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Abstract. As more applications are built on top of blockchain and
public ledger, different approaches are developed to improve the perfor-
mance of blockchain construction. Recently Intel proposed a new concept
of proof-of-elapsed-time (PoET), which leverages trusted computing to
enforce random waiting times for block construction. However, trusted
computing component may not be perfect and 100% reliable. It is not
clear, to what extent, blockchain systems based on PoET can tolerate
failures of trusted computing component. The current design of PoET
lacks rigorous security analysis and a theoretical foundation for assessing
its strength against such attacks. To fulfill this gap, we develop a theoret-
ical framework for evaluating a PoET based blockchain system, and show
that the current design is vulnerable in the sense that adversary can jeop-
ardize the blockchain system by only compromising Θ(log log n/ log n)
fraction of the participating nodes, which is very small when n is rela-
tively large. Based on our theoretical analysis, we also propose methods
to mitigate these vulnerabilities.

1 Introduction

Blockchain technology is believed to have the potential to revolutionize vari-
ous sectors including financial, manufacturing, transportation, and agriculture
(e.g., [28]). As more applications are built on top of blockchain based systems,
performance becomes a major bottleneck; and many efforts have been spent in
designing a new blockchain backbone to improve the latency, throughput, and
scalability (e.g., [8,13,24,30]). Although these works adopt different technology
routes, they all try to address the performance problem through purely software
based approaches.

Trusted computing technology provides another opportunity to improve the
performance of a blockchain. Trusted computing leverages special hardware
properties to provide a trusted execution environment where adversaries can-
not tamper the execution of an application. All main processor vendors such
as Intel, AMD, and ARM have their own trusted computing solutions. Despite
differences in design and implementation details, they provide essentially simi-
lar security features [1,2,9]. When trusted computing technology is applied to
the blockchain, a blockchain client can run inside a trusted environment (e.g.,
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enclave, secure world, or compartment) with certain security assurance; and the
trusted computing environment ensures all embedded protocols will be faithfully
followed.

Based on its trusted computing platform SGX, Intel proposed the concept
of “proof-of-elapsed-time” (PoET) for blockchain construction [19]. The basic
idea is that each node generates a random number to determine how long it
has to wait before it is allowed to generate a block. The generation of random
numbers is based on certain distribution specified by the system in advance.
When a new block is submitted to the system, SGX helps the node creating the
block to generate a proof of the waiting time. This proof can be easily verified
by other nodes with SGX technology. A statistical test is used to determine
whether the waiting time indeed follows the specified distribution. Compared
with other blockchain schemes like PoW (proof-of-work, see Sect. 2.1 for details),
this approach has two major advantages: (i) Efficiency. PoET does not require
participating nodes to carry out expensive computation workload before creating
a new block; (ii) Fairness. PoET achieves the goal of “one CPU one vote”, which
was originally proposed in Nakamoto’s paper on Bitcoin [25], but was not fully
achieved before.

However, SGX and other trusted computing technologies are not 100% reli-
able. Especially, they may be vulnerable to sophisticated adversaries with nec-
essary resources and skillsets. It is thus a natural question whether the sys-
tem remains secure when the underlying trusted computing components of some
nodes are compromised. Similar problems have been addressed for systems where
proof-of-work is implemented, see, e.g., [11,15,21]. However, there is no theoret-
ical result for a PoET based system and its security is unknown. The major
contribution of this paper is to develop a theoretical framework to evaluate
Intel’s PoET scheme and its variants, and carry out security analyses based on
such a framework. Our results demonstrate that the current scheme/protocol
implemented on Intel’s SGX platform could be vulnerable to security attacks.
More specifically, adversaries can hijack the system by simulating the fastest
honest node in the system if they successfully compromise Θ( log log n

log n ) fraction
of the nodes (where n is the total number of nodes in the system). As compro-
mised nodes are merely simulating the fastest honest node, no statistical test
can distinguish them. Note that Θ( log log n

log n ) is not a constant, which contrasts
sharply with the constant threshold of 50% in proof-of-work based systems such
as Bitcoin.

Our results suggest two potential approaches that may lead to a constant
threshold. One is to alter the probability distribution currently implemented in
Intel’s platform. Indeed, we show that the more “concentrated” this probability
distribution is, the higher the threshold will be. This guides the selection of the
probability distribution from the perspective of security. The other approach
is to allow the statistical test to reject blocks that are generated by a certain
fraction of nodes, even if some honest nodes may be included. In fact, the bound
of Θ( log log n

log n ) still applies if the statistical test is only allowed to reject blocks
generated by a constant number of nodes. Therefore, using this approach, the
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statistical test needs to reject blocks generated by a significant amount of nodes,
regardless they are honest or not. In summary, our main contributions in this
paper include:

– We develop an abstract model of PoET based blockchain systems that capture
the critical features of PoET, which opens the door for theoretical analysis
and assessment of PoET;

– We analyze design of Sawtooth Lake Scheme and find that the current pro-
tocol is vulnerable even under the scenario that only a very small fraction of
nodes are compromised;

– Based on our analysis, we provide security guidelines and suggestions for
designing blockchain schemes based on the concept of PoET.

It is important to point out that our analysis of PoET focuses on theoretical
and protocol design level. The analysis does not depend on any specific hardware
implementation flaws or vulnerabilities and thus holds generally.

The remainder of the paper is organized as follows: Sect. 2 provides a short
review of Intel’s Sawtooth Lake scheme, an implementation based on PoET.
Section 3 describes the mathematical tools used in the analysis of PoET. Section 4
provides an abstract model of PoET. A rigorous analysis of PoET is given in
Sect. 5. We review related works in Sect. 6 and conclude the paper in Sect. 7.

2 Blockchain and PoET with Trusted Computing

2.1 Blockchain and Proof-of-Work

Blockchain technology was first introduced by Bitcoin as a distributed book-
keeping system [25]. Briefly speaking, a blockchain is a chain of blocks where
each block contains a set of records (e.g., records for transactions) together with
the hash value of the previous block. Users1 keep adding blocks to the blockchain
through a procedure called “mining”. Ideally, a blockchain remains a chain. In
case that a branch occurs (e.g., multiple users add blocks simultaneously), the
“longest-chain” rule is applied, that is, users will follow the branch containing
the most number of blocks. Other branches will be discarded.

Since blocks are linked with hash values, an attacker cannot alter or remove
an existing block stored on the blockchain. However, an attacker may choose to
branch at a certain block. If he/she successfully generates a longer branch there-
after, all transactions occur in the original branch will be discarded and system is
thus compromised. To ensure the security of the whole system, we need a way to
prevent users from generating an arbitrary number of blocks in a short time. The
most widely used scheme is proof-of-work. Using this scheme, every user needs to
solve a computation intensive problem in order to add one block. Solving such a
problem requires a lot of computation. If an attacker aims at generating a longer
branch, he/she needs more computational power than all the other honest users.
It was shown in [25] that a proof-of-work based blockchain system is secure as
long as more than 50% of the computational power is controlled by honest users.
1 Throughout this paper, nodes and users are used interchangably.
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2.2 Proof of Elapsed Time

As we have discussed, the proof-of-work scheme requires a node to solve hard
problems to limit its speed of generating blocks, which causes a lot of waste
in both computational resources and energy. The PoET scheme uses a different
approach, as we elaborate below.

Intel’s Software Guard Extensions (SGX) technology provides a mechanism
to protect selected code and data from disclosure or modification [1]. Based
on SGX, Intel proposes Sawtooth Lake, which leverages the idea of “proof-
of-elapsed-time” (PoET) to control the construction of new blocks. Using this
scheme, each user has to wait for some time before it is allowed to create a block.
Such a waiting time needs to follow a probability distribution F which is deter-
mined by the scheme. Briefly, there are two measures utilized by the scheme
to make sure that a user has to wait for such a time. First, each user, once
generating a block, also needs to generate a proof for the waiting activity with
the assistance of SGX hardware, which is submitted together with the block.
Second, statistical tests are employed to check whether the waiting times of a
user indeed follow a specific probability distribution. We provide details in the
following.

Random Waiting Times. As we have described, in the PoET scheme every
node has to wait for a time period that follows a distribution F before generating
the next block. In the current Sawtooth Lake method proposed by Intel, this F
can be characterized by a two-stage procedure. At a high level, the procedure
works as follows. Each node first uses a formula to generate a number as its
temporary waiting time. Such a waiting time can be used to generate multiple
blocks until it has to be updated. Specifically, whenever a node has generated a
block using the temporary waiting time, it decides at random whether the next
block will also be generated using this waiting time, i.e., with certain probability
p, it regenerates a new waiting time, otherwise it continues to use the current
waiting time. We provide details in the following.

Registration. Every node has to register two things to the system. One is its
public/private key pair, which remains unchanged thereafter2. The other is a
temporary waiting time, which is subject to update. The rule for updating the
temporary waiting time is demonstrated by Fig. 1.

Computation of the Waiting Time. Each node uses the following equation to
compute its waiting time wait time:

wait time = minimum wait − local average wait · log(r) (1)

Here r ∈ [0, 1] is a real number derived from the hash value of the node’s previous
certificate. If we treat the hash function as a random oracle [4], r is uniformly
distributed in [0, 1]. minimum wait is a fixed system parameter. To calculate

2 The SGX component is used to generate a certificate for the public key and send
the certificate to the system.
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Fig. 1. Each node uses a finite state machine to control the updating process of the
waiting time. Each node starts from state 0, where it computes a waiting time. After-
wards, whenever a node goes back to state 0, it updates its waiting time by recomputing
a new number. At state i ∈ {1, 2, · · · , 25}, the node first generates a block with the
newest waiting time, and goes to state 0 (with probability pi) or state i+1 (with prob-
ability 1 − pi). The probabilities satisfy the condition that p1 < p2 < · · · < p25 = 1.

local average wait, a node checks the most recent sample length (a constant
system parameter) blocks to estimate the number of active nodes in the system
by checking the waiting time information in these blocks, and multiplies a con-
stant value to get local average wait. The purpose of local average wait is
to adjust the waiting time according to the number of active nodes. When there
are more active nodes, the waiting time will be longer. This design reduces the
probability of collisions (i.e., two nodes have the same waiting time and try to
create blocks simultaneously) when there are more active nodes.

Block Verification. Whenever a block is generated by a node, it will be verified
by other nodes before it is accepted by the system. Straightforward ways of
attacks can be excluded by basic verification, e.g., every temporary waiting time
can only be used at most 25 times, therefore if a short waiting time is used by a
node for 26 times or more, the blocks generated by this node should be rejected.
However, a sophisticated attacker, once compromised the SGX, may choose to
generate blocks in a sufficiently faster speed but still appears to conform to the
scheme (e.g., with constantly updated waiting times). In this case, statistical
tests are employed to detect such an attack.

The basic idea is to use z-test to check whether a node is generating blocks
too fast (winning too frequently in the competition with other nodes for block
creation) [22]. The test assumes that each node has the same winning probability
p, and the number of winning times follows binomial distribution X ∼ B(m, p),
m is the total number of blocks in the system. When m is large enough, it can
be approximated by normal distribution X ∼ B(m, p), where m is the total
number of blocks in the system. When m is also sufficiently large, it can be
approximated by normal distribution X ∼ N(mp,

√
mp(1 − p)), and a z-score

can be calculated as z = win num−mp√
mp(1−p)

, where win num is the number of blocks that

the node has successfully created. When z is larger than a pre-defined parameter
zmax, the new block will be rejected. POET provides several candidate values
of zmax such as 1.645, 2.325, 2.575, and 3.075. This check is conducted multiple
times from the latest block to the first on the chain.

Remarks on the Design of Sawtooth Lake. It is relatively easy to under-
stand the intuitions behind the design of Sawtooth Lake Scheme: (i) making the
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waiting time longer when there are more active nodes to reduce potential col-
lisions; (ii) using statistical test to detect a potentially compromised node that
produces blocks at a higher rate than honest nodes; and (iii) using a random
waiting time multiple times to reduce both the generation and verification cost.

However, it is not clear how secure blockchain based system using PoET is,
which also depends on the security of the underlying trusted computing plat-
form. Trusted computing hardware is not 100% reliable and assured to thwart
any attacks including physical attacks. Indeed, they may be vulnerable to sophis-
ticated adversaries [18,23]. Once compromised, nodes do not need to follow the
pre-defined protocol and can take advantage of this to undermine the whole
system. Furthermore, Intel’s Sawtooth Lake is just one specific implementation
of PoET. In general, when compared with other schemes such as proof-of-work,
there is a lack of understanding of PoET at protocol and theoretical analysis
level. To the best of our knowledge, there is no existing work on analyzing the
security of such systems.

3 Preliminaries

We briefly describe the tools that will be used in this paper. We will be using
the central limit theorem and apply Berry–Esseen’s theorem [3,12] to bound the
error of normal approximation:

Theorem 1 (Berry–Esseen’s Theorem). Let Z1, Z2, · · · , Zn be i.i.d. (inde-
pendent and identically distributed) random variables with μ = E(Z1), σ2 =
E[(Z1 − μ)2], ρ = E[|Z1 − μ|3]. There exists a positive constant C such that for
Z =

∑n
i=1(Zi−μ)√

nσ
and its cumulative distribution function Fn, we have

|Fn(x) − Φ(x)| ≤ Cρ

σ3
√

n
, ∀x ∈ (−∞,+∞)

where Φ is the cumulative distribution function of the standard normal distribu-
tion N (0, 1).

It is shown by Essen [12] that the constant C is upper bounded by 7.59. After
a series of improvements over decades, the current best known upper bound for
C is 0.4785 [29]. For this paper, it suffices to take C ≤ 1.

Gordon’s Inequality. We use the following inequality by Gordon [17] to bound
the tail of the standard normal distribution:

e−t2/2

√
2π

· 1
t + 1/t

≤
∫ +∞

t

1√
2π

e−x2/2dx ≤ e−t2/2

√
2π

· 1
t
, ∀t > 0 (2)

There are various improved bounds and we refer the reader to a nice technical
report [10] which gives a survey. For this paper, the bound by Gordon suffices.

Notations. We summarize most of the notations used in this paper in Table 1.
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Table 1. Variables used in the paper.

n Number of nodes in the system

Xj
i The i-th random waiting time of node j

Xi The i-th random waiting time of the n nodes

(all the random waiting times are ordered arbitarily)

G The probability distribution of the waiting time

F Cumulative function of a random variable belonging to G
μ Mean of the waiting time

Y A random variable that follows a uniform distribution within (0, 1)

φ Fraction of the nodes that are compromised by adversaries

4 Abstract Model of PoET

In this section, we describe the abstract model of PoET based blockchain system.
The system consists of n nodes (users), and each node is equipped with a

trusted computing component. Every node keeps generating blocks and adding
them to the system. We assume that the time required for generating a block is
negligible. However, once a block is generated by a node, it must wait for certain
amount of time (which is called the waiting time) before it can generate the
next block. Nodes with properly working trusted computing component (honest
nodes) always determines their waiting times according to a probability distrib-
ution G specified by the protocol of the system. A statistical test is carried out
to determine whether a node has generated too many blocks within a certain
time period.

Trusted computing components may fail to defend against tampering due
to design/implementation bugs and attacks [18,31], and become compromised.
We assume that an attacker may compromise multiple nodes, and each com-
promised node can generate blocks with any waiting time (as long as it passes
the statistical test). We define that an attacker compromises the blockchain sys-
tem if he/she can succeed in generating blocks using compromised nodes such
that those generated blocks pass the statistical tests, and in addition, the total
number of blocks generated exceeds the total number of blocks generated by the
remaining honest nodes by a constant H > 0. This means, all the honest nodes
keep adding blocks to the main chain while the attacker can keep adding blocks
to an attack chain such that even if initially the attack chain is behind the main
chain by H blocks, it will eventually take over the main chain.

Throughout this paper, we focus on the following question: To compromise
a PoET based blockchain system, what fraction of the nodes does an attacker
have to compromise? For the classical proof-of-work based system, the answer is a
constant (50%) [25]. However, for PoET system, the answer may vary depending
on the following two important components of the system:
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– the probability distribution that the waiting time of an honest node should
follow; and

– the statistical test that determines whether the waiting times of a node actu-
ally follows this distribution or not.

Regarding the Statistical Test. As we have described, the current PoET scheme
uses z-test as the statistical test. However, it is arguable whether this is the
most suitable statistical test. Therefore, we do not restrict to z-test through-
out this paper. Our main result does not rely on the type of statistical test.
Indeed, we prove that the attacker can compromise the system by compromising
Θ(log log n/ log n) fraction of the nodes even if the statistical test is perfect, that
is, even if an attacker is forced to use exactly the distribution specified by the
scheme (i.e., he/she will be identified immediately if a different distribution is
used to compute the waiting time), the system is still vulnerable compared with
a proof-of-work based system.

Regarding the Probability Distribution Specified by the System. In the current
design of Sawtooth Lake Scheme, the waiting time X is set to be X =
c2 + c1n log 1

Y , where c1, c2 ≥ 0 are constant. Here the scheme sets
local average wait to be c1n, and Y ∈ U(0, 1) is a random variable that fol-
lows uniform distribution within the interval (0, 1). Consider an arbitrary honest
node j and let its waiting times be Xj

1 ,X
j
2 , · · · . In the current design of Sawtooth

Lake Scheme, Xj
i ’s are not independent but are intertwined using a sophisticated

approach (See Sect. 2.2). We will first discuss the simpler case where all the
Xj

i ’s are i.i.d. (independent and identically distributed), and then come to the
more sophisticated case where Xj

i ’s follow the distribution implemented in the
Sawtooth Lake Scheme.

5 Security Analysis of PoET

In this section, we analyze the security of PoET based blockchain system. Recall
that we assume a perfect statistical test, that is, we aim to show that the cur-
rent PoET based system is vulnerable even if it is equipped with the strongest
statistical test. Omitted proofs can be found in the full version of the paper [7].

Under the perfect statistical test assumption, it appears, at first glance that
a compromised node cannot gain any advantage over an honest node. However,
consider n nodes, each generating blocks with waiting times according to a prob-
ability distribution. Given a fixed time interval, it is likely that the fastest node
can generate many more blocks than average; and a compromised node can gen-
erate as many blocks, pretending to be the fastest honest one. By letting each
compromised node simulating the fastest honest node, the attacker may hijack
and compromise the system by compromising φ < 50% fraction of the nodes.
Note that if a compromised node is simulating some honest nodes, then no sta-
tistical test can distinguish the waiting times of a compromised node and those
of existing honest nodes.
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We call this percentage φ as the conservative ratio and focus on calculating
this ratio. We emphasize that this is the percentage of the nodes that the attacker
needs to compromise under a perfect statistical test. With a weaker test, it
suffices for the attacker to compromise even fewer nodes.

We start with the case where the waiting times of honest nodes are i.i.d. and
follow a fixed distribution G. For X ∼ G, we denote by F its cumulative distri-
bution function and μ = E[X], σ2 = E[(X − μ)2], ρ = E[|X − μ|3]. Considering
a time interval of length kμ for a positive number k, how many blocks can n
honest nodes generate in total? We have the following lemma.

Lemma 1. If μ, σ and ρ are all positive constant numbers, then with high prob-
ability, n honest node only generate in total nk + O(

√
nk) blocks within a time

interval of length kμ.

According to Lemma 1, on average an honest node only generates k +
O(

√
k/n) blocks within a time interval of length kμ, regardless of the distri-

bution G. On the other hand, the fastest node among all the nodes may generate
more blocks than the average. The number of blocks that the fastest node can
generate depends on the probability distribution G. We estimate this value in
the following.

Lemma 2. With probability 1−e−λ the fastest node, among n honest nodes, can
generate N or more blocks within a time interval of length kμ if N ln F (kμ

N ) ≥
ln λ

n .

Based on Lemmas 1 and 2, we have the following theorem.

Theorem 2. Even with perfect statistical test, adversaries may hijack or com-
promise the system if they compromise φ ≥ (1 + ε) · k

k+N fraction of the nodes
for positive k and N , where ε > 0 is an arbitrary small constant and k,N satisfy
that N ln F (kμ

N ) ≥ ln λ
n .

5.1 Discussion on Fixed Probability Distributions

To estimate the value of φ, the most important thing is to analyze the value
of N that can lead to the inequality N ln F (kμ

N ) ≥ ln λ
n for a positive number

k. Note that λ is a constant that measures how likely the distribution that a
compromised node simulates should exist within n honest nodes. With λ = 5,
this probability already exceeds 99% (see Lemma 2). For ease of understanding,
it suffices to view λ as a small constant like 5. However, our results in this
section holds for λ being an arbitrary constant. In the following, we assume that
the probability density function of the distribution G has support (a, b) (i.e.,
0 = F (a) < F (b) = 1) with the mean μ = E[X]. We further assume that the
probability distribution is fixed (i.e., it is independent of the network), therefore
a, b and μ are all constants. The goal of this subsection is to prove the following.
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Theorem 3. If the probability density function of G is independent of the net-
work and has support within the interval (a, b) (i.e., 0 = F (a) < F (b) = 1), then
the adversaries can compromise the system if they compromise aε

aε+μ fraction of
the nodes, where aε satisfies that F (aε) = ε. Furthermore, if it holds addition-
ally that a = 0 and F (x) ≥ xc where x ∈ (0, δ) for constant c and δ, then the
adversaries can compromise the system if they compromise Θ( log log n

log n ) fraction
of the nodes.

It is worth mentioning that aε

aε+μ is a constant, whereas in general adversaries
can compromise the system by compromising a constant fraction of the nodes.
However, for some class of distributions, adversaries can compromise the system
even by compromising a significantly smaller fraction of the nodes, as is implied
by the second half of the theorem.

Proof. Note that μ and aε are all constant, for k = O(1), N = kμ
aε

= O(1) ensures
that F (kμ

N ) = ε, and also N ln ε ≥ ln λ
n for sufficiently large n. By Theorem 2,

adversaries can compromise the system if they compromises (1+ ε) aε

μ+aε
fraction

of the nodes for an arbitrarily small constant ε. The first half of the theorem is
proved.

Now suppose a = 0 and there exists a constant c > 0 and δ ∈ (0, 1) such
that for x ∈ (0, δ], F (x) ≥ xc. We claim that N lnF (kμ

N ) ≥ ln λ
n is satisified

with k = O(1) and N = Θ( log n
log log n ). To see why, notice that − ln F (kμ

N ) ≤
c ln N

kμ = Θ(log log n), therefore N log N = Θ(log n) (indeed, for a sufficiently

small positive number c′, N = c′ log n
log log n ensures that N lnN ≤ lnn). In this case,

we have
φ ≥ (1 + ε) · k

k + N
= Θ(

log log n

log n
),

that is, as long as the adversaries compromise Θ( log log n
log n ) fraction of the nodes,

the system will be compromised.

Note that aε → a when ε → 0. The following lemma implies that the upper
bound of (1 + ε) aε

μ+aε
for φ is essentially tight if a > 0.

Lemma 3. If a > 0, then the adversaries have to compromise at least a
μ+a

fraction of the nodes.

So far we focus on probability distributions that are independent of the net-
work. Things become substantially more sophisticated if it is dependent on the
network, or Xi’s are not independent. For this case, we directly focus on the
probability distribution currently implemented in designs similar to Sawtooth
Lake Scheme.

5.2 Discussion on the Probability Distribution in Sawtooth Lake

The Simple Setting with the Independent Assumption. We start with
the simpler setting, that is, the waiting times of each node Xj

1 ,X
j
2 , · · · are inde-

pendent and they follow the same distribution G, where G is the distribution such
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that for X ∼ G, X = c2 + c1L ln 1
Y , where c1, c2 ≥ 0 are constants, Y ∼ U(0, 1)

and L is a function that depends on n. Specifically, in the current implementa-
tion of Sawtooth Lake Scheme, L = n. Note that Sawtooth Lake Scheme uses
the distribution G in a more complicated way that the independent assumption
on Xi’s may not necessarily be true. As the analysis on the simpler case with
the independent assumption is crucial for the analysis on the general problem,
we start with this simpler case. For the simple setting, we have the following
conclusion.

Theorem 4. Under the independent assumption, if the random waiting time X
satisfies that X = c2 + c1L ln 1

Y for c1, c2, L ≥ 0 such that c1, c2 = O(1) and
L = ω(1) (i.e., L → +∞ when n → +∞), then the adversaries can compromise
the system if they compromise Θ( log log n

log n ) fraction of the nodes.

Note that the situation changes significantly when L becomes O(1). Recall
that, we have shown in Lemma 3 that to compromise the system, the adver-
saries have to compromise at least a

a+μ = c2
2c2+c1L = O(1) fraction of the nodes,

that means, compromising Θ( log log n
log n ) fraction of the nodes is not enough for

adversaries when L = O(1).

The General Setting. Now we come to the general setting of the problem,
which is exactly how Sawtooth Lake Scheme is implemented. We briefly describe
how the scheme works and the reader may refer to Sect. 2.2 for details. Again let
G be the probability distribution such that for X ∼ G we have X = c2+c1L ln 1

Y
where Y ∼ U(0, 1). Let 0 < p1 ≤ p2 ≤ · · · ≤ p25 = 1 be 25 fixed constants. Every
node initializes its state level as 0. If the state level of a node is 0, it generates a
random number according to distribution G, sets this number as its waiting time,
and updates its state level to 1. If the state level of a node is i where 1 ≤ i ≤ 25,
it waits for the time length equals its waiting time, generates a block, then with
probability pi it updates its state level to 0, and with probability 1−pi it updates
its state level to i + 1.

It is easy to see that the waiting time of a node remains the same if its
state level does not go to 0. Therefore, the waiting times Xj

1 ,X
j
2 , · · · of each

node j are not necessarily independent, and consequently we cannot directly
apply Theorem 2. We need a new approach to estimate the number of blocks
generated by n honest nodes and also the number of blocks generated by the
fastest node.

Estimating the Number of Blocks Generated by the Fastest Node. Consider an
arbitrary node j. Note that if the state level of node j becomes 0 after it
generates the (i − 1)-st block, then Xj

i is independent of each Xj
h for h < i,

otherwise Xj
i = Xj

i−1. Let N be a number to be fixed later. Consider all the
subsets S = {a1, a2, · · · , as} ⊆ {1, 2, · · · , N} such that ah+1 − ah ≤ 25 for any
1 ≤ h ≤ s − 1. Let G be the set of all such subsets.

Now we consider Xj
1 ,X

j
2 , · · · ,Xj

N and let Γ = {τ1, τ2, · · · , τs} ⊆
{1, 2, · · · , N} be the set of all the indices such that the node returns to state 0
before generating the corresponding block, i.e., for any τh, we have that Xj

τh
is
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independent of all the Xj
i where i < τh, and furthermore, Xj

τh
= Xj

τh+1 = · · · =
Xj

τh+1−1. Note that according to the scheme, τh+1 − τh ≤ 25. Any fixed Γ ∈ G
denotes a scenario that happens with the probability

π(Γ ) =
s∏

h=1

τh+1−τh−1∏

i=1

(1 − pi).

Note that G consists of all the possible scenarios that may happen, and conse-
quently

∑
Γ∈G π(Γ ) = 1. Now we consider the probability that node j generates

N or more blocks within a time length of kμ, that is,

P (
N∑

i=1

Xj
i ≤ kμ) =

∑

Γ∈G
P (

N∑

i=1

Xj
i ≤ kμ|Γ ) · π(Γ ),

where P (
∑N

i=1 Xj
i ≤ kμ|Γ ) denotes the probability that the event

∑N
i=1 Xj

i ≤ kμ
happens conditioned on the event that the scenario Γ happens. Let ωh(Γ ) =∑τh+1−1

i=τh
Xi = (τh+1 − τh)Xτh

, it follows that Xτh
≤ ωh(Γ ) ≤ 25Xτh

. Therefore,

P (
N∑

i=1

Xi ≤ kμ|Γ ) = P (
s∑

h=1

ωh(Γ ) ≤ kμ|Γ ) ≥ P (
s∑

h=1

25Xτh
≤ kμ|Γ ).

Further notice that conditioned on Γ , Xj
τh

’s are i.i.d. (each following the same
distribution of X) and s ≤ N . Thus, let Yi be i.i.d. random variables, each
following the same distribution as X, we know that

P (
s∑

h=1

Xj
τh

≤ kμ/25|Γ ) = P (
s∑

h=1

Yh ≤ kμ/25) ≤ P (
N∑

h=1

Yh ≤ kμ/25).

Hence, P (
N∑

i=1

Xj
i ≤ kμ) =

∑

Γ∈G
P (

N∑

i=1

Xj
i ≤ kμ|Γ ) · π(Γ )

≥
∑

Γ∈G
P (

N∑

h=1

Yh ≤ kμ/25) · π(Γ ) = P (
N∑

h=1

Yh ≤ kμ/25),

Since Yi’s are i.i.d., we are able to apply Lemma2, that is, if N satisfies that
N ln F ( kμ

25N ) ≥ ln λ
n , then P (

∑N
i=1 Xj

i ≤ kμ) ≥ P (
∑N

h=1 Yh ≤ kμ/25) ≥ λ/n,
that is, the fastest node can generate N or more blocks with probability 1− e−λ

within a time length of kμ.

Estimating the Total Number of Blocks Generated by Honest Nodes. Using a
similar argument as above, we can prove that with high probability n honest
nodes can generate only M = 25nk +O(

√
nk) blocks. See the full version of this

paper [7].
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Estimating the Compromised Fraction. Now suppose that the adversaries com-
promise φ fraction of the nodes, then they can catch up H blocks if

φn · N − H ≥ 25(1 − φ)nk +
√

(1 − φ)nk.

Applying the same argument as Theorem 2, the adversaries can catch up arbi-
trary H blocks if φ ≥ 25(1 + ε) k

k+N where N satisfies that N ln F ( kμ
25N ) ≥ ln λ

n .
By setting k = O(1), N = η lnn

ln lnn and using the same argument as before, it is
easy to verify that for L = ω(1), N ln F ( kμ

25N ) ≥ ln λ
n is true for η being a suffi-

ciently small constant, whereas φ = Θ( log log n
log n ). Therefore we have the following

conclusion on the security of Sawtooth Lake Scheme.

Theorem 5. In a PoET system similar to Sawtooth Lake Scheme adversaries
can hijack or compromise the whole system if they compromise Θ( log log n

log n ) frac-
tion of the nodes.

6 Related Works

In this section, we briefly review related works on the security of blockchain.
According to the discussion in Sect. 2.1, the major security requirement is toler-
ance of malicious users.

As the most popular blockchain construction method, PoW has received
intensive study. In the initial paper of Bitcoin, Nakamoto showed that when
the majority of users are honest, the probability that an attacker can success-
fully build his/her own branch decreases exponentially with the depth of the
position of the branch [25]. Garay et al. [15] and Pass et al. [26] further veri-
fied these security features. Formal frameworks are also developed to study the
relationship between performance of a PoW based blockchain and its security
level [5,16]. These results, however, cannot be applied to PoET due to its fun-
damental difference from PoW.

There are also a series of studies focusing on game theory aspects of users
involved in mining. From a game theory perspective, Eyal and Sirer [14] showed
that even a majority of honest miners is not enough to guarantee the security
of the Bitcoin protocol. Sapirshtein et al. [27] and Kiayias et al. [20] studies
mining as a game in Bitcoin and analyzes the best strategy of users. Chen et
al. further studies the execution of smart contracts as a game [6]. All of these
works assume users can determine their behaviour under the restriction of PoW,
which is not applicable to PoET. For PoET, a attacker is either forced to follow
the protocol (when the trusted computing hardware is not compromised) or
able to do whatever he/she wants (when the trusted computing hardware is
compromised).

7 Conclusion

Leveraging trusted computing technology for blockchain construction opens
a new direction in blockchain design. In this paper, we consider the secu-
rity of PoET and Intel’s implementation Sawtooth Lake. We show that, the
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current implementation of Sawtooth Lake Scheme is vulnerable to potential
security attacks at protocol level. Indeed, as long as adversaries compromise
Θ( log log n

log n ) fraction of the participating nodes, they can compromise a PoET
based blockchain system by using the compromised nodes to simulate the fastest
honest mining nodes in the system. Note that Θ( log log n

log n ) is not a constant, which
contrasts sharply with the constant threshold of proof-of-work scheme imple-
mented in crypto-currency systems such as Bitcoin and other blockchain based
applications. Our results also suggest several possible solutions to overcome this
issue.

Changing the Probability Distribution of F . As we show in this paper, if the
probability distribution F does not rely on n, then adversaries have to com-
promise a

a+μ fraction of the nodes in order to compromise the system, which
increases when a, the minimal value that the random variable can take, is
approaching the mean μ. Therefore, the system is more secure if the distrib-
ution F is more concentrated. In the extreme case when the waiting time must
be a fixed value, a = μ and adversaries will have to compromise more than 50%
of the nodes in order to compromise the system. It is worth pointing out, the
more concentrated the probability distribution is, the more likely a collision will
occur. This means that different users may generate blocks at the same time,
yielding a branch. We characterize the security issue with respect to F in this
paper. It is an interesting open problem to characterize the collision with respect
to F , assessing the trade-off between security and collision.

Allowing Blocks Generated by Honest Mining Nodes to be Rejected. We assume
that the statistical test will not reject a block that is generated by an honest
node, whereas the adversaries can simulate the fastest honest node in the system.
It is possible to get beyond the threshold of Θ( log log n

log n ) if we allow the statistical
test to reject blocks generated by honest users. As we have shown that among n
honest users, fast nodes can generate significantly more blocks than the average.
If the statistical test is allowed to reject blocks generated by a certain fraction
of the nodes. Specifically, if the statistical test can reject blocks generated by f
fraction of the nodes that are fastest for a suitable f , then a constant threshold is
likely to exist. Note that using this method, the statistical test should be allowed
to reject blocks generated by a certain fraction, instead of a constant number of
nodes even if all the nodes are honest. If it is only allowed to reject blocks that
are generated by c nodes where c is a constant, then using essentially the same
arguments in this paper we can still prove the bound of Θ( log log n

log n ).
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