
Generalized Paxos Made Byzantine
(and Less Complex)

Miguel Pires1, Srivatsan Ravi2(B), and Rodrigo Rodrigues1

1 INESC-ID and Instituto Superior Técnico (U. Lisboa), Lisbon, Portugal
miguel.pires@tecnico.ulisboa.pt, rodrigo.rodrigues@inesc-id.pt

2 University of Southern California, Los Angeles, USA
srivatsr@usc.edu

Abstract. One of the most recent members of the Paxos family of pro-
tocols is Generalized Paxos. This variant of Paxos has the characteristic
that it departs from the original specification of consensus, allowing for a
weaker safety condition where different processes can have different views
on a sequence being agreed upon. However, much like the original Paxos
counterpart, Generalized Paxos does not have a simple implementation.
Furthermore, with the recent practical adoption of Byzantine fault toler-
ant protocols, it is timely and important to understand how Generalized
Paxos can be implemented in the Byzantine model. In this paper, we
make two main contributions. First, we provide a description of Gener-
alized Paxos that is easier to understand, based on a simpler specification
and the pseudocode for a solution that can be readily implemented. Sec-
ond, we extend the protocol to the Byzantine fault model.

1 Introduction

One of the fundamental challenges for processes participating in a distributed
computation is achieving consensus: processes initially propose a value and must
eventually agree on one of the proposed values [7]. Paxos [11], arguably, is one of
the most popular protocols for solving the consensus problem among fault-prone
processes. The evolution of the Paxos protocol represents a unique chapter in the
history of Computer Science. It was first described in 1989 through a technical
report [10], and was only published a decade later [11]. Another long wait took
place until the protocol started to be studied in depth and used by researchers
in various fields, namely the distributed algorithms [5] and the distributed sys-
tems [17] research communities. And finally, another decade later, the protocol
made its way to the core of the implementation of the services that are used
by millions of people over the Internet, in particular since Paxos-based state
machine replication is the key component of Google’s Chubby lock service [2], or
the open source ZooKeeper project [8], used by Yahoo! among others. Arguably,
the complexity of the presentation may have stood in the way of a faster adoption
of the protocol, and several attempts have been made at writing more concise
explanations of it [12,24].

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 203–218, 2017.
https://doi.org/10.1007/978-3-319-69084-1 14



204 M. Pires et al.

More recently, several variants of Paxos have been proposed and studied. Two
important lines of research can be highlighted in this regard. First, a series of
papers hardened the protocol against malicious adversaries by solving consensus
in a Byzantine fault model [15,20]. The importance of this line of research is now
being confirmed as these protocols are now in widespread use in the context of
cryptocurrencies and distributed ledger schemes such as blockchain [22]. Second,
many proposals target improving the Paxos protocol by eliminating communica-
tion costs [14], including an important evolution of the protocol called General-
ized Paxos [13], which has the noteworthy aspect of having lower communication
costs by leveraging a more general specificationan traditional consensus that can
lead to a weaker requirement in terms of ordering of commands across replicas.
In particular, instead of forcing all processes to agree on the same value (as with
traditional consensus), it allows processes to pick an increasing sequence of com-
mands that differs from process to process in that commutative commands may
appear in a different order. The practical importance of such weaker specifica-
tions is underlined by significant research activity on the corresponding weaker
consistency models for replicated systems [6,9].

In this paper, we draw a parallel between the evolution of the Paxos protocol
and the current status of Generalized Paxos. In particular, we argue that, much
in the same way that the clarification of the Paxos protocol contributed to its
practical adoption, it is also important to simplify the description of Generalized
Paxos. Furthermore, we believe that evolving this protocol to the Byzantine
model is an important task, since it will contribute to the understanding and
also open the possibility of adopting Generalized Paxos in scenarios such as a
blockchain deployment.

Concretely, this paper makes the following contributions to the Paxos family:

– We present a simplified version of the specification of Generalized Consensus,
which is focused on the most commonly used case of the solutions to this
problem, which is to agree on a sequence of commands;

– we extend the Generalized Paxos protocol to the Byzantine model;
– we present a description of the Byzantine Generalized Paxos protocol that is

more accessible than the original description, namely including the respective
pseudocode, in order to make it easier to implement;

– we prove the correctness of the Byzantine Generalize Paxos protocol;
– and we discuss several extensions to the protocol in the context of relaxed

consistency models and fault tolerance.

The remainder of the paper is organized as follows: Sect. 2 gives an overview of
Paxos and its family of related protocols. Section 3 introduces the model and
simplified specification of Generalized Paxos. Section 4 presents the General-
ized Paxos protocol that is resilient against Byzantine failures. This section also
presents a proof that the Byzantine Generalized Paxos protocol guarantees con-
sistency, while the correctness proofs for the remaining properties are included
in a tech report. Section 5 concludes the paper with a discussion of several opti-
mizations and practical considerations. The complete tech report with the formal
proofs is available on the ArXiv repository.



Generalized Paxos Made Byzantine (and Less Complex) 205

2 Background and Related Work

2.1 Paxos and Its Variants

The Paxos protocol family solves consensus by finding an equilibrium in face of
the well-known FLP impossibility result [7]. It does this by always guaranteeing
safety despite asynchrony, but foregoing progress during the temporary periods
of asynchrony, or if more than f faults occur for a system of N > 2f replicas [12].
The classic form of Paxos uses a set of proposers, acceptors and learners, runs in
a sequence of ballots, and employs two phases (numbered 1 and 2), with a similar
message pattern: proposer to acceptors (phase 1a or 2a), acceptors to proposer
(phase 1b or 2b), and, in phase 2b, also acceptors to learners. To ensure progress
during synchronous periods, proposals are serialized by a distinguished proposer,
which is called the leader.

Paxos is most commonly deployed as Multi (Decree)-Paxos, which provides
an optimization of the basic message pattern by omitting the first phase of
messages from all but the first ballot for each leader [24]. This means that a
leader only needs to send a phase 1a message once and subsequent proposals
may be sent directly in phase 2a messages. This reduces the message pattern
in the common case from five message delays to just three (from proposing to
learning).

Fast Paxos observes that it is possible to improve on the previous latency
(in the common case) by allowing proposers to propose values directly to accep-
tors [14]. To this end, the protocol distinguishes between fast and classic ballots,
where fast ballots bypass the leader by sending proposals directly to acceptors
and classic ballots work as in the original Paxos protocol. The reduced latency
of fast ballots comes at the added cost of using a quorum size of N − e instead
of a classic majority quorum, where e is the number of faults that can be toler-
ated while using fast ballots. In addition, instead of the usual requirement that
N > 2f , to ensure that fast and classic quorums intersect, a new requirement
must be met: N > 2e+ f . This means that if we wish to tolerate the same num-
ber of faults for classic and fast ballots (i.e., e = f), then the minimum number
of replicas is 3f + 1 instead of the usual 2f + 1. Since fast ballots only take
two message steps (phase 2a messages between a proposer and the acceptors,
and phase 2b messages between acceptors and learners), there is the possibility
of two proposers concurrently proposing values and generating a conflict, which
must be resolved by falling back to a recovery protocol.

Generalized Paxos improves the performance of Fast Paxos by addressing the
issue of collisions. In particular, it allows acceptors to accept different sequences
of commands as long as non-commutative operations are totally ordered [13].
In the original description, non-commutativity between operations is generi-
cally represented as an interference relation. In this context, Generalized Paxos
abstracts the traditional consensus problem of agreeing on a single value to
the problem of agreeing on an increasing set of values. C-structs provide this
increasing sequence abstraction and allow the definition of different consensus
problems. If we define the sequence of learned commands of a learner li as a



206 M. Pires et al.

c-struct learnedli , then the consistency requirement for generalized consensus
can be defined as: learnedl1 and learnedl2 must have a common upper bound,
for all learners l1 and l2. This means that, for any learnedl1 and learnedl2 , there
must exist some c-struct of which they are both prefixes. This prohibits interfer-
ing commands from being concurrently accepted because no subsequent c-struct
would extend them both.

More recently, other Paxos variants have been proposed to address specific
issues. For example, Mencius [19] avoids the latency penalty in wide-area deploy-
ments of having a single leader, through which every proposal must go through.
In Mencius, the leader of each round rotates between every process: the leader
of round i is process pk, such that k = n mod i. Another variant is Egalitarian
Paxos (EPaxos), which achieves a better throughput than Paxos by removing
the bottleneck caused by having a leader [21]. To avoid choosing a leader, the
proposal of commands for a command slot is done in a decentralized manner,
taking advantage of the commutativity observations made by Generalized Paxos
[13]. Conflicts between commands are handled by having replicas reply with a
command dependency, which then leads to falling back to using another protocol
phase with f + � f+1

2 � replicas.

2.2 Byzantine Fault Tolerant Replication

Consensus in the Byzantine model was originally defined by Lamport et al. [16].
Almost two decades later, a surge of research in the area started with the PBFT
protocol, which solves consensus for state machine replication with 3f + 1 repli-
cas while tolerating up to f Byzantine faults [4]. In PBFT, the system moves
through configurations called views, in which one replica is the primary and the
remaining replicas are the backups. The protocol proceeds in a sequence of steps,
where messages are sent from the client to the primary, from the primary to the
backups, followed by two all-to-all steps between the replicas, with the last step
proceeding in parallel with sending a reply to the clients.

Zeno is a Byzantine fault tolerance state machine replication protocol that
trades availability for consistency [25]. In particular, it offers eventual consistency
by allowing state machine commands to execute in a weak quorum of f + 1
replicas. This ensures that at least one correct replica will execute the request
and commit it to the linear history, but does not guarantee the intersection
property that is required for linearizability.

The closest related work is Fast Byzantine Paxos (FaB), which solves con-
sensus in the Byzantine setting within two message communication steps in the
common case, while requiring 5f + 1 acceptors to ensure safety and liveness
[20]. A variant that is proposed in the same paper is the Parameterized FaB
Paxos protocol, which generalizes FaB by decoupling replication for fault toler-
ance from replication for performance. As such, the Parameterized FaB Paxos
requires 3f +2t+1 replicas to solve consensus, preserving safety while tolerating
up to f faults and completing in two steps despite up to t faults. Therefore,
FaB Paxos is a special case of Parameterized FaB Paxos where t = f . It has
also been shown that N > 5f is a lower bound on the number of acceptors



Generalized Paxos Made Byzantine (and Less Complex) 207

required to guarantee 2-step execution in the Byzantine model. In this sense,
the FaB protocol is tight since it requires 5f + 1 acceptors to provide the same
guarantees.

In comparison to FaB Paxos, our protocol, Byzantine Generalized Paxos
(BGP), requires a lower number of acceptors than what is stipulated by FaB’s
lower bound. However, this does not constitute a violation of the result since
BGP does not guarantee a 2-step execution in the Byzantine scenario. Instead,
BGP only provides a two communication step latency when proposed sequences
are commutative with any other concurrently proposed sequence. In other words,
BGP leverages a weaker performance guarantee to decrease the requirements
regarding the minimum number of processes. In particular, a proposed sequence
may not gather enough votes to be learned in the ballot in which it is proposed,
either due to Byzantine behaviour or contention between non-commutative com-
mands. However, any sequence is guaranteed to eventually be learned in a way
such that non-commutative commands are totally ordered at any correct learner.

3 Model

We consider an asynchronous system in which a set of n ∈ N processes commu-
nicate by sending and receiving messages. Each process executes an algorithm
assigned to it, but may fail in two different ways. First, it may stop executing
it by crashing. Second, it may stop following the algorithm assigned to it, in
which case it is considered Byzantine. We say that a non-Byzantine process is
correct. This paper considers the authenticated Byzantine model: every process
can produce cryptographic digital signatures [26]. Furthermore, for clarity of
exposition, we assume authenticated perfect links [3], where a message that is
sent by a non-faulty sender is eventually received and messages cannot be forged
(such links can be implemented trivially using retransmission, elimination of
duplicates, and point-to-point message authentication codes [3].) A process may
be a learner, proposer or acceptor. Informally, proposers provide input values
that must be agreed upon by learners, the acceptors help the learners agree on
a value, and learners learn commands by appending them to a local sequence
of commands to be executed, learnedl. Our protocols require a minimum num-
ber of acceptor processes (N), which is a function of the maximum number of
tolerated Byzantine faults (f), namely N ≥ 3f + 1. We assume that acceptor
processes have identifiers in the set {0, ..., N − 1}. In contrast, the number of
proposer and learner processes can be set arbitrarily.

Problem Statement. In our simplified specification of Generalized Paxos, each
learner l maintains a monotonically increasing sequence of commands learnedl.
We define two learned sequences of commands to be equivalent (∼) if one can
be transformed into the other by permuting the elements in a way such that the
order of non-commutative pairs is preserved. A sequence x is defined to be an
eq-prefix of another sequence y (x � y), if the subsequence of y that contains
all the elements in x is equivalent (∼) to x. We present the requirements for
this consensus problem, stated in terms of learned sequences of commands for



208 M. Pires et al.

a correct learner l, learnedl. To simplify the original specification, instead of
using c-structs (as explained in Sect. 2), we specialize to agreeing on equivalent
sequences of commands:

1. Nontriviality. If all proposers are correct, learnedl can only contain pro-
posed commands.

2. Stability. If learnedl = s then, at all later times, s � learnedl, for any
sequence s and correct learner l.

3. Consistency. At any time and for any two correct learners li and lj , learnedli
and learnedlj can subsequently be extended to equivalent sequences.

4. Liveness. For any proposal s from a correct proposer, and correct learner l,
eventually learnedl contains s.

4 Protocol

This section presents our Byzantine fault tolerant Generalized Paxos Protocol
(or BGP, for short). Given our space constraints, we opted for merging in a single
description a novel presentation of Generalized Paxos and its extension to the
Byzantine model, even though each represents an independent contribution in
its own right.

Algorithm 1. Byzantine Generalized Paxos - Proposer p
Local variables: ballot type = ⊥

1: upon receive(BALLOT, type) do
2: ballot type = type;
3:
4: upon command request(c) do
5: if ballot type = fast ballot then
6: send(P2A FAST, c) to acceptors;
7: else
8: send(PROPOSE, c) to leader;

4.1 Overview

We modularize our protocol explanation according to the following main com-
ponents, which are also present in other protocols of the Paxos family:

– View-change – The goal of this subprotocol is to ensure that, at any given
moment, one of the proposers is chosen as a distinguished leader, who runs a
specific version of the agreement subprotocol. To achieve this, the view-change
subprotocol continuously replaces leaders, until one is found that can ensure
progress (i.e., commands are eventually appended to the current sequence).

– Agreement – Given a fixed leader, this subprotocol extends the current
sequence with a new command or set of commands. Analogously to Fast
Paxos [14] and Generalized Paxos [13], choosing this extension can be done
through two variants of the protocol: using either classic ballots or fast
ballots, with the characteristic that fast ballots complete in fewer communi-
cation steps, but may have to fall back to using a classic ballot when there is
contention among concurrent requests.



Generalized Paxos Made Byzantine (and Less Complex) 209

4.2 View-Change

The goal of the view-change subprotocol is to elect a distinguished acceptor
process, called the leader, that carries through the agreement protocol, i.e.,
enables proposed commands to eventually be learned by all the learners. The
overall design of this subprotocol is similar to the corresponding part of existing
BFT state machine replication protocols [4].

Algorithm 2. Byzantine Generalized Paxos - Process p
1: function merge sequences(old seq, new seq)
2: for c in new seq do
3: if !contains(old seq, c) then
4: old seq = old seq • c;
5: end for
6: return old seq;
7: end function
8:

9: function signed commands(full seq)
10: signed seq = ⊥;
11: for c in full seq do
12: if verify command(c) then
13: signed seq = signed seq • c;
14: end for
15: return signed seq;
16: end function

In this subprotocol, the system moves through sequentially numbered views,
and the leader for each view is chosen in a rotating fashion using the simple
equation leader(view) = view mod N. The protocol works continuously by hav-
ing acceptor processes monitor whether progress is being made on adding com-
mands to the current sequence, and, if not, they multicast a signed suspicion
message for the current view to all acceptors suspecting the current leader. Then,
if enough suspicions are collected, processes can move to the subsequent view.
However, the required number of suspicions must be chosen in a way that pre-
vents Byzantine processes from triggering view changes spuriously. To this end,
acceptor processes will multicast a view-change message indicating their com-
mitment to starting a new view only after hearing that f + 1 processes suspect
the leader to be faulty. This message contains the new view number, the f + 1
signed suspicions, and is signed by the acceptor that sends it. In the pseudocode,
signatures are created by signing data with a process’ private key (e.g., dataprivp

)
and validated by decrypting the data with its public key (e.g., datapubp). This
way, if a process receives a view-change message without previously receiving
f + 1 suspicions, it can also multicast a view-change message, after verifying
that the suspicions are correctly signed by f + 1 distinct processes. This guar-
antees that if one correct process receives the f + 1 suspicions and multicasts
the view-change message, then all correct processes, upon receiving this mes-
sage, will be able to validate the proof of f +1 suspicions and also multicast the
view-change message.

Finally, an acceptor process must wait for N − f view-change messages to
start participating in the new view, i.e., update its view number and the corre-
sponding leader process. At this point, the acceptor also assembles the N − f
view-change messages proving that others are committing to the new view, and
sends them to the new leader. This allows the new leader to start its leadership
role in the new view once it validates the N − f signatures contained in a single
message.



210 M. Pires et al.

Algorithm 3. Byzantine Generalized Paxos - Leader l
Local variables: ballotl = 0,maxTriedl = ⊥, proposals = ⊥, accepted = ⊥, view = 0
1: upon receive(LEADER, viewa, proofs) from accep-

tor a do
2: valid proofs = 0;
3: for p in acceptors do
4: view proof = proofs[p];
5: if view proofpubp

= 〈view change, viewa〉
then

6: valid proofs += 1;
7: if valid proofs > f then
8: view = viewa;
9:

10: upon trigger next ballot(type) do
11: ballotl += 1;
12: send(BALLOT, type) to proposers;
13: if type = fast then
14: send(FAST, ballotl, view) to acceptors;
15: else
16: send(P1A, ballotl, view) to acceptors;
17:
18: upon receive(PROPOSE, prop) from proposer pi do
19: proposals = proposals • prop;

20: upon receive(P1B, bala, view valsa) from acceptor a
do

21: if bala = ballotl then
22: accepted[ballotl][a] = signed commands(view valsa);
23: if #(accepted[ballotl]) ≥ N − f then
24: phase 2a();
25:
26: function phase 2a()
27: maxTriedl = proved safe(ballotl);
28: maxTriedl = maxTriedl • proposals;
29: if clean state?() then
30: maxTriedl = maxTriedl • C∗;
31: send(P2A CLASSIC,ballotl,view, maxTriedl) to

acceptors;
32: proposals = ⊥;
33: end function
34:
35: function proved safe(ballot)
36: safe seq = ⊥;
37: for seq in accepted[ballot] do
38: safe seq = merge sequences(safe seq, seq);
39: end for
40: return safe seq;
41: end function

4.3 Agreement Protocol

The consensus protocol allows learner processes to agree on equivalent sequences
of commands (according to our previous definition of equivalence). An impor-
tant conceptual distinction between the original Paxos protocol and BGP is that,
in the original Paxos, each instance of consensus is called a ballot, whereas in
BGP, instead of being a separate instance of consensus, ballots correspond to
an extension to the sequence of learned commands of a single ongoing consensus
instance. Proposers can try to extend the current sequence by either single com-
mands or sequences of commands. We use the term proposal to denote either
the command or sequence of commands that was proposed.

As mentioned, ballots can either be classic or fast. In classic ballots, a leader
proposes a single proposal to be appended to the commands learned by the
learners. The protocol is then similar to the one used by classic Paxos [11],
with a first phase where each acceptor conveys to the leader the sequences that
the acceptor has already voted for (so that the leader can resend commands
that may not have gathered enough votes), followed by a second phase where
the leader instructs and gathers support for appending the new proposal to the
current sequence of learned commands. Fast ballots, in turn, allow any proposer
to attempt to contact all acceptors in order to extend the current sequence
within only two message delays (in case there are no conflicts between concurrent
proposals).

Next, we present the protocol for each type of ballot in detail.

4.4 Classic Ballots

Classic ballots work in a way that is very close to the original Paxos protocol [11].
Therefore, throughout our description, we will highlight the points where BGP
departs from that original protocol, either due to the Byzantine fault model, or
due to behaviors that are particular to the specification of Generalized Paxos.



Generalized Paxos Made Byzantine (and Less Complex) 211

Algorithm 4. Byzantine Generalized Paxos - Acceptor a (view-change)
Local variables: suspicions = ⊥, new view = ⊥, leader = ⊥, view = 0, bala =
0, vala = ⊥, fast bal = ⊥, checkpoint = ⊥
1: upon suspect leader do
2: if suspicions[p] �= true then
3: suspicions[p] = true;
4: proof = 〈suspicion, view〉priva ;
5: send(SUSPICION, view, proof);
6:
7: upon receive(SUSPICION, viewi, proof) from acceptor i

do
8: if viewi �= view then
9: return;

10: if proofpubi
= 〈suspicion, view〉 then

11: suspicions[i] = proof;
12: if #(suspicions) > f and new view[view +

1][p] = ⊥ then
13: change proof = 〈view change, view +

1〉priva ;
14: new view[view + 1][p] = change proof;
15: send(V IEW CHANGE, view+1, suspicions,

change proof);
16:
17: upon receive(V IEW CHANGE, new viewi, suspi-

cions, change proofi) from acceptor i do

18: if new viewi ≤ view then
19: return;
20: valid proofs = 0;
21: for p in acceptors do
22: proof = suspicions[p];
23: last view = new viewi − 1;
24: if proofpubp

= 〈suspicion, last view〉 then

25: valid proofs += 1;
26: if valid proofs ≤ f then
27: return;
28: new view[new viewi][i] = change proofi;
29: if new view[viewi][a] = ⊥ then
30: change proof=〈view change, new viewi〉priva ;
31: new view[viewi][a] = change proof;
32: send(V IEW CHANGE, viewi, suspicions,

change proof);
33: if #(new view[new viewi]) ≥ N − f then
34: view = viewi;
35: leader = view mod N;
36: suspicions = ⊥;
37: send(LEADER, view, new view[viewi]) to

leader;

In this part of the protocol, the leader continuously collects proposals by
assembling all commands that are received from the proposers since the previous
ballot in a sequence. (This differs from classic Paxos, where it suffices to keep a
single proposed value that the leader attempts to reach agreement on.)

When the next ballot is triggered, the leader starts the first phase by sending
phase 1a messages to all acceptors containing just the ballot number. Similarly
to classic Paxos, acceptors reply with a phase 1b message to the leader, which
reports all sequences of commands they voted for. In classic Paxos, acceptors
also promise not to participate in lower-numbered ballots, in order to prevent
safety violations [11]. However, in BGP this promise is already implicit, given (1)
there is only one leader per view and it is the only process allowed to propose in
a classic ballot and (2) acceptors replying to that message must be in the same
view as that leader.

Upon receiving phase 1b messages, the leader checks that the commands
are authentic by validating command signatures. (This is needed due to the
Byzantine model.) After gathering a quorum of N − f responses, the leader
initiates phase 2a by sending a message with a proposal to the acceptors (as
in the original protocol, but with a quorum size adjusted for the Byzantine
model). This proposal is constructed by appending the proposals received from
the proposers to a sequence that contains every command in the sequences that
were previously accepted by the acceptors in the quorum (instead of sending a
single value with the highest ballot number in the classic specification).

The acceptors reply to phase 2a messages by sending phase 2b messages to the
learners, containing the ballot and the proposal from the leader. After receiving
N − f votes for a sequence, a learner learns it by extracting the commands that
are not contained in his learned sequence and appending them in order. (This
differs from the original protocol in the quorum size, due to the fault model, and
by the fact that learners would wait for a quorum of matching values, due to the
consensus specification.)



212 M. Pires et al.

Algorithm 5. Byzantine Generalized Paxos - Acceptor a (agreement)
Local variables: suspicions = ⊥, new view = ⊥, leader = ⊥, view = 0, bala =
0, vala = ⊥, fast bal = ⊥, checkpoint = ⊥

1: upon receive(P1A, ballot, viewl) from leader l do
2: if viewl = view then
3: phase 1b(ballot);
4:
5: upon receive(FAST, ballot, viewl) from leader do
6: if viewl = view then
7: fast bal[ballot] = true;
8:
9: upon receive(P2B,ballot,value,proof) from acceptor i

do
10: if proofpubi

�= 〈ballot, value〉 then

11: return;
12: checkpoint[ballot][i] = proof;
13: if #(checkpoint[ballot]) ≥ N − f then
14: send(P2B, ballot, value, checkpoint[ballot])

to learners;
15: vala = ⊥;
16:
17: upon receive(P2A CLASSIC, ballot, view, value) from

leader do
18: if viewl = view then
19: phase 2b classic(ballot, value);
20:
21: upon receive(P2A FAST, value) from proposer do
22: phase 2b fast(value);

23:
24: function phase 1b(ballot)
25: if bala < ballot then
26: send(P1B, ballot, vala) to leader;
27: bala = ballot;
28: vala[bala] = ⊥;
29: end function
30:
31: function phase 2b classic(ballot, value)
32: if ballot ≥ bala and vala = ⊥ then
33: bala = ballot;
34: vala[ballot] = value;
35: if contains(value, C∗) then
36: proof = 〈suspicion, view〉priva ;
37: send(P2B, ballot, value, proof ) to acceptors;
38: else
39: send(P2B, ballot, value) to learners;
40: end function
41:
42: function phase 2b fast(value)
43: if fast bal[bala] then
44: vala[bala] =merge sequences(vala[bala], value);
45: send(P2B, bala, vala[bala]) to learners;
46: end function

4.5 Fast Ballots

In contrast to classic ballots, fast ballots leverage the weaker specification of gen-
eralized consensus (compared to classic consensus) in terms of command ordering
at different replicas, to allow for the faster execution of commands in some cases.
The basic idea of fast ballots is that proposers contact the acceptors directly,
bypassing the leader, and then the acceptors send directly to the learners their
vote for the current sequence, where this sequence now incorporates the pro-
posed value. If a learner can gather N − f votes for a sequence (or an equivalent
one), then it is learned. If, however, a conflict exists between sequences then they
will not be considered equivalent and at most one of them will gather enough
votes to be learned. Conflicts are dealt with by maintaining the proposals at the
acceptors so they can be sent to the leader and learned in the next classic ballot.
This differs from Fast Paxos where recovery is performed through an additional
round-trip.

Next, we explain each of these steps in more detail.

Step 1: Proposer to Acceptors. To initiate a fast ballot, the leader informs
both proposers and acceptors that the proposals may be sent directly to the
acceptors. Unlike classic ballots, where the sequence proposed by the leader
consists of the commands received from the proposers appended to previously
proposed commands, in a fast ballot, proposals can be sent to the acceptors
in the form of either a single command or a sequence to be appended to the
command history.

Step 2: Acceptors to Learners. Acceptors append the proposals they receive
to the proposals they have previously accepted in the current ballot and broad-
cast the result to the learners. Similarly to what happens in classic ballots, the
fast ballot equivalent of the phase 2b message, which is sent from acceptors to



Generalized Paxos Made Byzantine (and Less Complex) 213

Algorithm 6. Byzantine Generalized Paxos - Learner l
Local variables: learned = ⊥, messages = ⊥

1: upon receive(P2B, ballot, value) from acceptor a
do

2: messages[ballot][value][a] = true;

3:
if #(messages[ballot][value]) ≥ N-f or (#(mes-
sages[ballot][value]) > f and isUniversallyCommuta-
tive(value)) then

4: learned = merge sequences(learned, value);
5:

6: upon receive(P2B, ballot, value, proofs) from
acceptor a do

7: valid proofs = 0;
8: for i in acceptors do
9: proof = proofs[i];

10: if proofpubi
= 〈ballot, value〉 then

11: valid proofs += 1;
12: if valid proofs > f then
13: learned = merge sequences(learned, value);

learners, contains the current ballot number and the command sequence. How-
ever, since commands (or sequences of commands) are concurrently proposed,
acceptors can receive and vote for non-commutative proposals in different orders.
To ensure safety, correct learners must learn non-commutative commands in
a total order. To this end, a learner must gather N − f votes for equivalent
sequences. That is, sequences do not necessarily have to be equal in order to be
learned since commutative commands may be reordered. Recall that a sequence
is equivalent to another if it can be transformed into the second one by reordering
its elements without changing the order of any pair of non-commutative com-
mands. (Note that, in the pseudocode, equivalent sequences are being treated
as belonging to the same index of the messages variable, to simplify the presen-
tation.) By requiring N − f votes for a sequence of commands, we ensure that,
given two sequences where non-commutative commands are differently ordered,
only one sequence will receive enough votes even if f Byzantine acceptors vote for
both sequences. Outside the set of (up to) f Byzantine acceptors, the remaining
2f + 1 correct acceptors will only vote for a single sequence, which means there
are only enough correct processes to commit one of them. Note that the fact that
proposals are sent as extensions to previous sequences is critical to the safety
of the protocol. In particular, since the votes from acceptors can be reordered
by the network before being delivered to the learners, if these values were single
commands it would be impossible to guarantee that non-commutative commands
would be learned in a total order.

Arbitrating an Order After a Conflict. When, in a fast ballot, non-
commutative commands are concurrently proposed, these commands may be
incorporated into the sequences of various acceptors in different orders, and
therefore the sequences sent by the acceptors in phase 2b messages will not be
equivalent and will not be learned. In this case, the leader subsequently runs
a classic ballot and gathers these unlearned sequences in phase 1b. Then, the
leader will arbitrate a single serialization for every previously proposed com-
mand, which it will then send to the acceptors. Therefore, if non-commutative
commands are concurrently proposed in a fast ballot, they will be included in
the subsequent classic ballot and the learners will learn them in a total order,
thus preserving consistency.

Checkpointing. A checkpointing feature allows the leader to propose a special
command C∗ that causes processes to discard stored commands. However, since
commands are kept at the acceptors to ensure that they will eventually be com-



214 M. Pires et al.

mitted, the checkpointing command must be sent within a sequence in a classic
ballot along with the commands stored by N −f acceptors. Since, when propos-
ing to acceptors in fast ballots, proposers wait for acknowledgments from N − f
acceptors, all proposed sequences will be sent to the leader and included in the
leader’s sequence, along with the checkpointing command. Since acceptors must
be certain that it’s safe to discard previously stored commands, before send-
ing phase 2b messages to learners, they first broadcast these messages among
themselves to ensure that a Byzantine leader can’t make a subset of acceptors
discard state. After waiting for N − f such messages, acceptors send phase 2b
messages to the learners along with the cryptographic proofs exchanged in the
acceptor-to-acceptor broadcast. After receiving just one message, a learner may
simply validate the N − f proofs and learn the commands. The learners discard
previously stored state when they execute the checkpointing command.

4.6 Correctness

We now prove the correctness of the presented Byzantine Generalized Paxos
protocol. Invariants and symbols specific to our proof are defined in Table 1. Due
to space constraints, we only discuss the proof of consistency, but the remaining
proofs and an extended version of the protocol to address cross-ballot consistency
are available in a technical report [23].

Table 1. Proof notation

Invariant/Symbol Definition

∼ Equivalence relation between sequences

X � Y The sequence X is a prefix of sequence Y

L Set of learner processes

P Set of proposals (commands or sequences of commands)

⊥ Empty command

learnedli Learner li’s learned sequence of commands

learned(li, s) learnedli contains the sequence s

maj accepted(s) N − f acceptors sent phase 2b messages to the learners for sequence s

min accepted(s) f + 1 acceptors sent phase 2b messages to the learners for sequence s

Theorem 1. At any time and for any two correct learners li and lj, learnedli
and learnedlj can subsequently be extended to equivalent sequences.

Proof:

1. At any given instant, ∀s, s′ ∈ P,∀li, lj ∈ L, learned(lj , s) ∧
learned(li, s′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof:



Generalized Paxos Made Byzantine (and Less Complex) 215

1.1. At any given instant, ∀s, s′ ∈ P,∀li, lj ∈ L, learned(li, s) ∧
learned(lj , s′) =⇒ (maj accepted(s) ∨ (min accepted(s) ∧ s •
σ1 ∼ x • σ2)) ∧ (maj accepted(s′) ∨ (min accepted(s′) ∧ s′ • σ1 ∼

x • σ2)),∃σ1, σ2 ∈ P ∪ {⊥},∀x ∈ P
Proof: A sequence can only be learned if the learner gathers
N − f votes (i.e., maj accepted(s)) or if it is universally com-
mutative (i.e., s • σ1 ∼ x • σ2, ∃σ1, σ2 ∈ P ∪ {⊥},∀x ∈ P)
and the learner gathers f + 1 votes (i.e., min accepted(s)).The
first case includes both gathering N − f votes directly from each
acceptor (Algorithm 6 lines {1–4}) and gathering N − f proofs
of vote from only one acceptor, as is the case when the sequence
contains a special checkpointing command (Algorithm 6 {6–11}).
The second case requires that the sequence must be commuta-
tive with any other (Algorithm 6 {1–4}). This is encoded in the
logical expression s • σ1 ∼ x • σ2 which is true the if learned
sequence can be extended with σ1 to the same that any other
sequence x can be extended to with a possibly different sequence
σ2, therefore making it impossible to result in a conflict.

1.2. At any given instant, ∀s, s′ ∈ P,maj accepted(s) ∧
maj accepted(s′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: Proved by contradiction.
1.2.1. At any given instant, ∃s, s′ ∈ P,∀σ1, σ2 ∈ P ∪
{⊥},maj accepted(s) ∧ maj accepted(s′) ∧ s • σ1 �∼ s′ • σ2

Proof: Contradiction assumption.
1.2.2. Take a pair proposals s and s′ that meet the conditions of 1.2.1
(and are certain to exist by the previous point), then s and s′ are
non-commutative
Proof: If ∀σ1, σ2 ∈ P ∪ {⊥}, s • σ1 �∼ s′ • σ2, then s and s′ must
contain non-commutative commands differently ordered. Otherwise,
some combination of σ1 and σ2 would be commutative. If s•σ1 �∼ s′•σ2

even for commutative σ1 and σ2 then s and s′ must contain non-
commutative commands in different relative orders.
1.2.3. At any given instant, ¬(maj accepted(s) ∧ maj accepted(s′))
Proof: Since s and s′ are non-commutative, therefore not equivalent,
and each correct acceptor only votes once for a new proposal (Algo-
rithm 5, lines {31–46}), any learner will only obtain N − f votes for
one of the sequences (Algorithm 6, lines {1–4}).
1.2.4. A contradiction is found, Q.E.D.
1.3. For any pair of proposals s and s′, at any given instant,

∀x ∈ P,∃σ1, σ2, σ3, σ4 ∈ P ∪ {⊥}, (maj accepted(s) ∨
(min accepted(s) ∧ s • σ1 ∼ x • σ2)) ∧ (maj accepted(s′) ∨
(min accepted(s′) ∧ s • σ1 ∼ x • σ2)) =⇒ s • σ3 ∼ s′ • σ4

Proof: By 1.2 and by definition of s • σ1 ∼ x • σ2.
1.4. At any given instant, ∀s, s′ ∈ P,∀li, lj ∈ L, learned(li, s) ∧

learned(lj , s′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: By 1.1 and 1.3.



216 M. Pires et al.

1.5. Q.E.D.
2. At any given instant, ∀li, lj ∈ L, learned(lj , learnedj) ∧ learned

(li, learnedi) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, learnedi • σ1 ∼ learnedj • σ2

Proof: By 1.
3. Q.E.D.

5 Conclusion and Discussion

We presented a simplified description of the Generalized Paxos specification and
protocol, and an implementation of Generalized Paxos that is resilient against
Byzantine faults. We now draw some lessons and outline some extensions to
our protocol that present interesting directions for future work and hopefully a
better understanding of its practical applicability.

Handling Faults in the Fast Case. A result that was stated in the original
Generalized Paxos paper [13] is that to tolerate f crash faults and allow for fast
ballots whenever there are up to e crash faults, the total system size N must
uphold two conditions: N > 2f and N > 2e+f . Additionally, the fast and classic
quorums must be of size N − e and N − f , respectively. This implies that there
is a price to pay in terms of number of replicas and quorum size for being able
to run fast operations during faulty periods. An interesting observation is that
since Byzantine fault tolerance already requires a total system size of 3f +1 and
a quorum size of 2f + 1, we are able to amortize the cost of both features, i.e.,
we are able to tolerate the maximum number of faults for fast execution without
paying a price in terms of the replication factor and quorum size.

Extending the Protocol to Universally Commutative Commands. A
downside of the use of commutative commands in the context of Generalized
Paxos is that the commutativity check is done at runtime, to determine if non-
commutative commands have been proposed concurrently. This raises the pos-
sibility of extending the protocol to handle commands that are universally com-
mutative, i.e., commute with every other command. For these commands, it is
known before executing them that they will not generate any conflicts, and there-
fore it is not necessary to check them against concurrently executing commands.
This allows us to optimize the protocol by decreasing the number of phase 2b
messages required to learn to a smaller f +1 quorum. Since, by definition, these
sequences are guaranteed to never produce conflicts, the N − f quorum is not
required to prevent learners from learning conflicting sequences. Instead, a quo-
rum of f +1 is sufficient to ensure that a correct acceptor saw the command and
will eventually propagate it to a quorum of N − f acceptors. This optimization
is particularly useful in the context of geo-replicated systems, since it can be
significantly faster to wait for the f + 1st message instead of the N − fth one.

Generalized Paxos and Weak Consistency. The key distinguishing feature
of the specification of Generalized Paxos [13] is allowing learners to learn con-
current proposals in a different order, when the proposals commute. This idea is
closely related to the work on weaker consistency models like eventual or causal



Generalized Paxos Made Byzantine (and Less Complex) 217

consistency [1], or consistency models that mix strong and weak consistency lev-
els like RedBlue [18], which attempt to decrease the cost of executing operations
by reducing coordination requirements between replicas. The link between the
two models becomes clearer with the introduction of universally commutative
commands in the previous paragraph. In the case of weakly consistent repli-
cation, weakly consistent requests can be executed as if they were universally
commutative, even if in practice that may not be the case. E.g., checking the bal-
ance of a bank account and making a deposit do not commute since the output
of the former depends on their relative order. However, some systems prefer to
run both as weakly consistent operations, even though it may cause executions
that are not explained by a sequential execution, since the semantics are still
acceptable given that the final state that is reached is the same and no invariants
of the application are violated [18].

Acknowledgements. This work was supported by the European Research Council
(ERC-2012-StG-307732) and FCT (UID/CEC/50021/2013).

References

1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995)

2. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of 7th Symposium on Operating Systems Design and Implementation
(2006)

3. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-15260-3

4. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of 3rd
Symposium on Operating Systems Design and Implementation (OSDI) (1999)

5. De Prisco, R., Lampson, B., Lynch, N.A.: Revisiting the paxos algorithm. In:
Mavronicolas, M., Tsigas, P. (eds.) WDAG 1997. LNCS, vol. 1320, pp. 111–125.
Springer, Heidelberg (1997). doi:10.1007/BFb0030679

6. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Pro-
ceedings of 21st Symposium on Operating Systems Principles (SOSP) (2007)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

8. Junqueira, F., Reed, B., Serafini, M.: Zab: high-performance broadcast for primary-
backup systems. In: 41st International Conference on Dependable Systems and
Networks (2011)

9. Ladin, R., Liskov, B., Shrira, L.: Lazy replication: exploiting the semantics of
distributed services. In: Proceedings of 9th Symposium on Principles Distributed
Computing (1990)

10. Lamport, L.: The part-time parliament. Technical report, DEC SRC (1989)
11. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
12. Lamport, L.: Paxos made simple. SIGACT News 32(4), 18–25 (2001)
13. Lamport, L.: Generalized consensus and paxos. Technical report, Technical Report

MSR-TR-2005-33, Microsoft Research (2005)

http://dx.doi.org/10.1007/978-3-642-15260-3
http://dx.doi.org/10.1007/978-3-642-15260-3
http://dx.doi.org/10.1007/BFb0030679


218 M. Pires et al.

14. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
15. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) DISC

2011. LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24100-0 22

16. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Progr. Lang. Syst. 4(3), 382–401 (1982)

17. Lee, E.K., Thekkath, C.A.: Petal: distributed virtual disks. In: Proceedings of 7th
International Conference on Architectural Support for Programming Languages
and Operating Systems (1996)

18. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making
geo-replicated systems fast as possible, consistent when necessary. In: Proceedings
of 10th Symposium on Operating Systems Design and Implementation (OSDI)
(2012)

19. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state
machines for WANs. In: Proceedings of 8th Symposium on Operating Systems
Design and Implementation (OSDI) (2008)

20. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secur.
Comput. 3(3), 202–215 (2006)

21. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in Egalitar-
ian parliaments. In: Proceedings of Symposium on Operating Systems Principles
(SOSP) (2013)

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
23. Pires, M., Ravi, S., Rodrigues, R.: Generalized Paxos Made Byzantine (and Less

Complex). Tech. rep. (2017)
24. van Renesse, R.: Paxos made moderately complex. ACM Comput. Surv. 47(3),

1–36 (2011)
25. Singh, A., Fonseca, P., Kuznetsov, P.: Zeno: eventually consistent byzantine-fault

tolerance. In: Proceedings of 6th Symposium on Networked Systems Design and
Implementation (NSDI) (2009)

26. Vukolic, M.: Quorum systems: with applications to storage and consensus. In:
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2012)

http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://dx.doi.org/10.1007/978-3-642-24100-0_22

	Generalized Paxos Made Byzantine (and Less Complex)
	1 Introduction
	2 Background and Related Work
	2.1 Paxos and Its Variants
	2.2 Byzantine Fault Tolerant Replication

	3 Model
	4 Protocol
	4.1 Overview
	4.2 View-Change
	4.3 Agreement Protocol
	4.4 Classic Ballots
	4.5 Fast Ballots
	4.6 Correctness

	5 Conclusion and Discussion
	References


