
Brief Announcement: ZeroBlock:
Timestamp-Free Prevention of

Block-Withholding Attack in Bitcoin

Siamak Solat(B) and Maria Potop-Butucaru

UPMC-CNRS, Sorbonne Universités, LIP6, UMR, 7606 Paris, France
{Siamak.Solat,Maria.Potop-Butucaru}@lip6.fr

Abstract. Bitcoin was recently introduced as a peer-to-peer electronic
currency in order to facilitate transactions outside the traditional finan-
cial system. The core of Bitcoin, the Blockchain, is the history of all
transactions committed by the system. This distributed ledger is similar
to a distributed shared register where miners write and read blocks. New
blocks in the Blockchain contain the last transactions in the system and
are added by miners after a block mining process that consists in solving
a difficult cryptographic puzzle. Although, the reward is the main moti-
vation for the mining process in Bitcoin, it also may be an incentive for
attacks such as selfish mining. In this paper we propose and theoretically
analyze a solution for one of the major problems in Bitcoin: selfish min-
ing or block-withholding attack. This attack is conducted by adversarial
miners in order to either earn undue rewards or waste the computational
power of honest miners. Contrary to the best to date solution for prevent-
ing block-withholding [6], our solution, ZeroBlock , prevents this attack by
using a novel timestamp-free technique that exploits the Poisson nature
of the proof-of-work and the current knowledge on the propagation of
information in Bitcoin [2]. Note that previous solutions are vulnerable
to forgeable timestamps. Additionally, our solution is compliant with
miners churn.

1 Introduction

In the last few years crypto-currencies are in the center of the research ranging
from financial, political and social to computer science and pure mathematics.
Bitcoin [1] was one of the starters of this concentration of forces. It targeted
the creation of a system where transactions between individuals can escape the
strict control of the banks and financial markets.

Bitcoin was introduced as a pure peer-to-peer electronic currency or crypto-
currency. It aims at fully decentralization of electronic transactions. Bitcoin
allows to perform online transactions directly from one party to another one
“without” the interference of a financial institution as a “trusted third party” [1].
It uses digital signatures to verify the bitcoin ownership and employs Blockchain
in order to prevent double-spending attacks. In this attack the same bitcoin can

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 356–360, 2017.
https://doi.org/10.1007/978-3-319-69084-1 25



Brief Announcement: ZeroBlock: Timestamp-Free Prevention 357

be spent several times by a dishonest party. Blocks in the blockchain are cre-
ated via a proof-of-work (cryptographic puzzle) [5] performed by honest parties
(miners that follow the protocol). Blockchain is further broadcasted via a peer-
to-peer overlay in order to agree on a common history of the transactions in the
system.

Bitcoin is still vulnerable to various attacks including double-spending [7],
selfish mining [4], Goldfinger [8], 51% attack [8] etc. In this paper we focus the
selfish mining attack. Recently, [3] provided a full description of incentives to
withhold or selfish mine in Bitcoin. That is, to force honest miners to waste their
computational power such that their public blocks become useless (as orphan
block), whereas the private chain of the selfish miners is accepted as a part of
the Blockchain. To this end, the selfish miners reveal selectively their private
blocks to make useless the blocks made by honest miners.

Our contribution. Our solution builds on the following simple idea: if a selfish
miner keeps a block private more than a fixed interval of time, its block will be
rejected by all the honest miners. Zeroblock scheme strives to reduce the prob-
ability of intentional forks that are result of block-withholding attacks. With
ZeroBlock scheme a selfish mining pool cannot achieve more than its expected
reward. Only with a low probability, selfish mining pool may create intention-
ally an unprofitable fork. We accentuate “unprofitable”, because this fork does
not lead to more reward for selfish mining pool, but also reduces selfish pool’s
likelihood to earn unexpected reward regardless of to its mining power. Thus,
selfish mining pool is not incentivized to create such fork if its purpose is to
achieve more reward. Furthermore, we prove that the maximum probability of
such intentional fork is very low (≈ 0.04) when selfish pool uses its maximum
hashing power. We further extend ZeroBlock in order to be tolerant to miners
churn. The details of our solutions and the correctness proofs are proposed in [9].

2 ZeroBlock Algorithm

The key idea of our solution is that each block must be generated and received
by the network within a maximum acceptable time for receiving a new block
interval, mat (see Eq. 6 below). Within a mat interval a honest miner receives
or discovers a new block. Otherwise, it generates a dummy block. The compu-
tation of each mat interval is done locally by each miner based on the following
Bitcoin parameters: the expected delay for a block mining and the information
propagation time in the Bitcoin network.

Expected delay for a block mining in Bitcoin depends mainly on the difficulty
of proof-of-work. The major part of proof-of-work consists in discovering a byte
string, nonce. As pointed out in [2] proof-of-work in Bitcoin is a Poisson process
and causes blocks to be discovered randomly and independently. Moreover, in
Bitcoin, the difficulty of proof-of-work required to discover a block is periodically
adjusted such that, on average, one block is expected to be discovered every
10min. Hence, the difficulty of proof-of-work is updated every 2016 blocks. It
means that regarding to this adjustment (i.e. one block per 10 min) 2016 blocks,



358 S. Solat and M. Potop-Butucaru

on average, is expected to be generated in 14 days. If 2016 blocks are discovered
in a shorter time, the difficulty of proof-of-work will be increased and if they are
generated in a longer time, difficulty of proof-of-work will be decreased.

The proof-of-work works as follows:

if H(pb + nonce) < T thenproof -of -worksucceeded (1)

where pb represents the hash of the previous block, nonce is the answer of proof-
of-work that must be found by miners, T is target, ‘+’ is concatenation operation
and H is the hash function.

Each mining pool can estimate the difficulty of proof-of-work using Eq. 2.

D =
maxTarget

T
(2)

where D is the difficulty of proof-of-work, T is current target and maxTarget is
maximum possible value for target that is (216 - 1)2208 ≈ 2224. Since the hash
function produces uniformly a random value between 0 and 2256 − 1 thus, the
probability that a given nonce value would be the answer of proof-of-work is as
follows (Eq. 3):

Prob(nonce is answer) =
target

2256
=

2224

D × 2256
≈ 1

D × 232
(3)

The number of hashes to discover a block is D × 232 in expectation. If a
mining pool can calculate hashes at a rate php (we call this as pool’s hashing
power), then the expected time (or average time) avt in which this pool can
discover a block is as follows (Eq. 4):

avtpool =
D × 232

php
(4)

When we replace php by hashing power of the network, nethp, we can use
Eq. 3 for the entire network as follows (Eq. 5):

avtnet =
D × 232

nethp
(5)

According to the relation between time, difficulty of proof-of-work, hashing
power of the network in Eq. 5, Bitcoin network adjusts D such that regarding to
hashing power of the network, the average time for block generation rate remains
10 min.

To calculate the maximum acceptable time for receiving a new block, mat, we
use Eq. 6 below:

mat = avtnet + ipt (6)

where avtnet is given by the Eq. 5 and ipt is the information propagation time
in Bitcoin network as estimated in [2].



Brief Announcement: ZeroBlock: Timestamp-Free Prevention 359

Algorithm 1. ZeroBlock algorithm
1: index ← 0 � index of mat

2: mat[index] ← 0 � mat at the beginning is set to zero

3: avtnet ← block generation average time � according to equation (6)

4: localChain ← Genesis

5: FlagNewBlock ← False

6: nonce ← 0

7: HPrB ← 0 � hash of previous block

8: T ← target

9: newChain ← Null

10: ansPoW ← 0 � answer of PoW

11: scounter() ← 0 � scounter() is a seconds counter

12: while (True) do

13: if (FlagNewBlock = False) AND (mat[index] �= 0) then

14: dummy Zeroblock ← SHF(getHead(localChain)) + SHF(”FixedStringZB”) + index

15: localChain ← join(dummy Zeroblock,localChain)

16: end if

17: index ← index + 1

18: refresh(mat[index])

19: while (scounter() ≤ mat[index]) do

20: newChain ← checkInput()

21: if (newChain �= Null) then

22: HPrB ← SHF(getHead(localChain))

23: if (FHF(HPrB,newChain.ansPoW) ≤ T ) then � proof-of-work is done

24: localChain ← newChain

25: newChain ← Null

26: FlagNewBlock ← True

27: Break

28: end if

29: end if

30: if (scounter() < avtnet) then

31: if (FlagNewBlock = False) then

32: HPrB ← SHF(getHead(localChain))

33: if (FHF(HPrB , nonce) ≤ T ) then � proof-of-work succeeded

34: ansPoW ← nonce

35: localChain ← join(GenerateBlock(),localChain)

36: BroadcastBlock(localChain,ansPoW)

37: FlagNewBlock ← True

38: nonce ← 0

39: Break

40: end if

41: nonce ← nonce + 1

42: end if

43: end if

44: end while

45: end while

The ZeroBlock algorithm (Algorithm 1) uses the following parameters and
definitions: ipt : information propagation time in Bitcoin network that is an
average delay for propagation a block into the network. This average delay has
been estimated by simulation in [2]. avt : block generation rate that has been set
by Bitcoin protocol according to which the difficulty of proof-of-work is adjusted
regarding to the hashing power of the network using Eq. 5. mat : maximum
acceptable time for receiving a new block that is computed by Eq. 6. During



360 S. Solat and M. Potop-Butucaru

a mat interval if a miner cannot solve the proof-of-work, it has to generate a
dummy Zeroblock. unpermitted block-withholding : occurs when a selfish min-
ing pool discovers a new block and keeps the block private after the end of
the current mat interval. Dummy Zeroblock : is generated locally by miners. It
includes the index of mat interval and the hash of previous block. It is generated
by honest miners to prevent unpermitted block-withholding. Note that our solu-
tion uses standard Bitcoin blocks discovered by solving the proof-of-work and
dummy blocks that are generated by the Zeroblock algorithm for which miners
do not need to solve any proof-of-work. The dummy Zeroblocks time generation
is therefore ignored when adjusting the difficulty of the proof-of-work. orphan
block : a block that has been discovered but is then rejected by the network.
genesis block : the first block of a Blockchain on which all miners have a con-
sensus. correct chain : a chain whose blocks have been discovered and inserted
correctly according to the described protocol. creative miner : a miner that in a
mat interval can solve proof-of-work and then generates a new block.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012), 28
(2008)

2. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P).
IEEE (2013)

3. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 28

4. Eyal, I.: The miner’s dilemma. 2015 IEEE Symposium on Security and Privacy
(SP). IEEE (2015)

5. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993).
doi:10.1007/3-540-48071-4 10

6. Heilman, E.: One weird trick to stop selfish miners: fresh Bitcoins, a solution for the
honest miner (Poster Abstract). In: Böhme, R., Brenner, M., Moore, T., Smith, M.
(eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44774-1 12

7. Decker, C., Seider, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the 17th International Conference on Distributed Computing and Net-
working, Singapore (2016)

8. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013 (2013)

9. Solat, S., Potop-Butucaru, M.: ZeroBlock: Preventing selfish mining in Bitcoin in
CoRR abs/1605.02435 (2016). http://arxiv.org/abs/1605.02435

http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/978-3-662-44774-1_12
http://dx.doi.org/10.1007/978-3-662-44774-1_12
http://arxiv.org/abs/1605.02435

	Brief Announcement: ZeroBlock: Timestamp-Free Prevention of Block-Withholding Attack in Bitcoin
	1 Introduction
	2 ZeroBlock Algorithm
	References


