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Abstract. We study here the dynamics and stability of Probabilistic
Population Processes, via the differential equations approach. We provide
a quite general model following the work of Kurtz [15] for approximating
discrete processes with continuous differential equations. We show that
it includes the model of Angluin et al. [1], in the case of very large popu-
lations. We require that the long-term behavior of the family of increas-
ingly large discrete processes is a good approximation to the long-term
behavior of the continuous process, i.e., we exclude population protocols
that are extremely unstable such as parity-dependent decision processes.
For the general model, we give a sufficient condition for stability that
can be checked in polynomial time. We also study two interesting sub
cases: (a) Protocols whose specifications (in our terms) are configura-
tion independent. We show that they are always stable and that their
eventual subpopulation percentages are actually a Markov Chain sta-
tionary distribution. (b) Protocols that have dynamics resembling virus
spread. We show that their dynamics are actually similar to the well-
known Replicator Dynamics of Evolutionary Games. We also provide a
sufficient condition for stability in this case.

1 Introduction

In the near future, it is reasonable to expect that new types of systems will
appear, designed or emerged, of massive scale, expansive and permeating their
environment, of very heterogeneous nature, and operating in a constantly chang-
ing networked environment. Such systems are expected to operate even beyond
the complete understanding and control of their designers, developers, and users.
Although they will be perpetually adapting to a constantly changing environ-
ment, they will have to meet their clearly-defined objectives and provide guar-
antees about certain aspects of their own behavior [5].

A previous version of some aspects of this work has appeared as a brief announcement
in DISC 2008 [6].
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We expect that most such systems will have the form of a very large society of
networked artefacts. Each such artefact will be unimpressive: small, with limited
sensing, signal processing, and communication capabilities. Yet by cooperation,
they will be organized in large societies to accomplish tasks that are difficult
or beyond the capabilities of today’s conventional centralized systems. These
systems or societies are expected to operate continuously and for long dura-
tions of time by achieving an appropriate level of organization and integration.
This organization should be achieved seamlessly and with appropriate levels of
flexibility, in order to be able to achieve their global goals and objectives.

Angluin et al. [1] introduced the notion of a computation by a population pro-
tocol to model such distributed systems in which individual agents are extremely
limited and can be represented as finite state machines. In their model, finite-
state, and complex behavior of the system as a whole emerges from the rules
governing the pairwise interaction of the agents. The computation is carried out
by a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come into contact with each other. The goal is to ensure that every agent
can eventually output the value that is to be computed (assuming a fairness
condition on the sequence of interactions that occur).

In [1] they also proposed a natural probabilistic variation of the standard
population protocol model, in which finite-state agents interact in pairs under
the control of an adversary scheduler. In this variant, interactions that occur
between pairs of agents are chosen uniformly at random (i.e., by employing a
random scheduler). We call the protocols of [1] by the term “Probabilistic Pop-
ulation Processes” (PPP). In [2] they presented fast algorithms for performing
computations in this variation and showed how to use the notion of a leader
in order to efficiently compute semilinear predicates and in order to simulate
efficiently LOGSPACE Turing Machines. [8] studied the acquisition and propa-
gation of knowledge in the probabilistic model of random interactions between
all pairs in a population (conjugating automata). A particular form of proba-
bilistic population dynamics that is based on “baptizing” the other member of
the interaction was recently studied in [7]. The topic of population protocols
has been studied recently towards establishing a broader understanding of the
effects of local memory [4,16], district identifiers [10] and existence of leader [3].

In this work, we look into the cases where the systems are comprised of very
large agents with a very long lifespan which interact continuously. In such sys-
tems the state of individual agents at a given time do not help provide a broader
understanding of the condition of the system and the expected future state. Our
approach is to examine the system from a high-level view. We characterize the
dynamics of population protocols by examining the rate of growth of the states
of the agents as the protocol evolves. We imagine here a continuum of agents. By
the law of large numbers, one can model the underlaying aggregate stochastic
process as a deterministic flow system. Our main proposal here is to exploit the
powerful tools of continuous nonlinear dynamics in order to examine questions
(such as stability) of such protocols. The use of differential equations to model
the dynamics of distributed interactions has been briefly used in the past for
task allocation in robot networks [9].
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Such an approach was first suggested by the seminal work of Kurtz [15]. That
approach approximates the behavior of a system of discrete dynamics with a sys-
tem of differential equations in the limit. This also relates to Wormald’s Lemma
[20], taking into careful consideration the timing of the conversion of the discrete
to a continuous analog. Here is a brief description of Wormald’s Lemma: Given a
stochastic process in which tokens of type 1, 2, 3, etc. interact with a probability
that is a continuous function of their concentrations x1

n , x2
n , etc. (where xi counts

the number of tokens of type i), resulting in an increase or decrease of each xi by
some constant determined by the particular interaction that occurs, then in the
limit as we increase n (where n is the size of the population) while rescaling time
as t

n we obtain a continuous process defined in terms of differential equations
where the derivative of the x vector with respect to time is given by the sum of
the various increments multiplied by their probabilities. Wormald’s Lemma says
that for any fixed time t

n , the distance between the discrete concentrations xi

n
and the corresponding component of the solution to the differential equation is
o(1) with high probability.

We first provide a very general model for population protocol continuous
dynamics. This model (Switching Population Processes – SPP) is a first step
towards studying very large populations where the agents that constitute the
population are infinitely lived and they interact forever. In this first step we
avoit monitoring the changes on the states of the agents continuously, but rather
do it with a specified time rate. In this way we can approximate the number of
agents that are on a given state for very large, finite, populations. Remark that
SPP include the probabilistic population protocols (PPP) of [1] as a special case
when the population is infinite and the time is continuous.

We show a sufficient condition for stability of SPP that can be checked in
polynomial time. We also examine two subclasses of SPP:

– The Markovian Population Processes (MAP). In these protocols, their spec-
ifications are configuration independent. In this very practical case, we show
that MAP are always stable and their unique population mix at stability is
exactly the steady-state distribution of a Markov Chain.

– The Linear Viral Processes (LVP). They are probabilistic protocols motivated
by the “random pairing” of [1]. However, agents review their current state at
a higher rate when they have weak “immunity”. We view this as a general
model for the dynamics of viruses spread in the population. We show that
LVP is equivalent to the well-known “Replicator Dynamics” of Evolutionary
Game Theory. We also give a sufficient condition for stability of LVP, based
on potentials.

2 The General Model (Switching Probabilistic
Processes – SPP)

The network is modeled as a complete graph G where vertices represent nodes
and edges represent communication links between nodes. We use the letter n
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to denote |V |, the number of nodes in the network. Each node is capable of
executing an “agent” (or process) which consists of the following components:

– K, a finite set of states. We use the letter k to denote |K|.
– X, a nonempty subset of K, known as the initial states or start states.

We consider a large population of n agents. Let q ∈ K be a state of the agent
and let nq the number of agents that are on the given state p. Then the total
population size is n =

∑k
i=1 ni. The proportion of agents that are at state q is

xq = nq

n . We call xq the density of q. In the sequel q = qi, where i ∈ {1, 2, . . . , k}.
A state assignment of a system is defined to be an assignment of a state

to each agent in the system. A configuration C is a map from the population
to states, giving the current state of every agent. The population state density
then, at time t, can be described via a vector x(t) = (x1(t), . . . , xk(t)). Here
xi(t) = ni

n , i = 1 . . . k.
In the sequel we assume that n → ∞. We are interested, thus, in the evolution

of x(t) as time goes on. We use a different model (compared to [1]) for describing
a protocol P . We imagine that all agents in the population are infinitely lived
and that they interact forever. Each agent sticks to some state in K for some
time interval, and now and then reviews her state. This depends on x(t) and
may result to a change of state of the agent. Based on this concept, a switching
population protocol consists of the following two basic elements (specifications):

1. A specification of the time rate at which agents in the population review
their state. This rate may depend on the current, “local”, performance of the
agent’s state and also on the configuration x(t).

2. A specification of the switching probabilities of a reviewing agent. The proba-
bility that an agent, currently in state qi at a review time, will switch to state
qj is in general a function pij (x(t)), where pi (x) = (pi1 (x) , . . . , pik (x)) is
the resulting distribution over the set K of states in the protocol.

In a large, finite, population n, we assume that the review times of an agent
are the “birth times” of a Poisson process of rate λi (x). At each such time,
the agent i selects a new state according to pi (x). We assume that all such
Poisson processes are independent. Then, the aggregate of review times in the
sub-population of agents in state qi is itself a Poisson process of birth rate
xiλi (x). As in the probabilistic model of [1] we assume that state switches are
independent random variables across agents. Then, the rate of the (aggregate)
Poisson process of switches from state qi to state qj in the whole population is
just xi(t)λi (x(t)) pij (x(t)).

When n → ∞, we can model the aggregate stochastic processes as determinis-
tic flows (see, e.g., [17,18,20]). The outflow from state qi is

∑
j �=i xjλj (x) pij (x).

Then, the rate of change of xi(t) (i.e. dxi(t)
dt or ẋi(t)) is just

ẋi =
∑

j∈K

xjpji (x) λj (x) − λi (x) xi (1)
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for i = 1, . . . , k.
We assume here that both λi (x) and pij (x) are Lipschitz continuous func-

tions in an open domain Σ containing the simplex Δ where

Δ =

{

(xi, . . . , xk) :
K∑

i=1

xi = 1 , xi ≥ 0 , ∀i

}

By the theorem of Picard-Linderlöf (see, e.g., [12] for a proof), Eq. 1 has a
unique solution for any initial state x(0) in Δ and such a solution trajectory
x(t) is continuous and never leaves Δ.

2.1 SPP Includes the Probabilistic Population Protocols

We now show that our model of Switching Probabilistic Processes (SPP) is more
general than the model of [1] in the sense that it can be used to define the
Probabilistic Population Processes (PPP). We do this by showing the following:

Theorem 1. The continuous time dynamics of PPP (when n → ∞) are a special
case of the dynamics of SPP.

Proof. According to [1], the discrete-time dynamics of a Probabilistic Popula-
tion Protocol (PPP) are given by a finite set of rules, R of the form

(p, q) �→ (p′, q′)

where p, q, p′, q′ ∈ K (K = {q1, . . . , qk}) together with a set A of n agents and
an (irreflexive) relation E ⊆ A × A.

Intruitively, a (u, v) ∈ E means that u, v are able to interact. [1] assumes
further that E consists of all ordered pairs of distinct elements from A.

A population configuration in [1] is a mapping C : A �→ K (K is the set
of states). Let C and C ′ be population configurations, and u, v be two distinct
agents. [1] says that C can go to C ′ in one discrete step (denoted C

e�→ C ′) via
an encounter e = (u, v) if

(C(u), C(v)) �→ (C ′(u), C ′(v))

is a rule in R. This means that the state C(u) of u switches to C ′(u) and also
C(v) switches to C ′(v).

The execution of the system is defined to be a sequence C0, C1, C2, . . . of
configurations (where C0 is the initial configuration) such that for each i, Ci �→
Ci+1. An execution is fair if for any Ci and Cj , such that Ci �→ Cj and Ci occurs
infinitely often in the execution, Cj also occurs infinitely often in the execution.

In the probabilistic version of the above, [1] further states that e (the ordered
pair to interact) is chosen at random, independently and uniformly from all
ordered pairs corresponding to edges e in A × A ([1] calls it the model of Con-
jugating Automata, inspired also by [8]).
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Let us now assume that n → ∞ and let xi = limn→∞ ni

n be the population
fraction at state qi ∈ K at a particular configuration C, at time t. Consider the
rule ρ in R

(qr, qm) �→ (qi, qj)

Without loss of generality, we assume in the sequel that r 	= m and i 	= j in such
rules ρ in R. By the uniformity and randomness, the probability that such an
e, that follows from rule ρ, is selected (as the encounter), is just xr(t)xm(t). Let
Ai be the set of all (r,m) that are the left part of a rule ρ:

(qr, qm) �→ (qi, qj)
or (qr, qm) �→ (qj , qi)

Let Bi be the set of (r,m) that are the left part of a rule ρ′:

(qr, qm) �→ (qr′ , qm′)

with r = i or m = i. Without loss of generality let r = i in ρ′. By considering a
small interval Δt and taking limits as Δt → 0, due to fairness we get ∀i:

ẋi =
∑

(r,m)∈Ai

xr(t)xm(t) − xi(t)
∑

(i,m)∈Bi

xm(t) (2)

The above set of equations describe the continuous dynamics of PPP.
Now, consider our SPP dynamics and Eq. 1. Set λi (x) =

∑
xm(t), with m

ranging over all rules

(qr, qm) �→ (qr′ , qm′)

with r = i, and all rules

(qm, qr) �→ (qr′ , qm′)

with r = i (i.e., over all rules in Bi).
Also, set pmi = pri = 0, if r,m do not belong in any tuple of Ai.
Finally set

pri =
1
λr

∑

m∈C(r,i)

xm(t)

where C(r, i) is the set of indices m in the second argument of the left part of
rules in Ai (i.e. (qr, qm) �→ (qr′ , qm′) with r′ = i or m′ = i).

Then our system of Eq. 1 (the SPP dynamics) becomes the system of Eq. 3
(the PPP dynamics). Thus the PPP dynamics are a special case of the SPP
dynamics in the continuous time setting. 
�
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Here is an example of the reduction described above. Let the rules R in PPP
be

(q1, q2) �→ (q3, q2)
(q3, q1) �→ (q1, q2)
(q2, q3) �→ (q2, q1)

This gives the continuous PPP dynamics:

ẋ1 = x1x3 + x2x3 − x1 (x2 + x3)
ẋ2 = x1x3 + x1x2 + x2x3 − x2 (x1 + x3)
ẋ3 = x1x2 − x3 (x1 + x2)

We then set

λ1 = x2 + x3

λ2 = x1 + x3

λ3 = x1 + x2

and

p21 = x3
x1+x3

p11 = x3
x2+x3

p31 = 0
p12 = x3

x2+x3
p22 = x1

x1+x3
p32 = x2

x1+x2

p13 = x2
x2+x3

p23 = p33 = 0

and this results in our SPP dynamics, namely:

ẋ1 = x1λ1p11 + x2λ2p21 + x3λ3p31 − x1λ1

ẋ2 = x1λ1p12 + x2λ2p22 + x3λ3p32 − x2λ2

ẋ3 = x1λ1p13 + x2λ2p23 + x3λ3p33 − x3λ3

3 Stability of Nonlinear Dynamic Systems: A Sufficient
Condition for Decidability

Let us consider a dynamic system

ẋi = fi (x) , i = 1, . . . , k

that is, in fact, more general than Eq. 1.

Definition 1 (Fixed Points). Let x∗ be a solution of the system
{fi (x∗) = 0, i = 1, . . . , k} which we call a fixed point of the system.

By making a Taylor expansion around x∗ we obtain a linear approximation
to the dynamics:

ẋi =
∑ (

xj − x∗
j

) dfi
dxj

(x∗)
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Setting ξi = xi − x∗
i we get

ξ̇i =
∑

ξj
dfi
dxj

(x∗)

which is a Linear System with a fixed point at the origin, i.e., ξ̇ = Lξ where
the matrix L has constant components Lij = dfi

dxj
(x∗). L is called the Jacobian

Matrix. Then, by the theorem of [11] we have

Corollary 1. If the fixed point x∗ is hyperbolic (i.e., all eigenvalues of L∗ have
a non-zero real part) then the topology of the dynamics of the nonlinear system
around x∗ is the same as the topology of a x∗ in the Linear system.

In fact, let each eigenvalue of L be φ = a + iω.

Corollary 2. Let a 	= 0, ∀φ eigenvalues of L. Then

(a) If a < 0, ∀φ then x(t) approaches the fixed point x∗ as t → ∞.
(b) If there exists a φ with a > 0 then x(t) diverges from the fixed point x∗

along the direction of the corresponding eigenvector. That is, the fixed point
x∗ is unstable.

Thus we get our main result of the system:

Theorem 2. If all fixed points x∗ of our population dynamics of Eq. 1 are hyper-
bolic, then we can decide stability of the population protocol, around x∗, in
polynomial time in the description of the protocol.

Corollary 3. If all fixed points of PPP are hyperbolic, then the stability of PPP
can be decided in polynomial time.

4 Switching Population Processes with Specifications
Independent of the Configuration

We now consider the special case of Eq. 1 where λi (x) = λi∀i and where pij (x) =
pij (specifications independent of the configuration x(t)). Then the basic system
of Eq. 1 of the dynamics of the population becomes:

ẋi =
∑

j∈K

xjλjpji − λixi i = 1 . . . k (3)

We call such protocols by the term “Markovian Population Processes” (MAP).
Let qij = λipij for all i, j, when i 	= j and when j = i let qii = λi(pii − 1).

Then Eq. 3 in fact becomes

dxi(t)
dt

= qiixi(t) +
∑

j �=i

qkixk(t) (4)
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Note that
∑

i∈K xi(t) = 1. But this is, in fact, the basic equation of the limiting-
state probabilities of a Markov Chain of k states with qij being the (continuous
time) rates of change (see, e.g., [14], pp. 53–55).

When all λij , i 	= j are non zero then the Markov Chain of Eq. 4 is irre-
ducible and homogeneous. Then the limits limt→∞ xi(t) always exist and are
independent of the initial state. The limiting distribution is given uniquely as
the solution of the following equations:

qjjxj +
∑

k �=j

qkjxk = 0

So, we get our second major result:

Theorem 3 (Markovian Population Processes – MPP). Let the specifi-
cations {λj , pij} independent of the configuration x(t). Let also λjpij 	= 0, ∀i, j
where i 	= j. Then the Population Protocol is stable. It always has a limiting
unique configuration {xi i = 1 . . . k} independent of the initial configuration
x(0), which is exactly the steady-state distribution of an ergodic, homogeneous
Markov Chain of k states.

5 A Special Case of Random Pairing Population
Protocols (Linear Viral Processes – LVP)

Now, let us assume that all reviewing agents adopt the state of “the first man
they meet in the street”. This is clearly the case when the reviewing agent
draws a pairing agent at random from the population (according to the uniform
probability distribution across agents) and adopts the state of the so sampled
agent. This is similar to the case of the protocols of [1] where the rules are
(qi, qk) �→ (qm, qr) with r,m ∈ {i, j}. Formally then

pij (x) = xj ∀i, j ∈ K, ∀x(t)

Now Eq. 4 becomes

ẋi =
∑

j∈K

xjxiλj(x) − λi(x)xi

i.e.

ẋi =

⎛

⎝
∑

j∈K

xjλj(x) − λi(x)

⎞

⎠ · xi (5)

We now propose a “linear” model in order to capture the immunity that
an agent has against other agents in the population. We postulate that agents
immunity depend on their states. So all agents at state experience the same
immunity. One can imagine immunity to be a measure of the degree of protection
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of agents when they interact. So, when an agent in state qi interacts with an
agent in state qj we measure the immunity of the (qi, qj) pair by an integer aij
and we require here that aij = aji (we assume symmetric interactions). It is
then natural to assume that agents in state qi will wish to review their state
more often when their immunity is low. In particular we assume here that any
agent in state qi has a review rate λi (x) that is linearly decreasing in the average
immunity of the agent in state qi. This is the simplest possible model. The formal
definitions follow:

Definition 2 (Immunity of a state). Let A = {aij} be a symmetric matrix
of integers. The immunity of an agent in state qi is ti (x) = ai1x1 + . . . + aikxk.

Definition 3 (Average immunity of a population protocol, in a par-
ticular configuration). Let A be a symmetric matrix of integers. The average
immunity of the population, in configuration {xi}, is: t (x) =

∑
i∈K xiti (x).

Definition 4 (Linear Viral Processes – LVP). The Linear Viral Processes
are switching population protocols with review rates of agents

λi (x) = γ − δti (x)

where γ, δ ∈ �, δ > 0 and also γ/δ ≥ ti (x), ∀x + Δ, ∀i.

Now Eq. 5 becomes

ẋi = δ (ti (x) − t (x)) xi (6)

Note, now, that this equation is a constant rescaling of the popular “replicator
dynamics” of Evolutionary Game Theory (see, e.g., [19]).

Definition 5. The general Lotka-Volterra equation for k types of a population
is of the form

ẋi = xi

⎛

⎝ri +
k∑

j=1

aijxj

⎞

⎠ i = 1 . . . k

where ri, aij are constant.

By the equivalence of the Replicator Dynamics with the Lotka-Volterra systems
we then get:

Theorem 4. The dynamics of the linear viral protocols are equivalent to the
Lotka-Volterra dynamics.

We can then give an alternative sufficient condition for the (asymptotic) stability
of the Linear Viral Processes.

Theorem 5. Let x∗ be a fixed point of Eq. 6, i.e., ti (x) = t (x) is satisfied for
x = x∗. If

∑k
i=1 x∗

i ti (x) > t (x) for any x in a region around x∗, then x∗ is
asymptotically stable.
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In order to prove our theorem, we first consider the relative entropy of x and x∗

as

E(x) = −
k∑

i=1

x∗
i ln

(
xi

x∗
i

)

(7)

Clearly E(x∗) = 0. Then we need to prove the following claim:

claim. E(x) ≥ E(x∗), ∀x
Proof. From Jensen’s inequality it folds:

exp (f(x)) ≥ f(exp x)

where exp() is the expectation, x a random variable and f a convex function.
Thus Eq. 7 becomes

E(x) ≥ − ln

(
k∑

i=1

x∗
i

xi

x∗
i

)

≥ − ln

(
k∑

i=1

xi

)

= − ln 1 = 0


�
Proof. Based on Claim 5 we can prove Theorem 5 as follows:

dE (x(t))
dt

=
k∑

i=1

dE

dxi
ẋi

= −
k∑

i=1

x∗
i

xi
ẋi

= −
k∑

i=1

δ (ti (x) − t (x)) x∗
i (due to Eq. 6)

= −δ

[
k∑

i=1

x∗ (ti(x) − t (x))

]

< 0 by assumption

Thus, in a region around x∗, dE
dt < 0. Then E is a (strict) Lyapounov function

(see, e.g., [13], pp. 18–19) and thus x∗ is stable asymptotically. 
�

6 Conclusions

We imagine here a continuum of agents. By the law of large numbers, one can
model the underlying aggregate stochastic process as a deterministic flow system.
Our main proposal here is to exploit the powerful tools of continuous nonlinear
dynamics in order to examine questions (such as stability) of such protocols.
We have extended the class of [1] by defining a general model of “Switching
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Population Processes” (SPP). We then examined stability for this general model
and two important subclasses.

Our main point is that one can study stability and population dynamics of
protocols, via nonlinear differential equations that describe quite accurately the
(discrete) population protocol dynamics when the population is very large. The
“differential equations” approach was indicated in the past for the analysis of
the evolution of algorithms with Random Inputs, by [17,18,20]. Our approach
provides a sufficient condition for stability of PPP of [1] that can be checked
in polynomial time. It also gives a more general way to specify population pro-
tocols, that reveals interesting classes. A potential problem with this approach
is that the long-term behavior of the continuous process may not be a good
approximation to the long-term behavior of the family of increasingly large dis-
crete processes it is supposed to describe in some cases. For example, it is not
hard to construct a population process that converges with high probability to a
configuration in which all tokens say EVEN if the number of 1 bits in the original
population is even and ODD otherwise (a consequence of the LOGSPACE com-
putation results [1]). No continuous limit can distinguish between these odd and
even initial configurations, since we can approach any given limit concentration
arbitrarily using only odd or even initial configurations. This is not a problem for
Wormald’s Lemma [20] (the time needed to distinguish between odd and even
grows faster than n, so any for any fixed time t/n, the behavior of the discrete
process doesn’t depend much on parity yet), and it’s not a problem for the earlier
work of Kurtz [15] (which uses similar time scaling), but it should be a problem
here since the goal of the paper seems to be to describe the behavior of very large
probabilistic population protocols. In the cases studied in this paper, this is not
a problem, because the paper implicitly makes the same scaling assumption as
this previous work, which makes everything interesting happen at a time pushed
off into the infinite future. This limits the applicability of the results to finite
processes. However such highly unstable protocols have limited usage and can
be analyzed with other techniques.
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