
Proof-Labeling Schemes: Broadcast,
Unicast and in Between

Boaz Patt-Shamir and Mor Perry(B)

School of Electrical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
mor@eng.tau.ac.il

Abstract. We study the effect of limiting the number of different mes-
sages a node can transmit simultaneously on the verification complexity
of proof-labeling schemes (PLS). In a PLS, each node is given a label,
and the goal is to verify, by exchanging messages over each link in each
direction, that a certain global predicate is satisfied by the system con-
figuration. We consider a single parameter r that bounds the number of
distinct messages that can be sent concurrently by any node: in the case
r = 1, each node may only send the same message to all its neighbors
(the broadcast model), in the case r ≥ Δ, where Δ is the largest node
degree in the system, each neighbor may be sent a distinct message (the
unicast model), and in general, for 1 ≤ r ≤ Δ, each of the r messages is
destined to a subset of the neighbors.

We show that message compression linear in r is possible for verifying
fundamental problems such as the agreement between edge endpoints on
the edge state. Some problems, including verification of maximal match-
ing, exhibit a large gap in complexity between r = 1 and r > 1. For some
other important predicates, the verification complexity is insensitive to r,
e.g., the question whether a subset of edges constitutes a spanning-tree.
We also consider the congested clique model. We show that the crossing
technique [5] for proving lower bounds on the verification complexity can
be applied in the case of congested clique only if r = 1. Together with a
new upper bound, this allows us to determine the verification complexity
of MST in the broadcast clique.

Keywords: Verification complexity · Proof-labeling schemes ·
CONGEST model · Congested clique

1 Introduction

Similarly to classical complexity theory, studying the verification complexity of
various problems is one of the major approaches in the quest to understand the
complexity of network tasks. The basic idea, proposed by Korman et al. [22]
under the name Proof-Labeling Schemes (PLS for short), is to assume that an
oracle assigns a label to each node, so that by exchanging these labels, the
nodes can collectively verify that a certain global predicate holds (see Sect. 2
for details). The verification complexity of a predicate π is defined to be the
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 1–17, 2017.
https://doi.org/10.1007/978-3-319-69084-1 1

2 B. Patt-Shamir and M. Perry

minimal label length which suffices to verify π. This node-centric, space-based
view was generalized in subsequent work, in which it was allowed for nodes to
send different messages to different neighbors, rather than the whole local label
to all neighbors. Specifically, in [5] the verification complexity is defined to be
the minimal message-length required to verify the given predicate.

The distinction between these two models is natural and appears in other
contexts as well, like the broadcast and the unicast flavors of congested clique,
proposed by Drucker et al. [9]: in the unicast flavor, a node may send a different
message to each of its neighbors, while in the broadcast flavor, all neighbors
receive the same message. Following up on this model, Becker et al. [6] proposed
considering a spectrum of congested clique models, where a node may send up to
r distinct messages in a round, where 1 ≤ r < n is a given parameter. This model,
called henceforth mcast(r), can be motivated by observing that r can be viewed
as the number of network interfaces (NICs) a node possesses: Each interface may
be connected to a subset of the neighbors, and it can send only a single message
at a time.

Our Results. In this paper we present a few preliminary results concerning PLS
in the mcast(r) model. Our main focus is on the tradeoff between the number r
of different messages a node can send in one round and the verification complex-
ity (message length) κ. While there are problems whose verification complexity is
independent of r, we prove that the verification complexity of some fundamental
problems is highly dependent on r. First, we consider the problem ofmatching veri-
fication (mv), where every node has at most one incident edge marked, and the goal
is to verify whether the set of marks implies a well defined matching, i.e., an edge is
either marked in both endpoints or unmarked in both, and that this set is a match-
ing. In [19], among other results, it is shown that maximal matching has verifica-
tion complexity Θ(1), and that the verification complexity of maximum matching
in bipartite graphs is also Θ(1). These results implicitly assume that the subset of
edges is well defined; our results show that in fact, the main difficulty is in ensuring
that both endpoints of an edge agree on its status. This motivates our next prob-
lem that focuses on consistency. Specifically, we define the primitive problem edge
agreement (ea) as follows. Each node has a b-bit string for each incident edge, and
a state is considered legal iff both endpoints of each edge agree on the string asso-
ciated with that edge. It turns out that the arboricity of the graph, denoted α(G),
plays an important role in the verification complexity of ea (and all problems that
ea can locally be reduced to). In Theorem2, we prove that κ(ea) · r ∈ Θ(α(G)b).
Next, as a more sophisticated example, we consider the important problem of
maximum flow (mf): In Theorem 3 we show that κ(mf) · r ∈ Θ(α(G) log fmax),
where fmax is the largest flow value over an edge. In [22], a scheme in the broad-
cast model to verify that the maximum flow between a given pair of nodes s
and t is exactly k is given, with complexity O(k(log k + log n)). We prove, in
Theorem 4, that the verification complexity of this problem in the broadcast model
is O(min {α(G), k} (log k + log Δ)), which is an exponential improvement in some
cases. In addition, our upper bound scales linearly with r in the mcast(r) model.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 3

We also consider the congested clique model. To date, no lower bounds on
the verification complexity in the congested clique were known. We show that
the known technique of crossing [5] can be applied, but only in broadcast clique
(i.e., mcast(1)). We use this argument, along with a new scheme, to obtain a
tight Θ(log n + log wmax) bound for MST verification in broadcast cliques, where
wmax denotes the largest edge weight.

We note that all results translate to randomized PLS [5]. Details of the
general connection between the deterministic and randomized verification com-
plexity can be found in the full version [26].

Related Work. Drucker et al. [9] propose a local broadcast communication in
the congested clique, where every node broadcasts a message to all other nodes
in each round. Becker et al. [6] proposed, still for congested cliques, a bounded
number r of different messages a node can send in each round.

Verification of a given property in decentralized systems finds applications
in various domains, such as, checking the result obtained from the execution
of a distributed program [4,17], establishing lower bounds on the time required
for distributed approximation [8], estimating the complexity of logic required for
distributed run-time verification [18], general distributed complexity theory [16],
and self stabilizing algorithms [7,21].

The notion of distributed verification in a single round was introduced by
Korman et al. in [22]. The verification complexity of minimum spanning-trees
(MST) was studied in [20]. Constant-round schemes were studied in [19]. Ver-
ification processes in which the global result is not restricted to be the logical
conjunction of local outputs had been studied in [2,3]. The role of unique node
identifiers in local decision and verification was extensively studied in [13–15].
Proof-labeling schemes in directed networks were studied in [11], where both one-
way and two-way communication over directed edges is considered. Verification
schemes for dynamic networks, where edges may appear or disappear after label
assignment and before verification, are studied in [12]. Recently, a hierarchy of
local decision as an interaction between a prover and a disprover was presented
in [10].

Paper Organization. The remainder of this paper is organized as follows.
In Sect. 2 we formalize the model and recall some graph-theoretic concepts. In
Sect. 3 we present two general techniques that apply to the mcast(r) model.
In Sect. 4 we present results for verification of matching, edge agreement, and
max-flow. In Sect. 5 we present our results for congested cliques. We conclude
in Sect. 6 with some open questions and directions for future work. Many proofs
are omitted due to space limitation. They can be found in the full version of the
paper [26].

4 B. Patt-Shamir and M. Perry

2 Model and Preliminaries

Computational Framework and the mcast Model. Our model is derived
from the CONGEST model [27]. Briefly, a distributed network is modeled as
a connected undirected graph G = (V,E), where V is the set of nodes, E is
the set of edges, and every node has a unique identifier. In each synchronous
round every node performs a local computation, sends a message to each of its
neighbors, and receives messages from all neighbors. We denote the number of
nodes |V | by n and the number of edges |E| by m. For every node v ∈ V , let
d(v) be the degree of v. We denote by Δ(G) the maximal degree of a node in G.
We assume that the edges incident to a node v are numbered 1, . . . , d(v).

The main difference between the model considered in this paper, called
mcast(r), and CONGEST, is that in mcast(r) we are given a parameter
r ∈ N such that a node may send at most r distinct messages simultaneously.
More precisely, we assume that prior to sending messages, the neighbors of a
node are partitioned into r disjoint subsets (some of which may be empty), such
that v sends the same message to all neighbors in a subset. We emphasize that
in our model, for simplicity, r is a uniform parameter for all nodes.

Proof-Labeling Schemes in the mcast Model. A configuration Gs includes
an underlying graph G = (V,E) and a state assignment function s : V → S,
where S is a (possibly infinite) state space. The state of a node v, denoted s(v),
includes all local input to v. In particular, the state usually includes a unique
node identity ID(v) and, in the case of weighted graphs, the weight w(e) of
each incident edge e. The state of v typically include additional data whose
integrity we would like to verify. For example, node state may contain a marking
of incident edges, such that the set of marked edges constitutes a spanning tree.

Let F be a family of configurations, and let P be a boolean predicate over
F . A proof-labeling scheme consists of two conceptual components: a prover p,
and a verifier v. The prover is an oracle which, given any configuration Gs ∈ F
satisfying P, assigns a bit string �(v) to every node v, called the label of v. The
verifier is a distributed algorithm running at every node. At each node v, the
local verifier takes as input the state s(v) of v, its label �(v) and based on them
sends messages to all neighbors. Then, using as input the messages received from
the neighbors, the local state and the local label, the local verifier computes a
boolean value. If the outputs are true at all nodes, the global verifier v is said to
accept the configuration, and otherwise (i.e., at least one local verifier outputs
false), v is said to reject the configuration. For correctness, a proof-labeling
scheme Σ = (p,v) for (F ,P) must satisfy the following requirements, for every
Gs ∈ F :

– If P(Gs) = true then, using the labels assigned by p, the verifier v
accepts Gs.

– If P(Gs) = false then, for every label assignment, the verifier v rejects Gs.

Given a configuration Gs, we denote by cΣ(Gs) the vector of length |E| that con-
tains the messages sent according to the scheme Σ, and we refer to this vector as

Proof-Labeling Schemes: Broadcast, Unicast and in Between 5

the communication pattern of Σ over Gs. For an underlying graph G, we denote
by L(G) the number of legal configurations of G, and by WΣ(G) the number of
different communication patterns of Σ in G, over all legal configurations. In our
analysis, given an edge (v, u) ∈ E, we denote by Mv(e) the message over e from
v to u.

Our central measure for PLSs is its verification complexity, defined as follows.

Definition 1. The verification complexity of a proof labeling scheme Σ = (p,v)
for the predicate P over a family of configurations F is the maximal length of a
message generated by the verifier v based on the labels assigned to the nodes by
the prover p in a configuration Gs for which P(Gs) = true.

In this paper we consider PLSs in the mcast(r) model, namely we impose
the additional restriction that at most r distinct messages may be sent by a
node.

Arboricity, Degeneracy and Average Degree. The average degree of a
graph plays a central role in our study. However, graphs may have dense and
sparse regions. We therefore use the following refined concepts.

Definition 2. The arboricity of a graph G = (V,E), denoted by α(G), is defined
as the minimum number of acyclic subsets of edges that cover E. The degeneracy
of a graph G, denoted by δ(G), is defined as the smallest value i such that the
edges of G can be oriented to form a directed acyclic graph with out-degree at
most i.

The following properties are well known [24,25].

Lemma 1. For all graphs G, α(G) ≤ δ(G) < 2α(G).

Lemma 2. For a given graph G = (V,E), α(G) = max
{⌈

mH

nH−1

⌉
| VH ⊆ V,

|VH | ≥ 2
}
, where mH = |EH | and nH = |VH | over all induced subgraphs H =

(VH , EH) of G.1

Note that by Lemmas 1 and 2, the minimal number of outgoing edges in the
best orientation of a graph G is proportional to the maximal average degree over
all induced subgraphs of G.

3 Techniques for the MCAST Model

In this work, we consider problems expressible as a conjunction of edge predi-
cates, where a node may have a different input for every edge. We present two
techniques that can be used as building blocks in the design of efficient PLSs in
the mcast model.
1 Given a graph G = (V, E), the induced subgraph H = (VH , EH) over the set of nodes

VH ⊆ V satisfies that EH = E ∩ (VH × VH).

6 B. Patt-Shamir and M. Perry

The first technique, which we call minimizing orientation, reduces the number
of incident edges a node sends its input on. We orient the edges such that the
maximum out degree is minimized. Lemma 1 ensures that the maximum out
degree is bounded by 2α. Using a minimizing orientation, we can prove the
following lemma.

Lemma 3. Suppose that a verification problem (F ,P) is expressible as a con-
junction of edge predicates, each involving variables from a single pair of neigh-
bors. Then there exists a PLS Σ = (p,v) for (F ,P) in the mcast(2α) model
with verification complexity k, where k is the length of the largest local input to
an edge predicate.

Color Addressing. In the unicast model, each node receives its own message.
However, if we want to use a unicast PLS in the mcast(r) model with r < 2α,
we may need to bundle together a few messages, and hence we need to somehow
tag each part of the message with its intended recipient. Clearly this can be
done by tagging each sub-message by the unique ID of recipient, but this adds
Θ(log n) bits to each sub-message. The color addressing technique reduces this
overhead to O(log Δ). The idea is that each node need only distinguish between
its neighbors.2 We solve this difficulty by coloring the nodes so that no two
neighbors of a node get the same color. Formally, color addressing is a PLS
ΣCOL = (p,v) in the broadcast model, where the prover p first colors the nodes
so that no two nodes at distance 1 or 2 receive the same color. This is possible
using at most Δ2 + Δ + 1 ∈ O(Δ2) colors, because every node has at most Δ
neighbors and Δ2 nodes at distance 2 from it. Next, the prover assigns to every
incident edge of a node the color of the neighbor at the other end of the edge.
The verifier v at a node v broadcasts the color assigned to v by the prover. Every
node verifies that every incident edge is assigned a different color and that the
color received from every edge is the color assigned by the prover to this edge.

Clearly, ΣCOL guarantees a proper coloring as desired to use for address-
ing, and this coloring is locally verifiable. Moreover, since a color can be rep-
resented using O(log Δ) bits, we obtain local addressing with verification com-
plexity O(log Δ) in the broadcast model. We summarize in the following lemma.

Lemma 4. ΣCOL is a PLS in the broadcast model, which assigns and verifies
an O(log Δ)-bit coloring for proper addressing. The verification complexity of
ΣCOL is O(log Δ).

4 Verification Complexity Trade-Offs in the MCAST(r)
Model

In this section, we study the effect of r on the verification complexity of PLSs in
the mcast(r) model. We start with the observation that for some problems, the

2 We note that using simple port numbering requires agreement with the neighbors,
which is costly, as we prove in Theorem 2.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 7

asymptotic verification complexity is independent of r. These problems include
the deterministic verification of a spanning-tree and vertex bi-connectivity, and
the randomized verification of an MST. For each of these problems, we provide
a scheme for r = 1 with verification complexity that matches the lower bound
for r = Δ [5,22]. In contrast, there are problems for which the verification com-
plexity is sensitive to r. Specifically, we present a tight bound for the matching
verification problem in the broadcast model, which is reduced dramatically even
for r = 2. Finally, we show tight bounds for the primitive problem of edge agree-
ment and the more sophisticated application of maximum flow, which scales
linearly with r.

4.1 Verification of Matchings

In the literature, in verification problems of the form “does a subset of edges
satisfy a specified property,” it is usually assumed that the subset of edges is
well defined, i.e., for every edge e = (u, v), the local state of v indicates that e is
in the subset if and only if the local state of u indicates it. However, since edges
do not have storage, an edge set is actually represented by the local state at the
nodes, and hence consistency between neighbors is not always guaranteed.

In fact, there are problems for which the verification of consistency is the
dominant factor of the verification complexity. In particular, consider match-
ing problems: maximal matching, and maximum matching in bipartite graphs.
Both problems are known to have constant verification complexity [19]. However,
these results make the problematic assumption that the edge set in question is
well defined. We consider the matching verification problem using the following
definition.

Definition 3 (Matching Verification (MV)).
Instance: At each node v, at most one edge is marked. We use Iv(e) ∈
{true, false} to denote whether e is marked in v.
Question: Is the set M of marked edges well defined, i.e., Iv(e) = Iu(e) for
every edge e = (u, v) ∈ E, and M is a matching?

We argue that in the broadcast model, the verification complexity of this
problem is Θ(log Δ). Formally, we study the problem (Fm,mv), where Fm is
the family of connected configurations with edge indication at each node. We
obtain the following result.

Theorem 1. The verification complexity of (Fm,mv) in the broadcast model is
Θ(log Δ).

For the lower bound, we construct a set of configurations that must have
different communication patterns. The large number of configurations implies
the lower bound on message length. We use color addressing for the upper bound.

The result above says that in the broadcast model, the verification com-
plexity of the maximal matching problem and the maximum matching in bipar-
tite graphs is dominated by the consistency verification. Observe that in the

8 B. Patt-Shamir and M. Perry

mcast(2) model, the verification complexity of (Fm,mv) is O(1), by letting
every node v send on every edge e = (v, u) the bit Iv(e): only two types of
messages are needed!

We also note that for the problem of maximum matching in cycles, the asymp-
totic verification complexity is unchanged if we must verify consistency, since the
verification complexity of this problem in the broadcast model is Θ(log n) [19].

4.2 The Edge Agreement Problem

Motivated by the results for matching verification, we now formalize and study
the fundamental problem of consistency across edges.

Definition 4. (b-bit Edge Agreement (EAb)).
Instance: Each node v holds in its state a b-bit string Bv(e) for each incident
edge e.
Question: Is Bv(e) = Bu(e) for every edge e = (u, v) ∈ E?

Let F be the family of all configurations, and let α denote the arboricity of
the graph. Our first main result is the following tight trade-off between r (the
number of different messages for a node) and verification complexity of eab.

Theorem 2. Let b ∈ Ω(log Δ). For every 1 ≤ r ≤ min
{
Δ, 2b/4

}
, the verifica-

tion complexity of (F ,eab) in the mcast(r) model is Θ(
⌈

α
r

⌉
b).

This theorem states both an upper and a lower bound. We start with the
lower bound.

Lemma 5. For every 1 ≤ r ≤ min
{
Δ, 2b/4

}
, the verification complexity of any

PLS for (F ,eab) in the mcast(r) model is Ω((α
r + 1)b).

To prove Lemma 5, we prove the following claim.

Claim. Let G = (V,E) be a graph, let 1 ≤ r ≤ min
{
Δ, 2b/4

}
and consider a PLS

for (F ,eab) in the mcast(r) model. For every induced subgraph H = (VH , EH)
of G, WΣ(H) ≥ L(H).

Proof of Lemma 5: It is known that the non-deterministic two-party commu-
nication complexity of verifying the equality (EQ) of b-bit strings is Ω(b) [23,
Example 2.5]. Simulating a verification scheme for (F ,eab) on a network of one
edge, is a correct non-deterministic two-party communication protocol for EQ.
Therefore, Ω(b) is a lower bound for (F ,eab).

We now prove that Ω(α
r b) is also a lower bound for (F ,eab). Let Gs ∈ F be

a configuration with an underlying graph G = (V,E), and let H = (VH , EH) be
the densest induced subgraph of G, i.e., mH/nH ≥ mH′/nH′ for every V ′

H ⊆ V .
By Lemma 2, α = �mH/(nH − 1)�. W.l.o.g., let VH = {v1, . . . , vnH

}, and let
dH(vi) = |{(vi, vj) ∈ EH}| be the degree of node vi in H.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 9

We now show that for 1 ≤ r ≤ min
{
Δ, 2b/4

}
and any scheme Σ for (F ,eab)

with verification complexity κ < αb
4r − 2 in the mcast(r) model, it holds that

WΣ(H) < L(H). Let Σ be such a verification scheme. Then

WΣ(H) ≤
nH∏
i=1

[(
2κ

r

)
· rdH(vi)

]
(1)

≤
(

2κ · e

r

)rnH

· r2mH (2)

< 2αbnH/4 · r2mH (3)

≤ 2
b
2mH · r2mH (4)

≤ 2bmH = L(H). (5)

Inequality (1) is true since for every PLS in the mcast(r) model with verifi-
cation complexity κ, every communication pattern can be constructed by letting
each node vi choose r different messages of size κ each, and for each of its dH(vi)
neighbors, let it choose one of the r messages to send. Inequality (2) is due to
the fact that

(
x
y

) ≤ (x·e
y)y for x, y ≥ 0. Inequality (3) follows from our assump-

tion that κ < αb
4r − 2. Inequality (4) follows from Lemma 2 which implies that

α ≤ 2mH/nH , and Inequality (5) from our assumption that r ≤ 2b/4.
Therefore we may conclude that if κ < αb

4r − 2, then, by Claim 4.2, Σ is not
a correct verification scheme for (F ,eab). This concludes the proof of the lower
bound.

Next, we turn to the upper bound. To this end we define a more general problem
as follows.

Definition 5 (b-bit Edge ψ (Eψb)).
Instance: Each node v holds in its state a b-bit string Bv(e) for each incident
edge e.
Question: Is ψb(Bv(e), Bu(e)) = true for every edge e = (u, v), where ψb is
a given symmetric predicate of two b-bit strings, i.e., ψb : {0, 1}b × {0, 1}b →
{true, false} and ψ(s, s′) = ψ(s′, s) for all s, s′ ∈ {0, 1}b?

Lemma 6. For every 1 ≤ r < 2α, there exists a PLS for (F ,eψb) in the
mcast(r) model with verification complexity O(α

r (b + log Δ)), and for every
2α ≤ r ≤ Δ, there exists a PLS for (F ,eψb) in the mcast(r) model with verifi-
cation complexity O(b).

We sketch the proof of Lemma 6. For 1 ≤ r < 2α, we use minimizing orientation
and color addressing. The idea is to partition the outgoing edges into r groups,
and send the input strings of every group in one message, indicating the color of
the destination of each string. Overall, every message consists of at most 2α/r
pairs of size b + O(log Δ) each. For 2α ≤ r ≤ Δ, by Lemma 3 there exists a PLS
Σ′ = (p′,v′) for (F ,eψb) in the mcast(r) model with verification complexity b.

10 B. Patt-Shamir and M. Perry

eab is a special case of eψb, where ψ is the equality predicate. Therefore,
Lemma 6 gives a tight upper bound for (F ,eab) for the case b ∈ Ω(log Δ). This
concludes the proof of Theorem 2.

We note that Theorem 2, in conjunction with the general connection between
the deterministic and randomized verification complexity [26], gives the following
corollary.

Corollary 1. Let b ∈ Ω(log Δ). For every 1 ≤ r ≤ min
{
Δ, 2b/4

}
, the random-

ized verification complexity of (F ,eab) in the mcast(r) model is Θ(log(
⌈

α
r

⌉
b)).

4.3 An Advanced Example: The Maximum Flow Problem

In this section we consider a more sophisticated problem, namely Maximum Flow
in the context of the mcast(r) model. The best previously known result [22] was
for verification of “k-flow”: the goal is to verify that the maximum flow between
a given pair of nodes is exactly k. The verification complexity of the scheme in
the broadcast model of [22] is O(k(log k + log n)). In Theorem 4, we show an
improvement of this result and a generalization to the mcast(r) model.

First, we solve a slightly different problem, formalized as follows. Let Fst

be the family of configurations of graphs, where a graph in Fst has two distinct
nodes denoted s and t called source and sink, respectively, and a natural number
c(e) called the capacity associated with each edge e. The mf problem is defined
over the family of configurations Fst as follows.

Definition 6 (Maximum Flow (MF)).
Instance: A configuration Gs ∈ Fst, where each node v has an integer f(v, u)
for every neighbor u.
Question: Interpreting f(v, u) as the amount of flow from v to u (f(v, u) < 0
means flow from u to v), is f a maximum flow from s to t?

Recall that f is a legal flow iff it satisfies the following three conditions (see, e.g.,
[1]).

– Anti symmetry: for every (v, u) ∈ E, f(v, u) = −f(u, v).
– Capacity compliance: for every (v, u) ∈ E, |f(v, u)| ≤ c(v, u).
– Flow conservation: for every node v ∈ V \ {s, t},

∑
u∈V f(v, u) = 0.

If all three conditions hold, then, by the max-flow min-cut theorem, f is maxi-
mum iff there is a saturated cut.

We denote by fmax the maximal flow amount over all edges of G (note that
fmax need not be polynomial in n). Also, for a bit string x = x0x1 · · · xk, let
x̄ =

∑k
i=0 xi2i.

Theorem 3. Let log fmax ∈ Ω(log n). There exists a constant c > 1 such that
for every 1 ≤ r ≤ min

{
α/c, 4

√
fmax

}
, the verification complexity of (Fst,mf) in

the mcast(r) model is Θ(log(fmax)α/r).

Again, we start with the lower bound.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 11

Lemma 7. Let log fmax ∈ Ω(log n). There exists a constant c > 1 such that
for every 1 ≤ r ≤ min

{
α/c, 4

√
fmax

}
, the verification complexity of any PLS for

(Fst,mf) in the mcast(r) model is Ω(log(fmax)α/r).

We note that the counting argument used for eab (Lemma 5) cannot be
applied to this problem. To prove the lower bound for mf, we show a non-trivial
reduction from a problem in (F ,eab) to a problem in (Fst,mf).

Lemma 8. For every 1 ≤ r < 2α, there exists a PLS for (Fst,mf) in the
mcast(r) model with verification complexity O(α

r (log fmax + log Δ)), and for
every 2α ≤ r ≤ Δ, there exists a PLS for (Fst,mf) in the mcast(r) model with
verification complexity O(log fmax).

The scheme used in the proof of Lemma 8 consists of two parts. First, a scheme
for ψ agreement, where ψ(x, y) ≡ (x = −y), which, we argue, is enough in order
to verify that the flow is legal. The second part is verifying a saturated s-t cut.
This can be done using one bit at each node.

For log fmax ∈ Ω(log n), Lemma 8 gives a tight upper bound for (Fst,mf)
which concludes the proof of Theorem 3.

Consider now the k-mf problem as defined in [22] over the family of config-
urations Fst.

Definition 7 (k-Maximum Flow (k-MF)).
Instance: A configuration Gs ∈ Fst.
Question: Is the maximum flow between s and t in Gs is exactly k?

We give an upper bound for (Fst, k -mf) in the mcast(r) model, which gen-
eralizes and improves the previous bound.

Theorem 4. For every 1 ≤ r < 2α, there exists a PLS for (Fst, k-mf) in the
mcast(r) model, with verification complexity O

(
min{α,k}

r (log k + log Δ)
)
, and

for every 2α ≤ r ≤ Δ, there exists a PLS for (Fst, k-mf) in the mcast(r) model,
with verification complexity O(log k).

Proof: In a verification scheme for (Fst, k -mf), the prover can assign the flow
values f(v, u) for every edge (v, u). W.l.o.g, assume that f does not contain
cycles of positive flow. In this case, fmax ≤ k and, since the flow value over
each edge is an integer, the number of incident edges of every node v carrying
non-zero flow is at most 2k. By Lemma 8, and the observation that it is sufficient
that every node verifies the value of flow only on edges with f(v, u) �= 0, the
upper bounds follow.

To be precise, the problem solved in [22] required in addition that every node
holds the value k in its state. Verifying that all nodes hold the same value k is
simply an additive log k factor to message length – every node sends its value
and verifies that all its neighbors have the same value. We argue in the following
lemma, that Ω(log k) is a lower bound for (Fst, k -mf) verification even if k is
known to all nodes.

12 B. Patt-Shamir and M. Perry

Lemma 9. For every 1 ≤ k ≤ 2Θ(n), the verification complexity of any PLS
for (Fst, k-mf) is Ω(log k), even in the unicast model and for constant degree
graphs.

We use a kind of crossing argument between a family of different configura-
tions of the same structure, to show that a scheme with verification complexity
less than log k

4 is never a correct scheme for all configurations in the constructed
family. Hence, the lower bound follows.

By Theorem 4, this lower bound is tight for 2α ≤ r ≤ Δ, and the following
theorem holds.

Theorem 5. For every 1 ≤ k ≤ 2Θ(n) and every 2α ≤ r ≤ Δ, the verification
complexity of (Fst, k-mf) in the mcast(r) model is Θ(log k).

5 Verification in Congested Cliques

In the congested clique model, the communication network is a fully connected
graph over n nodes (i.e., an n-clique). Given an input graph G = (V,E) with
n = |V |, the nodes of G are mapped 1–1 to the nodes of the clique, and the
state of each node contains a bit for each port, indicating whether the edge to
that port is in E or not, and, if the edge is present and G is weighted, the
weight of the edge. We assume that the part in the state that specifies whether
the edge connected to this port is in E is reliable: since verification is done with
respect to the given graph as input, there is no way to verify its authenticity, but
only whether the combination of input and output satisfies the given predicate.
Moreover, we assume that the input is consistent, in the sense that the state at
node v indicates that (v, u) is an edge in E (possibly with some weight w), if
and only if so does the state of u (namely edge agreement on the input graph is
guaranteed).

5.1 Crossing in Congested Cliques

In what follows, we say that an edge is oriented to indicate a specific order over
its endpoints.

Definition 8 (Independent Edges). Let G = (V,E) be a graph and let e1 =
(v1, u1) and e2 = (v2, u2) be two oriented edges of G. The edges e1 and e2 are
said to be independent if and only if v1, u1, v2, u2 are four distinct nodes and
(v1, u2), (v2, u1) /∈ E.

The following definition is illustrated in Fig. 1.

Definition 9 (Crossing [5]). Let G = (V,E) be a graph, let e1 = (v1, u1) and
e2 = (v2, u2) be two independent oriented edges of G, and for i ∈ {1, 2}, let pi

and qi be the port numbers of ei at vi and ui respectively. The crossing of e1 and
e2 in G, denoted by G(e1, e2), is the graph obtained from G by replacing e1 and
e2 with the edges e′

1 = (v1, u2) and e′
2 = (v2, u1) so that e′

1 connects port p1 at
v1 and port q2 at u2 and e′

2 connects port p2 at v2 and port q1 at u1.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 13

Fig. 1. An illustration of the crossing oper-
ation on a clique network. Solid edges
are input graph edges, and dashed edged
are communication-only edges. (a) Edges
e1 = (v1, u1) and e2 = (v2, u2) are two
independent oriented edges of an input
graph G. (b) The subgraph induced by
nodes v1, u1, v2 and u2 in G(e1, e2).

Consider an input graph G =
(V,E) in the clique, assume that
e1, e2 ∈ E are independent edges
and let G(e1, e2) = (V,E′). Note that
crossing a graph over a clique net-
work does not result in a change of
state: Due to the port preservation of
the crossing operation, for every node
v ∈ V and every port 0 ≤ i ≤ n−1, the
edge (v, u) on port number i in G sat-
isfies (v, u) ∈ E if and only if the edge
(v, u′) on port number i in G(e1, e2)
satisfies (v, u′) ∈ E′.

Whether we can prove a lower bound for verification in the congested clique
for r > 1 is still an open question. However, for the broadcast clique model (i.e.,
r = 1), it turns out that we can. The following lemma is the key to proving lower
bounds for PLSs in the broadcast clique.

Lemma 10. Let F be a family of configurations, let P be a boolean predicate
over F , and let Σ be a PLS for (F ,P) in the broadcast clique model with ver-
ification complexity κ. Suppose that there is a configuration Gs ∈ F such that
P(Gs) = true and G contains q pairwise independent oriented edges e1, . . . , eq.
If κ < log q

2 , then there are 1 ≤ i < j ≤ q such that Gs(ei, ej) is accepted by Σ.

In the proof of this lemma, we show that in the broadcast clique, if verifica-
tion complexity is too small, then we can apply the pigeonhole principle on the
crossing of every two edges from the set. We get that there must be two edges
such that the local view of all nodes is the same for the original input graph and
the crossed graph. Therefore, we conclude that with the same label assignment,
both configurations (original and crossed) result in the same output.

We use the following corollary of Lemma 10 to lower-bound verification com-
plexity of broadcast clique PLSs.

Corollary 2. Let F be a family of configurations, and let P be a boolean pred-
icate over F . If there is a configuration Gs ∈ F satisfying that P(Gs) = true
and G contains q pairwise independent oriented edges e1, . . . , eq such that for
every 1 ≤ i < j ≤ q it holds that P(Gs(ei, ej)) = false, then the verification
complexity of any deterministic PLS for (F ,P) in the broadcast clique model is
Ω(log q).

Note that we essentially cross two pairs of edges in the crossing operation:
one pair of edges in E, and one pair of edges in Ē. These two pairs are uniquely
associated with each other in a way that if we assume a PLS in the mcast(2)
clique model, then we would not be able to apply the pigeonhole principle even
with 1-bit messages. To see why this is true, consider any set of independent
oriented edges (v1, u1), . . . , (vq, uq). For every i �= j, both edges (vi, uj), (vj , ui) ∈
Ē are associated only with the pair of edges (vi, ui), (vj , uj) ∈ E. Therefore, with

14 B. Patt-Shamir and M. Perry

a PLS in the mcast(2) clique model, it is possible that Mvi
(uj) �= Mvj

(ui) for
every i �= j independently of other pairs. Hence, the crossing of any two edges
may change the local view of at least one node. Therefore, the crossing technique
can not be applied for every r > 1 in the congested clique.

5.2 Minimum Spanning-Tree Verification

In this section we illustrate the use of Corollary 2 and prove tight bounds for the
verification complexity of the Minimum Spanning-Tree (MST) problem. Recall
that an MST of a weighted graph G is a spanning tree of G whose sum of all
its edge-weights is minimum among all spanning trees of G. In particular, in
the clique, there is a fully connected communication network, a weighted input
graph G = (V,E,w) where E is a subset of communication edges, w : E → N is
the edge weight assignment, and a subset T ⊆ E is specified as the MST. It is
important to notice that all specifications of edge subsets are local in the sense
that every node v ∈ V has n− 1 ports and in its state there is a specification for
every edge ei on port number i whether ei ∈ E and whether ei ∈ T . According
to our assumption on the clique model, the input graph G is given in a reliable
way, i.e., an edge (v, u) is considered by v to be in E if and only if it is considered
by u to be in E. However, this consistency has to be verified for the edges of T .
In addition, since the communication network is fully connected and does not
depend on the input graph G, we also consider the case where G is disconnected.
In this case, we define the MST as the set of minimum spanning-trees of all
connected components of G.

Let Fwmax be the family of all weighted configurations (not necessarily con-
nected) with maximum weight wmax. Formally, if e is an edge of the underlying
weighted graph of a configuration Gs ∈ Fwmax , then w(e) ≤ wmax. Edge weights
are assumed to be known at their endpoints.

Theorem 6. The verification complexity of (Fwmax ,MST) in the broadcast
clique model is Θ(log n + log wmax).

The lower bound is proved in two parts. To show Ω(log n) we use Corollary 2
on the input graph which is a path where all the edges are in T . The crossing of
every two independent edges of the path results in a graph with a cycle compo-
nent, in particular, not a tree. The Ω(log wmax) part is proven by a variation of
the Ω(log wmax) proof in [22], which holds also for the broadcast clique model.
The tight upper bound is obtained by a scheme for which we give a short sketch
here. The prover roots the tree and give every node a pointer to its parent. For
verification, every node sends the information about the edge connecting it to
its parent – IDs of the endpoints and the weight of the edge. This enables every
node v to collect all the tree structure, and verify that if an incident edge (v, u)
is not in the tree then its weight is not smaller than every edge in the unique
path between v and u in the tree. If all nodes verify this property, it means that
all edges are consistent with the “red rule”, i.e., the heaviest edge of every cycle
is not in the MST.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 15

6 Conclusion

In this paper we studied the mcast(r) model from the perspective of verifica-
tion. This angle seems particularly convenient, because it involves a single round
of message exchange. (If multiple rounds are allowed, one has to consider the
possibility of reconfiguring the neighbor partitions: is it allowed to partition the
neighbors anew in each round, and if so, at what cost?). We focus on the rela-
tion between the number of different messages of each node and the verification
complexity of proof-labeling schemes. We gave tight bounds on the verification
complexity of edge agreement and max flow in the mcast(r) model. We have
shown that in the restrictive broadcast model, a well defined matching is harder
to verify than the maximality of a given matching, and that it is possible to
obtain lower bounds on the verification complexity in congested cliques. Many
interesting questions remain open. We list a few below.

– Develop a theory for a restricted number of interface cards (NICs). The num-
ber of NICs limits the number of messages that can be simultaneously trans-
mitted. In this paper we looked only at a simple case of one round of commu-
nication. We believe that developing a tractable and realistic model in which
the number of NICs is a parameter is an important challenge.

– As mentioned, in multiple round algorithms, dynamic reconfigurations can be
exploited to convey information. It seems that an interesting challenge would
be to account for dynamic reconfigurations.

– We considered a model in which a single parameter r is used to indicate the
restriction of all nodes. What can be said about a model in which every node
has its own restriction?

– We have given examples of problems that have a linear improvement in veri-
fication complexity as a function of r, and on the other hand, we have given
examples of problems that are not sensitive at all to r. Can a characterization
of problems be shown, according to their sensitivity of verification complexity
to r?

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Engel-
wood Cliffs (1993)

2. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Cham (2014). doi:10.1007/978-3-319-12340-0 2

3. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-
size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M.,
Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Cham
(2013). doi:10.1007/978-3-319-03089-0 10

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: 32nd Symposium on Foundations of Computer Science (FOCS),
pp. 268–277. IEEE (1991)

http://dx.doi.org/10.1007/978-3-319-12340-0_2
http://dx.doi.org/10.1007/978-3-319-03089-0_10

16 B. Patt-Shamir and M. Perry

5. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 315–324 (2015)

6. Becker, F., Anta, A.F., Rapaport, I., Rémila, E.: The effect of range and bandwidth
on the round complexity in the congested clique model. In: Dinh, T.N., Thai, M.T.
(eds.) COCOON 2016. LNCS, vol. 9797, pp. 182–193. Springer, Cham (2016).
doi:10.1007/978-3-319-42634-1 15

7. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent
self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol.
8756, pp. 18–32. Springer, Cham (2014). doi:10.1007/978-3-319-11764-5 2

8. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

9. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: Proceedings of 2014 ACM Symposium on Principles of Distributed Computing,
PODC 2014, pp. 367–376. ACM, New York (2014)

10. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: 43rd
International Colloquium on Automata, Languages, and Programming (ICALP
2016), pp. 118:1–118:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

11. Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings
attached. In: Proceedings of 17th International Conference on Distributed Com-
puting and Networking, ICDCN 2016, pp. 21:1–21:10. ACM, New York (2016)

12. Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in
dynamic networks. In: Proceedings of 18th International Conference on Distrib-
uted Computing and Networking, ICDCN 2017, pp. 4:1–4:10. ACM, New York
(2017)

13. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: Proceedings of 2013 ACM Symposium on Principles of
Distributed Computing, PODC 2013, pp. 157–165. ACM, New York (2013)

14. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers
on local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS
2012. LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35476-2 16

15. Fraigniaud, P., Hirvonen, J., Suomela, J.: Node labels in local decision. In: Schei-
deler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol.
9439, pp. 31–45. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2 3

16. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

17. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free
computing. Distrib. Comput. 26(4), 223–242 (2013)

18. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B.,
Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Cham (2014).
doi:10.1007/978-3-319-11164-3 9

19. Göös, M., Suomela, J.: Locally checkable proofs. In: 30th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 159–168 (2011)

20. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
trib. Comput. 20, 253–266 (2007)

21. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: 30th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 311–320 (2011)

http://dx.doi.org/10.1007/978-3-319-42634-1_15
http://dx.doi.org/10.1007/978-3-319-11764-5_2
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-319-25258-2_3
http://dx.doi.org/10.1007/978-3-319-11164-3_9

Proof-Labeling Schemes: Broadcast, Unicast and in Between 17

22. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

23. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

24. Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond.
Math. Soc. s1–36(1), 445–450 (1961)

25. Nash-Williams, C.S.A.: Decomposition of finite graphs into forests. J. Lond. Math.
Soc. s1–39(1), 12 (1964)

26. Patt-Shamir, B., Perry, M.: Proof-labeling schemes: broadcast, unicast and in
between. CoRR, abs/1708.06947 (2017)

27. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

	Proof-Labeling Schemes: Broadcast, Unicast and in Between
	1 Introduction
	2 Model and Preliminaries
	3 Techniques for the MCAST Model
	4 Verification Complexity Trade-Offs in the MCAST(r) Model
	4.1 Verification of Matchings
	4.2 The Edge Agreement Problem
	4.3 An Advanced Example: The Maximum Flow Problem

	5 Verification in Congested Cliques
	5.1 Crossing in Congested Cliques
	5.2 Minimum Spanning-Tree Verification

	6 Conclusion
	References

