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Abstract. We investigate self-stabilizing rendezvous algorithms for two
synchronous mobile agents. The rendezvous algorithms make two mobile
agents meet at a single node, starting from arbitrary initial locations and
arbitrary initial states. We study deterministic algorithms for two syn-
chronous mobile agents with different labels but without using any white-
board in the graph. First, we show the existence of a self-stabilizing ren-
dezvous algorithm for arbitrary graphs by providing a scheme to trans-
form a non-stabilizing algorithm to a self-stabilizing one. However, the
time complexity of the resultant algorithm is not bounded by any func-
tion of the graph size and labels. This raises the question whether there
exist polynomial-time self-stabilizing rendezvous algorithms. We give
partial answers to this question. We give polynomial-time self-stabilizing
rendezvous algorithms for trees and rings.
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1 Introduction

1.1 Background

In the rendezvous problem, two mobile agents (or simply, agents) initially located
at different nodes must eventually meet at a single node. If the number of agents
is more than two, the problem is called the gathering problem. Mobile agents
may be software programs that can autonomously move in a distributed system,
or robots that can move in a real world. The reason to achieve a rendezvous or
gathering may be to share information previously collected by each mobile agent,
or to divide and assign tasks to agents. The rendezvous and gathering problems
are fundamental problems of mobile agents, and many algorithms have been
proposed on various models [16].
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Since agents move around different places in a distributed system or a real
world, they are exposed to various faults. To overcome such faults, recently some
attempts have been made to design fault-tolerant rendezvous algorithms. Some
notable fault-tolerant algorithms are delay faults [3], Byzantine faults [2,9,20],
and crash faults [17].

In this paper, we focus on transient faults such as temporal memory cor-
ruption and erroneous initialization. To tolerate such faults, we develop self-
stabilizing rendezvous algorithms. An algorithm is called self-stabilizing [11] if,
starting from an arbitrary initial configuration, the system eventually reaches a
legitimate configuration. Self-stabilizing rendezvous algorithms guarantee that
even if each mobile agent starts from an arbitrary location and an arbitrary
initial state, two agents will eventually meet at a single node. From this prop-
erty, even when two agents become inconsistent due to transient faults, they can
eventually achieve a rendezvous.

1.2 Related Work

The rendezvous and gathering problems have been extensively studied with var-
ious assumptions [16]. Various solutions are also considered to reduce various
costs, e.g., time, number of moves, and memory requirements.

For fault-free systems, many rendezvous algorithms have been proposed for
two synchronous agents. To achieve a rendezvous in symmetric graphs, it is neces-
sary to make some assumptions to break the symmetry. In [8,14,19], rendezvous
algorithms for arbitrary graphs were proposed on the assumption that two agents
have different labels. For the case of no different labels, memory-efficient ren-
dezvous algorithms were proposed for trees [5,12] and arbitrary graphs [4] on
the assumption that two agents start from some non-symmetric locations.

Recently fault-tolerant algorithms for agents are being explored. Chalopin
et al. [3] proposed algorithms tolerant to delay faults, which prevent an agent
from moving for some rounds. Dieudonné et al. [9] and Bouchard et al. [2] pro-
posed Byzantine-tolerant algorithms, in which all correct agents meet at a single
node even if some agents behave arbitrarily. Tsuchida et al. [20] reduced the time
complexity of Byzantine-tolerant algorithms by assuming a whiteboard (a node
memory where agents can leave information) and an authentication mechanism.
Pelc [17] studied crash faults for systems such that agents can move at different
speeds.

A few self-stabilizing algorithms have been proposed for mobile agents
[1,15]. Blin et al. [1] studied self-stabilizing naming and leader election, and
Masuzawa and Tixeuil [15] studied self-stabilizing gossiping. Since an algorithm
proposed in [15] guarantees that agents can meet each other, the algorithm also
solves the rendezvous problem of two agents. However, unlike this work, these
algorithms assume whiteboards where agents can leave information in nodes.

In a different context, gathering of oblivious mobile robots has been thor-
oughly studied in planes [10,18] and in graphs [6,7,13]. Since oblivious robots
do not have memories, the algorithms are almost self-stabilizing. However, differ-
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ent from our work, these algorithms assume that a robot can obtain the locations
of all other robots instantaneously.

1.3 Our Contributions

In this paper, we give several self-stabilizing rendezvous algorithms for graphs.
We make some very common assumptions. Two agents have different labels �1
and �2, behave synchronously, can start at different times, and cannot leave any
information in nodes. The graph size (i.e., the number of nodes) is denoted by
n, and it is unknown to agents.

First, we show the existence of a self-stabilizing rendezvous algorithm for arbi-
trary graphs. We show the proposition by designing a scheme to transform a non-
stabilizing rendezvous algorithm to a self-stabilizing one. Since non-stabilizing
rendezvous algorithms for arbitrary graphs are available in [8,14,19], this scheme
gives a self-stabilizing rendezvous algorithm. However, the time complexity (i.e.,
the time required to achieve a rendezvous after both agents start the algorithm)
is not bounded by any function of n, �1, or �2. This raises the question whether
there exist polynomial-time self-stabilizing rendezvous algorithms.

Next, we give partial answers to the above question. That is, we give polyno-
mial time self-stabilizing rendezvous algorithms for trees and rings. For trees,
we give a self-stabilizing rendezvous algorithm with the time complexity of
O(n · min{|�1|, |�2|}) rounds, which is a polynomial of the graph size and the
length of the smaller label. For rings, we give a self-stabilizing rendezvous algo-
rithm with the time complexity of O(n�1�2) rounds, which is a polynomial of
the number of nodes and the two labels.

1.4 Outline

In Sect. 2, we present the computing model and the problem we consider in this
paper. In Sect. 3, we show the existence of a self-stabilizing rendezvous algorithm
for arbitrary graphs. We give polynomial-time self-stabilizing rendezvous algo-
rithms for trees and rings in Sects. 4 and 5, respectively. In Sect. 6, we briefly
discuss an extension of our proposed algorithms to gathering of more than two
agents. Concluding remarks are presented in Sect. 7.

2 Preliminaries

2.1 Network and Agents

A network is modeled by a connected undirected graph G = (V,E), where V is
a set of nodes and E is a set of communication links. The graph size is denoted
by n = |V |. The degree of node v is defined as the number of incident links
of v, and is denoted by degv. A node v is a neighbor of w if (v, w) ∈ E holds.
A set of neighbors of v is denoted by Nv, i.e., Nv = {w|(v, w) ∈ E}. Nodes
are anonymous, i.e., they do not have unique labels (or identifiers). On the
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other hand, each link incident to node v is numbered locally at v by bijection
λv : {(v, w)|w ∈ Nv} → {1, 2, . . . , degv}. Note that λv(v, u) �= λv(v, w) holds for
distinct neighbors u and w of v. The numbering function is independent of that
of other nodes. For a link (v, w), λv(v, w) �= λw(v, w) may hold. We say λv(v, w)
is a port number (or port) of link (v, w) at node v.

There exist two agents a1 and a2 in the network. We assume that they start
their actions from two different nodes. Every agent has its own memory, and
they move with their memory. On the other hand, an agent cannot leave any
information in any node. Each agent ai is assigned a unique label, denoted by �i.
We define |�| as the length of label �, i.e., |�| = �log ��. An agent knows its own
label, but does not know the label of the other agent. An agent can move from
a node to its neighbor by choosing an outgoing port. That is, when an agent is
at v and moves via port p, it moves to node w such that p = λv(v, w) holds.
When the agent reaches w, it can read the incoming port λw(v, w). Agents know
neither n nor the upper bound of n.

Each agent is modeled as a state machine (S, δ). The first element S is a
set of agent states, where each agent state is determined by the values of its
variables in its memory. We assume that the memory of agents is unbounded,
that is, S could be an infinite set. The second element δ is a deterministic state
transition function, which decides the behavior of an agent. The input of δ is the
current agent state, the label of the agent, the degree of the current node, and
the incoming port. The output of δ is the next agent state, whether the agent
stays or leaves, and the outgoing port if the agent leaves.

Two agents spontaneously start an algorithm possibly at different times.
After agents start an algorithm, they execute in synchronous rounds. That is, if
an agent decides to move to a neighbor in a round, it completes the movement
before the beginning of the next round. If agent ai starts before aj , we say ai

is the first agent and aj is the second agent. The first agent does not meet the
second agent before the second agent starts the algorithm.

2.2 Self-stabilizing Rendezvous

The goal of the rendezvous problem is to make two agents meet at a single node,
i.e., two agents stay at the same node at the same time. As it is often assumed
in the literature in the synchronous setting, two agents cannot meet or notice
that when they move through the same link in the opposite directions. In this
paper, we solve the rendezvous problem in a self-stabilizing manner. That is,
even if agents start an algorithm from an arbitrary (inconsistent) initial state,
they eventually meet at a single node. We assume that, when two agents stay
at the same node at the same time, they can notice this fact. Thus, they can
notice the completion of the rendezvous problem and terminate the algorithm.
We define the time complexity as the number of rounds required to achieve a
rendezvous after the second agent starts an algorithm.
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3 A Self-stabilizing Rendezvous Algorithm for Arbitrary
Graphs

In this section, we show the existence of a self-stabilizing rendezvous algorithm
for arbitrary graphs. We present a scheme to transform a non-stabilizing ren-
dezvous algorithm to a self-stabilizing one. As described in Sect. 1, many non-
stabilizing rendezvous algorithms are proposed in literature [8,14,19]1. In par-
ticular, algorithms in [14,19] guarantee that two agents achieve a rendezvous
in a polynomial time of the graph size and labels. Let Alg be such a non-
stabilizing rendezvous algorithm and Alg(�) be the procedure that the agent
with label � executes in algorithm Alg. The algorithm guarantees that, when
two agents execute Alg(�1) and Alg(�2) from their designated initial states, they
eventually meet at a single node. In addition, the time required to achieve a ren-
dezvous is bounded by function F of the graph size and labels, i.e., two agents
meet at a single node in F (n, �1, �2) rounds after the second agent starts the
algorithm. For example, we have F (n, �1, �2) = Õ(n15 + (min{|�1|, |�2|})3) and
F (n, �1, �2) = Õ(n5 · min{|�1|, |�2|}) for the algorithms in [14,19], respectively.

We construct a self-stabilizing rendezvous algorithm by using Alg. The
pseudocode is given in Algorithm 1. This algorithm consists of two simple ideas.
First, since each agent may start Alg from an arbitrary initial state, it breaks
rounds into multiple phases and resets variables for Alg in the beginning of
each phase. After two agents reset their states, if both agents execute Alg for
F (n, �1, �2) rounds without resetting, they can achieve a rendezvous. To achieve
this, each agent doubles the duration of a phase whenever it starts a new phase.
So, the duration of a phase eventually becomes sufficiently long and two agents
can achieve a rendezvous.

Algorithm 1. SSgraph
Variables
1: var k; // the current phase number
2: var h; // the current round number in the current phase
3: var var; // variables for Alg
Behavior of Agent ai in each round
4: if another agent stays at the same node then
5: terminate;
6: if h ≥ 2k then
7: k = k + 1; h = 0; initialize var; // start a new phase
8: end if
9: // execute the k-th phase

10: h = h + 1;
11: execute the h-th round of Alg(�i);

1 Some algorithms in literature may be actually self-stabilizing. However, since their
self-stabilizing property is not proven explicitly, we regard them as non-stabilizing
algorithms.
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Theorem 1. Algorithm SSgraph is a self-stabilizing rendezvous algorithm for
arbitrary graphs.

Proof. Let r0 be the first round such that both agents reset Alg at least once.
Assume that, in round r0, a1 executes the h1-th round of the k1-th phase and
a2 executes the h2-th round of the k2-th phase. Without any loss of generality,
we assume that k1 > k2 or k1 = k2 ∧ h1 ≥ h2. Let rd =

∑k1
h=k2

2h. From the
algorithm, for each k ≥ k1, agent a2 starts the k-th phase at most rd rounds
later than a1.

Let k∗ be the minimum k such that k > k1 and rd + F (n, �1, �2) ≤ 2k holds.
Since a2 starts the k∗-th phase at most rd rounds later than a1 and the duration
of the k∗-th phase is 2k∗

, both agents simultaneously execute the k∗-th phase
for at least F (n, �1, �2) rounds after a2 starts the k∗-th phase. Therefore, a1 and
a2 can achieve a rendezvous in the k∗-th phase or earlier. 
�
Remark 1. In the model of this paper, when an agent enters a node, it can obtain
the incoming port number (i.e., the port number at which it enters the node).
However, since an algorithm in [19] does not use the incoming port number,
SSgraph based on this algorithm also does not use the incoming port number.
This means a self-stabilizing rendezvous algorithm exists even when agents can-
not obtain the incoming port number.

Unfortunately the time complexity of Algorithm SSgraph is not bounded in
spite of the fact that non-stabilizing algorithms in [14,19] achieve a rendezvous
in polynomial time from some designated initial states. This is because every
non-stabilizing rendezvous algorithm uses an estimation of the graph size and
the time complexity depends on the estimation. To explain the details, we give
a common behavior of every non-stabilizing rendezvous algorithm. In such an
algorithm, agents use a variable, say est, to store an estimated graph size. Ini-
tially agents store a small value in est, and behave as if the graph size is at
most est. The number of rounds depends on est. If the actual graph size is at
most est, agents achieve a rendezvous. If agents do not achieve a rendezvous,
they increase est gradually. Eventually, est exceeds the actual graph size, and at
that time agents achieve a rendezvous. In non-stabilizing algorithm, est does not
become so large, and hence the time complexity is bounded by some function
of n and other parameters. However, in self-stabilizing algorithms, agents may
start the algorithm from an initial state such that est is much higher than n.
In this case, the number of required rounds cannot be bounded by any function
of n and other parameters. If variable k in SSgraph is large, agents can execute
such an algorithm for a long time.

Remark 2. Note that Algorithm SSgraph requires an unbounded memory. How-
ever, if agents know the upper bound of the graph size n, we can obtain a simple
self-stabilizing algorithm that uses a bounded memory. Let N be the known
upper bound of the graph size. We consider a non-stabilizing rendezvous algo-
rithm Alg such that F (n, �1, �2) depends on only n and min{�1, �2} like [14,19].
In this case, each agent ai can compute the upper bound of F (n, �1, �2), say F ∗

i .
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To transform Alg to a self-stabilizing algorithm, agent ai repeatedly executes a
phase in which it executes Alg for 2F ∗

i rounds and then initializes its variables.
By this behavior, both agents can execute Alg for min{F ∗

1 , F ∗
2 } rounds without

resetting, and thus they can achieve a rendezvous. Since agents execute Alg for
a bounded number of rounds, the required memory is bounded. Note that the
time complexity depends on N , which may be much higher than n.

Since the time complexity of SSgraph is unbounded, we need a self-stabilizing
rendezvous algorithm with a polynomial time complexity. In the following sec-
tions, we give such self-stabilizing rendezvous algorithms for trees and rings.

4 A Polynomial-Time Self-stabilizing Rendezvous
Algorithm for Trees

In this section, we give a polynomial time self-stabilizing rendezvous algo-
rithm SStree for trees. We develop the algorithm by extending algorithm
Extend-Labels [8], which realizes rendezvous in a two-node graph. In
Extend-Labels, for each round, each agent decides to move or stay based on
its label. Algorithm Extend-Labels guarantees that in some round, one agent
moves to its neighbor and another agent stays at a node, thereby two agents
achieve a rendezvous. We apply this decision mechanism to our algorithm. In
SStree, each agent explores a tree instead of a single move or stay, and decides
the direction of the exploration based on its label. The decision mechanism
of Extend-Labels guarantees that two agents eventually explore the tree in the
opposite directions at the same time. During this exploration, two agents achieve
a rendezvous.

We give the details of SStree. The pseudocode is given in Algorithm2. First,
we explain the behavior of Extend-Labels. For label � of an agent, its extended
label M(�) is defined as follows. Let a1a2 · · · a|�| be the binary representation of
�, M(�) = (10a1a1a2a2 · · · a|�|a|�|)∗ where s∗ is an infinite sequence that repeats
sequence s infinite times. For example, since the binary representation of 5 is
101, we have M(5) = 1011001110110011 · · · . Agents can start Extend-Labels at
different times. After an agent starts the algorithm, ai moves in the k-th round
if the k-th bit of M(�i) is 1; otherwise, it stays for one round. The following
lemma guarantees the correctness of Extend-Labels.

Lemma 1 [8]. Let �1 and �2 be different labels and �∗ = min{�1, �2}. Assume
that M1 is a suffix of M(�1). There exists an index k such that the k-th bits of
M1 and M(�2) are different and k ≤ 2|�∗| + 6.

Note that, when each agent ai starts the algorithm from an arbitrary initial
state, ai may refer to extended label M(�i) from the middle. Even in this case,
the agents can achieve a rendezvous by the following lemma.

Lemma 2. Let �1 and �2 be different labels and �∗ = min{�1, �2}. Assume that
M1 and M2 are suffixes of M(�1) and M(�2), respectively. There exists an index
k such that the k-th bits of M1 and M2 are different and k ≤ 4|�∗| + 7.
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Algorithm 2. SStree
Variables
1: var mode; // which part ai executes (mode ∈ {init, phase})
2: var k; // the current phase number
3: var h; // the current round number in the current phase
4: var n; // the estimated graph size
5: var Top; // the topology information
Behavior of Agent ai at each round
6: // check completion of rendezvous
7: if another agent stays at the same node then
8: terminate;
9: end if

10: // check consistency of the topology information
11: if Top is inconsistent with the current node then
12: mode = init; initialize Top;
13: // collect the topology information if mode = init.
14: if mode = init then
15: update the topology information in Top;
16: if Top includes the complete topology then
17: mode = phase; k = 1; h = 0;
18: n = the graph size in Top;
19: else
20: execute one basic move;
21: end if
22: // execute the k-th phase if mode = phase
23: else
24: if h ≥ 8(n − 1) + 2 then
25: k = k + 1; h = 0; // start a new phase
26: end if
27: h = h + 1;
28: if the k-th bit of M(�i) is 1 then // M(�i) is the extended label of �i
29: // basic phase
30: execute one basic move;
31: else
32: // reverse phase
33: if h �= 2(n − 1) + 1 and h �= 6(n − 1) + 2 then
34: execute one reverse move;
35: else
36: stay for one round;
37: end if
38: end if

Proof. Without any loss of generality, we assume �1 > �2 = �∗. For infinite
sequence s = s1s2 . . . and positive integer x, we define S(s, x) as suffix sxsx+1 . . .
of s. Since M(�2) is a repetition of a sequence of length 2|�2| + 2 = 2|�∗| + 2,
there exists k′ ≤ 2|�∗| + 2 such that S(M2, k

′) = M(�2). Since S(M1, k
′) is a

suffix of M(�1), from Lemma 1, there exists an index k′′ such that the k′′-th
bits of S(M1, k

′) and S(M2, k
′) are different and k′′ ≤ 2|�∗| + 6. This implies
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that when k = k′ + k′′ − 1, the k-th bits of M1 and M2 are different. From
k = k′ + k′′ − 1 ≤ 4|�∗| + 7, the lemma holds. 
�

Algorithm SStree consists of multiple phases, and agent ai decides the behav-
ior of the k-th phase based on the k-th bit of M(�i). In each phase, an agent
explores the tree by using basic moves or reverse moves. The basic move is a
traditional technique, which makes an agent explore the tree using the DFS tra-
versal. In the basic move, when the agent arrives at node v from port p (i.e.,
it arrives at v via edge (u, v) such that λv(u, v) = p), it leaves v from port
(p mod degv) + 1 in the next move (i.e., it leaves v via edge (v, w) such that
λv(v, w) = (p mod degv) + 1). The agent starts the first move of the basic move
by leaving port 1. The reverse move is the opposite move of the basic move. That
is, when the agent arrives at node v from port p, it leaves v from port p − 1 if
p > 1 and port degv if p = 1. The agent starts the first move of the reverse move
by leaving port degv, where v is its current node. Since the length of the DFS
traversal is 2(n − 1), an agent can explore the tree by 2(n − 1) basic moves or
2(n − 1) reverse moves.

In the k-th phase of SStree, agent ai explores a tree by the basic moves if
the k-th bit of M(�i) is 1; otherwise, it explores the tree by the reverse moves.
Lemma 2 guarantees that eventually one agent executes basic moves and the
other agent executes reverse moves at the same time. However, one exploration
is not sufficient to achieve a rendezvous because the starting rounds of each phase
are not synchronized. In addition, agents may move through the same link in the
opposite directions without achieving a rendezvous. To overcome these problems,
agent ai behaves in its k-th phase as follows.

– Assume that the k-th bit of M(�i) is 1. In this case, ai executes 8(n − 1) + 2
basic moves. That is, ai explores the tree four times by basic moves and
executes two additional basic moves. We call it a basic phase.

– Assume that the k-th bit of M(�i) is 0. ai first explores the tree once by
reverse moves and then stays for one round. After that, ai explores the tree
two times by reverse moves and then stays for one round. Finally, ai explores
the tree once by reverse moves. We call it a reverse phase.

Later, we will prove that these behaviors achieve a rendezvous.
To execute the above procedures, agent ai should obtain the value of n. To

do this, before ai executes the above phases, ai executes basic moves and records
topology information of the tree in variable Top. ai records every visited node,
every observed port (associating with a node), every passed link (associating
with nodes and ports) in Top. Eventually, ai explores the tree and obtains the
complete topology information. That is, ai can realize that it has passed through
every port (i.e., every node and every link) in the tree. This is done in 2(n − 1)
rounds. However, ai may start the algorithm from an arbitrary initial state, that
is, it may have wrong topology information in Top. For this reason, ai checks
consistency of the topology information in Top after each movement. That is,
when ai moves to an already visited node, it compares the incoming port and
the degree of the node with the recorded ones in Top. If these are different, the
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recorded topology information in Top is inconsistent. In this case, ai discards
the current information in Top and collects the topology information again. Note
that, if the topology information in Top is inconsistent, ai finds the inconsistency
before it completes one exploration.

In the following, we show the correctness and analyze the time complexity.

Lemma 3. Each agent obtains consistent topology information in at most
8(n − 1) rounds from an arbitrary initial state.

Proof. From an arbitrary initial state, an agent finishes recording the topology
information and moves to the first phase in 2(n − 1) rounds. Note that this
topology information may be inconsistent because an agent can start the algo-
rithm with an inconsistent partial topology information. Once an agent starts a
phase, it finds inconsistency before completing a single exploration if the topol-
ogy information is inconsistent. This requires at most 4(n − 1) rounds because
an agent makes 2(n − 1) successive basic moves or 2(n − 1) successive reverse
moves during 4(n − 1) successive rounds. After an agent restarts the algorithm,
it obtains consistent topology information in 2(n − 1) rounds. Therefore, each
agent obtains consistent topology information in at most 8(n − 1) rounds. 
�
Theorem 2. Algorithm SStree is a self-stabilizing rendezvous algorithm for
trees. The time complexity of SStree is O(n · |�∗|), where �∗ = min{�1, �2}.
Proof. Let round r0 be the first round such that both agents start phases with
consistent topology information. From Lemma3, such a round comes in at most
8(n−1) rounds after the second agent starts the algorithm. After round r0, since
the duration of each phase is 8(n−1)+2 rounds, each phase of an agent overlaps
with a phase of the other agent for at least 4(n − 1) + 1 rounds. From Lemma 2,
there exist such overlapped phases in which one agent executes a basic phase and
the other agent executes a reverse phase, and these phases come within 4|�∗|+7
phases after round r0. Without any loss of generality, a1 executes a basic phase
and a2 executes a reverse phase.

First, consider the case when the overlapped phase of a1 starts earlier than
a2. Let round r1 be the round in which a2 starts the overlapped phase. After r1,
while a1 executes 4(n − 1) + 1 basic moves, a2 executes 2(n − 1) reverse moves,
stays for one round, and executes 2(n−1) reverse moves. During the first 2(n−1)
rounds, a1 and a2 explore a tree once in the opposite directions. This implies
that a1 and a2 achieve a rendezvous, or a1 and a2 move through the same link
in the opposite directions. In the latter case, a1 and a2 explore the tree once
more but a2 changes its visiting timing in one round. Consequently, a1 and a2

achieve a rendezvous during the second exploration.
Next, consider the case that the overlapped phase of a1 starts no earlier than

a2. Let round r1 be the round in which a2 starts the (4(n − 1) + 1)-th round
of the overlapped phase. After r1, while a1 executes 4(n − 1) + 1 basic moves,
a2 executes 2(n − 1) reverse moves, stays for one round, and executes 2(n − 1)
reverse moves. Hence, similar to the first case, a1 and a2 achieve a rendezvous.
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From the above discussions, two agents achieve a rendezvous in the over-
lapped phase. Therefore, after the second agent starts the algorithm, two agents
achieve a rendezvous in 8(n − 1) + (4|�∗| + 7)(8(n − 1) + 2) = O(n · |�∗|)
rounds. 
�
Remark 3. Algorithm SStree requires an unbounded memory. However, if
agents know the upper bound of the graph size, we can bound the memory
size of SStree.

5 A Polynomial-Time Self-stabilizing Rendezvous
Algorithm for Rings

In this section, we give a polynomial-time self-stabilizing rendezvous algorithm
SSring for rings. Unlike the trees, agents cannot compute the ring size without
leaving marks on nodes. This implies that agents cannot recognize the completion
of an exploration, and thus, we must use an approach different from the one for
the trees. In SSring, two agents achieve a rendezvous by moving at different
speeds. In the following, we explain the details of SSring. The pseudocode of
SSring is given in Algorithm 3. In this section, we assume that each agent decides
its forward and backward direction at each node by its port numbers. However,
this direction is not identical for two agents. That is, two agents may decide
opposite directions as their forward directions.

For simplicity, first assume two agents decide the same direction as their
forward directions. In this case, the following algorithm achieves a rendezvous.

– Each ai repeats the following: ai stays for �i rounds and then moves forward.

Clearly, a1 and a2 move forward once in �1+1 and �2+1 rounds, respectively. This
implies that the distance between a1 and a2 decreases by at least |�1 − �2| ≥ 1 in
(�1 + 1)(�2 + 1) rounds, and thus, they achieve a rendezvous in n(�1 + 1)(�2 + 1)
rounds.

However, two agents may decide opposite directions as their forward direc-
tions, and in this case, they can move through the same link in the opposite
directions. To overcome this situation, we introduce a sweeping operation. In a
sweeping operation, an agent moves forward to the next node and then moves
backward to the current node. With this change, whenever ai needs to move
forward to the next node, it first repeats the sweeping operation �i times; then it
moves forward to the next node. By this behavior, when two agents try to move
through the same link at the same time, they repeat the sweeping operation
at different times. Thus, an agent cannot miss the other agent and achieves a
rendezvous.

Figure 1 shows an example with the sweeping operations. The solid and dot-
ted arrows represent the planned behaviors of agents with labels four and three,
respectively. The figure shows the situation when the two agents decide oppo-
site directions as their forward directions and appear in two neighboring nodes.
A horizontal arrow means the agent stays at its current node, and a diagonal
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Algorithm 3. SSring
Variables
1: var h; // the current round in the current phase
Behavior of Agent ai at each round
2: // check completion of rendezvous
3: if another agent stays at the same node then
4: terminate;
5: end if
6: if h ≥ 3�i + 1 then
7: h = 0; // start a new phase
8: end if
9: h = h + 1;

10: if 1 ≤ h ≤ �i then
11: stay for one round;
12: else if �i + 1 ≤ h ≤ 3�i then
13: if (h − �i) mod 2 = 1 then
14: move forward;
15: else
16: move backward;
17: end if
18: else if h = 3�i + 1 then
19: move forward;
20: end if

Fig. 1. An example of SSring.

arrow means the agent moves to its forward or backward node. That is, each
agent with label �i stays for �i rounds and then repeats a sweeping operation �i

times (i.e., it repeats a forward and a backward moves �i times). After that, it
moves forward to the next node. If the end points of the arrows overlap, the two
agents can achieve a rendezvous. Readers can observe that two agents achieve a
rendezvous even if they appear in two neighboring nodes at any time.

In the following, we show the correctness and analyze the time complexity.

Theorem 3. Algorithm SSring is a self-stabilizing rendezvous algorithm for
rings. The time complexity of SSring is O(n�1�2).
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Proof. First, assume that two agents decide the same direction as their forward
directions. In this case, a1 and a2 move once in the same direction in 3�1 + 1
and 3�2 + 1 rounds, respectively. This implies that the distance between a1 and
a2 decreases by at least |�1 − �2| ≥ 1 in (3�1 +1)(3�2 +1) rounds, and thus, they
achieve a rendezvous in n(3�1 + 1)(3�2 + 1) = O(n�1�2) rounds.

Next assume that two agents decide opposite directions as their forward
directions. In this case, a1 and a2 move once in the opposite directions in 3�1 +1
and 3�2 + 1 rounds, respectively. This implies that the distance between a1 and
a2 decreases by at least 3�1 + 3�2 + 2 in (3�1 + 1)(3�2 + 1) rounds, and thus,
the distance between them becomes one in n(3�1 + 1)(3�2 + 1)/(3�1 + 3�2 + 2) =
O(n·max{�1, �2}) rounds. After that, each agent repeats a forward and backward
move at different times before moving to its next node. In addition, each agent
stays for �i rounds before and after it repeats the forward and backward moves.
This implies that an agent cannot miss the other agent, and thus, they achieve
a rendezvous.

In both cases, two agents achieve a rendezvous in O(n�1�2) rounds. Therefore,
the theorem holds. 
�
Remark 4. Note that Algorithm SSring uses a bounded memory. The memory
size of ai is O(|�i|) because the value of h is at most 3�i + 1.

6 Extension to Gathering of More Than Two Agents

In this section, we discuss extension to gathering of more than two agents. We
assume that the number of agents is m, and a set of agents is denoted by A =
{a1, a2, . . . , am}. We also assume that the agents have different labels and the
label of ai is denoted by �i. The underlying model is the same as one described
in Sect. 2. In addition, the agents can observe states of other agents when they
stay at the same node at the same time.

As described in [14], it is easy to extend a rendezvous algorithm for two
agents to a gathering algorithm for more than two agents. That is, for given
rendezvous algorithm Alg, we can construct a gathering algorithm as follows.

Let Alg(�) be the procedure that the agent with label � executes in Alg.
Each agent ai executes Alg(�) until it meets another agent. After some
agents meet, they follow the agent with the smallest label among them.
That is, when �s is the smallest label among them, as with label �s con-
tinues Alg(�s) as if it does not meet any agent, and all other agents stick
to as (i.e., they move to the node which as moves to).

By using the above technique, we can transform a self-stabilizing rendezvous
algorithm to a self-stabilizing gathering algorithm. That is, eventually all agents
can meet and move together. However, its termination critically depends on the
knowledge of the number of agents. If agents know the number of agents m,
they can terminate the algorithm when m agents stay at the same node. On the
other hand, if agents do not know the number of agents, we have the following
impossibility similar to the case of the gossip problem in [15].
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Theorem 4. When agents do not know the number of agents, there exists no
self-stabilizing gathering algorithm such that all agents can terminate at the same
node.

Proof. We prove it by contradiction. Assume that such a self-stabilizing gather-
ing algorithm exists. Let L1 and L2 be disjoint sets of labels. When |L1| (resp.,
|L2|) agents with labels in L1 (resp., L2) exist, all agents meet at a single node,
denoted by v1 (resp., v2), and terminate there in terminal states. Next, we con-
sider a graph that includes two different nodes v′

1 and v′
2 such that degv1 = degv′

1

and degv2 = degv′
2

hold. We assume that |L1|+ |L2| agents with labels in L1∪L2

execute the algorithm from the initial configuration such that |L1| agents with
labels in L1 stay at v′

1 in terminal states and |L2| agents with labels in L2 stay
at v2 in terminal states. Since all agents are in terminal states and never move,
they cannot achieve gathering. This is a contradiction. 
�

Note that the proof of Theorem 4 does not depend on the weakness of the
underlying model. That is, even if agents know the graph size, use randomization,
and can leave some information on nodes, no self-stabilizing algorithm achieves
gathering and termination.

7 Conclusions

In this paper, we have studied self-stabilizing deterministic rendezvous algo-
rithms for graphs with no whiteboard. We first showed the existence of a self-
stabilizing rendezvous algorithm for arbitrary graphs. However, the time com-
plexity of this algorithm is not bounded by any function of the graph size
and labels. This raised the question whether there exist polynomial time self-
stabilizing rendezvous algorithms. We gave partial answers to the problem by
providing a self-stabilizing algorithms for trees and rings. For trees, we gave a
self-stabilizing rendezvous algorithm with a time complexity of a polynomial of
the graph size and the length of the smaller label. For rings, we gave a self-
stabilizing rendezvous algorithm with a time complexity of a polynomial of the
graph size and labels.

This paper leaves many open problems:

1. Does there exist a polynomial time self-stabilizing rendezvous algorithm for
arbitrary graphs with no whiteboard? Since each agent should explore a
graph to achieve a rendezvous, it should realize exploration in a polynomial
time from an arbitrary state. For this reason, a strongly universal exploration
sequence (SUXS) [19] may be a useful tool to realize self-stabilizing ren-
dezvous algorithms. The SUXS guarantees that, for some polynomial p(n),
any continuous subsequence of length p(n) realizes exploration of any graph
of size n. That is, even when an agent starts moving from the middle of the
SUXS, it can explore any graph of size n in a polynomial number of moves.

2. Does there exist a self-stabilizing rendezvous algorithm for rings such that
the time complexity is polynomial of the graph size and the length of labels?
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3. If the previous problems have no solutions, how many bits of whiteboards are
required to realize a polynomial time self-stabilizing rendezvous algorithm?
It is shown in [15] that O(|�max|+ log n) bits are sufficient, where �max is the
biggest label of agents. Is it possible to reduce the number of bits?
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