
Robust Routing Made Easy

Christoph Lenzen and Moti Medina(B)

MPII, Saarland Informatics Campus, Saarbrücken, Germany
{clenzen,mmedina}@mpi-inf.mpg.de

Abstract. Designing routing schemes is a multidimensional and com-
plex task that depends on the objective function, the computational
model (centralized vs. distributed), and the amount of uncertainty
(online vs. offline). We showcase simple and generic transformations that
can be used as a blackbox to increase resilience against (independently
distributed) faults. Given a network and a routing scheme, we determine
a reinforced network and corresponding routing scheme that faithfully
preserves the specification and behavior of the original scheme. We show
that reasonably small constant overheads in terms of size of the new net-
work compared to the old one are sufficient for substantially relaxing the
reliability requirements on individual components. The main message in
this paper is that the task of designing a robust routing scheme can be
decoupled into (i) designing a routing scheme that meets the specifica-
tion in a fault-free environment, (ii) ensuring that nodes correspond to
fault-containment regions, i.e., fail (approximately) independently, and
(iii) applying our transformation to obtain a reinforced network and a
robust routing scheme that is fault-tolerant.

1 Introduction

When scaling up the size of systems, one inevitably faces the challenge of suf-
ficiently enhancing reliability to ensure intended operation. Specifically, this
applies to the communication infrastructure, which must remain operational
despite failures of some components. Otherwise, isolated faults would bring down
the entire system, which is impractical unless the failure probability of individual
components is so small that it is likely that none of them fail. Existing designs
and algorithms (that are considered practical) do account for lost messages and,
in some cases, permanently crash-failing nodes or edges [4,9,12].

It is our understanding that handling stronger fault types is considered prac-
tically infeasible, be it in terms of complexity of implementations or the involved
overheads. However, pretending that crash failures are the worst that can happen
means that the entire system possibly fails whenever, e.g., we face a “babbling
idiot” (i.e., a node erroneously generating many messages and congesting the net-
work), excessive link delays (violating specification), or misrouting, corruption,

The full version of this extended abstract can be found in https://arxiv.org/abs/
1705.04042.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 187–202, 2017.
https://doi.org/10.1007/978-3-319-69084-1_13

https://arxiv.org/abs/1705.04042
https://arxiv.org/abs/1705.04042

188 C. Lenzen and M. Medina

or loss of messages. The current approach is to (i) use techniques like error cor-
rection, acknowledging reception, etc. to mask the effects of such faults, (ii) hope
to detect and deactivate faulty components quickly (logically mapping faults to
crashes), and (iii) repair or replace the faulty components after they have been
taken offline. This strategy may result in significant disruption of applications;
possible consequences include:

(I) Severe delays in execution, as successful message delivery necessitates
to detect and deactivate faulty components first. (II) Failure to deliver correct
messages and the resulting repeated attempts to do so (both by applications or
routing algorithms) overload the network; the resulting congestion then renders
the system inoperative as a whole. (III) Constraints on message delivery times
are violated, breaking any real-time service. (IV) More generally, any instance
of the classic fallacy of assuming that the network is reliable [16] may cause
secondary errors.

In this paper, we challenge the belief that resilience to strong fault types is
intractable in practice. We discuss generic approaches to reinforcing networks at
small constant overheads (in terms of resources like nodes, links, latency, and
energy) to achieve resilience to non-crash faults (up to fully Byzantine, i.e., arbi-
trary behavior). The proposed strategies are deliberately extremely simple, both
in terms of applying them and analyzing them. Yet, they substantially reduce
the required reliability on the component level to maintain network functional-
ity, without losing messages or increasing latencies. We provide transformations
that allow for directly reusing non-fault-tolerant routing schemes as a blackbox,
avoiding the need to refactor working solutions. The main message we seek to
convey is that being prepared for non-benign faults can be simple, affordable,
and practical, and therefore enables building larger reliable networks.

The Challenge. We are given a synchronous network G = (V,E) and a routing
scheme. We seek to allocate additional resources (nodes, edges) to the network
and provide a corresponding routing strategy to simulate the routing scheme
on the original network despite non-benign node failures. The goals are to (i)
use little additional resources, (ii) maximize the probability of uniformly inde-
pendently random node failures the network is likely to withstand, (iii) ensure
that the transformation is simple to implement, and (iv) interferes as little as
possible with the existing system design and operation, e.g., does not change
the reinforced system’s specification. Note that both (iii) and (iv) are crucial for
practical utility; significant refactoring of existing systems and/or accommodat-
ing substantial design constraints is rarely affordable.

This setting makes a number of simplifying assumptions. First and probably
most notably, we assume independent failures. This is motivated by the fact
that highly correlated faults necessitate high degrees of redundancy and thus
overheads; clearly, a system-wide power outage, whether rare or not, cannot be
addressed by adding extra nodes or edges that are connected to the same power
source, but requires independent backup power. More generally, guaranteeing
full functionality despite having f adversarially placed faults trivially requires
node degrees larger than f . As there are many reasons why topologies of com-

Robust Routing Made Easy 189

munication networks feature very small degrees in practice, assuming worst-case
distribution of faults would hence come at too high of a cost. Instead, we aim
at masking faults with little or no correlation among each other, arguing that
resilience to such faults can be boosted significantly. Second, in this context
we treat nodes and their outgoing links as fault-containment regions (accord-
ing to [10]), i.e., they are the basic components our systems are comprised of.
This choice is made for the sake of concreteness; similar results could be obtained
when considering, e.g., edge failures, without changing the gist of results or tech-
niques. With these considerations in mind, the probability of uniformly random
node failures that the reinforced system can tolerate is a canonical choice for
measuring resilience. Third, we focus on synchronous networks. This has several
reasons: we believe synchrony helps in handling faults, both on the theoretical
level (as illustrated by the famous FLP theorem [8]) and for ensuring correct
implementation; it simplifies presentation, making it easier to focus on the pro-
posed concepts; last but not least, we believe our approach to be of particular
interest in the context of real-time systems, where the requirement of meeting
hard deadlines makes synchrony an especially attractive choice.

Techniques and Results. Our first approach is almost trivial: We replace each
node by � ∈ N copies and for each edge we connect each pair of copies of its
endpoints, where � is a constant.1 Whenever a message would be sent over an
edge in the original graph, it should be sent over each copy of the edge in the
reinforced graph. If not too many copies of a given node fail, this enables each
receiving copy to recover the correct message. Thus, each non-faulty copy of a
node can run the routing algorithm as if it were the original node, guaranteeing
that it has the same view of the system state as its original in the corresponding
fault-free execution of the routing scheme on the original graph.

We observe that, asymptotically almost surely (a.a.s., with probability
1 − o(1)) and with � = 2f + 1, this reinforcement can sustain an independent
probability p of Byzantine node failures for any p ∈ o(n−1/(f+1)). This threshold
is sharp up to (small) constant factors: for p ∈ ω(n−1/(f+1)), a.a.s. there is some
node for which all of its copies fail. If we restrict the fault model to omission
faults (faulty nodes may skip sending some messages), � = f+1 suffices. The cost
of this reinforcement is that the number of nodes and edges increase by factors
of � and �2, respectively. Therefore, already this simplistic solution can support
non-crash faults of probability p ∈ o(1/

√
n) at a factor-4 overhead. Note that

the simulation introduces no big computational overhead and does not change
the way the system works, enabling to use it as a blackbox. Randomized algo-
rithms can be simulated as well, provided that all copies of a node have access
to a shared source of randomness; note that this requirement is much weaker
than globally shared randomness: it makes sense to place the copies of a node
in physical proximity to approximately preserve the geometrical layout of the
physical realization of the network topology.

1 Choosing concreteness over generality, we focus on the, in our view, most interesting
case of constant �. It is straightforward to generalize the analysis.

190 C. Lenzen and M. Medina

We then proceed to reducing the involved overhead further. To this end, we
apply the above strategy only to a small subset E′ of the edge set. Denoting by
v1, . . . , v� the copies of node v ∈ V , for any remaining edge {v, w} ∈ E \ E′ we
add only edges {vi, wi}, i ∈ [�, to the reinforced graph. The idea is to choose E′

in a way such that the connected components induced by E \ E′ are of constant
size. This results in the same asymptotic threshold for p, while the number of
edges of the reinforced graph drops to ((1 − ε)� + ε�2)|E|. For constant ε, we
give constructions with this property for grids or tori of constant dimension
and minor-free graphs of bounded degree. Again, we consider the case of f = 1
of particular interest: in many typical network topologies, we can reinforce the
network to boost the failure probability that can be tolerated from Θ(1/n) to
Ω(1/

√
n) by roughly doubling (omission faults) or tripling (Byzantine faults)

the number of nodes and edges.
The redundancy in this second construction is near-optimal under the con-

straint that we want to simulate an arbitrary routing scheme in a blackbox
fashion, as it entails that we need a surviving copy of each edge, and thus in
particular each node. While one may argue that the paid price is steep, in many
cases it will be smaller than the price for making each individual component suf-
ficiently reliable to avoid this overhead. Furthermore, we briefly argue that the
simplicity of our constructions enables us to re-purpose the redundant resources
in applications with less strict reliability requirements.

We conclude by suggesting open problems we consider of interest for further
developing the proposed paradigm of reinforcement against non-benign faults.

Related Work. Local Byzantine faults were studied in [5,13] in the context of
broadcast and consensus problems. Unlike its global classical counterpart, the
f -local Byzantine adversary can control at most f neighbors of each vertex. This
more restricted adversary gives rise to more scalable solutions, as the problems
can be solved in networks of degree O(f); without this restriction, degrees need
to be proportional to the total number of faults in the network.

We also limit our adversary in its selection of Byzantine nodes, by requiring
that the faulty nodes are chosen independently at random. As illustrated, e.g.,
by Lemma 1 and Theorem 1, there is a close connection between the two settings.
Informally, we show that certain values of p correspond, asymptotically almost
surely (a.a.s), to an f -local Byzantine adversary. However, we diverge from the
approach in [5,13] in that we require a fully time-preserving simulation of a fault-
free routing schedule, as opposed to solving the routing task in the reinforced
network from scratch.

2 High-Level Overview

In this section, we highlight the utility of decoupling the task of designing a
valid reinforcement from the task of designing a routing scheme over the input
network: one can just plug in any routing scheme, for any objective, e.g., load
minimization, maximizing the throughput, etc., in various models of compu-
tation, e.g., centralized or distributed, randomized or deterministic, online or

Robust Routing Made Easy 191

offline, or oblivious. We now sketch the guarantees and (mild) preconditions of
our blackbox transformation informally (for formal specification see Sect. 3).

Assumptions on the Input Network. We have two main assumptions on the
network at hand: (1) We consider synchronous routing networks, and (2) each
node in the network (alongside its outgoing links) is a fault-containment region,
i.e., it fails independently from other nodes.

Valid Reinforcement Simulation Guarantees. Our reinforcements make a number
of copies of each node. We have each non-faulty copy of a node run the routing
algorithm as if it were the original node, guaranteeing that it has the same view
of the system state as its original in the corresponding fault-free execution of
the routing scheme on the original graph. Moreover, the simulation fully pre-
serves all guarantees of the schedule, including its timing, and introduces no big
computational overhead.

Unaffected Complexity and Cost Measures. When designing a routing scheme,
one optimizes its complexity, e.g., in terms of running time for centralized algo-
rithms, number of rounds for distributed algorithms, message size, etc. This is
balanced against its quality with respect to the objective function of the prob-
lem at hand, e.g., load minimization, maximizing the throughput, minimizing the
latency, etc. Moreover, there is the degree of uncertainty that can be sustained,
e.g., whether the input to the algorithm is fully available at the beginning of the
computation (offline computation) or revealed over time (online computation).
Our reinforcements preserve all of these properties, as they operate in a blackbox
fashion. For example, our machinery readily yields various fault-tolerant packet
routing algorithms in the Synchronous Store-and-Forward model by Aiello et
al. [1]. More specifically, from [6] we obtain a centralized deterministic online
algorithm on unidirectional grids of constant dimension that achieves a compet-
itive ratio which is polylogarithmic in the number of nodes of the input network
w.r.t. throughput maximization. Using [7] instead, we get a centralized random-
ized offline algorithm on the unidirectional line with constant approximation
ratio w.r.t. throughput maximization. In the case that deadlines need to be met
the approximation ratio is, roughly, O(log∗ n) [15]. As a final example, one can
obtain from [3] various online distributed algorithms with sublinear competitive
ratios w.r.t. throughput maximization.

Cost and Gains of the Reinforcement. The price of adding fault-tolerance is
given by the increase in the network size, i.e., the number of nodes and edges of
the reinforced network in comparison to the original one. Due to the assumed
independence of node failures, it is straightforward to see that the (uniform)
probability of sustainable node faults increases roughly like n−1/(f+1) in return
for (i) a linear-in-f increase in the number of nodes and (ii) an increase in the
number of edges that is quadratic in f . We then proceed to improve the con-
struction for grids and minor-free constant-degree graphs to reduce the increase
in the number of edges to linear in f . Based on this information, one can then

192 C. Lenzen and M. Medina

assess the effort in terms of these additional resources that is beneficial, as less
reliable nodes in turn are cheaper to build, maintain, and operate. We also note
that, due to the ability of the reinforced network to ensure ongoing unrestricted
operability in the presence of some faulty nodes, faulty nodes can be replaced or
repaired before communication is impaired or breaks down.

Preprocessing. Preprocessing is used, e.g., in computing routing tables in Oblivi-
ous Routing [14]. The reinforcement simply uses the output of such a preprocess-
ing stage in the same manner as the original algorithm. In other words, the
preprocessing is done on the input network and its output determines the input
routing scheme. In particular, the preprocessing may be randomized and does
not need to be modified in any way.

Randomization. Randomized routing algorithms can be simulated as well, pro-
vided that all copies of a node have access to a shared source of randomness. We
remark that, as our scheme locally duplicates the network topology, it is natural
to preserve the physical realization of the network topology in the sense that all
(non-faulty) copies of a node are placed in physical proximity. This implies that
this constraint is much easier to satisfy than globally shared randomness.

3 Preliminaries

We consider synchronous routing networks. Formally, the network is modeled as
a directed graph G = (V,E), where V is the set of n � |V | vertices, and E is the
set of m � |E| edges (or links). Each node maintains a state, based on which it
decides in each round for each of its outgoing links which message to transmit.
We are not concerned with the inner workings of the node, i.e., how the state is
updated; rather, we assume that we are given a scheduling algorithm performing
the task of updating this state and use it in our blackbox transformations. In
particular, we allow for online, distributed, and randomized algorithms.

Probability-p Byzantine Faults Byz(p). The set of faulty nodes F ⊆ V is deter-
mined by sampling each v ∈ V into F with independent probability p. Nodes in
F may deviate from the protocol in arbitrary ways, including delaying, dropping,
or forging messages, etc.

Probability-p Omission Faults Om(p). The set of faulty nodes F ⊆ V is deter-
mined by sampling each v ∈ V into F with independent probability p. Nodes
in F may deviate from the protocol by not sending a message over an outgoing
link when they should. We note that it is sufficient for this fault model to be
satisfied logically. That is, as long as a correct node can identify incorrect mes-
sages, it may simply drop them, resulting in the same behavior of the system at
all correct nodes as if the message was never sent.

Robust Routing Made Easy 193

Simulations and Reinforcement. For a given network G = (V,E) and a schedul-
ing algorithm A, we will seek to reinforce (G,A) by constructing G′ = (V ′, E′)
and scheduling algorithm A′ such that the original algorithm A is simulated by
A′ on G′, where G′ is subject to random node failures. We now formalize these
notions. First, we require that there is a surjective mapping P : V ′ → V ; fix G′

and P , and choose F ′ ⊆ V ′ randomly as specified above.

Definition 1 (Simulation under Byz(p)). Assume that in each round r ∈ N,
each v′ ∈ V ′ \ F ′ is given the same input by the environment as P (v′). A′ is a
simulation of A under Byz(p), if for each v ∈ V , a strict majority of the nodes
v′ ∈ V ′ with P (v′) = v computes in each round r ∈ N the state of v in A in
this round. The simulation is strong, if not only for each v ∈ V there is a strict
majority doing so, but all v′ ∈ V ′ \ F ′ compute the state of P (v′) in each round.

Definition 2 (Simulation under Om(p)). Assume that in each round r ∈ N,
each v′ ∈ V ′ is given the same input by the environment as P (v′). A′ is a
simulation of A under Om(p), if for each v ∈ V , there is v′ ∈ V ′ with P (v′) = v
that computes in each round r ∈ N the state of v in A in this round. The
simulation is strong, if each v′ ∈ V ′ computes the state of P (v′) in each round.

Definition 3 (Reinforcement). A (strong) reinforcement of a graph G =
(V,E) is a graph G′ = (V ′, E′), a surjective mapping P : V ′ → V , and a way of
determining a scheduling algorithm A′ for G′ out of scheduling algorithm A for
G. The reinforcement is valid under the given fault model (Byz(p) or Om(p)) if
A′ is a (strong) simulation of A a.a.s.

Resources and Performance Measures. We use the following performance mea-
sures. (i) The probability p of independent node failures that can be sustained
a.a.s. (ii) The ratio ν � |V ′|/|V |, i.e., the relative increase in the number of
nodes. (iii) The ratio η � |E′|/|E|, i.e., the relative increase in the number of
edges.

4 Strong Reinforcement Under Byz(p)

Given are the input network G = (V,E) and scheduling algorithm A. Fix a
parameter f ∈ N and set � = 2f + 1.

Reinforced Network G′. We set V ′ � V × [�], where [�] � {1, . . . , �}, and
denote vi � (v, i). Accordingly, P (vi) � v. We define E′ � {(v′, w′) ∈
V ′ × V ′ | (P (v′), P (w′)) ∈ E}.

Strong Simulation A′ of A. Consider node v′ ∈ V ′ \F ′. We want to maintain the
invariant that in each round, each such node has a copy of the state of v = P (v′)
in A. To this end, v′

194 C. Lenzen and M. Medina

(1) initializes local copies of all state variables of v as in A,
(2) sends on each link (v′, w′) ∈ E′ in each round the message v would send on

(P (v′), P (w′)) when executing A, and
(3) for each neighbor w of P (v′) and each round r, updates the local copy of the

state of A as if v received the message that has been sent to v′ by at least
f + 1 of the nodes w′ with P (w′) = w (each one using edge (w′, v′)).

Naturally, the last step requires such a majority to exist; otherwise, the sim-
ulation fails. We show that A′ can be executed and simulates A provided that
for each v ∈ V , no more than f of its copies are in F ′.

Lemma 1. If for each v ∈ V , |{vi ∈ F ′}| ≤ f , then A′ strongly simulates A.

Proof. We show the claim by induction on the round number r ∈ N, where we
consider the initialization to anchor the induction at r = 0. For the step from r
to r + 1, observe that because all v′ ∈ V ′ \ F ′ have a copy of the state of P (v′)
at the end of round r by the induction hypothesis, each of them can correctly
determine the message P (v′) would send over link (v, w) ∈ E in round r +1 and
send it over each (v′, w′) ∈ E with P (w′) = w. Accordingly, each v′ ∈ V ′ \ F ′

receives the message A would send over (w, v) ∈ E from each w′ ∈ V ′ \ F ′ with
P (w′) = w (via the link (w′, v′)). By the assumption of the lemma, we have at
least � − f = f + 1 such nodes, implying that v′ updates the local copy of the
state of A as if it received the same messages as when executing A in round
r + 1. Thus, the induction step succeeds and the proof is complete.

Resilience of the Reinforcement. We now examine how large the probability p
can be for the precondition of Lemma1 to be satisfied a.a.s.

Theorem 1. Assume that p ∈ o(1). Then the above construction is a valid
strong reinforcement for the fault model Byz(p) if p ∈ o(n−1/(f+1)). Moreover, if
G contains Ω(n) nodes with non-zero outdegree, p ∈ ω(n−1/(f+1)) implies that
the reinforcement is not valid.

Proof. By Lemma 1, A′ strongly simulates A if for each v ∈ V , |{vi ∈ F ′}| ≤ f .
If p ∈ o(n−1/(f+1)) ∩ o(1), using � = 2f + 1 and a union bound we see that the
probability of this event is at least

1 − n

2f+1∑

j=f+1

(
2f + 1

j

)
pj(1 − p)2f+1−j ≥ 1 − n

2f+1∑

j=f+1

(
2f + 1

j

)
pj

≥ 1 − n

(
2f + 1
f + 1

)
pf+1

f∑

j=0

pj ∈ 1 − n(2e)fpf+1(1 + o(1)) = 1 − o(1).

Here, the second last step uses that
(
a
b

) ≤ (ae/b)b and that p ∈ o(1), while the
last step exploits that p ∈ o(n−1/(f+1)).

On the other hand, for any v ∈ V , the probability that |{vi ∈ F ′}| > f is
independent of the same event for other nodes and larger than

(
2f+1
f+1

)
pf+1(1 −

Robust Routing Made Easy 195

p)f ≥ (3/2)fpf+1(1 − p)f ∈ Ω((3/2)fpf+1), since
(
a
b

) ≥ (a/b)b. Hence, if G

contains Ω(n) nodes v with non-zero outdegree, p ∈ ω(n−1/(f+1)) ∩ o(1) implies
that the probability that there is some node v with |{vi ∈ F ′}| > f is in 1 −(
1 − Ω

((
3
2

)f
pf+1

))Ω(n)

⊆ 1 − (
1 − ω

(
1
n

) ∩ o(1)
)Ω(n) = 1 − o(1). If there is

such a node v, there are algorithms A and inputs so that A sends a message
across some edge (v, w) in some round. If faulty nodes do not send messages in
this round, the nodes wi ∈ V ′ \F ′ do not receive the correct message from more
than f nodes vi and the simulation fails. Hence, the reinforcement cannot be
valid.

Remark 1. For constant p, one can determine suitable values of f ∈ Θ(log n)
using Chernoff’s bound. However, as our focus is on small (constant) overhead
factors, we refrain from presenting the calculation here.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = 2f + 1 and
η = �2 = 4f2 +4f +1, while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1, we improve from p ∈ o(1/n) for the original network to p ∈ o(1/

√
n)

by tripling the number of nodes. However, η = 9, i.e., while the number of edges
also increases only by a constant, it seems too large in systems where the limiting
factor is the amount of links that can be afforded.

5 Strong Reinforcement Under Om(p)

The strong reinforcement from the previous section is, trivially, also a strong
reinforcement under Om(p). However, we can reduce the number of copies per
node for the weaker fault model. Given are the input network G = (V,E) and
scheduling algorithm A. Fix a parameter f ∈ N and, this time, set � = f + 1.

For details of the reinforcement, the simulation of algorithm A, and the corre-
sponding proofs, we refer the reader to the full version. The resilience statement
and the efficiency of the reinforcement are as follows.

Theorem 2. There is a valid strong reinforcement for the fault model Om(p)
if p ∈ o(n−1/(f+1)). If G contains Ω(n) nodes with non-zero outdegree, then
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = f + 1 and
η = �2 = f2 + 2f + 1, while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1, we improve from p ∈ o(1/n) for the original network to p ∈ o(1/

√
n)

by doubling the number of nodes and quadrupling the number of edges.

6 More Efficient Reinforcement

In this section, we reduce the overhead in terms of edges at the expense of
obtaining only a (non-strong) reinforcement. We stress that the obtained trade-
off between redundancy (ν and η) and the sustainable probability of faults p is

196 C. Lenzen and M. Medina

asymptotically optimal: as we require to preserve arbitrary routing schemes in a
blackbox fashion, we need sufficient redundancy on the link level to directly sim-
ulate communication. From this observation, both for Om(p) and Byz(p) we can
readily derive trivial lower bounds on redundancy that match the constructions
below up to lower-order terms.

6.1 A Toy Example

Before we give the construction, we give some intuition on how we can reduce the
number of required edges. Consider the following simple case. G is a single path
of n vertices (v1, . . . , vn), and the schedule requires that in round i, a message
is sent from vi to vi+1. We would like to use a “budget” of only n additional
vertices and an additional (1 + ε)m = (1 + ε)(n − 1) links, assuming the fault
model Om(p). One approach is to duplicate the path and extend the routing
scheme accordingly. We already used our entire budget apart from εm links!
This reinforcement is valid as long as one of the paths succeeds in delivering
the message all the way. The probability that one of the paths “survives” is
1 − (1 − (1 − p)n)2 ≤ 1 − (1 − e−pn)2 ≤ e−2pn, where we used that 1 − x ≤ e−x

for any x ∈ R. Hence, for any p = ω(1/n), the survival probability is o(1).
In contrast, the strong reinforcement with � = 2 (i.e., f = 1) given in Sect. 5
sustains any p ∈ o(1/

√
n) with probability 1 − o(1); however, while it adds n

nodes only, it requires 3m additional edges. We need to add some additional
edges to avoid that the likelihood of the message reaching its destination drops
too quickly. To this end, we use the remaining εm edges to “cross” between the
two paths every h � 2/ε hops (assume h is an integer). This splits the path into
segments of h nodes each. As long as, for each such segment, in one of its copies
all nodes survive, the message is delivered. For a given segment, this occurs
with probability 1 − (1 − (1 − p)h)2 ≥ 1 − (ph)2. Overall, the message is thus
delivered with probability at least (1−(ph)2)n/h ≥ 1−nhp2. As for any constant
ε, h is a constant, this means that the message is delivered a.a.s. granted that
p ∈ o(1/

√
n)!

Remark 2. The reader is cautioned to not conclude from this example that
random sampling of edges will be sufficient for our purposes in more involved
graphs. Since we want to handle arbitrary routing schemes, we have no control
over the number of utilized routing paths. As the latter is exponential in n, the
probability that a fixed path is not “broken” by F would have to be exponentially
small in n. Moreover, trying to leverage Lovász Local Lemma for a deterministic
result runs into the problem that there is no (reasonable) bound on the number of
routing paths that pass through a single node, i.e., the relevant random variables
(i.e., whether a path “survives”) exhibit lots of dependencies.

6.2 Partitioning the Graph

To apply the above strategy to other graphs, we must take into account that there
can be multiple intertwined routing paths. However, the key point in the above

Robust Routing Made Easy 197

example was not that we had path segments, but rather that we partitioned the
nodes into constant-size regions and used a few edges inside these regions only,
while fully connecting the copies of nodes at the boundary of the regions.

In general, it is not possible to partition the nodes into constant-sized subsets
such that only a very small fraction of the edges connects different subsets; any
graph with good expansion is a counter-example. Fortunately, many network
topologies used in practice are not expanders. We focus in this section on grid
networks and minor free graphs and show how to apply the above strategy in
each of these families of graphs.

Grid Networks. We can generalize the above strategy to hypercubes of dimension
d > 1.

Definition 4 (Hypercube Networks). A q-ary d-dimensional hypercube has
node set [q]d and two nodes are adjacent if they agree on all but one index i ∈ [d],
for which |vi − wi| = 1.

The proof of the following lemma is in the full version.

Lemma 2. For any h, d ∈ N, assume that h divides q ∈ N and set ε = 1/h.
Then the q-ary d-dimensional hypercube can be partitioned into (q/h)d regions
of hd nodes such that at most an ε-fraction of the edges connects nodes from
different regions.

Note that the above result and proof extend to tori, which also include the
“wrap-around” edges connecting the first and last nodes in any given dimension.

Minor Free Graphs. Another general class of graphs that can be partitioned in
a similar fashion are minor-free bounded-degree graph.

Definition 5 (H-Minor free Graphs). For a fixed graph H, H is a minor
of G if H is isomorphic to a graph that can be obtained by zero or more edge
contractions on a subgraph of G. We say that a graph G is H-minor free if H is
not a minor of G.

For any such graph, we can apply a Corollary from [11, Corollary 2] which is
based on [2] to construct a suitable partition.

Theorem 3 [11]. Let H be a fixed graph. There is a constant c(H) > 1 such that
for every ε ∈ (0, 1], every H-minor free graph G = (V,E) with degree bounded
by Δ a partition R1, . . . , Rk ⊆ V with the following properties can be found in
time O(|V |3/2): (i) ∀i : |Ri| ≤ c(H)Δ2

ε2 , (ii) ∀i the subgraph induced by Ri in G
is connected. (iii) |{(u, v) | u ∈ Ri, v ∈ Rj , i
= j}| ≤ ε · |V |.
Remark 3. Grids and tori of dimension d > 2 are not minor-free.

We note that this construction is not satisfactory, as it involves large constants. It
demonstrates that a large class of graphs is amenable to the suggested approach,
but it is advisable to search for optimized constructions for more specialized
graph families before applying the scheme.

198 C. Lenzen and M. Medina

Reinforced Network G′. Equipped with a suitable partition of G = (V,E) into
disjoint regions R1, . . . , Rk ⊆ V , we reinforce as follows. As before, we set V ′ �
V × [�], denote vi � (v, i), define P (vi) � v, and set � � f + 1. However, the
edge set of G′ differs. For e = (v, w) ∈ E,

E′
e �

{
{(vi, wi) | i ∈ [�]} if ∃k′ ∈ [k] : v, w ∈ Rk′

{(vi, wj) | i, j ∈ [�]} else.

and we set E′ �
⋃

e∈E E′
e.

6.3 Simulation Under Om(p)

The details of how to reinforce the network and to simulate algorithm A on this
reinforced network as well as the corresponding proofs appear in the full version.
The resilience statement and the efficiency of the reinforcement are as follows.

Resilience of the Reinforcement. Denote R � maxk′∈[k]{|Rk′ |} and r �
mink′∈[k]{|Rk′ |}.

Theorem 4. There is a valid reinforcement for the fault model Om(p) if p ∈
o((n/r)−1/(f+1)/R). Moreover, if G contains Ω(n) nodes with non-zero outdegree
and R ∈ O(1), p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = f + 1 and
η = (1 − ε)� + ε�2 = 1 + (1 + ε)f + εf2, while we can sustain p ∈ o(n−1/(f+1)).
In the special case of f = 1 and, say, ε = 1/5, we improve from p ∈ o(1/n)
for the original network to p ∈ o(1/

√
n) by doubling the number of nodes and

multiplying the number of edges by 2.4.

Remark 4. For hypercubes and tori, the asymptotic notation for p does not
hide huge constants. Lemma 2 shows that h enters the threshold in Theorem4 as
h−d+1/2; as the cases of d = 2 and d = 3 are the most typical (for d > 3 grids
and tori suffer from large distortion when embedding them into 3-dimensional
space), the threshold on p degrades by factors of 11.2 and 55.9, respectively.

6.4 Simulation Under Byz(p)

The same strategy can be applied for the stronger fault model Byz(p), if we
switch back to having � = 2f + 1 copies and nodes accepting the majority
message among all messages from copies of a neighbor in the original graph.

Consider node v ∈ V . We want to maintain the invariant that in each round,
a majority among the nodes vi, i ∈ [�], has a copy of the state of v in A. For
v′ ∈ V ′ and (w,P (v′)) ∈ E, set Nv′(w) � {w′ ∈ V ′ | (w′, v′) ∈ E′}. With this
notation, v′ behaves as follows.

Robust Routing Made Easy 199

(1) It initializes local copies of all state variables of v as in A.
(2) It sends in each round on each link (v′, w′) ∈ E′ the message v would send

on (P (v′), P (w′)) when executing A (if v′ cannot compute this correctly, it
may send an arbitrary message).

(3) It updates its state in round r as if it received, for each (w,P (v′)) ∈ E, the
message the majority of nodes in Nv′(w) sent.

The proof of the following lemma is in the full version.

Lemma 3. Suppose for each k′ ∈ [k], there are at least f + 1 indices i ∈ [�] so
that {vi | v ∈ Rk′} ∩ F ′ = ∅. Then A′ simulates A.

Resilience of the Reinforcement. Denote R � maxk′∈[k]{|Rk′ |} and r �
mink′∈[k]{|Rk′ |}.

Theorem 5. Assume that Rp ∈ o(1). The above construction is a valid rein-
forcement for the fault model Byz(p) if p ∈ o((n/r)−1/(f+1)/R). Moreover, if G
contains Ω(n) nodes with non-zero outdegree and R ∈ O(1), p ∈ ω(n−1/(f+1))
implies that the reinforcement is not valid.

Proof. By Lemma 3, A′ simulates A if for each k′ ∈ [k], there are at least f +
1 indices i ∈ [�] so that {vi | v ∈ Rk′} ∩ F ′ = ∅. For fixed k′ and i ∈ [�],
Pr [{vi | v ∈ Rk′} ∩ F ′ = ∅] = (1−p)|Rk′ | ≥ 1−Rp. Thus, analogous to the proof
of Theorem 1, the probability that for a given k′ the condition is violated is at
most

∑2f+1
j=f+1

(
2f+1

j

)
(Rp)j(1 − Rp)2f+1−j ∈ (2e)f (Rp)f+1(1 + o(1)). By a union

bound over the at most n/r regions, we see that p ∈ o((n/r)−1/(f+1)/R) thus
guarantees that the simulation succeeds a.a.s. As r ≤ R ∈ O(1), the proof of the
second statement is analogous to the respective statement of Theorem 1.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = 2f + 1 and
η = (1− ε)�+ ε�2 = 1+(2+2ε)f +4εf2, while we can sustain p ∈ o(n−1/(f+1)).
In the special case of f = 1 and ε = 1/5, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by tripling the number of nodes and multiplying

the number of edges by 4.2.

7 Discussion

In the previous sections, we have established that constant-factor redundancy
can significantly increase reliability of the communication network in a blackbox
fashion. Our constructions in Sect. 6 are close to optimal. Thus, one may argue
that the costs are too high. However, apart from pointing out that the costs of
using sufficiently reliable components may be even higher, we would like to raise
a number of additional points in favor of the approach.

200 C. Lenzen and M. Medina

Node Redundancy. When building a reliable large-scale system, fault-tolerance
needs to be considered on all system levels. Unless nodes are sufficiently reliable,
node replication is mandatory, regardless of the communication network. In other
words, the node redundancy required by our construction may not be an actual
overhead to begin with. When taking this point of view, the salient question
becomes whether the increase in links is acceptable. Here, the first observation
is that any system employing node redundancy will need to handle the arising
additional communication, incurring the respective burden on the communica-
tion network. Apart from still having to handle the additional traffic, however,
the system designer now needs to make sure that the network is sufficiently
reliable for the node redundancy to matter. Our simple schemes then provide a
means to provide the necessary communication infrastructure without risking to
introduce, e.g., a single point of failure during the design of the communication
network; at the same time, the design process is simplified and modularized.

Dynamic Faults. Due to the introduced fault-tolerance, faulty components do
not impede the system as a whole, so long as the simulation of the routing
scheme can still be carried out. Hence, one may repair faulty nodes at runtime.
If T is the time for detecting and fixing a fault, we can discretize time in units
of T and denote by pT the (assumed to be independent) probability that a node
is faulty in a given time slot, which can be bounded by twice the probability to
fail within T time. Then the failure probabilities we computed in our analysis
directly translate to an upper bound on the expected fraction of time during
which the system is not (fully) operational.

Adaptivity. The employed node- and link-level redundancy may be required for
mission-critical applications only, or the system may run into capacity issues. In
this case, we can exploit that the reinforced network has a very simple struc-
ture, making various adaptive strategies straightforward to implement. (i) One
may use a subnetwork only, deactivating the remaining nodes and links, such
that a reinforced network for smaller f (or a copy of the original network, if
f = 0) remains. This saves energy. (ii) One may subdivide the network into sev-
eral smaller reinforced networks, each of which can perform different tasks. (iii)
One may leverage the redundant links to increase the overall bandwidth between
(copies of) nodes, at the expense of reliability. (iv) The above operations can
be applied locally; e.g., in a congested region of the network, the link redun-
dancy could be used for additional bandwidth. Note that if only a small part
of the network is congested, the overall system reliability will not deteriorate
significantly.

8 Conclusion

In this work we analyze simple replication strategies for improving network relia-
bility. While our basic schemes may hardly surprise, to the best of our knowledge
the literature does not provide the kind of discussion given here. This, in turn,

Robust Routing Made Easy 201

surprised us: simplicity is an important design feature, and we tried to convey
the message that a number of significant advantages in overall system design
arise from the proposed approach. In addition, we highlight that a (still simple)
refined strategy results in near-optimal trade-offs under the constraint that arbi-
trary routing schemes are fully preserved. We consider this property highly useful
in general and essential in real-time systems. Weaker guarantees may result in
more efficient solutions, but also necessitate that other system levels must be
able to handle the consequences.

Our work raises a number of follow-up questions. (i) Which network topolo-
gies allow for good partitions as utilized in Sect. 6? Small constants here result
in highly efficient reinforcement schemes, which is key to practical solutions. (ii)
Is it possible to guarantee strong simulations at smaller overheads? (iii) Can
constructions akin to the one given in Sect. 6 be applied to a larger class of
graphs?

References

1. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Dynamic routing on networks
with fixed-size buffers. In: SODA, pp. 771–780 (2003)

2. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an
excluded minor and its applications. In: STOC, pp. 293–299. ACM (1990)

3. Angelov, S., Khanna, S., Kunal, K.: The network as a storage device: dynamic
routing with bounded buffers. Algorithmica 55(1), 71–94 (2009)

4. Cho, H., Leem, L., Mitra, S.: ERSA: error resilient system architecture for proba-
bilistic applications. Trans. Comput.-Aided Des. Integr. Circ. Syst. 31(4), 546–558
(2012)

5. Dolev, D., Hoch, E.N.: Constant-space localized byzantine consensus. In: Tauben-
feld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 167–181. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87779-0 12

6. Even, G., Medina, M., Patt-Shamir, B.: Better deterministic online packet routing
on grids. In: SPAA, pp. 284–293 (2015)

7. Even, G., Medina, M., Rosén, A.: A constant approximation algorithm for schedul-
ing packets on line networks. In: ESA, pp. 40:1–40:16 (2016)

8. Fischer, M., Lynch, N., Paterson, N.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

9. Kang, Y.H., Kwon, T., Draper, J.: Fault-tolerant flow control in on-chip networks.
In: NOCS, pp. 79–86 (2010)

10. Kopetz, H.: Fault containment and error detection in the time-triggered architec-
ture. In: ISADS, pp. 139–146 (2003)

11. Levi, R., Ron, D.: A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Trans. Algorithms 11(3), 24:1–24:13 (2015)

12. Park, D., Nicopoulos, C., Kim, J., Vijaykrishnan, N., Das, C.R.: Exploring fault-
tolerant network-on-chip architectures. In: DSN, pp. 93–104 (2006)

13. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf.
Process. Lett. 93(3), 109–115 (2005)

14. Räcke, H.: Survey on oblivious routing strategies. In: Ambos-Spies, K., Löwe, B.,
Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 419–429. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03073-4 43

http://dx.doi.org/10.1007/978-3-540-87779-0_12
http://dx.doi.org/10.1007/978-3-642-03073-4_43

202 C. Lenzen and M. Medina

15. Räcke, H., Rosén, A.: Approximation algorithms for time-constrained scheduling
on line networks. Theory Comput. Syst. 49(4), 834–856 (2011)

16. Rotem-Gal-Oz, A.: Fallacies of Distributed Computing Explained. http://www.
rgoarchitects.com/Files/fallacies.pdf

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf

	Robust Routing Made Easy
	1 Introduction
	2 High-Level Overview
	3 Preliminaries
	4 Strong Reinforcement Under Byz(p)
	5 Strong Reinforcement Under Om(p)
	6 More Efficient Reinforcement
	6.1 A Toy Example
	6.2 Partitioning the Graph
	6.3 Simulation Under Om(p)
	6.4 Simulation Under Byz(p)

	7 Discussion
	8 Conclusion
	References

