size and
early germination in the fall (Branco et al. 2002; Xiao et al. 2007). Acorn batches
can be floated in water to partially screen out infested and damaged acorns (Bonner
and Vozzo 1987). Acorn X-ray imaging can also screen out infested and desiccated
low-vigor acorns (Goodman et al. 2005; Lombardo and McCarthy 2009) but has
not been used at management scale. Some practitioners immerse the acorns in hot
water (48 °C) for 40 min to kill larvae of acorn weevils (Olson 1974).

14.2.1.2 Plant Quality

A seedling is considered of high quality when it has high survival and growth
capacity after transplanting in a specific environment. Consequently, plant quality is
defined as the capacity of seedlings to outperform in a specific site (Ritchie 1984;
Wilson and Jacobs 2006). Performance of outplanted seedlings depends on its
carbon, water and nutrient economy, which ultimately depend on the structure and
physiological attributes of the seedling (Burdett 1990; Villar-Salvador et al. 2012;
Grossnickle 2012). It is not possible to ascribe a universal set of functional attri-
butes with a high-quality plant. Seedling characteristics conferring high perfor-
mance for one site do not necessarily maximize seedling outplanting performance
in another site.

A major aim of forest restoration managers and researchers is to discriminate
poor-quality seedling lots and to determine which functional attributes better predict
the potential outplanting survival and growth of seedlings. Discrimination of low
quality seedling lots is important to attain forest restoration objectives while min-
imizing post-planting costs. Plant quality assessment cannot predict the actual
performances of seedlings because field survival and growth not only depend on
plant functional attributes but also on other site-related factors, which can vary
unpredictably such as post-planting climatic conditions. Plant quality can be
assessed by measuring key functional attributes (material attributes), or by mea-
suring seedling performance under specific environment conditions (performance
attributes).
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Material attributes

Material attributes encompass both morphological and physiological traits.
Morphological attributes are easier to measure than physiological traits and there-
fore physiological traits are little used in operation to assess the quality or seedling
lots. However, morphological attributes have limited predictive capacity of trans-
planting performance. For instance, morphology will not indicate if tissue mineral
nutrient concentration and photosynthesis are suboptimal or if the plant is cold
hardened, which are also important outplanting performance drivers. Therefore,
physiological quality attributes ideally should complement morphological attributes
and frequently are better related to seedling functionality.

Morphological attributes

The morphological quality of plants comprises a set of attributes that measure
the structure of the whole plant or any of its parts. Due to their measurement
simplicity, root-collar diameter (RCD) and shoot height (from RCD to stem apex)
are the most commonly used morphological quantitative attributes for operational
quality assessment. For bareroot stock quality assessment, the number of first-order
laterals roots and root volume are widely used and provide better predictive
capacity than shoot size (Thompson and Schultz 1995; Jacobs et al. 2005; Wilson
and Jacobs 2006). From these quantitative morphological traits, several indicators
have been proposed to estimate the structural balance of plant organs and their
conformation. The most common indexes are the shoot slenderness, which mea-
sures the relation between the shoot height and the RCD, and the shoot to root mass
ratio, which is a proxy to the transpiration-water uptake balance of the plant (Lloret
et al. 1999; Grossnickle 2005).

Plant size has a relatively moderate predictive capacity of out-planting perfor-
mance whenever plants are not physiologically damaged (Thompson 1985; Navarro
et al. 2006; Wilson and Jacobs 2006). Root collar diameter predicts better
out-planting performance than shoot height and the relationship tends to be stronger
with field growth than with survival (Thompson 1985; Mexal and Landis 1990).
The relationships among plant size and survival or growth depends on the inter-
action of species and climate (Cortina et al. 1997). Among Mediterranean evergreen
oaks, outplanting survival and absolute growth frequently increases with shoot or
root seedling size at planting for seedlings of the same age (Cortina et al. 1997;
Villar-Salvador et al. 2004a, 2013a; Tsakaldimi et al. 2005, 2013; Cuesta et al.
2010a). Very often, this positive effect of plant size on oak survival is apparent
under the harshest planting conditions whenever plants are not subjected to very dry
conditions at planting (Cuesta et al. 2010a; Villar-Salvador et al. 2013a). However,
in semiarid climates with high probability of dry periods without rains or if seed-
lings are planted in dry soils, the probability of seedling mortality increases with
seedling size in oak and in other species (Trubat et al. 2008, 2011; del Campo et al.
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2010). Similarly, under similar climatic conditions the relationship between sur-
vival and seedling size can differ among oak species. In eastern Spain survival of
the tree Q. ilex showed clear positive relationship with seedling size while no
relation was found for the shrub Q. coccifera both in plantations performed in dry
and semiarid locations (Cortina et al. 1997). Among deciduous oaks from wet
temperate biomes, which usually are cultivated as bareroot stock, both positive
(Dey and Parker 1997; Ward et al. 2000) and negative (Hashizume and Han 1993;
Thompson and Schultz 1995) relations between field survival and seedling size
have been observed.

The number of first order lateral roots (FOLR; structural lateral roots � 1 mm in
diameter at junction with the tap root) is also frequently used as an indicator of
bareroot seedling quality and performance potential (Wilson and Jacobs 2006).
Quantifying FOLR is quick and non-destructive, reflects the structural framework
of the root system, and is often positively correlated with survival and growth in the
field (Thompson and Schultz 1995; Dey and Parker 1997). However, FOLR has not
shown entirely consistent ability to predict field performance in bareroot hardwood
seedlings, probably associated with its inability to accurately characterize the root
system (Jacobs and Seifert 2004). Other measures such as root volume, lateral root
length, or root fibrosity may thus be better correlated with field performance in oaks
(Jacobs et al. 2005; Wilson et al. 2007).

The integrity of the plug in containerized plants, which chiefly depends on the
growth of fine roots (<1 mm) binding the growing medium is considered an
important trait for high quality container stock. Seedlings with loose (poorly con-
solidated) plugs are prone to fine root breakage during manipulation at planting and
this can reduce new root growth capacity after transplanting (Mckay 1997).

Physiological attributes

Many physiological attributes have been proposed for plant quality assessment
(Mattsson 1997) but only a limited number of them have been used in large scale
operational plant quality assessment. At present, very few regions in the world
routinely carry out physiological measurements of stock quality (e.g., mainly
limited to USA, UK, Canada, and Sweden per Dunsworth 1997). The most com-
mon physiological tests that have been used are the mineral nutrient and
non-structural carbohydrate concentration of foliage and fine root electrolyte
leakage. However, other physiological measurements such as gas exchange
capacity, water use efficiency, photochemical efficiency of the PSII o can be very
useful to establish functional limitations or seedling performance (Vilagrosa et al.
2003a; Hernández et al. 2009; Trubat et al. 2011). The main limitation for the
operational use of these physiological attributes are the cost of the equipment used
in these measurements, the need for highly trained technical staff and the low
number of replicates that can be measured in some attributes (Vilagrosa et al. 2005).
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The nitrogen (N), phosphorus (P) and potassium (K) status of planted seedlings
can affect their outplanting performance (van den Driessche 1982, 1991a). Most
published literature has focused on N and for oaks very little information exists for
the role of P and K on seedling field performance. A significant part of the new
growth in planted seedlings is supported by remobilization of stored N. Around
30–80% of N in new leaves and shoots and 20–60% in new roots in juveniles of
broadleaf species comes from mobilization of stored N (Villar-Salvador et al.
2015). As N remobilization is mainly a source-driven process (Millard and Grelet
2010), an increase in N content due to high N fertilization enhances seedling
capacity to remobilize N for supporting new growth after transplanting (Grelet et al.
2003; Uscola et al. 2015b). In poor-nutrient soils or high competition environments,
remobilized N can have a greater contribution to new organ N than soil N (Salifu
et al. 2008; Cuesta et al. 2010a). High outplanting survival and growth in Quercus
species has been frequently linked to high tissue N concentration and content
(Villar-Salvador et al. 2004a; Oliet et al. 2009; Salifu et al. 2009; Andivia et al.
2011). It is possible that the frequent increase in absolute growth after planting with
seedling size might be determined by the increase in N content linked to size
increase (Cuesta et al. 2010b).

Root growth in Q. ilex is especially sensitive to P deficiency (Sardans and
Peñuelas 2006), and oak survival and new root growth capacity have been posi-
tively related to root P concentration (Villar-Salvador et al. 2004a; Oliet et al.
2009). Although K is involved in drought resistance of plants (van den Driessche
1991b) few studies have shown field performance relationships with seedling K
status. However in Q. ilex del Campo et al. (2010) showed a positive link between
field survival and leaf K concentration relation and concluded that leaf levels lower
than 3.4 mg g−1 are undesirable for this species.

Non-structural carbohydrates (TNC) comprise starch and a variety of soluble
sugars, these latter having a prominent role in cold hardiness and drought tolerance
of oaks (Morin et al. 2007; Heredia et al. 2014). TNC support respiration and
growth especially when photosynthesis is low and in both deciduous and evergreen
oaks early growth in spring depends on TNC remobilization (Vizoso et al. 2008;
Uscola et al. 2015b). Poor transplanting performance in cold-stored seedlings has
been frequently linked to tissue depletion of TNC during cold storage and low
photosynthesis after transplanting in conifers (Puttonen 1986; Grossnickle and
South 2014). In Quercus rubra, low field survival was reported for saplings with
low root TNC induced by repeated defoliation (Canham et al. 1999). Low TNC can
jeopardize the capacity of plants to survive under dry conditions.

A healthy and vigorous root system is essential for seedling establishment
(Grossnickle 2005) but frost and desiccation prior planting, for instance during
seedling storage or transportation can damage fine roots (McKay et al. 1999;
Garriou et al. 2000; Radoglou and Raftoyannis 2001). McKay (1992) described a
test to assess the vitality of bareroot stock based on fine root electrolyte leakage
(REL), which predicts seedling out-planting performance. For deciduous oaks
maximum acceptable REL values for bareroot and container stock is 30 and 35%,
respectively (Edwards 1998). Species show different sensitivity to fine root
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desiccation. Quercus robur showed lower REL than Fagus sylvatica and Betula
pubescens after fine root desiccation (McKay et al. 1999). In contrast, for a similar
reduction in fine root water content, Q. rubra and Q. robur showed higher REL and
lower outplanting performance than Pinus nigra (Garriou et al. 2000).

Performance attributes

Performance attributes are assessed by analysing the survival, growth or any
other physiological response of seedlings under specific environmental conditions,
optimal or not. The most frequently used performance tests are root growth capacity
(RGC) and frost tolerance tests.

Root growth capacity test

The RGC, which is also called root growth potential measures the ability of a
seedling to produce and elongate new roots under optimal growth conditions within
a limited period of time, usually less than two weeks (Ritchie 1985). Seedlings are
transplanted into large containers with peat, sand, perlite or vermiculite or in
hydroponic cultures. RGC varies seasonally reaching the highest values when
seedling have attained highest dormancy and frost tolerance. Accordingly, RGC test
have been used to decide the optimum temporal window for cold storage of cul-
tivated seedlings (Ritchie and Dunlap 1980). RGC not only depends on the root
physiological status, but also on the global functional characteristics of the seedling.
Therefore, the RGC test measures the functional integrity and vigour of seedlings
(Ritchie and Dunlap 1980; Simpson and Ritchie 1997). RGC in oak seedlings
increases with plant size, nursery fertilization and frost tolerance (Villar-Salvador
et al. 2004a, 2005a, 2013a; Mollá et al. 2006; Trubat et al. 2010, 2011; Oliet et al.
2011; Andivia et al. 2014) while water stress conditioning in the nursery
(Villar-Salvador et al. 2004b) and desiccation, warming or freezing during storage
reduces RGC (Webb and von Althen 1980; Cabral and O’Reilly 2008). RGC has
been frequently used to predict seedling outplanting survival and growth and its
predictive capacity is highest in harsh sites where field performance is mostly
determined by seedling vigour and stress tolerance (Simpson and Ritchie 1997). As
for other plant quality tests, the RGC test must be performed as close as possible to
the outplanting time to maximize the field performance prediction. Relationships
between survival and RGC are often asymptotic (Burdett et al. 1983; Simpson and
Vyse 1995), indicating that survival diminishes under a specific RGC threshold
because seedlings are damaged or have low vigour. In Mediterranean
(Villar-Salvador et al. 2004a, 2013a) and wet temperate deciduous oaks, survival
and growth has been positively related to RGC (Garriou et al. 2000; Cabral and
O’Reilly 2008). Folk and Grossnickle (1997) showed that RGC tests performed
under suboptimal environmental conditions, more similar those that seedlings
would encounter after planting seem had higher capacity to predict outplanting
performance in conifers than RGC tests performed under optimal growth
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conditions. However, in the oak shrub Q. coccifera, RGC measured outdoors at low
air temperature did not discriminate better poor seedling lots than the RGC mea-
sured inside a greenhouse under optimal growth conditions (Villar-Salvador et al.
2013b).

14.2.2 Cultivation of Seedlings

At present, container stocktypes are mainly used in regions with harsh climatic
conditions, while bareroot stocktypes are used in regions where abiotic environ-
mental conditions after planting are not strongly limiting. Worldwide, both stock-
types are used for planting oaks. Oaks are produced as container stocktypes in the
Mediterranean basin (Tsakaldimi et al. 2005; Chirino et al. 2008), while in wet
temperate Europe and eastern North America bareroot is the dominant stock-type.

14.2.2.1 The Role of Container for Nursery Culture

The architecture and development of the root system determines plant functioning.
Root properties affect the volume and depth of soil explored, the absorption of soil
resources and the efficiency in water transport (Landis 1990; Tsakaldimi 2009;
Makita et al. 2011). Rooting depth and colonized volume is related to increased
survival in drought periods (Domínguez-Lerena 2000; Vilagrosa 2002; Padilla and
Pugnaire 2007). As root system development is a species-specific characteristic
selecting the right containers to match the morphofunctial characteristics of the
species and root system is key for increasing the success of seedling establishment.

Container design determines the morphological and physiological traits of root
systems and other seedlings characteristics (Landis 1990; Vilagrosa et al. 1997;
Tsakaldimi et al. 2005). Container volume, depth, area of the cell top section, cell
spacing, which determines seedling density, and the type of material for manu-
facturing the containers affect plant quality.

Scientific and technical literature on the effects of container features on seedling
morphology and field performance is prolific (Biran and Eliassaf 1980; Landis
1990; Peñuelas and Ocaña 1996; Domínguez-Lerena 1997; South et al. 2005; Dey
et al. 2008; Pinto et al. 2011; De Souza et al. 2016; Salto et al. 2016) However,
studies on oak species (Quercus spp.) are quite scarce compared to other species,
and most of the studied oaks are from the Mediterranean basin. Overall, studies of
container size show that an increase in container volume increases plant growth and
nutrient content (Domínguez-Lerena 2000; Dominguez-Lerena et al. 2006; Mariotti
et al. 2015). However, general patterns of the relation between seedling field per-
formance and container characteristics are not straightforward. Domínguez-Lerena
(1997) reported that morphological characteristics of Q. ilex were little affect by
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container size whilst the effect was high for several Pinus species. Tsakaldimi et al.
(2005) reported that Quercus ilex and Q. coccifera seedlings grown in paper-pot FS
615 (volume: 482 cm3, depth: 15 cm) showed higher survival than those cultivated
in Quick pot T18 (volume: 650 cm3, depth: 18 cm) and Plantek 35F (volume:
275 cm3, depth: 13 cm). Other authors pointed out that the using seedlings culti-
vated in large containers was the main factor determining the success Q. ilex
plantations. This study found the best results when combining bigger containers
with adequate soil preparation (Jelic et al. 2015). In this context, field establishment
will depend on the ability of the root system to colonize the soil.

According to Landis (1990), the plants that develop shallow, fibrous root sys-
tems, grow better in shorter containers; while the plants with long taproots grow
better in longer containers. Most Mediterranean species such as Rhamnus alaternus,
Arbutus unedo, Fraxinus ornus or Acer granatense have dense and shallow root
system while Quercus species (e.g. Quercus ilex, Q. faginea, Q. coccifera or Q.
ithaburensis) and other species (e.g. Chamaerops humilis, Retama sphaerocarpa)
develop a deep root system with a strong taproot (Domínguez-Lerena 2000; Chirino
et al. 2013; Tsitsoni et al. 2015) (Fig. 14.3).

Use of deep containers may promote the development of deep, strong tap roots
in species that produce orthotropic root systems (Fig. 14.4). Cultivating Quercus
species in deep containers increases the length of the tap root, projected root area
and volume, total and fine root length, the specific root length and hydraulic
conductance. These plants had higher water potential under drought stress condi-
tions (Pemán et al. 2006; Chirino et al. 2008). Similarly, seedlings of Q. coccifera,
Q. ilex and Q. suber grown in deep containers (depth: 24–30 cm) developed longer
taproots than those grown in a paper-pot of standard depth (i.e. 16–18 cm; Chirino
et al. 2005). After field transplanting, these seedlings had greater root biomass
colonizing the surrounding soil than those cultivated in shorter (standard) containers
(Fig. 14.5). Therefore, the use of a large container (volume 400–500 cm3) or deep
container (depth 25–30 cm) (Fig. 14.4) for Quercus species produces high quality
plants and enhances outplanting performance (Vilagrosa et al. 1997; Domínguez-
Lerena 2000; Cortina et al. 2006; Chirino et al. 2008).

14.2.2.2 Fertilization

Fertilization during nursery cultivation affects oak seedling quality and outplanting
performance. Most fertilization studies on Quercus species have focused either only
on nitrogen or on the amount of manufactured fertilizers (i.e. different composi-
tions). Phosphorus (P) nutrition plays an important role in the root growth and
function of Q. ilex seedlings (Sardans and Peñuelas 2006; Oliet et al. 2011) but very
few studies have addressed the role of nutrients other than N on oak seedling
quality and outplanting performance (see Sardans and Rodà 2006; Trubat et al.
2010; Sepúlveda et al. 2014 for studies on the specific role of P fertilization on
Quercus species). Overall, studies on wet temperate and Mediterranean oaks show
that moderate to high fertilization in most cases increases field survival and growth

14 Physiological Keys for Natural and Artificial … 473



compared to low or unfertilized plants (Villar-Salvador et al. 2004a, 2013b; Salifu
et al. 2009; Cuesta et al. 2010b; Oliet et al. 2011). The positive effect of N fertil-
ization on out-planting survival in Q. ilex and Q. coccifera was more noticeable
under harsh planting conditions (Cuesta et al. 2010b; Villar-Salvador et al. 2013a),
while the benefit of N fertilization on seedling growth was observed under mild
stress conditions. Contrary to the above cited studies, Trubat et al. (2011) reported
higher performance of nutrient-deprived Q. coccifera seedlings planted under
semiarid conditions. To reconcile these conflicting results, Cortina et al. (2013)
suggested that the effect of nursery fertilization on seedling out-planting survival
may largely depend on the timing and intensity of drought after planting.

Moderate to high N fertilization increases seedling water use efficiency (Guehl
et al. 1995; Welander and Ottosson 2000), photosynthesis rate (Hernández et al.
2009), and new root growth (Trubat et al. 2010; Villar-Salvador et al. 2013b),
which potentially can increase outplanting performance. N availability may also
affect drought and cold stress tolerance but the magnitude and direction of the effect
in Quercus species shows conflicting results among studies. In Q. ilex and Q. suber,
high N fertilized seedlings that were supplied with nutrients during the growing

Fig. 14.4 Quercus suber seedlings cultivated in a shallow container (depth: 18 cm) and deep
container (depth: 30 cm; cylindrical in shape, diameter: 5 cm, depth: 30 cm, volume: 589 cm3,
material: high-density polyethylene, open bottomed, plant density: 318 seedlings m−2) (left). After
these experiments, a model patented with the design of a deep container (30 cm depth, 6 cm in
diameter and 505 cm3 of volume) has been registered in Spanish Patent and Trademark Office
(OEPM 2014) by the Mediterranean Center for Environmental Studies (Foundation CEAM) and
University of Alicante (Spain) (right) for the use in water limited ecosystems (Photos by
E. Chirino)
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season but not in the fall, had similar osmotic potential to unfertilized plants
(Villar-Salvador et al. 2005b). Low or no N fertilization, especially during cold
acclimation in the fall hindered frost tolerance in Q. coccifera (Villar-Salvador et al.
2013b) and frost and drought tolerance in Q. ilex (Andivia et al. 2012a, b, 2014),
suggesting that N nutrition during the cold acclimation period is important for
hardening in Mediterranean oaks. In contrast, very high N supply rates at the end of
the summer reduced the frost and drought tolerance of Q. ilex seedlings cultivated
in a mild winter sites but not in a cold winter site (Heredia et al. 2014). This
suggests that low fall temperature overrides the negative effects of high N fertil-
ization on frost acclimation and drought tolerance, likely explaining the lack of
differences among N fertilization treatments observed in some studies. A similar
response has been reported for frost tolerance and N fertilization in Q. petraea and
Q. robur (Thomas and Ahlers 1999). All these results indicate that N fertilization
timing and fall temperature interact to drive cold and drought stress of oaks.

Nitrogen fertilization increases seedling N content through an increase in
seedling mass and tissue N concentration (Salifu and Jacobs 2006; Schmal et al.
2011; Trubat et al. 2011; Villar-Salvador et al. 2013b; Uscola et al. 2015a).

Fig. 14.5 Mass of roots
protruding out of the root plug
one month after field
outplanting in seedlings of
two Mediterranean Quercus
species that were cultivated in
two types of containers:
standard container (CCS-18)
and depth container (CCL-30)
after. Containers were the
same that in Fig. 14.4 (see
Chirino et al. 2008 for more
details)
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The growth of seedlings after outplanting depends on the remobilization of N and
other nutrients. In nutrient poor soils or high competition environments, remobi-
lized N can have a greater contribution to new organ N than soil N (Salifu et al.
2008; Cuesta et al. 2010b). As explained in the plant quality section, an increase in
tissue N content involves a greater N remobilization capacity for supporting new
growth after transplanting. This explains, in part, the positive effect of N fertil-
ization on new root growth capacity of oak seedlings (Villar-Salvador et al. 2004a;
Trubat et al. 2010, 2011; Cuesta et al. 2010a; Oliet et al. 2011), which is crucial for
seedling establishment and survival in dry-climate ecosystems (Grossnickle 2005;
Padilla and Pugnaire 2007).

Responsiveness of Quercus species growth to fertilization is low compared to
other species (Valladares et al. 2000; Uscola et al. 2014). Dose-response curves of
seedling growth against N availability made from published data shows that the
slope of the line in the deficiency phase of the dose-response curves (see Salifu and
Timmer 2003) is smaller for Quercus species than for other species such as conifers
(Fig. 14.6). This indicates that Quercus species have low N uptake efficiency at
seedling stages and that N must be supplied at high rates to maximize seedling
growth and tissue N concentration.

Lower N uptake efficiency in Quercus species probably reflects lower N root
absorption and post uptake metabolism after uptake but also high dependence on
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Fig. 14.6 Relationship between the normalized seedling mass and the amount of supplied
nitrogen per plant. The data has been separated into Quercus species (Q. ilex, Q. suber, Q.
coccifera, Q. faginea, Q.rubra) and other species (the conifers Pinus halepensis, P. pinea,
P. sylvestris, P. tabulaeformis, Juniperus thurifera, and the broadleaf Ceratonia siliqua). For
comparing the data of different studies, the seedling mass was normalized following methodology
in Poorter et al. (2010). Studies used for each species are: Q. ilex (Ocaña et al. 1997;
Villar-Salvador et al. 2004a; Oliet et al. 2009; Uscola et al. 2015a), Q. coccifera and Q. faginea
(Villar-Salvador et al. 2013b), Q. suber (Martínez Romero et al. 2001), Q. rubra (Salifu and
Jacobs 2006), Pinus halepensis (Oliet et al. 2004), P. pinea and P. sylvestris (Ocaña et al. 1997),
P. tabulaeformis (Wang et al. 2015), Juniperus thurifera (Villar-Salvador et al. 2005b) and
Ceratonia siliqua (Planelles 2004). Each point is a N fertilization treatment
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acorn N during early ontogeny (Fig. 14.7), which facilitates independence on soil N
(García Cebrián et al. 2003; Villar-Salvador et al. 2010; Yi and Wang 2016).
Quercus ilex seedlings are almost independent of soil N during early development.
Acorns made up 62–75% of all seedling N at the end of the first shoot flush and up
to this ontogenetic stage, N fertilization did not affect seedling N content.
Dependence of seedlings on acorn N progressively decreased during later seedling
development and at the end of the second flush of growth differences in N fertil-
ization significantly affected seedling N content (Villar-Salvador et al. 2010). Per
these results, an efficient fertilization schedule that maximizes seedling N uptake
and minimizes N runoff should delay N supply until the onset of second flush of
growth.

The efficiency of fertilization on the cultivation of woody species depends on
how nutrients are supplied through time. Contrary to a constant fertilization regime
where seedlings are supplied with the same amount of N throughout the cultivation
period, the exponential fertilization (Timmer 1997) matches N supply to seedling N
demand, which increases exponentially through cultivation period (Birge et al.
2006; Oliet et al. 2013). Compared to constant fertilization, exponential fertilization
reduces N run-off in the nursery and in conifer seedlings it results in higher tissue N
concentration with few differences in morphology (Salifu and Timmer 2003;
Dumroese et al. 2005). Few studies have compared the constant and exponential
fertilization regimes on the quality of Quercus seedlings. In the evergreen Q. ilex

0

3

6

9

12

15

18

21

24

N
 c

on
te

nt
 (m

g)

Acorn N
Soil N

Only 
roots

1st shoot flush 
in progress

1st shoot flush 
completed

2nd shoot flush 
in progress

2nd shoot flush 
completed

Fig. 14.7 Evolution of the contribution of the N derived from the acorn and soil to the total N
content of Quercus ilex seedlings through their early ontogeny. Inserted figures compare the total
N derived from acorn and soil N in high (10 mM N) and low fertilized (1 mM N) seedlings at the
end of the first and second flush of shoot growth. For methodological details see Villar-Salvador
et al. (2010). Seedlings completed their first and second shoot flush of growth 53–56 and 83–
90 days, respectively, after sowing

14 Physiological Keys for Natural and Artificial … 477



(Oliet et al. 2009; Heredia et al. 2014) and in the deciduous Q. robur (Schmal et al.
2011) no differences in growth and seedling N content were observed between both
fertilization regimes. However, in the deciduous Q. rubra and Q. alba exponential
fertilization was more effective in promoting nutrient acquisition and storage than
the constant fertilization (Birge et al. 2006).

Seedling N loading can also be promoted by fall fertilization. Nitrogen fertil-
ization is usually reduced or ceased at the end of the growing season (Landis 1989).
However, an increasing body of evidences points out that moderate N fertilization
during the fall after seedlings have ceased shoot elongation significantly promotes
N loading with small or no change in morphology (Islam et al. 2009; Zhu et al.
2013; Li et al. 2014). N loading by fall fertilization has also been reported for Q.
ilex (Oliet et al. 2011; Andivia et al. 2012b; Heredia et al. 2014; Andivia et al.
2014) and for Q. velutina (Wang et al. 2016). Timing of fall fertilization (early vs.
late in the fall) did not affect tissue N and K concentration but early fall fertilization
increased root P concentration (Oliet et al. 2011).

14.2.2.3 Drought and Cold Hardening

Soil water availability and extreme temperatures are major environmental con-
straints for plant development in many ecosystems (Levitt 1980; Larcher 2003).
Low soil water availability and/or high evaporative demand causes plant water
stress, which hinders many physiological processes and ultimately plant survival.
Cold stress during winter can also damage plants at a structural (whole-plant) (e.g.
freezing of xylem tissues) and at a cellular level, which includes alterations in
specific metabolites, proteins, and changes in membrane structure (Gusta and
Wisniewski 2013). Freezing tolerance is defined as the lowest temperature below
the freezing point that a tissue can be exposed to without damage (Grossnickle
2000). Seedling and sapling are especially vulnerable to cold and drought stress. In
addition, freezing and drought (i.e. lack of water flow to leaves) can happen
together and interactions between both stresses may occur (Pratt et al. 2005; Mayr
et al. 2006a, b; Fernández et al. 2007).

Implications for nursery management and restoration practices

Adverse climatic conditions after outplanting are a major limitant for seedling
establishment. Much evidence suggests that a key hurdle in plantation success is
transplant shock, which is the short-term stress experienced by seedlings when
transferred from favourable nursery conditions to the adverse field environment
(Burdett 1990). During transplant shock, seedlings may remain stressed until they
become acclimated to field conditions. In general, adverse climatic conditions after
outplanting are major limiting factors for seedling establishment. Suitable restora-
tion techniques may help the seedlings to establish successfully.

Drought stress is the main cause of seedling mortality in forest plantations during
the first year in Mediterranean-climate sites (Vallejo et al. 2006). Drought occurs
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during the summer in the Mediterranean climate. However, dry conditions during
the wet season, when seedlings are planted, are becoming more frequent in the last
decades. To increase the chance of seedling establishment and reduce seedling
outplanting stress, forest managers have developed nursery techniques to harden
(increase the stress tolerance) of the cultivated seedlings. Common drought hard-
ening techniques, also called drought preconditioning, involve irrigation restriction
by exposing seedlings to drought cycles, altering and reducing nutrient inputs, and
by growing plants outdoors under full sunlight (Landis et al. 1998). The final
objective is to promote physiological mechanisms in the seedling that confer stress
tolerance to before outplanting.

Cold stress also limits planting performance in natural systems (Mitrakos 1980;
Larcher 2003). Cold stress can impose severe restrictions during plant culture in the
nursery but also in the field after outplanting. Freezing tolerance is highly variable
among species, ranging from species that only tolerate temperatures slightly under
0 °C such as for some mild winter Mediterranean species until to −70 °C or less in
boreal and high mountain conifers (Bannister and Neuner 2001; Larcher 2000). In
general, forest plantations are established after winter to avoid frosts, but spring
frosts are also always a risk. In mild or cool winter regions, planting can be done at
the middle or the end of autumn to benefit from autumn and winter rains. However,
autumn planted-stock are exposed to some frosts during winter. Therefore, it is
important to use frost-tolerant seedlings in plantations made in continental areas or
areas with high risk of strong frosts, especially for evergreen woody species (Mollá
et al. 2006; Tibbits and Hodge 2003). As cold tolerance has an important genetic
basis, using the appropriate provenances is also essential for reducing negative
effects of low temperatures on reforestation projects. However, once the right
provenance has been selected, nursery treatments for promoting seedling cold
tolerance are necessary (Gratani 1995; Gimeno et al. 2009). The general procedure
for container seedlings consists of growing seedlings outdoors at the end of the
summer and in the fall under a natural temperature and daylight length regime,
which will promote cold tolerance (Mollá et al. 2006). This process happens nat-
urally for bareroot seedlings, which are grown under ambient outdoor conditions
(Jacobs 2003). Cold hardening strongly depends on nursery location and for Q. ilex,
hardening was faster and more intense in a cold winter location than in a mild
winter location (Mollá et al. 2006). Short-day treatment is another nursery tech-
nique to promote hardening that may be applicable to oaks. This involves reducing
photoperiods in mid-summer to arrest shoot growth, induce dormancy, and increase
cold hardiness (Jacobs et al. 2008). The practice, which is used regularly for pro-
duction of boreal conifers worldwide, has been shown to also effectively stimulate
dormancy and cold tolerance in Quercus rubra from temperate North America
(Davis 2006) and may have application to hardening of oak species in other regions.

Seedling responses to drought hardening in the nursery

Drought hardening techniques can promote a wide array of plant functional
responses at several organization levels (Table 14.4). Species respond to drought
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Table 14.4 Comparative morphological and physiological traits affected by drought hardening
techniques

Physiological
variables

Main effect Quercus
species

Other speciesc References

Gas
exchange,
water use
efficiency,
water flow

Lower residual and
cuticular transpiration

Q. ilexa, Q.
coccifera a,
Q. subera

P. halepensis,
P. lentiscus, R.
officinalis, Pinus
pinea. J. oxycedrusa

1, 2, 3, 4,
24

Reduction on stomatal
conductance
Higher chlorophyll
fluorescence

Q. ilexb, Q.
suber, Q.
cocciferaa

P. lentiscus a),
Rhamnus alaternus,
Nerium oleander,
P. halepensisb,
P. pinea,
J. oxycedrusa

1, 2, 3, 4, 5,
6, 7, 8, 24

Cell water
relations

Decrease (more
negative water potential
values) in turgor loss
point due to osmotic
adjustment and/or
changes in cell wall
elasticity

Q. ilexb, Q.
cocciferaa

Olea europaea,
P. lentiscusa, Rh.
Alaternusa, N.
oleander,
P. halepensisb,
P. pinaster, P. pineaa,
J. oxycedrusa

1, 2, 3, 4, 5,
6, 7, 8, 9,
10, 11, 12,
13, 14

Nutrients and
other
compounds

Accumulation of
soluble carbohydrates
Increase or no change in
mineral nutrient
concentration
Increase of ABA

Q. ilex, Q.
coccifera,

P. halepensis,
P. pinea, P. pinaster,
R. officinalis,
P. lentiscus, Picea
mariana, Olea
europaea ssp
sylvestris, Acacia
cyanophylla, Thuja
occidentalis,

1, 2, 3, 4, 5,
8, 9, 11, 12,
13, 15, 16,
17, 18, 19

Root
functioning
and structure

Lower new root growth
capacity
Higher root hydraulic
conductance
Higher root-shoot ratio

Q.ilexb, Q.
subera, b, Q
coccifera,

P. halepensis,
P. pinea, P. lentiscusb,
R. officinalis,
J. oxycedrus, Lotus
creticus

1, 2, 4, 5,
20, 21, 22,
23, 24

Resistance to
other stresses

Increased tolerance to
freezing and high
temperatures

No
information

Pinus pinea,
Pseudotsuga
menziesii,

14, 25

Species and main effects observed
ano effect observed
breported variable response, in general opposite response
cthe majority are co-existing species
References: 1: Villar-Salvador et al. (1999), 2: Villar-Salvador et al. (2000), 3: Vilagrosa et al.
(2003a), 4: Rubio et al. (2001), 5: Villar-Salvador et al. (2004b), 6: Bañón et al. (2003), 7: Bañón
et al. (2005), 8: Puértolas et al. (2003), 9: Dichio et al. (2003), 10: Larcher et al. (1981), 11:
Calamassi et al. (2001), 12: Tognetti et al. (1997), 13: Fernández et al. (1999), 14: Villar-Salvador
et al. (2013c), 15: Stewart and Lieffers (1993), 16: Royo et al. (2001), 17: Sánchez-Blanco et al.
(2004), 18: Albouchi et al. (1997), 19: Edwards and Dixon (1995), 20: Fonseca (1999), 21: Franco
et al. (2002), 22: Chirino et al. (2003), 23: Sánchez-Blanco et al. (2004), 24: Vilagrosa (unpub.
data), 25: Blake et al. (1991)
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hardening depending on their strategies to cope with drought stress (Valladares
et al. 2008 for a review on this topic, Vilagrosa et al. 2003a, 2006; Villar-Salvador
et al. 2004a) and their functional characteristics (Vilagrosa et al. 2003b).
Consequently, a common response to drought hardening in the nursery cannot be
expected for all species. Comparing plant responses among different plant groups,
Vilagrosa et al. (2006) observed that boreal and wet temperate woody plants tend to
have a more intense acclimation that affects a greater variety of functional traits in
response to drought hardening than woody plants from dry or semi-arid ecosystems
such as Mediterranean-type ecosystems.

Most studies on nursery drought hardening in Quercus species have been
applied to oaks of the Mediterranean basin. This is because oaks have been widely
used in afforestation programs in southern Europe for the last 20 years. Despite the
large amount of studies and different types of applied hardening, Mediterranean
oaks have low outplanting performance compared with other planted species
(Vilagrosa et al. 1997; Cortina et al. 2004; Villar-Salvador et al. 1999). Quercus
species tend to have low responsiveness to drought hardening in the nursery
(Vilagrosa et al. 2003a), which has been related to low plasticity to variations in
other abiotic factors compared to other co-existing species (Vilagrosa et al. 2005).

A common response among oak species to drought hardening is osmotic
adjustment (see Abrams 1990; Kleiner et al. 1992; Collet and Ghuel 1997), which
allows plants to maintain cell turgor at lower water content values (González et al.
1999). Drought hardening intensity and duration and the period of application seem
to determine the effectivity of drought hardening on enhancing drought tolerance in
the Mediterranean evergreen oak, Q. ilex. Villar-Salvador et al. (2004b) reported
that moderate levels of drought stress rather than strong or low water stress were the
most effective for enhancing drought tolerance mechanism in Q. ilex
(Villar-Salvador et al. 2004b). Moreover, drought hardening in the fall had an
additive effect on seasonal osmotic adjustment, reducing osmotic potential at full
turgor by 50% but did not affect morphological traits. Finally, drought hardening
for 3.5 months did not enhance physiological traits related to drought tolerance in
Q. ilex seedlings compared with hardening for 2.5 months. However, long drought
hardening periods (i.e. about six months) especially when applied during the
growing season can decrease whole seedling biomass, especially aboveground
biomass, but also other functional traits such as increasing the capacity for water
transport through xylem (Chirino et al. 2004; Chirino and Vilagrosa 2006).

Moderate drought hardening usually reduces growth of oak seedlings, especially
if applied during the growing season, although the effect is species dependent
(Sanz-Pérez et al. 2007, 2009). Thus, drought stress had little effect on the growth
of seedlings of the oak shrub Q. coccifera while it reduced it in Q. ilex and Q.
faginea (Sanz-Pérez et al. 2007). Nutrient and non-structural carbohydrates (NSC)
can play an important role in seedling outplanting performance. Drought hardening
has varied effects on the accumulation of NSC and mineral nutrients in oak species.
Moderate drought had little effect on tissue mineral nutrient concentration in Q. ilex
and Q. faginea while it decreased it in Q. coccifera (Villar-Salvador et al. 2004b;
Sanz-Pérez et al. 2009). However, strong drought stress reduced soluble sugar
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concentration and increased starch concentration in Q. ilex (Villar-Salvador et al.
2004b). Drought hardening reduces in most cases the new root growth capacity of
cultivated seedlings (Fonseca 1999; Trubat 2012), a response that has also been
observed among oak species (Villar-Salvador et al. 2004b; Chirino et al. 2009;
Trubat 2012). This is an undesired effect of drought hardening because new root
growth after planting is an important requisite for seedling establishment (Tinus
1996). Observations of new root growth capacity assessed at the nursery conflict
with field observations where the general rule was an increment in root length in
hardened seedlings compared to control seedlings (Chirino et al. 2004; Rubio et al.
2001; Franco et al. 2001, 2002).

Seedling responses to cold hardening in the nursery

In cold climate areas cold hardiness is a key factor for survival of planted
seedlings. Cold hardening of cultivated seedlings is carried out in the last phases of
nursery culture in which seedlings are subjected to progressively low temperatures.
In this way, seedlings can develop resistance mechanisms as pointed out in
Table 14.4. Cold hardiness can also be stimulated by controlling the photoperiod,
irrigation and fertilization, which can induce dormancy and therefore cold hardiness
(Villar-Salvador et al. 2004a; Fernández et al. 2007). However, some studies found
that N fertilization can decrease cold resistance, thereby avoiding cold hardening or
promoting the de-hardening processes in seedlings (Andivia et al. 2011; Heredia
et al. 2014).

Pardos et al. (2003) and Mollá et al. (2006) suggesting that temperature was the
main factor influencing differences cold resistance. In addition, these authors found
a higher resistance to cold conditions in Q. ilex than in Pinus halepensis. Mollá
et al. (2006) compared cold resistance in seedling cultivated in a coastal nursery
(warm site) with those cultivated in an inland nursery (cold site). The results
pointed out that nursery location did not affect transplanting mortality. However,
inland seedlings had greater growth than coastal seedlings when planted in
mid-winter planting but not in late fall. This study demonstrated that differences in
winter conditions in the nursery have a strong effect on the functional and trans-
planting performance of Q. ilex seedlings.

14.2.3 Outplanting Limitations to the Use of Quercus
Species in the Field

Early mortality and low growth rates have been identified as critical constraints to
successful plantation establishment in Mediterranean areas (Margolis and Brand
1990; Navarro-Cerrillo et al. 2006b). Often, these seedling losses have been
attributed to various environmental or biotic circumstances (e.g. weather conditions,
animal damage, disease, insects, etc.) which may act synergistically, influencing
plant performance (Burdett 1990; Broncano et al. 1998). However, in many cases,
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foresters have considered how key cultivation practices influence seedling survival
after field planting and how these practices must be managed to make sound forest
restoration decisions. The cultivation practices related most to seedling performance
are seedling storage and handling, site preparation, planting date and planting
practices, microclimatic/microsite conditions, vegetation management and the use
of thee shelters (Grossnickle 2000; Landis et al. 2010; Potter 1991). This improved
survival has been attributed to the enhancement of drought resistance, due to greater
water-uptake ability (through more efficient root systems), seedling nutrition, and
growth; these effects increase the speed with which seedlings can overcome com-
petition from other plants (enhanced by vegetation control and microclimatic
effects) and become established in the forest restoration site. Without such culti-
vation practices, seedlings lack the physiological capability to become rapidly
established in the face of the stress they suffer after planting in forest-restoration
sites. This section has shown that these key cultivation practices can improve the
chances of survival and growth of the seedlings after transplanting in such sites.

In Mediterranean areas, the seedling physiological response to transplanting
stress is related closely to the plant-root-soil interaction, which limits access to soil
water. In these conditions, foresters have used cultivation practices to improve
seedling survival and growth (Navarro-Cerrillo et al. 2006a), as well as the ability
of seedlings to respond to environmentally stressful conditions that can occur after
they have been planted. Adequate cultivation practices enhance the ability of
seedlings to survive after being planted in forest restoration sites in Mediterranean
areas because they reduce the susceptibility to drought-induced mortality. This
positive response is due to changes in the topographic, physical, and microclimatic
conditions and the soil water availability at the site, which limit seedling suscep-
tibility to planting stress (i.e. water stress). In Mediterranean areas, the most rele-
vant of these conditions limiting seedling performance are seedling handling,
planting date, soil physical and microclimatic conditions, and soil preparation
(Navarro-Cerrillo et al. 2006a; Ruthrof et al. 2013) (Table 14.5). Thus, seedling
survival in artificial forest restoration is related to how foresters modify the field-site
environmental conditions to improve the inherent potential of the seedlings to
overcome establishment stress and become coupled into the forest ecosystem
(Burdett et al. 1984; Grossnickle 2000; del Campo et al. 2007). This section
summarizes our current knowledge about the influence of the main cultivation
practices affecting seedling performance after planting (i.e. survival and growth).

Seedling shipping and handling before planting

In the nursery, seedlings are typically grown in optimal conditions (i.e. water
availability, plant nutrition, and environmental conditions) that ensure their maxi-
mum “seedling functionality” immediately before they are harvested. However,
seedlings must be transported before being outplanted; thus, handling and shipping
are critical factors in plantation success (Paterson et al. 2001). Inappropriate storage
or handling of seedlings, or both, before plantation can decrease their physiological
functionality, causing an imbalance in the physiological status of the seedlings that
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reduces the survival potential. The most common stresses during this process are
extreme temperatures, desiccation, mechanical injuries, and storage molds (Landis
et al. 2010) which result in drought and nutritional stress, lower root growth
capability, and damage to leaves and lateral roots (Stjernberg 1997; McKay 1997).
Therefore, during the transfer from the nursery to the site of transplanting, the
quality of the seedlings must be optimized by minimizing both the stress during
each stage of the process and the cumulative effect of the various stresses (Landis
et al. 2010).

Site preparation treatments

Site preparation (SP) methods are typically oriented to modifying the environ-
ment of the site where the seedlings are planted—to improve the microsites for the
seedlings by increasing or decreasing the soil water and nutrient contents at the time
of planting, as well as by modifying the temperature, soil texture-compaction (e.g.
surface layer structure, bulk density, aeration), and soil depth and controlling
competing vegetation, among other parameters (South et al. 2001; de Chantal et al.
2004; English et al. 2005). The effects of SP on forest restoration outcomes are well
documented and summarized (see Löf et al. 2012), and intensive treatments can
improve survival and growth on sites where there is high environmental stress
(Querejeta et al. 2001; Palacios et al. 2009).

In general, mechanical soil preparation resulted in higher survival, which agrees
with many studies performed under different environmental conditions (Querejeta
et al. 2001; Bocio et al. 2004; Barberá et al. 2005; Saquete et al. 2006; Palacios
et al. 2009) (Fig. 14.8). One of the major ecological factors acting on afforestation
performance under the Mediterranean climate is water availability (Bocio et al.
2004) and mechanical SP effectively increases water penetration into the soil
(Querejeta et al. 2001), promoting the development of a deep rooting system which
is essential for survival and growth under extreme conditions (Querejeta et al. 2001;
Padilla and Pugnaire 2007; Löf et al. 2012). Seedling survival and growth increased
in response to more intensive SP on sites with high competition or harsh conditions,
although seedlings planted on sites with little environmental stress may show a

Table 14.5 Spearman correlation matrix for different cultivation practices and the seedling
establishment response (survival and growth) for eight Mediterranean species, based on different
reforestation trials in Southern Spain

Variable Species Planting date Soil type Soil preparation

Survival (n = 56) 0.095 −0.711** 0.560** 0.266*

Height growth (n = 30) −0.330 −0.085 −0.155 0.202

Diameter growth (n = 27) −0.290 −0.397* 0.020 0.329

Species Ceratonia siliqua, Quercus suber, Olea europaea, Pinus halepensis, P. pinaster, P. pinea,
Pistacia lentiscus, Tetraclinis articulata; Planting date: Early (November–December), Middle
(January–February), Late (March–April); Soil type: Agricultural and forest soils; Soil preparation:
Plow, manual holing, mechanical holing, subsoiling
*P < 0.05, **P < 0.01 (Navarro-Cerrillo et al. 2006a)
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positive response to low-intensity SP treatments. More intensive soil preparation
permits greater root development and root system fibrosity so that seedlings can
explore larger volumes of soil—thus increasing their capability for uptake and
transport of water, reducing seedling water stress, and increasing seedling survival
(Grossnickle 2005). In particular, in Mediterranean areas, during the summer per-
iod, the deep rooting of seedlings becomes increasingly important for their water
uptake due to the exhaustion of the topsoil moisture (Palacios et al. 2009).

Planting date and planting practices

An inappropriate planting date has been pointed out as one of the variables with
the greatest influence on plant survival. The weather after planting affects soil
temperature and moisture—which is mainly determined by the occurrence of rain
both before and just after planting—and, consequently, influences seedling estab-
lishment (de Chantal et al. 2003). Therefore, an incorrect planting date selection
may greatly jeopardize the survival of a plantation. Its effect, combined with SP, has
been studied under Mediterranean conditions (Royo et al. 2000; Radoglou et al.
2003; Palacios et al. 2009; Navarro-Cerrillo et al. 2014).

Inappropriate planting dates and planting practices can result in lower survival
on sites with limited soil water and greater environmental stress (Palacios et al.
2009; Navarro-Cerrillo et al. 2014) (Fig. 14.8). Under Mediterranean dry condi-
tions, early (November) and middle (January) planting dates, when compared to
later (March) dates, result in early shoot growth and increased foliar mass, which
can increase the possibility that seedlings overcome the effects of transplanting
(Grossnickle 2005). Seedlings planted on the early and mid-season dates had a
favourable period of time—5 and 3 months, respectively—with more frequent
precipitation for their vegetative growth, mainly for roots, thus reducing water
stress and promoting higher rates of photosynthesis (Fig. 14.9). However, these
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Fig. 14.9 Quercus ilex L. root seedlings morphology traits (total root length-RL, cm; surface root
area-RSA, cm2; average root diameter-RAD, cm; total root volume-RV, cm3, and root tips-NT,
uds; ± SE) according to planting date (E Early M Mid-season, L Late), site preparation
(white = subsoling; grey = holing) and high-fertilized (G) or low-fertilized (D) seedlings
(Palacios-Rodríguez 2015)
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results differ from previous studies in Mediterranean environments, which found no
statistical differences between planting dates (Royo et al. 2000; Radoglou et al.
2003) or established an optimal an optimal planting period that was too long
(November to March) (Jenkinson et al. 1993). Seifert et al. (2006) also reported no
significant differences among planting dates for Q. rubra and Q. alba seedlings
across two planting years.

Vegetation management

Numerous reviews have discussed the merits of vegetation control (VC) in
relation to seedling performance and thus regeneration success (Nilsson and Allen
2003; Fleming et al. 2006; Navarro-Cerrillo et al. 2005). The reduction of com-
petition is directly related to seedling root growth and functional physiological
response and thus provides a better seedling performance potential. Therefore, VC
in newly planted sites has long been recognized as important to ensure successful
survival and establishment (Navarro-Cerrillo et al. 2005; Jiménez et al. 2007;
Ceacero et al. 2012; Pinto et al. 2012). Competition with other vegetation defines
the potential drought avoidance of seedlings because seedling water status is
directly tied to the vegetation complex. Lack of VC can result in water stress for
seedlings, reducing the chance of survival (Jose et al. 2003), while survival
increases as VC increases (Navarro-Cerrillo et al. 2005). Ceacero et al. (2012)
found that Quercues ilex seedlings provided with intensive VC had, on average, a
higher level of survival and a better physiological status 21 months after plantation,
in particular cultivation + tree shelters (52.5%), herbicide (30%) and herbi-
cide + tree shelters (27.5%). Even though the data showing the importance of VC
for seedling survival are compelling, other authors warn of potential problems
related to the use of intensive/recurrent VC without also considering other effects on
the root system (i.e. lateral roots, root damage, root shape, etc.), which can limit
seedling survival in the long-term (Grossnickle 2005). Finally, other reports show
that the importance of the “facilitation” effect—with regard to the enhancement of
seedling survival and growth, based on total shoot and root weights—may be
limited when forecasting survival under harsh field conditions (del Campo et al.
2007).

Outplanting results obtained during practical reforestation work within the forest
restoration community have been very relevant to the improvement of reforestation
success, through increased seedling survival and growth. The research and practical
experience obtained during the past half century has confirmed that the traditional
perception of the impact of cultivation procedures on reforestation success was
correct. Adequate cultivation practices during the plantation process do not guar-
antee high survival rates, because foresters work in an “unpredictable” environ-
ment, but planting seedlings in combination with desirable cultivation practices
increases their chances of survival in dry continental Mediterranean sites.
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Tree shelters

Tree shelters have been widely used in forest restoration programs in the world,
especially with broadleaved species, since the first studies carried out by Tuley in
Great Britain in 1979 (Tuley 1985). The initial objectives of the use of tree shelters
were to protect the seedlings from herbivores and to facilitate the application of
herbicides for weed control. Oaks have been one of the most used species with tree
shelters both in wet temperate and Mediterranean environments (Tuley 1985;
Mayhead and Boothman 1997; Welander and Ottosson 1998; Dubois et al. 2000;
Bellot et al. 2002; Quilhó et al. 2003; Sharew and Hairston-Strang 2005; Oliet and
Jacobs 2007; Dey et al. 2008; Pemán et al. 2010; Puértolas et al. 2010; Ceacero
et al. 2014; Vázquez de Castro et al. 2014; Oliet et al. 2015; Mariotti et al. 2015).
Along with a physical barrier to predation, effects of tree-shelters on the environ-
mental conditions around the tree were recognized during early studies (Potter
1991). The microclimate inside tree shelters is characterized by a reduction in
radiation and wind, an increase in temperature during daytime and marked daily
changes in the air humidity, vapour pressure deficit and CO2 concentration (Dupraz
and Bergez 1999; Bergez and Dupraz 2000; Devine and Harrington 2008; Oliet and
Jacobs 2007; Vázquez de Castro et al. 2014). The effect of these changes on
seedling response is highly dependent upon the interactions between some specific
functional traits and environmental conditions of the planting site.

Under mesic conditions in temperate forests, highly assimilating seedlings
exhaust air CO2 concentration within the shelter very early in the morning due to
the reduced ventilation rate (Dupraz and Bergez 1999). At midday in summer, high
temperatures reduced assimilation to negative values (Mayhead and Jones 1991).
Both effects explain why biomass and diameter of sheltered oaks from mesic sites is
usually reduced (Devine and Harrington 2008; Mariotti et al. 2015), leading to
suggest an increment in ventilation rate via opening holes (Bergez and Dupraz
2009). The opposite effect has been observed. These environmental limitations to
growth, however, do not seem to affect survival of sheltered oaks in mesic sites
(Dubois et al. 2000; Sharew and Hairston-Strang 2005; Devine and Harrington
2008; Mariotti et al. 2015).

The effect of tree-shelters on survival of planted Mediterranean oaks is complex
and deserves a deeper analysis. In a meta-analysis testing different eco-technologies
in xeric conditions, Piñeiro et al. (2013) reported an overall positive effect of
shelters on survival of different species. These results suggest a protective effect of
shelters against abiotic stress. For instance, when planted in a contrasted gradient of
drought, Quercus ilex survival is enhanced in semiarid areas, while the effect in
more humid sites of the Mediterranean is weaker (Fig. 14.10).

These results suggest a moderating effect of shelters on extreme environmental
conditions of dry summers. Other experimental plantations of Mediterranean oaks
show a consistent improvement of survival (Bellot et al. 2002; Navarro-Cerrillo
et al. 2005; Chaar et al. 2008; Padilla et al. 2011; Ceacero et al. 2014) (Fig. 14.11a).
High irradiation combined with drought is the main cause of seedlings mortality in
Mediterranean oaks (Gómez-Aparicio et al. 2008). Thus, a positive effect against
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excessive light stress of tube shelters due to light reduction is a primary hypothesis
(Puértolas et al. 2010; Pemán et al. 2010) to explain improvements of oaks survival,
which are late successional-shade tolerant species (Ke and Werger 1999). Protective
shade of shelters simultaneously occurs with higher temperatures (up to a 6 °C
mean daytime temperature increase in summer in an oak trial with ventilated
shelters Vazquez de Castro et al. 2014), which can also be a source of stress
(Esteso-Martínez et al. 2006). For instance, higher temperatures combined with
intense summer drought explain reductions in assimilation rates (Ceacero et al.
2014) of protected holm oak in summer. Therefore, along with light stress pro-
tection, other factors associated to microclimatic modifications of shelters are
hypothesised as drivers to survival improvements. For instance, the restricted air
movement in the shelters that severely reduced boundary layer conductance
(Kjelgren and Rupp 1997) may help to reduce water loss of seedlings and improve
hydric status during the dry season (Bergez and Dupraz 1997). This effect can also
be overlapped with the reduction in stomatal conductance within tree shelters by
light reduction that could also improve water status. The effect of tree shelters on
plant physiology of Mediterranean oaks can change along the course of the year.
For instance, higher temperatures in spring could trigger vegetative activity and
transpiration within shelters, with reductions of water potential. During summer, a
positive effect of tree shelters on water status is observed for protected oak seed-
lings, but only for those grown from seed (Fig. 14.11b, c).

In addition, when irrigating in summer, photochemical efficiency and water
status of sheltered Mediterranean holm oaks did not differed from those
non-protected (Vazquez de Castro et al. 2014), evidencing the importance of
summer drought and its interaction with treeshelter effect in the Mediterranean. In
conclusion, we believe that tree shelters exert a complex protective role against the

Fig. 14.10 Second year survival (mean ± SE, n = 100) of simultaneously planted holm oak
(Quercus ilex subsp. ballota) in two locations of Andalusia with contrasted rainfall regimes.
Within a location, columns with different letters significantly differ (a = 0.05). Modified from
Oliet et al. (2003)
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multi-stress (light, drought and temperature) effect caused by summer drought in
Mediterranean conditions, with overall positive impact on survival.

The effect of shelters on growth of Mediterranean oaks is also influenced by
daily or seasonal oscillations of microclimatic conditions. Few studies have pro-
vided estimates of gas exchange variables inside tree shelters due to the difficulty of
measuring directly inside the shelters (Kjelgren and Rupp 1997; Oliet and Jacobs
2007; Ceacero et al. 2014). Unlike wet temperate oaks, assimilation rates at the
plant level are lower, and CO2 reductions in the shelter are not the main limiting
factor (Oliet and Jacobs 2007). Instead, simulations conducted with Y-plant in
Quercus faginea suggests a positive effect of shelter on assimilation rates in spring
but the converse effect in summer, due to a modulating temperature effect within the
shelter (Pemán et al. 2010). The way biomass growth of Mediterranean oaks will be
finally stimulated or depleted by tree shelters will change with temperature regime
and light transmission of the shelter.

The effect of tree-shelters on height growth of oaks from all biomes is mostly
positive across published studies, (Kittredge et al. 1992; Burger et al. 1996;
Navarro-Cerrillo et al. 2005; Taylor et al. 2006; Chaar et al. 2008; Ceacero et al.
2014; Mariotti et al. 2015), although some of them show null effects (Vazquez de
Castro et al. 2014). Light transmission and ratio of red:far-red (r:f-r) of radiation
entering the shelter through the wall affect the plant photomorphogenesis: lower r:
f-r ratios stimulates length growth of new internodes within the shelter, although
this response is associated to shade tolerance of oak species (Sharew and
Hairston-Strang 2005; Mariotti et al. 2015). For instance, height growth of holm
oak was promoted under shelters with moderate light transmission (55%) but not
within highly transmissive shelters (70%, Oliet and Jacobs 2007). On the contrary,
too dark tree-shelters (10% light transmission) deplete height growth due to
resources limitations (Vázquez de Castro et al. 2014). The use of shelters with an
appropriate length that fits herbivore size and light properties that stimulates height
growth is considered a good tool to reduce browse damage of young oaks (Gillespie
et al. 1996; Taylor et al. 2006; Dey et al. 2008; Chaar et al. 2008).

On the other side, oaks can also be established by direct seeding. Setting acorns
within tree shelters below the soil surface has shown good results for both tem-
perate (Löf et al. 2004; Dey et al. 2008; Valkonen 2008) and Mediterranean oaks
(Cortina et al. 2009) (Fig. 14.11c). Apart from protecting seeds from predation,
improvement of microenvironment at both soil and air levels around sheltered

cFig. 14.11 Effect of the protection method (unprotected, ventilated tree shelter and unventilated
tree shelter) and establishment method (direct acorn seeding vs. one-year-old seedlings) on the
survival (a) predawn water potential measured at the end of the spring (b) and in mid-summer
(c) and of the first growing season in the field of Quercus faginea. Survival was measured three
years after planting. Data are means ± one SE. n = 6 and 75 for water potential and mortality
data, respectively. The experiment was done in an abandoned wheat cropland in Santorcaz,
Madrid, Spain. Both tree shelters were Tubex-Press 0.65 m but the ventilated shelters had two
3 cm in diameter holes cut 14 cm from the lowest end of the shelter. Planted seedlings were
cultivated in Forest Pot 300 containers. Source Villar-Salvador, unpublished data
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acorns in spring can explain the superior emergence ratios of recalcitrant acorns of
oaks (Oliet et al. 2015).

Overall improvements in survival of planted Mediterranean oaks and protection
and height growth stimulus of tree shelters of oaks from Mediterranean and wet
biomes lead to conclude that tree shelters are good allies in restoration and plan-
tation of oak forests. A better understanding of ecophysiological processes involved
during establishment will help to refine shelters features such as wall light trans-
mission to fit requirements of each species and/or environmental conditions of the
planting site, specially under Mediterranean conditions.
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Chapter 15
Competition Drives Oak Species
Distribution and Functioning in Europe:
Implications Under Global Change

Jaime Madrigal-González, Paloma Ruiz-Benito, Sophia Ratcliffe,
Andreas Rigling, Christian Wirth, Niklaus E. Zimmermann,
Roman Zweifel and Miguel A. Zavala

Abstract Oaks are a widely represented woody species across the main European
forest biomes, ranging from semi-arid Mediterranean shrub lands to cool temperate
and transitional boreal forests. We provide quantitative evidence of large-scale
distribution and abundance patterns of oaks across Europe. In addition, we present
key demographic processes, such as mortality, which underlie deterministic
mechanisms behind large-scale distribution patterns; chiefly competitive exclusion
and complementarity versus environmental filtering along the main energy-pro-
ductivity gradient of Europe. Finally, we investigate the role of concomitant climate
changes, land use legacies and management regimes as key drivers of future oak
forest distribution in continental Europe. Overall, oak distribution and dominance at
the population and community levels is largely determined by environmental fil-
tering together with intra- and inter-specific functional differences as major ele-
ments driving oak species distribution and dominance at the population and
community levels, but these processes are strongly modulated by global change
which may result in a significant alteration of current distribution of European oak
forests.
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15.1 Oak Forests in Europe

Oaks represent a functionally diverse group of woody species and are widely
distributed across the northern hemisphere. Although most oak species are trees,
some ecotypes and species are shrubs, especially in dry ecosystems. Oaks exhibit
important plastic responses to the local conditions and thus can present a variety of
morphological types depending on ecological factors such as herbivory, drought or
competition (Kleinschmit 1993). In general, oak forests are highly valued ecosys-
tems from the viewpoint of human economical and cultural interests, and their
distribution and physiognomy has been greatly modulated by humans since the
Neolithic (Barbero et al. 1990). Spatial and temporal climate variability, as well as
global climate changes during the last century, are also decisive factors for
understanding contemporary oak species biogeography (Comes and Kadereit 1998;
Saurer et al. 2014). Thus, not only past climatic fluctuations, but also agricultural
intensification and, more recently, widespread agricultural land abandonment
associated with human migration from rural to urban areas are recognized as major
forces leading to recent oak encroachment, expansion or decline in different
European regions (Prentice et al. 1996; Küster 1997; Thomas et al. 2002; Urbieta
et al. 2008; Gimmi et al. 2010; Zweifel et al. 2009). Contemporary species dis-
tribution, however, also demands an in-depth understanding of community
assembly determinants along environmental gradients. For example, significant
phylogenetic overdispersion in oak-rich communities in North America suggests a
major role of competitive interactions and phenotypic traits in community assembly
(Cavender-Bares et al. 2004). Thus, a full understanding of future oak species
distribution and dominance requires not only a solid characterization of climate-oak
relationships, but also the role of intra- and interspecific interactions modulated by
contemporary global changes as key drivers of oaks population dynamics.
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Two main deterministic mechanisms driving species assembly along large-scale
environmental gradients have been proposed: (i) environmental filtering and
(ii) competitive exclusion. The environmental filtering hypothesis supports a major
role of the physical environment in shaping species’ biogeographical ranges.
Species are sorted along environmental gradients based on functional traits that
confer adaptation to the prevailing abiotic conditions (Diaz et al. 1998). In the
particular case of continental Europe, a main climatic gradient associated with
increased energy and reduced precipitation southwards is recognized as a primary
large-scale driver of species ranges (Whittaker et al. 2007). Nonetheless, current
species distributions do not reflect a perfectly stable relationship between species
traits and climatic conditions (Holt 2003). Fossil evidence from pollen and wood
debris has largely improved our understanding of past and current migration
dynamics of oak species following the post-glacial climatic fluctuations from gla-
cial refugia in southern peninsulas (Svenning and Skov 2007) and a number of
northern outlier populations (Feurdean et al. 2013). Northernmost limits of oaks
coincide with the temperate-boreal transition (c. 60°N). At the other end of the
energy gradient in Europe (c. 36°N), oak species distribution is determined by the
presence of functional adaptations to drought such as deeper root systems (Canadell
et al. 1996), wood anatomical traits (Fonti et al. 2013), sclerophyllous leaves
(Acherar and Rambal 1992) and reduced tree height (Poorter et al. 2012). Thus, the
abiotic filtering is expected to limit oak species distributions according to their lack
of functional adaptations to environmental constraints from the best-productive
conditions in temperate areas to either cold or dry-warm ends of the continental
energy gradient in temperate/boreal and Mediterranean biomes, respectively.

Competitive exclusion then acts as a second major filter, according to functional
trade-offs between adaptations to above- and belowground competition (Tilman
1988; Zavala et al. 2000; Sánchez-Gómez et al. 2008). Interestingly, while envi-
ronmental filtering implies functional convergence in co-existing species under the
same abiotic constraints (Chase and Leibold 2003), the competitive exclusion
principle states that two species competing for identical limited resources cannot
coexist indefinitely at constant population levels (Hardin 1960). This necessarily
implies that (i) the species with the functional advantages will prevail and
(ii) competition is less intense in multispecies communities with increased functional
dissimilarity between the co-existing species. At this point, the concept limiting
similarity arises to denote a theoretical maximum functional overlap between two
species for stable coexistence to be possible. The signature of competitive exclusion
in multispecies communities might nonetheless be partially blurred because a myriad
of biotic and abiotic influences alter the net effect of a single species on another.
Thus, competition at the community level is often described as a density-dependent
phenomenon that can be summarized as an aggregation or stock variable. For
example, increases in tree density, stand wood volume or stand basal area are
expected to reduce tree growth or increase mortality (Gómez-Aparicio et al. 2011;
Ruiz-Benito et al. 2013). At the regional scale, and even at the scale of a forest stand,
the most conspicuous evidence of competitive exclusion on species assembly is the
spatial segregation of species (Shigesada et al. 1979; Gotelli and McCabe 2002).
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A less obvious signature of competition on species assembly is the
density-dependent mortality of species within communities. Most evidence of
density-dependent mortality in tree species usually reflects the deleterious effects of
extreme climatic events such as drought (Jump et al. 2017). This climate-induced
mortality has been therefore attributed to exacerbated abiotic stresses in crowed
forest communities. However, mortality associated with intra- or interspecific
competition at the productive end of the distribution range of species has rarely been
documented as indirect evidence of disparate light harvesting strategies and thus
differential aboveground competitive abilities. In parallel, a positive role of tree
diversity should be more conspicuous in highly competitive environments where
functional dissimilarity among heterospecific traits might reduce the most deleteri-
ous impacts of competition (e.g. Ruiz-Benito et al. 2017a).

Recruitment limitation is expected to play an important role in community
assembly, reinforcing filtering effects across large-scale environmental gradients
(Hurtt and Pacala 1995; Clark et al. 1999). In addition to filtering effects, recruit-
ment limitation in oaks can arise from a myriad of factors ranging from masting
behaviour, to seed predation, to lack of parent reproductive individuals or the
absence of dispersers (e.g. Pérez Ramos et al. 2008, 2015). As a result of filtering,
competitive and dispersal processes in oak dynamics resemble a stochastic process
and, as a result, oak species are far from being in a stable relationship with the
physical environment, and in particular with climate (e.g. García-Valdés et al. 2015;
Sáenz-Romero et al. 2016). The non-equilibrium dynamics reflect the balance
between colonisations and extinctions and results in spatially explicit movements of
species following secondary succession dynamics in changing environments.
Aspects such as landscape fragmentation and patch isolation are critical as they
directly constrain colonisation dynamics through uneven seed dispersal. In the
particular case of oak species, seed availability and dispersal are decisive factors in
understanding recent widespread passive restoration of forests after land use ces-
sation in Europe (Pérez-Ramos et al. 2008). Animals, such as mice or jays, are
responsible for the majority of oak seed dispersal, and so the probability of an oak
species reaching an empty habitat can be expressed as a function of distance to
suitable sites (i.e. fragmentation) and animal mobility across the landscape
(Montoya et al. 2008; Purves et al. 2007a, b). Thus oak population dynamics is
contingent upon spatial habitat configuration and the presence of key dispersers,
which in turn can depend on the maintenance of a given ecological network.

In this chapter we provide evidence of competition as a major driver of oak
species dominance through comparison between abundance and mortality data
along the energy-productivity gradient of Europe using National Forest Inventory
data. We show in particular how tree mortality rates are higher on the more pro-
ductive side of the species ranges along the energy gradient. Secondly, we provide
quantitative evidence that increased functional diversity reduces competition and
thus promotes species coexistence and productivity in oak forests across Europe.
Species interactions therefore modulate environmental filtering determining both
transient dynamics and the outcome of succession. While competitive exclusion is
thought to dominate at the high productivity end of an environmental gradient,
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complementarity among disparate functional types (e.g. angiosperm vs. gym-
nosperm) can be critical for oak recruitment dynamics particularly in harsh envi-
ronments (Lookingbill and Zavala 2000; Urbieta et al. 2008). A number of
experimental studies have concentrated on the ecophysiological mechanisms
(Zweifel et al. 2009) underpinning environmental filtering in oaks distribution
(Abrams 1996; Bréda et al. 2006; Morin et al. 2007; Arend et al. 2011, 2013;
Chaps. 1 and 2) and modelling studies have documented in detail the role of
competitive exclusion as a driver of secondary succession and species distributions
(Huston and DeAngelis 1994; Pacala and Rees 1998; Kohyama and Takada 2009;
Kunstler et al. 2012) and yet, to our knowledge, few studies have provided
empirical large-scale quantitative evidence of competition and mortality as a driver
of regional tree species distribution (but see Ruiz-Benito et al. 2013, 2017b).
Finally, we discuss how the fate of oak forests in Europe might be crucially
depending as well on several concomitant global change processes chiefly agri-
cultural land abandonment and climate change.

15.2 Competition Drives Oak Species Distribution

Oaks are widely distributed woody species in cool temperate and Mediterranean
forest biomes of Europe. Using abundance data from National Forest Inventories of
Germany and Spain marked spatial segregation of oak species can be seen along the
main latitudinal PET climatic gradient (i.e. humid-cool to dry-warm conditions
southwards) (Fig. 15.1). Two major functional types in oak species are represen-
tative of the large-scale climatic filtering from cool temperate to Mediterranean
ecosystems: i.e. deciduous versus evergreen and sclerophyllous versus
non-hard-leaved. Deciduous oak trees are distributed throughout the cool temperate
biome with a (distinct) dormancy period, where dominance is largely controlled by
a non-conservative leaf water economy that maximizes specific leaf area and light
yielding during the growing season. Conversely, sclerophyllous leaves are a more
efficient strategy to minimize water loss through investments in impermeable wax
coatings and stomata distributed at the underside of leaves. These general functional
types, however, do not represent rigid functional strategies since high variability in
leaf traits can be found both within species (i.e. phenotypic and genotypic plas-
ticity) and between species within functional types (Table 15.1). The most abun-
dant oak species in cool temperate latitudes are Quercus robur and Quercus
petraea. They are both highly competitive species that are present in many tem-
perate forest typologies of Europe (Eaton et al. 2016). Southwards, the growing
seasonal water shortage, associated with the moisture advection blockage in the
Azores, determines a gradual species replacement. In the temperate-Mediterranean
transition, marcescent-deciduous oaks such as Quercus humilis, Quercus faginea,
Quercus pubescens and Quercus pyrenaica dominate until their full replacement by
sclerophyllous, drought-tolerant, species such as Quercus suber or Quercus ilex in
Mediterranean water-limited forests. These regional patterns are complemented by
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small-scale, local patterns where topography and aspect among other factors
associated with water balance determine local species segregation (i.e. sclero-
phyllous oaks such as Q. suber in equator facing slopes and marcescent oaks such
as Q. canariensis in pole-faced slopes, Urbieta et al. 2008).

Climatic conditions are nonetheless insufficient to fully understand the species
spatial arrangement along the energy-productivity gradient. Above- and below-
ground competition are widely recognized as key drivers of species assembly and
coexistence (Tilman 1988; Huston and DeAngelis 1994). In size-structured

Fig. 15.1 Oak species distribution obtained from the national forest inventory of Spain
(Villaescusa and Díaz 1998; Villanueva 2004) and Germany (Kändler 2009). Annual Potential
Evapotranspiration (PET, mm) obtained from: Zomer et al. (2008). Global Aridity Index (Global-
Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. CGIAR
Consortium for Spatial Information. Published online, available from the CGIAR-CSI GeoPortal
at: http://www.csi.cgiar.org
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communities such as forests, aboveground competition alone can greatly explain
long-term species turn-over and forest dynamics (Kohyama and Takada 2009,
2012). Tree architecture and resource-use trade-offs are thus critical aspects
involved in species competitive ability (Poorter et al. 2006, 2012). The spatial
segregation of oak species along the PET gradient in Fig. 15.2 was strongly driven
by stand basal area (SBA, as a proxy for density-dependent competition). Results of
Generalized Additive Models (GAM) applied to species dominance data (nspecies/
Ntotal) support a significant role of SBA in driving oak species abundance
(Fig. 15.2; Table 15.2). Moreover, competitive effects appear more important
towards the driest end of the climate gradient, where shading conditions may
aggravate stresses associated with soil water scarcity (Valladares and Pearcy 2002;
Pardos et al. 2005). Adapting to shade and drought simultaneously represent a
major challenge for plants to establish and survive in water-limited environments
(Holmgren et al. 1997, 2012; Holmgren 2000) because, in general, tolerance to
shade and drought are inversely correlated (Smith and Huston 1989; Niinemets and
Valladares 2006). The two sclerophyllous species, Quercus suber and Quercus ilex,
clearly segregate along the stand basal area axis in the driest side of the climatic
gradient: i.e. Quercus suber dominates under moderately high stand basal area and
Quercus ilex in open woodlands. This is consistent with studies showing greater
Q. ilex regeneration rates in open forests, particularly in pine and oak mixed forests
(e.g. Urbieta et al. 2011). Quercus suber has been found to perform better under
deep shading irrespective of the water supply (Quero et al. 2006). Under such
conditions, Quercus suber had higher specific leaf area (SLA) and carboxylation
rates (A) than Quercus ilex and thus a more positive carbon balance. Under low
stand basal area, Quercus ilex can also co-exist with two marcescent-deciduous
trees such as Quercus faginea and Quercus pyrenaica. Quercus faginea, which
represents a transitional taxon between sclerophyllous and deciduous (i.e.
small-leathery leaves), is the least shade-tolerant oak species (Gómez-Aparicio et al.
2011) and thus tends to dominate only in open forests at intermediate positions of
the climatic gradient while, Quercus pyrenaica, is more like a typical deciduous

Table 15.1 Traits of principal oak functional types (FT) included in the German and the Spanish
forest inventories (data obtained in the TRY project)

Species FT MHT (m) WD (kg/m3) SM (mg) LMA (gr/m2) Nmass (%)

Quercus faginea D/
M

23 788.90 1747.21 109.53 1.9

Quercus ilex SC 16 900.80 2310.53 150.80 1.4

Quercus petraea D 36.5 716.35 2248.19 71.24 2.1

Quercus pyrenaica D/
M

24 825.00 3000.77 76.12 1.8

Quercus robur D 37 592.22 3225.85 68.45 2.3

Quercus suber SC 19 827.07 3837.38 93.88 1.6

3SC Sclerophyllous; D/M Deciduous marcescent; D Deciduous. Legend of traits: MHT Maximum
tree height; WD Wood density; SM Seed mass; LMA Leaf mass per area; Nmass Percentage of
nitrogen in leaves

15 Competition Drives Oak Species Distribution … 519



species and tends to dominate in denser transitional forests. For example
Madrigal-González et al. (2014) showed indirect evidence of the density-dependent
segregation of Quercus ilex and Quercus pyrenaica in shrub communities in
central-western Spain. Shrubs were shown to facilitate the establishment of the
sclerophyllous tree, Quercus ilex, only at early-open successional stages in high
elevations. At mid to late successional stages in high elevations, shrub communities
facilitate the deciduous oak, Quercus pyrenaica, and hindered the development of
Quercus ilex saplings most likely due to increased light interception by the mature
encroached shrubs. The light environment is also pivotal for the differential
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regeneration of temperate deciduous tree species along soil resource gradients in
temperate forest biomes. Experimental evidence in contrasted sunlight conditions
supported a better performance of Quercus petraea compared to Quercus pyrenaica
seedlings due to increased SLA and lower light compensation points, which enables
the maintenance of a positive carbon balance under increased shading conditions
(Rodríguez-Calcerrada et al. 2008).

Trade-offs in allocation of resources between roots and shoots are decisive
factors for a tree’s ability to thrive under deep shade conditions. Species in dry
environments tend to invest more resources in root development to enhance soil
filling and water uptake (Mokany et al. 2006). However, reduced root-shoot ratios
reduce a tree’s capacity to rapidly reach the forest canopy and to develop an
efficient light yielding capacity, and thus overcome shading limitations.
Experimental evidence has shown that temperate deciduous species such as
Quercus petraea tend to invest more resources in aboveground organs, including
annual internode elongations, than marcescent-deciduous oaks such as Quercus
pyrenaica in identical shading levels (Rodríguez-Calcerrada et al. 2008).
Allometries for the most abundant oak tree species in the Iberian Peninsula strongly
support these results. In particular, species segregation along tree height and crown
length dimensions strongly resembles species segregation along the energy-water
availability gradient in Iberia (Poorter et al. 2012). Following similar reasoning,
other deciduous tree species such as Fagus sylvatica can even exclude Quercus
petraea and Quercus robur under mild temperate conditions. Experiments con-
ducted in protected chambers have reported a higher shade-tolerant ability for
Fagus sylvatica compared to Quercus robur seedlings (Welander and Ottosson
1998). In particular, Quercus robur and Fagus sylvatica seedlings showed similar
tolerance to shading in the first year. However, by the second year, greater light
interception by Fagus caused strong negative effects on Quercus robur. Thus, the
dominance of deciduous oaks can be strongly reduced in highly productive tem-
perate environments under the influence of strong competitors, such as Fagus
sylvatica. The recent advance of Fagus sylvatica in Western Europe to the detri-
ment of temperate deciduous and conifer dominances has been widely documented
(Küster 1997).

Table 15.2 Statistics of generalized additive models applied to dominance data (ni/N) of each oak
species in each sampling plot (German and Spanish Forest inventories)

Species Spline term Chi_sq p-value Dev. explained (%)

Quercus suber s(PET, SBA) 739.6 <2e−16 11.30

Quercus ilex s(PET, SBA) 3916 <2e−16 30.60

Quercus faginea s(PET, SBA) 523.6 <2e−16 11.90

Quercus pyrenaica s(PET, SBA) 823.9 <2e−16 18.20

Quercus petraea s(PET, SBA) 432 <2e−16 31.40

Quercus robur s(PET, SBA) 367.1 <2e−16 23.20

A Chi-square statistic (Chi-sq) and associated p-value, and a deviance explained estimate (Dev.
Explained) are shown
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At the coldest end of the gradient, a question arises regarding the absence of
drought tolerant species such as Quercus ilex, at least in open forests where above-
ground competition is negligible. In such situations, onlyQuercus robur occurs up to
the boreal latitudes, where all oaks are excluded. The study of cold hardiness in
different oak tree species suggests amajor role of soluble carbohydrates for immediate
responses to freezing (Morin et al. 2007). Inter- and intraspecific variability in the
concentration of soluble carbohydrates was influenced by temperature, and differed
among the three species considered (i.e. Quercus robus, Quercus humilis, Quercus
ilex) according to their position along themain latitudinal-climatic gradient of Europe.
Solute concentration is directly associated with the avoidance of intra- and intercel-
lular ice formation and the subsequent cellular dehydration (Levitt 1978). High solute
concentration, chiefly low-molecular-weight carbohydrates, can stabilize membranes
thus conferring cells with resistance against water loss under freezing conditions
(Cavender-Bares et al. 2005).

Predicted oak species dominances along the climatic gradient (Fig. 15.2)
strongly overlapped at intermediate-low stand basal area (SBA) and clearly seg-
regated at high SBA. It is nonetheless difficult to detect the signature of competitive
exclusion in natural multispecies communities. The most drastic impact of com-
petition on a given species’ distribution should reflect a full spatial segregation from
other species. Nonetheless, spatial segregation often occurs at scales in which other
forces such as herbivory, nutrient availability or the disturbance frequency plays a
key role. Thus, complex long-term experimental designs would be needed to clearly
partitioning each effect.

Assuming that species colonization/extinction dynamics are not at equilibrium,
we can examine likely effects of competition on tree species distribution by com-
paring the relative positions of species individual mortality patterns and their
occurrence. Specifically, we can compare in a multivariate space—including
neighbourhood competition—the position where the probability of mortality for a
given species is at its highest versus the position in which the species has the
highest probability of occurring. We could explore then at which side of the species
distribution range tree mortality is more likely: i.e. whether tree mortality is biased
towards either the abiotic or biotic constraints of the species range along the cli-
matic gradient. To examine this idea, we conducted a detrended correspondence
analysis (DCA) using a matrix of sampling plots � species (National Forest
Inventories of Germany and Spain) in which mortality of each oak species was
included in the model. The highest mortality probability in oak species appeared to
be biased to the side of the distribution range where they faced their main com-
petitors (Fig. 15.3). Thus, the two sclerophyllous oaks, Quercus ilex and Quercus
suber, and the transitional oak Quercus faginea showed maximum mortality
probability oriented to Quercus pyrenaica, their most direct competitor in the
temperate-Mediterranean bioclimatic transition. In turn, the highest mortality
probability of Quercus pyrenaica was strongly biased towards maximum occur-
rence probability of Quercus robur. Finally, maximum mortality probability of
Quercus robur and Quercus petraea was distributed along the most productive
range of the climatic gradient where other highly competitive species, such as
Fagus sylvatica, have their maximum occurrence probabilities.
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Mortality due to competition has been modelled as a self-thinning process in
young crowded communities (Yoda et al. 1963; Westoby 1984; Lonsdale 1990;
Pretzsch 2006; West et al. 2009). As saplings grow competition gets more intense
until sudden mortality reduces tree density up to a steady-state population
demography (Yoda et al. 1963; Peet and Christensen 1987). However, the results
presented here do not include early self-thinning phases. From then on, mortality
becomes evident in understory individuals, particularly shade-intolerant species in
which a negative carbon balance due to insufficient light intensity leads to carbon
starvation and decline. Yet, mortality patterns associated with tree size in NFI
depict an inverted-J curve along the size gradient which aggravates under increased
basal area of large trees (Ruiz-Benito et al. 2013). These findings reinforce the idea
that our species maximum mortality probabilities largely hold on young understory
trees under intense competitive environments. Other causes of mortality such as
wind throw or drought might largely affect tree demography along the species
ranges. However, such oak mortality events have been described more as punctual

-2 0 2 4 6 8 10

-1
0

1
2

3
4

5
6

SBA MTS

MATMTCQ

AP

PScv

PET

WAI

DCA-Axis1

DC
A-

Ax
is2

D
C

A 
-A

xi
s 

2

Abialb

Betpen

Fagsyl

Picabi
Pinhal

Pinnig

Pinpina

Pinsyl

Quefag

Queile

Quepet

Quepyr

Quero

Quesub
Quefag

Queil

Quepet

Quepyr

Querob Quesub

Q
ue

pe
t

Q
ue

ro
b

Q
ue

py
r

Q
ue

fa
g

Q
ue

ile

Q
ue

su
b

-1 0 1 2 3 4 5 6 7
DCA -Axis 1

SBA – Stand Basal Area
AP – Total Annual Precipita on
WAI – Water Availability Index (Prec – PET)
MTS – Mean Tree Size (mean dbh)
MTCQ – Mean Temperature of the Coldest Quarter of the year
MAT – Mean Annual Temperature
PET – Poten al Evapotranspira on Index (Thornthwaite index)
PScv – Precipita on seasonality (coefficient of varia on)

-1
0

1
2

3
4

5
6

1
0

Fig. 15.3 Results of the detrended corresponded analyses including main species in Europe
(Abialb Abies alba; Picabi Picea abies; Fagsyl Fagus sylvatica; Betpen Betula pendula; Quepet
Quercus petraea; Pinsyl Pinus sylvestris; Querob Quercus robur; Quepyr Quercus pyrenaica;
Quefag Quercus faginea; Pinnig Pinus nigra; Queile Quercus ilex; Quesub Quercus suber;
Pinpina Pinus pinaster; Pinhal Pinus halepensis). In red, six more columns in the species x
sampling plots matrix were included to denote presence of death individuals in each of the six
Quercus species considered. Biplot diagram on the right shows the distribution of
climatic-structural environmental variables regarding to the two main ordination axes (see legend
below for variable names). Red arrows link distribution centroids of species with their
corresponding mortality centroids. On the bottom of the DCA plot, Gaussian responses of each
Quercus species are represented based on the standard deviation and the centroid (multidimen-
sional mean) in the main ordination axis (DCA-Axis1). Red bars represent the centroid
(multidimensional mean) of mortality for each oak species in the first DCA axis
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events in time and space so their imprint in tree species distribution should demand
longer time records.

15.3 Competition and the Maintenance of Oak Forest
Functioning

The principle of competitive exclusion and niche theory suggest long term local
mono-dominance although this may not be the case for slow growing relatively shade
tolerant species such as oaks (e.g. Falster et al. 2017). Functional diversity is an
important component of the functional composition of European forests, and has been
shown to promote tree productivity, carbon storage and sapling abundance
(Nadrowski et al. 2010; Zhang et al. 2012; Ratcliffe et al. 2016b; Van der Plas et al.
2016; Madrigal-González et al. 2016; Ruiz-Benito et al. 2017a; Chamagne et al.
2017). It has been hypothesised that the positive effects of diversity on tree pro-
ductivity are due to complementarity and selection mechanisms (see e.g. Loreau and
Hector 2001). Complementarity effects are hypothesised to increase ecosystem
function through facilitation and niche partitioning, because functionally diverse
species assemblages enhance resource acquisition and use, and nutrient retention
(e.g. Loreau 2000). Oaks are angiosperms plant species that functionally contrast
with gymnosperms, particularly in terms of wood density, leaf mass per area and
hydraulic traits (see e.g. Carnicer et al. 2013; Ruiz-Benito et al. 2017b). Ratcliffe et al.
(2016b) observed that functional identity (i.e. dominant community trait values) was
particularly important for tree growth at the latitudinal extremes of Europe, and
proposed that the importance of this functional identity reflects a strong trait-based
differentiation due to successional transitions from gymnosperms to angiosperms in
the Mediterranean forests and the reverse in boreal forests. The high importance of
functional identity may also be evidence of oak replacement of pine species under
climate warming and increased drought intensities (e.g. Galiano et al. 2010; Vilá-
Cabrera et al. 2013; Rigling et al. 2013; Zweifel et al. 2009), together with secondary
succession processes (see Ruiz-Benito et al. 2017b). These transitions agree with
worldwide studies that have found that certain traits (such as those in evergreen oaks)
are consistent with a larger resistance to intense droughts (see Greenwood et al.
2017). However, forest management and stand density may play a critical role on the
effects of complementarity and diversity, and particularly to certain responses to
extreme events such as drought (see e.g. Jump et al. 2017; Weber et al. 2008; Gimmi
and Bürgi 2007). Looking at mixing effects in temperate forests, Pretzsch et al. (2013)
reported overyielding in oak-beech mixtures to be dependent on site fertility
according to expectations of the stress gradient hypothesis (i.e. positive interactions
are expected to be more frequent under severe environmental conditions, Bertness
and Callaway 1994): fertile sites exhibited under-yielding while infertile sites
exhibited over-yielding. Besides stress associated with soil fertility, beech (as with
Pines) can benefit from hydraulic lift abilities of oaks in temperate areas which
increase soil moisture and also indirectly nutrient levels.
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In oak forests from the forest inventories of Spain and Germany we observed
larger tree growth in mixed than in monospecific forests (Fig. 15.4) although this
correlation can be based on indirect effects and not necessarily on a causal diversity
effect. The pattern of exploratory analysis between tree species richness and growth
in both forest inventories showed a positive relationship in oak forests (Fig. 15.5) in
agreement with observational studies that have generally found a positive effect of
diversity on forest productivity and biomass storage (see Ratcliffe et al. 2016a).
Across Europe it has been found that diversity effects on productivity show the
highest importance in Mediterranean regions (see e.g. Ruiz-Benito et al. 2014)
declining along the temperate biome (Ratcliffe et al. 2016a). In addition,
Ruiz-Benito et al. (2017a) suggested that the effect of diversity on sapling abun-
dance is much larger than the effect on tree growth, while no effect of diversity on
mortality was found. Regeneration and mortality, however, are critical demographic
processes underlying forest dynamics and succession and, therefore, the overall
magnitude of the effects of diversity on forest functioning might have been
underestimated. Areas with higher functional diversity could reflect the presence of
individuals with contrasting functional traits, such as pine-oak forests that are
typical across Europe depending on the environmental conditions (see e.g. Zavala
and Zea 2004; Carnicer et al. 2014). Jucker et al. (2015) found that mixing pines
and oaks at a stand increased aboveground wood production by reducing

Fig. 15.4 Box-plot of tree growth in oak forests between mixed and monospecific plots in Spain
(SP) and Germany (DE)
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competition for light between neighbours. Pines in mixed stands received more
light and had faster growth rates than in monoculture. Interestingly, the likely
complementarity effects underpinning the pine-oak association fade out under
extreme drought conditions (see also Zweifel et al. 2009).

The ability of species to tolerate shade is considered one of the primary
mechanisms behind positive effects of species mixing on tree growth and forest

Fig. 15.5 Species niches and their respective shifts over time for four European oak species.
Colour-coded are suitable habitats found in 0–30, 30–60, and 60–100% of all model combinations
(regional models according to Lindner et al. 2014)
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functioning (Liang et al. 2016). Morin et al. (2011), using a forest succession
model, showed how increased species richness promotes forest functioning, and
enhanced demographic responses to mortality events, by means of aboveground
complementarity only (i.e. more efficient partitioning of solar radiation).
Complementarity effects can take place both in space and time (Holzwarth et al.
2016). In space, different light harvesting strategies are critical in explaining
increased resource yielding in mixed forest stands (Ishii and Asano 2010; Ishii et al.
2013). In particular, specific leaf area has been shown to be directly involved with
carbon yields and aboveground competition in forests worldwide (Kunstler et al.
2016). Grassland studies revealed how differences in leaf phenology determine
temporal segregation of light capture and thus species coexistence (Mason et al.
2013). Tree size is directly related with access to solar radiation in forests and thus
tolerance to shading of small trees plays a pivotal role in forest dynamics and tree
development (Kohyama and Takada 2009, 2012). Decoupling between juvenile and
adult tree leaf phenology has been reported in mixed temperate forests (Augspurger
2003; Vitasse et al. 2014). Ontogenetic differences in tree size may be thus critical
in interpreting diversity-productivity relationship in forests (Nadrowski et al. 2010),
especially with secondary succession (Holzwarth et al. 2016). Trees have a con-
tinuous size development that modulates growth (Stephenson et al. 2014), stand
productivity (Coomes et al. 2014) and within-community interactions (Le Roux
et al. 2013). A different size of individuals implies not only niche differentiation
between young and adult trees (either conspecifics or heterospecifics; see Niinemets
2010) but also idiosyncratic growth responses along climatic/structural gradients
(Zhang et al. 2012; Madrigal-González and Zavala 2014). This implies that indi-
vidual responses to environmental factors change through ontogeny and thus,
diversity-productivity relationships might shift during secondary succession.
Following this reasoning, Madrigal-González et al. (2016) observed that tree size is
critical for complementarity effects across Europe in support to the idea that
competitive interactions for any given focal tree are contingent on its size and thus
asymmetrical interactions in forests are pivotal also for the diversity-productivity
relationships. In particular reversals in the strength of complementarity effects due
to the size of focal trees across the European latitudinal PET gradient were
observed: i.e. while complementarity effects were stronger in small trees in tem-
perate forests, only large trees showed complementarity effects in Mediterranean
forests. In contrast, small trees in Mediterranean forests showed negative growth
responses to increased functional dissimilarity in the neighbourhood. This suggests
that saplings of oak species such as Quercus ilex and Quercus faginea grow less
when mixed with conifer species in dry forests. This is not to say that oak species
are not able to recruit beneath adult pine trees (which otherwise is a common
successional pathway in the Mediterranean), but to affirm that oak saplings growing
faster beneath oaks might be reflecting trade-offs in water-limited forests to cope
with shade and drought (e.g. Zavala et al. 2000). For large trees, the findings of
Madrigal-González et al. (2016) are consistent with the larger role of diversity in
Mediterranean water-limited forests at the stand scale (e.g. Ratcliffe et al. 2016a;
Ruiz-Benito et al. 2017a).
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15.4 Global Change and the Fate of Oak Forests
in Europe

Several factors determine the response of a tree species to changing environmental
conditions, such as the physiological ability of a tree species to cope with envi-
ronment variability including variations in climate, the legacy effects of past forest
management, as well as changes in current forest management (Gimmi and Bürgi
2007). These factors can be considered as drivers of the contemporary distribution
and potential range shifts of a species. If the climatic conditions change, tree species
are forced to adapt, to migrate, or they go locally extinct or at least simply persist
for shorter or longer times locally with little capacity to expand from there. The
adaptive and plastic response of a species largely depends on its physiological traits
(Martinez-Vilalta et al. 2009; Sterck et al. 2012) and the level of competitive stress
at a specific site (Purves et al. 2007a, b). There is evidence that growth but also the
risk of local mortality depends on how strongly the current conditions deviate from
optimal conditions for a respective species (Sáenz-Romero et al. 2016). According
to the niche theory, every species has a specific range of environmental conditions
within which it can maintain a non-negative population growth rate over time. This
means that there are limits of climate conditions beyond which a specific tree
species is not able to survive through time, either because the environmental
conditions are beyond its physiological tolerance (fundamental niche is exceeded)
or the local competitors are too strong for the focal species to survive (realized
niche is exceeded). The more the conditions deviate from the optimum of a species’
niche, the more likely we are approaching a species’ niche edge, and the closer the
current conditions are locate at a species’ niche edge, the more likely it is that a
species will respond with migration or local extinction if the conditions shift further
away from species’ optima.

To what extent a species is able to colonize new areas after climate change
depends on the degree of climate change, the availability of suitable areas in
reachable distance, and a species’ capability to migrate. Seed dispersal (Snell et al.
2014) and forest habitat connectivity (Meier et al. 2012) play an important role in
determining migration, the interaction with existing species (Meier et al. 2012;
Nabel et al. 2013; Svenning et al. 2014) and even the origin of a species
(Sáenz-Romero, GCB, 2017). Together these factors determine the maximum speed
at which a tree species can migrate. Recent studies based on forest inventories show
that the species may migrate considerably slower (in the range of <100 m per year)
than assumed earlier (<1000 m per year) under conditions that are less strongly
fragmented and managed (e.g. Powell and Zimmermann 2004). In a study focusing
on Holm oak (Quercus ilex), one of the main reasons for the slow migration rate
was found to be the performance to interact and compete with other species in the
new area in a fragmented and managed landscape (Delzon et al. 2013). Independent
of the exact migration rate per year, many studies on the fate of tree species in
Europe state a migration speed too low to keep track with the predicted change in
climate (Delzon et al. PLOS one 2013; Feurdean et al. 2013). This indicates that for
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a given species, a considerable proportion of the current range will fall outside of
the realized niche of the species at a rate that is faster than the species can cope with
by means of migration.

15.4.1 Climate Change Projections for Europe

Climate change impact studies that analyse the potential responses of tree species
ideally include regional variations in climate change, the change in the frequency of
extreme events, as well as uncertainties regarding the expected changes. While most
species of a region are to some extent affected by the strength of mean changes in
temperature and humidity, every species and every life stage of each species
responds differently to changing climate variability (Lindner et al. 2014). Using
simple scenarios and a limited set of climate variables and focusing on changes in
climate means likely misses some of the expected dynamics. However, little is
known to date on how changing extremes will affect species’ population dynamic
behaviour in the longer term, although we know that climate extremes (climate
variability) does explain the distribution of species to some extent (Zimmermann
et al. 2009). Thus, the impact of extremes on future species responses remains
poorly predictable to date.

Here, we present an analysis of oak species response to climate changes using
six statistical, niche-based models to simulate the species response and climate data
from six regional climate models (RCMs) and included five biologically relevant
climate variables in order to include relevant drivers of potential vegetation shifts
(Lindner et al. 2014). Details of the selected variables, statistical models and climate
data are given in Zimmermann et al. (2013). The RCMs were fed by global cir-
culation model (GCM) output originating from IPCC AR4 projections and are in
line with a projected 3.5–6.2 °C increase in global mean annual temperature by
2100 relative to pre-industrial levels (Peters et al. 2013). Summer temperatures are
expected to increase in the range between 1.3 and 4.1 °C with the highest increase
in Southern Europe and more pronounced away from coasts (Lindner et al. 2014).
Winter temperatures are projected to increase by 1.5–4.2 °C with North-eastern
Europe showing the highest increase. Summer precipitations are projected to
increase in Northern Europe (0–25%) and to decrease in Central (0–25%) and
Southern Europe (25–50%). Projected winter precipitations changes range from a
reduction of about 35% (mostly Southern Europe) to an increase of 5–40% (mostly
Central to Northern Europe). Further, the used RCMs project a strong increase in
the length of drought periods in Southern and South-Central Europe and a reduction
of the risk of drought stress in more northern latitudes (Lindner et al. 2014). More
generally, it is expected that temperature and precipitation extremes will increase
(Seneviratne et al. 2012) and that summer heat waves as experienced in 2003 and
2010 will become more frequent (Barriopedro et al. 2011). It is very likely that
these extreme events will have a stronger impact on forests than the gradual change
in average conditions.
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15.4.2 Model Predictions for Four Oak Species in Europe

In the following, results from niche-based model projections for Quercus ilex,
Q. suber, Q robur and Q. petraea are presented based on underlying information
illustrated in the review by Lindner et al. (2014). Figure 15.5 shows projected
potential range shifts between the calibration period 1961–90 (based on ICP Forest,
Level I data, Lorenz 1995) to the periods 1991–2010 and 2051–2080 based on the
above described climate change projections. The model projects the change in
suitable habitats in geographic space for the four oak species in Europe. The general
patterns of suitable habitats through time show a shift to the northeast for Q. robur.
This species largely disappears in Spain and in parts of France and new habitats
become suitable in the NE of Europe. A similar dynamic is projected for Quercus
petrea, however less pronounced than for Q. robur.

Q. ilex is projected to disappear in the SW of Spain and to gain new suitable
habitats in Western France, which is in line with the currently observed expansions
on of Q. ilex from plantations in this region (Delzon et al. 2013). Only marginal
changes occur in other areas of the current range. A shift from the SW to the NE of
Spain is projected for Q. suber. The species will find large areas to become suitable
in the West of France, in Central Italy, Macedonia, Greece, and Turkey.

All analysed oak species show more or less pronounced shifts in suitable
habitats, with comparably large areas of newly suitable towards the north (east) in
Europe and in higher altitudes within their current range. The projected new ranges
are of similar size or will be even larger. However, the simulations do not answer
the question, how fast the species are moving to these newly suitable areas, whether
they are able to track the changing climate conditions without time lags, or whether
they do or how fast they do disappear from areas that become unsuitable in the
future. This is because the models used include competition only implicitly and
have no dynamic processes included that would allow to simulate population
dynamics, migration behaviour or include the effects of geographical barriers on
migration (see Delzon et al. 2013; Lindner et al. 2014). A similar study where such
niche-based models were combined with the dynamic model TreeMig (Lischke
et al. 2006) revealed that only early successional species might be able to almost
keep track of projected climate changes and that many late successional species,
such as most oaks, tend to migrate very slowly and are by far less capable of
tracking climate change (Meier et al. 2012).

While the simulation of realistic migration is already difficult, the simulation of
local extinction is even more complex. A species usually disappears locally due to
one or both of two main constraints when the climate changing to conditions that
are outside of the realized niche: (a) the species still finds habitat that it can tolerate
physiologically, but it does not compete well in the long run because other species
are more competitive under these conditions; (b) the species cannot physiologically
cope with the new climate conditions. In the first case, a species might persist for
long time periods, spanning decades to centuries, and only slowly disappear once
stronger competitors invade the area locally. In the second case, an extreme event
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might rapidly cause large scale mortality events such as those reported in Allen
et al. (2010). In essence, it means that the local extinction of tree species is even
more difficult to predict. The niche-based models simply project that there is no
current evidence that the species can persist through time. The consequence is, that
the species will be replaced by others, ant this has monetary consequences for the
economies of entire Europe (Hanewinkel et al. 2013), particularly when the tran-
sition phase should lead to negative consequences for the local or regional provi-
sioning of ecosystem services with related impacts on the human communities.

A general outcome from projections such as those presented above is that:
(a) drought resistant tree species will become more wide-spread in comparison to
other European species, and (b) the more drought tolerant species tend to provide
lower economic benefits. Oak species will most likely gain considerable distribu-
tion range, particularly in Central Europe, due to their resilience against drought
events. This conclusion from modelling studies is supported by several field
experiments investigating regeneration (Arend et al. 2016), growth patterns (Weber
et al. 2007, 2008; Eilmann et al. 2009), and ecophysiological responses to changing
microclimate (Zweifel et al. 2007, 2009).
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