
Universally Optimal Gathering Under
Limited Visibility

Pavan Poudel and Gokarna Sharma(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{ppoudel,sharma}@cs.kent.edu

Abstract. We consider the distributed setting of N autonomous mobile
robots that operate in Look-Compute-Move (LCM) cycles following the
well-celebrated classic oblivious robots model. We study the fundamental
problem of gathering N autonomous robots on a plane, which requires
all robots to meet at a single point (or to position within a small area)
that is not known beforehand. We consider limited visibility under which
robots are only able to see other robots up to a constant Euclidean dis-
tance and focus on the time complexity of gathering by robots under
limited visibility. There exists an O(DG) time algorithm for this prob-
lem in the fully synchronous setting, assuming that the robots agree on
one coordinate axis (say North), where DG is the diameter of the vis-
ibility graph of the initial configuration. In this paper, we provide the
first O(DE) time algorithm for this problem in the asynchronous set-
ting under the same assumption of robots agreement on one coordinate
axis, where DE is the Euclidean distance between farthest-pair of robots
in the initial configuration. The runtime of our algorithm is a signifi-
cant improvement since, for any initial configuration of N ≥ 1 robots,
DE ≤ DG, and, there exist initial configurations for which DG can be as
much as quadratic on DE , i.e., DG = Θ(D2

E). Moreover, our algorithm
is universally (time) optimal since the trivial time lower bound for this
problem is Ω(DE).

1 Introduction

In the classic model of distributed computing by mobile robots, each robot is
modeled as a point in the plane [15]. The robots are autonomous (no exter-
nal control), anonymous (no unique identifiers), indistinguishable (no external
identifiers), disoriented (no agreement on local coordinate systems and units of
distance measures), oblivious (no memory of past computation), and silent (no
direct communication and actions are coordinated via only vision and mobility).
They execute the same algorithm. Each robot proceeds in Look-Compute-Move
(LCM) cycles: When a robot becomes active, it first gets a snapshot of its sur-
roundings (Look), then computes a destination based on the snapshot (Compute),
and finally moves towards the destination (Move) [15].

We consider the gathering problem in the classic oblivious robots model,
where starting from any arbitrary (yet connected) initial configuration, all robots
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 323–340, 2017.
https://doi.org/10.1007/978-3-319-69084-1 23

324 P. Poudel and G. Sharma

are required to meet at a single point (or to position within a small area) that
is not known beforehand. Gathering is one of the most fundamental tasks and
a central benchmark problem in distributed mobile robotics [17]. Early stud-
ies on gathering in the classic model solved it under unlimited visibility, where
each robot is assumed to see (the locations of) all other robots [3], i.e., all the
robots are connected to each other. Flocchini et al. [16] gave the first algorithm
for gathering in the classic model under limited visibility, where each robot can
see (the locations of) other robots within a fixed unit distance (viewing range)
and each robot is connected to all other robots within that fixed unit distance
(connectivity range), i.e., the viewing and connectivity ranges are the same. Sub-
sequently, several algorithms were studied for this problem under different con-
straints [1,4,15,21,23]. These studies proved the correctness of the algorithms
but gave no runtime analysis (except a proof of finite time termination).

The runtime analysis for gathering has been studied relatively recently
[8,10,11,14,18]. Degener et al. [11] gave the first algorithm for this problem
with runtime O(N2) in expectation in the fully synchronous setting, where N
is the total number of robots. Degener et al. [10] gave an O(N2)-time algo-
rithm for this problem in the fully synchronous setting. Kempkes et al. [18] gave
an O(OPT log OPT)-time algorithm for this problem under a slightly different
continuous time setting, where OPT is the runtime of an optimal algorithm. All
above algorithms assume that both the viewing and connectivity ranges are of
(fixed) radius 1. Recently, Cord-Landwehr et al. [8] gave an O(N)-time algo-
rithm for this problem for robots positioned on a grid in the fully synchronous
setting. In this algorithm, it is assumed that robots have the viewing range of
(distance) 20, i.e., each robot can see other robots within a fixed distance of 20,
but the connectivity range is 1, i.e., two robots are connected if and only if they
are vertical or horizontal neighbors on the grid. Moreover, each robot is assumed
to have memory to remember a constant number of previous cycles. Recently,
Fischer et al. [14] gave an O(N2)-time algorithm for gathering on a grid in the
fully synchronous setting, if the memory is not available, using the improved
viewing range of 7.

The intriguing open question is whether an universally optimal time algo-
rithm can be designed for gathering under limited visibility, and if possible,
under what conditions. We define universal time optimality as follows: Let G be
the visibility graph of an arbitrary initial configuration I of N ≥ 1 robots in a
plane. The robots in the system act as nodes of G. There is an edge between
any two nodes in G if the distance between these two nodes satisfies the con-
nectivity range. Note that, according to the definitions above, the viewing and
connectivity ranges may or may not be the same, and if each robot is connected
to all robots within its viewing range, then the viewing range also serves as the
connectivity range, otherwise the connectivity range is different than the viewing
range. G must be connected otherwise gathering may be unsolvable [15]. G is
connected, if the robots (or nodes of G) cannot be separated into two subsets
such that no robot of the one subset is connected to any robot of the other sub-
set and vice versa. Let DG be the diameter of G which is the greatest distance

Universally Optimal Gathering Under Limited Visibility 325

Fig. 1. An illustration of two initial configuration dependent parameters, DE (the
Euclidean diameter) and DG (the visibility graph diameter), and the relation between
them: (left) The diameter DE for an initial arbitrary configuration, (middle) The visi-
bility graph G with diameter DG for the configuration of the left, and (right) An initial
configuration showing the quadratic difference between DE and DG with DG = Θ(D2

E).

between any pair of nodes in G following the edges of G. Let DE be the diameter
of the initial configuration I, which is the greatest Euclidean distance between
any pair of robots in I. Notice that, for any I, DE ≤ DG, and for some con-
figurations the gap between DG and DE can be as much as quadratic on DE ,
i.e., DG = Θ(D2

E). Figure 1 illustrates these ideas. Therefore, an O(DE)-time
algorithm would be universally optimal for gathering, since Ω(DE) is the trivial
time lower bound for robots to meet at a single point (or to position within a
small area) starting from any arbitrary initial configuration.

Recently, Izumi et al. [17] presented an O(DG)-time algorithm for gathering
on the plane in the fully synchronous setting under limited visibility with the
condition that robots agree on one coordinate axis. They use the viewing range
of 1 with an assumption that the visibility graph G is still connected even if the
edges with the corresponding distance at least 1 − 1√

2
are removed from it. The

assumption on the visibility graph G in Izumi et al. [17] essentially means that
the connectivity range is of radius 1√

2
(different and in fact smaller than the

viewing range of 1).
There is still a large gap between the O(DG) bound of Izumi et al. [17]

and the universally optimal O(DE) bound, since DG can be quadratic on DE

(Fig. 1). This work closes this gap under the same one axis agreement with a
slightly modified viewing range of

√
10 and the square connectivity range1 of

√
2

compared to the viewing range of 1 and the (circular) connectivity range of 1√
2

in [17] (if we consider the viewing range of 1 similar to [17], we need the square
connectivity range of

√
2√
10

and our algorithm again achieves O(DE) runtime).
The square connectivity range of distance c means that a robot is connected to
all other robots inside or on the boundary of the (axis-aligned) square area with
the (diagonal) distance from the robot to each corner of the square c. Therefore,

1 If we do not explicitly write “square”, then the viewing and connectivity ranges are
circular.

326 P. Poudel and G. Sharma

if we have both the viewing and connectivity ranges of c, then the area they
enclose differs if the connectivity range is “square”, otherwise they enclose the
same area. Moreover, in contrast to [17] which works in the fully synchronous
setting, our algorithm works in the asynchronous setting.

Contributions. We consider autonomous, anonymous, indistinguishable, obliv-
ious, and silent point robots (also called swarms) as in the classic oblivious robots
model [15]. Robots agree on the unit of distance measure. The viewing range is√

10 – a robot can see all other robots within the fixed radius of at most distance√
10. The square connectivity range is

√
2 – a robot is connected to all other

robots inside or on the boundary of the (axis-aligned) 2 × 2-sized square area
whose center is the position of the robot (Definition 1). In a LCM cycle, a robot
can move to any position inside or on the square area, including its four corners.
The challenge here is that robot movements must not harm the swarm connec-
tivity. As in Izumi et al. [17], we assume that robots agree on one coordinate
axis (say North) but they may not agree on the other coordinate axis. More-
over, we assume that the robot setting is asynchronous – there is no notion of
common time and robots perform their LCM cycles arbitrarily. Furthermore, we
assume that the robot moves are rigid – a robot in motion in each cycle cannot
be stopped (by an adversary) before it reaches its destination at that cycle.

In this paper, we prove the following result which, to our best knowledge,
is the first algorithm for gathering that is universally (time) optimal for classic
oblivious robots under limited visibility since the trivial time lower bound for
gathering under limited visibility starting from any initial configuration of N ≥ 1
robots is Ω(DE).

Theorem 1. For any initial connected configuration of N ≥ 1 robots with the
viewing range

√
10 and the square connectivity range

√
2 on a plane, gathering

can be solved in O(DE) time in the asynchronous setting, when robots agree on
one coordinate axis.

Notice that, the visibility graph G must be connected, since gathering may
not be solvable under limited visibility if G is not connected [15,16]. Our selection
of the viewing and (square) connectivity ranges, and the assumption of one-axis
agreement play an important role in proving Theorem1. For both the viewing
and (circular or square) connectivity ranges of 1, we conjecture that there is
no O(DE)-time algorithm for gathering of classic oblivious robots, even when
robots agree on both the coordinate axes. For the viewing and (circular or square)
connectivity ranges of constant >1, we conjecture that there is no O(DE)-time
algorithm for gathering of classic oblivious robots, if robots do not agree on any
coordinate axis.

Comparison to the Previous Runtime Results. In comparison to [8,10,11,
14,18] (described above), our algorithm assumes one-axis agreement but runs
in universally optimal O(DE) time whereas all those algorithms run in non-
optimal O(N) to O(N2) time. [10,11,18] have both the viewing and (circular)
connectivity ranges of 1 and [8,14] has the square connectivity range of 1 and

Universally Optimal Gathering Under Limited Visibility 327

the viewing range of 20 (7). Our algorithm has the viewing range of
√

10 and the
square connectivity range of

√
2. In comparison to Izumi et al. [17], our algorithm

runs in O(DE) time whereas their algorithm runs in O(DG) time. In contrast
to ours, they have the viewing range of 1 and the (circular) connectivity range
of 1√

2
. Moreover, all the previous algorithms including Izumi et al. [17] work in

the fully synchronous setting, except [11] which works in the one by one acti-
vation setting. Our algorithm works in the asynchronous setting. Furthermore,
all previous algorithms assume that when two or more robots move to the same
location they are merged to be only one robot. Our algorithm does not merge
robots, i.e., even if robots located at the same position and activated at different
time, the gathering progress is achieved through the (individual) moves of these
robots.

Technique. Let L be the topmost horizontal line so that all the robots of any
initial configuration I are either on the positions of line L or South from L. Let
L′ be the line parallel to L at distance 1 South of L. The main idea behind
the algorithm is to make robots of I on North of L′ move to the positions of
L′ or South of L′ in O(1) epochs, even under the asynchronous setting, where
an epoch is the time interval for all N robots to execute their LCM cycle at
least once (formal definition is given in Sect. 2). To accomplish this, we classify
the moves of robots into three categories: diagonal hops, horizontal hops, and
vertical hops. We will show that if all the robots on North of L′ make diagonal or
vertical hops, they reach L′ or South of L′ in 1 epoch. However, if those robots
make a horizontal hop, then in 2 epochs, they reach positions of L′ or South of
L′ through the subsequent vertical or diagonal hop.

Similarly, let Lb be the bottommost horizontal line (parallel to L) so that
the robots on I are either on Lb or North of Lb. The main idea is to show that
the robots on Lb do not move South of Lb forever. Specifically, we show that
robots on Lb wait for all the robots on North of Lb so that the robots on North
of Lb meet the robots of Lb at distance (at most) D South of Lb with D being
proportional to the horizontal diameter of the initial configuration I. This has
been achieved by asking robots not to make any diagonal, horizontal, or vertical
hop, if they see at least a robot on North at vertical distance 1 (or more) from
their positions.

Other Related Work. The other related work to ours is [2,3,5–7,9,12,13,16,
17,19,21,22]. We omit the discussion due to space constraints.

Roadmap. In Sect. 2 we detail the model and touch on some preliminaries. For
simplicity in discussion, we first provide an O(DE)-time algorithm for robots
on a grid agreeing on both the coordinate axes in Sect. 3. We then provide an
O(DE)-algorithm for robots on a plane agreeing on both the coordinate axes in
Sect. 4. In Sect. 5, we discuss how the algorithms of Sects. 3 and 4 can be modified
to solve gathering when robots agree on only one axis. Finally, we conclude in
Sect. 6. Many proofs, pseudocodes, and some figures and details are omitted due
to space constraints.

328 P. Poudel and G. Sharma

2 Model and Preliminaries

Robots. We consider a distributed system of N robots (agents) from a set
Q = {r0, r1, · · · , rN−1}. Each robot is a (dimensionless) point that can move in
an infinite 2-dimensional real space R2. Throughout this paper we will use a point
to refer to a robot as well as its position. We denote by dist(ri, rj) the distance
between two robots ri, rj ∈ Q. Each robot ri works under limited visibility and
the viewing range2 of each robot is

√
10, i.e., a robot ri can see, and be visible

to, another robot rj if and only if dist(ri, rj) ≤ √
10. The connectivity range

of each robot is
√

2 following square connectivity, i.e., two robots have an edge
between them on G if one robot is inside the (axis-aligned) 2 × 2-sized square
area formed by the other robot being at its center. The robots agree on the unit
of distance measure, i.e., the viewing and connectivity ranges of

√
10 and

√
2 are

the same for each robot ri ∈ Q. The robots also agree on one coordinate axis,
North (the assumption of robots agree on East is analogous).

Look-Compute-Move. Each robot ri is either active or inactive. When a
robot ri becomes active, it performs the “Look-Compute-Move” cycle as fol-
lows: (i) Look: For each robot rj that is within the viewing range of ri, ri can
observe the position of rj on the plane. Robot ri also knows its own position;
(ii) Compute: In any cycle, robot ri may perform an arbitrary computation
using only the positions observed during the “look” portion of that cycle. This
includes determination of a (possibly) new position for ri for the start of next
cycle; and (iii) Move: At the end of the cycle, robot ri moves to its new position.
In the fully synchronous setting (FSYNC), every robot is active in every LCM
cycle. In the semi-synchronous setting (SSYNC), at least one robot is active,
and over an infinite number of LCM cycles, every robot is active infinitely often.
In the asynchronous setting (ASYNC), there is no common notion of time and
no assumption is made on the number and frequency of LCM cycles in which a
robot can be active. The only guarantee is that every robot is active infinitely
often. Complying with the ASYNC setting, we assume that a robot “wakes up”
and performs its Look phase at an instant of time. We also assume that dur-
ing the Move phase it moves in a straight line and stops only after reaching its
destination point, i.e., the moves are rigid [15].

Runtime. For the FSYNC setting, time is measured in rounds. Since a robot
in the SSYNC and ASYNC settings could stay inactive for an indeterminate
interval of time, we bound a robot’s inactivity and introduce the idea of an epoch
to measure runtime. An epoch is the smallest interval of time within which each
robot is guaranteed to execute its LCM cycle at least once. Therefore, for the
FSYNC setting, a round is an epoch. We will use the term “time” generally to
mean rounds for the FSYNC setting and epochs for the SSYNC and ASYNC
settings.

2 For some cases, e.g., for grid, the viewing range smaller than
√

10 is sufficient. We
describe what exactly is the viewing range when we describe algorithms in Sects. 3
and 5.

Universally Optimal Gathering Under Limited Visibility 329

Square Area. Let ri ∈ Q be a robot positioned
at coordinate (xi, yi). Let Li, L

′
i, respectively, be

the horizontal and vertical lines passing through ri.
Since, ri knows North, ri can easily compute Li, L

′
i.

The square area for ri, denoted as SQ(ri), is an area
of the plane enclosed by four lines Li,t, Li,b, Li,l, Li,r

with Li,t, Li,b parallel to Li (perpendicular to L′
i)

passing through coordinates (xi, yi+1) and (xi, yi−
1), respectively, and Li,l, Li,r perpendicular to Li

(parallel to L′
i) passing through coordinates (xi −

1, yi) and (xi + 1, yi), respectively. Notice that SQ(ri) is axis-aligned and both
height and width of it is 2. We denote by ptl, pbl, pbr, ptr the intersection points of
lines Li,t and Li,l, Li,b and Li,l, Li,b and Li,r, and Li,t and Li,r, respectively. We
can divide SQ(ri) to four quadrant squares SQ1(ri), SQ2(ri), SQ3(ri), SQ4(ri)
with both height and width 1. Let SQ1(ri), SQ2(ri) be in North of Li and
SQ3(ri), SQ4(ri) be in South of Li. Moreover, let SQ1(ri), SQ3(ri) be in West
of L′

i and SQ2(ri), SQ4(ri) be in East of L′
i. We say that positions of Li in SQ(ri)

belong to SQ3(ri) and SQ4(ri). Figure in the right illustrates these ideas.

Unit Area. Let rj , rk, respectively, be the topmost
and leftmost robots among the robots in SQ(ri). In
some situations, both rj , rk may be the same robot
and this definition is still valid. Let LT be the hor-
izontal line passing through rj and LL be the ver-
tical line passing through rk. Let LB be the hori-
zontal line parallel to LT passing though distance 1
South of LT . Similarly, let LR be the vertical line
parallel to LL passing through distance 1 East of
LL. The unit area for ri, denoted as SQunit(ri), is
an area of the plane inside SQ(ri) enclosed by lines LL, LT , LR, LB . Note that
SQunit(ri) is an (axis-aligned) unit square of both height and width 1. We denote
by pTL, pBL, pBR, pTR the intersection points of lines LT and LL, LB and LL,
LB and LR, and LT and LR, respectively. Figure in the right illustrates these
ideas.

Visibility Graph and Gathering Configuration. We define the visibility
graph of any initial configuration I and gathering configurations as follows.

Definition 1 (Initial Visibility Graph). The visibility graph G(I) = (Q, E)
of any arbitrary initial configuration I of robots is the graph such that, for any
two distinct robots ri, rj, (ri, rj) ∈ E if rj is positioned on or inside SQ(ri) (and
vice-versa).

SQ(∗) provides connectivity for robots with square connectivity range
√

2.
The gathering problem may not be solvable under limited visibility, if the initial
visibility graph G(I) is not connected [15,16]. Therefore, we assume that G(I)
is connected at time t = 0 throughout the paper. Moreover, any algorithm for

330 P. Poudel and G. Sharma

gathering must maintain the connectivity of G(I) during its execution until a
gathering configuration is reached. For clarity, we denote by Gt(I) the visibility
graph G(I) for any time t ≥ 0.

Definition 2 (Ideal Gathering Configuration). An ideal gathering config-
uration is one where all robots are at a single point not known beforehand.

Definition 3 (Relaxed Gathering Configuration). A relaxed gathering
configuration is one where all robots are in a horizontal segment of length 1
not known beforehand.

The relaxed gathering configuration (Definition 3) is inspired from the recent
work of [8], where they modified the ideal gathering configuration (Definition 2)
to solve gathering on a grid by locating all robots within a 2 × 2-sized square
area that is not known beforehand. Definition 3 helps us to circumvent the
impossibility results on gathering to a point in the ASYNC setting [20], even
when N = 2, by gathering the robots in a unit horizontal line segment. Using our
square connectivity range

√
2, the viewing range

√
10, and one-axis agreement,

even when N = 2, robots can reach in a unit length horizontal segment. The
viewing range helps each robot ri to see whether there is a robot outside SQ(ri)
and decide whether (at least) Definition 3 is reached. Under both axis agreement,
our algorithms provide an ideal gathering configuration (Definition 2). Under
one-axis agreement, our algorithms provide a relaxed gathering configuration
(Definition 3). Since we focus on runtime, we do not explicitly characterize which
configurations do not achieve Definition 2 under one-axis agreement, and simply
prove that all the configurations (at least) attain Definition 3 in O(DE) time.

3 O(DE) Time Algorithm for the Grid

The Grid Model. We define the grid model which is a restriction imposed
on the Euclidean plane. The motivation behind designing an algorithm for this
model is that it is simple to understand and easy to analyze. We design and
analyze an algorithm without the grid restriction in Sect. 4. In the grid model,
a robot moves on a 2-dimensional grid and changes its position to one of its
eight horizontal, vertical, or diagonal neighboring grid points. Throughout this
section, we assume that robots agree on both the coordinate axes and each robot
has the viewing range of 2 (measured in L1-distance a.k.a. Manhattan distance).
Moreover, each robot has the square connectivity range of 2 (if measured in
L1-distance), otherwise it is

√
2 (if measured in Euclidean distance). We say

gathering is done when the robot configuration satisfies Definition 2.

The Algorithm. Depending on the positions of other robots within its viewing
range, ri distinguishes diagonal, horizontal, and vertical hops, which we discuss
separately below. A robot ri hops on one of its neighboring grid points based
on which diagonal, horizontal or vertical pattern matches the snapshot it takes
in the Look phase. Notice that since robots agree on North, ri never hops on
any of the three neighboring grid points on North from its position, i.e., ri hops

Universally Optimal Gathering Under Limited Visibility 331

Fig. 2. An illustration of diagonal (left two), horizontal (middle) and vertical hops
(rest).

only to one of its 5 neighboring grid points on the same horizontal line Li or on
South of Li. We will show that this allows to achieve gathering progress in every
epoch. Since robot moves are not instantaneous due to the ASYNC setting, a
robot ri also does not move if it sees at least a robot on North of Li inside or
on SQ(ri). This is crucial to guarantee that robots do not move South forever.
Robot ri terminates when it sees no other robot inside or on SQ(ri) other than
its position.

Diagonal Hops. Robot ri makes a diagonal hop, when it sees no robot in
SQ(ri) on North of Li (including the positions of Li) and either (i) ri sees no
other robot in SQ3(ri) (except at its position) and sees at least one robot on Li,r

in South of Li, or (ii) ri sees no other robot in SQ4(ri) (except at its position)
and sees at least one robot on Li,l in South of Li. In case (i), ri hops on the grid
point pbr, whereas in case (ii), on the grid point pbl. A diagonal hop makes ri
move L1-distance of 2 although ri itself moves diagonally distance

√
2. The left

two of Fig. 2 illustrate diagonal hops.

Horizontal Hops. A horizontal hop takes ri to its neighboring grid point on
Li in East. Robot ri makes a horizontal hop, when it sees no robot in SQ(ri),
except at least a robot rj on neighboring grid point on Li in East and possibly
on Li between ri and rj . Robot ri hops on that neighboring grid point (i.e., the
position of rj). The middle of Fig. 2 illustrates this horizontal hop.

Vertical Hops. A vertical hop always takes ri to its neighboring grid point
vertically South from it. Robot ri makes a vertical hop, if either (i) it sees a
robot rj on L′

i in South of Li and no other robot in SQ(ri) on North of Li or (ii)
it sees at least one robot each on Li,l and Li,r on or South of Li and no robot
in SQ(ri) on North of Li. The second from right of Fig. 2 illustrates case (i) and
the right of Fig. 2 illustrates case (ii).

Analysis of the Algorithm. We first prove the correctness of the algorithm
in the sense that the visibility graph Gt(I) remains connected during execution.
We then prove the progress of the algorithm, i.e., in every epoch, any connected
initial configuration converges towards an ideal gathering configuration (Defin-
ition 2). Let I be any arbitrary initial configuration of robots in Q on a grid
such that G0(I) is connected. Let SER(I) be the axis-aligned smallest enclos-
ing rectangle for the robots in I. Let DY ,DX , respectively, be the height and
width of SER(I). Let LDY

, . . . , LD0 be the horizontal line segments of SER(I)

332 P. Poudel and G. Sharma

at every 1 unit vertical distance with LDY
being the topmost horizontal line

segment and LD0 being the bottommost horizontal line segment. Similarly, let
LDX

, . . . , L0 be the vertical line segments of SER(I) at every 1 unit horizontal
distance with LDX

being the rightmost vertical line segment and L0 being the
leftmost vertical line segment. Let L′

Y be the line parallel to LD0 at distance
DX

2 South of LD0 . Figure 3 illustrates these definitions. Note that The algorithm
for Euclidean Plane in both axis agreement (Sect. 4) chooses L′

Y at distance DX

South of LD0 .

Lemma 1. Given any initial configuration I such that the visibility graph G0(I)
is connected, the graph Gt(I) at any time t > 0 remains connected.

Lemma 2. All the robots on the line segment LDY
of SER(I) move to the line

segment LDY −1 in at most 2 epochs.

Fig. 3. SER(I) and the trian-
gular area on South of it.

The following observation is immediate for
vertical hops since a vertical hop by a robot takes
it to its neighboring grid point vertically South of
it. For a horizontal/diagonal hop, this is also true
since a robot doing a horizontal/diagonal hop
never finds its neighboring robot outside LDX

and L0.

Observation 1. No robot of SER(I) moves to
the positions outside of lines L0 and LDX

during
the execution.

Lemma 3. No robot of SER(I) reaches South
of horizontal line L′

Y (Fig. 3) during the execu-
tion.

Lemma 4. Both the viewing and square connectivity ranges of 2 is sufficient
for gathering to a grid point (that is not known beforehand) on a grid under both
axis agreement.

The analysis of this section proves the following main result.

Theorem 2. Given any connected configuration of N ≥ 1 robots with both the
viewing and square connectivity ranges of 2 on a grid, the robots can gather to
a point in O(DE) epochs in the ASYNC setting under both axis agreement.

Proof. We have from Lemma 1 that Gt(I) remains connected during the execu-
tion. We have from Lemma 2 that all the robots at the topmost horizontal line
LDY

of SER(I) move to LDY −1 in at most 2 epochs. After at most 2 epochs,
LDY −1 becomes LDY

, and Lemma 2 applies again to the robots of LDY −1 which
takes all the robots on LDY −1 to LDY −2 or South in next 2 epochs. This situ-
ation then continues. Therefore, all the robots in SER(I) move to line LD0 or
South in at most 2DY epochs. These robots will be in one grid point in at most

Universally Optimal Gathering Under Limited Visibility 333

next DX epochs, arguing similar to Lemma 2 and observing that for every 1
unit vertical hop of the robots on South of LD0 , DX will decrease by 2, since
L′
Y is DX/2 South of LD0 . Therefore, the robots can gather in O(DX + DY)

epochs. We have that max{DX ,DY } ≤ DE ≤ √
2 · max{DX ,DY } for SER(I)

of any initial configuration I. Therefore, DX + DY ≤ 2 · max{DX ,DY }, and
hence O(DX + DY) = O(2 · max{DX ,DY }) = O(DE). The algorithm termi-
nates (Lemma 4) since if a robot ri sees no robot in SQ(ri) other than its current
position, then all the robots of Q must be gathered in the current position of ri
(due to the connectivity guarantee of Lemma 1). ��

4 O(DE) Time Algorithm for the Euclidean Plane

We discuss here how to solve gathering in a Euclidean plane, removing the
restrictions on robot moves imposed on a grid. The viewing range is

√
10 and

the square connectivity range is
√

2 (both measured in the Euclidean distance).
The robots agree on both coordinate axes. We say gathering is done when the
robot configuration satisfies the ideal gathering configuration (Definition 2).

The Algorithm. Depending on the positions of other robots in its viewing
range, a robot ri can decide to hop on positions of one of its neighboring quad-
rants SQ3(ri) or SQ4(ri); we do not allow ri to move to positions North of Li.
In contrast to grid where robots always move either unit distance (horizontal
and vertical hops) or distance 2 (diagonal hops), in the Euclidean plane, a robot
may move with varying distance of at most 1 for horizontal and vertical hops
and varying distance of at most

√
2 for diagonal hops. The main difference (with

the grid) is on how robots match patterns to perform diagonal, horizontal, and
vertical hops. In contrast to relatively simple matching of patterns on a grid, the
matching patterns for the Euclidean plane are significantly complicated.

Overview of the Patterns. The idea is to resemble the patterns for the grid
even in the Euclidean plane. For that we ask each robot ri to compute unit
area SQunit(ri) as defined in Sect. 2. SQunit(ri) helps ri to decide whether to
make a diagonal, horizontal, or vertical hop. If the robots in SQunit(ri) are not
connected to any other robot outside of SQunit(ri) in West of LR (in East of
LL), then ri make a horizontal hop to East (West). If ri satisfies the conditions
for a horizontal hop, except that there is a robot on point pBR (or pBL) and
the robots in SQunit(ri) are in a single diagonal line, then it makes a diagonal
hop to pBR (or pBL). If the robots in SQunit(ri) are not connected to any other
robot outside of SQunit(ri) in North of LB , but (at least) a robot in SQunit(ri)
is connected to a robot on or South of LB , then ri makes a vertical hop. In
other words, if ri sees itself or at least a robot in SQunit(ri) is connected to
a robot on North of LT , it does not move. This guarantees that robots do not
move South forever. Also, if ri sees at least one robot each on its both sides
(East and West) at horizontal distance ≥2, then it makes a vertical hop. The
termination is guaranteed by asking ri to check in every LCM cycle whether
all robots in its viewing range are positioned in SQunit(ri) (that is, ri sees no

334 P. Poudel and G. Sharma

robot outside SQunit(ri)). When that is the case, ri and the remaining robots
in SQunit(ri) run a special procedure to reach a single point (Definition 2) and
terminate their computation. Reaching to a single point is facilitated for robots
by both axis agreement.

Detailed Description of the Patterns. We provide details of the patterns
below. Robot ri terminates when it sees no other robot in SQ(ri), except on its
current position.

Diagonal Hops. Robot ri makes a diagonal hop in either of the following
conditions:

– This case is similar to grid. If ri sees no other robot in SQ(ri) except at least
a robot rj in SQ4(ri) on the diagonal corner point pbr, ri hops to pbr. Robot
ri moves distance exactly

√
2 if it performs this hop.

– Robot ri hops diagonally distance
√

2−Lij (where Lij is the distance between
ri and rj , the topmost robot at point pTL which is also the leftmost) to a
point in SQ4(ri), if the following conditions satisfy:

• No robot in SQunit(ri) is connected to any other robot in North of LT .
• No robot in SQunit(ri) is connected to any other robot in West of LR,

except the robots in SQunit(ri).
• All robots in SQunit(ri) are in its diagonal line that passes through

SQ4(ri).
• There is at least a robot on the diagonal point pBR of SQunit(ri).

Figure 4 (left) illustrates this hop for ri. The symmetric diagonal case moves ri
to point pBL which is illustrated in Fig. 4 (middle).

Fig. 4. An illustration of diagonal hops (left and middle) and a horizontal hop (right).

Remarks. If there is at least a robot on LR (but not on LB , including point pBR)
of SQunit(ri), then ri makes a horizontal hop (described in the next paragraph),
even though all the robots in SQ(ri) are in its diagonal line passing through
SQ4(ri). If there is at least a robot on LB between points pBR and pBL, then ri
makes a vertical hop (described later), irrespective of the robots on LR. If any
robot in SQunit(ri) is connected to any other robot on South of LB and West of
LR, ri also makes a vertical hop (described later), irrespective of the robots on

Universally Optimal Gathering Under Limited Visibility 335

LR. The analogous conditions apply for the symmetric diagonal hop case shown
in Fig. 4 (middle) for ri.

Horizontal Hops. Robot ri makes a horizontal hop in the following conditions:

– This case is similar to the grid. If ri sees a robot rj in its East at distance 1 on
line Li and there is no robot in SQ(ri), except the current position of ri and
possibly on Li from ri up to rj , ri hops to the position of rj (distance 1).

– Robot ri hops horizontally East on Li distance 1 − Lik (Lik is the distance
between ri and rk, the leftmost robot in SQ(ri)), if all the following conditions
satisfy (Fig. 4 (right) illustrates this hop for ri):

• No robot in SQunit(ri) is connected to any other robot in North of LT .
• No robot in SQunit(ri) is connected to any other robot on West of LR,

except the robots in SQunit(ri).
• There is no robot on LB of SQunit(ri).

Since we ask robots to always move East in a horizontal hop, we do not have a
symmetric case for horizontal hops under both axis agreement.

Fig. 5. An illustration of vertical hops

Vertical Hops. If no robot in SQunit(ri) is connected to any other robot in
North of Li,t (of SQ(ri)), robot ri makes a vertical hop distance 1−Lij (where Lij

is the vertical distance from ri to line LT) in either of the following conditions:

– Robot ri sees at least one robot at the intersection point of L′
i and LB .

– Robot ri sees at least one robot each in both East and West at horizontal
distance ≥2. Figure 5 (middle) illustrates this case.

– Robot ri sees at least a robot on LB of SQunit(ri), no robot in SQunit(ri)
is connected to any other robot in North of LB and West of LL, and the
diagonal hop is not satisfied for ri. Figure 5 (left) illustrates this case.

– Robot ri sees at least one robot in SQunit(ri) that is connected to a robot
in South of LB on or West of LR and no robot in SQunit(ri) is connected to
any other robot in North of LB and West of LL. Figure 5 (left) also illustrates
this case.

336 P. Poudel and G. Sharma

– Let SPunit(ri) be a unit area in West of Li,l and South of LB with LB being
the topmost horizontal line LT of SPunit(ri) and Li,l being the rightmost
vertical line LR of SPunit(ri). Robot ri sees at least a robot in SQunit(ri) is
connected to a robot in North of LB and West of LL, ri sees at least a robot
in SPunit(ri), and a horizontal hop is not satisfied. Figure 5 (right) illustrates
this case.

Remarks. Robot ri also makes a vertical hop if the symmetric situations on
last 3 conditions are satisfied. The above rules infer that the robots move only
under certain situations. Robots do not move in all the remaining situations.
This process repeats until all robots of Q are inside an (axis-aligned) 1× 1-sized
square area so that special procedure for termination, as described in the next
paragraph, can be applied.

The Termination Procedure. We will show in the analysis that the diagonal,
horizontal, and vertical hops described above position all robots in Q in an
(axis-aligned) 1 × 1-sized square area, say SA. We now discuss how the robots
reach to a point and terminate. Let rl, rb, rr be the leftmost, bottommost, and
rightmost robots in SA. We have that the unit area SQunit(ri) of each robot ri
that is in SA overlaps. Therefore, if all the robots in SA are in a single diagonal
line, then rb does not move and all other robots in SA make a diagonal hop
with destination the current position of rb. Otherwise, robots first perform a
horizontal hop as destination point the positions on the right vertical line LR

of SA. The robots on LR do not move until all the robots in SA (the same for
all robots) are positioned on LR. After that, the robots (now on LR) perform a
vertical hop as destination the bottommost robot on LR, which does not move.

Analysis of the Algorithm. We first prove correctness and then progress
guarantee of the algorithm. We use SER(I) and other definitions as in Sect. 3.

Lemma 5. Given that G0(I) is connected, the visibility graph Gt(I) at any time
t > 0 remains connected.

Lemma 6. All the robots on North of LDY −1 in SER(I) move to the positions
on LDY −1 or South of LDY −1 in at most 2 epochs.

The following observation is again immediate since the robots never make a
horizontal hop to West and the robots making the horizontal hops never reach
East of LDX

.

Observation 2. No robot of SER(I) move outside of lines L0 and LDX
during

the execution.

Lemma 7. No robots of SER(I) reaches South of L′
Y during the execution.

Observation 3. For every vertical hop of the robots in Q on South of LD0 , DX

decreases by (at least) 1.

We have the following observation after all the robots in the viewing range
of a robot ri ∈ Q are positioned in an (axis-aligned) 1× 1-sized square area SA.

Universally Optimal Gathering Under Limited Visibility 337

Observation 4. The robots within an (axis-aligned) 1×1-sized square area SA
are positioned at a single point in at most 2 epochs.

Lemma 8. The viewing range of
√

10 is sufficient for gathering to a point (that
is not known beforehand) on a plane under both axis agreement.

The analysis of this section proves the following main result.

Theorem 3. Given any connected configuration of N ≥ 1 robots with the view-
ing range of

√
10 and the square connectivity range of

√
2 on a plane, the robots

can gather to a point in O(DE) epochs in the ASYNC setting under both axis
agreement.

5 Gathering Under One-Axis Agreement

We discuss modifying the above algorithms when robots agree on only one axis.

Grid. We can prove the following theorem for the grid. The details are omitted.

Theorem 4. Given any connected configuration of N ≥ 1 robots with the view-
ing range of 3 and the square connectivity range of 2 on a grid, the robots can
gather in a unit length horizontal line segment (that is not known beforehand)
in O(DE) epochs in the ASYNC setting under one-axis agreement.

Euclidean Plane. We first discuss changes in the model of Sect. 4. We say gath-
ering is done when the configuration satisfies the relaxed gathering configuration
(Definition 3). The viewing and square connectivity ranges remain the same as
in Sect. 4.

We now discuss changes in the algorithm. The change is on horizontal and
vertical hops, and on termination. Instead of computing SQunit(ri) using LL

and LT as reference lines, SQunit(ri) also needs to be computed using LR and
LT as references. When ri sees no other robot in one side (say West) at distance
>1 but in other side (East), it takes the topmost robot rj and leftmost robot
rk in SQ(ri) to compute SQunit(ri) and for the symmetric case, it takes the
topmost and rightmost robots in SQ(ri) as reference. This allows the robots to
make horizontal hops in both directions (not necessarily only East under both
axis agreement). Therefore, ri hops to West of Li if the conditions for horizontal
hop defined in Sect. 4 are satisfied symmetrically for it to hop to West. Regarding
vertical hop, the following changes are made in the last three conditions:

– Robot ri sees at least one other robot each on both sides of L′
i on LB or

South of LB which are connected to at least one robot of SQunit(ri).
– Robot ri sees at least one other robot on LB or South of LB (which is con-

nected SQunit(ri)) in one side of L′
i (say East) and at least one other robot

at horizontal distance ≥2 in other side (West) (and vice-versa).

338 P. Poudel and G. Sharma

– Robot ri sees other robot(s) on LB (or connected to other robot(s) in South
of LB) only in one side of L′

i, say East, then finds the leftmost robot rl on LB

of SQunit(ri) (or South of LB that is connected to SQunit(ri)) and sees no
robot in SQunit(ri) is connected to other robot in left (i.e. West) at horizontal
distance ≥1 from rl (and vice-versa).

Regarding termination, ri terminates if all the robots it sees within its viewing
range (including itself) are within a horizontal line segment of length (at most)
1. We will show in the analysis that, with these changes, the algorithm positions
the robots in Q inside an axis-aligned 1 × 1-sized square area SA in O(DE)
epochs.

We now discuss how the robots in SA reach a relaxed gathering configuration
(Definition 3). Let rb be the bottommost robot in SA (if more than one, pick
one arbitrarily). Let LB be the horizontal line passing through rb. The robots on
LB (including rb) do not move. The other robots move vertically to the positions
of LB . The viewing range allows the robots to decide whether there are robots
outside SA or not.

Theorem 5. Given any connected configuration of N ≥ 1 robots with the view-
ing range of

√
10 and the square connectivity range of

√
2 on a plane, the robots

can gather in a unit length horizontal line segment (that is not known beforehand)
in O(DE) epochs in the ASYNC setting under one-axis agreement.

Proof of Theorem 1: Theorem 5 proves Theorem 1.

6 Concluding Remarks

We have presented, to our knowledge, the first universally optimal O(DE)-time
algorithm for gathering N ≥ 1 classic oblivious robots in a plane in the ASYNC
setting under limited visibility, improving significantly on the previous O(DG)-
time algorithm of [17] that works in the FSYNC setting. Our result assumes the
viewing range of

√
10, the square connectivity range of

√
2, and the agreement on

one axis. This is in contrast to the viewing range of 1 and the (circular) connec-
tivity range of 1√

2
in [17] under the same one axis agreement. For future work,

it will be interesting to relax our assumption of rigid moves to accommodate
non-rigid moves.

It will also be interesting to reduce the gap between the connectivity and
viewing ranges, without affecting time.

Acknowledgements. We thank Costas Busch for introducing us this problem.

References

1. Agathangelou, C. Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

Universally Optimal Gathering Under Limited Visibility 339

2. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: ISIC, pp. 453–460 (1995)

3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). doi:10.
1007/3-540-45061-0 90

4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

5. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

6. Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-18381-2 15

7. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algo-
rithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 52

8. Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically
optimal gathering on a grid. In: SPAA, pp. 301–312 (2016)

9. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M.
(eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31104-8 28

10. Degener, B., Kempkes, B., Langner, T. , Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: SPAA, pp. 139–148 (2011)

11. Degener, B. Kempkes, B., Meyer auf der Heide, F.: A local o(n2) gathering algo-
rithm. In: SPAA, pp. 217–223 (2010)

12. Di Stefano, G., Navarra, A.: Optimal gathering on infinite grids. In: Felber, P.,
Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 211–225. Springer, Cham (2014).
doi:10.1007/978-3-319-11764-5 15

13. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)

14. Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious
robots on a grid. CoRR, abs/1702.03400 (2017)

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

17. Izumi, T., Kawabata, Y., Kitamura, N.: Toward time-optimal gathering for
limited visibility model (2015). https://sites.google.com/site/micromacfrance/
abstract-tasuke

18. Kempkes, B., Kling, P., Meyer auf der Heide, F. Optimal and competitive runtime
bounds for continuous, local gathering of mobile robots. In: SPAA, pp. 18–26 (2012)

19. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by
anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M.
(eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014). doi:10.
1007/978-3-319-14472-6 17

20. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007)

http://dx.doi.org/10.1007/3-540-45061-0_90
http://dx.doi.org/10.1007/3-540-45061-0_90
http://dx.doi.org/10.1007/978-3-642-18381-2_15
http://dx.doi.org/10.1007/978-3-642-22012-8_52
http://dx.doi.org/10.1007/978-3-642-22012-8_52
http://dx.doi.org/10.1007/978-3-642-31104-8_28
http://dx.doi.org/10.1007/978-3-319-11764-5_15
https://sites.google.com/site/micromacfrance/abstract-tasuke
https://sites.google.com/site/micromacfrance/abstract-tasuke
http://dx.doi.org/10.1007/978-3-319-14472-6_17
http://dx.doi.org/10.1007/978-3-319-14472-6_17

340 P. Poudel and G. Sharma

21. Prencipe, G.: Autonomous mobile robots: a distributed computing perspective. In:
Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSEN-
SORS 2013. LNCS, vol. 8243, pp. 6–21. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-45346-5 2

22. Sharma, G., Busch, C., Mukhopadhyay, S., Malveaux, C.: Tight analysis of a col-
lisionless robot gathering algorithm. ACM Trans. Auton. Adapt. Syst. 12(1), 3:1–
3:20 (2017)

23. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with
inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol.
4305, pp. 333–349. Springer, Heidelberg (2006). doi:10.1007/11945529 24

http://dx.doi.org/10.1007/978-3-642-45346-5_2
http://dx.doi.org/10.1007/978-3-642-45346-5_2
http://dx.doi.org/10.1007/11945529_24

	Universally Optimal Gathering Under Limited Visibility
	1 Introduction
	2 Model and Preliminaries
	3 O(DE) Time Algorithm for the Grid
	4 O(DE) Time Algorithm for the Euclidean Plane
	5 Gathering Under One-Axis Agreement
	6 Concluding Remarks
	References

