
Bitcoin a Distributed Shared Register

Emmanuelle Anceaume1(B), Romaric Ludinard2, Maria Potop-Butucaru3,
and Frédéric Tronel4

1 CNRS / IRISA, Campus de Beaulieu, Rennes, France
anceaume@irisa.fr

2 CREST / ENSAI, Rennes, France
3 LIP6, Université P. & M. Curie, Paris, France

4 CentraleSupélec, Rennes, France

Abstract. Distributed Ledgers (e.g. Bitcoin) occupy currently the first
lines of the economical and political media and many speculations are
done with respect to their level of coherence and their computability
power. Interestingly, there is no consensus on the properties and abstrac-
tions that fully capture the behaviour of distributed ledgers. The interest
in formalising the behaviour of distributed ledgers is twofold. Firstly, it
helps to prove the correctness of the algorithms that implement existing
distributed ledgers and explore their limits with respect to an unfriendly
environment and target applications. Secondly, it facilitates the identi-
fication of the minimal building blocks necessary to implement the dis-
tributed ledger in a specific environment.

Even though the behaviour of distributed ledgers is similar to abstrac-
tions that have been deeply studied for decades in distributed systems
no abstraction is sufficiently powerful to capture the distributed ledger
behaviour.

This paper introduces the Distributed Ledger Register, a register that
mimics the behaviour of one of the most popular distributed ledger, i.e.
the Bitcoin ledger. The aim of our work is to provide formal guarantees
on the coherent evolution of Bitcoin. We furthermore show the conditions
under which the Bitcoin blockchain maintenance algorithm satisfies the
distributed ledger register properties. Moreover, we prove that the Dis-
tributed Ledger Register verifies the specification of a regular register.
We show that in partially synchronous systems, the strongest coherency
implemented by Bitcoin is regularity when reads are sparse. This study
contradicts the common belief that Bitcoin implements strong coherency
criteria in a totally asynchronous system. To the best of our knowledge,
our work is the first one that makes the connection between the distrib-
uted ledgers and the classical theory of distributed shared registers.

1 Introduction

Blockchain has become one of the most omnipresent buzzwords in economical,
political and scientific media. Bitcoin [15] and Ethereum [17], the most popular
blockchain applications nowadays are cited as the universal solution for managing

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 456–468, 2017.
https://doi.org/10.1007/978-3-319-69084-1_34

Bitcoin a Distributed Shared Register 457

a broad range of goods ranging from bank accounts and client transactions oper-
ations to energy or notarial agreements management. Political analysts predict
that blockchains will be used in the near future as regular bases in administration
or national and international economical exchanges.

Bitcoin and Ethereum, beyond their incontestable assets such as decentrali-
sation, simple design and relatively easy use, are neither riskless nor free of lim-
itation. For example, the most popular issue that has been reported regarding
Ethereum functioning was the theft of 60 million dollars due to the exploitation
of an error in a smart contract code. It seems clear that neither Bitcoin nor
Ethereum are mature enough to be used in critical economical and administra-
tive applications, as shown by a recent scientific analysis [6] which enlightens the
main limitations exposed by Bitcoin, including low quality of services, storage
limitations, low throughput, high cost, security weakness, and weak coherency.
The point is that an increasing number of areas promote the use of blockchains
for the development of their applications, and undeniably, the properties enjoyed
by these blockchains should be studied to fit such applications requirements,
together with their relationships with blockchain-based applications.

Such challenges can be mitigated by laying down the theoretical foundations
of blockchains, and more generally distributed ledgers. Connection between the
distributed computing theory and Bitcoin distributed ledger has been pioneered
by Garay et al. [9]. The main focus of the distributed community [5,7–10,12,16]
has so far been the distributed ledger agreement aspects. Our paper investigates
consistency properties of the distributed ledger and tries to make the connection
between the distributed ledgers and the read-write distributed registers.

Our Contribution. Interestingly, the Bitcoin related literature is not yet agreeing
on the level of coherency offered by Bitcoin. Some of the studies, as for example
the one carried off by Decker et al. [7] advocate for strong consistency. Before
discussing the level of consistency verified by Bitcoin one should first capture
the properties of this system in terms of safety and liveness. The aim of our
work is to provide formal guarantees on the coherent evolution of Bitcoin. Our
work is the first one that makes the connection between distributed ledgers and
the classical read-write distributed registers. First, we show that the classical
definitions of read-write registers, including their stabilisation extensions, do
not capture Bitcoin behaviour. Then, we introduce and formalise what we call
the Distributed Ledger Register (DLR), which mimics the behaviour of Bitcoin.
We finally show that the Bitcoin blockchain algorithm satisfies the Distributed
Ledger Register properties.

Paper Roadmap. The remaining of the paper is organised as follows. Section 2
recalls the main principles of the Bitcoin system, and Sect. 3 presents its compu-
tational model. Section 4 provides a brief summary of shared registers and their
extensions. We end this section by enlightening why these definitions do not fully
capture the Bitcoin behaviour. In Sect. 5, we extend the read-write registers with
a new register that we call the Distributed Ledger Register, and we show that

458 E. Anceaume et al.

Bitcoin implements such a register. Section 6 concludes and presents some open
problems.

2 Bitcoin Background

In 2008, Satoshi Nakamoto, a pseudonymous author, published a white paper
describing the Bitcoin network, a way to create, distribute and manage a cur-
rency that does not rely on a trusted third party [15]. Since then many crypto-
currencies have been proposed, including the popular Ethereum [17]. An imple-
mentation of Bitcoin was released shortly after under the name Bitcoin Core.
In the following we focus on the functioning of Bitcoin, since Ethereum follows
almost the same pattern and its differences are not relevant for our study. Most
of the following is drawn from [3].

The Bitcoin network is a peer-to-peer payment network that relies on distrib-
uted algorithms and cryptographic functions to allow entities to pseudonymously
buy goods with digital currencies called bitcoins. Bitcoin mainly relies on three
types of data structures (i.e. transactions, blocks and the distributed ledger –
also called the blockchain) and three types of entities (i.e., user, Bitcoin node
and miner) to offer such functionalities.

Transactions allow users to transfer bitcoins from a set of input accounts to a
set of output accounts. An account is described by a key, derived from the public
key of the public/private key generated by Bitcoin users. Note that to hide their
profile, users should generate a new public/private key for each transaction they
are recipient of. Keys are used to prove the ownership of bitcoins. Recipients of
a transaction are credited once the transaction is confirmed in the blockchain.
Users voluntarily pay a small transaction fee which will be kept by the miner
that will succeed in confirming users transaction in the blockchain. In this case,
the total amount of bitcoins in the input accounts is greater than the amount of
bitcoins transferred to the output accounts.

To describe the evolution of user accounts, Anceaume et al. [3] have adopted
a place/transition model as depicted in Fig. 1. User accounts are represented by
places (circles) and transactions by transitions (vertical bars). The place from
which an arc runs to a transition is an input place of the transition, and the
place to which an arc runs to, is an output place of the transition. The number
of bitcoins in a user account represents the tokens of the place. A transition may
fire if there are sufficiently many tokens in its input places (except for coinbase
transactions as described below), and it consumes all of them upon firing. Places
and transitions are dynamically created. In Fig. 1, Alice creates transaction T1

to transfer the 50 bitcoins of her account a1 to Bob and Carol’s accounts: 30
bitcoins to b1 and 20 to c1. Transaction T4 contains a transaction fee equal to
(25 + 20) − (20 + 21 + 3) = 1 bitcoin. Transaction T2 is a special transaction
called coinbase. Coinbase transactions are the way bitcoins are created, and their
amount is currently set to 12.5 bitcoins plus the transaction fees included in the
block.

A transaction T is locally valid at Bitcoin node p if p has received all the
transactions that have credited all the input accounts of T and has never received

Bitcoin a Distributed Shared Register 459

Transaction T1

Transaction T3

Transaction T4

Transaction T2

a1

50

b1

30

c1

20

c2

25

d1

30

b2

20

d2

21

c3

3

Fig. 1. Modelling the evolution of users’ accounts

transactions already using any of those inputs. Indeed, an important aspect of
Bitcoin accounts is their indivisibly, meaning that once an account has been
created by a user, it will be credited by a single transaction and will be debited
by a single subsequent transaction. If there exists some transaction T ′ such that
both T and T ′ share some input account, then this input account is said to be
in a double-spending situation. We say that transaction T is conflict-free if none
of the input accounts of T is involved in a double-spending situation and all
of the transactions that credited T ’s inputs are conflict-free. By construction,
the induction is finite because Bitcoin creates money only through coinbase
transactions, which do not rely on input accounts.

The solution adopted in Bitcoin to mitigate double-spending attacks, with-
out relying on a central trusted authority, consists in gathering transactions
into blocks and totally ordering them in a publicly accessible and distributively
managed ledger. This is the role of miners.

A block contains a list of transactions, a reference to its parent block (hence
the name of blockchain), and a proof-of-work, that is a nonce such that the hash
of the block matches a given target. This target is calibrated so that the average
generation time of a block by the network is equal to 10 min despite fluctuations
of the peer-to-peer network.

We say that a block b is locally valid if it only contains locally valid trans-
actions. Bitcoin nodes locally maintain a copy of the blockchain, and once val-
idated, propagate newly transactions and blocks to all the entities of Bitcoin.
Blocks are generated by miners, a subset of the Bitcoin nodes involved in the
proof-of-work competition. The incentive to participate to such a competition is
provided by the coinbase transactions that are credited to the successful miner
accounts. This competition may result in multiple blocks referencing the very

460 E. Anceaume et al.

same parent block, and hence the creation of a tree with several chains. This
situation is known as blockchain fork. Bitcoin defines the notion of best chain
(the common history of the distributed ledger on which all Bitcoin nodes agree),
which corresponds to the longest chain starting from the genesis block of the dis-
tributed ledger (the blockchain is bootstrapped with the genesis block). In the
case of Ethereum the best chain is the heaviest one. The level of confirmation
of a block b belonging to the best chain of the distributed ledger is equal to the
number of blocks included in the best chain starting from b. Nakamoto [15] as
well as subsequent studies [9,11,14] has shown that if the proportion of malicious
miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can be rejected if
its level of confirmation in a local copy of the blockchain is less than 6. In case
of Ethereum this level is not well defined, and seems to be around 12 [1]. We say
that a transaction is deeply confirmed once it reaches such a confirmation level.

3 Computing Model

We model the Bitcoin system as a partially synchronous distributed system
(Distributed Ledger system) composed of an arbitrary finite number of users,
miners and bitcoin nodes. In the following we assume that all bitcoin nodes
have enough computation resources to mine blocks. Thus we do not distinguish
anymore miners from bitcoin nodes.

Each miner in the distributed system is a state machine, whose state, called
“local state”, is defined by the current values of its local variables. A configura-
tion, or global state, of the Distributed Ledger system is composed of the local
state of each miner in the system. The passage of time is measured by a fictional
global clock. Miners do not have access to the fictional global time. At each time
t, each miner is characterised by its local state.

It is assumed that the system has a built-in communication abstraction,
denoted broadcast, that allows miners to communicate by exchanging messages
via a broadcast() and deliver() operations. This communication abstraction is
defined by the following properties.

– τ -delivery. There exists τ > 0 such that if a miner invokes broadcast(m) then
every correct miner eventually delivers m within τ time units.

– Validity. If a correct miner delivers a message m from p then p has previously
invoked broadcast(m).

By correct miner, we mean a miner that follows the prescribed protocols.
We suppose on the other hand that some of them can suffer arbitrary failures—
such miners are said incorrect. For instance, an incorrect miner can manipulate
the communication primitive by broadcasting inconsistent messages, or by not
broadcasting messages or by stopping its execution. We assume that less than
a third of the computational power of the system is owned by incorrect miners.
No such restrictions hold for incorrect users.

Bitcoin a Distributed Shared Register 461

4 Background on Distributed Registers

This section recalls the main properties of classical distributed read-write reg-
isters, and shows that with these definitions, we cannot entirely describe the
properties of the blockchain. Hence the need for a new type of register.

A distributed read-write register REG is a shared variable accessed by a
set of processes through two operations, namely REG .write() and REG .read().
Informally, the REG .write() operation updates the value stored in the shared
variable while the REG .read() obtains the value contained in the shared variable.
Every operation issued on a register is, generally, not instantaneous and can be
characterised by two events occurring at its boundaries: an invocation event
and a reply event. Both events occur at two different instants with respect to
the fictional global time: the invocation event of an operation op (i.e., op =
REG .write() or op = REG .read()) occurs at the invocation time denoted by
tB(op) and the reply event of op occurs at the reply time denoted by tE(op).

Given two operations op and op′ on a register, we say that op precedes op′

(op ≺ op′) if and only if tE(op) < tB(op′). If op does not precede op′ and op′

does not precede op, then op and op′ are concurrent (noted op||op′).
An operation op is terminated if both the invocation event and the reply

event occurred (i.e., the entity executing the operation does not crash between
the invocation time and the reply time). A terminated operation can either be
successful and thus returns true or can return abort when, for example, some
operational conditions are not met. More details will be given in the following.
On the other hand, an operation that does not terminate is said failed.

4.1 Classical Distributed Read-Write Registers

The semantic of a distributed read-write register (simply called read-write reg-
ister) can be classified as safe, regular or atomic [13]. In this paper, we will refer
mainly to the safe and regular semantics. The safe register ensures that a read
which does not overlap with a write returns the last completed write. The result
of a read overlapping a write can be any value from the register domain. The reg-
ular register verifies the safe semantic when reads are not concurrent with writes.
For reads concurrent with writes the read will return either the last written value
or the value of the concurrent write. A safe distributed register REG is defined
by the following properties:

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest REG .write() preceding this
REG .read() operation), or any value of the register domain in case the
REG .read() operation is concurrent to a REG .write() operation.

A regular distributed register REG is defined by the following properties:

462 E. Anceaume et al.

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest REG .write() preceding this
REG .read() operation), or a value written by a REG .write() operation con-
current with it.

An atomic register is a regular register that verifies the no new/old inversion
property defined as follows:

– no new/old inversion: For any two read operations, the set of writes that do
not strictly follow either of them must be perceived by both reads as occurring
in the same order.

4.2 Extension to Stabilising Distributed Registers

Recently, classical registers definitions [13] have been extended to the self-
stabilising area [4] for which the system can be hit by arbitrary errors. We
assume that there is a time τ1w at which the first write operation invoked in the
system terminated.
A stabilising safe register REG is defined by the following properties:

– Liveness. Any invocation of REG .write() or REG .read() terminates.
– Eventual safety. There is a finite time τstab > τ1w after which each REG .read()

r returns a value v that was written by a REG .write() operation w such that
(a) w is the last REG .write() operation executed before r, or (b) v is any
value in the register domain if a REG .write() operation is concurrent with r.

A stabilising regular register REG is defined by the following properties:

– Liveness. Any invocation of REG .write() or REG .read() terminates.
– Eventual regularity. There is a finite time τstab > τ1w after which each
REG .read() r returns a value v that was written by a REG .write() opera-
tion w such that (a) w is the last REG .write() operation executed before r,
or (b) w is a REG .write() operation concurrent with r.

Similarly, the stabilising atomic register is the eventual version of the atomic
register defined above.

4.3 Bitcoin and Distributed Shared Registers

Interestingly enough, none of these definitions capture the behaviour of the Bit-
coin blockchain. Classically, values written in a register are potentially indepen-
dent, and during the execution, the size of the register remains the same. In
contrast, a new block cannot be written in the blockchain if it does not depend
on the previous one, and successive writings in the blockchain increase its size.
Looking at the stabilising register, it implements some type of eventual consis-
tency, in the sense that, there exists a prefix of the system execution for which

Bitcoin a Distributed Shared Register 463

there are no guarantees on the value of the shared register: register semantics
hold only from a certain time in the execution. In contrast, the prefix of the
blockchain eventually converges at every entity, while no guarantees hold for the
last created blocks.

Therefore, we need to further extend the distributed shared registers spec-
ification to a new register, which captures the semantics of Bitcoin. We call
this new register the Distributed Ledger Register (DLR). We first show that
the Distributed Ledger Register satisfies the regular properties and then prove
that the Bitcoin blockchain algorithm satisfies the Distributed Ledger Register
properties.

5 Distributed Ledger Register

In this section, we aim at specifying a new type of read/write register that mimics
the behaviour of the Bitcoin distributed ledger (i.e., Bitcoin blockchain), and that
must be both writable and readable by any number of miners. In the following,
this new register will be named the multi-writer multi-reader Distributed Ledger
Register, or simply DLR. Prior to formalising the properties of the distributed
ledger register, we first illustrate its functioning.

As described in the introduction, each miner needs to locally manage a data
structure from which it can extract the blockchain. Specifically, this data struc-
ture is a tree, denoted by T B, and the blockchain, denoted by B, is the longest
chain in this tree. By construction, the root of T B is the genesis block, a common
block for all the miners. In terms of read and write operations, the blockchain
protocol informally translates as follows: When a miner wishes to create a new
block, it first invokes a read operation on T B. This read returns the longest chain
of T B, denoted by B. From B, the miner creates its new block, appends it to
B, and invokes a write operation with B as parameter. The miner broadcasts B
in the system. Note that from a practical point of view, only the new block is
broadcast to the system, and if necessary miners wait from their neighbours for
blocks in B they are not aware of.

Let us now formalise the operations and the properties guaranteed by the
distributed ledger register. The DLR has a tree structure, whose root is the
genesis block, and where each branch is a sequence of blocks. The value of DLR
is its longest sequence of blocks, starting from the root. The value of the DLR is
called the blockchain and is denoted by B. The DLR is equipped with write and
read operations. The DLR.write operation allows any miner to try to change the
value of DLR with value B, where B is a sequence of blocks. The DLR.read()
operation allows any miner to retrieve the value of DLR.

Note 1. Note that the value returned by the read() operation is different in Bit-
coin and Ethereum. In Bitcoin, the longest chain is returned while in Ethereum
the heaviest one is returned.

As recalled in Sect. 2, the level of confirmation k of a block b in a blockchain
provides guarantees on the likelihood that b can be pruned from the blockchain.

464 E. Anceaume et al.

The blockchain properties are closely related to the value of k. We now introduce
the notion of k-valid write.

Definition 1 (k-valid write). Operation DLR.write(B) is k-valid if and only
if there exist a time t > 0 and an integer k > 0 such that a virtual DLR.read()
invoked at time t′ > t after the invocation of DLR.write(B) returns a chain B′

such that B is a prefix of B′ and length(B′) ≥ length(B) + k, where function
length(B) returns the number of blocks that compose chain B.

Operation DLR.write(B) returns true if DLR.write(B) is k-valid otherwise it
returns abort.

As described in Sect. 2 the value of k depends on the proportion β of malicious
miners in the system. It has been shown by Nakamoto [15], that if the proportion
β of malicious miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can
be rejected if its level of confirmation in a local copy of the blockchain is less
than or equal to than 6.

The presence of the genesis block is very similar to the classical assumption in
registers theory which states that before the first read at least one virtual write
operation happened. Therefore, for the distributed ledger register we consider
that before the first read there was at least a virtual k-valid write.

5.1 Specification of the Distributed Ledger Register

A DLR multi-reader multi-writer register is defined by the following properties.

– Liveness: Any invocation of a DLR.write(B) or a DLR.read() terminates.
– k-coherency: Any DLR.read() returns a value B whose prefix B′ is the value

of the register written by the last k-valid DLR.write(B′) operation that pre-
cedes DLR.read().

As recalled in the previous section, the semantic of a distributed shared
register can be classified as safe, regular or atomic according to the returned
values read in presence of concurrent writes [13]. In the following we establish the
relationships between those classical registers and the newly defined distributed
ledger register.

Theorem 1. The Distributed Ledger Register satisfies the regular register
semantic.

Proof. The liveness property of DLR register being identical to the liveness prop-
erty for the regular register, we only need to prove that the distributed ledger
register satisfies the safety property of the regular register.

Consider a read operation of DLR r that is not concurrent with any write oper-
ations. By the k-coherency property, the value B returned by r is a value whose
prefix B′ is the value of the register written by the last k-valid DLR.write(B′)
operation that preceded r. Let w be this k-valid write operation. By construction
r returns the value written by w, which makes the safety property of regularity

Bitcoin a Distributed Shared Register 465

satisfied. Now suppose that r is concurrent with write operations that started
after operation w. By the k-coherency property, r may return any of the chains
written by those writes. However, all these chains have as common prefix the
chain written by w, which completes the proof.

Theorem 2. The Distributed Ledger Register does not satisfy the atomic regis-
ter semantic.

Proof. From Theorem 1 DLR satisfies the regular register specification. We now
show that DLR does not satisfy the no new/old inversion property. Consider two
read operations r1 and r2 such that r1 happens before r2. Let w=DLR.write(B)
be the last k-valid write that precedes r1 and r2. Consider two different k-valid
write operations w1=DLR.write(B′) and w2=DLR.write(B′′) that happen after
w and that are concurrent with r1 and r2. By definition of the k-validity, B is a
prefix for both B′ and B′′, while both B′ and B′′ are different. By the k-coherency
property, r1 may return B′ while r2 may return B′′ which violates the no new/old
inversion property.

5.2 Bitcoin and the Distributed Ledger Register

The DLR-Algorithm below describes the maintenance of the Bitcoin blockchain
in terms of read/write invocations over the blockchain tree. Each miner man-
ages one local variable, called T B, that stores the blockchain tree, and has
access to two functions, the best chain function whose argument is (T B), and
the update tree() functions whose arguments are T B and a sequence of blocks
B. Specifically,

– Function best chain(T B) returns the longest chain of T B starting from the
genesis block.

– Function update tree(T B, B) fusions T B with the sequence of B. Specifically,
if T B contains a branch which prefixes B, then this branch is replaced by B,
otherwise B is added to T B. Note that B must be well-formed and must start
with the genesis block.

As described above, the DLR-algorithm run by any miner is quite simple. Its
pseudo-code appears in Fig. 2. The block creation process requires that a miner
invokes the DLR.read() on T B to get the best chain B (see Fig. 3). From B, the
miner creates its block b by solving the required proof-of-work, appends b to
B, and invokes the DLR.write(B) on T B (see Fig. 3). This operation updates its
local tree, and then diffuses the updated longest chain in the network by invoking
the broadcast primitive. The DLR.write(B) operation does not return until the
new block b is valid, i.e. k other blocks have been appended to the local tree
after b. Therefore, the miner will read its local tree until the above condition is
verified. The DLR-algorithm assumes that miners continuously DLR.write new
blocs otherwise the liveness of the algorithm would not hold, as shown in the
sequel.

466 E. Anceaume et al.

DLR-Algorithm % run by a miner %

(01) B = DLR.read()
(02) create the well-formed block b from B
(03) append b to B
(04) DLR.write(B)
(05) return

Fig. 2. Algorithm run by any miner

Operation DLR.read () is % issued by a reader %
(01) return(best chain(T B))

Operation DLR.write (B) is % issued by a writer %
(02) update tree(T B, B)
(03) broadcast (<propose B>)
(04) repeat
(05) B′ = DLR.read ()
(06) until length(B′) ≥ length(B) + k
(07) if B= prefix(B′) return true
(08) else return abort
———————————————————–
(09) upon deliver(<propose B>)
(10) update tree(T B, B)

Fig. 3. read() and write() operations of the DLR register.

It may happen that, due to concurrent writes, the longest returned blockchain
has not B as a prefix. In that case the miner knows that its DLR.write(B) oper-
ation is not successful, i.e., returns abort. It returns true otherwise.

We now prove that DLR-Algorithm conditionally satisfies the distributed
ledger register properties.

Lemma 1. DLR-Algorithm satisfies the liveness property of the DLR register.

Proof. The liveness property is trivial and follows directly from the code. Indeed,
a DLR.read() operation always returns since the read is executed locally. For
the write operations the only blocking part of the code is the repeat loop. By
assumption of the DLR-Algorithm, miners continuously try to create blocks
which gives rise to the invocation of the DLR.write() operation every 10 min
in expectation. Thus the loop stops, which allows the DLR.write() operation to
either return true or abort, which terminates the DLR-Algorithm.

Lemma 2. Each non aborted DLR.write() invoked by the DLR-Algorithm satis-
fies the k-validity property.

Bitcoin a Distributed Shared Register 467

Proof. Let w be any non-aborting DLR.write() operation that writes some chain
B at time say t > 0. Note that this operation returns only when the best chain
in the T B tree, say B′, has B as a prefix and has at least k additional blocks. Let
r be a DLR.read() that happens after w. If r is invoked by the same miner then
the property trivially follows. Assume now that r has been invoked by a miner
different from the writer. By the τ -delivery property of the broadcast primitive,
there is a time t′ > τ + t such that B′ has reached every miner in the system.
Hence any read r invoked after τ + t returns B′, which completes the proof of
the lemma.

Lemma 3. DLR-Algorithm satisfies the k-coherency property of the DLR reg-
ister under the hypothesis that each read is invoked after that τ time units have
elapsed since the last k-valid write.

Proof. Let r be a read() operation invoked at time t′. Let w be the last k-valid
write that happened before r at time t < t′. At t, the longest chain read by w is
B′. By the the τ -delivery property of the boradcast primitive, then in the worst
case at time t + τ , chain B reaches every miner in the system, and in particular
the reader. Any read() invoked at t′ ≥ t + τ verifies the k-coherency property.
Note that a read() operation invoked at t ≤ t′ < t+τ may return the last k-valid
write that happened before w. This ends the proof of the lemma.

The following theorem is a direct consequence of the three above lemmata.

Theorem 3. DLR-Algorithm satisfies the DLR specification under the hypoth-
esis that each read is invoked after that τ time units have elapsed since the last
k-valid write.

Note that when reads are invoked without any constraints the DLR-
Algorithm does not satisfy the k-coherency.

6 Conclusions and Open Questions

In this paper we have shown that classical distributed shared registers do not
capture totally the behaviour of Bitcoin ledger, which has led us to propose a
specification of a distributed ledger register with a regular flavour.

We have then proven that the blockchain maintenance of Bitcoin satisfies
the distributed ledger register specification under strict conditions and only in
partially synchronous systems. The first conclusion of our study is that Bitcoin
does not implement strong coherency criteria even in partially synchronous sys-
tems. This finding explains the constant adjustments that Bitcoin experienced
since its creation.

Our paper opens several research directions. The implementation of the dis-
tributed ledger register with strong coherency guarantees (i.e. similar to the lin-
earisability) in a adversarial asynchronous environment is a real challenge that
might be mitigated by relying on tools such as k-quorums abstraction defined
in [2]. Another interesting research direction is the identification of the minimal
building blocks necessary to implement a blockchain-based transactional system
in an adversarial model.

468 E. Anceaume et al.

Acknowledgements. The authors would like to thank Sara Tucci Piergiovanni and
Antonella del Pozzo for insightful comments on a preliminary version of this paper.

References

1. Ethereum Stack Exchange (2016). https://ethereum.stackexchange.com/questions/
319/what-number-of-confirmations-is-considered-secure-in-ethereum

2. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Byzantine and multi-writer k-quorums. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 443–458. Springer, Heidelberg
(2006). doi:10.1007/11864219 31

3. Anceaume, E., Lajoie-Mazenc, T., Ludinard, R., Sericola, B.: Safety analysis of bit-
coin improvement proposals. In: 15th IEEE International Symposium on Network
Computing and Applications (NCA) (2016)

4. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based
storage in Byzantine asynchronous message-passing systems: extended abstract. In:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21–23, 2015, pp. 471–479 (2015)

5. Cachin, C.: Blockchain - from the anarchy of cryptocurrencies to the enterprise
(Keynote Abstract). In: Proceedings of the OPODIS International Conference
(2016)

6. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 106–125. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53357-4 8

7. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the ICDCN International Conference (2016)

8. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In Proceedings of the USENIX NSDI Symposium (2016)

9. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

10. Shafer, S.: Keynote address. In: Tomayko, J.E. (ed.) SEI 1991. LNCS, vol. 536, p.
1. Springer, Heidelberg (1991). doi:10.1007/BFb0024281

11. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. 18(1), 2 (2015)

12. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collec-
tive signing. In Proceedings of the USENIX Security Symposium (2016)

13. Lamport, L.: On inter-process communications, part I: basic formalism and part
II: algorithms. Distrib. Comput. 1(2), 77–101 (1986)

14. Miller, A., LaViola Jr., J.J.: Anonymous Byzantine consensus from moderately-
hard puzzles: a model for bitcoin (2014). http://bravenewcoin.com/assets/
Whitepapers/

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

16. Pass R., Seeman L., Shelat A.: Analysis of the blockchain protocol in asynchronous
networks. In: Proceedings of the EUROCRYPT International Conference (2017)

17. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. http://
gavwood.com/Paper.pdf

https://ethereum.stackexchange.com/questions/319/what-number-of-confirmations-is-considered-secure-in-ethereum
https://ethereum.stackexchange.com/questions/319/what-number-of-confirmations-is-considered-secure-in-ethereum
http://dx.doi.org/10.1007/11864219_31
http://dx.doi.org/10.1007/978-3-662-53357-4_8
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/BFb0024281
http://bravenewcoin.com/assets/Whitepapers/
http://bravenewcoin.com/assets/Whitepapers/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

	Bitcoin a Distributed Shared Register
	1 Introduction
	2 Bitcoin Background
	3 Computing Model
	4 Background on Distributed Registers
	4.1 Classical Distributed Read-Write Registers
	4.2 Extension to Stabilising Distributed Registers
	4.3 Bitcoin and Distributed Shared Registers

	5 Distributed Ledger Register
	5.1 Specification of the Distributed Ledger Register
	5.2 Bitcoin and the Distributed Ledger Register

	6 Conclusions and Open Questions
	References

