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Abstract. We propose a fault-tolerant algorithm to simulate message-
passing algorithms in mobile agent systems. We consider a mobile agent
system with k agents where f of them may crash for a given f (≤ k −
1). The algorithm simulates a message-passing algorithm, say Z, with
O((m +M)f) total agent moves where m is the number of links in the
network and M is the total number of messages created in the simulated
execution of Z. The previous algorithm [5] can tolerate k−1 agent crashes
but requires O((m+nM)k) total agent moves. Therefore, our algorithm
improves the total number of agent moves for f = k − 1 and requires a
smaller number of total moves if f is smaller.

1 Introduction

A distributed system is composed of many computers (nodes) that can commu-
nicate with each other. Recently distributed systems have become larger, which
makes it difficult to design them. As a paradigm to circumvent the difficulty,
mobile agents (agents) have attracted a lot of attention [3]. An agent is a soft-
ware program which can move autonomously in a distributed system, collect
information at visited nodes, exchange the information with other agents and
execute actions at visited nodes using the information. An agent can be con-
sidered as encapsulation of data and actions, and the number of agents in a
network restricts concurrency of actions executed in the network. This makes
algorithm design easier in mobile agent systems than in message-passing sys-
tems. So far many agent-based algorithms have been proposed for several tasks,
such as leader election, naming, locating agents, rendezvous, stabilization, ter-
mination detection, exploring and topology recognition [3]. From the viewpoint
of security, algorithms for intruder capture [1,2] and network decontamination
[10,12] have been proposed.

While most works stated above assume agents and nodes work correctly,
recent large-scale distributed systems can no longer make such an assumption.
For this reason, some researches consider faulty nodes where their states are
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disrupted [6,7] or visiting agents are destroyed [8,11]. In addition, we should
consider the scenario such that agents themselves become faulty. For example,
if the system spreads to all over the world, agents may move a long distance by
passing through lots of physical links. During the movement, agents may crash
(or disappear) when one of the links suffers from an error. Hence algorithms
tolerant to faults of agents are required for many tasks.

As an approach to realize agent-based algorithms for many tasks, we focus
on simulation of message-passing algorithms in mobile agent systems [4,5,13]. If
agents can simulate message-passing algorithms efficiently, they can efficiently
execute many tasks which are suitable for message-passing algorithms rather
than mobile agent algorithms. Moreover, from the viewpoint of algorithm design-
ing, it is more efficient to design a simulation algorithm of message-passing algo-
rithms by mobile agents because efficient message-passing algorithms have been
proposed for many tasks in literature [9,14]. The only existing work to simu-
late message-passing algorithms in a fault-tolerant manner is the one by Das et
al. [5]. In this work, the authors propose two algorithms to simulate message-
passing algorithms by asynchronous agents when at most k − 1 agents crash,
where k is the number of agents. One algorithm simulates a message-passing
algorithm with O((m + nM)k) total agent moves by agents with distinct IDs,
where m is the number of links, n is the number of nodes and M is the number of
messages created in the simulated execution of the message-passing algorithm.
Another algorithm simulates a message-passing algorithm with O((m + nk)M)
total moves by anonymous agents. Note that, in the algorithm for agents with
distinct IDs, the number of moves per message is (or the multiplication factor
of M) O(nk).

In this paper, we propose a new fault-tolerant algorithm to simulate message-
passing algorithms by asynchronous agents with distinct IDs. Our algorithm
assumes at most f agents crash for a given f ≤ k − 1, and simulates a message-
passing algorithm with O((m + M)f) total agent moves. That is, the number
of moves per message is O(f) when M = Ω(m) holds. Note that because f
agents can become faulty and agents move asynchronously (i.e., the time required
to move along a link is unbounded and unpredictable), every message should
be delivered by f + 1 agents in the worst case. This means our algorithm is
asymptotically optimal concerning of the number of agent moves per message.

Our algorithm improves the previous algorithm [5] in the number of agent
moves. The improvement is achieved by adopting the depth-first simulation while
the previous one adopts the breadth-first one. More precisely, the previous algo-
rithm simulates the synchronous execution of a message-passing algorithm. To
realize a synchronous round, each agent traverses the network to find messages
to transfer, which requires O(n) redundant moves per message in the worst case.
To avoid such redundant moves, our algorithm traces a message to find another
message to transfer. That is, our algorithm allows each agent to deliver messages
in the depth-first fashion; when an agent visits a node with carrying a message
(to be delivered to the node) and finds another message to transfer in the node,
it takes the message and transfers it to the destination node. Note that these
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two simulation algorithms simulate different executions of the message-passing
algorithm, each of which is a possible execution.

Due to the space constraint, most of the proofs have been omitted from this
paper and can be found in the appendix.

2 Preliminaries

2.1 Network

A network is modeled by a connected undirected graph G = (V,E), where
V is a set of nodes and E is a set of communication links. Each link e ∈ E
connects distinct nodes in V . A link that connects nodes u and v is denoted
by euv or evu. In this paper, we denote n = |V | and m = |E|. The degree
of u is defined as the number of incident links of u, and is denoted by degu.
The maximum degree max{degu | u ∈ V } of the network is denoted by Δ.
The neighbors of u are nodes directly connected to u, and the set of them is
denoted by Nu. Each link incident to node u is locally labeled at u by bijection
λu : {(u, v) : v ∈ Nu} → {1, 2, . . . , degu} and u distinguishes its neighbors by
the labels. Note that, λu(euv) �= λu(euw) holds for distinct neighbors v and w
of u. The labeling is independent from those of other nodes; for an edge euv,
λu(euv) �= λv(euv) may hold. We say λu(euv) is a port number (or port) of euv
on u.

We consider two different computation models of a network, a message-
passing model and a mobile agent model, which are defined in the following
subsections and follow [5].

2.2 Message-Passing Model

In the message-passing model, each node u is modeled as a state machine
(Su, δu), where Su is a set of (possibly infinite) node states and δu is a state
transition function. The state machine may be dependent on its node ID if
exists: nodes with different IDs may be modeled as different state machines.
Two states in Su are designated as initial states: one is for an (spontaneous) ini-
tiator and the other is for a non-initiator. The transition function δu is defined
as δu : Su × M × P → Su × 2M×P , where M is a set of all possible messages
(including a special null message) and P is a set of port numbers. The function
δu determines, from a current state and a received message with its incoming
port, a subsequent state of the node and a set of messages to be sent with their
outgoing ports. The initial state for the initiator and the special message null
are used only for the first action of the initiator, which is independent of the
incoming port of the null message. The state machine can depend on the degree
and the ID (if exists) of the node.

Each node executes the following operations atomically in each step: (1) it
receives a message or initiates an algorithm spontaneously, (2) executes local
computation and updates its own state, and (3) if necessary, sends messages to
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its neighbors by using the primitive SEND(c, λu(euv)) repeatedly (node u can
send a message c to node v by using the primitive SEND(c, λu(euv))). There
exists at least one spontaneous initiator, which is assigned the special initial
state and initiates an algorithm spontaneously (by receiving the null message).
Except for the initial steps of initiators, every process takes a step only when it
receives a message. Note that, since the set of initiators is unknown in advance,
algorithms should work correctly for any set of initiators.

Communication in the message-passing model is reliable, that is, it satisfies
the following:

[A1] Every message sent by node u to its neighbor v is eventually received by v
exactly once.

[A2] A message is received by node u only when it was previously sent to u by
neighbor v.

Each link in the network is FIFO, that is, when u sends messages c1 and c2 to
v in this order, v receives c1 before c2. The system is asynchronous, that is, the
time required to transfer a message between neighbors is finite but unbounded.

2.3 Mobile Agent Model

In the mobile agent model, all the actions (i.e., computation and communication)
on a network are carried out by mobile agents. Let A be a nonempty set of mobile
agents existing on the network and k = |A|. Each agent has its own memory,
called a notebook. In this model, a node works only as a repository and a memory
on a node is called a whiteboard.

Each agent a has a unique ID a.id and we assume each ID is represented in
O(log k) bits. Every agent do not know n. Each agent a is initially allocated to
some node called a homebase of a. We assume k ≤ n and homebases of agents
are mutually distinct.

Each agent a is modeled as a state machine (Sa, δa), where Sa is a set of
agent states and δa is a state transition function. A state in Sa is designated as
an initial state. The transition function δa is defined as δa : Sa×W ×(P ∪{0}) →
Sa × W × (P ∪ {0}), where W is the set of all possible whiteboard states and P
is the set of port numbers. The inputs of the transition function δa are a current
state of an agent, a state of the whiteboard on its current node, and a port
number (or 0 explained in the below) through which the agent arrived, and the
outputs are a subsequent state of the agent, a new state of the whiteboard, and a
port number (or 0 explained in the below) through which the agent leaves. Port
number 0 in the inputs implies the agent initiates the algorithm at its current
node or the agent stays at the current node from its previous action, while p > 0
implies the agent arrives at the current node from port p. Port number 0 in the
outputs implies the agent stays at the current node, and p > 0 implies the agent
leaves the current node through port p. The state machine can depend on the
agent ID. The state transition can depend on the degree and the ID (if exists)
of the node which the agent is staying at or visiting. This is implemented by
storing the node degree and ID in the whiteboard.
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Each agent executes the following operations atomically in each step: (1) It
arrives at a node or initiates an algorithm at its homebase, (2) executes local
computation and updates its own state (including its notebook contents) and
the whiteboard contents of its current node, and (3) moves to a neighbor of its
current node or stays at its current node.

This paper considers simulation of the message-passing model on the mobile
agent model. We assume that the target model (or the message-passing model)
is reliable but the host model (or the mobile agent model) is prone to faults.
An agent may crash (or disappear) when it moves through a link, but it never
crashes when it is on a node. We assume at most f ≤ k − 1 agents crash and
every agent knows the upper bound f . After an agent leaves a node, it arrives
at the next node eventually unless it crashes during the movement. Once an
agent crashes, it disappears from the network forever. We say an agent is faulty
(resp., non-faulty) if it crashes (resp., never crashes) during the execution. Note
that agents cannot recognize faulty agents as long as they work correctly. Each
link in the network is FIFO, that is, when agents a1 and a2 move from node u
to node v in this order, a1 arrives at v before a2 unless a1 crashes during the
movement. The system is asynchronous, that is, the time required for an agent
to move from a node to its neighbor is finite but unbounded.

3 Agent-Based Simulation of Message-Passing
Algorithms

In this section, we first consider, as target algorithms of agent-based simula-
tion, message-passing algorithms with a finite number of messages. We present a
simulation algorithm, correctness proof and analysis of move and memory com-
plexity in Sect. 3.1. We denote Z as the simulated message-passing algorithm for
hereafter. A message-passing algorithm that eventually terminates uses a finite
number of messages and is a target algorithm of the simulation algorithm in
Sect. 3.1. Thus, most of algorithms designed so far can be the target of the sim-
ulation [9,14]. In Sect. 3.2, we briefly present the simulation algorithm targeting
message-passing algorithms with an infinite number of messages.

3.1 A Case of a Finite Number of Messages

The Execution of a Simulation Algorithm. In this subsection, we propose
an agent-based simulation algorithm of a message-passing algorithm with a finite
number of messages (i.e., an eventually terminating algorithm). Our algorithm
consists of two parts, (1) searching initiators (search part) and (2) simulating an
execution of nodes and delivering messages (delivery part).

First, we present the search part, (1) searching initiators. Each agent starts
to search initiators from its homebase by the depth-first search. When it finds
an initiator, it starts the delivery part, (2) simulating an execution of nodes and
delivering messages. After completing the delivery part, it resumes the search
part to find another initiator. The agent records its searching path of the search
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part by writing the incoming port in the whiteboard of each visited node so that
it can backtrack.

In the search part, an agent backtracks to the previous node when at least
one of following conditions is satisfied.

1. There is no unsearched port at the current node.
2. A cycle is detected in its searching path of the search part.
3. The agent detects that other f +1 agents which execute the search part have

already visited the current node.

Conditions 1 and 2 come from the depth-first search. Condition 3 is intro-
duced to save the total number of agent moves. Our algorithm can tolerate agent
crashes by using multiple agents to transfer a message, however it is enough that
each message is transfered by f +1 agents since at most f agents crash (there is
at least one non-faulty agent in f + 1 agents). Thus, an agent backtracks when
it detects that other f + 1 agents which execute the search part. The agent
terminates its execution when it completes the search part and returns to its
homebase.

Next, we present the delivery part, (2) simulating an execution of nodes and
delivering messages.

An agent starts the simulation when it finds an initiator during the depth-
first search of the first part. Note that, by Condition 3 of the first part, at most
f + 1 agents visit each initiator and start simulation.

The agent delivers messages successively in the depth-first fashion, that is,
if there exists a message to transfer to another node in the node that the agent
visits to deliver a message, it takes a message from the node and delivers it. The
agent records its delivering path in the same way as the search part so that it
can backtrack.

Since a message is transfered by at most f + 1 agents for fault-tolerance, the
message may be delivered multiple times. However it is processed only once, that
is, an agent simulates the action of a node on receipt of a message only when
the message has not been simulated.

When an agent takes a message from the node, the agent stores its ID to
send-member of the message in the whiteboard of the node to indicate that the
agent transfered the message. The message is deleted from the node when one of
its send-member agents returns and, at this time, send-member of the current
node is reset to empty.

In the delivery part, an agent backtracks to the previous node when at least
one of following conditions is satisfied.

1. There is no message to transfer at the current node.
2. A cycle is detected in its delivering path of the delivery part.
3. The current node is locked using the port other than the one the agent arrives

through. We describe the locking mechanism later.
4. The current node is locked but the agent is not a lock-member agent of the

node when the agent backtracks to the node.
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Condition 1 realizes message deliveries in the depth-first fashion. Condition
2 is introduced to prevent the delivering path from growing so long, which saves
the whiteboard space of nodes. Conditions 3 and 4 are introduced to guarantee
that all the messages are delivered since using only Conditions 1 and 2 makes
some messages remain undelivered as explained below.

Consider the case of Fig. 1. First, agent a arrives at t and delivers messages
from t to u and agent b follows a and arrives at u. Then, a backtracks to t and
deletes messages at t and v while b is still in transit in link euv. Second, an agent
c arrives at y from x and delivers messages from y to v through z and w. Then,
c crashes after generating two messages at v, one is to y and the other is to u in
this order. After that, agent b arrives at v from u and delivers messages from v to
v through y, z and w. Then, b detects a cycle at v, backtracks to w, and deletes
the message from w to v. Then, while b backtracks from w to z, b crashes. Here,
node v has a message to transfer to u but it is possible that no agent arrives at
v after the situation since there is no message toward v. Thus, in this case, the
message from v to u may be left undelivered.

Fig. 1. An example where Conditions 1 and 2 allow a message to remain undelivered.

A possible way to avoid such undelivered messages is not to introduce Condi-
tion 2. In this case, an agent continues to deliver messages as long as the current
node has messages to transfer. But this allows the delivering path to become so
long when a long message chain exists. It requires large whiteboard spaces since
the delivering path is recorded in the whiteboards of nodes. Thus, we insist on
Condition 2 to save the whiteboard space. So we introduce the locking of nodes
as another way to guarantee deliveries of all messages.

A reason why the above case happens is that agents which have distinct
delivering paths deliver the same message. So we design the locking so that it
prevents distinct delivering paths from merging.

An agent locks the current node by writing, to the whiteboard, the port
through which it arrives when the current node is unlocked. An agent that
arrives at the locked node delivers a message from the node only when it arrives
through the port that is used for the locking. Otherwise, it has to backtrack to
the previous node in the delivering path. Note that, since all the delivering paths
of the delivery part of agents start from an initiator, by repeating above, agents
which deliver the same message must have the same delivering path.
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An agent stores its ID to lock-member in the whiteboard of a locked node
when the agent locks the node or arrives through the port that is used for the
locking. When a lock-member agent backtracks from the locked node, it unlocks
the node and resets lock-member of the node to empty.

Condition 4 makes an agent backtrack to the previous node in the delivering
path when it backtracks to a node but is not a lock-member agent of the node.
This implies that the node was already unlocked for the locking such that the
agent was a lock-member agent, that is, an agent which delivered the message
from the node may have a distinct delivering path. This makes the agent keep
backtracking along the delivering path until the agent reaches a node where
the agent is a lock-member or it started the simulation of nodes and delivering
messages.

An agent resumes the message delivery when it finds its ID in lock-member.
It terminates the delivery part and resumes the search part (i.e., searching an
initiator) when it reaches the starting node but is not a lock-member agent.

The Pseudo Codes. Algorithms 1, 2, 3 and 4 are the pseudo codes of the
fault-tolerant simulation algorithm.

We use operations enqueue(q,M), dequeue(q) and head(q) to handle message
queue q at a node. Operation enqueue(q,M) for message sequence M is used to
append M to the tail of q, dequeue(q) is used to delete the head element of q
and head(q) is used to refer to the head element of q. Notation v.var denotes
variable var stored in the whiteboard of the current node v, and a.var denotes
variable var stored in the notebook of agent a.

We show the variables with initial values and their types in Table 1.
In Table 1, we denote v.portunsearched, v.parentsearch, v.parenttransmit and

v.receive as a set of pairs but, for convenience, we use them as the arrays (e.g.,
v.parentsearch[a.id]) in pseudo code and explanation below.

At the moment agent a starts Algorithm 1 at node v, a adds 0 to
v.parentsearch[a.id] to declare that v is the homebase of a and adds {1, . . . , degv}
to v.portunsearched[a.id]. Then, a starts the depth-first search with recording
the port through which a arrives in v.parentsearch[a.id] at each visited node v.
When a finds an initiator, a executes Transmit() (Algorithm 2) to simulate the
message-passing algorithm Z. For saving whiteboard space, if the current node’s
v.parentsearch[a.id] is not ⊥ (it means v is included in the path of a), a back-
tracks to the previous node. For decreasing the number of movements, a also
backtracks to the previous node if the current node’s v.parentsearch has f + 1
(it means that f +1 agents have already visited the node during the search part
of the agents) IDs. Agent a terminates if the current node’s v.parentsearch[a.id]
is 0 (it means v is the homebase of a) and there is no unsearched port.

At the moment agent a starts Transmit(), a adds 0 to v.parenttransmit[a.id]
to declare that v is the starting node of Transmit(). Then, a transfers messages
successively in the depth-first fashion with recording the port through which
a arrives in v.parenttransmit[a.id] and its ID in v.send member at each visited
node. For saving whiteboard space, if the current node’s v.parenttransmit[a.id]
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Table 1. Variables used in the pseudo codes

Name Initial value type What its value means

Node v v.portunsearched ∅ A pair of (a, P ) in the set implies
port sets P of v is unsearched for
agent a in the first part (i.e.,
searching an initiator)

Set of
(agentID, ports)

v.parentsearch ∅ A pair (a, p) in the set implies that
agent a arrives at v for the first time
from port p in the first part

Set of
(agentID, port)

v.parenttransmit ∅ The same as v.parentsearch but for
the second part (i.e., simulating an
execution of nodes and delivering
messages)

Set of
(agentID, port)

v.init True or false Indicates whether v is an initiator of
the target (message-passing)
algorithm it is true only if v is an
initiator

Boolean

v.portlock ⊥ Port p implies that v is locked using
p, and ⊥ implies that v is unlocked

Port or ⊥
v.send Empty sequence Messages to transfer to neighbors

Message queue

v.send member ∅ An ID set of agents that are
send-member of the head message of
v.send

Set of agentIDs

v.lock member ∅ An ID set of agents that are
lock-member of v

Set of agentIDs

v.staten The initial state v’s state of the target algorithm

State

v.receive ∅ The latest messages v received from
each port

Set of

(port,message)

Agent a a.msg ⊥ A message which a is delivering

Message
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Algorithm 1. main
1: v.portunsearched[a.id] ← {1, · · · , degv}
2: v.parentsearch[a.id] ← 0;
3: while (1)
4: if (v.init = true) ∨ (v.portlock = 0) then //the current node is initiator
5: Transmit();
6: if (v.portunsearched[a.id] �= ∅) then //search an unsearched port
7: v.portunsearched[a.id] ← v.portunsearched[a.id]/{p};
8: move through p;
9: arrive from q;
10: if (|v.parentsearch| = f+1) then //the current node is visited by f+1 agents

11: move through q (return to the previous node);
12: else
13: if (v.parentsearch[a.id] �= ⊥) then //find a’s own ID
14: v.portunsearched[a.id] ← v.portunsearched[a.id]/{q}
15: move through q (return to the previous node);
16: else //arrive at v for the first time
17: v.parentsearch[a.id] ← q;
18: v.portunsearched[a.id] ← {1, · · · , degv}/{q}
19: else //there is no unsearched port
20: p ← v.parentsearch[a.id];
21: if (p = 0) then
22: break;
23: else
24: move through p(return to the previous node);
25: end while

is not ⊥ (it means v is included in the delivering path of a), a backtracks to
the previous node. Agent a also backtracks to the previous node when v is
locked using a port other than the one a arrives through, that is, v.portlock of
the current node is not ⊥ and the other than the one a arrives through. Agent
a terminates Transmit() if the current node’s v.parenttransmit is 0 (it means
a starts Transmit() from v) and there is no message in the message queue
of v. The message is deleted from the node when one of its v.send member
agents backtracks. Agent a deletes the messages which a delivered and resets
v.send member to ∅ if a.id is included in v.send member when returning to v.

Agent a transfers messages left in v if there is a.id in v.lock member when a
backtracks to v (it means a is lock-member of v) on Transmit(). It stores a.id
in v.lock member when a arrives at v with a message and v is not locked or a
arrives through the port used for locking. If there is not a.id in v.lock member
at the current node when a backtracks to v, a executes Go back() until a finds
a.id in v.lock member. If Go back() outputs 0, a terminates Transmit() and
resumes Algorithm 1. If Go back() outputs 1, a continues Transmit() to transfer
messages.

Function Go back() (Algorithm 3) is called in Transmit() when a back-
tracks to the previous node. Agent a continues to backtrack through the port
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Algorithm 2. Transmit()
1: Process(∅, ∅);//process a unprocessed initiator
2: if (v.portlock = ⊥) then
3: v.portlock ← 0;
4: v.lock member ← v.lock member ∪ {a.id};
5: v.parenttransmit[a.id] ← 0;//mark 0 on the starting node of Transmit()
6: while (1)
7: if (v.send �= ∅) then
8: a.msg ← head(v.send);//copy the head message of v.send
9: v.send member ← v.send member ∪ {a.id};
10: move through the destination port p of a.msg;
11: arrive from q;
12: Process(a.msg, q);
13: a.msg ← ⊥;
14: if ((v.portlock = ⊥)∨(v.portlock = q))∧(v.parenttransmit[a.id] = ⊥) then //v

is not locked or locked by the incoming port, and v is not included in a’s path
15: if (v.portlock = ⊥) then
16: v.portlock ← q;
17: v.lock member ← v.lock member ∪ {a.id};
18: v.parenttransmit[a.id] ← q;
19: else
20: if (Go back(q) = 0) then return;//backtrack to a node s.t. a is a lock-

member
21: else
22: if (a.id ∈ v.lock member) then
23: v.portlock ← ⊥;
24: v.lock member ← ∅;
25: q ← v.parenttransmit[a.id];
26: v.parent ← ⊥;
27: if (q = 0) then
28: return;
29: else
30: if (Go back(q) = 0) then return;//backtrack to a node s.t. a is a lock-

member
31: end while

in v.parenttransmit[a.id] until a finds a.id in v.lock member. If a finds a.id in
v.lock member, Go back() outputs 1 and a restarts Transmit() to transfer mes-
sages from the node. If a does not find a.id in v.lock member, Go back() outputs
0 and a terminates Transmit() and resumes the depth-first search. While search-
ing a.id, a removes the messages which it delivered.

Function Process() (Algorithm 4) is used to simulate an execution of nodes
in Z. If the current node is an unprocessed initiator, a simulates an execution of
the node. To simulate the execution of an initiator, a uses simulate(v.staten,⊥)
and it gets a new node state s and a new message sequence M . To simulate the
execution of a node on receipt of a message c, a uses simulate(v.staten, c) and
it gets a new node state s and a new message sequence M .
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Algorithm 3. Go back(q)
1: move through q (return to the previous node);
2: while (1)
3: if (a.id ∈ v.send member) then //remove the message which a transfered
4: v.send member ← ∅;
5: dequeue(v.send);
6: if (a.id ∈ v.lock member) then //if a is a v.lock member agent, restart to send

messages
7: return 1;
8: else
9: q = v.parenttransmit[a.id];
10: v.parenttransmit[a.id] ← ⊥;
11: if (q = 0) then //the starting node of Transmit()
12: return 0; //return from Transmit()
13: else //if a is not a v.lock member agent, return to the previous node
14: move through q (return to the previous node);
15: end while

Each message may be delivered multiple times by some agents on Algo-
rithm2. To make sure that each message is processed once, the latest message
which are delivered from each port p is stored in v.receive[p] and a message is
not processed if it is already recorded in v.receive[p].

Algorithm 4. Process(c, q)
1: if (v.init = true) then
2: v.init ← false;
3: (s,M) ← simulate(v.staten,⊥);
4: v.staten ← s;
5: enqueue(v.send,M);
6: if (c �= ⊥) ∧ (c �= v.receive[q]) then //simulate the process of an initiator and of

a node which receive c from q
7: v.receive[q] ← c;
8: (s,M) ← simulate(v.staten, c);
9: v.staten ← s;
10: enqueue(v.send,M);

Proof of Correctness. In this part, we show that the proposed algorithm
simulates Z correctly.

First, we define the time instants of send and receive operations in the sim-
ulation of message-passing algorithm Z.

– The time instant that v sends message c in the simulation of Z is defined as
the time instant that an agent stores c to v.send.

– The time instant that v receives message c in the simulation of Z is defined
as the time instant that an agent with message c arrives at v and simulates
local computation of v initiated by receipt of c for the first time.
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Hereafter, we say an agent is in the delivery mode when it executes procedure
Transmit(), procedure Go back() or procedure Process(), and an agent is in the
search mode otherwise. The following lemmas hold.

Lemma 1. By the proposed algorithm, each node is visited by at least one non-
faulty agent of the search mode and hence every initiator starts execution of
Z.

Lemma 2. During the execution of the proposed algorithm, there is no message
in v.send if v.portlock is ⊥.

Lemma 3. By the proposed algorithm, agents simulate reliable communication.

Lemma 4. By the proposed algorithm, agents simulate the FIFO order of mes-
sage communication.

From Lemmas 1, 3 and 4, the proposed algorithm initiates execution of all
initiators and delivers all messages to their destinations correctly. This implies
the following theorem holds.

Theorem 1. The proposed algorithm simulates Z correctly when at most f ≤
k − 1 agents are faulty.

Evaluation. In this part, we evaluate the move complexity of agents. Clearly
it depends on the target message-passing algorithm Z. Let M and L be the
number and the maximum size of messages created in the simulated execution
of algorithm Z respectively.

Theorem 2. The proposed algorithm simulates Z with O((m+M)f) total agent
moves, O(L + log k) agent memory and O((M + Δ)L + fΔ log(kΔ)) additional
node memory.

Proof. We show only the evaluation of the total agent moves. For the search
mode, at most f + 1 agents search each link in two directions and one search
consists of a forward move and a backward move. Thus, the move complexity
of the search mode is 2 · 2 · m · (f + 1) = 4m(f + 1). For the delivery mode,
at most f + 1 agents carry each message of Z by forward moves, and every
agent makes one backward move for each forward move. Thus, the total move
complexity of the simulation mode is 2M(f + 1). Thus, the move complexity is
4m(f + 1) + 2M(f + 1) = O((m + M)f). 	


3.2 A Case of an Infinite Number of Messages

The simulation algorithm we propose in Sect. 3.1 can not simulate message-
passing algorithms Z with an infinite number of messages as explained below.

Consider the case of Fig. 2. There are two independent infinite circulations
of messages Ca and Cb. If all the agents in the network transfer the messages
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Fig. 2. An example where algorithm proposed in Sect. 3.1 cannot simulate Z with an
infinite number of messages.

included in Ca in the depth-first fashion, the messages included in Cb are not
delivered forever.

To simulate Z with an infinite number of messages, we introduce, to the
depth-first message delivery, restriction on the number of message deliveries and
change the algorithm as follows.

1. Instead of the depth-first message delivery in Sect. 3.1, the depth-first delivery
with restricted � messages is adopted, which is a modification of the depth-
first delivery such that an agent backtracks when the number of messages
which the agent delivered reaches �.

2. Each agent repeats the depth-first search of the search part infinitely and
traverses the whole network during the depth-first search of the search part.

3. An agent of the search mode stops execution of the simulation algorithm
when it finds f + 1 delivery mode agent names in the current node.

4. An agent starts the delivery part not only when it finds an initiator, but also
when it finds a message to transfer on an unlocked node.

We show that the number of agent moves per message is O(f) in the modified
algorithm. First, the following lemmas hold.

Lemma 5. During the execution of the modified algorithm, there remains at
least one non-faulty agent.

Lemma 6. By the modified algorithm, at least � messages are delivered during
the depth-first search of the search part of an agent.

In the modified algorithm, every message is transfered by at most f+1 agents
as in the algorithm in Sect. 3.1. From Lemma 6, at least � messages are delivered
during the depth-first search of the search part of an agent, which takes m agent
moves in the first search and n agent moves in the second or later search. That is,
at least � messages are delivered during kn+f� (km+f�, for the first depth-first
search) agent moves. Since an agent traverses the whole network, the agent can
get k and n in the first depth-first search of the search part. With setting � to
be kn, the number of agent moves per message becomes O(f).

Theorem 3. The modified algorithm simulates Z with O(f) agent moves per
message.
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4 Conclusion

In this paper, we proposed a new algorithm to simulate a message-passing algo-
rithm in the mobile agent model. It requires O((m + M)f) agent moves to
tolerate when at most f ≤ k − 1 agents crash where m is the number of links
in the network and M is the number of messages in the simulated execution of
the message-passing algorithm. The previous algorithm requires O((m + nM)k)
agent moves when at most k −1 agents crash. Thus, our algorithm improves the
previous algorithm in the number of agent moves. Furthermore, we proposed a
simulation algorithm for message-passing algorithms with an infinite number of
messages. It also improves the number of agent moves per message to O(f) from
O(nk).

Our algorithm and the previous algorithm [5] simulate different executions
of the message-passing algorithm. The actual number of agent moves depends
on the number and the creation pattern of messages in the simulated execution.
Thus, it is interesting as a future work to investigate the actual number of agent
moves for concrete examples of message-passing algorithms.

References

1. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by
mobile agents. In: Proceedings of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 200–209. ACM (2002)

2. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intrud-
ers. In: Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
70–84. Springer, Heidelberg (2006). doi:10.1007/11780823 7

3. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing.
Wiley, Hoboken (2012)

4. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms
versus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006). doi:10.1007/
11945529 14

5. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Fault-tolerant simulation of
message-passing algorithms by mobile agents. In: Prencipe, G., Zaks, S. (eds.)
SIROCCO 2007. LNCS, vol. 4474, pp. 289–303. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-72951-8 23
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