
Computing the Fault-Containment Time of
Self-Stabilizing Algorithms Using
Markov Chains and Lumping

Volker Turau(B)

Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
turau@tuhh.de

Abstract. The analysis of self-stabilizing algorithms is in the vast
majority of all cases limited to the worst case stabilization time starting
from an arbitrary configuration. Considering the fact that these algo-
rithms are intended to provide fault tolerance in the long run this is not
the most relevant metric. From a practical point of view the worst case
time to recover in case of a single fault is much more crucial. This paper
presents techniques to derive upper bounds for the mean time to recover
from a single fault for self-stabilizing algorithms Markov chains in com-
bination with lumping. To illustrate the applicability of the techniques
they are applied to a self-stabilizing coloring algorithm.

1 Introduction

Fault tolerance aims at making distributed systems more reliable by enabling
them to continue the provision of services in the presence of faults. The strongest
form is masking fault tolerance, where a system continues to operate after faults
without any observable impairment of functionality, i.e. safety is always guar-
anteed. In contrast non-masking fault tolerance does not ensure safety at all
times. Users may experience incorrect system behavior, but eventually the sys-
tem will fully recover. The potential of this concept lies in the fact that it can
be used in cases where masking fault tolerance is too costly or even impossible
to implement [11]. Self-stabilizing algorithms are a category of distributed algo-
rithms that provide non-masking fault tolerance. They guarantee that systems
eventually recover from transient faults of any scale such as perturbations of
the state in memory or communication message corruption [6]. A critical issue
is the length of the time span until full recovery. Examples are known where a
memory corruption at a single process caused a vast disruption in large parts of
the system and triggered a cascade of corrections to reestablish safety. Thus, an
important issue is the containment of the effect of transient faults.

A fault-containing system has the ability to contain the effects of transient
faults in space and time. The goal is to keep the extent of disruption during recov-
ery proportional to the extent of the faults. An extreme case of fault-containment
with respect to space is given when the effect of faults is bounded to the set of
faulty nodes. Azar et al. call this error confinement [1]. More relaxed forms of
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 62–77, 2017.
https://doi.org/10.1007/978-3-319-69084-1 5

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 63

fault-containment are known as time-adaptive self-stabilization [19], scalable self-
stabilization [14], strong stabilization [8], and 1-adaptive self-stabilization [3].

A configuration is called k-faulty, if in a legitimate configuration exactly k
processes are hit by a fault (a configuration is called legitimate if it conforms
with the specification). A large body of research focuses on fault-containing for
1-faulty configurations. Several metrics have been introduced to quantify the
containment behavior in the 1-faulty case [13,18]. A distributed algorithm A
has contamination radius r if only nodes within the r-hop neighborhood of the
faulty node change their state during recovery from a 1-faulty configuration. The
containment time of A denotes the worst-case number of rounds any execution of
A starting at a 1-faulty configuration needs to reach a legitimate configuration.
In technical terms this corresponds to the worst case time to recover in case of a
single fault. For randomized algorithms the expected number of rounds to reach
a legitimate configuration corresponds to the mean time to recover (MTT).

Over the last two decades a large number of self-stabilizing algorithms have
been published. Surprisingly the analysis of the vast majority of these algorithms
is confined to the worst case stabilization time starting from an arbitrary con-
figuration. Considering the fact that these algorithms are intended to provide
fault tolerance in the long run this is not the most relevant metric at all. From
a practical point of view the worst case time to recover from a 1-faulty configu-
ration is much more crucial. This statement is justified considering the fact that
the probability for a 1-faulty configuration is much larger then that for k-faulty
configuration with large values of k. The reason is that a distributed system
consists of independently operating computers where transient faults such as
memory faults are independent events. Considering this fact it comes as a sur-
prise that only in a few cases fault-containment metrics have been considered
[12,25]. One reason may be that there are many techniques available to deter-
mine the worst case stabilization time of an algorithm, e.g., potential functions
and convergence stairs, but there is no systematic approach to determine the
containment metrics.

This paper discusses two techniques to analyze the containment time of ran-
domized self-stabilizing algorithms with respect to memory and message corrup-
tion. The execution of the algorithm is modeled as a stochastic process. Let X be
the random variable that represents the number of rounds the system requires to
reach a legitimate configuration when starting in a 1-faulty configuration. Then
the MTT of the algorithm is equal to E[X]; thus, we are interested in upper
bounds for E[X]. In some cases it will be possible to derive an explicit expres-
sion for E[X]. An alternative is to use an absorbing Markov chain to derive
an equation for E[X]. This equation may be solvable with a software package
based on symbolic mathematics. However, the state space explosion problem
will preclude success for many real world problems. An important optimization
technique for the reduction of the complexity of Markov chains is lumping [17].
Lumping is a method based on the aggregation of states that exhibit the same
behavior. It leads to a smaller Markov chain that retains the same performance
characteristics as the original one.

64 V. Turau

The contribution of this paper is a discourse about computing containment
metrics of self-stabilizing algorithms in the 1-faulty case. We present and apply
techniques based on Markov chains to compute upper bounds for these metrics.
In particular we demonstrate how lumping can be applied to reduce the com-
plexity of the Markov chains. To demonstrate the usability of the techniques we
apply them to a self-stabilizing coloring algorithm as a case study. We derive an
absolute bound for the expected containment time and show that the variance is
bounded by a surprisingly small constant independent of the network’s size. We
believe that the techniques can also be applied to other algorithms. The proofs
of the technical lemmata can be found in the technical report [24].

2 Related Work

There exist several techniques to analyze self-stabilizing algorithms: potential
functions, convergence stairs, Markov chains, etc. Markov chains are particularly
useful for randomized algorithms [9]. Their main drawback is that in order to
set up the transition matrix the adjacency matrix of the graph must be known.
This restricts the applicability of this method to small or highly symmetric
instances. Lee DeVille and Mitra apply model checking tools to Markov chains
for cases of networks of small size (n ≤ 7) to determine the expected stabilization
time [5]. An example for highly symmetric networks are ring topologies, see for
example [10,26]. Fribourg et al. model randomized distributed algorithms as
Markov chains using the technique of coupling to compute upper bounds for the
stabilization times [10]. Yamashita uses Markov chains to model self-stabilizing
probabilistic algorithms and to prove stabilization [26]. Mitton et al. consider a
randomized self-stabilizing Δ+1-coloring algorithm and model this algorithm in
terms of urns/balls using a Markov chain to get a bound for the stabilization time
[22]. They evaluated the Markov chain for networks up to 1000 nodes analytically
and by simulations. Crouzen et al. model faulty distributed algorithms as Markov
decision processes to incorporate the effects of random faults when using a non-
deterministic scheduler [4]. They used the PRISM model-checker to compute
long-run average availabilities.

3 System Model

This paper uses the synchronous model of distributed computing as defined
in the standard literature [6,13,23]. A distributed system is represented as an
undirected graph G(V,E) where V is the set of nodes and E ⊆ V × V is the
set of edges. Let n = |V | and Δ(G) denote the maximal degree of G. The
topology is assumed to be fixed. If two nodes are connected by an edge, they
are called neighbors. The set of neighbors of node v is denoted by N(v) ⊆ V
and N [v] = N(v) ∪ {v}. Each node stores a set of variables. The values of all
variables constitute the local state of a node. Let σ denote the set of possible
local states of a node. The configuration of a system is the tuple of all local
states of all nodes. Σ = σn denotes the set of global states. A configuration is

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 65

called legitimate if it conforms with the specification. The set of all legitimate
configurations is denoted by L.

Nodes communicate either via locally shared memory (Sect. 4) or by exchang-
ing messages (Sect. 6). In the shared memory model each node executes a pro-
tocol consisting of a list of rules of the form guard −→ statement . The guard is
a Boolean expression over the node’s variables and its neighbors. The statement
consists of a series of commands. A node is called enabled if one of its guards
evaluates to true. The execution of a statement is called a move.

Execution of the statements is performed in a synchronous style, i.e., all
enabled nodes execute their code in every round. In the message passing model
a node performs three steps per round: receiving messages from neighbors, exe-
cuting code, and sending messages to neighbors. An execution e = 〈c0, c1, c2, . . .〉,
ci ∈ Σ is a sequence of configurations, where c0 is called the initial configuration
and ci is the configuration after the i-th step. In other words, if the current
configuration is ci−1 and all enabled nodes make a move, then this yields ci.

The containment behavior of a self-stabilizing algorithm is characterized by
the contamination radius and the containment time. In this paper we are inter-
ested in the most common fault situation: 1-faulty configurations. Such config-
urations arise when a single node v is hit by a memory corruption or a single
message sent by v is corrupted. Denote by Rv the subgraph of the communi-
cation graph G induced by the nodes that are engaged in the recovery process
from a 1-faulty configuration triggered by a fault at v. The contamination radius
is equal to max{dist(v, w) | w ∈ Rv}.

The stabilization time st(n) is an obvious upper bound for the containment
time. This can be narrowed down to O(st(Δr)), if the contamination radius r is
known. There are two situations in which it is possible to obtain better bounds:
Either the structure of Rv is considerably simpler than that of G or the faulty
configuration is close to a legitimate configuration (e.g., only v is not legitimate).

4 Contamination Radius

If an algorithm using the shared memory model has contamination radius r and
no other fault occurs then this fault will not spread beyond the r-hop neigh-
borhood of the faulty node v. In this case Rv ⊆ Gr

v, where Gr
v is the subgraph

induced by nodes w with dist(v, w) ≤ r. As an example consider the well known
self-stabilizing algorithm A1 to compute a maximal independent set (see Algo-
rithm1).

Lemma 1. Algorithm A1 has contamination radius two.

Proof. Let v be a node hit by a memory corruption. First suppose the state
of v changes from IN to OUT . Let u ∈ N(v) then u.state = OUT . If u has
an neighbor w 	= v with w.state = IN then u will not change its state during
recovery. Otherwise, if all neighbors of u except v had state OUT node u may
change state during recovery. But since these neighbors of u have a neighbor with

66 V. Turau

state IN they will not change their state. Thus, in this case only the neighbors
of v may change state during recovery.

Next suppose that v.state changes from OUT to IN . Then v and those neigh-
bors of v with state IN can change to OUT . Then arguing as in the first case
only nodes within distance two of v may change their state during recovery.
�

Algorithm 1. Self-stabilizing algorithm A1 to compute a MIS.
if state = IN ∧ ∃w ∈ N(v) s.t. w.state = IN then

state := OUT

if state = OUT ∧ ∀w ∈ N(v) w.state = OUT then
if random bit from 0,1 = 1 then

state := IN

In the following we consider another example: Δ + 1-coloring. Most distrib-
uted algorithms for this problem follow the same pattern. A node that realizes
that it has selected the same color as one of its neighbors chooses a new color
from a finite color palette. This palette does not include the current colors of
the node’s neighbors. To be executed under the synchronous scheduler these
algorithms are either randomized or use identifiers for symmetry breaking. Vari-
ations of this idea are followed in [7,15,22]. As an example consider algorithm
A2 from [15] (see Algorithm 2). Due to its choice of a new color from the palette
algorithm A2 has contamination radius at least Δ(G) (see Fig. 1).

∆ ∆ − 1 ∆ − 2

∆

∆ − 3

∆ − 1,∆

2
· · ·

4, ... ,∆

1

3, ... ,∆

0

2, ... ,∆

Fig. 1. The numbers indicate the nodes’ colors. If the left-most node is hit by a fault
and changes its color to Δ − 1, then all nodes on the horizontal line may change color.

Algorithm 2. Self-stabilizing Δ + 1-coloring algorithm A2 from [15].
if c �= max ({0, . . . , Δ}\{w.c | w ∈ N(v)}) then

if random bit from 0,1 = 1 then
c := max ({0, . . . , Δ}\{w.c | w ∈ N(v)})

A minor modification of algorithm A2 dramatically changes matters. Algo-
rithm A3 (see Algorithm 3) has containment radius 1 (see Lemma 2) and Rv is a
star graph with center v. Note that neighbors of v that change their color during
recovery form an independent set.

Algorithm 3. Self-stabilizing Δ + 1-coloring algorithm A3.
if ∃w ∈ N(v) s.t. c = w.c then

if random bit from 0,1 = 1 then
c := choose {0, . . . , Δ}\{w.c | w ∈ N(v)}

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 67

Lemma 2. Algorithm A3 has contamination radius one.

Proof. Let v be a node hit by a memory corruption changing its color to a color c
already chosen by at least one neighbor of v. Let Nconf = {w ∈ N(v) | w.c = c}.
In the next round the nodes in Nconf ∪ {v} will get a chance to choose a new
color. The choices will only lead to conflicts between v and other nodes in Nconf .
Thus, the fault will not spread beyond the set Nconf . With a positive probability
the set Nconf will contain fewer nodes in each round.
�

5 Containment Time

As the contamination radius the containment time strongly depends on the con-
crete structure of G. This can be illustrated with algorithm A1. Note that in
this case Rv can contain any subgraph H with Δ(G) nodes. As an example let
G consist of H and an additional node v connected to each node of H. A legiti-
mate configuration is given if the state of v is IN and all other nodes have state
OUT (Fig. 2 left). If v changes its state to OUT due to a fault then all nodes
may change to state IN during the next round. Thus, there is little hope for a
bound below the trivial bound. Similar arguments hold for the second 1-faulty
configuration of A1 shown on the right of Fig. 2.

H

v

H1 Hn· · ·

v

· · ·

Fig. 2. 1-faulty configurations of A1 caused by a memory corruption at v. Nodes drawn
in bold have state IN . The depicted graphs correspond to Rv.

We introduce two techniques to derive upper bounds for the expected con-
tainment time of a randomized synchronous self-stabilizing algorithm A. Let X
be the random variable that denotes the number of rounds until the system has
reached a legitimate configuration when starting in a 1-faulty configuration c.
The expected containment time equals the expected value E[X]. An analyti-
cal approach to compute an upper bound for E[X] is to derive a bound for
g(i) = P{X = i} and use this to estimate E[X] =

∑∞
i=1 ig(i). This approach

is often infeasible due to the high number of states. A remedy is the lumping
technique explained in the following section.

68 V. Turau

5.1 Lumpable Markov Chains

The self-stabilizing algorithm A can be regarded as a transition systems of Σ.
In each round the current configuration c ∈ Σ is transformed into a new config-
uration A(c) ∈ Σ. This process is described by the transition matrix P where
pij gives the probability to move from configuration ci to cj in one round, i.e.,
A(ci) = cj . To reduce the complexity we partition Σ into subsets Σ0, . . . , Σl and
consider these as the states of a Markov chain. A partitioning is called lumpable
if the subsets Σi have the property that for each pair i, j the probability of a
configuration c ∈ Σi to be transformed in one round into a configuration of Σj

is independent of the choice of c ∈ Σi (Definition 6.3.1 [17]). This probability is
then interpreted as the transition probability from Σi to Σj .

A state ci of a Markov chain is called absorbing if pii = 1 and pij = 0 for i 	= j.
For each self-stabilizing algorithm, the set of all absorbing states is equal to L,
the legitimate configurations. The number of rounds to reach a configuration in
L starting from a given configuration ci ∈ Σi equals the number of steps before
being absorbed in L when starting in state Σi. This equivalence allows us to use
techniques from Markov chains to compute the stabilization time and thus, the
containment time. Let Σ0 consist of a single 1-faulty configuration and Σl = L.
Then E[X] equals the expected number of rounds to reach Σl from Σ0, where
Σ0 ranges over all 1-faulty configurations.

5.2 Example

To illustrate this approach we consider again algorithm A3. Let v be a node
that changes in a legitimate state its color to cf due to a memory fault. Let
c0 be the new configuration. This causes a conflict with those neighbors of v
that had chosen cf as their color. After the fault only nodes contained in Rv

(a star graph) change their state. Once a neighbor has chosen a color different
from cf then it becomes passive (at least until the next transient fault). Let d
be the number of neighbors of v that have color cf in c0. Denote by Σj the set
of all configurations reachable from c where exactly d − j neighbors of v are in
conflict with v. Then Σ0 = {c0} and Σd ⊆ L. Let c ∈ Σi. Then A3(c) 	∈ Σj

for all j < i. This partitioning is not lumpable because the probability of a
configuration c ∈ Σi to be transformed in one round into a fixed configuration
of Σj is not independent of the choice of c ∈ Σi. This issue can be resolved by
using lower bounds of these probabilities. For i < j let pij ≥ 0 be a constant
such that P (A3(c) ∈ Σj) ≥ pij for all c ∈ Σi. Furthermore, let pij = 0 for j < i
and for i = 0, . . . , d

pii = 1 −
d∑

j=i+1

pij .

Then pii ≥ 0 because 0 ≤
∑d

j=i pij ≤
∑d

j=i P (A3(c) ∈ Σj) = 1 for each fixed
c ∈ Σi. Thus, the matrix P = (pij) is a stochastic with pdd = 1. P describe a
new Markov chain C. The expected number of steps of C before being absorbed

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 69

by Σd when starting from state Σ0 is an upper bound for E[X], the expected
containment time of A3.

To analyze C standard techniques can be applied. Let Q be the matrix
obtained from P by removing the last row and the last column. Q describes
the probability of transitioning from some transient state to another. The fol-
lowing properties are well known, e.g. Theorem 3.3.5 of [17]. Denote the d × d
identity matrix by Ed. Then N = (Ed − Q)−1 is the fundamental matrix of
the Markov chain. The expected number of steps before being absorbed by Σd

when starting from Σi is the i-th entry of vector a = NId where Id is a length-d
column vector whose entries are all 1. The variance of these numbers of steps is
given by the entries of (2N −Ed)a−asq where asq is derived from a by squaring
each entry.

In the rest of this paper the techniques are exemplary applied to a self-
stabilizing (Δ + 1)-coloring algorithm Acol using the message passing model.
For the approach based on Markov chains a software package based on symbolic
mathematics is used to compute E[X] and V ar[X].

6 Algorithm Acol

This section introduces coloring algorithm Acol (see Algorithm 4). Computing
a Δ + 1-coloring in expected O(log n) rounds with a randomized algorithm is
long known [16,21]. Algorithm Acol follows the pattern sketched in Sect. 4. We
derived it from a algorithm contained in [2] (Algorithm 19) by adding the self-
stabilization property. The presented techniques can also be applied to other ran-
domized coloring algorithms such as [7,15,22]. The main difference is that Acol

assumes the message passing model, more precisely the synchronous CONGEST
model as defined in [23]. Algorithm Acol stabilizes after O(log n) rounds with
high probability whereas the above cited self-stabilizing algorithms all require a
linear number of rounds. Since synchronous local algorithms can be converted to
asynchronous self-stabilizing algorithms [20], there are self-stabilizing algorithms
for Δ + 1-coloring that are faster than Acol. However, they entail a burden on
memory resources, high traffic costs, and a long computational time.

At the start of each round of Acol each node broadcasts its current color to its
neighbors. Based on the information received from its neighbors a node decides
either to keep its color (final choice), to choose a new color or no color (value
⊥). In particular with equal probability a node v draws uniformly at random a
color from the set {0, 1, . . . , δ(v)}\tabu or indicates that it made no choice (see
function randomColor). Here, tabu is the set of colors of neighbors of v that
already made their final choice.

In the algorithm of [2] a node maintains a list with the colors of those neigh-
bors that made their final choice. A fault changing this list is difficult to contain.
Furthermore, in order to notice a memory corruption at a neighbor, each node
must continuously send its state to all its neighbors and cannot stop to do so.
This is the price of self-stabilization and well known [6]. These considerations
lead to the design of Algorithm Acol. Each node only maintains the chosen color

70 V. Turau

and whether its choice is final (variables c and final). Acol uses two additional
variables tabu and occupied, but they are reset at the beginning of every round.
In every round a node sends the values of these variables to all neighbors. To
improve fault containment a node’s final choice of a color is only withdrawn if it
coincides with the final choice of a neighbor. To achieve a Δ + 1-coloring a node
makes a new choice if its color is larger than its degree. This situation can only
originate from a fault.

Algorithm 4. Algorithm Acol as executed by a node v in each round.
Set<Color> tabu := ∅, occupied := ∅;
broadcast(c, final) to all neighbors w ∈ N(v);
for all neighbors w ∈ N(v) do

receive(cw, finalw) from node w;
if cw �= ⊥ then

occupied := occupied ∪ {cw};
if finalw then tabu := tabu ∪ {cw} ;

if c = ⊥ ∨ c > δ(v) then
final := false;

else
if final then

if c ∈ tabu then final := false ;
else

if c �∈ occupied then final := true ;

if final = false then c := randomColor(v, tabu) ;

function Color randomColor(Node v, Set<Color> tabu)
if random bit from 0,1 = 1 then return ⊥ ;
return random color from {0,1,. . . , δ(v)}\tabu;

Next we prove correctness and ythe stabilization time of Acol. A configuration
is called a legal coloring if the values of variable c form a Δ + 1-coloring. It is
called legitimate if it is a legal coloring and v.final = true for each node v.

Lemma 3. A node v can change the value of variable final from true to false
only in the first round or when a fault occured just before the start of this round.

Proof. Let v.c = cr at the beginning of the round. In order for v to set v.final
to false one of the following conditions must be met at the start of the round:
cr > δ(v), cr = ⊥, or v has a neighbor w with w.final = true and w.c = cr.

The lemma is obviously true in the first case. Suppose that cr = ⊥ and
v.final = true at the round’s start. If during the previous round the value of
v.final was set to true then v.c can not be ⊥ at the start of this round. Hence, at
the start of the previous round final already had value true. But in this case v.c
was not changed in the previous round and thus, cr 	= ⊥, contradiction. Finally
assume the last condition. Then v and w cannot have changed their value of c in
the previous round, because then final = true would be impossible at the start

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 71

of this round. Thus, v sent (cr, true) in the previous round. Hence, if w.c = cr

at that time, w would have changed w.final to false, again a contradiction.
�

Lemma 4. A node setting final to true will not change its variables as long as
no error occurs.

Proof. Let v be a node that executes final := true. If v changes the value back
to false in a later round then by Lemma3 a fault must have occured. Thus in
an error-free execution node v will never change variable final again. Since a
node can only change variable c if final = false the proof is complete.
�

Lemma 5. If at the end of a round during which no error occured each node v
satisfies v.final = true then the configuration is legitimate and remains legiti-
mate as long as no error occurs.

Proof. Note that no node changed its color during that round. If at the start of
the round v.final = true was already satisfied then none of v’s neighbors also
having final = true had the same color as v. Next consider a neighbor w of v
with w.final = false at the start of the round. Since v sent (v.c, true) at the
start of this round, node w would have set final to false if it had chosen the
same color as v. Contradiction. Finally consider that case that v.final = false
at the start of the round. Since v changed final to true, none of its neighbors
had chosen the same color as v. Thus, the configuration is legitimate. Obviously,
this property can only be changed by a fault.
�

The following theorem can be proved with the help of the last three lemmas.

Theorem 6 [24]. Algorithm Acol is self-stabilizing and computes a Δ + 1-
coloring within O(log n) rounds with high probability (i.e. with probability at
least 1 − nc for any c ≥ 1). Acol has contamination radius 1.

7 Fault Containment Time of Algorithm Acol

There is a significant difference from the shared memory model compared to the
message passing model when analyzing the containment time. Firstly, a 1-faulty
configuration also arises when a single message sent by a node v is corrupted.
Secondly, this may cause v’s neighbors to send messages they would not send
in a legitimate configuration. Even though the state of nodes outside Gr

v does
not change, these nodes may be forced to send messages. Thus, in general the
analysis of the containment time cannot be performed by considering Gr

v only.
This is only possible in cases when a fault at v does not force nodes at distance
r + 1 to send messages they would not send had the fault not occurred.

In the following the fault containment behavior of Acol for 1-faulty configu-
rations is analyzed. Two types of transient errors are considered:

1. A single broadcast message sent by v is corrupted. Note that the alternative
of using δ(v) unicast messages instead a single broadcast has very good fault
containment behavior but is slower due to the handling of acknowledgements.

72 V. Turau

2. Memory corruption at node v, i.e., the value of at least one of the two variables
of v is corrupted.

The first case is analyzed analytically whereas for the second case Markov chains
are used. The independent degree δi(v) of a node v is the size of a maximum
independent set of N(v). Let Δi(G) = max{δi(v) | v ∈ V }.

7.1 Message Corruption

If a message broadcast by v contains a color cf different from v.c or the value
false for variable final then the message (cf , false) has no effect on any w ∈
N(v) regardless of the value of cf , since w.final = true for all w ∈ N(v). Thus,
this corrupted message has no effect at all. In order to compute the containment
time for Acol we first compute the contamination radius.

Lemma 7. The contamination radius of algorithm Acol after a single corruption
of a broadcast message sent by node v is 1. At most δi(v) nodes change their state
during recovery.

Proof. It suffices to consider the case that v broadcasts message (cf , true) with
cf 	= v.c. Let Nconf (v) = {w ∈ N(v) | w.c = cf}. The nodes in Nconf (v) form an
independent set, because they all have the same color. Thus |Nconf (v)| ≤ δi(v).

Let u ∈ V \N [v]. This node continues to send (u.c, true) after the fault.
Thus, a neighbor of u that changes its color will not change its color to u.c.
This yields that no neighbor of u will ever send a message with u.c as the first
parameter. This is also true in case u ∈ N(v)\Nconf (v). Hence, no node outside
Nconf (v) ∪ {v} will change its state, i.e. the contamination radius is 1.

Let w ∈ Nconf (v). When the faulty message is received by w it sets w.final
to false. Before the faulty message was sent no neighbor of v had the same color
as v. Thus, in the worst case a node w ∈ Nconf (v) will choose v.c as its new
color and send (v.c, false) to all neighbors. Since v.final = true this will not
force v to change its state. Thus, v keeps broadcasting (v.c, true) and therefore
no neighbor w of v will ever reach the state w.c = v.c and w.final = true. Hence
v will never change its state.
�

With this result Theorem6 implies that the containment time of this fault is
O(log δi(v)) on expectation. The following theorem gives an absolute bound for
the expected value of the containment time.

Theorem 8 [24]. The expected value for the containment time of algorithm Acol

after a corruption of a message broadcast by node v is at most 1
ln 2Hδi(v) + 1/2

rounds (Hi denotes the ith harmonic number) with a variance of at most

1
ln2 2

δi(v)∑

i=1

1
i2

+
1
4

≤ π2

6 ln2 2
+

1
4

≈ 3.6737.

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 73

7.2 Memory Corruption

This section demonstrates the use of Markov chains in combination with lumping
to analyze the containment time. We consider the case that the memory of a
single node v is hit by a fault. The analysis breaks down the stabilizing executions
into several states and then computes the expected time for each of these phases.
First we look at the case that the fault causes variable v.final to change to
false. If v.c does not change, then a legitimate configuration is reached after one
round. So assume v.c also changes. Then the fault will not affect other nodes.
This is because no w ∈ N(v) will change its value of w.c since w.final = true
and v.final = false. Thus, with probability at least 1/2 node v will choose in
the next round a color different from the colors of all neighbors and terminate
one round later. Similar to Xd let random variable Zd denote the number of
rounds until a legal coloring is reached (d = |Nconf (v)|). It is easy to verify that
E[Zd] = 3 in this case.

The last case is that only variable v.c is affected (i.e. v.final remains true).
The main difference to the case of a corrupted message is that this fault persists
until v.c has again a legitimate value. Let cf be the corrupted value of v.c and
suppose that Nconf (v) = {w ∈ N(v) | w.c = cf} 	= ∅. A node outside S =
Nconf (v)∪{v} will not change its state (c.f. Lemma 7). Thus, the contamination
radius is 1 and at most δi(v) + 1 nodes change state. Let d = |Nconf (v)|. The
subgraph GS induced by S is a star graph with d + 1 nodes and center v.

Lemma 9. To find a lower bound for E[Zd] we may assume that w can choose
a color from {0, 1}\tabu with tabu = ∅ if v.final = false and tabu = {v.c}
otherwise and v can choose a color from {0, 1, . . . , d}\tabu with tabu ⊆ {0, 1}.

Proof. When a node u ∈ S chooses a color with function randomColor the
color is randomly selected from Cu = {0, 1, . . . , δ(v)}\tabu. Thus, if w and v
choose colors in the same round, the probability that the chosen colors coincide
is |Cw ∩Cv|/|Cw||Cv|. This value is maximal if |Cw ∩Cv| is maximal and |Cw||Cv|
is minimal. This is achieved when Cw ⊆ Cv and Cv is minimal (independent of
the size of Cw) or vice versa. Thus, without loss of generality we can assume
that Cw ⊆ Cv and both sets are minimal. Thus, for w ∈ Nconf (v) the nodes in
N(w)\{v} already use all colors from {0, 1, . . . , δ(v)} but 0 and 1 and all nodes in
N(v)\Nconf (v) already use all colors from {0, 1, . . . , δ(v)} but 0, 1, . . . , d. Hence,
a node w ∈ Nconf (v) can choose a color from {0, 1}\tabu with tabu = ∅ if
v.final = false and tabu = {v.c} otherwise. Furthermore, v can choose a color
from {0, 1, . . . , d}\tabu with tabu ⊆ {0, 1}. In this case tabu = ∅ if w.final =
false for all w ∈ Nconf (v).
�

Thus, in order to bound the expected number of rounds to reach a legitimate
state after a memory corruption we can assume that G = GS and u.final = true
and u.c = 0 (i.e. cf = 0) for all u ∈ S. After one round u.final = false for all
u ∈ S. To compute the expected number of rounds to reach a legitimate state
an execution of the algorithm for the graph Gs is modeled by a Markov chain
M with the following states (I is the initial state) using the lumping technique:

74 V. Turau

I: Represents the faulty state with u.c = 0 and u.final = true for all u ∈ S.
Ci: Node v and exactly d − i non-center nodes will not be in a legitimate state

after the following round (0 ≤ i ≤ d). In particular v.final = false and
w.c = v.c 	= ⊥ or v.c = w.c = ⊥ for exactly d − i non-center nodes w.

P : Node v has not reached a legitimate state but will do so in the next round.
In particular v.final = false and v.c 	= w.c for all non-center nodes w.

F : Node v is in a legitimate state, i.e. v.final = true and v.c 	= w.c for all
non-center nodes w, but w.c may be equal to ⊥.

M is an absorbing chain with F being the single absorbing state. Note that
when the system is in state F , then it is not necessarily in a legitimate state.
This state reflects the set of configurations considered in the last section.

Lemma 10 [24]. The transition probabilities of M are as follows:

I −→ P : d−1
2d + 1

d

(
1
2

)d+1

I −→ C0: d−1
d

(
1
2

)d+1 + 1
2d

I −→ Cj:
(

d
d−j

) (
1
2

)d+1 (0 < j ≤ d)

Ci −→ Cj:
(

d−i
d−j

) (
1
2

)d−i+1 + 1
d−i+1

(
d−i
j−i

) (
1
4

)d−i (3d−j − 2d−j) (0 ≤ i ≤ j ≤ d)

Ci −→ P : 1
d−i+1

(
3
4

)d−i + d−i−1
2(d−i+1) (0 ≤ i < d)

Cd −→ P : 1/2
P −→ F : 1

We first calculate the expected number E[Ad] of rounds to reach the absorb-
ing state F . With Theorem 8 this will enable us to compute the expected number
E[Zd] of rounds required to reach a legitimate system state. To build the transi-
tion matrix P of M the d + 4 states are ordered as I, C0, C1, . . . , Cd, P, F . Let
Q be the (d + 3)× (d + 3) upper left submatrix of P . For s = −1, 0, 1, . . . , d+1
denote by Qs the (s + 2) × (s + 2) lower right submatrix of Q, i.e. Q = Qd+1.
Denote by Ns the fundamental matrix of Qs (notation as introduced in Sect. 5).
Let 1s be the column vector of length (s + 2) whose entries are all 1 and
εs = Ns1s. For s = 0, . . . , d, εs is the expected number of rounds to reach
state F from state Cd−s and εd+1 is the expected number of rounds to reach
state F from I, i.e. εd+1 = E[Ad] (Theorem 3.3.5, [17]). Identifying P with Cd+1

we have ε−1 = 1.

Lemma 11. The expected number E[Ad] of rounds to reach F from I is less
than 5 and the variance is less than 3.6.

Proof. Note that ε−1 = 1 and ε0 =
∞∑

i=1

i
2i + 1 = 3. Qs and Ns are upper triangle

matrices. Let

Ei − Qi =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − a1 −a2 . . . −ai+2

0
Ei−1 − Qi−1...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Ni =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 . . . xi+2

0
Ni−1...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 75

Ei = (Ei −Qi)Ni gives rise to (i+2)2 equations. Summing up the i+2 equations
for the first row of Ei results in

εi = (1 − a1)−1

(

1 +
i+2∑

l=2

alεi+1−l

)

(1)

Hence

εi = (1 − a1)−1

(

1 +
i∑

l=2

alεi+1−l + 3ai+1 + ai+2

)

for i > 0. By Lemma 19 of [24] εi ≤ 4 for i = −1, 0, 1, . . . , d. Hence

E[Ad] = εd+1 = 1 +
d+3∑

l=2

alεd+2−l ≤ 1 + 4
d+3∑

l=2

al = 5, and

V ar[Ad] = ((2Nd+1 − Ed+1)1d+1 − 12d+1)[1] = 2
∑d+3

i=1 xiεd+2−i − εd+1 − ε2d+1.
�

Lemma 12 [24]. The expected value for the containment time after a memory
corruption at node v is at most 1

ln 2Hδi(v) + 11/2 with variance less than 7.5.

Theorems 6 and 8, Lemmas 7 and 12 together prove the following Theorem.

Theorem 13. Acol is a self-stabilizing algorithm for computing a (Δ + 1)-
coloring in the synchronous model within O(log n) time with high probability.
It uses messages of size O(log n) and requires O(log n) storage per node. With
respect to memory and message corruption it has contamination radius 1. The
expected containment time is at most 1

ln 2HΔi
+11/2 with variance less than 7.5.

Corollary 14. Algorithm Acol has expected containment time O(1) for bounded-
independence graphs. For unit disc graphs this time is at most 8.8.

Proof. For these graphs Δi ∈ O(1), in particular Δi ≤ 5 for unit disc graphs.
�

8 Conclusion

The analysis of self-stabilizing algorithms is often confined to the stabilization
time starting from an arbitrary configuration. In practice the time to recover
from a 1-faulty configuration is much more relevant. This paper presents tech-
niques to analyze the containment time of randomized self-stabilizing algorithms
for 1-faulty configurations. The execution of an algorithm is modeled as a Markov
chain, its complexity is reduced with the lumping technique. The power of this
technique is demonstrated by an application to a Δ + 1-coloring algorithm.

Acknowledgments. Research was funded by Deutsche Forschungsgemeinschaft DFG
(TU 221/6-1).

76 V. Turau

References

1. Azar, Y., Kutten, S., Patt-Shamir, B.: Distributed error confinement. ACM Trans.
Algorithms 6(3), 48:1–48:23 (2010)

2. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, San Rafael (2013)

3. Beauquier, J., Delaet, S., Haddad, S.: Necessary and sufficient conditions for 1-
adaptivity. In: 20th Internatioal Parallel and Distributed Processing Symposium,
pp. 10–16 (2006)

4. Crouzen, P., Hahn, E., Hermanns, H., Dhama, A., Theel, O., Wimmer, R.,
Braitling, B., Becker, B.: Bounded fairness for probabilistic distributed algorithms.
In: 11th International Conference Application of Concurrency to System Design,
pp. 89–97, June 2011

5. Lee DeVille, R.E., Mitra, S.: Stability of distributed algorithms in the face of
incessant faults. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp.
224–237. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05118-0 16

6. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
7. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.

Chicago J. Theor. Comput. Sci. 4, 1–40 (1997)
8. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks

in stabilization. IEEE Trans. Parallel Distrib. Syst. 23(3), 460–466 (2012)
9. Duflot, M., Fribourg, L., Picaronny, C.: Randomized finite-state distributed algo-

rithms as Markov chains. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp.
240–254. Springer, Heidelberg (2001). doi:10.1007/3-540-45414-4 17

10. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Distrib.
Comput. 18(3), 221–232 (2006)

11. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchro-
nous environments. ACM Comput. Surv. 31(1), 1–26 (1999)

12. Ghosh, S., Gupta, A.: An exercise in fault-containment: self-stabilizing leader elec-
tion. Inf. Process. Lett. 59(5), 281–288 (1996)

13. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.: Fault-containing self-stabilizing
distributed protocols. Distrib. Comput. 20(1), 53–73 (2007)

14. Ghosh, S., He, X.: Scalable self-stabilization. J. Parallel Distrib. Comput. 62(5),
945–960 (2002)

15. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In:
4th International Conference on Principles of Distributed Systems, OPODIS 2000,
pp. 55–70 (2000)

16. Johansson, Ö.: Simple distributed δ+1-coloring of graphs. Inf. Process. Lett. 70(5),
229–232 (1999)

17. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)
18. Köhler, S., Turau, V.: Fault-containing self-stabilization in asynchronous systems

with constant fault-gap. Distrib. Comput. 25(3), 207–224 (2012)
19. Kutten, S., Patt-Shamir, B.: Adaptive stabilization of reactive protocols. In:

Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 396–407.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 33

20. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: self-stabilization on
speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05118-0 2

21. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1055 (1986)

http://dx.doi.org/10.1007/978-3-642-05118-0_16
http://dx.doi.org/10.1007/3-540-45414-4_17
http://dx.doi.org/10.1007/978-3-540-30538-5_33
http://dx.doi.org/10.1007/978-3-642-05118-0_2

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 77

22. Mitton, N., Fleury, E., Guérin-Lassous, I., Séricola, B., Tixeuil, S.: On fast ran-
domized colorings in sensor networks. In: Proceedings of ICPADS, pp. 31–38. IEEE
(2006)

23. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Society
for Industrial and Applied Mathematics, Philadelphia (2000)

24. Turau, V.: Computing the fault-containment time of self-stabilizing algorithms
using Markov chains. Technical report, Hamburg University of Techology (2017)

25. Turau, V., Hauck, B.: A fault-containing self-stabilizing (3–2/(delta+1))-
approximation algorithm for vertex cover in anonymous networks. Theoret. Com-
put. Sci. 412(33), 4361–4371 (2011)

26. Yamashita, M.: Probabilistic self-stabilization and random walks. In: 2013 Inter-
national Conference on Computing, Networking and Communications (ICNC), pp.
1–7 (2011)

	Computing the Fault-Containment Time of Self-Stabilizing Algorithms Using Markov Chains and Lumping
	1 Introduction
	2 Related Work
	3 System Model
	4 Contamination Radius
	5 Containment Time
	5.1 Lumpable Markov Chains
	5.2 Example

	6 Algorithm Acol
	7 Fault Containment Time of Algorithm Acol
	7.1 Message Corruption
	7.2 Memory Corruption

	8 Conclusion
	References

