
Paul Spirakis
Philippas Tsigas (Eds.)

 123

LN
CS

 1
06

16

19th International Symposium, SSS 2017
Boston, MA, USA, November 5–8, 2017
Proceedings

Stabilization, Safety,
and Security
of Distributed Systems

Lecture Notes in Computer Science 10616

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Paul Spirakis • Philippas Tsigas (Eds.)

Stabilization, Safety,
and Security
of Distributed Systems
19th International Symposium, SSS 2017
Boston, MA, USA, November 5–8, 2017
Proceedings

123

Editors
Paul Spirakis
University of Liverpool
Liverpool
UK

Philippas Tsigas
Chalmers University of Technology
Gothenburg
Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-69083-4 ISBN 978-3-319-69084-1 (eBook)
https://doi.org/10.1007/978-3-319-69084-1

Library of Congress Control Number: 2017956063

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The papers in this volume were presented at the 19th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS), held November 5–8,
2017, in Boston, Massachusetts, USA.

SSS is an international forum for researchers and practitioners in the design and
development of distributed systems with a focus on systems that are able to provide
guarantees on their structure, performance, and/or security in the face of an adverse
operational environment.

Research in distributed systems is now at a crucial point in its evolution, marked by
the importance and variety of dynamic distributed systems such as peer-to-peer net-
works, large-scale sensor networks, mobile ad hoc networks, and cloud computing.
Moreover, new applications such as grid and Web services, distributed command and
control, and a vast array of decentralized computations in a variety of disciplines has
driven the need to ensure that distributed computations are self-stabilizing, performant,
safe, and secure.

SSS started as the Workshop on Self-Stabilizing Systems (WSS), the first two of
which were held in Austin in 1989 and in Las Vegas in 1995. Starting in 1995, the
workshop began to be held biennially; it was held in Santa Barbara (1997), Austin
(1999), and Lisbon (2001). As interest grew and the community expanded, in 2003 the
title of the forum was changed to the Symposium on Self-Stabilizing Systems (SSS).
SSS was organized in San Francisco in 2003 and in Barcelona in 2005. As SSS
broadened its scope and attracted researchers from other communities, significant
changes were made in 2006. It became an annual event, and the name of the conference
was changed to the International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS). From then, SSS conferences were held in Dallas (2006),
Paris (2007), Detroit (2008), Lyon (2009), New York (2010), Grenoble (2011),
Toronto (2012), Osaka (2013), Paderborn (2014), Edmonton (2015), and Lyon (2016).

This year the program was organized into three tracks reflecting major trends related
to self-* systems: (1) Stabilizing Systems: Theory and Practice, (2) Distributed
Computing and Communication Networks, and (3) Computer Security and Information
Privacy.

We received 68 submissions from 19 countries. Each submission was reviewed by
at least three Program Committee members with the help of external reviewers; with
the average number of reviews per paper reaching 3.8. Out of the 68 submitted papers,
29 were selected for presentation as regular papers. The symposium also included eight
brief announcements. Selected papers from the symposium will be published in a
special issue of Information and Computation journal and the Algorithms journal.

On behalf of the Program Committee, we would like to thank all the authors who
submitted their work to SSS. Special thanks to the track Program Committee chairs,
Panagiota Fatourou, Chryssis Georgiou, Sergio Rajsbaum, Elad Michael Schiller, Ari
Trachtenberg, and Arkady B. Yerukhimovich for the great work that they put in

making the symposium a success. We sincerely acknowledge the tremendous time and
effort that the Program Committee members have put in for the symposium. We are
grateful to the external reviewers for their valuable and insightful comments and to
EasyChair for tremendously simplifying the review process and the generation of the
proceedings. We also thank the general chairs, Jorge Cobb and Shlomi Dolev, for their
effort in putting together the symposium and the invaluable advice. Special thanks to
Timi Budai for her continuous work supporting the organization of SSS from the
beginning to the end. We gratefully acknowledge the publicity chairs, Joel P. Rybicki,
Iosif Salem, and Elad M. Schiller, finance chair, Mayank Varia, local organization
chair, Ari Trachtenberg, and the Organizing Committee members for their time and
invaluable effort that greatly contributed to the success of this symposium.

November 2017 Paul Spirakis
Philippas Tsigas

VI Preface

Organization

General Chairs

Jorge Cobb University of Texas at Dallas, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel

Steering Committee

Anish Arora Ohio State University, USA
Ajoy K. Datta (Chair) University of Nevada, USA
Shlomi Dolev Ben-Gurion University, Israel
Sukumar Ghosh University of Iowa, USA
Mohamed Gouda University of Texas at Austin, USA
Ted Herman University of Iowa, USA
Toshimitsu Masuzawa Osaka University, Japan
Franck Petit Université Pierre et Marie Curie, France
Sébastien Tixeuil Université Pierre et Marie Curie, France

Organizing Committee

Program Committee Chairs

Paul Spirakis University of Liverpool, UK
Philippas Tsigas Chalmers University of Technology, Sweden

Local Arrangements Committee Chair

Ari Trachtenberg Boston University, USA

Finance Committee Chair

Mayank Varia Boston University, USA

Publicity Committee Chairs

Joel P. Rybicki University of Helsinki, Finland
Iosif Salem Chalmers University of Technology, Sweden
Elad M. Schiller Chalmers University of Technology, Sweden

Organizing Committee Chair

Timi Budai Ben-Gurion University of the Negev, Israel

Stabilizing Systems: Theory and Practice

Track Chairs

Chryssis Georgiou University of Cyprus
Elad Michael Schiller Chalmers University of Technology, Sweden

Program Committee

Lélia Blin Université d’Evry-Val-d’Essonne, France
Borzoo Bonakdarpour McMaster University, Canada
Ajoy K. Datta University of Nevada Las Vegas, USA
Sylvie Delaet LRI, France
Sukumar Ghosh University of Iowa, USA
Mohamed Gouda The University of Texas at Austin, USA
Ted Herman University of Iowa, USA
Sayaka Kamei Hiroshima University, Japan
Pierre Leone University of Geneva, Switzerland
Toshimitsu Masuzawa Osaka University, Japan
Calvin Newport Georgetown University, USA
Taisuke Izumi Nagoya Institute of Technology, Japan
Maria Potop-Butucaru UPMC Sorbonne Universités, France
Christian Scheideler University of Paderborn, Germany
Stefan Schmid Aalborg University, Denmark
Jukka Suomela Aalto University, Finland
Sébastien Tixeuil Université Paris 6, France
Volker Turau Hamburg University of Technology, Germany
Koichi Wada Hosei University, Japan
Yamauchi Yukiko Kyushu University, Japan
Shmuel Zaks Technion, Israel

Distributed Computing and Communication Networks

Track Chairs

Panagiota Fatourou University of Crete, Greece
Sergio Rajsbaum Universidad Nacional Autonoma de Mexico (UNAM)

Program Committee

Hagit Attiya Technion, Israel
Gregory Chockler Royal Holloway, University of London, UK
Hugues Fauconnier Paris 6, France
Maurice Herlihy Brown University, USA
Flavio Paiva Junqueira Dell EMC, Spain
Nikolaos Kallimanis FORTH ICS, Greece
Petr Kuznetsov Telecom ParisTech, France
Yoram Moses Technion, Israel
Boaz Patt-Shamir Tel Aviv University, Israel

VIII Organization

Thomas Ropars University of Grenoble, France
Eric Ruppert York University, Canada
Alexander Schwarzmann University of Connecticut, USA
Gadi Taubenfeld IDC, Israel
Philipp Woelfel University of Calgary, Canada

Computer Security and Information Privacy

Track Chairs

Ari Trachtenberg Boston University, USA
Arkady B. Yerukhimovich MIT Lincoln Laboratory, USA

Program Committee

Marten van Dijk University of Connecticut, USA
Yuval Elovici Ben-Gurion University, Israel
Danny Hendler Ben-Gurion University, Israel
Aaron Johnson U.S. Naval Research Laboratory, USA
Jonathan Katz University of Maryland, USA
Ranjit Kumaresan Microsoft Research, Redmond, USA
Thomas Moyer MIT Lincoln Laboratory, USA
Nabil Schear MIT Lincoln Laboratory, USA
Emily Shen MIT Lincoln Laboratory, USA
David Starobinski Boston University, USA
Patrick Tague Carnegie Mellon University, USA
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Vitaly Aksenov
Muqeet Ali
Leonid Barenboim
Leonardo Bautista
Andrew Berns
Quentin Bramas
Alexander Chepurnoy
Carole Delporte-Gallet
Stéphane Devismes
Giuseppe Antonio

Di Luna
Ittay Eyal
Fathiyeh Faghih
Michael Feldmann

Paola Flocchini
Rati Gelashvili
Emmanuel Godard
Tyler Kaczmarek
Eleni Kanellou
Yoshiaki Katayama
Yonghwan Kim
Christina Kolb
Christos Kozanitis
Sandeep Kulkarni
Shay Kutten
Yoshifumi Manabe
Ioannis Marcoullis
Euripides Markou

Thomas Nowak
Fukuhito Ooshita
Sebastiano Peluso
Kostas Ramantas
Srivatsan Ravi
Thibault Rieutord
Peter Rindal
Will Rosenbaum
Kevin Sekniqi
Alexander Setzer
Mordechai Shalom
Bingsheng Zhang

Organization IX

Sponsors

X Organization

Contents

Proof-Labeling Schemes: Broadcast, Unicast and in Between 1
Boaz Patt-Shamir and Mor Perry

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs. 18
Fukuhito Ooshita, Ajoy K. Datta, and Toshimitsu Masuzawa

The Dynamics and Stability of Probabilistic Population Processes 33
Ioannis Chatzigiannakis and Paul Spirakis

Self-stabilizing Distributed Stable Marriage . 46
Marie Laveau, George Manoussakis, Joffroy Beauquier,
Thibault Bernard, Janna Burman, Johanne Cohen, and Laurence Pilard

Computing the Fault-Containment Time of Self-Stabilizing
Algorithms Using Markov Chains and Lumping . 62

Volker Turau

Self-tuning Eventually-Consistent Data Stores. 78
Shankha Chatterjee and Wojciech Golab

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm
Under Distributed Daemon for Arbitrary Networks 93

Michiko Inoue, Fukuhito Ooshita, and Sébastien Tixeuil

An Improved Approximate Consensus Algorithm in the Presence
of Mobile Faults . 109

Lewis Tseng

Fault-Induced Dynamics of Oblivious Robots on a Line. 126
Jean-Lou De Carufel and Paola Flocchini

Relaxed Data Types as Consistency Conditions . 142
Edward Talmage and Jennifer L. Welch

Ant-Inspired Dynamic Task Allocation via Gossiping 157
Hsin-Hao Su, Lili Su, Anna Dornhaus, and Nancy Lynch

Self-stabilizing Localization of the Middle Point of a Line Segment
by an Oblivious Robot with Limited Visibility . 172

Akihiro Monde, Yukiko Yamauchi, Shuji Kijima,
and Masafumi Yamashita

http://dx.doi.org/10.1007/978-3-319-69084-1_1
http://dx.doi.org/10.1007/978-3-319-69084-1_2
http://dx.doi.org/10.1007/978-3-319-69084-1_3
http://dx.doi.org/10.1007/978-3-319-69084-1_4
http://dx.doi.org/10.1007/978-3-319-69084-1_5
http://dx.doi.org/10.1007/978-3-319-69084-1_5
http://dx.doi.org/10.1007/978-3-319-69084-1_6
http://dx.doi.org/10.1007/978-3-319-69084-1_7
http://dx.doi.org/10.1007/978-3-319-69084-1_7
http://dx.doi.org/10.1007/978-3-319-69084-1_8
http://dx.doi.org/10.1007/978-3-319-69084-1_8
http://dx.doi.org/10.1007/978-3-319-69084-1_9
http://dx.doi.org/10.1007/978-3-319-69084-1_10
http://dx.doi.org/10.1007/978-3-319-69084-1_11
http://dx.doi.org/10.1007/978-3-319-69084-1_12
http://dx.doi.org/10.1007/978-3-319-69084-1_12

Robust Routing Made Easy . 187
Christoph Lenzen and Moti Medina

Generalized Paxos Made Byzantine (and Less Complex) 203
Miguel Pires, Srivatsan Ravi, and Rodrigo Rodrigues

ASSESS: A Tool for Automated Synthesis of Distributed
Self-stabilizing Algorithms . 219

Fathiyeh Faghih and Borzoo Bonakdarpour

How to Simulate Message-Passing Algorithms in Mobile Agent
Systems with Faults. 234

Tsuyoshi Gotoh, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa

A Self-stabilizing General De Bruijn Graph . 250
Michael Feldmann and Christian Scheideler

Constant-Time Complete Visibility for Asynchronous Robots with Lights . . . 265
Gokarna Sharma, Ramachandran Vaidyanathan, and Jerry L. Trahan

On Security Analysis of Proof-of-Elapsed-Time (PoET) 282
Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

Brief Announcement: Federated Code Auditing and Delivery for MPC 298
Frederick Jansen, Kinan Dak Albab, Andrei Lapets, and Mayank Varia

Brief Announcement: Reduced Space Self-stabilizing Center Finding
Algorithms in Chains and Trees . 303

Yuichi Sudo, Ajoy K. Datta, Lawrence L. Larmore,
and Toshimitsu Masuzawa

A Fully Asynchronous and Fault Tolerant Distributed Algorithm
to Compute a Minimum Graph Orientation. 308

Noël Gillet and Nicolas Hanusse

Universally Optimal Gathering Under Limited Visibility 323
Pavan Poudel and Gokarna Sharma

Optimum Algorithm for Mutual Visibility Among Asynchronous
Robots with Lights . 341

Subhash Bhagat and Krishnendu Mukhopadhyaya

Brief Announcement: ZeroBlock: Timestamp-Free Prevention
of Block-Withholding Attack in Bitcoin . 356

Siamak Solat and Maria Potop-Butucaru

XII Contents

http://dx.doi.org/10.1007/978-3-319-69084-1_13
http://dx.doi.org/10.1007/978-3-319-69084-1_14
http://dx.doi.org/10.1007/978-3-319-69084-1_15
http://dx.doi.org/10.1007/978-3-319-69084-1_15
http://dx.doi.org/10.1007/978-3-319-69084-1_16
http://dx.doi.org/10.1007/978-3-319-69084-1_16
http://dx.doi.org/10.1007/978-3-319-69084-1_17
http://dx.doi.org/10.1007/978-3-319-69084-1_18
http://dx.doi.org/10.1007/978-3-319-69084-1_19
http://dx.doi.org/10.1007/978-3-319-69084-1_20
http://dx.doi.org/10.1007/978-3-319-69084-1_21
http://dx.doi.org/10.1007/978-3-319-69084-1_21
http://dx.doi.org/10.1007/978-3-319-69084-1_22
http://dx.doi.org/10.1007/978-3-319-69084-1_22
http://dx.doi.org/10.1007/978-3-319-69084-1_23
http://dx.doi.org/10.1007/978-3-319-69084-1_24
http://dx.doi.org/10.1007/978-3-319-69084-1_24
http://dx.doi.org/10.1007/978-3-319-69084-1_25
http://dx.doi.org/10.1007/978-3-319-69084-1_25

Scalable Funding of Bitcoin Micropayment Channel Networks 361
Conrad Burchert, Christian Decker, and Roger Wattenhofer

Brief Announcement: A Self-stabilizing Algorithm for the Minimal
Generalized Dominating Set Problem. 378

Hisaki Kobayashi, Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Space-Optimal Proportion Consensus with Population Protocols 384
Gennaro Cordasco and Luisa Gargano

Brief Announcement: Asynchronous, Distributed, Optical
Mutual Exclusion . 399

Ahmed B. Mansour, Ramachandran Vaidyanathan, and Shuangqing Wei

Brief Announcement: Passive and Active Attacks on Audience Response
Systems Using Software Defined Radios . 405

Khai T. Phan, Ryan Ewing, David Starobinski, and Liangxiao Xin

Cryptocurrency Smart Contracts for Distributed Consensus
of Public Randomness . 410

Peter Mell, John Kelsey, and James Shook

TorBricks: Blocking-Resistant Tor Bridge Distribution. 426
Mahdi Zamani, Jared Saia, and Jedidiah Crandall

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 441
Ioannis Lamprou, Russell Martin, and Paul Spirakis

Bitcoin a Distributed Shared Register . 456
Emmanuelle Anceaume, Romaric Ludinard, Maria Potop-Butucaru,
and Frédéric Tronel

Broadcast Encryption with Both Temporary and Permanent Revocation 469
Dan Brownstein, Shlomi Dolev, and Niv Gilboa

Brief Announcement: Optimal Asynchronous Rendezvous for Mobile
Robots with Lights . 484

Takashi Okumura, Koichi Wada, and Yoshiaki Katayama

Brief Announcement: Space-Efficient Uniform Deployment of Mobile
Agents in Asynchronous Unidirectional Rings . 489

Masahiro Shibata, Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Erratum to: Brief Announcement: Federated Code Auditing
and Delivery for MPC . E1

Frederick Jansen, Kinan Dak Albab, Andrei Lapets, and Mayank Varia

Author Index . 495

Contents XIII

http://dx.doi.org/10.1007/978-3-319-69084-1_26
http://dx.doi.org/10.1007/978-3-319-69084-1_27
http://dx.doi.org/10.1007/978-3-319-69084-1_27
http://dx.doi.org/10.1007/978-3-319-69084-1_28
http://dx.doi.org/10.1007/978-3-319-69084-1_29
http://dx.doi.org/10.1007/978-3-319-69084-1_29
http://dx.doi.org/10.1007/978-3-319-69084-1_30
http://dx.doi.org/10.1007/978-3-319-69084-1_30
http://dx.doi.org/10.1007/978-3-319-69084-1_31
http://dx.doi.org/10.1007/978-3-319-69084-1_31
http://dx.doi.org/10.1007/978-3-319-69084-1_32
http://dx.doi.org/10.1007/978-3-319-69084-1_33
http://dx.doi.org/10.1007/978-3-319-69084-1_34
http://dx.doi.org/10.1007/978-3-319-69084-1_35
http://dx.doi.org/10.1007/978-3-319-69084-1_36
http://dx.doi.org/10.1007/978-3-319-69084-1_36
http://dx.doi.org/10.1007/978-3-319-69084-1_37
http://dx.doi.org/10.1007/978-3-319-69084-1_37

Proof-Labeling Schemes: Broadcast,
Unicast and in Between

Boaz Patt-Shamir and Mor Perry(B)

School of Electrical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
mor@eng.tau.ac.il

Abstract. We study the effect of limiting the number of different mes-
sages a node can transmit simultaneously on the verification complexity
of proof-labeling schemes (PLS). In a PLS, each node is given a label,
and the goal is to verify, by exchanging messages over each link in each
direction, that a certain global predicate is satisfied by the system con-
figuration. We consider a single parameter r that bounds the number of
distinct messages that can be sent concurrently by any node: in the case
r = 1, each node may only send the same message to all its neighbors
(the broadcast model), in the case r ≥ Δ, where Δ is the largest node
degree in the system, each neighbor may be sent a distinct message (the
unicast model), and in general, for 1 ≤ r ≤ Δ, each of the r messages is
destined to a subset of the neighbors.

We show that message compression linear in r is possible for verifying
fundamental problems such as the agreement between edge endpoints on
the edge state. Some problems, including verification of maximal match-
ing, exhibit a large gap in complexity between r = 1 and r > 1. For some
other important predicates, the verification complexity is insensitive to r,
e.g., the question whether a subset of edges constitutes a spanning-tree.
We also consider the congested clique model. We show that the crossing
technique [5] for proving lower bounds on the verification complexity can
be applied in the case of congested clique only if r = 1. Together with a
new upper bound, this allows us to determine the verification complexity
of MST in the broadcast clique.

Keywords: Verification complexity · Proof-labeling schemes ·
CONGEST model · Congested clique

1 Introduction

Similarly to classical complexity theory, studying the verification complexity of
various problems is one of the major approaches in the quest to understand the
complexity of network tasks. The basic idea, proposed by Korman et al. [22]
under the name Proof-Labeling Schemes (PLS for short), is to assume that an
oracle assigns a label to each node, so that by exchanging these labels, the
nodes can collectively verify that a certain global predicate holds (see Sect. 2
for details). The verification complexity of a predicate π is defined to be the
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 1–17, 2017.
https://doi.org/10.1007/978-3-319-69084-1 1

2 B. Patt-Shamir and M. Perry

minimal label length which suffices to verify π. This node-centric, space-based
view was generalized in subsequent work, in which it was allowed for nodes to
send different messages to different neighbors, rather than the whole local label
to all neighbors. Specifically, in [5] the verification complexity is defined to be
the minimal message-length required to verify the given predicate.

The distinction between these two models is natural and appears in other
contexts as well, like the broadcast and the unicast flavors of congested clique,
proposed by Drucker et al. [9]: in the unicast flavor, a node may send a different
message to each of its neighbors, while in the broadcast flavor, all neighbors
receive the same message. Following up on this model, Becker et al. [6] proposed
considering a spectrum of congested clique models, where a node may send up to
r distinct messages in a round, where 1 ≤ r < n is a given parameter. This model,
called henceforth mcast(r), can be motivated by observing that r can be viewed
as the number of network interfaces (NICs) a node possesses: Each interface may
be connected to a subset of the neighbors, and it can send only a single message
at a time.

Our Results. In this paper we present a few preliminary results concerning PLS
in the mcast(r) model. Our main focus is on the tradeoff between the number r
of different messages a node can send in one round and the verification complex-
ity (message length) κ. While there are problems whose verification complexity is
independent of r, we prove that the verification complexity of some fundamental
problems is highly dependent on r. First, we consider the problem ofmatching veri-
fication (mv), where every node has at most one incident edge marked, and the goal
is to verify whether the set of marks implies a well defined matching, i.e., an edge is
either marked in both endpoints or unmarked in both, and that this set is a match-
ing. In [19], among other results, it is shown that maximal matching has verifica-
tion complexity Θ(1), and that the verification complexity of maximum matching
in bipartite graphs is also Θ(1). These results implicitly assume that the subset of
edges is well defined; our results show that in fact, the main difficulty is in ensuring
that both endpoints of an edge agree on its status. This motivates our next prob-
lem that focuses on consistency. Specifically, we define the primitive problem edge
agreement (ea) as follows. Each node has a b-bit string for each incident edge, and
a state is considered legal iff both endpoints of each edge agree on the string asso-
ciated with that edge. It turns out that the arboricity of the graph, denoted α(G),
plays an important role in the verification complexity of ea (and all problems that
ea can locally be reduced to). In Theorem2, we prove that κ(ea) · r ∈ Θ(α(G)b).
Next, as a more sophisticated example, we consider the important problem of
maximum flow (mf): In Theorem 3 we show that κ(mf) · r ∈ Θ(α(G) log fmax),
where fmax is the largest flow value over an edge. In [22], a scheme in the broad-
cast model to verify that the maximum flow between a given pair of nodes s
and t is exactly k is given, with complexity O(k(log k + log n)). We prove, in
Theorem 4, that the verification complexity of this problem in the broadcast model
is O(min {α(G), k} (log k + log Δ)), which is an exponential improvement in some
cases. In addition, our upper bound scales linearly with r in the mcast(r) model.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 3

We also consider the congested clique model. To date, no lower bounds on
the verification complexity in the congested clique were known. We show that
the known technique of crossing [5] can be applied, but only in broadcast clique
(i.e., mcast(1)). We use this argument, along with a new scheme, to obtain a
tight Θ(log n + log wmax) bound for MST verification in broadcast cliques, where
wmax denotes the largest edge weight.

We note that all results translate to randomized PLS [5]. Details of the
general connection between the deterministic and randomized verification com-
plexity can be found in the full version [26].

Related Work. Drucker et al. [9] propose a local broadcast communication in
the congested clique, where every node broadcasts a message to all other nodes
in each round. Becker et al. [6] proposed, still for congested cliques, a bounded
number r of different messages a node can send in each round.

Verification of a given property in decentralized systems finds applications
in various domains, such as, checking the result obtained from the execution
of a distributed program [4,17], establishing lower bounds on the time required
for distributed approximation [8], estimating the complexity of logic required for
distributed run-time verification [18], general distributed complexity theory [16],
and self stabilizing algorithms [7,21].

The notion of distributed verification in a single round was introduced by
Korman et al. in [22]. The verification complexity of minimum spanning-trees
(MST) was studied in [20]. Constant-round schemes were studied in [19]. Ver-
ification processes in which the global result is not restricted to be the logical
conjunction of local outputs had been studied in [2,3]. The role of unique node
identifiers in local decision and verification was extensively studied in [13–15].
Proof-labeling schemes in directed networks were studied in [11], where both one-
way and two-way communication over directed edges is considered. Verification
schemes for dynamic networks, where edges may appear or disappear after label
assignment and before verification, are studied in [12]. Recently, a hierarchy of
local decision as an interaction between a prover and a disprover was presented
in [10].

Paper Organization. The remainder of this paper is organized as follows.
In Sect. 2 we formalize the model and recall some graph-theoretic concepts. In
Sect. 3 we present two general techniques that apply to the mcast(r) model.
In Sect. 4 we present results for verification of matching, edge agreement, and
max-flow. In Sect. 5 we present our results for congested cliques. We conclude
in Sect. 6 with some open questions and directions for future work. Many proofs
are omitted due to space limitation. They can be found in the full version of the
paper [26].

4 B. Patt-Shamir and M. Perry

2 Model and Preliminaries

Computational Framework and the mcast Model. Our model is derived
from the CONGEST model [27]. Briefly, a distributed network is modeled as
a connected undirected graph G = (V,E), where V is the set of nodes, E is
the set of edges, and every node has a unique identifier. In each synchronous
round every node performs a local computation, sends a message to each of its
neighbors, and receives messages from all neighbors. We denote the number of
nodes |V | by n and the number of edges |E| by m. For every node v ∈ V , let
d(v) be the degree of v. We denote by Δ(G) the maximal degree of a node in G.
We assume that the edges incident to a node v are numbered 1, . . . , d(v).

The main difference between the model considered in this paper, called
mcast(r), and CONGEST, is that in mcast(r) we are given a parameter
r ∈ N such that a node may send at most r distinct messages simultaneously.
More precisely, we assume that prior to sending messages, the neighbors of a
node are partitioned into r disjoint subsets (some of which may be empty), such
that v sends the same message to all neighbors in a subset. We emphasize that
in our model, for simplicity, r is a uniform parameter for all nodes.

Proof-Labeling Schemes in the mcast Model. A configuration Gs includes
an underlying graph G = (V,E) and a state assignment function s : V → S,
where S is a (possibly infinite) state space. The state of a node v, denoted s(v),
includes all local input to v. In particular, the state usually includes a unique
node identity ID(v) and, in the case of weighted graphs, the weight w(e) of
each incident edge e. The state of v typically include additional data whose
integrity we would like to verify. For example, node state may contain a marking
of incident edges, such that the set of marked edges constitutes a spanning tree.

Let F be a family of configurations, and let P be a boolean predicate over
F . A proof-labeling scheme consists of two conceptual components: a prover p,
and a verifier v. The prover is an oracle which, given any configuration Gs ∈ F
satisfying P, assigns a bit string �(v) to every node v, called the label of v. The
verifier is a distributed algorithm running at every node. At each node v, the
local verifier takes as input the state s(v) of v, its label �(v) and based on them
sends messages to all neighbors. Then, using as input the messages received from
the neighbors, the local state and the local label, the local verifier computes a
boolean value. If the outputs are true at all nodes, the global verifier v is said to
accept the configuration, and otherwise (i.e., at least one local verifier outputs
false), v is said to reject the configuration. For correctness, a proof-labeling
scheme Σ = (p,v) for (F ,P) must satisfy the following requirements, for every
Gs ∈ F :

– If P(Gs) = true then, using the labels assigned by p, the verifier v
accepts Gs.

– If P(Gs) = false then, for every label assignment, the verifier v rejects Gs.

Given a configuration Gs, we denote by cΣ(Gs) the vector of length |E| that con-
tains the messages sent according to the scheme Σ, and we refer to this vector as

Proof-Labeling Schemes: Broadcast, Unicast and in Between 5

the communication pattern of Σ over Gs. For an underlying graph G, we denote
by L(G) the number of legal configurations of G, and by WΣ(G) the number of
different communication patterns of Σ in G, over all legal configurations. In our
analysis, given an edge (v, u) ∈ E, we denote by Mv(e) the message over e from
v to u.

Our central measure for PLSs is its verification complexity, defined as follows.

Definition 1. The verification complexity of a proof labeling scheme Σ = (p,v)
for the predicate P over a family of configurations F is the maximal length of a
message generated by the verifier v based on the labels assigned to the nodes by
the prover p in a configuration Gs for which P(Gs) = true.

In this paper we consider PLSs in the mcast(r) model, namely we impose
the additional restriction that at most r distinct messages may be sent by a
node.

Arboricity, Degeneracy and Average Degree. The average degree of a
graph plays a central role in our study. However, graphs may have dense and
sparse regions. We therefore use the following refined concepts.

Definition 2. The arboricity of a graph G = (V,E), denoted by α(G), is defined
as the minimum number of acyclic subsets of edges that cover E. The degeneracy
of a graph G, denoted by δ(G), is defined as the smallest value i such that the
edges of G can be oriented to form a directed acyclic graph with out-degree at
most i.

The following properties are well known [24,25].

Lemma 1. For all graphs G, α(G) ≤ δ(G) < 2α(G).

Lemma 2. For a given graph G = (V,E), α(G) = max
{⌈

mH

nH−1

⌉
| VH ⊆ V,

|VH | ≥ 2
}
, where mH = |EH | and nH = |VH | over all induced subgraphs H =

(VH , EH) of G.1

Note that by Lemmas 1 and 2, the minimal number of outgoing edges in the
best orientation of a graph G is proportional to the maximal average degree over
all induced subgraphs of G.

3 Techniques for the MCAST Model

In this work, we consider problems expressible as a conjunction of edge predi-
cates, where a node may have a different input for every edge. We present two
techniques that can be used as building blocks in the design of efficient PLSs in
the mcast model.
1 Given a graph G = (V, E), the induced subgraph H = (VH , EH) over the set of nodes

VH ⊆ V satisfies that EH = E ∩ (VH × VH).

6 B. Patt-Shamir and M. Perry

The first technique, which we call minimizing orientation, reduces the number
of incident edges a node sends its input on. We orient the edges such that the
maximum out degree is minimized. Lemma 1 ensures that the maximum out
degree is bounded by 2α. Using a minimizing orientation, we can prove the
following lemma.

Lemma 3. Suppose that a verification problem (F ,P) is expressible as a con-
junction of edge predicates, each involving variables from a single pair of neigh-
bors. Then there exists a PLS Σ = (p,v) for (F ,P) in the mcast(2α) model
with verification complexity k, where k is the length of the largest local input to
an edge predicate.

Color Addressing. In the unicast model, each node receives its own message.
However, if we want to use a unicast PLS in the mcast(r) model with r < 2α,
we may need to bundle together a few messages, and hence we need to somehow
tag each part of the message with its intended recipient. Clearly this can be
done by tagging each sub-message by the unique ID of recipient, but this adds
Θ(log n) bits to each sub-message. The color addressing technique reduces this
overhead to O(log Δ). The idea is that each node need only distinguish between
its neighbors.2 We solve this difficulty by coloring the nodes so that no two
neighbors of a node get the same color. Formally, color addressing is a PLS
ΣCOL = (p,v) in the broadcast model, where the prover p first colors the nodes
so that no two nodes at distance 1 or 2 receive the same color. This is possible
using at most Δ2 + Δ + 1 ∈ O(Δ2) colors, because every node has at most Δ
neighbors and Δ2 nodes at distance 2 from it. Next, the prover assigns to every
incident edge of a node the color of the neighbor at the other end of the edge.
The verifier v at a node v broadcasts the color assigned to v by the prover. Every
node verifies that every incident edge is assigned a different color and that the
color received from every edge is the color assigned by the prover to this edge.

Clearly, ΣCOL guarantees a proper coloring as desired to use for address-
ing, and this coloring is locally verifiable. Moreover, since a color can be rep-
resented using O(log Δ) bits, we obtain local addressing with verification com-
plexity O(log Δ) in the broadcast model. We summarize in the following lemma.

Lemma 4. ΣCOL is a PLS in the broadcast model, which assigns and verifies
an O(log Δ)-bit coloring for proper addressing. The verification complexity of
ΣCOL is O(log Δ).

4 Verification Complexity Trade-Offs in the MCAST(r)
Model

In this section, we study the effect of r on the verification complexity of PLSs in
the mcast(r) model. We start with the observation that for some problems, the

2 We note that using simple port numbering requires agreement with the neighbors,
which is costly, as we prove in Theorem 2.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 7

asymptotic verification complexity is independent of r. These problems include
the deterministic verification of a spanning-tree and vertex bi-connectivity, and
the randomized verification of an MST. For each of these problems, we provide
a scheme for r = 1 with verification complexity that matches the lower bound
for r = Δ [5,22]. In contrast, there are problems for which the verification com-
plexity is sensitive to r. Specifically, we present a tight bound for the matching
verification problem in the broadcast model, which is reduced dramatically even
for r = 2. Finally, we show tight bounds for the primitive problem of edge agree-
ment and the more sophisticated application of maximum flow, which scales
linearly with r.

4.1 Verification of Matchings

In the literature, in verification problems of the form “does a subset of edges
satisfy a specified property,” it is usually assumed that the subset of edges is
well defined, i.e., for every edge e = (u, v), the local state of v indicates that e is
in the subset if and only if the local state of u indicates it. However, since edges
do not have storage, an edge set is actually represented by the local state at the
nodes, and hence consistency between neighbors is not always guaranteed.

In fact, there are problems for which the verification of consistency is the
dominant factor of the verification complexity. In particular, consider match-
ing problems: maximal matching, and maximum matching in bipartite graphs.
Both problems are known to have constant verification complexity [19]. However,
these results make the problematic assumption that the edge set in question is
well defined. We consider the matching verification problem using the following
definition.

Definition 3 (Matching Verification (MV)).
Instance: At each node v, at most one edge is marked. We use Iv(e) ∈
{true, false} to denote whether e is marked in v.
Question: Is the set M of marked edges well defined, i.e., Iv(e) = Iu(e) for
every edge e = (u, v) ∈ E, and M is a matching?

We argue that in the broadcast model, the verification complexity of this
problem is Θ(log Δ). Formally, we study the problem (Fm,mv), where Fm is
the family of connected configurations with edge indication at each node. We
obtain the following result.

Theorem 1. The verification complexity of (Fm,mv) in the broadcast model is
Θ(log Δ).

For the lower bound, we construct a set of configurations that must have
different communication patterns. The large number of configurations implies
the lower bound on message length. We use color addressing for the upper bound.

The result above says that in the broadcast model, the verification com-
plexity of the maximal matching problem and the maximum matching in bipar-
tite graphs is dominated by the consistency verification. Observe that in the

8 B. Patt-Shamir and M. Perry

mcast(2) model, the verification complexity of (Fm,mv) is O(1), by letting
every node v send on every edge e = (v, u) the bit Iv(e): only two types of
messages are needed!

We also note that for the problem of maximum matching in cycles, the asymp-
totic verification complexity is unchanged if we must verify consistency, since the
verification complexity of this problem in the broadcast model is Θ(log n) [19].

4.2 The Edge Agreement Problem

Motivated by the results for matching verification, we now formalize and study
the fundamental problem of consistency across edges.

Definition 4. (b-bit Edge Agreement (EAb)).
Instance: Each node v holds in its state a b-bit string Bv(e) for each incident
edge e.
Question: Is Bv(e) = Bu(e) for every edge e = (u, v) ∈ E?

Let F be the family of all configurations, and let α denote the arboricity of
the graph. Our first main result is the following tight trade-off between r (the
number of different messages for a node) and verification complexity of eab.

Theorem 2. Let b ∈ Ω(log Δ). For every 1 ≤ r ≤ min
{
Δ, 2b/4

}
, the verifica-

tion complexity of (F ,eab) in the mcast(r) model is Θ(
⌈

α
r

⌉
b).

This theorem states both an upper and a lower bound. We start with the
lower bound.

Lemma 5. For every 1 ≤ r ≤ min
{
Δ, 2b/4

}
, the verification complexity of any

PLS for (F ,eab) in the mcast(r) model is Ω((α
r + 1)b).

To prove Lemma 5, we prove the following claim.

Claim. Let G = (V,E) be a graph, let 1 ≤ r ≤ min
{
Δ, 2b/4

}
and consider a PLS

for (F ,eab) in the mcast(r) model. For every induced subgraph H = (VH , EH)
of G, WΣ(H) ≥ L(H).

Proof of Lemma 5: It is known that the non-deterministic two-party commu-
nication complexity of verifying the equality (EQ) of b-bit strings is Ω(b) [23,
Example 2.5]. Simulating a verification scheme for (F ,eab) on a network of one
edge, is a correct non-deterministic two-party communication protocol for EQ.
Therefore, Ω(b) is a lower bound for (F ,eab).

We now prove that Ω(α
r b) is also a lower bound for (F ,eab). Let Gs ∈ F be

a configuration with an underlying graph G = (V,E), and let H = (VH , EH) be
the densest induced subgraph of G, i.e., mH/nH ≥ mH′/nH′ for every V ′

H ⊆ V .
By Lemma 2, α = �mH/(nH − 1)�. W.l.o.g., let VH = {v1, . . . , vnH

}, and let
dH(vi) = |{(vi, vj) ∈ EH}| be the degree of node vi in H.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 9

We now show that for 1 ≤ r ≤ min
{
Δ, 2b/4

}
and any scheme Σ for (F ,eab)

with verification complexity κ < αb
4r − 2 in the mcast(r) model, it holds that

WΣ(H) < L(H). Let Σ be such a verification scheme. Then

WΣ(H) ≤
nH∏
i=1

[(
2κ

r

)
· rdH(vi)

]
(1)

≤
(

2κ · e

r

)rnH

· r2mH (2)

< 2αbnH/4 · r2mH (3)

≤ 2
b
2mH · r2mH (4)

≤ 2bmH = L(H). (5)

Inequality (1) is true since for every PLS in the mcast(r) model with verifi-
cation complexity κ, every communication pattern can be constructed by letting
each node vi choose r different messages of size κ each, and for each of its dH(vi)
neighbors, let it choose one of the r messages to send. Inequality (2) is due to
the fact that

(
x
y

) ≤ (x·e
y)y for x, y ≥ 0. Inequality (3) follows from our assump-

tion that κ < αb
4r − 2. Inequality (4) follows from Lemma 2 which implies that

α ≤ 2mH/nH , and Inequality (5) from our assumption that r ≤ 2b/4.
Therefore we may conclude that if κ < αb

4r − 2, then, by Claim 4.2, Σ is not
a correct verification scheme for (F ,eab). This concludes the proof of the lower
bound.

Next, we turn to the upper bound. To this end we define a more general problem
as follows.

Definition 5 (b-bit Edge ψ (Eψb)).
Instance: Each node v holds in its state a b-bit string Bv(e) for each incident
edge e.
Question: Is ψb(Bv(e), Bu(e)) = true for every edge e = (u, v), where ψb is
a given symmetric predicate of two b-bit strings, i.e., ψb : {0, 1}b × {0, 1}b →
{true, false} and ψ(s, s′) = ψ(s′, s) for all s, s′ ∈ {0, 1}b?

Lemma 6. For every 1 ≤ r < 2α, there exists a PLS for (F ,eψb) in the
mcast(r) model with verification complexity O(α

r (b + log Δ)), and for every
2α ≤ r ≤ Δ, there exists a PLS for (F ,eψb) in the mcast(r) model with verifi-
cation complexity O(b).

We sketch the proof of Lemma 6. For 1 ≤ r < 2α, we use minimizing orientation
and color addressing. The idea is to partition the outgoing edges into r groups,
and send the input strings of every group in one message, indicating the color of
the destination of each string. Overall, every message consists of at most 2α/r
pairs of size b + O(log Δ) each. For 2α ≤ r ≤ Δ, by Lemma 3 there exists a PLS
Σ′ = (p′,v′) for (F ,eψb) in the mcast(r) model with verification complexity b.

10 B. Patt-Shamir and M. Perry

eab is a special case of eψb, where ψ is the equality predicate. Therefore,
Lemma 6 gives a tight upper bound for (F ,eab) for the case b ∈ Ω(log Δ). This
concludes the proof of Theorem 2.

We note that Theorem 2, in conjunction with the general connection between
the deterministic and randomized verification complexity [26], gives the following
corollary.

Corollary 1. Let b ∈ Ω(log Δ). For every 1 ≤ r ≤ min
{
Δ, 2b/4

}
, the random-

ized verification complexity of (F ,eab) in the mcast(r) model is Θ(log(
⌈

α
r

⌉
b)).

4.3 An Advanced Example: The Maximum Flow Problem

In this section we consider a more sophisticated problem, namely Maximum Flow
in the context of the mcast(r) model. The best previously known result [22] was
for verification of “k-flow”: the goal is to verify that the maximum flow between
a given pair of nodes is exactly k. The verification complexity of the scheme in
the broadcast model of [22] is O(k(log k + log n)). In Theorem 4, we show an
improvement of this result and a generalization to the mcast(r) model.

First, we solve a slightly different problem, formalized as follows. Let Fst

be the family of configurations of graphs, where a graph in Fst has two distinct
nodes denoted s and t called source and sink, respectively, and a natural number
c(e) called the capacity associated with each edge e. The mf problem is defined
over the family of configurations Fst as follows.

Definition 6 (Maximum Flow (MF)).
Instance: A configuration Gs ∈ Fst, where each node v has an integer f(v, u)
for every neighbor u.
Question: Interpreting f(v, u) as the amount of flow from v to u (f(v, u) < 0
means flow from u to v), is f a maximum flow from s to t?

Recall that f is a legal flow iff it satisfies the following three conditions (see, e.g.,
[1]).

– Anti symmetry: for every (v, u) ∈ E, f(v, u) = −f(u, v).
– Capacity compliance: for every (v, u) ∈ E, |f(v, u)| ≤ c(v, u).
– Flow conservation: for every node v ∈ V \ {s, t},

∑
u∈V f(v, u) = 0.

If all three conditions hold, then, by the max-flow min-cut theorem, f is maxi-
mum iff there is a saturated cut.

We denote by fmax the maximal flow amount over all edges of G (note that
fmax need not be polynomial in n). Also, for a bit string x = x0x1 · · · xk, let
x̄ =

∑k
i=0 xi2i.

Theorem 3. Let log fmax ∈ Ω(log n). There exists a constant c > 1 such that
for every 1 ≤ r ≤ min

{
α/c, 4

√
fmax

}
, the verification complexity of (Fst,mf) in

the mcast(r) model is Θ(log(fmax)α/r).

Again, we start with the lower bound.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 11

Lemma 7. Let log fmax ∈ Ω(log n). There exists a constant c > 1 such that
for every 1 ≤ r ≤ min

{
α/c, 4

√
fmax

}
, the verification complexity of any PLS for

(Fst,mf) in the mcast(r) model is Ω(log(fmax)α/r).

We note that the counting argument used for eab (Lemma 5) cannot be
applied to this problem. To prove the lower bound for mf, we show a non-trivial
reduction from a problem in (F ,eab) to a problem in (Fst,mf).

Lemma 8. For every 1 ≤ r < 2α, there exists a PLS for (Fst,mf) in the
mcast(r) model with verification complexity O(α

r (log fmax + log Δ)), and for
every 2α ≤ r ≤ Δ, there exists a PLS for (Fst,mf) in the mcast(r) model with
verification complexity O(log fmax).

The scheme used in the proof of Lemma 8 consists of two parts. First, a scheme
for ψ agreement, where ψ(x, y) ≡ (x = −y), which, we argue, is enough in order
to verify that the flow is legal. The second part is verifying a saturated s-t cut.
This can be done using one bit at each node.

For log fmax ∈ Ω(log n), Lemma 8 gives a tight upper bound for (Fst,mf)
which concludes the proof of Theorem 3.

Consider now the k-mf problem as defined in [22] over the family of config-
urations Fst.

Definition 7 (k-Maximum Flow (k-MF)).
Instance: A configuration Gs ∈ Fst.
Question: Is the maximum flow between s and t in Gs is exactly k?

We give an upper bound for (Fst, k -mf) in the mcast(r) model, which gen-
eralizes and improves the previous bound.

Theorem 4. For every 1 ≤ r < 2α, there exists a PLS for (Fst, k-mf) in the
mcast(r) model, with verification complexity O

(
min{α,k}

r (log k + log Δ)
)
, and

for every 2α ≤ r ≤ Δ, there exists a PLS for (Fst, k-mf) in the mcast(r) model,
with verification complexity O(log k).

Proof: In a verification scheme for (Fst, k -mf), the prover can assign the flow
values f(v, u) for every edge (v, u). W.l.o.g, assume that f does not contain
cycles of positive flow. In this case, fmax ≤ k and, since the flow value over
each edge is an integer, the number of incident edges of every node v carrying
non-zero flow is at most 2k. By Lemma 8, and the observation that it is sufficient
that every node verifies the value of flow only on edges with f(v, u) �= 0, the
upper bounds follow.

To be precise, the problem solved in [22] required in addition that every node
holds the value k in its state. Verifying that all nodes hold the same value k is
simply an additive log k factor to message length – every node sends its value
and verifies that all its neighbors have the same value. We argue in the following
lemma, that Ω(log k) is a lower bound for (Fst, k -mf) verification even if k is
known to all nodes.

12 B. Patt-Shamir and M. Perry

Lemma 9. For every 1 ≤ k ≤ 2Θ(n), the verification complexity of any PLS
for (Fst, k-mf) is Ω(log k), even in the unicast model and for constant degree
graphs.

We use a kind of crossing argument between a family of different configura-
tions of the same structure, to show that a scheme with verification complexity
less than log k

4 is never a correct scheme for all configurations in the constructed
family. Hence, the lower bound follows.

By Theorem 4, this lower bound is tight for 2α ≤ r ≤ Δ, and the following
theorem holds.

Theorem 5. For every 1 ≤ k ≤ 2Θ(n) and every 2α ≤ r ≤ Δ, the verification
complexity of (Fst, k-mf) in the mcast(r) model is Θ(log k).

5 Verification in Congested Cliques

In the congested clique model, the communication network is a fully connected
graph over n nodes (i.e., an n-clique). Given an input graph G = (V,E) with
n = |V |, the nodes of G are mapped 1–1 to the nodes of the clique, and the
state of each node contains a bit for each port, indicating whether the edge to
that port is in E or not, and, if the edge is present and G is weighted, the
weight of the edge. We assume that the part in the state that specifies whether
the edge connected to this port is in E is reliable: since verification is done with
respect to the given graph as input, there is no way to verify its authenticity, but
only whether the combination of input and output satisfies the given predicate.
Moreover, we assume that the input is consistent, in the sense that the state at
node v indicates that (v, u) is an edge in E (possibly with some weight w), if
and only if so does the state of u (namely edge agreement on the input graph is
guaranteed).

5.1 Crossing in Congested Cliques

In what follows, we say that an edge is oriented to indicate a specific order over
its endpoints.

Definition 8 (Independent Edges). Let G = (V,E) be a graph and let e1 =
(v1, u1) and e2 = (v2, u2) be two oriented edges of G. The edges e1 and e2 are
said to be independent if and only if v1, u1, v2, u2 are four distinct nodes and
(v1, u2), (v2, u1) /∈ E.

The following definition is illustrated in Fig. 1.

Definition 9 (Crossing [5]). Let G = (V,E) be a graph, let e1 = (v1, u1) and
e2 = (v2, u2) be two independent oriented edges of G, and for i ∈ {1, 2}, let pi

and qi be the port numbers of ei at vi and ui respectively. The crossing of e1 and
e2 in G, denoted by G(e1, e2), is the graph obtained from G by replacing e1 and
e2 with the edges e′

1 = (v1, u2) and e′
2 = (v2, u1) so that e′

1 connects port p1 at
v1 and port q2 at u2 and e′

2 connects port p2 at v2 and port q1 at u1.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 13

Fig. 1. An illustration of the crossing oper-
ation on a clique network. Solid edges
are input graph edges, and dashed edged
are communication-only edges. (a) Edges
e1 = (v1, u1) and e2 = (v2, u2) are two
independent oriented edges of an input
graph G. (b) The subgraph induced by
nodes v1, u1, v2 and u2 in G(e1, e2).

Consider an input graph G =
(V,E) in the clique, assume that
e1, e2 ∈ E are independent edges
and let G(e1, e2) = (V,E′). Note that
crossing a graph over a clique net-
work does not result in a change of
state: Due to the port preservation of
the crossing operation, for every node
v ∈ V and every port 0 ≤ i ≤ n−1, the
edge (v, u) on port number i in G sat-
isfies (v, u) ∈ E if and only if the edge
(v, u′) on port number i in G(e1, e2)
satisfies (v, u′) ∈ E′.

Whether we can prove a lower bound for verification in the congested clique
for r > 1 is still an open question. However, for the broadcast clique model (i.e.,
r = 1), it turns out that we can. The following lemma is the key to proving lower
bounds for PLSs in the broadcast clique.

Lemma 10. Let F be a family of configurations, let P be a boolean predicate
over F , and let Σ be a PLS for (F ,P) in the broadcast clique model with ver-
ification complexity κ. Suppose that there is a configuration Gs ∈ F such that
P(Gs) = true and G contains q pairwise independent oriented edges e1, . . . , eq.
If κ < log q

2 , then there are 1 ≤ i < j ≤ q such that Gs(ei, ej) is accepted by Σ.

In the proof of this lemma, we show that in the broadcast clique, if verifica-
tion complexity is too small, then we can apply the pigeonhole principle on the
crossing of every two edges from the set. We get that there must be two edges
such that the local view of all nodes is the same for the original input graph and
the crossed graph. Therefore, we conclude that with the same label assignment,
both configurations (original and crossed) result in the same output.

We use the following corollary of Lemma 10 to lower-bound verification com-
plexity of broadcast clique PLSs.

Corollary 2. Let F be a family of configurations, and let P be a boolean pred-
icate over F . If there is a configuration Gs ∈ F satisfying that P(Gs) = true
and G contains q pairwise independent oriented edges e1, . . . , eq such that for
every 1 ≤ i < j ≤ q it holds that P(Gs(ei, ej)) = false, then the verification
complexity of any deterministic PLS for (F ,P) in the broadcast clique model is
Ω(log q).

Note that we essentially cross two pairs of edges in the crossing operation:
one pair of edges in E, and one pair of edges in Ē. These two pairs are uniquely
associated with each other in a way that if we assume a PLS in the mcast(2)
clique model, then we would not be able to apply the pigeonhole principle even
with 1-bit messages. To see why this is true, consider any set of independent
oriented edges (v1, u1), . . . , (vq, uq). For every i �= j, both edges (vi, uj), (vj , ui) ∈
Ē are associated only with the pair of edges (vi, ui), (vj , uj) ∈ E. Therefore, with

14 B. Patt-Shamir and M. Perry

a PLS in the mcast(2) clique model, it is possible that Mvi
(uj) �= Mvj

(ui) for
every i �= j independently of other pairs. Hence, the crossing of any two edges
may change the local view of at least one node. Therefore, the crossing technique
can not be applied for every r > 1 in the congested clique.

5.2 Minimum Spanning-Tree Verification

In this section we illustrate the use of Corollary 2 and prove tight bounds for the
verification complexity of the Minimum Spanning-Tree (MST) problem. Recall
that an MST of a weighted graph G is a spanning tree of G whose sum of all
its edge-weights is minimum among all spanning trees of G. In particular, in
the clique, there is a fully connected communication network, a weighted input
graph G = (V,E,w) where E is a subset of communication edges, w : E → N is
the edge weight assignment, and a subset T ⊆ E is specified as the MST. It is
important to notice that all specifications of edge subsets are local in the sense
that every node v ∈ V has n− 1 ports and in its state there is a specification for
every edge ei on port number i whether ei ∈ E and whether ei ∈ T . According
to our assumption on the clique model, the input graph G is given in a reliable
way, i.e., an edge (v, u) is considered by v to be in E if and only if it is considered
by u to be in E. However, this consistency has to be verified for the edges of T .
In addition, since the communication network is fully connected and does not
depend on the input graph G, we also consider the case where G is disconnected.
In this case, we define the MST as the set of minimum spanning-trees of all
connected components of G.

Let Fwmax be the family of all weighted configurations (not necessarily con-
nected) with maximum weight wmax. Formally, if e is an edge of the underlying
weighted graph of a configuration Gs ∈ Fwmax , then w(e) ≤ wmax. Edge weights
are assumed to be known at their endpoints.

Theorem 6. The verification complexity of (Fwmax ,MST) in the broadcast
clique model is Θ(log n + log wmax).

The lower bound is proved in two parts. To show Ω(log n) we use Corollary 2
on the input graph which is a path where all the edges are in T . The crossing of
every two independent edges of the path results in a graph with a cycle compo-
nent, in particular, not a tree. The Ω(log wmax) part is proven by a variation of
the Ω(log wmax) proof in [22], which holds also for the broadcast clique model.
The tight upper bound is obtained by a scheme for which we give a short sketch
here. The prover roots the tree and give every node a pointer to its parent. For
verification, every node sends the information about the edge connecting it to
its parent – IDs of the endpoints and the weight of the edge. This enables every
node v to collect all the tree structure, and verify that if an incident edge (v, u)
is not in the tree then its weight is not smaller than every edge in the unique
path between v and u in the tree. If all nodes verify this property, it means that
all edges are consistent with the “red rule”, i.e., the heaviest edge of every cycle
is not in the MST.

Proof-Labeling Schemes: Broadcast, Unicast and in Between 15

6 Conclusion

In this paper we studied the mcast(r) model from the perspective of verifica-
tion. This angle seems particularly convenient, because it involves a single round
of message exchange. (If multiple rounds are allowed, one has to consider the
possibility of reconfiguring the neighbor partitions: is it allowed to partition the
neighbors anew in each round, and if so, at what cost?). We focus on the rela-
tion between the number of different messages of each node and the verification
complexity of proof-labeling schemes. We gave tight bounds on the verification
complexity of edge agreement and max flow in the mcast(r) model. We have
shown that in the restrictive broadcast model, a well defined matching is harder
to verify than the maximality of a given matching, and that it is possible to
obtain lower bounds on the verification complexity in congested cliques. Many
interesting questions remain open. We list a few below.

– Develop a theory for a restricted number of interface cards (NICs). The num-
ber of NICs limits the number of messages that can be simultaneously trans-
mitted. In this paper we looked only at a simple case of one round of commu-
nication. We believe that developing a tractable and realistic model in which
the number of NICs is a parameter is an important challenge.

– As mentioned, in multiple round algorithms, dynamic reconfigurations can be
exploited to convey information. It seems that an interesting challenge would
be to account for dynamic reconfigurations.

– We considered a model in which a single parameter r is used to indicate the
restriction of all nodes. What can be said about a model in which every node
has its own restriction?

– We have given examples of problems that have a linear improvement in veri-
fication complexity as a function of r, and on the other hand, we have given
examples of problems that are not sensitive at all to r. Can a characterization
of problems be shown, according to their sensitivity of verification complexity
to r?

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Engel-
wood Cliffs (1993)

2. Arfaoui, H., Fraigniaud, P., Ilcinkas, D., Mathieu, F.: Distributedly testing cycle-
freeness. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 15–28.
Springer, Cham (2014). doi:10.1007/978-3-319-12340-0 2

3. Arfaoui, H., Fraigniaud, P., Pelc, A.: Local decision and verification with bounded-
size outputs. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M.,
Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 133–147. Springer, Cham
(2013). doi:10.1007/978-3-319-03089-0 10

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: 32nd Symposium on Foundations of Computer Science (FOCS),
pp. 268–277. IEEE (1991)

http://dx.doi.org/10.1007/978-3-319-12340-0_2
http://dx.doi.org/10.1007/978-3-319-03089-0_10

16 B. Patt-Shamir and M. Perry

5. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: Proceedings of 34th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 315–324 (2015)

6. Becker, F., Anta, A.F., Rapaport, I., Rémila, E.: The effect of range and bandwidth
on the round complexity in the congested clique model. In: Dinh, T.N., Thai, M.T.
(eds.) COCOON 2016. LNCS, vol. 9797, pp. 182–193. Springer, Cham (2016).
doi:10.1007/978-3-319-42634-1 15

7. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent
self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol.
8756, pp. 18–32. Springer, Cham (2014). doi:10.1007/978-3-319-11764-5 2

8. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

9. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model.
In: Proceedings of 2014 ACM Symposium on Principles of Distributed Computing,
PODC 2014, pp. 367–376. ACM, New York (2014)

10. Feuilloley, L., Fraigniaud, P., Hirvonen, J.: A hierarchy of local decision. In: 43rd
International Colloquium on Automata, Languages, and Programming (ICALP
2016), pp. 118:1–118:15. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

11. Foerster, K.-T., Luedi, T., Seidel, J., Wattenhofer, R.: Local checkability, no strings
attached. In: Proceedings of 17th International Conference on Distributed Com-
puting and Networking, ICDCN 2016, pp. 21:1–21:10. ACM, New York (2016)

12. Foerster, K.-T., Richter, O., Seidel, J., Wattenhofer, R.: Local checkability in
dynamic networks. In: Proceedings of 18th International Conference on Distrib-
uted Computing and Networking, ICDCN 2017, pp. 4:1–4:10. ACM, New York
(2017)

13. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: Proceedings of 2013 ACM Symposium on Principles of
Distributed Computing, PODC 2013, pp. 157–165. ACM, New York (2013)

14. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers
on local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS
2012. LNCS, vol. 7702, pp. 224–238. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35476-2 16

15. Fraigniaud, P., Hirvonen, J., Suomela, J.: Node labels in local decision. In: Schei-
deler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol.
9439, pp. 31–45. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2 3

16. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

17. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free
computing. Distrib. Comput. 26(4), 223–242 (2013)

18. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B.,
Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Cham (2014).
doi:10.1007/978-3-319-11164-3 9

19. Göös, M., Suomela, J.: Locally checkable proofs. In: 30th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 159–168 (2011)

20. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
trib. Comput. 20, 253–266 (2007)

21. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: 30th Annual ACM Sympo-
sium on Principles of Distributed Computing (PODC), pp. 311–320 (2011)

http://dx.doi.org/10.1007/978-3-319-42634-1_15
http://dx.doi.org/10.1007/978-3-319-11764-5_2
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-642-35476-2_16
http://dx.doi.org/10.1007/978-3-319-25258-2_3
http://dx.doi.org/10.1007/978-3-319-11164-3_9

Proof-Labeling Schemes: Broadcast, Unicast and in Between 17

22. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

23. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

24. Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond.
Math. Soc. s1–36(1), 445–450 (1961)

25. Nash-Williams, C.S.A.: Decomposition of finite graphs into forests. J. Lond. Math.
Soc. s1–39(1), 12 (1964)

26. Patt-Shamir, B., Perry, M.: Proof-labeling schemes: broadcast, unicast and in
between. CoRR, abs/1708.06947 (2017)

27. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

Self-stabilizing Rendezvous of Synchronous
Mobile Agents in Graphs

Fukuhito Ooshita1(B), Ajoy K. Datta2, and Toshimitsu Masuzawa3

1 Graduate School of Information Science,
Nara Institute of Science and Technology, Ikoma, Japan

f-oosita@is.naist.jp
2 Department of Computer Science, University of Nevada, Las Vegas, USA

3 Graduate School of Information Science and Technology,
Osaka University, Suita, Japan

Abstract. We investigate self-stabilizing rendezvous algorithms for two
synchronous mobile agents. The rendezvous algorithms make two mobile
agents meet at a single node, starting from arbitrary initial locations and
arbitrary initial states. We study deterministic algorithms for two syn-
chronous mobile agents with different labels but without using any white-
board in the graph. First, we show the existence of a self-stabilizing ren-
dezvous algorithm for arbitrary graphs by providing a scheme to trans-
form a non-stabilizing algorithm to a self-stabilizing one. However, the
time complexity of the resultant algorithm is not bounded by any func-
tion of the graph size and labels. This raises the question whether there
exist polynomial-time self-stabilizing rendezvous algorithms. We give
partial answers to this question. We give polynomial-time self-stabilizing
rendezvous algorithms for trees and rings.

Keywords: Mobile agents · Self-stabilization · Rendezvous · Gathering

1 Introduction

1.1 Background

In the rendezvous problem, two mobile agents (or simply, agents) initially located
at different nodes must eventually meet at a single node. If the number of agents
is more than two, the problem is called the gathering problem. Mobile agents
may be software programs that can autonomously move in a distributed system,
or robots that can move in a real world. The reason to achieve a rendezvous or
gathering may be to share information previously collected by each mobile agent,
or to divide and assign tasks to agents. The rendezvous and gathering problems
are fundamental problems of mobile agents, and many algorithms have been
proposed on various models [16].

This work was supported by JSPS KAKENHI Grant Numbers 26280022 and
26330084.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 18–32, 2017.
https://doi.org/10.1007/978-3-319-69084-1 2

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 19

Since agents move around different places in a distributed system or a real
world, they are exposed to various faults. To overcome such faults, recently some
attempts have been made to design fault-tolerant rendezvous algorithms. Some
notable fault-tolerant algorithms are delay faults [3], Byzantine faults [2,9,20],
and crash faults [17].

In this paper, we focus on transient faults such as temporal memory cor-
ruption and erroneous initialization. To tolerate such faults, we develop self-
stabilizing rendezvous algorithms. An algorithm is called self-stabilizing [11] if,
starting from an arbitrary initial configuration, the system eventually reaches a
legitimate configuration. Self-stabilizing rendezvous algorithms guarantee that
even if each mobile agent starts from an arbitrary location and an arbitrary
initial state, two agents will eventually meet at a single node. From this prop-
erty, even when two agents become inconsistent due to transient faults, they can
eventually achieve a rendezvous.

1.2 Related Work

The rendezvous and gathering problems have been extensively studied with var-
ious assumptions [16]. Various solutions are also considered to reduce various
costs, e.g., time, number of moves, and memory requirements.

For fault-free systems, many rendezvous algorithms have been proposed for
two synchronous agents. To achieve a rendezvous in symmetric graphs, it is neces-
sary to make some assumptions to break the symmetry. In [8,14,19], rendezvous
algorithms for arbitrary graphs were proposed on the assumption that two agents
have different labels. For the case of no different labels, memory-efficient ren-
dezvous algorithms were proposed for trees [5,12] and arbitrary graphs [4] on
the assumption that two agents start from some non-symmetric locations.

Recently fault-tolerant algorithms for agents are being explored. Chalopin
et al. [3] proposed algorithms tolerant to delay faults, which prevent an agent
from moving for some rounds. Dieudonné et al. [9] and Bouchard et al. [2] pro-
posed Byzantine-tolerant algorithms, in which all correct agents meet at a single
node even if some agents behave arbitrarily. Tsuchida et al. [20] reduced the time
complexity of Byzantine-tolerant algorithms by assuming a whiteboard (a node
memory where agents can leave information) and an authentication mechanism.
Pelc [17] studied crash faults for systems such that agents can move at different
speeds.

A few self-stabilizing algorithms have been proposed for mobile agents
[1,15]. Blin et al. [1] studied self-stabilizing naming and leader election, and
Masuzawa and Tixeuil [15] studied self-stabilizing gossiping. Since an algorithm
proposed in [15] guarantees that agents can meet each other, the algorithm also
solves the rendezvous problem of two agents. However, unlike this work, these
algorithms assume whiteboards where agents can leave information in nodes.

In a different context, gathering of oblivious mobile robots has been thor-
oughly studied in planes [10,18] and in graphs [6,7,13]. Since oblivious robots
do not have memories, the algorithms are almost self-stabilizing. However, differ-

20 F. Ooshita et al.

ent from our work, these algorithms assume that a robot can obtain the locations
of all other robots instantaneously.

1.3 Our Contributions

In this paper, we give several self-stabilizing rendezvous algorithms for graphs.
We make some very common assumptions. Two agents have different labels �1
and �2, behave synchronously, can start at different times, and cannot leave any
information in nodes. The graph size (i.e., the number of nodes) is denoted by
n, and it is unknown to agents.

First, we show the existence of a self-stabilizing rendezvous algorithm for arbi-
trary graphs. We show the proposition by designing a scheme to transform a non-
stabilizing rendezvous algorithm to a self-stabilizing one. Since non-stabilizing
rendezvous algorithms for arbitrary graphs are available in [8,14,19], this scheme
gives a self-stabilizing rendezvous algorithm. However, the time complexity (i.e.,
the time required to achieve a rendezvous after both agents start the algorithm)
is not bounded by any function of n, �1, or �2. This raises the question whether
there exist polynomial-time self-stabilizing rendezvous algorithms.

Next, we give partial answers to the above question. That is, we give polyno-
mial time self-stabilizing rendezvous algorithms for trees and rings. For trees,
we give a self-stabilizing rendezvous algorithm with the time complexity of
O(n · min{|�1|, |�2|}) rounds, which is a polynomial of the graph size and the
length of the smaller label. For rings, we give a self-stabilizing rendezvous algo-
rithm with the time complexity of O(n�1�2) rounds, which is a polynomial of
the number of nodes and the two labels.

1.4 Outline

In Sect. 2, we present the computing model and the problem we consider in this
paper. In Sect. 3, we show the existence of a self-stabilizing rendezvous algorithm
for arbitrary graphs. We give polynomial-time self-stabilizing rendezvous algo-
rithms for trees and rings in Sects. 4 and 5, respectively. In Sect. 6, we briefly
discuss an extension of our proposed algorithms to gathering of more than two
agents. Concluding remarks are presented in Sect. 7.

2 Preliminaries

2.1 Network and Agents

A network is modeled by a connected undirected graph G = (V,E), where V is
a set of nodes and E is a set of communication links. The graph size is denoted
by n = |V |. The degree of node v is defined as the number of incident links
of v, and is denoted by degv. A node v is a neighbor of w if (v, w) ∈ E holds.
A set of neighbors of v is denoted by Nv, i.e., Nv = {w|(v, w) ∈ E}. Nodes
are anonymous, i.e., they do not have unique labels (or identifiers). On the

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 21

other hand, each link incident to node v is numbered locally at v by bijection
λv : {(v, w)|w ∈ Nv} → {1, 2, . . . , degv}. Note that λv(v, u) �= λv(v, w) holds for
distinct neighbors u and w of v. The numbering function is independent of that
of other nodes. For a link (v, w), λv(v, w) �= λw(v, w) may hold. We say λv(v, w)
is a port number (or port) of link (v, w) at node v.

There exist two agents a1 and a2 in the network. We assume that they start
their actions from two different nodes. Every agent has its own memory, and
they move with their memory. On the other hand, an agent cannot leave any
information in any node. Each agent ai is assigned a unique label, denoted by �i.
We define |�| as the length of label �, i.e., |�| = �log ��. An agent knows its own
label, but does not know the label of the other agent. An agent can move from
a node to its neighbor by choosing an outgoing port. That is, when an agent is
at v and moves via port p, it moves to node w such that p = λv(v, w) holds.
When the agent reaches w, it can read the incoming port λw(v, w). Agents know
neither n nor the upper bound of n.

Each agent is modeled as a state machine (S, δ). The first element S is a
set of agent states, where each agent state is determined by the values of its
variables in its memory. We assume that the memory of agents is unbounded,
that is, S could be an infinite set. The second element δ is a deterministic state
transition function, which decides the behavior of an agent. The input of δ is the
current agent state, the label of the agent, the degree of the current node, and
the incoming port. The output of δ is the next agent state, whether the agent
stays or leaves, and the outgoing port if the agent leaves.

Two agents spontaneously start an algorithm possibly at different times.
After agents start an algorithm, they execute in synchronous rounds. That is, if
an agent decides to move to a neighbor in a round, it completes the movement
before the beginning of the next round. If agent ai starts before aj , we say ai

is the first agent and aj is the second agent. The first agent does not meet the
second agent before the second agent starts the algorithm.

2.2 Self-stabilizing Rendezvous

The goal of the rendezvous problem is to make two agents meet at a single node,
i.e., two agents stay at the same node at the same time. As it is often assumed
in the literature in the synchronous setting, two agents cannot meet or notice
that when they move through the same link in the opposite directions. In this
paper, we solve the rendezvous problem in a self-stabilizing manner. That is,
even if agents start an algorithm from an arbitrary (inconsistent) initial state,
they eventually meet at a single node. We assume that, when two agents stay
at the same node at the same time, they can notice this fact. Thus, they can
notice the completion of the rendezvous problem and terminate the algorithm.
We define the time complexity as the number of rounds required to achieve a
rendezvous after the second agent starts an algorithm.

22 F. Ooshita et al.

3 A Self-stabilizing Rendezvous Algorithm for Arbitrary
Graphs

In this section, we show the existence of a self-stabilizing rendezvous algorithm
for arbitrary graphs. We present a scheme to transform a non-stabilizing ren-
dezvous algorithm to a self-stabilizing one. As described in Sect. 1, many non-
stabilizing rendezvous algorithms are proposed in literature [8,14,19]1. In par-
ticular, algorithms in [14,19] guarantee that two agents achieve a rendezvous
in a polynomial time of the graph size and labels. Let Alg be such a non-
stabilizing rendezvous algorithm and Alg(�) be the procedure that the agent
with label � executes in algorithm Alg. The algorithm guarantees that, when
two agents execute Alg(�1) and Alg(�2) from their designated initial states, they
eventually meet at a single node. In addition, the time required to achieve a ren-
dezvous is bounded by function F of the graph size and labels, i.e., two agents
meet at a single node in F (n, �1, �2) rounds after the second agent starts the
algorithm. For example, we have F (n, �1, �2) = Õ(n15 + (min{|�1|, |�2|})3) and
F (n, �1, �2) = Õ(n5 · min{|�1|, |�2|}) for the algorithms in [14,19], respectively.

We construct a self-stabilizing rendezvous algorithm by using Alg. The
pseudocode is given in Algorithm 1. This algorithm consists of two simple ideas.
First, since each agent may start Alg from an arbitrary initial state, it breaks
rounds into multiple phases and resets variables for Alg in the beginning of
each phase. After two agents reset their states, if both agents execute Alg for
F (n, �1, �2) rounds without resetting, they can achieve a rendezvous. To achieve
this, each agent doubles the duration of a phase whenever it starts a new phase.
So, the duration of a phase eventually becomes sufficiently long and two agents
can achieve a rendezvous.

Algorithm 1. SSgraph
Variables
1: var k; // the current phase number
2: var h; // the current round number in the current phase
3: var var; // variables for Alg
Behavior of Agent ai in each round
4: if another agent stays at the same node then
5: terminate;
6: if h ≥ 2k then
7: k = k + 1; h = 0; initialize var; // start a new phase
8: end if
9: // execute the k-th phase

10: h = h + 1;
11: execute the h-th round of Alg(�i);

1 Some algorithms in literature may be actually self-stabilizing. However, since their
self-stabilizing property is not proven explicitly, we regard them as non-stabilizing
algorithms.

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 23

Theorem 1. Algorithm SSgraph is a self-stabilizing rendezvous algorithm for
arbitrary graphs.

Proof. Let r0 be the first round such that both agents reset Alg at least once.
Assume that, in round r0, a1 executes the h1-th round of the k1-th phase and
a2 executes the h2-th round of the k2-th phase. Without any loss of generality,
we assume that k1 > k2 or k1 = k2 ∧ h1 ≥ h2. Let rd =

∑k1
h=k2

2h. From the
algorithm, for each k ≥ k1, agent a2 starts the k-th phase at most rd rounds
later than a1.

Let k∗ be the minimum k such that k > k1 and rd + F (n, �1, �2) ≤ 2k holds.
Since a2 starts the k∗-th phase at most rd rounds later than a1 and the duration
of the k∗-th phase is 2k∗

, both agents simultaneously execute the k∗-th phase
for at least F (n, �1, �2) rounds after a2 starts the k∗-th phase. Therefore, a1 and
a2 can achieve a rendezvous in the k∗-th phase or earlier.
�
Remark 1. In the model of this paper, when an agent enters a node, it can obtain
the incoming port number (i.e., the port number at which it enters the node).
However, since an algorithm in [19] does not use the incoming port number,
SSgraph based on this algorithm also does not use the incoming port number.
This means a self-stabilizing rendezvous algorithm exists even when agents can-
not obtain the incoming port number.

Unfortunately the time complexity of Algorithm SSgraph is not bounded in
spite of the fact that non-stabilizing algorithms in [14,19] achieve a rendezvous
in polynomial time from some designated initial states. This is because every
non-stabilizing rendezvous algorithm uses an estimation of the graph size and
the time complexity depends on the estimation. To explain the details, we give
a common behavior of every non-stabilizing rendezvous algorithm. In such an
algorithm, agents use a variable, say est, to store an estimated graph size. Ini-
tially agents store a small value in est, and behave as if the graph size is at
most est. The number of rounds depends on est. If the actual graph size is at
most est, agents achieve a rendezvous. If agents do not achieve a rendezvous,
they increase est gradually. Eventually, est exceeds the actual graph size, and at
that time agents achieve a rendezvous. In non-stabilizing algorithm, est does not
become so large, and hence the time complexity is bounded by some function
of n and other parameters. However, in self-stabilizing algorithms, agents may
start the algorithm from an initial state such that est is much higher than n.
In this case, the number of required rounds cannot be bounded by any function
of n and other parameters. If variable k in SSgraph is large, agents can execute
such an algorithm for a long time.

Remark 2. Note that Algorithm SSgraph requires an unbounded memory. How-
ever, if agents know the upper bound of the graph size n, we can obtain a simple
self-stabilizing algorithm that uses a bounded memory. Let N be the known
upper bound of the graph size. We consider a non-stabilizing rendezvous algo-
rithm Alg such that F (n, �1, �2) depends on only n and min{�1, �2} like [14,19].
In this case, each agent ai can compute the upper bound of F (n, �1, �2), say F ∗

i .

24 F. Ooshita et al.

To transform Alg to a self-stabilizing algorithm, agent ai repeatedly executes a
phase in which it executes Alg for 2F ∗

i rounds and then initializes its variables.
By this behavior, both agents can execute Alg for min{F ∗

1 , F ∗
2 } rounds without

resetting, and thus they can achieve a rendezvous. Since agents execute Alg for
a bounded number of rounds, the required memory is bounded. Note that the
time complexity depends on N , which may be much higher than n.

Since the time complexity of SSgraph is unbounded, we need a self-stabilizing
rendezvous algorithm with a polynomial time complexity. In the following sec-
tions, we give such self-stabilizing rendezvous algorithms for trees and rings.

4 A Polynomial-Time Self-stabilizing Rendezvous
Algorithm for Trees

In this section, we give a polynomial time self-stabilizing rendezvous algo-
rithm SStree for trees. We develop the algorithm by extending algorithm
Extend-Labels [8], which realizes rendezvous in a two-node graph. In
Extend-Labels, for each round, each agent decides to move or stay based on
its label. Algorithm Extend-Labels guarantees that in some round, one agent
moves to its neighbor and another agent stays at a node, thereby two agents
achieve a rendezvous. We apply this decision mechanism to our algorithm. In
SStree, each agent explores a tree instead of a single move or stay, and decides
the direction of the exploration based on its label. The decision mechanism
of Extend-Labels guarantees that two agents eventually explore the tree in the
opposite directions at the same time. During this exploration, two agents achieve
a rendezvous.

We give the details of SStree. The pseudocode is given in Algorithm2. First,
we explain the behavior of Extend-Labels. For label � of an agent, its extended
label M(�) is defined as follows. Let a1a2 · · · a|�| be the binary representation of
�, M(�) = (10a1a1a2a2 · · · a|�|a|�|)∗ where s∗ is an infinite sequence that repeats
sequence s infinite times. For example, since the binary representation of 5 is
101, we have M(5) = 1011001110110011 · · · . Agents can start Extend-Labels at
different times. After an agent starts the algorithm, ai moves in the k-th round
if the k-th bit of M(�i) is 1; otherwise, it stays for one round. The following
lemma guarantees the correctness of Extend-Labels.

Lemma 1 [8]. Let �1 and �2 be different labels and �∗ = min{�1, �2}. Assume
that M1 is a suffix of M(�1). There exists an index k such that the k-th bits of
M1 and M(�2) are different and k ≤ 2|�∗| + 6.

Note that, when each agent ai starts the algorithm from an arbitrary initial
state, ai may refer to extended label M(�i) from the middle. Even in this case,
the agents can achieve a rendezvous by the following lemma.

Lemma 2. Let �1 and �2 be different labels and �∗ = min{�1, �2}. Assume that
M1 and M2 are suffixes of M(�1) and M(�2), respectively. There exists an index
k such that the k-th bits of M1 and M2 are different and k ≤ 4|�∗| + 7.

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 25

Algorithm 2. SStree
Variables
1: var mode; // which part ai executes (mode ∈ {init, phase})
2: var k; // the current phase number
3: var h; // the current round number in the current phase
4: var n; // the estimated graph size
5: var Top; // the topology information
Behavior of Agent ai at each round
6: // check completion of rendezvous
7: if another agent stays at the same node then
8: terminate;
9: end if

10: // check consistency of the topology information
11: if Top is inconsistent with the current node then
12: mode = init; initialize Top;
13: // collect the topology information if mode = init.
14: if mode = init then
15: update the topology information in Top;
16: if Top includes the complete topology then
17: mode = phase; k = 1; h = 0;
18: n = the graph size in Top;
19: else
20: execute one basic move;
21: end if
22: // execute the k-th phase if mode = phase
23: else
24: if h ≥ 8(n − 1) + 2 then
25: k = k + 1; h = 0; // start a new phase
26: end if
27: h = h + 1;
28: if the k-th bit of M(�i) is 1 then // M(�i) is the extended label of �i
29: // basic phase
30: execute one basic move;
31: else
32: // reverse phase
33: if h �= 2(n − 1) + 1 and h �= 6(n − 1) + 2 then
34: execute one reverse move;
35: else
36: stay for one round;
37: end if
38: end if

Proof. Without any loss of generality, we assume �1 > �2 = �∗. For infinite
sequence s = s1s2 . . . and positive integer x, we define S(s, x) as suffix sxsx+1 . . .
of s. Since M(�2) is a repetition of a sequence of length 2|�2| + 2 = 2|�∗| + 2,
there exists k′ ≤ 2|�∗| + 2 such that S(M2, k

′) = M(�2). Since S(M1, k
′) is a

suffix of M(�1), from Lemma 1, there exists an index k′′ such that the k′′-th
bits of S(M1, k

′) and S(M2, k
′) are different and k′′ ≤ 2|�∗| + 6. This implies

26 F. Ooshita et al.

that when k = k′ + k′′ − 1, the k-th bits of M1 and M2 are different. From
k = k′ + k′′ − 1 ≤ 4|�∗| + 7, the lemma holds.
�

Algorithm SStree consists of multiple phases, and agent ai decides the behav-
ior of the k-th phase based on the k-th bit of M(�i). In each phase, an agent
explores the tree by using basic moves or reverse moves. The basic move is a
traditional technique, which makes an agent explore the tree using the DFS tra-
versal. In the basic move, when the agent arrives at node v from port p (i.e.,
it arrives at v via edge (u, v) such that λv(u, v) = p), it leaves v from port
(p mod degv) + 1 in the next move (i.e., it leaves v via edge (v, w) such that
λv(v, w) = (p mod degv) + 1). The agent starts the first move of the basic move
by leaving port 1. The reverse move is the opposite move of the basic move. That
is, when the agent arrives at node v from port p, it leaves v from port p − 1 if
p > 1 and port degv if p = 1. The agent starts the first move of the reverse move
by leaving port degv, where v is its current node. Since the length of the DFS
traversal is 2(n − 1), an agent can explore the tree by 2(n − 1) basic moves or
2(n − 1) reverse moves.

In the k-th phase of SStree, agent ai explores a tree by the basic moves if
the k-th bit of M(�i) is 1; otherwise, it explores the tree by the reverse moves.
Lemma 2 guarantees that eventually one agent executes basic moves and the
other agent executes reverse moves at the same time. However, one exploration
is not sufficient to achieve a rendezvous because the starting rounds of each phase
are not synchronized. In addition, agents may move through the same link in the
opposite directions without achieving a rendezvous. To overcome these problems,
agent ai behaves in its k-th phase as follows.

– Assume that the k-th bit of M(�i) is 1. In this case, ai executes 8(n − 1) + 2
basic moves. That is, ai explores the tree four times by basic moves and
executes two additional basic moves. We call it a basic phase.

– Assume that the k-th bit of M(�i) is 0. ai first explores the tree once by
reverse moves and then stays for one round. After that, ai explores the tree
two times by reverse moves and then stays for one round. Finally, ai explores
the tree once by reverse moves. We call it a reverse phase.

Later, we will prove that these behaviors achieve a rendezvous.
To execute the above procedures, agent ai should obtain the value of n. To

do this, before ai executes the above phases, ai executes basic moves and records
topology information of the tree in variable Top. ai records every visited node,
every observed port (associating with a node), every passed link (associating
with nodes and ports) in Top. Eventually, ai explores the tree and obtains the
complete topology information. That is, ai can realize that it has passed through
every port (i.e., every node and every link) in the tree. This is done in 2(n − 1)
rounds. However, ai may start the algorithm from an arbitrary initial state, that
is, it may have wrong topology information in Top. For this reason, ai checks
consistency of the topology information in Top after each movement. That is,
when ai moves to an already visited node, it compares the incoming port and
the degree of the node with the recorded ones in Top. If these are different, the

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 27

recorded topology information in Top is inconsistent. In this case, ai discards
the current information in Top and collects the topology information again. Note
that, if the topology information in Top is inconsistent, ai finds the inconsistency
before it completes one exploration.

In the following, we show the correctness and analyze the time complexity.

Lemma 3. Each agent obtains consistent topology information in at most
8(n − 1) rounds from an arbitrary initial state.

Proof. From an arbitrary initial state, an agent finishes recording the topology
information and moves to the first phase in 2(n − 1) rounds. Note that this
topology information may be inconsistent because an agent can start the algo-
rithm with an inconsistent partial topology information. Once an agent starts a
phase, it finds inconsistency before completing a single exploration if the topol-
ogy information is inconsistent. This requires at most 4(n − 1) rounds because
an agent makes 2(n − 1) successive basic moves or 2(n − 1) successive reverse
moves during 4(n − 1) successive rounds. After an agent restarts the algorithm,
it obtains consistent topology information in 2(n − 1) rounds. Therefore, each
agent obtains consistent topology information in at most 8(n − 1) rounds.
�
Theorem 2. Algorithm SStree is a self-stabilizing rendezvous algorithm for
trees. The time complexity of SStree is O(n · |�∗|), where �∗ = min{�1, �2}.
Proof. Let round r0 be the first round such that both agents start phases with
consistent topology information. From Lemma3, such a round comes in at most
8(n−1) rounds after the second agent starts the algorithm. After round r0, since
the duration of each phase is 8(n−1)+2 rounds, each phase of an agent overlaps
with a phase of the other agent for at least 4(n − 1) + 1 rounds. From Lemma 2,
there exist such overlapped phases in which one agent executes a basic phase and
the other agent executes a reverse phase, and these phases come within 4|�∗|+7
phases after round r0. Without any loss of generality, a1 executes a basic phase
and a2 executes a reverse phase.

First, consider the case when the overlapped phase of a1 starts earlier than
a2. Let round r1 be the round in which a2 starts the overlapped phase. After r1,
while a1 executes 4(n − 1) + 1 basic moves, a2 executes 2(n − 1) reverse moves,
stays for one round, and executes 2(n−1) reverse moves. During the first 2(n−1)
rounds, a1 and a2 explore a tree once in the opposite directions. This implies
that a1 and a2 achieve a rendezvous, or a1 and a2 move through the same link
in the opposite directions. In the latter case, a1 and a2 explore the tree once
more but a2 changes its visiting timing in one round. Consequently, a1 and a2

achieve a rendezvous during the second exploration.
Next, consider the case that the overlapped phase of a1 starts no earlier than

a2. Let round r1 be the round in which a2 starts the (4(n − 1) + 1)-th round
of the overlapped phase. After r1, while a1 executes 4(n − 1) + 1 basic moves,
a2 executes 2(n − 1) reverse moves, stays for one round, and executes 2(n − 1)
reverse moves. Hence, similar to the first case, a1 and a2 achieve a rendezvous.

28 F. Ooshita et al.

From the above discussions, two agents achieve a rendezvous in the over-
lapped phase. Therefore, after the second agent starts the algorithm, two agents
achieve a rendezvous in 8(n − 1) + (4|�∗| + 7)(8(n − 1) + 2) = O(n · |�∗|)
rounds.
�
Remark 3. Algorithm SStree requires an unbounded memory. However, if
agents know the upper bound of the graph size, we can bound the memory
size of SStree.

5 A Polynomial-Time Self-stabilizing Rendezvous
Algorithm for Rings

In this section, we give a polynomial-time self-stabilizing rendezvous algorithm
SSring for rings. Unlike the trees, agents cannot compute the ring size without
leaving marks on nodes. This implies that agents cannot recognize the completion
of an exploration, and thus, we must use an approach different from the one for
the trees. In SSring, two agents achieve a rendezvous by moving at different
speeds. In the following, we explain the details of SSring. The pseudocode of
SSring is given in Algorithm 3. In this section, we assume that each agent decides
its forward and backward direction at each node by its port numbers. However,
this direction is not identical for two agents. That is, two agents may decide
opposite directions as their forward directions.

For simplicity, first assume two agents decide the same direction as their
forward directions. In this case, the following algorithm achieves a rendezvous.

– Each ai repeats the following: ai stays for �i rounds and then moves forward.

Clearly, a1 and a2 move forward once in �1+1 and �2+1 rounds, respectively. This
implies that the distance between a1 and a2 decreases by at least |�1 − �2| ≥ 1 in
(�1 + 1)(�2 + 1) rounds, and thus, they achieve a rendezvous in n(�1 + 1)(�2 + 1)
rounds.

However, two agents may decide opposite directions as their forward direc-
tions, and in this case, they can move through the same link in the opposite
directions. To overcome this situation, we introduce a sweeping operation. In a
sweeping operation, an agent moves forward to the next node and then moves
backward to the current node. With this change, whenever ai needs to move
forward to the next node, it first repeats the sweeping operation �i times; then it
moves forward to the next node. By this behavior, when two agents try to move
through the same link at the same time, they repeat the sweeping operation
at different times. Thus, an agent cannot miss the other agent and achieves a
rendezvous.

Figure 1 shows an example with the sweeping operations. The solid and dot-
ted arrows represent the planned behaviors of agents with labels four and three,
respectively. The figure shows the situation when the two agents decide oppo-
site directions as their forward directions and appear in two neighboring nodes.
A horizontal arrow means the agent stays at its current node, and a diagonal

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 29

Algorithm 3. SSring
Variables
1: var h; // the current round in the current phase
Behavior of Agent ai at each round
2: // check completion of rendezvous
3: if another agent stays at the same node then
4: terminate;
5: end if
6: if h ≥ 3�i + 1 then
7: h = 0; // start a new phase
8: end if
9: h = h + 1;

10: if 1 ≤ h ≤ �i then
11: stay for one round;
12: else if �i + 1 ≤ h ≤ 3�i then
13: if (h − �i) mod 2 = 1 then
14: move forward;
15: else
16: move backward;
17: end if
18: else if h = 3�i + 1 then
19: move forward;
20: end if

Fig. 1. An example of SSring.

arrow means the agent moves to its forward or backward node. That is, each
agent with label �i stays for �i rounds and then repeats a sweeping operation �i

times (i.e., it repeats a forward and a backward moves �i times). After that, it
moves forward to the next node. If the end points of the arrows overlap, the two
agents can achieve a rendezvous. Readers can observe that two agents achieve a
rendezvous even if they appear in two neighboring nodes at any time.

In the following, we show the correctness and analyze the time complexity.

Theorem 3. Algorithm SSring is a self-stabilizing rendezvous algorithm for
rings. The time complexity of SSring is O(n�1�2).

30 F. Ooshita et al.

Proof. First, assume that two agents decide the same direction as their forward
directions. In this case, a1 and a2 move once in the same direction in 3�1 + 1
and 3�2 + 1 rounds, respectively. This implies that the distance between a1 and
a2 decreases by at least |�1 − �2| ≥ 1 in (3�1 +1)(3�2 +1) rounds, and thus, they
achieve a rendezvous in n(3�1 + 1)(3�2 + 1) = O(n�1�2) rounds.

Next assume that two agents decide opposite directions as their forward
directions. In this case, a1 and a2 move once in the opposite directions in 3�1 +1
and 3�2 + 1 rounds, respectively. This implies that the distance between a1 and
a2 decreases by at least 3�1 + 3�2 + 2 in (3�1 + 1)(3�2 + 1) rounds, and thus,
the distance between them becomes one in n(3�1 + 1)(3�2 + 1)/(3�1 + 3�2 + 2) =
O(n·max{�1, �2}) rounds. After that, each agent repeats a forward and backward
move at different times before moving to its next node. In addition, each agent
stays for �i rounds before and after it repeats the forward and backward moves.
This implies that an agent cannot miss the other agent, and thus, they achieve
a rendezvous.

In both cases, two agents achieve a rendezvous in O(n�1�2) rounds. Therefore,
the theorem holds.
�
Remark 4. Note that Algorithm SSring uses a bounded memory. The memory
size of ai is O(|�i|) because the value of h is at most 3�i + 1.

6 Extension to Gathering of More Than Two Agents

In this section, we discuss extension to gathering of more than two agents. We
assume that the number of agents is m, and a set of agents is denoted by A =
{a1, a2, . . . , am}. We also assume that the agents have different labels and the
label of ai is denoted by �i. The underlying model is the same as one described
in Sect. 2. In addition, the agents can observe states of other agents when they
stay at the same node at the same time.

As described in [14], it is easy to extend a rendezvous algorithm for two
agents to a gathering algorithm for more than two agents. That is, for given
rendezvous algorithm Alg, we can construct a gathering algorithm as follows.

Let Alg(�) be the procedure that the agent with label � executes in Alg.
Each agent ai executes Alg(�) until it meets another agent. After some
agents meet, they follow the agent with the smallest label among them.
That is, when �s is the smallest label among them, as with label �s con-
tinues Alg(�s) as if it does not meet any agent, and all other agents stick
to as (i.e., they move to the node which as moves to).

By using the above technique, we can transform a self-stabilizing rendezvous
algorithm to a self-stabilizing gathering algorithm. That is, eventually all agents
can meet and move together. However, its termination critically depends on the
knowledge of the number of agents. If agents know the number of agents m,
they can terminate the algorithm when m agents stay at the same node. On the
other hand, if agents do not know the number of agents, we have the following
impossibility similar to the case of the gossip problem in [15].

Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs 31

Theorem 4. When agents do not know the number of agents, there exists no
self-stabilizing gathering algorithm such that all agents can terminate at the same
node.

Proof. We prove it by contradiction. Assume that such a self-stabilizing gather-
ing algorithm exists. Let L1 and L2 be disjoint sets of labels. When |L1| (resp.,
|L2|) agents with labels in L1 (resp., L2) exist, all agents meet at a single node,
denoted by v1 (resp., v2), and terminate there in terminal states. Next, we con-
sider a graph that includes two different nodes v′

1 and v′
2 such that degv1 = degv′

1

and degv2 = degv′
2

hold. We assume that |L1|+ |L2| agents with labels in L1∪L2

execute the algorithm from the initial configuration such that |L1| agents with
labels in L1 stay at v′

1 in terminal states and |L2| agents with labels in L2 stay
at v2 in terminal states. Since all agents are in terminal states and never move,
they cannot achieve gathering. This is a contradiction.
�

Note that the proof of Theorem 4 does not depend on the weakness of the
underlying model. That is, even if agents know the graph size, use randomization,
and can leave some information on nodes, no self-stabilizing algorithm achieves
gathering and termination.

7 Conclusions

In this paper, we have studied self-stabilizing deterministic rendezvous algo-
rithms for graphs with no whiteboard. We first showed the existence of a self-
stabilizing rendezvous algorithm for arbitrary graphs. However, the time com-
plexity of this algorithm is not bounded by any function of the graph size
and labels. This raised the question whether there exist polynomial time self-
stabilizing rendezvous algorithms. We gave partial answers to the problem by
providing a self-stabilizing algorithms for trees and rings. For trees, we gave a
self-stabilizing rendezvous algorithm with a time complexity of a polynomial of
the graph size and the length of the smaller label. For rings, we gave a self-
stabilizing rendezvous algorithm with a time complexity of a polynomial of the
graph size and labels.

This paper leaves many open problems:

1. Does there exist a polynomial time self-stabilizing rendezvous algorithm for
arbitrary graphs with no whiteboard? Since each agent should explore a
graph to achieve a rendezvous, it should realize exploration in a polynomial
time from an arbitrary state. For this reason, a strongly universal exploration
sequence (SUXS) [19] may be a useful tool to realize self-stabilizing ren-
dezvous algorithms. The SUXS guarantees that, for some polynomial p(n),
any continuous subsequence of length p(n) realizes exploration of any graph
of size n. That is, even when an agent starts moving from the middle of the
SUXS, it can explore any graph of size n in a polynomial number of moves.

2. Does there exist a self-stabilizing rendezvous algorithm for rings such that
the time complexity is polynomial of the graph size and the length of labels?

32 F. Ooshita et al.

3. If the previous problems have no solutions, how many bits of whiteboards are
required to realize a polynomial time self-stabilizing rendezvous algorithm?
It is shown in [15] that O(|�max|+ log n) bits are sufficient, where �max is the
biggest label of agents. Is it possible to reduce the number of bits?

References

1. Blin, L., Potop-Butucaru, M.G., Tixeuil, S.: On the self-stabilization of mobile
robots in graphs. In: Proceedings of 15th International Conference on Principles
of Distributed systems, pp. 301–314 (2007)

2. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks.
Distrib. Comput. 29(6), 435–457 (2016)

3. Chalopin, J., Dieudonné, Y., Labourel, A., Pelc, A.: Rendezvous in networks in
spite of delay faults. Distrib. Comput. 29, 187–205 (2016)

4. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)

5. Czyzowicz, J., Kosowski, A., Pelc, A.: Time versus space trade-offs for rendezvous
in trees. Distrib. Comput. 27(2), 95–109 (2014)

6. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclu-
sive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48
(2017)

7. D’Angelo, G., Stefano, G.D., Navarra, A.: Gathering on rings under the look-
compute-move model. Distrib. Comput. 27(4), 255–285 (2014)

8. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46, 69–96 (2006)

9. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Tran. Algo-
rithms 11(1), 1:1–1:28 (2014)

10. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detec-
tion. Theoret. Comput. Sci. 428, 47–57 (2012)

11. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

12. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous
in trees. ACM Trans. Algorithms 9(2), 17:1–17:24 (2013)

13. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoret. Comput. Sci. 390, 27–39 (2008)

14. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoret.
Comput. Sci. 399, 141–156 (2008)

15. Masuzawa, T., Tixeuil, S.: Quiescence of self-stabilizing gossiping among mobile
agents in graphs. Theoret. Comput. Sci. 411(14–15), 1567–1582 (2010)

16. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks
59, 331–347 (2012)

17. Pelc, A.: Deterministic gathering with crash faults. CoRR abs/1704.08880 (2017).
http://arxiv.org/abs/1704.08880

18. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

19. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly
universal exploration sequences. ACM Trans. Algorithms 10(3), 12:1–12:15 (2014)

20. Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine gathering in networks with authen-
ticated whiteboards. In: Proceedings of 11th International Conference and Work-
shops on Algorithms and Computation, pp. 106–118 (2017)

http://arxiv.org/abs/1704.08880

The Dynamics and Stability of Probabilistic
Population Processes

Ioannis Chatzigiannakis1(B) and Paul Spirakis2,3

1 Department of Computer, Control and Management Engineering,
Sapienza University of Rome, Rome, Italy

ichatz@dis.uniroma1.it
2 Computer Science Department, University of Liverpool, Liverpool, UK

p.spirakis@liverpool.ac.uk
3 Computer Engineering and Informatics Department, Patras University,

Patras, Greece

Abstract. We study here the dynamics and stability of Probabilistic
Population Processes, via the differential equations approach. We provide
a quite general model following the work of Kurtz [15] for approximating
discrete processes with continuous differential equations. We show that
it includes the model of Angluin et al. [1], in the case of very large popu-
lations. We require that the long-term behavior of the family of increas-
ingly large discrete processes is a good approximation to the long-term
behavior of the continuous process, i.e., we exclude population protocols
that are extremely unstable such as parity-dependent decision processes.
For the general model, we give a sufficient condition for stability that
can be checked in polynomial time. We also study two interesting sub
cases: (a) Protocols whose specifications (in our terms) are configura-
tion independent. We show that they are always stable and that their
eventual subpopulation percentages are actually a Markov Chain sta-
tionary distribution. (b) Protocols that have dynamics resembling virus
spread. We show that their dynamics are actually similar to the well-
known Replicator Dynamics of Evolutionary Games. We also provide a
sufficient condition for stability in this case.

1 Introduction

In the near future, it is reasonable to expect that new types of systems will
appear, designed or emerged, of massive scale, expansive and permeating their
environment, of very heterogeneous nature, and operating in a constantly chang-
ing networked environment. Such systems are expected to operate even beyond
the complete understanding and control of their designers, developers, and users.
Although they will be perpetually adapting to a constantly changing environ-
ment, they will have to meet their clearly-defined objectives and provide guar-
antees about certain aspects of their own behavior [5].

A previous version of some aspects of this work has appeared as a brief announcement
in DISC 2008 [6].

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 33–45, 2017.
https://doi.org/10.1007/978-3-319-69084-1_3

34 I. Chatzigiannakis and P.G. Spirakis

We expect that most such systems will have the form of a very large society of
networked artefacts. Each such artefact will be unimpressive: small, with limited
sensing, signal processing, and communication capabilities. Yet by cooperation,
they will be organized in large societies to accomplish tasks that are difficult
or beyond the capabilities of today’s conventional centralized systems. These
systems or societies are expected to operate continuously and for long dura-
tions of time by achieving an appropriate level of organization and integration.
This organization should be achieved seamlessly and with appropriate levels of
flexibility, in order to be able to achieve their global goals and objectives.

Angluin et al. [1] introduced the notion of a computation by a population pro-
tocol to model such distributed systems in which individual agents are extremely
limited and can be represented as finite state machines. In their model, finite-
state, and complex behavior of the system as a whole emerges from the rules
governing the pairwise interaction of the agents. The computation is carried out
by a collection of agents, each of which receives a piece of the input. These agents
move around and information can be exchanged between two agents whenever
they come into contact with each other. The goal is to ensure that every agent
can eventually output the value that is to be computed (assuming a fairness
condition on the sequence of interactions that occur).

In [1] they also proposed a natural probabilistic variation of the standard
population protocol model, in which finite-state agents interact in pairs under
the control of an adversary scheduler. In this variant, interactions that occur
between pairs of agents are chosen uniformly at random (i.e., by employing a
random scheduler). We call the protocols of [1] by the term “Probabilistic Pop-
ulation Processes” (PPP). In [2] they presented fast algorithms for performing
computations in this variation and showed how to use the notion of a leader
in order to efficiently compute semilinear predicates and in order to simulate
efficiently LOGSPACE Turing Machines. [8] studied the acquisition and propa-
gation of knowledge in the probabilistic model of random interactions between
all pairs in a population (conjugating automata). A particular form of proba-
bilistic population dynamics that is based on “baptizing” the other member of
the interaction was recently studied in [7]. The topic of population protocols
has been studied recently towards establishing a broader understanding of the
effects of local memory [4,16], district identifiers [10] and existence of leader [3].

In this work, we look into the cases where the systems are comprised of very
large agents with a very long lifespan which interact continuously. In such sys-
tems the state of individual agents at a given time do not help provide a broader
understanding of the condition of the system and the expected future state. Our
approach is to examine the system from a high-level view. We characterize the
dynamics of population protocols by examining the rate of growth of the states
of the agents as the protocol evolves. We imagine here a continuum of agents. By
the law of large numbers, one can model the underlaying aggregate stochastic
process as a deterministic flow system. Our main proposal here is to exploit the
powerful tools of continuous nonlinear dynamics in order to examine questions
(such as stability) of such protocols. The use of differential equations to model
the dynamics of distributed interactions has been briefly used in the past for
task allocation in robot networks [9].

The Dynamics and Stability of Probabilistic Population Processes 35

Such an approach was first suggested by the seminal work of Kurtz [15]. That
approach approximates the behavior of a system of discrete dynamics with a sys-
tem of differential equations in the limit. This also relates to Wormald’s Lemma
[20], taking into careful consideration the timing of the conversion of the discrete
to a continuous analog. Here is a brief description of Wormald’s Lemma: Given a
stochastic process in which tokens of type 1, 2, 3, etc. interact with a probability
that is a continuous function of their concentrations x1

n , x2
n , etc. (where xi counts

the number of tokens of type i), resulting in an increase or decrease of each xi by
some constant determined by the particular interaction that occurs, then in the
limit as we increase n (where n is the size of the population) while rescaling time
as t

n we obtain a continuous process defined in terms of differential equations
where the derivative of the x vector with respect to time is given by the sum of
the various increments multiplied by their probabilities. Wormald’s Lemma says
that for any fixed time t

n , the distance between the discrete concentrations xi

n
and the corresponding component of the solution to the differential equation is
o(1) with high probability.

We first provide a very general model for population protocol continuous
dynamics. This model (Switching Population Processes – SPP) is a first step
towards studying very large populations where the agents that constitute the
population are infinitely lived and they interact forever. In this first step we
avoit monitoring the changes on the states of the agents continuously, but rather
do it with a specified time rate. In this way we can approximate the number of
agents that are on a given state for very large, finite, populations. Remark that
SPP include the probabilistic population protocols (PPP) of [1] as a special case
when the population is infinite and the time is continuous.

We show a sufficient condition for stability of SPP that can be checked in
polynomial time. We also examine two subclasses of SPP:

– The Markovian Population Processes (MAP). In these protocols, their spec-
ifications are configuration independent. In this very practical case, we show
that MAP are always stable and their unique population mix at stability is
exactly the steady-state distribution of a Markov Chain.

– The Linear Viral Processes (LVP). They are probabilistic protocols motivated
by the “random pairing” of [1]. However, agents review their current state at
a higher rate when they have weak “immunity”. We view this as a general
model for the dynamics of viruses spread in the population. We show that
LVP is equivalent to the well-known “Replicator Dynamics” of Evolutionary
Game Theory. We also give a sufficient condition for stability of LVP, based
on potentials.

2 The General Model (Switching Probabilistic
Processes – SPP)

The network is modeled as a complete graph G where vertices represent nodes
and edges represent communication links between nodes. We use the letter n

36 I. Chatzigiannakis and P.G. Spirakis

to denote |V |, the number of nodes in the network. Each node is capable of
executing an “agent” (or process) which consists of the following components:

– K, a finite set of states. We use the letter k to denote |K|.
– X, a nonempty subset of K, known as the initial states or start states.

We consider a large population of n agents. Let q ∈ K be a state of the agent
and let nq the number of agents that are on the given state p. Then the total
population size is n =

∑k
i=1 ni. The proportion of agents that are at state q is

xq = nq

n . We call xq the density of q. In the sequel q = qi, where i ∈ {1, 2, . . . , k}.
A state assignment of a system is defined to be an assignment of a state

to each agent in the system. A configuration C is a map from the population
to states, giving the current state of every agent. The population state density
then, at time t, can be described via a vector x(t) = (x1(t), . . . , xk(t)). Here
xi(t) = ni

n , i = 1 . . . k.
In the sequel we assume that n → ∞. We are interested, thus, in the evolution

of x(t) as time goes on. We use a different model (compared to [1]) for describing
a protocol P . We imagine that all agents in the population are infinitely lived
and that they interact forever. Each agent sticks to some state in K for some
time interval, and now and then reviews her state. This depends on x(t) and
may result to a change of state of the agent. Based on this concept, a switching
population protocol consists of the following two basic elements (specifications):

1. A specification of the time rate at which agents in the population review
their state. This rate may depend on the current, “local”, performance of the
agent’s state and also on the configuration x(t).

2. A specification of the switching probabilities of a reviewing agent. The proba-
bility that an agent, currently in state qi at a review time, will switch to state
qj is in general a function pij (x(t)), where pi (x) = (pi1 (x) , . . . , pik (x)) is
the resulting distribution over the set K of states in the protocol.

In a large, finite, population n, we assume that the review times of an agent
are the “birth times” of a Poisson process of rate λi (x). At each such time,
the agent i selects a new state according to pi (x). We assume that all such
Poisson processes are independent. Then, the aggregate of review times in the
sub-population of agents in state qi is itself a Poisson process of birth rate
xiλi (x). As in the probabilistic model of [1] we assume that state switches are
independent random variables across agents. Then, the rate of the (aggregate)
Poisson process of switches from state qi to state qj in the whole population is
just xi(t)λi (x(t)) pij (x(t)).

When n → ∞, we can model the aggregate stochastic processes as determinis-
tic flows (see, e.g., [17,18,20]). The outflow from state qi is

∑
j �=i xjλj (x) pij (x).

Then, the rate of change of xi(t) (i.e. dxi(t)
dt or ẋi(t)) is just

ẋi =
∑

j∈K

xjpji (x) λj (x) − λi (x) xi (1)

The Dynamics and Stability of Probabilistic Population Processes 37

for i = 1, . . . , k.
We assume here that both λi (x) and pij (x) are Lipschitz continuous func-

tions in an open domain Σ containing the simplex Δ where

Δ =

{

(xi, . . . , xk) :
K∑

i=1

xi = 1 , xi ≥ 0 , ∀i

}

By the theorem of Picard-Linderlöf (see, e.g., [12] for a proof), Eq. 1 has a
unique solution for any initial state x(0) in Δ and such a solution trajectory
x(t) is continuous and never leaves Δ.

2.1 SPP Includes the Probabilistic Population Protocols

We now show that our model of Switching Probabilistic Processes (SPP) is more
general than the model of [1] in the sense that it can be used to define the
Probabilistic Population Processes (PPP). We do this by showing the following:

Theorem 1. The continuous time dynamics of PPP (when n → ∞) are a special
case of the dynamics of SPP.

Proof. According to [1], the discrete-time dynamics of a Probabilistic Popula-
tion Protocol (PPP) are given by a finite set of rules, R of the form

(p, q) �→ (p′, q′)

where p, q, p′, q′ ∈ K (K = {q1, . . . , qk}) together with a set A of n agents and
an (irreflexive) relation E ⊆ A × A.

Intruitively, a (u, v) ∈ E means that u, v are able to interact. [1] assumes
further that E consists of all ordered pairs of distinct elements from A.

A population configuration in [1] is a mapping C : A �→ K (K is the set
of states). Let C and C ′ be population configurations, and u, v be two distinct
agents. [1] says that C can go to C ′ in one discrete step (denoted C

e�→ C ′) via
an encounter e = (u, v) if

(C(u), C(v)) �→ (C ′(u), C ′(v))

is a rule in R. This means that the state C(u) of u switches to C ′(u) and also
C(v) switches to C ′(v).

The execution of the system is defined to be a sequence C0, C1, C2, . . . of
configurations (where C0 is the initial configuration) such that for each i, Ci �→
Ci+1. An execution is fair if for any Ci and Cj , such that Ci �→ Cj and Ci occurs
infinitely often in the execution, Cj also occurs infinitely often in the execution.

In the probabilistic version of the above, [1] further states that e (the ordered
pair to interact) is chosen at random, independently and uniformly from all
ordered pairs corresponding to edges e in A × A ([1] calls it the model of Con-
jugating Automata, inspired also by [8]).

38 I. Chatzigiannakis and P.G. Spirakis

Let us now assume that n → ∞ and let xi = limn→∞ ni

n be the population
fraction at state qi ∈ K at a particular configuration C, at time t. Consider the
rule ρ in R

(qr, qm) �→ (qi, qj)

Without loss of generality, we assume in the sequel that r 	= m and i 	= j in such
rules ρ in R. By the uniformity and randomness, the probability that such an
e, that follows from rule ρ, is selected (as the encounter), is just xr(t)xm(t). Let
Ai be the set of all (r,m) that are the left part of a rule ρ:

(qr, qm) �→ (qi, qj)
or (qr, qm) �→ (qj , qi)

Let Bi be the set of (r,m) that are the left part of a rule ρ′:

(qr, qm) �→ (qr′ , qm′)

with r = i or m = i. Without loss of generality let r = i in ρ′. By considering a
small interval Δt and taking limits as Δt → 0, due to fairness we get ∀i:

ẋi =
∑

(r,m)∈Ai

xr(t)xm(t) − xi(t)
∑

(i,m)∈Bi

xm(t) (2)

The above set of equations describe the continuous dynamics of PPP.
Now, consider our SPP dynamics and Eq. 1. Set λi (x) =

∑
xm(t), with m

ranging over all rules

(qr, qm) �→ (qr′ , qm′)

with r = i, and all rules

(qm, qr) �→ (qr′ , qm′)

with r = i (i.e., over all rules in Bi).
Also, set pmi = pri = 0, if r,m do not belong in any tuple of Ai.
Finally set

pri =
1
λr

∑

m∈C(r,i)

xm(t)

where C(r, i) is the set of indices m in the second argument of the left part of
rules in Ai (i.e. (qr, qm) �→ (qr′ , qm′) with r′ = i or m′ = i).

Then our system of Eq. 1 (the SPP dynamics) becomes the system of Eq. 3
(the PPP dynamics). Thus the PPP dynamics are a special case of the SPP
dynamics in the continuous time setting.
�

The Dynamics and Stability of Probabilistic Population Processes 39

Here is an example of the reduction described above. Let the rules R in PPP
be

(q1, q2) �→ (q3, q2)
(q3, q1) �→ (q1, q2)
(q2, q3) �→ (q2, q1)

This gives the continuous PPP dynamics:

ẋ1 = x1x3 + x2x3 − x1 (x2 + x3)
ẋ2 = x1x3 + x1x2 + x2x3 − x2 (x1 + x3)
ẋ3 = x1x2 − x3 (x1 + x2)

We then set

λ1 = x2 + x3

λ2 = x1 + x3

λ3 = x1 + x2

and

p21 = x3
x1+x3

p11 = x3
x2+x3

p31 = 0
p12 = x3

x2+x3
p22 = x1

x1+x3
p32 = x2

x1+x2

p13 = x2
x2+x3

p23 = p33 = 0

and this results in our SPP dynamics, namely:

ẋ1 = x1λ1p11 + x2λ2p21 + x3λ3p31 − x1λ1

ẋ2 = x1λ1p12 + x2λ2p22 + x3λ3p32 − x2λ2

ẋ3 = x1λ1p13 + x2λ2p23 + x3λ3p33 − x3λ3

3 Stability of Nonlinear Dynamic Systems: A Sufficient
Condition for Decidability

Let us consider a dynamic system

ẋi = fi (x) , i = 1, . . . , k

that is, in fact, more general than Eq. 1.

Definition 1 (Fixed Points). Let x∗ be a solution of the system
{fi (x∗) = 0, i = 1, . . . , k} which we call a fixed point of the system.

By making a Taylor expansion around x∗ we obtain a linear approximation
to the dynamics:

ẋi =
∑ (

xj − x∗
j

) dfi
dxj

(x∗)

40 I. Chatzigiannakis and P.G. Spirakis

Setting ξi = xi − x∗
i we get

ξ̇i =
∑

ξj
dfi
dxj

(x∗)

which is a Linear System with a fixed point at the origin, i.e., ξ̇ = Lξ where
the matrix L has constant components Lij = dfi

dxj
(x∗). L is called the Jacobian

Matrix. Then, by the theorem of [11] we have

Corollary 1. If the fixed point x∗ is hyperbolic (i.e., all eigenvalues of L∗ have
a non-zero real part) then the topology of the dynamics of the nonlinear system
around x∗ is the same as the topology of a x∗ in the Linear system.

In fact, let each eigenvalue of L be φ = a + iω.

Corollary 2. Let a 	= 0, ∀φ eigenvalues of L. Then

(a) If a < 0, ∀φ then x(t) approaches the fixed point x∗ as t → ∞.
(b) If there exists a φ with a > 0 then x(t) diverges from the fixed point x∗

along the direction of the corresponding eigenvector. That is, the fixed point
x∗ is unstable.

Thus we get our main result of the system:

Theorem 2. If all fixed points x∗ of our population dynamics of Eq. 1 are hyper-
bolic, then we can decide stability of the population protocol, around x∗, in
polynomial time in the description of the protocol.

Corollary 3. If all fixed points of PPP are hyperbolic, then the stability of PPP
can be decided in polynomial time.

4 Switching Population Processes with Specifications
Independent of the Configuration

We now consider the special case of Eq. 1 where λi (x) = λi∀i and where pij (x) =
pij (specifications independent of the configuration x(t)). Then the basic system
of Eq. 1 of the dynamics of the population becomes:

ẋi =
∑

j∈K

xjλjpji − λixi i = 1 . . . k (3)

We call such protocols by the term “Markovian Population Processes” (MAP).
Let qij = λipij for all i, j, when i 	= j and when j = i let qii = λi(pii − 1).

Then Eq. 3 in fact becomes

dxi(t)
dt

= qiixi(t) +
∑

j �=i

qkixk(t) (4)

The Dynamics and Stability of Probabilistic Population Processes 41

Note that
∑

i∈K xi(t) = 1. But this is, in fact, the basic equation of the limiting-
state probabilities of a Markov Chain of k states with qij being the (continuous
time) rates of change (see, e.g., [14], pp. 53–55).

When all λij , i 	= j are non zero then the Markov Chain of Eq. 4 is irre-
ducible and homogeneous. Then the limits limt→∞ xi(t) always exist and are
independent of the initial state. The limiting distribution is given uniquely as
the solution of the following equations:

qjjxj +
∑

k �=j

qkjxk = 0

So, we get our second major result:

Theorem 3 (Markovian Population Processes – MPP). Let the specifi-
cations {λj , pij} independent of the configuration x(t). Let also λjpij 	= 0, ∀i, j
where i 	= j. Then the Population Protocol is stable. It always has a limiting
unique configuration {xi i = 1 . . . k} independent of the initial configuration
x(0), which is exactly the steady-state distribution of an ergodic, homogeneous
Markov Chain of k states.

5 A Special Case of Random Pairing Population
Protocols (Linear Viral Processes – LVP)

Now, let us assume that all reviewing agents adopt the state of “the first man
they meet in the street”. This is clearly the case when the reviewing agent
draws a pairing agent at random from the population (according to the uniform
probability distribution across agents) and adopts the state of the so sampled
agent. This is similar to the case of the protocols of [1] where the rules are
(qi, qk) �→ (qm, qr) with r,m ∈ {i, j}. Formally then

pij (x) = xj ∀i, j ∈ K, ∀x(t)

Now Eq. 4 becomes

ẋi =
∑

j∈K

xjxiλj(x) − λi(x)xi

i.e.

ẋi =

⎛

⎝
∑

j∈K

xjλj(x) − λi(x)

⎞

⎠ · xi (5)

We now propose a “linear” model in order to capture the immunity that
an agent has against other agents in the population. We postulate that agents
immunity depend on their states. So all agents at state experience the same
immunity. One can imagine immunity to be a measure of the degree of protection

42 I. Chatzigiannakis and P.G. Spirakis

of agents when they interact. So, when an agent in state qi interacts with an
agent in state qj we measure the immunity of the (qi, qj) pair by an integer aij
and we require here that aij = aji (we assume symmetric interactions). It is
then natural to assume that agents in state qi will wish to review their state
more often when their immunity is low. In particular we assume here that any
agent in state qi has a review rate λi (x) that is linearly decreasing in the average
immunity of the agent in state qi. This is the simplest possible model. The formal
definitions follow:

Definition 2 (Immunity of a state). Let A = {aij} be a symmetric matrix
of integers. The immunity of an agent in state qi is ti (x) = ai1x1 + . . . + aikxk.

Definition 3 (Average immunity of a population protocol, in a par-
ticular configuration). Let A be a symmetric matrix of integers. The average
immunity of the population, in configuration {xi}, is: t (x) =

∑
i∈K xiti (x).

Definition 4 (Linear Viral Processes – LVP). The Linear Viral Processes
are switching population protocols with review rates of agents

λi (x) = γ − δti (x)

where γ, δ ∈ �, δ > 0 and also γ/δ ≥ ti (x), ∀x + Δ, ∀i.

Now Eq. 5 becomes

ẋi = δ (ti (x) − t (x)) xi (6)

Note, now, that this equation is a constant rescaling of the popular “replicator
dynamics” of Evolutionary Game Theory (see, e.g., [19]).

Definition 5. The general Lotka-Volterra equation for k types of a population
is of the form

ẋi = xi

⎛

⎝ri +
k∑

j=1

aijxj

⎞

⎠ i = 1 . . . k

where ri, aij are constant.

By the equivalence of the Replicator Dynamics with the Lotka-Volterra systems
we then get:

Theorem 4. The dynamics of the linear viral protocols are equivalent to the
Lotka-Volterra dynamics.

We can then give an alternative sufficient condition for the (asymptotic) stability
of the Linear Viral Processes.

Theorem 5. Let x∗ be a fixed point of Eq. 6, i.e., ti (x) = t (x) is satisfied for
x = x∗. If

∑k
i=1 x∗

i ti (x) > t (x) for any x in a region around x∗, then x∗ is
asymptotically stable.

The Dynamics and Stability of Probabilistic Population Processes 43

In order to prove our theorem, we first consider the relative entropy of x and x∗

as

E(x) = −
k∑

i=1

x∗
i ln

(
xi

x∗
i

)

(7)

Clearly E(x∗) = 0. Then we need to prove the following claim:

claim. E(x) ≥ E(x∗), ∀x
Proof. From Jensen’s inequality it folds:

exp (f(x)) ≥ f(exp x)

where exp() is the expectation, x a random variable and f a convex function.
Thus Eq. 7 becomes

E(x) ≥ − ln

(
k∑

i=1

x∗
i

xi

x∗
i

)

≥ − ln

(
k∑

i=1

xi

)

= − ln 1 = 0

�
Proof. Based on Claim 5 we can prove Theorem 5 as follows:

dE (x(t))
dt

=
k∑

i=1

dE

dxi
ẋi

= −
k∑

i=1

x∗
i

xi
ẋi

= −
k∑

i=1

δ (ti (x) − t (x)) x∗
i (due to Eq. 6)

= −δ

[
k∑

i=1

x∗ (ti(x) − t (x))

]

< 0 by assumption

Thus, in a region around x∗, dE
dt < 0. Then E is a (strict) Lyapounov function

(see, e.g., [13], pp. 18–19) and thus x∗ is stable asymptotically.
�

6 Conclusions

We imagine here a continuum of agents. By the law of large numbers, one can
model the underlying aggregate stochastic process as a deterministic flow system.
Our main proposal here is to exploit the powerful tools of continuous nonlinear
dynamics in order to examine questions (such as stability) of such protocols.
We have extended the class of [1] by defining a general model of “Switching

44 I. Chatzigiannakis and P.G. Spirakis

Population Processes” (SPP). We then examined stability for this general model
and two important subclasses.

Our main point is that one can study stability and population dynamics of
protocols, via nonlinear differential equations that describe quite accurately the
(discrete) population protocol dynamics when the population is very large. The
“differential equations” approach was indicated in the past for the analysis of
the evolution of algorithms with Random Inputs, by [17,18,20]. Our approach
provides a sufficient condition for stability of PPP of [1] that can be checked
in polynomial time. It also gives a more general way to specify population pro-
tocols, that reveals interesting classes. A potential problem with this approach
is that the long-term behavior of the continuous process may not be a good
approximation to the long-term behavior of the family of increasingly large dis-
crete processes it is supposed to describe in some cases. For example, it is not
hard to construct a population process that converges with high probability to a
configuration in which all tokens say EVEN if the number of 1 bits in the original
population is even and ODD otherwise (a consequence of the LOGSPACE com-
putation results [1]). No continuous limit can distinguish between these odd and
even initial configurations, since we can approach any given limit concentration
arbitrarily using only odd or even initial configurations. This is not a problem for
Wormald’s Lemma [20] (the time needed to distinguish between odd and even
grows faster than n, so any for any fixed time t/n, the behavior of the discrete
process doesn’t depend much on parity yet), and it’s not a problem for the earlier
work of Kurtz [15] (which uses similar time scaling), but it should be a problem
here since the goal of the paper seems to be to describe the behavior of very large
probabilistic population protocols. In the cases studied in this paper, this is not
a problem, because the paper implicitly makes the same scaling assumption as
this previous work, which makes everything interesting happen at a time pushed
off into the infinite future. This limits the applicability of the results to finite
processes. However such highly unstable protocols have limited usage and can
be analyzed with other techniques.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC), New York, NY, USA, pp. 290–
299 (2004)

2. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer,
Heidelberg (2006). doi:10.1007/11864219 5

3. Belleville, A., Doty, D., Soloveichik, D.: Hardness of computing and approximating
predicates and functions with leaderless population protocols. In: 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2017),
Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 141:1–
141:14, Dagstuhl, Germany (2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik

http://dx.doi.org/10.1007/11864219_5

The Dynamics and Stability of Probabilistic Population Processes 45

4. Chatzigiannakis, I., Michail, O., Nikolaou, S., Pavlogiannis, A., Spirakis, P.G.: Pas-
sively mobile communicating machines that use restricted space. Theor. Comput.
Sci. 412(46), 6469–6483 (2011)

5. Chatzigiannakis, I., Mylonas, G., Vitaletti, A.: Urban pervasive applications: chal-
lenges, scenarios and case studies. Comput. Sci. Rev. 5(1), 103–118 (2011)

6. Chatzigiannakis, I., Spirakis, P.G.: The dynamics of probabilistic population proto-
cols. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 498–499. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87779-0 35

7. Czyzowicz, J., Ga̧sieniec, L., Kosowski, A., Kranakis, E., Spirakis, P.G., Uznański,
P.: On convergence and threshold properties of discrete Lotka-Volterra population
protocols. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.)
ICALP 2015. LNCS, vol. 9134, pp. 393–405. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-47672-7 32

8. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan Univ. J. Nat. Sci. 6(1–2), 72–82 (2001)

9. Galstyan, A., Lerman, K.: Analysis of a stochastic model of adaptive task allocation
in robots. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal,
R. (eds.) ESOA 2004. LNCS, vol. 3464, pp. 167–179. Springer, Heidelberg (2005).
doi:10.1007/11494676 11

10. Guerraoui, R., Ruppert, E.: Names trump malice: tiny mobile agents can tolerate
Byzantine failures. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikolet-
seas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 484–495. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02930-1 40

11. Hartman, P.: A lemma in the theory of structural stability of differential equations.
Am. Math. Soc. 11(4), 610–620 (1960)

12. Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Alge-
bra. Academic Press, London (1974)

13. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cam-
bridge University Press, Cambridge (1998)

14. Kleinrock, L.: Queueing Systems, Theory, vol. I. Wiley, Hoboken (1975)
15. Kurtz, T.G.: Approximation of Population Processes (1981)
16. Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Mediated population protocols.

Theor. Comput. Sci. 412(22), 2434–2450 (2011)
17. Mitzenmacher, M.: Analyses of load stealing models based on families of differential

equations. Theory Comput. Syst. 34(1), 77–98 (2001)
18. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)
19. Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1997)
20. Wormald, N.C.: Differential equations for random processes and random graphs.

Ann. Appl. Probab. 5, 1217–1235 (1995)

http://dx.doi.org/10.1007/978-3-540-87779-0_35
http://dx.doi.org/10.1007/978-3-662-47672-7_32
http://dx.doi.org/10.1007/978-3-662-47672-7_32
http://dx.doi.org/10.1007/11494676_11
http://dx.doi.org/10.1007/978-3-642-02930-1_40

Self-stabilizing Distributed Stable Marriage

Marie Laveau1(B), George Manoussakis1,4, Joffroy Beauquier1,
Thibault Bernard2,3, Janna Burman1, Johanne Cohen1,4, and Laurence Pilard2

1 LRI, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
laveau@lri.fr

2 LI-PaRAD, Université de Versailles, Université Paris-Saclay, Versailles, France
3 CReSTIC, Université de Reims Champagne Ardenne, Reims, France

4 LRI, Université Paris-Sud, CNRS, CentraleSupelec, Université Paris-Saclay,

Orsay, France

Abstract. Stable marriage is a problem of matching in a bipartite
graph, introduced in an economic context by Gale and Shapley. In this
problem, each node has preferences for matching with its neighbors. The
final matching should satisfy these preferences such that in no unmatched
pair both nodes prefer to be matched together. The problem has a lot
of useful applications (two sided markets, migration of virtual machines
in Cloud computing, content delivery on the Internet, etc.). There even
exist companies dedicated solely to administering stable matching pro-
grams. Numerous algorithms have been designed for solving this problem
(and its variants), in different contexts, including distributed ones. How-
ever, to the best of our knowledge, none of the distributed solutions is
self-stabilizing (self-stabilization is a formal framework that allows deal-
ing with transient corruptions of memory and channels). We present a
self-stabilizing stable matching solution, in the model of composite atom-
icity (state-reading model), under an unfair distributed scheduler . The
algorithm is given with a formal proof of correctness and an upper bound
on its time complexity in terms of moves and steps.

1 Introduction

1.1 Historical Background

Stable marriage is a problem of matching in a bipartite graph, introduced in
an economic context by Gale and Shapley [9]. It can be described by a natural
example of marriage formations between a group of women and a group of men
in some community (represented by two groups of nodes, each of size n, in a
bipartite graph). As in the real life, each member of the community has prefer-
ences regarding other members. Assuming that the given group sizes are equal
(i.e., the bipartite graph is complete), the problem is to find a satisfactory mar-
riage for each member with a member of the opposite sex. Satisfactory means
that, in the final matching, there is no unmarried pair of a man and a woman
such that they both prefer each other over their current spouses. One says then
that there are no blocking pairs and the marriage or the matching is stable. In
a game theory context, stable marriage realizes a pure Nash equilibrium, given
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 46–61, 2017.
https://doi.org/10.1007/978-3-319-69084-1_4

Self-stabilizing Distributed Stable Marriage 47

lists of preferences for both sides. Gale and Shapley showed that a stable mar-
riage always exists. It was shown by providing a centralized algorithm running
in O(n2) time, which is proved to be asymptotically optimal (for centralized
algorithms) in [20] and communication optimal in the distributed setting in [12].

Stable marriage has a lot of applications in economics and computer science.
It can be viewed as a particular formulation of two sided matching markets that
has been proved useful in the empirical study of many labor markets. Stable
marriage is used to assign graduating medical students to residency programs
at hospitals in the US, Canada and Scotland, and to assign students to schools
and universities in Norway and Singapore (cf. [11]). In the domain of Cloud
computing, stable marriage is used for performing efficient migration of virtual
machines to servers (e.g., [14,25]). Content delivery networks that distribute
much of the world’s content and services have to solve a large and complex
stable marriage problem between users and servers [18]. Finally, one can also
notice that stable marriage has applications in models without any hint of selfish
agents, such as scheduling network switches [6].

Given this large potential application domain, it is not surprising that a lot
of algorithms, each corresponding to a particular context and a problem variant,
have been proposed and studied. For the studies on different problem variants
in the centralized context, one can see for example the books by Knuth [16], by
Gusfield and Irving [13], by Roth and Sotomayor [24] or by Manlove [19].

The interest of the current work is a decentralized distributed setting, where
the bipartite graph represents a communication network. Edges represent the
communication links and nodes are computing entities (to be matched). Each
node has only partial information about the problem instance, contrary to the
centralized case. In particular, it is assumed to be initially aware only of its
own preferences, but not of the preferences of the other nodes. In addition, to
ensure confidentiality of the preferences [5] and avoid high message complexity,
we follow previous studies and rule out a trivial solution where nodes exchange
their preference lists and then run a known centralized solution at each node.

Studies on distributed stable marriage appeared much later than the cen-
tralized versions. Among these studies, theoretical ones consider an idealized
synchronous distributed communication model, where nodes progress in a lock-
step manner, exchanging information and performing computations all together
at each step (called round). These works focus on round complexity of the prob-
lem and its variants. Kipnis and Patt-Shamir [15] were the first to study round
complexity of the distributed stable marriage. They proved a lower bound of
Ω(

√
(n/B log n)), where B is the number of bits per message, and provided an

algorithm that solves the distributed stable marriage in O(n2) rounds. Search-
ing for better time complexity and conditions that can provide it, many studies
considered specific restrictions on the preference lists. Consider for example the
weighted stable marriage in [2], incomplete or bounded lists in [8,21], “almost
regular” lists in [21] and “similarity” in preference lists in [22]). With the same
goal in mind (of obtaining better time complexity), approximate versions of
the stable marriage have been considered (e.g., [8,15,21]). Such versions can be

48 M. Laveau et al.

solved in a polylogarithmic time and random algorithms can improve it even
more. Furthermore, when assuming restrictions on preference lists, approximate
stable marriage can be solved even in constant time (cf. [8,21]).

1.2 Overview of Results

Contrary to the previous works, we are interested in the stable marriage problem
for an asynchronous distributed communication model. Additionally, we tackle
the problem by providing a general type of a solution, called self-stabilizing [7].
Such a solution tolerates transient (or short-lived) failures (volatile memory cor-
ruptions) of any number of nodes. That is, it solves a problem from an arbi-
trary starting configuration (see a formal definition in the model section). This
property is particularly interesting for Cloud and Internet based applications in
general, since they frequently require (at least) some level of self-stabilization.

It is now described how we obtained such solution. First, notice that even
though the original stable marriage algorithm by Gale and Shapley (GSA) is
essentially centralized, it can be interpreted as a distributed one [5] and most
of the existing distributed algorithms rely on GSA. In general, the algorithm
proceeds by iteratively realizing proposals, e.g., by women, and acceptances,
e.g., by men. Intuitively speaking, the algorithm creates matches and resolves
appearing blocking pairs, when improving iteratively the quality of the matches
according to the preferences (dynamics “better match”).

GSA has received a lot of attention, in particular by Knuth [16]. When inves-
tigating combinatorial properties of the algorithm, Knuth discovered the possi-
bility of cycles when executing GSA from some initial configurations with an
incomplete matching.

That is, GSA does not necessarily converge from any initial configuration
towards correct configurations (due to the existence of cycles). In other words,
it does not naturally tolerate transient failures that can put a system in an
arbitrary configuration, i.e., it is not self-stabilizing.

After this negative result, a step forward was taken by Roth and Vande
Vate [23] and by Ackermann et al. [1]. Both works present completely centralized
strategies allowing to solve stable marriage starting from any given matching.
The strategy proposed by Roth and Vande Vate stores and consults a global
access set of previously resolved blocking pairs and thus is inherently centralized.
On the contrary, the strategy by Ackermann et al. [1] works in two phases. In
the first one, only married women make proposals for improving their marriages.
When no married woman can improve anymore, the second phase starts. In this
phase, only unmarried women can make proposals (until they all are matched).
At the end of this phase, a stable marriage is obtained (after at most O(n2)
steps). In this work, we adopt the main idea of these two phases.

Making this idea work in a distributed asynchronous and self-stabilizing way
is still very challenging. First, there is a need of a sort of synchronization of
phases between the nodes that cannot move all together to the next phase, like
in the centralized case. Then, termination detection is needed for detecting the
end of the first phase. Furthermore, Ackerman et al. supposed “best response”

Self-stabilizing Distributed Stable Marriage 49

dynamics, contrary to the “better” ones in a distributed GSA. “Best response”
dynamics are inherently centralized too, since creation or suppression of a match
is not instantaneous (as it is in the centralized case) and the actual matches
can change during the delay for realizing these actions. Hence, it is difficult to
implement perfect “best response” dynamics. Finally, notice that a distributed
matching has to be encoded with pointers that can be badly initialized. This is
not taken into account in the algorithm of Ackerman et al.

In addition to these difficulties, we strive to provide a truly decentralized
solution using neither leader nor global reset and detecting and correcting faults
locally (similarly to the way GSA resolves blocking pairs). This rules out the
known self-stabilizing automatic transformers requiring such type of primitives.
On the positive side, this allows obtaining more efficient algorithms in terms
of time and space. This is also the reason for not using known synchronization
techniques (e.g., [3,4]). Our algorithm works with only one additional phase of
synchronization (in addition to the two phases in the strategy of Ackerman et
al.), while using known synchronization techniques would result in much more
additional phases.

The proposed algorithm works under an unfair distributed scheduler, i.e.,
choosing at each step a subset of nodes that have actions to perform (i.e., eligible
or enabled nodes; see model section for a formal definition). In particular, some
constantly eligible node may stay inactivated for an arbitrary period of time. In
spite of all the mentioned difficulties, we design and prove such a self-stabilizing
stable marriage algorithm which also guarantees confidentiality of the preference
lists. We present it together with its correctness proof and time complexity
analysis providing an upper bound of O(n4) moves (activations changing the
state of a node). Straightforwardly, this upper bound applies to steps (activations
changing the configuration of the system; see the model section).

2 Model

A distributed system is based on a set of nodes. Each node can communicate
with a subset of other nodes, called its neighbors and denoted by N (v). Commu-
nication is assumed to be bidirectional. Hence, the topology of the system can
be represented as a simple undirected graph G = (V,E), where V is the set of
nodes and E the set of edges, i.e., communication links. We assume here that G
is a complete bipartite graph Kn,n, over two subsets of nodes of equal size. We
are interested in the stable marriage problem. Following the terminology of [9],
where the problem is introduced, we call women the n nodes of the first sub-
set (Women) in the bipartite graph and men the n nodes of the second subset
(Men). Each node has a unique identifier and a complete list of n preferences
for the nodes of the other set (each woman has a complete list of men and recip-
rocally). In other words, each women w is given with a priority for each man m,
denoted p(w,m), and reciprocally. The priorities go from 1 to n and the most
preferred person have priority 1.

The goal is to match (marry) the women and the men together such that
everyone is matched and there is no unmarried pair (w,m) of a woman and a

50 M. Laveau et al.

man, who both prefer each other to their current matches (partners) m′ and
w′, i.e., there is no pair (w,m) such that (w,m′) and (w′,m) are married, but
p(w,m) < p(w,m′) and p(m,w) < p(m,w′). When there are no such pairs of
people, called blocking pairs (BP), the set of marriages is deemed stable.

Remark 1. For technical reasons, we use in the proofs a definition of blocking pair
that is more general than the definition given above, as it applies to incomplete
matching. In the original definition, a blocking pair has to be a pair of already
married persons. In the definition of BP used here, the man can be unmarried.
Formally, a pair (w,m) of a woman w and a man m is blocking iff w is matched to
m′, m is matched to w′ and w and m prefer each other to their actual matching,
or, w is matched to m′, m is unmatched and w prefer m to m′. Clearly enough,
the two notions coincide if the matching is complete. The definition implies that
a man prefers to be matched with any woman rather than to stay unmatched.

For designing solutions to this problem, we use the composite atomicity model
of computation (cf. [7,10]) in which the nodes communicate using a finite number
of locally shared variables. Each node can read its own variables and those of
its neighbors, but can write only to its own variables. The state of a node is a
vector of the values of its variables. A configuration of the system is a vector of
states of all nodes. A distributed algorithm consists of one code per node. The
code of a node v is a finite set of guarded rules of the following form:

Label: (* Comment *)
{Guard}
Actions

The labels are used to identify actions. The guard of a rule in the code of v
is a Boolean expression involving the variables of v and of its neighbors. If the
guard of some rule evaluates to true, then the rule is said to be enabled at v.
By extension, v is said to be enabled or eligible if at least one of its rules is
enabled. Actions represents a sequence of actions on v’s variables. A rule can
be executed (activated) only if it is enabled. In this case, its execution consists
in performing the sequence of actions, using the values of the variables at the
time of the guard evaluation. The asynchrony of the system is modeled by an
adversary, called scheduler. In a configuration, the scheduler selects a non-empty
subset of eligible nodes, then atomically evaluates the guards of one enabled
rule per node (chosen non-deterministically), then, still atomically, executes the
corresponding actions. This is called a step (or transition) and the activation
of each rule in the step is called a move. Such a scheduler is called distributed
in the literature (contrary to a central scheduler, choosing at each step only
one enabled node, or to the synchronous scheduler that chooses all the enabled
nodes). When a step is executed in the configuration C, it leads to a configuration
C’ and we write C → C’. We say that C’ is reached from C, denoted by C

∗→C’, if
C → C1 → C2 → ... → C’. An execution is a maximal sequence of configurations
C0,C1, ...,Ck, ... such that Ci → Ci+1 for all i ≥ 0. The term “maximal” means
that the execution is either infinite or ends in a terminal configuration, i.e., a

Self-stabilizing Distributed Stable Marriage 51

configuration in which no node is enabled. Different types of fairness, limiting
the possible choices of the scheduler, appear in the literature. We do not make
any such limitation, that is the schedulers we consider are unfair.

A distributed algorithm solves the stable marriage problem if each of its
executions starting from a predefined initial configuration, under the unfair dis-
tributed scheduler, reaches a terminal configuration in which there is a stable
marriage. A distributed algorithm solves the stable marriage problem in a self-
stabilizing way if it solves it as above, but for any possible initial configura-
tion. The relation between self-stabilization and transient failures is well known.
Even if all the variables of all nodes have been corrupted once, (producing an
arbitrary configuration possibly considered as initial), the algorithm reaches a
terminal configuration in which there is a stable marriage. Hence, in some sense,
it tolerates the transient failure, since it regains by itself a correct configuration,
without any external intervention. Formally, let A be a distributed algorithm,
let C be the set of its configurations and let E be the set of its executions, from
any configuration in C. Call graph problem a predicate P on configurations.

Definition 1. A is self-stabilizing for P if and only if there exists a non-empty
subset L of configurations of C, such that:

1. (Closure) starting from any C ∈ L, any reached configuration is in L (i.e., L
is closed under →) and any configuration in L satisfies P,

2. (Convergence) any execution in E (starting from any configuration in C),
reaches a configuration in L.

The time complexity of a self-stabilizing distributed algorithm can be evaluated
in terms of moves or steps. The stabilization time of a distributed algorithm,
counted in moves (respectively in steps), is the maximum number of moves (resp.
steps) to reach a configuration in L, starting from an arbitrary configuration.
The stabilization time in moves gives an upper bound on the stabilization time
in steps.

3 Self-stabilizing Solution to Stable Marriage

As already noticed in Sect. 1.2, the algorithm of Ackermann et al. [1] is inherently
centralized. It proceeds in two phases. In the first phase, married women try to
improve their marriage. When no improvement is possible, phase 2 starts. In
this phase, single women try to marry their best free choice. In the first phase,
women globally reduce their regrets, i.e., change to a better priority spouse, and
in the second phase, men do the same. The algorithm is correct, even when
started from an incomplete matching, but is not self-stabilizing in the strict
sense, because all nodes must start in phase 1 and change simultaneously to
phase 2. It could be made self-stabilizing easily because of the centralization,
with the implementation of a global phase counter. Things are not so easy in a
distributed asynchronous setting. The distributed self-stabilizing solution that
we propose takes the idea of two phases, but use a supplementary phase for the

52 M. Laveau et al.

purpose of synchronization. We number the phases 1, 1.5, 2. Phases 1 and 2 play
about the same role as in Ackermann et al. algorithm.

Phase 1.5 is an intermediary phase solving synchronization problems between
phase 1 and 2 (due to an erroneous initial configuration). During phases 1 and
2, women have the initiative to propose marriage, men can only choose among
the different proposals.

The transition from phase 1 to phase 1.5 is realized first by women who have
checked the lack of blocking pairs. Once all women are in phase 1.5, men can
change to phase 1.5 if they did not detect blocking pairs. Otherwise, a man
blocks the process (by staying in phase 1). The woman involved in the blocking
pair will be activated and will change its phase to 1 (forcing all men to come
back to phase 1). Only when all nodes reach phase 1.5, women can change to
phase 2 and men will follow by changing to the same phase. The checking before
entering phase 1.5 guarantees the lack of blocking pairs at the beginning and
during phase 2.

Nodes can also change from phase 2 to phase 1 whenever a faulty configura-
tion is detected. For example, this happens if it is detected that some pointers
are badly initiated, if a man phase has a bigger value than the one of a women,
or the phase values are not consecutive. This change can also be initiated by a
married woman in phase 2, who detects a possible improvement (i.e., a blocking
pair). All other nodes will detect the phase change and move to phase 1 too
(without this, no one would change to 1.5).

We get the property that no execution cycles more than one time through
phases 1, 1.5, 2. Similarly to the algorithm of Ackermann et al., we show that,
during the last execution of the first phase, the regrets of the married women
are globally decreasing. This ensures that no blocking pair exists at the end of
this phase. During the last execution of phase 2, it is the same for the regrets of
men and ensured that no blocking pair can appear (even though the matching
can be still incomplete). At the end, in O(n4) moves in overall, a complete stable
marriage is obtained.

We now make precise the implementation of these ideas. Each node v has
variables and constants. The variables can be read by the neighbors, but the
access to constants is limited.

Variables:

– marriage: the spouse of v. The value is Null, if v is single.
– proposal : for a woman w, the node to whom w has proposed ; for a man m, the

woman whose proposal has been accepted by m. The value is Null if there is
no proposal or acceptance.

– phase ∈ {1, 1.5, 2}: v is in phase α if v.phase = α.

We use the notation var(C) for the value of var in the configuration C.

Constant:

– pref : the v’s list of its n neighbors in preference order. The priority of the ith

element of the list is i. Then, the first element is the most preferred neighbor
and its priority is 1.

Self-stabilizing Distributed Stable Marriage 53

Lists of preferences are kept secret. A node v only communicates to its neighbor
u the priority it gives to u and the priority of its actual spouse. If v is single,
the latter communicated priority is n + 1.

Functions:

– p(v,u): returns the priority of u in the preference list of v. Note that if u =
Null, p(v,u) = n + 1 (v is single).

– max(A): returns the most preferred node in a set A of nodes

Let Cv be the set of nodes which prefer v and are preferred by v to their corre-
sponding spouses:

Cv = {u ∈ N (v) : p(v,u) < p(v,v.marriage) ∧ p(u,v) < p(u,u.marriage)}

The following function is used by women to determine which man to propose to.

– BestMarriage(v) = if (Cv �= ∅) then return max(Cv) else return Null

Let Pv be the set of women who: (a) are preferred by v to his own spouse;
(b) prefer v to their own spouse; (c) have made a proposal to v; (d) are in the
same phase as v; (e) are single, if their phase is 2, or with a spouse, if their phase
is 1.

Pv = {u ∈ N (v) : u.proposal = v ∧ u.phase = v.phase
∧ p(v, u) < p(v, v.marriage) ∧ p(u, v) < p(u, u.marriage)

∧ [(u.marriage �= Null ∧ u.phase = 1)
∨ (u.marriage = Null ∧ u.phase = 2)]}

The following function is used only by men to determine which proposal to
accept (the considered proposals have to be done by women in the same phase).

– BestProposal(v) = if (Pv �= ∅) then return max(Pv) else return Null

Predicates:

The solution we propose introduces some predicates, which are used for test-
ing locally certain properties.

The predicate Married(v) below is used by a woman v for checking whether
she is reciprocally married (True), or not (False).

– Married(v) ≡ (v.marriage �= Null) ∧ [(v.marriage.marriage = v) ∨
(v.marriage.proposal = v)]

– MarriedM(v) ≡ (v.marriage �= Null) ∧ (v.marriage.marriage = v)

The predicate Response(v) checks if the proposal of v has been accepted.

– Response(v) ≡ (v.proposal �= Null) ∧ (v.proposal.proposal = v)

The predicate AlreadyEngaged(v) is used by a man to detect if he already
accepted a proposal.

54 M. Laveau et al.

– AlreadyEngaged(v) ≡ (v.proposal �= Null) ∧
[(v.proposal.proposal = v) ∨ (v.proposal.marriage = v)]

Since there is an asymmetry between women’s proposals and men’s acceptances
(women ask first for a marriage and then men answer), they have different pred-
icates to verify whether their pointers are correct and, in particular, that their
marriages are reciprocal (suffix W in the predicate name refers to women and M
to men). Otherwise, the predicate is False and pointers are said incoherent.

– IncoherentPointersW(v) ≡ (v.marriage �= Null)
∧ [((v.marriage.marriage �= v) ∧ (v.marriage.proposal �= v)) ∨
(v.marriage = v.proposal)]

– IncoherentPointersM(v) ≡ (v.marriage �= Null)
∧ [(v.marriage.marriage �= v) ∨ (v.marriage = v.proposal)]

Since the definition of blocking pair is asymmetrical (cf. Remark 1), there are two
predicates for checking the presence of blocking pairs (which involves a married
woman). If a node detects a blocking pair, we say that it is involved in a blocking
pair. In other words, if at least one of these two predicates is True, there is a
blocking pair.

– BlockingPairW(v) ≡ Married(v) ∧ (Cv �= ∅)
– BlockingPairM(v) ≡ (∃ u ∈ Cv : u.marriage �= Null)

The following predicate AllCoherentPhase(v) checks the coherence of phases,
namely whether v and all its neighbors are in phase 2, or v is in phase 1 and
all its neighbors in phases 1 or 1.5. It is used only by men to decide if they can
accept a proposal (women verify somewhat different conditions).

– AllCoherentPhase(v) ≡ (v.phase = 2 ∧ (∀ u ∈ N (v) : u.phase = 2))
∨ (v.phase = 1 ∧ (∀ u ∈ N (v) : u.phase ∈ {1, 1.5}))

3.1 Algorithm Description and Code

The matching M built by the presented algorithm is defined by pairs (w,m) ∈ E
such that w.marriage = m and m.marriage = w. The predicate defining the
stable matching problem is [∀w ∈ WOMEN : Married(w)∧¬BlockingPairW(w)∧
¬BlockingPairM(w.marriage)]. We define the legitimate configurations as the
terminal configurations satisfying this predicate.

The part of the algorithm executed by women (Algorithm 1) has 9 rules. We
start by describing intuitively what those rules do.

1. The Reset rule, performs a reset of marriage and proposal pointers, if these
pointers appeared to be incoherent according to the IncoherentPointersW pred-
icate.

2. The rule BadInit is executed by a woman in phase 2. In this phase a married
woman is not supposed to make a proposal. Thus, if her proposal and marriage
pointers are not set to Null (the only reason for that is a bad initialization),
BadInit resets the proposal pointer and sets the phase to 1 (to restart the
computation of a matching).

Self-stabilizing Distributed Stable Marriage 55

3. The rule Propose1 is executed by a married woman in phase 1. The rule
effect is a proposal to the man who corresponds to the best marriage for her
(i.e., best for the woman but also for the man with respect to its actual spouse
or single status).

4. The rule Confirme1 is executed by a woman in phase 1, after she has made
a proposal to a man and this proposal has been accepted (the man has put
the name of the woman in its variable proposal). Then the woman confirms
the marriage, breaking from her previous man and matching with the new
one. The couple is now considered married.

5. The rule Propose2 is executed by women in phase 2, in order to make a
proposal.

6. The rule Confirm2 is the analogous of Confim1 for a woman in phase 2.
7. The rule ToPhase1.5 is a phase transition rule from phase 1 to phase 1.5.

When a woman in phase 1 can not make any proposal (no blocking pair is
detected or she is single), she has to move to phase 1.5 if all men are in phase
1.

8. The rule ToPhase2 is also a phase transition rule. A woman in phase 1.5
can change to phase 2 if she does not detect any blocking pair and if all men
are in phase 1.5.

9. The rule ToPhase1 is a third phase transition rule. It is executed by a woman
in order to move from phase 2 or phase 1.5 to phase 1. The change happens
if the following (faulty) conditions are detected: (a) the woman is in phase 2
but some man is in phase 1 (either a blocking pair has been detected or phase
synchronisation has not stabilized yet); (b) the woman is in phase 1.5 but a
man is in phase 2 (the phase synchronization has not stabilized yet); (c) the
woman is married and either in phase 1.5 or 2 but detects a blocking pair.

Remark 2. If a man does not answer positively to a proposal from a woman
w (it has a better priority proposal), she detects it. BestMarriage(w) will not
return any longer this man and w can change her proposal with Propose1 or
Propose2.

The part of the algorithm executed by men (Algorithm2) consists of 6 rules:

1. The Reset rule resets the marriage pointer of a man and changes its phase
to 1. We prove later that this can happen only once for a man in phase 2.

2. The Accept rule checks that women are in a consistent phase related to the
phase of the man (AllCoherentPhase), that the best proposal received is differ-
ent from his actual marriage and that he has not accepted another proposal
(¬AlreadyEngaged). Remark that this is a commitment, but the couple is not
yet married. If the man is married with another woman, he has to break the
marriage since he has a better proposal.

3. The role of the rule Confirm is to confirm a marriage. The rule checks that
the phases are coherent and if the woman has her variable marriage set to
the man, he confirms too.

4. The rule ToPhase1.5 is a phase transition rule from phase 1 to phase 1.5.
If all women are in phase 1.5 and no blocking pairs are detected, the man
changes his phase to 1.5.

56 M. Laveau et al.

5. ToPhase2 makes men change to phase 2. When all women are in phase 2
and men have checked the lack of BPs, then phase 2 can begin.

6. The ToPhase1 rule detects a phase synchronization problem (a woman being
in phase 1 or 1.5 with the man in phase 2) or a woman willing to change to
phase 1 (blocking pair detected) when he is in phase 1.5.

Algorithm 1. for w ∈ Women

1: Reset : (* Reset pointers of marriage and proposal *)
2: { IncoherentPointersW(w) }
3: w.marriage ← Null, w.proposal ← Null

4: BadInit : (* Reset the pointer of proposal *)
5: { ¬IncoherentPointersW(w) ∧ w.marriage �= Null

6: ∧ w.proposal �= Null ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2 }
7: w.proposal ← Null, w.phase ← 1
8: Propose1: (* Propose in phase 1 *)
9: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1

10: ∧ BestMarriage(w) �= w.proposal ∧ Married(w) }
11: w.proposal ← BestMarriage(w)
12: Confirm1: (* Confirm a proposal in phase 1 *)
13: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1
14: ∧ Response(w) ∧ Married(w) ∧ BestMarriage(w) = w.proposal }
15: w.marriage ← w.proposal, w.proposal ← Null

16: Propose2: (* Propose in phase 2*)
17: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2
18: ∧ BestMarriage(w) �= w.proposal ∧ w.marriage = Null }
19: w.proposal ← BestMarriage(w)
20: Confirm2: (* Confirm a proposal in phase 2 *)
21: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 2
22: ∧ Response(w) ∧ w.marriage = Null

23: ∧ BestMarriage(w) = w.proposal }
24: w.marriage ← w.proposal, w.proposal ← Null

25: ToPhase1.5: (* To the phase 1.5 *)
26: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1
27: ∧ ¬BlockingPairW(w) }
28: w.phase ← 1.5, w.proposal ← Null

29: ToPhase2: (* To the phase 2 *)
30: { ¬IncoherentPointersW(w) ∧ ∀ v ∈ N (w) ∪ {w} : v.phase = 1.5
31: ∧ ¬BlockingPairW(w) }
32: w.phase ← 2, w.proposal ← Null

33: ToPhase1: (* To the phase 1 *)
34: { ¬IncoherentPointersW(w) ∧ (
35: [∃ m ∈ N (w) : (m.phase = 1 ∧ w.phase = 2)
36: ∨ (m.phase = 2 ∧ w.phase = 1.5)]
37: ∨
38: [w.phase ∈ {2, 1.5} ∧ BlockingPairW(w)]) }
39: w.phase ← 1, w.proposal ← Null

Self-stabilizing Distributed Stable Marriage 57

Algorithm 2. for m ∈ Men

1: Reset: (* Reset pointer of marriage *)
2: { IncoherentPointersM(m) }
3: m.marriage ← Null

4: m.phase ← 1
5: Accept: (* Accept a proposal except in phase 1.5 *)
6: { ¬IncoherentPointersM(m) ∧ AllCoherentPhase(m)
7: ∧ BestProposal(m) �= Null ∧ ¬AlreadyEngaged(m) }
8: m.proposal ← BestProposal(m)
9: Confirm: (* Confirm a marriage *)

10: { ¬IncoherentPointersM(m) ∧ m.proposal �= Null

11: ∧ m.proposal.marriage = m ∧ AllCoherentPhase(m) }
12: m.marriage ← m.proposal,m.proposal ← Null

13: ToPhase1.5: (* To the phase 1.5 *)
14: { ¬IncoherentPointersM(m) ∧ ∀ w ∈ N (m) : w.phase = 1.5
15: ∧ m.phase = 1 ∧ ¬BlockingPairM(m) ∧ ¬AlreadyEngaged(m) }
16: m.phase ← 1.5,m.proposal ← Null

17: ToPhase2: (* To the phase 2 *)
18: { ¬IncoherentPointersM(m) ∧ ∀ w ∈ N (m) : w.phase = 2
19: ∧ m.phase = 1.5 ∧ ¬BlockingPairM(m) }
20: m.phase ← 2,m.proposal ← Null

21: ToPhase1: (* To the phase 1 *)
22: { ¬IncoherentPointersM(m) ∧ (
23: [(∃ w ∈ N (m) : w.phase ∈ {1.5, 1}) ∧ m.phase = 2]
24: ∨
25: [(∃ w ∈ N (m) : w.phase = 1) ∧ m.phase = 1.5]) }
26: m.phase ← 1,m.proposal ← Null

4 Proof of Correctness and Time Complexity

The analysis of the algorithm appears to be complex and long due to several
reasons. First, the algorithm has to overcome the unfair adversary that can pre-
vent some enabled nodes from being activated as long as there are other enabled
nodes. This may take many moves made by nodes in different states and configu-
rations. Moreover, all these moves may not contribute to the convergence (e.g., if
an existing fault is not yet detected). Still, they have to be taken into account for
the correctness and the time analysis. Another reason for the analysis difficulty is
the distribution and asynchrony of the solution. For example, as reciprocal mar-
riages, divorces, and blocking pair detection cannot be done instantaneously, or
at least within some timing guarantees (as in synchronous lock-step models),
the related results on previous centralized or synchronous solutions cannot be
used in our case. Finally, due to self-stabilization, the analysis has to consider
executions starting from an arbitrary configuration.

In particular, initially, the phase numbers can be arbitrary. Moreover there
are specific rules applying to such or such phase number. The consequence of that
is a great number of cases to treat, each case necessitating a particular treatment

58 M. Laveau et al.

and special arguments. For classifying the different cases into categories, the
following definition is introduced.

Definition 2. Let A and B be two sets of phase numbers and bp a non-negative
integer. We say that a configuration C is in the set of configurations denoted
by (A,B, bp)× if in C: (a) ∀m ∈ Men : m.phase ∈ A, (b) ∀w ∈ Women :
w.phase ∈ B and (c) bp is the number of blocking pairs.

Furthermore, a configuration C is in the set denoted by (A,B, bp), if it is in
(A,B, bp)× and satisfies

⋃

m ∈ Men

{m.phase} = A ∧ ⋃

w ∈ Women

{w.phase} = B.

For example: ({a}, {b, c},X)× ≡ ({a}, {b, c},X)
⋃

({a}, {b},X)
⋃

({a}, {c},
X). Furthermore, we denote by C1 the set of configurations where ∃ v ∈ V :
v.phase = 1 and by C1F a set of configurations in C1 where v ∈ Women.

So, we prove the correctness of the algorithm for every possible starting
configuration type. Due to the lack of space, only the main statements and ideas
of the proof are presented in the following. The complete proof appears in [17].

First we consider a relatively simple case - the one of a terminal configura-
tion. We show (Proposition 1) that such a configuration is in ({2}, {2}, 0) and
whenever it is reached the marriage-values define a stable marriage. Notice that
this implies the closure part of the correctness proof.

Proposition 1. In a terminal configuration, the set of edges {(w,m) ∈ E :
w.marriage = m ∧ m.marriage = w} is a stable matching. This configuration
is in ({2}, {2}, 0).

Then, we prove the convergence part of the proof by showing convergence
to a terminal configuration. First, we show, through Lemmas 7–13, that from
any configuration in C1, in O(n4) moves, an execution reaches a configuration in
({1.5}, {1.5}, 0), having no blocking pairs. It is proven in particular by showing
that the sum of the regrets of married women is strictly decreasing. Notice that
we cannot conclude this property directly from a similar result for the centralized
two-phased algorithm of Ackermann et al., because it assumes “best response”
dynamics, which we do not realize here (in phase 1). As already explained before,
since marriages, divorces and detection of blocking pairs cannot be done instan-
taneously under a distributed setting, it is difficult and costly to realize such
dynamics.

Then, through Lemmas 14–23 and Proposition 3 below, it is proven that
from any configuration in ({1.5, 2}, {1.5, 2},X ≥ 0)×, in O(n4) moves, either
the execution reaches (possibly cycles to) a configuration in C1F , or reaches a
configuration in ({2}, {2}, 0). By Proposition 2 stated below, there is at most one
such possible execution cycle, i.e., any execution converges to a configuration in
({2}, {2}, 0) in O(n4) moves.

Proposition 2. Let C be a configuration in ({1.5, 2}, {1.5, 2},X)× with X ≥ 0
and C’ ∈ C1F . In any execution, C → C’ appears at most once.

Self-stabilizing Distributed Stable Marriage 59

Proposition 3. Any execution takes O(n4) moves to reach a configuration in
({2}, {2}, 0).

Proposition 3 below ensures that the conditions of a configuration in
({2}, {2}, 0) required by Corollary 1 are satisfied in O(n4) moves. In particular,
these conditions ensure that no node changes to phase 1 anymore (see Reset
and BadInit rules). This in turn allows to obtain and consider the last segment
of execution of phase 2, i.e, the last segment where all configurations are in
({2}, {2}, 0). Then, by Corollary 1, from such configurations, a terminal config-
uration is obtained in O(n2) moves (this is proven through Lemmas 24–31 and
Proposition 5). Notice that, when phase 2 is executed the last time, it is ensured
by the algorithm that no blocking pairs exist or appear. However, the existing
matching may be incomplete (unstable) and new matches continue to appear
until termination.

Proposition 4. Any execution starting in ({2}, {2}, 0) takes O(n4) moves to
reach a configuration in ({2}, {2}, 0) such that

1. no man is enabled for the Reset rule,
2. no woman w is enabled for the BadInit rule and either w.proposal = Null

or w.proposal = BestMarriage(w).

Corollary 1. Let E be an execution starting from a configuration in ({2}, {2}, 0)
such that

1. no man is enabled for the Reset rule,
2. no woman w is enabled for the BadInit rule and either w.proposal = Null

or w.proposal = BestMarriage(w).

E contains O(n2) moves.

Finally, Proposition 1 is used to prove a convergence to a stable marriage from
a terminal configuration (reached by Proposition 4 and Corollary 1). Altogether
this implies the main theorem below.

Theorem 1. Any execution takes O(n4) moves to reach a terminal configura-
tion where the set of edges {(w,m) ∈ E : w.marriage = m ∧ m.marriage =
w} is a stable matching.

Proof. By Proposition 3, any execution takes O(n4) moves to reach a config-
uration C’ in ({2}, {2}, 0). By Proposition 4, starting from C’, a configuration
C” in ({2}, {2}, 0) satisfying the conditions of Corollary 1 is reached in O(n4)
moves. Then, by Corollary 1, from C”, a terminal configuration is reached in
O(n2) moves. By Proposition 1, this configuration is legitimate (satisfying a sta-
ble matching). This implies the theorem. �

60 M. Laveau et al.

References

1. Ackermann, H., Goldberg, P.W., Mirrokni, V.S., Röglin, H., Vöcking, B.: Uncoor-
dinated two-sided matching markets. SIAM J. Comput. 40(1), 92–106 (2011)

2. Amira, N., Giladi, R., Lotker, Z.: Distributed weighted stable marriage problem.
In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 29–40.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13284-1 4

3. Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: A time-
optimal self-stabilizing synchronizer using a phase clock. IEEE Trans. Dependable
Secur. Comput. 4(3), 180–190 (2007)

4. Boulinier, C., Petit, F., Villain, V.: When graph theory helps self-stabilization. In:
PODC, pp. 150–159 (2004)

5. Brito, I., Meseguer, P.: Distributed stable marriage problem. In: 6th Workshop on
Distributed Constraint Reasoning at IJCAI, vol. 5, pp. 135–147 (2005)

6. Chuang, S., Goel, A., McKeown, N., Prabhakar, B.: Matching output queueing
with a combined input/output-queued switch. IEEE J. Sel. Areas Commun. 17(6),
1030–1039 (1999)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

8. Floren, P., Kaski, P., Polishchuk, V., Suomela, J.: Almost stable matchings by
truncating the Gale-Shapley algorithm. Algorithmica 58(1), 102–118 (2010)

9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 120(5), 386–391 (1962)

10. Ghosh, S.: Distributed Systems: An Algorithmic Approach, 2nd edn. Chapman &
Hall/CRC, Boca Raton (2014)

11. Golle, P.: A private stable matching algorithm. In: Crescenzo, G., Rubin, A. (eds.)
FC 2006. LNCS, vol. 4107, pp. 65–80. Springer, Heidelberg (2006). doi:10.1007/
11889663 5

12. Gonczarowski, Y.A., Nisan, N., Ostrovsky, R., Rosenbaum, W.: A stable marriage
requires communication. In: SODA 2015, pp. 1003–1017 (2015)

13. Gusfield, D., Irving, R.W.: The Stable Marriage Problem - Structure and Algo-
rithms. Foundations of Computing Series. MIT Press, Cambridge (1989)

14. Kim, G., Lee, W.: Stable matching with ties for cloud-assisted smart tv services.
In: ICCE, pp. 558–559 (2014)

15. Kipnis, A., Patt-Shamir, B.: A note on distributed stable matching. In: ICDCS,
pp. 466–473 (2009)

16. Knuth, D.E.: Mariages stables et leurs relations avec d’autres problemes combina-
toires. Les Presses de l’Universite de Montreal (1976)

17. Laveau, M., Manoussakis, G., Beauquier, J., Bernard, T., Burman, J., Cohen, J.,
Pilard, L.: Self-stabilizing distributed stable marriage. Research report (2017)

18. Maggs, B.M., Sitaraman, R.K.: Algorithmic nuggets in content delivery. Comput.
Commun. Rev. 45(3), 52–66 (2015)

19. Manlove, D.F.: Algorithmics of Matching Under Preferences, vol. 2. World Scien-
tific, Singapore (2013)

20. Ng, C., Hirschberg, D.S.: Lower bounds for the stable marriage problem and its
variants. SIAM J. Comput. 19(1), 71–77 (1990)

21. Ostrovsky, R., Rosenbaum, W.: Fast distributed almost stable matchings. In:
PODC 2015, pp. 101–108. ACM, New York (2015)

22. Khanchandani, P., Wattenhofer, R.: Distributed stable matching with similar pref-
erence lists. In: OPODIS. pp. 12:1–12:16 (2016)

http://dx.doi.org/10.1007/978-3-642-13284-1_4
http://dx.doi.org/10.1007/11889663_5
http://dx.doi.org/10.1007/11889663_5

Self-stabilizing Distributed Stable Marriage 61

23. Roth, A., Vande Vate, J.H.: Random paths to stability in two-sided matching.
Econometrica 58(6), 1475–80 (1990)

24. Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching: A Study in Game-theoretic
Modeling and Analysis. Cambridge University Press, Cambridge (1990)

25. Xu, H., Li, B.: Seen as stable marriages. In: INFOCOM, pp. 586–590 (2011)

Computing the Fault-Containment Time of
Self-Stabilizing Algorithms Using
Markov Chains and Lumping

Volker Turau(B)

Institute of Telematics, Hamburg University of Technology, Hamburg, Germany
turau@tuhh.de

Abstract. The analysis of self-stabilizing algorithms is in the vast
majority of all cases limited to the worst case stabilization time starting
from an arbitrary configuration. Considering the fact that these algo-
rithms are intended to provide fault tolerance in the long run this is not
the most relevant metric. From a practical point of view the worst case
time to recover in case of a single fault is much more crucial. This paper
presents techniques to derive upper bounds for the mean time to recover
from a single fault for self-stabilizing algorithms Markov chains in com-
bination with lumping. To illustrate the applicability of the techniques
they are applied to a self-stabilizing coloring algorithm.

1 Introduction

Fault tolerance aims at making distributed systems more reliable by enabling
them to continue the provision of services in the presence of faults. The strongest
form is masking fault tolerance, where a system continues to operate after faults
without any observable impairment of functionality, i.e. safety is always guar-
anteed. In contrast non-masking fault tolerance does not ensure safety at all
times. Users may experience incorrect system behavior, but eventually the sys-
tem will fully recover. The potential of this concept lies in the fact that it can
be used in cases where masking fault tolerance is too costly or even impossible
to implement [11]. Self-stabilizing algorithms are a category of distributed algo-
rithms that provide non-masking fault tolerance. They guarantee that systems
eventually recover from transient faults of any scale such as perturbations of
the state in memory or communication message corruption [6]. A critical issue
is the length of the time span until full recovery. Examples are known where a
memory corruption at a single process caused a vast disruption in large parts of
the system and triggered a cascade of corrections to reestablish safety. Thus, an
important issue is the containment of the effect of transient faults.

A fault-containing system has the ability to contain the effects of transient
faults in space and time. The goal is to keep the extent of disruption during recov-
ery proportional to the extent of the faults. An extreme case of fault-containment
with respect to space is given when the effect of faults is bounded to the set of
faulty nodes. Azar et al. call this error confinement [1]. More relaxed forms of
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 62–77, 2017.
https://doi.org/10.1007/978-3-319-69084-1 5

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 63

fault-containment are known as time-adaptive self-stabilization [19], scalable self-
stabilization [14], strong stabilization [8], and 1-adaptive self-stabilization [3].

A configuration is called k-faulty, if in a legitimate configuration exactly k
processes are hit by a fault (a configuration is called legitimate if it conforms
with the specification). A large body of research focuses on fault-containing for
1-faulty configurations. Several metrics have been introduced to quantify the
containment behavior in the 1-faulty case [13,18]. A distributed algorithm A
has contamination radius r if only nodes within the r-hop neighborhood of the
faulty node change their state during recovery from a 1-faulty configuration. The
containment time of A denotes the worst-case number of rounds any execution of
A starting at a 1-faulty configuration needs to reach a legitimate configuration.
In technical terms this corresponds to the worst case time to recover in case of a
single fault. For randomized algorithms the expected number of rounds to reach
a legitimate configuration corresponds to the mean time to recover (MTT).

Over the last two decades a large number of self-stabilizing algorithms have
been published. Surprisingly the analysis of the vast majority of these algorithms
is confined to the worst case stabilization time starting from an arbitrary con-
figuration. Considering the fact that these algorithms are intended to provide
fault tolerance in the long run this is not the most relevant metric at all. From
a practical point of view the worst case time to recover from a 1-faulty configu-
ration is much more crucial. This statement is justified considering the fact that
the probability for a 1-faulty configuration is much larger then that for k-faulty
configuration with large values of k. The reason is that a distributed system
consists of independently operating computers where transient faults such as
memory faults are independent events. Considering this fact it comes as a sur-
prise that only in a few cases fault-containment metrics have been considered
[12,25]. One reason may be that there are many techniques available to deter-
mine the worst case stabilization time of an algorithm, e.g., potential functions
and convergence stairs, but there is no systematic approach to determine the
containment metrics.

This paper discusses two techniques to analyze the containment time of ran-
domized self-stabilizing algorithms with respect to memory and message corrup-
tion. The execution of the algorithm is modeled as a stochastic process. Let X be
the random variable that represents the number of rounds the system requires to
reach a legitimate configuration when starting in a 1-faulty configuration. Then
the MTT of the algorithm is equal to E[X]; thus, we are interested in upper
bounds for E[X]. In some cases it will be possible to derive an explicit expres-
sion for E[X]. An alternative is to use an absorbing Markov chain to derive
an equation for E[X]. This equation may be solvable with a software package
based on symbolic mathematics. However, the state space explosion problem
will preclude success for many real world problems. An important optimization
technique for the reduction of the complexity of Markov chains is lumping [17].
Lumping is a method based on the aggregation of states that exhibit the same
behavior. It leads to a smaller Markov chain that retains the same performance
characteristics as the original one.

64 V. Turau

The contribution of this paper is a discourse about computing containment
metrics of self-stabilizing algorithms in the 1-faulty case. We present and apply
techniques based on Markov chains to compute upper bounds for these metrics.
In particular we demonstrate how lumping can be applied to reduce the com-
plexity of the Markov chains. To demonstrate the usability of the techniques we
apply them to a self-stabilizing coloring algorithm as a case study. We derive an
absolute bound for the expected containment time and show that the variance is
bounded by a surprisingly small constant independent of the network’s size. We
believe that the techniques can also be applied to other algorithms. The proofs
of the technical lemmata can be found in the technical report [24].

2 Related Work

There exist several techniques to analyze self-stabilizing algorithms: potential
functions, convergence stairs, Markov chains, etc. Markov chains are particularly
useful for randomized algorithms [9]. Their main drawback is that in order to
set up the transition matrix the adjacency matrix of the graph must be known.
This restricts the applicability of this method to small or highly symmetric
instances. Lee DeVille and Mitra apply model checking tools to Markov chains
for cases of networks of small size (n ≤ 7) to determine the expected stabilization
time [5]. An example for highly symmetric networks are ring topologies, see for
example [10,26]. Fribourg et al. model randomized distributed algorithms as
Markov chains using the technique of coupling to compute upper bounds for the
stabilization times [10]. Yamashita uses Markov chains to model self-stabilizing
probabilistic algorithms and to prove stabilization [26]. Mitton et al. consider a
randomized self-stabilizing Δ+1-coloring algorithm and model this algorithm in
terms of urns/balls using a Markov chain to get a bound for the stabilization time
[22]. They evaluated the Markov chain for networks up to 1000 nodes analytically
and by simulations. Crouzen et al. model faulty distributed algorithms as Markov
decision processes to incorporate the effects of random faults when using a non-
deterministic scheduler [4]. They used the PRISM model-checker to compute
long-run average availabilities.

3 System Model

This paper uses the synchronous model of distributed computing as defined
in the standard literature [6,13,23]. A distributed system is represented as an
undirected graph G(V,E) where V is the set of nodes and E ⊆ V × V is the
set of edges. Let n = |V | and Δ(G) denote the maximal degree of G. The
topology is assumed to be fixed. If two nodes are connected by an edge, they
are called neighbors. The set of neighbors of node v is denoted by N(v) ⊆ V
and N [v] = N(v) ∪ {v}. Each node stores a set of variables. The values of all
variables constitute the local state of a node. Let σ denote the set of possible
local states of a node. The configuration of a system is the tuple of all local
states of all nodes. Σ = σn denotes the set of global states. A configuration is

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 65

called legitimate if it conforms with the specification. The set of all legitimate
configurations is denoted by L.

Nodes communicate either via locally shared memory (Sect. 4) or by exchang-
ing messages (Sect. 6). In the shared memory model each node executes a pro-
tocol consisting of a list of rules of the form guard −→ statement . The guard is
a Boolean expression over the node’s variables and its neighbors. The statement
consists of a series of commands. A node is called enabled if one of its guards
evaluates to true. The execution of a statement is called a move.

Execution of the statements is performed in a synchronous style, i.e., all
enabled nodes execute their code in every round. In the message passing model
a node performs three steps per round: receiving messages from neighbors, exe-
cuting code, and sending messages to neighbors. An execution e = 〈c0, c1, c2, . . .〉,
ci ∈ Σ is a sequence of configurations, where c0 is called the initial configuration
and ci is the configuration after the i-th step. In other words, if the current
configuration is ci−1 and all enabled nodes make a move, then this yields ci.

The containment behavior of a self-stabilizing algorithm is characterized by
the contamination radius and the containment time. In this paper we are inter-
ested in the most common fault situation: 1-faulty configurations. Such config-
urations arise when a single node v is hit by a memory corruption or a single
message sent by v is corrupted. Denote by Rv the subgraph of the communi-
cation graph G induced by the nodes that are engaged in the recovery process
from a 1-faulty configuration triggered by a fault at v. The contamination radius
is equal to max{dist(v, w) | w ∈ Rv}.

The stabilization time st(n) is an obvious upper bound for the containment
time. This can be narrowed down to O(st(Δr)), if the contamination radius r is
known. There are two situations in which it is possible to obtain better bounds:
Either the structure of Rv is considerably simpler than that of G or the faulty
configuration is close to a legitimate configuration (e.g., only v is not legitimate).

4 Contamination Radius

If an algorithm using the shared memory model has contamination radius r and
no other fault occurs then this fault will not spread beyond the r-hop neigh-
borhood of the faulty node v. In this case Rv ⊆ Gr

v, where Gr
v is the subgraph

induced by nodes w with dist(v, w) ≤ r. As an example consider the well known
self-stabilizing algorithm A1 to compute a maximal independent set (see Algo-
rithm1).

Lemma 1. Algorithm A1 has contamination radius two.

Proof. Let v be a node hit by a memory corruption. First suppose the state
of v changes from IN to OUT . Let u ∈ N(v) then u.state = OUT . If u has
an neighbor w 	= v with w.state = IN then u will not change its state during
recovery. Otherwise, if all neighbors of u except v had state OUT node u may
change state during recovery. But since these neighbors of u have a neighbor with

66 V. Turau

state IN they will not change their state. Thus, in this case only the neighbors
of v may change state during recovery.

Next suppose that v.state changes from OUT to IN . Then v and those neigh-
bors of v with state IN can change to OUT . Then arguing as in the first case
only nodes within distance two of v may change their state during recovery.
�

Algorithm 1. Self-stabilizing algorithm A1 to compute a MIS.
if state = IN ∧ ∃w ∈ N(v) s.t. w.state = IN then

state := OUT

if state = OUT ∧ ∀w ∈ N(v) w.state = OUT then
if random bit from 0,1 = 1 then

state := IN

In the following we consider another example: Δ + 1-coloring. Most distrib-
uted algorithms for this problem follow the same pattern. A node that realizes
that it has selected the same color as one of its neighbors chooses a new color
from a finite color palette. This palette does not include the current colors of
the node’s neighbors. To be executed under the synchronous scheduler these
algorithms are either randomized or use identifiers for symmetry breaking. Vari-
ations of this idea are followed in [7,15,22]. As an example consider algorithm
A2 from [15] (see Algorithm 2). Due to its choice of a new color from the palette
algorithm A2 has contamination radius at least Δ(G) (see Fig. 1).

∆ ∆ − 1 ∆ − 2

∆

∆ − 3

∆ − 1,∆

2
· · ·

4, ... ,∆

1

3, ... ,∆

0

2, ... ,∆

Fig. 1. The numbers indicate the nodes’ colors. If the left-most node is hit by a fault
and changes its color to Δ − 1, then all nodes on the horizontal line may change color.

Algorithm 2. Self-stabilizing Δ + 1-coloring algorithm A2 from [15].
if c �= max ({0, . . . , Δ}\{w.c | w ∈ N(v)}) then

if random bit from 0,1 = 1 then
c := max ({0, . . . , Δ}\{w.c | w ∈ N(v)})

A minor modification of algorithm A2 dramatically changes matters. Algo-
rithm A3 (see Algorithm 3) has containment radius 1 (see Lemma 2) and Rv is a
star graph with center v. Note that neighbors of v that change their color during
recovery form an independent set.

Algorithm 3. Self-stabilizing Δ + 1-coloring algorithm A3.
if ∃w ∈ N(v) s.t. c = w.c then

if random bit from 0,1 = 1 then
c := choose {0, . . . , Δ}\{w.c | w ∈ N(v)}

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 67

Lemma 2. Algorithm A3 has contamination radius one.

Proof. Let v be a node hit by a memory corruption changing its color to a color c
already chosen by at least one neighbor of v. Let Nconf = {w ∈ N(v) | w.c = c}.
In the next round the nodes in Nconf ∪ {v} will get a chance to choose a new
color. The choices will only lead to conflicts between v and other nodes in Nconf .
Thus, the fault will not spread beyond the set Nconf . With a positive probability
the set Nconf will contain fewer nodes in each round.
�

5 Containment Time

As the contamination radius the containment time strongly depends on the con-
crete structure of G. This can be illustrated with algorithm A1. Note that in
this case Rv can contain any subgraph H with Δ(G) nodes. As an example let
G consist of H and an additional node v connected to each node of H. A legiti-
mate configuration is given if the state of v is IN and all other nodes have state
OUT (Fig. 2 left). If v changes its state to OUT due to a fault then all nodes
may change to state IN during the next round. Thus, there is little hope for a
bound below the trivial bound. Similar arguments hold for the second 1-faulty
configuration of A1 shown on the right of Fig. 2.

H

v

H1 Hn· · ·

v

· · ·

Fig. 2. 1-faulty configurations of A1 caused by a memory corruption at v. Nodes drawn
in bold have state IN . The depicted graphs correspond to Rv.

We introduce two techniques to derive upper bounds for the expected con-
tainment time of a randomized synchronous self-stabilizing algorithm A. Let X
be the random variable that denotes the number of rounds until the system has
reached a legitimate configuration when starting in a 1-faulty configuration c.
The expected containment time equals the expected value E[X]. An analyti-
cal approach to compute an upper bound for E[X] is to derive a bound for
g(i) = P{X = i} and use this to estimate E[X] =

∑∞
i=1 ig(i). This approach

is often infeasible due to the high number of states. A remedy is the lumping
technique explained in the following section.

68 V. Turau

5.1 Lumpable Markov Chains

The self-stabilizing algorithm A can be regarded as a transition systems of Σ.
In each round the current configuration c ∈ Σ is transformed into a new config-
uration A(c) ∈ Σ. This process is described by the transition matrix P where
pij gives the probability to move from configuration ci to cj in one round, i.e.,
A(ci) = cj . To reduce the complexity we partition Σ into subsets Σ0, . . . , Σl and
consider these as the states of a Markov chain. A partitioning is called lumpable
if the subsets Σi have the property that for each pair i, j the probability of a
configuration c ∈ Σi to be transformed in one round into a configuration of Σj

is independent of the choice of c ∈ Σi (Definition 6.3.1 [17]). This probability is
then interpreted as the transition probability from Σi to Σj .

A state ci of a Markov chain is called absorbing if pii = 1 and pij = 0 for i 	= j.
For each self-stabilizing algorithm, the set of all absorbing states is equal to L,
the legitimate configurations. The number of rounds to reach a configuration in
L starting from a given configuration ci ∈ Σi equals the number of steps before
being absorbed in L when starting in state Σi. This equivalence allows us to use
techniques from Markov chains to compute the stabilization time and thus, the
containment time. Let Σ0 consist of a single 1-faulty configuration and Σl = L.
Then E[X] equals the expected number of rounds to reach Σl from Σ0, where
Σ0 ranges over all 1-faulty configurations.

5.2 Example

To illustrate this approach we consider again algorithm A3. Let v be a node
that changes in a legitimate state its color to cf due to a memory fault. Let
c0 be the new configuration. This causes a conflict with those neighbors of v
that had chosen cf as their color. After the fault only nodes contained in Rv

(a star graph) change their state. Once a neighbor has chosen a color different
from cf then it becomes passive (at least until the next transient fault). Let d
be the number of neighbors of v that have color cf in c0. Denote by Σj the set
of all configurations reachable from c where exactly d − j neighbors of v are in
conflict with v. Then Σ0 = {c0} and Σd ⊆ L. Let c ∈ Σi. Then A3(c) 	∈ Σj

for all j < i. This partitioning is not lumpable because the probability of a
configuration c ∈ Σi to be transformed in one round into a fixed configuration
of Σj is not independent of the choice of c ∈ Σi. This issue can be resolved by
using lower bounds of these probabilities. For i < j let pij ≥ 0 be a constant
such that P (A3(c) ∈ Σj) ≥ pij for all c ∈ Σi. Furthermore, let pij = 0 for j < i
and for i = 0, . . . , d

pii = 1 −
d∑

j=i+1

pij .

Then pii ≥ 0 because 0 ≤
∑d

j=i pij ≤
∑d

j=i P (A3(c) ∈ Σj) = 1 for each fixed
c ∈ Σi. Thus, the matrix P = (pij) is a stochastic with pdd = 1. P describe a
new Markov chain C. The expected number of steps of C before being absorbed

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 69

by Σd when starting from state Σ0 is an upper bound for E[X], the expected
containment time of A3.

To analyze C standard techniques can be applied. Let Q be the matrix
obtained from P by removing the last row and the last column. Q describes
the probability of transitioning from some transient state to another. The fol-
lowing properties are well known, e.g. Theorem 3.3.5 of [17]. Denote the d × d
identity matrix by Ed. Then N = (Ed − Q)−1 is the fundamental matrix of
the Markov chain. The expected number of steps before being absorbed by Σd

when starting from Σi is the i-th entry of vector a = NId where Id is a length-d
column vector whose entries are all 1. The variance of these numbers of steps is
given by the entries of (2N −Ed)a−asq where asq is derived from a by squaring
each entry.

In the rest of this paper the techniques are exemplary applied to a self-
stabilizing (Δ + 1)-coloring algorithm Acol using the message passing model.
For the approach based on Markov chains a software package based on symbolic
mathematics is used to compute E[X] and V ar[X].

6 Algorithm Acol

This section introduces coloring algorithm Acol (see Algorithm 4). Computing
a Δ + 1-coloring in expected O(log n) rounds with a randomized algorithm is
long known [16,21]. Algorithm Acol follows the pattern sketched in Sect. 4. We
derived it from a algorithm contained in [2] (Algorithm 19) by adding the self-
stabilization property. The presented techniques can also be applied to other ran-
domized coloring algorithms such as [7,15,22]. The main difference is that Acol

assumes the message passing model, more precisely the synchronous CONGEST
model as defined in [23]. Algorithm Acol stabilizes after O(log n) rounds with
high probability whereas the above cited self-stabilizing algorithms all require a
linear number of rounds. Since synchronous local algorithms can be converted to
asynchronous self-stabilizing algorithms [20], there are self-stabilizing algorithms
for Δ + 1-coloring that are faster than Acol. However, they entail a burden on
memory resources, high traffic costs, and a long computational time.

At the start of each round of Acol each node broadcasts its current color to its
neighbors. Based on the information received from its neighbors a node decides
either to keep its color (final choice), to choose a new color or no color (value
⊥). In particular with equal probability a node v draws uniformly at random a
color from the set {0, 1, . . . , δ(v)}\tabu or indicates that it made no choice (see
function randomColor). Here, tabu is the set of colors of neighbors of v that
already made their final choice.

In the algorithm of [2] a node maintains a list with the colors of those neigh-
bors that made their final choice. A fault changing this list is difficult to contain.
Furthermore, in order to notice a memory corruption at a neighbor, each node
must continuously send its state to all its neighbors and cannot stop to do so.
This is the price of self-stabilization and well known [6]. These considerations
lead to the design of Algorithm Acol. Each node only maintains the chosen color

70 V. Turau

and whether its choice is final (variables c and final). Acol uses two additional
variables tabu and occupied, but they are reset at the beginning of every round.
In every round a node sends the values of these variables to all neighbors. To
improve fault containment a node’s final choice of a color is only withdrawn if it
coincides with the final choice of a neighbor. To achieve a Δ + 1-coloring a node
makes a new choice if its color is larger than its degree. This situation can only
originate from a fault.

Algorithm 4. Algorithm Acol as executed by a node v in each round.
Set<Color> tabu := ∅, occupied := ∅;
broadcast(c, final) to all neighbors w ∈ N(v);
for all neighbors w ∈ N(v) do

receive(cw, finalw) from node w;
if cw �= ⊥ then

occupied := occupied ∪ {cw};
if finalw then tabu := tabu ∪ {cw} ;

if c = ⊥ ∨ c > δ(v) then
final := false;

else
if final then

if c ∈ tabu then final := false ;
else

if c �∈ occupied then final := true ;

if final = false then c := randomColor(v, tabu) ;

function Color randomColor(Node v, Set<Color> tabu)
if random bit from 0,1 = 1 then return ⊥ ;
return random color from {0,1,. . . , δ(v)}\tabu;

Next we prove correctness and ythe stabilization time of Acol. A configuration
is called a legal coloring if the values of variable c form a Δ + 1-coloring. It is
called legitimate if it is a legal coloring and v.final = true for each node v.

Lemma 3. A node v can change the value of variable final from true to false
only in the first round or when a fault occured just before the start of this round.

Proof. Let v.c = cr at the beginning of the round. In order for v to set v.final
to false one of the following conditions must be met at the start of the round:
cr > δ(v), cr = ⊥, or v has a neighbor w with w.final = true and w.c = cr.

The lemma is obviously true in the first case. Suppose that cr = ⊥ and
v.final = true at the round’s start. If during the previous round the value of
v.final was set to true then v.c can not be ⊥ at the start of this round. Hence, at
the start of the previous round final already had value true. But in this case v.c
was not changed in the previous round and thus, cr 	= ⊥, contradiction. Finally
assume the last condition. Then v and w cannot have changed their value of c in
the previous round, because then final = true would be impossible at the start

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 71

of this round. Thus, v sent (cr, true) in the previous round. Hence, if w.c = cr

at that time, w would have changed w.final to false, again a contradiction.
�

Lemma 4. A node setting final to true will not change its variables as long as
no error occurs.

Proof. Let v be a node that executes final := true. If v changes the value back
to false in a later round then by Lemma3 a fault must have occured. Thus in
an error-free execution node v will never change variable final again. Since a
node can only change variable c if final = false the proof is complete.
�

Lemma 5. If at the end of a round during which no error occured each node v
satisfies v.final = true then the configuration is legitimate and remains legiti-
mate as long as no error occurs.

Proof. Note that no node changed its color during that round. If at the start of
the round v.final = true was already satisfied then none of v’s neighbors also
having final = true had the same color as v. Next consider a neighbor w of v
with w.final = false at the start of the round. Since v sent (v.c, true) at the
start of this round, node w would have set final to false if it had chosen the
same color as v. Contradiction. Finally consider that case that v.final = false
at the start of the round. Since v changed final to true, none of its neighbors
had chosen the same color as v. Thus, the configuration is legitimate. Obviously,
this property can only be changed by a fault.
�

The following theorem can be proved with the help of the last three lemmas.

Theorem 6 [24]. Algorithm Acol is self-stabilizing and computes a Δ + 1-
coloring within O(log n) rounds with high probability (i.e. with probability at
least 1 − nc for any c ≥ 1). Acol has contamination radius 1.

7 Fault Containment Time of Algorithm Acol

There is a significant difference from the shared memory model compared to the
message passing model when analyzing the containment time. Firstly, a 1-faulty
configuration also arises when a single message sent by a node v is corrupted.
Secondly, this may cause v’s neighbors to send messages they would not send
in a legitimate configuration. Even though the state of nodes outside Gr

v does
not change, these nodes may be forced to send messages. Thus, in general the
analysis of the containment time cannot be performed by considering Gr

v only.
This is only possible in cases when a fault at v does not force nodes at distance
r + 1 to send messages they would not send had the fault not occurred.

In the following the fault containment behavior of Acol for 1-faulty configu-
rations is analyzed. Two types of transient errors are considered:

1. A single broadcast message sent by v is corrupted. Note that the alternative
of using δ(v) unicast messages instead a single broadcast has very good fault
containment behavior but is slower due to the handling of acknowledgements.

72 V. Turau

2. Memory corruption at node v, i.e., the value of at least one of the two variables
of v is corrupted.

The first case is analyzed analytically whereas for the second case Markov chains
are used. The independent degree δi(v) of a node v is the size of a maximum
independent set of N(v). Let Δi(G) = max{δi(v) | v ∈ V }.

7.1 Message Corruption

If a message broadcast by v contains a color cf different from v.c or the value
false for variable final then the message (cf , false) has no effect on any w ∈
N(v) regardless of the value of cf , since w.final = true for all w ∈ N(v). Thus,
this corrupted message has no effect at all. In order to compute the containment
time for Acol we first compute the contamination radius.

Lemma 7. The contamination radius of algorithm Acol after a single corruption
of a broadcast message sent by node v is 1. At most δi(v) nodes change their state
during recovery.

Proof. It suffices to consider the case that v broadcasts message (cf , true) with
cf 	= v.c. Let Nconf (v) = {w ∈ N(v) | w.c = cf}. The nodes in Nconf (v) form an
independent set, because they all have the same color. Thus |Nconf (v)| ≤ δi(v).

Let u ∈ V \N [v]. This node continues to send (u.c, true) after the fault.
Thus, a neighbor of u that changes its color will not change its color to u.c.
This yields that no neighbor of u will ever send a message with u.c as the first
parameter. This is also true in case u ∈ N(v)\Nconf (v). Hence, no node outside
Nconf (v) ∪ {v} will change its state, i.e. the contamination radius is 1.

Let w ∈ Nconf (v). When the faulty message is received by w it sets w.final
to false. Before the faulty message was sent no neighbor of v had the same color
as v. Thus, in the worst case a node w ∈ Nconf (v) will choose v.c as its new
color and send (v.c, false) to all neighbors. Since v.final = true this will not
force v to change its state. Thus, v keeps broadcasting (v.c, true) and therefore
no neighbor w of v will ever reach the state w.c = v.c and w.final = true. Hence
v will never change its state.
�

With this result Theorem6 implies that the containment time of this fault is
O(log δi(v)) on expectation. The following theorem gives an absolute bound for
the expected value of the containment time.

Theorem 8 [24]. The expected value for the containment time of algorithm Acol

after a corruption of a message broadcast by node v is at most 1
ln 2Hδi(v) + 1/2

rounds (Hi denotes the ith harmonic number) with a variance of at most

1
ln2 2

δi(v)∑

i=1

1
i2

+
1
4

≤ π2

6 ln2 2
+

1
4

≈ 3.6737.

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 73

7.2 Memory Corruption

This section demonstrates the use of Markov chains in combination with lumping
to analyze the containment time. We consider the case that the memory of a
single node v is hit by a fault. The analysis breaks down the stabilizing executions
into several states and then computes the expected time for each of these phases.
First we look at the case that the fault causes variable v.final to change to
false. If v.c does not change, then a legitimate configuration is reached after one
round. So assume v.c also changes. Then the fault will not affect other nodes.
This is because no w ∈ N(v) will change its value of w.c since w.final = true
and v.final = false. Thus, with probability at least 1/2 node v will choose in
the next round a color different from the colors of all neighbors and terminate
one round later. Similar to Xd let random variable Zd denote the number of
rounds until a legal coloring is reached (d = |Nconf (v)|). It is easy to verify that
E[Zd] = 3 in this case.

The last case is that only variable v.c is affected (i.e. v.final remains true).
The main difference to the case of a corrupted message is that this fault persists
until v.c has again a legitimate value. Let cf be the corrupted value of v.c and
suppose that Nconf (v) = {w ∈ N(v) | w.c = cf} 	= ∅. A node outside S =
Nconf (v)∪{v} will not change its state (c.f. Lemma 7). Thus, the contamination
radius is 1 and at most δi(v) + 1 nodes change state. Let d = |Nconf (v)|. The
subgraph GS induced by S is a star graph with d + 1 nodes and center v.

Lemma 9. To find a lower bound for E[Zd] we may assume that w can choose
a color from {0, 1}\tabu with tabu = ∅ if v.final = false and tabu = {v.c}
otherwise and v can choose a color from {0, 1, . . . , d}\tabu with tabu ⊆ {0, 1}.

Proof. When a node u ∈ S chooses a color with function randomColor the
color is randomly selected from Cu = {0, 1, . . . , δ(v)}\tabu. Thus, if w and v
choose colors in the same round, the probability that the chosen colors coincide
is |Cw ∩Cv|/|Cw||Cv|. This value is maximal if |Cw ∩Cv| is maximal and |Cw||Cv|
is minimal. This is achieved when Cw ⊆ Cv and Cv is minimal (independent of
the size of Cw) or vice versa. Thus, without loss of generality we can assume
that Cw ⊆ Cv and both sets are minimal. Thus, for w ∈ Nconf (v) the nodes in
N(w)\{v} already use all colors from {0, 1, . . . , δ(v)} but 0 and 1 and all nodes in
N(v)\Nconf (v) already use all colors from {0, 1, . . . , δ(v)} but 0, 1, . . . , d. Hence,
a node w ∈ Nconf (v) can choose a color from {0, 1}\tabu with tabu = ∅ if
v.final = false and tabu = {v.c} otherwise. Furthermore, v can choose a color
from {0, 1, . . . , d}\tabu with tabu ⊆ {0, 1}. In this case tabu = ∅ if w.final =
false for all w ∈ Nconf (v).
�

Thus, in order to bound the expected number of rounds to reach a legitimate
state after a memory corruption we can assume that G = GS and u.final = true
and u.c = 0 (i.e. cf = 0) for all u ∈ S. After one round u.final = false for all
u ∈ S. To compute the expected number of rounds to reach a legitimate state
an execution of the algorithm for the graph Gs is modeled by a Markov chain
M with the following states (I is the initial state) using the lumping technique:

74 V. Turau

I: Represents the faulty state with u.c = 0 and u.final = true for all u ∈ S.
Ci: Node v and exactly d − i non-center nodes will not be in a legitimate state

after the following round (0 ≤ i ≤ d). In particular v.final = false and
w.c = v.c 	= ⊥ or v.c = w.c = ⊥ for exactly d − i non-center nodes w.

P : Node v has not reached a legitimate state but will do so in the next round.
In particular v.final = false and v.c 	= w.c for all non-center nodes w.

F : Node v is in a legitimate state, i.e. v.final = true and v.c 	= w.c for all
non-center nodes w, but w.c may be equal to ⊥.

M is an absorbing chain with F being the single absorbing state. Note that
when the system is in state F , then it is not necessarily in a legitimate state.
This state reflects the set of configurations considered in the last section.

Lemma 10 [24]. The transition probabilities of M are as follows:

I −→ P : d−1
2d + 1

d

(
1
2

)d+1

I −→ C0: d−1
d

(
1
2

)d+1 + 1
2d

I −→ Cj:
(

d
d−j

) (
1
2

)d+1 (0 < j ≤ d)

Ci −→ Cj:
(

d−i
d−j

) (
1
2

)d−i+1 + 1
d−i+1

(
d−i
j−i

) (
1
4

)d−i (3d−j − 2d−j) (0 ≤ i ≤ j ≤ d)

Ci −→ P : 1
d−i+1

(
3
4

)d−i + d−i−1
2(d−i+1) (0 ≤ i < d)

Cd −→ P : 1/2
P −→ F : 1

We first calculate the expected number E[Ad] of rounds to reach the absorb-
ing state F . With Theorem 8 this will enable us to compute the expected number
E[Zd] of rounds required to reach a legitimate system state. To build the transi-
tion matrix P of M the d + 4 states are ordered as I, C0, C1, . . . , Cd, P, F . Let
Q be the (d + 3)× (d + 3) upper left submatrix of P . For s = −1, 0, 1, . . . , d+1
denote by Qs the (s + 2) × (s + 2) lower right submatrix of Q, i.e. Q = Qd+1.
Denote by Ns the fundamental matrix of Qs (notation as introduced in Sect. 5).
Let 1s be the column vector of length (s + 2) whose entries are all 1 and
εs = Ns1s. For s = 0, . . . , d, εs is the expected number of rounds to reach
state F from state Cd−s and εd+1 is the expected number of rounds to reach
state F from I, i.e. εd+1 = E[Ad] (Theorem 3.3.5, [17]). Identifying P with Cd+1

we have ε−1 = 1.

Lemma 11. The expected number E[Ad] of rounds to reach F from I is less
than 5 and the variance is less than 3.6.

Proof. Note that ε−1 = 1 and ε0 =
∞∑

i=1

i
2i + 1 = 3. Qs and Ns are upper triangle

matrices. Let

Ei − Qi =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − a1 −a2 . . . −ai+2

0
Ei−1 − Qi−1...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Ni =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1 x2 . . . xi+2

0
Ni−1...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 75

Ei = (Ei −Qi)Ni gives rise to (i+2)2 equations. Summing up the i+2 equations
for the first row of Ei results in

εi = (1 − a1)−1

(

1 +
i+2∑

l=2

alεi+1−l

)

(1)

Hence

εi = (1 − a1)−1

(

1 +
i∑

l=2

alεi+1−l + 3ai+1 + ai+2

)

for i > 0. By Lemma 19 of [24] εi ≤ 4 for i = −1, 0, 1, . . . , d. Hence

E[Ad] = εd+1 = 1 +
d+3∑

l=2

alεd+2−l ≤ 1 + 4
d+3∑

l=2

al = 5, and

V ar[Ad] = ((2Nd+1 − Ed+1)1d+1 − 12d+1)[1] = 2
∑d+3

i=1 xiεd+2−i − εd+1 − ε2d+1.
�

Lemma 12 [24]. The expected value for the containment time after a memory
corruption at node v is at most 1

ln 2Hδi(v) + 11/2 with variance less than 7.5.

Theorems 6 and 8, Lemmas 7 and 12 together prove the following Theorem.

Theorem 13. Acol is a self-stabilizing algorithm for computing a (Δ + 1)-
coloring in the synchronous model within O(log n) time with high probability.
It uses messages of size O(log n) and requires O(log n) storage per node. With
respect to memory and message corruption it has contamination radius 1. The
expected containment time is at most 1

ln 2HΔi
+11/2 with variance less than 7.5.

Corollary 14. Algorithm Acol has expected containment time O(1) for bounded-
independence graphs. For unit disc graphs this time is at most 8.8.

Proof. For these graphs Δi ∈ O(1), in particular Δi ≤ 5 for unit disc graphs.
�

8 Conclusion

The analysis of self-stabilizing algorithms is often confined to the stabilization
time starting from an arbitrary configuration. In practice the time to recover
from a 1-faulty configuration is much more relevant. This paper presents tech-
niques to analyze the containment time of randomized self-stabilizing algorithms
for 1-faulty configurations. The execution of an algorithm is modeled as a Markov
chain, its complexity is reduced with the lumping technique. The power of this
technique is demonstrated by an application to a Δ + 1-coloring algorithm.

Acknowledgments. Research was funded by Deutsche Forschungsgemeinschaft DFG
(TU 221/6-1).

76 V. Turau

References

1. Azar, Y., Kutten, S., Patt-Shamir, B.: Distributed error confinement. ACM Trans.
Algorithms 6(3), 48:1–48:23 (2010)

2. Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, San Rafael (2013)

3. Beauquier, J., Delaet, S., Haddad, S.: Necessary and sufficient conditions for 1-
adaptivity. In: 20th Internatioal Parallel and Distributed Processing Symposium,
pp. 10–16 (2006)

4. Crouzen, P., Hahn, E., Hermanns, H., Dhama, A., Theel, O., Wimmer, R.,
Braitling, B., Becker, B.: Bounded fairness for probabilistic distributed algorithms.
In: 11th International Conference Application of Concurrency to System Design,
pp. 89–97, June 2011

5. Lee DeVille, R.E., Mitra, S.: Stability of distributed algorithms in the face of
incessant faults. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp.
224–237. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05118-0 16

6. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
7. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.

Chicago J. Theor. Comput. Sci. 4, 1–40 (1997)
8. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks

in stabilization. IEEE Trans. Parallel Distrib. Syst. 23(3), 460–466 (2012)
9. Duflot, M., Fribourg, L., Picaronny, C.: Randomized finite-state distributed algo-

rithms as Markov chains. In: Welch, J. (ed.) DISC 2001. LNCS, vol. 2180, pp.
240–254. Springer, Heidelberg (2001). doi:10.1007/3-540-45414-4 17

10. Fribourg, L., Messika, S., Picaronny, C.: Coupling and self-stabilization. Distrib.
Comput. 18(3), 221–232 (2006)

11. Gärtner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchro-
nous environments. ACM Comput. Surv. 31(1), 1–26 (1999)

12. Ghosh, S., Gupta, A.: An exercise in fault-containment: self-stabilizing leader elec-
tion. Inf. Process. Lett. 59(5), 281–288 (1996)

13. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.: Fault-containing self-stabilizing
distributed protocols. Distrib. Comput. 20(1), 53–73 (2007)

14. Ghosh, S., He, X.: Scalable self-stabilization. J. Parallel Distrib. Comput. 62(5),
945–960 (2002)

15. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloring of arbitrary graphs. In:
4th International Conference on Principles of Distributed Systems, OPODIS 2000,
pp. 55–70 (2000)

16. Johansson, Ö.: Simple distributed δ+1-coloring of graphs. Inf. Process. Lett. 70(5),
229–232 (1999)

17. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Springer, Heidelberg (1976)
18. Köhler, S., Turau, V.: Fault-containing self-stabilization in asynchronous systems

with constant fault-gap. Distrib. Comput. 25(3), 207–224 (2012)
19. Kutten, S., Patt-Shamir, B.: Adaptive stabilization of reactive protocols. In:

Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 396–407.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 33

20. Lenzen, C., Suomela, J., Wattenhofer, R.: Local algorithms: self-stabilization on
speed. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 17–34.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05118-0 2

21. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1055 (1986)

http://dx.doi.org/10.1007/978-3-642-05118-0_16
http://dx.doi.org/10.1007/3-540-45414-4_17
http://dx.doi.org/10.1007/978-3-540-30538-5_33
http://dx.doi.org/10.1007/978-3-642-05118-0_2

Computing the Fault-Containment Time of Self-Stabilizing Algorithms 77

22. Mitton, N., Fleury, E., Guérin-Lassous, I., Séricola, B., Tixeuil, S.: On fast ran-
domized colorings in sensor networks. In: Proceedings of ICPADS, pp. 31–38. IEEE
(2006)

23. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Society
for Industrial and Applied Mathematics, Philadelphia (2000)

24. Turau, V.: Computing the fault-containment time of self-stabilizing algorithms
using Markov chains. Technical report, Hamburg University of Techology (2017)

25. Turau, V., Hauck, B.: A fault-containing self-stabilizing (3–2/(delta+1))-
approximation algorithm for vertex cover in anonymous networks. Theoret. Com-
put. Sci. 412(33), 4361–4371 (2011)

26. Yamashita, M.: Probabilistic self-stabilization and random walks. In: 2013 Inter-
national Conference on Computing, Networking and Communications (ICNC), pp.
1–7 (2011)

Self-tuning Eventually-Consistent Data Stores

Shankha Chatterjee(B) and Wojciech Golab

University of Waterloo, Waterloo, Canada
{sschatte,wgolab}@uwaterloo.ca

Abstract. Replication protocols in distributed storage systems are fun-
damentally constrained by the finite propagation speed of information,
which necessitates trade-offs among performance metrics even in the
absence of failures. We focus on the consistency-latency trade-off, which
dictates that a distributed storage system can either guarantee that
clients always see the latest data, or it can guarantee that operation
latencies are small (relative to the inter-data-center latencies) but not
both. We propose a technique called spectral shifting for tuning this
trade-off adaptively to meet an application-specific performance target
in a dynamically changing environment. Experiments conducted in a
real wold cloud computing environment demonstrate that our tuning
framework provides superior convergence compared to a state-of-the-art
solution.

1 Introduction

Distributed storage systems form the backbone of essential online services includ-
ing web search, e-mail, social networking, and shopping. The replication pro-
tocols that protect such systems from permanent data loss are fundamentally
constrained by the finite propagation speed of information, which necessitates
trade-offs among performance metrics even in the absence of failures. In par-
ticular, any storage system that is replicated across data centers in different
geographies may either guarantee that clients always see fresh data, or guaran-
tee that operation latencies are small relative to the inter-data-center latencies,
but not both. This leads to a difficult choice for application developers – bite the
bullet and pay the high latency cost of strong consistency, optimize the system
for low latency at the risk of exposing inconsistent data to applications and their
users, or strike a compromise.

The search for a meaningful compromise between consistency and latency is
challenging. Systems that enable application control over this trade-off mostly
do so by implementing a quorum-based replication protocol, and by allowing
the programmer to choose the size of the quorum for reading and writing, as in
Amazon’s Dynamo [12]. The different behaviors achievable using this approach
represent a collection of discrete points in the trade-off space, which tends to be

W. Golab—Author supported in part by the Natural Sciences and Engineering
Research Council (NSERC) of Canada, Discovery Grants Program, by a Google
Faculty Research Award, and by the AWS Cloud Credits for Research program.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 78–92, 2017.
https://doi.org/10.1007/978-3-319-69084-1 6

Self-tuning Eventually-Consistent Data Stores 79

quite sparse in geo-replicated systems where latencies for strongly and weakly
consistent operations can differ by orders of magnitude. Thus, applications whose
requirements lie squarely in-between these discrete points are not always served
well by such systems. Recent research prototypes (e.g., [31]) have evaded this
problem by allowing applications to declare their consistency and latency targets
precisely through service level agreements (SLAs), but these systems are not yet
in mainstream use, and moreover they tend to support only restricted forms of
consistency, such as deterministically bounded staleness.

Responding to a real world need for flexible performance tuning in distributed
storage systems, we propose a technique for automated control over a probabilis-
tic consistency-latency trade-off. Our framework can be layered on top of any
key-value storage system that provides read and write operations, and supports
eventual consistency – the property that in the absence of updates and fail-
ures, all replicas of a given key eventually converge to the same value. Given a
target consistency threshold expressed as the proportion of the workload that
participates in consistency anomalies, and a system that is unable to meet this
threshold, the framework boosts consistency by injecting delays artificially into
read and write operations. We introduce a novel technique called spectral shift-
ing for calculating the duration of the optimal delay (i.e., one that meets the
consistency threshold while minimizing latency), which allows the framework
to adapt nimbly to changing network conditions and workload characteristics.
Microbenchmark experiments using a practical cloud storage system show that
our framework achieves superior convergence as compared to a state-of-the-art
solution [29].

2 Background and Definitions

We model a distributed storage system abstractly as a collection of processes
p1, p2, ..., pn that communicate by exchanging messages over point-to-point com-
munication channels. The processes simulate a collection of shared read/write
register objects, each identified by a unique key, using a distributed protocol.
The processes and the network are asynchronous, and may suffer benign failures:
processes may fail by crashing, and communication channels may drop messages
but cannot corrupt or reorder them. The possibility of failure necessitates data
redundancy (e.g., replication) to prevent loss of data, but we focus in this paper
on the behavior of the system in failure-free executions where processing and
network delays are bounded.

A history of operations executed by a distributed storage system is a sequence
of steps, representing the invocations and responses of the procedures Read and
Write (as in [19]). Steps record the time when an operation was invoked or
produced a response, as well as the corresponding arguments (if any) and return
value. The steps in a history appear in increasing order of time. Invocation and
response steps corresponding to the same operation are called matching, and we
assume that steps are tagged with sufficient information so that all matching
pairs can be identified. We assume that every history H is well-formed meaning

80 S. Chatterjee and W. Golab

that it satisfies two properties: (i) if H contains a Read response step for key k and
value v then H also contains a Write invocation step for k and v that precedes the
response of the Read; and (ii) every invocation has a unique matching response
and vice-versa. An operation is a matching invocation-response pair. A Write of
value v to key k is denoted abstractly by WriteOp (k, v), and a Read of value v
from key k is denoted by ReadOp(k, v). The invocation and response times of
an operation are denoted by the functions start and fin. Given two operations
op1 and op2, we say that op1 happens before op2 in a history H if fin(op1) <
start(op2), otherwise we say that op1 and op2 are concurrent. A history H is
linearizable if there exists a total order T on the operations in H that extends
the happens before relation, and where each ReadOp returns the value assigned
by the most recent WriteOp (preceding the ReadOp) to the same key, or the
initial value of the key if there is no such WriteOp [19]. A history H is regular if
it satisfies the requirements of linearizability with one exception: a ReadOp may
(but is not required to) return the value assigned by any WriteOp that accesses
the same key and with which the ReadOp is concurrent in H [22].

The storage system can be implemented in a variety of ways, for example
using quorum-based replication, and its internal design determines what cor-
rectness property its behaviors satisfy. We are interested in quantifying how far
this behavior deviates from a standard correctness properties for read/write reg-
isters, such as linearizability and regularity. We choose regularity in particular
because it is the strongest property supported (in some configurations) by popu-
lar quorum-replicated storage systems, such as Dynamo [12] and its derivatives.
Specifically, we use the methodology of Golab et al. [15] to calculate the propor-
tion of values (read or written) that participate in consistency anomalies with
respect to regularity. This technique applied to a history H entails shifting the
invocation and response steps of operations conceptually (i.e., in the course of
mathematical analysis after H is recorded) in such a way that the time intervals
of the operations expand outward, which causes pairs of operations related by
“happens before” in H to become concurrent in the transformed history H ′. One
way to formalize such a transformation is the following:

Definition 1. The t-relaxation of a history H is a history Ht obtained by
decreasing the time of every ReadOp invocation event and increasing the time
of every WriteOp response event by t time units.

A t-relaxation of H tends to increase the number of possible total orders T
referred to by the definitions of linearizability and regularity, thus lessening the
constraints imposed by these properties. Since we assume that every history
is well-formed, it follows easily that for every history H there exists a t ≥ 0
such that Ht is regular. In particular, such a t occurs when the operation inter-
vals expand to the point where every ReadOp is concurrent with a WriteOp
of the same value to the same key. This optimal value of t is our measure of
inconsistency.

Definition 2. The regular t-value of a history H is the smallest real number
t ≥ 0 such that the regular t-relaxation of H, denoted Ht, is regular.

Self-tuning Eventually-Consistent Data Stores 81

Following [17], we note that the t-value for a history can be computed in poly-
nomial time under the following assumption, which we make henceforth:

Assumption 3. For any history H and any distinct operations op1, op2 in H,
if op1 writes v1 to key k and op2 writes v2 to the same key k then v1 �= v2.

The above assumption combined with our definition of a well-formed history
means that each history has an implicit “reads from” mapping:

Definition 4. For any history H that satisfies Assumption 3 and any read oper-
ation ReadOp (k, v) in H, the unique operation WriteOp (k, v) in H is called the
dictating write of the read.

Efficient computation of the t-value for a history H exploits the observation
that consistency anomalies can be attributed to the interaction of operations
accessing only two distinct values with respect to the same key [13]. Anomalies
can therefore be quantified as follows with reference to one key and two values:

Definition 5. For any history H, key k, and values distinct v, v′, the magnitude
of the consistency anomaly due to the interaction of operations on key k that
access v or v′, denoted by the scoring function χ(H, k, v, v′), is defined as the
regular t-value of the projection of H onto operations applied to key k that access
value v or v′. Furthermore, χ(H, k, v) is defined as maxv′ �=v χ(H, k, v, v′).

The function χ(H, k, v, v′) is calculated similarly to [16,17] and the details
are omitted due to lack of space.

3 Spectral Shifting

In this section we present a framework called SPECSHIFT for trading off oper-
ation latency against consistency by slowing down operations using artificial
delays [18,29]. Such explicit delays are similar qualitatively to implicit delays
arising from client-server interactions in distributed protocols, for example where
a process requests data from a majority quorum of replicas instead of reading or
writing locally. Specifically, longer delays tend to improve consistency similarly
to larger partial quorums [27]. In eventually consistent systems where replicas
are updated asynchronously, an artificial delay equal to the sum of the processing
delay and one-way network delay is, informally speaking, sufficient to counter-
act the latency of the replication protocol and ensure regularity. In comparison,
quorum operations require two network delays or one round trip. However, if
the network and processing delays are unbounded in the worst case, protocols
based on artificial delays cannot guarantee regularity deterministically, in con-
trast to quorum-based protocols. Instead, artificial delays can in some cases pro-
vide an attractive probabilistic consistency-latency trade-off whereby regularity
is attained for a large fraction of the workload at a latency that is substantially
lower than using quorum operations.

Our approach to probabilistic consistency-latency tuning is a feedback control
mechanism that combines empirical measurement with probabilistic analysis.
Before explaining the details, we first introduce some relevant definitions.

82 S. Chatterjee and W. Golab

Definition 6. Let H be a history of operations on key k where m distinct val-
ues are written: v1, v2, ..., vm. Let χi denote the score χ(H, k, vi) for i ∈ [1,m]
(see Definition 5). Let φ(H) = m denote the total number of scores for H,
counted with multiplicity. The frequency of a score j ∈ Z

≥0, denoted freq(j,H)
is the number of scores in χ1, χ2, ..., χm equal to j. The score set S(H) =
{χ1, χ2,, χm} is the set of unique scores in a history H.

Definition 7. The score histogram for a given history H of operations is a
collection of bins, b0, b1, ..., bmax(S(H)), where bin bi = freq(i,H) for 0 ≤ i ≤
max(S(H)).

The score histogram captures the full “spectrum” of regularity anomalies
arising in a history H, and enables a precise calculation of the optimal artificial
delay (AD) with respect to a given consistency target defined as a particular
proportion of positive scores. The actual proportion of positive scores in a history
H is denoted by I(H) = φ(H)−freq(0,H)

φ(H) , and may be higher than or lower than
the target. If I(H) exceeds the target then the AD must be increased to boost
consistency at the expense of greater latency. On the other and, if I(H) is below
the target then the AD can be decreased to reduce latency while maintaining the
desired level of consistency. The optimal AD establishes equality between I(H)
and the target, and may change in response to variations in network conditions
and the workload mixture. For example, a rise in the network delay or processing
delay due to a load spike may increase the optimal AD, requiring more latency
to meet the same consistency target, whereas a decrease in the arrival rate of
storage operations may lower the optimal AD, allowing a latency reduction.

The tuning framework injects the computed artificial delay d at the end of
a WriteOp and at the beginning of a ReadOp, which stretches the boundaries of
these operations. In practical terms, this is achieved by a adding a thin layer of
software on top of a distributed storage system that delays the execution or reads
and the response of writes either at clients or at servers. The effect of the AD
on the consistency of the storage system is analogous to a t-relaxation (see Def-
inition 1) with t = d. Specifically, a t-relaxation reduces the score χ(H, k, v, v′)
(and similarly χ(H, k, v)) by t time units if the score was > t, or else reduces the
score to zero if it was ≤ t, and so we expect intuitively that an AD of d = t time
units should have a similar effect on the actual behavior of the storage system.
Thus, reasoning precisely about t-relaxations, which operate on histories at a
conceptual level, allows us to compute the optimal AD, which in turn alters the
histories actually generated by the storage system.

Using the above observation, we can roughly predict the effect of an AD of
d milliseconds on the shape of the score histograms generated by the storage
system. If we were to plot the histograms for a history H obtained from the
system without ADs, and for a history H ′ obtained with ADs of d time units,
we would expect the histogram for H ′ to resemble the “tail” of the histogram
for H comprising bins bd+1, bd+2, In other words, we expect an AD of d time
units to shift the spectrum of scores to the left by d bins, hence the name spectral
shifting.

Self-tuning Eventually-Consistent Data Stores 83

Definition 8. For a given history H and any i, d ∈ Z
≥0, the shifted frequency

of i is defined as:

freq-s(i,H, d) =
{∑d

j=0 freq(i + j,H) if i = 0
freq(i + d,H) otherwise

In general, our tuning framework cannot assume that the initial AD is zero
since it must be capable of tuning the delay in either direction from an arbitrary
starting point, as required to keep up with a dynamically changing environment.
Thus, the goal is to predict the score histogram for a history H ′ obtained using
an AD of d′ time units, given as input the score histogram for a history H
obtained using an AD of d time units. We refer to d as the base delay, and d′ as
the target delay.

Consider first the case where d ≤ d′. The predicted score histogram for H ′

has a frequency of freq-s(i,H, d′ − d) for a score i ∈ Z
≥0. The accuracy of

the prediction is contingent on H and H ′ reflecting, informally speaking, the
same workload, meaning that the read and write invocation rates and inter-
invocation times are identically distributed. We expect this correspondence to
hold approximately in an open system where the latency of operations does not
affect the random process that generates these operations. (We comment on
open versus closed systems in greater detail later on in Sect. 4.) The proportion
of positive scores for H ′ can then be predicted using the following formula:

I ′(H, d) =
φ(H) − freq-s(0,H, d′ − d)

φ(H)

Figure 1 illustrates spectral shifting by presenting score histograms for two
histories obtained with AD = 0 ms and 15 ms. The histogram on the right roughly
resembles the tail of the histogram on the left, starting at bin 15. We observe
that lower scores have higher frequency and vice-versa. Both the histograms have
long tails, indicating that large scores, though rare, exist. Most of the area of
both histograms is concentrated towards the left, which indicates that most of
the regularity anomalies can be eliminated with smaller delays. However, as we
increase the value of the injected AD, there is a diminishing return in terms

Fig. 1. Histograms illustrating the effect of increasing the artificial delay (AD) on the
frequency of non-zero χ(H, k, vi) scores. (Left: AD= 0 ms. Right: AD = 15 ms.)

84 S. Chatterjee and W. Golab

of reduction in the proportion of positive scores. To eliminate all anomalies,
we would have to inject a relatively large AD, resulting in a considerable sac-
rifice in terms of operation latencies. This underscores the need for intelligent
consistency-latency tuning to find the optimal AD to be injected without sacri-
ficing latency needlessly.

The case when d > d′ (i.e., the base delay exceeds the target delay) is, on
first impression, similar to the case when d < d′ since it entails shifting the
score histogram in the opposite direction, namely from left to right. However,
we cannot simply apply the spectral shifting technique in reverse because the
freq-s function (see Definition 8) is undefined in this case. More concretely, freq-s
does not determine frequencies for new bins that appear at the left end of the
score spectrum following a shift, whereas in the previous case this frequency was
known to be zero for any bins inserted to the right of the tail. We describe a
solution to this problem in the next section.

3.1 Inner-Outer Consistency

To enable bidirectional spectral shifting, we propose a novel technique that cap-
tures additional information in the operation history H, enabling a transforma-
tion from H to a history H ′ that has the same read and write invocation rates
as well as inter-invocation times, and where the AD is zero. Recall from earlier
in Sect. 3 that the ADs are injected at the beginning of a ReadOp and at the end
of a WriteOp . For read operations, our technique records the time when the AD
finishes at the beginning of a ReadOp, in addition to the start and finish times.
For writes, we record the time when the AD starts at the end of a WriteOp . We
use these additional timestamps to define inner and outer operations:

Definition 9. The inner operation for a given ReadOp (k, v) with an injected AD
of d is an operation reading v from k in the time interval [start(ReadOp (k, v))+
d, fin(ReadOp (k, v))]. ReadOp (k, v) is the outer operation in this context.

Definition 10. The inner operation for a given WriteOp (k, v) with an injected
AD of d is an operation writing v to k in the time interval [start(WriteOp (k, v)),
fin(WriteOp (k, v)) − d]. WriteOp (k, v) is the outer operation in this context.

Figure 2 illustrates inner and outer operations in a history H comprising one
write and two reads with an AD of d. All three operations are on the same
key k with an initial value of 0. The outer operations form a regular history
because WriteOp (k, 1) is concurrent with ReadOp (k, 0), which allows the read
to return the initial value. However, the history of inner operations, which is
similar to H but with an AD of 0 instead of d, has one consistency anomaly
because WriteOp (k, 1) happens before ReadOp (k, 0).

3.2 Adaptive Tuning Framework

We can use SPECSHIFT to construct an adaptive tuning framework that adjusts
ADs to meet a target proportion of consistency anomalies while minimizing the

Self-tuning Eventually-Consistent Data Stores 85

Fig. 2. Example of inner and outer operations with an artificial delay of d.

ADs to reduce average operation latency. For each iteration of tuning, we take
a history of operations H, the current AD d injected to each operation, and a
target proportion of positive scores Pt as input. We use these inputs to predict
the target AD dt required to achieve the target proportion Pt. A new history
H ′ is then recorded under the updated AD dt, and the inputs for the next
iteration are dt, H ′ and Pt. The process is repeated in a loop until convergence
to Pt occurs. The framework uses both physical artificial delays for controlling
the behavior of the storage system with respect to consistency and latency, and
conceptual artificial delays while reasoning about t-relaxations to compute the
optimal correction to the length of the physical delay.

The calculation of dt given Pt is the dual problem of the one solved by
SPECSHIFT, which predicts the proportion of positive scores from the delay. We
solve the dual problem as follows, with H denoting the most recently measured
history and d denoting the current delay. If the proportion P (H) of positive
scores for H matches the target Pt then d is optimal and dt = d. If P (H) > Pt,
then d is too small, and must be increased. Then dt is computed (as explained
shortly) using the outer operations in H. On the other hand, if P (H) < Pt, then
d is too large, and must be decreased. Then dt is computed using the history
Hinner of inner operations in H. The adjustment to the delay is determined
using the following function, with either H itself or Hinner used as the input
history G:

Definition 11. For a history G of operations and a target proportion (of posi-
tive scores) of Pt, the delay prediction function D(G,Pt) is defined as the smallest
non-negative integer dp that satisfies the following inequality:

dp−1∑
i=1

freq(i, G) ≤ φ(G) − freq(0, G) − Pt × φ(G) ≤
dp∑
i=1

freq(i, G)

The intuition underlying Definition 11 is as follows. The number of positive
scores in the input history G is equal to φ(G) − freq(0, G). In comparison, the
desired number of positive scores to meet the target Pt is Pt × φ(G). The differ-
ence between φ(G)−freq(0, G) and Pt ×φ(G) is positive by our choice of G, and
represents the number of additional positive scores that must be eliminated by

86 S. Chatterjee and W. Golab

adjusting the delay. A delay adjustment of +bp is predicted to eliminate positive
scores in bins b1, b2, ..., bp, and so a rolling total over bi yields the minimum dp

that is sufficient to reduce the proportion of positive scores below Pt.
The output dp of the delay prediction function is applied as follows to com-

pute the target delay dt for the next round of consistency-latency tuning. If G
comprises the outer operations of H (d too small), then dt = d + dp, otherwise
G comprises the inner operations of H (d too large) and dt = dp.

4 Experimental Evaluation

In this section we compare the convergence of the SPECSHIFT adaptive tuning
framework, the PCAP multiplicative control loop [29], and a binary search for
the optimal AD over the constrained range [0, 71] using a Apache Cassandra
deployed in Amazon’s Elastic Compute Cloud (EC2). Six Cassandra servers
were deployed across three Amazon regions: Oregon, Ireland, and Tokyo.

We ran 20 experiments on a Cassandra cluster, each with a distinct positive
integer value of starting delay in the range [0, 90] and a target proportion of
consistency anomalies in the range of [0.02, 0.05]. The target proportions are
chosen to be small enough to be tolerated in a real-world application. The start-
ing delays are chosen to always be less than the largest one-way network delay
between regions, which is 106 ms (between Ireland and Tokyo).

SPECSHIFT, PCAP, and binary search are all implemented as feedback
control loops that first measure consistency in a given iteration while holding
the AD constant, and then compute an adjusted AD for the next iteration. Each
iteration is run for 30 s with a throughput of 6000 operations/s and a read-
to-write proportion of 0.8. The workload is generated using the Yahoo Cloud
Serving Benchmark (YCSB), and keys are drawn from the “latest” distribution,
which favors recently chosen keys. We use the number of iterations required
by each technique to obtain convergence to within 0.005 of the desired target
proportion as the figure of merit for comparisons.

The PCAP multiplicative loop operates by starting with a unit step size and
increasing it exponentially at each iteration until the control loop overshoots or
undershoots, at which point the direction of the steps is reversed and the step
size is reset to unity. The search interval selected for binary search is based on
the intuition that the proportion of consistency anomalies is very close to zero
when every operation is delayed by the sum of the one-way network delay and
processing delay. Thus, the optimal AD to achieve a non-zero target proportion
usually lies between 0 and the latter quantity.

We also experimented with a proportional-integral-differential (PID) con-
troller for consistency-latency tuning, but this technique involves tuning addi-
tional control parameters kp, kd and ki. Convergence, if achieved, with the values
of these parameters suggested in [29] (kp = 1, kd = 0.8, ki = 0.5) is extremely
slow and so we have omitted the results.

Figures 3 and 4 illustrate the details for two of the 20 experiments. The target
proportion is denoted by a solid horizontal line in the plots. Figure 3 shows the

Self-tuning Eventually-Consistent Data Stores 87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12

In
co

ns
is

te
nc

y
m

et
ric

 (

pr
op

or
tio

n
of

 p
os

iti
ve

 s
co

re
s)

Number of iterations

Proportions, target proportion = 0.05, starting AD = 0

SPECSHIFT (1 iteration)
Binary Search (5 iterations)

PCAP (12 iterations)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12

Ar
tif

ic
ia

l D
el

ay
 (

m
s)

Number of iterations

Delay predictions, target prop. = 0.05, starting AD = 0

SPECSHIFT (1 iteration)
Binary Search (5 iterations)

PCAP (12 iterations)

Fig. 3. Convergence comparison for target proportion= 0.05, starting AD = 0.

 0

 0.05

 0.1

 0.15

 0.2

 0 2 4

In
co

ns
is

te
nc

y
m

et
ric

 (

pr
op

or
tio

n
of

 p
os

iti
ve

 s
co

re
s)

Number of iterations

Proportions, target prop. = 0.03, starting AD = 75 ms

SPECSHIFT (1 iteration)
Binary Search (4 iterations)

PCAP (4 iterations)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4

Ar
tif

ic
ia

l D
el

ay
 (

m
s)

Number of iterations

Delay predictions, target prop.= 0.03, starting AD = 75 ms

SPECSHIFT (1 iteration)
Binary Search (4 iterations)

PCAP (4 iterations)

Fig. 4. Convergence comparison for target proportion = 0.03, starting AD = 75 ms.

proportion of positive scores and the delay at each iteration on the vertical axis
for a starting delay of 0 and a target proportion of 0.05. Figure 4 shows the
same for a starting delay of 75 ms and a target proportion of 0.03. In both cases
SPECSHIFT converges in one iteration, using outer operations in Fig. 3 and
inner operations in Fig. 4 to compute the AD adjustment. PCAP is prone to
oscillations and requires more than ten iterations to converge in the first case
(Fig. 3), though it reaches very close to the target value at the eighth iteration.
Binary search is more predictable, and either meets or beats the performance
of PCAP. Binary search and PCAP converge faster in the second experiment,
partly because the initial and optimal delays are less far apart. The number of
iterations required by these two techniques is more sensitive to the specific values
of the starting delay and the target proportion.

Figure 5 presents data for all 20 runs of the experiment, and shows that the
PCAP multiplicative loop takes anywhere between 1 to 15 iterations to converge,
with the mean value between 7 and 8. Binary search takes anywhere between 4
to 7 iterations to do the same, with a mean of almost 6. SPECSHIFT, however,
takes only one iteration to converge in the vast majority of runs. The plots in
Fig. 5 shows outliers for SPECSHIFT and binary search. Outliers are defined as
values that lie more than one and a half times the length of the box from either
end of the box, as is the norm with box-and-whisker plots.

As pointed out earlier in Sect. 3, the accuracy of the prediction at each itera-
tion of SPECSHIFT is contingent on the workload not changing across iterations.
In the experiments above, we have assumed an open system where the overall
throughput of the system remains unchanged at 6000 ops/s even if the laten-

88 S. Chatterjee and W. Golab

Fig. 5. Boxplots showing number of iterations required for convergence by different
tuning mechanisms over 20 experiments.

cies of individual operations vary due to variations in the injected ADs. Figure 6
presents an experiment which compares the three techniques in a closed system,
where the individual storage servers operate at peak throughput and the overall
throughput of the system decreases with an increase in operation latencies. The
throughput drops by half (from 22 kops/s to 11 kops/s) between the starting
point of each adaptive loop in Fig. 6 (AD = 0) and their point of convergence
(AD roughly equal to 46 ms). The starting delay and target proportion are as in
Fig. 3. Though SPECSHIFT takes one extra iteration (2 iterations total) to con-
verge in this case, it still converges much more rapidly than PCAP (9 iterations)
and constrained binary search (5 iterations).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10

In
co

ns
is

te
nc

y
m

et
ric

 (

pr
op

or
tio

n
of

 p
os

iti
ve

 s
co

re
s)

Number of iterations

Proportions for a closed system, target prop. = 0.05, starting AD = 0

SPECSHIFT (2 iterations)
Binary Search (5 iterations)

PCAP (9 iterations)

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

Ar
tif

ic
ia

l D
el

ay
 (

m
s)

Number of iterations

Delays for a closed system, target prop. = 0.05, starting AD = 0

SPECSHIFT (2 iterations)
Binary Search (5 iterations)

PCAP (9 iterations)

Fig. 6. Convergence comparison for closed system analogous to Fig. 3.

Overall, SPECSHIFT exhibits the best convergence of the three control loops
because it exploits the special structure of the tuning problem by examining the
score histograms carefully at each iteration. The other two techniques are more
general, but converge more slowly because they make decisions using a small
subset of the information harvested using consistency measurements in each
iteration, namely the proportion of positive scores. PCAP is based on the prin-
ciple that the consistency target can be reached more quickly using larger steps,
and indeed it crosses the horizontal line representing the target in Figs. 3 and 4
about as quickly as binary search, but this does not guarantee fast convergence.
At the point where PCAP crosses the target, its step size is relatively large and

Self-tuning Eventually-Consistent Data Stores 89

so it tends to undershoot or overshoot, leading to oscillations. In contrast, binary
search uses larger steps initially and then smaller steps as it nears the target,
similarly to SPECSHIFT in cases where it requires multiple iterations. The main
drawback of binary search is that it must be restarted from the beginning if the
optimal delay changes, for example due to a load spike, which causes disruption
as the initial artificial delay can be far from optimal. SPECSHIFT and PCAP
minimize disruption by adapting continuously, and are more appropriate in a
practical environment.

5 Related Work

Recent research on consistency in distributed storage systems has addressed the
classification of consistency models, consistency measurement, and the design of
storage systems that provide precise consistency guarantees. This body of work is
influenced profoundly by Brewer’s CAP principle, which states that a distributed
storage system must make a trade-off between consistency (C) and availability
(A) in the presence of a network partition (P) [8]. The trade-off between consis-
tency and latency is orthogonal to CAP, and comes into consideration even in
the absence of failures [1].

Distributed storage systems use a variety of designs that achieve different
trade-offs with respect to CAP. Amazon’s Dynamo [12] and its derivatives (e.g.,
Cassandra [21], Voldemort and Riak) use a quorum-based replication scheme
[4,14] that can operate either in CP (i.e., strongly consistent but sacrificing avail-
ability) or AP (i.e., highly available but eventually consistent) mode depending
on the size of the partial quorum used to execute read and writes, which is
determined by client-side consistency settings. Other designs lack such tuning
knobs and instead guarantee various forms of strong consistency [9–11,25]. A
handful of systems allow users to declare requirements with respect to consis-
tency, and adjust parameters internally to fulfill these requirements when possi-
ble [3,20,31,33].

Measuring consistency precisely is difficult because consistency anomalies
arise from the interplay between multiple storage operations. As a result, some
experimental studies measured the convergence time of the replication proto-
col, which is easier to quantify, rather than consistency actually observed by
client applications (e.g., [7,32]). Other works quantify the observed consistency
by counting cycles in a dependency graph that represents the interaction of read
and write operations, which is less intuitive than expressing staleness in units
of time [2,34]. This difficulty can be overcome by defining staleness precisely in
terms of the additional amount of latency that must be added to storage opera-
tions to resolve consistency anomalies [16], which makes it possible to capture in
natural way the consistency actually observed by client applications. The con-
sistency metric used in this paper is an adaptation of this technique whereby
consistency is defined relative to Lamport’s regularity property [22]. The gen-
eralization of regularity to multiple writers used in this paper resembles closely
the “MWRegWO” property introduced by Shao et al. [30].

90 S. Chatterjee and W. Golab

Mathematical models of consistency are generally rooted in the notion of
probabilistic quorums [23,26]. The basic model assumes that each read and write
operation accesses a quorum chosen according to a randomized strategy, and no
attempt is made to push updates to replicas outside of a write quorum. Thus,
the probability that a read quorum intersects with the quorum of a past write
operation depends only on the chosen strategy and the number of other write
operations applied subsequently. The probabilistically bounded staleness (PBS)
model of Bailis et al. matches more closely the behavior of a Dynamo-style
storage system, and predicts the probability of reading a stale value t time units
after a single write operation is applied [6].

Several lower and upper bounds are known on the latency of operations on
read/write registers simulated using message passing. Lipton and Sandberg show
that the sum of read and write latencies for a sequentially consistent register can-
not be less than the one-way network delay in the worst case [24]. Attiya and
Welch strengthen this result and prove a matching upper bound for lineariz-
ability in a model with timing assumptions [5]. These results separate protocols
that use timing assumptions in the absence of failures, where one network delay
suffices, from fault-tolerant asynchronous quorum-based protocols, which incur
two network delays (one round trip) to access a quorum of replicas.

Adaptive consistency-latency tuning using artificial delays is proposed in two
prior projects. Golab and Wylie propose consistency amplification, a feedback
control mechanism for supporting probabilistic consistency guarantees by inject-
ing artificial client-side or server-side delays whose duration is determined using
consistency measurements [18]. This framework specifies concrete consistency
metrics (based on [16]) for quantifying the consistency-latency trade-off, but
does not state precisely how the delay should be calculated. Rahman et al.
present a similar system called PCAP, where delays are calculated using known
techniques: multiplicative and proportional-integral-derivative (PID) feedback
control [29]. Their consistency metric ignores write latency and assumes that
writes take effect in the order of invocation, hence lacks a precise connection to
Lamport’s formalism [22]. An earlier thesis by Nguyen demonstrates that the
multiplicative control loop used in PCAP is prone to oscillations, and fails to
converge at all in some runs even if the optimal delay duration is constant [28].

6 Discussion and Conclusion

In this paper we proposed and evaluated a framework for tuning the probabilistic
consistency-latency trade-off in eventually consistent storage systems. Our novel
spectral shifting technique analyzes the structure of the underlying optimization
problem carefully to reach convergence in a much smaller number of iterations
than a competing solution based on a multiplicative control loop [29]. The feed-
back control approach in general requires collecting operation histories at each
iteration of the loop, which can lead to a performance bottleneck. A workaround
is to collect histories for a subset of the keys and run the tuning framework at
each iteration on the sample history. However, the correctness of predictions in

Self-tuning Eventually-Consistent Data Stores 91

this case would depend on the quality of sampling. The framework described
in [29] addresses this problem to some extent by injecting storage operations
artificially to gather consistency measurements at each data center, and by com-
bining these measurements using mathematical composition rules. However, the
effect of the workload on consistency is modeled less accurately in this approach,
leading to a potentially sub-optimal consistency-latency trade-off.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
CAP is only part of the story. IEEE Comput. 45(2), 37–42 (2012)

2. Anderson, E., Li, X., Shah, M.A., Tucek, J., Wylie, J.J.: What consistency does
your key-value store actually provide? In: Proceedings of the 6th Workshop on Hot
Topics in System Dependability (HotDep) (2010)

3. Ardekani, M.S., Terry, D.B.: A self-configurable geo-replicated cloud storage sys-
tem. In: Symposium on Operating Systems Design and Implementation (OSDI),
pp. 367–381 (2014)

4. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42(1), 124–142 (1995)

5. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans.
Comput. Syst. 12(2), 91–122 (1994)

6. Bailis, P., Venkataraman, S., Franklin, M.J., Hellerstein, J.M., Stoica, I.: Proba-
bilistically bounded staleness for practical partial quorums. PVLDB 5(8), 776–787
(2012)

7. Bermbach, D., Tai, S.: Eventual consistency: how soon is eventual? An evaluation
of Amazon S3’s consistency behavior. In: Proceedings of the 6th Workshop on
Middleware for Service Oriented Computing (MW4SOC) (2011)

8. Brewer, E.A.: Towards robust distributed systems (Invited Talk). In: Proceedings
of the 19th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting (PODC) (2000)

9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,
Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. ACM Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

10. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,
Jacobsen, H.-A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data
serving platform. PVLDB 1(2), 1277–1288 (2008)

11. Corbett, J.C., et al.: Spanner: Google’s globally-distributed database. In: Proceed-
ings of USENIX Conference on Operating Systems Design and Implementation
(OSDI), pp. 251–264 (2012)

12. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of the 21st ACM Symposium on Operating
System Principles (SOSP), pp. 205–220, October 2007

13. Gibbons, P., Korach, E.: Testing shared memories. SIAM J. Comput. 26, 1208–
1244 (1997)

14. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the 7th ACM
Symposium on Operating Systems Principles (SOSP), pp. 150–162 (1979)

15. Golab, W., Li, X., Shah, M.A.: Analyzing consistency properties for fun and profit.
In: Proceedings of the 30th ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 197–206, June 2011

92 S. Chatterjee and W. Golab

16. Golab, W., Li, X., Shah, M.A.: Analyzing consistency properties for fun and profit.
In: Proceedings of the 30th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC), pp. 197–206 (2011)

17. Golab, W., Rahman, M.R., AuYoung, A., Keeton, K., Gupta, I.: Client-centric
benchmarking of eventual consistency for cloud storage systems. In: Proceedings
of the 34th International Conference on Distributed Computing Systems (ICDCS),
pp. 493–502 (2014)

18. Golab, W., Wylie, J.J.: Providing a measure representing an instantaneous data
consistency level. US Patent Application 20,140,032,504, filed 2012, published 2014

19. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Programm. Lang. Syst. 12(3), 463–492 (1990)

20. Krishnamurthy, S., Sanders, W.H., Cukier, M.: An adaptive quality of service aware
middleware for replicated services. IEEE Trans. Parallel Distrib. Syst. 14, 1112–
1125 (2003)

21. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44(2), 35–40 (2010)

22. Lamport, L.: On interprocess communication, Part I: basic formalism and Part II:
algorithms. Distrib. Comput. 1(2), 77–101 (1986)

23. Lee, H., Welch, J.L.: Randomized registers and iterative algorithms. Distrib. Com-
put. 17(3), 209–221 (2005)

24. Lipton, R.J., Sandberg, J.: PRAM: a scalable shared memory. Technical report,
Princeton University (1998)

25. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for even-
tual: scalable causal consistency for wide-area storage with COPS. In: Proceedings
of the 23rd ACM Symposium on Operating Systems Principles (SOSP), pp. 401–
416 (2011)

26. Malkhi, D., Reiter, M.K., Wright, R.N.: Probabilistic quorum systems. In: Pro-
ceedings of the 16th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 267–273 (1997)

27. McKenzie, M., Fan, H., Golab, W.M.: Fine-tuning the consistency-latency trade-off
in quorum-replicated distributed storage systems. In: Proceedings of the Scalable
Cloud Data Management (SCDM) Workshop at the IEEE International Conference
on Big Data, pp. 1708–1717 (2015)

28. Nguyen, S.: Adaptive control for availability and consistency in distributed key-
values stores. University of Illinois at Urbana-Champaign (2014)

29. Rahman, M.R., Tseng, L., Nguyen, S., Gupta, I., Vaidya, N.H.: Characterizing
and adapting the consistency-latency tradeoff in distributed key-value stores. ACM
Trans. Auton. Adapt. Syst. 11(4), 20:1–20:36 (2017)

30. Shao, C., Welch, J.L., Pierce, E., Lee, H.: Multiwriter consistency conditions for
shared memory registers. SIAM J. Comput. 40(1), 28–62 (2011)

31. Terry, D.B., Prabhakaran, V., Kotla, R., Balakrishnan, M., Aguilera, M.K., Abu-
Libdeh, H.: Consistency-based service level agreements for cloud storage. In: Pro-
ceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP),
pp. 309–324 (2013)

32. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties
and the trade-offs in commercial cloud storages: the consumers’ perspective. In:
Proceedings of the 5th Biennial Conference on Innovative Data Systems Research
(CIDR), January 2011

33. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst. 20(3), 239–282 (2002)

34. Zellag, K., Kemme, B.: How consistent is your cloud application? In: Proceedings
of the Third ACM Symposium on Cloud Computing (SoCC), p. 6 (2012)

An Efficient Silent Self-stabilizing 1-Maximal
Matching Algorithm Under Distributed Daemon

for Arbitrary Networks

Michiko Inoue1(B), Fukuhito Ooshita1, and Sébastien Tixeuil2

1 Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
{kounoe,f-oosita}@is.naist.jp

2 UPMC Sorbonne Universités, LIP6 - CNRS 7606, IUF, Paris, France
Sebastien.Tixeuil@lip6.fr

Abstract. We present a new self-stabilizing 1-maximal matching algo-
rithm that works under the distributed unfair daemon for arbitrarily
shaped networks. The 1-maximal matching is a 2

3
-approximation of a

maximum matching, a significant improvement over the 1
2
-approximation

that is guaranteed by a maximal matching. Our algorithm is efficient (its
stabilization time is O(e) moves, where e denotes the number of edges in
the network). Besides, our algorithm is optimal with respect to identifiers
locality (we assume node identifiers are distinct up to distance three, a
necessary condition to withstand arbitrary networks).

The proposed algorithm closes the complexity gap between two recent
works: Inoue et al. presented a 1-maximal matching algorithm that is
O(e) moves but requires the network topology not to contain a cycle of
size of multiple of three; Cohen et al. consider arbitrary topology net-
works but requires O(n3) moves to stabilize (where n denotes the number
of nodes in the network). Our solution preserves the better complexity of
O(e) moves, yet considers arbitrary networks, demonstrating that previ-
ous restrictions were unnecessary to preserve complexity results.

Keywords: Self-stabilization · 1-Maximal matching algorithm · Unfair
distributed daemon · Arbitrary networks

1 Introduction

1.1 Background

Self-stabilization. [8] is a versatile technique to withstand any kind of transient
failure that may occur in computer networks, e.g., caused by memory corruption,

A preliminary brief announcement of this work appears in the proceedings of the 36th
ACM Symposium on Principles of Distributed Computing (PODC 2017). This work
was supported by JSPS KAKENHI Grant Number 26330084. Part of this work was
carried out while the third author was visiting NAIST thanks to Erasmus Mundus
TEAM program.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 93–108, 2017.
https://doi.org/10.1007/978-3-319-69084-1 7

94 M. Inoue et al.

erroneous initialization, or topology change. A self-stabilizing distributed system
is able to recover from any inconsistent system configuration, and stabilize by
itself to a configuration that satisfies its specification.

A matching is a set of pairs of adjacent nodes in a network such that any node
belongs to at most one pair. Matchings are typically used in distributed appli-
cations where pairs of nodes are required. For example, when each server gives
some service to one client, a matching algorithm can pair a server and a client.
Another application is communication scheduling in wireless networks where col-
lisions (inducing conflicts) can occur. A matching ismaximal if no proper superset
of it is a matching as well, and it is maximum if its cardinality is the largest among
all matchings.

This paper proposes an efficient self-stabilizing algorithm for 1-maximal
matching. A matching M is 1-maximal if, for any e ∈ M , no matching can
be produced by removing e from M and adding two edges to M − {e}. A 1-
maximal matching is a 2

3 -approximation of the maximum matching, while a
maximal matching is a 1

2 -approximation (but not 2
3 -approximation) of the max-

imum matching. We say matching M is an α-approximation of the maximum
matching if |M | ≥ α|Mmax| holds, where Mmax is a maximum matching. Hence,
a 1-maximal matching is expected to produce more matching pairs than a max-
imal matching.

1.2 Related Works

Self-stabilizing algorithms for the maximum and maximal matching problems
have been well studied [12]. Table 1 summarizes the results, where n and e
denote the numbers of nodes and edges, respectively. For maximum, maximal,
and 1-maximal matching problems, several self-stabilizing algorithms have been
proposed with various assumptions.

Most algorithms use a “pointer to a neighbor” variable, that unambiguously
designates a particular neighbor v of a node u, in such a way that v is aware
that u points to it. It is easily implemented with global unique identifiers if
such structural information is available. A more efficient implementation is to
use locally unique identifiers (e.g., distance 2 or 3 node coloring). An algorithm
designed to use less structural information (e.g., local identifiers) can also work
with more structural information (e.g., global identifiers), but the converse is
not true.

Another important notion to classify algorithms is the notion of daemon [9],
which decides the particular times an algorithm is executed at each node. Most
algorithms assume a central daemon, or a distributed daemon. A central daemon
may only select one node to execute its code at the same time, while a distributed
daemon may select any number of nodes simultaneously. Of course, an algorithm
that can run with a distributed daemon also runs under a central daemon, but
the converse is not true.

The time complexity can be measured in moves, or in rounds. A move is the
execution of one algorithm action by one node, while a round is a minimal sub-
sequence of an execution in which every node has at least once the opportunity

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 95

Table 1. Self-stabilizing matching algorithms. n denotes the number of nodes, e
denotes the number of edges, δ denotes the maximum degree, d denotes the diame-
ter, and k is a positive integer.

Reference Matching Topology Structural info Daemon Complexity

[2] Maximum Tree Unique leader Distributed O(n2) moves

[3] Maximum Tree Global ID Distributed O(n2) moves

[16] Maximum Tree Local ID Central O(n4) moves

[6] Maximum Tree Local ID Distributed O(nd) moves

[4] Maximum Bipartite Local ID Central O(n2) rounds

[14] Maximal Arbitrary Local ID Central O(e) moves

[18] Maximal Arbitrary Local ID Distributed O(e) moves

[7] Maximal Arbitrary Local ID Distributed O(δn) rounds

[10] Maximal Arbitrary Local ID Central Finite moves

[19] 1-maximal* Arbitrary Global ID Distributed O(2nδn) moves

[5] 1-maximal* Arbitrary Global ID Distributed O(n3) moves

[11] 1-maximal Tree, cycle (no 3k) Local ID Central O(n4) moves

[1] 1-maximal No 3k cycle Local ID Central O(e) moves

[15] 1-maximal No 3k cycle Local ID Distributed O(e) moves

Proposed 1-maximal Arbitrary Local ID Distributed O(e) moves

*An underlying maximal matching algorithm is supposed

to execute an action. Considering move complexity has another advantage: the
daemon can be unfair, that is, it may prevent some enabled node from being
executed, as it only need to provide progress (some enabled node is executed).
By contrast, algorithms whose complexity is only measured in rounds often make
the hypothesis that the daemon is fair (if a node is continuously enabled, it is
eventually scheduled for execution).

Self-stabilizing maximum matching algorithms are known for restricted
classes of networks. Blair et al. [2] and Blair and Manne [3] proposed algorithms
with O(n2) moves using structural information (distinguished nodes, global iden-
tifiers) under a distributed daemon, and Karaata and Saleh [16] proposed an
algorithm that runs in O(n4) moves without using global identifiers under a
central daemon. Recently, Datta et al. [6] proposed an algorithm that does not
use global identifiers, and runs in O(n · diam) moves under an unfair distrib-
uted daemon, where diam is a diameter of the network. For bipartite networks,
Chattopadhyay et al. [4] proposed an algorithm stabilizing in O(n2) rounds under
a distributed fair daemon.

The case of maximal matching considered arbitrary shaped networks. Hsu
and Huang [14] proposed an algorithm that does not require global identifiers
and performs under the central daemon. They initially demonstrated a time
complexity of O(n3) moves, this bound was refined to O(n2) moves [17,20], and
finally to O(e) moves by Hedetniemi et al. [13]. Manne et al. [18] proposed a

96 M. Inoue et al.

maximal matching algorithm for the more general distributed daemon, preserv-
ing this O(e) move complexity. Devismes et al. [7] proposed a communication-
efficient maximal matching algorithm, and Dubois et al. [10] a Byzantine-tolerant
maximal matching algorithm under a central daemon.

The case of 1-maximal matching remains intriguing. Goddard et al. [11] pro-
posed a 1-maximal matching with O(n4) moves for trees and rings whose length
is not a multiple of 3, under a central daemon. They also showed that there
is no self-stabilizing 1-maximal matching algorithm for rings with length of a
multiple of 3 with distance 2 node coloring. Asada et al. [1] proposed an efficient
(O(e) moves to stabilize) algorithm under the central daemon, and our previous
work [15] improved it so as to work under the distributed unfair daemon while
preserving the stabilization time. Both algorithms [1,15] are silent, use distance
2 node coloring and work for arbitrary networks without cycle whose length is
a multiple of 3. Using global unique identifiers, Manne et al. [19] managed to
produce a 1-maximal matching for arbitrary networks under a distributed unfair
daemon, but the move complexity is O(2nδn) moves. Recently, Cohen et al. [5]
proposed a more efficient 1-maximal matching algorithm for arbitrary networks
with move complexity O(n3), where an underlying maximal matching algorithm
is supposed.

To this paper, there appears to be a trade-off for self-stabilizing 1-maximal
matching between efficiency (O(e) moves, local identifiers [15]) and generality
(arbitrary networks [5]).

1.3 Our Contribution

We close the complexity gap between previous solutions, and present a self-
stabilizing 1-maximal matching algorithm that is both efficient and general. Our
solution preserves the better complexity of O(e) moves and local identifiers, yet
considers arbitrary networks and daemons, demonstrating that previous restric-
tions were unnecessary to preserve complexity results.

While our identifiers are local, we assume distance 3 node coloring rather than
distance 2 node coloring [15]. This assumption is necessary for arbitrary networks
because no self-stabilizing 1-maximal matching algorithm exists for rings with
length of a multiple of 3 with distance 2 node coloring [11]. Our protocol is thus
optimal with respect to structural information for the considered problem.

2 Preliminaries

A distributed system consists of multiple asynchronous processes. Its topology
is represented by an undirected connected graph G = (V,E) where a node in V
represents a process, and an edge in E represents the interconnection between
the processes. In this paper, we assume no global identifiers, however in order
to implement “pointer to neighbor” variables, we assume that nodes have colors
that are unique within distance three. A node is a state machine that changes

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 97

its state by actions. Each node has a set of actions, and a collection of actions
of nodes is called a distributed algorithm.

In this paper, we consider state-reading model as a communication model
where each node can directly read the state of its neighboring nodes. An action
of a node is expressed 〈label〉 :: 〈guard〉 �→ 〈statement〉. A guard is a Boolean
function of all the states of the node and its neighboring nodes, and a statement
updates its local state. We say a node is privileged if it has an action with a true
guard. Only privileged node can move by selecting one action with a true guard
and executing its statement.

Moves of nodes are scheduled by a daemon. We consider an unfair distributed
daemon in this paper. A distributed daemon chooses one or more privileged
nodes at one time, and the selected nodes move simultaneously. A daemon is
unfair if it can choose any non empty set of nodes among privileged nodes.

A problem P is specified by its legitimate configurations where configuration
is a collection of states of all the nodes. We say a distributed algorithm A is
self-stabilizing if A satisfies (1) convergence: The system eventually reaches to a
legitimate configuration from any initial state, and (2) closure: Once the system
reaches to a legitimate configuration, all the succeeding moves keep the sys-
tem configuration legitimate. A self-stabilizing algorithm is silent if the system
reaches a terminal configuration where no node can move.

A matching in an undirected graph G = (V,E) is a subset M of E such that
each node in V is incident to at most one edge in M . We say a matching is
maximal if no proper superset of M is a matching as well. A maximal matching
M is 1-maximal if, for any e ∈ M , any matching cannot be produced by removing
e from M and adding two edges to M − {e}.

3 Algorithm

3.1 MM1D

First, we briefly introduce a previously proposed algorithm MM1D [15] since a
newly proposed algorithm is based on this algorithm. There are ten stages of
a node. Stages single, proposing, discouraged and approved mean that the
node is free and not matched with any node. The remaining 6 stages faithful,
curious, open, promise, confirmed and ready mean that the node is non-free.
A stage faithful means the node is faithfully matched with its partner. In
stages curious, open, promise, confirmed and ready, two matched nodes are
trying to increase matches by breaking their match and migrate to new partners.
A node i has three variables; stagei, m-ptri, i-ptri. The variable m-ptri is
a matching pointer that points to its partner, while the variable i-ptri is an
invitation pointer that is used to invite a neighboring node to make a new match.

Creating a New Match. When a free (single or proposing) node i finds
a free neighboring node j (Fig. 1(a)), i invites j and becomes proposing
(Fig. 1(b)). Then the invited node j points to i by m-ptr (Fig. 1(c)) and i also

98 M. Inoue et al.

Fig. 1. Making a new match between free nodes

points to j by m-ptr and they are matching (Fig. 1(d)), that is (i, j) ∈ M .
In MM1D, multiple single nodes may simultaneously invite their neighboring
nodes and form a chain of proposing nodes. In this case, a proposing node is
allowed to accept an invitation if its color is the local minimum in the chain.
While a proposing node is inviting its neighboring node, if the invited node
makes a match with another node, the proposing node cancels its invitation
and goes back to single.

Increasing Matches by Migration. Matching nodes try to increase the num-
ber of matches if they have free neighboring nodes. In Fig. 2(a), a faithful
node i invites its free neighbor k and i becomes curious (Fig. 2(b)). When
both matching nodes i and j become curious, i becomes open (Fig. 2(c)),
then k approves the invitation (k becomes approved)(Fig. 2(d)) and then node
i becomes confirmed (Fig. 2(e)). When both i and j become confirmed,
i becomes ready (Fig. 2(f)), then k excutes match and becomes faithful
(Fig. 2(g)), and then i executes migrate and becomes faithful (Fig. 2(h)).
Nodes j and l can also move similarly, and one match is replaced with two
matches (Fig. 2(i)).

Fig. 2. Increasing matches by migration

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 99

The above series of actions are not always executed successfully. An invited
node may make a match with another node. In such a case, nodes that are trying
to break a match (i and j in the above case) cancel the progress and go back to
faithful and invited nodes go back to single.

To increase the number of matches, four nodes cooperatively move. Note
that the above matching nodes i and j do not need to synchronize exactly. It
may be possible that one node is already confirmed while the other node is still
open. In this case, the confirmed node is waiting for the open node to become
confirmed and the open node is waiting for its inviting node to approve its
invitation. However, if the invited node (k in Fig. 3(a)) is proposing and it is
also waiting for some node to accept its invitation, these waiting chain may form
a deadlock. To break such a deadlock, two stages promise and discouraged are
used. In case of Fig. 3(b), a node i becomes promise to promise k to make a
match with k. Then k becomes discouraged if its invited node (x in Fig. 3)
is proposing or approved to another node. That indicates that k is to cancel
the invitation (Fig. 3(c)). The node x does not accept the invitation from a
discouraged node and k can approve the invitation from i (Fig. 3(d)). Then, i
can become confirmed (Fig. 3(e)). However, under a distributed daemon, x may
accept k’s invitation simultaneously when k becomes discouraged (Fig. 3(f)).
In such a case, k makes a match with x (Fig. 3(g)), and i cancels its invitation
to k (Fig. 3(h)).

Fig. 3. Promise and discouraged

100 M. Inoue et al.

Reset to single. Each node always checks its validity, and resets to single
if it is invalid. Intuitively, a node is valid if its state is possible when all the
nodes initiate algorithm executions from single stage. We consider two kinds
of validities, one node validity and multi nodes validity. The one node validity
means that a combination of its own variables is consistent. The multi nodes
validity means that a relation with neighboring nodes is consistent.

3.2 MM1DG

Now, we extend MM1D to be applicable to arbitrary networks. We first
strengthen the assumption of an available coloring from distance 2 node coloring
to distance 3 node coloring. This is a minimal assumption for silent 1-maximal
matching self-stabilizing algorithm since there is no silent 1-maximal matching
self-stabilizing algorithm with distance 2 node coloring [11].

There are two situations where MM1D could not work well for general graphs.
(1) When two matching nodes invite free neighboring nodes to migrate into them,
they may invite the same free node. It is not supposed to happen for MM1D
because MM1D assumes no cylce of length three. (2) There is a deadlock con-
figuration as shown in Fig. 4, where a confirmed node waits for a promise node
to be confirmed, the promise node waits for an approved node to approve its
invitation, and the approved node waits a confirmed to be ready. To overcome
these situations, we introduce two extensions to MM1D and get MM1DG.

Fig. 4. Deadlock

Choosing Different Nodes for Migration. For matching nodes to invite
different nodes for migration, two additional pointers αi and βi are introduced
for each node i, where αi and βi point to free neighboring nodes with the smallest
identifier and the second smallest identifier respectively. The values of αi and βi

are updated when node i becomes faithful (making a new match) or while it
is faithful if its circumstance is changed and it needs to be updated.

Let i and j be matching nodes. They decide inviting nodes for migration only
when αi �=⊥, αj �=⊥ and there are at least two unique identifiers among αi, βi, αj

and βj . Node i determines which node it will invite using the following function

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 101

target(i, j) where j is i’s current partner and unique() returns the number of
unique identifiers among parameters.

target(i, j) {
if (αi �=⊥ ∧αj �=⊥ ∧unique(αi, βi, αj , βj) ≥ 2) {

if ((αi �= αj) ∨ (βi =⊥) ∨ (βi �=⊥ ∧βj �=⊥ ∧i < j)) return αi

else return βi

} else
return ⊥

}

We claim that target(i, j) and target(j, i) are different if they are not ⊥. The
claim clearly holds if αi �= αj . Let us assume αi = αj . If βi =⊥, βj �=⊥ holds
from unique(αi, βi, αj , βj) ≥ 2 and thus target(i, j) = αi and target(j, i) = βj

are different. The claim similarly holds if βj =⊥. If βi �=⊥ and βj �=⊥, the node
with the smaller identifier chooses α-value and the other chooses β-value. That
is, if i < j w.l.o.g, target(i, j) = αi(= αj) and target(j, i) = βj(�= αj) hold.
Consequently the claim holds.

In MM1D, a node i cancels its invitation for migration only if (1) an invited
node has made a match with another node and (2) node i is already in open
or later stage and a partner node has gone back to faithful by cancelling. In
MM1DG, in addition to these conditions, node i cancels if (3) node i is still in
curious but target(i, j) is not consistent with current αi, βi, αj and βj . That
happens when a partner node j updates values αj and βj .

Deadlock Avoidance. To avoid a deadlock as mentioned, the order of moves
of open is controlled in MM1DG. When two matching nodes i and j try to
migrate to new partners, they are loosely synchronized in MM1D. Once both
nodes become curious they independently change their stages to open, possibly
promise, and confirm, and finally they are synchronized at confirm stage.
However, if MM1D is applied to a graph with a cycle of length of a multiple of
3, it may get deadlock as shown in Fig. 4. In MM1DG, if both matching nodes
are inviting their neighboring nodes for migration, a node that is inviting a node
with a smaller identifier executes open first. The other node has to wait for
its partner to become confirmed. The assumption of distance 3 node coloring
ensures that no deadlock situation happens.

Figures 5, 6, and 7 show a whole algorithm of MM1DG. One action update
(marked with ∗∗) is newly added and 5 actions and two validity conditions
(marked with ∗) are modified from MM1D.

102 M. Inoue et al.

Variables
stagei ∈ {single, proposing, discouraged, approved, faithful, curious,
open, promise, confirmed, ready}
m-ptri, i-ptri, αi, βi ∈ N(i) ∪ {⊥}

Predicates and Functions
single(i): stagei = single ∧ m-ptri =⊥ ∧i-ptri =⊥
proposing(i,j): stagei = proposing ∧ m-ptri =⊥ ∧i-ptri = j
discouraged(i,j): stagei = discouraged ∧ m-ptri =⊥ ∧i-ptri = j
approved(i,j): stagei = approved ∧ m-ptri =⊥ ∧i-ptri = j
faithful(i,j): stagei = faithful, ∧m-ptri = j ∧ i-ptri =⊥
curious(i,j,k): stagei = curious ∧ m-ptri = j ∧ i-ptri = k ∧ j = k
open(i,j,k): stagei = open ∧ m-ptri = j ∧ i-ptri = k ∧ j = k
promise(i,j,k): stagei = promise ∧ m-ptri = j ∧ i-ptri = k ∧ j = k
confirmed(i,j,k): stagei = confirmed ∧ m-ptri = j ∧ i-ptri = k ∧ j = k
ready(i,j,k): stagei = ready ∧ m-ptri = j ∧ i-ptri = k ∧ j = k

proposing(i): ∃j ∈ N(i)proposing(i, j)
discouraged(i): ∃j ∈ N(i)(discouraged(i, j) ∧ ((stagej = faithful ∧ m-ptrj =

i) ∨ ∃k ∈ N(i)(k = j ∧ stagek = promise ∧ i-ptrk = i)))
approved(i): ∃j ∈ N(i)(approved(i, j)
∧ (stagej = faithful, curious, open, promise, confirmed or ready))

faithful(i): ∃j ∈ N(i)(faithful(i,j)
∧ (((stagej = faithful, curious, open or confirmed) ∧ m-ptrj = i)

∨ ((stagej = proposing, discouraged or ready) ∧ i-ptrj = i)))

curious(i): ∃j, k ∈ N(i)(curious(i,j,k)
∧ (stagej = faithful, curious, open or confirmed) ∧ m-ptrj = i)

open(i)∗: ∃j, k ∈ N(i)(open(i,j,k)
∧ ((stagej = faithful) ∨ (i-ptri < i-ptrj ∧ stagej = curious) ∨ (i-ptri >

i-ptrj ∧ stagej = confirmed)) ∧ m-ptrj = i) // modified

promise(i)∗: ∃j, k ∈ N(i)(promise(i,j,k) ∧ i-ptri > i-ptrj ∧ stagej =

confirmed ∧ m-ptrj = i) // modifed

confirmed(i): ∃j, k ∈ N(i)(confirmed(i,j,k)
∧ (stagej = faithful, curious, open, promise, confirmed or ready)

∧ m-ptrj = i ∧ stagek = approved ∧ i-ptrk = i)

ready(i): ∃j, k ∈ N(i)(ready(i,j,k) ∧ ((stagek = approved ∧ i-ptrk = i) ∨
(stagek = faithful ∧ m-ptrk = i)))

valid1(i): single(i) ∨ ∃j ∈ N(i)(proposing(i, j) ∨ discouraged(i, j) ∨
approved(i, j) ∨ faithful(i, j))
∨ ∃j, k ∈ N(i)(curious(i, j, k) ∨ open(i, j, k) ∨ promise(i, j, k)
∨ confirmed(i, j, k) ∨ ready(i, j, k))
no invalid1 neighbor(i): ∀x ∈ N(i) valid1(x)
valid(i): single(i)∨ proposing(i)∨ discouraged(i)∨ approved(i)∨ faithful(i)∨
curious(i) ∨ open(i) ∨ promise(i) ∨ confirm(i) ∨ ready(i)
alpha(i): min{j ∈ N(i)|stagej = single or proposing} if exists, ⊥ otherwise
beta(i): the 2nd min{j ∈ N(i)|stagej = single or proposing} if exists, ⊥ oth-
erwise

Procedures
update αβ(i):(αi, βi) = (alpha(i), beta(i))

Fig. 5. Algorithm MM1DG

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 103

Actions
reset :: ¬valid1(i) ∨ (¬valid(i) ∧ no invalid1 neighbor(i))

stagei = single, i-ptri =⊥, m-ptri =⊥

invite :: no invalid1 neighbor(i) ∧ single(i) ∧ ∃j ∈ N(i)(stagej =

single or proposing) stagei = proposing, i-ptri = j
match∗ :: no invalid1 neighbor(i) ∧ ∃j ∈ N(i)(
(single(i) ∧ i-ptrj = i ∧ stagej = proposing)

∨ (proposing(i) ∧ i-ptrj = i ∧ ∃k ∈ N(i)(i-ptri = k ∧ (j = k ∨ (stagek =

proposing ∧ i = min(k, i, j)))) ∧ stagej = proposing)

∨ ((proposing(i) ∨ discouraged(i)) ∧ i-ptri = j ∧ m-ptrj = i ∧ stagej =

faithful)
∨ (approved(i) ∧ i-ptri = j ∧ i-ptrj = i ∧ stagej = ready))

stagei = faithful, i-ptri =⊥, m-ptri = j, update αβ(i)

update∗∗::no invalid1 neighbor(i) ∧ faithful(i) ∧ (αi, βi) = (alpha(i), beta(i))
update αβ(i)

get curious∗ :: no invalid1 neighbor(i) ∧ faithful(i)
∧ ∃j ∈ N(i)(m-ptri = j ∧ (stagej = faithful or curious)

∧ (αi, βi) = (alpha(i), beta(i)) ∧ ∃k ∈ N(i)(k = target(i, j) ∧ i-ptrk =
i)) //modified condition

stagei = curious, i-ptri = k

open∗ :: no invalid1 neighbor(i)∧curious(i)∧∃j ∈ N(i)(m-ptri = j∧i-ptrj =⊥
∧(i-ptri < i-ptrj ∨ stagej = confirmed)) //modified condition

stagei = open

confirm :: no invalid1 neighbor(i)∧(open(i)∨promise(i))∧∃k ∈ N(i)(i-ptri =
k ∧ i-ptrk = i ∧ stagek = approved) stagei = confirmed

promise :: no invalid1 neighbor(i)∧open(i)∧∃j, k ∈ N(i)(m-ptri = j∧i-ptri =
k ∧ stagej = confirmed∧ i-ptrk = i ∧ (stagek = proposing or approved))
stagei = promise

approve :: no invalid1 neighbor(i)
∧ ((single(i) ∧ ∃x ∈ N(i)(i-ptrx = i ∧ (stagex = open or promise)))
∨ (discouraged(i)∧∃j, x ∈ N(i)(i-ptri = j ∧¬(stagej = faithful∧m-ptrj =

i) ∧ i-ptrx = i ∧ stagex = promise)))
stagei = approved, i-ptri = x

discourage :: no invalid1 neighbor(i) ∧ proposing(i) ∧ ∃j, x ∈ N(i)(i-ptri =
j ∧ i-ptrx = i ∧ (stagej = proposing or approved) ∧ stagex = promise)
stagei = discouraged

get ready :: no invalid1 neighbor(i) ∧ confirmed(i) ∧ ∃j ∈ N(i)(m-ptri = j ∧
(stagej = confirmed or ready)) stagei = ready

migrate∗ :: no invalid1 neighbor(i) ∧ ready(i) ∧ ∃j, k ∈ N(i)(m-ptri = j ∧
i-ptri = k ∧ stagek = faithful ∧ m-ptrk = i ∧ (stagej = ready ∨ m-ptrj =

i)) stagei = faithful, i-ptri =⊥, m-ptri = k, update αβ(i)

Fig. 6. Algorithm MM1DG (cont.)

104 M. Inoue et al.

cancel invitation :: no invalid1 neighbor(i) ∧ ∃k ∈ N(i)(i-ptri = k ∧
((proposing(i) ∧ (stagek = discouraged ∨ (stagek = faithful ∧ m-ptrk =
i) ∨ (stagek = curious, open, promise, confirmed or ready)))
∨ (approved(i) ∧ ((stagek = faithful or curious) ∨ ((stagek =

open, promise, confirmed or ready) ∧ i-ptrk = i))))
stagei = single, i-ptri =⊥

cancel migration∗ :: no invalid1 neighbor(i)
∧ ∃j, k ∈ N(i)(m-ptri = j ∧ i-ptri = k
∧ (((curious(i) ∨ open(i) ∨ promise(i)) ∧ m-ptrk =⊥)
∨ ((open(i) ∨ confirmed(i)) ∧ stagej = faithful)

∨ (curious(i) ∧ i-ptri = target(i, j))) //new condition
stagei = faithful, i-ptri =⊥, update αβ(i)

Fig. 7. Algorithm MM1DG (cont.)

4 Correctness

The correctness of MM1DG is shown similarly to MM1D [15]. We will only show
the proofs that are affected by the extension from MM1D to MM1DG.

Lemma 1. There are no ready nodes in any terminal configuration.

Lemma 2. There are no discouraged node in any terminal configuration.

Lemma 3. In any terminal configuration, if m-ptri = j for nodes i and j,
m-ptrj = i also holds.

Lemma 4. There are no two nodes i and j such that i is approved and
i-ptri = j, and j is open, promise or confirmed and i-ptrj = i in any
terminal configuration.

Proof. This lemma is proved by contradiction for MM1D [15]. In the proof, it is
shown that there is a cycle of nodes in stages approved, confirmed, promise,
approved, confirmed, promise, approved, · · · , as shown in Fig. 4. To show this
cycle, the proof examines a possibility of stages for a partner of a confirmed
node (ex. node k in Fig. 4). Though we modified a guard condition of an action
open, curious node can execute open since its partner is already confirmed.
This concludes a partner of a confirmed node should be promise, and the above
cycle is also derived in a terminal condition for MM1DG.

Let x be a node with the smallest identifier among approved nodes in the
cycle. Let y, z, w be nodes that z is confirmed, w is promise, z and w are
matching, z is inviting y and w is inviting x. That is, stagew = promise,
stagez = confirmed, and i-ptrw(= x) ≤ i-ptrz(= y). This does not satisfy a
validity condition for promise node, and w can execute reset. A contradiction.

Lemma 5. There is no approved node in any terminal configuration.

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 105

Theorem 1. A maximal matching is constructed in any terminal configuration
of MM1DG for arbitrary networks.

Theorem 2. A 1-maximal matching is constructed in any terminal configura-
tion of MM1DG for arbitrary networks.

Proof. By contradiction. Assume that a matching is not 1-maximal in some ter-
minal configuration. From Lemmas 1, 2 and 5, there is no discouraged, ready
or approved node. Since it is terminal, a maximal matching is constructed by
Theorem 1. Therefore, there are matched nodes i and j and both have free dis-
tinct neighboring nodes.

We firstly show that node i or j is not faithful or curious. If both i
and j are faithful, αi �=⊥ and αj �=⊥ since they do not execute update, and
therefore, target(i, j) = k �=⊥ and node i can execute get curious if i-ptrk �= i
or k can execute cancel invitation if i-ptrk = i. If i is faithful and j is
curious, we can also derive target(i, j) = k �=⊥ and node i or k can execute
an action. If both i and j are curious, a node inviting a smaller identifier can
execute open.

Therefore and from Lemma 1, one of i and j is open, promise, or confirmed,
and inviting a neighboring node. Assume i is inviting a neighboring node k.
Node k is not single since it can approve the invitations from i. Therefore and
from Lemmas 2 and 5, k is proposing. From Theorem 1, there is no adjacent
free nodes, and therefore, k points to some non-free node x. From Lemma 3,
m-ptrx �= k. In this case, k can execute cancel invitation. A contradiction.

Lemma 6. If a single or proposing node i is valid, i keeps its validity as long
as it is single or proposing.

The proof of Lemma 7 for MM1D [15] depends on a fact that a validity of i
depends on i and m-ptri at stage faithful, curious, open or promise, depends
on i, m-ptri and i-ptri at stage confirmed, and depends on i and i-ptri at
stage ready. Though we modified validity conditions of open and promise, the
above dependencies retain. Therefore, the proof is still valid for MM1DG.

Lemma 7. Once a node executes match or migrate, the node never executes
reset.

Lemma 8. The total number of reset moves is O(n).

Lemma 9. Each node executes match at most once.

Lemma 10. The total number of migrate moves is O(n).

Lemma 11. The total number of update moves is O(e).

Proof. Each faithful node i executes update caused by a mismatching of initial
values of αi or βi or when its free neighboring nodes change, that is, when some
neighboring node changes non-free to single by reset or free to faithful by
match. In MM1D and also MM1DG, each node executes at most one match

106 M. Inoue et al.

(Lemma 9) and one reset, in addition, only reset by faithful or promise
node may cause one more reset for discouraged node (This is explained in
the proof of Lemma 8 in [15]). Since reset of discouraged (free) node does not
cause update, each node causes at most 2δi updates (by match and reset), and
in addition to update by initial mismatching, the total number of update moves
is at most 2Σi∈V δi + n = O(e).

In MM1DG, in addition to cancels in MM1D, update also may cause a direct
cancel for its partner, and it causes at most 3 indirect cancels. That is, there are
at most additional O(e) cancels, and the total number of cancels is still O(e).

Lemma 12. The total number of cancel invitation and cancel migration

moves is O(e).

Lemma 13. MM1DG is silent and takes O(e) moves to reach a terminal
configuration.

Proof. Let MOVi denote the total number of moves of a node i excluding update,
and Ri, Ci, Mi be the numbers of moves of reset, cancel (cancel invitation or
cancel migration), and migrate by a node i. Figure 8 shows a stage transition
in MM1DG, where only reset, cancel invitation, cancel migration and
migrate move to a left stage. A node executes at most 9 actions between these
moves excluding update. From the observation and Lemmas 8, 10 and 12, the
number of moves is bounded as follows.

MOVi ≤ 10(Ri+Ci+Mi+1), Σi∈V Ri = O(n), Σi∈V Ci = O(e), Σi∈V Mi = O(n)

Σi∈V MOVi ≤ 10(Σi∈V Ri + Σi∈V Ci + Σi∈V Mi + Σi∈V 1) = O(e)

Therefore, the total number of moves is Σi∈V MOVi and O(e) for update moves.
Since each node always takes a finite number of moves, MM1DG always reaches
a terminal configuration and this also implies that MM1DG is silent.

Theorem 3. MM1DG is silent and takes O(e) moves to construct 1-maximal
matching for any graphs under an unfair distributed daemon.

Fig. 8. Transitions of stages

An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm 107

5 Conclusion

We proposed a 1-maximal matching algorithm MM1DG that is silent and works
for any arbitrary networks under a distributed unfair daemon. Our solution
does not trade generality for efficiency, as it maintains best time complexity
and is optimal with respect to structural knowledge, closing the complexity gap
appearing in previous works. Two natural open questions arise from our work:

1. There exists a trivial Ω(n) lower bound for the number of moves. Our algo-
rithm is thus optimal in trees and rings, but what about other topologies?

2. The move from distance 2 coloring to distance 3 coloring for 1-maximal match-
ings call for a generalization for self-stabilizing k-maximal matchings (where
k ≥ 1).

References

1. Asada, Y., Ooshita, F., Inoue, M.: An efficient silent self-stabilizing 1-maximal
matching algorithm in anonymous networks. J. Graph Algorithms Appl. 20(1),
59–78 (2016). doi:10.7155/jgaa.00384

2. Blair, J.R.S., Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P.: Self-stabilizing
maximum matchings. Congr. Numer. 153, 151–160 (2001)

3. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
Proceedings of 23rd International Conference on Distributed Computing Systems,
pp. 20–26. IEEE (2003)

4. Chattopadhyay, S., Higham, L., Seyffarth, K.: Dynamic and self-stabilizing dis-
tributed matching. In: Proceedings of the Twenty-First Annual Symposium on
Principles of Distributed Computing, pp. 290–297. ACM (2002)

5. Cohen, J., Maâmra, K., Manoussakis, G., Pilard, L.: Polynomial self-stabilizing
maximal matching algorithm with approximation ratio 2/3. In: International Con-
ference on Principles of Distributed Systems (2016)

6. Datta, A.K., Larmoreand, L.L., Masuzawa, T.: Maximum matching for anonymous
trees with constant space per process. In: Proceedings of International Conference
on Principles of Distributed Systems, pp. 1–16 (2015)

7. Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-
stabilizing silent protocols. In: Proceedings of 23rd International Conference on
Distributed Computing Systems, pp. 474–481. IEEE (2009)

8. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

9. Dubois, S., Tixeuil, S.: A taxonomy of daemons in self-stabilization. CoRR
abs/1110.0334 (2011). http://arxiv.org/abs/1110.0334

10. Dubois, S., Tixeuil, S., Zhu, N.: The byzantine brides problem. In: Kranakis, E.,
Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 107–118. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-30347-0 13

11. Goddard, W., Hedetniemi, S.T., Shi, Z., et al.: An anonymous self-stabilizing algo-
rithm for 1-maximal matching in trees. In: Proceedings of International Conference
on Parallel and Distributed Processing Techniques and Applications, pp. 797–803
(2006)

http://dx.doi.org/10.7155/jgaa.00384
http://arxiv.org/abs/1110.0334
http://dx.doi.org/10.1007/978-3-642-30347-0_13

108 M. Inoue et al.

12. Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for indepen-
dence, domination, coloring, and matching in graphs. J. Parallel Distrib. Comput.
70(4), 406–415 (2010)

13. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Maximal matching stabilizes in time
O(m). Inf. Process. Lett. 80(5), 221–223 (2001)

14. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

15. Inoue, M., Ooshita, F., Tixeuil, S.: An efficient silent self-stabilizing 1-maximal
matching algorithm under distributed daemon without global identifiers. In:
Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 195–212.
Springer, Cham (2016). doi:10.1007/978-3-319-49259-9 17

16. Karaata, M.H., Saleh, K.A.: Distributed self-stabilizing algorithm for finding max-
imum matching. Comput. Syst. Sci. Eng. 15(3), 175–180 (2000)

17. Kimoto, M., Tsuchiya, T., Kikuno, T.: The time complexity of Hsu and Huang’s
self-stabilizing maximal matching algorithm. IEICE Trans. Inf. Syst. E93–D(10),
2850–2853 (2010)

18. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theoret. Comput. Sci. 410(14), 1336–1345 (2009)

19. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theoret. Comput. Sci. 412(40),
5515–5526 (2011)

20. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press,
Cambridge (2000)

http://dx.doi.org/10.1007/978-3-319-49259-9_17

An Improved Approximate Consensus
Algorithm in the Presence of Mobile Faults

Lewis Tseng(B)

Computer Science, Boston College, Boston, MA, USA
lewis.tseng@bc.edu

Abstract. This paper explores the problem of reaching approximate
consensus in synchronous point-to-point networks, where each pair of
nodes is able to communicate with each other directly and reliably. We
consider the mobile Byzantine fault model proposed by Garay ’94 – in
the model, an omniscient adversary can corrupt up to f nodes in each
round, and at the beginning of each round, faults may “move” in the sys-
tem (i.e., different sets of nodes may become faulty in different rounds).
Recent work by Bonomi et al. ’16 proposed a simple iterative approx-
imate consensus algorithm which requires at least 4f + 1 nodes. This
paper proposes a novel technique of using “confession” (a mechanism
to allow other nodes to ignore past behavior) and a variant of reliable
broadcast to improve the fault-tolerance level. In particular, we present
an approximate consensus algorithm that requires only �7f/2�+1 nodes,
an �f/2� improvement over the state-of-the-art algorithms. Moreover,
we also show that the proposed algorithm is optimal within a family of
round-based algorithms.

Keywords: Byzantine mobile faults · Iterative algorithms · Approxi-
mate consensus

1 Introduction

Fault-tolerant consensus has received significant attentions over the past three
decades since the seminal work by Lamport et al. [14]. Recently, the mobile
fault model [16] received the renewed attention due to the needs to handle more
diverse faulty behaviors in emerging areas such as mobile robot systems, sensor
networks, and smart phones [21]. The mobile fault model (in the round-based
computation systems) has the following two characteristics:

– Up to f nodes may be faulty in any given round, and
– Different sets of nodes may become faulty in different rounds.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 109–125, 2017.
https://doi.org/10.1007/978-3-319-69084-1 8

110 L. Tseng

This type of fault model is very different from the traditional “fixed” fault model
[2,14,15] – once a node becomes faulty, it remains faulty throughout the lifetime
of the computation.

The mobile fault model is motivated by the observation that for long-living
computations, e.g., aggregation, leader election, and clock synchronization, nodes
may experience different phases throughout the lifetime such as cured/curing,
healthy, and faulty phases [21]. For example, a worm-type of malware may grad-
ually infect and corrupt healthy nodes while some infected nodes detected the
malware and became cured (e.g., by routine checks from administrators) [21].
Another example is that fragile sensor nodes or robots may be impacted by the
environment change, e.g., sensor malfunction due to high wind [5].

A rich set of mobile Byzantine fault models has been proposed [4,7,9,17], and
subsequent work addressed the consensus problem in these models, e.g., [3,5,6].
These models are all defined over the round-based computation system (to be
formally defined in Sect. 3.1), and they differ in two main dimensions [5,6]: (i) at
which point in a round, faults can “move” to other nodes? and (ii) does a node
have a knowledge when it is cured (i.e., after a fault moves to another node)? In
this paper, we adopt the model proposed by Garay [9]:

– At the beginning of round t, the Byzantine adversary picks the set of up to
f nodes that behave faulty in round t, and

– Once a node is cured (i.e., the node that was faulty in the previous round,
and becomes fault-free in the current round), it is aware of the condition and
can remain silent to avoid disseminating faulty information.

Recently, under Garay’s model, Banu et al. [3] proposed an exact Byzantine
consensus algorithm for at least 4f + 1 nodes, and Bonomi et al. [5,6] proposed
an iterative approximate Byzantine consensus algorithm for at least 4f+1 nodes.
Bonomi et al. also proved that for a constrained class of memory-less algorithms,
their iterative algorithm is optimal. In this paper, we show that 4f+1 is not tight
for a more general class of algorithms. In particular, we present an approximate
consensus algorithm that requires only �7f/2� + 1 nodes.

Mobile Faults and Round-Based Algorithms. The mobile Byzantine fault
model considered in this paper is defined over round-based algorithms, in which
the system proceeds in synchronous rounds that consist of three steps: send,
receive, compute [5,6,9]. There are three types of nodes in the system: faulty,
healthy, and cured. For a slight abuse of terminology, we also call healthy and
cured nodes as fault-free nodes. In the round-based algorithms, each fault-free
node maintains a special state variable v. After a sufficient number of rounds,
the state variable v can be viewed as the output of the fault-free nodes.1 With
mobile faults, each node may become Byzantine faulty and have its local storage

1 Using the technique from [1], nodes can also estimate the number of required rounds
and decide when to “output” the state variable v.

An Improved Approximate Consensus Algorithm 111

(including the state variable and other bookkeeping variables) corrupted in any
round. When a node is cured, it needs to recover its state variable and potentially
other information. Therefore, for a given round, we are only interested in the
state variable v at the healthy nodes, since if majority of nodes remain healthy,
cured nodes can easily learn a fault-free state value from other nodes.

Approximate Consensus. Approximate consensus can be related to many
distributed computations in emerging areas, such as data aggregation [12], decen-
tralized estimation [18], and flocking [11]; hence, the problem of reaching approx-
imate consensus in the presence of Byzantine faults has been studied extensively,
including synchronous systems [8], asynchronous systems [1], arbitrary networks
[20], transient link faults [19], and time-varying networks [10] . . . etc. Bonomi
et al. [5,6] are among the first to study approximate consensus algorithms in the
presence of mobile Byzantine fault models.

Roughly speaking, the round-based approximate consensus algorithms of
interest have the properties below, which we will define formally in Sect. 3.1:

– Initial state of each node is equal to a real-valued input provided to that
node.

– Validity: after each round of an algorithm, the state variable v of each healthy
node must remain in the range of the initial values of fault-free nodes.

– Convergence: for ε > 0, after a sufficiently large number of rounds, the state
variable of the healthy nodes are guaranteed to be within ε of each other.

Main Contribution

– We propose an approximate consensus algorithm that requires only �7f/2�+
1 nodes. The algorithm relies on “confession” (a mechanism to ask other
nodes to ignore past behavior) and a variant of reliable broadcast to learn
information from other healthy nodes reliably. The technique may be applied
to other problems under the mobile fault models.

– We show that the proposed algorithm is optimal within the “2-memory
round-based algorithms” – the family of algorithms that only allows nodes
to “remember” what happened in the previous rounds (but not the entire
execution history).

2 Related Work

There is a rich literature on consensus-related problems [2,15]. Here, we only
discuss two most relevant categories.

Exact Consensus Under Mobile Byzantine Faults. References [3,4,7,9,17]
studied the problem of reaching exact consensus under different mobile Byzantine

112 L. Tseng

fault models. In exact consensus algorithms, every fault-free node reaches exactly
the same output. Garay is among the first to study mobile faults [9]. In his model,
the faults can “move” freely, and the cured nodes are aware of their condition.
Garay proposed an algorithm requiring 6f + 1 nodes [9]. Later, Banu et al.
[3] improved the fault-tolerance level to 4f + 1 nodes. In [4,17], a mobile fault
model in which nodes are not aware when they are cured is considered. Sasaki
et al. [17] presented an algorithm requiring at least 6f + 1 nodes, whereas,
Bonnet et al. [4] proposed an algorithm requiring at least 5f + 1 nodes, and
proved that 5f +1 is tight in their fault model. Buhrman et al. [7] also assumed
that the nodes has the knowledge when it is cured; however, the ability of the
adversary is more constrained than the above models. The adversary cannot
choose an arbitrary set of nodes to be faulty, i.e., the faults can only “move” with
message dissemination. Buhrman et al. [7] presented an optimal algorithm that
requires 3f + 1 nodes. Only exact consensus was studied in [3,4,7,9,17]; hence,
the techniques are very different from the ones used in this paper. Moreover, to
the best of our knowledge, we are the first to show that (approximate) consensus
is solvable with only �7f/2� + 1 nodes under Garay’s model.

Approximate Byzantine Consensus. Approximate consensus can be related
to many distributed computations in networked systems, e.g., [11,12,18]. Since
many networked systems are tend to be fragile, the problem of reaching approxi-
mate consensus in the presence of Byzantine faults has been studied extensively.
Most work assumed the “fixed” fault model; that is, once the Byzantine adver-
sary picks a faulty node, then throughout the execution of the algorithm, the
node remains faulty and will not be cured. Dolev et al. studied the problem in
both synchronous and asynchronous systems [8]. Dolev et al. proposed an opti-
mal synchronous algorithm, but the asynchronous one requires at least 5f + 1
nodes, which is only optimal within the family of iterative algorithms. Later,
Abraham et al. proposed an optimal asynchronous algorithm that requires only
3f+1 nodes [1], which is optimal for all general algorithms. The technique in this
paper is inspired by the usage of “witness” and reliable broadcast in [1]; however,
due to different synchrony assumptions and fault models, our technique differs
from the ones in [1] (we will address more details in Sects. 4 and 5.1).

Kieckhafer and Azadmanesh studied the behavior of iterative algorithms
(i.e., memory-less algorithms) and proved some lower bounds under Mixed-
Mode faults model, where nodes may suffer crash, omission, symmetric, and/or
asymmetric Byzantine failures [13]. Researchers also studied iterative approxi-
mate consensus under different communication assumptions, including arbitrary
communication networks [20], networks with transient link faults [19], and time-
varying networks [10] . . . etc. These works only assumed the fixed fault model.

Bonomi et al. [5,6] studied approximate consensus algorithms in the presence
of mobile Byzantine fault models. They presented optimal iterative algorithms
under different mobile fault models, and they proposed a mapping (or reduction)
from the existing mobile Byzantine models to the Mixed-Mode faults model [13].

An Improved Approximate Consensus Algorithm 113

As we will show later in this paper, the bound does not hold for a more general
class of algorithms. In other words, the “memory” from previous rounds helps
improve the fault-tolerance level. This paper essentially demonstrates how to use
the “memory” effectively.

3 Preliminaries

3.1 Models and Round-Based Algorithms

System Model. We consider a synchronous message-passing system of n nodes.
The communication is through a point-to-point network, in which each pair of
nodes is connected by a direct communication link. All the links are assumed
to be reliable, and the messages cannot be forged by the adversary. We assume
that n ≥ �7f/2� + 1, where f is the upper bound on the number of faulty nodes
in a given round.

Round-Based Algorithms. As in the prior work [3,5,6,9], we consider the
round-based algorithms in this paper. The algorithm consists of three steps:

– Send: send messages to all the other nodes
– Receive: receive the messages from other nodes
– Compute: based on the messages and local states, perform local computation.

In addition, each node also maintains a special state variable v such that
after a sufficient number of rounds, the state becomes the output at the node.
Note that Bonomi et al. only considered iterative algorithms [5,6], in which each
node only sends and keeps a real-value state at all time, and there is no other
information maintained (i.e., memory-less algorithms or iterative algorithms),
whereas, we and references [3,9] consider a more general types of algorithms,
where nodes may send and keep arbitrary state information.

Mobile Byzantine Fault Model. In this paper, we consider the mobile Byzan-
tine fault model proposed by Garay [9]. There are three types of nodes:

– Byzantine nodes: in the beginning of each round, up to f nodes may be
Byzantine faulty. A Byzantine faulty node may misbehave arbitrarily, and
the local storage may be corrupted. Possible misbehavior includes sending
incorrect and mismatching (or inconsistent) messages to different nodes. We
consider an omniscient adversary – a single adversary that controls which set
of nodes would become faulty. Moreover, the Byzantine adversary is assumed
to have a complete knowledge of the execution of the algorithm, including
the states of all the nodes, contents of messages the other nodes send to each
other, and the algorithm specification.

114 L. Tseng

– Cured nodes: a node is “cured” in the current round if it was faulty in the
previous round, and becomes fault-free in the beginning of the current round.
Under the model, a cured node has the knowledge that it just got cured, and
hence can choose to stay silent at the current round, since the local states are
potentially corrupted. A cured node follows the algorithm specification – it
receives messages and performs local computation accordingly.

– Healthy nodes: all the other nodes belong to the set of healthy nodes. Par-
ticularly, they follow the algorithm specification, and the local storage is not
corrupted in the previous and current rounds.

3.2 Notation

Nodes: To facilitate the discussion, we introduce the following notations to rep-
resent sets of nodes throughout the paper:

– faulty[t]: the set of nodes that are faulty in round t
– cured[t]: the set of nodes that are cured in round t
– healthy[t]: the set of nodes that are healthy in round t

Nodes in healthy[t] ∪ cured[t] are said to be fault-free in round t.

Values: For a given round t, let us define v[t], max state[t] and min state[t]:

– vi[t] is the special state variable (that later will be the output) maintained at
node i in the end of round t. Notation vi[0] is assumed to be the input given
to node i. For brevity, when the round index or node index is obvious from
the context, we will often ignore t or i.

– max state[t] = maxi∈healthy[t]∪cured[t] vi[t]. Notation max state[t] is the
largest state variable among the fault-free nodes at the end of round t. Since
the initial state of each node is equal to its input, max state[0] is equal to
the maximum value of the initial input at the fault-free nodes.

– min state[t] = mini∈healthy[t]∪cured[t] vi[t]. Notation min state[t] is the small-
est state variable among the fault-free nodes at the end of round t. Since the
initial state of each node is equal to its input, min state[0] is equal to the
minimum value of the initial input at the fault-free nodes.

3.3 Correctness of Round-Based Approximate Algorithms

We are now ready to formally state the correctness condition of round-based
approximate algorithms under the mobile Byzantine fault model:

An Improved Approximate Consensus Algorithm 115

– Validity: ∀t > 0,

min state[t] ≥ min state[0] and max state[t] ≤ max state[0]

– Convergence: for a given constant ε, there exists a t such that

∀r ≥ t, max state[r] − min state[r] < ε

4 Algorithm CC

We now present Algorithm CC (Consensus using Confession), a round-based
approximate algorithm. Throughout the execution of the algorithm, each node i
maintains a special state variable vi. Recall that vi[t] represents the state at node
i in the end of round t (i.e., after the state variable is updated). The convergence
condition requires the state variables vi[t] to converge for a large enough t.

Similar to the algorithms in [1,9], Algorithm CC proceeds in phases. There
are two phases in the algorithm: in the first phase (Collection Phase), nodes
exchange their state variables v and construct a vector E that stores others’ state
variables. Ei[j] represents the value that i receives from j. If j is faulty or cured,
Ei[j] may not be the state variable at node j. The second phase (Confession
Phase) has three functionalities stated below. Here suppose round t + 1 is the
Confession Phase (i.e., t is an even integer).

– Exchange the vector E constructed in the Collection Phase. If a node i is cured
in the beginning of this phase (round t + 1), then it sends ∅ to “confess” to
all other fault-free nodes that it was faulty and subsequently, fault-free nodes
will ignore messages from node i from the previous round. If node i is faulty,
it may choose to send confession to only a subset of nodes; however, as long
as there is enough redundancy, such misbehavior can be tolerated.

– Construct a vector V of “trustworthy” state variables. Vi[j] represents the
value that i believe is vj [t − 1], the state variable at node j in the end of
round t−1. A value u from node j is “trustworthy” if node j does not confess
(Condition 2 below), and enough nodes confess or “endorse” the value u
(Condition 1 below). Node k is said to endorse the value u if node k does not
confess, sends legitimate message, and has Ek[j] = u. Node k may or may
not be healthy. The idea of endorsement is similar to the witness technique
used to implement reliable broadcast in [1]. However, there is no notion of
confession in [1].

– Update the local state variable using the reduce function on the vector V .
The reduce function is designed to trim enough values from V so that none
of the extreme values proposed by faulty nodes is used.

116 L. Tseng

4.1 Algorithm Specification

Algorithm CC: Steps at node i in rounds t and t + 1 for an even t ≥ 0

– Round t: +++ Collection Phase (Even Round) +++
• Send:

if i is cured,
send (⊥, i)

otherwise, send (vi[t − 1], i)

• Receive:a
receive (u, j) from node j

• Compute:
∗ Ei[j] ← u
∗ if i is healthy,

vi[t] ← vi[t − 1]

– Round t + 1: +++ Confession Phase (Odd Round) +++
• Send:

if i is cured,
send (∅, i) //Comment: “confess” faulty behavior

otherwise, send (Ei, i)

• Receive:
for a legitimate tuple (Ej , j) received from node j,b

Ri[j] ← Ej

• Compute:
∗ if the following two conditions are satisfied:

· Condition 1: there are ≥ n− f distinct nodes k such that (i)
Ri[k] = Ek �= ∅ and Ek[j] = u, or (ii) Ri[k] = ∅

· Condition 2: Ri[j] �= ∅

then //Comment: u is “trustworthy”

Vi[j] ← u

otherwise,

Vi[j] ←⊥
∗ update state variable using the reduce function:

vi[t + 1] ← reduce(Vi)

a If nothing is received from j, then u is assumed to be ⊥, a null value. Also, we
assume that a node can send a message to itself.

b Here, Ej = ∅ is also legitimate.

An Improved Approximate Consensus Algorithm 117

4.2 Reduce Function

Reduce function is widely used in iterative approximate Byzantine consensus
algorithms, e.g., [1,5,6,8,13]. We adopt the same structure: order the values, trim
potentially faulty values, and update local state. Unlike prior work, our reduce
function trims different number of values at each round. The exact number
depends on the number of ⊥ values received. A ⊥ value may be a result of faulty
behavior or a confession. Below, we define the number of values to be trimmed.

Definition 1. Suppose that node i receives x ⊥ values in the vector Vi at round
t + 1. Then, define

nTrimi =

{
f, if x ≤ f

�f − x−f
2 �, otherwise

The value nTrim counts the number of potentially faulty values in the vector
Vi. In general, the more confessions that i sees in Vi, the less faulty values are in
Vi. Lemma 6 formally shows that nTrimi is large enough to trim all the extreme
values proposed by faulty nodes. Now, we present our reduce function below:

Reduce function: reduce(Vi) at node i

– Calculate nTrimi as per Definition 1.
– Remove all ⊥ values in Vi. Denote the new vector by V ′

i .
– Order V ′

i in a non-decreasing order. Denote the ordered vector by Oi.
– Trim the bottom nTrimi and the top nTrimi values in Oi. In other words,

generate a new vector containing the values Oi[nTrimi + 1], Oi[nTrimi +
2], · · · , Oi[|Oi| − nTrimi − 1]. Denote the trimmed vector by Ot

i .
– Return

min(Ot
i) + max(Ot

i)
2

(1)

5 Analysis

5.1 Key Properties of V

Before the reduce function is executed, the vector V at all fault-free nodes
satisfies nice properties as stated in the lemmas below. The first four lemmas
(Integrity I–IV) show that Algorithm CC achieves properties similar to reliable
broadcast [1] – all fault-free nodes are able to see identical values in V if the
sender node is either healthy or cured. Reliable broadcast in [1] also guarantees

118 L. Tseng

Uniqueness – if the value sent from a node is not ⊥, then the value appears
identically in all fault-free node’s V vector. However, the V vectors in Algorithm
CC may still contain faulty values, since a faulty node that just moved in round
t + 1 can send different E vectors to different fault-free nodes to “endorse”
different values. This is the main reason why Algorithm CC requires more than
3f + 1 nodes, whereas, the algorithm in [1] only requires 3f + 1 nodes.

In the proofs below, we will often denote vi[t−1] by v for brevity. The indices
should be clear from the context. We also assume that t is an even integer that
is greater than or equal to 0. That is, round t is a Collection Phase, whereas,
round t + 1 is a Confession Phase.

Lemma 1 (Integrity I). If node i is healthy in both rounds t and t + 1, then
for all fault-free j ∈ healthy[t+1]∪cured[t+1], Vj [i] = vi[t−1], the value sent
by node i in round t.

Proof. Fix a node i ∈ healthy[t]∩healthy[t+1] which sends the value vi[t− 1]
in round t. In the receive step of round t, each node k ∈ healthy[t] ∪ cured[t]
receives the value and has Ek[i] = v. By definition, |healthy[t]∪cured[t]| ≥ n−f .
Suppose in the beginning of round t + 1, b ≤ f of the mobile Byzantine faults
move to the nodes in healthy[t] ∪ cured[t]. Then, observe that

– |healthy[t] ∪ cured[t]| − b healthy nodes send a legitimate tuple to all other
nodes, and Ek �= ∅ and Ek[i] = v for node k ∈ healthy[t] ∪ cured[t] −
faulty[t + 1]. Denote this set of healthy nodes by A.

– Since b mobile faults move in round t+1, exactly b nodes are cured and send
the confession (∅) in round t + 1. Denote this set of cured nodes by B.

Note that nodes in A ∪ B are either cured or healthy; hence, all fault-free nodes
will observe their behavior identically in round t + 1.

Now, consider a node j ∈ healthy[t+1]∪cured[t+1]. From its perspective,
Condition 1 in the compute step in round t + 1 is met due to the observations
above and the fact that |A|+|B| ≥ (|healthy[t]∪cured[t]|−b)+b = |healthy[t]∪
cured[t]| ≥ n − f . Moreover, by definition, i is healthy in round t + 1; hence,
Condition 2 is also met. Therefore, node j will have Vj [i] = v. �

Lemma 2 (Integrity II). If node i is healthy in round t and becomes faulty
in round t + 1, then for all fault-free j ∈ healthy[t + 1] ∪ cured[t + 1], either
Vj [i] =⊥ or Vj [i] = vi[t − 1], the value sent by node i in round t.

Proof. The proof is by contradiction. Suppose that at some node j ∈ healthy[t+
1] ∪ cured[t + 1], Vj [i] = u such that u �=⊥ and u �= v. Now, observe that:

– Obs 1: Vj [i] = u only if there are enough node k that endorses or confesses
(Condition 1 in Algorithm CC). Denote this set of nodes by Wu. And we have
|Wu| ≥ n − f .

– Obs 2: Since node i is healthy in round t, every node k ∈ healthy[t + 1] did
not endorse value u (they heard value v in round t and endorses v in round
t + 1).

An Improved Approximate Consensus Algorithm 119

– Obs 3: Obs 2 together with the fact that |healthy[t+1]| ≥ n−2f imply that
there are ≤ n − (n − 2f) = 2f nodes in the set Wu.

We have |Wu| ≤ 2f < (�7f/2� + 1) − f = �5f/2� + 1, contradicting Obs 1. �

Lemma 3 (Integrity III). If node i is cured in round t, then for all fault-free
j ∈ healthy[t + 1] ∪ cured[t + 1], Vj [i] =⊥.

The proof is similar to the proof of Lemma1 and omitted here for brevity.

Lemma 4 (Integrity IV). If node i is cured in round t + 1, then for all
fault-free j ∈ healthy[t + 1] ∪ cured[t + 1], Vj [i] =⊥.

Proof. Since node i is cured in round t + 1, it will send the confession (∅) to all
fault-free nodes in round t + 1. Thus, for all j ∈ healthy[t + 1] ∪ cured[t + 1],
Rj [i] = ∅, violating Condition 2. Therefore, Vj [i] =⊥. �

The only case left is to analyze the behavior of nodes which remain faulty
in both rounds t and t + 1. Fault-free nodes may not have the same entries
corresponding to these nodes in the V vectors; however, by construction, these
nodes are limited in number. To see this, consider the following two scenarios:

– When no faulty node moves, i.e., faulty[t] = faulty[t + 1]. Then, all fault-
free nodes produce identical V vectors, since Condition 1 cannot hold if faulty
nodes send different values to different nodes in round t.

– When all faulty nodes move, i.e., faulty[t] ∩ faulty[t + 1] = ∅. Then, by
Lemmas 2, 3, and 4, all fault-free nodes will have same values in V vectors in
round t + 1.

The lemma below characterizes the bound on the number of different entries
corresponding to faulty nodes in the V vectors at fault-free nodes.

Lemma 5. Suppose n ≥ �7f/2� + 1. For a pair of fault-free nodes i, j ∈
healthy[t + 1] ∪ cured[t + 1], at most �f/2� − 1 non-⊥ values differs in Vi

and Vj. More precisely, there are at most �f/2� − 1 indices such that the cor-
responding entries in Vi and Vj are non-⊥ values and are different from each
other.

Proof. The proof is by contradiction. Suppose that there exists a pair of fault-
free nodes i, j such that �f/2� different values appear in Vi and Vj . Consider
the entries corresponding to some node k, i.e., Vi[k] �= Vj [k] and Vi[k], Vj [k] �=⊥.
Then, we can make the following observations:

– Obs 1: By Lemmas 1, 2, 3, and 4, node k must remain faulty in both rounds
t and t + 1.

– Obs 2: By Condition 1, there are ≥ n − f nodes that send the value Vi[k] or
send the confession (∅) to node i in round t + 1. Denote this set of nodes by
Wi. For ease of discussion, let us call these nodes the “witnesses” of the value
Vi[k].

120 L. Tseng

– Obs 3: By assumption and Obs 1, at most �f/2� faults move from round t to
round t + 1.

– Obs 4: Among the nodes in Wi, at least |Wi| − (f + �f/2�) are nodes that
are healthy in both rounds t and t + 1. This is because (i) by Obs 3, at most
�f/2� faults move, and (ii) cured node l in round t + 1 (i.e., l ∈ cured[t + 1])
sends the confession (∅) in round t + 1, which result into Ri[l] = Rj [l] = ∅ in
the receive step of round t + 1.

Now, consider node j. By Obs 4, it has ≤ n − (|Wi| − (f + �f/2�)) witnesses
of the value Vj [k]. Denote this set of witness of the value Vj [k] by Wj . Then, we
have

|Wj | ≤ n − (|Wi| − (f + �f/2�))
≤ n − ((n − f) − (f + �f/2�)) = �5f/2� by Obs 2
< �5f/2� + 1 = n − f

Therefore, Condition 1 is not satisfied at node j; hence, Vj [k] can only be
either the value Vi[k] or ⊥, a contradiction. �

Note that Lemma 5 implies that there are ≥ n − �f/2� + 1 identical entries
in Vi and Vj .

5.2 Correctness

For brevity, we only prove the correctness properties for healthy nodes, since
cured nodes will have valid state variables if they remain fault-free in the next
round. We begin with a useful lemma on nTrim (as per Definition 1). Here, a
faulty value is the non-⊥ value sent by faulty nodes.

Lemma 6. For a given odd round t ≥ 1 and i ∈ healthy[i], there are at most
nTrimi faulty values in Vi[t].

Proof. If Vi[t] contains ≤ f ⊥ values, then the lemma holds by assumption.
Now, consider the case when there are x ⊥ values in Vi[t], where x > f . There
are only three ways to produce ⊥ values: (i) by cured nodes in round t − 1
(due to Lemma 3), (ii) by cured nodes in round t (due to Lemma 4), and (iii)
by faulty nodes in round t. Assume that b faults move in round t, and b′ faulty
nodes produce ⊥ values. Observe that (i) at most f cured nodes in round t − 1,
(ii) exactly b cured nodes in round t, and (iii) exactly f − (b + b′) faulty values
in Vi[t]. Then, we have

nTrimi = �f − x − f

2
� by Definition 1

≥ �f − (b + f + b′) − f

2
� = �f − b + b′

2
� by observations above

≥ f − (b + b′) = number of faulty values in Vi �

An Improved Approximate Consensus Algorithm 121

Lemma 7 (Validity). For a given round t ≥ 0, if i ∈ healthy[t], then

max state[0] ≥ vi[t] ≥ min state[0]

Proof. The proof is by induction on the number of rounds.

– Initial Step: When t = 0, the statement holds, since by definition,
max state[0] ≥ vi[0] ≥ min state[0].

– Induction Step: suppose the statement holds for some h > 0, consider round
h+1. If h is a Collection Phase (h is even), then the statement holds trivially,
since vi[h] ← vi[h − 1] in the compute step. Now, consider the case when h
is odd (h is an Confession Phase). Lemma 6 implies that in the trim step of
the reduce function (the fourth step), all the faulty values will be trimmed if
they are too large or too small. Therefore, the maximal and minimal values
in Ot

i will always be inside the range of the maximal and minimal values of
state values of the fault-free nodes in round h − 1. Hence the return value of
the reduce function satisfies Validity by the induction hypothesis. �

Before proving convergence, we show a lemma that bounds the range of the
updated state variables. Recall that max state[t] and min state[t] represent the
maximal and minimal state variables, respectively, at healthy nodes in round t.
We only care about the state variables in the odd round, since in the even round
(Collection Round), the state variable remains the same at healthy nodes.

Lemma 8. For some even integer t > 0, we have

max state[t + 1] − min state[t + 1] ≤ max state[t − 1] − min state[t − 1]
2

Proof. To prove the lemma, we need to show that for any pair of fault-free nodes
i, j, we have

|vj [t + 1] − vi[t + 1]| ≤ max state[t − 1] − min state[t − 1]
2

(2)

Let Vi and Vj denote the V vectors at i and j, respectively, at the compute
step (the third step) of round t+1. Then, define R = Vi ∩Vj . Recall that Ot

i and
Ot

j represent the trimmed vector in the reduce function at i and j, respectively.
Then, we have the following key claim:

Claim. Let m be the median of the values in R. Then, m ∈ Ot
i and m ∈ Ot

j .

Proof. We make the following observations:

– Obs 1: By Lemma 5, |R| ≥ n − (�f/2� − 1) ≥ 3f + 1.
– Obs 2: Suppose there are x ⊥ values in R. Consider two cases:

• Case I: if x ≤ f , then m ∈ Ot
i , because after removing f ⊥ values from

Vi, we trim f elements from each side. Similarly, we can show m ∈ Ot
j .

122 L. Tseng

• Case II: if x ≥ f , then m ∈ Ot
i , because after removing x ⊥ values from

Vi, we trim nTrimi elements from each side. In other words, we trim at
most

x + 2 ∗ nTrimi = x + 2�(f − x − f

2
)� = x + 2f − x + f = 3f

values from R. This together with Obs 1 implies that m ∈ Ot
i . Similarly,

we can show m ∈ Ot
j .

These two cases together prove the claim. �

The rest of the proof of Lemma 8 follows from the claim using the standard
tricks from prior work, e.g., [1,15,20]. �

Lemma 8 and simple arithmetic operations imply the following:

Lemma 9 (Convergence). Given a ε > 0, there exists a round t such that
∀r ≥ t, max state[r] − min state[r] < ε.

Lemmas 7 and 9 together prove that Algorithm CC solves approximate con-
sensus under Garay’s model given that n ≥ �7f/2� + 1.

6 Impossibility Result

This section proves that for a certain family of round-based algorithms, �7f/2�+
1 is the lower bound on the number of nodes (fault-tolerance level), proving that
Algorithm CC is optimal within this family of algorithms.

2-Memory Round-Based Algorithms. As discussed before, the iterative
algorithms considered in [5,6,8,20] are memory-less, i.e., it can only send its
own state, and it updates state in every round. As proved in [5,6], such type
of memory-less algorithms requires 4f + 1 nodes. For the lower bound proof,
we consider a slightly more general type of algorithms – 2-memory round-based
algorithms – in which nodes can send arbitrary messages, carry information
from the previous round, but nodes have to update their state variables every
two rounds (hence, the name 2-memory). While the definition seems constrained,
many Byzantine consensus algorithms belong to this family of algorithms, e.g.,
[1,3,9]. Note that the original algorithm proposed by Lamport et al. [14] does
not belong to 2-memory round-based algorithms, as nodes collect many more
rounds of information before updating their state variables.

Lower Bound Proof. The lower bound proof is similar to the lower bound
proof for iterative algorithms, e.g., [8,20]; however, we also need to consider how
faulty nodes move, which makes the proof slightly more complicated. Note that
using Integrity I-IV (Lemmas 1, 2, 3, and 4), it is fairly easy to show that for
f = 1, Algorithm CC solves the problem for n = 3f + 1 = 4.

An Improved Approximate Consensus Algorithm 123

Theorem 1. It is impossible for any 2-memory round-based algorithm to solve
approximate consensus under Garay’s model if n ≤ �7f/2� and f > 1.

Proof. Consider the case when f = 2, and n = 7. Consider the set of nodes
S = {a, b, c, d, e, f, g}. For simplicity, assume that a node can be in the cured
phase in round 0. Then, suppose in round 0: a, b are cured, c, d are faulty, and
e, f, g are healthy. And, nodes e, f has input m, and node g has input m′, where
m′ > m and m′ − m > ε.

In round 0, faulty nodes c, d behave to nodes a, e, f as if they have input m,
and behave to nodes b, g as if they have input m′. In the beginning of round 1, the
adversary moves the fault from node d to node e; hence, a, b, f, g are healthy,
c, e are faulty, d is cured in round 1. The new faulty node e and the original
faulty node c behave in the following way (i) behave to nodes a, d, f as if node
c, d, e have input m, (ii) behave to node b, g as if nodes c, d, e have input m′, and
(iii) otherwise follow the algorithm specification.

Now, from the perspective of node f , there are two scenarios:

– If nodes c, d are faulty, then the inputs at healthy nodes are m,m,m′, and
– If nodes d, g are faulty, then the inputs at healthy nodes are m,m,m.

By assumption, node e needs to update the state variable now and it could not
distinguish between the two scenarios, since it cannot exchange more messages.
Therefore, node e must choose some value that satisfies the validity condition in
both scenarios, and the value is m.2 Therefore, in round 1, the state variable at
node e remains m. We can show the same situation holds for node a, d.

From the perspective of node g, there are also two scenarios:

– If nodes c, d are faulty, then the inputs at healthy nodes are m,m,m′, and
– If nodes e, f are faulty, then the inputs at healthy nodes are m′,m′,m′.

Then, node g has to choose m′ to satisfy the validity condition in round 1.
Then in round 2, the adversary picks nodes a, b to be faulty. Observe that

this scenario is identical to round 0: two cured nodes, two faulty nodes, and three
healthy nodes with state variables m,m, and m′. Therefore, the adversary can
behave in the same way so that no healthy node will change their state variables;
hence, convergence cannot be achieved. �

7 Conclusion

Under Garay’s mobile Byzantine fault model [9], we present an approximate
consensus algorithm that requires only �7f/2�+1 nodes, an �f/2� improvement
in the fault-tolerance level over the iterative algorithms proposed in [5,6]. More-
over, we also show that the proposed algorithm is optimal within the family
of 2-memory round-based algorithms. Whether �7f/2� + 1 is tight for general
approximate algorithms remains open.
2 There are other scenarios not discussed in the proof for brevity; however, m is the

only value that works for each of the scenarios.

124 L. Tseng

References

1. Abraham, I., Amit, Y., Dolev, D.: Optimal resilience asynchronous approximate
agreement. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 229–239.
Springer, Heidelberg (2005). doi:10.1007/11516798 17

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley Series on Parallel and Distributed Computing (2004)

3. Banu, N., Souissi, S., Izumi, T., Bessani, A.N., Correia, M., Neves, N.F., Buhrman,
H., Garay, J.A.: An improved Byzantine agreement algorithm for synchronous
systems with mobile faults (2012)

4. Bonnet, F., Défago, X., Nguyen, T.D., Potop-Butucaru, M.: Tight bound on mobile
Byzantine agreement. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 76–90.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8 6

5. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agreement
under mobile Byzantine faults. CoRR, abs/1604.03871 (2016)

6. Bonomi, S., Pozzo, A.D., Potop-Butucaru, M., Tixeuil, S.: Approximate agreement
under mobile Byzantine faults. In: 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pp. 727–728, June 2016

7. Buhrman, H., Garay, J.A., Hoepman, J.H.: Optimal resiliency against mobile
faults. In: Twenty-Fifth International Symposium on Fault-Tolerant Computing.
Digest of Papers, pp. 83–88, June 1995

8. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approx-
imate agreement in the presence of faults. J. ACM 33, 499–516 (1986)

9. Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile
faults. In: Tel, G., Vitányi, P. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264.
Springer, Heidelberg (1994). doi:10.1007/BFb0020438

10. Haseltalab, A., Akar, M.: Approximate Byzantine consensus in faulty asynchronous
networks. In: 2015 American Control Conference (ACC), July 2015

11. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001
(2003)

12. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation, pp. 482–491. IEEE Computer Society (2003)

13. Kieckhafer, R.M., Azadmanesh, M.H.: Reaching approximate agreement with
mixed-mode faults. IEEE Trans. Parallel Distrib. Syst. 5(1), 53–63 (1994)

14. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)
16. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended

abstract). In: Proceedings of the Tenth Annual ACM Symposium on Principles
of Distributed Computing, PODC 1991. ACM (1991)

17. Sasaki, T., Yamauchi, Y., Kijima, S., Yamashita, M.: Mobile Byzantine agree-
ment on arbitrary network. In: Baldoni, R., Nisse, N., van Steen, M. (eds.)
OPODIS 2013. LNCS, vol. 8304, pp. 236–250. Springer, Cham (2013). doi:10.1007/
978-3-319-03850-6 17

18. Schizas, I., Ribeiro, A., Giannakis, G.: Consensus in ad hoc WSNs with noisy links -
Part I: distributed estimation of deterministic signals. IEEE Trans. Sig. Process.
56(1), 350–364 (2008)

19. Tseng, L., Vaidya, N.: Iterative approximate consensus in the presence of Byzantine
link failures. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS, vol. 8593, pp.
84–98. Springer, Cham (2014). doi:10.1007/978-3-319-09581-3 7

http://dx.doi.org/10.1007/11516798_17
http://dx.doi.org/10.1007/978-3-662-45174-8_6
http://dx.doi.org/10.1007/BFb0020438
http://dx.doi.org/10.1007/978-3-319-03850-6_17
http://dx.doi.org/10.1007/978-3-319-03850-6_17
http://dx.doi.org/10.1007/978-3-319-09581-3_7

An Improved Approximate Consensus Algorithm 125

20. Vaidya, N.H., Tseng, L., Liang, G.: Iterative approximate Byzantine consensus in
arbitrary directed graphs. In: PODC 2012 (2012)

21. Yung, M.: The mobile adversary paradigm in distributed computation and systems.
In: PODC 2015 (2015)

Fault-Induced Dynamics of Oblivious
Robots on a Line

Jean-Lou De Carufel(B) and Paola Flocchini

University of Ottawa, Ottawa, Canada
{jdecaruf,pflocchi}@uottawa.ca

Abstract. The study of computing in presence of faulty robots in the
Look-Compute-Move model has been the object of extensive inves-
tigation, typically with the goal of designing algorithms tolerant to as
many faults as possible. In this paper, we initiate a new line of inves-
tigation on the presence of faults, focusing on a rather different issue.
We are interested in understanding the dynamics of a group of robots
when they execute an algorithm designed for a fault-free environment,
in presence of some undetectable crashed robots. We start this investiga-
tion focusing on the classic point-convergence algorithm by Ando et al.
[2] for robots with limited visibility, in a simple setting (which already
presents serious challenges): the robots operate fully synchronously on
a line, and at most two of them are faulty. Interestingly, and perhaps
surprisingly, the presence of faults induces the robots to perform some
form of scattering, rather than point-convergence. In fact, we discover
that they arrange themselves inside the segment delimited by the two
faults in interleaved sequences of equidistant robots.

1 Introduction

Consider a group of robots represented as points, which operate in a continu-
ous space according to the Look-Compute-Move model [16]: when active, a
robot Looks the environment obtaining a snapshot of the positions of the other
visible robots, it Computes a destination point on the basis of such a snap-
shot, and it Moves there. As typically assumed by the model, the robots are
anonymous (i.e., they are identical), autonomous (without central or external
control), oblivious (they have no memory of past activations), disoriented (they
do not agree on a common coordinate systems), silent (they have no means of
explicit communication). These systems of autonomous robots have been exten-
sively investigated under different assumptions on the various model parameters
(different levels of synchrony, level of agreement on the coordinate system, etc.),
and most algorithms in the literature are designed for fault-free groups of robots
(e.g., see [7,8,12–15,17–21]).

This work has been supported in part by the Natural Sciences and Engineering
Research Council of Canada through the Discovery Grant program; by Prof. Floc-
chini’s University Research Chair.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 126–141, 2017.
https://doi.org/10.1007/978-3-319-69084-1 9

Fault-Induced Dynamics of Oblivious Robots on a Line 127

There are several studies that consider the presence of faults: crashes (robots
that are never activated) or byzantine (robots that behave differently than
intended). The goal, in these cases, has been to design fault-tolerant algorithms
focusing on the maximum amount of faults that can be tolerated for a solution
to exist in a given model (e.g., see [1,3–6,11]). For a detailed account of the
current investigations see [11].

In this paper, we consider a rather different question in presence of faulty
robots that has never been asked before. Given an algorithm designed to achieve
a certain global goal by a group of fault-free robots, what is the behaviour of
the robots in presence of crash faults? Clearly, in most cases, the original goal
is not achieved, but the theoretical interest is in characterizing the dynamics of
the non-faulty robots induced by the presence of the faulty ones, from arbitrary
initial configurations. Apart from the theoretical curiosity, this approach can be
seen as a first step toward the study of the interaction between heterogeneous
groups of robots operating in the same space, each following a different algorithm.
In fact, the dynamics resulting from the presence of different teams following
different and possibly conflicting rules in the environment is an important area
of investigation that has never been studied.

We start this new line of investigation focusing on the classic point-
convergence algorithm by Ando et al. [2] for robots with limited visibility, and
considering one of the simplest possible settings, which already proves to be chal-
lenging: fully synchronous robots (FSynch) moving in a 1-dimensional space (a
line), in presence of at most two faults. In a line, the convergence algorithm
prescribes each robot to move to the center of the leftmost and rightmost visible
robots and, in absence of faults, starting from a configuration where the robots’
“visibility graph” is connected, the robots are guaranteed to converge toward a
point. It is not difficult to see that with a single fault, the robots successfully
converge toward the faulty robot. The presence of multiple faults, however, gives
rise to intricate dynamics, and the analysis of the robots behavior is already quite
complex with just two. The case of more than two faults is left for further study.

Interestingly, and perhaps surprisingly, the presence of faults induces the
robots to perform some form of scattering, rather than gathering. In fact, we
prove that they arrange themselves inside the segment delimited by the two
faults in interleaved sequences composed of equidistant robots. The structure
that they form has a hierarchical nature: robots organize themselves in groups
where a group of some level converges to an equidistant distribution between
the first and the last robots of that group. Moreover, the first and the last
robots of that group belong to a lower level group. Also interesting to note is
the rather different dynamics that arises when moving to the middle between
two robots, depending on the choice of the robots: when considering the closest
neighbours, the result is an equidistant distribution (scattering algorithm of [9]),
when instead selecting the leftmost and rightmost visible robots the result is a
more complex structure of sequences of robots, each converging to an equidistant
distribution. The main difficulty of our analysis is to show that the robots indeed

128 J.-L. De Carufel and P. Flocchini

form this special combination of sequences: the convergence of each sequence is
then derived from a generalization of the result by [9].

Finally observe that the 2-dimensional case has a rather different nature. In
fact, in contrast to the 1-dimensional setting, where any initial configuration
converges toward a pattern, when robots move on the plane oscillations are
possible, even with just two faults. The investigation of this case is left for future
study.

Due to lack of space, most proofs are only sketched. The full version of the
paper can be found in [10].

2 Preliminaries

2.1 Model and Notation

Let X denote a set of identical point-form robots moving on a line, simulta-
neously activated in synchronous time steps according to the Look-Compute-
Move model [16]. The robots have limited visibility. In the Look phase, they
“see” the positions of the robots within their visibility radius V , then they all
Compute a destination point, and they Move to that point. The robots are
oblivious in the sense that the computation at time t solely depends on the
positions of the robots perceived at that step. We assume that two robots, arbi-
trarily placed, are permanently faulty (i.e., they are stationary and inactive).
Their faulty status, however, is not visible and they appear identical to the oth-
ers. Let X(t) = {x0(t), x1(t), ..., xn(t)} be the set of robots at time t. Let x
denote a robot x ∈ X and x(t) its position at time t with respect to the leftmost
faulty robot. With an abuse of notation x(t) may indicate both the robot itself
and its position at time t. Robots do not necessarily occupy distinct positions.
For instance we might have xi(t) = xj(t) where 0 ≤ i, j ≤ n are two different
indices. Note, however, that non-faulty robots in the same position behave in
the same way and can be considered as a single one. Indeed, when non-faulty
robots end up in the same position, we say that they “merge” and from that
moment on they will be considered as one.

We denote the distance between robots x and y at time t by |x(t) − y(t)|.
We denote by [α, β] the interval of real numbers starting at α ∈ R and ending
at β ∈ R, where α ≤ β. Let N(x(t)) be the set of robots visible by x at time
t, that is: N(x(t)) is the set of robots y such that |x(t) − y(t)| ≤ V . Let r(x(t))
(resp. l(x(t))) denote the rightmost (resp. the leftmost) robot visible by x at
time t. If no robot is visible to the right (resp. to the left), then r(x(t)) = x(t)
(resp. l(x(t)) = x(t)). We say that a configuration of robots X = {x0, x1, ..., xn}
converges to a pattern P = {p0, p1, ..., pn} if for all 0 ≤ i ≤ n, xi(t) → pi as
t → ∞.

2.2 Background Results: Point-Convergence and Scattering

Point-Convergence [2]. A classical problem for oblivious robots is point-
convergence: the robots, initially placed in arbitrary positions, must converge

Fault-Induced Dynamics of Oblivious Robots on a Line 129

toward the same point, not established a-priori. A solution to this problem is
given by the well known algorithm by Ando et al. [2]. The algorithm achieves
convergence to a point, not only in synchronous systems, but also when at each
time step, only a subset of the robots is activated (semi-synchronous scheduler
SSynch), as long as every robot is activated infinitely often. The robots are
initially placed in arbitrary positions in a 2-dimensional space and have limited
visibility. The algorithm prescribes each robot to move toward the centre of the
smallest enclosing circle that contains all the robots up to a certain distance,
guaranteeing any pair of robots to maintain visibility in spite of each others
possible movement.

When the space where the robots can move is a line, the algorithm (Con-
vergence1D) becomes quite simple because the smallest enclosing circle of the
visible robots is the segment delimited by the leftmost and rightmost visible
robots, and a robot moves to occupy the mid-point between them.

Theorem 1 [2]. Executing Algorithm Convergence1D in FSynch or
SSynch, the robots converge to a point.

Scattering on a Segment [9]. In [9], a classical scattering algorithm for robots
in 1-dimensional systems has been analyzed both in FSynch and SSynch.
A variant of this result (Theorem3) will be heavily used in this paper. We briefly
describe the main result and its generalization.

Consider a set of oblivious robots X = {x0, x1, ..., xn} on a line, where x0

and xn do not move (equivalently, this can be considered as a segment delimited
by the positions of x0 and xn). Let D = |xn(0) − x0(0)|. In [9], the robots are
assumed to be able to see the closest robot on each side, while x0 and xn know
they are the delimiters of the segment. The algorithm of [9] (Spreading) makes
the robot converge to a configuration where the distance between consecutive
robots tends to D

n by having the extremal robots never move and the others
move to the middle point between the two neighbours.

Theorem 2 [9]. Executing Algorithm Spreading in FSynch or in SSynch
on the set of robots R where the first and the last robots do not move, the robots
converge to equidistant positions.

The theorem can be generalized in FSynch to the case when x0 and xn are
not stationary, but are each converging toward a point (resp. x′

0 and x′
n). The

proof is technical, but it essentially follows the same lines of the proof of [9], and
can be found in the full version of the paper [10].

Theorem 3. Let X = {x0, x1, ..., xn} where x0(t) → x′
0 and xn(t) → x′

n as
t → ∞. Executing Algorithm Spreading in FSynch on robots {x1, ..., xn−1},
the robots converge to equidistant positions between x′

0 and x′
n.

3 Robots’ Dynamics in Presence of Two Faults

It is not difficult to see that, if the configuration contains one faulty robot, the
other robots converge toward it. We then focus on the case when the system

130 J.-L. De Carufel and P. Flocchini

contains two faults and we show that, starting from an arbitrary configuration,
the system converges towards a limit configuration.

For the rest of this paper, we will always denote by x0 (resp. by xn) the
leftmost (resp. the rightmost) faulty robot. Moreover, for simplicity, x0 is con-
sidered to be at position 0 (note that there could be robots initially placed in
negative positions).

3.1 Basic Properties

We start with a series of lemmas leading to the proof of two crucial properties:
there exists a time after which the robots preserve their farthest neighbours (The-
orem 4) and when the number of different positions occupied by them becomes
constant (Corollary 1).

Lemma 1 (No Crossing). If x and z are two non-faulty robots and x(t) <
z(t), then x(t + 1) ≤ z(t + 1).

Proof. Since x(t) < z(t), we have that r(x(t)) ≤ r(z(t)) and l(x(t)) ≤ l(z(t)) by
definition. It follows that x(t + 1) = l(x(t))+r(x(t))

2 ≤ l(z(t))+r(z(t))
2 = z(t + 1). ��

With the next two lemmas we show that all robots, except possibly two,
eventually enter the segment [x0, xn] delimited by the two faulty robots. At
most two robots might perpetually stay outside of it, one to the left of x0 and
one to the right of xn. If this is the case, however, the two outsiders converge to
x0 and xn, respectively.

Lemma 2 (No More Crossing). If x is a non-faulty robot, it will cross at
most a finite number of times with a faulty robot.

Proof (Sketch). Using Lemma 1, we can show that there is a non-faulty robot x�

(resp. xr) that will stay the leftmost (resp. the rightmost) non-faulty robot for
all t ≥ 0.

We first consider the faulty robot x0. If x�(t) ∈ [x0, xn] for some time t, then
l(x�(t)) = x0, from which x�(t′) ∈ [x0, xn] for all t′ ≥ t. Otherwise, for all t ≥ 0,
we have x�(t) < x0, l(x�(t)) = x�(t) and r(x�(t)) > x�(t). Thus, x�(t) is strictly
increasing as t → ∞. Therefore, x�(t) → x∗ as t → ∞, for some x∗ ≤ x0. We
can prove that x∗ = x0 by showing that all robots which are to the left of x0 are
attracted by x0. Then, we can prove that all non-faulty robots in the interval
[x�(t), x0] will merge with x� after a finite number of steps. Therefore, all non-
faulty robots in the interval [x�(t), x0] will cross at most a finite number of times
with x0.

A symmetric argument for xn completes the proof. ��
Lemma 3. There is a time t ≥ 0 such that either one of the following two
scenarios happens:

– All robots are inside the line segment [x0, xn] and will stay there for all t′ ≥ t.

Fault-Induced Dynamics of Oblivious Robots on a Line 131

– All robots, except for at most two of them (x� and xr), are inside [x0, xn] and
will stay there for all t′ ≥ t. We have that x�(t′) < x0 and xr(t′) > xn for all
t′ ≥ t. Moreover, x�(t) → x0 and xr(t) → xn as t → ∞.

Proof (Sketch). The proof is similar to the one of Lemma2. After a finite number
of steps, all non-faulty robots in the interval [x�(t), x0] will merge with x�. Hence,
after a finite number of steps, there is only one robot remaining to the left of
x0 (two robots merging together are considered as a single robot). A symmetric
argument holds for xr. ��

The two dissident robots from the previous lemma are called outsiders. Since
x�(t′) < x0 and xr(t′) > xn for all t′ ≥ t, and since x�(t′) → x0 and xr(t′) → xn

as t → ∞, we can ignore them without loss of generality. For the rest of the
paper, we suppose that all robots are inside [x0, xn] and will stay there for all
t′ ≥ t.

We now show that during the evolution of the system, a robot never loses
visibility of the robots seen in the past.

Lemma 4 (Preserved Visibility). Let y ∈ N(x(t)). For all t′ > t, y ∈
N(x(t′)).

Proof (Sketch). Let y ∈ N(x(t)). Without loss of generality, y(t) is to the left
of x(t), from which 0 < x(t) − y(t) ≤ V . If both x and y are faulty, they do
not move and the result follows. Otherwise, we write x(t + 1) − y(t + 1) =
l(x(t))+r(x(t))

2 − l(y(t))+r(y(t))
2 , which can be shown to be upper bounded by V . ��

During the execution of the algorithm, robots could cross each other (cross-
ing), they could merge and occupy the same position (merging), and could enter
the visibility range of a robot (inclusion). A size-stable time is when inclusions,
crossings and mergings cease to happen and all robots are inside the segment.

Definition 1 (Size-Stable Time). A time t0 is called a size-stable time if:
for all t ≥ t0, there are no inclusions, mergings or crossings in the system, and
at most one agent stays permanently on each side of the line segment [x0, xn]
converging toward x0 and xn, respectively.

From Lemmas 1 and 2, after a finite number of steps, no two robots are
crossing each others. From Lemma 3, either all robots are inside the line segment
[x0, xn] after a finite number of steps, or at most two robots will stay outside of
the line segment [x0, xn] for all time t ≥ 0. We then get the following corollary.

Corollary 1. For all set of robots X, there exists a size-stable time t0.

Finally, from Lemmas 1, 2 and 4, and Corollary 1, we can conclude that at any
time after a size-stable time t is reached, the farthest left and right neighbours,
namely l(x(t)) and r(x(t)), of any robot x will never change.

Theorem 4 (Preserved-farthest-neighbours). Let t be a size-stable time
and x ∈ R be a robot. For all t′ ≥ t, r(x(t′)) = r(x(t)) and l(x(t′)) = l(x(t)).

For the rest of the paper, we suppose that the earliest size-stable time is 0.
Thus, from Corollary 1, for all t ≥ 0, t is a size-stable time.

132 J.-L. De Carufel and P. Flocchini

3.2 Convergence of Mutual Chains

We now define the notion of mutual chain as a set of robots that are mutually
the farthest from each other.

Definition 2 (Mutual Chain). Let 0 ≤ k ≤ n be an integer and t ≥ 0 be
any size-stable time. A mutual chain at time t (or mutual chain for short) is a
configuration C(t) = {x′

1(t), x
′
2(t), ..., x

′
k(t)} ⊂ X(t) made of k robots such that

for all 1 ≤ i ≤ k − 1, l(x′
i+1(t)) = x′

i(t) and r(x′
i(t)) = x′

i+1(t) (refer to Fig. 1).
If r(xi(t)) = xj(t) and l(xj(t)) = xi(t), we say that xi and xj are mutually

chained at time t or that xi(t) and xj(t) are mutually chained.

x0 x1 x2 x3 x4 x5 x6

visibility range

Fig. 1. A mutual chain of robots C(t) = {x1(t), x2(t), x3(t), x4(t), x5(t)} anchored in
x0 and x6, where the arrows indicate farthest visibility.

The anchors of a mutual chain C(t) = {x′
1(t), x2(t), ..., x′

k(t)} are the farthest
left neighbour of x′

1(t) and the farthest right neighbour of x′
k(t).

Definition 3 (Anchors). Given a mutual chain C(t) = {x′
1(t), x

′
2(t), . . . ,

x′
k(t)}, we say that l(x′

1(t)) and r(x′
k(t)) are the left and right anchors of C(t)

(or that C(t) is anchored at l(x′
1(t)) and r(x′

k(t))) (refer to Fig. 1).

Note that the definition of anchor allows the anchors of a mutual chain to be
part of the mutual chain (refer to Fig. 2). The anchors do not have to be faulty
robots for this situation to happen. Moreover, the definition of mutual chain
allows a mutual chain to possibly contain only one robot. Indeed, any robot x
forms a mutual chain {x(t)} anchored at l(x(t)) and r(x(t)).

x2 x4

visibility range

x3x1

Fig. 2. Configuration {x1, x2, x3, x4} is a mutual chain. It is anchored at x1 and x4.

We now prove the formation, during the execution of the algorithm, of a
special unique mutual chain called primary chain. Intuitively, the primary chain
is a mutual chain starting from x0 and ending in xn. We will then introduce a
hierarchical notion of mutual chains with different levels, where chains of some
level are anchored in lower level ones. Moreover, we will show that the robots will
eventually arrange themselves in such a hierarchical structure of mutual chains.

Fault-Induced Dynamics of Oblivious Robots on a Line 133

Theorem 5 (Primary Chain). There exists a configuration of robots C1 =
{x′

0, x
′
1, x

′
2, ..., x

′
k} ⊆ X such that at any size-stable time t > 0, C1(t) is a mutual

chain anchored at x0 and xn, where x′
0 = x0 and x′

k = xn. This mutual chain is
called the primary chain of X and it is unique.

Before we prove Theorem 5, we need the following technical lemma (whose
proof can be found in the full version of the paper [10]). Intuitively, when the
distance between two mutually chained robots tends to V (as t → ∞), this limit
behaviour propagates to the leftmost and rightmost visible robots.

Lemma 5. Let x′
α+1, x

′
α+2 ∈ X such that for all t ≥ 0:

– x′
α+1(t) and x′

α+2(t) are mutually chained,
– d(t) = x′

α+2(t) − x′
α+1(t) → V , as t → ∞

– l(x′
α+1(t)) �= x′

α+1(t)
– r(x′

α+2(t)) �= x′
α+2(t).

Then, r(x′
α+2(t)) − x′

α+2(t) → V and x′
α+1(t) − l(x′

α+1(t)) → V , as t → ∞.

Proof (Sketch). The robots x′
α+1(t) and x′

α+2(t) are mutually chained and
x′

α+2(t) − x′
α+1(t) → V , as t → ∞. Since x′

α+1(t + 1) always places itself
in the middle of l(x′

α+1(t)) and r(x′
α+1(t)) = x′

α+2(t), we must have that
x′

α+1(t)− l(x′
α+1(t)) → V , as t → ∞. The same reasoning applies for r(x′

α+2(t))
and x′

α+2(t). This can be formalized using the formal definition of limits. ��
Proof (Theorem 5).

[Uniqueness] We first explain that if the primary chain exists, then it is
unique. Since x0 = x′

0 and xn = x′
k are part of the mutual chain, starting at x0,

we get x′
1 = r(x0) and x′

i+1 = r(x′
i) for all 0 ≤ i ≤ k − 1, where x′

k = xn. So
each x′

i is uniquely defined.
[Existence] We prove the existence of the primary chain by contradiction.

Let us summarize the steps of the proof. We assume that there does not exist
any mutual chain. (1) We construct a particular configuration, composed by
a forward-chain from x0 connecting each node to its farthest right neighbour
until xn is reached and a backward chain from xn connecting each node to
its farthest left neighbour back to x0. (2) We then show that the two chains
converge to each other, i.e., they converge to a single chain, called right-left
chain. This construction does not directly guarantee that the right-left chain is
a mutual chain. We then show a contradiction, reasoning on the total length of
the segment delimited by x0 and xn. (3) A consequence of the right-left chain
not being a mutual chain is that the total length of the segment between x0

and xn is strictly smaller than (j + 1)V (where j + 1 is the number of intervals
between consecutive robots in the chain). (4) On the other hand, each such
interval converges to V , thus implying that the total length of the segment is a
number arbitrarily close to (j + 1)V (by Lemma 5). The contradiction implies
that the right-left chain is indeed mutual.

(1) Construction of Forward and Backward Chains. Let us consider a
configuration of robots {x′

0(t), x
′
1(t), ..., x

′
j+1(t)} ⊆ X(t), called forward chain

134 J.-L. De Carufel and P. Flocchini

(refer to Fig. 3), such that: x′
0(t) = x′

0 = x0, x′
i+1(t) = r(x′

i(t)) for all 0 ≤ i ≤
j < n, and x′

j+1(t) = x′
j+1 = xn.

x0 x′
1 x′

3 x′
4 x′

j−2 xnx′
j−1 x′

jx′
2 yj

x′
j+1

yj+1

yj−1yj−2x′
0

y0
y1

y2 y3 y4

a1 a2 s2 s3a3 a4 s4 sj aj+1ajaj−1

Fig. 3. Illustration of the proof of Theorem 5.

We define another configuration of robots, called backward chain,
{y0(t), y1(t), . . . , yj+1(t)} ⊆ X(t) as follows. Let yj+1(t) = x′

j+1(t) and for all
0 ≤ i ≤ j, let yi(t) = l(yi+1(t)) (refer to Fig. 3). Let us call the union of the two
chains right-left chain. We can prove two useful properties about the right-left
chain.

Property 1 (Alternation). For all 1 ≤ i ≤ j + 1, x′
i−1(t) < yi(t) ≤ x′

i(t).
Property 2 (Starting point). We have that y0(t) = y0 = x0.

(2) Convergence of Forward and Backward Chains to a Right-Left
Chain. Notice that since the forward chain {x′

0(t), x
′
1(t), ..., x

′
j+1(t)} is not a

mutual chain, there exists an i with 1 ≤ i ≤ j such that x′
i−1(t) < yi(t) < x′

i(t).
For all 1 ≤ i ≤ j + 1, let ai(t) = yi(t) − x′

i−1(t) and si(t) = x′
i(t) − yi(t). Our

aim, in the following, is to prove that x′
i(t) and yi(t) get arbitrarily close when

t → ∞. From Property 1, we have ai(t) > 0 and si(t) ≥ 0 for all 1 ≤ i ≤ j + 1.
Moreover, si(t) = 0 if and only if yi(t) = x′

i(t). Notice that l(x′
i(t − 1)) ≤

x′
i−1(t−1), otherwise there would be a contradiction with the fact that r(x′

i−1(t−
1)) = x′

i(t−1). Therefore, x′
i(t) = l(x′

i(t−1))+r(x′
i(t−1))

2 ≤ x′
i−1(t−1)+x′

i+1(t−1)

2 , from
which x′

0(t) ≤ 0, x′
j+1(t) ≤ xn and

x′
i(t) ≤ x′

i−1(t − 1) +
1
2
(ai(t − 1) + si(t − 1) + ai+1(t − 1) + si+1(t − 1)) (1)

for all 1 ≤ i ≤ j. Moreover, notice that r(yi(t − 1)) ≥ yi+1(t − 1), otherwise
there would be a contradiction with the fact that l(yi+1(t − 1)) = yi(t − 1).
Therefore, yi(t) = l(yi(t−1))+r(yi(t−1))

2 ≥ yi−1(t−1)+yi+1(t−1)
2 , from which y0(t) ≥

0, yj+1(t) ≥ xn and

yi(t) ≥ yi−1(t − 1) +
1
2
(si−1(t − 1) + ai(t − 1) + si(t − 1) + ai+1(t − 1)) (2)

for all 1 ≤ i ≤ j. Since si(t) = x′
i(t) − yi(t), by subtracting (2) from (1) we

obtain s0(t) ≤ 0, sj+1(t) ≤ 0 and

si(t) ≤ 1
2
(si−1(t − 1) + si+1(t − 1)) (3)

Fault-Induced Dynamics of Oblivious Robots on a Line 135

for all 1 ≤ i ≤ j. We are now ready to prove that for all 0 ≤ i ≤ j + 1, si(t) → 0
as t → ∞, implying that yi(t) → x′

i(t) as t → ∞. Notice that we already have
y0(t) = x′

0(t) and yj+1(t) = x′
j+1(t) by definition. By unfolding (3), we get

si(t) ≤ 1
2t

t∑

k=0

(
t

k

)
si−t+2k(0),

where si(t) = 0 for all i ≤ 0 and i ≥ j + 1.
In order to determine the limit of si(t) when t → ∞, we need to make a few

observations. First of all, the si(t)’s in the summation with i ≤ 0 or i ≥ j + 1
are all equal to zero. In other words, regardless of the value of t, there are at
most j non-zero values in the summation. These j values correspond to the j-
central binomial coefficients. Also note that since the segment delimited by the
two faulty robots has a constant size, the values of the si’s are bounded. Let
C be the value of the largest such si ever occurring. Since the largest binomial
coefficient is the central one (or the central ones for odd values of t), we can
write 0 ≤ si(t) ≤ 1

2t j
(

t
� t
2 �

)
C. Since1

(
t

� t
2 �

) ∼ 2t√
π t

2

, we have

0 ≤ lim
t→∞ si(t) ≤ lim

t→∞
1
2t

j

(
t

� t
2�

)
C = lim

t→∞
1
2t

j
2t

√
π t

2

C = 0,

from which limt→∞ si(t) = 0. We are now ready to derive a contradiction.

(3) Length of the Segment Strictly Smaller than (j+1)V . Since the right-
left chain is not a mutual chain, and x0 and xn are not moving, the distance
between x0 and xn must be strictly smaller than (j + 1)V (otherwise x′

j and yj

would necessarily coincide, for all j). So, there exists a real number δ > 0 such
that xn − x0 = (j + 1)V − δ.

(4) Distance Between x′
i(t) and x′

i+1(t) Tending to V . Let us consider
any sub-chain of the right-left chain for which the x′

i and the yi are distinct
except for the extremal ones. More precisely, let α and β be two indices such
that x′

α = yα, x′
β = yβ and x′

i �= yi for all α < i < β (refer to Fig. 4). Notice

Fig. 4. Illustration of the contradiction in the proof of Theorem 5 (propagation of
distance V). We do not make any assumption about x′

α−1 being equal or not to yα−1,
nor about x′

β+1 being equal or not to yβ+1.

1 We write f(t) ∼ g(t) whenever limt→∞
f(t)
g(t)

= 1.

136 J.-L. De Carufel and P. Flocchini

that l(x′
α+1) = x′

α, otherwise this would contradict the fact that l(yα+1) =
x′

α. We also have r(yβ−1) = x′
β , otherwise this would contradict the fact that

r(x′
β−1) = x′

β . Therefore, l(x′
α+1) = x′

α, r(x′
α+1) = x′

α+2, l(yβ−1) = yβ−2 and
r(yβ−1) = yβ = x′

β . This implies that k ≥ i + 3, otherwise x′
α+1 and yβ−1 would

have the same leftmost and rightmost visible robots and they would merge in
one step, which is not possible at a size-stable time. Since there cannot be any
merging, given that l(yα+1) = yα = x′

α, we must also have that x′
α+2 is not visible

from yα+1 at any time. Therefore, for all t ≥ 0, sα+1(t)+aα+2(t)+sα+2(t) > V .
Since r(x′

α+1) = x′
α+2, for all t ≥ 0, aα+2(t)+sα+2(t) ≤ V . Together with the fact

that sα+1(t) → 0 and sα+2(t) → 0 as t → ∞, we get that aα+2(t) → V as t → ∞.
Therefore, x′

α+2(t) − x′
α+1(t) → V as t → ∞. Our goal is to apply Lemma 5 and

conclude that x′
α+1(t) − x′

α → V and x′
α+3(t) − x′

α+2 → V as t → ∞. However,
since x′

α+1(t) and x′
α+2(t) are not mutual, we cannot apply the lemma directly.

Due to lack of space, we only sketch the idea to circumvent this problem (refer
to [10] for full details). We can prove that there is a robot x′′

α+1(t), satisfying
yα+1(t) ≤ x′′

α+1(t) ≤ x′
α+1(t), that is mutually chained with x′

α+2(t). Intuitively,
since yα+1(t) → x′

α+1(t) as t → ∞, and since x′′
α+1(t) ∈ [yα+1(t), x′

α+1(t)],
x′′

α+1 behaves the same way x′
α+1 does. But since x′′

α+1(t) is mutually chained
with x′

α+2(t), we can apply Lemma 5. We can repeat the same argument and
show that this propagates to all x′

i’s, from which we get that for all 0 ≤ i ≤ j,
x′

i+1(t) − x′
i → V as t → ∞. Therefore, the total distance between x0 and

xn is arbitrarily close to (j + 1)V . This contradicts the fact that xn − x0 =
(j + 1)V − δ. ��

In the proof of Theorem 5, we showed the existence of a unique mutual chain
called the primary chain. Intuitively, we say that a configuration of robots is a
secondary chain if it is a mutual chain anchored at two robots that belong to
the primary chain. Note that such a configuration is not necessary unique (refer
to Fig. 5 for an example). Level-j chains (for j > 2) are defined similarly.

Fig. 5. An example of a primary chain {x0, x1, . . . x6} with two level-2 chains: {z}
(anchored at x0 and x1) and {y1, y2, y3} (anchored at x3 and x6).

Definition 4 (Secondary Chains and Level-j Chains).

– The primary chain C1 is called level-1 chain.
– A configuration of robots C is a secondary chain if it is a mutual chain

anchored at two robots x, x′ ∈ C1, and at least one of x and x′ is non-faulty.
We say that a secondary chain is a level-2 chain.

Fault-Induced Dynamics of Oblivious Robots on a Line 137

– A configuration of robots C is a level-j chain if it is a mutual chain anchored
at two robots x and x′ satisfying the following: there exists an index j′ < j
such that either x is part of a level-j′ chain and x′ is part of a level-(j − 1)
chain, or x is part of a level-(j − 1) chain and x′ is part of a level-j′ chain.

The convergence of the primary chain can be proven by observing that the
behaviour of the robots in the primary chain executing our algorithm (Conver-
gence1D) is equivalent to the behavior they would have if they were execut-
ing Algorithm Spreading. Once this is established, convergence follows from
Theorem 3. The following lemma shows under what conditions Theorem 3 can
be applied to a general mutual chain Y (t) = {y1(t), y2(t), . . . , yk(t)}. More
specifically, suppose that there exists two real numbers y′

0 and y′
k+1 such that

y0(t) = l(y1(t)) → y′
0(t) and yk+1(t) = r(yk(t)) → y′

k+1 as t → ∞. Then, by exe-
cuting Convergence1D, Y (t) converges towards an equidistant configuration
between y′

0(t) and y′
k+1(t).

Lemma 6. Let Y (t) = {y1(t), y2(t), . . . , yk(t)} be a mutual chain at a size-stable
time t, anchored in y0(t) = l(y1(t)) and yk+1(t) = r(yk(t)), where y0(t) �= y1(t)
and yk+1(t) �= yk(t). Suppose that there exist two numbers y′

0 and y′
k+1, such that

y0(t) → y′
0 and yk+1(t) → y′

k+1 as t → ∞. We have that, for all 0 ≤ i ≤ k + 1,

yi(t) → y′
0 +

|y′
k+1 − y′

0|
k + 1

i as t → ∞.

Therefore, as t → ∞, the robots in {y1(t), y2(t), . . . , yk(t)} converge to a config-
uration where the distance between any two consecutive robots is |y′

k+1−y′
0|

k+1 .

Proof. Let Z(t) = {z0(t) = y0(t), z1(t), z2(t), . . . , zm(t) = yk+1(t)} be the global
configuration of robots at time t, restricted to the interval [y0(t), yk+1(t)].

By Theorem 4, Y (t) satisfies the following property: for all 1 ≤ i ≤ k and for
all t′ ≥ t, l(yi(t′)) = l(yi(t)) and r(yi(t′)) = r(yi(t)). Therefore, even if there is a
robot zj(t) ∈ N(yi(t))\Y (t), the presence of zj(t) has no impact on the position
of yi(t+1). Consequently, the positions of the robots in Y (t+1), after executing
Algorithm Convergence1D on Y (t), are uniquely determined by the positions
of the robots in Y (t). Hence, executing Algorithm Convergence1D on Y (t)
produces the same result as executing Algorithm Spreading on Y (t), and thus
the lemma follows from Theorem 3. ��

We now show that the primary chain C1 = {x′
0, x

′
1, x

′
2, ..., x

′
k} ⊆ X, where

x′
0 = x0 and x′

k = xn, converges towards a configuration of equidistant robots
delimited by its anchors x0 and xn.

Theorem 6 (Convergence of the Primary Chain). Let C1 =
{x′

0, x
′
1, x

′
2, ..., x

′
k} be the primary chain. We have that x′

0 = x0, x′
k = xn and for

all 0 ≤ i ≤ k,

x′
i(t) → |xn − x0|

k
i as t → ∞.

138 J.-L. De Carufel and P. Flocchini

Proof. Since C1 is a mutual chain, the configuration {x′
1, x

′
2, ..., x

′
k−1} is also a

mutual chain. It is anchored at x′
0 and x′

k, where x′
0 �= x′

1 and x′
k �= x′

k−1. Since
the anchors x′

0 = x0 = 0 and x′
k = xn are faulty, they do not move, and the

theorem follows directly from Lemma 6. ��
We now show that every level-j chain converges towards a configuration of

equidistant robots.

Theorem 7 (Convergence of Level-j Chains). Let Cj = {y1, y2, . . . , yk} be
a level-j chain, where j ≥ 1 is an integer. Let t be a size-stable time. Let y0(t) =
l(y1(t)) and yk+1(t) = r(yk(t)). There exist real numbers y′

0 and y′
k+1 such that

y0(t) → y′
0 and yk+1(t) → y′

k+1 as t → ∞. Moreover, for all 0 ≤ i ≤ k + 1,

yi(t) → y′
0 +

|y′
k+1 − y′

0|
k + 1

i as t → ∞.

Proof. We proceed by induction on j. By Theorem 6, our statement is true for
j = 1. Suppose that the theorem is true for all integers from 1 to j −1. Consider
a level-j chain Cj = {y1, y2, . . . , yk} anchored at y0(t) = l(y1(t)) and yk+1(t) =
r(yk(t)), where t is a size-stable time. By Definition 4, there exists an index j′ < j
such that one of the following two statements is true:

– y0 is part of a level-j′ chain and yk+1 is part of a level-(j − 1) chain, or
– y0 is part of a level-(j − 1) chain and yk+1 is part of a level-j′ chain.

Without loss of generality, suppose that y0 is part of a level-j′ chain and yk+1

is part of a level-(j − 1) chain. By the induction hypothesis, there exist two real
numbers y′

0 and y′
k+1 such that y0(t) → y′

0 and yk+1(t) → yk+1 as t → ∞. The
theorem follows from Lemma 6. ��

The following lemma states that every robot belongs to some level-j chain.
To simplify the presentation, we assume that the faulty robot x0 is part of the
level-0 chain {x0} and that the faulty robot xn is part of the level-0 chain {xn}.

Lemma 7. For all size-stable time t and all 0 ≤ i ≤ n, xi(t) ∈ X(t) belongs to
a level-j chain.

Proof. Suppose that the statement is false. Let y1(t) be the leftmost robot that
does not satisfy the statement. We will derive a contradiction. Since the leftmost
robot x0 is faulty, l(y1(t)) belongs to a mutual chain, say C(t) = {x′′

1 , x′′
2 , ..., x′′

m},
where l(y1(t)) = x′′

α for some index 1 ≤ α ≤ m. Let Y = {y1, y2, ..., yk} be the
configuration of robots such that (refer to Fig. 6): (1) yi(t) = r(yi−1(t)) for all
2 ≤ i ≤ k, (2) r(yk(t)) belongs to a mutual chain, and (3) for all 1 ≤ i ≤ k, yi(t)
does not belong to a mutual chain. Observe that the definition of Y allows k to
be equal to 1 (in such a case, only items (2) and (3) apply). By construction and
by definition of y1(t),{y1(t), y2(t), ..., yk(t)} is not a mutual chain. Therefore, for
the rest of the proof, k ≥ 2. Let {z1, z2, ..., zk} be the configuration of robots
such that zk = yk and zi(t) = l(zi+1(t)) for all 1 ≤ i ≤ k − 1. Using the

Fault-Induced Dynamics of Oblivious Robots on a Line 139

x′′
α

y1 yμ yk
zμ zj−1

yj
zj zk

wν

yj−1

wν′

Fig. 6. Illustration of the proof of Lemma 7.

same arguments as in the proof of Theorem 5, we get that x′′
α ≤ z1 ≤ y1 and

yi−1 < zi ≤ yi for all 2 ≤ i ≤ k. Since {y1(t), y2(t), ..., yk(t)} is not a mutual
chain, there is an index i such that zi(t) �= yi(t). Let j be the smallest index
such that zj = yj and zj−1 �= yj−1. Suppose there is an index γ < j − 1 such
that zγ(t) = yγ(t). Therefore, by the definition of j, zi = yi for all 1 ≤ i ≤ γ.
Moreover, x′′

α and r(yk) are part of mutual chains. Therefore, by Theorems 6
and 7, x′′

α(t) and r(yk)(t) converge to a fixed location as t → ∞. Consequently,
we get the same contradiction as in the proof of Theorem 5. Hence, for the rest
of the proof, assume that zi(t) �= yi(t) for all 1 ≤ i < j − 1.

We have the following property (whose proof can be found in [10]).

Property 1. If, for all 2 ≤ i ≤ j −1, zi(t) does not belong to any mutual chain,
then z1(t) = l(z2(t)) belongs to a mutual chain.

Consequently, there is an index 1 ≤ i ≤ j − 1 such that zi belongs to a
mutual chain. Let 1 ≤ μ ≤ j − 1 be the largest index such that zμ belongs to
a mutual chain, say W = {w1, w2, ..., wm′}. Let 1 ≤ ν ≤ m′ be the index such
that wν = zμ. We then have another property.

Property 2. zμ+1 < wν+1 < yμ+1.

Proof. Observe that wν+1 = r(wν). We must have that wν+1 ≤ yμ+1 and wν+1 ≥
zμ+1, otherwise there would be a contradiction with the fact that yμ+1 = r(yμ)
and zμ = l(zμ+1), respectively. Moreover, by definition, we know that wν+1 �=
yμ+1 and wν+1 �= zμ+1.

By repeating the argument for proving Property 2, we reach the index ν′ such
that zj−1 < w′

ν′ < yj−1. Observe that wν′+1 = r(wν′) ≤ yj and wν′+1 ≥ yj = zj ,
otherwise there would be a contradiction with the facts that yj = r(yj−1) and
zj−1 = l(zj), respectively. However, by the definition of Y , yj is not part of a
mutual chain. We get a contradiction. ��

The following theorem follows directly from Theorems 6 and 7, and Lemma 7.

Theorem 8 (Global Convergence). For all 0 ≤ i ≤ n, |xi(t + 1) − xi(t)| →
0 as t → ∞. Therefore, X(t) converges towards a fixed configuration C∗ =
{x∗

0, x
∗
1, ..., x

∗
n} as t → ∞. The configuration C∗ contains a primary chain C1

anchored at x0 and xn. Additionally, there is an integer κ ≥ 1 such that for all
0 ≤ i ≤ n, x∗

i belongs to a level-j chain, for some 1 ≤ j ≤ κ. Moreover, every
level-j chain in C∗ is a mutual chain of equidistant robots.

140 J.-L. De Carufel and P. Flocchini

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36(1), 56–82 (2006)

2. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot.
Autom. 15(5), 818–828 (1999)

3. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibil-
ity results for byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y.,
Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol.
8255, pp. 178–190. Springer, Cham (2013). doi:10.1007/978-3-319-03089-0 13

4. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple
crash faults. In: 14th International Conference on Distributed Computing Systems
(ICDCS), pp. 337–346 (2013)

5. Bouzid, Z., Gradinariu, M., Tixeuil, S.: Optimal byzantine-resilient convergence
in uni-dimensional robot networks. Theor. Comput. Sci. 411(34–36), 3154–3168
(2010)

6. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C.
(ed.) Structural Information and Communication Complexity. LNCS, vol. 9439,
pp. 313–327. Springer, Cham (2015). doi:10.1007/978-3-319-25258-2 22

7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

8. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithms in
asynchronous robots systems. SIAM J. Comput. 34, 1516–1528 (2005)

9. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theoret. Comput. Sci. 399(1–2), 71–82 (2008)

10. De Carufel, J.-L., Flocchini, P.: Fault-induced dynamics of oblivious robots in a
line. arXiv:1707.03492 (2017)

11. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and
self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol.
4167, pp. 46–60. Springer, Heidelberg (2006). doi:10.1007/11864219 4. Extended
version in arXiv:1602.05546

12. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Trans. Auton. Adapt. Syst. 3(4), 16:1–16:20 (2008)

13. Dieudonné, Y., Petit, F.: Scatter of robots. Par. Proc. Lett. 19(1), 175–184 (2009)
14. Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Distributed computing by

mobile robots: uniform circle formation. Distrib. Comput. (2017, to appear)
15. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile

sensors on a ring. Theoret. Comput. Sci. 402(1), 67–80 (2008)
16. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious

Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool (2012)

17. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

18. Izumi, T., Potop-Butucaru, M.G., Tixeuil, S.: Connectivity-preserving scattering
of mobile robots with limited visibility. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 319–331. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16023-3 27

19. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

http://dx.doi.org/10.1007/978-3-319-03089-0_13
http://dx.doi.org/10.1007/978-3-319-25258-2_22
http://arxiv.org/abs/1707.03492
http://dx.doi.org/10.1007/11864219_4
http://arxiv.org/abs/1602.05546
http://dx.doi.org/10.1007/978-3-642-16023-3_27

Fault-Induced Dynamics of Oblivious Robots on a Line 141

20. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

21. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by synchro-
nous mobile robots in the three dimensional euclidean space. J. ACM 63(3), 16
(2017)

Relaxed Data Types as Consistency Conditions

Edward Talmage(B) and Jennifer L. Welch(B)

Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843, USA

etalmage@tamu.edu, welch@cse.tamu.edu

Abstract. In the quest for higher-performance shared data structures,
weakening consistency conditions and relaxing the sequential specifica-
tions of data types are two of the primary tools available in the liter-
ature today. In this paper, we show that these two approaches are in
many cases different ways to specify the same sets of allowed concurrent
behaviors of a given shared data object. This equivalence allows us to
use whichever description is clearer, simpler, or easier to achieve equiv-
alent guarantees. Specifically, for three common data type relaxations,
we define consistency conditions such that the combination of the new
consistency condition and an unrelaxed type allows the same behaviors
as linearizability and the relaxed version of the data type. Conversely,
for the consistency condition k-Atomicity, we define a new data type
relaxation such that the behaviors allowed by the relaxed version of a
data type, combined with linearizability, are the same as those allowed
by k-Atomicity and the original type. As an example of the possibilities
opened by our new equivalence, we use standard techniques from the
literature on consistency conditions to prove that the three data type
relaxations we consider are not comparable to one another or to sev-
eral similar known conditions. Finally, we show a particular class of data
types where one of our newly-defined consistency conditions is stronger
than a known consistency condition.

1 Introduction and Background

Shared data types are an essential abstraction in distributed computing, as they
provide a consistent interface for multiple processes to interact with shared data.
Shared data access is more complex than local access, as multiple processes can
concurrently access and change the stored values. Thus, a single process cannot
assume that it will find the same value in the shared object as it last put there,
which makes it non-trivial to interpret the value found in a shared object. The
value of a shared object may also not be well-defined when another process is
changing a stored value at the same time one is trying to read the value. A
data type specification provides guarantees on the changes that other processes
may make, and defines the states which a shared data object may take on.
These guarantees ease the coordination effort programmers must spend to build

This work was partially supported by NSF Grant 1526725.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 142–156, 2017.
https://doi.org/10.1007/978-3-319-69084-1 10

Relaxed Data Types as Consistency Conditions 143

distributed systems. In addition, by abstracting and efficiently implementing
the oft-repeated tasks of shared data access and manipulation, overall program
efficiency can be increased.

It is thus important to provide the best possible guarantees on the behavior
of data types under concurrent access to shared data while maintaining the effi-
ciency of those interfaces. The study of consistency conditions considers what
guarantees may be provided or required on the behavior of shared data objects
under concurrent access. The strongest consistency condition, linearizability [14],
requires that all operations on shared data appear to all processes as if they hap-
pened sequentially, in an order respecting the order of operations which do not
overlap in real time. This makes program design and reasoning about program
correctness relatively easy, as we are familiar with sequential program design
and analysis. However, linearizability is generally expensive to implement, in
terms of computation and communication delays [5,6,18,25]. To avoid this cost,
many weaker consistency conditions have been proposed (see [27] for a review
of consistency conditions in the literature), allowing more concurrent executions
while providing weaker guarantees on the behavior of shared objects. These can
be implemented more efficiently than linearizability (e.g. [6]). Some work has
been done to explore classes of data types which, when implemented under a
weak consistency condition, give stronger behavioral guarantees than those of
the consistency condition, e.g. [23].

Another approach for increasing the efficiency of distributed data type imple-
mentations that has recently gained popularity is to relax the sequential speci-
fication of the data type, e.g. [1,3,13]. By allowing some specific behaviors that
were otherwise illegal, particularly by allowing non-deterministic choices between
possible behaviors, a number of papers have shown that it is possible to reduce
the (amortized) implementation costs of data types [15,21,25,30]. This does
come at some cost to the computational strength of the implemented data type
[24,26]. Data type relaxations are generally (to date) implemented under lin-
earizability, so all new behaviors are specified sequentially. Sequential behaviors
are often easier to understand, and thus use correctly, than complex conditions
on concurrent executions, which are hard to visualize.

In this paper, we explore the relation of these two different methods for
improving the performance of shared data type implementations. We show that
the combination of linearizability and three data type relaxations common in the
literature, k-Out-of-Order, k-Lateness, and k-Stuttering [13], can be alternately
defined as consistency conditions. That is, the set of concurrent executions which
are considered legal under linearizability when working with the relaxed type
is the same as the set of concurrent executions which are legal under the new
consistency condition and the original, unrelaxed type. Conversely, we show, with
the example of k-Atomicity, that some consistency conditions can be separated
into linearizability and a sequential data type relaxation.

This partial equivalence means that for several common relaxations and con-
sistency conditions, the relaxation and consistency condition definitions are inter-
changeable. As an example of the use of this interchangeability, we use ideas

144 E. Talmage and J.L. Welch

from the large body of work comparing the strengths of different consistency
conditions [7,10,27,28] to show that the consistency conditions equivalent to k-
Out-of-Order, k-Lateness, and k-Stuttering are distinct from similar previously
known consistency conditions. Despite this general distinction, for some partic-
ular data types, we show that k-Stuttering is a strengthening of k-Atomicity.

2 Model

2.1 Data Types

An Abstract Data Type specifies an interface for interacting with data, and
defines how the data object will behave. Data type specifications consist of the
possible operations which a process may invoke and a set of sequences of oper-
ation instances which specify all possible return values an operation response
may have, given a sequence of past operations and an invocation. We here con-
sider only objects with sequential specifications, as relaxation of tasks without
sequential specifications (see, e.g., [8,20]) has not been defined.

Definition 1. An Abstract Data Type consists of

1. A set OPS of operations and the sets args(OP) of valid arguments and
rets(OP) of valid return values for each OP ∈ OPS. An instance of an
operation OP , denoted OP (arg, ret), contains the argument(s) arg and the
value(s) returned, ret. In a sequential environment, instances are indivisible,
but we will consider them as a distinct invocation and matching response in
the distributed setting.
When either args(OP) or rets(OP) contains only a null value (⊥), we

condense the notation to OP (arg) or OP (ret), as appropriate.
2. A set L of legal sequences of operation instances which satisfies two properties:

– Prefix Closure If a sequence ρ is in L, then every prefix of ρ is also in L.
– Completeness If a sequence ρ is in L, then for every operation OP ∈

OPS and every argument arg for OP , there is a response ret such that
ρ.OP (arg, ret) is in L, where ‘.’ represents concatenation of sequences.

The intuitive notion of the state of a shared object is determined by the
sequence of past operation instances on that object. We say that two such
sequences π and ρ are equivalent, denoted π ≡ ρ, if for any sequence σ where
either π.σ or ρ.σ is legal, then ρ.σ or π.σ is also legal, respectively. We classify
operations by whether they change a shared object’s state, return information
about it, or both.

Definition 2. An operation OP of an abstract data type T is a mutator if there
exists a legal sequence ρ of instances of operations of T and an instance op of OP
such that ρ �≡ ρ.op. An operation OP is an accessor if there exist legal sequences
ρ, ρ′ of instances of operations of T and an instance aop of OP such that ρ.aop
is legal, but ρ′.aop is not legal.

An operation which is both an accessor and a mutator is a mixed operation.
An operation which is a mutator but not an accessor, or an accessor but not a
mutator, is a pure mutator or accessor, respectively.

Relaxed Data Types as Consistency Conditions 145

For example, in an RMW register, Read is a pure accessor, Write is a pure
mutator, and Read-Modify-Write is a mixed operation. In a FIFO queue aug-
mented with Peek, Enqueue is a pure mutator, Dequeue is a mixed operation,
and Peek is a pure accessor. A data type does not need to have all three kinds,
as seen in a Read/Write register or classic queue without Peek.

Note that removing all instances of pure accessors from a sequence of opera-
tion instances π does not change the state represented, so we denote this equiv-
alent sequence containing only mutator instances as π|m.

2.2 Consistency Conditions

We consider an asynchronous, shared-memory model of computation among n
processes. We split operation instances into separate invocations and responses.
Processes interact by invoking operations, with arguments, on shared objects.
Some time after an invocation, the object responds, giving the process a return
value. Computation takes the form of schedules. A schedule of a data type T is a
collection of sequences, one per process, of alternating invocations and responses
of operations of T , each occurring at some real time and with each response of
the same operation as the previous invocation. Each process’ sequence is either
infinite or ends in an operation response. In a schedule, we call two operation
instances at different processes overlapping if the real time of one instance’s
invocation is between the real times of the invocation and response of the other
instance. A schedule implies a partial order, called the schedule order, on non-
overlapping instances, where an instance that returns before a second is invoked,
in real time, precedes it, while overlapping instances are not ordered with respect
to each other.

Since data type specifications are inherently sequential, we need some way
to relate a schedule of a distributed system, which is inherently concurrent, to
those specifications. A consistency condition specifies what concurrent schedules
are legal on a given data type. Formally, a consistency condition C is the union,
over all data types T , of the sets of schedules legal on T under C. When dis-
cussing a consistency condition in conjunction with a particular data type, we
will implicitly consider only the subset of schedules for that type. This defini-
tion overloads the term “legal” to refer to schedules which correspond, by the
consistency condition, to legal sequences on the given data type. Equality of
consistency conditions is set equality between sets of legal schedules [27].

As an example, we define Linearizability, which is used throughout the liter-
ature in combination with relaxed data types, as it is the most intuitive.

Definition 3 (Linearizability). A schedule E on a data type T is legal under
linearizability if there exists a permutation Π of all operation instances in E
such that (1) If an instance op precedes another instance op′ in the schedule
order, then op precedes op′ in Π, and (2) Π is legal, according to the sequential
specification of T .

Weaker consistency conditions may allow some reordering with respect to the
schedule order. For example, k-Atomicity for Read/Write registers, introduced

146 E. Talmage and J.L. Welch

in [2], allows Read operations to get a “stale” value, possibly missing some
updates which overlap or even immediately precede the Read instance in the
schedule order. This staleness is bounded by the constant k, ensuring that the
behavior is not arbitrary. In practice, the values “missed” can reflect Write
instances which the process invoking the Read has not yet heard about. [2]
gives probabilistic results showing that only requiring k-Atomicity can lead to
implementations with higher proportions of operations which succeed, meaning
that processes do not need to retry as often, improving performance.

3 Relaxed Data Types

We here present definitions of several relaxations introduced in [13]. We restate
these definitions purely in terms of legal sequences of operation instances, where
[13] combined equivalence classes of such sequences to develop a state machine
notation. A number of authors [15,21,24–26,30] have used these and similar
relaxations.

First, we consider the Out-of-Order relaxation. The definition of this relax-
ation does not immediately appear to have anything to do with ordering, but
when instantiated on operations in ordered data structures such as Dequeue in
Queues and Pop in Stacks, it causes those operations to return an element up to
k places out of order. One way to think about this is to imagine that by deleting
operation instances in the past, we are making the current instance act as if it
is in a different place in the permutation of all instances.

Note that [13] defines the k-Out-of-Order relaxation to allow either deleting
or inserting up to k operation instances. Some operations, though, could have
arbitrary behavior if arbitrary operation instances may be added to the history.
For example, Dequeue and Pop, if Enqueue(x) or Push(x), for arbitrary x,
is added such that Dequeue or Pop returns x. To avoid this, we restrict our
attention to Out-of-Order with respect to deleting past instances.

Definition 4 (k-Out-of-Order Relaxed ADT). Given any ADT T and an
integer k ≥ 0, a k-Out-of-Order relaxation of T , called T ′, is defined as follows:

1. OPS(T ′) = OPS(T)
2. A sequence Π is legal if for every instance op where Π = π.op.ρ, there is

some sequence u.v.w, |v| ≤ k, which is a minimum-length sequence equivalent
in T to π, and there exists a sequence x, where
a. u.w is legal in T and minimum-length among the set of sequences equiv-

alent to it in T ,
b. u.w.op is legal in T , and
c. – u.w.op ≡ x.w and π.op ≡ x.v.w or

– u.w.op ≡ u.x and π.op ≡ u.v.x.

Relaxed Data Types as Consistency Conditions 147

Intuitively, an instance op is allowed after some prefix π if some contiguous
portion of the prefix can be ignored. The relaxation does not want to consider
past actions which have since been undone, such as an overwritten write or
removed element, so we replace π with a minimum-length sequence equivalent
to it (u.v.w). We then delete up to k consecutive mutator instances (v), making
u.w.op legal in the base type. Now, u.w.op being legal in T means that π.op is
legal in a k-Out-of-Order relaxation T ′ of an ADT T , but we need to specify
what effect op had. We do this by saying that the set of sequences legal in T ′

after π.op is the same set as those legal after reinserting the deleted sequence of
instances (x.v.w or u.v.x, as appropriate).

In this and other relaxations, we refer to T , the type from which the relaxation
is defined, as the base type.

The next relaxation we consider is Lateness. This name comes because one
way to view the relaxed data type is that operations may act as out-of-order,
each for any finite relaxation parameter, except that each time an instance does
not satisfy the specification of the base type, we increase a lateness counter. That
counter can never exceed k, and resets when an instance acts by the specification
of the base type. Thus, we can have instances arbitrarily far from the base type’s
behavior, but are guaranteed that at least one in every k consecutive instances
behaves normally. For example, a relaxed Dequeue may return and remove any
element in the queue, as long as one in every k Dequeues returns the head.

Definition 5 (k-Lateness Relaxed ADT). Given any ADT T and an integer
k ≥ 1, a k-Lateness relaxation of T , T ′, is defined as follows:

1. OPS(T ′) = OPS(T)
2. A sequence Π of operation instances is legal in T ′ if for every instance op such

that Π = π.op.ρ, there exists l ≥ 0 such that π.op is legal by the semantics of
an l-Out-of-Order relaxed T , and at least one in every k consecutive mutator
instances in Π|m must have l = 0.

Finally, we consider a relaxation with a different flavor. Instead of allow-
ing operations to act slightly incorrectly, this relaxation allows some mutator
instances to have no effect on the state of the shared object. That is, some
mutators may “stutter” on the current object state, failing to change it. Here,
we only require that some fraction of mutator instances successfully change the
object, while others may fail to take effect. All instances must still return a
value that is legal based on the current state of the object. To do this, we track
the subsequence of mutator instances in the schedule that do not stutter. This
subsequence, represented by the π′

is, is the history that determines the next
operation instance’s behavior. For example, a stuttering counter may hold the
same value after up to k consecutive increment() instances before increasing.
The π′

i consists only of those increment instances which actually increased the
counter’s value.

Definition 6 (k-Stuttering Relaxed ADT). Given any ADT T and an inte-
ger k ≥ 1, a k-Stuttering relaxation of T , T ′ is defined as follows:

148 E. Talmage and J.L. Welch

1. OPS(T ′) = OPS(T)
2. A sequence Π = op1.op2 . . . is legal if for every opi, with

Π = πi.opi.ρi, opi returns a value such that π′
i.opi is legal in T , where π′

i is
a sequence of mutator instances such that
(a) π′

1 = ε, the empty sequence,
(b) π′

i ∈ {π′
i−1, π

′
i−1.opi−1} for i > 1, and

(c) π′
i includes at least one of every k consecutive mutators in πi.

4 Converting Relaxations to Consistency Conditions

Relaxing data types and weakening consistency conditions have so far been
largely separate methods of improving the performance of shared data types.
In the next two sections, we show by example that some relaxed data types
under linearizability can be equivalently defined as their base types under weaker
consistency conditions and vice versa.

The basic idea is to think of both consistency conditions and relaxations as
functions. A consistency condition reduces concurrent schedules to one or more
sequences of operation instances, which can be compared to the legal sequences
of a given data type. We can view this as a function from the space of possible
concurrent schedules to the power set of possible operation instance sequences.
A data type relaxation takes a sequence of operation instances and transforms
it to a sequence legal in the base type. This is a function from the space of
possible operation instance sequences to itself. Since the codomain of consistency
conditions is sets of elements of the domain of relaxations, we can compose the
two “functions”. The consistency condition can map a concurrent schedule to
sequences that may not be legal by the base type, but then we may transform
them by the rules of a relaxation to be legal. Thus, both collapsing concurrency
and allowing some variance from the base set of legal sequences can occur in the
consistency condition.

Similarly, if a consistency condition requires a global ordering respecting the
schedule order, then adds other conditions, we will show in Sect. 5 that we can
split these conditions apart to have linearizability for the consistency condition
and a relaxation of the original data type, while still allowing the same set of
concurrent schedules.

We will start by defining several consistency conditions which are equivalent
to the data type relaxations introduced in Sect. 3. For each, the set of linearizable
schedules legal for the relaxed version of a data type is equal to the set of
schedules legal for the original data type and the weaker consistency condition.
First, we discuss the Out-of-Order relaxation. This enables operations to return
values which are not legal by the specification of the base type T , but would be
legal if a few other instances had not occurred.

Definition 7 (OutofOrderCC(k)). A schedule of any ADT T satisfies
OutofOrderCC(k), for k ≥ 0, if

– There exists a permutation Π of all operation instances in the schedule, which
respects the schedule order of non-overlapping instances, and

Relaxed Data Types as Consistency Conditions 149

– For every op ∈ Π, with Π = π.op.ρ, there is some sequence u.v.w, |v| ≤ k,
which is a minimum-length sequence equivalent in T to π, and there exists a
sequence x, such that
a. u.w is legal in T and minimum-length among the set of sequences equiv-

alent to it in T ,
b. u.w.op is legal in T , and
c. • u.w.op ≡ x.w and π.op ≡ x.v.w, or

• u.w.op ≡ u.x and π.op ≡ u.v.x.

Theorem 1. For k ≥ 0, the set of schedules legal on a k-Out-of-Order relaxation
of any ADT T under linearizability is the same as the set of schedules legal on
T under OutofOrderCC(k).

We can similarly define consistency conditions LatenessCC(k) and
StutteringCC(k) equivalent to k-Lateness and k-Stuttering relaxed versions of
a type T under linearizability. By rolling the relaxation into the consistency
condition, it follows that the schedules legal on these relaxed data types under
linearizability are those legal on the base type under a weaker consistency con-
dition. Formal definitions of k-Lateness and k-Stuttering are in the full version
of the paper. Theorems 1, 2, and 3 all hold by construction.

Theorem 2. For k ≥ 1, the set of schedules legal on a k-Lateness relaxation of
any ADT T under linearizability is the same as the set of schedules legal on T
under LatenessCC(k).

Theorem 3. For k ≥ 1, the set of schedules legal on a k-Stuttering relaxation
of any ADT T under linearizability is the same as the set of schedules legal on
T under StutteringCC(k).

5 Consistency Condition to Relaxation

So far, we have shown that we can convert familiar relaxations to consistency
conditions. The interest in relaxed data types is largely founded on their ease of
use and understanding, relative to consistency conditions. Ideally, then, any con-
sistency condition would be representable as a relaxed data type. This does not
seem to be true, at least for our current understanding of relaxed data types, as
relaxed data type specifications are sequential, while consistency conditions may
be inherently concurrent, either with certain operations only available to cer-
tain processes, or by allowing different behavior in the presence of concurrency.
Sequential specifications do not have any notion of processes or concurrency, so
such conditions cannot be represented as a sequential relaxation.

For example, sequential consistency requires that there exist a permutation
of all operation instances that is legal, and in which all instances invoked at a
particular process appear in the order in which they were invoked. Because a

150 E. Talmage and J.L. Welch

sequential specification does not know about multiple processes, it is not well-
defined for one to require or guarantee that all instances invoked at a single
process have some desired relation.

Despite this conclusion that the sets of relaxations and consistency condi-
tions are not equivalent, in this section we will show that at least one known
consistency condition can be equivalently expressed as relaxed data types. We
consider a well-established consistency condition from the literature, and define
a generic data type relaxation equivalent to it.

5.1 k-Atomicity

Aiyer et al. defined k-Atomicity in [2]. However, their definition only discusses
registers and has, to our knowledge, not been generalized to other types. Since we
are interested in arbitrary ADTs, we would like a more general definition. To do
this, we generalize Reads to all pure accessors and Writes to all pure mutators.
It is not well-defined how mixed operations should behave under k-Atomicity.
They should be allowed to return a value as if they were out of order, but then
the mutations they cause could seemingly cause previous operation instances to
be illegal. Given these issues, we will limit our definition of k-Atomicity to data
types which have only pure operations.

Definition 8. (k-Atomicity). A schedule E on a data type T with only pure
operations is k-atomic, for k ≥ 0, if there exists a permutation Π of all operation
instances in E, respecting the schedule order of non-overlapping instances, such
that for every accessor instance op, with Π = π.op.ρ, there exists a sequence π′

obtained by removing up to k consecutive instances from the end of π|m such
that π′.op is legal in T .

We can now split this condition into two pieces. The first is the core of
linearizability, that there is an ordering of all operation instances in the schedule
that respects the schedule order. The second condition expands the set of legal
sequences beyond the set of legal sequences specified by T . The consistency
condition requires that the sequence of all instances from the first part is in
the set defined by the second part. By moving the second part into the data
type, relaxing the data type specification, we are left with linearizability for the
consistency condition, and have the desired equivalence.

Definition 9. (k-Atomic-Equiv Relaxed ADT). Given any ADT T with
no mixed operations and k ≥ 0, a k-Atomic-Equiv relaxation of T is defined as
follows:

1. OPS(T ′) = OPS(T)
2. LT ′ is the set of sequences Π, where for each accessor instance op, with

Π = π.op.ρ, there exists a sequence π′ such that π′.op is legal in T , where π′

is obtained by removing up to k consecutive instances from the end of π|m.

Relaxed Data Types as Consistency Conditions 151

Theorem 4. For k ≥ 0, the set of schedules legal on a k-Atomic-Equiv relax-
ation of any ADT T with no mixed operations under linearizability is the same
as the set of schedules legal on T under k-Atomicity.

Theorem 4 holds by construction.
Definition 9 is very similar to that of k-Out-of-Order, but they are

not equivalent. Because it uses minimal equivalent sequences, a k-Out-of-
Order relaxed data type cannot return a value which has been “deleted”
from the data structure. For example, consider the following sequence:
Enqueue(1).Enqueue(2).Enqueue(3).Dequeue(1).Dequeue(x). In a 2-Out-of-
Order queue, x could be either 2 or 3. On the other hand, a k-Atomic type can
return historical values that have been deleted or overwritten, so if the sequence
in the previous example were executed on a 2-Atomic-Equiv queue, x could also
be 1.

It is interesting to note that k-Regularity and k-Safety, other conditions from
[2] very similar to k-Atomicity which we will define below, cannot be directly
converted into relaxed data types. This is because they allow operation instances
to have different behaviors when they overlap with one or more mutators than
when they do not overlap with any mutators. A sequential specification has no
notion of concurrency, or overlapping operation instances, so cannot differentiate
these two possibilities. Recent work, such as [8,11,12], has begun exploring the
concept of tasks or objects which do not have sequential specifications. These
more general definitions may be able to represent consistency conditions which
sequential specifications cannot.

6 Placing New Consistency Conditions

We have shown that some data type relaxations can be expressed as consistency
conditions. We would like to know how these conditions compare to known con-
sistency conditions. They neither appear to be equivalent to any common con-
sistency conditions, nor do any of our new consistency conditions appear to be
related to each other. In this section we prove that these intuitions are correct.

Recall that consistency conditions are just sets of legal schedules [27]. Thus,
to compare the strength of different consistency conditions, we can compare the
sets of schedules over all data types.

Definition 10. Given two consistency conditions C and D, we say that C is
stronger than D, and D is weaker than C, if for all data types T , every schedule
legal under C and T is also legal under D and T . That is, the set of legal schedules
under C, for all data types, is a subset of the set of schedules legal under D.

If neither C is stronger than D nor D is stronger than C, we say C and D
are incomparable. If C is stronger than, but not equal to, D, we say that C is
strictly stronger than D and D is strictly weaker than C.

Our conditions are in the “version staleness-based” family of consistency
conditions in [27], referring to the fact that they may return a stale version of the

152 E. Talmage and J.L. Welch

data which is missing some recent updates, since these also have the requirements
of linearizability. Thus, we will be comparing them to k-Atomicity, k-Regularity,
and k-Safety, which are also version staleness-based. It is trivial to show that
all of our conditions are weaker than Linearizability, since they start with the
conditions of Linearizability, then allow some sequences that Linearizability does
not.

First, we define generalized versions of k-Regularity and k-Safety, as we did
for k-Atomicity. Because k-Regularity and k-Safety may behave exactly as k-
Atomicity, we have the same restriction to data types without mixed operations.

Definition 11 (k-Regularity). A schedule E on a data type T with no mixed
operations is k-regular, for k ≥ 0, if there exists a permutation Π of all operation
instances in E, respecting the schedule order of non-overlapping instances, such
that for every instance op, Π = π.op.ρ,

1. if op is a mutator or overlaps with no mutator instances, π|m.op is legal by
k-Atomicity, and

2. if op is an accessor overlapping with at least one other mutator, there exists
a sequence π′ such that π′.op is legal in T , where π′ is constructed either by
deleting up to k instances from the end of π|m or by moving any subset of
the mutator instances overlapping with op from after op in Π to before it and
placing them in some order.

Definition 12 k-(Safety). A schedule E on a data type T with no mixed oper-
ations is k-safe, for k ≥ 0, if there exists a permutation Π of all operation
instances in E, respecting the schedule order of non-overlapping instances, such
that for every instance op, Π = π.op.ρ,

1. if op is a mutator or overlaps with no mutator instances, π|m.op is legal by
k-Atomicity, and

2. if op is an accessor overlapping with at least one other mutator, it may return
any value in rets(OP).

First, we state the following theorem relating k-Atomicity, k-Regularity, and
k-Safety. This theorem is well established in the literature for registers, and
directly generalizes for our new definitions. The proof is by definition, showing
each is a strict subset of the previous.

Theorem 5 ([2,17,22,27]). For all k ≥ 0, k-Safety is strictly weaker than k-
Regularity which is strictly weaker than k-Atomicity, which is strictly weaker
than Linearizability, in the domain of data types with no mixed operations.

We will next show that none of the three new consistency conditions we
have introduced are comparable to any of these three previously known condi-
tions. If we can show that a consistency condition C does not contain (is not
weaker than) k-Atomicity, then we immediately know that C is not weaker than
either k-Regularity or k-Safety, because any point in k-Atomicity is also in the
supersets k-Regularity and k-Safety. Conversely, if k-Safety does not contain C,

Relaxed Data Types as Consistency Conditions 153

then neither k-Regularity nor k-Atomicity can either, since they are subsets of
k-Safety, so C is not stronger than any of the three.

Thus, by Theorem 5, to show a consistency condition C is incomparable with
all of k-Atomicity, k-Regularity, and k-Safety, we choose a data type T and give
a schedule which is legal on T under k-Atomicity, but not on T under C, and
a data type T ′ and give a schedule which is legal on T ′ under C but not on T ′

under k-Safety. The proof of Theorem 6 uses this structure. Details of this and
other proofs are left to the full paper for the sake of space.

Theorem 6. In the domain of data types which do not have mixed operations,

1. For all k, l ≥ 1, OutofOrderCC(k) is incomparable with any of l-Safety, l-
Regularity, and l-Atomicity.

2. For all k ≥ 2 and l ≥ 1, LatenessCC(k) is incomparable with any of l-Safety,
l-Regularity, and l-Atomicity.

3. For all k ≥ 2 and l ≥ 1, StutteringCC(k) is incomparable with any of l-Safety,
l-Regularity, and l-Atomicity.

While our new consistency conditions are all incomparable to these similar
existing conditions in general, we observe that for some specific data types, they
may not actually be distinct. We next show that for a certain class of data
types, StutteringCC(k) is stronger than k-Atomicity. We actually show that
StutteringCC(k) is stronger than (k − 1)-Atomicity, a special case of, and thus
stronger than, k-Atomicity. This class of types contains those where all mutators
are overwriters. An overwriter OP is an operation such that every sequence π.op,
op ∈ OP , is equivalent to the singleton sequence op [16,29]. This means that the
set of next operation instances which result in a legal sequence is determined
entirely by the last previous mutator. In addition to a Read/Write register, this
class includes other data types whose mutators are all overwriters, but which
have accessors that return only parts of the state.

StutteringCC(k) and k-Atomicity both allow ignoring some recent mutator
instances. The difference, which makes the two consistency conditions distinct, is
that a stuttering instance must be ignored by all subsequent operation instances,
while in k-Atomicity, instances may be ignored by some subsequent instances,
but seen by others.

Theorem 7. If all mutators in a data type T , which has no mixed operations,
are overwriters, then for all k ≥ 1, StutteringCC(k) on T is stronger than (k−1)-
Atomicity on T .

Finally, we show that the three new consistency conditions corresponding
to data type relaxations we introduced in this paper are incomparable to one
another. We no longer restrict the set of data types considered, since these
relaxations are defined for all data types.

Theorem 8. Considered on all data types and for all k ≥ 1 and l,m ≥ 2,
OutofOrderCC(k), LatenessCC(l), and StutteringCC(m) are all incomparable to
one another.

154 E. Talmage and J.L. Welch

7 Conclusion and Future Work

In exploring the relation between relaxations for abstract data types and consis-
tency conditions, we have shown that in several cases, the ideas in each may be
expressed equivalently by the other. Specifically, we showed that the k-Out-of-
Order, k-Lateness, and k-Stuttering relaxations may be equivalently expressed
as consistency conditions and that the consistency condition k-Atomicity can be
equivalently expressed as a relaxation. For each of these, we define the equiva-
lent consistency condition or relaxation. We then explore how the newly-defined
consistency conditions fit into the space of consistency conditions, related by the
conditions’ strength, by showing that they are distinct from several previously-
known similar conditions.

In the future, we need to define or quantify the spaces of possible data type
relaxations and consistency conditions. This would allow more general conclu-
sions about the relation of the two fields. For example, it seems that every data
type relaxation can be expressed as a consistency condition, while only some
consistency conditions can be expressed as relaxations. If we could define the
space of possible relaxations, we could formally show this, the space of relax-
ations would be a subset of the space of consistency conditions. There is also the
question of relaxing tasks and other distributed problems and data operations
which cannot be sequentially specified. Such relaxations are not yet defined, but
could lead to broader equivalences with consistency conditions.

In this paper, we did not consider relaxing particular operations in a data
type. It is possible, and common in the literature [13,25], to relax the behavior of
certain operations, while requiring that others behave as in the base type. In the
case of per-operation relaxations, our result in Sect. 6 regarding data types where
all mutators are overwriters would extend to all data types where all overwriting
operations were k-Stuttering relaxed, greatly increasing their scope.

Similarly, a possible application of this work is in hybrid consistency con-
ditions. Hybrid consistency conditions are formed by placing the requirements
of different consistency conditions on different operations of an ADT. In gen-
eral, hybrid consistencies allow implementations where some operations, whose
behavior is perhaps less critical, run faster, while we can require some operations
to behave more strictly, even if this reduces their performance [4]. Moving all
interleaving to sequential relaxation functions has the potential to greatly reduce
the complexity of programming with hybrid consistencies.

Finally, it is not obvious how the complexity of implementations of shared
data types would depend on which of the two approaches we use. Past work
has improved efficiency by relaxing data types, so this work may enable us to
more easily compare the complexity of consistency conditions, known and new,
perhaps enabling us to distinguish incomparable conditions by performance.

Relaxed Data Types as Consistency Conditions 155

References

1. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for
improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS
2010. LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17653-1 29

2. Aiyer, A., Alvisi, L., Bazzi, R.A.: On the availability of non-strict quorum sys-
tems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 48–62. Springer,
Heidelberg (2005). doi:10.1007/11561927 6

3. Alistarh, D., Kopinsky, J., Li, J., Shavit, N.: The spraylist: a scalable relaxed
priority queue. In: Cohen and Grove [9], pp. 11–20

4. Attiya, H., Friedman, R.: A correctness condition for high-performance multi-
processors. SIAM J. Comput. 27(6), 1637–1670 (1998)

5. Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M.M., Vechev,
M.T.: Laws of order: expensive synchronization in concurrent algorithms cannot
be eliminated. In: Ball, T., Sagiv, M. (eds.) POPL, pp. 487–498. ACM, New York
(2011)

6. Attiya, H., Welch, J.L.: Sequential consistency versus linearizability. ACM Trans.
Comput. Syst. 12(2), 91–122 (1994)

7. Bermbach, D., Kuhlenkamp, J.: Consistency in distributed storage systems. In:
Gramoli, V., Guerraoui, R. (eds.) NETYS 2013. LNCS, vol. 7853, pp. 175–189.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40148-0 13

8. Castañeda, A., Rajsbaum, S., Raynal, M.: Specifying concurrent problems: beyond
linearizability and up to tasks. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363,
pp. 420–435. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5 28

9. Cohen, A., Grove, D. (eds): Proceedings of the 20th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOP 2015, San Francisco,
CA, USA, 7–11 February 2015. ACM (2015)

10. Friedman, R., Vitenberg, R., Chockler, G.V.: On the composability of consistency
conditions. Inf. Process. Lett. 86(4), 169–176 (2003)

11. Hemed, N., Rinetzky, N.: Brief announcement: concurrency-aware linearizability.
In: Halldórsson, M.M., Dolev, S. (eds) ACM Symposium on Principles of Distrib-
uted Computing, PODC 2014, Paris, France, 15–18 July 2014, pp. 209–211. ACM
(2014)

12. Hemed, N., Rinetzky, N., Vafeiadis, V.: Modular verification of concurrency-aware
linearizability. In: Moses, Y. (ed.) DISC 2015. LNCS, vol. 9363, pp. 371–387.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48653-5 25

13. Henzinger, T.A., Kirsch, C.M., Payer, H., Sezgin, A., Sokolova, A.: Quantitative
relaxation of concurrent data structures. In: Giacobazzi, R., Cousot, R. (eds) The
40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2013, Rome, Italy, 23–25 January 2013, pp. 317–328. ACM
(2013)

14. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

15. Kirsch, C.M., Lippautz, M., Payer, H.: Fast and scalable k-FIFO queues. Technical
report 2012–04, Department of Computer Sciences, University of Salzburg June
2012

16. Kosa, M.J.: Time bounds for strong and hybrid consistency for arbitrary abstract
data types. Chicago J. Theor. Comput. Sci. 1999, paper 9, (1999)

http://dx.doi.org/10.1007/978-3-642-17653-1_29
http://dx.doi.org/10.1007/978-3-642-17653-1_29
http://dx.doi.org/10.1007/11561927_6
http://dx.doi.org/10.1007/978-3-642-40148-0_13
http://dx.doi.org/10.1007/978-3-662-48653-5_28
http://dx.doi.org/10.1007/978-3-662-48653-5_25

156 E. Talmage and J.L. Welch

17. Lamport, L.: On interprocess communication. part II: algorithms. Distrib. Comput.
1(2), 86–101 (1986)

18. Lipton, R.J., Sandberg, J.S.: PRAM: a scalable shared memory. Technical report
CS-TR-180-88, Department of Computer Science, Princeton University, September
1988

19. Moses, Y. (ed.): DISC 2015. LNCS, vol. 9363. Springer, Heidelberg (2015)
20. Neiger, G.: Set-linearizability. In: Anderson, J.H., Peleg, D., Borowsky, E. (eds)

Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distrib-
uted Computing, Los Angeles, California, USA, 14–17 August 1994, p. 396. ACM
(1994)

21. Rihani, H., Sanders, P., Dementiev, R.: Brief announcement: multiqueues: simple
relaxed concurrent priority queues. In: Blelloch, G.E., Agrawal, K. (eds) Proceed-
ings of the 27th ACM on Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2015, Portland, OR, USA, 13–15 June 2015, pp. 80–82. ACM (2015)

22. Shao, C., Welch, J.L., Pierce, E., Lee, H.: Multiwriter consistency conditions for
shared memory registers. SIAM J. Comput. 40(1), 28–62 (2011)

23. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 29

24. Shavit, N., Taubenfeld, G.: The computability of relaxed data structures: queues
and stacks as examples. In: Scheideler, C. (ed.) Structural Information and Com-
munication Complexity. LNCS, vol. 9439, pp. 414–428. Springer, Cham (2015).
doi:10.1007/978-3-319-25258-2 29

25. Talmage, E., Welch, J.L.: Improving average performance by relaxing distributed
data structures. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 421–438.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45174-8 29

26. Talmage, E., Welch, J.L.: Anomalies and similarities among consensus numbers
of variously-relaxed queues. In: El Abbadi, A., Garbinato, B. (eds.) NETYS
2017. LNCS, vol. 10299, pp. 191–205. Springer, Cham (2017). doi:10.1007/
978-3-319-59647-1 15

27. Viotti, P., Vukolic, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Comput. Surv. 49(1), 19:1–19:34 (2016)

28. Vitenberg, R., Friedman, R.: On the locality of consistency conditions. In: Fich,
F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 92–105. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-39989-6 7

29. Wang, J., Talmage, E., Lee, H., Welch, J.L.: Improved time bounds for linearizable
implementations of abstract data types. In: 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014, pp.
691–701. IEEE Computer Society (2014)

30. Wimmer, M., Gruber, J., Träff, J.L., Tsigas, P.: The lock-free k-LSM relaxed pri-
ority queue. In: Cohen and Grove [9], pp. 277–278 (2015)

http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1007/978-3-319-25258-2_29
http://dx.doi.org/10.1007/978-3-662-45174-8_29
http://dx.doi.org/10.1007/978-3-319-59647-1_15
http://dx.doi.org/10.1007/978-3-319-59647-1_15
http://dx.doi.org/10.1007/978-3-540-39989-6_7

Ant-Inspired Dynamic Task Allocation
via Gossiping

Hsin-Hao Su1(B), Lili Su1, Anna Dornhaus2, and Nancy Lynch1

1 CSAIL, MIT, Cambridge, USA
hsinhao@csail.mit.edu

2 Department of Ecology and Evolutionary Biology,
University of Arizona, Tucson, USA

Abstract. We study the distributed task allocation problem in multi-
agent systems, where each agent selects a task in such a way that, collec-
tively, they achieve a proper global task allocation. In this paper, inspired
by specialization on division of labor in ant colonies, we propose several
scalable and efficient algorithms to dynamically allocate the agents as the
task demands change. The algorithms have their own pros and cons, with
respect to (1) how fast they react to dynamic demands change, (2) how
many agents need to switch tasks, (3) whether extra agents are needed,
and (4) whether they are resilient to faults.

1 Introduction

In a multi-agent system, different tasks may need to be performed. The task
allocation problem is to find an allocation of agents such that there are enough
agents working on each task. This is often done in a distributed manner in many
applications. For instance, drone package delivery for one city may consist of
deliveries for several different regions [20]. The drones may learn the demands
in each region from a broadcasting ground control station. The demands may
change from time to time. The drones are required to coordinate among them-
selves (upon receiving the same signal), without central control, to ensure that
there are enough individuals working in each region.

The problem of task allocation also occurs in the ant world. In ant colonies,
there are several different tasks (brood care, foraging, nest maintenance, defense
[29]) which require different numbers of ants. Ant colonies generally do a good job
of regulating the assignment of workers to tasks. In this work, we take inspiration
from specialization in ants to develop several algorithms that are efficient and
robust for the task allocation problem. Conversely, we hope our work can shed
some light on questions about collective insect behavior.

To model the task allocation without centralized controllers, we consider
randomized gossip protocols [6] (which are similar to population protocols [1]) as
the underlying method of communication among the agents. In short, random-
ized gossip protocols consist of rounds. In each round, each agent chooses an
agent uniformly at random to contact, and then the pair exchanges messages.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 157–171, 2017.
https://doi.org/10.1007/978-3-319-69084-1 11

158 H.-H. Su et al.

Gossip-based protocols capture a common method of communication in biolog-
ical systems. For example, in ant colonies, two ants communicate by touching
each other with their antennae [15]. The gossip protocol also captures any meth-
ods of peer-to-peer information exchange, including indirect communication such
as one agent leaving marks for another agent. Not only are gossip-based proto-
cols natural communication mechanisms in biological systems, the algorithms in
such protocols are usually simple, easily scalable, and resilient to failures.

1.1 The Model

We assume there are n agents and k tasks. Each agent a is associated with a
unique identifier, IDa ≤ poly(n), and a state Qa ∈ {1, 2, . . . , k}, which indicates
the task that it is working on. In ant colonies, the ID can be thought as an
encoding of features of an ant such as age, body size, genetic backgrounds, or
spatial fidelity zones [30]. Also, in such settings, k is usually a small constant
less than 20. The scenario proceeds in synchronized rounds. In the beginning of
round t, each agent receives the demand signals d (t) = (d(t)1 , d

(t)
2 , . . . , d

(t)
k) from

the tasks, where d
(t)
i indicates the demand of task i.1 Note that the demands

should be thought as the work-rates required to keep the tasks satisfied. The
demands may change arbitrarily in every round. Each agent a chooses another
agent a′ uniformly at random and then they can exchange messages of O(k log n)
bits (which are just enough fit the size of the input signals, d(t)). Then, the agents
can change their states. Then they proceed to the next round.

Cornejo et al. [5] and Radeva et al. [28] defined models for the task allocation
problem in ant colonies. In their work, when the ants receive heterogeneous
feedback from the environment, there could be information flow from one ant
to another. In our model, the information flow happens only through gossiping.
Many models inspired by insect colonies have restrictive memory constraints on
each agent. However, since evidence shows that insects can remember and learn
things (such as a path) very well [8], we decide not to impose constraints on
memory, but on communication.

1.2 Problem Formulation

We formulate the task allocation problem similarly to [5,28] as follows. Let
A

(t)
i denote the set of agents working on task i for 1 ≤ i ≤ k. Let w (t) =

(w(t)
1 , w

(t)
2 , . . . , w

(t)
k) denote the number of agents working on the k tasks (wi =

|Ai|). We say the allocation at round t is a proper allocation if w
(t)
i ≥ d

(t)
i for all

i ∈ {1, 2, . . . , k}. For convenience, assume that the total demand D =
∑k

i=1 di

is fixed. We can assume this without loss of generality, since we can let task k
denote the dummy task for idle agents. We often omit the superscripts (t) to
denote the quantities of the current round.
1 Although the assumption that every agent knows all the demands seems to be strong,

as long as each demand is known by some agent, all the demands can be propagated
to everyone in O(log n) rounds by gossiping (see broadcasting in Sect. 2).

Ant-Inspired Dynamic Task Allocation via Gossiping 159

There are several objectives we consider for an algorithm. First, whenever
the demands change, we would like the allocation to recover to a proper one as
soon as possible. The reallocation time is defined to be the number of rounds
needed for the algorithm to find a proper allocation, after the demand stabilizes.
Algorithms are allowed to have a preprocessing phase, so that the reallocation
can be done faster after that. Second, when the demands change, we hope the
number of task switches is as small as possible, since task changing may incur
some overheads. We define the switching cost to be the number of agents who
switched tasks until a proper allocation is achieved. Suppose the number of
agents equals to the total demand. When the demands change from d to d ′, it is
clear that the switching cost is at least OPT def= |d −d ′|1/2. Third, we study the
number of agents needed for the algorithm. Clearly, all algorithms that behave
correctly need to have at least D agents. However, the question is whether extra
agents can help us in designing more efficient algorithms.

Finally, we consider two types of faults: transient faults and crash faults.
A transient fault means an agent temporary malfunctions but later recovers. For
example, an agent might not receive the most recent demands for some reason
(perhaps due to the propagation delay). We say an algorithm tolerates transient
faults if the agents adapt to a proper allocation after all the agents recover from
the faults. A crash fault is when an agent malfunctions permanently (and it will
no longer be contacted by other agents). We say an algorithm tolerates crash
faults if the agents adapt to a proper allocation after some of them have crashed,
as long as there are enough remaining agents.

1.3 Our Contribution

We explore different possibilities that can be achieved by a(ge)nts under the gos-
sip model where information exchanges are limited. We give several algorithms
for the task allocation problem. Some algorithms are inspired by ants, where their
intrinsic difference is used to facilitate symmetry breaking. The algorithms are
incomparable in the sense that no one dominates the other on all the objectives
(see Table 1). Our first algorithm, the move-and-fill algorithm, is a straight-
forward algorithm, where the excess ants working on over-satisfied tasks leave

Table 1. The time complexities are provided as the rounds needed for the algorithms
to succeed with high probability, that is, with probability 1 − 1/ poly(n).

Mv. and fill Tkn. pass I Tkn. pass II Ranking I Ranking II

#Agents D (1 + ε)D (1 + ε)D (1 + ε)D (1 + ε)D

Preproc. time O(k
ε log n) O(k

ε log n) O(1
ε log2 n) O(

(
k
ε

)2
log n)

Realloc. time O(log2 n) O(1) O(1) O(1) O(1)

Switching cost OPT (k − 1) · OPT OPT O(n) O(k log n) · OPT

(or O(n))

Fault tolerance transient faults

after preproc.

transient faults

after preproc.

transient &

(crash) no global

clock

160 H.-H. Su et al.

the tasks and switch to the unsatisfied tasks. We show that this can be done
in O(log2 n) rounds in our model w.h.p.2 using the gossip-based counting and
selection algorithms developed in [19]. The main advantage of the move-and-fill
algorithm over the other two is that the number of agents needed is exactly D.
Moreover, the switching cost is optimal. The drawback of the algorithm is that
whenever the demands change, the re-allocation time is O(log2 n) rounds. If the
demands change more frequent than once every O(log2 n) rounds, the alloca-
tion will not be able to catch up to the demands. In reality, the demands may
change very frequently due to both internal factors (consumable tasks where the
demands decrease when they are done) and external factors (sudden changes in
the environment).

The ant inspiration for the next two algorithms. Consider ant colonies,
where ants receive the demand signals from the tasks. In reality, the signals can
be the temperature or the production of chemicals. Biologists have conjectured
that different ants have different response thresholds to the signals [4]. The
question is whether such a design could help in task allocation. Consider the
following simple example, where n = k = 2. Suppose that the first ant a1 is
more sensitive to the signal of task 1 than a2. Then, when task 1 and task
2 have both 1 unit of demand, it is possible that a1 goes to work on task 1
and a2 goes to work on task 2. The main inspiration here is that if the ants
have different responses to the signals, then they can take advantage of the
difference to facilitate task allocation. Each ant can decide where to go based
on the demand signals, independent of the other ants’ actions. Therefore, the
reallocation can be done very quickly.

Both our token passing algorithm and ranking algorithm are based
on this idea. Both algorithms consist of a preprocessing phase, where each ant
a computes a value Xa. After Xa is computed, they will allocate themselves
according to Xa and the vector of demands, so that when the demands change,
each ant can reallocate itself instantaneously. The drawback compared to the
first algorithm is that they both need extra agents. After the Xa-values are
computed, the allocation is done in a very simple way. In a high level sense,
we divide the range of Xa-values into k disjoint intervals such that the length
of i’th interval is proportional to the demand of task i (with additional slacks,
see Algorithm 2). Every agent will go to the task whose interval contains its
Xa-value. In general, we hope that the Xa-values of the agents are well-spread
so that an interval of length proportional to di would contain di agents whose
Xa-values lie in the interval.

In the token passing algorithm, each agent is assigned a unique token Xa

from {1, 2, . . . , n+� ε
k ·D�} in the preprocessing phase, where 0 < ε < 1 is a fixed

parameter. This is done by using the loose renaming procedure developed by
Giakkoupis et al. [14]. When there are (1+ ε) ·D agents, the preprocessing phase
takes O(k

ε log n) rounds. After that, each agent can determine its role based

2 With high probability, which means with probability at least 1−1/ poly(n). Note that
if there are poly(n) events and each one holds w.h.p., then all of them simultaneously
hold w.h.p. by an union bound argument.

Ant-Inspired Dynamic Task Allocation via Gossiping 161

on Xa and the demand vector in O(1) rounds. There are two variants of the
algorithms that reallocate in different ways when the demands change. The first
is that every agent keeps the Xa-value the same and then reallocates according
to that. In that algorithm, the switching cost is bounded by (k − 1) · OPT. In
the second variant, the Xa-values are also reallocated. This achieves the optimal
switching cost and the reassignments of Xa-values can be done instantaneously.
However, unlike the first variant it does not tolerate transient faults after the
preprocessing phase.

We define the notion of stable algorithms which capture the type of algorithms
where each agent’s decision only depends on the current input signals. As long
as the agents run Algorithm 2 with fixed Xa-values (like the first variant), the
resulting algorithm is stable. The stable algorithms are resilient to transient
faults, because as long as each agent functions normally and receives the current
input signals, the allocation is proper. We show that for this type of algorithms,
the switching cost is at least 2 · OPT when n = D. In comparison, our first
variant achieves a switching cost of (k − 1) · OPT. We discuss the possibility to
close the gap in Sect. 5.

In the ranking algorithm, Xa is an estimate of the normalized rank (i.e.
rank(a)/n) of a, where rank(a) is the rank of a’s ID over all the agents. In fact,
the algorithm is similar to ants’ behavior. The ID of each agent can be thought
as some features of the agents. In ant colonies, ants allocate themselves to the
tasks based on their individual traits. For example, there are tendencies for older
ants to forage while younger ants work on tasks within or near the nests [31].
The ranking algorithms follow this general strategy by allocating every agent
based on the value of its trait (assuming the traits are comparable).

We propose two different ways for estimating the normalized ranks. The
first is a rounding-based algorithm that runs in O(1ε log2 n) rounds while the
second is a lightweight sampling-based algorithm runs in O((k

ε)2 log n) rounds.
The advantage of the first one is that the estimate does not depend on the
execution of the algorithm and so that an agent always gets the same estimate.
The advantage of the second algorithm is that it can tolerate both transient and
crash faults. Moreover, each agent is allowed to keep its own clock–there is no
global clock. Also, it is a self-stabilizing algorithm, which always converges
to a proper allocation given arbitrary initial states of the agents. The drawback
is that the algorithms may have a fairly large switching cost (e.g., task switching
can happen even when the demands are stabilized). However, for the second
variant we may sacrifice the crash fault tolerance for a bounded switching cost
of O(k log n) ·OPT by fixing the Xa-values after the agents get accurate enough
estimates.

1.4 Related Work

The task allocation problem in ant colonies has been studied extensively in
biology literature. Empirical works suggest that the task an ant chooses to work
on depends on various factors, including its age [29], body size [32], genetic
background [18], position in the nest [30], social interaction [17], and internal

162 H.-H. Su et al.

response threshold [3]. There are also works that formulate the task allocation
problems using mathematical models [2,3,16,25,26].

Cornejo et al. [5] was the first to model the ant task allocation problem from
a distributed computing perspective. Then, [28] studied how extra agents can
speed up the task allocation process. In the ant-colony task allocation models
of [5,28], they assumed the signals the agents received from the tasks are the
deficit (i.e. di − wi) or whether the tasks need more work (i.e. sgn(wi − di)). It
is not clear what the signals the ants are actually receiving in reality, and they
may depend on the type of the tasks.

In computer science, task allocation problems have also been well-studied
under various contexts, including scheduling of multiprocessors [7,22], robotics
[12,23], and communication complexity [9]. The major difference between their
problems and ours is that we consider the case where the tasks are understood
as the task types, where each task (type) is accomplished by many agents col-
laboratively. As a result, the number of tasks is usually much smaller than the
number of agents. While in their cases each task is a single instance that will
be handled by a single agent. Their goal is to study how the tasks should be
assigned to the agents such that some objectives are optimized (possibly under
some constraints).

Recently, there has been a rising number of work to model collective insect
behavior from a distributed computing perspective. This includes the studies
for the foraging problem [10,21], the house-hunting problem [13], and density
estimation problem [24]. See [27] for a more comprehensive survey.

1.5 Organization

In Sect. 2, we present the move-and-fill algorithm. In Sect. 3, we present the
token-passing algorithm. In Sect. 4, we present the ranking algorithm. Finally,
in Sect. 5, we propose open problems inspired by this work.

2 The Move-and-Fill Algorithm

We first present an algorithm that does not require extra (more than D) agents
and achieves an optimal switching cost. Before describing the algorithm, we
review a few elementary subroutines that can be achieved by gossip protocols.

– Broadcasting. Suppose that a message m is initiated at a. Suppose that in
each round, each agent a that holds m forwards it to a′, the agent being con-
tacted by a. Frieze and Grimmett [11, Theorem 5.2] showed that in O(log n)
rounds, w.h.p. all the agents receive the message.

– Counting. For any 1 ≤ i ≤ k, the number of agents working on task i
can be counted in O(log n) rounds w.h.p. Suppose that each node (or agent,
in our case) is associated with an integer. The push-sum algorithm of [19,
Algorithm 1] approximates the summation up to a (1±ε) factor via gossiping
in O(log n + log(1/ε) + log(1/δ)) rounds with probability at least 1 − δ. Let

Ant-Inspired Dynamic Task Allocation via Gossiping 163

Ai denote the set of agents working on task i for 1 ≤ i ≤ k. To count the
number of agents in Ai, we let the agents in Ai initiate the values to 1 and
agents not in Ai set their values to 0. Then, by approximating the summation
using the algorithm with ε = 1/(2n + 1) and δ = 1/poly(n), we can count
the exact number of agents working on task i in O(log n) rounds w.h.p. Also,
since our bandwidth on the messages is O(k log n), we can run k executions
of the algorithms in parallel in O(log n) rounds to count the number of agents
working on every task.

– Selection and Rank Testing. Let A′ ⊆ A be a set of agents and let r be
an integer. Suppose that a ∈ A′, let rankA′(a) denote the rank of a in the
set A′ ordered by IDs, beginning with 0. We explain that in O(log2 n) rounds,
w.h.p. each agent a in A′ can determine whether rankA′(a) is at least r or
not. Kempe et al. [19, Theorem 4.2] gave an algorithm for computing the t’th
smallest element in O(log2 n) rounds w.h.p. We can set t = r1 and use their
algorithm to find out the ID of the agent a with rankA′(a) = r. Then, it will
broadcast its ID to every agent in O(log n) rounds. Therefore, all agents can
compare their own IDs with the received ID to determine whether its rank is
at least r. Again, we can run k copies of the algorithms simultaneously, since
each copy uses only O(log n) message size.

Algorithm 1. The Move-and-Fill Algorithm
Obtain w1, . . . , wk by counting the number of agents working on each task.
For 1 ≤ i ≤ k, for each a ∈ Ai, include a in A′ if rankAi(a) ≥ di.
Let φi = max(di − wi, 0) be the deficit of task i for 1 ≤ i ≤ k.
For 1 ≤ i ≤ k, let Φi =

∑i
j=1 φi be the prefix sum of the deficit and let Φ0 = 0.

Let Ii = [Φi−1, Φi) be the half-open intervals for 1 ≤ i ≤ k.
For each a ∈ A′, go to task i(a), where Ii(a) is the interval that contains rankA′(a).

We assume n = D. The move-and-fill algorithm is described in Algo-
rithm1. The algorithm is similar to Radeva et al.’s algorithm [28], where the
excess agents at each task pop out and move to the unsatisfied tasks. We use A′

to denote the set of excess agents. Agents in A′ will reassign themselves to the
unsatisfied tasks according to the deficits and their ranks in A′. To determine
whether a ∈ A′, a does so by testing whether rankAQa

(a) ≥ dQa
. Such a test

can be done for every agent by running k rank testing algorithms (one for each
task) in parallel w.h.p. For task i, max(0, wi − di) agents will be in A′. Since
the number of agents is equal to the total demand, the number of excess agents
must be equal to the total deficits of the tasks, Φk. We partition the interval of
length Φk into k intervals, each with length Φi − Φi−1 = φi, so that there will
be exactly φi agents whose rankA′(a) lie in the interval Ii. Thus, φi agents will
go to task i. This implies all the tasks become satisfied. Again, w.h.p. such a
test can be done for every agent by running k rank testing algorithm to test if
rankA′(a) ≥ Φi for each i.

Therefore, the number of rounds needed to get to a proper allocation is
O(log2 n) w.h.p. Suppose that the demands change from d to d ′ and then do
not change for Ω(log2 n) rounds. It is clear that the algorithm achieves an optimal

164 H.-H. Su et al.

switching cost of OPT = |d − d ′|1/2, since the number of agents who switched
tasks is

∑k
i=1 max(0, d′

i − wi) =
∑k

i=1 min(0, d′
i − di) = |d ′ − d |1/2.

3 The Token Passing Algorithm

While the move-and-fill algorithm achieves an optimal switching cost, it requires
a significant amount of re-computation whenever the demands change. In situ-
ations where the demands change more frequent than O(log2 n), the algorithm
may fail. In this section, we present an algorithm that reallocates in O(1) rounds
whenever the demands change. However, the algorithm requires some extra
agents in addition to the total demand.

We assume that n = �(1 + ε)D	 − � ε
k · D�, which is slightly less than �(1 +

ε)D	. In the preprocessing phase, we assign each agent a a token TKa from
{0, . . . , �(1 + ε)D	 − 1} such that each token is assigned to at most one agent.
Giakkoupis et al. [14] gave an algorithm for the renaming problem in the gossip
model that assigns a name from the name space {1, 2, . . . , (1+ε′)n} to each node
in O(1

ε′ log n) rounds, where n is the number of nodes. This can be used to assign
the tokens for the agents in our case, where we have n ≤ (1+ε)D− ε

k ·D+2 agents
and at least (1+ε)D tokens and so ε′ ≥ (1+ε)D

n −1 = (1+ε)D
(1+ε)D− ε

k ·D+2 −1 = Ω(ε/k),

provided D = Ω(k/ε). Therefore, in O(k
ε · log n) rounds, the agents will get a

token from {0, . . . , �(1 + ε)	D − 1}.
Once the agents are assigned tokens, each agent compares its token with

the demand vector to determine which task it is going to. Define the error εi =
i ·�D · ε

k � for 0 ≤ i ≤ k. Define the interval Ij = [Dj−1+εj−1
N ,

Dj+εj

N) for 1 ≤ j ≤ k,
where Dj =

∑j
i=1 dj and N = D + εk is a normalization term (which is actually

not necessary for the token passing algorithm, but will be needed for the ranking
algorithm). These intervals form a disjoint partition of [0, 1). Let TKa denote
the token assigned to agent a. Let Xa = TKa /N . We show that if each agent
a executes allocate task(a, Xa) described in Algorithm 2, where a goes to task
j(a) such that Ij(a) contains Xa, then the allocation is proper.

Algorithm 2. allocate task(a, Xa)

Let Ij = [
Dj−1+εj−1

N
,

Dj+εj

N
), for 1 ≤ j ≤ k, where Dj =

∑j
i=1 dj ,εj = j� ε

k
· D�, and

N = D + εk.
Let Ij(a) be the interval that contains Xa.
Go to task j(a).

Lemma 1. Suppose that n = �(1 + ε)D	 − � ε
k · D� and each agent is assigned

a unique token from {0, 1, . . . , �(1 + ε)	D − 1}. If each agent a goes to work on
task j(a), where the interval Ij(a) contains TKa, then the allocation is proper.

Ant-Inspired Dynamic Task Allocation via Gossiping 165

Proof. Since the length of the interval Ij is dj+� ε
k ·D�

N , Ij contains at least dj +
� ε

k · D� tokens. However, since at most �(1 + ε)D	 − n = � ε
k · D� tokens are not

taken by the agents, it contains at least dj + � ε
k · D� − � ε

k · D� = dj tokens used
by the agents. Therefore, at least dj agents are working on task i.

When the demands change from d to d ′, there are two variants of the algo-
rithms to deal with that. The first one is to continue to run allocate task(a, Xa)
with the same Xa. The second one is to update the token and Xa and then
run allocate task(a, Xa). We will show that the first one has a (k − 1)-optimal
switching cost, while the second one gives an optimal switching cost. However,
the second one requires all the agents receive the same demand vectors in a con-
sistent order. Therefore, unlike the first variant, it does not tolerate transient
faults, since when an agent temporarily malfunctions, it is not able to receive
input signals.

3.1 The First Variant

We will bound the switching cost when all the agents keep running Algorithm2
without changing the values of Xa. The lemma is stated in a more general way
so that we can also apply it later in the next section. The proof is deferred to
the full version.

Lemma 2. Suppose that the demands change from d to d′ and the Xa-values
of all the agents are fixed. Let X = {Xa}a∈A be the multi-set that consists of all
the Xa-values of the agents. Let γ(X) = sup0≤i ≤N−1|X ∩ [i

N , i+1
N)| denote the

maximum number of agents whose Xa-value lie in the interval over all intervals
of length 1

N . The switching cost is bounded by γ · (k − 1) · OPT, where OPT =
|d − d′|1/2.

Since Xa is defined to be the token value divided by N and the token values
are integers, we must have γ(X) = 1. Therefore, the switching cost is at most
(k − 1) · OPT. Algorithm 2 is capped at this bound for the switching cost. An
interesting question is whether there exists another scheme for achieving a better
switching cost, perhaps by partitioning the [0, 1) interval in a better way. The
algorithms where the Xa-values do not change can be captured by the follow-
ing definition of stable algorithms. We will show that stable algorithms cannot
achieve the optimal switching cost when n = D. (Note that Algorithm 2 does
not fit into this case, because it uses more agents than D. See discussions in
Sect. 5.)

Definition 1. A stable task allocation algorithm is where each agent a is asso-
ciated with a function fa(d1, d2, . . . , dk) such that agent a goes to (d1, . . . , dk)
when the demand vector is (d1, d2, . . . , dk).

We show that the stable algorithms that achieve proper allocations must
incur a switching cost of at least 2 · OPT when n = D.

166 H.-H. Su et al.

Lemma 3. Suppose that n = D and an algorithm is stable. Then, there exist
demands d and d′ such that the algorithm uses at least |d′ − d|1 switching cost
when the demands change from d to d′.

Proof. Suppose there are 3 agents, a1, a2, a3. Suppose to the contrary that
fa1 , fa2 , fa3 are functions for a1, a2, and a3 that achieve the optimal move-
ments when there are 3 tasks with total demand 3. Suppose that the ini-
tial demand is d1 = (1, 1, 1). Without loss of generality, suppose that
(fa1(d1), fa2(d1), fa3(d1)) = (1, 2, 3). When the demands change to d2 =
(1, 2, 0), since we assume the strategy achieves the optimal movement, we must
have (fa1(d1), fa2(d1), fa3(d1)) = (1, 2, 2). If the demands again change to
d3 = (0, 2, 1), then we must have (fa1(d1), fa2(d1), fa3(d1)) = (3, 2, 2) by the
same reasoning. Finally, if the demands again change back to d1 = (1, 1, 1), then
by the same reasoning, we have either (fa1(d1), fa2(d1), fa3(d1)) = (3, 2, 1) or
(fa1(d1), fa2(d1), fa3(d1)) = (3, 1, 2), contradicting with the fact that fa1 , fa2 ,
fa3 are functions.

3.2 The Second Variant

If we do not require the algorithm to be stable, then it is still possible to achieve
an optimal switching cost. In the second variant, we will reassign TKa (and set
Xa = TKa /N) when the demands change. We will pretend there are dummy
agents such that all tokens are used up. The agents reassign the tokens according
to the following rules.

Suppose that a is working on a task j(a). If dj(a) > d′
j(a) and a is an agent

holding one of the largest dj(a) − d′
j(a) tokens among the agents working on

j(a), then a will switch tasks. Let A′ denote the set of all agents that belong
to this case. Each a ∈ A′ will use rankA′(a) and the deficits of the tasks to
update its token and switch to the corresponding task. Otherwise, if a does not
belong to the case described above, it will not switch tasks. However, it will
also reassign its token to avoid conflict. The details are postponed to the full
version, where we will also show that after updating the tokens, each token in
{0, 1, . . . , �(1 + ε)D	 − 1} is assigned to at most one agent.

All the tokens held by the agents (including dummy agents) are distinct after
updating. Now if we delete the dummy agents, all the tokens are still distinct. By
Lemma 1, we conclude that the allocation obtained is proper. Furthermore, for
task i, di −d′

i agents switch tasks if di > d′
i. The switching cost is

∑
i max(0, di −

d′
i) = |d′ − d|1/2 = OPT.

4 The Ranking Algorithm

In this section, we assume that �(1 + ε) · D	 ≤ n ≤ 2D for some 0 < ε < 1. Let
rank(a) denote the rank of IDa among all the ID of other agents. We assume
the rank begins with 0, i.e. the rank of the agent with the smallest ID is 0. Let
nrank(a) = rank(a)/n denote the normalized rank of a.

Ant-Inspired Dynamic Task Allocation via Gossiping 167

We give two variants of algorithms for approximating the normalized ranks
of the agents. By setting Xa to be the estimated normalized rank of a and
running allocate task(a, Xa) described in Algorithm 2, we show that the allo-
cation is proper if the estimates are accurate enough. Recall that in Algo-
rithm2, we partition the entire working space [0, 1) into half-open intervals
Ij = [Dj−1+εj−1

N ,
Dj+εj

N), for 1 ≤ j ≤ k, where Dj =
∑j

i=1 dj , εj = j · � ε
k · D�,

and N = D + εk. If Xa lies in the interval Ij(a), then it will go to task j(a). We
show that if each agent has a sufficiently good estimate of its own rank, then
the allocation obtained is proper.

Lemma 4. Suppose that Xa ∈ [nrank(a) − ε/(6k),nrank(a) + ε/(6k)] for each
a, then for each task j, there are at least dj agents working on it. That is, the
allocation is proper.

Proof. Consider the interval Ij = [Dj−1+εj−1
N ,

Dj+εj

N). The length of the interval
is (dj +� ε

k ·D�)/N . Consider the half-open interval I ′
j ⊆ Ij obtained by removing

the first ε/(6k) and the last ε/(6k) of Ij . The length of I ′
j is at least

dj

N
+

⌊
εD

k

⌋

· 1
N

− ε

3k
≥ dj

N
+

(
εD

k
− 1

)

· 1
N

− ε

3k

≥ dj

N
+

ε

2k
− 1

N
− ε

3k
N ≤ 2D

≥ dj

N
+

ε

6k
− 1

N
≥ dj

N
+

1
N

D ≥ 12k

ε

Since the smallest normalized rank in I ′
j must appear in the first 1/N segment

from the beginning of the interval, the number of agents whose normalized rank
lie in I ′

j is at least n · (dj

N + 1
N) − 1 ≥ dj + 1 − 1 ≥ dj , since n ≥ N . Moreover,

if nrank(a) ∈ I ′
j , then its estimate Xa must be in Ij , since Xa ∈ [nrank(a) −

ε/(6k),nrank(a)+ε/(6k)]. Because there are at least dj agents whose normalized
rank lie in I ′

j , there are at least dj agents whose Xa-values lie in Ij . Therefore,
the number of agents working on task j is at least dj .

4.1 The First Variant

In this section, we show how to approximate the normalized rank up to an
additive ±ε/(6k) factor in O((log2 n)/ε) rounds. Moreover, w.h.p. the estimated
rank for each agent is the same for different executions of the algorithm. The
resulting task allocation algorithm is therefore stable.

The algorithm works as follow: First, count the total number of agents, n,
in O(log n) rounds. Then, identify the O(k/ε) pivot agents whose ranks are
0, � εn

6k �, 2 · � εn
6k �, . . . , � 6k

ε 	 · � εn
6k �. This can be done in O((log2 n)/ε) rounds by

running O(k) selection algorithms of [14] in parallel, using O(k log n) message
size. Then, the pivot agents broadcast their IDs and the normalized ranks to
everyone in O(log n) rounds. Each agent a sets its estimate Xa to be the nor-
malized rank of the pivot agent with the largest ID smaller than its own (that
is, rounding down).

168 H.-H. Su et al.

Lemma 5. After running the algorithm described above, we have Xa ∈
[nrank(a) − ε/(6k),nrank(a)].

Proof. The normalized ranks between two consecutive pivot agents is � n
6k �.

Therefore, we must have Xa ≥ nrank(a) − � εn
6k �/n ≥ nrank(a) − ε

6k .

For the switching cost of this algorithm, it is not hard to see that γ(X) = � εn
6k �

(where γ(X) is defined in Lemma 2). Therefore, by Lemma 2, the switching cost
is at most O(εn)·OPT. This implies the switching cost can be pretty large in this
algorithm. Note that the algorithm is robust to transient fault after Xa-values
are computed. Because like the first variant of the token passing algorithm, once
the Xa-values are computed, as long as the agent gets the correct demand vector,
it can allocate itself to the right task without any communication.

4.2 The Second Variant

In this section, we present a fault-tolerant algorithm, based on a simple approach
to approximate the ranks. The algorithm can be implemented in an asynchronous
manner, where each agent maintains its own clock. In that setting, the t’th global
round is defined to be the earliest time when every agent completed its t’th round.

Algorithm 3. Sampling-Based Rank Estimation
for each round t do

for each agent a do
Let a′ be the agent a met during round t.

Let Xt ←
{

1, if IDa′ < IDa .

0, otherwise.
.

Let T = Θ((k
ε
)2 log n).

Let Xa =
∑t

i=t−T+1 Xi/T .
allocate task(a, Xa)

end for
end for

Lemma 6. Suppose that agent a finishes T = Θ((k
ε)2 log n) rounds after its last

transient fault. Then, w.h.p. Xa ∈ [nrank(a) − ε
6k ,nrank(a) + ε

6k].

Therefore, by Lemma 6 and Lemma 4, after every agent finishes its T ’th
round, the allocation is proper. However, since they keep updating their Xa-
values after T ’th round in order to cope with the crash faults (see the next
subsection), the switching cost can fairly large (Ω̃(n)) even if the demands do
not change. In the following, we show that if the agents stop updating the Xa-
values after T ’th round, then they can achieve a bounded switching cost of
O(k log n) · OPT. By Lemma 2, it suffices to show γ(X) = O(log n).

Lemma 7. After Ω((k
ε)2 log n) rounds, w.h.p. γ(X) = O(log n) (Recall that

γ(X) = sup0≤x≤n−1

∑
Xa∈X |Xa ∩ [x

N , x+1
N)|).

Ant-Inspired Dynamic Task Allocation via Gossiping 169

Proof. For any 0 ≤ x ≤ N −1, consider the interval [x
N , x+1

N) ⊆ [0, 1). For −D ≤
i ≤ D, let Ai be the set of agents whose normalized ranks lies in [x+i

N , x+i+1
N)

(note that there are at most n/N such agents). Let Ya be the indicator random
variable denoting whether a lies in [x

N , x+1
N). Let Y =

∑
−D≤i≤D Ya. For a ∈ Ai,

it is not hard to see that Pr(Ya = 1) ≤ 1/(i + 1). Therefore,

E[Y] =
∑

−D≤i≤D

∑

a∈Ai

E[Ya] ≤ 2 ·
∑

0≤i≤D

n

N
· 1
(i + 1)

= O (log n)

Since Y is a sum of independent variables, by Chernoff Bound, for some constant
K > 0, Pr(Y ≥ K · log n) ≤ 1/poly(n). By taking an union bound the intervals
[x
N , x+1

N) for x = 0, 1, . . . , N − 1, we conclude that w.h.p. γ(X) < 2K log n.

Fault Tolerance for Crash Faults. We show that our algorithm is resilient to
crash failures. Now suppose there are at most f agents who died in the previous
T rounds. We will show that if f is sufficiently small, then the current allocation
is a proper allocation w.h.p. On the other hand, if f is large, then we give a
bound on the number of rounds needed to recover to a proper allocation. The
proofs of the following two lemmas are postponed to the full version.

Lemma 8. Let T = Θ((k
ε)2 log n). Let f denote the number of agents who

crashed during rounds t − T + 1, t − T + 2, . . . , t. Suppose that f = O(εn/k),
then w.h.p. Xa ∈ [nrank′(a) − ε

12k ,nrank′(a) + ε
12k], where nrank′(a) denote the

normalized rank of a at round t.

Lemma 9. Let T = Θ((k/ε)2 log n). Let f denote the number of agents who
died during the past T rounds. Suppose that f = Ω(εn/k), then the allocation
becomes proper after (1 − εn

12fk) · T rounds, if no more failures happen.

5 Open Problems Motivated by This Work

– The role of extra agents. In our token passing algorithm and ranking
algorithm, extra agents are needed to achieve a logarithmic running time. An
interesting question is whether the extra agents are really necessary to achieve
that. Also, in stable algorithms, although we showed that the switching cost
is at least 2-optimal when n = D, the existence of extra agents helps reducing
the switching cost. For example, when there are kD agents, we can achieve
0 switching cost by allocating D agents to every task. Studying the trade-
off between the number of agents and the switching cost seems to be an
interesting direction.

– The switching cost gap of stable algorithms. We showed that stable
algorithms cannot achieve the optimal switching cost (they must be at least
2-optimal). On the other hand, if all agents have their Xa-values properly
assigned, then Algorithm2 can achieve a switching cost that is (k−1)-optimal.
There is still a large gap between a factor of (k−1) and a factor 2. Closing this

170 H.-H. Su et al.

gap is a very interesting open problem. Our bounds are tight when the number
of tasks is three. Our partition scheme shows that 2 ·OPT is achievable, while
our lower bound shows that this is the best possible. In fact, we have partial
results showing that for D ≤ 6, we can achieve a switching cost of 2 · OPT.
For D > 6, we could not generalize the pattern and therefore it is yet to be
investigated.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

2. Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annu. Rev.
Entomol. 46(1), 413–440 (2001)

3. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Quantitative study of the fixed
threshold model for the regulation of division of labour in insect societies. Proc.
R. Soc. Lond. B: Biol. Sci. 263(1376), 1565–1569 (1996)

4. Bonabeau, E., Theraulaz, G., Deneubourg, J.-L.: Fixed response thresholds and
the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807
(1998)

5. Cornejo, A., Dornhaus, A., Lynch, N., Nagpal, R.: Task allocation in ant colonies.
In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 46–60. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-45174-8 4

6. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of 6th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 1–12 (1987)

7. Dertouzos, M.L., Mok, A.K.: Multiprocessor online scheduling of hard-real-time
tasks. IEEE Trans. Softw. Eng. 15(12), 1497–1506 (1989)

8. Dornhaus, A., Franks, N.: Individual and collective cognition in ants and other
insects (Hymenoptera: Formicidae). Myrmecological News 11, 215–226 (2008)

9. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distrib-
uted task allocation. In: Proceedings of 31st ACM Symposium on Principles of
Distributed Computing (PODC), pp. 67–76 (2012)

10. Feinerman, O., Korman, A.: The ANTS problem. Distrib. Comput. 30, 149–168
(2012). Extended abstracts appeared in PODC, : (together with Z, p. 2012. Lotker
and J.S, Sereni) and in DISC

11. Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random
arc-lengths. Discret. Appl. Math. 10(1), 57–77 (1985)

12. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in
multi-robot systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

13. Ghaffari, M., Musco, C., Radeva, T., Lynch, N.A.: Distributed house-hunting in
ant colonies. In: Proceedings of 34th ACM Symposium on Principles of Distributed
Computing (PODC), pp. 57–66 (2015)

14. Giakkoupis, G., Kermarrec, A.-M., Woelfel, P.: Gossip protocols for renaming and
sorting. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 194–208. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-41527-2 14

15. Gordon, D.M.: The organization of work in social insect colonies. Complexity 8(1),
43–46 (2002)

http://dx.doi.org/10.1007/978-3-662-45174-8_4
http://dx.doi.org/10.1007/978-3-642-41527-2_14

Ant-Inspired Dynamic Task Allocation via Gossiping 171

16. Gordon, D.M., Goodwin, B.C., Trainor, L.: A parallel distributed model of the
behaviour of ant colonies. J. of Theor. Biol. 156(3), 293–307 (1992)

17. Greene, M.J., Gordon, D.M.: Interaction rate informs harvester ant task decisions.
Behav. Ecol. 18(2), 451–455 (2007)

18. Hughes, W.O., Sumner, S., Borm, S.V., Boomsma, J.J.: Worker caste polymor-
phism has a genetic basis in acromyrmex leafcutting ants. Proc. Nat. Acad. Sci.
100(16), 9394–9397 (2003)

19. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: IEEE 44th Symposium on Foundations of Computer Science (FOCS),
pp. 482–491 (2003)

20. Kozub, S.: Amazons new drone delivery plan includes package parachutes. The
Verge (2017)

21. Langner, T., Uitto, J., Stolz, D., Wattenhofer, R.: Fault-tolerant ANTS. In: Kuhn,
F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 31–45. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-45174-8 3

22. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

23. Liu, L., Shell, D.A.: Large-scale multi-robot task allocation via dynamic partition-
ing and distribution. Auton. Robot. 33(3), 291–307 (2012)

24. Musco, C., Su, H., Lynch, N.A.: Ant-inspired density estimation via random walks:
extended abstract. In Procceedings of 35th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 469–478 (2016)

25. Pacala, S.W., Gordon, D.M., Godfray, H.C.J.: Effects of social group size on infor-
mation transfer and task allocation. Evol. Ecol. 10(2), 127–165 (1996)

26. Pereira, H.M., Gordon, D.M.: A trade-off in task allocation between sensitivity to
the environment and response time. J. Theor. Bio. 208(2), 165–184 (2001)

27. Radeva, T.: A Symbiotic Perspective on Distributed Algorithms and Social Insects.
Dissertation, Massachusetts Institute of Technology (2017)

28. Radeva, T., Dornhaus, A., Lynch, N., Nagpal, R., Su, H.-H.: Costs of task allocation
with local feedback: effects of colony size and extra workers in social insects and
other multi-agent systems. Preliminary version appeared as a brief announcement
In: Proceedings of 28th Symposium on Distributed Computing (DISC), pp. 657–
658 (2014, submitted)

29. Robinson, G.E.: Regulation of division of labor in insect societies. Annu. Rev.
Entomol. 37(1), 637–665 (1992)

30. Sendova-Franks, A.B., Franks, N.R.: Spatial relationships within nests of the ant
leptothorax unifasciatus (latr.) and their implications for the division of labour.
Anim. Behav. 50(1), 121–136 (1995)

31. Tripet, F., Nonacs, P.: Foraging for work and age-based polyethism: the roles of
age and previous experience on task choice in ants. Ethology 110(11), 863–877
(2004)

32. Wilson, E.O.: Caste and division of labor in leaf-cutter ants (Hymenoptera: Formi-
cidae: Atta). Behav. Ecol. Sociobiol. 7(2), 157–165 (1980)

http://dx.doi.org/10.1007/978-3-662-45174-8_3

Self-stabilizing Localization of the Middle Point
of a Line Segment by an Oblivious Robot

with Limited Visibility

Akihiro Monde(B), Yukiko Yamauchi, Shuji Kijima, and Masafumi Yamashita

Graduate School of Information Science and Electrical Engineering,
Kyushu University, Fukuoka 819-0395, Japan

monde@tcslab.csce.kyushu-u.ac.jp,

{yamauchi,kijima,mak}@inf.kyushu-u.ac.jp

Abstract. This paper poses a question about a simple localization prob-
lem, which is arisen from self-stabilizing location problems by oblivious
mobile autonomous robots with limited visibility. The question is if an
oblivious mobile robot on a line-segment can localize the middle point
of the line-segment in finite steps observing the direction (i.e., Left or
Right) and distance to the nearest end point. This problem is also akin to
(a continuous version of) binary search, and could be closely related to
computable real functions. Contrary to appearances, it is far from trivial
if this simple problem is solvable or not, and unsettled yet. This paper is
concerned with three variants of the original problem, minimally relax-
ing, and presents self-stabilizing algorithms for them. We also show an
easy impossibility theorem for bilaterally symmetric algorithms.

Keywords: Self-stabilization ·Oblivious mobile autonomous robot with
limited visibility · Computable real functions · Continuous binary search

1 Introduction

1.1 Background

Motivated by real applications such as wireless sensor networks with mobile
nodes, or motivated by computability of a distributed system from the theo-
retical point of view, designing self-stabilizing distributed algorithms for mobile
autonomous robots has been intensively investigated in distributed computing on
various problems such as pattern formation [7,14,19–22], gathering [1,2,4,5,12],
self-deployment [3,6,9–11,13,18] including scattering and coverage. Mainly from
the view point of self-stabilization, robots in those research have few memory, or
often no memory (oblivious), and hence they are required to solve problems from
“geometric” information observing. As an extreme case for theoretical tractabil-
ity, robots are often assumed to have (infinitely) large visibility such that they
respectively observe the whole robots, which corresponds to a situation that
sensor nodes are congested with in there sensing area in the practical sense.
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 172–186, 2017.
https://doi.org/10.1007/978-3-319-69084-1 12

Self-stabilizing Localization of the Middle Point of a Line Segment 173

However, real sensor nodes often do not have enough power of sensing, and lim-
ited visibility could be a more practical model and a challenging target. The
limitation of the visibility causes many intractability not only in practice but
also in theory, then the theory of distributed algorithms for autonomous mobile
robots with limited visibility is recently developing [1,2,7,9–12,22].

1.2 Problem: Localization of the Midpoint

A localization, inferring a place in a known environment, is clearly a fundamental
and significant task [16], especially for an autonomous mobile robot under limited
visibility. This paper is concerned with a very simple localization problem by an
oblivious mobile autonomous robot with limited visibility: Suppose that a robot
is located on a line-segment, then the goal is to localize eventually the middle
point of the line-segment (see Fig. 1, and also Sect. 2 for detail). The robot has
minimally sufficient visibility, precisely the visibility range is exactly the half
length of the line-segment, meaning that the robot can observe the both ends
only when it is located exactly at the midpoint, and observes only the nearest
end-point in the other location. The robot distinguishes left and right. Then, the
robot observes the direction to the nearest end-point, Left (L) or Right (R), and
the distance to there. The robot is oblivious, meaning that it does not have a
memory of the previous steps. However, it has very strong computability, beyond
Turing computable, in each step to deal with reals. Then, the question of the
paper is if there is a self-stabilizing algorithm to solve the localization problem
for any length of the line-segment and for any initial position of the robot.

(Left ()) (Right ())midpoint

Robot observes

Fig. 1. A sketch of the problem. An oblivious autonomous mobile robot on a line
segment observes the direction and distance (R, d) to the nearest end-point (Look),
decides the next place only based on (R, d) (Compute), and rigidly moves there (Move).
The goal is to localize eventually the middle point of the line-segment (see Sect. 2, and
Problem1 for more detail). Is there any self-stabilizing algorithm for any line-segment
of finite length and any initial point?

If a robot has a memory of the previous position and the motion to the
current position, then the problem is trivially solved: Suppose that the robot
observed the left-end in distance d at the previous position, moved to right by
distance 1, and observes the right-end in distance d′. Then, it is easy to see that
the midpoint is left to the current position by distance d+1+d′

2 − d′. Thus, the
oblivious is clearly a difficulty of the problem.

174 A. Monde et al.

1.3 Our Results

Contrary to its simple appearance of the problem, especially there is a single
robot in a 1-D space, it is far from trivial if the problem is solvable or not, and
the question is unsettled yet. This paper is concerned with three relaxed versions
of the basic problem, and shows the solvability of them by giving self-stabilization
algorithms, respectively. The first version is a convergence problem, which relaxes
the visibility condition such that the robot around the midpoint observes the
both ends, instead of exactly at the midpoint. Thus, the goal of the problem
is to localize a point in the line-segment near the midpoint, instead of exactly
localizing the midpoint (Sect. 3). The second version assumes a condition that
the length of the line-segment is rational, instead of an arbitrary finite real. The
algorithm is the most technical in the three versions in this paper (see Sect. 4).
The third version allows the robot a small memory. As we stated, if a robot has
a memory of the previous position, then the problem is easily solved. We show
that only a single-bit of memory is sufficient to solve the problem, meaning that
the robot localizes the midpoint in finite steps from arbitrary initial position
without any initialization of memory. The algorithm is simpler than the other
two cases, using some parity tricks, and could be practical (Sect. 5).

Above reasonably minimal relaxations of the problem are solvable, never-
theless we conjecture that the original problem is unsolvable. Concerning the
impossibility, we also give an easy impossibility theorem, where we assume that
an algorithm is restricted to be mirror symmetric at the midpoint (Sect. 6). In
Concluding Remark (Sect. 7) we also refer to some interesting versions unsettled.

1.4 Related Works

Closely related problems, or a direct motivation of the paper, are scattering or
coverage over a line or a ring by autonomous mobile robots with limited visibil-
ity [6,7,9–11]. Cohen and Peleg [6] were concerned with spreading of autonomous
mobile robots over a line (1-D space) where a robot observes the nearest neigh-
boring robot in each of left and right side. They presented a local algorithm lead-
ing to equidistant spreading on a line, and showed convergence and convergence
rate for fully synchronous (FSYNC) and semi-synchronous (SSYNC) models.
They also gave an algorithm to solve exactly when each robot has enough size
of memory, that is linear to the number of robots. Eftekhari et al. [10] studied
the coverage of a line segment by autonomous mobile robots placing grid points
with minimum visibility to solve the problem. They gave two local distributed
algorithms, one is for oblivious robots and it terminates in time quadratic to the
number of robots, while the other is for robots with a constant memory and it
terminates in linear time. Eftekhari et al. [9] showed the impossibility of the cov-
erage of a line-segment by robots with limited visibility in SSYNC model when
robots do not share left-right direction. Whereas, they showed that it is solvable
even in ASYNC model if robots shares left-right direction, have a visibility range
strictly greater than mobility range, and know the size of visibility range.

Self-stabilizing Localization of the Middle Point of a Line Segment 175

Flocchini et al. [11] were concerned with equidistant covering of a circle
by oblivious robots with limited visibility. They showed the impossibility of
exact solution if they do not share a common orientation of the ring. They also
showed the possibility by oblivious asynchronous robots with almost minimum
visibility when robots share a common orientation. Defago and Konagaya [7] were
concerned with circle formation in 2-D space by oblivious robots with limited
visibility, where robots do not know the size of their visibility range. In the paper,
they also dealt with equidistant covering of a circle, and gave an algorithm for
convergence.

2 Problem Description

The goal of this section is to describe our problem, Problem1 in Sect. 2.2, in
a form of an existence of a function1. Before explaining the formal description,
Sect. 2.1 explains the problem as an algorithm for an autonomous mobile robot.
Let Z, Z≥0, Z>0, Q and R respectively denote the whole set of integers, nonneg-
ative integers, positive integers, rationals and reals, in the paper.

2.1 Self-stabilizing Localization of the Midpoint by a Robot

Suppose that a robot is in a closed real interval [a, b] ⊆ R (a < b), where the
robot is a point and x ∈ [a, b] denotes a position of the robot. The robot does
not know neither a, b, b− a, nor x. Our goal is to design an algorithm according
to which a robot eventually localize the point (a + b)/2 ∈ [a, b] in finite steps.
The robot repeats executing a “Look-Compute-Move” cycle. In a Look phase,
it observes the nearest end-point SIDE ∈ {L,R}, and the distance d ∈ R to
the end-point. The robot also observes qMid if it places exactly at the midpoint
(a + b)/2. In a Compute phase, the robot deterministically decides the next
point only using SIDE and d. The robot also does not have any memory of the
previous “Look-Compute-Move” cycles, while we assume that the robot is able
to deal with reals, meaning that the computability in a Compute phase is much
stronger than Turing machine. In a Move phase, the robot moves to the point
which is computed in the Compute phase. Any move is rigid, meaning that the
robot arrives at the point without any failure.

Then, the question is if there is a universal algorithm by which the robot
localizes the midpoint (a + b)/2 ∈ [a, b] in finite steps for any a, b ∈ R (a <
b) and x ∈ [a, b], where the algorithm is universal means that it is described
homogeneous to any a, b and x.

2.2 Formal Description of the Problem

In order to avoid a confusion on the (computational) ability of the robot, we
give a simple and formal description of the problem, which is formulated as an
existence of a function describing the motion of the robot.
1 We conjecture that Problem1 is unsolvable. To avoid ambiguity, especially for an
impossibility proof (in the future), we give there a formal description of the problem.

176 A. Monde et al.

Problem 1 (Basic problem). A real D (1 < D < ∞), and a real x such that
−D ≤ x ≤ D are given as an instance of the problem. An observation function
φ : R × [−D,D] → O, where O := ({R,L} × [0,D)) ∪ {qMid}, is defined by

φ(D,x) =

⎧
⎪⎨

⎪⎩

(R,D − x) (if x > 0)
(L,D + x) (if x < 0)
qMid (otherwise, i.e., x = 0).

(1)

For convenience, we denote φ(D,x) = (SIDE(x), dD(x)) when x �= 0. A
map f : O → [−D,D] is a transition map2 if f(φ(D,x)) − x only depends on
dD(x) and SIDE(x) (but independent of D or x), and f(φ(D,x)) ∈ [−D,D]
for any x ∈ [−D,D]. The goal of the problem is to design a transition map
f : O → [−D,D] for which an integer n (0 ≤ n < ∞) exists for any real D
(1 < D < ∞) and x0 ∈ [−D,D] such that xn = 0 where xi+1 = f(φ(D,xi)) for
i = 0, 1, 2, More precisely, let Ψ : R× [−D,D] → Z≥0 be a potential function
defined by

Ψ(D,x) = min{n ∈ Z≥0 | x0 = x, xn = 0, xi+1 = f(φ(D,xi))} (2)

for any instance D (1 < D < ∞) and x ∈ [−D,D], then Ψ(D,x) needs to be
bounded (may depend on D).

In terms of the localization by an autonomous mobile robot, the robot at
x ∈ [−D,D] observes the nearest end-point SIDE(x), and the distance d(x)
to the end where d(x) abbreviates dD(x) without a confusion. Then, the robot
moves from the current position x to the next position f((SIDE(x), d(x))). Let

M((SIDE(x), d(x))) := f((SIDE(x), d(x))) − x

for (SIDE(x), d(x)) ∈ O, then M((SIDE(x), d(x))) represents the “motion” of
the robot when the robot observes the direction SIDE(x) and the distance d(x).
Since only SIDE(x) and d(x) are available to the robot, M((SIDE(x), d(x)))
(i.e., f(φ(D,x)) − x) should depend only on SIDE(x) and d(x). The potential
function Ψ(D,x) represents the number of steps to localize the midpoint by the
algorithm given by the transition map f .

3 Relaxation 1: Convergence

To begin with, this section shows that a convergence version of Problem 1 is
solvable. To be precisely, we are concerned with the following problem

Problem 2 (Convergence). A real D (1 < D < ∞), a real ε (0 < ε ≤ D) and
a real x ∈ [−D,D] are given as an instance of the problem. The observation
function (of Problem2) φ : R × R × [−D,D] → O is given by

φ(D, ε, x) =

⎧
⎪⎨

⎪⎩

(R,D − x) (if x > ε)
(L,D + x) (if x < −ε)
qMid (otherwise, i.e., −ε ≤ x ≤ ε).

(3)

2 Here, x �→ f(φ(D, x)) represents a transition of the robot on the interval [−D, D].

Self-stabilizing Localization of the Middle Point of a Line Segment 177

A map f is a transition map if f(φ(D,x))−x depends only on dD(x) and SIDE(x)
(but independent of D, x, or ε), and f(φ(D,x)) ∈ [−D,D] for any x ∈ [−D,D].
The goal of the problem is to design a transition map f : O → [−D,D] for which
an integer n (0 ≤ n < ∞) exists for any reals D (1 < D < ∞), ε (0 < ε ≤ D)
and x0 ∈ [−D,D] such that −ε ≤ xn ≤ ε where xi+1 = f(φ(D, ε, xi)) for
i = 0, 1, 2,

The condition that f(φ(D,x)) − x is independent of ε corresponds to the
situation that ε is not available to the robot. Thus, an algorithm is required two
conflicting functions: The step-lengths are (preferably) decreasing, otherwise the
robot misses the small interval [−ε, ε]. On the other hand, the total length of
the moves should diverge as increasing the number of steps, otherwise the robot
stops before reaching at the midpoint when D is larger than the upper bound
of the total length of the moves.

The rest of this section shows the following theorem.

Theorem 1. Problem 2 is solvable.

3.1 Preliminary

As a preliminary step of the proof of Theorem1, as well as for Theorem 2 in
Sect. 4, here we briefly remark three properties on the reciprocals of the square
roots of primes, which are versions of well-known fundamental facts. Let P denote
the whole set of prime numbers, and let πi ∈ P (i = 1, 2, 3, . . .) denote the i-th
smallest prime number, i.e., π1 = 2, π2 = 3, π3 = 5, π4 = 7,

First, we remark the following (almost) trivial fact.

Proposition 1. 1/
√

πk is monotone decreasing and asymptotic to 0 with respect
to k.
�

Second, we remark that the sum of 1/
√

πi diverges, using the well-known fact
that the sum of the reciprocals of all prime numbers diverges. For convenience
of the later argument, let

σk =
k∑

i=1

1√
πi

(4)

for each k ∈ Z. We also define σ0 = 0 for convenience.

Proposition 2.
∑∞

i=j
1√
πi

= ∞ for any finite j ∈ Z>0.

Proof. It is known, due to Euler [8], that
∑∞

i=1
1
πi

= ∞ (cf. [17]). Clearly, 1√
πi

>
1
πi

holds for each i = 1, 2, . . ., and we obtain that
∑∞

i=1
1√
πi

= limk→∞ σk = ∞.

Since the finite sum
∑j−1

i=1
1√
πi

is upper bounded for any finite j, we obtain the
claim.
�

Third, we remark the fact that 1√
πi

are bases of R with rational coefficients
(see e.g., [15]).

178 A. Monde et al.

Proposition 3. Let

Σi = {α + βσi | α, β ∈ Q, β �= 0} (5)

for i ∈ Z≥0. Then, Σi ∩ Σj = ∅ when i �= j.

Proof (Sketch). Notice that 1/
√

πk = (1/πk)
√

πk. Let F0 = Q, and let Fk+1 =
Fk(πk+1) (k = 0, 1, 2, . . .) be the extension filed adjoining {√πk+1} to Fk. We
claim that

{√∏
i∈I πi | I ⊆ {1, . . . , k}}, where

∏
i∈∅ πi = 1, is a basis of Fk over

Q. The proof is an induction with respect to k. In case that k = 1, it is easy to
see that {1,

√
2} is a basis of F1 over Q. Suppose that claim holds for k, then

we claim that {1,
√

πk+1} is a basis of Fk+1 over Fk. Assume for a contradiction
that

√
πk+1 = α0 + α1

√
w1 + · · · + α2k−1

√
w2k−1, (6)

holds where α0, . . . , α2k−1 ∈ Q. Suppose αi �= 0 and αj �= 0 holds for a distinct
i, j. Then,

πk+1 =
(
α0 + α1

√
w1 + · · · + α2k−1

√
w2k−1

)2 (7)

implies a contradiction since the left-hand-side is rational but the right-hand-
side is irrational since αiαj

√
wiwj �= 0 remains there, where we use the inductive

hypothesis that √
wiwj is a base of Fk over Q. Suppose there uniquely exists i

satisfying αi �= 0. Then, πk+1 = α2
i wi, which implies αi = ±√

πk+1/wi. It
contradicts to αi ∈ Q since πk+1 and wi are coprime. Thus, Fk+1 = {a1+a2πk+1 |
a1, a2 ∈ Fk} holds, and we obtain the claim.
�

3.2 Proof of Theorem1

Now, we prove Theorem 1.

Proof (Proof of Theorem 1). The proof is constructive. For convenience, let Δk =
{σk − z | z ∈ Z≥0} for k = 1, 2, . . . (recall the definition (4) of σk). We define a
transition map f : O → [−D,D] to solve Problem 2 by

f((L, d)) =

⎧
⎪⎨

⎪⎩

x +
1√

πk+1
(if d ∈ Δk for some k ∈ Z>0),

x − d +
1√
2

(otherwise, i.e., d �∈ Δk for any k ∈ Z>0),

f((R, d)) = x − 1,

f(qMid) = x

in each case of φ(D,x) = (L, d), (R, d) or qMid for any x ∈ [−D,D] (see also
Algorithm 1). It is not difficult to observe that f is a transition map (recall
Problem 2). Then, we show for any x0 ∈ [−D,D] that a finite n ∈ Z≥0 exists such
that −ε < xn < ε where xt = f(φ(D,xt−1)) for t = 1, 2, For convenience, let
(SIDE(t), d(t)) = φ(D,xt) (Fig. 2).

Self-stabilizing Localization of the Middle Point of a Line Segment 179

Firstly, we observe that if SIDE(t) = R, then there exists t′ (t′ > t) such
that SIDE(t′) = L, or φ(D,xt′) = qMid, since the sum of −1’s diverges (to −∞).
Secondly, we observe that if SIDE(t) = L and d(t) �∈ Δk for any k = 1, 2, . . .,
then SIDE(t+1) = L and d(t+1) = 1/

√
2 ∈ Δ1. Thus, without loss of generality,

we may assume that SIDE(0) = L and d(0) ∈ Δk for some k = 1, 2, . . ., where
notice that k is uniquely determined by Proposition 3.

Suppose SIDE(t) = L and d(t) ∈ Δk. We remark that −D + xt ∈ Δk since
d(t) = −D + xt when SIDE(t) = L. Then, −D + xt+1 = −D + xt + 1/

√
πk+1 ∈

Δk+1 by the definition of f . Since
∑∞

j=k 1/
√

πj diverges by Proposition 2, there
exists t′ (t′ > t) such that SIDE(t′) = R, or φ(D,xt′) = qMid. Here, we specially
remark that −D+xt′ ∈ Δk′ holds for some k′ even in the case that SIDE(t′) = R.
If −D + xt′ ∈ Δk′ and SIDE(t′) = R, then −D + xt′+1 = −D + (xt′ − 1) ∈ Δk′ .
This implies that k is monotone nondecreasing with respect to t, and hence the
step size xt+1 − xt = 1/

√
πk when SIDE(t) = L is monotone decreasing with

respect to t by Proposition 1. Particularly, we note that the step size xt+1 − xt

when SIDE(t) = L is smaller than ε if 1/
√

πk < ε holds for k. Thus, eventually
we obtain the situation −ε ≤ xt∗ ≤ ε for a finite t∗ ∈ Z≥0.
�

(Left) (Right) (Left) (Right)

Fig. 2. Algorithm1: SIDE(t) = L in the left fig., and SIDE(t) = R in the right fig.

Algorithm 1. (for convergence)
1: loop
2: observe (SIDE, d) or qMid

3: if SIDE = L then
4: if d ∈ Δk then
5: move to the right by distance 1√

πk+1

6: else
7: move to the point distance 1√

2
right from the left-end

8: end if
9: else if SIDE = R then
10: move to the left by distance 1
11: else
12: (i.e., qMid is observed) stay there
13: end if
14: end loop

180 A. Monde et al.

4 Relaxation 2: D Is Rational

Problem 1 is solved under some assumptions or conditions. As a nontrivial and
interesting example, this section presents an algorithm for any rational D, where
we remark that an arbitrary real point of the interval is given as an initial
position. Precisely, we are concerned with the following problem.

Problem 3 (Rational D). As given the observation function φ : R× [−D,D] → O
defined by (1), the goal of the problem is to design a transition map f : O →
[−D,D] for which the potential function Ψ(D,x), defined by (2), is bounded for
any rational D (1 < D < ∞) and any real x ∈ [−D,D].

Theorem 2. Problem 3 is solvable.

Proof. The proof is constructive. We define a transition map f : O → [−D,D]
to solve Problem 3 by

f((L, d)) =

⎧
⎨

⎩

x +
1√

πk+1
if d = σk for some k ∈ Z≥0

x − d (= −D) if d �= σk for any k ∈ Z≥0

f((R, d)) =

⎧
⎪⎨

⎪⎩

x − min
{

σk − d

2
, d

}

if d + σk ∈ Q for some k ∈ Z>0

x − d if d + σk �∈ Q for any k ∈ Z>0

f(qMid) = x

in each case of φ(D,x) = (L, d), (R, d) or qMid for any x ∈ [−D,D] (see also
Algorithm 2). It is not difficult to observe that f is a transition map (recall
Problem 1). For convenience, let (SIDE(t), d(t)) = φ(D,xt).

First, we show for any x0 ∈ [−D, 0) that a finite n ∈ Z>0 exists such that
xn = 0 where xt = f(φ(D,xt−1)) for t = 1, 2, If d(0) �= σk for any k ∈
Z≥0, then x1 = −D, meaning that d(1) = 0 = σ0, thus it is reduced to the
case d(0) = σk for some k. We also remark that SIDE(t) = L and d(t) = σk

imply that xt = −D + σk. Suppose that SIDE(t) = L and xt = −D + σk then
xt+1 = −D + σk + 1/

√
πk+1 = −D + σk+1. This implies that we have a finite

τ = min{t′ ∈ Z>0 | SIDE(t′) = R} since limk→∞ σk = ∞ by Proposition 2.
Notice that xτ = −D + σk′ , for some k′ ∈ Z>0 where k′ is uniquely determined
by Proposition 3. Furthermore, d(τ) + σk′ = (D − xτ) + σk = 2D ∈ Q by the
hypothesis D ∈ Q. Therefore, xτ − σk′−d(τ)

2 = 0 holds, and we obtain the claim
in this case (Fig. 3).

Next, we are concerned with the case that x0 ∈ (0,D], and show that there
is t ∈ Z>0 such that xt ≤ 0, then it is reduced to the case that x0 ∈ [−D, 0),
or the trivial case x0 = 0. Notice that if d(s) + σk �∈ Q then d(s + 1) = 2d(s),
which implies that if the case occurs at most finite times, we eventually obtain
the desired case that xt < 0. In fact, we claim that the case occurs at most once
before xt < 0. Without loss of generality, we may assume that d(0) + σk ∈ Q,

Self-stabilizing Localization of the Middle Point of a Line Segment 181

then we claim that d(s) + σi �∈ Q for any s ∈ {t ∈ Z>0 | ∀t′ ≤ t, xt′ > 0} and
for any i ∈ Z≥0. By the definition of f , if σk−d(0)

2 ≤ d(0) then

d(1) = D − x1

= D −
(

x0 − σk − d(0)
2

)

= d(0) +
σk − d(0)

2

=
d(0) + σk

2

and hence d(1) = d(0) + σk ∈ Q by the hypothesis of the case. This implies that
d(1) + σi �∈ Q for any i = 1, 2, 3, Clearly, d(2) = 2d(1) ∈ Q, and recursively
we obtain the claim.
�

(Left) (Right)

Fig. 3. At time τ in the proof of Theorem2.

Algorithm 2. (rational D)
1: loop
2: observe (SIDE, d) or qMid

3: if SIDE = L then
4: if d = σk for some k = 0, 1, 2, . . . then
5: move to the right by distance 1/

√
πk+1

6: else
7: move to the left-end
8: end if
9: else if SIDE = R then
10: if d + σk ∈ Q for some k = 1, 2, . . ., and σk−d

2
≤ d then

11: move to the left by distance σk−d
2

12: else
13: move to the left by distance d
14: end if
15: else
16: (i.e., qMid is observed) stay there
17: end if
18: end loop

182 A. Monde et al.

5 Relaxation 3: With a Single-Bit Memory

Memoryless is definitely a property which makes the problem difficult because
Problem 1 is easily solved if the robot has enough memory (recall Sect. 1.2).
Interestingly, this section shows that only a single-bit memory is sufficient for a
self-stabilizing localization of the midpoint. The problem, with which this section
is concerned, is formally described as follows.

Problem 4 (With a single-bit memory). As given the observation function φ : R×
[−D,D] → O defined by (1), the goal of the problem is to design a transition
map with memory f : O ×{0, 1} → [−D,D]×{0, 1} for which an integer n (0 ≤
n < ∞) exists for any real D (1 < D < ∞), real x0 ∈ [−D,D] and b0 ∈ {0, 1}
such that xn = 0 where (xi+1, bi+1) = f(φ(D,xi), bi) for i = 0, 1, 2,

Theorem 3. Problem 4 is solvable.

Proof. The proof is constructive. We define a transition map f : O × {0, 1} →
[−D,D] × {0, 1} to solve Problem 4 by

f((L, d), b) =

{
(x − d, 0) if d �∈ Z≥0

(x + 1, (d + 1) mod 2) if d ∈ Z≥0

f((R, d), b) =

⎧
⎪⎪⎨

⎪⎪⎩

(

D − d + �d�
2

, (b + 1) mod 2
)

if b ≡ �d� (mod 2)
(

D − d + �d� + 1
2

, (b + 1) mod 2
)

if b �≡ �d� (mod 2)

f(qMid, b) = (x, b)

in each case of φ(D,x) = (L, d), (R, d) or qMid for any x ∈ [−D,D] (see also
Algorithm 3). It is not difficult to observe that f is a transition map (recall
Problem 1), especially considering that D = x + d when φ(D,x) = (R, d).

First, we show for any x0 ∈ [−D, 0) that a finite n ∈ Z>0 exists such that
xn = 0 where (xt, bt) = f(φ(D,xt−1), bt−1) for t = 1, 2, For convenience,
let (SIDE(t), d(t)) = φ(D,xt). Let τ = min{t ∈ Z≥0 | SIDE(t) = R}. Then, we
can observe that xτ = −D + �D�, and hence d(τ) = D − xτ = D − (−D +
�D�) = 2D − �D�. Thus, �d(τ)� = �2D − �D�� = �2D� − �D�, meaning that
�d(τ)�+ �D� = �2D�. It is not difficult from the property of the ceiling function
to see that 2�D� − 1 ≤ �2D� ≤ 2�D� holds. Note that b ≡ �D� (mod 2), then

�d(τ)� =

{
�D� if b ≡ �d(τ)� (mod 2)
�D� − 1 if b �≡ �d(τ)� (mod 2)

holds. Since d(τ) = 2D − �D�,

D =

⎧
⎪⎪⎨

⎪⎪⎩

d(τ) + �d(τ)�
2

if b ≡ �d(τ)� (mod 2)

d(τ) + �d(τ)� + 1
2

if b �≡ �d(τ)� (mod 2)

Self-stabilizing Localization of the Middle Point of a Line Segment 183

holds. Now it is not difficult to observe that we obtain xτ+1 = 0 by the definition
of f .

Next, we claim that if SIDE(t) = R then there is t′ (t′ > t) such that
SIDE(t′) = L or xt′ = 0, meaning that it is reduced to the case x0 ≤ 0. In fact,
we show that xt+3 ≤ xt − 1

2 holds for any t as long as SIDE(t) = SIDE(t + 1) =
SIDE(t+2) = R, and hence it implies the claim. We remark that xt+1 ≤ xt holds
when SIDE(t) = R by the definition of the transition map f . Suppose SIDE(t) =
SIDE(t + 1) = SIDE(t + 2) = R. In case that b(s) �≡ �d(s)� (mod 2) holds for
some s ∈ {t, t+1, t+2}, then xs+1 = D− d(s)+�d(s)�+1

2 ≤ D−d(s)− 1
2 = x(s)− 1

2 ,
and we obtain the claim in the case. In the other case, i.e., b(s) ≡ �d(s)� (mod 2)
hold for each s ∈ {t, t + 1, t + 2}. Since the parities of b(t), b(t + 1) and b(t + 2)
alternately changes, the parities of �d(t)�, �d(t + 1)� and �d(t + 2)� alternately
changes, too. This implies �d(t)� ≡ �d(t + 2)� (mod 2) but �d(t)� �= �d(t + 2)�.
Accordingly, d(t + 2) − d(t) > 1 holds in the case. We obtain the claim.
�

Algorithm 3. (with a single-bit memory)
1: given initial memory bit b ∈ {0, 1} (adversarially) arbitrarily
2: loop
3: observe (SIDE, d) or qMid

4: if SIDE = L then
5: if d ∈ Z then
6: move to the right by distance 1
7: set b := d + 1 (mod 2)
8: else
9: move to the left-end
10: set b := 0
11: end if
12: else if SIDE = R then
13: if b ≡ �d	 (mod 2) then

14: move to the left by distance d+�d�
2

15: set b := b + 1 (mod 2)
16: else
17: move to the left by distance d+�d�+1

2

18: set b := b + 1 (mod 2)
19: end if
20: else
21: (i.e., qMid is observed) stay there
22: end if
23: end loop

6 Impossibility of a Symmetric Algorithm

We conjecture Problem 1 is unsolvable under some appropriate axiomatic sys-
tem. This section gives an easy impossibility theorem for Problem 1 assuming a

184 A. Monde et al.

(very strong) condition. We say a transition map is symmetric if f(φ(D,−x)) =
−f(φ(D,x)) holds for any x ∈ [−D,D] for any D ∈ R.

Theorem 4. No symmetric algorithm solves Problem1.

Fig. 4. Impossibility by a symmetric algorithm

Proof. Assume for a contradiction that f is a symmetric transition map which
solves Problem 1. Then, there is x∗ ∈ [−D,D] \ {0} such that f(φ(D,x∗)) =
0, meaning that Ψ(D,x∗) = 1. Since f is symmetric, f(φ(D,−x∗)) =
−f(φ(D,x∗)) = 0 holds, too. Thus, we may assume x∗ > 0 without loss of
generality.

Here, we remark on an observation function that φ(D − u, x − u) = φ(D,x)
holds for any D, x and u (u < x) when x > 0, as well as that φ(D − u, x + u) =
φ(D,x) when x < 0. Since f is a transition map, meaning that f(φ(D,x)) − x
is independent of x,

f
(
φ

(
D − x∗

2 , x∗ − x∗
2

))
−

(

x∗ − x∗

2

)

= f (φ(D,x∗)) − x∗

2
= −x∗

2
(8)

holds by the assumption f(φ(D,x∗)) = 0. On the other hand,

f
(
φ

(
D − x∗

2 ,−x∗
2

))
= −f

(
φ

(
D − x∗

2 , x∗
2

))
=

x∗

2
(9)

holds since the assumption that f is symmetric. It is not difficult to see that (8)
and (9) imply Ψ(D − x∗

2 , x∗
2) = Ψ(D − x∗

2 ,−x∗
2) = ∞. Contradiction (Fig 4).
�

7 Concluding Remark

Motivated by the theoretical difficulty of self-stabilization of autonomous mobile
robots with limited visibility, this paper is concerned with a very simple localiza-
tion problem. The techniques used in Sects. 3 and 4 are theoretically interesting,
and may indicate why the impossibility proofs of this topic are often difficult.
On the other hand, the parity tricks used in Sect. 5 for a robot with a single-bit
memory could be reasonably simple and practically useful.

Self-stabilizing Localization of the Middle Point of a Line Segment 185

Problem 1 remains as unsettled, and we conjecture that it is unsolvable under
an appropriate axiom system. There are many possible variants of Problem 1.
A mathematically interesting version is a restriction to the rational interval,
formally described as follows.

Problem 5 (Rational domain). As given an observation function φ : Q ×
[−D,D]Q → O, the goal is to design a rational transition map f : O → [−D,D]Q
such that the potential function Ψ(D,x) is bounded for any rational D (1 < D <
∞), and rational x ∈ [−D,D]Q, where [−D,D]Q denotes [−D,D] ∩ Q.

For the version, a diagonal argument may work.
Clearly, self-stabilizing coverage, spreading, pattern formation etc. by many

robots with limited visibility are important future works.

Acknowledgement. This work is partly supported by JSPS KAKENHI Grant Num-
bers 15K15938 and 17K19982.

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots. IEEE Trans. Robot. Autom. 15, 818–828
(1999)

2. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: IEEE Symposium of Intelligent
Control, pp. 453–460 (1995)

3. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniforming scattering
of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22, 679–697
(2011)

4. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

5. Cohen, R., Peleg, D.: Local algorithms for autonomous robot systems. In: Flocchini,
P., Gasieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 29–43. Springer,
Heidelberg (2006). doi:10.1007/11780823 4

6. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theoret. Comput. Sci. 399, 71–82 (2008)

7. Defago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots
with no common sense of orientation. In: Proceedings of Workshop on Principles
of Mobile Computing, pp. 97–104 (2002)

8. Euler, L.: Variae observationes circa series infinitas. Commentarii Academiae Sci-
entiarum Petropolitanae 9, 160–188 (1737)

9. Eftekhari, M., Flocchini, P., Narayanan, L., Opatrny, J., Santoro, N.: Dis-
tributed barrier coverage with relocatable sensors. In: Halldórsson, M.M. (ed.)
SIROCCO 2014. LNCS, vol. 8576, pp. 235–249. Springer, Cham (2014). doi:10.
1007/978-3-319-09620-9 19

10. Eftekhari, M., Kranakis, E., Krizanc, D., Morales-Ponce, O., Narayanan, L., Opa-
trny, J., Shende, S.: Distributed algorithms for barrier coverage using relocatable
sensors. Distrib. Comput. 29, 361–376 (2016)

11. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment algorithms for mobile
sensors on a ring. Theoret. Comput. Sci. 402, 67–80 (2008)

http://dx.doi.org/10.1007/11780823_4
http://dx.doi.org/10.1007/978-3-319-09620-9_19
http://dx.doi.org/10.1007/978-3-319-09620-9_19

186 A. Monde et al.

12. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
mobile robots with limited visibility. Theoret. Comput. Sci. 337, 147–168 (2005)

13. Flocchini, P., Prencipe, G., Santoro, N.: Computing by mobile robotic sensors.
In: Nikoletseas, S., Rolim, J. (eds.) Theoretical Aspects of Distributed Comput-
ing in Sensor Networks. Monographs in Theoretical Computer Science. Springer,
Heidelberg (2011)

14. Fujinaga, N., Yamauchi, Y., Ono, H., Kijima, S., Yamashita, M.: Pattern formation
by oblivious asynchronous mobile robots. SIAM J. Comput. 44(3), 740–785 (2015)

15. Fujisaki, G.: Field and Galois Theory. Iwanami, Tokyo (1991). (in Japanese)
16. Kleinberg, J.M.: The localization problem for mobile robots. In: Proceedings of

FOCS, pp. 521–531 (1994)
17. Narkiewicz, W.: The Development of Prime Number Theory. Springer, Heidelberg

(2000)
18. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deploy-

ment of mobile agents in asynchronous rings. In: Proceedings of PODC, pp. 415–
424 (2016)

19. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots. SIAM J. Com-
put. 28, 1347–1363 (1999)

20. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoret. Comput. Sci. 411, 2433–2453 (2010)

21. Yamauchi, Y., Uehara, T., Kijima, S., Yamashita, M.: Plane formation by syn-
chronous mobile robots in the three dimensional euclidean space. J. ACM 64, 16
(2017)

22. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited
visibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol.
8179, pp. 201–212. Springer, Cham (2013). doi:10.1007/978-3-319-03578-9 17

http://dx.doi.org/10.1007/978-3-319-03578-9_17

Robust Routing Made Easy

Christoph Lenzen and Moti Medina(B)

MPII, Saarland Informatics Campus, Saarbrücken, Germany
{clenzen,mmedina}@mpi-inf.mpg.de

Abstract. Designing routing schemes is a multidimensional and com-
plex task that depends on the objective function, the computational
model (centralized vs. distributed), and the amount of uncertainty
(online vs. offline). We showcase simple and generic transformations that
can be used as a blackbox to increase resilience against (independently
distributed) faults. Given a network and a routing scheme, we determine
a reinforced network and corresponding routing scheme that faithfully
preserves the specification and behavior of the original scheme. We show
that reasonably small constant overheads in terms of size of the new net-
work compared to the old one are sufficient for substantially relaxing the
reliability requirements on individual components. The main message in
this paper is that the task of designing a robust routing scheme can be
decoupled into (i) designing a routing scheme that meets the specifica-
tion in a fault-free environment, (ii) ensuring that nodes correspond to
fault-containment regions, i.e., fail (approximately) independently, and
(iii) applying our transformation to obtain a reinforced network and a
robust routing scheme that is fault-tolerant.

1 Introduction

When scaling up the size of systems, one inevitably faces the challenge of suf-
ficiently enhancing reliability to ensure intended operation. Specifically, this
applies to the communication infrastructure, which must remain operational
despite failures of some components. Otherwise, isolated faults would bring down
the entire system, which is impractical unless the failure probability of individual
components is so small that it is likely that none of them fail. Existing designs
and algorithms (that are considered practical) do account for lost messages and,
in some cases, permanently crash-failing nodes or edges [4,9,12].

It is our understanding that handling stronger fault types is considered prac-
tically infeasible, be it in terms of complexity of implementations or the involved
overheads. However, pretending that crash failures are the worst that can happen
means that the entire system possibly fails whenever, e.g., we face a “babbling
idiot” (i.e., a node erroneously generating many messages and congesting the net-
work), excessive link delays (violating specification), or misrouting, corruption,

The full version of this extended abstract can be found in https://arxiv.org/abs/
1705.04042.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 187–202, 2017.
https://doi.org/10.1007/978-3-319-69084-1_13

https://arxiv.org/abs/1705.04042
https://arxiv.org/abs/1705.04042

188 C. Lenzen and M. Medina

or loss of messages. The current approach is to (i) use techniques like error cor-
rection, acknowledging reception, etc. to mask the effects of such faults, (ii) hope
to detect and deactivate faulty components quickly (logically mapping faults to
crashes), and (iii) repair or replace the faulty components after they have been
taken offline. This strategy may result in significant disruption of applications;
possible consequences include:

(I) Severe delays in execution, as successful message delivery necessitates
to detect and deactivate faulty components first. (II) Failure to deliver correct
messages and the resulting repeated attempts to do so (both by applications or
routing algorithms) overload the network; the resulting congestion then renders
the system inoperative as a whole. (III) Constraints on message delivery times
are violated, breaking any real-time service. (IV) More generally, any instance
of the classic fallacy of assuming that the network is reliable [16] may cause
secondary errors.

In this paper, we challenge the belief that resilience to strong fault types is
intractable in practice. We discuss generic approaches to reinforcing networks at
small constant overheads (in terms of resources like nodes, links, latency, and
energy) to achieve resilience to non-crash faults (up to fully Byzantine, i.e., arbi-
trary behavior). The proposed strategies are deliberately extremely simple, both
in terms of applying them and analyzing them. Yet, they substantially reduce
the required reliability on the component level to maintain network functional-
ity, without losing messages or increasing latencies. We provide transformations
that allow for directly reusing non-fault-tolerant routing schemes as a blackbox,
avoiding the need to refactor working solutions. The main message we seek to
convey is that being prepared for non-benign faults can be simple, affordable,
and practical, and therefore enables building larger reliable networks.

The Challenge. We are given a synchronous network G = (V,E) and a routing
scheme. We seek to allocate additional resources (nodes, edges) to the network
and provide a corresponding routing strategy to simulate the routing scheme
on the original network despite non-benign node failures. The goals are to (i)
use little additional resources, (ii) maximize the probability of uniformly inde-
pendently random node failures the network is likely to withstand, (iii) ensure
that the transformation is simple to implement, and (iv) interferes as little as
possible with the existing system design and operation, e.g., does not change
the reinforced system’s specification. Note that both (iii) and (iv) are crucial for
practical utility; significant refactoring of existing systems and/or accommodat-
ing substantial design constraints is rarely affordable.

This setting makes a number of simplifying assumptions. First and probably
most notably, we assume independent failures. This is motivated by the fact
that highly correlated faults necessitate high degrees of redundancy and thus
overheads; clearly, a system-wide power outage, whether rare or not, cannot be
addressed by adding extra nodes or edges that are connected to the same power
source, but requires independent backup power. More generally, guaranteeing
full functionality despite having f adversarially placed faults trivially requires
node degrees larger than f . As there are many reasons why topologies of com-

Robust Routing Made Easy 189

munication networks feature very small degrees in practice, assuming worst-case
distribution of faults would hence come at too high of a cost. Instead, we aim
at masking faults with little or no correlation among each other, arguing that
resilience to such faults can be boosted significantly. Second, in this context
we treat nodes and their outgoing links as fault-containment regions (accord-
ing to [10]), i.e., they are the basic components our systems are comprised of.
This choice is made for the sake of concreteness; similar results could be obtained
when considering, e.g., edge failures, without changing the gist of results or tech-
niques. With these considerations in mind, the probability of uniformly random
node failures that the reinforced system can tolerate is a canonical choice for
measuring resilience. Third, we focus on synchronous networks. This has several
reasons: we believe synchrony helps in handling faults, both on the theoretical
level (as illustrated by the famous FLP theorem [8]) and for ensuring correct
implementation; it simplifies presentation, making it easier to focus on the pro-
posed concepts; last but not least, we believe our approach to be of particular
interest in the context of real-time systems, where the requirement of meeting
hard deadlines makes synchrony an especially attractive choice.

Techniques and Results. Our first approach is almost trivial: We replace each
node by � ∈ N copies and for each edge we connect each pair of copies of its
endpoints, where � is a constant.1 Whenever a message would be sent over an
edge in the original graph, it should be sent over each copy of the edge in the
reinforced graph. If not too many copies of a given node fail, this enables each
receiving copy to recover the correct message. Thus, each non-faulty copy of a
node can run the routing algorithm as if it were the original node, guaranteeing
that it has the same view of the system state as its original in the corresponding
fault-free execution of the routing scheme on the original graph.

We observe that, asymptotically almost surely (a.a.s., with probability
1 − o(1)) and with � = 2f + 1, this reinforcement can sustain an independent
probability p of Byzantine node failures for any p ∈ o(n−1/(f+1)). This threshold
is sharp up to (small) constant factors: for p ∈ ω(n−1/(f+1)), a.a.s. there is some
node for which all of its copies fail. If we restrict the fault model to omission
faults (faulty nodes may skip sending some messages), � = f+1 suffices. The cost
of this reinforcement is that the number of nodes and edges increase by factors
of � and �2, respectively. Therefore, already this simplistic solution can support
non-crash faults of probability p ∈ o(1/

√
n) at a factor-4 overhead. Note that

the simulation introduces no big computational overhead and does not change
the way the system works, enabling to use it as a blackbox. Randomized algo-
rithms can be simulated as well, provided that all copies of a node have access
to a shared source of randomness; note that this requirement is much weaker
than globally shared randomness: it makes sense to place the copies of a node
in physical proximity to approximately preserve the geometrical layout of the
physical realization of the network topology.

1 Choosing concreteness over generality, we focus on the, in our view, most interesting
case of constant �. It is straightforward to generalize the analysis.

190 C. Lenzen and M. Medina

We then proceed to reducing the involved overhead further. To this end, we
apply the above strategy only to a small subset E′ of the edge set. Denoting by
v1, . . . , v� the copies of node v ∈ V , for any remaining edge {v, w} ∈ E \ E′ we
add only edges {vi, wi}, i ∈ [�, to the reinforced graph. The idea is to choose E′

in a way such that the connected components induced by E \ E′ are of constant
size. This results in the same asymptotic threshold for p, while the number of
edges of the reinforced graph drops to ((1 − ε)� + ε�2)|E|. For constant ε, we
give constructions with this property for grids or tori of constant dimension
and minor-free graphs of bounded degree. Again, we consider the case of f = 1
of particular interest: in many typical network topologies, we can reinforce the
network to boost the failure probability that can be tolerated from Θ(1/n) to
Ω(1/

√
n) by roughly doubling (omission faults) or tripling (Byzantine faults)

the number of nodes and edges.
The redundancy in this second construction is near-optimal under the con-

straint that we want to simulate an arbitrary routing scheme in a blackbox
fashion, as it entails that we need a surviving copy of each edge, and thus in
particular each node. While one may argue that the paid price is steep, in many
cases it will be smaller than the price for making each individual component suf-
ficiently reliable to avoid this overhead. Furthermore, we briefly argue that the
simplicity of our constructions enables us to re-purpose the redundant resources
in applications with less strict reliability requirements.

We conclude by suggesting open problems we consider of interest for further
developing the proposed paradigm of reinforcement against non-benign faults.

Related Work. Local Byzantine faults were studied in [5,13] in the context of
broadcast and consensus problems. Unlike its global classical counterpart, the
f -local Byzantine adversary can control at most f neighbors of each vertex. This
more restricted adversary gives rise to more scalable solutions, as the problems
can be solved in networks of degree O(f); without this restriction, degrees need
to be proportional to the total number of faults in the network.

We also limit our adversary in its selection of Byzantine nodes, by requiring
that the faulty nodes are chosen independently at random. As illustrated, e.g.,
by Lemma 1 and Theorem 1, there is a close connection between the two settings.
Informally, we show that certain values of p correspond, asymptotically almost
surely (a.a.s), to an f -local Byzantine adversary. However, we diverge from the
approach in [5,13] in that we require a fully time-preserving simulation of a fault-
free routing schedule, as opposed to solving the routing task in the reinforced
network from scratch.

2 High-Level Overview

In this section, we highlight the utility of decoupling the task of designing a
valid reinforcement from the task of designing a routing scheme over the input
network: one can just plug in any routing scheme, for any objective, e.g., load
minimization, maximizing the throughput, etc., in various models of compu-
tation, e.g., centralized or distributed, randomized or deterministic, online or

Robust Routing Made Easy 191

offline, or oblivious. We now sketch the guarantees and (mild) preconditions of
our blackbox transformation informally (for formal specification see Sect. 3).

Assumptions on the Input Network. We have two main assumptions on the
network at hand: (1) We consider synchronous routing networks, and (2) each
node in the network (alongside its outgoing links) is a fault-containment region,
i.e., it fails independently from other nodes.

Valid Reinforcement Simulation Guarantees. Our reinforcements make a number
of copies of each node. We have each non-faulty copy of a node run the routing
algorithm as if it were the original node, guaranteeing that it has the same view
of the system state as its original in the corresponding fault-free execution of
the routing scheme on the original graph. Moreover, the simulation fully pre-
serves all guarantees of the schedule, including its timing, and introduces no big
computational overhead.

Unaffected Complexity and Cost Measures. When designing a routing scheme,
one optimizes its complexity, e.g., in terms of running time for centralized algo-
rithms, number of rounds for distributed algorithms, message size, etc. This is
balanced against its quality with respect to the objective function of the prob-
lem at hand, e.g., load minimization, maximizing the throughput, minimizing the
latency, etc. Moreover, there is the degree of uncertainty that can be sustained,
e.g., whether the input to the algorithm is fully available at the beginning of the
computation (offline computation) or revealed over time (online computation).
Our reinforcements preserve all of these properties, as they operate in a blackbox
fashion. For example, our machinery readily yields various fault-tolerant packet
routing algorithms in the Synchronous Store-and-Forward model by Aiello et
al. [1]. More specifically, from [6] we obtain a centralized deterministic online
algorithm on unidirectional grids of constant dimension that achieves a compet-
itive ratio which is polylogarithmic in the number of nodes of the input network
w.r.t. throughput maximization. Using [7] instead, we get a centralized random-
ized offline algorithm on the unidirectional line with constant approximation
ratio w.r.t. throughput maximization. In the case that deadlines need to be met
the approximation ratio is, roughly, O(log∗ n) [15]. As a final example, one can
obtain from [3] various online distributed algorithms with sublinear competitive
ratios w.r.t. throughput maximization.

Cost and Gains of the Reinforcement. The price of adding fault-tolerance is
given by the increase in the network size, i.e., the number of nodes and edges of
the reinforced network in comparison to the original one. Due to the assumed
independence of node failures, it is straightforward to see that the (uniform)
probability of sustainable node faults increases roughly like n−1/(f+1) in return
for (i) a linear-in-f increase in the number of nodes and (ii) an increase in the
number of edges that is quadratic in f . We then proceed to improve the con-
struction for grids and minor-free constant-degree graphs to reduce the increase
in the number of edges to linear in f . Based on this information, one can then

192 C. Lenzen and M. Medina

assess the effort in terms of these additional resources that is beneficial, as less
reliable nodes in turn are cheaper to build, maintain, and operate. We also note
that, due to the ability of the reinforced network to ensure ongoing unrestricted
operability in the presence of some faulty nodes, faulty nodes can be replaced or
repaired before communication is impaired or breaks down.

Preprocessing. Preprocessing is used, e.g., in computing routing tables in Oblivi-
ous Routing [14]. The reinforcement simply uses the output of such a preprocess-
ing stage in the same manner as the original algorithm. In other words, the
preprocessing is done on the input network and its output determines the input
routing scheme. In particular, the preprocessing may be randomized and does
not need to be modified in any way.

Randomization. Randomized routing algorithms can be simulated as well, pro-
vided that all copies of a node have access to a shared source of randomness. We
remark that, as our scheme locally duplicates the network topology, it is natural
to preserve the physical realization of the network topology in the sense that all
(non-faulty) copies of a node are placed in physical proximity. This implies that
this constraint is much easier to satisfy than globally shared randomness.

3 Preliminaries

We consider synchronous routing networks. Formally, the network is modeled as
a directed graph G = (V,E), where V is the set of n � |V | vertices, and E is the
set of m � |E| edges (or links). Each node maintains a state, based on which it
decides in each round for each of its outgoing links which message to transmit.
We are not concerned with the inner workings of the node, i.e., how the state is
updated; rather, we assume that we are given a scheduling algorithm performing
the task of updating this state and use it in our blackbox transformations. In
particular, we allow for online, distributed, and randomized algorithms.

Probability-p Byzantine Faults Byz(p). The set of faulty nodes F ⊆ V is deter-
mined by sampling each v ∈ V into F with independent probability p. Nodes in
F may deviate from the protocol in arbitrary ways, including delaying, dropping,
or forging messages, etc.

Probability-p Omission Faults Om(p). The set of faulty nodes F ⊆ V is deter-
mined by sampling each v ∈ V into F with independent probability p. Nodes
in F may deviate from the protocol by not sending a message over an outgoing
link when they should. We note that it is sufficient for this fault model to be
satisfied logically. That is, as long as a correct node can identify incorrect mes-
sages, it may simply drop them, resulting in the same behavior of the system at
all correct nodes as if the message was never sent.

Robust Routing Made Easy 193

Simulations and Reinforcement. For a given network G = (V,E) and a schedul-
ing algorithm A, we will seek to reinforce (G,A) by constructing G′ = (V ′, E′)
and scheduling algorithm A′ such that the original algorithm A is simulated by
A′ on G′, where G′ is subject to random node failures. We now formalize these
notions. First, we require that there is a surjective mapping P : V ′ → V ; fix G′

and P , and choose F ′ ⊆ V ′ randomly as specified above.

Definition 1 (Simulation under Byz(p)). Assume that in each round r ∈ N,
each v′ ∈ V ′ \ F ′ is given the same input by the environment as P (v′). A′ is a
simulation of A under Byz(p), if for each v ∈ V , a strict majority of the nodes
v′ ∈ V ′ with P (v′) = v computes in each round r ∈ N the state of v in A in
this round. The simulation is strong, if not only for each v ∈ V there is a strict
majority doing so, but all v′ ∈ V ′ \ F ′ compute the state of P (v′) in each round.

Definition 2 (Simulation under Om(p)). Assume that in each round r ∈ N,
each v′ ∈ V ′ is given the same input by the environment as P (v′). A′ is a
simulation of A under Om(p), if for each v ∈ V , there is v′ ∈ V ′ with P (v′) = v
that computes in each round r ∈ N the state of v in A in this round. The
simulation is strong, if each v′ ∈ V ′ computes the state of P (v′) in each round.

Definition 3 (Reinforcement). A (strong) reinforcement of a graph G =
(V,E) is a graph G′ = (V ′, E′), a surjective mapping P : V ′ → V , and a way of
determining a scheduling algorithm A′ for G′ out of scheduling algorithm A for
G. The reinforcement is valid under the given fault model (Byz(p) or Om(p)) if
A′ is a (strong) simulation of A a.a.s.

Resources and Performance Measures. We use the following performance mea-
sures. (i) The probability p of independent node failures that can be sustained
a.a.s. (ii) The ratio ν � |V ′|/|V |, i.e., the relative increase in the number of
nodes. (iii) The ratio η � |E′|/|E|, i.e., the relative increase in the number of
edges.

4 Strong Reinforcement Under Byz(p)

Given are the input network G = (V,E) and scheduling algorithm A. Fix a
parameter f ∈ N and set � = 2f + 1.

Reinforced Network G′. We set V ′ � V × [�], where [�] � {1, . . . , �}, and
denote vi � (v, i). Accordingly, P (vi) � v. We define E′ � {(v′, w′) ∈
V ′ × V ′ | (P (v′), P (w′)) ∈ E}.

Strong Simulation A′ of A. Consider node v′ ∈ V ′ \F ′. We want to maintain the
invariant that in each round, each such node has a copy of the state of v = P (v′)
in A. To this end, v′

194 C. Lenzen and M. Medina

(1) initializes local copies of all state variables of v as in A,
(2) sends on each link (v′, w′) ∈ E′ in each round the message v would send on

(P (v′), P (w′)) when executing A, and
(3) for each neighbor w of P (v′) and each round r, updates the local copy of the

state of A as if v received the message that has been sent to v′ by at least
f + 1 of the nodes w′ with P (w′) = w (each one using edge (w′, v′)).

Naturally, the last step requires such a majority to exist; otherwise, the sim-
ulation fails. We show that A′ can be executed and simulates A provided that
for each v ∈ V , no more than f of its copies are in F ′.

Lemma 1. If for each v ∈ V , |{vi ∈ F ′}| ≤ f , then A′ strongly simulates A.

Proof. We show the claim by induction on the round number r ∈ N, where we
consider the initialization to anchor the induction at r = 0. For the step from r
to r + 1, observe that because all v′ ∈ V ′ \ F ′ have a copy of the state of P (v′)
at the end of round r by the induction hypothesis, each of them can correctly
determine the message P (v′) would send over link (v, w) ∈ E in round r +1 and
send it over each (v′, w′) ∈ E with P (w′) = w. Accordingly, each v′ ∈ V ′ \ F ′

receives the message A would send over (w, v) ∈ E from each w′ ∈ V ′ \ F ′ with
P (w′) = w (via the link (w′, v′)). By the assumption of the lemma, we have at
least � − f = f + 1 such nodes, implying that v′ updates the local copy of the
state of A as if it received the same messages as when executing A in round
r + 1. Thus, the induction step succeeds and the proof is complete.

Resilience of the Reinforcement. We now examine how large the probability p
can be for the precondition of Lemma1 to be satisfied a.a.s.

Theorem 1. Assume that p ∈ o(1). Then the above construction is a valid
strong reinforcement for the fault model Byz(p) if p ∈ o(n−1/(f+1)). Moreover, if
G contains Ω(n) nodes with non-zero outdegree, p ∈ ω(n−1/(f+1)) implies that
the reinforcement is not valid.

Proof. By Lemma 1, A′ strongly simulates A if for each v ∈ V , |{vi ∈ F ′}| ≤ f .
If p ∈ o(n−1/(f+1)) ∩ o(1), using � = 2f + 1 and a union bound we see that the
probability of this event is at least

1 − n

2f+1∑

j=f+1

(
2f + 1

j

)
pj(1 − p)2f+1−j ≥ 1 − n

2f+1∑

j=f+1

(
2f + 1

j

)
pj

≥ 1 − n

(
2f + 1
f + 1

)
pf+1

f∑

j=0

pj ∈ 1 − n(2e)fpf+1(1 + o(1)) = 1 − o(1).

Here, the second last step uses that
(
a
b

) ≤ (ae/b)b and that p ∈ o(1), while the
last step exploits that p ∈ o(n−1/(f+1)).

On the other hand, for any v ∈ V , the probability that |{vi ∈ F ′}| > f is
independent of the same event for other nodes and larger than

(
2f+1
f+1

)
pf+1(1 −

Robust Routing Made Easy 195

p)f ≥ (3/2)fpf+1(1 − p)f ∈ Ω((3/2)fpf+1), since
(
a
b

) ≥ (a/b)b. Hence, if G

contains Ω(n) nodes v with non-zero outdegree, p ∈ ω(n−1/(f+1)) ∩ o(1) implies
that the probability that there is some node v with |{vi ∈ F ′}| > f is in 1 −(
1 − Ω

((
3
2

)f
pf+1

))Ω(n)

⊆ 1 − (
1 − ω

(
1
n

) ∩ o(1)
)Ω(n) = 1 − o(1). If there is

such a node v, there are algorithms A and inputs so that A sends a message
across some edge (v, w) in some round. If faulty nodes do not send messages in
this round, the nodes wi ∈ V ′ \F ′ do not receive the correct message from more
than f nodes vi and the simulation fails. Hence, the reinforcement cannot be
valid.

Remark 1. For constant p, one can determine suitable values of f ∈ Θ(log n)
using Chernoff’s bound. However, as our focus is on small (constant) overhead
factors, we refrain from presenting the calculation here.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = 2f + 1 and
η = �2 = 4f2 +4f +1, while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1, we improve from p ∈ o(1/n) for the original network to p ∈ o(1/

√
n)

by tripling the number of nodes. However, η = 9, i.e., while the number of edges
also increases only by a constant, it seems too large in systems where the limiting
factor is the amount of links that can be afforded.

5 Strong Reinforcement Under Om(p)

The strong reinforcement from the previous section is, trivially, also a strong
reinforcement under Om(p). However, we can reduce the number of copies per
node for the weaker fault model. Given are the input network G = (V,E) and
scheduling algorithm A. Fix a parameter f ∈ N and, this time, set � = f + 1.

For details of the reinforcement, the simulation of algorithm A, and the corre-
sponding proofs, we refer the reader to the full version. The resilience statement
and the efficiency of the reinforcement are as follows.

Theorem 2. There is a valid strong reinforcement for the fault model Om(p)
if p ∈ o(n−1/(f+1)). If G contains Ω(n) nodes with non-zero outdegree, then
p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = f + 1 and
η = �2 = f2 + 2f + 1, while we can sustain p ∈ o(n−1/(f+1)). In the special case
of f = 1, we improve from p ∈ o(1/n) for the original network to p ∈ o(1/

√
n)

by doubling the number of nodes and quadrupling the number of edges.

6 More Efficient Reinforcement

In this section, we reduce the overhead in terms of edges at the expense of
obtaining only a (non-strong) reinforcement. We stress that the obtained trade-
off between redundancy (ν and η) and the sustainable probability of faults p is

196 C. Lenzen and M. Medina

asymptotically optimal: as we require to preserve arbitrary routing schemes in a
blackbox fashion, we need sufficient redundancy on the link level to directly sim-
ulate communication. From this observation, both for Om(p) and Byz(p) we can
readily derive trivial lower bounds on redundancy that match the constructions
below up to lower-order terms.

6.1 A Toy Example

Before we give the construction, we give some intuition on how we can reduce the
number of required edges. Consider the following simple case. G is a single path
of n vertices (v1, . . . , vn), and the schedule requires that in round i, a message
is sent from vi to vi+1. We would like to use a “budget” of only n additional
vertices and an additional (1 + ε)m = (1 + ε)(n − 1) links, assuming the fault
model Om(p). One approach is to duplicate the path and extend the routing
scheme accordingly. We already used our entire budget apart from εm links!
This reinforcement is valid as long as one of the paths succeeds in delivering
the message all the way. The probability that one of the paths “survives” is
1 − (1 − (1 − p)n)2 ≤ 1 − (1 − e−pn)2 ≤ e−2pn, where we used that 1 − x ≤ e−x

for any x ∈ R. Hence, for any p = ω(1/n), the survival probability is o(1).
In contrast, the strong reinforcement with � = 2 (i.e., f = 1) given in Sect. 5
sustains any p ∈ o(1/

√
n) with probability 1 − o(1); however, while it adds n

nodes only, it requires 3m additional edges. We need to add some additional
edges to avoid that the likelihood of the message reaching its destination drops
too quickly. To this end, we use the remaining εm edges to “cross” between the
two paths every h � 2/ε hops (assume h is an integer). This splits the path into
segments of h nodes each. As long as, for each such segment, in one of its copies
all nodes survive, the message is delivered. For a given segment, this occurs
with probability 1 − (1 − (1 − p)h)2 ≥ 1 − (ph)2. Overall, the message is thus
delivered with probability at least (1−(ph)2)n/h ≥ 1−nhp2. As for any constant
ε, h is a constant, this means that the message is delivered a.a.s. granted that
p ∈ o(1/

√
n)!

Remark 2. The reader is cautioned to not conclude from this example that
random sampling of edges will be sufficient for our purposes in more involved
graphs. Since we want to handle arbitrary routing schemes, we have no control
over the number of utilized routing paths. As the latter is exponential in n, the
probability that a fixed path is not “broken” by F would have to be exponentially
small in n. Moreover, trying to leverage Lovász Local Lemma for a deterministic
result runs into the problem that there is no (reasonable) bound on the number of
routing paths that pass through a single node, i.e., the relevant random variables
(i.e., whether a path “survives”) exhibit lots of dependencies.

6.2 Partitioning the Graph

To apply the above strategy to other graphs, we must take into account that there
can be multiple intertwined routing paths. However, the key point in the above

Robust Routing Made Easy 197

example was not that we had path segments, but rather that we partitioned the
nodes into constant-size regions and used a few edges inside these regions only,
while fully connecting the copies of nodes at the boundary of the regions.

In general, it is not possible to partition the nodes into constant-sized subsets
such that only a very small fraction of the edges connects different subsets; any
graph with good expansion is a counter-example. Fortunately, many network
topologies used in practice are not expanders. We focus in this section on grid
networks and minor free graphs and show how to apply the above strategy in
each of these families of graphs.

Grid Networks. We can generalize the above strategy to hypercubes of dimension
d > 1.

Definition 4 (Hypercube Networks). A q-ary d-dimensional hypercube has
node set [q]d and two nodes are adjacent if they agree on all but one index i ∈ [d],
for which |vi − wi| = 1.

The proof of the following lemma is in the full version.

Lemma 2. For any h, d ∈ N, assume that h divides q ∈ N and set ε = 1/h.
Then the q-ary d-dimensional hypercube can be partitioned into (q/h)d regions
of hd nodes such that at most an ε-fraction of the edges connects nodes from
different regions.

Note that the above result and proof extend to tori, which also include the
“wrap-around” edges connecting the first and last nodes in any given dimension.

Minor Free Graphs. Another general class of graphs that can be partitioned in
a similar fashion are minor-free bounded-degree graph.

Definition 5 (H-Minor free Graphs). For a fixed graph H, H is a minor
of G if H is isomorphic to a graph that can be obtained by zero or more edge
contractions on a subgraph of G. We say that a graph G is H-minor free if H is
not a minor of G.

For any such graph, we can apply a Corollary from [11, Corollary 2] which is
based on [2] to construct a suitable partition.

Theorem 3 [11]. Let H be a fixed graph. There is a constant c(H) > 1 such that
for every ε ∈ (0, 1], every H-minor free graph G = (V,E) with degree bounded
by Δ a partition R1, . . . , Rk ⊆ V with the following properties can be found in
time O(|V |3/2): (i) ∀i : |Ri| ≤ c(H)Δ2

ε2 , (ii) ∀i the subgraph induced by Ri in G
is connected. (iii) |{(u, v) | u ∈ Ri, v ∈ Rj , i
= j}| ≤ ε · |V |.
Remark 3. Grids and tori of dimension d > 2 are not minor-free.

We note that this construction is not satisfactory, as it involves large constants. It
demonstrates that a large class of graphs is amenable to the suggested approach,
but it is advisable to search for optimized constructions for more specialized
graph families before applying the scheme.

198 C. Lenzen and M. Medina

Reinforced Network G′. Equipped with a suitable partition of G = (V,E) into
disjoint regions R1, . . . , Rk ⊆ V , we reinforce as follows. As before, we set V ′ �
V × [�], denote vi � (v, i), define P (vi) � v, and set � � f + 1. However, the
edge set of G′ differs. For e = (v, w) ∈ E,

E′
e �

{
{(vi, wi) | i ∈ [�]} if ∃k′ ∈ [k] : v, w ∈ Rk′

{(vi, wj) | i, j ∈ [�]} else.

and we set E′ �
⋃

e∈E E′
e.

6.3 Simulation Under Om(p)

The details of how to reinforce the network and to simulate algorithm A on this
reinforced network as well as the corresponding proofs appear in the full version.
The resilience statement and the efficiency of the reinforcement are as follows.

Resilience of the Reinforcement. Denote R � maxk′∈[k]{|Rk′ |} and r �
mink′∈[k]{|Rk′ |}.

Theorem 4. There is a valid reinforcement for the fault model Om(p) if p ∈
o((n/r)−1/(f+1)/R). Moreover, if G contains Ω(n) nodes with non-zero outdegree
and R ∈ O(1), p ∈ ω(n−1/(f+1)) implies that the reinforcement is not valid.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = f + 1 and
η = (1 − ε)� + ε�2 = 1 + (1 + ε)f + εf2, while we can sustain p ∈ o(n−1/(f+1)).
In the special case of f = 1 and, say, ε = 1/5, we improve from p ∈ o(1/n)
for the original network to p ∈ o(1/

√
n) by doubling the number of nodes and

multiplying the number of edges by 2.4.

Remark 4. For hypercubes and tori, the asymptotic notation for p does not
hide huge constants. Lemma 2 shows that h enters the threshold in Theorem4 as
h−d+1/2; as the cases of d = 2 and d = 3 are the most typical (for d > 3 grids
and tori suffer from large distortion when embedding them into 3-dimensional
space), the threshold on p degrades by factors of 11.2 and 55.9, respectively.

6.4 Simulation Under Byz(p)

The same strategy can be applied for the stronger fault model Byz(p), if we
switch back to having � = 2f + 1 copies and nodes accepting the majority
message among all messages from copies of a neighbor in the original graph.

Consider node v ∈ V . We want to maintain the invariant that in each round,
a majority among the nodes vi, i ∈ [�], has a copy of the state of v in A. For
v′ ∈ V ′ and (w,P (v′)) ∈ E, set Nv′(w) � {w′ ∈ V ′ | (w′, v′) ∈ E′}. With this
notation, v′ behaves as follows.

Robust Routing Made Easy 199

(1) It initializes local copies of all state variables of v as in A.
(2) It sends in each round on each link (v′, w′) ∈ E′ the message v would send

on (P (v′), P (w′)) when executing A (if v′ cannot compute this correctly, it
may send an arbitrary message).

(3) It updates its state in round r as if it received, for each (w,P (v′)) ∈ E, the
message the majority of nodes in Nv′(w) sent.

The proof of the following lemma is in the full version.

Lemma 3. Suppose for each k′ ∈ [k], there are at least f + 1 indices i ∈ [�] so
that {vi | v ∈ Rk′} ∩ F ′ = ∅. Then A′ simulates A.

Resilience of the Reinforcement. Denote R � maxk′∈[k]{|Rk′ |} and r �
mink′∈[k]{|Rk′ |}.

Theorem 5. Assume that Rp ∈ o(1). The above construction is a valid rein-
forcement for the fault model Byz(p) if p ∈ o((n/r)−1/(f+1)/R). Moreover, if G
contains Ω(n) nodes with non-zero outdegree and R ∈ O(1), p ∈ ω(n−1/(f+1))
implies that the reinforcement is not valid.

Proof. By Lemma 3, A′ simulates A if for each k′ ∈ [k], there are at least f +
1 indices i ∈ [�] so that {vi | v ∈ Rk′} ∩ F ′ = ∅. For fixed k′ and i ∈ [�],
Pr [{vi | v ∈ Rk′} ∩ F ′ = ∅] = (1−p)|Rk′ | ≥ 1−Rp. Thus, analogous to the proof
of Theorem 1, the probability that for a given k′ the condition is violated is at
most

∑2f+1
j=f+1

(
2f+1

j

)
(Rp)j(1 − Rp)2f+1−j ∈ (2e)f (Rp)f+1(1 + o(1)). By a union

bound over the at most n/r regions, we see that p ∈ o((n/r)−1/(f+1)/R) thus
guarantees that the simulation succeeds a.a.s. As r ≤ R ∈ O(1), the proof of the
second statement is analogous to the respective statement of Theorem 1.

Efficiency of the Reinforcement. For f ∈ N, we have that ν = � = 2f + 1 and
η = (1− ε)�+ ε�2 = 1+(2+2ε)f +4εf2, while we can sustain p ∈ o(n−1/(f+1)).
In the special case of f = 1 and ε = 1/5, we improve from p ∈ o(1/n) for the
original network to p ∈ o(1/

√
n) by tripling the number of nodes and multiplying

the number of edges by 4.2.

7 Discussion

In the previous sections, we have established that constant-factor redundancy
can significantly increase reliability of the communication network in a blackbox
fashion. Our constructions in Sect. 6 are close to optimal. Thus, one may argue
that the costs are too high. However, apart from pointing out that the costs of
using sufficiently reliable components may be even higher, we would like to raise
a number of additional points in favor of the approach.

200 C. Lenzen and M. Medina

Node Redundancy. When building a reliable large-scale system, fault-tolerance
needs to be considered on all system levels. Unless nodes are sufficiently reliable,
node replication is mandatory, regardless of the communication network. In other
words, the node redundancy required by our construction may not be an actual
overhead to begin with. When taking this point of view, the salient question
becomes whether the increase in links is acceptable. Here, the first observation
is that any system employing node redundancy will need to handle the arising
additional communication, incurring the respective burden on the communica-
tion network. Apart from still having to handle the additional traffic, however,
the system designer now needs to make sure that the network is sufficiently
reliable for the node redundancy to matter. Our simple schemes then provide a
means to provide the necessary communication infrastructure without risking to
introduce, e.g., a single point of failure during the design of the communication
network; at the same time, the design process is simplified and modularized.

Dynamic Faults. Due to the introduced fault-tolerance, faulty components do
not impede the system as a whole, so long as the simulation of the routing
scheme can still be carried out. Hence, one may repair faulty nodes at runtime.
If T is the time for detecting and fixing a fault, we can discretize time in units
of T and denote by pT the (assumed to be independent) probability that a node
is faulty in a given time slot, which can be bounded by twice the probability to
fail within T time. Then the failure probabilities we computed in our analysis
directly translate to an upper bound on the expected fraction of time during
which the system is not (fully) operational.

Adaptivity. The employed node- and link-level redundancy may be required for
mission-critical applications only, or the system may run into capacity issues. In
this case, we can exploit that the reinforced network has a very simple struc-
ture, making various adaptive strategies straightforward to implement. (i) One
may use a subnetwork only, deactivating the remaining nodes and links, such
that a reinforced network for smaller f (or a copy of the original network, if
f = 0) remains. This saves energy. (ii) One may subdivide the network into sev-
eral smaller reinforced networks, each of which can perform different tasks. (iii)
One may leverage the redundant links to increase the overall bandwidth between
(copies of) nodes, at the expense of reliability. (iv) The above operations can
be applied locally; e.g., in a congested region of the network, the link redun-
dancy could be used for additional bandwidth. Note that if only a small part
of the network is congested, the overall system reliability will not deteriorate
significantly.

8 Conclusion

In this work we analyze simple replication strategies for improving network relia-
bility. While our basic schemes may hardly surprise, to the best of our knowledge
the literature does not provide the kind of discussion given here. This, in turn,

Robust Routing Made Easy 201

surprised us: simplicity is an important design feature, and we tried to convey
the message that a number of significant advantages in overall system design
arise from the proposed approach. In addition, we highlight that a (still simple)
refined strategy results in near-optimal trade-offs under the constraint that arbi-
trary routing schemes are fully preserved. We consider this property highly useful
in general and essential in real-time systems. Weaker guarantees may result in
more efficient solutions, but also necessitate that other system levels must be
able to handle the consequences.

Our work raises a number of follow-up questions. (i) Which network topolo-
gies allow for good partitions as utilized in Sect. 6? Small constants here result
in highly efficient reinforcement schemes, which is key to practical solutions. (ii)
Is it possible to guarantee strong simulations at smaller overheads? (iii) Can
constructions akin to the one given in Sect. 6 be applied to a larger class of
graphs?

References

1. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Dynamic routing on networks
with fixed-size buffers. In: SODA, pp. 771–780 (2003)

2. Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an
excluded minor and its applications. In: STOC, pp. 293–299. ACM (1990)

3. Angelov, S., Khanna, S., Kunal, K.: The network as a storage device: dynamic
routing with bounded buffers. Algorithmica 55(1), 71–94 (2009)

4. Cho, H., Leem, L., Mitra, S.: ERSA: error resilient system architecture for proba-
bilistic applications. Trans. Comput.-Aided Des. Integr. Circ. Syst. 31(4), 546–558
(2012)

5. Dolev, D., Hoch, E.N.: Constant-space localized byzantine consensus. In: Tauben-
feld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 167–181. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-87779-0 12

6. Even, G., Medina, M., Patt-Shamir, B.: Better deterministic online packet routing
on grids. In: SPAA, pp. 284–293 (2015)

7. Even, G., Medina, M., Rosén, A.: A constant approximation algorithm for schedul-
ing packets on line networks. In: ESA, pp. 40:1–40:16 (2016)

8. Fischer, M., Lynch, N., Paterson, N.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

9. Kang, Y.H., Kwon, T., Draper, J.: Fault-tolerant flow control in on-chip networks.
In: NOCS, pp. 79–86 (2010)

10. Kopetz, H.: Fault containment and error detection in the time-triggered architec-
ture. In: ISADS, pp. 139–146 (2003)

11. Levi, R., Ron, D.: A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Trans. Algorithms 11(3), 24:1–24:13 (2015)

12. Park, D., Nicopoulos, C., Kim, J., Vijaykrishnan, N., Das, C.R.: Exploring fault-
tolerant network-on-chip architectures. In: DSN, pp. 93–104 (2006)

13. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf.
Process. Lett. 93(3), 109–115 (2005)

14. Räcke, H.: Survey on oblivious routing strategies. In: Ambos-Spies, K., Löwe, B.,
Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 419–429. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03073-4 43

http://dx.doi.org/10.1007/978-3-540-87779-0_12
http://dx.doi.org/10.1007/978-3-642-03073-4_43

202 C. Lenzen and M. Medina

15. Räcke, H., Rosén, A.: Approximation algorithms for time-constrained scheduling
on line networks. Theory Comput. Syst. 49(4), 834–856 (2011)

16. Rotem-Gal-Oz, A.: Fallacies of Distributed Computing Explained. http://www.
rgoarchitects.com/Files/fallacies.pdf

http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf

Generalized Paxos Made Byzantine
(and Less Complex)

Miguel Pires1, Srivatsan Ravi2(B), and Rodrigo Rodrigues1

1 INESC-ID and Instituto Superior Técnico (U. Lisboa), Lisbon, Portugal
miguel.pires@tecnico.ulisboa.pt, rodrigo.rodrigues@inesc-id.pt

2 University of Southern California, Los Angeles, USA
srivatsr@usc.edu

Abstract. One of the most recent members of the Paxos family of pro-
tocols is Generalized Paxos. This variant of Paxos has the characteristic
that it departs from the original specification of consensus, allowing for a
weaker safety condition where different processes can have different views
on a sequence being agreed upon. However, much like the original Paxos
counterpart, Generalized Paxos does not have a simple implementation.
Furthermore, with the recent practical adoption of Byzantine fault toler-
ant protocols, it is timely and important to understand how Generalized
Paxos can be implemented in the Byzantine model. In this paper, we
make two main contributions. First, we provide a description of Gener-
alized Paxos that is easier to understand, based on a simpler specification
and the pseudocode for a solution that can be readily implemented. Sec-
ond, we extend the protocol to the Byzantine fault model.

1 Introduction

One of the fundamental challenges for processes participating in a distributed
computation is achieving consensus: processes initially propose a value and must
eventually agree on one of the proposed values [7]. Paxos [11], arguably, is one of
the most popular protocols for solving the consensus problem among fault-prone
processes. The evolution of the Paxos protocol represents a unique chapter in the
history of Computer Science. It was first described in 1989 through a technical
report [10], and was only published a decade later [11]. Another long wait took
place until the protocol started to be studied in depth and used by researchers
in various fields, namely the distributed algorithms [5] and the distributed sys-
tems [17] research communities. And finally, another decade later, the protocol
made its way to the core of the implementation of the services that are used
by millions of people over the Internet, in particular since Paxos-based state
machine replication is the key component of Google’s Chubby lock service [2], or
the open source ZooKeeper project [8], used by Yahoo! among others. Arguably,
the complexity of the presentation may have stood in the way of a faster adoption
of the protocol, and several attempts have been made at writing more concise
explanations of it [12,24].

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 203–218, 2017.
https://doi.org/10.1007/978-3-319-69084-1 14

204 M. Pires et al.

More recently, several variants of Paxos have been proposed and studied. Two
important lines of research can be highlighted in this regard. First, a series of
papers hardened the protocol against malicious adversaries by solving consensus
in a Byzantine fault model [15,20]. The importance of this line of research is now
being confirmed as these protocols are now in widespread use in the context of
cryptocurrencies and distributed ledger schemes such as blockchain [22]. Second,
many proposals target improving the Paxos protocol by eliminating communica-
tion costs [14], including an important evolution of the protocol called General-
ized Paxos [13], which has the noteworthy aspect of having lower communication
costs by leveraging a more general specificationan traditional consensus that can
lead to a weaker requirement in terms of ordering of commands across replicas.
In particular, instead of forcing all processes to agree on the same value (as with
traditional consensus), it allows processes to pick an increasing sequence of com-
mands that differs from process to process in that commutative commands may
appear in a different order. The practical importance of such weaker specifica-
tions is underlined by significant research activity on the corresponding weaker
consistency models for replicated systems [6,9].

In this paper, we draw a parallel between the evolution of the Paxos protocol
and the current status of Generalized Paxos. In particular, we argue that, much
in the same way that the clarification of the Paxos protocol contributed to its
practical adoption, it is also important to simplify the description of Generalized
Paxos. Furthermore, we believe that evolving this protocol to the Byzantine
model is an important task, since it will contribute to the understanding and
also open the possibility of adopting Generalized Paxos in scenarios such as a
blockchain deployment.

Concretely, this paper makes the following contributions to the Paxos family:

– We present a simplified version of the specification of Generalized Consensus,
which is focused on the most commonly used case of the solutions to this
problem, which is to agree on a sequence of commands;

– we extend the Generalized Paxos protocol to the Byzantine model;
– we present a description of the Byzantine Generalized Paxos protocol that is

more accessible than the original description, namely including the respective
pseudocode, in order to make it easier to implement;

– we prove the correctness of the Byzantine Generalize Paxos protocol;
– and we discuss several extensions to the protocol in the context of relaxed

consistency models and fault tolerance.

The remainder of the paper is organized as follows: Sect. 2 gives an overview of
Paxos and its family of related protocols. Section 3 introduces the model and
simplified specification of Generalized Paxos. Section 4 presents the General-
ized Paxos protocol that is resilient against Byzantine failures. This section also
presents a proof that the Byzantine Generalized Paxos protocol guarantees con-
sistency, while the correctness proofs for the remaining properties are included
in a tech report. Section 5 concludes the paper with a discussion of several opti-
mizations and practical considerations. The complete tech report with the formal
proofs is available on the ArXiv repository.

Generalized Paxos Made Byzantine (and Less Complex) 205

2 Background and Related Work

2.1 Paxos and Its Variants

The Paxos protocol family solves consensus by finding an equilibrium in face of
the well-known FLP impossibility result [7]. It does this by always guaranteeing
safety despite asynchrony, but foregoing progress during the temporary periods
of asynchrony, or if more than f faults occur for a system of N > 2f replicas [12].
The classic form of Paxos uses a set of proposers, acceptors and learners, runs in
a sequence of ballots, and employs two phases (numbered 1 and 2), with a similar
message pattern: proposer to acceptors (phase 1a or 2a), acceptors to proposer
(phase 1b or 2b), and, in phase 2b, also acceptors to learners. To ensure progress
during synchronous periods, proposals are serialized by a distinguished proposer,
which is called the leader.

Paxos is most commonly deployed as Multi (Decree)-Paxos, which provides
an optimization of the basic message pattern by omitting the first phase of
messages from all but the first ballot for each leader [24]. This means that a
leader only needs to send a phase 1a message once and subsequent proposals
may be sent directly in phase 2a messages. This reduces the message pattern
in the common case from five message delays to just three (from proposing to
learning).

Fast Paxos observes that it is possible to improve on the previous latency
(in the common case) by allowing proposers to propose values directly to accep-
tors [14]. To this end, the protocol distinguishes between fast and classic ballots,
where fast ballots bypass the leader by sending proposals directly to acceptors
and classic ballots work as in the original Paxos protocol. The reduced latency
of fast ballots comes at the added cost of using a quorum size of N − e instead
of a classic majority quorum, where e is the number of faults that can be toler-
ated while using fast ballots. In addition, instead of the usual requirement that
N > 2f , to ensure that fast and classic quorums intersect, a new requirement
must be met: N > 2e+ f . This means that if we wish to tolerate the same num-
ber of faults for classic and fast ballots (i.e., e = f), then the minimum number
of replicas is 3f + 1 instead of the usual 2f + 1. Since fast ballots only take
two message steps (phase 2a messages between a proposer and the acceptors,
and phase 2b messages between acceptors and learners), there is the possibility
of two proposers concurrently proposing values and generating a conflict, which
must be resolved by falling back to a recovery protocol.

Generalized Paxos improves the performance of Fast Paxos by addressing the
issue of collisions. In particular, it allows acceptors to accept different sequences
of commands as long as non-commutative operations are totally ordered [13].
In the original description, non-commutativity between operations is generi-
cally represented as an interference relation. In this context, Generalized Paxos
abstracts the traditional consensus problem of agreeing on a single value to
the problem of agreeing on an increasing set of values. C-structs provide this
increasing sequence abstraction and allow the definition of different consensus
problems. If we define the sequence of learned commands of a learner li as a

206 M. Pires et al.

c-struct learnedli , then the consistency requirement for generalized consensus
can be defined as: learnedl1 and learnedl2 must have a common upper bound,
for all learners l1 and l2. This means that, for any learnedl1 and learnedl2 , there
must exist some c-struct of which they are both prefixes. This prohibits interfer-
ing commands from being concurrently accepted because no subsequent c-struct
would extend them both.

More recently, other Paxos variants have been proposed to address specific
issues. For example, Mencius [19] avoids the latency penalty in wide-area deploy-
ments of having a single leader, through which every proposal must go through.
In Mencius, the leader of each round rotates between every process: the leader
of round i is process pk, such that k = n mod i. Another variant is Egalitarian
Paxos (EPaxos), which achieves a better throughput than Paxos by removing
the bottleneck caused by having a leader [21]. To avoid choosing a leader, the
proposal of commands for a command slot is done in a decentralized manner,
taking advantage of the commutativity observations made by Generalized Paxos
[13]. Conflicts between commands are handled by having replicas reply with a
command dependency, which then leads to falling back to using another protocol
phase with f + � f+1

2 � replicas.

2.2 Byzantine Fault Tolerant Replication

Consensus in the Byzantine model was originally defined by Lamport et al. [16].
Almost two decades later, a surge of research in the area started with the PBFT
protocol, which solves consensus for state machine replication with 3f + 1 repli-
cas while tolerating up to f Byzantine faults [4]. In PBFT, the system moves
through configurations called views, in which one replica is the primary and the
remaining replicas are the backups. The protocol proceeds in a sequence of steps,
where messages are sent from the client to the primary, from the primary to the
backups, followed by two all-to-all steps between the replicas, with the last step
proceeding in parallel with sending a reply to the clients.

Zeno is a Byzantine fault tolerance state machine replication protocol that
trades availability for consistency [25]. In particular, it offers eventual consistency
by allowing state machine commands to execute in a weak quorum of f + 1
replicas. This ensures that at least one correct replica will execute the request
and commit it to the linear history, but does not guarantee the intersection
property that is required for linearizability.

The closest related work is Fast Byzantine Paxos (FaB), which solves con-
sensus in the Byzantine setting within two message communication steps in the
common case, while requiring 5f + 1 acceptors to ensure safety and liveness
[20]. A variant that is proposed in the same paper is the Parameterized FaB
Paxos protocol, which generalizes FaB by decoupling replication for fault toler-
ance from replication for performance. As such, the Parameterized FaB Paxos
requires 3f +2t+1 replicas to solve consensus, preserving safety while tolerating
up to f faults and completing in two steps despite up to t faults. Therefore,
FaB Paxos is a special case of Parameterized FaB Paxos where t = f . It has
also been shown that N > 5f is a lower bound on the number of acceptors

Generalized Paxos Made Byzantine (and Less Complex) 207

required to guarantee 2-step execution in the Byzantine model. In this sense,
the FaB protocol is tight since it requires 5f + 1 acceptors to provide the same
guarantees.

In comparison to FaB Paxos, our protocol, Byzantine Generalized Paxos
(BGP), requires a lower number of acceptors than what is stipulated by FaB’s
lower bound. However, this does not constitute a violation of the result since
BGP does not guarantee a 2-step execution in the Byzantine scenario. Instead,
BGP only provides a two communication step latency when proposed sequences
are commutative with any other concurrently proposed sequence. In other words,
BGP leverages a weaker performance guarantee to decrease the requirements
regarding the minimum number of processes. In particular, a proposed sequence
may not gather enough votes to be learned in the ballot in which it is proposed,
either due to Byzantine behaviour or contention between non-commutative com-
mands. However, any sequence is guaranteed to eventually be learned in a way
such that non-commutative commands are totally ordered at any correct learner.

3 Model

We consider an asynchronous system in which a set of n ∈ N processes commu-
nicate by sending and receiving messages. Each process executes an algorithm
assigned to it, but may fail in two different ways. First, it may stop executing
it by crashing. Second, it may stop following the algorithm assigned to it, in
which case it is considered Byzantine. We say that a non-Byzantine process is
correct. This paper considers the authenticated Byzantine model: every process
can produce cryptographic digital signatures [26]. Furthermore, for clarity of
exposition, we assume authenticated perfect links [3], where a message that is
sent by a non-faulty sender is eventually received and messages cannot be forged
(such links can be implemented trivially using retransmission, elimination of
duplicates, and point-to-point message authentication codes [3].) A process may
be a learner, proposer or acceptor. Informally, proposers provide input values
that must be agreed upon by learners, the acceptors help the learners agree on
a value, and learners learn commands by appending them to a local sequence
of commands to be executed, learnedl. Our protocols require a minimum num-
ber of acceptor processes (N), which is a function of the maximum number of
tolerated Byzantine faults (f), namely N ≥ 3f + 1. We assume that acceptor
processes have identifiers in the set {0, ..., N − 1}. In contrast, the number of
proposer and learner processes can be set arbitrarily.

Problem Statement. In our simplified specification of Generalized Paxos, each
learner l maintains a monotonically increasing sequence of commands learnedl.
We define two learned sequences of commands to be equivalent (∼) if one can
be transformed into the other by permuting the elements in a way such that the
order of non-commutative pairs is preserved. A sequence x is defined to be an
eq-prefix of another sequence y (x � y), if the subsequence of y that contains
all the elements in x is equivalent (∼) to x. We present the requirements for
this consensus problem, stated in terms of learned sequences of commands for

208 M. Pires et al.

a correct learner l, learnedl. To simplify the original specification, instead of
using c-structs (as explained in Sect. 2), we specialize to agreeing on equivalent
sequences of commands:

1. Nontriviality. If all proposers are correct, learnedl can only contain pro-
posed commands.

2. Stability. If learnedl = s then, at all later times, s � learnedl, for any
sequence s and correct learner l.

3. Consistency. At any time and for any two correct learners li and lj , learnedli
and learnedlj can subsequently be extended to equivalent sequences.

4. Liveness. For any proposal s from a correct proposer, and correct learner l,
eventually learnedl contains s.

4 Protocol

This section presents our Byzantine fault tolerant Generalized Paxos Protocol
(or BGP, for short). Given our space constraints, we opted for merging in a single
description a novel presentation of Generalized Paxos and its extension to the
Byzantine model, even though each represents an independent contribution in
its own right.

Algorithm 1. Byzantine Generalized Paxos - Proposer p
Local variables: ballot type = ⊥

1: upon receive(BALLOT, type) do
2: ballot type = type;
3:
4: upon command request(c) do
5: if ballot type = fast ballot then
6: send(P2A FAST, c) to acceptors;
7: else
8: send(PROPOSE, c) to leader;

4.1 Overview

We modularize our protocol explanation according to the following main com-
ponents, which are also present in other protocols of the Paxos family:

– View-change – The goal of this subprotocol is to ensure that, at any given
moment, one of the proposers is chosen as a distinguished leader, who runs a
specific version of the agreement subprotocol. To achieve this, the view-change
subprotocol continuously replaces leaders, until one is found that can ensure
progress (i.e., commands are eventually appended to the current sequence).

– Agreement – Given a fixed leader, this subprotocol extends the current
sequence with a new command or set of commands. Analogously to Fast
Paxos [14] and Generalized Paxos [13], choosing this extension can be done
through two variants of the protocol: using either classic ballots or fast
ballots, with the characteristic that fast ballots complete in fewer communi-
cation steps, but may have to fall back to using a classic ballot when there is
contention among concurrent requests.

Generalized Paxos Made Byzantine (and Less Complex) 209

4.2 View-Change

The goal of the view-change subprotocol is to elect a distinguished acceptor
process, called the leader, that carries through the agreement protocol, i.e.,
enables proposed commands to eventually be learned by all the learners. The
overall design of this subprotocol is similar to the corresponding part of existing
BFT state machine replication protocols [4].

Algorithm 2. Byzantine Generalized Paxos - Process p
1: function merge sequences(old seq, new seq)
2: for c in new seq do
3: if !contains(old seq, c) then
4: old seq = old seq • c;
5: end for
6: return old seq;
7: end function
8:

9: function signed commands(full seq)
10: signed seq = ⊥;
11: for c in full seq do
12: if verify command(c) then
13: signed seq = signed seq • c;
14: end for
15: return signed seq;
16: end function

In this subprotocol, the system moves through sequentially numbered views,
and the leader for each view is chosen in a rotating fashion using the simple
equation leader(view) = view mod N. The protocol works continuously by hav-
ing acceptor processes monitor whether progress is being made on adding com-
mands to the current sequence, and, if not, they multicast a signed suspicion
message for the current view to all acceptors suspecting the current leader. Then,
if enough suspicions are collected, processes can move to the subsequent view.
However, the required number of suspicions must be chosen in a way that pre-
vents Byzantine processes from triggering view changes spuriously. To this end,
acceptor processes will multicast a view-change message indicating their com-
mitment to starting a new view only after hearing that f + 1 processes suspect
the leader to be faulty. This message contains the new view number, the f + 1
signed suspicions, and is signed by the acceptor that sends it. In the pseudocode,
signatures are created by signing data with a process’ private key (e.g., dataprivp

)
and validated by decrypting the data with its public key (e.g., datapubp). This
way, if a process receives a view-change message without previously receiving
f + 1 suspicions, it can also multicast a view-change message, after verifying
that the suspicions are correctly signed by f + 1 distinct processes. This guar-
antees that if one correct process receives the f + 1 suspicions and multicasts
the view-change message, then all correct processes, upon receiving this mes-
sage, will be able to validate the proof of f +1 suspicions and also multicast the
view-change message.

Finally, an acceptor process must wait for N − f view-change messages to
start participating in the new view, i.e., update its view number and the corre-
sponding leader process. At this point, the acceptor also assembles the N − f
view-change messages proving that others are committing to the new view, and
sends them to the new leader. This allows the new leader to start its leadership
role in the new view once it validates the N − f signatures contained in a single
message.

210 M. Pires et al.

Algorithm 3. Byzantine Generalized Paxos - Leader l
Local variables: ballotl = 0,maxTriedl = ⊥, proposals = ⊥, accepted = ⊥, view = 0
1: upon receive(LEADER, viewa, proofs) from accep-

tor a do
2: valid proofs = 0;
3: for p in acceptors do
4: view proof = proofs[p];
5: if view proofpubp

= 〈view change, viewa〉
then

6: valid proofs += 1;
7: if valid proofs > f then
8: view = viewa;
9:

10: upon trigger next ballot(type) do
11: ballotl += 1;
12: send(BALLOT, type) to proposers;
13: if type = fast then
14: send(FAST, ballotl, view) to acceptors;
15: else
16: send(P1A, ballotl, view) to acceptors;
17:
18: upon receive(PROPOSE, prop) from proposer pi do
19: proposals = proposals • prop;

20: upon receive(P1B, bala, view valsa) from acceptor a
do

21: if bala = ballotl then
22: accepted[ballotl][a] = signed commands(view valsa);
23: if #(accepted[ballotl]) ≥ N − f then
24: phase 2a();
25:
26: function phase 2a()
27: maxTriedl = proved safe(ballotl);
28: maxTriedl = maxTriedl • proposals;
29: if clean state?() then
30: maxTriedl = maxTriedl • C∗;
31: send(P2A CLASSIC,ballotl,view, maxTriedl) to

acceptors;
32: proposals = ⊥;
33: end function
34:
35: function proved safe(ballot)
36: safe seq = ⊥;
37: for seq in accepted[ballot] do
38: safe seq = merge sequences(safe seq, seq);
39: end for
40: return safe seq;
41: end function

4.3 Agreement Protocol

The consensus protocol allows learner processes to agree on equivalent sequences
of commands (according to our previous definition of equivalence). An impor-
tant conceptual distinction between the original Paxos protocol and BGP is that,
in the original Paxos, each instance of consensus is called a ballot, whereas in
BGP, instead of being a separate instance of consensus, ballots correspond to
an extension to the sequence of learned commands of a single ongoing consensus
instance. Proposers can try to extend the current sequence by either single com-
mands or sequences of commands. We use the term proposal to denote either
the command or sequence of commands that was proposed.

As mentioned, ballots can either be classic or fast. In classic ballots, a leader
proposes a single proposal to be appended to the commands learned by the
learners. The protocol is then similar to the one used by classic Paxos [11],
with a first phase where each acceptor conveys to the leader the sequences that
the acceptor has already voted for (so that the leader can resend commands
that may not have gathered enough votes), followed by a second phase where
the leader instructs and gathers support for appending the new proposal to the
current sequence of learned commands. Fast ballots, in turn, allow any proposer
to attempt to contact all acceptors in order to extend the current sequence
within only two message delays (in case there are no conflicts between concurrent
proposals).

Next, we present the protocol for each type of ballot in detail.

4.4 Classic Ballots

Classic ballots work in a way that is very close to the original Paxos protocol [11].
Therefore, throughout our description, we will highlight the points where BGP
departs from that original protocol, either due to the Byzantine fault model, or
due to behaviors that are particular to the specification of Generalized Paxos.

Generalized Paxos Made Byzantine (and Less Complex) 211

Algorithm 4. Byzantine Generalized Paxos - Acceptor a (view-change)
Local variables: suspicions = ⊥, new view = ⊥, leader = ⊥, view = 0, bala =
0, vala = ⊥, fast bal = ⊥, checkpoint = ⊥
1: upon suspect leader do
2: if suspicions[p] �= true then
3: suspicions[p] = true;
4: proof = 〈suspicion, view〉priva ;
5: send(SUSPICION, view, proof);
6:
7: upon receive(SUSPICION, viewi, proof) from acceptor i

do
8: if viewi �= view then
9: return;

10: if proofpubi
= 〈suspicion, view〉 then

11: suspicions[i] = proof;
12: if #(suspicions) > f and new view[view +

1][p] = ⊥ then
13: change proof = 〈view change, view +

1〉priva ;
14: new view[view + 1][p] = change proof;
15: send(V IEW CHANGE, view+1, suspicions,

change proof);
16:
17: upon receive(V IEW CHANGE, new viewi, suspi-

cions, change proofi) from acceptor i do

18: if new viewi ≤ view then
19: return;
20: valid proofs = 0;
21: for p in acceptors do
22: proof = suspicions[p];
23: last view = new viewi − 1;
24: if proofpubp

= 〈suspicion, last view〉 then

25: valid proofs += 1;
26: if valid proofs ≤ f then
27: return;
28: new view[new viewi][i] = change proofi;
29: if new view[viewi][a] = ⊥ then
30: change proof=〈view change, new viewi〉priva ;
31: new view[viewi][a] = change proof;
32: send(V IEW CHANGE, viewi, suspicions,

change proof);
33: if #(new view[new viewi]) ≥ N − f then
34: view = viewi;
35: leader = view mod N;
36: suspicions = ⊥;
37: send(LEADER, view, new view[viewi]) to

leader;

In this part of the protocol, the leader continuously collects proposals by
assembling all commands that are received from the proposers since the previous
ballot in a sequence. (This differs from classic Paxos, where it suffices to keep a
single proposed value that the leader attempts to reach agreement on.)

When the next ballot is triggered, the leader starts the first phase by sending
phase 1a messages to all acceptors containing just the ballot number. Similarly
to classic Paxos, acceptors reply with a phase 1b message to the leader, which
reports all sequences of commands they voted for. In classic Paxos, acceptors
also promise not to participate in lower-numbered ballots, in order to prevent
safety violations [11]. However, in BGP this promise is already implicit, given (1)
there is only one leader per view and it is the only process allowed to propose in
a classic ballot and (2) acceptors replying to that message must be in the same
view as that leader.

Upon receiving phase 1b messages, the leader checks that the commands
are authentic by validating command signatures. (This is needed due to the
Byzantine model.) After gathering a quorum of N − f responses, the leader
initiates phase 2a by sending a message with a proposal to the acceptors (as
in the original protocol, but with a quorum size adjusted for the Byzantine
model). This proposal is constructed by appending the proposals received from
the proposers to a sequence that contains every command in the sequences that
were previously accepted by the acceptors in the quorum (instead of sending a
single value with the highest ballot number in the classic specification).

The acceptors reply to phase 2a messages by sending phase 2b messages to the
learners, containing the ballot and the proposal from the leader. After receiving
N − f votes for a sequence, a learner learns it by extracting the commands that
are not contained in his learned sequence and appending them in order. (This
differs from the original protocol in the quorum size, due to the fault model, and
by the fact that learners would wait for a quorum of matching values, due to the
consensus specification.)

212 M. Pires et al.

Algorithm 5. Byzantine Generalized Paxos - Acceptor a (agreement)
Local variables: suspicions = ⊥, new view = ⊥, leader = ⊥, view = 0, bala =
0, vala = ⊥, fast bal = ⊥, checkpoint = ⊥

1: upon receive(P1A, ballot, viewl) from leader l do
2: if viewl = view then
3: phase 1b(ballot);
4:
5: upon receive(FAST, ballot, viewl) from leader do
6: if viewl = view then
7: fast bal[ballot] = true;
8:
9: upon receive(P2B,ballot,value,proof) from acceptor i

do
10: if proofpubi

�= 〈ballot, value〉 then

11: return;
12: checkpoint[ballot][i] = proof;
13: if #(checkpoint[ballot]) ≥ N − f then
14: send(P2B, ballot, value, checkpoint[ballot])

to learners;
15: vala = ⊥;
16:
17: upon receive(P2A CLASSIC, ballot, view, value) from

leader do
18: if viewl = view then
19: phase 2b classic(ballot, value);
20:
21: upon receive(P2A FAST, value) from proposer do
22: phase 2b fast(value);

23:
24: function phase 1b(ballot)
25: if bala < ballot then
26: send(P1B, ballot, vala) to leader;
27: bala = ballot;
28: vala[bala] = ⊥;
29: end function
30:
31: function phase 2b classic(ballot, value)
32: if ballot ≥ bala and vala = ⊥ then
33: bala = ballot;
34: vala[ballot] = value;
35: if contains(value, C∗) then
36: proof = 〈suspicion, view〉priva ;
37: send(P2B, ballot, value, proof) to acceptors;
38: else
39: send(P2B, ballot, value) to learners;
40: end function
41:
42: function phase 2b fast(value)
43: if fast bal[bala] then
44: vala[bala] =merge sequences(vala[bala], value);
45: send(P2B, bala, vala[bala]) to learners;
46: end function

4.5 Fast Ballots

In contrast to classic ballots, fast ballots leverage the weaker specification of gen-
eralized consensus (compared to classic consensus) in terms of command ordering
at different replicas, to allow for the faster execution of commands in some cases.
The basic idea of fast ballots is that proposers contact the acceptors directly,
bypassing the leader, and then the acceptors send directly to the learners their
vote for the current sequence, where this sequence now incorporates the pro-
posed value. If a learner can gather N − f votes for a sequence (or an equivalent
one), then it is learned. If, however, a conflict exists between sequences then they
will not be considered equivalent and at most one of them will gather enough
votes to be learned. Conflicts are dealt with by maintaining the proposals at the
acceptors so they can be sent to the leader and learned in the next classic ballot.
This differs from Fast Paxos where recovery is performed through an additional
round-trip.

Next, we explain each of these steps in more detail.

Step 1: Proposer to Acceptors. To initiate a fast ballot, the leader informs
both proposers and acceptors that the proposals may be sent directly to the
acceptors. Unlike classic ballots, where the sequence proposed by the leader
consists of the commands received from the proposers appended to previously
proposed commands, in a fast ballot, proposals can be sent to the acceptors
in the form of either a single command or a sequence to be appended to the
command history.

Step 2: Acceptors to Learners. Acceptors append the proposals they receive
to the proposals they have previously accepted in the current ballot and broad-
cast the result to the learners. Similarly to what happens in classic ballots, the
fast ballot equivalent of the phase 2b message, which is sent from acceptors to

Generalized Paxos Made Byzantine (and Less Complex) 213

Algorithm 6. Byzantine Generalized Paxos - Learner l
Local variables: learned = ⊥, messages = ⊥

1: upon receive(P2B, ballot, value) from acceptor a
do

2: messages[ballot][value][a] = true;

3:
if #(messages[ballot][value]) ≥ N-f or (#(mes-
sages[ballot][value]) > f and isUniversallyCommuta-
tive(value)) then

4: learned = merge sequences(learned, value);
5:

6: upon receive(P2B, ballot, value, proofs) from
acceptor a do

7: valid proofs = 0;
8: for i in acceptors do
9: proof = proofs[i];

10: if proofpubi
= 〈ballot, value〉 then

11: valid proofs += 1;
12: if valid proofs > f then
13: learned = merge sequences(learned, value);

learners, contains the current ballot number and the command sequence. How-
ever, since commands (or sequences of commands) are concurrently proposed,
acceptors can receive and vote for non-commutative proposals in different orders.
To ensure safety, correct learners must learn non-commutative commands in
a total order. To this end, a learner must gather N − f votes for equivalent
sequences. That is, sequences do not necessarily have to be equal in order to be
learned since commutative commands may be reordered. Recall that a sequence
is equivalent to another if it can be transformed into the second one by reordering
its elements without changing the order of any pair of non-commutative com-
mands. (Note that, in the pseudocode, equivalent sequences are being treated
as belonging to the same index of the messages variable, to simplify the presen-
tation.) By requiring N − f votes for a sequence of commands, we ensure that,
given two sequences where non-commutative commands are differently ordered,
only one sequence will receive enough votes even if f Byzantine acceptors vote for
both sequences. Outside the set of (up to) f Byzantine acceptors, the remaining
2f + 1 correct acceptors will only vote for a single sequence, which means there
are only enough correct processes to commit one of them. Note that the fact that
proposals are sent as extensions to previous sequences is critical to the safety
of the protocol. In particular, since the votes from acceptors can be reordered
by the network before being delivered to the learners, if these values were single
commands it would be impossible to guarantee that non-commutative commands
would be learned in a total order.

Arbitrating an Order After a Conflict. When, in a fast ballot, non-
commutative commands are concurrently proposed, these commands may be
incorporated into the sequences of various acceptors in different orders, and
therefore the sequences sent by the acceptors in phase 2b messages will not be
equivalent and will not be learned. In this case, the leader subsequently runs
a classic ballot and gathers these unlearned sequences in phase 1b. Then, the
leader will arbitrate a single serialization for every previously proposed com-
mand, which it will then send to the acceptors. Therefore, if non-commutative
commands are concurrently proposed in a fast ballot, they will be included in
the subsequent classic ballot and the learners will learn them in a total order,
thus preserving consistency.

Checkpointing. A checkpointing feature allows the leader to propose a special
command C∗ that causes processes to discard stored commands. However, since
commands are kept at the acceptors to ensure that they will eventually be com-

214 M. Pires et al.

mitted, the checkpointing command must be sent within a sequence in a classic
ballot along with the commands stored by N −f acceptors. Since, when propos-
ing to acceptors in fast ballots, proposers wait for acknowledgments from N − f
acceptors, all proposed sequences will be sent to the leader and included in the
leader’s sequence, along with the checkpointing command. Since acceptors must
be certain that it’s safe to discard previously stored commands, before send-
ing phase 2b messages to learners, they first broadcast these messages among
themselves to ensure that a Byzantine leader can’t make a subset of acceptors
discard state. After waiting for N − f such messages, acceptors send phase 2b
messages to the learners along with the cryptographic proofs exchanged in the
acceptor-to-acceptor broadcast. After receiving just one message, a learner may
simply validate the N − f proofs and learn the commands. The learners discard
previously stored state when they execute the checkpointing command.

4.6 Correctness

We now prove the correctness of the presented Byzantine Generalized Paxos
protocol. Invariants and symbols specific to our proof are defined in Table 1. Due
to space constraints, we only discuss the proof of consistency, but the remaining
proofs and an extended version of the protocol to address cross-ballot consistency
are available in a technical report [23].

Table 1. Proof notation

Invariant/Symbol Definition

∼ Equivalence relation between sequences

X � Y The sequence X is a prefix of sequence Y

L Set of learner processes

P Set of proposals (commands or sequences of commands)

⊥ Empty command

learnedli Learner li’s learned sequence of commands

learned(li, s) learnedli contains the sequence s

maj accepted(s) N − f acceptors sent phase 2b messages to the learners for sequence s

min accepted(s) f + 1 acceptors sent phase 2b messages to the learners for sequence s

Theorem 1. At any time and for any two correct learners li and lj, learnedli
and learnedlj can subsequently be extended to equivalent sequences.

Proof:

1. At any given instant, ∀s, s′ ∈ P,∀li, lj ∈ L, learned(lj , s) ∧
learned(li, s′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof:

Generalized Paxos Made Byzantine (and Less Complex) 215

1.1. At any given instant, ∀s, s′ ∈ P,∀li, lj ∈ L, learned(li, s) ∧
learned(lj , s′) =⇒ (maj accepted(s) ∨ (min accepted(s) ∧ s •
σ1 ∼ x • σ2)) ∧ (maj accepted(s′) ∨ (min accepted(s′) ∧ s′ • σ1 ∼

x • σ2)),∃σ1, σ2 ∈ P ∪ {⊥},∀x ∈ P
Proof: A sequence can only be learned if the learner gathers
N − f votes (i.e., maj accepted(s)) or if it is universally com-
mutative (i.e., s • σ1 ∼ x • σ2, ∃σ1, σ2 ∈ P ∪ {⊥},∀x ∈ P)
and the learner gathers f + 1 votes (i.e., min accepted(s)).The
first case includes both gathering N − f votes directly from each
acceptor (Algorithm 6 lines {1–4}) and gathering N − f proofs
of vote from only one acceptor, as is the case when the sequence
contains a special checkpointing command (Algorithm 6 {6–11}).
The second case requires that the sequence must be commuta-
tive with any other (Algorithm 6 {1–4}). This is encoded in the
logical expression s • σ1 ∼ x • σ2 which is true the if learned
sequence can be extended with σ1 to the same that any other
sequence x can be extended to with a possibly different sequence
σ2, therefore making it impossible to result in a conflict.

1.2. At any given instant, ∀s, s′ ∈ P,maj accepted(s) ∧
maj accepted(s′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: Proved by contradiction.
1.2.1. At any given instant, ∃s, s′ ∈ P,∀σ1, σ2 ∈ P ∪
{⊥},maj accepted(s) ∧ maj accepted(s′) ∧ s • σ1 �∼ s′ • σ2

Proof: Contradiction assumption.
1.2.2. Take a pair proposals s and s′ that meet the conditions of 1.2.1
(and are certain to exist by the previous point), then s and s′ are
non-commutative
Proof: If ∀σ1, σ2 ∈ P ∪ {⊥}, s • σ1 �∼ s′ • σ2, then s and s′ must
contain non-commutative commands differently ordered. Otherwise,
some combination of σ1 and σ2 would be commutative. If s•σ1 �∼ s′•σ2

even for commutative σ1 and σ2 then s and s′ must contain non-
commutative commands in different relative orders.
1.2.3. At any given instant, ¬(maj accepted(s) ∧ maj accepted(s′))
Proof: Since s and s′ are non-commutative, therefore not equivalent,
and each correct acceptor only votes once for a new proposal (Algo-
rithm 5, lines {31–46}), any learner will only obtain N − f votes for
one of the sequences (Algorithm 6, lines {1–4}).
1.2.4. A contradiction is found, Q.E.D.
1.3. For any pair of proposals s and s′, at any given instant,

∀x ∈ P,∃σ1, σ2, σ3, σ4 ∈ P ∪ {⊥}, (maj accepted(s) ∨
(min accepted(s) ∧ s • σ1 ∼ x • σ2)) ∧ (maj accepted(s′) ∨
(min accepted(s′) ∧ s • σ1 ∼ x • σ2)) =⇒ s • σ3 ∼ s′ • σ4

Proof: By 1.2 and by definition of s • σ1 ∼ x • σ2.
1.4. At any given instant, ∀s, s′ ∈ P,∀li, lj ∈ L, learned(li, s) ∧

learned(lj , s′) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, s • σ1 ∼ s′ • σ2

Proof: By 1.1 and 1.3.

216 M. Pires et al.

1.5. Q.E.D.
2. At any given instant, ∀li, lj ∈ L, learned(lj , learnedj) ∧ learned

(li, learnedi) =⇒ ∃σ1, σ2 ∈ P ∪ {⊥}, learnedi • σ1 ∼ learnedj • σ2

Proof: By 1.
3. Q.E.D.

5 Conclusion and Discussion

We presented a simplified description of the Generalized Paxos specification and
protocol, and an implementation of Generalized Paxos that is resilient against
Byzantine faults. We now draw some lessons and outline some extensions to
our protocol that present interesting directions for future work and hopefully a
better understanding of its practical applicability.

Handling Faults in the Fast Case. A result that was stated in the original
Generalized Paxos paper [13] is that to tolerate f crash faults and allow for fast
ballots whenever there are up to e crash faults, the total system size N must
uphold two conditions: N > 2f and N > 2e+f . Additionally, the fast and classic
quorums must be of size N − e and N − f , respectively. This implies that there
is a price to pay in terms of number of replicas and quorum size for being able
to run fast operations during faulty periods. An interesting observation is that
since Byzantine fault tolerance already requires a total system size of 3f +1 and
a quorum size of 2f + 1, we are able to amortize the cost of both features, i.e.,
we are able to tolerate the maximum number of faults for fast execution without
paying a price in terms of the replication factor and quorum size.

Extending the Protocol to Universally Commutative Commands. A
downside of the use of commutative commands in the context of Generalized
Paxos is that the commutativity check is done at runtime, to determine if non-
commutative commands have been proposed concurrently. This raises the pos-
sibility of extending the protocol to handle commands that are universally com-
mutative, i.e., commute with every other command. For these commands, it is
known before executing them that they will not generate any conflicts, and there-
fore it is not necessary to check them against concurrently executing commands.
This allows us to optimize the protocol by decreasing the number of phase 2b
messages required to learn to a smaller f +1 quorum. Since, by definition, these
sequences are guaranteed to never produce conflicts, the N − f quorum is not
required to prevent learners from learning conflicting sequences. Instead, a quo-
rum of f +1 is sufficient to ensure that a correct acceptor saw the command and
will eventually propagate it to a quorum of N − f acceptors. This optimization
is particularly useful in the context of geo-replicated systems, since it can be
significantly faster to wait for the f + 1st message instead of the N − fth one.

Generalized Paxos and Weak Consistency. The key distinguishing feature
of the specification of Generalized Paxos [13] is allowing learners to learn con-
current proposals in a different order, when the proposals commute. This idea is
closely related to the work on weaker consistency models like eventual or causal

Generalized Paxos Made Byzantine (and Less Complex) 217

consistency [1], or consistency models that mix strong and weak consistency lev-
els like RedBlue [18], which attempt to decrease the cost of executing operations
by reducing coordination requirements between replicas. The link between the
two models becomes clearer with the introduction of universally commutative
commands in the previous paragraph. In the case of weakly consistent repli-
cation, weakly consistent requests can be executed as if they were universally
commutative, even if in practice that may not be the case. E.g., checking the bal-
ance of a bank account and making a deposit do not commute since the output
of the former depends on their relative order. However, some systems prefer to
run both as weakly consistent operations, even though it may cause executions
that are not explained by a sequential execution, since the semantics are still
acceptable given that the final state that is reached is the same and no invariants
of the application are violated [18].

Acknowledgements. This work was supported by the European Research Council
(ERC-2012-StG-307732) and FCT (UID/CEC/50021/2013).

References

1. Ahamad, M., Neiger, G., Burns, J.E., Kohli, P., Hutto, P.W.: Causal memory: def-
initions, implementation, and programming. Distrib. Comput. 9(1), 37–49 (1995)

2. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
Proceedings of 7th Symposium on Operating Systems Design and Implementation
(2006)

3. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable and Secure
Distributed Programming, 2nd edn. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-15260-3

4. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of 3rd
Symposium on Operating Systems Design and Implementation (OSDI) (1999)

5. De Prisco, R., Lampson, B., Lynch, N.A.: Revisiting the paxos algorithm. In:
Mavronicolas, M., Tsigas, P. (eds.) WDAG 1997. LNCS, vol. 1320, pp. 111–125.
Springer, Heidelberg (1997). doi:10.1007/BFb0030679

6. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Pro-
ceedings of 21st Symposium on Operating Systems Principles (SOSP) (2007)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

8. Junqueira, F., Reed, B., Serafini, M.: Zab: high-performance broadcast for primary-
backup systems. In: 41st International Conference on Dependable Systems and
Networks (2011)

9. Ladin, R., Liskov, B., Shrira, L.: Lazy replication: exploiting the semantics of
distributed services. In: Proceedings of 9th Symposium on Principles Distributed
Computing (1990)

10. Lamport, L.: The part-time parliament. Technical report, DEC SRC (1989)
11. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169

(1998)
12. Lamport, L.: Paxos made simple. SIGACT News 32(4), 18–25 (2001)
13. Lamport, L.: Generalized consensus and paxos. Technical report, Technical Report

MSR-TR-2005-33, Microsoft Research (2005)

http://dx.doi.org/10.1007/978-3-642-15260-3
http://dx.doi.org/10.1007/978-3-642-15260-3
http://dx.doi.org/10.1007/BFb0030679

218 M. Pires et al.

14. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
15. Lamport, L.: Byzantizing paxos by refinement. In: Peleg, D. (ed.) DISC

2011. LNCS, vol. 6950, pp. 211–224. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-24100-0 22

16. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Progr. Lang. Syst. 4(3), 382–401 (1982)

17. Lee, E.K., Thekkath, C.A.: Petal: distributed virtual disks. In: Proceedings of 7th
International Conference on Architectural Support for Programming Languages
and Operating Systems (1996)

18. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N., Rodrigues, R.: Making
geo-replicated systems fast as possible, consistent when necessary. In: Proceedings
of 10th Symposium on Operating Systems Design and Implementation (OSDI)
(2012)

19. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: building efficient replicated state
machines for WANs. In: Proceedings of 8th Symposium on Operating Systems
Design and Implementation (OSDI) (2008)

20. Martin, J.P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secur.
Comput. 3(3), 202–215 (2006)

21. Moraru, I., Andersen, D.G., Kaminsky, M.: There is more consensus in Egalitar-
ian parliaments. In: Proceedings of Symposium on Operating Systems Principles
(SOSP) (2013)

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
23. Pires, M., Ravi, S., Rodrigues, R.: Generalized Paxos Made Byzantine (and Less

Complex). Tech. rep. (2017)
24. van Renesse, R.: Paxos made moderately complex. ACM Comput. Surv. 47(3),

1–36 (2011)
25. Singh, A., Fonseca, P., Kuznetsov, P.: Zeno: eventually consistent byzantine-fault

tolerance. In: Proceedings of 6th Symposium on Networked Systems Design and
Implementation (NSDI) (2009)

26. Vukolic, M.: Quorum systems: with applications to storage and consensus. In:
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool (2012)

http://dx.doi.org/10.1007/978-3-642-24100-0_22
http://dx.doi.org/10.1007/978-3-642-24100-0_22

ASSESS: A Tool for Automated Synthesis
of Distributed Self-stabilizing Algorithms

Fathiyeh Faghih1(B) and Borzoo Bonakdarpour2(B)

1 Department of Electrical and Computer Engineering,
University of Tehran, Tehran, Iran

f.faghih@ut.ac.ir
2 Department of Computer Science, Iowa State University, Ames, IA, USA

borzoo@iastate.edu

Abstract. A distributed self-stabilizing system is one that always recov-
ers to its legitimate behavior with no external intervention, even if it is
initialized in an arbitrary state. It is well known that designing and
reasoning about the correctness of such protocols are highly tedious
and complex tasks. We present Assess (Automated Synthesizer for
SElf-Stabilizing Systems), a tool that automatically synthesizes distrib-
uted self-stabilizing algorithms from their high-level specification. Assess
takes as input (1) the network topology of the distributed system, (2) the
legitimate behavior of the system (either explicitly as a state predicate,
or implicitly as a set of ltl formulas), and (3) a set of high-level require-
ments such as the timing model (asynchronous or synchronous) and sta-
bilization type (weak, strong, and monotonic). The tool utilizes powerful
SMT-solving techniques and returns a self-stabilizing protocol as a set of
guarded commands that realize the input specification. Since the output
is correct by construction, it will not need any proof correctness. We
expect the designers and researchers in the area of self-stabilization to
significantly benefit from the tool.

1 Introduction

A distributed self-stabilizing system is one that always recovers to its set of legit-
imate states (LS) with no external intervention, even if it is initialized in a state
in ¬LS , or it leaves LS due to the occurrence of a transient fault. Moreover, the
system remains in LS thereafter, if no faults occur. Self-stabilization has a wide
range of applications in networking and distributed robotics [6,22]. The concept
was first introduced by Dijkstra in a seminal paper that presents three solutions
for self-stabilizing mutual exclusion in a ring [4]. Twelve years later, Dijkstra
published the proof of correctness for one of his proposed protocols [5] and states
that proving the correctness of self-stabilization was surprisingly more tedious
than he first expected. Indeed, designing a self-stabilizing algorithm from scratch
and proving its correctness is highly complex and often subject to errors. This
complexity motivates the need for developing effective tools that can automati-
cally generate correct-by-construction self-stabilizing algorithms from high-level
specifications.
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 219–233, 2017.
https://doi.org/10.1007/978-3-319-69084-1 15

220 F. Faghih and B. Bonakdarpour

Network Topology

Symmetry
((a)symmetric)

Timing Model
((a)synchronous)

Self-Stabilization
(strong, weak, monotonic)

Assess

Legitimate Behavior
(explicit/implicit)

Self-Stabilizing
Protocol

(Guarded Commands)

Fig. 1. Input and output of Assess.

In this paper, we
introduce our tool
Assess (Automated
Synthesizer for SElf-
Stabilizing Systems)1.
The tool takes as
input (1) the net-
work topology of the
distributed system in
terms of a set of
processes and their
read/write restrictions
in the shared-memory
model, (2) the legitimate behavior of the system in the absence of faults, and
(3) a set of high-level requirements such as the timing model (asynchronous
or synchronous), stabilization type (weak [15], strong, or monotonic [26]), and
whether the processes are symmetric. The legitimate behavior is specified either
explicitly as a state predicate LS , or implicitly as a set of ltl formulas. The
tool returns as output a finite-state self-stabilizing protocol as a set of guarded
commands that realize the input specification (see Fig. 1).

Assess implements a collection of powerful SMT-based techniques that we
proposed in [10–12]. These algorithms are inspired by bounded synthesis algo-
rithms [14] and the tool supports the SMT-solver Z3 [1] and the model finder
Alloy [18]. The internal algorithm is sound and complete, meaning that (1) a pro-
tocol synthesized by Assess is correct by construction, and (2) if the tool fails to
synthesize a solution, then there does not exist one. The significance of Assess
can be evaluated by its success in synthesizing a rich and well-known set of
existing distributed self-stabilizing protocols. Examples include Raymond’s dis-
tributed mutual exclusion algorithm [24], Dijkstra’s token ring [4] (for both three
and four state machines), maximal matching [21], weak stabilizing token circula-
tion in anonymous networks [3], and the three coloring problem [16]. Therefore,
we have every reason to believe that Assess will significantly assist in designing
and conducting research on self-stabilizing algorithms.

ASSESS inherently has two inherent shortcomings that any such would have
and they argue for more research. Scalability is a big challenge in synthesis due
to its high complexity. Also, note that parameterized synthesizing a distributed
self-stabilizing algorithm that works for any number of processes is undecidable.
Currently, Assess can synthesize a small number of processes. However, it is
often the case that having access to a solution for a small number of processes
can give key insights to designers of self-stabilizing protocols to generalize the
protocol for any number of processes. We emphasize that since our synthesis
method is complete, if Assess fails to synthesize a solution, this may give the
designer hints about the impossibility of finding a solution for the given problem
and topology.

1 The tool can be accessed at http://www.cas.mcmaster.ca/borzoo/assess.

http://www.cas.mcmaster.ca/borzoo/assess

ASSESS: A Tool for Automated Synthesis 221

Organization. In Sect. 2, we present the theoretical background of the tool.
The problem of synthesis of distributed self-stabilizing protocols is discussed in
Sect. 3. Then, Sect. 4 presents the high-level description of the tool. Throughout
the paper, we utilize the specification of one of Dijkstra’s self-stabilizing token
ring protocols as a running example to demonstrate the concepts and features
of our tool. Additional case studies and experimental results are presented in
Sect. 5. Related work is presented in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Model of Computation

2.1 Distributed Programs

Throughout the paper, let V be a finite set of discrete variables. Each variable
v ∈ V has a finite domain Dv. A state is a mapping from each variable v ∈ V to
a value in its domain Dv. We call the set of all possible states the state space.
A transition in the program state space is an ordered pair (s0, s1), where s0 and
s1 are two states. We denote the value of a variable v in state s by v(s).

Definition 1. A process π over a set V of variables is a tuple 〈Rπ,Wπ, Tπ〉,
where

– Rπ ⊆ V is the read-set of π; i.e., variables that π can read,
– Wπ ⊆ Rπ is the write-set of π; i.e., variables that π can write, and
– Tπ is the set of transitions of π, such that (s0, s1) ∈ Tπ implies that for each

variable v ∈ V , if v(s0) �= v(s1), then v ∈ Wπ. ��

Notice that Definition 1 requires that a process can only change the value of
a variable in its write-set (third condition), but not blindly (second condition).
We say that a process π = 〈Rπ,Wπ, Tπ〉 is enabled in state s0 if there exists a
state s1, such that (s0, s1) ∈ Tπ.

Definition 2. A distributed program is a tuple D = 〈ΠD, TD〉, where

– ΠD is a set of processes over a common set V of variables, such that:
• for any two distinct processes π1, π2 ∈ ΠD, we have Wπ1 ∩ Wπ2 = ∅
• for each process π ∈ ΠD and each transition (s0, s1) ∈ Tπ, the following

read restriction holds:

∀s′
0, s

′
1 : ((∀v ∈ Rπ : (v(s0) = v(s′

0) ∧ v(s1) = v(s′
1)))∧

(∀v �∈ Rπ : v(s′
0) = v(s′

1))) =⇒ (s′
0, s

′
1) ∈ Tπ (1)

– TD is the set of transitions and is the union of transitions of all processes:
TD =

⋃
π∈ΠD Tπ. ��

Intuitively, the read restriction in Definition 2 imposes the constraint that for
each process π, each transition in Tπ depends only on reading the variables
that π can read. Thus, each transition is an equivalence class in TD, which
we call a group of transitions. The key consequence of read restrictions is that

222 F. Faghih and B. Bonakdarpour

during synthesis, if a transition is included (respectively, excluded) in TD, then its
corresponding group must also be included (respectively, excluded) in TD as well.
Also, notice that TD is defined in such a way that D resembles an asynchronous
distributed program, where process transitions execute in an interleaving fashion.

Example: We use the problem of token passing in a ring topology (i.e., token
ring) as a running example to describe the concepts throughout the paper.
Let V = {x0, x1, x2, x3} be the set of variables, where Dx0 = Dx1 = Dx2 =
Dx3 = {0, 1, 2}. Let D = 〈ΠD, TD〉 be a distributed program, where ΠD =
{π0, π1, π2, π3}. Each process πi (0 ≤ i ≤ 3) can write variable xi. Also, Rπ0 =
{x0, x1, x3}, Rπ1 = {x1, x2, x0}, Rπ2 = {x2, x3, x1}, and Rπ3 = {x3, x0, x2}.
Notice that following Definition 2 and read/write restrictions of π0, (arbitrary)
transitions

t1 = ([x0 = 1, x1 = 1, x2 = 0, x3 = 0], [x0 = 2, x1 = 1, x2 = 0, x3 = 0])
t2 = ([x0 = 1, x1 = 1, x2 = 2, x3 = 0], [x0 = 2, x1 = 1, x2 = 2, x3 = 0])

are in the same group, since π0 cannot read x2. This implies that if t1 is included
in the set of transitions of a distributed program, then so should be t2. Otherwise,
execution of t1 depends on the value of x2, which, of course, π0 cannot read.

Definition 3. A computation of D = 〈ΠD, TD〉 is an infinite sequence of states
s = s0s1 · · · , such that: (1) for all i ≥ 0, we have (si, si+1) ∈ TD, and (2) if a
computation reaches a state si, from where there is no state s �= si, such that
(si, s) ∈ TD, then the computation stutters at si indefinitely. Such a computation
is called a terminating computation. ��

2.2 Predicates

Let D = 〈ΠD, TD〉 be a distributed program over a set V of variables. The global
state space of D is the set of all possible global states of D: ΣD =

∏
v∈V Dv.

The local state space of π ∈ ΠD is the set of all possible local states of π:
Σπ =

∏
v∈Rπ

Dv.

Definition 4. An interpreted global predicate of a distributed program D is a
subset of ΣD and an interpreted local predicate is a subset of Σπ, for some
π ∈ ΠD. ��

Definition 5. Let D = 〈ΠD, TD〉 be a distributed program. An uninterpreted
global predicate up is an uninterpreted Boolean function from ΣD. An uninter-
preted local predicate lp is an uninterpreted Boolean function from Σπ, for some
π ∈ ΠD. ��

The interpretation of an uninterpreted global predicate is a Boolean function
from the set of all states: upI : ΣD �→ {true, false}. Similarly, the interpretation
of an uninterpreted local predicate for the process π is a Boolean function:
lpI : Σπ �→ {true, false} Throughout the paper, we use ‘uninterpreted predicate’
to refer to either uninterpreted global or local predicate, and use global (local)
predicate to refer to interpreted global (local) predicate.

ASSESS: A Tool for Automated Synthesis 223

2.3 Topology

A topology specifies the communication model of a distributed program.

Definition 6. A topology is a tuple T = 〈V, |ΠT |, RT ,WT 〉, where

– V is a finite set of finite-domain discrete variables,
– |ΠT | ∈ N≥1 is the number of processes,
– RT is a mapping {0 . . . |ΠT | − 1} �→ 2V from a process index to its read-set,
– WT is a mapping {0 . . . |ΠT | − 1} �→ 2V from a process index to its write-set,

such that WT (i) ⊆ RT (i), for all i (0 ≤ i ≤ |ΠT | − 1). ��

Definition 7. A distributed program D = 〈ΠD, TD〉 has topology T = 〈V, |ΠT |,
RT ,WT 〉 iff

– each process π ∈ ΠD is defined over V
– |ΠD| = |ΠT |
– there is a mapping g : {0 . . . |ΠT | − 1} �→ ΠD such that

∀i ∈ {0 . . . |ΠT | − 1} : (RT (i) = Rg(i)) ∧ (WT (i) = Wg(i))

��

3 Synthesis of Distributed Self-stabilizing Systems

We specify the behavior of a distributed self-stabilizing program based on (1)
the functional specification, and (2) the recovery specification. The functional
specification is intended to describe what the program is required to do in a fault-
free scenario. The recovery behavior stipulates Dijkstra’s idea of self-stabilization
in spite of distributed control [4].

3.1 The Functional Behavior

We use linear temporal logic (ltl) [23] to specify the functional behavior of a
stabilizing program. Since ltl is a commonly-known language, we refrain from
presenting its syntax and semantics and continue with our running example
(where F , G , X , and U denote the ‘finally’, ‘globally’, ‘next’, and ‘until’ opera-
tors, respectively). In our framework, an ltl formula may include uninterpreted
predicates. Thus, we say that a program D satisfies an ltl formula ϕ from an
initial state in the set I, and write D, I |= ϕ iff there exists an interpretation
function for each uninterpreted predicate in ϕ, such that all computations of D,
starting from a state in I satisfy ϕ. Also, the semantics of the satisfaction rela-
tion is the standard semantics of ltl over Kripke structures (i,e., computations
of D that start from a state in I).

Example: Consider our example of token passing in a ring topology (i.e., token
ring). This problem has two functional requirements:

224 F. Faghih and B. Bonakdarpour

Safety. The safety requirement for this problem is that in each state, only one
process can execute. To formulate this requirement, we assume each process πi

is associated with a local uninterpreted predicate tk i, which shows whether
πi is enabled. Let LP = {tk i | 0 ≤ i < n}. A process πi can execute a
transition, if and only if tk i is true. The ltl formula, ϕTR, expresses the
above requirement for a ring of size n:

ϕTR = ∀i ∈ {0 · · · n − 1} : tk i ⇐⇒ (∀val ∈ {0, 1, 2} : (xi = val) ⇒ X (xi �= val))

Using the set of uninterpreted predicates, the safety requirement can be
expressed by the following ltl formula:

ψsafety = ∃i ∈ {0 · · · n − 1} : (tk i ∧ ∀j �= i : ¬tk j)

Fairness. This requirement implies that for every process πi and starting from
each state, the computation should reach a state, where πi is enabled:

ψfairness = ∀i ∈ {0 · · · n − 1} : (F tk i)

Thus, the functional requirements of the token ring protocol is

ψTR = ψsafety ∧ ψfairness

Observe that following Definition 3, ψTR ensures deadlock-freedom as well.

3.2 The Problem of Synthesizing Self-stabilizing Protocols

Definition 8. A distributed program D = 〈ΠD, TD〉 with the state space ΣD
is (strongly) self-stabilizing for an ltl specification ψ iff there exists a global
predicate LS (called the set of legitimate states), such that:

– Functional behavior: D,LS |= ψ
– Strong convergence: D,ΣD |= FLS
– Closure: D,ΣD |= (LS ⇒ XLS) ��

Notice that the strong convergence property ensures that starting from any state,
any computation converges to a legitimate state of D within a finite number of
steps. The closure property ensures that execution of the program is closed in
the set of legitimate states.

The problem of synthesizing a self-stabilizing algorithm is as follows. Given
is (1) a topology T = 〈V, |ΠT |, RT ,WT 〉, and (2) an explicit predicate LS , or,
two ltl formulas ϕ and ψ that involve a set LP of uninterpreted predicates. The
tool is required to identify as output a distributed program D = 〈ΠD, TD〉 as a
set of guarded commands for TD, such that D has topology T , and (1) in the
case of explicit LS, D is self-stabilizing for LS , or (2) in the case of implicit LS ,
D,ΣD |= ϕ, and D is self-stabilizing for ψ. We emphasize that although we only
discussed strong stabilization in Definition 8, our tool can synthesize weak [15]
and monotonic-stabilizing [26] protocols as well.

ASSESS: A Tool for Automated Synthesis 225

4 Tool Description

In this section, we present a high-level picture of our tool: the input, internal
procedure, and output (see Fig. 1).

4.1 Input to the Tool

Assess takes as input: (1) a system topology, (2) the specification of legit-
imate behavior, and (3) the system type; i.e., symmetry, timing model, and
weak/strong/monotonic self-stabilization. It automatically generates a protocol
that satisfies the given specifications. The input can be given to the tool as a
plain text file or using the tool’s GUI (see Fig. 2). The format of the text file can
be found in the tool’s user manual.

System Topology. The system topology is given as a set of variable types,
their finite domains, system variables (of the given types), number of processes,
and read-set and write-set of each process. For example, consider a ring topology
with three processes, as described in Sect. 2. Note that in Sect. 2, we considered
a topology with four processes to explain read restriction, but in the sequel,
to simplify the example, we consider a smaller topology with three processes.
To model such a topology, we incorporate one variable per process, where each
variable’s domain has three values (see Fig. 2). That is, we introduce

– A variable type t0 with three possible values: {0,1,2}.
– Three variables x0, x1, and x2 of type t0.

The number of processes can be specified in the next row. In our example, we
chose to have three processes and for convenience of reference in the paper, name
them as π0, π1, and π2. The user can specify the read-set (respectively, write-
set) of each process by clicking on the corresponding button, and choosing the
variables from the set of all defined variables (see Fig. 3). In our example, the
read-set of process π0 is {x0,x1,x2} (because each process on a ring has two
neighbors), and its write-set is {x0}. The tool checks to ensure all write-sets of
processes are disjoint, and also the write-set of each process is a subset of its
read-set (otherwise the process will write to a variable blindly).

Note that choosing variables might be tricky in some examples. But in most
cases, the user can have educated guesses about the variables and their domains
from the specification (similar to programming practices). Or we can find the
variables by trial and error. For example, one can start by assigning each process
a boolean variable, and if no solution is found, increase the number of variables
or their domains (increase the local state space of each process).

Synthesis Parameters. The user can also specify the following for the output
protocol:

226 F. Faghih and B. Bonakdarpour

Fig. 2. Assess GUI Fig. 3. Write-set specification

– (Type of stabilization) In a strong-stabilizing system, the system always recov-
ers its within a finite number of steps. A weak-stabilizing system [15] has only
the possibility of recovery; i.e., there can be cycles along a recovery path.
Monotonic-stabilizing [26] requires each process to change its state at most
once during recovery.

– (Timing model) In a synchronous system, all enabled processes execute at
the same time, while in an asynchronous system, each system transition is
the execution of only one process. An asynchronous system resembles pure
interleaving semantics.

– (Symmetry) In a symmetric system, all processes have the same number of
elements in their read-sets and write-sets, and they all execute similarly. If
the user selects to have a symmetric system, she can specify the mapping
between variables of the processes’ read-sets and write-sets by putting a vari-
able ordering in the read-set and write-set of each process (see Fig. 4). This
way, the variables with the same indexes are mapped to each other. For exam-
ple, in our token ring example, the ordering on the read-sets can be set to the
process’s variable, its right neighbor’s variable, and its left neighbor’s variable.
For example, for π0, we have <x0,x1,x2>, and for π1, we have <x1,x2,x0>.

Legitimate Behavior. The other input to Assess is the legitimate behavior,
which can be specified explicitly or implicitly. In the former, the user enters a
Boolean predicate LS on the system variables to determine a subset of state space
as the set of legitimate states. In some problems, such as token ring, specification

ASSESS: A Tool for Automated Synthesis 227

of LS as a predicate can be as difficult as finding the self-stabilizing protocol
itself [12]. This motivates the idea of specifying LS implicitly. Here, the user
does not need to know the exact predicate that specifies the set of legitimate
states, but she can just provide a high-level specification of LS as a set of ltl
formulas. As explained in Sect. 3, in order to keep the specification as implicit as
possible, the ltl formulas can include a set of “uninterpreted predicates”. These
predicates are given by the user, along with a set of general constraints on them
as ltl properties. For example, in the token ring problem, the user can specify
an uninterpreted predicate tki for each process, and the process πi changes xi
in the next transition, if tki is true. As mentioned in Sect. 3.1, for our 3-process
topology, the general constraint for tk0 is:

(!tk0 && (x0==0)) => (X (x0==0))

Note that the constraint should be written for all three values in the domain of
x0. Now, the implicit constraint for the legitimate behavior is:

– Safety. In each state, one and only one process can have the token:

(tk0 && !tk1 && !tk2) || (!tk0 && tk1 && !tk2) ||
(!tk0 && !tk1 && tk2)

– Fairness. Starting from any state, each process finally acquires the token:

F (tk0) && F (tk1) && F (tk2)

Another way to guarantee this requirement is that processes get enabled in a
clockwise order in the ring, which can be formulated as follows:
(tk0 => X (tk1)) && (tk1 => X (tk2)) && (tk2 => X (tk0))

Note that the latter formula is a stronger constraint, and would prevent us
to synthesize bidirectional protocols, such as Dijkstra’s three-state solution.

The user can also specify the underlying solver to synthesize the solution. Cur-
rently, Assess supports the SMT-solver Z3 [1] and the model finder Alloy [18].

4.2 SMT-Based Synthesis

Our synthesis approach is based on bounded synthesis [14] and in particular
SMT-solving. Internally, Assess formulates all the required specifications given
by the user as a set of SMT constraints using the techniques introduced in [10–
12]. The resulting SMT instance is given to an SMT-solver to find a satisfying
model. The aforementioned techniques are sound and complete. Thus, if the
input instance is satisfiable, the witness model is a self-stabilizing system that
realizes the input specification. If the solver returns an unsatisfiability result, we
are guaranteed that there is no self-stabilizing system that can satisfy the given
specification. Assess consists of four main components:

228 F. Faghih and B. Bonakdarpour

Input user interface. We implemented Assess user interface using Java
Graphic (see Fig. 2). The system topology, along with the desired synthe-
sis parameters and legitimate behavior are collected by the user interface,
and given to the synthesis engine.

Synthesis engine. The synthesis engine generates an SMT instance based on
the given input, and invokes Z3 or Alloy to solve the constraints for the gen-
erated instance. As mentioned earlier, our approach for generating the SMT
instance is inspired by the concrete synthesis algorithms presented in [10–12].

SMT-solver. The generated SMT instance is given to an SMT-solver to gener-
ate a witness model that represents a self-stabilizing system. Assess currently
supports two solvers; Alloy and Z3. But it is designed in a way that other
solvers can be easily plugged in the tool.

Output generator. If the SMT-solver does not return “unsat”, the output
generator spits out the self-stabilizing protocol in terms of a set of guarded
commands from the witness generated by the SMT-solver.

4.3 Output of the Tool

As mentioned earlier, Assess translates the synthesized transition relation by
the SMT-solver into a set of guarded commands (see Fig. 5). In the case of an
asynchronous system, a set of guarded commands for each process is generated,
while in the case of a synchronous system, a set of guarded commands for the
whole system is generated (as all processes execute at the same time). Note that

Fig. 4. Order specification Fig. 5. Synthesis result

ASSESS: A Tool for Automated Synthesis 229

we currently do not claim that the set of output guarded commands is minimum
or the recovery time is optimal.

A guarded-command is of the form guard -> action, where guard is a CNF
Boolean expression, in which each clause is a disjunction of the form:

((vari = valj) || (vari = valz) || ...)

vari is a variable, and valj, valz, etc. are values in their domains. Furthermore,
action is a set of assignments of the form (vari := valj), where vari is a
variable, and valj is a value in its domain. Note that in the case of asynchronous
system, for each guarded-command for the process πi, all variables in guard are
in the read-set of πi, and all variables in action are in the write-set of πi. As an
example, the set of guarded-commands for process π0 in the synthesized system
of our token ring example is as follows:

proc0:

(x0 = 1) && (x1 = 2) && (x2 = 1) -> x0 := 2
(x0 = 1 || x0 = 2) && (x1 = 0) && (x2 = 2 || x2 = 0) -> x0 := 0
(x0 = 1 || x0 = 0) && (x1 = 0) && (x2 = 0) -> x0 := 2
(x0 = 0) && (x1 = 2) && (x2 = 2) -> x0 := 2
(x0 = 2) && (x1 = 2) && (x2 = 1) -> x0 := 0
(x0 = 1) && (x1 = 2) && (x2 = 0) -> x0 := 0
(x0 = 2) && (x1 = 1) && (x2 = 2 || x2 = 0) -> x0 := 1
(x0 = 0) && (x1 = 1) && (x2 = 1) -> x0 := 1
(x0 = 0) && (x1 = 1 || x1 = 0) && (x2 = 1) -> x0 := 2

5 Selected Case Studies and Experimental Results

In this section, we report the results of selected case studies that we used to
evaluate our tool. The reader can find more case studies in the tool distribution.
Here, we demonstrate the effectiveness of our tool by synthesizing existing well-
known protocols.

5.1 Maximal Matching

Our first case study is distributed self-stabilizing maximal matching [17,25]. Each
process maintains a match variable with domain of all its neighbors and its own
index that indicates the process is not matched to any of its neighbors. The set
of legitimate states is the disjunction of all possible maximal matchings on the
given topology. As an example, for a graph of three processes connected on a
line topology, we have:

(v0==m01 && v1==m10 && v2==m22) ||
(v0==m00 && v1==m12 && v2==m21)

Table 1 presents our results for different sizes of line and star topologies. Note
that there is no symmetric protocol for a line or star topology.

230 F. Faghih and B. Bonakdarpour

Table 1. Results for synthesizing maximal matching for line and star topologies.

Topology # of processes Self-stabilization Timing model Solver Time (sec)

Line 3 Strong Asynchronous Alloy 0.437

Line 3 Strong Asynchronous Z3 0.264

Line 3 Strong Synchronous Alloy 0.273

Line 3 Strong Synchronous Z3 0.119

Line 4 Strong Synchronous Alloy 4.99

Line 4 Strong Synchronous Z3 0.604

Line 4 Weak Synchronous Alloy 4.64

Line 4 Weak Synchronous Z3 0.506

Star 4 Strong Asynchronous Alloy 3.98

Star 4 Strong Asynchronous Z3 6.842

Star 4 Weak Asynchronous Alloy 3.033

Star 4 Weak Asynchronous Z3 7.962

Star 5 Strong Asynchronous Alloy 89.484

Star 5 Strong Asynchronous Z3 668.166

5.2 The Three-Coloring Problem

In the three-coloring problem [16], we have a set of processes connected in a
ring topology. Each process πi has a variable color i, with the domain {b, r, y}.
Each value of the variable color i represents a distinct color. A process can read
and write its own variable. It can also read, but not write the variables of its
left and right processes. For example, in a ring of four processes, the read-set
and write-set of π0 are RT (0) = {color0, color1, color3} and WT (0) = {color0},
respectively. The set of legitimate states is those where each process has a color
different from its left and right neighbors. Thus, for a ring of four processes, LS
is defined by the following predicate:

(color0 != color1) && (color1 != color2) &&
(color2 != color0)

Our synthesis results for the three coloring problem are reported in Table 2.
The synthesized models for strong self-stabilization with asynchronous timing
model in the symmetric case that works for 3 processes is as follows:

(color0 = b) && (color1 = b || color1 = y) && (color2 = b) -> color0 := r

(color0 = b) && (color1 = b) && (color2 = r) -> color0 := y

(color0 = r) && (color1 = b || color1 = r) && (color2 = b) -> color0 := b

(color0 = r) && (color1 = b || color1 = r) && (color2 = b) -> color0 := y

(color0 = r || color0 = y) && (color1 = r) && (color2 = r) -> color0 := b

(color0 = y) && (color1 = r || color1 = y) && (color2 = y) -> color0 := b

(color0 = y) && (color1 = r) && (color2 = y) -> color0 := r

(color0 = y) && (color1 = y) && (color2 = b || color2 = r) -> color0 := b

ASSESS: A Tool for Automated Synthesis 231

Table 2. Results for synthesizing three-coloring.

of processes Self-stabilization Timing model Symmetry Solver Time (sec)

3 Weak Asynchronous Asymmetric Alloy 2.11

3 Weak Asynchronous Asymmetric Z3 2.12

3 Strong Asynchronous Symmetric Alloy 5.95

3 Strong Asynchronous Symmetric Z3 3.245

4 Weak Asynchronous Asymmetric Alloy 51.42

4 Weak Asynchronous Asymmetric Z3 346.402

All other processes execute similarly. Additional experimental results can be
found in [10–12].

6 Related Work

Related Tools. FTSyn [8] is a tool for adding fault-tolerance to existing finite-state
programs. It takes as input to a fault-intolerant program and a set of faults that
perturbs the program. It repairs the input, so that the result is a fault-tolerant ver-
sion of the input program. Sycraft (SYmboliC synthesizeR and Adder of Fault-
Tolerance) [2] takes as input a distributed fault-intolerant program in terms of a
set of processes, a set of fault actions and a safety specification. It transforms the
input program to a distributed fault-tolerant program. Assess is different from
FTSyn and Sycraft, in that they both take as input a program, while Assess
takes as input the topology, the set of legitimate states, and the program type.
Also, the output of Assess is a self-stabilizing program, compared to a fault-
tolerant program, which is the result of the both mentioned tools. The tool STSyn
implements the heuristics presented in [13]. Unlike the algorithms implemented in
Assess, STSyn algorithms are sound but not complete. Unbeast [9] is a tool for
synthesis of finite-state systems from ltl formula. The tool combines the ideas in
bounded synthesis, specification splitting, and symbolic game solving with binary
decision diagrams (BDDs). There are similarities between bounded synthesis and
our work. You can find the full comparison below.

Synthesis of Self-stabilizing Systems. In [20], the authors show that adding strong
convergence is NP-complete in the size of the state space, which itself is expo-
nential in the size of variables of the protocol. Ebnenasir and Farahat [7] also
proposed an automated method to synthesize self-stabilizing algorithms. Their
proposed method is not complete for strong self-stabilization. This means that
if it cannot find a solution, it does not necessarily imply that there does not
exist one. However, in our method, if the SMT-solver declares “unsatisfiability”,
it means that there is no self-stabilizing algorithm satisfying the given input
constraints. Also, using our approach, one can synthesize synchronous and asyn-
chronous programs, while the method in [7] synthesizes asynchronous systems
only. Also, using our approach, the user can express legitimate states implicitly,
which is not possible using the approach in [7]. Finally, our method is based on

232 F. Faghih and B. Bonakdarpour

the technique of SMT solving, which is constantly evolving, and hence, we expect
our technique to become more efficient as more efficient SMT solvers emerge.

7 Conclusion

We presented the tool Assess for automatic synthesis of distributed self-
stabilizing systems. The tool takes as input the network topology of processes as
well as the fault-free behavior of the system, and generates as output the transi-
tion relation of the satisfying system as a set of guarded-commands, if there exists
one. Our approach is to formulate the given specification as an SMT instance,
and call an SMT-solver to generate a satisfying model. Assess currently supports
Z3 and Alloy solvers, but other solvers can also be easily embedded. We expect
our tool to significantly facilitate design and implementation of self-stabilizing
algorithms. We demonstrated the effectiveness of Assess by synthesizing a set
of well-known existing self-stabilizing protocols such as maximal matching [21]
and the three coloring problem [16]. We are currently attempting to use Assess
to synthesize a solution for open problems in self-stabilization, where no manual
solution is yet proposed. Obviously, scalability is an issue in our method due to
high complexity of synthesis. Although our case studies deal with synthesizing
a small number of processes, having access to a solution for a small number of
processes may give key insights to designers of self-stabilizing protocols to gener-
alize the protocol for any number of processes. For example, our method can be
applied in cases where there exists a cut-off point [19], and we can theoretically
prove that the solution works for any number of processes. Also, in cases, where
we find that there is no solution for the problem, this may be a hint for a general
impossibility result. Other methods can be used to improve scalability, such as
counterexample-guided inductive synthesis.

References

1. Z3: An efficient theorem prover. http://research.microsoft.com/en-us/um/
redmond/projects/z3/

2. Bonakdarpour, B., Kulkarni, S.S.: SYCRAFT: a tool for synthesizing distrib-
uted fault-tolerant programs. In: van Breugel, F., Chechik, M. (eds.) CONCUR
2008. LNCS, vol. 5201, pp. 167–171. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85361-9 16

3. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabiliza-
tion. In: International Conference on Distributed Computing Systems (ICDCS),
pp. 681–688 (2008)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Dijkstra, E.W.: A belated proof of self-stabilization. Distrib. Comput. 1(1), 5–6
(1986)

6. Dolev, S., Schiller, E.: Self-stabilizing group communication in directed networks.
Acta Informatica 40(9), 609–636 (2004)

7. Ebnenasir, A., Farahat, A.: A lightweight method for automated design of conver-
gence. In: International Parallel and Distributed Processing Symposium (IPDPS),
pp. 219–230 (2011)

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://dx.doi.org/10.1007/978-3-540-85361-9_16
http://dx.doi.org/10.1007/978-3-540-85361-9_16

ASSESS: A Tool for Automated Synthesis 233

8. Ebnenasir, A., Kulkarni, S.S., Arora, A.: FTSyn: a framework for automatic synthe-
sis of fault-tolerance. Int. J. Softw. Tools Technol. Transf. (STTT) 10(5), 455–471
(2008)

9. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 25

10. Faghih, F., Bonakdarpour, B.: SMT-based synthesis of distributed self-stabilizing
systems. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 165–179.
Springer, Cham (2014). doi:10.1007/978-3-319-11764-5 12

11. Faghih, F., Bonakdarpour, B.: SMT-based synthesis of distributed self-stabilizing
systems. ACM Trans. Auton. Adapt. Syst. (TAAS) 10(3), 21 (2015)

12. Faghih, F., Bonakdarpour, B., Tixeuil, S., Kulkarni, S.: Specification-based syn-
thesis of distributed self-stabilizing protocols. In: Albert, E., Lanese, I. (eds.)
FORTE 2016. LNCS, vol. 9688, pp. 124–141. Springer, Cham (2016). doi:10.1007/
978-3-319-39570-8 9

13. Farahat, A., Ebnenasir, A.: A lightweight method for automated design of con-
vergence in network protocols. ACM Trans. Auton. Adapt. Syst. (TAAS) 7(4), 38
(2012)

14. Finkbeiner, B., Schewe, S.: Bounded synthesis. Int. J. Softw. Tools Technol. Transf.
(STTT) 15(5–6), 519–539 (2013)

15. Gouda, M.G.: The theory of weak stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001). doi:10.1007/
3-540-45438-1 8

16. Gouda, M.G., Acharya, H.B.: Nash equilibria in stabilizing systems. In: Guerraoui,
R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 311–324. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-05118-0 22

17. Hsu, S.-C., Huang, S.-T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

18. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2012)

19. Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods Comput. Sci.
(LMCS) 10(1), 1–29 (2014)

20. Klinkhamer, A., Ebnenasir, A.: On the complexity of adding convergence. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 17–33. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40213-5 2

21. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theoret. Comput. Sci. 410(14), 1336–1345 (2009)

22. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in
uniform rings. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596,
pp. 49–63. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33536-5 6

23. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science (FOCS), pp. 46–57 (1977)

24. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Trans. Comput. Syst. 7, 61–77 (1989)

25. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6),
271–272 (1994)

26. Yamauchi, Y., Tixeuil, S.: Monotonic stabilization. In: Lu, C., Masuzawa, T., Mos-
bah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 475–490. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-17653-1 34

http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.1007/978-3-319-11764-5_12
http://dx.doi.org/10.1007/978-3-319-39570-8_9
http://dx.doi.org/10.1007/978-3-319-39570-8_9
http://dx.doi.org/10.1007/3-540-45438-1_8
http://dx.doi.org/10.1007/3-540-45438-1_8
http://dx.doi.org/10.1007/978-3-642-05118-0_22
http://dx.doi.org/10.1007/978-3-642-40213-5_2
http://dx.doi.org/10.1007/978-3-642-33536-5_6
http://dx.doi.org/10.1007/978-3-642-17653-1_34

How to Simulate Message-Passing Algorithms
in Mobile Agent Systems with Faults

Tsuyoshi Gotoh1(B), Fukuhito Ooshita2, Hirotsugu Kakugawa1,
and Toshimitsu Masuzawa1

1 Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{t-gotoh,kakugawa,masuzawa}@ist.osaka-u.ac.jp
2 Nara Institute of Science and Technology,

8916-5 Takayamacho, Ikoma, Nara 630-0101, Japan
f-oosita@is.naist.jp

Abstract. We propose a fault-tolerant algorithm to simulate message-
passing algorithms in mobile agent systems. We consider a mobile agent
system with k agents where f of them may crash for a given f (≤ k −
1). The algorithm simulates a message-passing algorithm, say Z, with
O((m +M)f) total agent moves where m is the number of links in the
network and M is the total number of messages created in the simulated
execution of Z. The previous algorithm [5] can tolerate k−1 agent crashes
but requires O((m+nM)k) total agent moves. Therefore, our algorithm
improves the total number of agent moves for f = k − 1 and requires a
smaller number of total moves if f is smaller.

1 Introduction

A distributed system is composed of many computers (nodes) that can commu-
nicate with each other. Recently distributed systems have become larger, which
makes it difficult to design them. As a paradigm to circumvent the difficulty,
mobile agents (agents) have attracted a lot of attention [3]. An agent is a soft-
ware program which can move autonomously in a distributed system, collect
information at visited nodes, exchange the information with other agents and
execute actions at visited nodes using the information. An agent can be con-
sidered as encapsulation of data and actions, and the number of agents in a
network restricts concurrency of actions executed in the network. This makes
algorithm design easier in mobile agent systems than in message-passing sys-
tems. So far many agent-based algorithms have been proposed for several tasks,
such as leader election, naming, locating agents, rendezvous, stabilization, ter-
mination detection, exploring and topology recognition [3]. From the viewpoint
of security, algorithms for intruder capture [1,2] and network decontamination
[10,12] have been proposed.

While most works stated above assume agents and nodes work correctly,
recent large-scale distributed systems can no longer make such an assumption.
For this reason, some researches consider faulty nodes where their states are
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 234–249, 2017.
https://doi.org/10.1007/978-3-319-69084-1 16

How to Simulate Message-Passing Algorithms 235

disrupted [6,7] or visiting agents are destroyed [8,11]. In addition, we should
consider the scenario such that agents themselves become faulty. For example,
if the system spreads to all over the world, agents may move a long distance by
passing through lots of physical links. During the movement, agents may crash
(or disappear) when one of the links suffers from an error. Hence algorithms
tolerant to faults of agents are required for many tasks.

As an approach to realize agent-based algorithms for many tasks, we focus
on simulation of message-passing algorithms in mobile agent systems [4,5,13]. If
agents can simulate message-passing algorithms efficiently, they can efficiently
execute many tasks which are suitable for message-passing algorithms rather
than mobile agent algorithms. Moreover, from the viewpoint of algorithm design-
ing, it is more efficient to design a simulation algorithm of message-passing algo-
rithms by mobile agents because efficient message-passing algorithms have been
proposed for many tasks in literature [9,14]. The only existing work to simu-
late message-passing algorithms in a fault-tolerant manner is the one by Das et
al. [5]. In this work, the authors propose two algorithms to simulate message-
passing algorithms by asynchronous agents when at most k − 1 agents crash,
where k is the number of agents. One algorithm simulates a message-passing
algorithm with O((m + nM)k) total agent moves by agents with distinct IDs,
where m is the number of links, n is the number of nodes and M is the number of
messages created in the simulated execution of the message-passing algorithm.
Another algorithm simulates a message-passing algorithm with O((m + nk)M)
total moves by anonymous agents. Note that, in the algorithm for agents with
distinct IDs, the number of moves per message is (or the multiplication factor
of M) O(nk).

In this paper, we propose a new fault-tolerant algorithm to simulate message-
passing algorithms by asynchronous agents with distinct IDs. Our algorithm
assumes at most f agents crash for a given f ≤ k − 1, and simulates a message-
passing algorithm with O((m + M)f) total agent moves. That is, the number
of moves per message is O(f) when M = Ω(m) holds. Note that because f
agents can become faulty and agents move asynchronously (i.e., the time required
to move along a link is unbounded and unpredictable), every message should
be delivered by f + 1 agents in the worst case. This means our algorithm is
asymptotically optimal concerning of the number of agent moves per message.

Our algorithm improves the previous algorithm [5] in the number of agent
moves. The improvement is achieved by adopting the depth-first simulation while
the previous one adopts the breadth-first one. More precisely, the previous algo-
rithm simulates the synchronous execution of a message-passing algorithm. To
realize a synchronous round, each agent traverses the network to find messages
to transfer, which requires O(n) redundant moves per message in the worst case.
To avoid such redundant moves, our algorithm traces a message to find another
message to transfer. That is, our algorithm allows each agent to deliver messages
in the depth-first fashion; when an agent visits a node with carrying a message
(to be delivered to the node) and finds another message to transfer in the node,
it takes the message and transfers it to the destination node. Note that these

236 T. Gotoh et al.

two simulation algorithms simulate different executions of the message-passing
algorithm, each of which is a possible execution.

Due to the space constraint, most of the proofs have been omitted from this
paper and can be found in the appendix.

2 Preliminaries

2.1 Network

A network is modeled by a connected undirected graph G = (V,E), where
V is a set of nodes and E is a set of communication links. Each link e ∈ E
connects distinct nodes in V . A link that connects nodes u and v is denoted
by euv or evu. In this paper, we denote n = |V | and m = |E|. The degree
of u is defined as the number of incident links of u, and is denoted by degu.
The maximum degree max{degu | u ∈ V } of the network is denoted by Δ.
The neighbors of u are nodes directly connected to u, and the set of them is
denoted by Nu. Each link incident to node u is locally labeled at u by bijection
λu : {(u, v) : v ∈ Nu} → {1, 2, . . . , degu} and u distinguishes its neighbors by
the labels. Note that, λu(euv) �= λu(euw) holds for distinct neighbors v and w
of u. The labeling is independent from those of other nodes; for an edge euv,
λu(euv) �= λv(euv) may hold. We say λu(euv) is a port number (or port) of euv
on u.

We consider two different computation models of a network, a message-
passing model and a mobile agent model, which are defined in the following
subsections and follow [5].

2.2 Message-Passing Model

In the message-passing model, each node u is modeled as a state machine
(Su, δu), where Su is a set of (possibly infinite) node states and δu is a state
transition function. The state machine may be dependent on its node ID if
exists: nodes with different IDs may be modeled as different state machines.
Two states in Su are designated as initial states: one is for an (spontaneous) ini-
tiator and the other is for a non-initiator. The transition function δu is defined
as δu : Su × M × P → Su × 2M×P , where M is a set of all possible messages
(including a special null message) and P is a set of port numbers. The function
δu determines, from a current state and a received message with its incoming
port, a subsequent state of the node and a set of messages to be sent with their
outgoing ports. The initial state for the initiator and the special message null
are used only for the first action of the initiator, which is independent of the
incoming port of the null message. The state machine can depend on the degree
and the ID (if exists) of the node.

Each node executes the following operations atomically in each step: (1) it
receives a message or initiates an algorithm spontaneously, (2) executes local
computation and updates its own state, and (3) if necessary, sends messages to

How to Simulate Message-Passing Algorithms 237

its neighbors by using the primitive SEND(c, λu(euv)) repeatedly (node u can
send a message c to node v by using the primitive SEND(c, λu(euv))). There
exists at least one spontaneous initiator, which is assigned the special initial
state and initiates an algorithm spontaneously (by receiving the null message).
Except for the initial steps of initiators, every process takes a step only when it
receives a message. Note that, since the set of initiators is unknown in advance,
algorithms should work correctly for any set of initiators.

Communication in the message-passing model is reliable, that is, it satisfies
the following:

[A1] Every message sent by node u to its neighbor v is eventually received by v
exactly once.

[A2] A message is received by node u only when it was previously sent to u by
neighbor v.

Each link in the network is FIFO, that is, when u sends messages c1 and c2 to
v in this order, v receives c1 before c2. The system is asynchronous, that is, the
time required to transfer a message between neighbors is finite but unbounded.

2.3 Mobile Agent Model

In the mobile agent model, all the actions (i.e., computation and communication)
on a network are carried out by mobile agents. Let A be a nonempty set of mobile
agents existing on the network and k = |A|. Each agent has its own memory,
called a notebook. In this model, a node works only as a repository and a memory
on a node is called a whiteboard.

Each agent a has a unique ID a.id and we assume each ID is represented in
O(log k) bits. Every agent do not know n. Each agent a is initially allocated to
some node called a homebase of a. We assume k ≤ n and homebases of agents
are mutually distinct.

Each agent a is modeled as a state machine (Sa, δa), where Sa is a set of
agent states and δa is a state transition function. A state in Sa is designated as
an initial state. The transition function δa is defined as δa : Sa×W ×(P ∪{0}) →
Sa × W × (P ∪ {0}), where W is the set of all possible whiteboard states and P
is the set of port numbers. The inputs of the transition function δa are a current
state of an agent, a state of the whiteboard on its current node, and a port
number (or 0 explained in the below) through which the agent arrived, and the
outputs are a subsequent state of the agent, a new state of the whiteboard, and a
port number (or 0 explained in the below) through which the agent leaves. Port
number 0 in the inputs implies the agent initiates the algorithm at its current
node or the agent stays at the current node from its previous action, while p > 0
implies the agent arrives at the current node from port p. Port number 0 in the
outputs implies the agent stays at the current node, and p > 0 implies the agent
leaves the current node through port p. The state machine can depend on the
agent ID. The state transition can depend on the degree and the ID (if exists)
of the node which the agent is staying at or visiting. This is implemented by
storing the node degree and ID in the whiteboard.

238 T. Gotoh et al.

Each agent executes the following operations atomically in each step: (1) It
arrives at a node or initiates an algorithm at its homebase, (2) executes local
computation and updates its own state (including its notebook contents) and
the whiteboard contents of its current node, and (3) moves to a neighbor of its
current node or stays at its current node.

This paper considers simulation of the message-passing model on the mobile
agent model. We assume that the target model (or the message-passing model)
is reliable but the host model (or the mobile agent model) is prone to faults.
An agent may crash (or disappear) when it moves through a link, but it never
crashes when it is on a node. We assume at most f ≤ k − 1 agents crash and
every agent knows the upper bound f . After an agent leaves a node, it arrives
at the next node eventually unless it crashes during the movement. Once an
agent crashes, it disappears from the network forever. We say an agent is faulty
(resp., non-faulty) if it crashes (resp., never crashes) during the execution. Note
that agents cannot recognize faulty agents as long as they work correctly. Each
link in the network is FIFO, that is, when agents a1 and a2 move from node u
to node v in this order, a1 arrives at v before a2 unless a1 crashes during the
movement. The system is asynchronous, that is, the time required for an agent
to move from a node to its neighbor is finite but unbounded.

3 Agent-Based Simulation of Message-Passing
Algorithms

In this section, we first consider, as target algorithms of agent-based simula-
tion, message-passing algorithms with a finite number of messages. We present a
simulation algorithm, correctness proof and analysis of move and memory com-
plexity in Sect. 3.1. We denote Z as the simulated message-passing algorithm for
hereafter. A message-passing algorithm that eventually terminates uses a finite
number of messages and is a target algorithm of the simulation algorithm in
Sect. 3.1. Thus, most of algorithms designed so far can be the target of the sim-
ulation [9,14]. In Sect. 3.2, we briefly present the simulation algorithm targeting
message-passing algorithms with an infinite number of messages.

3.1 A Case of a Finite Number of Messages

The Execution of a Simulation Algorithm. In this subsection, we propose
an agent-based simulation algorithm of a message-passing algorithm with a finite
number of messages (i.e., an eventually terminating algorithm). Our algorithm
consists of two parts, (1) searching initiators (search part) and (2) simulating an
execution of nodes and delivering messages (delivery part).

First, we present the search part, (1) searching initiators. Each agent starts
to search initiators from its homebase by the depth-first search. When it finds
an initiator, it starts the delivery part, (2) simulating an execution of nodes and
delivering messages. After completing the delivery part, it resumes the search
part to find another initiator. The agent records its searching path of the search

How to Simulate Message-Passing Algorithms 239

part by writing the incoming port in the whiteboard of each visited node so that
it can backtrack.

In the search part, an agent backtracks to the previous node when at least
one of following conditions is satisfied.

1. There is no unsearched port at the current node.
2. A cycle is detected in its searching path of the search part.
3. The agent detects that other f +1 agents which execute the search part have

already visited the current node.

Conditions 1 and 2 come from the depth-first search. Condition 3 is intro-
duced to save the total number of agent moves. Our algorithm can tolerate agent
crashes by using multiple agents to transfer a message, however it is enough that
each message is transfered by f +1 agents since at most f agents crash (there is
at least one non-faulty agent in f + 1 agents). Thus, an agent backtracks when
it detects that other f + 1 agents which execute the search part. The agent
terminates its execution when it completes the search part and returns to its
homebase.

Next, we present the delivery part, (2) simulating an execution of nodes and
delivering messages.

An agent starts the simulation when it finds an initiator during the depth-
first search of the first part. Note that, by Condition 3 of the first part, at most
f + 1 agents visit each initiator and start simulation.

The agent delivers messages successively in the depth-first fashion, that is,
if there exists a message to transfer to another node in the node that the agent
visits to deliver a message, it takes a message from the node and delivers it. The
agent records its delivering path in the same way as the search part so that it
can backtrack.

Since a message is transfered by at most f + 1 agents for fault-tolerance, the
message may be delivered multiple times. However it is processed only once, that
is, an agent simulates the action of a node on receipt of a message only when
the message has not been simulated.

When an agent takes a message from the node, the agent stores its ID to
send-member of the message in the whiteboard of the node to indicate that the
agent transfered the message. The message is deleted from the node when one of
its send-member agents returns and, at this time, send-member of the current
node is reset to empty.

In the delivery part, an agent backtracks to the previous node when at least
one of following conditions is satisfied.

1. There is no message to transfer at the current node.
2. A cycle is detected in its delivering path of the delivery part.
3. The current node is locked using the port other than the one the agent arrives

through. We describe the locking mechanism later.
4. The current node is locked but the agent is not a lock-member agent of the

node when the agent backtracks to the node.

240 T. Gotoh et al.

Condition 1 realizes message deliveries in the depth-first fashion. Condition
2 is introduced to prevent the delivering path from growing so long, which saves
the whiteboard space of nodes. Conditions 3 and 4 are introduced to guarantee
that all the messages are delivered since using only Conditions 1 and 2 makes
some messages remain undelivered as explained below.

Consider the case of Fig. 1. First, agent a arrives at t and delivers messages
from t to u and agent b follows a and arrives at u. Then, a backtracks to t and
deletes messages at t and v while b is still in transit in link euv. Second, an agent
c arrives at y from x and delivers messages from y to v through z and w. Then,
c crashes after generating two messages at v, one is to y and the other is to u in
this order. After that, agent b arrives at v from u and delivers messages from v to
v through y, z and w. Then, b detects a cycle at v, backtracks to w, and deletes
the message from w to v. Then, while b backtracks from w to z, b crashes. Here,
node v has a message to transfer to u but it is possible that no agent arrives at
v after the situation since there is no message toward v. Thus, in this case, the
message from v to u may be left undelivered.

Fig. 1. An example where Conditions 1 and 2 allow a message to remain undelivered.

A possible way to avoid such undelivered messages is not to introduce Condi-
tion 2. In this case, an agent continues to deliver messages as long as the current
node has messages to transfer. But this allows the delivering path to become so
long when a long message chain exists. It requires large whiteboard spaces since
the delivering path is recorded in the whiteboards of nodes. Thus, we insist on
Condition 2 to save the whiteboard space. So we introduce the locking of nodes
as another way to guarantee deliveries of all messages.

A reason why the above case happens is that agents which have distinct
delivering paths deliver the same message. So we design the locking so that it
prevents distinct delivering paths from merging.

An agent locks the current node by writing, to the whiteboard, the port
through which it arrives when the current node is unlocked. An agent that
arrives at the locked node delivers a message from the node only when it arrives
through the port that is used for the locking. Otherwise, it has to backtrack to
the previous node in the delivering path. Note that, since all the delivering paths
of the delivery part of agents start from an initiator, by repeating above, agents
which deliver the same message must have the same delivering path.

How to Simulate Message-Passing Algorithms 241

An agent stores its ID to lock-member in the whiteboard of a locked node
when the agent locks the node or arrives through the port that is used for the
locking. When a lock-member agent backtracks from the locked node, it unlocks
the node and resets lock-member of the node to empty.

Condition 4 makes an agent backtrack to the previous node in the delivering
path when it backtracks to a node but is not a lock-member agent of the node.
This implies that the node was already unlocked for the locking such that the
agent was a lock-member agent, that is, an agent which delivered the message
from the node may have a distinct delivering path. This makes the agent keep
backtracking along the delivering path until the agent reaches a node where
the agent is a lock-member or it started the simulation of nodes and delivering
messages.

An agent resumes the message delivery when it finds its ID in lock-member.
It terminates the delivery part and resumes the search part (i.e., searching an
initiator) when it reaches the starting node but is not a lock-member agent.

The Pseudo Codes. Algorithms 1, 2, 3 and 4 are the pseudo codes of the
fault-tolerant simulation algorithm.

We use operations enqueue(q,M), dequeue(q) and head(q) to handle message
queue q at a node. Operation enqueue(q,M) for message sequence M is used to
append M to the tail of q, dequeue(q) is used to delete the head element of q
and head(q) is used to refer to the head element of q. Notation v.var denotes
variable var stored in the whiteboard of the current node v, and a.var denotes
variable var stored in the notebook of agent a.

We show the variables with initial values and their types in Table 1.
In Table 1, we denote v.portunsearched, v.parentsearch, v.parenttransmit and

v.receive as a set of pairs but, for convenience, we use them as the arrays (e.g.,
v.parentsearch[a.id]) in pseudo code and explanation below.

At the moment agent a starts Algorithm 1 at node v, a adds 0 to
v.parentsearch[a.id] to declare that v is the homebase of a and adds {1, . . . , degv}
to v.portunsearched[a.id]. Then, a starts the depth-first search with recording
the port through which a arrives in v.parentsearch[a.id] at each visited node v.
When a finds an initiator, a executes Transmit() (Algorithm 2) to simulate the
message-passing algorithm Z. For saving whiteboard space, if the current node’s
v.parentsearch[a.id] is not ⊥ (it means v is included in the path of a), a back-
tracks to the previous node. For decreasing the number of movements, a also
backtracks to the previous node if the current node’s v.parentsearch has f + 1
(it means that f +1 agents have already visited the node during the search part
of the agents) IDs. Agent a terminates if the current node’s v.parentsearch[a.id]
is 0 (it means v is the homebase of a) and there is no unsearched port.

At the moment agent a starts Transmit(), a adds 0 to v.parenttransmit[a.id]
to declare that v is the starting node of Transmit(). Then, a transfers messages
successively in the depth-first fashion with recording the port through which
a arrives in v.parenttransmit[a.id] and its ID in v.send member at each visited
node. For saving whiteboard space, if the current node’s v.parenttransmit[a.id]

242 T. Gotoh et al.

Table 1. Variables used in the pseudo codes

Name Initial value type What its value means

Node v v.portunsearched ∅ A pair of (a, P) in the set implies
port sets P of v is unsearched for
agent a in the first part (i.e.,
searching an initiator)

Set of
(agentID, ports)

v.parentsearch ∅ A pair (a, p) in the set implies that
agent a arrives at v for the first time
from port p in the first part

Set of
(agentID, port)

v.parenttransmit ∅ The same as v.parentsearch but for
the second part (i.e., simulating an
execution of nodes and delivering
messages)

Set of
(agentID, port)

v.init True or false Indicates whether v is an initiator of
the target (message-passing)
algorithm it is true only if v is an
initiator

Boolean

v.portlock ⊥ Port p implies that v is locked using
p, and ⊥ implies that v is unlocked

Port or ⊥
v.send Empty sequence Messages to transfer to neighbors

Message queue

v.send member ∅ An ID set of agents that are
send-member of the head message of
v.send

Set of agentIDs

v.lock member ∅ An ID set of agents that are
lock-member of v

Set of agentIDs

v.staten The initial state v’s state of the target algorithm

State

v.receive ∅ The latest messages v received from
each port

Set of

(port,message)

Agent a a.msg ⊥ A message which a is delivering

Message

How to Simulate Message-Passing Algorithms 243

Algorithm 1. main
1: v.portunsearched[a.id] ← {1, · · · , degv}
2: v.parentsearch[a.id] ← 0;
3: while (1)
4: if (v.init = true) ∨ (v.portlock = 0) then //the current node is initiator
5: Transmit();
6: if (v.portunsearched[a.id] �= ∅) then //search an unsearched port
7: v.portunsearched[a.id] ← v.portunsearched[a.id]/{p};
8: move through p;
9: arrive from q;
10: if (|v.parentsearch| = f+1) then //the current node is visited by f+1 agents

11: move through q (return to the previous node);
12: else
13: if (v.parentsearch[a.id] �= ⊥) then //find a’s own ID
14: v.portunsearched[a.id] ← v.portunsearched[a.id]/{q}
15: move through q (return to the previous node);
16: else //arrive at v for the first time
17: v.parentsearch[a.id] ← q;
18: v.portunsearched[a.id] ← {1, · · · , degv}/{q}
19: else //there is no unsearched port
20: p ← v.parentsearch[a.id];
21: if (p = 0) then
22: break;
23: else
24: move through p(return to the previous node);
25: end while

is not ⊥ (it means v is included in the delivering path of a), a backtracks to
the previous node. Agent a also backtracks to the previous node when v is
locked using a port other than the one a arrives through, that is, v.portlock of
the current node is not ⊥ and the other than the one a arrives through. Agent
a terminates Transmit() if the current node’s v.parenttransmit is 0 (it means
a starts Transmit() from v) and there is no message in the message queue
of v. The message is deleted from the node when one of its v.send member
agents backtracks. Agent a deletes the messages which a delivered and resets
v.send member to ∅ if a.id is included in v.send member when returning to v.

Agent a transfers messages left in v if there is a.id in v.lock member when a
backtracks to v (it means a is lock-member of v) on Transmit(). It stores a.id
in v.lock member when a arrives at v with a message and v is not locked or a
arrives through the port used for locking. If there is not a.id in v.lock member
at the current node when a backtracks to v, a executes Go back() until a finds
a.id in v.lock member. If Go back() outputs 0, a terminates Transmit() and
resumes Algorithm 1. If Go back() outputs 1, a continues Transmit() to transfer
messages.

Function Go back() (Algorithm 3) is called in Transmit() when a back-
tracks to the previous node. Agent a continues to backtrack through the port

244 T. Gotoh et al.

Algorithm 2. Transmit()
1: Process(∅, ∅);//process a unprocessed initiator
2: if (v.portlock = ⊥) then
3: v.portlock ← 0;
4: v.lock member ← v.lock member ∪ {a.id};
5: v.parenttransmit[a.id] ← 0;//mark 0 on the starting node of Transmit()
6: while (1)
7: if (v.send �= ∅) then
8: a.msg ← head(v.send);//copy the head message of v.send
9: v.send member ← v.send member ∪ {a.id};
10: move through the destination port p of a.msg;
11: arrive from q;
12: Process(a.msg, q);
13: a.msg ← ⊥;
14: if ((v.portlock = ⊥)∨(v.portlock = q))∧(v.parenttransmit[a.id] = ⊥) then //v

is not locked or locked by the incoming port, and v is not included in a’s path
15: if (v.portlock = ⊥) then
16: v.portlock ← q;
17: v.lock member ← v.lock member ∪ {a.id};
18: v.parenttransmit[a.id] ← q;
19: else
20: if (Go back(q) = 0) then return;//backtrack to a node s.t. a is a lock-

member
21: else
22: if (a.id ∈ v.lock member) then
23: v.portlock ← ⊥;
24: v.lock member ← ∅;
25: q ← v.parenttransmit[a.id];
26: v.parent ← ⊥;
27: if (q = 0) then
28: return;
29: else
30: if (Go back(q) = 0) then return;//backtrack to a node s.t. a is a lock-

member
31: end while

in v.parenttransmit[a.id] until a finds a.id in v.lock member. If a finds a.id in
v.lock member, Go back() outputs 1 and a restarts Transmit() to transfer mes-
sages from the node. If a does not find a.id in v.lock member, Go back() outputs
0 and a terminates Transmit() and resumes the depth-first search. While search-
ing a.id, a removes the messages which it delivered.

Function Process() (Algorithm 4) is used to simulate an execution of nodes
in Z. If the current node is an unprocessed initiator, a simulates an execution of
the node. To simulate the execution of an initiator, a uses simulate(v.staten,⊥)
and it gets a new node state s and a new message sequence M . To simulate the
execution of a node on receipt of a message c, a uses simulate(v.staten, c) and
it gets a new node state s and a new message sequence M .

How to Simulate Message-Passing Algorithms 245

Algorithm 3. Go back(q)
1: move through q (return to the previous node);
2: while (1)
3: if (a.id ∈ v.send member) then //remove the message which a transfered
4: v.send member ← ∅;
5: dequeue(v.send);
6: if (a.id ∈ v.lock member) then //if a is a v.lock member agent, restart to send

messages
7: return 1;
8: else
9: q = v.parenttransmit[a.id];
10: v.parenttransmit[a.id] ← ⊥;
11: if (q = 0) then //the starting node of Transmit()
12: return 0; //return from Transmit()
13: else //if a is not a v.lock member agent, return to the previous node
14: move through q (return to the previous node);
15: end while

Each message may be delivered multiple times by some agents on Algo-
rithm2. To make sure that each message is processed once, the latest message
which are delivered from each port p is stored in v.receive[p] and a message is
not processed if it is already recorded in v.receive[p].

Algorithm 4. Process(c, q)
1: if (v.init = true) then
2: v.init ← false;
3: (s,M) ← simulate(v.staten,⊥);
4: v.staten ← s;
5: enqueue(v.send,M);
6: if (c �= ⊥) ∧ (c �= v.receive[q]) then //simulate the process of an initiator and of

a node which receive c from q
7: v.receive[q] ← c;
8: (s,M) ← simulate(v.staten, c);
9: v.staten ← s;
10: enqueue(v.send,M);

Proof of Correctness. In this part, we show that the proposed algorithm
simulates Z correctly.

First, we define the time instants of send and receive operations in the sim-
ulation of message-passing algorithm Z.

– The time instant that v sends message c in the simulation of Z is defined as
the time instant that an agent stores c to v.send.

– The time instant that v receives message c in the simulation of Z is defined
as the time instant that an agent with message c arrives at v and simulates
local computation of v initiated by receipt of c for the first time.

246 T. Gotoh et al.

Hereafter, we say an agent is in the delivery mode when it executes procedure
Transmit(), procedure Go back() or procedure Process(), and an agent is in the
search mode otherwise. The following lemmas hold.

Lemma 1. By the proposed algorithm, each node is visited by at least one non-
faulty agent of the search mode and hence every initiator starts execution of
Z.

Lemma 2. During the execution of the proposed algorithm, there is no message
in v.send if v.portlock is ⊥.

Lemma 3. By the proposed algorithm, agents simulate reliable communication.

Lemma 4. By the proposed algorithm, agents simulate the FIFO order of mes-
sage communication.

From Lemmas 1, 3 and 4, the proposed algorithm initiates execution of all
initiators and delivers all messages to their destinations correctly. This implies
the following theorem holds.

Theorem 1. The proposed algorithm simulates Z correctly when at most f ≤
k − 1 agents are faulty.

Evaluation. In this part, we evaluate the move complexity of agents. Clearly
it depends on the target message-passing algorithm Z. Let M and L be the
number and the maximum size of messages created in the simulated execution
of algorithm Z respectively.

Theorem 2. The proposed algorithm simulates Z with O((m+M)f) total agent
moves, O(L + log k) agent memory and O((M + Δ)L + fΔ log(kΔ)) additional
node memory.

Proof. We show only the evaluation of the total agent moves. For the search
mode, at most f + 1 agents search each link in two directions and one search
consists of a forward move and a backward move. Thus, the move complexity
of the search mode is 2 · 2 · m · (f + 1) = 4m(f + 1). For the delivery mode,
at most f + 1 agents carry each message of Z by forward moves, and every
agent makes one backward move for each forward move. Thus, the total move
complexity of the simulation mode is 2M(f + 1). Thus, the move complexity is
4m(f + 1) + 2M(f + 1) = O((m + M)f). 	

3.2 A Case of an Infinite Number of Messages

The simulation algorithm we propose in Sect. 3.1 can not simulate message-
passing algorithms Z with an infinite number of messages as explained below.

Consider the case of Fig. 2. There are two independent infinite circulations
of messages Ca and Cb. If all the agents in the network transfer the messages

How to Simulate Message-Passing Algorithms 247

Fig. 2. An example where algorithm proposed in Sect. 3.1 cannot simulate Z with an
infinite number of messages.

included in Ca in the depth-first fashion, the messages included in Cb are not
delivered forever.

To simulate Z with an infinite number of messages, we introduce, to the
depth-first message delivery, restriction on the number of message deliveries and
change the algorithm as follows.

1. Instead of the depth-first message delivery in Sect. 3.1, the depth-first delivery
with restricted � messages is adopted, which is a modification of the depth-
first delivery such that an agent backtracks when the number of messages
which the agent delivered reaches �.

2. Each agent repeats the depth-first search of the search part infinitely and
traverses the whole network during the depth-first search of the search part.

3. An agent of the search mode stops execution of the simulation algorithm
when it finds f + 1 delivery mode agent names in the current node.

4. An agent starts the delivery part not only when it finds an initiator, but also
when it finds a message to transfer on an unlocked node.

We show that the number of agent moves per message is O(f) in the modified
algorithm. First, the following lemmas hold.

Lemma 5. During the execution of the modified algorithm, there remains at
least one non-faulty agent.

Lemma 6. By the modified algorithm, at least � messages are delivered during
the depth-first search of the search part of an agent.

In the modified algorithm, every message is transfered by at most f+1 agents
as in the algorithm in Sect. 3.1. From Lemma 6, at least � messages are delivered
during the depth-first search of the search part of an agent, which takes m agent
moves in the first search and n agent moves in the second or later search. That is,
at least � messages are delivered during kn+f� (km+f�, for the first depth-first
search) agent moves. Since an agent traverses the whole network, the agent can
get k and n in the first depth-first search of the search part. With setting � to
be kn, the number of agent moves per message becomes O(f).

Theorem 3. The modified algorithm simulates Z with O(f) agent moves per
message.

248 T. Gotoh et al.

4 Conclusion

In this paper, we proposed a new algorithm to simulate a message-passing algo-
rithm in the mobile agent model. It requires O((m + M)f) agent moves to
tolerate when at most f ≤ k − 1 agents crash where m is the number of links
in the network and M is the number of messages in the simulated execution of
the message-passing algorithm. The previous algorithm requires O((m + nM)k)
agent moves when at most k −1 agents crash. Thus, our algorithm improves the
previous algorithm in the number of agent moves. Furthermore, we proposed a
simulation algorithm for message-passing algorithms with an infinite number of
messages. It also improves the number of agent moves per message to O(f) from
O(nk).

Our algorithm and the previous algorithm [5] simulate different executions
of the message-passing algorithm. The actual number of agent moves depends
on the number and the creation pattern of messages in the simulated execution.
Thus, it is interesting as a future work to investigate the actual number of agent
moves for concrete examples of message-passing algorithms.

References

1. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by
mobile agents. In: Proceedings of the Fourteenth Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 200–209. ACM (2002)

2. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intrud-
ers. In: Flocchini, P., G ↪asieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp.
70–84. Springer, Heidelberg (2006). doi:10.1007/11780823 7

3. Cao, J., Das, S.K.: Mobile Agents in Networking and Distributed Computing.
Wiley, Hoboken (2012)

4. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms
versus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS
2006. LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006). doi:10.1007/
11945529 14

5. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: Fault-tolerant simulation of
message-passing algorithms by mobile agents. In: Prencipe, G., Zaks, S. (eds.)
SIROCCO 2007. LNCS, vol. 4474, pp. 289–303. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-72951-8 23

6. Das, S., Mihalák, M., Šrámek, R., Vicari, E., Widmayer, P.: Rendezvous of mobile
agents when tokens fail anytime. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 463–480. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-92221-6 29

7. Dieudonné, Y., Pelc, A.: Deterministic network exploration by a single agent with
byzantine tokens. Inf. Process. Lett. 112(12), 467–470 (2012)

8. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: optimal mobile agents protocols. Distrib. Comput. 19(1), 1–18
(2006)

9. Erciyes, K.: Distributed Graph Algorithms for Computer Networks. Springer Sci-
ence & Business Media, London (2013). doi:10.1007/978-1-4471-5173-9

http://dx.doi.org/10.1007/11780823_7
http://dx.doi.org/10.1007/11945529_14
http://dx.doi.org/10.1007/11945529_14
http://dx.doi.org/10.1007/978-3-540-72951-8_23
http://dx.doi.org/10.1007/978-3-540-72951-8_23
http://dx.doi.org/10.1007/978-3-540-92221-6_29
http://dx.doi.org/10.1007/978-3-540-92221-6_29
http://dx.doi.org/10.1007/978-1-4471-5173-9

How to Simulate Message-Passing Algorithms 249

10. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontaminating chordal rings and tori
using mobile agents. Int. J. Found. Comput. Sci. 18(03), 547–563 (2007)

11. Klasing, R., Markou, E., Radzik, T., Sarracco, F.: Hardness and approximation
results for black hole search in arbitrary networks. Theoret. Comput. Sci. 384(2–
3), 201–221 (2007)

12. Luccio, F., Pagli, L., Santoro, N.: Network decontamination in presence of local
immunity. Int. J. Found. Comput. Sci. 18(03), 457–474 (2007)

13. Suzuki, T., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal
gossiping among mobile agents. Theoret. Comput. Sci. 393(1–3), 90–101 (2008)

14. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press,
Cambridge (2000)

A Self-stabilizing General De Bruijn Graph

Michael Feldmann(B) and Christian Scheideler

Paderborn University, Paderborn, Germany
{michael.feldmann,scheideler}@upb.de

http://cs.uni-paderborn.de/ti/

Abstract. Searching for other participants is one of the most important
operations in a distributed system. We are interested in topologies in
which it is possible to route a packet in a fixed number of hops until it
arrives at its destination. Given a constant d, this paper introduces a new
self-stabilizing protocol for the q-ary d-dimensional de Bruijn graph (q =
d
√
n) that is able to route any search request in at most d hops w.h.p.,

while significantly lowering the node degree compared to the clique: We
require nodes to have a degree of O(d

√
n), which is asymptotically optimal

for a fixed diameter d. The protocol keeps the expected amount of edge
redirections per node in O(d

√
n), when the number of nodes in the system

increases by factor 2d. The number of messages that are periodically sent
out by nodes is constant.

Keywords: Distributed systems · Topological self-stabilization · De
bruijn graph

1 Introduction

The Internet becomes more and more relevant for every part of our society, as
people increasingly use it to interact with each other and exchange information.
Common examples are real-time applications like streaming platforms, multi-
player games or social media networks that are maintained by overlay networks.
The performance of these kind of systems benefits from a low latency/delay. For
example, experiments in [4] show that users issue fewer search requests when the
latency on Google web servers is increased by only 100 ms. For many systems
there are hard deadlines on the delay that are acceptable: Multiplayer games
often require server-side delays only up to 10ms, because any higher delay would
reduce the fun for the players drastically. To keep the delay low, we require an
overlay network to form a topology with a low diameter in legal states such that
requests can be delivered quickly to the correct entity. Reaching a legal state can
be guaranteed if the system is self-stabilizing, i.e., the system is able to recover
from illegal states. We are interested in self-stabilizing systems that are able to
route requests to their target as fast as possible even under a large number of
participants. For example, routing in a simple line structure takes Θ(n) hops,
whereas routing in a de Bruijn graph can be done in O(log n) hops. Both of
these structures have only a constant node degree. If the degree of the nodes is
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 250–264, 2017.
https://doi.org/10.1007/978-3-319-69084-1 17

A Self-stabilizing General De Bruijn Graph 251

much higher, i.e., in a clique, routing can be done way more effectively: We can
send requests to their destination in only one hop, since every node is connected
to every other node in the system. The drawback here is that nodes have to
maintain a large number of outgoing edges, which may be very costly, especially
in systems with many participants. Our goal is to develop a self-stabilizing pro-
tocol for a network, in which the node degree is lower than the node degree
in the clique, but still enables to route requests to their destination in a con-
stant number of hops w.h.p. Given a constant d ∈ N, d ≥ 2, our network has
a diameter of at most d (w.h.p.) in every legitimate state. As a network topol-
ogy, we use the q-ary d-dimensional de Bruijn graph (q = d

√
n), called general

de Bruijn graph, which was first presented in [13]. The self-stabilizing protocol
consists of a combination of sub-protocols: We combine the sorted list with the
q-connected list, the standard de Bruijn graph and the q-ary de Bruijn graph.
For the resulting structure it holds that each node has an outdegree of O(d

√
n),

which is asymptotically optimal for a fixed diameter d.

1.1 Model

We model a distributed system as a directed graph G = (V,E) with n = |V |.
Each peer in the system is represented by a node v ∈ V . Each node v ∈ V
can be identified by its unique reference or its unique identifier v.id ∈ N (called
ID). Additionally, each node v maintains local protocol-based variables and has a
channel v.Ch, which is a system-based variable that contains incoming messages.
The message capacity of a channel is unbounded and messages never get lost. If
a node u knows the reference of some other node v, then u can send a message
m to v by putting m into v.Ch.

We distinguish between two different types of actions: The first type is used
for standard procedures and has the form 〈label〉(〈parameters〉) : 〈command〉,
where label is the name of that action, parameters defines the set of parameters
and command defines the statements that are executed when calling that action.
It may be called locally or remotely, i.e., every message that is sent to a node has
the form 〈label〉(〈parameters〉). The second action type has the form 〈label〉 :
(〈guard〉) −→ 〈command〉, where label and command are defined as above and
guard is a predicate over local variables. An action for some node u may only
be executed if its guard is true or if there is a message in u.Ch that requests to
call the action. In both cases, we call the action enabled. An action whose guard
is simply true is called Timeout. When a node u processes a message m, then
m is removed from u.Ch.

We define the system state to be an assignment of a value to every node’s
variables and messages to each channel. A computation is an infinite sequence of
system states, where the state si+1 can be reached from its previous state si by
executing an action that is enabled in si. We call the first state of a given com-
putation the initial state. We assume fair message receipt, meaning that every
message of the form 〈label〉(〈parameters〉) that is contained in some channel,
is eventually processed. Furthermore, we assume weakly fair action execution,

252 M. Feldmann and C. Scheideler

meaning that if an action is enabled in all but finitely many states of a computa-
tion, then this action is executed infinitely often. Consider the Timeout action
as an example for this. We place no bounds on message propagation delay or rel-
ative node execution speed, i.e., we allow fully asynchronous computations and
non-FIFO message delivery. Our protocol does not manipulate node identifiers
and thus only operates on them in compare-store-send mode, i.e., we are only
allowed to compare node IDs to each other, store them in a node’s local memory
or send them in a message. Note that we compute the hash value of a node’s
identifier in our protocol, but this does not manipulate the ID itself.

We are interested in the formation and maintenance of a certain graph topol-
ogy (which we introduce in Sect. 2.2) for the nodes in the distributed system. In
this paper we assume that there are no corrupted IDs in the initial state of the
system, otherwise we would require failure detectors to identify corrupted IDs,
which exceed the scope of this paper. Thus we can assume that node IDs are
always correct in all states, as our protocol is compare-store-send. Nevertheless,
node channels may contain an arbitrary amount of messages containing false
information in initial states: We call these messages corrupted and we will argue
that all corrupted messages will eventually be processed by our protocol. We say
the system is in a legitimate (stable) state, if the nodes and the edges form the
desired graph topology and there are no corrupted messages in the system. We
are now ready to define what it means for a protocol to be self-stabilizing:

Definition 1 (Self-stabilization). A protocol is self-stabilizing if it satisfies
the following two properties:

– Convergence: Starting from an arbitrary system state, the protocol is guaran-
teed to arrive at a legitimate state.

– Closure: Starting from a legitimate state, the protocol remains in legitimate
states thereafter.

There is a directed edge (u, v) ∈ E, if u stores the reference of v in its local
memory or if there is a message in u.Ch carrying the reference of v. In the former
case, we call that edge explicit and in the latter case we call that edge implicit.
In order for our distributed algorithms to work, we require the directed graph
G containing all explicit and implicit edges to stay at least weakly connected
at every point in time. A directed graph G = (V,E) is weakly connected, if the
undirected version of G, namely G′ = (V,E′) is connected, i.e., for two nodes
u, v ∈ V there is a path from u to v in G′. Once there are multiple weakly
connected components in G, these components cannot be connected to each
other anymore as it has been shown in [15] for compare-store-send protocols.
For a graph that contains multiple weakly connected components, our protocol
converts each of these components to our desired topology.

Nodes may initiate search requests at any point in time. If node v initiates
a search request, it enables the action Search(t), where t ∈ N is the ID of the
node to be searched. We do not assume that there is always a node with ID t in
the system, i.e., either the search request eventually reaches u ∈ V with u.id = t,
or it reaches a node at which our routing algorithm outputs ‘Failure!’. In both
cases the routing algorithm terminates.

A Self-stabilizing General De Bruijn Graph 253

1.2 Related Work

Peer-to-Peer Overlays that are able to route requests in one hop [8] or two hops [9]
to the target have already been proposed. Another protocol that provides fast,
but sometimes suboptimal routing as well as handling of path outages, is the
Resilient Overlay Network (RON) [1]. However, neither of the above protocols
are truly self-stabilizing.

The concept of self-stabilizing algorithms for distributed systems goes back to
the year 1974, when Dijkstra introduced the idea of self-stabilization in a token-
based ring [6]. People came up with self-stabilizing protocols for various types
of overlays, like sorted lists [16], rings [18], Chord graphs [10], Skip graphs [5]
and many more. A self-stabilizing protocol for the clique has been presented in
[11]. There is even a universal approach, which is able to derive self-stabilizing
protocols for several types of topologies [2].

In addition to the general de Bruijn graph, this paper also makes use of the
standard de Bruijn graph [3], for which there already exists a self-stabilizing
protocol by Richa et al. [17]. It uses the same technique as our work, namely
the continuous-discrete approach, which was originally introduced by Naor and
Wieder [14]. However, the protocol in [17] uses several virtual nodes per real node
in order to be able to locally perform a de Bruijn hop, which works, because the
node degree is constant in the standard de Bruijn graph. Since nodes have a
degree of O(d

√
n) in our system, we use a different approach here.

1.3 Our Contribution

In this paper we propose a new self-stabilizing protocol BuildQDeBruijn for
the general de Bruijn graph, which is built out of a combination of sub-protocols.
We describe this protocol in Sect. 3. Routing packets in our network can be done
in at most d hops w.h.p. for any constant d (Sect. 2). We show that our protocol
is self-stabilizing in Sect. 4 among some further properties: Each node has a
degree of O(d

√
n) and only sends out a constant number of messages in each call

of Timeout. Also, if the number of nodes increases by a factor of 2d, each old
node only has to redirect or build at most O(d

√
n) edges on expectation. Due to

space constraints, pseudocode and full proofs are deferred to the full version of
this paper [7].

2 Topology and Routing

In this section we introduce our construction for emulating a general de Bruijn
graph. We also describe how to route search requests via this construction and
show that the routing algorithm for each request performs at most d hops w.h.p.
until termination.

254 M. Feldmann and C. Scheideler

2.1 Classical De Bruijn Graphs and Hashing

The classical de Bruijn graph is defined as follows:

Definition 2. Let d ∈ N. The standard (d-dimensional) de Bruijn graph con-
sists of nodes (x1, . . . , xd) ∈ {0, 1}d and edges (x1, . . . , xd) → (j, x1, . . . , xd−1)
for all j ∈ {0, 1}.

The standard de Bruijn graph has a diameter of d, so one can route a packet
from a source s ∈ {0, 1}d to a target t ∈ {0, 1}d by adjusting exactly d bits. We
call one single bitshift a de Bruijn hop. If we assume d to be a constant, then the
number of hops per search request is constant. However, the standard de Bruijn
graph has a fixed number of nodes in this case, that is, n = 2d. Since we want to
allow an arbitrary number of nodes in the system, the standard de Bruijn graph
does not fit our purposes. Therefore, we extend the standard de Bruijn graph to
the general de Bruijn graph, which is defined as follows:

Definition 3. Let q, d ∈ N. The general (q-ary d-dimensional) de Bruijn graph
consists of nodes (x1, . . . , xd) ∈ {0, . . . , q − 1}d and edges

(x1, . . . , xd) → (j, x1, . . . , xd−1)

for all j ∈ {0, . . . , q − 1}.
The diameter of the general de Bruijn graph is also d, so we are still able

to route search requests in d hops by adjusting exactly d bits. We allow q to be
dynamic, so we can use this topology to maintain any number of nodes, that is,
n = qd. Solving this equation for q yields a degree of q = d

√
n per node. Thus,

the general de Bruijn graph meets the following lower bound:

Fact 1. Every graph with n nodes and diameter d must have a degree of at least
� d
√

n	.
We use a pseudorandom hash function h : N → [0, 1) to distribute node IDs

uniformly and independently onto the [0, 1)-interval. Whenever we want to use
the hash value of a node v ∈ V , we just write v instead of h(v.id) for convenience.
We can derive a bit string representation of the first k bits out of a node v’s
hash value by computing the inverse of the function rk : {0, 1}k → [0, 1) with

rk(x1, . . . , xk) =
k∑

i=1

xi · 1
2i

.

Once we have a bit string representation of a node, we can transform it to any
base q = 2k for some k ∈ N, k > 1. Both of these transformations are important
for our routing algorithm.

A node u is left (resp. right) of a node v, if u < v (resp. u > v). Given some
node w and two nodes u, v, we say that u is closer to w than v, if |u−w| < |v−w|.
We call a node u
= v the closest neighbor of v ∈ V , if there are no other nodes
that are closer to v than u. Similarly, a node v is closest to some point p ∈ [0, 1),
if |v − p| < |u− p| for all u ∈ V, u
= v. For a hash function h as described above,
we get the following lemma:

A Self-stabilizing General De Bruijn Graph 255

Lemma 1. The expected distance between two closest neighbors u, v ∈ V on the
[0, 1)-interval (seen as a ring) is equal to 1

n , where n denotes the number of nodes
in the system.

For the rest of this paper, we require h : N → [0, 1) and the constant d ∈ N

to be a part of our protocol, i.e., every node knows h and d.

2.2 Base Construction

We hash all nodes onto the [0, 1)-interval, using the hash function h as described
in the last section. The network we are going to construct has a diameter of d
w.h.p., which makes routing in a constant number of hops possible.

Definition 4 (Network Topology). The general de Bruijn network (GDB)
is a directed graph G = (V,EL∪Eq ∪EdB ∪Eq−dB) with the following properties:

– EL contains edges for a doubly linked list: (v, w) ∈ EL ⇔ w is the closest
neighbor that is left (resp. right) of v.

– Eq contains q-neighborhood edges: (v, w) ∈ Eq ⇔ there are at most c · q nodes
closer to v than w, where c > 2 is a constant and q = d

√
n.

– EdB contains standard de Bruijn edges: ∀j ∈ {0, 1} : (v, w) ∈ EdB ⇔ w is
closest to the point v+j

2 .
– Eq−dB contains general de Bruijn edges: ∀i ∈ {2, . . . , log(q)} ∀j ∈ {0, . . . , 2i−

1} : (v, w) ∈ Eq−dB ⇔ w is closest to the point v+j
2i .

All logarithms in this paper are to the base 2. For the natural logarithm
of some number x we use ln(x). Note that the constant c > 2 is only needed
to prove the correctness of the routing algorithm. Assume for simplicity that
q = d

√
n is a power of 2, i.e., q = 2k for some k ∈ N. We explain how to deal

with arbitrary values of q in Sect. 3.3.
If w is closest to the point v+j

2i , denote the edge (v, w) as a de Bruijn edge
on level i. For i = 1, we speak of a standard de Bruijn edge. For i > 1, we
speak of a general de Bruijn edge and if i < log(q) we speak of a lower level
general de Bruijn edge. Note that we include lower level general de Bruijn edges
to facilitate the self-stabilization process. If we forward a message via a de Bruijn
edge on level i > 1, we speak of a general de Bruijn hop. For i = 1, we speak
of a standard de Bruijn hop. By writing v → p for a point p ∈ [0, 1), we mean
that v has an edge to the node u that is closest to p, i.e., v stores the reference
of u in its local memory. We are now ready to prove that de Bruijn edges in our
network emulate the classical de Bruijn edges correctly:

Lemma 2. Let v ∈ V . A de Bruijn hop via v → v+j
2i , i ∈ {1, . . . , log(q)},

j ∈ {0, . . . , 2i − 1}, is equivalent to appending log(2i) = i bits to the left of
the bit string representation of v, where the content of the appended bit string is
equal to (bi−1, bi−2, . . . , b0) ∈ {0, 1}i with bi−1 ·2i−1+bi−2 ·2i−2+ . . .+b0 ·20 = j.

256 M. Feldmann and C. Scheideler

Since j ∈ {0, . . . , 2i − 1}, we are able to append any arbitrary bit string of
length i. So for i = log(q), we can append log(q) = log(d

√
n) = 1

d log(n) arbitrary
bits at once per general de Bruijn hop. The outdegree of our construction is not
too high as the following theorem states:

Theorem 1. Each node in the GDB has degree O(d
√

n).

2.3 Routing

When processing a search request with target ID t ∈ N, we proceed in two
phases: In the first phase we perform d − 1 general de Bruijn hops to fix the
most significant bits of the target address. In the second phase, we greedily
search for the target node via q-neighborhood edges.

At the beginning of the first phase, we compute the bit string representation
of h(t) and transform it to the base q as described in Sect. 2.1. This yields a
number tq := (t1, . . . , tk)q ∈ {0, . . . , q − 1}k for some k ∈ N. We only consider
the first d−1 digits t1, . . . , td−1 of tq. Let the search request be at node v ∈ V . We
perform a general de Bruijn hop via the edge v → v+ti

q starting with i = d − 1.
We decrement i after each general de Bruijn hop. The first phase ends, when
i = 0, i.e., after d − 1 general de Bruijn hops. Observe that at this point, we
have fixed the most significant �d−1

d log(n)� bits of the bit string representation
of h(t).

In the second phase, we greedily search for the node with target ID t, by
delegating the search request via edges in Eq. We do this until the target node
has been found, or the request arrives at a node v ∈ V, v.id
= t from which
it cannot be routed closer to h(t) via q-neighborhood edges. In both cases, the
algorithm terminates, resulting in a successful search in the first case or a failed
search in the second case. This phase is equivalent to fixing the remaining bits
of the binary representation of h(t), which can be done via a single hop w.h.p.
until the request arrives at the target node. Figure 1 illustrates an example when
the constant d is set to 4.

sv2 v1 v3 t
(s+t3)/q

(v1+t2)/q

(v2+t1)/q

(v3,t) Eq

Fig. 1. Possible routing path to node t starting at node s, when d = 4.

The following theorem yields the desired bound on the number of hops for
the routing algorithm:

Theorem 2. The number of hops required to send a request from a source node
s to a destination node t via DeBruijnSearch is d w.h.p.

A Self-stabilizing General De Bruijn Graph 257

Proof (Sketch). By making use of Lemma 2, we can show that after the first
phase has ended, the search request arrives at some node v that has the first
�d−1

d log(n)� bits equal to the bits of t. Thus, the distance from v to t is at most
q
n . By proving that the probability of c·q or more nodes being in I = [v− q

n , v+ q
n]

is very low, the theorem follows. The desired probability bound can be shown
with the help of c, the use of Chernoff bounds and the fact that ln(n) ≤ d

√
n for

n high enough. ��
Notice that Theorem 2 still holds when q is not exactly accurate but only a

value in Θ(d
√

n), because ln(n) ∈ Θ(d
√

n). This is important, because our self-
stabilizing protocol in the next section uses approximations of q, resp. log(n).

3 The BuildQDeBruijn Protocol

In this section we describe the BuildQDeBruijn protocol. We construct the
BuildQDeBruijn protocol out of sub-protocols for each edge type mentioned
in Definition 4.

3.1 Node Variables

We first give an overview over the variables of each node:

Definition 5. Given a GDB G, each node v ∈ V has the following variables:

– Variables v.left, v.right ∈ V ∪ {⊥} storing v’s left and right list neighbor.
– A variable v.q ∈ 2k, k ∈ N storing an approximation of 1

2
d
√

n.
– A set v.Q := {q1, . . . , qc·2v.q} ⊂ V storing nodes for v’s q-neighborhood.
– Variables v.db(i, j) ∈ V ∪{⊥}, for all i ∈ {1, . . . , log(2v.q)}, j ∈ {0, . . . , 2i−1}

representing v’s de Bruijn edges. Denote the union of v’s de Bruijn edges by
the set v.db =

⋃
i,j v.db(i, j)

Observe that v.db(1, 0) and v.db(1, 1) represent v’s standard de Bruijn edges.
If our protocol has to call an action on a node stored in variable u, it only
executes this call, if u
=⊥. BuildQDeBruiijn consists of four sub-protocols:
One for list edges, one for q-neighborhood edges, one for standard de Bruijn edges
and a sub-protocol for general de Bruijn edges. We describe each sub-protocol
individually in the following sections.

3.2 List Edges

The base of our self-stabilizing protocol consists of a sorted list for all nodes
v ∈ V over the [0, 1)-interval. We use the BuildList protocol from [16], where
each node only keeps its closest left (v.left) and right (v.right) list neighbor.
In every call of Timeout, each node introduces itself to v.left and v.right, by
sending a Linearize(v) request to them. When calling Linearize(v) on a node
u, u sets u.left = v, if v is left of u and closer to u than u.left. The old value

258 M. Feldmann and C. Scheideler

o of u.left is then delegated to the node q̄ ∈ u.Q that is closest to o by calling
Linearize(o) on q̄. In case u.left =⊥, u just sets u.left = v. If v is left of u
and u.left is closer to u than v, then u delegates v as described above. Node u
proceeds analogously for u.right in case v is right of u. Thus, node references are
never deleted, but always delegated until the node arrives at the correct spot in
the sorted list. We get the following theorem from [16]:

Theorem 3 [16]. BuildList is self-stabilizing:

– Convergence: BuildList converts any weakly connected graph G = (V,EL)
into a sorted list.

– Closure: If the explicit list edges in G = (V,EL) already form a sorted list,
then these edges are preserved by BuildList.

Theorem 3 does not suffice to guarantee convergence for the sorted list in our
protocol because we just require G = (V,EL ∪ Eq ∪ EdB ∪ Eq−dB) to be weakly
connected. Therefore, we downgrade (non-list) edges represented by sets v.Q and
v.db, if they are closer to v than v.left or v.right: Downgrading some node u
stored in one of these sets is done in Timeout of each sub-protocol other than
BuildList, by locally calling Linearize(u). Similarly we may upgrade list edges
represented by v.left and v.right in case they are a better fit w.r.t. Definition 4
than nodes stored in sets v.Q and v.db. Upgrading is done by copying the node
reference from v.left, resp. v.right and storing the copy in v.Q or v.db. Figure 2
illustrates the interaction between sub-protocols of BuildQDeBruijn.

Build List

Q-Neighborhood Standard de Bruijn General de Bruijn

downgrade

downgrade

upgrade

upgrade

upgrade

downgrade

Fig. 2. Interaction between all sub-protocols of BuildQDeBruijn.

3.3 Q-Neighborhood

Every node v ∈ V needs to keep edges to its closest c·q = c d
√

n neighbors. Since v
is not able to determine the exact value of d

√
n locally, it stores an approximation

in its variable v.q. Instead of aiming for v.q ≈ d
√

n, we aim for v.q ≈ 1
2

d
√

n for
convergence reasons. Whenever we want to use the (approximated) value d

√
n

at v, we just use v.q multiplied by 2. If v modifies v.q, we call this event a v.q-
update. Using v.q, v maintains the set v.Q := {q1, . . . , qc·2·v.q} ⊂ V storing the
c · 2 · v.q nodes closest to v. For v.q ≈ 1

2
d
√

n, it holds |v.Q| ≈ c · d
√

n. As soon

A Self-stabilizing General De Bruijn Graph 259

as the system is in a legitimate state, it holds for any node u
= v with u
∈ v.Q
that |u − v| > maxi∈{1,...,c·2·v.q}{|qi − v|}, i.e., v.Q contains v’s closest c · d

√
n list

neighbors. Next we describe how our protocol updates v.Q and v.q.
To keep v.Q updated at any time, v does the following: In each call of Time-

out, v picks qk ∈ v.Q in a round-robin fashion and introduces qk to its closest
list neighbor in the direction of v by calling Introduce(q̃, v) on qk. The node q̃
is determined as follows: If qk = v.left or qk = v.right, then q̃ = v. Otherwise,
v sets q̃ based on qk being left or right of v: If qk < v, then q̃ = qk+1, otherwise
q̃ = qk−1 (Fig. 3).

When some node u receives an Introduce(q̃, v) request, u updates u.Q
by choosing the closest c · 2 · u.q neighbors from u.Q ∪ {q̃}. Nodes q̄ ∈ u.Q ∪
{q̃} that are not part of the updated set u.Q are delegated via the BuildList
protocol by locally calling Linearize(q̄). Afterwards, u responds by sending an
Introduce({l}, ⊥) message to v, where l = u.left, if u.right is closer to v than
u.left, or l = u.right otherwise. This has to be done in order to guarantee that
every node v eventually has a complete set v.Q with |v.Q| = c · 2 · v.q. Note that
the second parameter is set to ⊥ for this response, in order to avoid an infinite
loop of message calls between two nodes.

vq1 q2 q3 q4 q5

Fig. 3. Implicit edges generated after v has chosen q1, . . . , q5 once in Timeout. The
dotted implicit edges are generated by the responses sent out from q1, . . . , q5 to v.

To keep v.q updated at node v, v periodically checks if v.q is within the
interval (14

d
√

n, d
√

n). Recall that we require v.q to be a power of 2, i.e., v.q = 2k

for some k ∈ N. If v.q
∈ (14
d
√

n, d
√

n), it has to be updated. Notice that we have
to avoid updating v.q too frequently because each update changes the set v.Q,
implying a higher workload for v. The way we approximate v.q is the following:
We calculate values

ai =

∣∣∣∣∣2
d · |q1 − q2i·v.q| −

(
1

2i · v.q

)d−1
∣∣∣∣∣ ,

for all i ∈ {− log(v.q), . . . , 0, 1}. Out of those ai, we compute j such that aj =
mini{ai} and multiply v.q by 2j . As the next lemma shows, this leads to v.q
becoming stable, i.e., v.q is not updated anymore at some point in time.

Lemma 3. Consider a sorted list over the interval [0, 1) and a node v ∈ V .
After at most log(d

√
n) v.q-updates, v.q ∈ (14

d
√

n, d
√

n) = Θ(d
√

n) w.h.p. and v.q
does not get updated anymore as long as no nodes join or leave the system.

260 M. Feldmann and C. Scheideler

Note that Lemma 3 only holds if for a fixed value v.q, v.Q eventually contains
the correct nodes. But this can be shown as part of the overall convergence.

In addition to the approximation of d
√

n, we need an approximation of log(n)
at every node v ∈ V in order to perform routing. We approximate log(n) similar
to the approach for computing v.q: For all i ∈ {1

2v.q, . . . 2v.q}, we compute a
value

ai =

∣∣∣∣∣2
d · |q1 − qi| −

(
1
i

)d−1
∣∣∣∣∣

and set log(n) = log((2·argmini{ai})d), as argmini{ai} gives us the integer value
i that is closest to 1

2
d
√

n. The resulting approximation for log(n) is even more
precise than the one for d

√
n, as the following lemma states. Recall that we chose

to approximate d
√

n with less precision in order to avoid updating v.q too often.

Lemma 4. In a q-connected sorted list over the interval [0, 1), approximating
log(n) eventually yields a value log(n) − ε, ε ∈ o(1) w.h.p. as long as no nodes
join or leave the system.

3.4 Standard De Bruijn Edges

The idea to generate standard de Bruijn edges for a node v ∈ V is as follows:
In Timeout, v sends out messages P0, P1. We call such a message a probe.
Probe P0 stores the target location v

2 and P1 stores the target location v+1
2

within itself. We want a probe to reach the node in the system that is closest to
the probe’s target location. A probe also stores v itself, so that it can be sent
back to v immediately, once it arrives at the target node. Recall that the two
variables v.db(1, 0) and v.db(1, 1) contain the nodes that v thinks are closest to
the locations v

2 , resp. v+1
2 . In the following, we explain the routing process for

the probe P1. The routing for P0 works analogously.

1. Forward P1 to u = v.right.
2. Perform a standard de Bruijn hop by forwarding P1 to u.db(1, 1).
3. Greedily forward P1 via the q-neighborhood until some node t is reached that

is closest to v+1
2 based on its local view.

4. Store t in P1 and send the probe back to v, such that v is able to set
v.db(1, 1) = t.

Note that if the system has not reached a legal state yet, steps 1 or 2 may
not be executed, since the respective variables are set to ⊥. In this case we
proceed with step 4, storing the most recently traversed node. It is easy to see
that once the sorted list along with the q-connected list has stabilized, v.db(1, 0)
and v.db(1, 1) will eventually store the correct nodes. If v modifies v.db(1, 1),
it delegates the old value for v.db(1, 1) away via the BuildList protocol. This
approach is efficient regarding the number of hops per probe as the following
lemma shows:

Lemma 5. Let the GDB G be in a legitimate state. Probes for standard de
Bruijn edges only need 3 hops w.h.p. to be routed from a node v ∈ V to the node
that is closest to the probe’s target, namely v+j

2 , j ∈ {0, 1}.

A Self-stabilizing General De Bruijn Graph 261

3.5 General De Bruijn Edges

To establish general de Bruijn edges at each node we use a probing approach
similar to that for the standard de Bruijn edges: Nodes periodically send out a
probe and forward it until it arrives at the node that is closest to the probe’s
target location. Since we want to avoid sending out probes for all possible general
de Bruijn targets at once, we send out only one probe per Timeout-call for one
single general de Bruijn target. For picking the probe’s target, we use a round-
robin approach similar to the one for the q-neighborhood edges: In each call
of Timeout, we pick i ∈ {2, . . . , log(v.q) + 1} and j ∈ {0, . . . , 2i − 1} in a
round-robin fashion and generate the probe Pi,j that has the point v+j

2i as target
location. The result of Pi,j has to be stored in v.db(i, j). Aside from v itself, we
also store i and j in Pi,j since these are important for the routing approach:

1. Forward Pi,j to u = v.db(i − 1, k), with k = j mod 2i−1.
2. Execute a standard de Bruijn hop: If j ≥ 2i−1 then forward Pi,j from u to

u.db(1, 1), otherwise forward Pi,j from u to u.db(1, 0).
3. Greedily forward Pi,j via the q-neighborhood until some node t is reached

that is closest to v+j
2i based on its local view.

4. Store t in Pi,j and send Pi,j back to v, such that v is able to set v.db(i, j) = t.

The following lemma shows that the above approach is efficient regarding the
number of hops for a single probe:

Lemma 6. Let the GDB G be in a legitimate state. Probes for general de Bruijn
edges only need 3 hops w.h.p. to be routed from a node v ∈ V to the node that
is closest to the probe’s target, namely v+j

2i for i ∈ {2, . . . , log(v.q) + 1} and
j ∈ {0, . . . , 2i − 1}.

Having nodes store lower-level general de Bruijn edges is not only useful in
our probing approach, but also reduces the effort for v when processing a v.q-
update. This is most certainly the case in a dynamic environment as there are
nodes leaving the system resulting in v.q to be halved. As soon as v.q halves at
a node v, v just drops its general de Bruijn edges on the highest level. Without
lower-level general de Bruijn edges v would have to probe for a new set of general
de Bruijn edges. Similarly, in case that v.q doubles, v is able to use its old high-
level general de Bruijn edges to probe for the general de Bruijn edges on the
next higher level.

3.6 Join and Leave

When a new node v wants to join the system at some node u, it just introduces
itself to u by calling Linearize(v) on u. Then v is integrated into the sorted
list via BuildList. As soon as v is in the correct spot of the sorted list, v is
able to generate a correct approximation v.q along with its q-neighborhood and
thus build the set of general de Bruijn edges. A very simple approach for a
node to leave the system is to ‘just leave’. Since each node is connected to its

262 M. Feldmann and C. Scheideler

closest Θ(d
√

n) list neighbors, when the system is in a legitimate state, the graph
is guaranteed to stay weakly connected when one node leaves. However, nodes
may also leave at times at which the network has not yet reached a legitimate
state. There are already protocols that are able to safely exclude a node from
the system, so we just refer the reader to [12] for a universal approach.

4 Protocol Analysis

In this section we show that BuildQDeBruijn is self-stabilizing according to
Definition 1.

Theorem 4 (Convergence). BuildQDeBruijn transforms any weakly con-
nected graph G = (V,EL ∪ Eq ∪ EdB ∪ Eq−dB) into a GDB.

Proof (Sketch). Note that eventually all corrupted messages are processed by
BuildQDeBruijn without disconnecting the graph. We prove convergence in
multiple phases: First, we argue that eventually the sorted list converges. The
main idea here is to show that edges in Eq ∪ EdB ∪ Eq−dB are eventually down-
graded to BuildList, such that we can apply Theorem3. After the sorted list
has converged, all q-neighborhood and standard de Bruijn edges will eventually
be built. Lastly, once all standard de Bruijn edges are correct, we can prove that
eventually all general de Bruijn edges will be set correctly at all nodes. ��
Theorem 5 (Closure). If the explicit edges in G = (V,EL∪Eq∪EdB ∪Eq−dB)
already form a GDB, then they are preserved at any point in time if no nodes
join or leave the system.

Proof (Sketch). Similar to convergence, we can argue that closure holds for every
sub-protocol: Once all edges for a sub-protocol have been set correctly, they will
never be deleted anymore by the sub-protocol itself or other sub-protocols. ��

The following theorem states that only few messages are generated in a legit-
imate state:

Theorem 6. Let the GDB G be in a legitimate state. The number of messages
that a single node sends out per Timeout-call in the BuildQDeBruijn protocol
is constant.

Theorem 6 assures that nodes do not get flooded with stabilization messages.
This means that incoming messages inserted into node channels will be processed
quickly, which supports our main goal to deliver search requests as quickly as
possible to the target node.

The final theorem gives an (asymptotically optimal) upper bound on the
overhead at (already existing) nodes in case additional nodes join the system:

Theorem 7. Let the GDB G be in a legitimate state. When n increases by factor
2d, then the number of edges that need to be built or redirected for an already
existing node is in O(d

√
n) on expectation, which is asymptotically optimal.

A Self-stabilizing General De Bruijn Graph 263

5 Conclusion and Future Work

We presented a new self-stabilizing protocol for the general de Bruijn graph that
consists of multiple sub-protocols. It has an advantage compared to the self-
stabilizing clique in terms of the node degree, while still being able to provide
constant time routing w.h.p. Since the whole protocol is dependent on the pub-
licly known hash function h and the constant d, it may be an interesting task to
handle nodes that use corrupted hash functions or corrupted values for d.

Acknowledgements. This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Center “On-The-Fly Comput-
ing” (SFB 901).

References

1. Andersen, D.G., Balakrishnan, H., Kaashoek, M.F., Morris, R.: Resilient overlay
networks. Comput. Commun. Rev. 32(1), 66 (2002). doi:10.1145/510726.510740

2. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013).
doi:10.1016/j.tcs.2013.02.021

3. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandsche Akademie
Van Wetenschappen 49(6), 758–764 (1946)

4. Brutlag, J.: Speed matters for Google web search. Technical report, Google, Inc.
(2009)

5. Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: a self-stabilizing deterministic
skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012). doi:10.1016/j.tcs.
2011.12.079

6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974). doi:10.1145/361179.361202

7. Feldmann, M., Scheideler, C.: A self-stabilizing general de bruijn graph (2017).
https://arxiv.org/abs/1708.06542

8. Gupta, A., Liskov, B., Rodrigues, R.: One hop lookups for peer-to-peer over-
lays. In: Jones, M.B. (ed.) Proceedings of HotOS 2003: 9th Workshop on
Hot Topics in Operating Systems, Lihue (Kauai), Hawaii, USA, 18–21 May
2003, pp. 7–12. USENIX (2003). https://www.usenix.org/conference/hotos-ix/
one-hop-lookups-peer-peer-overlays

9. Gupta, A., Liskov, B., Rodrigues, R.: Efficient routing for peer-to-peer overlays. In:
Morris, R., Savage, S. (eds.) Proceedings of 1st Symposium on Networked Systems
Design and Implementation (NSDI 2004), San Francisco, California, USA, 29–31
March 2004, pp. 113–126. USENIX (2004). http://www.usenix.org/events/nsdi04/
tech/gupta.html

10. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing
chord overlay network. Theory Comput. Syst. 55(3), 591–612 (2014). doi:10.1007/
s00224-012-9431-2

11. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: A deterministic worst-case mes-
sage complexity optimal solution for resource discovery. Theor. Comput. Sci. 584,
67–79 (2015). doi:10.1016/j.tcs.2014.11.027

http://dx.doi.org/10.1145/510726.510740
http://dx.doi.org/10.1016/j.tcs.2013.02.021
http://dx.doi.org/10.1016/j.tcs.2011.12.079
http://dx.doi.org/10.1016/j.tcs.2011.12.079
http://dx.doi.org/10.1145/361179.361202
https://arxiv.org/abs/1708.06542
https://www.usenix.org/conference/hotos-ix/one-hop-lookups-peer-peer-overlays
https://www.usenix.org/conference/hotos-ix/one-hop-lookups-peer-peer-overlays
http://www.usenix.org/events/nsdi04/tech/gupta.html
http://www.usenix.org/events/nsdi04/tech/gupta.html
http://dx.doi.org/10.1007/s00224-012-9431-2
http://dx.doi.org/10.1007/s00224-012-9431-2
http://dx.doi.org/10.1016/j.tcs.2014.11.027

264 M. Feldmann and C. Scheideler

12. Koutsopoulos, A., Scheideler, C., Strothmann, T.: Towards a universal approach
for the finite departure problem in overlay networks. In: Pelc, A., Schwarzmann,
A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 201–216. Springer, Cham (2015). doi:10.
1007/978-3-319-21741-3 14

13. Malyshev, F.M., Tarakanov, V.E.: Generalized de bruijn graphs. Math. Notes
62(4), 449–456 (1997). doi:10.1007/BF02358978

14. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-
discrete approach. ACM Trans. Algorithms 3(3), 34 (2007). doi:10.1145/1273340.
1273350

15. Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: a stabilizing deterministic
message-passing skip list. Theor. Comput. Sci. 512, 119–129 (2013)

16. Onus, M., Richa, A.W., Scheideler, C.: Linearization: locally self-stabilizing sort-
ing in graphs. In: Proceedings of the Nine Workshop on Algorithm Engineering
and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 6 January 2007.
SIAM (2007). http://dx.doi.org/10.1137/1.9781611972870.10

17. Richa, A.W., Scheideler, C., Stevens, P.: Self-stabilizing de bruijn networks. In:
Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 416–430.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24550-3 31

18. Shaker, A., Reeves, D.S.: Self-stabilizing structured ring topology P2P systems. In:
Caronni, G., Weiler, N., Waldvogel, M., Shahmehri, N. (eds.) Fifth IEEE Inter-
national Conference on Peer-to-Peer Computing (P2P 2005), Konstanz, Germany,
31 August–2 September 2005, pp. 39–46. IEEE Computer Society (2005). http://
dx.doi.org/10.1109/P2P.2005.34

http://dx.doi.org/10.1007/978-3-319-21741-3_14
http://dx.doi.org/10.1007/978-3-319-21741-3_14
http://dx.doi.org/10.1007/BF02358978
http://dx.doi.org/10.1145/1273340.1273350
http://dx.doi.org/10.1145/1273340.1273350
http://dx.doi.org/10.1137/1.9781611972870.10
http://dx.doi.org/10.1007/978-3-642-24550-3_31
http://dx.doi.org/10.1109/P2P.2005.34
http://dx.doi.org/10.1109/P2P.2005.34

Constant-Time Complete Visibility
for Asynchronous Robots with Lights

Gokarna Sharma1(B), Ramachandran Vaidyanathan2, and Jerry L. Trahan2

1 Department of Computer Science, Kent State University, Kent, OH 44242, USA
sharma@cs.kent.edu

2 School of Electrical Engineering and Computer Science, Louisiana State University,
Baton Rouge, LA 70803, USA

{vaidy,jtrahan}@lsu.edu

Abstract. We consider the distributed setting of N autonomous mobile
robots that operate in Look-Compute-Move cycles and communicate with
other robots using colored lights following the robots with lights model.
We study the fundamental Complete Visibility problem of reposition-
ing N autonomous robots on a plane so that each robot is visible to all
others in this model. We assume obstructed visibility where a robot can-
not see another robot if a third robot is positioned between them on the
straight line connecting them. There exists an O(logN) time, O(1) color
algorithm for this problem in the asynchronous setting. In this paper,
we provide the first, asymptotically optimal, O(1) time, O(1) color algo-
rithm for this problem in the asynchronous setting. The proposed algo-
rithm is collision-free – robots do not share positions and their paths do
not cross. We also introduce a technique, called Beacon-Directed Curve
Positioning, for moving robots in an asynchronous setting, that may be
of independent interest.

1 Introduction

In the classical model of distributed computing by mobile robots, each robot is
modeled as a point in the plane [12]. The robots are autonomous (no external
control), anonymous (no unique identifiers), indistinguishable (no external iden-
tifiers), and disoriented (no agreement on local coordinate systems and units
of distance measures). They execute the same algorithm. Each robot proceeds
in Look-Compute-Move (LCM) cycles: When a robot becomes active in a cycle,
it first gets a snapshot of its surroundings (Look), then computes a destination
based on the snapshot (Compute), and finally moves to the destination (Move).
Moreover, the robots are oblivious, i.e., in each LCM cycle, each robot has no
memory of its past LCM cycles [12]. Furthermore, the robots are silent because
they do not communicate directly, and only vision and mobility enable them to
coordinate their actions.

While silence has advantages, in many situations, e.g., hostile environments,
direct communication is assumed. One model that incorporates direct com-
munication is the robots with lights model [7,12,14], where each robot has an
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 265–281, 2017.
https://doi.org/10.1007/978-3-319-69084-1 18

266 G. Sharma et al.

externally visible light that can assume colors from a constant sized set; robots
explicitly communicate with each other using these colors. The colors are persis-
tent; i.e., the color is not erased at the end of a cycle. Except lights, the robots
are oblivious as in the classical model.

In this paper, we study the following fundamental Complete Visibility
problem in the robots with lights model: Given any initial configuration of N
autonomous mobile robots located in distinct points on a plane, they reach a
configuration in which each robot is in a distinct position from which it can see
all other robots. Initially, some robots may be obstructed from the view of others
(i.e., obstructed visibility) and the total number of robots, N , is not known to
the robots. The importance of solving this problem is that it makes it possible to
solve many other robot problems under obstructed visibility, including gathering,
shape formation, and leader election. Di Luna et al. [11] gave the first algorithm
for robots with lights to solve this problem. Di Luna et al. [11] arranged robots
on corners of a convex polygon, which naturally solves this problem. We also
form a convex hull as a solution to this problem. Di Luna et al. [11] proved the
correctness of their algorithm but gave no runtime (except a proof of finite time
termination). Subsequent papers [10,15] gave solutions minimizing the number
of colors.

The runtime analysis for Complete Visibility has been studied relatively
recently [16,18]. Vaidyanathan et al. [18] presented an O(log N) time algorithm
using O(1) colors in the fully synchronous setting. Sharma et al. [16] presented
an asymptotically optimal O(1) time algorithm using O(1) colors in the semi-
synchronous setting.

The intriguing open question was whether an O(1) time, O(1) color algorithm
can be designed for this problem in the asynchronous setting. Algorithms in the
asynchronous setting are interesting and at the same time difficult to design and
analyze since this setting is the weakest among the robot synchronization models,
namely fully synchronous, semi-synchronous, and asynchronous. There is a sim-
ple O(N)-time algorithm simulating the O(1) time, O(1) color semi-synchronous
Complete Visibility algorithm of Sharma et al. [16] to the asynchronous set-
ting using the simulation technique of Das et al. [7]1. Recently, Sharma et al.
[17] presented an O(log N)-time algorithm for this problem using O(1) colors in
the asynchronous setting. However, there is still a gap of a O(log N) factor on
time compared to the trivial Ω(1) lower bound. This work closes this O(log N)
gap.

Contributions. We consider the robot model of Di Luna et al. [11], namely,
robots are oblivious except for a persistent light that can assume a constant
number of colors. Visibility could be obstructed by other robots in the line of
sight, N is not known, and the robots may be disoriented. Moreover, we assume
that the robot setting is asynchronous – there is no notion of common time and

1 The simulation technique of Das et al. [7] shows that any algorithm (for any problem)
in the robots with lights model with k > 1 colors in the semi-synchronous setting
can be simulated in the asynchronous setting with 5k colors (without a time bound
on the simulation).

Constant-Time Complete Visibility for Asynchronous Robots with Lights 267

Table 1. Comparison of results for Complete Visibility on the lights model

Paper Setting Runtime Color

Di Luna et al. [10,11], Sharma et al. [15] Asynchronous – 10, 3, 2 = O(1)

Vaidyanathan et al. [18] Fully synchronous O(logN) 12 = O(1)

Sharma et al. [16] Semi-synchronous O(1) 12 = O(1)

Das et al. [7], Sharma et al. [16] Asynchronous O(N) 60 = O(1)

Sharma et al. [17] Asynchronous O(logN) 25 = O(1)

Theorem1 Asynchronous O(1) 47 = O(1)

robots perform their LCM cycles at arbitrary time. The moves of the robots are
rigid – a robot in motion cannot be stopped (by an adversary) before it reaches its
destination point. As in [11], we assume that two robots cannot head to the same
destination point and their paths cannot cross; this would constitute a collision.
In this paper, we prove the following theorem (comparison is in Table 1) which,
to our knowledge, is the first asymptotically time-optimal Complete Visibility
algorithm for robots with lights in the asynchronous setting.

Theorem 1. For any initial configuration of N ≥ 1 robots with lights in distinct
positions on a plane, there is an algorithm that solves Complete Visibility in
O(1) time with O(1) colors and without collisions in the asynchronous setting.

Our algorithm is deterministic and has seven stages, Stages 0–6, that execute
one after another. Stage 0 breaks up any initial linear arrangement of robots and
places all robots within or on a convex polygon P (convex hull of points) in O(1)
time. After that, Stages 1–5 place all robots on the corners or sides of a convex
polygon P ′. Finally, Stage 6 moves each robot on a side of P ′ to a corner of a
new convex polygon P ′′. Keys to Stages 1–5 are corner moving, internal moving,
and beacon-directed curve positioning procedures that permit all interior robots
of P to move to the sides of P ′ executing each stage in O(1) time. Key to Stage
6 is a corner insertion procedure that moves side robots of P ′ to corners of P ′′

in O(1) time while retaining convexity.
These seven stages are similar in structure to the O(log N)-time asynchronous

algorithm of Sharma et al. [17]. Stages 0, 1, 4, and 6 of Sharma et al. [17] run in
O(1) time and Stages 2, 3, and 5 run in O(log N) time. Therefore, the O(log N)
time for the algorithm of Sharma et al. [17] is due to the runtime of Stages 2, 3,
and 5. In this paper, we develop two fundamental building blocks to run Stages
2, 3, 5, and 6 in O(1) time, giving an overall O(1) time algorithm closing the
O(log N) gap left in Sharma et al. [17]. The building blocks that we develop here
are non-trivial. We list the specific set of techniques we develop and how they
help to remove the O(log N) gap factor.

– We develop a framework called Beacon-Directed Curve Positioning (Sect. 3)
in which a set R of robots moves onto a (k-point) curve under the following
conditions. On the curve, 2k robots (called beacons) are properly placed.

268 G. Sharma et al.

Paths from robots in R to the curve must avoid collisions and cannot intersect
the curve at more than one point (Definition 2). If no robot is in transit to the
curve, then each robot of R in its original position must see the 2k beacons
and all the robots that have moved to the curve and become new beacons. We
showed that this framework runs in O(log k) time using 3 colors, irrespective
of the size of R.

– We develop a technique that fulfills the conditions of the Beacon-Directed
Curve Positioning framework to apply it to run Stages 2, 3, 5 and 6 in O(1)
time. Fulfilling the conditions of the framework turned out to be particularly
challenging for Stages 2, 3, and 5 (which we discuss in Sect. 4).

Previous Work. The problem of uniformly spreading robots on a line [3] con-
siders the case of obstructed visibility, but these robots are classical robots [12].
Obstructed visibility is also captured in the so-called fat robots model where
robots are non-transparent unit discs [1,6]. However, the runtime analysis is
not provided. Similarly, much work on the classical robot model [2,19] for
Gathering does not have runtime analysis, except in a few cases [5,8] Fur-
thermore, Izumi et al. [13] considered the robot scattering problem (opposite of
Gathering) in the semi-synchronous setting and provided a solution with an
expected runtime of O(min{N,D2+log N}); here D is the diameter of the initial
configuration. The computability and power of the robots with lights compared
to the classical oblivious robots (with no lights) is studied in [7,9].

Roadmap. In Sect. 2 we provide details on the robot model and touch on some
preliminaries. We provide a beacon directed framework of positioning a set of
robots on a curve in Sect. 3. We then devote Sect. 4 to prove Theorem 1 which
uses the framework of Sect. 3. Many proofs and details are omitted due to space
constraints.

2 Model and Preliminaries

We consider a distributed setting of N robots Q = {r0, r1, · · · , rN−1}. Each
robot is a (dimensionless) point that can move in an infinite 2-dimensional real
space R

2. We use a point to refer to a robot as well as its position. A robot ri can
see, and be visible to, another robot rj if and only if (iff) there is no third robot
rk in the line segment joining ri, rj . Each robot has a light that can assume a
color at a time from a constant number of different colors.

Look-Compute-Move. At any time a robot ri ∈ Q could be active (participat-
ing in an LCM cycle) or inactive. When a robot ri becomes active, it performs
the “Look-Compute-Move” cycle as follows. (i) Look: For each robot rj that is
visible to it, ri can observe the position of rj on the plane and the color of
the light of rj . Robot ri can also know its own color and position. Each robot
observes position on its own frame of reference, i.e., two different robots observ-
ing the position of the same point may produce different coordinates. However a
robot observes the positions of points accurately within its own reference frame.

Constant-Time Complete Visibility for Asynchronous Robots with Lights 269

(ii) Compute: In any LCM cycle, ri may perform an arbitrary computation using
only the colors and positions observed during the “look” portion of that cycle.
This includes determination of a (possibly) new position and color for ri for the
start of the next LCM cycle. Robot ri maintains this new color from that LCM
cycle to the next LCM cycle. (iii) Move: At the end of the LCM cycle, ri changes
its light to the new color and moves to its new position.

In the fully synchronous setting (FSYNC), every robot is active in every
LCM cycle. In the semi-synchronous setting (SSYNC), at least one robot is
active, and over an infinite number of LCM cycles, every robot is active infinitely
often. In the asynchronous setting (ASYNC), there is no common notion of time
and no assumption is made on the number and frequency of LCM cycles in which
a robot can be active. The only guarantee is that every robot is active infinitely
often. Complying with the ASYNC setting, we assume that a robot performs
its Look phase at an instant of time. We also assume that a robot moves at some
(not necessarily constant) speed without stopping or changing direction until it
reaches its destination (monotonic movements).

Runtime. For the FSYNC setting, time is measured in rounds. Since a robot
in the SSYNC and ASYNC settings could stay inactive for an indeterminate
number of rounds, we bound a robot’s inactivity and introduce the idea of an
epoch to measure runtime. An epoch is the smallest number of rounds within
which each robot is guaranteed to be active at least once [4].

Configuration and Local Polygon. A configuration Ct = {(rt
0, col

t
0), . . . ,

(rt
N−1, col

t
N−1)} defines the positions of the robots in Q and their colors for any

time t ≥ 0. A configuration for a robot ri ∈ Q, Ct(ri), defines the positions
of the robots in Q that are visible to ri (including ri) and their colors, i.e.,
Ct(ri) ⊆ Ct, at time t. The convex polygon Pt(ri) encompassing all points of
Ct(ri) is local to ri since Pt(ri) depends only on the points that are visible to ri

at time t. We sometime write C,P,C(ri),P(ri) to denote Ct,Pt,Ct(ri),Pt(ri),
respectively.

c0 c1

c2

c3

c4

P

CP()c3

x0

x1

x2

x3

x4

y1

y2y3

y4

y0

CL3
r

TL3
L2

L3 T()c2

Corner Triangle, Corner and Triangle Line
Segments, and Corner Polygon. Let ci be a cor-
ner of a convex polygon P. Let ci−1 and ci+1 be the
neighbors of ci on the boundary of P. (For any pair
of points a, b, we denote the line segment connect-
ing them by ab and its length by length(ab). More-
over, we denote the infinite line passing through
a, b by

←→
ab .) Let xi, yi be the points on sides

cici−1 and cici+1 at distance length(cici−1)/8 and
length(cici+1)/8, respectively, from ci. We pick dis-
tance 1/8-th for our convenience, in fact any factor ≤1/2 works for our algorithm.
We say that triangle cixiyi is the corner triangle for ci, denoted as T (ci), and
line segment xiyi is the triangle line segment for ci, denoted as TLi. Let r be any
robot inside T (ci) and Li be the line segment parallel to xiyi passing through
r. Let T ′(r) be the area divided by Li towards r. We have that T ′(r) ⊂ T (ci).

270 G. Sharma et al.

We say that Li is the corner line segment for ci, denoted as CLi, if there is
no robot inside T ′(r). Let Li−1, Li+1 be the lines perpendicular to cici−1 and
cici+1, respectively, passing through their midpoints. We say the interior of P
divided by Li−1, Li+1 towards ci is the corner polygon of ci, denoted as CP (ci).
The figure on the right shows T (ci), TL3, CL3, CP (c3), and a 5-corner convex
polygon P with corners c0–c4.

Eligible Area and Eligible Line. Let ci

be a corner of P and let a, b be the neigh-
bors of ci in the perimeter of P. The eligible
area for ci, denoted as EA(ci), is a polygo-
nal subregion inside P within the corner tri-
angle T (ci). The eligible areas for any two
corners of P are disjoint [16]. EA(ci) is com-
puted based on C(ci) and the corresponding
polygon P(ci). The figure on the right depicts
eligible area for ci where the shaded area is
EA(ci). To make sure that all the robots in the interior of P see ci when it moves
to EA(ci), the points inside EA(ci) that are part of the lines ←→cix, connecting ci

with the robots in C(ci)\{a, b, ci} are not considered as the points of EA(ci).

Lemma 1 [16]. EA(ci) for each corner ci of P is bounded by a non-empty con-
vex polygon. Moreover, when ci moves to a point inside EA(ci), then ci remains
as a corner of P and all internal and side robots of P are visible to ci (and
vice-versa).

It is easy to see that edges cia and cib are always in the perimeter of EA(ci).
Let xi, yi be two points in cia and cib, respectively, that are also in the perimeter
of EA(ci). Points xi, yi can be any point in cia and cib between ci and e and
ci and f , respectively, where e, f are the neighbor corners of ci in EA(ci). We
say line xiyi is the eligible line for ci and denote it by ELi (the figure above
illustrates these ideas).

Lemma 2. The eligible line ELi for each corner ci of P contains no point
outside of EA(ci), except for the points intersecting lines from internal robots
to ci.

c0 c1

c2

c3

c4

P

P
P

r

c0 c1

c2

c3

c4
PP

P

Convex Polygons P, P′, P′′, and P′′′.
P is the convex polygon of the points
in Q. P′ is the convex polygon connect-
ing the corners of P after they moved
to their eligible areas, EA(∗). P′′ is the
convex polygon with the corners of P′

and the side robots of P from those sides
with at least two robots. P′′′ is the con-
vex polygon after all side points in P′′ become corners moving to the exterior of
the side of P′′ they belong to. Observe that P contains P′ and P′′, but not P′′′

(see the figure on the right).

Constant-Time Complete Visibility for Asynchronous Robots with Lights 271

3 Beacon-Directed Curve Positioning

left

right
f

beacons

beacons

x-axis
A

Fig. 1. An illustration of Beacon-
Directed Curve Positioning. The initial
(resp., final) positions of n = 4 robots
are shown as red (resp., white) circles.
Each of the k = 3 left and right beacons
are shown in blue. (Color figure online)

We describe here a framework (Beacon-
Directed Curve Positioning) and use it
to move a set of robots with lights in
the ASYNC setting, each from an ini-
tial position to a final position (subject
to certain conditions). This movement
is assisted by other robots, called bea-
cons, that are already at their destina-
tions. This framework is subsequently
used to derive a O(1) time Complete
Visibility algorithm (Sect. 4).

We will use the term “curve” to mean
the locus of a point in the real plane
R

2. We will use a reference coordinate
system for describing the ideas in this
section; this is only to allow easy descrip-

tion and does not require robots to have a common coordinate system. In the
framework we describe, the final positions of robots is on a curve. In some appli-
cations, the curve is a straight line represented by y = mx + c. Given two
points on the line, the constants m, c can be determined and this determines the
straight line. In other cases the curve is a segment of a semicircle with equation
(y−a)2+(x−b)2 = r2; here a set of three points on the circle suffice to determine
the circle. The following definition of a “k-point curve” generalizes this idea.

Definition 1. Let A ⊂ R be a finite interval in the real line. Let f : A −→ R be
a (single-valued) function whose equation y = f(x) defines a curve on the plane.
Call function f a k-point curve iff a set of k points {(xi, f(xi)) : 0 ≤ i < k}
suffices to determine the constants in the equation y = f(x).

A path pi of robot ri is a finite curve with one end at initial point (xi, yi); the
path represents the locus of ri as it moves from its initial point to its next position
in an algorithm; recall that a robot’s movement along a path is monotonic.
Typically, these paths are straight lines; however, the ideas of this section do not
require them to be so. Consider a set of n robots with lights, R = {ri : 0 ≤ i < n}
with robot ri positioned at a distinct initial point (xi, yi). Initially the robots
of R will be called “waiting” robots (that are waiting to move to their next
positions). Let f : A −→ R be a k-point curve and let path, pi, of robot ri ∈ R
intersect with f at a distinct final point (x′

i, y
′
i) = (x′

i, f(x′
i)). The objective of

“curve positioning” is for each robot of R to position itself at its final point.
Other robots, called beacons, will assist robots of R in getting to their final
position. Robots b�,i, for 0 ≤ i < k, whose x-coordinate is smaller than those of
the final positions of the waiting robots are called left beacons. Similarly right
beacons br,i, for 0 ≤ i < k, are at points with x-coordinate greater than those of
the final positions of the waiting robots. Figure 1 illustrates these ideas.

272 G. Sharma et al.

Definition 2. Let f : A −→ R be a k-point curve and let R = {ri : 0 ≤ i < n}
be a set of robots with paths pi from initial position (xi, yi) to final position
(x′

i, f(x′
i)). Let B� = {b�,i : 0 ≤ i < k} and Br = {br,i : 0 ≤ i <} be the

sets of left and right beacons placed on f to the left and right of the robot set R.
Then the triplet 〈f,R,B� ∪Br〉 is admissible iff the following conditions hold. (a)
For distinct i, j, paths pi and pj do not intersect. (b) For distinct i, j, any line
through the initial position of ri intersects pj at at most one point. (c) For any i,
a line through the initial position of ri intersects curve f (within its domain A)
at exactly one point. (d) All 2k beacons in B�∪Br are visible to each robot ri ∈ R
in its initial position.

Definition 3. The Beacon-Directed Curve Positioning Problem is defined as
follows: Let f : A −→ R be a k-point curve, let R = {ri : 0 ≤ i < n} and let
B be a set of k left and k right beacons on f . Let 〈f,R,B〉 be admissible. Let
the initial color of each robot ri ∈ R be wait. Let the beacons in B be colored
beacon. The objective is to move each robot ri ∈ R to its final position on f and
then change its color to beacon.

In the remainder of this section, we will implicitly assume in all lemmas that
admissibility is satisfied. We also recall that all robot movements are monotonic.
The following simple algorithm with three condition-action pairs solves the
Beacon-Directed Curve Positioning Problem.

Condition 1: Robot r is colored wait and it can see at least k robots with color
beacon.

Action 1: Robot r determines the equation for the k-point curve, f , and moves
monotonically on its path p to position itself on curve f . It changes its color
to not-waiting.

Condition 2: Robot r is colored not-waiting.
Action 2: Robot r changes its color to beacon.
Condition 3: Robot r is colored beacon and it cannot see any other robot

colored wait.
Action 3: Terminate.

We now show that the algorithm terminates in O(log k) epochs for any exe-
cution. Any robot that is in motion along its path (between its initial and final
positions) will be called a transient robot; clearly a transient robot is a waiting
robot at the start of its cycle and is on its way to becoming a beacon at the end
of its next cycle. If an awake robot cannot see some beacon, then there must be
a transient robot that blocks its view.

Lemma 3. Let b, b′ be left and right beacons and let S = {ri : 0 ≤ i < m} be
a set of m waiting robots. Let u be a monotonically moving transient robot that
blocks the view of b from every waiting robot in S. Then, at least m transient
robots are needed to block b′ from the view of all waiting robots of S.

At the end of the first epoch, let there be m waiting robots; these have not
been able to see at least k beacons due to blocking by transient robots. We

Constant-Time Complete Visibility for Asynchronous Robots with Lights 273

now derive the smallest number of transient robots (as a function of m) that
must have moved during this epoch. Let the set of m remaining waiting robots
be S = {rh : 0 ≤ h < m}. Each of these robots must not have been able to
see at least one left beacon. Arbitrarily associate each waiting robot, rh with
any one left beacon, b�,i, that rh, has not been able to see. Let Si = {rh :
rh has been associated with b�,i}. Thus, set S has been partitioned into disjoint
(and possibly empty) sets Si. Partition non-empty Si into disjoint sets Si,j such
that

⋃
j Si,j=Si

and for every rh ∈ Si,j , beacon b�,i is blocked from rh by the same
transient robot ui,j . Because a waiting robot is unable to move, each element of
S (and hence each element of Si,j) must also be blocked from at least one of the
right beacons (br,g, for 0 ≤ g < k). By Lemma 3, we have the following lemma.

Lemma 4. At least z transient robots are needed to block the same right beacon
from any z elements of Si,j.

We can also prove the following two results.

Lemma 5. If the first epoch of the algorithm starts with n waiting robots then
the second epoch starts with at most n

(
1 − 1

k2

)
waiting robots and at least n

k2 +2k
beacons.

Lemma 6. If an epoch e ≥ 1 of the algorithm starts with m ≥ 2k beacons, then
epoch e + 1 starts with at least min{n + 2k, 3m

2 } beacons.

Observe that (32)O(log k) > k2. Therefore from Lemmas 5 and 6, in O(log k)
epochs, all initial waiting robots have been converted to beacons. This gives the
following main result of this section. We use this result in Sect. 4 with k = 2
and k = 3. For these cases, the number of epochs needed is at most 5 and 7,
respectively.

Theorem 2. The Beacon-Directed Curve Positioning Problem using a k-point
function runs on the lights model in O(log k) epochs, using 3 colors in the
ASYNC setting.

4 O(1)-Time ASYNC COMPLETE VISIBILITY Algorithm

We now outline our algorithm. The algorithm consists of 7 stages, Stages 0–6.
In each stage, the robots make progress on converging toward a configuration
where all the robots are vertices in a convex hull (Fig. 2).

– Stage 0: is for a collinear initial configuration C0 (Fig. 2.0). The endpoint
robots move a small distance perpendicular to the line, which ensures that in
the resulting configuration not all robots are collinear.

– Stages 1–5: work toward moving all interior robots of P to the sides of P′′

(Fig. 2.1–2.6) as follows.

274 G. Sharma et al.

c0 c1

c2

c3

c4

P

P P
c0 c1

c2

c3

c4

P

P

EL3

EL1

(1) (2) (3)(0)

c0 c1

c2

c3

c4

c0 c1

c2

c3

c4

P

c0 c1

c2

c3

c4

P

(5) (6)

c0 c1

c2

c3

c4

P

(4)

c0

c2

c3

c4 P

(7)

EL3

EL1 c1

Fig. 2. The seven stages of the algorithm: Part (0) show the collinear initial configu-
ration C0, and Part (i), 1 ≤ i ≤ 7, shows the configuration of robots in Q at the end
of the (i − 1)th stage or the beginning of the ith stage.

• Stage 1: starts as soon as the robots in C0 reach a non-collinear configu-
ration (Fig. 2.1). Stage 1 moves the corner robots of P (Fig. 2.1) to make
them corners of P′ (Fig. 2.2).

• Stage 2: first computes the eligible lines for the corners of P′ and then
moves (at least) 4 interior robots of P′ (all these robots have color start)
to those eligible lines. Figure 2.3 illustrates this stage.

• Stage 3: moves all the remaining interior robots of P′ to the eligible lines
of the corners of P′. Figure 2.4 shows how the robots in the interior of P′

in Fig. 2.3 move to EL3.
• Stage 4: moves the robots on the eligible lines to the sides of P′.

Figure 2.5 shows how the robots on the eligible lines in Fig. 2.4 become
side robots of P′.

• Stage 5: moves the side robots of P and P′ to the sides of P′′. Figure 2.6
shows how the side robots of P and P′ in Fig. 2.5 become side robots
of P′′.

– Stage 6: relocates the side robots of P′′ (Fig. 2.6) to the corners of P′′′.
Figure 2.7 shows the resulting hull.

At the initial configuration C0, all robots in Q are colored start. Each robot
ri works autonomously having only the information about C(ri). If P(ri) is a line
segment and N > 3, Stage 0 transforms C0 to a non-collinear C0. Stages 1–6 then
proceed autonomously until all robots are colored corner (which signifies that
all N robots in Q are on the corners of a hull P). The algorithm then terminates.

Constant-Time Complete Visibility for Asynchronous Robots with Lights 275

The execution of the stages are synchronized through the colors the robots in
Q assume during the execution and the robots execute stages sequentially one
after another. Due to space limitations, we do not explicitly describe in detail
here how synchronization is achieved and what are the colors of the robots in
the beginning of each stage. The algorithm uses 47 colors and runs for total O(1)
epochs.

Sharma et al. [17] showed that Stages 0, 1, 4, and 6 can run in O(1) time and
Stages 2, 3, and 5 run for O(log N) time. Our goal is to satisfy the conditions of
the Beacon-Directed Curve Positioning framework (Sect. 3) to run Stages 2, 3,
5, and 6 in O(1) time. This provides the overall O(1) runtime for the algorithm.
The Beacon-Directed Curve Positioning framework requires each robot moving
to a k-point curve to see the 2k beacons that are on the curve in the beginning
and all the robots that move to the curve (in addition to the 2k beacons in the
beginning) during the execution of the framework, if there is no robot currently
transit to the curve. This turned out to be particularly challenging among the
other conditions listed in Definition 2.

We managed to address this challenge by exploiting the eligible area EA(∗)
of the corners of P. Notice that all the points inside EA(ci) for each corner ci are
visible to all the robots in the interior of P (while they are not moving). There-
fore, we first develop a technique to compute an eligible line ELi for each corner
ci of P by the interior robots of P. We then develop a technique to place (at
least) 4 interior robots on an eligible line ELi (note that ELi is inside EA(ci)),
2 as left beacons and 2 as right beacons (Definition 3). After that, we develop a
technique to maintain the property that the interior robots always see ci (irre-
spective of the robots on ELi), and when there is no transient robot, they see all
the robots on ELi. This idea also turned out to be satisfying the remaining three
conditions (Definition 2) of the Beacon-Directed Curve Positioning framework.
Putting these ideas altogether achieves O(1) runtime for Stages 2 and 3. We
then extend these techniques in the same spirit to run Stages 5 and 6 in O(1)
time. We provide details of Stages 0–6 (the details on Stages 0, 1, and 4 are for
completeness) separately below and outline the major properties they satisfy.

Stage 0 – Transforming a Collinear Initial Configuration C0 to a Non-
collinear C0. Stage 0 is similar to Phase 0 of [17] and is done by moving (at
least) one endpoint robot of the line segment hull P perpendicular to it (formed
by C0) to convert it to a polygonal hull. We have the following lemma for
Stage 0.

Lemma 7 [17]. When Stage 0 finishes, for N ≥ 3, there exists a hull P such
that all the robots in Q are in the corners and sides of that hull with color ∈
{start, start moving, ready}. Stage 0 runs for (at most) 3 epochs avoiding
collisions and Stage 1 starts only after Stage 0 finishes.

The goal of Stage 1 is to move all corners Qc of P into their eligible areas by
a technique similar to [17]. First move and color all corners of Qc corner1 and
then color them corner2 or corner. The intermediate color corner1 is because

276 G. Sharma et al.

we would like to start Stage 2 only after all robots in Qc are colored corner2.
Side robots of P are colored special, if they are neighbors of a corner of P,
otherwise side1, We have the following lemma for Stage 1.

Lemma 8 [17]. During Stage 1, the corners of P′ are colored corner2 and the
sides of P′ are colored side1 or special. The interior robots of P remain as the
interior robots of P′ with color start. Moreover, Stage 1 runs for O(1) epochs
avoiding collisions and Stage 2 starts only after Stage 1 finishes.

Stage 2 – Positioning 4 Interior Robots of P′ on the Eligible Lines
of the Corners of P′. We execute Stage 2 in two sub-stages. In Stage 2.1, we
compute eligible lines for the corners of P′. In Stage 2.2, we put (at least) 4
interior robots in those lines satisfying the conditions of the Beacon Directed
Curve Positioning framework of Sect. 3 to run Stage 3 in O(1) epochs. The
techniques described are necessary to run the Beacon-Directed Curve Positioning
framework in Stage 3.

Stage 2.1 – Computing Eligible Lines for the Corners of P′. Let ci be
a corner of P′ colored corner2. If there are robots inside corner triangle T (ci),
pick the corner line segment CLi, otherwise the triangle line segment TLi. Let
this line be denoted as Li. We first put 4 interior robots of P′ in Li (Fig. 3.a)
and color them transit. This helps later to compute the eligible line ELi

for ci.

Stage 2.1.1 – Moving 4 Interior robots in P′ to Li: This can be done by
moving the robots closer to Li sequentially one after another to Li and color
them transit (the details are in Appendix). The corner ci then can change its
color to corner21 from corner2 after there are exactly 4 robots on Li (Fig. 3.a).
The robots inside CP (ci) then color themselves internal since they see ci

(Lemma 1). Robot ci then changes its color to corner22. It is possible that
some of the corners of P′ may have less than 4 robots (or even no robot) in Li

even after all robots in Qi colored internal. Those corners change their color
directly to corner5 from corner2.

Stage 2.1.2 – Computing Eligible Lines for the Corners of P′: We
describe how ELi is computed for ci. Let t1, t2, t3, t4 be the 4 robots in Li of
corner ci (Stage 2.1.1) with t2 and t3 between t1 and t4, and t2, t3 being closer to
t1, t4, respectively (Fig. 3.a). We ask t1 and t4 to move to the lines cit2 and cit3,
respectively, assuming color transit moving. Robots t1, t4 perform this move
only when they have color transit and ci has color corner22. The position they
move to in those lines is the 1/8-th point from t2 and t3 based on the distance to
ci. They then change their color to transit1 (Fig. 3.b). After ci sees both t1, t4
with color transit1, it computes EA(ci), and a point xi on cici−1 (or yi on
cici+1) so that the line, say L′

i, parallel to t1t4 passing through xi (or yi) crosses
EA(ci). According to the construction, t1t4 is parallel to t2t3, and also parallel
to ci−1ci+1. Let xi on cici−1 be the point so that L′

i crosses EA(ci). Observe that
L′

i is in fact the eligible line ELi. Corner ci then moves to xi (the procedure for

Constant-Time Complete Visibility for Asynchronous Robots with Lights 277

ci

ci+1

P

ci-1

Li

t1
t2

t3
t4

ci

ci+1

P

ci-1

Li

t1

t2
t3

t4

(a) (b)
ci

ci+1

P

ci-1

Li

t1
t2

t3

t4
Li’

xi

yi
ELi

opi

ci+1

P

ci-1

Li

t1

t2
t3

t4
Li’

ci

yi
ELi

(c) (d)
opi

ci+1

P

ci-1

Li

t1

t2
t3

t4
Li’

ci

yi
ELi

ci

ci+1

P

ci-1

Li

t1

t2
t3

t4

Li’

xi

yi
ELi

(e) (f)

ci

ci+1

P

ci-1

Li

t1

t2
t3

t4

Li’

xi

yi
ELi

r4

r1

QC(t1)

QC(t4)

ci

ci+1

P

ci-1

Li

t1

t2
t3

t4

Li’

xi

yi
ELi

r4

r1

QC(t1)

QC(t4)

(g) (h)

Fig. 3. An illustration of how the corner and interior robots of P′ move in Stage 2.1.2

ci moving to point yi is analogous) assuming color corner22 moving (Fig. 3.c)
and changes its color to corner23. Let opi be the position of ci before it moves
to xi.

We now describe a technique to put all t1, t2, t3, t4 on L′
i (which is ELi) so

that the interior robots of P′ can recognize it as ELi. Let t1 be closer to ci than
t4 from the new position xi of ci (the case of t4 being closer to ci than t1 is
analogous). Robot t1 moves to the intersection point of L′

i and t1t2 assuming
color transit1 moving (Fig. 3.d) and then changes its color to transit2 when
it becomes active next time. After ci sees t1 colored transit2, it moves back
to its previous position opi (where it was colored corner22) assuming color
corner23 moving (Fig. 3.e). Although ci has no memory of opi, it can compute
opi since opi is the intersection point of lines t1t2 and t4t3. Robot ci then assumes
corner24. After this t4 with color transit1 moves to the intersection point of L′

i

and t4t3 assuming color transit1 moving (Fig. 3.f). It then assumes transit2.
Let op1, op4 be the current positions of t1, t4, respectively. The robots t1 and

t4 (after colored transit2) move to either left or right in L′
i to make room for

robots t2 and t3 to move to L′
i without blocking any internal colored robots to

278 G. Sharma et al.

see ci and also the robots t1, t2, t3, t4 on L′
i. Robots t1 (and similarly t4) moves

as follows. Let
←→
cit1 be a line that connects t1 with c1. Let L′ be a line connecting

ci with an internal colored robot r in the left or right of
←→
cit1 such that in the

cone area QC(r) formed by L′ and
←→
cit1 there is no other internal colored robot.

Let w be the intersection point of L′
i and L′. Robot t1 moves to the midpoint

m of the line segment that connects it with w (note that all three points w, t1,
and m are in L′

i) assuming color transit2 moving (Fig. 3.g). It then changes its
color to eligible when it becomes active next time. After t2 and t3 see both
t1 and t4 with color eligible, t2 moves to point op1 (the position of t1 in L′

i

before it moved to point m) and t3 moves to op4 (the position of t4 in L′
i before

it moved) (Fig. 3.h). Robots t2, t3 then assume color eligible. After ci sees all
t1, t2, t3, t4 are on L′

i with color eligible, it assumes color corner3.

Lemma 9. During Stage 2.1, 4 interior robots of P′ inside the corner polygon
CP (ci) are correctly placed on the eligible line ELi of ci and colored eligible
and the corners of P′ are colored ∈ {corner3, corner5, corner}. Stage 2.1
runs for O(1) epochs avoiding collisions and Stage 2.2 starts only after Stage
2.1 finishes.

Lemma 10. Let ri be a robot with color internal in the interior of P′. When
Stage 2.1 finishes, ri sees ci and all 4 eligible colored robots in the eligible line
ELi.

Fig. 4. An illustration of how the interior robots of P′ move to the
eligible lines during Stage 2.2

Stage 2.2 –
Positioning
(at least) 4
Interior Ro-
bots on the
Eligible Lin-
es of the Cor-
ners of P′.
After the eli-
gible line
ELi is com-
puted for a corner ci of P′ in Stage 2.1, the goal in this stage is to see whether
the 4 robots on ELi with color eligible can serve as left and right beacons
to apply the framework of Sect. 3 to reposition the remaining interior robots of
P′ (with color internal) to the eligible lines in O(1) epochs. If those 4 robots
are positioned such that all the interior robots of P′ inside the corner polygon
CP (ci) are within the cone area QC(ci) formed by lines

←→
cit2,

←→
cit3, then these

robots serve as left and right beacons and this stages finishes with ci changing
its color to corner4. Otherwise, (at most) 4 robots inside CP (ci) are moved to
ELi in this stage so that 2 of them serve as left beacons and 2 of them serve
as right beacons to apply the Beacon-Directed Curve Positioning framework of
Sect. 3. Figure 4 illustrates these ideas.

Constant-Time Complete Visibility for Asynchronous Robots with Lights 279

Lemma 11. During Stage 2.2, (at least) four internal robots of P′ are posi-
tioned on the eligible lines and colored eligible. Stage 2.2 runs for O(1) epochs
avoiding collisions and Stage 3 starts only after Stage 2.2 finishes.

Stage 3 – Positioning the Remaining Internal Robots of P′ on the
Eligible Lines. In the beginning of Stage 3, all corners of P′ have color ∈
{corner4, corner5, corner} with at least a corner colored corner4 (otherwise
there is no interior robot with color internal in P′). All interior robots of
P′ that are on the eligible lines are colored eligible and the rest are colored
internal. Let ci be a corner of P′ colored corner4 and let r be a robot with
color internal that is inside the corner polygon CP (ci). Note that r is closer
to ci than other corners of P′ and it always sees ci (Lemma 10). Robot r moves
as follows.

Condition 3.1: Robot r is colored internal and it can see at least 2 eligible
colored robots towards ci.

Action 3.1: Let Lr be the line formed by those eligible robots. Robot r
assumes color internal moving and moves to the intersection point w of
lines Lr and cir.

Condition 3.2: Robot r is colored internal moving.
Action 3.2: Robot r assumes color eligible.

As soon as ci does not see any robot with color internal or internal moving
(i.e., all robots in the interior of P′ are placed in the eligible lines), it assumes
color corner5. We can prove the following two lemmas.

Lemma 12. During Stage 3, the eligible colored robots positioned on ELi of
a corner ci of P′ are seen by all the internal colored robots inside CP (ci) (and
vice-versa), if there is no transient robot towards ELi.

Lemma 13. During Stage 3, all the robots in the interior of P′ (with color
internal) are correctly positioned on the eligible lines of the corners of P′ and
colored eligible. Moreover, the corners of P′ are colored corner5. Further-
more, Stage 3 runs for O(1) epochs avoiding collisions and Stage 4 starts only
after Stage 3 finishes.

Stage 4 – Positioning the Robots on the Eligible Lines to the Sides
of P′. Stage 4 is similar to [17]. Let r be a robot on the eligible line ELi. Let
xi and yi be the points in cici−1 and cici+1, respectively, where ELi intersects
them. The goal is to move r to position it on either side cici−1 or cici+1 of P′

between points ci and xi (cixi) or ci and yi (ciyi). We have the following lemma
for Stage 4.

Lemma 14 [17]. During Stage 4, all robots in the eligible lines of the corners of
P′ (with color eligible) are correctly positioned on the sides of P′ and colored
side2. Moreover, the corners of P′ are colored corner. Furthermore, Stage 4
runs for O(1) epochs avoiding collisions and Stage 5 starts only after Stage 4
finishes.

280 G. Sharma et al.

c0 c1

P

S

S

s1 sw
Sl

Sl Sm Sr

Sr

Sm

sws1

Ll Lr

Fig. 5. An illustration of Stage 5

Stage 5 – Making Side Robots
of P′ the Sides of P′′. Let S be a
side of P with ci, ci+1 its endpoints.
There is a side S′ in P′ with ci, ci+1

its endpoints and all the side robots
on S are on a line in the corridor of
S′ with color side1 or special. (The
corridor of S′ is the infinite subregion
on its exterior that is bounded by
S′ and perpendicular lines through
points ci, ci+1 of S′.) Robots that become side robots in Stage 4 are on S′ with
color side2. Stage 5 is for the side robots on S′. Consider at least 2 side robots
on S and at least a side robot on S′. Figure 5 illustrates the configuration. Stage
5 is executed in two sub-stages. In Stage 5.1, the robots in S′

l , S
′
r move to Sl, Sr,

respectively. In Stage 5.2, the robots in S′
m move to Sm. Stages 5.1 and 5.2 are

synchronized by changing the colors of s1, sw from special to temp corner. In
both the sub-stages, the idea is to satisfy the conditions for the framework in
Sect. 3 to run in O(1) epochs.

Lemma 15. During Stage 5, all the robots on S′ move to S and colored side.
Moreover, Stage 5 runs for O(1) epochs avoiding collisions and Stage 6 starts
only after Stage 5 finishes.

Stage 6 – Making Side Robots of P′′ the Corners of P′′′. After Stage
5, all robots in Q are in the sides and corners of P′′ colored side and corner,
respectively. Stage 6 moves all side robots of P′′ to corners of P′′′ using the
framework of Sect. 3 (see Figs. 2.6 and 2.7). The algorithm works independently
on each side S = (ci, s1, s2, . . . , sm, ci+1) of P′′, placing all side robots of S on
an arc of a circle (i.e., a 3-point curve) in the corridor of S that traverses the
end points ci, ci+1 of S; this circle is called a safe circle. This ensures that no
three side points of S are collinear. The algorithm further guarantees that P′′′

is convex, thus ensuring complete visibility.

Lemma 16. During Stage 6, all the side robots of P′′ become corners of P′′′

and colored corner. Moreover, Stage 6 run for O(1) epochs avoiding collisions
and then the algorithm terminates.

Proof of Theorem 1. We have Theorem 1 combining Lemmas 7–9, 11, and 13–
16. �

References

1. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

2. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: ISIC, pp. 453–460 (1995)

Constant-Time Complete Visibility for Asynchronous Robots with Lights 281

3. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theor. Comput. Sci. 399(1–2), 71–82 (2008)

4. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algo-
rithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 52

5. Cord-Landwehr, A., Fischer, M., Jung, D., auf der Heide, F.M.: Asymptotically
optimal gathering on a grid. In: SPAA, pp. 301–312 (2016)

6. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theor. Comput. Sci. 410(6–7), 481–499 (2009)

7. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous
mobile robots with lights. Theor. Comput. Sci. 609, 171–184 (2016)

8. Degener, B., Kempkes, B., Langner, T., auf der Heide, F.M., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: SPAA, pp. 139–148 (2011)

9. D’Emidio, M., Frigioni, D., Navarra, A.: Characterizing the computational power
of anonymous mobile robots. In: ICDCS, pp. 293–302 (2016)

10. Di Luna, G.A., Flocchini, P., Chaudhuri, S.G., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254(Part
3), 392–418 (2017)

11. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Santoro, N., Viglietta, G.: Robots
with lights: overcoming obstructed visibility without colliding. In: Felber, P., Garg,
V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 150–164. Springer, Cham (2014). doi:10.
1007/978-3-319-11764-5 11

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

13. Izumi, T., Potop-Butucaru, M.G., Tixeuil, S.: Connectivity-preserving scattering
of mobile robots with limited visibility. In: Dolev, S., Cobb, J., Fischer, M., Yung,
M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 319–331. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16023-3 27

14. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). doi:10.1007/
11603771 1

15. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
doi:10.1007/978-3-319-28472-9 15

16. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visi-
bility for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.)
SSS 2016. LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). doi:10.1007/
978-3-319-49259-9 26

17. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Logarithmic-time
complete visibility for asynchronous robots with lights. In: IPDPS, pp. 513–522
(2017)

18. Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time
complete visibility for robots with lights. In: IPDPS, pp. 375–384 (2015)

19. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theor. Comput. Sci. 411(26–28), 2433–2453 (2010)

http://dx.doi.org/10.1007/978-3-642-22012-8_52
http://dx.doi.org/10.1007/978-3-642-22012-8_52
http://dx.doi.org/10.1007/978-3-319-11764-5_11
http://dx.doi.org/10.1007/978-3-319-11764-5_11
http://dx.doi.org/10.1007/978-3-642-16023-3_27
http://dx.doi.org/10.1007/11603771_1
http://dx.doi.org/10.1007/11603771_1
http://dx.doi.org/10.1007/978-3-319-28472-9_15
http://dx.doi.org/10.1007/978-3-319-49259-9_26
http://dx.doi.org/10.1007/978-3-319-49259-9_26

On Security Analysis of Proof-of-Elapsed-Time
(PoET)

Lin Chen(B), Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi

Department of Computer Science, University of Houston, Houston, TX 77204, USA
chenlin198662@gmail.com

Abstract. As more applications are built on top of blockchain and
public ledger, different approaches are developed to improve the perfor-
mance of blockchain construction. Recently Intel proposed a new concept
of proof-of-elapsed-time (PoET), which leverages trusted computing to
enforce random waiting times for block construction. However, trusted
computing component may not be perfect and 100% reliable. It is not
clear, to what extent, blockchain systems based on PoET can tolerate
failures of trusted computing component. The current design of PoET
lacks rigorous security analysis and a theoretical foundation for assessing
its strength against such attacks. To fulfill this gap, we develop a theoret-
ical framework for evaluating a PoET based blockchain system, and show
that the current design is vulnerable in the sense that adversary can jeop-
ardize the blockchain system by only compromising Θ(log log n/ log n)
fraction of the participating nodes, which is very small when n is rela-
tively large. Based on our theoretical analysis, we also propose methods
to mitigate these vulnerabilities.

1 Introduction

Blockchain technology is believed to have the potential to revolutionize vari-
ous sectors including financial, manufacturing, transportation, and agriculture
(e.g., [28]). As more applications are built on top of blockchain based systems,
performance becomes a major bottleneck; and many efforts have been spent in
designing a new blockchain backbone to improve the latency, throughput, and
scalability (e.g., [8,13,24,30]). Although these works adopt different technology
routes, they all try to address the performance problem through purely software
based approaches.

Trusted computing technology provides another opportunity to improve the
performance of a blockchain. Trusted computing leverages special hardware
properties to provide a trusted execution environment where adversaries can-
not tamper the execution of an application. All main processor vendors such
as Intel, AMD, and ARM have their own trusted computing solutions. Despite
differences in design and implementation details, they provide essentially simi-
lar security features [1,2,9]. When trusted computing technology is applied to
the blockchain, a blockchain client can run inside a trusted environment (e.g.,

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 282–297, 2017.
https://doi.org/10.1007/978-3-319-69084-1_19

On Security Analysis of Proof-of-Elapsed-Time (PoET) 283

enclave, secure world, or compartment) with certain security assurance; and the
trusted computing environment ensures all embedded protocols will be faithfully
followed.

Based on its trusted computing platform SGX, Intel proposed the concept
of “proof-of-elapsed-time” (PoET) for blockchain construction [19]. The basic
idea is that each node generates a random number to determine how long it
has to wait before it is allowed to generate a block. The generation of random
numbers is based on certain distribution specified by the system in advance.
When a new block is submitted to the system, SGX helps the node creating the
block to generate a proof of the waiting time. This proof can be easily verified
by other nodes with SGX technology. A statistical test is used to determine
whether the waiting time indeed follows the specified distribution. Compared
with other blockchain schemes like PoW (proof-of-work, see Sect. 2.1 for details),
this approach has two major advantages: (i) Efficiency. PoET does not require
participating nodes to carry out expensive computation workload before creating
a new block; (ii) Fairness. PoET achieves the goal of “one CPU one vote”, which
was originally proposed in Nakamoto’s paper on Bitcoin [25], but was not fully
achieved before.

However, SGX and other trusted computing technologies are not 100% reli-
able. Especially, they may be vulnerable to sophisticated adversaries with nec-
essary resources and skillsets. It is thus a natural question whether the sys-
tem remains secure when the underlying trusted computing components of some
nodes are compromised. Similar problems have been addressed for systems where
proof-of-work is implemented, see, e.g., [11,15,21]. However, there is no theoret-
ical result for a PoET based system and its security is unknown. The major
contribution of this paper is to develop a theoretical framework to evaluate
Intel’s PoET scheme and its variants, and carry out security analyses based on
such a framework. Our results demonstrate that the current scheme/protocol
implemented on Intel’s SGX platform could be vulnerable to security attacks.
More specifically, adversaries can hijack the system by simulating the fastest
honest node in the system if they successfully compromise Θ(log log n

log n) fraction
of the nodes (where n is the total number of nodes in the system). As compro-
mised nodes are merely simulating the fastest honest node, no statistical test
can distinguish them. Note that Θ(log log n

log n) is not a constant, which contrasts
sharply with the constant threshold of 50% in proof-of-work based systems such
as Bitcoin.

Our results suggest two potential approaches that may lead to a constant
threshold. One is to alter the probability distribution currently implemented in
Intel’s platform. Indeed, we show that the more “concentrated” this probability
distribution is, the higher the threshold will be. This guides the selection of the
probability distribution from the perspective of security. The other approach
is to allow the statistical test to reject blocks that are generated by a certain
fraction of nodes, even if some honest nodes may be included. In fact, the bound
of Θ(log log n

log n) still applies if the statistical test is only allowed to reject blocks
generated by a constant number of nodes. Therefore, using this approach, the

284 L. Chen et al.

statistical test needs to reject blocks generated by a significant amount of nodes,
regardless they are honest or not. In summary, our main contributions in this
paper include:

– We develop an abstract model of PoET based blockchain systems that capture
the critical features of PoET, which opens the door for theoretical analysis
and assessment of PoET;

– We analyze design of Sawtooth Lake Scheme and find that the current pro-
tocol is vulnerable even under the scenario that only a very small fraction of
nodes are compromised;

– Based on our analysis, we provide security guidelines and suggestions for
designing blockchain schemes based on the concept of PoET.

It is important to point out that our analysis of PoET focuses on theoretical
and protocol design level. The analysis does not depend on any specific hardware
implementation flaws or vulnerabilities and thus holds generally.

The remainder of the paper is organized as follows: Sect. 2 provides a short
review of Intel’s Sawtooth Lake scheme, an implementation based on PoET.
Section 3 describes the mathematical tools used in the analysis of PoET. Section 4
provides an abstract model of PoET. A rigorous analysis of PoET is given in
Sect. 5. We review related works in Sect. 6 and conclude the paper in Sect. 7.

2 Blockchain and PoET with Trusted Computing

2.1 Blockchain and Proof-of-Work

Blockchain technology was first introduced by Bitcoin as a distributed book-
keeping system [25]. Briefly speaking, a blockchain is a chain of blocks where
each block contains a set of records (e.g., records for transactions) together with
the hash value of the previous block. Users1 keep adding blocks to the blockchain
through a procedure called “mining”. Ideally, a blockchain remains a chain. In
case that a branch occurs (e.g., multiple users add blocks simultaneously), the
“longest-chain” rule is applied, that is, users will follow the branch containing
the most number of blocks. Other branches will be discarded.

Since blocks are linked with hash values, an attacker cannot alter or remove
an existing block stored on the blockchain. However, an attacker may choose to
branch at a certain block. If he/she successfully generates a longer branch there-
after, all transactions occur in the original branch will be discarded and system is
thus compromised. To ensure the security of the whole system, we need a way to
prevent users from generating an arbitrary number of blocks in a short time. The
most widely used scheme is proof-of-work. Using this scheme, every user needs to
solve a computation intensive problem in order to add one block. Solving such a
problem requires a lot of computation. If an attacker aims at generating a longer
branch, he/she needs more computational power than all the other honest users.
It was shown in [25] that a proof-of-work based blockchain system is secure as
long as more than 50% of the computational power is controlled by honest users.
1 Throughout this paper, nodes and users are used interchangably.

On Security Analysis of Proof-of-Elapsed-Time (PoET) 285

2.2 Proof of Elapsed Time

As we have discussed, the proof-of-work scheme requires a node to solve hard
problems to limit its speed of generating blocks, which causes a lot of waste
in both computational resources and energy. The PoET scheme uses a different
approach, as we elaborate below.

Intel’s Software Guard Extensions (SGX) technology provides a mechanism
to protect selected code and data from disclosure or modification [1]. Based
on SGX, Intel proposes Sawtooth Lake, which leverages the idea of “proof-
of-elapsed-time” (PoET) to control the construction of new blocks. Using this
scheme, each user has to wait for some time before it is allowed to create a block.
Such a waiting time needs to follow a probability distribution F which is deter-
mined by the scheme. Briefly, there are two measures utilized by the scheme
to make sure that a user has to wait for such a time. First, each user, once
generating a block, also needs to generate a proof for the waiting activity with
the assistance of SGX hardware, which is submitted together with the block.
Second, statistical tests are employed to check whether the waiting times of a
user indeed follow a specific probability distribution. We provide details in the
following.

Random Waiting Times. As we have described, in the PoET scheme every
node has to wait for a time period that follows a distribution F before generating
the next block. In the current Sawtooth Lake method proposed by Intel, this F
can be characterized by a two-stage procedure. At a high level, the procedure
works as follows. Each node first uses a formula to generate a number as its
temporary waiting time. Such a waiting time can be used to generate multiple
blocks until it has to be updated. Specifically, whenever a node has generated a
block using the temporary waiting time, it decides at random whether the next
block will also be generated using this waiting time, i.e., with certain probability
p, it regenerates a new waiting time, otherwise it continues to use the current
waiting time. We provide details in the following.

Registration. Every node has to register two things to the system. One is its
public/private key pair, which remains unchanged thereafter2. The other is a
temporary waiting time, which is subject to update. The rule for updating the
temporary waiting time is demonstrated by Fig. 1.

Computation of the Waiting Time. Each node uses the following equation to
compute its waiting time wait time:

wait time = minimum wait − local average wait · log(r) (1)

Here r ∈ [0, 1] is a real number derived from the hash value of the node’s previous
certificate. If we treat the hash function as a random oracle [4], r is uniformly
distributed in [0, 1]. minimum wait is a fixed system parameter. To calculate

2 The SGX component is used to generate a certificate for the public key and send
the certificate to the system.

286 L. Chen et al.

0 1 2 251-p1 1-p2 1-p24

p25

p2

p1

Fig. 1. Each node uses a finite state machine to control the updating process of the
waiting time. Each node starts from state 0, where it computes a waiting time. After-
wards, whenever a node goes back to state 0, it updates its waiting time by recomputing
a new number. At state i ∈ {1, 2, · · · , 25}, the node first generates a block with the
newest waiting time, and goes to state 0 (with probability pi) or state i+1 (with prob-
ability 1 − pi). The probabilities satisfy the condition that p1 < p2 < · · · < p25 = 1.

local average wait, a node checks the most recent sample length (a constant
system parameter) blocks to estimate the number of active nodes in the system
by checking the waiting time information in these blocks, and multiplies a con-
stant value to get local average wait. The purpose of local average wait is
to adjust the waiting time according to the number of active nodes. When there
are more active nodes, the waiting time will be longer. This design reduces the
probability of collisions (i.e., two nodes have the same waiting time and try to
create blocks simultaneously) when there are more active nodes.

Block Verification. Whenever a block is generated by a node, it will be verified
by other nodes before it is accepted by the system. Straightforward ways of
attacks can be excluded by basic verification, e.g., every temporary waiting time
can only be used at most 25 times, therefore if a short waiting time is used by a
node for 26 times or more, the blocks generated by this node should be rejected.
However, a sophisticated attacker, once compromised the SGX, may choose to
generate blocks in a sufficiently faster speed but still appears to conform to the
scheme (e.g., with constantly updated waiting times). In this case, statistical
tests are employed to detect such an attack.

The basic idea is to use z-test to check whether a node is generating blocks
too fast (winning too frequently in the competition with other nodes for block
creation) [22]. The test assumes that each node has the same winning probability
p, and the number of winning times follows binomial distribution X ∼ B(m, p),
m is the total number of blocks in the system. When m is large enough, it can
be approximated by normal distribution X ∼ B(m, p), where m is the total
number of blocks in the system. When m is also sufficiently large, it can be
approximated by normal distribution X ∼ N(mp,

√
mp(1 − p)), and a z-score

can be calculated as z = win num−mp√
mp(1−p)

, where win num is the number of blocks that

the node has successfully created. When z is larger than a pre-defined parameter
zmax, the new block will be rejected. POET provides several candidate values
of zmax such as 1.645, 2.325, 2.575, and 3.075. This check is conducted multiple
times from the latest block to the first on the chain.

Remarks on the Design of Sawtooth Lake. It is relatively easy to under-
stand the intuitions behind the design of Sawtooth Lake Scheme: (i) making the

On Security Analysis of Proof-of-Elapsed-Time (PoET) 287

waiting time longer when there are more active nodes to reduce potential col-
lisions; (ii) using statistical test to detect a potentially compromised node that
produces blocks at a higher rate than honest nodes; and (iii) using a random
waiting time multiple times to reduce both the generation and verification cost.

However, it is not clear how secure blockchain based system using PoET is,
which also depends on the security of the underlying trusted computing plat-
form. Trusted computing hardware is not 100% reliable and assured to thwart
any attacks including physical attacks. Indeed, they may be vulnerable to sophis-
ticated adversaries [18,23]. Once compromised, nodes do not need to follow the
pre-defined protocol and can take advantage of this to undermine the whole
system. Furthermore, Intel’s Sawtooth Lake is just one specific implementation
of PoET. In general, when compared with other schemes such as proof-of-work,
there is a lack of understanding of PoET at protocol and theoretical analysis
level. To the best of our knowledge, there is no existing work on analyzing the
security of such systems.

3 Preliminaries

We briefly describe the tools that will be used in this paper. We will be using
the central limit theorem and apply Berry–Esseen’s theorem [3,12] to bound the
error of normal approximation:

Theorem 1 (Berry–Esseen’s Theorem). Let Z1, Z2, · · · , Zn be i.i.d. (inde-
pendent and identically distributed) random variables with μ = E(Z1), σ2 =
E[(Z1 − μ)2], ρ = E[|Z1 − μ|3]. There exists a positive constant C such that for
Z =

∑n
i=1(Zi−μ)√

nσ
and its cumulative distribution function Fn, we have

|Fn(x) − Φ(x)| ≤ Cρ

σ3
√

n
, ∀x ∈ (−∞,+∞)

where Φ is the cumulative distribution function of the standard normal distribu-
tion N (0, 1).

It is shown by Essen [12] that the constant C is upper bounded by 7.59. After
a series of improvements over decades, the current best known upper bound for
C is 0.4785 [29]. For this paper, it suffices to take C ≤ 1.

Gordon’s Inequality. We use the following inequality by Gordon [17] to bound
the tail of the standard normal distribution:

e−t2/2

√
2π

· 1
t + 1/t

≤
∫ +∞

t

1√
2π

e−x2/2dx ≤ e−t2/2

√
2π

· 1
t
, ∀t > 0 (2)

There are various improved bounds and we refer the reader to a nice technical
report [10] which gives a survey. For this paper, the bound by Gordon suffices.

Notations. We summarize most of the notations used in this paper in Table 1.

288 L. Chen et al.

Table 1. Variables used in the paper.

n Number of nodes in the system

Xj
i The i-th random waiting time of node j

Xi The i-th random waiting time of the n nodes

(all the random waiting times are ordered arbitarily)

G The probability distribution of the waiting time

F Cumulative function of a random variable belonging to G
μ Mean of the waiting time

Y A random variable that follows a uniform distribution within (0, 1)

φ Fraction of the nodes that are compromised by adversaries

4 Abstract Model of PoET

In this section, we describe the abstract model of PoET based blockchain system.
The system consists of n nodes (users), and each node is equipped with a

trusted computing component. Every node keeps generating blocks and adding
them to the system. We assume that the time required for generating a block is
negligible. However, once a block is generated by a node, it must wait for certain
amount of time (which is called the waiting time) before it can generate the
next block. Nodes with properly working trusted computing component (honest
nodes) always determines their waiting times according to a probability distrib-
ution G specified by the protocol of the system. A statistical test is carried out
to determine whether a node has generated too many blocks within a certain
time period.

Trusted computing components may fail to defend against tampering due
to design/implementation bugs and attacks [18,31], and become compromised.
We assume that an attacker may compromise multiple nodes, and each com-
promised node can generate blocks with any waiting time (as long as it passes
the statistical test). We define that an attacker compromises the blockchain sys-
tem if he/she can succeed in generating blocks using compromised nodes such
that those generated blocks pass the statistical tests, and in addition, the total
number of blocks generated exceeds the total number of blocks generated by the
remaining honest nodes by a constant H > 0. This means, all the honest nodes
keep adding blocks to the main chain while the attacker can keep adding blocks
to an attack chain such that even if initially the attack chain is behind the main
chain by H blocks, it will eventually take over the main chain.

Throughout this paper, we focus on the following question: To compromise
a PoET based blockchain system, what fraction of the nodes does an attacker
have to compromise? For the classical proof-of-work based system, the answer is a
constant (50%) [25]. However, for PoET system, the answer may vary depending
on the following two important components of the system:

On Security Analysis of Proof-of-Elapsed-Time (PoET) 289

– the probability distribution that the waiting time of an honest node should
follow; and

– the statistical test that determines whether the waiting times of a node actu-
ally follows this distribution or not.

Regarding the Statistical Test. As we have described, the current PoET scheme
uses z-test as the statistical test. However, it is arguable whether this is the
most suitable statistical test. Therefore, we do not restrict to z-test through-
out this paper. Our main result does not rely on the type of statistical test.
Indeed, we prove that the attacker can compromise the system by compromising
Θ(log log n/ log n) fraction of the nodes even if the statistical test is perfect, that
is, even if an attacker is forced to use exactly the distribution specified by the
scheme (i.e., he/she will be identified immediately if a different distribution is
used to compute the waiting time), the system is still vulnerable compared with
a proof-of-work based system.

Regarding the Probability Distribution Specified by the System. In the current
design of Sawtooth Lake Scheme, the waiting time X is set to be X =
c2 + c1n log 1

Y , where c1, c2 ≥ 0 are constant. Here the scheme sets
local average wait to be c1n, and Y ∈ U(0, 1) is a random variable that fol-
lows uniform distribution within the interval (0, 1). Consider an arbitrary honest
node j and let its waiting times be Xj

1 ,X
j
2 , · · · . In the current design of Sawtooth

Lake Scheme, Xj
i ’s are not independent but are intertwined using a sophisticated

approach (See Sect. 2.2). We will first discuss the simpler case where all the
Xj

i ’s are i.i.d. (independent and identically distributed), and then come to the
more sophisticated case where Xj

i ’s follow the distribution implemented in the
Sawtooth Lake Scheme.

5 Security Analysis of PoET

In this section, we analyze the security of PoET based blockchain system. Recall
that we assume a perfect statistical test, that is, we aim to show that the cur-
rent PoET based system is vulnerable even if it is equipped with the strongest
statistical test. Omitted proofs can be found in the full version of the paper [7].

Under the perfect statistical test assumption, it appears, at first glance that
a compromised node cannot gain any advantage over an honest node. However,
consider n nodes, each generating blocks with waiting times according to a prob-
ability distribution. Given a fixed time interval, it is likely that the fastest node
can generate many more blocks than average; and a compromised node can gen-
erate as many blocks, pretending to be the fastest honest one. By letting each
compromised node simulating the fastest honest node, the attacker may hijack
and compromise the system by compromising φ < 50% fraction of the nodes.
Note that if a compromised node is simulating some honest nodes, then no sta-
tistical test can distinguish the waiting times of a compromised node and those
of existing honest nodes.

290 L. Chen et al.

We call this percentage φ as the conservative ratio and focus on calculating
this ratio. We emphasize that this is the percentage of the nodes that the attacker
needs to compromise under a perfect statistical test. With a weaker test, it
suffices for the attacker to compromise even fewer nodes.

We start with the case where the waiting times of honest nodes are i.i.d. and
follow a fixed distribution G. For X ∼ G, we denote by F its cumulative distri-
bution function and μ = E[X], σ2 = E[(X − μ)2], ρ = E[|X − μ|3]. Considering
a time interval of length kμ for a positive number k, how many blocks can n
honest nodes generate in total? We have the following lemma.

Lemma 1. If μ, σ and ρ are all positive constant numbers, then with high prob-
ability, n honest node only generate in total nk + O(

√
nk) blocks within a time

interval of length kμ.

According to Lemma 1, on average an honest node only generates k +
O(

√
k/n) blocks within a time interval of length kμ, regardless of the distri-

bution G. On the other hand, the fastest node among all the nodes may generate
more blocks than the average. The number of blocks that the fastest node can
generate depends on the probability distribution G. We estimate this value in
the following.

Lemma 2. With probability 1−e−λ the fastest node, among n honest nodes, can
generate N or more blocks within a time interval of length kμ if N ln F (kμ

N) ≥
ln λ

n .

Based on Lemmas 1 and 2, we have the following theorem.

Theorem 2. Even with perfect statistical test, adversaries may hijack or com-
promise the system if they compromise φ ≥ (1 + ε) · k

k+N fraction of the nodes
for positive k and N , where ε > 0 is an arbitrary small constant and k,N satisfy
that N ln F (kμ

N) ≥ ln λ
n .

5.1 Discussion on Fixed Probability Distributions

To estimate the value of φ, the most important thing is to analyze the value
of N that can lead to the inequality N ln F (kμ

N) ≥ ln λ
n for a positive number

k. Note that λ is a constant that measures how likely the distribution that a
compromised node simulates should exist within n honest nodes. With λ = 5,
this probability already exceeds 99% (see Lemma 2). For ease of understanding,
it suffices to view λ as a small constant like 5. However, our results in this
section holds for λ being an arbitrary constant. In the following, we assume that
the probability density function of the distribution G has support (a, b) (i.e.,
0 = F (a) < F (b) = 1) with the mean μ = E[X]. We further assume that the
probability distribution is fixed (i.e., it is independent of the network), therefore
a, b and μ are all constants. The goal of this subsection is to prove the following.

On Security Analysis of Proof-of-Elapsed-Time (PoET) 291

Theorem 3. If the probability density function of G is independent of the net-
work and has support within the interval (a, b) (i.e., 0 = F (a) < F (b) = 1), then
the adversaries can compromise the system if they compromise aε

aε+μ fraction of
the nodes, where aε satisfies that F (aε) = ε. Furthermore, if it holds addition-
ally that a = 0 and F (x) ≥ xc where x ∈ (0, δ) for constant c and δ, then the
adversaries can compromise the system if they compromise Θ(log log n

log n) fraction
of the nodes.

It is worth mentioning that aε

aε+μ is a constant, whereas in general adversaries
can compromise the system by compromising a constant fraction of the nodes.
However, for some class of distributions, adversaries can compromise the system
even by compromising a significantly smaller fraction of the nodes, as is implied
by the second half of the theorem.

Proof. Note that μ and aε are all constant, for k = O(1), N = kμ
aε

= O(1) ensures
that F (kμ

N) = ε, and also N ln ε ≥ ln λ
n for sufficiently large n. By Theorem 2,

adversaries can compromise the system if they compromises (1+ ε) aε

μ+aε
fraction

of the nodes for an arbitrarily small constant ε. The first half of the theorem is
proved.

Now suppose a = 0 and there exists a constant c > 0 and δ ∈ (0, 1) such
that for x ∈ (0, δ], F (x) ≥ xc. We claim that N lnF (kμ

N) ≥ ln λ
n is satisified

with k = O(1) and N = Θ(log n
log log n). To see why, notice that − ln F (kμ

N) ≤
c ln N

kμ = Θ(log log n), therefore N log N = Θ(log n) (indeed, for a sufficiently

small positive number c′, N = c′ log n
log log n ensures that N lnN ≤ lnn). In this case,

we have
φ ≥ (1 + ε) · k

k + N
= Θ(

log log n

log n
),

that is, as long as the adversaries compromise Θ(log log n
log n) fraction of the nodes,

the system will be compromised.

Note that aε → a when ε → 0. The following lemma implies that the upper
bound of (1 + ε) aε

μ+aε
for φ is essentially tight if a > 0.

Lemma 3. If a > 0, then the adversaries have to compromise at least a
μ+a

fraction of the nodes.

So far we focus on probability distributions that are independent of the net-
work. Things become substantially more sophisticated if it is dependent on the
network, or Xi’s are not independent. For this case, we directly focus on the
probability distribution currently implemented in designs similar to Sawtooth
Lake Scheme.

5.2 Discussion on the Probability Distribution in Sawtooth Lake

The Simple Setting with the Independent Assumption. We start with
the simpler setting, that is, the waiting times of each node Xj

1 ,X
j
2 , · · · are inde-

pendent and they follow the same distribution G, where G is the distribution such

292 L. Chen et al.

that for X ∼ G, X = c2 + c1L ln 1
Y , where c1, c2 ≥ 0 are constants, Y ∼ U(0, 1)

and L is a function that depends on n. Specifically, in the current implementa-
tion of Sawtooth Lake Scheme, L = n. Note that Sawtooth Lake Scheme uses
the distribution G in a more complicated way that the independent assumption
on Xi’s may not necessarily be true. As the analysis on the simpler case with
the independent assumption is crucial for the analysis on the general problem,
we start with this simpler case. For the simple setting, we have the following
conclusion.

Theorem 4. Under the independent assumption, if the random waiting time X
satisfies that X = c2 + c1L ln 1

Y for c1, c2, L ≥ 0 such that c1, c2 = O(1) and
L = ω(1) (i.e., L → +∞ when n → +∞), then the adversaries can compromise
the system if they compromise Θ(log log n

log n) fraction of the nodes.

Note that the situation changes significantly when L becomes O(1). Recall
that, we have shown in Lemma 3 that to compromise the system, the adver-
saries have to compromise at least a

a+μ = c2
2c2+c1L = O(1) fraction of the nodes,

that means, compromising Θ(log log n
log n) fraction of the nodes is not enough for

adversaries when L = O(1).

The General Setting. Now we come to the general setting of the problem,
which is exactly how Sawtooth Lake Scheme is implemented. We briefly describe
how the scheme works and the reader may refer to Sect. 2.2 for details. Again let
G be the probability distribution such that for X ∼ G we have X = c2+c1L ln 1

Y
where Y ∼ U(0, 1). Let 0 < p1 ≤ p2 ≤ · · · ≤ p25 = 1 be 25 fixed constants. Every
node initializes its state level as 0. If the state level of a node is 0, it generates a
random number according to distribution G, sets this number as its waiting time,
and updates its state level to 1. If the state level of a node is i where 1 ≤ i ≤ 25,
it waits for the time length equals its waiting time, generates a block, then with
probability pi it updates its state level to 0, and with probability 1−pi it updates
its state level to i + 1.

It is easy to see that the waiting time of a node remains the same if its
state level does not go to 0. Therefore, the waiting times Xj

1 ,X
j
2 , · · · of each

node j are not necessarily independent, and consequently we cannot directly
apply Theorem 2. We need a new approach to estimate the number of blocks
generated by n honest nodes and also the number of blocks generated by the
fastest node.

Estimating the Number of Blocks Generated by the Fastest Node. Consider an
arbitrary node j. Note that if the state level of node j becomes 0 after it
generates the (i − 1)-st block, then Xj

i is independent of each Xj
h for h < i,

otherwise Xj
i = Xj

i−1. Let N be a number to be fixed later. Consider all the
subsets S = {a1, a2, · · · , as} ⊆ {1, 2, · · · , N} such that ah+1 − ah ≤ 25 for any
1 ≤ h ≤ s − 1. Let G be the set of all such subsets.

Now we consider Xj
1 ,X

j
2 , · · · ,Xj

N and let Γ = {τ1, τ2, · · · , τs} ⊆
{1, 2, · · · , N} be the set of all the indices such that the node returns to state 0
before generating the corresponding block, i.e., for any τh, we have that Xj

τh
is

On Security Analysis of Proof-of-Elapsed-Time (PoET) 293

independent of all the Xj
i where i < τh, and furthermore, Xj

τh
= Xj

τh+1 = · · · =
Xj

τh+1−1. Note that according to the scheme, τh+1 − τh ≤ 25. Any fixed Γ ∈ G
denotes a scenario that happens with the probability

π(Γ) =
s∏

h=1

τh+1−τh−1∏

i=1

(1 − pi).

Note that G consists of all the possible scenarios that may happen, and conse-
quently

∑
Γ∈G π(Γ) = 1. Now we consider the probability that node j generates

N or more blocks within a time length of kμ, that is,

P (
N∑

i=1

Xj
i ≤ kμ) =

∑

Γ∈G
P (

N∑

i=1

Xj
i ≤ kμ|Γ) · π(Γ),

where P (
∑N

i=1 Xj
i ≤ kμ|Γ) denotes the probability that the event

∑N
i=1 Xj

i ≤ kμ
happens conditioned on the event that the scenario Γ happens. Let ωh(Γ) =∑τh+1−1

i=τh
Xi = (τh+1 − τh)Xτh

, it follows that Xτh
≤ ωh(Γ) ≤ 25Xτh

. Therefore,

P (
N∑

i=1

Xi ≤ kμ|Γ) = P (
s∑

h=1

ωh(Γ) ≤ kμ|Γ) ≥ P (
s∑

h=1

25Xτh
≤ kμ|Γ).

Further notice that conditioned on Γ , Xj
τh

’s are i.i.d. (each following the same
distribution of X) and s ≤ N . Thus, let Yi be i.i.d. random variables, each
following the same distribution as X, we know that

P (
s∑

h=1

Xj
τh

≤ kμ/25|Γ) = P (
s∑

h=1

Yh ≤ kμ/25) ≤ P (
N∑

h=1

Yh ≤ kμ/25).

Hence, P (
N∑

i=1

Xj
i ≤ kμ) =

∑

Γ∈G
P (

N∑

i=1

Xj
i ≤ kμ|Γ) · π(Γ)

≥
∑

Γ∈G
P (

N∑

h=1

Yh ≤ kμ/25) · π(Γ) = P (
N∑

h=1

Yh ≤ kμ/25),

Since Yi’s are i.i.d., we are able to apply Lemma2, that is, if N satisfies that
N ln F (kμ

25N) ≥ ln λ
n , then P (

∑N
i=1 Xj

i ≤ kμ) ≥ P (
∑N

h=1 Yh ≤ kμ/25) ≥ λ/n,
that is, the fastest node can generate N or more blocks with probability 1− e−λ

within a time length of kμ.

Estimating the Total Number of Blocks Generated by Honest Nodes. Using a
similar argument as above, we can prove that with high probability n honest
nodes can generate only M = 25nk +O(

√
nk) blocks. See the full version of this

paper [7].

294 L. Chen et al.

Estimating the Compromised Fraction. Now suppose that the adversaries com-
promise φ fraction of the nodes, then they can catch up H blocks if

φn · N − H ≥ 25(1 − φ)nk +
√

(1 − φ)nk.

Applying the same argument as Theorem 2, the adversaries can catch up arbi-
trary H blocks if φ ≥ 25(1 + ε) k

k+N where N satisfies that N ln F (kμ
25N) ≥ ln λ

n .
By setting k = O(1), N = η lnn

ln lnn and using the same argument as before, it is
easy to verify that for L = ω(1), N ln F (kμ

25N) ≥ ln λ
n is true for η being a suffi-

ciently small constant, whereas φ = Θ(log log n
log n). Therefore we have the following

conclusion on the security of Sawtooth Lake Scheme.

Theorem 5. In a PoET system similar to Sawtooth Lake Scheme adversaries
can hijack or compromise the whole system if they compromise Θ(log log n

log n) frac-
tion of the nodes.

6 Related Works

In this section, we briefly review related works on the security of blockchain.
According to the discussion in Sect. 2.1, the major security requirement is toler-
ance of malicious users.

As the most popular blockchain construction method, PoW has received
intensive study. In the initial paper of Bitcoin, Nakamoto showed that when
the majority of users are honest, the probability that an attacker can success-
fully build his/her own branch decreases exponentially with the depth of the
position of the branch [25]. Garay et al. [15] and Pass et al. [26] further veri-
fied these security features. Formal frameworks are also developed to study the
relationship between performance of a PoW based blockchain and its security
level [5,16]. These results, however, cannot be applied to PoET due to its fun-
damental difference from PoW.

There are also a series of studies focusing on game theory aspects of users
involved in mining. From a game theory perspective, Eyal and Sirer [14] showed
that even a majority of honest miners is not enough to guarantee the security
of the Bitcoin protocol. Sapirshtein et al. [27] and Kiayias et al. [20] studies
mining as a game in Bitcoin and analyzes the best strategy of users. Chen et
al. further studies the execution of smart contracts as a game [6]. All of these
works assume users can determine their behaviour under the restriction of PoW,
which is not applicable to PoET. For PoET, a attacker is either forced to follow
the protocol (when the trusted computing hardware is not compromised) or
able to do whatever he/she wants (when the trusted computing hardware is
compromised).

7 Conclusion

Leveraging trusted computing technology for blockchain construction opens
a new direction in blockchain design. In this paper, we consider the secu-
rity of PoET and Intel’s implementation Sawtooth Lake. We show that, the

On Security Analysis of Proof-of-Elapsed-Time (PoET) 295

current implementation of Sawtooth Lake Scheme is vulnerable to potential
security attacks at protocol level. Indeed, as long as adversaries compromise
Θ(log log n

log n) fraction of the participating nodes, they can compromise a PoET
based blockchain system by using the compromised nodes to simulate the fastest
honest mining nodes in the system. Note that Θ(log log n

log n) is not a constant, which
contrasts sharply with the constant threshold of proof-of-work scheme imple-
mented in crypto-currency systems such as Bitcoin and other blockchain based
applications. Our results also suggest several possible solutions to overcome this
issue.

Changing the Probability Distribution of F . As we show in this paper, if the
probability distribution F does not rely on n, then adversaries have to com-
promise a

a+μ fraction of the nodes in order to compromise the system, which
increases when a, the minimal value that the random variable can take, is
approaching the mean μ. Therefore, the system is more secure if the distrib-
ution F is more concentrated. In the extreme case when the waiting time must
be a fixed value, a = μ and adversaries will have to compromise more than 50%
of the nodes in order to compromise the system. It is worth pointing out, the
more concentrated the probability distribution is, the more likely a collision will
occur. This means that different users may generate blocks at the same time,
yielding a branch. We characterize the security issue with respect to F in this
paper. It is an interesting open problem to characterize the collision with respect
to F , assessing the trade-off between security and collision.

Allowing Blocks Generated by Honest Mining Nodes to be Rejected. We assume
that the statistical test will not reject a block that is generated by an honest
node, whereas the adversaries can simulate the fastest honest node in the system.
It is possible to get beyond the threshold of Θ(log log n

log n) if we allow the statistical
test to reject blocks generated by honest users. As we have shown that among n
honest users, fast nodes can generate significantly more blocks than the average.
If the statistical test is allowed to reject blocks generated by a certain fraction
of the nodes. Specifically, if the statistical test can reject blocks generated by f
fraction of the nodes that are fastest for a suitable f , then a constant threshold is
likely to exist. Note that using this method, the statistical test should be allowed
to reject blocks generated by a certain fraction, instead of a constant number of
nodes even if all the nodes are honest. If it is only allowed to reject blocks that
are generated by c nodes where c is a constant, then using essentially the same
arguments in this paper we can still prove the bound of Θ(log log n

log n).

Acknowledgement. This material is based upon work supported by the U.S. Depart-
ment of Homeland Security under Grant Award Number 113039. The views and conclu-
sions contained in this document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

296 L. Chen et al.

References

1. Intel Software Guard Extensions Programming Reference, October 2014. https://
software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

2. ARM: ARM security technology building a secure system using trustzone technol-
ogy (2009)

3. Berry, A.C.: The accuracy of the gaussian approximation to the sum of independent
variates. Trans. Am. Math. Soc. 49(1), 122–136 (1941)

4. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM (JACM) 51(4), 557–594 (2004)

5. Chen, L., Xu, L., Shah, N., Diallo, N., Gao, Z., Lu, Y., Shi, W.: Unraveling
blockchain based crypto-currency system supporting oblivious transactions: a for-
malized approach. In: Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts, pp. 23–28 (2017)

6. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: Decentralized execution of
smart contracts: agent model perspective and its implications (2017)

7. Chen, L., Xu, L., Shah, N., Gao, Z., Lu, Y., Shi, W.: On security analysis of proof-
of-elapsed-time (PoET) (full version) (2017). http://i2c.cs.uh.edu/tiki-download
wiki attachment.php?attId=70&download=y

8. Courtois, N.T., Emirdag, P., Nagy, D.A.: Could bitcoin transactions be 100x
faster? In: 2014 11th International Conference on Security and Cryptography
(SECRYPT), pp. 1–6. IEEE (2014)

9. Kaplan, D., Powell, J., Woller, T.: AMD memory encryption. Whitepaper, April
2016

10. Duembgen, L.: Bounding standard Gaussian tail probabilities. arXiv preprint
arXiv:1012.2063 (2010)

11. Duong, T., Fan, L., Zhou, H.S.: 2-hop blockchain: combining proof-of-work and
proof-of-stake securely (2016)

12. Esseen, C.G.: On the Liapounoff Limit of Error in the Theory of Probability.
Almqvist & Wiksell, Stockholm (1942)

13. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In: 13th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2016, pp. 45–59 (2016)

14. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 28

15. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

16. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3–16. ACM (2016)

17. Gordon, R.D.: Values of Mills’ ratio of area to bounding ordinate and of the normal
probability integral for large values of the argument. Ann. Math. Stat. 12(3), 364–
366 (1941)

18. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on Intel SGX.
In: Proceedings of the 10th European Workshop on Systems Security, p. 2. ACM
(2017)

19. Intel: Sawtooth Lake (2017). https://intelledger.github.io/

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
http://i2c.cs.uh.edu/tiki-download_wiki_attachment.php?attId=70&download=y
http://i2c.cs.uh.edu/tiki-download_wiki_attachment.php?attId=70&download=y
http://arxiv.org/abs/1012.2063
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/978-3-662-46803-6_10
https://intelledger.github.io/

On Security Analysis of Proof-of-Elapsed-Time (PoET) 297

20. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of the 2016 ACM Conference on Economics and Compu-
tation, pp. 365–382. ACM (2016)

21. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. Technical report, Cryptology ePrint Archive,
Report 2016/889 (2016). http://eprint.iacr.org/2016/889

22. Lawley, D.: A generalization of Fisher’s z test. Biometrika 30(1/2), 180–187 (1938)
23. Lee, J., Jang, J., Jang, Y., Kwak, N., Choi, Y., Choi, C., Kim, T., Peinado,

M., Kang, B.B.: Hacking in darkness: return-oriented programming against secure
enclaves. In: USENIX Security (2017)

24. Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., Saxena, P.: SCP: a
computationally-scalable byzantine consensus protocol for blockchains. Technical
report, Cryptology ePrint Archive, Report 2015/1168 (2015)

25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
26. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchro-

nous networks. IACR Cryptol. ePrint Arch. 2016, 454 (2016)
27. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. arXiv preprint arXiv:1507.06183 (2015)
28. Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind

Bitcoin is Changing Money, Business, and the World. Penguin, City of Westminster
(2016)

29. Tyurin, I.S.: An improvement of upper estimates of the constants in the Lyapunov
theorem. Russ. Math. Surv. 65(3), 201–202 (2010)

30. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). doi:10.1007/978-3-319-39028-4 9

31. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: exploiting
synchronisation bugs in intel SGX enclaves. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 440–457.
Springer, Cham (2016). doi:10.1007/978-3-319-45744-4 22

http://eprint.iacr.org/2016/889
http://arxiv.org/abs/1507.06183
http://dx.doi.org/10.1007/978-3-319-39028-4_9
http://dx.doi.org/10.1007/978-3-319-45744-4_22

Brief Announcement: Federated Code Auditing
and Delivery for MPC

Frederick Jansen(B), Kinan Dak Albab, Andrei Lapets, and Mayank Varia

Boston University, Boston, MA 02215, USA
{fjansen,babman,lapets,varia}@bu.edu

Abstract. Secure multi-party computation (MPC) is a cryptographic
primitive that enables several parties to compute jointly over their collec-
tive private data sets. MPC’s objective is to federate trust over several
computing entities such that a large threshold (e.g., a majority) must
collude before sensitive or private input data can be breached. Over the
past decade, several general and special-purpose software frameworks
have been developed that provide data contributors with control over
deciding whom to trust to perform the calculation and (separately) to
receive the output. However, one crucial component remains centralized
within all existing MPC frameworks: the distribution of the MPC soft-
ware application itself. For desktop applications, trust in the code must
be determined once at download time. For web-based JavaScript appli-
cations subject to trust on every use, all data contributors across several
invocations of MPC must maintain centralized trust in a single code
delivery service. In this work, we design and implement a federated code
delivery mechanism for web-based MPC such that data contributors only
execute code that has been accredited by several trusted auditors (the
contributor aborts if consensus is not reached). Our client-side Chrome
browser extension is independent of any MPC scheme and has a trusted
computing base of fewer than 100 lines of code.

Keywords: Secure multi-party computation · Web security · Content
delivery

1 Introduction

Secure multi-party computation (MPC) permits several entities to learn joint
information about their sensitive data. It has been studied for over 30 years
[12,19,20], with several libraries and packages developed over the past decade
that bring secure computing to clients on the web [6,13] and the desktop [3,5,
7,9,10,14]. It has been deployed for social good in areas like pay equity [6], tax
fraud detection [7], marketplace auctions [8], and many others.

The objective of MPC is not so much to eliminate the need to trust any
particular entity, but rather to federate trust across several computing parties.
However, all existing frameworks centralize one crucial operation: delivering the
code that performs MPC itself. Note that confidentiality of the data protected
by MPC relies upon the integrity of this code.

The original version of this chapter was revised: An acknowledgement has been added. The
erratum to this chapter is available at https://doi.org/10.1007/978-3-319-69084-1 38

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 298–302, 2017.
https://doi.org/10.1007/978-3-319-69084-1_20

https://doi.org/10.1007/978-3-319-69084-1_38

Brief Announcement: Federated Code Auditing and Delivery for MPC 299

Our Contributions. In this work1, we design and develop a workflow to federate
delivery of MPC software.2 We focus on web-based MPC deployments [6], where
audited software is of utmost importance due to the trust-on-every-use nature of
JavaScript delivery; however, we stress that our ideas apply equally well to the
trust-on-first-use nature of downloaded desktop software. Within our system,
data contributors rely upon the help of several services [15] who (1) deliver and
(2) audit MPC software. Contributors must obtain consensus from the auditors
they entrust before executing any code that will operate on their sensitive data.

Within our system, trust in the veracity of MPC software is scoped down to
two sources. First, data contributors must choose trustworthy code auditors; to
reduce the impact of misplaced trust, these decisions can be revoked easily at
any time. Second, contributors must rely upon our Chrome extension to execute
the consensus or majority vote protocol properly; to ease validation and inspire
confidence, the extension is open-source3 and designed with a small codebase.

2 Related Work

A variety of questions have been raised about whether it is prudent at all to rely
on cryptographic functionalities or features implemented within web applica-
tions (e.g., using popular web languages and frameworks). One common concern
focuses on the distinction between applications that require “trust on first use”
vs. applications hosted on the web that require “trust on every use” [4,18]. How-
ever, contemporary platforms and environments (including both desktop and
mobile) exhibit many of the characteristics attributed to applications delivered
over the web (e.g., frequent and automatic updates to the application, libraries,
and even the underlying operating system). Thus, this may no longer be the
most important measure of the amount of trust invested into an application.

The challenge of ensuring or validating the authenticity and integrity of
scripts delivered to (and executed by) users can be addressed by a variety of
distinct and complementary techniques. Subresource integrity (SRI) [2] involves
validating web application assets served by a third party such as a content deliv-
ery network. Variants of this approach have existed for almost two decades (e.g.,
Netscape supported a technique for signing inline JavaScript scripts [1]). These
are complementary to our proposed technique, allowing an application to ensure
that imported third-party assets have not been modified inappropriately. How-
ever, SRI stops the chain of trust at the web server (i.e., an attacker, whether a
hacker, malicious hosting provider, or even law enforcement, could compromise a
server and replace the code delivered to the end user). Thus, both the source as
well as the SRI hash can be modified without anyone noticing. Our solution aims
to move the trust from a single server to a much smaller signed bootstrapping
extension and a set of auditors providing the hash of the correct code. Code sign-
ing [17] and, more generally, digital signature schemes serve the complementary
1 This work is in part supported by NSF Awards #1430145, #1414119, and #1718135.
2 While the scenario that motivates this work involves delivery of MPC software, the

technique we present can be used for delivery of any web application.
3 The source code for the implemented Chrome browser extension is available online

at https://github.com/multiparty/secure-code-delivery-extension.

https://github.com/multiparty/secure-code-delivery-extension

300 F. Jansen et al.

but distinct purpose of confirming the author of the delivered application and
that the application has not been modified after being signed. However, these
techniques complicate scenarios that involve application versioning and a need
for delivery of the most fresh version. They also require yet another PKI, and
are not supported natively by browsers for the purpose of signing and verifying
the delivered code. Recent proposals include a cloud-based secure data exchange
marketplace [11]. This is similar to our own vision of an ecosystem of modu-
lar functionalities that can be federated and delivered by incentivized entities
[15] (discussed in more detail in Sect. 3), though in our view such functionalities
(including the one presented in this work) can exist outside of a cloud setting.

3 The Secure Multi-Party Computation Ecosystem

MPC is an interactive protocol involving several participants who are connected
via a networking medium that supports secure point-to-point links. We describe
below several distinct roles [15] for MPC participants. We stress that the roles
are often composable; that is, one entity can inhabit multiple roles if desired.

1. Several data contributors who supply the sensitive data to be analyzed.
2. An analyst who specifies the calculation to perform on the input data.
3. One or more recipients who receive the result of computing the analytic.
4. A compute service that provides the computational resources and network

connectivity to compute the analytic in a privacy-preserving manner.
5. A code delivery service that provides the software necessary for contributors

to encode and upload their data to the compute parties.
6. A code auditing service that attests to the authenticity of the code to perform

secure computation. The confidentiality of the contributors’ data and the
computation’s integrity rely on the trustworthiness of the delivered code.

Most existing MPC frameworks explicitly instantiate the first four roles and
provide some configurability over their choices. Moreover, because contributors
actively choose whether to participate in an instance of MPC, they effectively
have control over which analysts, recipients, and compute services to trust. How-
ever, MPC applications to date use a single (i.e., centralized) service that delivers
the JavaScript code in a web-based MPC system [6] or the source code or pack-
aged binary in a desktop-based MPC system; the responsibility and effort of
auditing the software often implicitly falls on the data contributors themselves.

We envision two possible workflows to expose and federate this trust. First,
one can have several different audited delivery services that each perform the
auditing and code delivery roles. Second, one can simply have a single deliv-
ery service and several auditors who supply a hash of the code that they have
validated; this method retains federation for confidentiality and integrity but
centralizes availability (i.e., the single delivery service is easier to DoS). Either
way, we stress that contributors need not put their faith in the same set of audi-
tors; instead, each contributor should only use the auditing services she trusts.

4 Implementation

We implemented a signed Google Chrome extension that (1) allows the appli-
cation to be hosted on an untrusted server and (2) allows verification of the

Brief Announcement: Federated Code Auditing and Delivery for MPC 301

JavaScript code by multiple auditors (with a majority vote deciding whether to
execute the code). The lightweight extension has fewer than 100 lines of code and
requires only two permissions (defined in advance): sending requests to external
servers and accessing the current open tab. It provides a pop-up panel attached
to a button in Chrome’s toolbar (a.k.a. a browser action) into which the user
can enter the application URL. The auditing/delivery services’ URLs are either
encoded in the original URL or pre-defined inside the extension. The extension
fetches the application code as well as the SHA-256 hash over SSL/TLS from the
auditors’ delivery services. The hashes are subsequently compared with the hash
of the page’s source code. If a majority of the auditors provide a matching hash,
the extension loads the code into the browser and executes it. It also displays a
table with the delivery service URL and hash match status for each auditor. The
threshold required to trust the script (e.g., majority or consensus) can be passed
to the extension along with the URLs of the auditors’ code delivery services.

The extension does not allow the website to recover gracefully if the number
of hashes that match the code’s hash does not meet the threshold. Instead, the
extension shows an error message resembling what a user sees when visiting a
website with an invalid SSL certificate. Users who do not install the extension can
use the application URL directly in the browser to load a fully functioning web
page. It is up to the application’s developer to decide whether this is sensible.
One option is to show a warning indicating the risk of not using the extension.

5 Discussion and Future Work

Installing an extension is not ideal and limits widespread adoption. Ideally,
browsers would provide this functionality natively, just as mobile and desktop
OSs encourage or require applications to be signed. Also, if JavaScript code exe-
cution requires multiple auditors and a consensus vote, website updates require
a synchronized effort by all parties involved. This is burdensome for web devel-
opment, as updates can and do occur often. For our system to work smoothly, a
new continuous deployment workflow is needed that seamlessly pushes the web
application to auditors, lets them reach consensus on the new code, publishes
the hashes, and simultaneously updates the server copy. This is not an urgent
problem for our MPC use cases [6], as code updates coincide with deployments
that occur no more than a few times per year. For applications with more fre-
quent updates, the choice can be made to let the extension recover gracefully
from a mismatched hash (letting the user decide whether to use the application).

While our motivation for this work is verified MPC code delivery, the tech-
nique fits any web scenario that requires authenticated code execution. One
example is Coindash: clients lost $7M during the initial coin offering when hack-
ers changed the website’s source code, replacing the wallet address with their
own [16]. This could have been avoided if a solution such as ours was in place.

Acknowledgement. This material is based upon work partially supported by the
NSF (under Grants #1414119, #1430145, #1718135, and #1739000) and the Honda
Research Institutes.

302 F. Jansen et al.

References

1. Signing Software with Netscape Signing Tool 1.1. https://docs.oracle.com/cd/
E19957-01/816-6169-10/contents.htm. Accessed 13 July 2017

2. Subresource Integrity. https://www.w3.org/TR/SRI/. Accessed 13 July 2017
3. VIFF. http://viff.dk/. Accessed 20 June 2017
4. Arcieri, T.: Whats wrong with in-browser cryptography?. https://tonyarcieri.com/

whats-wrong-with-webcrypto. Accessed 11 July 2017
5. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: A system for secure multi-party

computation. In: CCS, pp. 257–266. ACM (2008)
6. Bestavros, A., Lapets, A., Varia, M.: User-centric distributed solutions for privacy-

preserving analytics. Commun. ACM 60(2), 37–39 (2017)
7. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: How the estonian tax and customs

board evaluated a tax fraud detection system based on secure multi-party compu-
tation. In: Böhme, R., Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 227–234.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-47854-7 14

8. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03549-4 20

9. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: Sepia: privacy-preserving
aggregation of multi-domain network events and statistics. In: Usenix Security
Symposium. Usenix (2010)

10. Ejgenberg, Y., Farbstein, M., Levy, M., Lindell, Y.: SCAPI: the secure computation
application programming interface. Cryptology ePrint Archive 2012/629

11. Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P., Rosulek, M.: Secure data
exchange: a marketplace in the cloud. Technical report June 2016

12. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, pp. 218–229. ACM (1987)

13. Jarrous, A., Pinkas, B.: Canon-mpc, a system for casual non-interactive secure
multi-party computation using native client. In: Proceedings of the 12th ACM
Workshop on Privacy in the Electronic Society, pp. 155–166. ACM (2013)

14. Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure mpc
with dishonest majority. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, pp. 549–560. ACM (2013)

15. Lapets, A., Varia, M., Bestavros, A., Jansen, F.: Role-based ecosystem model for
design, development, and deployment of secure multi-party data analytics appli-
cations. Cryptology ePrint Archive (2017)

16. Levy, A.: Fraudsters just stole $7M by hacking a cryptocoin offering. https://
www.cnbc.com/2017/07/17/coindash-website-hacked-7-million-stolen-in-ico.html.
Accessed 24 Aug 2017

17. Morton, B.: Code Signing. https://casecurity.org/wp-content/uploads/2013/10/
CASC-Code-Signing.pdf. Accessed 13 July 2017

18. Ptacek, T.: Javascript Cryptography Considered Harmful. https://www.nccgroup.
trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptogra
phy-considered-harmful/. Accessed 11 July 2017

19. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
20. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science, pp. 160–164. IEEE Computer
Society (1982)

https://docs.oracle.com/cd/E19957-01/816-6169-10/contents.htm
https://docs.oracle.com/cd/E19957-01/816-6169-10/contents.htm
https://www.w3.org/TR/SRI/
http://viff.dk/
https://tonyarcieri.com/whats-wrong-with-webcrypto
https://tonyarcieri.com/whats-wrong-with-webcrypto
http://dx.doi.org/10.1007/978-3-662-47854-7_14
http://dx.doi.org/10.1007/978-3-642-03549-4_20
https://www.cnbc.com/2017/07/17/coindash-website-hacked-7-million-stolen-in-ico.html
https://www.cnbc.com/2017/07/17/coindash-website-hacked-7-million-stolen-in-ico.html
https://casecurity.org/wp-content/uploads/2013/10/CASC-Code-Signing.pdf
https://casecurity.org/wp-content/uploads/2013/10/CASC-Code-Signing.pdf
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/august/javascript-cryptography-considered-harmful/

Brief Announcement: Reduced Space
Self-stabilizing Center Finding Algorithms

in Chains and Trees

Yuichi Sudo1(B), Ajoy K. Datta2, Lawrence L. Larmore2,
and Toshimitsu Masuzawa1

1 Graduate School of Information Science and Technology,
Osaka University, Suita, Japan
y-sudou@ist.osaka-u.ac.jp

2 University of Nevada, Las Vegas, USA

1 Introduction

In this work, we consider the problem of finding the center, or centers, of a chain
network and a tree network. Our algorithms are self-stabilizing [5], non-silent,
distributed, and work under unfair daemon. The chain algorithm uses O(1) space
per process and takes O(D) rounds where D is the diameter of a given graph.
The algorithm for trees needs O(δx) space for every process x and also takes
O(D) rounds. Both algorithms are optimal in time. The center(s) of a chain and
a tree are defined as follows: The eccentricity of a node v in a connected graph
G = (VG, EG), written ecc (x,G), is defined to be the maximum distance from v
to any other node. A node v is a center of G if it has minimum eccentricity. A
Tree (and thus a chain) has either one or two centers.

Related Work. Antonoiu and Srimani [1] give a distributed algorithm for finding
the centers of a tree network. They use the composite model of atomicity, and
do not assume unique IDs of the processes. They do not use the unfair distrib-
uted daemon; rather, they assume the central daemon. Their algorithm assumes
existence of a known upper bound C on the size of the network, and has space
complexity Θ(log C) per process. In [2], Blair and Manne give a center finding
algorithm for tree networks with unique IDs. They assume the unfair daemon
and use O(δx log n) bits for each process x, where δx is the degree of x.

Contributions. The main contribution of this paper is a new scheme of imple-
menting two synchronized waves of different speeds in asynchronous system. The
faster wave moves three times faster than the slower wave. Our implementation
is self-stabilizing and works under the unfair daemon. We first demonstrate the
application of this scheme to design a center finding algorithm for chain net-
works. Then we extend this scheme to compute a center of a tree network. Both
algorithms are self-stabilizing, non-silent, and work under the unfair daemon.
The algorithm for the chain uses O(1) space per process and takes O(D) rounds.
So, it is both optimal in space and time. The center algorithm for the tree needs
O(δx) space for every process x and takes O(D) rounds.
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 303–307, 2017.
https://doi.org/10.1007/978-3-319-69084-1 21

304 Y. Sudo et al.

In [4], we presented a center finding algorithm for trees, which is non-silent,
uses O(1) space per process, and takes O(D) rounds. However, it uses a very
complex transformer to transform a non-stabilizing silent synchronous algorithm
to an asynchronous stabilizing but non-silent algorithm. Hence, the resulting
algorithm is much more complex than the ones presented in this paper.

The idea of using a fast and a slow wave to find the center in a chain was
used in a very different context, the firing squad synchronization in cellular
automata [6]. However, unlike in [6], our proposed algorithms are distributed
and self-stabilizing.

2 Preliminaries

We consider simple connected graph G(V,E) where |V | = n and |E| = m. We
denote the set of v’s neighbors by N(v), i.e., N(v) = {u ∈ V | (u, v) ∈ E}.

We use the composite atomicity shared memory model of computation with
link registers. Processes communicate with their neighbors through link registers.
Two link registers ru,v and rv,u exist for each pair of neighboring processes u
and v. We call ru,v (resp. rv,u) the input register (resp. the output register) of v.
Process u (resp. v) maintains/writes in its output register ru,v (resp. rv,u) and
can read from its input register rv,u (resp. ru,v). Thus, neighboring processes u
and v can communicate with each other through ru,v and rv,u.

Algorithm A is specified by a set of local variables stored in processes and reg-
istries, and a set of actions {A1, A2, . . . , Ak} that processes perform. Action Ai is
specified by a well-known guarded command of the form guard i −→ statement i.
We say that a guarded command Ai is enabled when guard i = true and guard j =
false for all j < i. So the index of a guarded action represents the priority of the
action. We say that process v is enabled when it has an enabled action. A con-
figuration of G, is specified by the product of the states of all processes and all
registers. Let γ and γ′ be two configurations of A on G. We say that γ �→ γ′ is
a step of A if there is a non-empty set S ⊆ V of selected processes at that step
such that γ changes to γ′ by executing an enabled action of each enabled process
in S. We define a computation of A as a maximal sequence γ0, γ1, . . . of configu-
rations such that each γi �→ γi+1 is a step of A. We assume that a daemon selects
processes that execute at each step. The synchronous daemon selects all enabled
processes at each step. On the other hand, the unfair distributed daemon selects
any nonempty subset of enabled processes at each step.

The problem we consider is the center finding problem: We say that a config-
uration is correct if special variable is center holds true only at the center of
a given graph in the configuration. When there are two centers in the tree, only
one of them has the variable is center = true. We say that A is self-stabilizing
[5] center finding algorithm if there is a set L of configurations such that the
following three conditions holds. (i) Closure: If γ ∈ L holds and γ �→ γ′ is a
step of A, then γ′ ∈ L; (ii) Convergence: Every computation of A contains a
configuration in L; and (iii) Correctness: If γ ∈ L, then γ is correct.

For the sake of simplicity, we assume that processes can read not only from
their input registers, but also from the memory of their neighboring processes.

Brief Announcement: Reduced Space Self-stabilizing Center 305

3 Center Chain

In this section, we present a self-stabilizing center-finding algorithm for chains
that works under the synchronous daemon. We assume V = {v0, v1, . . . , vn−1}
and E =

⋃n−1
i=0 {vi, vi+1}, where G = (V,E). The chain is assumed to be ori-

ented, meaning that there is a distinguished leftmost process L = v0 and a
distinguished rightmost process R = vn−1. Furthermore, each interior process
vi (i = 1, 2, . . . , n − 2) knows which of its two neighbors is its left neighbor vi−1

and which is its right neighbor vi+1.
The basic idea of Center Chain is simple. The leftmost process L periodically

generates two kinds of waves, which we call a fast and a slow wave. The fast
wave propagates from one process to its right neighbor in every step. After the
fast wave reaches R, it bounces back from R, changes its direction, and starts
propagating in the reverse direction, i.e., from right to left in each step. On the
other hand, the slow wave proceeds from one process to its right neighbor in
every THREE steps. Since the fast wave propagates three times faster than the
slow wave, the two waves meet only at the (left) center process. (See Fig. 1.)
Hence, when a process is at the head of the reversed fast wave, the process notices
that it is the (left) center if it is also at the head of the slow wave. Otherwise,
it is not the (left) center. The fast wave can be generated periodically in a self-
stabilizing fashion with a traditional Propagation and Information Feedback
(PIF) wave [3]. Hence, the above procedure can be repeated arbitrary times
from any initial configuration. Table 1 shows Center Chain in detail where two
functions Next FW (vi) and Next SW (vi) are defined below:

Next FW (vi) =

⎧
⎪⎨

⎪⎩

1 if vi.fw = 0 ∧ vi−1.fw = 1 ∧ vi �= R

2 if (vi−1.fw = 1 ∧ vi = R) ∨ (vi.fw = 1 ∧ vi+1.fw = 2)
vi.fw otherwise,

Next SW (vi) =

⎧
⎪⎨

⎪⎩

1 if vi.sw = 0 ∧ vi−1.sw = 3
vi.sw + 1 (mod 4) if vi.sw ∈ {1, 2, 3}
vi.sw otherwise.

Fig. 1. Two waves for odd n (the left figure) and for even n (the right figure). The
solid lines and the dashed lines represent the fast and the slow waves respectively. In
the step with the star mark, the center process notices that it is the (left) center.

306 Y. Sudo et al.

Table 1. Center Chain

4 Center Tree

In this section, we present a self-stabilizing center-finding algorithm for trees
that works under the synchronous daemon, given a distinguished root r ∈ V .

The proposed algorithm, Center Tree, is a self-stabilizing and distributed
version of the following well known method to find a center of a tree.

(i) Find the farthest node L from a node (the root r in our algorithm).
(ii) Find the farthest node R from L.
(iii) Find the center of the L-R path, which is a center of the tree.

We implement (i) and (ii) using a Propagate and Information Feedback (PIF)
algorithm for each, and compute (iii) by adopting the two wave mechanism for
chains presented in Sect. 3. Our implementations of (i) and (ii) use variables on
link registers requires only constant space unlike Center Chain. However, the
space complexities, both in terms of per process and per register are constant.
The details of the implementations are omitted due to the lack of space.

5 Sync(P)

Let P be a self-stabilizing algorithm that solves some problem on any tree in
the synchronous model. Algorithm Sync(P) shown in Table 2 is a self-stabilizing
algorithm that solves the same problem on any tree in the asynchronous model
with the unfair distributed daemon. This sychronizer is very simple because
it assumes only tree networks and hence need not have the mechanism to
detect any kind of deadlock. Using Center Chain in Sect. 3 (resp. Center Tree
in Sect. 4) we obtain a self-stabilizing algorithm Sync(Center Chain) (resp.
Sync(Center Tree)) that computes the (left) center process of the given chain
(resp. the center (or one of the center) of the given tree) under the unfair dis-
tributed daemon.

Brief Announcement: Reduced Space Self-stabilizing Center 307

Table 2. sync(p)

Theorem 1. Under the unfair distributed daemon, Sync(Center Chain) is a
self-stabilizing center finding algorithm for chains and its time complexity is
O(D). The space complexity is constant per process and no register is used.

Theorem 2. Under the unfair distributed daemon, Sync(Center Tree) is a self-
stabilizing center finding algorithm for trees and its time complexity is O(D).
Both the space complexities per processes and per link registers are constant.

References

1. Antonoiu, G., Srimani, P.K.: A self-stabilizing distributed algorithm to find the
center of a tree graph. Parallel Algorithms Appl. 10(3–4), 237–248 (2007)

2. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree networks. In:
2003 Proceedings of 23rd International Conference on Distributed Computing Sys-
tems, pp. 20–26. IEEE (2003)

3. Bui, A., Datta, A.K., Petit, F., Villain, V.: Snap-stabilizing PIF in tree networks.
Distrib. Comput. 20, 3–19 (2007)

4. Datta, A.K., Larmore, L.L., Masuzawa, T.: Constant space self-stabilizing center
finding in anonymous tree networks. In: Proceedings of the 2015 International Con-
ference on Distributed Computing and Networking ICDCN 2015, pp. 38:1–38:10
(2015)

5. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Commun.
Assoc. Comput. Mach. 17, 643–644 (1974)

6. Moore, F.R., Langdon, G.G.: A generalized firing squad problem. Inf. Control 12(3),
212–220 (1968)

A Fully Asynchronous and Fault Tolerant
Distributed Algorithm to Compute a Minimum

Graph Orientation

Noël Gillet1(B) and Nicolas Hanusse2

1 University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
noel.gillet@labri.fr

2 CNRS, LaBRI, UMR 5800, 33400 Talence, France
nicolas.hanusse@labri.fr

Abstract. The minimum orientation problem is a classical graph theo-
retical problem in which we aim at finding an orientation of a graph G
that minimizes the maximum out-degree D+(G). Graph orientation is
motivated by load balancing problems in which a set of tasks have to be
allocated to a set of processes in order to minimize the completion time.
If we consider load balancing in networks, the decisions for the allocation
have to be made by the nodes without a global knowledge of the graph. In
this paper, we propose a distributed algorithm that computes a graph ori-
entation that provides a 2(2+ε)-approximation of the optimal. The algo-
rithm is asynchronous and runs in O((log n+diam(G)) log D+(OPT (G))
rounds, where n is the number of nodes, diam is the diameter of the
graph and D+(OPT (G)) is the maximum out-degree with an optimal
orientation. The algorithm does not need any global knowledge on G
and tolerates initial faults.

1 Introduction

In this paper, we aim at finding an orientation of any graph such that the maxi-
mum out-degree is minimized. Finding a minimum orientation is a natural model
for resources allocation problems. Let us consider for example a distributed data-
base of n nodes storing some data partitions called objects. The system receives
queries on these objects and a query can only be handled by a node that stores
the corresponding object. In most distributed databases like Apache Cassan-
dra [Cas] or HBase [HBa], objects are replicated a constant number of times,
mainly for fault tolerance purpose. A natural question is to determine the opti-
mal assignment between these copies for each query in order to minimize the
completion time, meaning the time needed to treat them all. If there are two
copies of every object, the whole storage can be modeled by a graph in which
vertices represent nodes and edges represent the queries. The edge orientation
shows which of the two nodes is in charge of executing the query.

Another application is the capacitated guard arrangement problem inspired
from the art gallery problems [O’R87]. Guards or robots are located at nodes
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 308–322, 2017.
https://doi.org/10.1007/978-3-319-69084-1_22

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 309

of a network. Every guard has to control a set of incident edges. The capacity
of a guard corresponds to the number of edges it is in charge of. The goal is to
minimize the guards consumption in terms of capacity. Thus the orientation can
be used to tune robots or sensors to minimize the total amount of resources.

As a last example, we can cite the Wireless Sensor Networks (WSN). WSN
are sets of autonomous nodes with sensors having some computation, commu-
nication and energy resources capabilities. A major question in this kind of
distributed system is how to minimize the energy consumption of nodes in order
to increase the system life span (see for example the survey [PNV13]). Nodes
in WSN have to deal with multiple tasks such as collecting data from their
environment, making treatment on the collected data and communicating with
the other nodes. Finding a good allocation scheme for these tasks is a natural
research direction for energy saving.

We note that in these examples, decisions for the allocation have to be taken
in a distributed manner, that is inherent to the distributed nature of these sys-
tems. The communication between nodes is typically asynchronous, meaning
that there is no assumption on the delay to send a message. Moreover, the sys-
tem can be unreliable since nodes can crash in practice. For all these reasons, we
aim at designing an asynchronous distributed algorithm that orients any graph.
Moreover, the algorithm has to deal with faults and has to be able to compute
an orientation even in this case.

In this paper, we provide a distributed asynchronous algorithm called
AvgDegAsync that computes a near-optimal orientation of any graph, even if
some nodes can be initially faulty. Informally, the algorithm consists in comput-
ing the density of the graph and orienting the edges of the graph toward nodes
with degree less than this density times a constant.

1.1 The Minimum Orientation of Bi-directed Graphs

Traditionally, an orientation algorithm is an algorithm that takes as an input
an undirected graph G and computes an orientation of the edges of G. In this
paper, we opt for a different representation since we consider a bi-directed graph−→
G where two nodes u and v are linked by a bi-directed arc �u, v�. In other words,
a bi-directed arc, or bi-arc, is simply the union of two arcs in both directions,
that is (u, v) and (v, u). This representation is completely equivalent since any
undirected graph can be transformed into a bi-directed one by replacing every
edge by a bi-directed arc. In this context, an orientation is a valid subgraph

−→
H ⊆−→

G in which either we keep only one of the arcs (u, v) or (v, u) that composes any
bi-directed arc �u, v�, or the bi-arc remains untouched. The minimum orientation
problem consists in finding a valid subgraph

−→
H with the smallest maximum out-

degree D+(
−→
H). An illustration is given in Fig. 1.

The reason why we use this representation is to maximize the number or arcs
for which an orientation decision is taken, in order to minimize the maximum
out-degree. Intuitively, every node will keep by default its incident out-going arcs.
If unfortunately a node u can not communicate with its neighbors (because they

310 N. Gillet and N. Hanusse

Fig. 1. An example of an orientation of a bi-directed graph
−→
G . The values in the nodes

represent their out-degrees. The left-most graph represent the graph
−→
G that we want

to orient, the middle graph is the orientation with an orientation algorithm A, and the

right-most graph is a possible optimal orientation of
−→
G .

are faulty for instance), then its out-degree d+(u) will remain the same in the
resulting orientation. Otherwise, if some of its neighbors are correct and decide
to take in charge the arcs, then the value of d+(u) will decrease.

1.2 The Distributed Model

We consider a static network of n nodes with unique identifiers of size O(log n)
bits that can communicate by exchanging messages through bidirectional com-
munication channels. These channels are assumed to be FIFO and fault-free
(without message lost). We consider the ASYNC model defined by Peleg [Pel00]
in which communications are fully asynchronous, meaning that messages are
delivered in a unpredictable but finite time.

The network topology is model by a bi-directed graph
−→
G = (V,

−→
E) and

we consider that this communication graph and the graph to orient are the
same. There is a subset F ⊂ V of f nodes (potentially empty) that are initially
fautly, as defined in [FLP85]. In this model of fault, any node in F can receive
messages from its neighborhood but will never answer. At the opposite, the
nodes in C = V \F will never crash. The nodes are aware about their neighbors
identifiers but we suppose that F is unknown, meaning that a node u can not
distinguish a faulty neighbor from a correct one. Informally, we denote by

−→
GF the

subgraph induced by the correct nodes and their (potentially faulty) neighbors.
Since nodes in F are unusable, we aim at minimizing the orientation of

−→
GF

instead of
−→
G . We suppose that

−→
GF is simple and remains connected. See Fig. 2

for an illustration.
We remark that even if the considered model of faults is stronger that the

more classical crash-prone model in which a node can crash at any time, it
remains non trivial to design correct algorithms. Indeed, since the communica-
tions are fully asynchronous, it is impossible to determine whether a node is
faulty or just slow to answer to a message. This implies that it is impossible,
without adding more assumptions to the model, to detect the global termination
of an algorithm. Hence we are not allowed to use a sequential composition of
algorithms, which is an important restriction for the algorithmic design.

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 311

Fig. 2. An example of a graph
−→
G with faulty nodes in black and its subgraph

−→
GF .

There is one distinguished node called the root and denoted by R. We suppose
that a broadcast tree rooted in R has already been defined and that every node
can use some primitive convergecast and broadcast to route a message towards
R or the rest of the network respectively. We suppose that this tree is a cover
graph of

−→
GF .

Finally, we define an asynchronous round as follows: At time to, root R sends
some messages to its neighbors. The first round time stamped at t1 starts when
the last message sent by R to its neighborhood is received. More generally, let
ti be the time when a round i starts and let Mi the set of messages sent but
not already received at time ti. We consider that a new round i + 1 can not
begin before the following conditions are fulfilled: (1) every message of Mi has
been received, (2) local computations have been applied after the reception of
a message, (3) a node can send a message to each of its neighbors. We remark
that for any i, it is possible that some messages are neither in Mi nor in Mi+1,
since they have been sent after ti and received before ti+1.

1.3 Our Contribution

We propose Algorithm AvgDegAsync(
−→
GF ,ε) which computes an orientation of

any bi-directed graph
−→
G of n nodes and m arcs. Up to our knowledge, it is the

first orientation algorithm working in an asynchronous distributed model with
faults. The formal statement of the performances of AvgDegAsync is provided
in Theorem 2. However we informally present in the following the main features
of our algorithm. We use the notation D+(OPT (

−→
GF)) to denote the maximum

out-degree with an optimal orientation.

– The algorithm exchanges O((m + n) log D+(OPT (
−→
GF))) messages of size

O(n log n) bits. Moreover, it requires O(n log n) bits of additional memory.
– We show that our algorithm runs in O((diam(

−→
GF) + log n) log D+(OPT

(
−→
GF))) asynchronous rounds, where diam(

−→
GF) is the diameter of the graph

and n is the number of nodes.
– Our algorithm computes a 2(2+ε)-approximation of the optimal, where ε > 0,

if F = ∅. If F �= ∅, we guarantee that for any node u then d+(u) ≤ max{2(2+
ε)D+

C (OPT (
−→
GF)), (1 + ε)f} when the algorithm terminates.

– Initially, no node has a global knowledge on the graph.

312 N. Gillet and N. Hanusse

1.4 Related Works

Exact solutions [GW92,AMOZ06] or approximated ones [Kow06] have already
been proposed to find an optimal orientation but they have all been designed in
a centralized and sequential manner. However it seems hard to adapt these solu-
tions in a distributed system while keeping good performance. Farach-Colton and
Tsai [FT14] propose an algorithm running in O(log(2+ε)/2 n) passes in the graph.
They are able to compute a (2 + ε)-approximation using O(n) of memory. This
solution, based on the knowledge of the average degree, can be easily adapted
in a distributed and synchronous system. We give more details in Sect. 3.1. Such
an adaptation will lead to a running time of O(diam(

−→
G) log(2+ε)/2 n) rounds,

where diam(
−→
G) corresponds to the diameter of

−→
G . However, this solution is not

immediately adaptable in an asynchronous model without knowing the number
of nodes. However few works have been done in a distributed model. Mitzen-
macher presents in [Mit96] some bounds on the orientation of random graphs,
in the LOCAL model as defined by Peleg [Pel00]. He considers the case m = n
and shows that with a constant number of rounds r, then the approximation of
the orientation is at least Ω(r

√
log n

log log n). He provides an algorithm that matches
the lower bound for r = 2, and an other algorithm leading to a O(log log n)
approximation if r = O(log log n). However, no results are given for arbitrary
graphs. Barenboim and Elkin [BE10] are the first to propose a deterministic
algorithm producing a complete orientation from any graph. Their algorithm is
based on a measure of sparsity called the arboricity. This orientation is computed
in O(log n) communication rounds in the LOCAL model of Peleg [Pel00] and it
is a (2 + ε) approximation of the optimal solution when the arboricity is known
by the nodes. If the arboricity is unknown, they provide a 2(2 + ε) approximate
algorithm running asymptotically in the same number of rounds. In any case,
they make the assumption that the number of nodes is known by any node. The
previous works do not deal neither with asynchrony nor faults. Concerning the
asynchrony, these algorithms can be adapted in an asynchronous communication
model using synchronizers [Awe85]. However, this kind of methods are clearly
unusable when nodes may crash (even initially), since a node will never receive
acknowledgment messages from a faulty neighbor. We can find some works on
fault-tolerant synchronizers [AS88,APPS92,AKM+93] but all these works make
the assumption that faults can be detected by the nodes, which is not possible
in our model. We can also mention some works on a similar but easier problem,
called network orientation [Tel94] in which it is shown that there is no deter-
ministic asynchronous algorithm that finds a network orientation if neither the
nodes have unique identifier nor there is a distinguished node.

2 Preliminaries

In this section, we gather the main notations and definitions that are used
throughout the paper. We also give a more formal statement of the minimum
orientation problem.

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 313

2.1 Basic Definitions and Notations

Let
−→
G = (V,

−→
E) be a bidirected graph. We denote by �u, v� = (u, v) ∪ (v, u) the

bi-directed arc between u and v. A valid subgraph
−→
H ⊆ −→

G is a subgraph for
which if �u, v� ∈ −→

E (
−→
G) then (u, v) ∈ −→

E (
−→
H) or (v, u) ∈ −→

E (
−→
H). An orientation of−→

G is simply any valid subgraph
−→
H ⊆ −→

G . The out-degree d+(u) corresponds to
the number of outgoing arcs from u and we define D+

S (
−→
G) = maxu∈S{d+(u) |

u ∈ V (
−→
G)} as the maximum out-degree of nodes in S ⊆ V . We can restrict

the degree to the outgoing arcs directed toward a set S ⊂ V of nodes using
the notation d+S (u). The open neighborhood N+(u) is the set of distinct nodes
{v1, . . . , vd+(u)} such that for any i ∈ [1, d+(u)] then �u, vi� ∈ −→

E . We similarly
define the closed neighborhood N+[u] as N+(u) ∪ {u}. For a given subset S,
notation N+

S (u) (resp. N+
S [u]) corresponds to N+(u) ∩ S (resp. N+[u] ∩ S). A

subgraph
−→
G [S] induced by a subset S ⊆ V is defined by all the bi-arcs �u, v� ∈ −→

E

such that u, v ∈ S. The diameter diam(
−→
G) is the maximum number of arcs of a

shortest path between two nodes.
An orientation algorithm A takes as input a bi-directed graph

−→
G and pro-

duces as output a valid subgraph A(
−→
G). We denote by D+(A(

−→
G)) the maximum

out-degree of the valid subgraph computed by A.

2.2 The Minimum Orientation Problem for Faulty Networks

We recall that the minimum orientation problem consists, for a given graph−→
G , in finding an orientation algorithm A such that for any algorithm A′ �= A
then D+(A′(

−→
G)) ≥ D+(A(

−→
G)). We denote by D+(OPT (

−→
G)) the maximum

out-degree of the valid subgraph computed by an optimal algorithm.
We similarly define the minimum orientation problem with faults in which a

subset F ⊂ V of f nodes are faulty (the nodes in C = V \F are correct). A faulty
node can not be used during the algorithm and an arc for which both extremities
are faulty can not be oriented. Hence we are interested in orienting the subgraph−→
GF = (VF ,

−→
EF) defined by VF = N [C] and

−→
EF = {(u, v) ∈ −→

E | u ∈ C ∨ v ∈ C}.
We remark that any arc (u, v) such that u ∈ C and v ∈ F will necessarily
be kept in any orientation. Actually, we do not want to take into account the
out-degree of the nodes in VF ∩ F . Then we are interested in minimizing the
maximum out-degree D+

C (
−→
GF) of the correct nodes in VF . More formally, the

minimum orientation problem with faults for a graph
−→
G with a set F of faulty

nodes consists in finding an algorithm A such that for any algorithm A′ �= A we
get D+

C (A′(
−→
GF)) ≥ D+

C (A(
−→
GF)).

For sake of simplicity, we consider in the rest of the paper that the input of
the problem is

−→
GF (which is equivalent to

−→
G if F = ∅). Moreover, if there is no

ambiguity, we use the notation D+(
−→
GF) instead of D+

C (
−→
GF).

The minimum orientation problem is closely related to the graph den-

sity. We define the density δ(
−→
G) = |−→E |

2|V | and the maximum density Δ(
−→
G) =

314 N. Gillet and N. Hanusse

max−→
G′⊆−→

G
{δ(

−→
G′)} where

−→
G′ is an induced subgraph of

−→
G . We present the follow-

ing well known result1 (for F = ∅).

Theorem 1 ([GF78]). For any simple graph
−→
G , D+(OPT (

−→
G)) = Δ(

−→
G)�.

Briefly, the idea for the lower bound is simply based on the pigeon hall
principle. For the upper bound, the authors show that it is always possible, until
an optimal orientation is not found, to find a directed path from an heavy node
with degree greater than Δ(

−→
G) to a light node with out-degree lower than Δ(

−→
G).

By flipping the arcs of the path, we can discharge the heavy node’s out-degree by
one. When there are some faults, the notion of optimality is more tricky. Thus,
we prove the following proposition:

Proposition 1.

Δ(
−→
GF)� ≤ D+

C (OPT (
−→
GF)) ≤ D+(OPT (

−→
G [C])) + max

u∈C
{|N+

F (u)|}

3 The Algorithm AvgDegAsync

3.1 The Peeling Process

Our algorithm is based upon the peeling process, described as follows. The den-
sity δ(

−→
G) is related to the average degree of

−→
G denoted by ad(

−→
G). We easily

remark that ad(
−→
G) = 2δ(

−→
G). An interesting property is that there always exists

a node u such that d(u) ≤ ad(
−→
G). Now we peel

−→
G by removing u and all its inci-

dent bi-directed arcs and we consider the subgraph
−→
G \ u. Then the properties

ad(
−→
G \ u) = 2δ(

−→
G \ u) remains true. We can repeat the process for every sub-

graph
−→
G i =

−→
G i−1 \ ui by removing a node ui+1 with degree d(ui+1) ≤ ad(

−→
G i).

We obtain a graph
−→
G i+1 with the properties that ad(

−→
G i+1) = 2δ(

−→
G i+1). The

peeling sequence σ = u1, . . . , un has the properties that any node ui has at most
ad(

−→
G i+1) neighbors with a higher index in the sequence. Using this sequence,

we can compute an acyclic orientation by keeping every arc toward the node
of lower index in σ. Since ad(

−→
G i+1) ≤ 2δ(

−→
G i+1) ≤ 2Δ(

−→
G), we deduce that for

every node u then d+(u) ≤ 2Δ(
−→
G) with such an orientation.

In [FT14], the authors parallelize this algorithm by activating at each step i

all the nodes with out-degree smaller than (2 + ε)δ(
−→
G i+1). Consequently, their

algorithm, described in a centralized model, is a (2 + ε)-approximation of the
optimal and runs in logarithmic time.

Our algorithm is based on this peeling process. Root R is in charge to estimate
the density of

−→
G and broadcast this value. Then nodes with a small enough out-

degree are locally activated and kept their out-going edges. These nodes are then
peeling and a new density value is computed for the resulting sub-graph.
1 This result was initially stated for undirected graph but it is immediately adaptable

for bi-directed graphs since the both are equivalent representations.

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 315

3.2 Main Issues in the Asynchronous Model with Faults

We present the main difficulties arising from our model. In the following, a node
u is identified if it has informed the root of its existence. Moreover we say that
u is activated (resp. unactivated) if an orientation decision has been taken for
every incident bi-arc (resp. it remains some bi-arcs for which no orientation
decision has already been taken). We define more formally these notion in the
next subsection.

The correct estimation of the density is therefore a key issue for the orienta-
tion. However, the number of (faulty) nodes or the number of arcs are not known,
even by R. Since the system is asynchronous, we cannot determine precisely the
number of correct nodes, making the density estimation difficult. Hence an esti-
mation of the density has to be done with a partial knowledge of the graph. More
precisely, R will identify progressively the correct nodes and compute the density
for the subgraph induced by the non activated nodes already identified, which is
by definition lower than the density of

−→
GF . It a node informs the root only about

its own existence, then the faulty nodes will never be identified, which can lead
to a biased estimation of the density. For instance, if many correct nodes have a
majority of faulty neighbors, the number of nodes estimated by R will be small
in comparison with the number of arcs. To deal with this problem, a node sends
its identifier to the root, in order to be identified, but also the identifiers of its
whole neighborhood. By doing this, the number of nodes identified by the root
will correspond to the set of inactive correct nodes and their neighborhood and
the number of arcs will be a subset of the arcs set of the corresponding induced
subgraph. Thus, the estimated density is never greater than Δ(

−→
GF).

A second issue is that two nodes can be activated roughly at the same time.
Because of the asynchronism and the potential presence of faults, the nodes can
not wait for an answer from their neighbors in order to decide which of them will
keep the bi-directed arc before notifying the root of their respective activation.
Then R will remove twice the same bi-arc in its count, leading to an under esti-
mation of the density. Such a biased estimation can have as a consequence that
some nodes will not be activated and the orientation will stop prematurely. To
handle such conflicts, we propose that one of the two nodes, chosen arbitrarily,
will send a patch message to R in order to re-adjust the estimation of the den-
sity. However, we have to be careful in the way we correct this count. Actually,
since a patch message can be received before one of the two activation messages,
just increasing the count without further verifications may lead to a temporary
overestimation of the density. This phenomenon is accentuated if there are sev-
eral conflicts. To deal with this problem, we encapsulate in the patch message
the activation message of one of the nodes. The root will then take into account
either the activation message contained into the patch message or the original
activation message if the last is faster than the patch message.

316 N. Gillet and N. Hanusse

3.3 Description of Algorithm AvgDegAsync

Data Structure. A node u knows its neighborhood N(u), among which a node
πu ∈ N(u) corresponds to the parent of u in the broadcast tree. In addition to
its neighborhood, a node u keeps in memory the last density value αu received
from R. Initially we set αu ← 0. Finally, at any time, u can be in state active or
not and in the state identify or not. Root R stores the same data structure as
any node but it also maintains two lists recorded and identified(respectively
of evolving size na and n) to remember respectively the recorded nodes and the
identified ones. There is also a variable mR corresponding to the number of arcs
for which no orientation decision have been done yet.

Informal Description. When the algorithm starts, root R does not know neither
the number of nodes nor the number of arcs of

−→
GF . A first broadcast message is

sent, denoted by 〈br, αR〉, with αR = 1, to every node.
When a node u receives for the first time a broadcast message, it sends an

identification message 〈id, u,N [u]〉 to R. We remark that in at most 2diam(
−→
GF)

rounds, the root is aware of all the correct nodes and the number of arcs with at
least one correct extremity. In any case, after the reception of a message 〈br, α〉,
then if d+(u) ≤ 2(2 + ε)α node u sets it state to active. An activation message
〈act, u, d+(u)〉 is sent to its neighbors and toward R. When an inactive neighbor
v receives such a message, then the arc (v, u) is deleted, leading to a decreasing
of its out-degree, and the test of activability is run.

When R receives a message 〈act, u, d+(u)〉, the variable mR and the list
recorded is updated (up to certain conditions) by respectively decreasing 2d+(u)
from mR and adding u to recorded. When the value mR/2(n − na) (which
corresponds to the current estimation of the density) is greater than (1 + ε)αR,
then αR is updated and broadcast.

Finally, we describe the behavior of the algorithm when conflicts appear.
When a node u receives an activation message from v, if u < v then (u, v)
is deleted and u sends a patch message 〈patch, v, d+(v)〉 to R where d+(v) is
the number of outgoing arcs incident to v at the time of its activation. When
R receives 〈patch, v, d+(v)〉, it first checks if u is already recorded. If not, u is
added to recorded and R decreases 2d+(u)−2 from mR. The activation message
of v will not be considered. If v is already recorded, mR is increasing of 2. In
both cases, the conflict is solved.

Details of the Algorithm. We recall that every node is aware of two primitive
broadcast and convergecast used respectively to send a broadcast message
from the root to all the nodes and from a node to the root. First of all, we
define the primitive activation(u) that consists to send an activation message
toward the root and to every neighbor. We describe in Algorithm1 the local
algorithm executed by any node u considering every kind of received messages.
The parameter ε is identical for all the nodes. We describe in Algorithm 2 the
local algorithm executed by root R.

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 317

for every received message M do
if M = 〈br, α〉 then

if identify = false then � M is the first message received by u from R.
execute convergecast(〈id, N [u]〉)
identify ← true

if αu < α then
execute broadcast(α)
αu ← α
if active = false then

if d+(u) ≤ 2(2 + ε) · αu then
execute activation(u)

if M = 〈act, v, d+(v)〉 then
if v ∈ N(u) then

if active = false then � There is no conflict.
delete the arc (u, v)
if d+(u) ≤ 2(2 + ε) · α then

execute activation(u)

else � There is a conflict. A tie break is done.
if u < v then

delete the arc (u, v)
send 〈patch, v, d+(v)〉 à R

if u = π(v) or v �∈ N(u) then
execute convergecast(M)

if M = 〈patch, v, d+(v)〉 or 〈id, N [v]〉 then
execute convergecast(M)

Algorithm 1. Local algorithm for a node u

for every received message M do
if M = 〈id, N [u]〉 then

for every node v ∈ N [u] do
if v �∈ identified then

identified.add(v)
mR ← mR + d+(u)

if M = 〈act, u, d+(u)〉 then
if u �∈ recorded then

recorded.add(u)
mR ← mR − 2d+(u)

if M = 〈patch, u, d+(u)〉 then
if u ∈ recorded then

mR ← mR + 2
else

recorded.add(u)
mR ← mR − 2d+(u) + 2

if 	mR/2(n − na)
 > (1 + ε) · α then � If required, a new value is broadcast.
α ← 	mR/2(n − na)

execute broadcast(〈br, α, 〉)

Algorithm 2. Local algorithm for root R

318 N. Gillet and N. Hanusse

4 Analysis

Our main result can be sum up by the following theorem (for sake of simplicity,
we use the notation D+

OPT instead of D+
C (OPT (

−→
GF)) for this theorem):

Theorem 2. Let
−→
G be a bidirected graph with a set F of f initially faulty nodes.

Let
−→
GF be a subgraph of

−→
G induced by the correct nodes of

−→
G and their neigh-

bors. Finally let ε > 0 be a constant. For f = 0, AvgDegAsync(
−→
GF , ε) computes

a 2(2 + ε)-approximation of the optimal orientation. For f > 0, after the execu-
tion of AvgDegAsync(

−→
GF , ε) then d+(u) ≤ max{(1 + ε)f, 2(2 + ε)D+

OPT } for any
node u. In any case, the algorithm needs O((diam(

−→
GF) + logs n) · log1+ε D+

OPT)
rounds, where s = 2+ε

1+ε . The additional memory is O(n log n) bits per node and
the number of exchanged messages is O((m + n) log1+ε D+

OPT) and the size of a
message is O(n log n) bits.

In the rest of the section, we will present the main ideas and lemmas used
to prove each of the resulting performances. The combination of these lemmas
leads immediately to the statement presented in Theorem 2.

4.1 Preliminaries

For the analysis only, we suppose that a message is received in at most one
unit of time (it is a simple normalization). In the following, we use the notation
Vrec,k and Vid,k to describe respectively the set of recorded nodes and the set
of identified nodes after the reception of the first k messages by R. We define
(
−→
G)k =

−→
GF [Vid,k \ Vrec,k] the subgraph induced by the identified nodes not

already recorded. A node u is α -activable according to a value α if d+(u) ≤
2(2+ ε)α. We recall that u is active if it has already been activated, and inactive
otherwise. We also present the well known concept of degeneracy. A bi-directed
graph is k -degenerate if there is a degeneracy ordering u1, u2, . . . , un such that
any node ui has at most k neighbors with a higher index in the ordering. The
degeneracy deg(

−→
G) of a graph

−→
G is the higher k such that

−→
G is k-degenerate.

A k-core is a subgraph
−→
H ⊆ such that every node in V (

−→
H) has an out-degree of

at least k. The following lemma is an adaptation of Lemma 2.31 of [BE13] for
bi-directed graphs.

Lemma 1 ([BE13]). For any bi-directed graph
−→
G , Δ(

−→
G) ≤ deg(

−→
G)

Proposition 2. There is always a Δ(
−→
G)-core for any bi-directed graph

−→
G .

Proof. Suppose that there is no Δ(
−→
G)-core in

−→
G . As a consequence, we can find

a degeneracy order in such a way that any node has at most k −1 out-neighbors
of higher index. We deduce that deg(

−→
G) < Δ(

−→
G), which is a contradiction with

Lemma 1. ��

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 319

4.2 Approximation

For the approximation, we first prove that R never broadcasts a value greater
than Δ(

−→
GF). The idea is that the root accurately estimates the number of inac-

tive nodes, but underestimates the number of arcs since some of them, hopefully
a minority, cannot be counted.

Lemma 2. Let
−→
G any bi-directed graph and F the set of faulty nodes in

−→
G .

Algorithm AvgDegAsync(
−→
GF , ε) never broadcasts a value greater than Δ(

−→
GF).

Lemma 3. If a node u is activated during the execution of Algorithm
AvgDegAsync(

−→
GF , ε), then d+(u) ≤ 2(2 + ε)D+

C (OPT (
−→
GF)).

Proof. Thanks to Proposition 1, we know that Δ(
−→
GF) ≤ D+

C (OPT (
−→
GF)). We

have proved in Lemma 2 that R never broadcasts a value greater than Δ(
−→
GF).

Let α be the higher broadcast value. A node u that is α-activable will keep
at most 2(2 + ε)α. Since α ≤ D+

C (OPT (
−→
GF)), we deduce that d+(u) ≤ 2(2 +

ε)D+
C (OPT (

−→
GF)) after its activation. ��

However, some correct nodes can remain inactive during the whole algorithm
execution. Indeed, if the estimated value is too low, then some correct nodes with
many faulty neighbors can never be activated. Nevertheless, we are able to bound
the outdegree of such nodes.

Lemma 4. A node u that remains inactive during the whole execution of
AvgDegAsync(

−→
GF , ε) is either faulty or has an out-degree of at most (1 + ε)f +

d+F (u) after the last recording.

4.3 Completion Time

We now prove the execution time of our algorithm. First, we investigate the
case F = ∅. We can prove that all the nodes will be activated. The proof is
by contradiction: if we suppose that some nodes remain inactive after the last
diffusion α, it means that their degree is at least 2(2 + ε)α, implying that the
density is (2 + ε)α which is greater than the broadcast threshold (1 + ε)α. The
details are provided in the following lemma.

Lemma 5. If F = ∅, then every node is activated.

Proof. Let α be the last broadcast value. Until there is a α-activable node,
then the algorithm continues to run. Suppose now that all α-activable nodes are
recorded by R. We prove that if it remains some unactivated correct nodes, it
means that R will broadcast a new value, which is in contradiction with our
hypothesis.

Suppose that R has received k messages in total including the last activation
message and suppose that it remains some correct nodes that are unactivated in
(
−→
G)k. Moreover suppose that δ((

−→
G)k) < (1+ ε)α so there is no more broadcast.

320 N. Gillet and N. Hanusse

Since there is no more α-activable nodes, it means that for every node u then

d+(u) > 2(2 + ε)α, which implies that δ((
−→
G)k) > |V ((

−→
G)k|·2(2+ε)α

2|V ((
−→
G)k| = (2 + ε)α >

(1+ε)α. However this is a required condition for a new broadcast, implying that
α can not be the last broadcast value. There is a contradiction. ��
Lemma 6. The root R will broadcast a value αR ≥ Δ(

−→
G)

2(2+ε) .

Proof. Suppose that the maximum value broadcast by R is αR < Δ(
−→
G)

2(2+ε) . After
the last activation according to this value, only the nodes with out-degree greater

than 2(2+ ε) Δ(
−→
G)

2(2+ε) = Δ(
−→
G) can remain unactivated. However, thanks to Propo-

sition 2, we know that there is a Δ(
−→
G)-core so at least one node will remain

unactivated, which is in contradiction with Lemma5. ��
Thanks to this result, we can prove that after the last broadcast message has

been sent by R, all the nodes are activated in O(logs n+diam(
−→
G)) rounds, with

s = 2+ε
1+ε . Here the arguments are the following. First we can show that for a

given subgraph
−→
H , a linear number of inactive nodes are activable according to

the density of
−→
H . We deduce that a linear number of inactive nodes are activable

according to the last broadcast value α. Moreover, since α is large enough and
there is no more broadcast message, we can show that this property is verified for
any subgraph. After at most O(diam(

−→
G)) rounds, α is received by every node,

all the activable nodes are activated and their neighbors are informed of this
activation. Then, at each round all the activable nodes of the remaining inactive
subgraph will be activate and their neighbors informed of this activation.

Lemma 7. After the last broadcast, Algorithm AvgDegAsync(
−→
G, ε) stops

exchanging messages in at most O(logs n + diam(
−→
G)) rounds, where s = 2+ε

1+ε .

Lemma 8. AvgDegAsync(
−→
G, ε) ends in O((diam(

−→
G)+logs n) log1+ε Δ) rounds,

with s = 2+ε
1+ε .

Proof. We know that if there is no more broadcast, all the nodes are activated in
at most logs n (Lemma 7). We deduce that there is at most 2 · diam(

−→
G) + logs n

rounds between two broadcasts. Moreover, R will broadcast αR ≥ Δ(
−→
G)/(2(2+

ε)) ≤ Δ (Lemma 6). Since the broadcast threshold is (1 + ε)α, the algorithm
broadcasts at most O(log1+ε Δ(

−→
G)) different values. Combining both arguments,

we get that AvgDegAsync terminates within O((diam(
−→
G)+logs n) log1+ε Δ(

−→
G))

rounds. ��
Now we consider the graph

−→
GF instead of

−→
G . First, by definition the broad-

cast time is O(diam(
−→
GF)), since the set of fault F is supposed to keep the

connectivity of
−→
GF and maintains the reliability of the broadcast tree. More-

over the last broadcast value may be really smaller than O(Δ(
−→
GF)) since all

activable nodes can be faulty, which will stop the peeling process earlier. From
all of this, we can deduce that Lemma 8 remains valid for

−→
GF , even if more

precise statement could certainly be given.

A Fully Asynchronous and Fault Tolerant Distributed Algorithm 321

4.4 Memory and Messages

Concerning the memory, it directly follows from the data structure. Root R
maintains two lists of size at most n in which the identifier of a node is matched
with a binary value. Since an identifier is encoded with O(log n) bits, we deduce
that the lists need O(n log n) bits. Concerning the size of a message, the more
expensive operation is to send an identification message, since a node needs to
send its entire neighborhood. Hence we can bound the size of such a message by
O(n log n). Finally, we evaluate the number of exchange message. First, when a
node u receives a value α from R, it makes a comparison with local value αu. If
αu ≥ α, it means that α was already sent to u before. The broadcast message
that carries α is discarded. Hence we can deduce the number of messages from the
number of broadcast executed by R and the number of messages used for a single
broadcast. We know that there is at most O(log Δ(

−→
G)) broadcast. The number

of messages for the broadcast phase is m/2 and there is at most n nodes that
are activated or identified, leading to O(n) more messages for the convergecast
phase plus at most O(m) messages in the worst case that is when all the nodes
are activated. We deduce that an entire broadcast-convergecast operation results
in at most O(m + n) messages. We deduce that O((m + n) log Δ(

−→
G)) messages

are exchanged during the execution of the algorithm.

5 Conclusion and Perspectives

Our distributed algorithm gives a constant approximation factor as for the best
algorithms working only under either a synchronous or non-faulty nodes assump-
tions. However we do not know if it is even possible to compute an optimal orien-
tation in our model, which is a question of natural interest. We have also focused
our efforts on simple graphs, but this work can be naturally extended to the case
of r-uniform hypergraph, where all the hyperedges are of size r. In the current
solution, the consumption of memory and messages can require n− f entries for
the root to record the identified nodes and to deal with the conflicts due to the
asynchronism. A natural perspective is to try to reduce the amount of memory
to orient a graph without increasing too much the approximation or slow down
the running time. Our algorithm is based on a broadcast-convergecast protocol
to aggregate the degree and compute the density. It requires a time proportional
to the diameter, which can be linear. A natural question is how can we speed
up this process broadcast in less than O(diam(

−→
G)) rounds? This problem of

aggregation in a faulty and asynchronous context is of independent interest and
seam to be an interesting theoretical challenge. Another challenging perspec-
tive is to consider other faulty models (like self-stabilizing ones). However, more
assumptions will certainly be required, such allowing to reorient some arcs.

References

[AKM+93] Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.:
Time optimal self-stabilizing synchronization. In: Rao Kosaraju, S., John-
son, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-Fifth Annual

322 N. Gillet and N. Hanusse

ACM Symposium on Theory of Computing, 16–18 May 1993, San Diego,
CA, USA, pp. 652–661. ACM (1993)

[AMOZ06] Asahiro, Y., Miyano, E., Ono, H., Zenmyo, K.: Graph orientation algo-
rithms to minimize the maximum outdegree. In: Proceedings of the 12th
Computing: The Australasian Theory Symposium, vol. 51, pp. 11–20. Aus-
tralian Computer Society Inc. (2006)

[APPS92] Awerbuch, B., Patt-Shamir, B., Peleg, D., Saks, M.E.: Adapting to asyn-
chronous dynamic networks (extended abstract). In: Rao Kosaraju, S., Fel-
lows, M., Wigderson, A., Ellis, J.A. (eds.) Proceedings of the 24th Annual
ACM Symposium on Theory of Computing, 4–6 May 1992, Victoria, British
Columbia, Canada, pp. 557–570. ACM (1992)

[AS88] Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks
(preliminary version). In 29th Annual Symposium on Foundations of Com-
puter Science, White Plains, New York, USA, 24–26 , pp. 206–220. IEEE
Computer Society, October 1988

[Awe85] Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–
823 (1985)

[BE10] Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for
sparse graphs using Nash-Williams decomposition. Distrib. Comput. 22(5–
6), 363–379 (2010)

[BE13] Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamentals and
Recent Developments Synthesis Lectures on Distributed Computing The-
ory. Morgan & Claypool Publishers, San Rafael (2013)

[Cas] Apache Cassandra. http://apache.cassandra.org
[FLP85] Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed con-

sensus with one faulty process. J. ACM 32(2), 374–382 (1985)
[FT14] Farach-Colton, M., Tsai, M.-T.: Computing the degeneracy of large graphs.

In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 250–260.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54423-1 22

[GF78] Gyárfás, A., Frank, A.: How to orient the edges of a graph. Combinatorics
18, 353–362 (1978)

[GW92] Gabow, H.N., Westermann, H.H.: Forests, frames, and games: algorithms
for matroid sums and applications. Algorithmica 7(5&6), 465–497 (1992)

[HBa] Apache HBase. http://apache.cassandra.org
[Kow06] Kowalik, �L.: Approximation scheme for lowest outdegree orientation and

graph density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288,
pp. 557–566. Springer, Heidelberg (2006). doi:10.1007/11940128 56

[Mit96] Mitzenmacher, M.D.: The power of two choices in randomized load balanc-
ing. Ph.D. thesis, University of California at Berkeley (1996)

[O’R87] O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University
Press, Oxford (1987)

[Pel00] Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Soci-
ety for Industrial and Applied Mathematics (2000). doi:10.1137/1.
9780898719772

[PNV13] Pantazis, N.A., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient rout-
ing protocols in wireless sensor networks: a survey. IEEE Commun. Surv.
Tutorials 15(2), 551–591 (2013)

[Tel94] Tel, G.: Network orientation. Int. J. Found. Comput. Sci. 5(1), 23–57 (1994)

http://apache.cassandra.org
http://dx.doi.org/10.1007/978-3-642-54423-1_22
http://apache.cassandra.org
http://dx.doi.org/10.1007/11940128_56
http://dx.doi.org/10.1137/1.9780898719772
http://dx.doi.org/10.1137/1.9780898719772

Universally Optimal Gathering Under
Limited Visibility

Pavan Poudel and Gokarna Sharma(B)

Department of Computer Science, Kent State University, Kent, OH 44242, USA
{ppoudel,sharma}@cs.kent.edu

Abstract. We consider the distributed setting of N autonomous mobile
robots that operate in Look-Compute-Move (LCM) cycles following the
well-celebrated classic oblivious robots model. We study the fundamental
problem of gathering N autonomous robots on a plane, which requires
all robots to meet at a single point (or to position within a small area)
that is not known beforehand. We consider limited visibility under which
robots are only able to see other robots up to a constant Euclidean dis-
tance and focus on the time complexity of gathering by robots under
limited visibility. There exists an O(DG) time algorithm for this prob-
lem in the fully synchronous setting, assuming that the robots agree on
one coordinate axis (say North), where DG is the diameter of the vis-
ibility graph of the initial configuration. In this paper, we provide the
first O(DE) time algorithm for this problem in the asynchronous set-
ting under the same assumption of robots agreement on one coordinate
axis, where DE is the Euclidean distance between farthest-pair of robots
in the initial configuration. The runtime of our algorithm is a signifi-
cant improvement since, for any initial configuration of N ≥ 1 robots,
DE ≤ DG, and, there exist initial configurations for which DG can be as
much as quadratic on DE , i.e., DG = Θ(D2

E). Moreover, our algorithm
is universally (time) optimal since the trivial time lower bound for this
problem is Ω(DE).

1 Introduction

In the classic model of distributed computing by mobile robots, each robot is
modeled as a point in the plane [15]. The robots are autonomous (no exter-
nal control), anonymous (no unique identifiers), indistinguishable (no external
identifiers), disoriented (no agreement on local coordinate systems and units of
distance measures), oblivious (no memory of past computation), and silent (no
direct communication and actions are coordinated via only vision and mobility).
They execute the same algorithm. Each robot proceeds in Look-Compute-Move
(LCM) cycles: When a robot becomes active, it first gets a snapshot of its sur-
roundings (Look), then computes a destination based on the snapshot (Compute),
and finally moves towards the destination (Move) [15].

We consider the gathering problem in the classic oblivious robots model,
where starting from any arbitrary (yet connected) initial configuration, all robots
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 323–340, 2017.
https://doi.org/10.1007/978-3-319-69084-1 23

324 P. Poudel and G. Sharma

are required to meet at a single point (or to position within a small area) that
is not known beforehand. Gathering is one of the most fundamental tasks and
a central benchmark problem in distributed mobile robotics [17]. Early stud-
ies on gathering in the classic model solved it under unlimited visibility, where
each robot is assumed to see (the locations of) all other robots [3], i.e., all the
robots are connected to each other. Flocchini et al. [16] gave the first algorithm
for gathering in the classic model under limited visibility, where each robot can
see (the locations of) other robots within a fixed unit distance (viewing range)
and each robot is connected to all other robots within that fixed unit distance
(connectivity range), i.e., the viewing and connectivity ranges are the same. Sub-
sequently, several algorithms were studied for this problem under different con-
straints [1,4,15,21,23]. These studies proved the correctness of the algorithms
but gave no runtime analysis (except a proof of finite time termination).

The runtime analysis for gathering has been studied relatively recently
[8,10,11,14,18]. Degener et al. [11] gave the first algorithm for this problem
with runtime O(N2) in expectation in the fully synchronous setting, where N
is the total number of robots. Degener et al. [10] gave an O(N2)-time algo-
rithm for this problem in the fully synchronous setting. Kempkes et al. [18] gave
an O(OPT log OPT)-time algorithm for this problem under a slightly different
continuous time setting, where OPT is the runtime of an optimal algorithm. All
above algorithms assume that both the viewing and connectivity ranges are of
(fixed) radius 1. Recently, Cord-Landwehr et al. [8] gave an O(N)-time algo-
rithm for this problem for robots positioned on a grid in the fully synchronous
setting. In this algorithm, it is assumed that robots have the viewing range of
(distance) 20, i.e., each robot can see other robots within a fixed distance of 20,
but the connectivity range is 1, i.e., two robots are connected if and only if they
are vertical or horizontal neighbors on the grid. Moreover, each robot is assumed
to have memory to remember a constant number of previous cycles. Recently,
Fischer et al. [14] gave an O(N2)-time algorithm for gathering on a grid in the
fully synchronous setting, if the memory is not available, using the improved
viewing range of 7.

The intriguing open question is whether an universally optimal time algo-
rithm can be designed for gathering under limited visibility, and if possible,
under what conditions. We define universal time optimality as follows: Let G be
the visibility graph of an arbitrary initial configuration I of N ≥ 1 robots in a
plane. The robots in the system act as nodes of G. There is an edge between
any two nodes in G if the distance between these two nodes satisfies the con-
nectivity range. Note that, according to the definitions above, the viewing and
connectivity ranges may or may not be the same, and if each robot is connected
to all robots within its viewing range, then the viewing range also serves as the
connectivity range, otherwise the connectivity range is different than the viewing
range. G must be connected otherwise gathering may be unsolvable [15]. G is
connected, if the robots (or nodes of G) cannot be separated into two subsets
such that no robot of the one subset is connected to any robot of the other sub-
set and vice versa. Let DG be the diameter of G which is the greatest distance

Universally Optimal Gathering Under Limited Visibility 325

Fig. 1. An illustration of two initial configuration dependent parameters, DE (the
Euclidean diameter) and DG (the visibility graph diameter), and the relation between
them: (left) The diameter DE for an initial arbitrary configuration, (middle) The visi-
bility graph G with diameter DG for the configuration of the left, and (right) An initial
configuration showing the quadratic difference between DE and DG with DG = Θ(D2

E).

between any pair of nodes in G following the edges of G. Let DE be the diameter
of the initial configuration I, which is the greatest Euclidean distance between
any pair of robots in I. Notice that, for any I, DE ≤ DG, and for some con-
figurations the gap between DG and DE can be as much as quadratic on DE ,
i.e., DG = Θ(D2

E). Figure 1 illustrates these ideas. Therefore, an O(DE)-time
algorithm would be universally optimal for gathering, since Ω(DE) is the trivial
time lower bound for robots to meet at a single point (or to position within a
small area) starting from any arbitrary initial configuration.

Recently, Izumi et al. [17] presented an O(DG)-time algorithm for gathering
on the plane in the fully synchronous setting under limited visibility with the
condition that robots agree on one coordinate axis. They use the viewing range
of 1 with an assumption that the visibility graph G is still connected even if the
edges with the corresponding distance at least 1 − 1√

2
are removed from it. The

assumption on the visibility graph G in Izumi et al. [17] essentially means that
the connectivity range is of radius 1√

2
(different and in fact smaller than the

viewing range of 1).
There is still a large gap between the O(DG) bound of Izumi et al. [17]

and the universally optimal O(DE) bound, since DG can be quadratic on DE

(Fig. 1). This work closes this gap under the same one axis agreement with a
slightly modified viewing range of

√
10 and the square connectivity range1 of

√
2

compared to the viewing range of 1 and the (circular) connectivity range of 1√
2

in [17] (if we consider the viewing range of 1 similar to [17], we need the square
connectivity range of

√
2√
10

and our algorithm again achieves O(DE) runtime).
The square connectivity range of distance c means that a robot is connected to
all other robots inside or on the boundary of the (axis-aligned) square area with
the (diagonal) distance from the robot to each corner of the square c. Therefore,

1 If we do not explicitly write “square”, then the viewing and connectivity ranges are
circular.

326 P. Poudel and G. Sharma

if we have both the viewing and connectivity ranges of c, then the area they
enclose differs if the connectivity range is “square”, otherwise they enclose the
same area. Moreover, in contrast to [17] which works in the fully synchronous
setting, our algorithm works in the asynchronous setting.

Contributions. We consider autonomous, anonymous, indistinguishable, obliv-
ious, and silent point robots (also called swarms) as in the classic oblivious robots
model [15]. Robots agree on the unit of distance measure. The viewing range is√

10 – a robot can see all other robots within the fixed radius of at most distance√
10. The square connectivity range is

√
2 – a robot is connected to all other

robots inside or on the boundary of the (axis-aligned) 2 × 2-sized square area
whose center is the position of the robot (Definition 1). In a LCM cycle, a robot
can move to any position inside or on the square area, including its four corners.
The challenge here is that robot movements must not harm the swarm connec-
tivity. As in Izumi et al. [17], we assume that robots agree on one coordinate
axis (say North) but they may not agree on the other coordinate axis. More-
over, we assume that the robot setting is asynchronous – there is no notion of
common time and robots perform their LCM cycles arbitrarily. Furthermore, we
assume that the robot moves are rigid – a robot in motion in each cycle cannot
be stopped (by an adversary) before it reaches its destination at that cycle.

In this paper, we prove the following result which, to our best knowledge,
is the first algorithm for gathering that is universally (time) optimal for classic
oblivious robots under limited visibility since the trivial time lower bound for
gathering under limited visibility starting from any initial configuration of N ≥ 1
robots is Ω(DE).

Theorem 1. For any initial connected configuration of N ≥ 1 robots with the
viewing range

√
10 and the square connectivity range

√
2 on a plane, gathering

can be solved in O(DE) time in the asynchronous setting, when robots agree on
one coordinate axis.

Notice that, the visibility graph G must be connected, since gathering may
not be solvable under limited visibility if G is not connected [15,16]. Our selection
of the viewing and (square) connectivity ranges, and the assumption of one-axis
agreement play an important role in proving Theorem1. For both the viewing
and (circular or square) connectivity ranges of 1, we conjecture that there is
no O(DE)-time algorithm for gathering of classic oblivious robots, even when
robots agree on both the coordinate axes. For the viewing and (circular or square)
connectivity ranges of constant >1, we conjecture that there is no O(DE)-time
algorithm for gathering of classic oblivious robots, if robots do not agree on any
coordinate axis.

Comparison to the Previous Runtime Results. In comparison to [8,10,11,
14,18] (described above), our algorithm assumes one-axis agreement but runs
in universally optimal O(DE) time whereas all those algorithms run in non-
optimal O(N) to O(N2) time. [10,11,18] have both the viewing and (circular)
connectivity ranges of 1 and [8,14] has the square connectivity range of 1 and

Universally Optimal Gathering Under Limited Visibility 327

the viewing range of 20 (7). Our algorithm has the viewing range of
√

10 and the
square connectivity range of

√
2. In comparison to Izumi et al. [17], our algorithm

runs in O(DE) time whereas their algorithm runs in O(DG) time. In contrast
to ours, they have the viewing range of 1 and the (circular) connectivity range
of 1√

2
. Moreover, all the previous algorithms including Izumi et al. [17] work in

the fully synchronous setting, except [11] which works in the one by one acti-
vation setting. Our algorithm works in the asynchronous setting. Furthermore,
all previous algorithms assume that when two or more robots move to the same
location they are merged to be only one robot. Our algorithm does not merge
robots, i.e., even if robots located at the same position and activated at different
time, the gathering progress is achieved through the (individual) moves of these
robots.

Technique. Let L be the topmost horizontal line so that all the robots of any
initial configuration I are either on the positions of line L or South from L. Let
L′ be the line parallel to L at distance 1 South of L. The main idea behind
the algorithm is to make robots of I on North of L′ move to the positions of
L′ or South of L′ in O(1) epochs, even under the asynchronous setting, where
an epoch is the time interval for all N robots to execute their LCM cycle at
least once (formal definition is given in Sect. 2). To accomplish this, we classify
the moves of robots into three categories: diagonal hops, horizontal hops, and
vertical hops. We will show that if all the robots on North of L′ make diagonal or
vertical hops, they reach L′ or South of L′ in 1 epoch. However, if those robots
make a horizontal hop, then in 2 epochs, they reach positions of L′ or South of
L′ through the subsequent vertical or diagonal hop.

Similarly, let Lb be the bottommost horizontal line (parallel to L) so that
the robots on I are either on Lb or North of Lb. The main idea is to show that
the robots on Lb do not move South of Lb forever. Specifically, we show that
robots on Lb wait for all the robots on North of Lb so that the robots on North
of Lb meet the robots of Lb at distance (at most) D South of Lb with D being
proportional to the horizontal diameter of the initial configuration I. This has
been achieved by asking robots not to make any diagonal, horizontal, or vertical
hop, if they see at least a robot on North at vertical distance 1 (or more) from
their positions.

Other Related Work. The other related work to ours is [2,3,5–7,9,12,13,16,
17,19,21,22]. We omit the discussion due to space constraints.

Roadmap. In Sect. 2 we detail the model and touch on some preliminaries. For
simplicity in discussion, we first provide an O(DE)-time algorithm for robots
on a grid agreeing on both the coordinate axes in Sect. 3. We then provide an
O(DE)-algorithm for robots on a plane agreeing on both the coordinate axes in
Sect. 4. In Sect. 5, we discuss how the algorithms of Sects. 3 and 4 can be modified
to solve gathering when robots agree on only one axis. Finally, we conclude in
Sect. 6. Many proofs, pseudocodes, and some figures and details are omitted due
to space constraints.

328 P. Poudel and G. Sharma

2 Model and Preliminaries

Robots. We consider a distributed system of N robots (agents) from a set
Q = {r0, r1, · · · , rN−1}. Each robot is a (dimensionless) point that can move in
an infinite 2-dimensional real space R2. Throughout this paper we will use a point
to refer to a robot as well as its position. We denote by dist(ri, rj) the distance
between two robots ri, rj ∈ Q. Each robot ri works under limited visibility and
the viewing range2 of each robot is

√
10, i.e., a robot ri can see, and be visible

to, another robot rj if and only if dist(ri, rj) ≤ √
10. The connectivity range

of each robot is
√

2 following square connectivity, i.e., two robots have an edge
between them on G if one robot is inside the (axis-aligned) 2 × 2-sized square
area formed by the other robot being at its center. The robots agree on the unit
of distance measure, i.e., the viewing and connectivity ranges of

√
10 and

√
2 are

the same for each robot ri ∈ Q. The robots also agree on one coordinate axis,
North (the assumption of robots agree on East is analogous).

Look-Compute-Move. Each robot ri is either active or inactive. When a
robot ri becomes active, it performs the “Look-Compute-Move” cycle as fol-
lows: (i) Look: For each robot rj that is within the viewing range of ri, ri can
observe the position of rj on the plane. Robot ri also knows its own position;
(ii) Compute: In any cycle, robot ri may perform an arbitrary computation
using only the positions observed during the “look” portion of that cycle. This
includes determination of a (possibly) new position for ri for the start of next
cycle; and (iii) Move: At the end of the cycle, robot ri moves to its new position.
In the fully synchronous setting (FSYNC), every robot is active in every LCM
cycle. In the semi-synchronous setting (SSYNC), at least one robot is active,
and over an infinite number of LCM cycles, every robot is active infinitely often.
In the asynchronous setting (ASYNC), there is no common notion of time and
no assumption is made on the number and frequency of LCM cycles in which a
robot can be active. The only guarantee is that every robot is active infinitely
often. Complying with the ASYNC setting, we assume that a robot “wakes up”
and performs its Look phase at an instant of time. We also assume that dur-
ing the Move phase it moves in a straight line and stops only after reaching its
destination point, i.e., the moves are rigid [15].

Runtime. For the FSYNC setting, time is measured in rounds. Since a robot
in the SSYNC and ASYNC settings could stay inactive for an indeterminate
interval of time, we bound a robot’s inactivity and introduce the idea of an epoch
to measure runtime. An epoch is the smallest interval of time within which each
robot is guaranteed to execute its LCM cycle at least once. Therefore, for the
FSYNC setting, a round is an epoch. We will use the term “time” generally to
mean rounds for the FSYNC setting and epochs for the SSYNC and ASYNC
settings.

2 For some cases, e.g., for grid, the viewing range smaller than
√

10 is sufficient. We
describe what exactly is the viewing range when we describe algorithms in Sects. 3
and 5.

Universally Optimal Gathering Under Limited Visibility 329

Square Area. Let ri ∈ Q be a robot positioned
at coordinate (xi, yi). Let Li, L

′
i, respectively, be

the horizontal and vertical lines passing through ri.
Since, ri knows North, ri can easily compute Li, L

′
i.

The square area for ri, denoted as SQ(ri), is an area
of the plane enclosed by four lines Li,t, Li,b, Li,l, Li,r

with Li,t, Li,b parallel to Li (perpendicular to L′
i)

passing through coordinates (xi, yi+1) and (xi, yi−
1), respectively, and Li,l, Li,r perpendicular to Li

(parallel to L′
i) passing through coordinates (xi −

1, yi) and (xi + 1, yi), respectively. Notice that SQ(ri) is axis-aligned and both
height and width of it is 2. We denote by ptl, pbl, pbr, ptr the intersection points of
lines Li,t and Li,l, Li,b and Li,l, Li,b and Li,r, and Li,t and Li,r, respectively. We
can divide SQ(ri) to four quadrant squares SQ1(ri), SQ2(ri), SQ3(ri), SQ4(ri)
with both height and width 1. Let SQ1(ri), SQ2(ri) be in North of Li and
SQ3(ri), SQ4(ri) be in South of Li. Moreover, let SQ1(ri), SQ3(ri) be in West
of L′

i and SQ2(ri), SQ4(ri) be in East of L′
i. We say that positions of Li in SQ(ri)

belong to SQ3(ri) and SQ4(ri). Figure in the right illustrates these ideas.

Unit Area. Let rj , rk, respectively, be the topmost
and leftmost robots among the robots in SQ(ri). In
some situations, both rj , rk may be the same robot
and this definition is still valid. Let LT be the hor-
izontal line passing through rj and LL be the ver-
tical line passing through rk. Let LB be the hori-
zontal line parallel to LT passing though distance 1
South of LT . Similarly, let LR be the vertical line
parallel to LL passing through distance 1 East of
LL. The unit area for ri, denoted as SQunit(ri), is
an area of the plane inside SQ(ri) enclosed by lines LL, LT , LR, LB . Note that
SQunit(ri) is an (axis-aligned) unit square of both height and width 1. We denote
by pTL, pBL, pBR, pTR the intersection points of lines LT and LL, LB and LL,
LB and LR, and LT and LR, respectively. Figure in the right illustrates these
ideas.

Visibility Graph and Gathering Configuration. We define the visibility
graph of any initial configuration I and gathering configurations as follows.

Definition 1 (Initial Visibility Graph). The visibility graph G(I) = (Q, E)
of any arbitrary initial configuration I of robots is the graph such that, for any
two distinct robots ri, rj, (ri, rj) ∈ E if rj is positioned on or inside SQ(ri) (and
vice-versa).

SQ(∗) provides connectivity for robots with square connectivity range
√

2.
The gathering problem may not be solvable under limited visibility, if the initial
visibility graph G(I) is not connected [15,16]. Therefore, we assume that G(I)
is connected at time t = 0 throughout the paper. Moreover, any algorithm for

330 P. Poudel and G. Sharma

gathering must maintain the connectivity of G(I) during its execution until a
gathering configuration is reached. For clarity, we denote by Gt(I) the visibility
graph G(I) for any time t ≥ 0.

Definition 2 (Ideal Gathering Configuration). An ideal gathering config-
uration is one where all robots are at a single point not known beforehand.

Definition 3 (Relaxed Gathering Configuration). A relaxed gathering
configuration is one where all robots are in a horizontal segment of length 1
not known beforehand.

The relaxed gathering configuration (Definition 3) is inspired from the recent
work of [8], where they modified the ideal gathering configuration (Definition 2)
to solve gathering on a grid by locating all robots within a 2 × 2-sized square
area that is not known beforehand. Definition 3 helps us to circumvent the
impossibility results on gathering to a point in the ASYNC setting [20], even
when N = 2, by gathering the robots in a unit horizontal line segment. Using our
square connectivity range

√
2, the viewing range

√
10, and one-axis agreement,

even when N = 2, robots can reach in a unit length horizontal segment. The
viewing range helps each robot ri to see whether there is a robot outside SQ(ri)
and decide whether (at least) Definition 3 is reached. Under both axis agreement,
our algorithms provide an ideal gathering configuration (Definition 2). Under
one-axis agreement, our algorithms provide a relaxed gathering configuration
(Definition 3). Since we focus on runtime, we do not explicitly characterize which
configurations do not achieve Definition 2 under one-axis agreement, and simply
prove that all the configurations (at least) attain Definition 3 in O(DE) time.

3 O(DE) Time Algorithm for the Grid

The Grid Model. We define the grid model which is a restriction imposed
on the Euclidean plane. The motivation behind designing an algorithm for this
model is that it is simple to understand and easy to analyze. We design and
analyze an algorithm without the grid restriction in Sect. 4. In the grid model,
a robot moves on a 2-dimensional grid and changes its position to one of its
eight horizontal, vertical, or diagonal neighboring grid points. Throughout this
section, we assume that robots agree on both the coordinate axes and each robot
has the viewing range of 2 (measured in L1-distance a.k.a. Manhattan distance).
Moreover, each robot has the square connectivity range of 2 (if measured in
L1-distance), otherwise it is

√
2 (if measured in Euclidean distance). We say

gathering is done when the robot configuration satisfies Definition 2.

The Algorithm. Depending on the positions of other robots within its viewing
range, ri distinguishes diagonal, horizontal, and vertical hops, which we discuss
separately below. A robot ri hops on one of its neighboring grid points based
on which diagonal, horizontal or vertical pattern matches the snapshot it takes
in the Look phase. Notice that since robots agree on North, ri never hops on
any of the three neighboring grid points on North from its position, i.e., ri hops

Universally Optimal Gathering Under Limited Visibility 331

Fig. 2. An illustration of diagonal (left two), horizontal (middle) and vertical hops
(rest).

only to one of its 5 neighboring grid points on the same horizontal line Li or on
South of Li. We will show that this allows to achieve gathering progress in every
epoch. Since robot moves are not instantaneous due to the ASYNC setting, a
robot ri also does not move if it sees at least a robot on North of Li inside or
on SQ(ri). This is crucial to guarantee that robots do not move South forever.
Robot ri terminates when it sees no other robot inside or on SQ(ri) other than
its position.

Diagonal Hops. Robot ri makes a diagonal hop, when it sees no robot in
SQ(ri) on North of Li (including the positions of Li) and either (i) ri sees no
other robot in SQ3(ri) (except at its position) and sees at least one robot on Li,r

in South of Li, or (ii) ri sees no other robot in SQ4(ri) (except at its position)
and sees at least one robot on Li,l in South of Li. In case (i), ri hops on the grid
point pbr, whereas in case (ii), on the grid point pbl. A diagonal hop makes ri
move L1-distance of 2 although ri itself moves diagonally distance

√
2. The left

two of Fig. 2 illustrate diagonal hops.

Horizontal Hops. A horizontal hop takes ri to its neighboring grid point on
Li in East. Robot ri makes a horizontal hop, when it sees no robot in SQ(ri),
except at least a robot rj on neighboring grid point on Li in East and possibly
on Li between ri and rj . Robot ri hops on that neighboring grid point (i.e., the
position of rj). The middle of Fig. 2 illustrates this horizontal hop.

Vertical Hops. A vertical hop always takes ri to its neighboring grid point
vertically South from it. Robot ri makes a vertical hop, if either (i) it sees a
robot rj on L′

i in South of Li and no other robot in SQ(ri) on North of Li or (ii)
it sees at least one robot each on Li,l and Li,r on or South of Li and no robot
in SQ(ri) on North of Li. The second from right of Fig. 2 illustrates case (i) and
the right of Fig. 2 illustrates case (ii).

Analysis of the Algorithm. We first prove the correctness of the algorithm
in the sense that the visibility graph Gt(I) remains connected during execution.
We then prove the progress of the algorithm, i.e., in every epoch, any connected
initial configuration converges towards an ideal gathering configuration (Defin-
ition 2). Let I be any arbitrary initial configuration of robots in Q on a grid
such that G0(I) is connected. Let SER(I) be the axis-aligned smallest enclos-
ing rectangle for the robots in I. Let DY ,DX , respectively, be the height and
width of SER(I). Let LDY

, . . . , LD0 be the horizontal line segments of SER(I)

332 P. Poudel and G. Sharma

at every 1 unit vertical distance with LDY
being the topmost horizontal line

segment and LD0 being the bottommost horizontal line segment. Similarly, let
LDX

, . . . , L0 be the vertical line segments of SER(I) at every 1 unit horizontal
distance with LDX

being the rightmost vertical line segment and L0 being the
leftmost vertical line segment. Let L′

Y be the line parallel to LD0 at distance
DX

2 South of LD0 . Figure 3 illustrates these definitions. Note that The algorithm
for Euclidean Plane in both axis agreement (Sect. 4) chooses L′

Y at distance DX

South of LD0 .

Lemma 1. Given any initial configuration I such that the visibility graph G0(I)
is connected, the graph Gt(I) at any time t > 0 remains connected.

Lemma 2. All the robots on the line segment LDY
of SER(I) move to the line

segment LDY −1 in at most 2 epochs.

Fig. 3. SER(I) and the trian-
gular area on South of it.

The following observation is immediate for
vertical hops since a vertical hop by a robot takes
it to its neighboring grid point vertically South of
it. For a horizontal/diagonal hop, this is also true
since a robot doing a horizontal/diagonal hop
never finds its neighboring robot outside LDX

and L0.

Observation 1. No robot of SER(I) moves to
the positions outside of lines L0 and LDX

during
the execution.

Lemma 3. No robot of SER(I) reaches South
of horizontal line L′

Y (Fig. 3) during the execu-
tion.

Lemma 4. Both the viewing and square connectivity ranges of 2 is sufficient
for gathering to a grid point (that is not known beforehand) on a grid under both
axis agreement.

The analysis of this section proves the following main result.

Theorem 2. Given any connected configuration of N ≥ 1 robots with both the
viewing and square connectivity ranges of 2 on a grid, the robots can gather to
a point in O(DE) epochs in the ASYNC setting under both axis agreement.

Proof. We have from Lemma 1 that Gt(I) remains connected during the execu-
tion. We have from Lemma 2 that all the robots at the topmost horizontal line
LDY

of SER(I) move to LDY −1 in at most 2 epochs. After at most 2 epochs,
LDY −1 becomes LDY

, and Lemma 2 applies again to the robots of LDY −1 which
takes all the robots on LDY −1 to LDY −2 or South in next 2 epochs. This situ-
ation then continues. Therefore, all the robots in SER(I) move to line LD0 or
South in at most 2DY epochs. These robots will be in one grid point in at most

Universally Optimal Gathering Under Limited Visibility 333

next DX epochs, arguing similar to Lemma 2 and observing that for every 1
unit vertical hop of the robots on South of LD0 , DX will decrease by 2, since
L′
Y is DX/2 South of LD0 . Therefore, the robots can gather in O(DX + DY)

epochs. We have that max{DX ,DY } ≤ DE ≤ √
2 · max{DX ,DY } for SER(I)

of any initial configuration I. Therefore, DX + DY ≤ 2 · max{DX ,DY }, and
hence O(DX + DY) = O(2 · max{DX ,DY }) = O(DE). The algorithm termi-
nates (Lemma 4) since if a robot ri sees no robot in SQ(ri) other than its current
position, then all the robots of Q must be gathered in the current position of ri
(due to the connectivity guarantee of Lemma 1). ��

4 O(DE) Time Algorithm for the Euclidean Plane

We discuss here how to solve gathering in a Euclidean plane, removing the
restrictions on robot moves imposed on a grid. The viewing range is

√
10 and

the square connectivity range is
√

2 (both measured in the Euclidean distance).
The robots agree on both coordinate axes. We say gathering is done when the
robot configuration satisfies the ideal gathering configuration (Definition 2).

The Algorithm. Depending on the positions of other robots in its viewing
range, a robot ri can decide to hop on positions of one of its neighboring quad-
rants SQ3(ri) or SQ4(ri); we do not allow ri to move to positions North of Li.
In contrast to grid where robots always move either unit distance (horizontal
and vertical hops) or distance 2 (diagonal hops), in the Euclidean plane, a robot
may move with varying distance of at most 1 for horizontal and vertical hops
and varying distance of at most

√
2 for diagonal hops. The main difference (with

the grid) is on how robots match patterns to perform diagonal, horizontal, and
vertical hops. In contrast to relatively simple matching of patterns on a grid, the
matching patterns for the Euclidean plane are significantly complicated.

Overview of the Patterns. The idea is to resemble the patterns for the grid
even in the Euclidean plane. For that we ask each robot ri to compute unit
area SQunit(ri) as defined in Sect. 2. SQunit(ri) helps ri to decide whether to
make a diagonal, horizontal, or vertical hop. If the robots in SQunit(ri) are not
connected to any other robot outside of SQunit(ri) in West of LR (in East of
LL), then ri make a horizontal hop to East (West). If ri satisfies the conditions
for a horizontal hop, except that there is a robot on point pBR (or pBL) and
the robots in SQunit(ri) are in a single diagonal line, then it makes a diagonal
hop to pBR (or pBL). If the robots in SQunit(ri) are not connected to any other
robot outside of SQunit(ri) in North of LB , but (at least) a robot in SQunit(ri)
is connected to a robot on or South of LB , then ri makes a vertical hop. In
other words, if ri sees itself or at least a robot in SQunit(ri) is connected to
a robot on North of LT , it does not move. This guarantees that robots do not
move South forever. Also, if ri sees at least one robot each on its both sides
(East and West) at horizontal distance ≥2, then it makes a vertical hop. The
termination is guaranteed by asking ri to check in every LCM cycle whether
all robots in its viewing range are positioned in SQunit(ri) (that is, ri sees no

334 P. Poudel and G. Sharma

robot outside SQunit(ri)). When that is the case, ri and the remaining robots
in SQunit(ri) run a special procedure to reach a single point (Definition 2) and
terminate their computation. Reaching to a single point is facilitated for robots
by both axis agreement.

Detailed Description of the Patterns. We provide details of the patterns
below. Robot ri terminates when it sees no other robot in SQ(ri), except on its
current position.

Diagonal Hops. Robot ri makes a diagonal hop in either of the following
conditions:

– This case is similar to grid. If ri sees no other robot in SQ(ri) except at least
a robot rj in SQ4(ri) on the diagonal corner point pbr, ri hops to pbr. Robot
ri moves distance exactly

√
2 if it performs this hop.

– Robot ri hops diagonally distance
√

2−Lij (where Lij is the distance between
ri and rj , the topmost robot at point pTL which is also the leftmost) to a
point in SQ4(ri), if the following conditions satisfy:

• No robot in SQunit(ri) is connected to any other robot in North of LT .
• No robot in SQunit(ri) is connected to any other robot in West of LR,

except the robots in SQunit(ri).
• All robots in SQunit(ri) are in its diagonal line that passes through

SQ4(ri).
• There is at least a robot on the diagonal point pBR of SQunit(ri).

Figure 4 (left) illustrates this hop for ri. The symmetric diagonal case moves ri
to point pBL which is illustrated in Fig. 4 (middle).

Fig. 4. An illustration of diagonal hops (left and middle) and a horizontal hop (right).

Remarks. If there is at least a robot on LR (but not on LB , including point pBR)
of SQunit(ri), then ri makes a horizontal hop (described in the next paragraph),
even though all the robots in SQ(ri) are in its diagonal line passing through
SQ4(ri). If there is at least a robot on LB between points pBR and pBL, then ri
makes a vertical hop (described later), irrespective of the robots on LR. If any
robot in SQunit(ri) is connected to any other robot on South of LB and West of
LR, ri also makes a vertical hop (described later), irrespective of the robots on

Universally Optimal Gathering Under Limited Visibility 335

LR. The analogous conditions apply for the symmetric diagonal hop case shown
in Fig. 4 (middle) for ri.

Horizontal Hops. Robot ri makes a horizontal hop in the following conditions:

– This case is similar to the grid. If ri sees a robot rj in its East at distance 1 on
line Li and there is no robot in SQ(ri), except the current position of ri and
possibly on Li from ri up to rj , ri hops to the position of rj (distance 1).

– Robot ri hops horizontally East on Li distance 1 − Lik (Lik is the distance
between ri and rk, the leftmost robot in SQ(ri)), if all the following conditions
satisfy (Fig. 4 (right) illustrates this hop for ri):

• No robot in SQunit(ri) is connected to any other robot in North of LT .
• No robot in SQunit(ri) is connected to any other robot on West of LR,

except the robots in SQunit(ri).
• There is no robot on LB of SQunit(ri).

Since we ask robots to always move East in a horizontal hop, we do not have a
symmetric case for horizontal hops under both axis agreement.

Fig. 5. An illustration of vertical hops

Vertical Hops. If no robot in SQunit(ri) is connected to any other robot in
North of Li,t (of SQ(ri)), robot ri makes a vertical hop distance 1−Lij (where Lij

is the vertical distance from ri to line LT) in either of the following conditions:

– Robot ri sees at least one robot at the intersection point of L′
i and LB .

– Robot ri sees at least one robot each in both East and West at horizontal
distance ≥2. Figure 5 (middle) illustrates this case.

– Robot ri sees at least a robot on LB of SQunit(ri), no robot in SQunit(ri)
is connected to any other robot in North of LB and West of LL, and the
diagonal hop is not satisfied for ri. Figure 5 (left) illustrates this case.

– Robot ri sees at least one robot in SQunit(ri) that is connected to a robot
in South of LB on or West of LR and no robot in SQunit(ri) is connected to
any other robot in North of LB and West of LL. Figure 5 (left) also illustrates
this case.

336 P. Poudel and G. Sharma

– Let SPunit(ri) be a unit area in West of Li,l and South of LB with LB being
the topmost horizontal line LT of SPunit(ri) and Li,l being the rightmost
vertical line LR of SPunit(ri). Robot ri sees at least a robot in SQunit(ri) is
connected to a robot in North of LB and West of LL, ri sees at least a robot
in SPunit(ri), and a horizontal hop is not satisfied. Figure 5 (right) illustrates
this case.

Remarks. Robot ri also makes a vertical hop if the symmetric situations on
last 3 conditions are satisfied. The above rules infer that the robots move only
under certain situations. Robots do not move in all the remaining situations.
This process repeats until all robots of Q are inside an (axis-aligned) 1× 1-sized
square area so that special procedure for termination, as described in the next
paragraph, can be applied.

The Termination Procedure. We will show in the analysis that the diagonal,
horizontal, and vertical hops described above position all robots in Q in an
(axis-aligned) 1 × 1-sized square area, say SA. We now discuss how the robots
reach to a point and terminate. Let rl, rb, rr be the leftmost, bottommost, and
rightmost robots in SA. We have that the unit area SQunit(ri) of each robot ri
that is in SA overlaps. Therefore, if all the robots in SA are in a single diagonal
line, then rb does not move and all other robots in SA make a diagonal hop
with destination the current position of rb. Otherwise, robots first perform a
horizontal hop as destination point the positions on the right vertical line LR

of SA. The robots on LR do not move until all the robots in SA (the same for
all robots) are positioned on LR. After that, the robots (now on LR) perform a
vertical hop as destination the bottommost robot on LR, which does not move.

Analysis of the Algorithm. We first prove correctness and then progress
guarantee of the algorithm. We use SER(I) and other definitions as in Sect. 3.

Lemma 5. Given that G0(I) is connected, the visibility graph Gt(I) at any time
t > 0 remains connected.

Lemma 6. All the robots on North of LDY −1 in SER(I) move to the positions
on LDY −1 or South of LDY −1 in at most 2 epochs.

The following observation is again immediate since the robots never make a
horizontal hop to West and the robots making the horizontal hops never reach
East of LDX

.

Observation 2. No robot of SER(I) move outside of lines L0 and LDX
during

the execution.

Lemma 7. No robots of SER(I) reaches South of L′
Y during the execution.

Observation 3. For every vertical hop of the robots in Q on South of LD0 , DX

decreases by (at least) 1.

We have the following observation after all the robots in the viewing range
of a robot ri ∈ Q are positioned in an (axis-aligned) 1× 1-sized square area SA.

Universally Optimal Gathering Under Limited Visibility 337

Observation 4. The robots within an (axis-aligned) 1×1-sized square area SA
are positioned at a single point in at most 2 epochs.

Lemma 8. The viewing range of
√

10 is sufficient for gathering to a point (that
is not known beforehand) on a plane under both axis agreement.

The analysis of this section proves the following main result.

Theorem 3. Given any connected configuration of N ≥ 1 robots with the view-
ing range of

√
10 and the square connectivity range of

√
2 on a plane, the robots

can gather to a point in O(DE) epochs in the ASYNC setting under both axis
agreement.

5 Gathering Under One-Axis Agreement

We discuss modifying the above algorithms when robots agree on only one axis.

Grid. We can prove the following theorem for the grid. The details are omitted.

Theorem 4. Given any connected configuration of N ≥ 1 robots with the view-
ing range of 3 and the square connectivity range of 2 on a grid, the robots can
gather in a unit length horizontal line segment (that is not known beforehand)
in O(DE) epochs in the ASYNC setting under one-axis agreement.

Euclidean Plane. We first discuss changes in the model of Sect. 4. We say gath-
ering is done when the configuration satisfies the relaxed gathering configuration
(Definition 3). The viewing and square connectivity ranges remain the same as
in Sect. 4.

We now discuss changes in the algorithm. The change is on horizontal and
vertical hops, and on termination. Instead of computing SQunit(ri) using LL

and LT as reference lines, SQunit(ri) also needs to be computed using LR and
LT as references. When ri sees no other robot in one side (say West) at distance
>1 but in other side (East), it takes the topmost robot rj and leftmost robot
rk in SQ(ri) to compute SQunit(ri) and for the symmetric case, it takes the
topmost and rightmost robots in SQ(ri) as reference. This allows the robots to
make horizontal hops in both directions (not necessarily only East under both
axis agreement). Therefore, ri hops to West of Li if the conditions for horizontal
hop defined in Sect. 4 are satisfied symmetrically for it to hop to West. Regarding
vertical hop, the following changes are made in the last three conditions:

– Robot ri sees at least one other robot each on both sides of L′
i on LB or

South of LB which are connected to at least one robot of SQunit(ri).
– Robot ri sees at least one other robot on LB or South of LB (which is con-

nected SQunit(ri)) in one side of L′
i (say East) and at least one other robot

at horizontal distance ≥2 in other side (West) (and vice-versa).

338 P. Poudel and G. Sharma

– Robot ri sees other robot(s) on LB (or connected to other robot(s) in South
of LB) only in one side of L′

i, say East, then finds the leftmost robot rl on LB

of SQunit(ri) (or South of LB that is connected to SQunit(ri)) and sees no
robot in SQunit(ri) is connected to other robot in left (i.e. West) at horizontal
distance ≥1 from rl (and vice-versa).

Regarding termination, ri terminates if all the robots it sees within its viewing
range (including itself) are within a horizontal line segment of length (at most)
1. We will show in the analysis that, with these changes, the algorithm positions
the robots in Q inside an axis-aligned 1 × 1-sized square area SA in O(DE)
epochs.

We now discuss how the robots in SA reach a relaxed gathering configuration
(Definition 3). Let rb be the bottommost robot in SA (if more than one, pick
one arbitrarily). Let LB be the horizontal line passing through rb. The robots on
LB (including rb) do not move. The other robots move vertically to the positions
of LB . The viewing range allows the robots to decide whether there are robots
outside SA or not.

Theorem 5. Given any connected configuration of N ≥ 1 robots with the view-
ing range of

√
10 and the square connectivity range of

√
2 on a plane, the robots

can gather in a unit length horizontal line segment (that is not known beforehand)
in O(DE) epochs in the ASYNC setting under one-axis agreement.

Proof of Theorem 1: Theorem 5 proves Theorem 1.

6 Concluding Remarks

We have presented, to our knowledge, the first universally optimal O(DE)-time
algorithm for gathering N ≥ 1 classic oblivious robots in a plane in the ASYNC
setting under limited visibility, improving significantly on the previous O(DG)-
time algorithm of [17] that works in the FSYNC setting. Our result assumes the
viewing range of

√
10, the square connectivity range of

√
2, and the agreement on

one axis. This is in contrast to the viewing range of 1 and the (circular) connec-
tivity range of 1√

2
in [17] under the same one axis agreement. For future work,

it will be interesting to relax our assumption of rigid moves to accommodate
non-rigid moves.

It will also be interesting to reduce the gap between the connectivity and
viewing ranges, without affecting time.

Acknowledgements. We thank Costas Busch for introducing us this problem.

References

1. Agathangelou, C. Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: PODC, pp. 250–259 (2013)

Universally Optimal Gathering Under Limited Visibility 339

2. Ando, H., Suzuki, I., Yamashita, M.: Formation and agreement problems for syn-
chronous mobile robots with limited visibility. In: ISIC, pp. 453–460 (1995)

3. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering
problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003). doi:10.
1007/3-540-45061-0 90

4. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by
mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

5. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in
asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

6. Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In:
Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M.,
Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-18381-2 15

7. Cord-Landwehr, A., et al.: A new approach for analyzing convergence algo-
rithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8 52

8. Cord-Landwehr, A., Fischer, M., Jung, D., Meyer auf der Heide, F.: Asymptotically
optimal gathering on a grid. In: SPAA, pp. 301–312 (2016)

9. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids without multiplicity detection. In: Even, G., Halldórsson, M.M.
(eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31104-8 28

10. Degener, B., Kempkes, B., Langner, T. , Meyer auf der Heide, F., Pietrzyk, P.,
Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: SPAA, pp. 139–148 (2011)

11. Degener, B. Kempkes, B., Meyer auf der Heide, F.: A local o(n2) gathering algo-
rithm. In: SPAA, pp. 217–223 (2010)

12. Di Stefano, G., Navarra, A.: Optimal gathering on infinite grids. In: Felber, P.,
Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 211–225. Springer, Cham (2014).
doi:10.1007/978-3-319-11764-5 15

13. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous
graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017)

14. Fischer, M., Jung, D., Meyer auf der Heide, F.: Gathering anonymous, oblivious
robots on a grid. CoRR, abs/1702.03400 (2017)

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theory 3(2), 1–185 (2012)

16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1–3), 147–168 (2005)

17. Izumi, T., Kawabata, Y., Kitamura, N.: Toward time-optimal gathering for
limited visibility model (2015). https://sites.google.com/site/micromacfrance/
abstract-tasuke

18. Kempkes, B., Kling, P., Meyer auf der Heide, F. Optimal and competitive runtime
bounds for continuous, local gathering of mobile robots. In: SPAA, pp. 18–26 (2012)

19. Lukovszki, T., Meyer auf der Heide, F.: Fast collisionless pattern formation by
anonymous, position-aware robots. In: Aguilera, M.K., Querzoni, L., Shapiro, M.
(eds.) OPODIS 2014. LNCS, vol. 8878, pp. 248–262. Springer, Cham (2014). doi:10.
1007/978-3-319-14472-6 17

20. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384(2–3), 222–231 (2007)

http://dx.doi.org/10.1007/3-540-45061-0_90
http://dx.doi.org/10.1007/3-540-45061-0_90
http://dx.doi.org/10.1007/978-3-642-18381-2_15
http://dx.doi.org/10.1007/978-3-642-22012-8_52
http://dx.doi.org/10.1007/978-3-642-22012-8_52
http://dx.doi.org/10.1007/978-3-642-31104-8_28
http://dx.doi.org/10.1007/978-3-319-11764-5_15
https://sites.google.com/site/micromacfrance/abstract-tasuke
https://sites.google.com/site/micromacfrance/abstract-tasuke
http://dx.doi.org/10.1007/978-3-319-14472-6_17
http://dx.doi.org/10.1007/978-3-319-14472-6_17

340 P. Poudel and G. Sharma

21. Prencipe, G.: Autonomous mobile robots: a distributed computing perspective. In:
Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSEN-
SORS 2013. LNCS, vol. 8243, pp. 6–21. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-45346-5 2

22. Sharma, G., Busch, C., Mukhopadhyay, S., Malveaux, C.: Tight analysis of a col-
lisionless robot gathering algorithm. ACM Trans. Auton. Adapt. Syst. 12(1), 3:1–
3:20 (2017)

23. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with
inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS, vol.
4305, pp. 333–349. Springer, Heidelberg (2006). doi:10.1007/11945529 24

http://dx.doi.org/10.1007/978-3-642-45346-5_2
http://dx.doi.org/10.1007/978-3-642-45346-5_2
http://dx.doi.org/10.1007/11945529_24

Optimum Algorithm for Mutual Visibility
Among Asynchronous Robots with Lights

Subhash Bhagat(B) and Krishnendu Mukhopadhyaya

Advanced Computing and Microelectronics Unit, Indian Statistical Institute,
Kolkata, India

{sbhagat r,krishnendu}@isical.ac.in

Abstract. This paper addresses the constrained version of the mutual
visibility problem for a set of asynchronous, opaque robots in the Euclid-
ean plane. The mutual visibility problem asks the robots to form a config-
uration, within finite time and without collision, in which no three robots
are collinear. The constrained mutual visibility problem in addition aims
to minimize the maximum number of movements by a single robot. One
of the implications of this constrained version of mutual visibility prob-
lem is that it also addresses issue of energy efficiency. The robots have
a constant amount of persistent memory and they are equipped with
externally visible lights which can assume a constant number of prede-
fined colors. The colors represent different states of the robots and are
used both for internal memory and communication. The colors of the
lights do not change automatically. A distributed algorithm is proposed
to solve the constrained mutual visibility problem for a set of asynchro-
nous robots using only seven colors. The proposed algorithm does not
impose any other restriction on the capability of the robots and guaran-
tees collision-free movements for the robots.

Keywords: Swarm robotics · Asynchronous · Mutual visibility ·
Persistent light

1 Introduction

A traditional robot swarm is a distributed system of small, autonomous, homo-
geneous, indistinguishable, inexpensive mobile robots working cooperatively to
achieve some goal. The autonomy allows the robots to work without a central-
ized control. The robots do not have any identification marks or they can not be
distinguished by their nature. The robots do not communicate explicitly with
each other. However, each robot has vision, implemented via sensors, to locate
the positions of the other robots in the system. The sensing capability and the
sensing range depends on the model of consideration. The sensing range of the
robots may be limited or unlimited and the sensing of the robots may be blocked
by other robots. We have considered opaque robots: whenever three robots are
collinear, the middle robot obstructs the vision of the two other robots. All

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 341–355, 2017.
https://doi.org/10.1007/978-3-319-69084-1 24

342 S. Bhagat and K. Mukhopadhyaya

the robots in the system have same capabilities and they run same distributed
algorithm i.e., they are homogeneous.

Robots execute same computation cycle repeatedly which consists of three
phases Look-Compute-Move. An active robot, in Look phase, takes the snap-
shot of its surrounding to obtain the positions of the robots in the system. This
information is used to compute a destination point in Compute phase. Finally,
in Move, phase it moves towards the computed destination point. The activa-
tions of the robots depend on the scheduler. The most general type of sched-
uler is asynchronous scheduler (ASYNC or CORDA model). An asynchronous
scheduler activates robots independent of each other. The time of completion of
any phase of the computation cycle is unpredictable but finite. This allows to
overlap two computational cycles of two different robots in time. Thus a robot
may be observed by other robots while it is in motion. However, they can not
detect its motion. Due to asynchrony, computations by a robot may be done
on some obsolete data. A semi-synchronous scheduler (SSYNC model) divides
time logically into several non-overlapping global rounds. In each round, a subset
of robots become active simultaneously and they work instantaneously in this
round. Thus, a robot is not observed while it is in motion. The unpredictabil-
ity lies in the choice of subset of activated robots. This work considers a fair
asynchronous scheduler which activates each robot infinitely often [1]. To solve
a variety of problems, robots may be endowed with some additional capabili-
ties. Weak multiplicity detection helps a robot to identify multiple occurrences
of robots at a single point. Rigid motion permits the robots to reach their des-
tinations without halting in between. In memory model, robots are endowed
with externally visible lights, which can assume a constant number of predefined
colours, to indicate and remember their current states [8,15,17]. This provides
the robots some limited communication capability and also a constant amount
of persistent memory to remember some information about their previous states
(robots are otherwise oblivious). There can be some agreement on the direction
and orientation of the local coordinate axes of the robots or agreement on a
common orientation only (common chirality).

Different algorithmic strategies are designed to coordinate the movements
of the robots to solve a variety of fundamental geometric problems like gath-
ering, arbitrary pattern formation, flocking etc. [15]. Recently researchers have
considered the problem of mutual visibility [3,10,11,20]. The constrained mutual
visibility problem is defined as follows: for a set of robots initially occupying
distinct positions in the two dimensional plane, the mutual visibility problem
asks the robots to form a configuration, within finite time and without collision,
in which no three robots are collinear and the maximum number of movements
by a single robot to achieve this configuration should be minimized.

1.1 Earlier Works

Traditionally robots are considered to be transparent. Among different geomet-
ric pattern formation problems, gathering is the first which has been studied
under obstructed visibility model, both for fat robots (robots represented as unit

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 343

discs) [2,5,7] and for the point robots [4,6,21]. Explicit communication among
the robots using externally visible lights was initiated by Peleg [17]. Different
geometric coordination problems have been studied by many researchers when
robots are endowed with persistent lights [8,9,14,16,22]. The mutual visibility
problem has been studied under different schedulers with different capabilities
of the robots. For oblivious semi-synchronous robots, the first distributed algo-
rithm to solve the mutual visibility problem was presented by Di Luna et al.
[3]. Later, Sharma et al. [19] analysed and modified the round complexities of
this algorithm under fully synchronous model. Under the light model, Di Luna
et al. [20] were the first to study the mutual visibility problem. Their solution
works for semi-synchronous robots with 3 colors and for asynchronous robots
with 3 colors under one axis agreement. Later, Sharma et al. [18] modified this
algorithm to work using only 2 colors for semi-synchronous robots and using
2 colors for asynchronous robots under one axis agreement. Vaidyanathan et
al. [11] proposed a distributed algorithm for fully-synchronous robots using 12
colors. The algorithm runs in O(log(n)) rounds for n ≥ 4 robots. Sharma et
al. [13] proved that the problem can be solved in O(1) time with 12 colors for
semi-synchronous robots. Recently, Sharma et al. [12] proposed a solution to the
problem which runs in O(log(n)) rounds for asynchronous robots using 25 col-
ors. The only solution to the constrained mutual visibility problem for oblivious
asynchronous robots has been proposed in [10] under the assumption that the
robots have an agreement in one coordinate axis and knowledge of total number
of robots in the system.

1.2 Our Contribution

This paper studies the constrained mutual visibility problem for a set of asynchro-
nous robots. One may view this constrained version of mutual visibility problem
as a solution to energy efficiency. A distributed algorithm is presented which
solves the problem for a set of asynchronous robots endowed with externally
visible lights. The proposed algorithm does not assume any extra assumptions
like agreement on the coordinate axes or chirality, knowledge of total number
of robots in the system, rigidity of movements. It is shown that seven different
colors are sufficient to solve the constrained mutual visibility problem for a set
of asynchronous robots. The contribution of this paper has mainly two folds of
significance. First, while all the existing solutions of the mutual visibility prob-
lem for asynchronous robots have considered either agreements in one coordinate
axis or rigid motion, our approach does not assume any agreement on the coor-
dinate axes or chirality or rigid motion. Secondly, in all the existing solutions
for the mutual visibility problem under light model, the maximum number of
movements by a single robot depends on the size of the convex hull of the initial
robot positions and the rigidity of the movements. In the proposed solution, the
maximum number of movements by a single robot is exactly one and this is opti-
mum. The solution also provides collision free movements for the robots. To the
best of our knowledge, this paper is the first attempt to study the constrained
mutual visibility problem for asynchronous robots under light model.

344 S. Bhagat and K. Mukhopadhyaya

2 Model and Definitions

Let R = {r1, r2, . . . , rn} denote a set of n homogeneous, autonomous robots
deployed in the Euclidean plane. The robots are represented by points on the
plane. They can move anywhere on the plane. The robots do not know n, the
total number of robots in the system. The robots are opaque i.e., they block
visions of other robots through themselves. However, the visibility range of a
robot is unlimited. The robots do not share a global coordinate system. Each
robot has its own local coordinate system to locate the positions of other robots
in the system. The directions and the orientations of coordinate axes and the
unit distance may vary among the robots. Robots do not have a common chi-
rality i.e., common sense of handedness (clockwise direction). Each active robot
operates in look-compute-move cycle repeatedly. We consider a fair asynchro-
nous scheduler which activates each robot infinitely often. The movements of
the robots are non-rigid i.e., a robot can be stopped by an adversary before
reaching its destination. However, it is assumed that a robot, if it does not reach
its destination, must travel a minimum distance δ > 0 towards its destination
whenever it decides to move. The value of δ is not known to the robots. Each
robot has a constant amount of persistent memory. They are endowed with vis-
ible lights which can assume a constant number of colors from a predefined set
of colors. These visible lights enable the robots to have a limited form of com-
munication and internal memory. A robot uses different colors of its light to
indicate its different predefined states and also to remember its last state. The
colors of the lights do not change automatically i.e., they are persistent. Except
for the persistent lights, the robots are oblivious i.e., they do not carry forward
any other information from their previous computation cycles. Initially, all the
robots are stationary and occupy distinct locations.

– Configurations of the robots: The position of robot ri ∈ R at time t is
denoted by ri(t). A robot configuration, C(t) = {r1(t), . . . , rn(t)}, is the set
of distinct positions occupied by the robots in R at time t. Let ˜C denote the
set of all such robot configurations. We partition ˜C into two sub-classes: ˜CL

and ˜CNL. ˜CL is the collection of configurations in which all the robots in R
are collinear and ˜CNL consists of configurations in which there exist at least
three non-collinear robot positions in C(t).

– Measurement of angles: If not stated otherwise, the angle between two
line segments refers to the angle which is less than or equal to π.

– Vision of a robot: For three collinear robots ri, rj and rk such that rj(t)
lies in between ri(t) and rk(t), the robots ri and rk are not visible to each
other. The vision of a robot ri at time t is the set of robot positions visible to
ri (excluding ri). This set is denoted by Vi(t). The visibility polygon of ri at
time t, denoted by STR(ri(t)), is obtained as follows: first sort the points in
Vi(t) angularly in anti clockwise direction w.r.t. ri(t), starting from any robot
position in Vi(t). Then connect them in that order to generate the polygon
STR(ri(t)).

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 345

– A straight line L is called a line of collinearity if it contains more than two
distinct robot positions of C(t). A robot occupying a position on L is termed
a collinear robot. Let Bi(t) denote the set of lines of collinearity containing
ri(t). Consider a line of collinearity L at time t. A robot position ri(t) on
L is called a non-terminal robot position if ri(t) is a point in between two
other robot positions on L. The robot ri is called a non-terminal robot. Let
rj(t) and rk(t) be the two robot positions on L such that ri(t) lies in between
them and these two positions are closest to ri(t). The robots rj and rk are
called friends of ri on L. A robot which is not a non-terminal robot is called
a terminal robot.

– Consider two points p and q. Let pq denote the closed line segment joining
two points p and q, including the end points p and q and |pq| denote the
length of pq.

– dk
ij(t): For two distinct robot positions ri(t) and rj(t) in C(t), let Lij(t)

denote the straight line joining these two robot positions. Let dkij(t) denote
the perpendicular distance of the line Lij(t) from the point rk(t).

– Di(t): Let Di(t) denote the minimum distance of any two robot positions in
{ri(t),Vi(t)}.

3 Algorithm MutualVisibility()

This section describes a distributed algorithm to solve the constrained mutual
visibility problem under the model defined above. In our approach, we decide
following three things: (i) the robots to move; terminal or non-terminal or both
(ii) the amount of movements and (iii) directions of movements. First, we decide
which robots should move. Consider an initial robot configuration R(t0). Let L
be a line of collinearity containing the robots r1, r2, r3, r4, r5 and r6 occupying
positions in R(t0) such that r2, r3, r4, r5 lie in between r1 and r6. The robots r1
and r6 are terminal robots.

Scenario-1: Suppose only the non-terminal robots are selected for movements.
Since robots have non-rigid movements, it is possible that after single movement
of the non-terminal robots in R, some robots remain collinear at their new
positions. For example, in Fig. 1(b), robots r1, r2, r3, r4 and r5 remain collinear,
even after movements of the non-terminal robots. Thus, moving only the non-
terminal robots at most once, it may not be possible to break all collinearities.

Scenario-2: Suppose only the terminal robots move. In this case also, it is pos-
sible that some robots remain collinear even after movements e.g., in Fig. 2(b),
r1, r4, and r6 remain collinear after the movements of both terminal robots.

Scenario-3: Above two scenarios imply that both the terminal and non-terminal
robots have to move to solve the constrained mutual visibility problem using at
most one movement per robot. Again, if terminal and non-terminal robots move
simultaneously at the same time, then also it may not possible to break the
collinearities (Fig. 3(b)). Thus, the movements of the terminal and non-terminal
robots need some ordering to solve the constrained visibility problem. In our

346 S. Bhagat and K. Mukhopadhyaya

Fig. 1. An illustration of scenario-1 Fig. 2. An illustration of scenario-2

Fig. 3. An illustration of scenario-3

approach, the terminal robots are selected first for movements. The outline of
our algorithm is as follows: first all active terminal robots move in such a way
that (i) non-collinear robots do not become collinear and (ii) when a new line
of collinearity is created among the initially collinear robots, it contains exactly
three robots which were initially collinear and the non-terminal robot on this
line has not made any movement. After the movements of these terminal robots,
if there remains any non-terminal robot whose all friend robots have made their
move, then this robot moves. To coordinate these movements, the lights of the
robots are used so that within finite time all robots become visible to each other
by moving at most once.

3.1 States of a Robot

As discussed above, in our approach, we order the movements of the robots. For
this purpose, the lights of the robots are used both for limited communication
and remembering the previous states of the robots. Initially all robots have their
lights off. When a robot wakes up, it checks whether it is a terminal robot or a
non-terminal robot and turns its light as terminal or non-terminal accordingly.
Thus, our approach uses three different colors of lights to distinguish these three
initial states of the robots: off, terminal and non-terminal. A robot uses light
waiting to indicate that there is at least one robot for which it is waiting to finish
its movement. When all such robots finish their movements, the robot uses light
moved to indicate that other eligible robots with their pending movement can

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 347

move now. A non-terminal robot may remain non-terminal after the movements
of its friend robots. If a robot is non-terminal even after the movements of its
friend robots, all of its friend robots are now with moved light. To indicate this
state a non-terminal robot uses light junction. Robots in addition to three colors
for the initial states, use four more colors, {moving, waiting, moved, junction} for
their lights. Color moving is used to avoid creation of collinearities between the
robots which have made their movements. Color waiting is used to sequentialize
the movements of the robots as discussed above. The completion of movement
of a robot is indicated by the color moved. Since the movements of the terminal
robots may create new line of collinearity with exactly three robots, robots need
a color to indicate this event and color junction is used in this purpose. Thus, a
robot uses seven different colors to refer seven different states:

1. color off to indicate that it has not woke up yet.
2. color terminal to indicate that it is a terminal robot.
3. color non-terminal to indicate that it is initially a non-terminal robot.
4. color moving to indicate that it is moving.
5. color waiting to indicate that it has completed its move and it is waiting for

some robots to complete their actions.
6. color moved to indicate that it has completed its move and it is not waiting.
7. color junction to indicate that it is a non-terminal robot such that all of its

friend robots are with moved lights.

Let X denote set of colors used by the robots and si(t) denote the color of the
light for the robot ri at time t. Thus, X = {off, terminal, non-terminal, moving,
waiting, moved, junction}.

3.2 Different Actions of a Robot

It may be possible that a physically terminal robot has non-terminal light (when
a non-terminal becomes terminal due to the movements of its friend robots). A
Robot ri ∈ R acts in any one of the following ways:

– ri is a physically terminal robot: The robot ri finds itself as a physically
terminal robot and
1. its light is off: it changes its light to terminal and does not move.
2. its light is terminal and there is no robot in Vi(t) with off or moving light:

it changes its light to moving and moves.
3. its light is moving and there is at least one robot in Vi(t) with off or

terminal or moving or junction light: it changes its light to waiting and
does not move.

4. its light is moving and there is no robot in Vi(t) with off or terminal or
moving or junction light: it changes its light to moved and does not move.

5. its light is waiting and there is no robot in Vi(t) with off or moving or
terminal or junction light: it changes its light to moved and does not move.

6. its light is non-terminal and there is no robot in Vi(t) with off or moving
or waiting light: it changes its light to terminal and does not move.

348 S. Bhagat and K. Mukhopadhyaya

7. its light is moved: it does nothing.
In the remaining scenarios, robot ri does nothing.

– ri is a physically non-terminal robot: Robot ri finds itself as a physically
non-terminal robot and
1. its light is off: it changes its light to non-terminal and does not move.
2. its light is non-terminal and all its friends are with moved light, there is

no robot in Vi(t) with off or moving or waiting light: it changes its light
to junction and does not move.

3. its light is junction and there is no robot in Vi(t) with off or moving light:
it changes its light to moving and moves.

In the rest of the cases, robot ri does nothing.

We define following predicates corresponding to the different states of the
robots as defined above:

P1(ri(t)): �rj ∈ Vi(t) : sj(t) = off ∨ moving
P2(ri(t)): ∃rj ∈ Vi(t) : sj(t) = off ∨ terminal ∨ moving ∨ junction
P3(ri(t)): �rj ∈ Vi(t) : sj(t) = off ∨ terminal ∨ moving ∨ junction
P4(ri(t)): �rj ∈ Vi(t) : sj(t) = off ∨ moving ∨ waiting
P5(ri(t)): ∀r∗

k ∈ Vi(t) : sk(t) = moved ∧ {�rj ∈ Vi(t) : sj(t) = off ∨ moving ∨
waiting}
Where nt∗, nt and r∗

k denote physically terminal robot with non-terminal light,
physically non-terminal robot with non-terminal light and a friend robot respec-
tively. Following list shows the transitions between different states of the robots:

off→ {terminal, non − terminal}, terminal
P1(ri(t))=true−−−−−−−−−→ {moving},

moving
P2(ri(t))=true−−−−−−−−−→ {waiting}, moving

P3(ri(t))=true−−−−−−−−−→ {moved},

waiting
P3(ri(t))=true−−−−−−−−−→ {moved}, nt∗

P4(ri(t))=true−−−−−−−−−→ {terminal}, nt
P5(ri(t))=true−−−−−−−−−→

{junction}, junction
P1(ri(t))=true−−−−−−−−−→ {moving}

3.3 Eligible Robots for Movements

Our approach selects a robot ri for movement at time t only if it satisfies any
one of the following two conditions:

– if ri is a physically terminal robot with terminal light which finds P1(ri(t))
true.

– if ri is a physically non-terminal robot with junction light which finds P1(ri(t))
true.

3.4 Computation of Destination Point

Let ri be an arbitrary robot occupying a position in C(t). Robot ri chooses its
destination point in such a way that (i) it avoids creation of collinearities with
those robots which are not collinear with it and (ii) its movement increases the

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 349

chances of breaking the initial collinearities. Consider three non-collinear robots
ri, rj and rk. If they become collinear, then 	ijk(t) collapses into a line i.e., all
the distances dkij(t), djik(t) and dijk(t) become zero. Thus, our computation of
destination point for a robot ri takes in to account all the triangles 	ijk(t) for
rj(t), rk(t) ∈ Vi(t). Depending upon the current configuration C(t), the destina-
tion point for ri is computed as follows.

– The direction of movement: If C(t) ∈ ˜CNL, let Γi(t) be the set of angles
defined as follows:
Γi(t) = {∠rjrirk : rj , rk are two consecutive vertices on STR(ri(t))}.

Let αi(t) denote the maximum angle in Γi(t) which has value less than π (tie,
if any, is broken arbitrarily). The bisector of αi(t) is denoted by Biseci(t). It
is a ray from ri(t).
If C(t) ∈ ˜CL, let L∗ be the perpendicular line to the line of collinearity L̂ at
the point ri(t). The robot ri arbitrarily chooses a direction along L∗ and let
L+ denote the ray along this direction.
The direction of movement of ri is along DIRi(t) which is defined as follows:

DIRi(t) =

{

Biseci(t) if C(t) ∈ ˜CNL

L+ if C(t) ∈ ˜CL

It may be noted that some other suitable direction would work fine for robot
ri.

– The amount of displacement: Let di(t) = minimum{dkij(t), d
j
ik(t), d

i
jk(t) :

∀rj , rk ∈ Vi(t)}. The amount of displacement of ri at time t is denoted by
σi(t) and it is defined as follows,

σi(t) =

{

1
34 min{di(t),Di(t)} if C(t) ∈ ˜CNL

1
34 Di(t) if C(t) ∈ ˜CL

The quantity σi(t) is computed to be a small fraction of dkij(t) for all
rj(t), rk(t) ∈ Vi(t) in order to guarantee that no new collinearity is gener-
ated during the movements of the robots. The fraction in the computation of
σi(t) is chosen to establish a loose upper bound for the maximum decrement
in the value of dkij(t) during the correctness proof of our algorithm. Other
suitable values will also work.

– The destination point: Let r̂i(t) be the point on DIRi(t) at distance σi(t)
from ri(t). The destination point of ri(t) is r̂i(t).

3.5 Correctness

Let us consider an initial robot configuration C(t0). Let ri, rj and rk be three
arbitrary robots in R. We prove that during the whole execution of the algorithm
MutualV isibility() (i) if ri, rj and rk are initially non-collinear, they never
become collinear and (ii) if these three robots are initially collinear, then after

350 S. Bhagat and K. Mukhopadhyaya

finite time, the collinearity is broken. We also show (Lemma 6) that algorithm
MutualV isibility() guarantees collision-free movements for the robots and it
terminates in finite time. Suppose ri, rj and rk are static and non-collinear
at time t ≥ t0. In order to prove that they do not become collinear during
the execution of algorithm MutualV isibility(), we prove (Lemma 2) that dkij(t)
never vanishes. If ri, rj and rk are collinear, it is possible that all these three
robots have to move at least once to break this collinearity (as discussed at the
beginning of Sect. 3). During the execution of our algorithm, there are certain
conditions to be satisfied by a robot before it finds itself eligible for movement.
In Lemma 1, we show that during the execution of the algorithm, each robot
finds itself eligible for movement within finite time.

Lemma 1. During the whole execution of algorithm MutualV isibility(), each
robot moves exactly once.

Proof. According to algorithm MutualV isibility(), when a robot moves, it
turns its light moving and when it stops, it changes its light either to waiting or
to moved. If the waiting state of a robot is changed, then it is changed to moved
state only. A robot with waiting or moved light does not move. Thus, each robot
moves at most once. Next we show that during the execution of the algorithm,
each robot moves at least once i.e., there is no dead-lock or starvation. First con-
sider an active terminal robot ri at time t ≥ t0 with terminal light. According
to our strategies, if the predicate P1(ri(t)): �rj ∈ Vi(t) : sj(t) = off ∨ moving
is true, then ri finds itself eligible for movement and turns its light moving
and moves. Otherwise, it waits. If there are robots with lights off, within finite
time, all of them become active and change their lights to terminal or non-
terminal, depending upon their positions. When a robot with moving light stops,
it changes its light either to waiting or moved without waiting for other robots.
Thus, within finite time ri finds itself eligible for movement and changes its
state to moving. A robot with waiting light waits for robots having lights from
the set {off, terminal, moving, junction}. None of the robots having any one of
the colors from this set waits for the robots with waiting light. A robot with
non-terminal light waits for robots having lights from the set {off, terminal,
waiting}. However, the robots having these colors do not depend on the robots
having non-terminal lights. A robot with junction light waits for robots having
off or moving light but not the vice versa. These imply that there is no cyclic
dependency among the states of the robots i.e., there is no dead-lock in the
system, during the execution of the algorithm.

Claim: Each robot becomes eligible for movement, within finite time (i.e., each
robot satisfies one of the two conditions stated in Sect. 3.3).

Let CH(A) denote the convex hull of a point set A, Hout(A) the set of vertices
of CH(A) and Hin(A) the set of non-vertex points of CH(A) (the non-terminal
points of A, lying on the boundary of the hull, are considered in this set). Let
C(t0) be an initial robot configuration. Consider the set,

{Hout(C(t0)),Hout(C1(t0)), . . . Hout(Ck(t0))},

where Ci(t0) = Ci−1(t0)\Hout(Ci−1(t0)), C0(t0) = C(t0).

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 351

We use induction to prove our claim. For the base case, consider Hout(C(t0)).
Each robot in Hout(C(t0)) is a terminal robot. Since there is no dead-lock in the
system, these terminal robots move within finite time and finally their states are
changed to moved. Let all the robots in ∪l

i=0Hout(Ci(t0)) have moved lights.
We show that each robot in Hout(Cl+1(t0)) which has not made any move-

ment, will become moved in finite time. Let ri be a robot occupying a point in
Hout(Cl+1(t0)). If ri is a terminal robot or has made its move, then we are done.
Suppose ri is a non-terminal robot, which has not moved yet. Consider a pair of
friends making ri non-terminal. By the definition of Hout(Cl+1(t0)), at least one
of these friend robots lies in ∪l

i=0Hout(Ci(t0)) and by induction hypothesis, it has
moved light. Thus, at least one friend from each pair of friends has finished its
movement and has moved light. However, ri is still a non-terminal robot. This
implies that all friends of ri must have completed their movements and thus
have moved lights (otherwise, ri would be a physically terminal robot). Hence,
ri will turn its light to junction and will move within finite time. ��
Lemma 2. Let ri, rj and rk be three arbitrary non-collinear stationary robots
at time t ≥ t0 such that none of these three robots has decided to move at time
t′ < t. During the rest of the execution of algorithm MutualV isibility(), they
do not become collinear.

Proof. By Lemma 1, each robot moves exactly once. Due to the movements of
these robots, the value of dkij(t) may decrease. We compute a lower bound for the
new value of dkij(t). Since the maximum decrement in the value of dkij(t) occurs,
when all the three robots move, we consider the case in which all the three robots
move. First, we estimate an upper bound of the amount of displacement of a
robot in a single movement in terms of dkij(t). It is easy to see that among all
the scheduling of movements of the robots, sequential movements would provide
the best upper bound for the maximum displacement of a robot in a single
movement (the robot which moves last has maximum displacement). Following
are the possible scenarios:

– Case-1: ri, rj and rk are mutually visible at time t
Consider the movement of the first robot among these three robots. The
displacement of this robot would be bounded above by 1

34 dkij(t) for a sin-
gle movement. Thus, for the second and third robots, the displacements are

bounded above by (1 + 1
34)d

k
ij(t)

34 < 2
34 dkij(t) and (1 + 3

34)d
k
ij(t)

34 < 2
34 dkij(t)

respectively. These imply that the displacement of each of these three robots
is bounded above by 2

34 dkij(t0), in a single movement. Since each robot moves
exactly once, we have,

dkij(t
′) > (1 − 6

34
)dkij(t) (1)

where t′ > t. Equation (1) implies that the 	ijk(t) does not collapse into a
line due to the movements of the robots.

352 S. Bhagat and K. Mukhopadhyaya

– Case-2: ri, rj and rk are not mutually visible at time t
Since the three robots are not mutually visible, at least one side of 	ijk(t) con-
tains at least one robot position. Following are the possible scenarios among
the three robots ri, rj and rk: (i) two pairs of robots are mutually visible
(Fig. 4(a)) (ii) one pair of robots are mutually visible (Fig. 4(b)) and (iii) no
pair of robots is mutually visible (Fig. 4(c)). Since there are finite number of
robots in the system, in all these three sub-cases, there exist three distinct
robot positions ra(t), rb(t) and rc(t) in R(t) such that the robots at these
three positions are mutually visible to each other and the triangle 	abc(t)
is completely contained within triangle 	ijk(t). By case-1, triangle 	abc(t)
does not collapse into a line and the same holds for triangle 	ijk(t). ��

Fig. 4. An illustration of different scenarios of case-2 in Lemma 2

Lemma 3. Let ri be an active stationary robot at time t, which has not decided
to move. During the execution of MutualV isibility(), all the physically moving
robots in the system at time t are visible to ri.

Proof. Since ri is a stationary robot at time t, by Lemma 2, robot ri can see all
those moving robots which were not initially collinear with it. Let rj be a phys-
ically moving robot which was not visible to ri at time t′ < t. Let L be the line
of collinearity which contains positions occupied by ri and rj . According to our
algorithm, at most two robots from L can start moving at a time. Since ri is sta-
tionary, by Lemma 2, no other robot (including the other moving robot from L, if
any) can block the visibility between ri and rj (unless ri starts moving). ��
Lemma 4. Let ri be a terminal robot in R. During the execution of
MutualV isibility(), if ri creates a new collinearity on line L, then all robots
on L are from a single line L∗ in Bi(t) and L contains exactly three robots.

Proof. During the execution of MutualV isibility(), if a robot ri creates a new
line of collinearity L ∈ Bi(t′), then by Lemma 2, all the robots on L are those
which were initially collinear with ri on a single line L∗ ∈ Bi(t), t′ > t. This
completes the proof of the first part of the lemma.

For the second part, consider an initial line of collinearity L∗ ∈ Bi(t). If
L∗ contains exactly three robot positions and the robots remain collinear even

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 353

after the movements of the two terminal robots, the lemma is true. Next, for
the sake of clarity, we first consider the case when L∗ contains exactly four
robots, say {ri, rj , rk, rl}. Without loss of generality, suppose rj and rk lie in
between ri and rl on L∗ and rj is closer to ri than rk. According to algorithm
MutualV isibility(), rj and rk become eligible to move only after the completion
of the movement of at least one of the robots ri and rl. When rj and rk computes
their destination points, at least one of ri and rl is stationary and visible to rj
and rk. By Lemma 2, these four robots can not become collinear. Finally, for the
case when L∗ contains more than four robots, we consider any four robots on
L∗ and apply the foregoing arguments to conclude the proof. ��
Lemma 5. During the whole execution of MutualV isibility(), all the non-
terminal robots will become terminal and remain terminal thereafter.

Proof. By Lemma 2, no initially terminal robot becomes non-terminal. We show
that a non-terminal robot becomes terminal whenever it makes its move and once
it becomes terminal, it remains terminal thereafter. Let ri be a non-terminal
robot at time t0. During the execution of the algorithm, when all friend robots
of ri are moved, there are two possibilities for ri: either (i) ri becomes a physically
terminal robot or (ii) it remains as non-terminal on a new line of collinearity
(Lemma 4). In both the cases, robot ri will move. According to the algorithm
and by Lemma 3, when ri takes snapshot to compute its destination, there is no
physically moving robot in the system. Thus, by Lemmas 2 and 4, it becomes
terminal whenever it starts moving and remains terminal thereafter. ��
Lemma 6. The movements of the robots are collision free.

Proof. If C(t0) ∈ ˜CL, the movements of the two terminal robots are along two
parallel lines and hence the robots do not collide. Once a robot starts moving,
this configuration is changed to a configuration in ˜CNL. Suppose C(t0) ∈ ˜CNL.
Let ri and rj be two arbitrary robots and rk be a robot, not lying on the line
Lij(t), such that it is one of the closest robots from Lij(t). The robot rk is visible
to both ri and rj . Suppose the robots ri and rj collide during the execution of
MutualV isibility(). This implies that ri, rj and rk become collinear, which is a
contradiction to Lemma 2. Hence the lemma is true. ��
Lemma 7. Algorithm MutualV isibility() solves the constrained mutual visibil-
ity problem.

Proof. By Lemma 2, no initially terminal robot becomes non-terminal during
the execution of the algorithm. Lemma 5 implies that within finite time each
non-terminal robot becomes terminal and it remains terminal throughout the
rest of the execution of the algorithm. Thus, within finite time, all the robots in
the system become visible to each other. By Lemma 1, each robot moves exactly
once, which is optimum. Finally, Lemma 6 guarantees collision free movements
for the robots. ��

354 S. Bhagat and K. Mukhopadhyaya

Theorem 1. A set of asynchronous, oblivious robots, placed in distinct locations
in the two dimensional plane can solve the constrained mutual visibility problem
in finite time without any collision when robots are endowed with externally
visible lights with seven different colors.

4 Conclusion

This paper presents a distributed algorithm to solve the constrained mutual
visibility problem in finite time for a set of autonomous, homogeneous, asyn-
chronous robots endowed with externally visible lights. The proposed algorithm
uses only 7 different colors (O(1) bits of memory). During the whole execu-
tion of the algorithm, the maximum number of movements by a single robot is
one, which is optimum. The algorithm also guarantees collision free movements
for the robots. Di Luna et al. posed an open problem in [20]; Is it possible to
solve the mutual visibility problem for the asynchronous non-rigid robots with-
out using the assumption of one axis agreement? This paper answers this query
affirmatively. Our algorithm proves that only seven colors are sufficient to solve
the constrained mutual visibility problem for asynchronous robots. One of the
open problems is to find the minimum number of colors necessary to solve the
problem for asynchronous robots. The study of the mutual visibility problem
under different crash fault model would be another future direction of this work.

References

1. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and
self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol.
4167, pp. 46–60. Springer, Heidelberg (2006). doi:10.1007/11864219 4

2. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for
gathering many fat mobile robots in the plane. In: Proceedings of the 32nd ACM
Symposium on Principles of Distributed Computing (PODC), pp. 250–259 (2013)

3. Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual vis-
ibility problem for oblivious robots. In: Proceedings of 26th Canadian Conference
on Computational Geometry (CCCG 2014) (2014)

4. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot.
Autom. 15, 818–828 (1999)

5. Bolla, K., Kovacs, T., Fazekas, G.: Gathering of fat robots with limited visibility
and without global navigation. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol.
7269, pp. 30–38. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29353-5 4

6. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theoret. Comput. Sci. 399, 71–82 (2008)

7. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane.
Theoret. Comput. Sci. 410(6–7), 481–499 (2009)

8. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: The power of
lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the
32nd International Conference on Distributed Computing Systems (ICDCS), pp.
506–515 (2012)

http://dx.doi.org/10.1007/11864219_4
http://dx.doi.org/10.1007/978-3-642-29353-5_4

Optimum Algorithm for Mutual Visibility Among Asynchronous Robots 355

9. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Synchronized
dancing of oblivious chameleons. In: Ferro, A., Luccio, F., Widmayer, P. (eds.)
FUN 2014. LNCS, vol. 8496, pp. 113–124. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-07890-8 10

10. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Formation of general posi-
tion by asynchronous mobile robots under one-axis agreement. In: Kaykobad, M.,
Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 80–91. Springer, Cham
(2016). doi:10.1007/978-3-319-30139-6 7

11. Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time
complete visibility for robots with lights. In: Proceedings of Parallel and Distrib-
uted Processing Symposium (IPDPS), pp. 375–384 (2015)

12. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: O(log N)-time
complete visibility for asynchronous robots with lights. In: Proceedings of Parallel
and Distributed Processing Symposium (IPDPS), pp. 513–522 (2017)

13. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visi-
bility for robots with lights in O(1) time. In: Bonakdarpour, B., Petit, F. (eds.)
SSS 2016. LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). doi:10.1007/
978-3-319-49259-9 26

14. Efrima, A., Peleg, D.: Distributed models and algorithms for mobile robot systems.
In: Leeuwen, J., Italiano, G.F., Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.)
SOFSEM 2007. LNCS, vol. 4362, pp. 70–87. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-69507-3 5

15. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious
Mobile Robots. Morgan & Claypool, San Rafael (2012)

16. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO
2013. LNCS, vol. 8179, pp. 189–200. Springer, Cham (2013). doi:10.1007/
978-3-319-03578-9 16

17. Peleg, D.: Distributed coordination algorithms for mobile robot swarms: new direc-
tions and challenges. In: Pal, A., Kshemkalyani, A.D., Kumar, R., Gupta, A. (eds.)
IWDC 2005. LNCS, vol. 3741, pp. 1–12. Springer, Heidelberg (2005). doi:10.1007/
11603771 1

18. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
doi:10.1007/978-3-319-28472-9 15

19. Sharma, G., Busch, C., Mukhopadhyay, S.: Bounds on mutual visibility algorithms.
In: Proceedings of 27th Canadian Conference on Computational Geometry (CCCG
2015) (2015)

20. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–
418 (2017)

21. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering of
asynchronous oblivious mobile robots under one-axis agreement. J. Discrete Algo-
rithms 36, 50–62 (2016)

22. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J.,
Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol.
8243, pp. 291–306. Springer, Heidelberg (2014). doi:10.1007/978-3-642-45346-5 21

http://dx.doi.org/10.1007/978-3-319-07890-8_10
http://dx.doi.org/10.1007/978-3-319-07890-8_10
http://dx.doi.org/10.1007/978-3-319-30139-6_7
http://dx.doi.org/10.1007/978-3-319-49259-9_26
http://dx.doi.org/10.1007/978-3-319-49259-9_26
http://dx.doi.org/10.1007/978-3-540-69507-3_5
http://dx.doi.org/10.1007/978-3-540-69507-3_5
http://dx.doi.org/10.1007/978-3-319-03578-9_16
http://dx.doi.org/10.1007/978-3-319-03578-9_16
http://dx.doi.org/10.1007/11603771_1
http://dx.doi.org/10.1007/11603771_1
http://dx.doi.org/10.1007/978-3-319-28472-9_15
http://dx.doi.org/10.1007/978-3-642-45346-5_21

Brief Announcement: ZeroBlock:
Timestamp-Free Prevention of

Block-Withholding Attack in Bitcoin

Siamak Solat(B) and Maria Potop-Butucaru

UPMC-CNRS, Sorbonne Universités, LIP6, UMR, 7606 Paris, France
{Siamak.Solat,Maria.Potop-Butucaru}@lip6.fr

Abstract. Bitcoin was recently introduced as a peer-to-peer electronic
currency in order to facilitate transactions outside the traditional finan-
cial system. The core of Bitcoin, the Blockchain, is the history of all
transactions committed by the system. This distributed ledger is similar
to a distributed shared register where miners write and read blocks. New
blocks in the Blockchain contain the last transactions in the system and
are added by miners after a block mining process that consists in solving
a difficult cryptographic puzzle. Although, the reward is the main moti-
vation for the mining process in Bitcoin, it also may be an incentive for
attacks such as selfish mining. In this paper we propose and theoretically
analyze a solution for one of the major problems in Bitcoin: selfish min-
ing or block-withholding attack. This attack is conducted by adversarial
miners in order to either earn undue rewards or waste the computational
power of honest miners. Contrary to the best to date solution for prevent-
ing block-withholding [6], our solution, ZeroBlock , prevents this attack by
using a novel timestamp-free technique that exploits the Poisson nature
of the proof-of-work and the current knowledge on the propagation of
information in Bitcoin [2]. Note that previous solutions are vulnerable
to forgeable timestamps. Additionally, our solution is compliant with
miners churn.

1 Introduction

In the last few years crypto-currencies are in the center of the research ranging
from financial, political and social to computer science and pure mathematics.
Bitcoin [1] was one of the starters of this concentration of forces. It targeted
the creation of a system where transactions between individuals can escape the
strict control of the banks and financial markets.

Bitcoin was introduced as a pure peer-to-peer electronic currency or crypto-
currency. It aims at fully decentralization of electronic transactions. Bitcoin
allows to perform online transactions directly from one party to another one
“without” the interference of a financial institution as a “trusted third party” [1].
It uses digital signatures to verify the bitcoin ownership and employs Blockchain
in order to prevent double-spending attacks. In this attack the same bitcoin can

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 356–360, 2017.
https://doi.org/10.1007/978-3-319-69084-1 25

Brief Announcement: ZeroBlock: Timestamp-Free Prevention 357

be spent several times by a dishonest party. Blocks in the blockchain are cre-
ated via a proof-of-work (cryptographic puzzle) [5] performed by honest parties
(miners that follow the protocol). Blockchain is further broadcasted via a peer-
to-peer overlay in order to agree on a common history of the transactions in the
system.

Bitcoin is still vulnerable to various attacks including double-spending [7],
selfish mining [4], Goldfinger [8], 51% attack [8] etc. In this paper we focus the
selfish mining attack. Recently, [3] provided a full description of incentives to
withhold or selfish mine in Bitcoin. That is, to force honest miners to waste their
computational power such that their public blocks become useless (as orphan
block), whereas the private chain of the selfish miners is accepted as a part of
the Blockchain. To this end, the selfish miners reveal selectively their private
blocks to make useless the blocks made by honest miners.

Our contribution. Our solution builds on the following simple idea: if a selfish
miner keeps a block private more than a fixed interval of time, its block will be
rejected by all the honest miners. Zeroblock scheme strives to reduce the prob-
ability of intentional forks that are result of block-withholding attacks. With
ZeroBlock scheme a selfish mining pool cannot achieve more than its expected
reward. Only with a low probability, selfish mining pool may create intention-
ally an unprofitable fork. We accentuate “unprofitable”, because this fork does
not lead to more reward for selfish mining pool, but also reduces selfish pool’s
likelihood to earn unexpected reward regardless of to its mining power. Thus,
selfish mining pool is not incentivized to create such fork if its purpose is to
achieve more reward. Furthermore, we prove that the maximum probability of
such intentional fork is very low (≈ 0.04) when selfish pool uses its maximum
hashing power. We further extend ZeroBlock in order to be tolerant to miners
churn. The details of our solutions and the correctness proofs are proposed in [9].

2 ZeroBlock Algorithm

The key idea of our solution is that each block must be generated and received
by the network within a maximum acceptable time for receiving a new block
interval, mat (see Eq. 6 below). Within a mat interval a honest miner receives
or discovers a new block. Otherwise, it generates a dummy block. The compu-
tation of each mat interval is done locally by each miner based on the following
Bitcoin parameters: the expected delay for a block mining and the information
propagation time in the Bitcoin network.

Expected delay for a block mining in Bitcoin depends mainly on the difficulty
of proof-of-work. The major part of proof-of-work consists in discovering a byte
string, nonce. As pointed out in [2] proof-of-work in Bitcoin is a Poisson process
and causes blocks to be discovered randomly and independently. Moreover, in
Bitcoin, the difficulty of proof-of-work required to discover a block is periodically
adjusted such that, on average, one block is expected to be discovered every
10min. Hence, the difficulty of proof-of-work is updated every 2016 blocks. It
means that regarding to this adjustment (i.e. one block per 10 min) 2016 blocks,

358 S. Solat and M. Potop-Butucaru

on average, is expected to be generated in 14 days. If 2016 blocks are discovered
in a shorter time, the difficulty of proof-of-work will be increased and if they are
generated in a longer time, difficulty of proof-of-work will be decreased.

The proof-of-work works as follows:

if H(pb + nonce) < T thenproof -of -worksucceeded (1)

where pb represents the hash of the previous block, nonce is the answer of proof-
of-work that must be found by miners, T is target, ‘+’ is concatenation operation
and H is the hash function.

Each mining pool can estimate the difficulty of proof-of-work using Eq. 2.

D =
maxTarget

T
(2)

where D is the difficulty of proof-of-work, T is current target and maxTarget is
maximum possible value for target that is (216 - 1)2208 ≈ 2224. Since the hash
function produces uniformly a random value between 0 and 2256 − 1 thus, the
probability that a given nonce value would be the answer of proof-of-work is as
follows (Eq. 3):

Prob(nonce is answer) =
target

2256
=

2224

D × 2256
≈ 1

D × 232
(3)

The number of hashes to discover a block is D × 232 in expectation. If a
mining pool can calculate hashes at a rate php (we call this as pool’s hashing
power), then the expected time (or average time) avt in which this pool can
discover a block is as follows (Eq. 4):

avtpool =
D × 232

php
(4)

When we replace php by hashing power of the network, nethp, we can use
Eq. 3 for the entire network as follows (Eq. 5):

avtnet =
D × 232

nethp
(5)

According to the relation between time, difficulty of proof-of-work, hashing
power of the network in Eq. 5, Bitcoin network adjusts D such that regarding to
hashing power of the network, the average time for block generation rate remains
10 min.

To calculate the maximum acceptable time for receiving a new block, mat, we
use Eq. 6 below:

mat = avtnet + ipt (6)

where avtnet is given by the Eq. 5 and ipt is the information propagation time
in Bitcoin network as estimated in [2].

Brief Announcement: ZeroBlock: Timestamp-Free Prevention 359

Algorithm 1. ZeroBlock algorithm
1: index ← 0 � index of mat

2: mat[index] ← 0 � mat at the beginning is set to zero

3: avtnet ← block generation average time � according to equation (6)

4: localChain ← Genesis

5: FlagNewBlock ← False

6: nonce ← 0

7: HPrB ← 0 � hash of previous block

8: T ← target

9: newChain ← Null

10: ansPoW ← 0 � answer of PoW

11: scounter() ← 0 � scounter() is a seconds counter

12: while (True) do

13: if (FlagNewBlock = False) AND (mat[index] �= 0) then

14: dummy Zeroblock ← SHF(getHead(localChain)) + SHF(”FixedStringZB”) + index

15: localChain ← join(dummy Zeroblock,localChain)

16: end if

17: index ← index + 1

18: refresh(mat[index])

19: while (scounter() ≤ mat[index]) do

20: newChain ← checkInput()

21: if (newChain �= Null) then

22: HPrB ← SHF(getHead(localChain))

23: if (FHF(HPrB,newChain.ansPoW) ≤ T) then � proof-of-work is done

24: localChain ← newChain

25: newChain ← Null

26: FlagNewBlock ← True

27: Break

28: end if

29: end if

30: if (scounter() < avtnet) then

31: if (FlagNewBlock = False) then

32: HPrB ← SHF(getHead(localChain))

33: if (FHF(HPrB , nonce) ≤ T) then � proof-of-work succeeded

34: ansPoW ← nonce

35: localChain ← join(GenerateBlock(),localChain)

36: BroadcastBlock(localChain,ansPoW)

37: FlagNewBlock ← True

38: nonce ← 0

39: Break

40: end if

41: nonce ← nonce + 1

42: end if

43: end if

44: end while

45: end while

The ZeroBlock algorithm (Algorithm 1) uses the following parameters and
definitions: ipt : information propagation time in Bitcoin network that is an
average delay for propagation a block into the network. This average delay has
been estimated by simulation in [2]. avt : block generation rate that has been set
by Bitcoin protocol according to which the difficulty of proof-of-work is adjusted
regarding to the hashing power of the network using Eq. 5. mat : maximum
acceptable time for receiving a new block that is computed by Eq. 6. During

360 S. Solat and M. Potop-Butucaru

a mat interval if a miner cannot solve the proof-of-work, it has to generate a
dummy Zeroblock. unpermitted block-withholding : occurs when a selfish min-
ing pool discovers a new block and keeps the block private after the end of
the current mat interval. Dummy Zeroblock : is generated locally by miners. It
includes the index of mat interval and the hash of previous block. It is generated
by honest miners to prevent unpermitted block-withholding. Note that our solu-
tion uses standard Bitcoin blocks discovered by solving the proof-of-work and
dummy blocks that are generated by the Zeroblock algorithm for which miners
do not need to solve any proof-of-work. The dummy Zeroblocks time generation
is therefore ignored when adjusting the difficulty of the proof-of-work. orphan
block : a block that has been discovered but is then rejected by the network.
genesis block : the first block of a Blockchain on which all miners have a con-
sensus. correct chain : a chain whose blocks have been discovered and inserted
correctly according to the described protocol. creative miner : a miner that in a
mat interval can solve proof-of-work and then generates a new block.

References

1. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012), 28
(2008)

2. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
2013 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P).
IEEE (2013)

3. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-45472-5 28

4. Eyal, I.: The miner’s dilemma. 2015 IEEE Symposium on Security and Privacy
(SP). IEEE (2015)

5. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993).
doi:10.1007/3-540-48071-4 10

6. Heilman, E.: One weird trick to stop selfish miners: fresh Bitcoins, a solution for the
honest miner (Poster Abstract). In: Böhme, R., Brenner, M., Moore, T., Smith, M.
(eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44774-1 12

7. Decker, C., Seider, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the 17th International Conference on Distributed Computing and Net-
working, Singapore (2016)

8. Kroll, J.A., Davey, I.C., Felten, E.W.: The economics of Bitcoin mining, or Bitcoin
in the presence of adversaries. In: Proceedings of WEIS, vol. 2013 (2013)

9. Solat, S., Potop-Butucaru, M.: ZeroBlock: Preventing selfish mining in Bitcoin in
CoRR abs/1605.02435 (2016). http://arxiv.org/abs/1605.02435

http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://dx.doi.org/10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/978-3-662-44774-1_12
http://dx.doi.org/10.1007/978-3-662-44774-1_12
http://arxiv.org/abs/1605.02435

Scalable Funding of Bitcoin Micropayment
Channel Networks

Conrad Burchert1(B), Christian Decker2, and Roger Wattenhofer1(B)

1 ETH Zurich, ETZ G 83, Gloriastrasse 35, 8092 Zürich, Switzerland
{bconrad,wattenhofer}@ethz.ch

2 Blockstream Inc., San Francisco, USA

Abstract. The Bitcoin network has scalability problems. To increase
its transaction rate and speed, micropayment channel networks have
been proposed, however these require to lock funds into specific channels.
Moreover, the available space in the blockchain does not allow scaling to a
world wide payment system. We propose a new layer that sits in between
the blockchain and the payment channels. The new layer addresses the
scalability problem by enabling trust-less off-blockchain channel funding.
It consists of shared accounts of groups of nodes that flexibly create one-
to-one channels for the payment network. The new system allows rapid
changes of the allocation of funds to channels and reduces the cost of
opening new channels. Instead of one blockchain transaction per channel,
each user only needs one transaction to enter a group of nodes – within
the group the user can create arbitrary many channels. For a group of 20
users with 100 intra-group channels, the cost of the blockchain transac-
tions is reduced by 90% compared to 100 regular micropayment channels
opened on the blockchain. This can be increased further to 96% if Bitcoin
introduces Schnorr signatures with signature aggregation.

1 Introduction

The increasing popularity of Bitcoin and other blockchain based payment sys-
tems lead to new challenges, in particular regarding scalability and transaction
speed. During peaks of incoming transactions, the blockchain cannot process
them fast enough and a backlog is created. A second major problem is trans-
action speed, the time from initiating a transaction until one can assume that
the transaction has concluded, and is thus irreversible. With inter block times
typically in the range of minutes and multiple blocks needed to reasonably pre-
vent double spending, transactions take minutes to hours until the payment is
confirmed. This may be acceptable for long-term Bitcoin investors, but not for
everyday shopping or interacting with a vending machine [2].

To solve both, scalability and speed, micropayment channel networks have
been proposed [8,18]. A micropayment channel provides a way to trustlessly
track money transfers between two entities off-blockchain with smart contracts.
If both parties are honest they can commit the total balance of many transfers in
a single transaction to the blockchain and ignore the smart contracts. If a node
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 361–377, 2017.
https://doi.org/10.1007/978-3-319-69084-1 26

362 C. Burchert et al.

crashes or stops cooperating otherwise, the smart contracts can be included in
the blockchain and enforce the last agreed on state.

If two parties do not have a channel, a network of multiple micropayment
channels can be used together with a routing algorithm to send funds between
any two parties in the network. Hashed Timelocked Contracts (HTLCs) provide
a scheme to allow atomic transfer over a chain of multiple channels [8,18,22].

Since micropayment channel networks will keep most transactions off the
blockchain, blockchain based currencies may scale to magnitudes larger user
and transaction volumes. Also, micropayment channel networks allow for fast
transactions, as a transaction happens as soon as a smart contract is signed –
the blockchain latency does not matter.

1.1 Challenges

Micropayment channel networks create new problems, which have not been
solved in the original papers [8,18]. We identify two main challenges – the
blockchain capacity and locked-in funds.

Even with increases in block size it was estimated that the blockchain capac-
ity could only support about 800 million users with micropayment channels due
to the number of on-chain transactions required to open and close channels [9].
A large scale adoption of micropayment channel networks, where, e.g., Internet
Of Things devices have their own Bitcoin wallet, brings the blockchain to its
limit.

Two parties cooperating in a channel must lock funds into a shared account.
The locked-in funds should be sufficient to provide enough capacity for peaks of
transactions. There is a conflict of the two aims to have a low amount of funds
locked up in a channel, while at the same time being flexible for these peaks.

We will present a solution that improves on both problems. Payment channels
will not appear in the blockchain, except in the case of disputes. Users will be
able to enter the system with one blockchain transaction and then open many
channels without further blockchain contact. Funds are committed to a group of
other users instead of a single partner and can be moved between channels with
just a few messages inside this collaborating group, which reduces the risk, as
an unprofitable connection can be quickly dissolved to form a better connection
with another partner. By hiding the channels from the blockchain, a reduction
in blockchain space usage and thus the cost of channels is achieved. For a group
of 20 nodes with 100 channels in between them, this can save up to 96% of the
blockchain space.

The channels created inside these groups work in the same way as regular
micropayment channels, therefore members of such a group can forward pay-
ments over a larger payment network of regular channels, founded either directly
on the blockchain or within other groups. This property enables easy deployment
in an existing payment network.

Scalable Funding of Bitcoin Micropayment Channel Networks 363

2 Ingredients

For completeness this section describes the previous work we are building on.

2.1 Blockchain Transactions

The concept of a blockchain to store transactions in a decentralized payment sys-
tem was introduced by Nakamoto [17]. The blockchain is a distributed append-
only ordered list of transactions. To append a transaction to the blockchain, it
is broadcast into the network of miners. We will use broadcast as a synonym for
appending a transaction to the blockchain; we are waiting for enough confirma-
tions to ensure that a blockchain transaction is irreversible with high probability.

Each transaction consists of inputs and outputs. An output is an amount of
currency and a spending condition, e.g., specified in the Bitcoin Script language.
An input is a reference to an existing, unspent output of another transaction
and a proof fulfilling the spending conditions of the referenced output.

A useful option of this design is to create an output containing n public
keys, which can be spent with signatures of m of the corresponding private keys,
known as an m-of-n OP CHECKMULTISIG or just multisignature output. This
implements a shared account of n entities, which can be spent from with the
support of m of those entities.

2.2 Micropayment Channels

A micropayment channel is a setup where two parties have created the means to
send each other currency without contacting the blockchain. The construction
principle is shown in Fig. 1.

The commitment is signed before the funding transaction to ensure that no
funds can be taken hostage by one party, as the other party already holds the
means to recover its stake. Both parties can close the channel at any time by

Fig. 1. Construction of a micropayment
channel. The boxes are transactions or
a number of transactions and the cir-
cles are outputs. The colors in the circles
describe whose signatures are needed to
spend those outputs. To spend an out-
put belonging to multiple parties, all
of those parties must sign. The lock
indicates unspent transaction outputs
on the blockchain while the channel is
open. (Color figure online)

Fig. 2. Update of a micropayment chan-
nel. A new commitment transaction,
which replaces the old one is created.
As long as it is ensured the old com-
mitment cannot be broadcast, 0.1 BTC
have now changed ownership from blue
to green. (Color figure online)

364 C. Burchert et al.

broadcasting the prepared commitment. As the opposing party cannot spend
from the shared account without both signatures, the funds are safe and the
broadcast of the commitment can be delayed to a later point in time. Given a
scheme to replace transactions, the channel can now be used to transfer funds
by replacing the commitment transaction with new commitment transactions,
which change the amount of currency sent to each party, as shown in Fig. 2.

The amount of locked funds determines the maximum imbalance between
sent and received funds, until all funds are with a single partner only. This is the
capacity of the channel. When a channel’s capacity is depleted, currency must
move in the other direction or the channel needs to be closed and reopened on
the blockchain with additional funds.

2.3 Transaction Replacement Using Timelocks

Channels which replace transactions using timelocks are known as Duplex Micro-
payment Channels [8].

Figure 3 shows a simple micropayment channel with timelocks. The first com-
mitment transaction is created with a timelock of 100 days, meaning it cannot be
appended to the blockchain until 100 days have passed. The second commitment
transaction is created with a timelock of 99 days and spends the same funds, so
it will be valid first and if anyone spends it during the first day, the outdated
commitment transaction will never have a time where it can be broadcast, as the
referenced output will have been spent already. Subsequent commitment trans-
actions use lower timelocks, always having only one transaction which can be
broadcast first.

A channel constructed this way has to be closed by broadcasting the newest
commitment transaction as soon as the first timelock has elapsed, limiting the
maximum lifetime of a channel. With relative timelocks [4,10] this problem can
be solved elegantly. Figure 4 introduces a kickoff transaction. Timelocks only
start ticking as soon as the kickoff transaction is broadcast, resulting in a poten-
tially unlimited lifetime of a channel.

Fig. 3. Micropayment channel with
timelocks. The commitment with the
lowest timelock can be included in the
blockchain before the others.

Fig. 4. Micropayment channel with rel-
ative timelocks. Timelocks count rel-
ative to the inclusion of the previ-
ous transaction into the blockchain. No
counters start until the kickoff transac-
tion was broadcast.

Scalable Funding of Bitcoin Micropayment Channel Networks 365

Still, one quickly runs out of time by doing transactions in the channel, each
requiring a smaller timelock on the commitment transaction. This was solved
with a tree of transactions [8] as shown in Fig. 5.1 At any point in time only
the path where all transactions have the lowest timelock of their siblings can be
broadcast. This way many commitment transactions can be created before the
timelocks get too low and the channel cannot be updated anymore.

Implementations of the transactions according to Fig. 5 can be found in
AppendixA.3.

Fig. 5. Invalidation tree with rela-
tive timelocks. The lowest path is
the currently active one. The rest
of the tree can be pruned, as it will
never be valid.

Fig. 6. A three party channel factory for
three subchannels. The allocation and the
commitments are replaceable transactions.
The subchannels can be updated by the two
collaborating parties by creating new com-
mitments in a subchannel. All three par-
ties together can collaborate to replace the
allocation and thus create new and different
two party micropayment channels without
contact to the blockchain.

2.4 Transaction Replacement Using Punishments

A variant of micropayment channels, known as Lightning Channels, uses revoca-
ble transactions to replace the commitments [18,23]. Each commitment consists
of two transactions, one per user in the channel. A party can give up its personal
transaction by revealing a secret, which allows the opponent to punish it in the
case it broadcasts the transaction afterwards.

3 Channel Factories

As our main contribution, we introduce a new layer between the blockchain
and the payment network, giving a three layered system. In the first layer,
the blockchain, funds are locked into a shared ownership between a group of
nodes. The new second layer consists of multi-party micropayment channels we

1 The original publication preceded the introduction of relative timelocks and as a
result had to use a different tree.

366 C. Burchert et al.

call channel factories, which can quickly fund regular two party channels. The
resulting network provides the third layer, where regular transfers of currency
are executed.

Similar to regular micropayment channels, multi-party channels can be imple-
mented with either timelocks or punishments for dishonest parties. Our imple-
mentation with timelocks performs much better, hence we will focus on it. The
regular micropayment channels of the third layer can be punishment based or
timelock based independent from the implementation of the multi-party channels
of the second layer.

Figure 6 shows an example channel factory of three parties that funds pair-
wise one-to-one channels.

We formally define some concepts.

Definition 1 (Funding Transaction). A funding transaction is a blockchain
transaction with an OP CHECKMULTISIG output that is used to lock funds
into a shared ownership between the p collaborating parties.

Note that there are two types of funding transactions in the new system,
funding a multi-party channel and funding the layer three two party channels.

Definition 2 (Hook Transaction). The hook transaction is the funding trans-
action of the multi-party channel. It locks the funds of many parties into a shared
ownership.

Definition 3 (Allocation). The allocation is one transaction or a number of
sequential transactions that take the locked funds from a multi-party channel as
an input and fund many multi-party channels with their outputs.

The allocation effectively replaces the funding transactions of a number of
two party channels.

Definition 4 (Commitment). A commitment is a transaction or a number of
transactions that return the funds of a two party channel to their owner.

Commitments are already known from two party channels.
The channel is constructed by first creating all transactions of the initial

state, then signing all except the hook and finally signing and broadcasting the
hook. Signing the hook last ensures that the funds can be returned to their
owners in case one party stops cooperating. After the hook is included in the
blockchain and enough confirming blocks have been received, the channel can be
used.

To implement the described setup, the known constructions of payment chan-
nels can be extended. The hook transaction is a simple blockchain transaction
which takes inputs from all users and creates one n-of-n OP CHECKMULTISIG
output, which can be spent with the signatures of all parties. The commitments
include just two parties, thus the known implementations with timelocks or
revocable transactions from Sect. 2 can be used directly. However we need a new
scheme for the allocations, as they need to be replaced trust free as well, but
include more than two parties.

Scalable Funding of Bitcoin Micropayment Channel Networks 367

3.1 Replaceable Allocations

Replaceable transactions with many parties can be implemented similar to two
party channels commitments based on timelocks with an invalidation tree and
a kickoff transaction at the root, which starts the timers when broadcast to
the blockchain. The leaves of the invalidation tree create the two party shared
accounts. The principle is shown in Fig. 7.

Fig. 7. Allocation of a three party
channel factory. The invalidation tree
can have any depth or degree of nodes.
Timelocks start ticking as soon as the
previous transaction is included in the
blockchain. Each transaction can be
broadcast after the relative locktime
has elapsed.

Fig. 8. Settlement of a channel fac-
tory. Subchannels only appear on the
blockchain in the case of conflicts.

Note that the order of the replacement of transactions is important. One
should always have a state, where the path of lowest timelocks does not end in
unsigned transactions. When a new path is created in the tree, the first transac-
tion which diverges from the old active path must be signed last, so the rest of
the path is already valid and the whole new path replaces the old path atomically
(Fig. 8).

It is easy to show that there is no risk to the involved parties. Assuming
that at least one party tries to broadcast transactions, when the timelocks have
elapsed, only one path of the tree will ever be broadcastable, apart from situa-
tions where a channel update is in progress. While a new path is being created,
there is a brief period where some parties already have the new path fully signed,
while the other parties are missing signatures. This is not a problem, as this state
is temporary and cannot be abused, as long as the receiver of a transaction does
not regard a transfer as complete before he has received all new signatures.

Most of the tree can be pruned, thus the memory footprint is small. While a
reallocation is in progress, new commitments can be made to the subchannels.
To ensure that they are valid indifferent whether the new allocation succeeds,
commitments should be made on both, the old and new subchannels. The details
of the protocol to update an allocation are found in AppendixA.1. The protocol
has a message complexity of O(p) where p is the number of parties in the channel
factory and can be executed in constant time.

Implementations of the transactions are found in AppendixA.4.

368 C. Burchert et al.

3.2 Settlement

When the involved parties cooperatively decide to close a channel factory, they
can create and broadcast a settlement transaction, which pays out the current
stake of each party directly from the shared account and without a timelock,
replacing the allocation, and removing the locked funds. This way only two
transactions appear on the blockchain, the hook and the settlement, which saves
blockchain space and hides the unnecessary information from the public. The
protocol to create a settlement is simple. If one node decides to close the channel
factory it broadcasts this decision to all other nodes. Everyone stops updating
the subchannels and broadcasts the sum of his current stake. This is enough
information for each node to create and sign the settlement transaction and
broadcast the signature. Nodes cannot profit from lying about their total stake,
as if any node gave a number too high the total sum would exceed the locked-in
funds of the factory and the settlement transaction would be invalid.

3.3 Moving Funds

A channel factory can be used to rebalance channels, which have become one
sided. A new allocation is set up, which replaces every channel with a balanced
new one while keeping the total stake of each party the same. As an advantage,
funds can also be moved between channels, new channels can be created or
old ones removed, changing the network connectivity without contacting the
blockchain.

3.4 Splice Out

When some node crashes, the other nodes cannot continue to update the alloca-
tion or commitments to subchannels involving the crashed party, as no further
signatures can be provided. One possible solution is to create a new shared
account from all still spendable two party outputs, shown in Fig. 9.

The new hook must replace the other commitments from the replaced sub-
channels. This is possible using either a lower or no timelock for timelocked
commitments or by disclosing any secrets of revocable commitments. It is not
necessary to broadcast the new hook transaction right away, so the group can
hope that the crashed node eventually recovers and a new allocation can be cre-
ated or a regular settlement be executed. If it is not the case the allocation has to
be broadcast to the blockchain, which makes all subchannels occupy blockchain
space.

With splice out, it is feasible to wait for crashed nodes to return, thus good
partners for a group may be offline occasionally, but if they do not intend to
return, they should leave the group in cooperation with the other parties.

3.5 Higher Order Systems

With larger groups, the coordination work required to sign a new allocation
rises, but it is advantageous to create large groups to save blockchain space and

Scalable Funding of Bitcoin Micropayment Channel Networks 369

Fig. 9. Continuing a four party chan-
nel by splicing out the red party,
after it has become unresponsive. The
other three parties can merge their cur-
rent outputs of the allocation into a
new shared account. Broadcasting the
old allocation and the new hook will
remove the unresponsive party from
the channel.

Fig. 10. A multi-party channel of eight
parties, which are divided into three
overlapping subgroups of four parties
each. Only signatures from four par-
ties are needed to move money between
channels inside one of the subgroups,
but all eight nodes can be connected at
least indirectly.

have more partners for subchannels. It is possible to extend the system to more
layers, each layer having less parties per shared account, as shown in Fig. 10.

This setup uses the same number of signatures as a system with two inde-
pendent groups, one to enter and one to leave per entity. However with two
independent groups, no channels between members of different groups would be
possible without additional blockchain transactions. With higher order systems,
multiple groups can be combined into one larger group, which can create over-
lapping subgroups. This allows to create channels which enable paths between
any two members of the larger group.

3.6 Risks

With a rising number of parties in a channel factory, the number of parties
that can stop cooperating and close the channel rises, as anyone involved in the
multi-party channel can broadcast the allocation to the blockchain. Afterwards
the subchannels can still be used, as the funds are now locked in the two party
accounts, but the option to move funds between channels is lost. There is no
personal advantage in unilaterally closing a channel, as the only difference is
that higher mining fees are paid for the increased blockchain space, thus everyone
loses. A selfish user should always prefer a settlement solution in comparison to
broadcasting the current path of the invalidation tree.

370 C. Burchert et al.

3.7 Signature Aggregation

It has been proposed to introduce Schnorr signatures [24] in Bitcoin, which would
enable signature aggregation.2 Signature aggregation allows combining many
public keys into a single public key and many signatures into a single signature.
With Schnorr signatures, n-of-n multi signature outputs can be created with
just one public key and the corresponding signatures can be combined into one
signature. Furthermore the transaction format could be modified to use a single
signature, which signs the combination of the public keys of all inputs [27]. With
these improvements to Bitcoin our transactions would only need one signature
for all inputs and one public key per output.

3.8 Fees

Higher order systems enable larger groups, where creating a new allocation in
an upper layer might require a significant number of collaborating nodes. Nodes
which would like to change the affiliation with subgroups could pay fees to every-
one else in the group to incentivize help to update the allocation. As all sub-
channels are replaced, this is easily accomplished by creating larger channels
everywhere the initiating party is not involved and reducing the initiating party’s
stake in its own channels. Integrated into the new channel state, this is an atomic
payment.

4 Evaluation

To evaluate the cost reduction, we assume that the largest part of the cost of
a money transfer in the payment network results from the space occupied in
the blockchain to create the channels. The price of blockchain space is regulated
by the fee market and is paid per byte of transaction data, thus more com-
plex transactions are more expensive. We will approximate how many bytes of
blockchain space are used to create a single payment channel. As someone closing
a channel unilaterally loses money, it can be assumed that few disputes will reach
the blockchain and hence the occupied blockchain size is well approximated by
taking into account only cooperatively closed channels.

The current transaction format of Bitcoin does not allow spending from
unsigned transactions. There is an ongoing discussion how this is going to be
changed, however without knowing which format will finally be deployed in the
Bitcoin network, it is not possible to precisely calculate the sizes of the blockchain
transactions of a micropayment channel. An approximation independent of the
transaction format can be made by counting the number of necessary public keys
and signatures, which constitute a large part of the transaction data. Based on
this we can define:

2 See Schnorr signatures at https://bitcoincore.org/en/2016/06/24/segwit-next-
steps/.

https://bitcoincore.org/en/2016/06/24/segwit-next-steps/
https://bitcoincore.org/en/2016/06/24/segwit-next-steps/

Scalable Funding of Bitcoin Micropayment Channel Networks 371

Definition 5 (Blockchain Cost). Assume all payment channels are closed in
cooperation of the involved parties. The blockchain cost BC is the sum of the
size of the public keys and signatures of the broadcast transactions during the
lifetime of a channel.

We start by evaluating the system with the currently used ECDSA signatures
and therefore without signature aggregation. On average an ECDSA signature
constitutes 72 bytes, a public key 33 bytes. Channel factories closed cooperatively
only broadcast two transactions, the hook and the settlement. Each of the two
transactions contains one signature and one public key per participant. Let p be
the number of parties in the channel factory and n be the number of subchannels.
The blockchain cost per subchannel is:

BC(p, n) =
33 × 2 × p + 72 × 2 × p

n
= 210 × p

n

To set this into context we also calculate the blockchain cost in a system,
where all one-to-one payment channels are opened directly on the blockchain.
Both the funding and settlement of every channel, each require two public keys
and two signatures.

BCsimple = 33 × 2 × 2 + 72 × 2 × 2 = 420

If p = 3 entities form a second layer group to create n = 3 pairwise channels,
their blockchain cost is 210, so they already save 50% of the blockchain space.
With p = 20 parties and n = 100 subchannels, the blockchain cost of each
channel is 42, which is 10% of the original cost.

With Schnorr signatures, only one signature is necessary to sign all inputs of
the hook transaction, and one combined public key can be used for the output.
The settlement can also use a single signature, but needs to provide the public
key for each output. If Schnorr signatures are implemented with the ed25519
curve [3], which provides a similar security level as the current ECDSA imple-
mentation, a public key uses 32 bytes and a signature 64 bytes.3 This results in:

BCSchnorr(p, n) =
32 × (p + 1) + 64 × 2

n
=

32 × p + 160
n

One-to-one channels without a channel factory use one signature on the fund-
ing transaction, one public key on the hook, one signature on the settlement and
two public keys on the settlement. This gives:

BCsimple,Schnorr = 32 × 3 + 64 × 2 = 224

With p = 3 parties in a channel factory with n = 3 subchannels, we calcu-
late a blockchain cost of 85.3, an improvement of 62% compared to blockchain

3 ed25519 is not the only possible implementation of Schnorr signatures. If you prefer
the implementation based on curve secp256k1 just calculate with a 33 byte public
key instead of 32.

372 C. Burchert et al.

funded channels. With p = 20 parties and n = 100 channels, the cost is 8, an
improvement of 96%. It is clear that channel factories increase their usefulness
with Schnorr signatures.

5 Related Work

The need for scalability is well-understood. Apart from simply changing the
parameters [6,11], the efficiency of the original Bitcoin protocol still offers space
for improvement [5,7,13,20,25].

Increasing the transaction speed without payment networks has been
researched. It was shown that double spending is easily achievable without doing
any mining if the receiver is not waiting for any confirmation blocks after a trans-
action [12,14].

Some work has been done to introduce sharding for blockchains [15,16]. If
the validation of transactions could be securely distributed and every node only
had to process a part of all transactions, the transaction rate could scale linearly
with the number of nodes. However to our knowledge no practical system has
been proposed.

5.1 Payment Networks

Solutions to find routes through a payment network in a scalable and decen-
tralized way have been proposed, based on central hubs [26], rotating global
beacons [21], personal beacons, where overlaps between sender and receiver pro-
vide paths [1], or combinations of multiple schemes [19].

Fig. 11. Rebalancing a cycle of channels, which have become one sided. The channels
between A, B and C have been heavily used in one direction, e.g., external transactions
being routed counterclockwise. As a result one direction of each channel cannot be used
anymore due to insufficient funds. An atomic cyclic transfer, shown by the red arrows,
can turn the three channels usable again. The transaction does not change the total
stake of any involved party. (Color figure online)

Scalable Funding of Bitcoin Micropayment Channel Networks 373

A known way to rebalance channels in a payment network are cyclic trans-
actions, shown in Fig. 11. The idea has originated in private communication
between the developers of the Lightning Network.4

While cyclic rebalancing allows to reset channels which have run out of funds,
it has limitations. If the amount of funds running through a specific edge has
been estimated wrong at funding time, or changes over time, rebalancing might
become necessary frequently. This slows down transactions which have to wait
for the rebalancing to finish. Our solution with channel factories allows moving
the locked-in funds to a different channel to solve the problem for a longer time.

6 Conclusion

We introduced a new layer of channel factories, sitting between the blockchain
and the network of micropayment channels. Within a group of nodes, channel
factories allow for more flexibility, creating many micropayment channels with-
out additional blockchain usage, and easy movement of locked-in funds to other
subchannels of the same factory using only off-blockchain collaboration. By cre-
ating many of those channel factories with some member overlap, a network
of micropayment channels can be created with a lower use of blockchain space
compared to existing systems.

The larger a group, the more space is saved, as the additional channels amor-
tize the blockchain transactions. Three party channel factories save 50% of the
blockchain space. In a setting of 20 users with 100 channels between them, 90%
reduction is achieved. In a Bitcoin system with signature aggregation those num-
bers improve even more to 62% and 96% respectively. With splice out, temporary
crashes of nodes can be tolerated, reducing the risk of channels with unstable
peers.

With a larger number of nodes in a channel factory, there is an increased risk
of someone closing the channel factory, creating blockchain transaction costs for
everyone involved, however there is no gain for the acting party, meaning that
any entity that is trusted to act selfishly will be a good channel factory member.
Nevertheless this risk limits the usefulness of large groups.

A Appendix

A.1 Coordination of Allocation Updates

When a new allocation is created, the members of a channel factory need to
coordinate the creation of a new allocation transaction and all transactions to
make the new or recreated subchannels of this new allocation. Due to the number
of involved parties this might take a considerable amount of time. However this
is not a problem, as normal channel operation can be continued as long as care is
taken to make changes to the subchannels of both the old and the new allocation.
An allocation update can be executed in the following order:
4 It is mentioned in https://lists.linuxfoundation.org/pipermail/lightning-dev/

2015-September/000188.html.

https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000188.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000188.html

374 C. Burchert et al.

1. A member decides that an update of the allocation is necessary, e.g., because
it wants to move funds to another channel, and broadcasts to all nodes of the
group that a new allocation should be created.

2. As soon as someone receives the allocation update request, he will issue a
request to all his subchannel partners to use the current channel state as the
base for the new allocation.

3. In each subchannel the two cooperating parties decide on a starting state for
the new subchannel and broadcast it to the group. Nodes can apply changes
that move funds to other channels in this step.

4. Each node creates the new allocation transaction. These should all be iden-
tical, as they fund the same two party shared accounts.

5. The two cooperating parties of each subchannel create the subchannel com-
mitment transactions and sign them. From this point on they keep both
subchannels based of the old and new allocation updated.

6. All nodes sign the new allocation and exchange signatures.
7. After receiving all signatures on the new allocation, a node can stop to update

the subchannels based on the old allocation, as those cannot be enforced
anymore.

From the view of any node there are three states during this process. In the
first state the node knows that only the old allocation may come into effect. In
the second state the node has given away its signature on the new allocation,
however not received all signatures from the other nodes, thus it is uncertainty
which allocation may be enforced on the blockchain. After receiving all signatures
the node can enforce the new allocation due to its lower timelock. By starting to
apply changes to both the old and new subchannels before giving away the own
signature on the new allocation it is always ensured that the newest subchannel
state is enforceable on the blockchain.

Note that it is ensured that movements of funds are consistent, i.e., no node
can create money by telling different partners different information about moving
funds between channels, as the total sum must not exceed the locked funds of
the group. A net gain for some party must result in a net loss for another
party, which will refuse to sign the new allocation. Furthermore if there are
different versions of the new allocation the signatures will not match and the
new allocation cannot come into effect. This case can be resolved either by
retrying with another new allocation or by giving up and eventually resolving
the situation on the blockchain.

The described procedure uses broadcasts of subchannel sizes and signatures.
This results in a communication overhead of O(p2). If this is considered too
large, a leader can be chosen, e.g., the node with the smallest input index in the
funding transaction of the channel factory. The leader can collect and distribute
the information, reducing the number of messages to O(p). The time used by
the protocol is constant.

Scalable Funding of Bitcoin Micropayment Channel Networks 375

A.2 Scripts

This appendix lists the different Bitcoin scripts to implement the proposed sys-
tem. For completeness we also include the already known scripts for two-party
payment channels. For every output there is one script that describes the con-
ditions to claim the output and another one that fulfills those conditions and is
provided in the input. These scripts depend on a deployed fix for malleability,
e.g., Segregated Witness. Note that an implementation might move the output
script into the input and use a hash commitment to ensure its integrity and
authenticity as usually done in Bitcoin transactions.

A.3 Two-Party Channel with Timelocks

These scripts implement the transactions in Fig. 5.
The funding and kickoff transactions use Script 1 in their output, which is

then claimed with Script 2.

Script 1: Simple two-party multisignature output
2 <pubkey A> <pubkey B> 2 OP CHECKMULTISIG

Script 2: Input script to spend a simple two-party multisignature output
0 <sig A> <sig B>

All transactions in the invalidation tree have a simple multisignature output
with a timelock, implemented in Script 3.

Script 3: Two-party multisignature output with a timelock
<locktime> OP CHECKSEQUENCEVERIFY OP DROP
2 <pubkey A> <pubkey B> 2 OP CHECKMULTISIG

The locktime is smaller each time a transaction is replaced and thus a new
branch in the tree created. They can all be spent with the same input script as
the funding transaction, Script 2. The leaves of the invalidation tree split the
funds into two outputs, one to each party without restrictions.

A.4 Multi-party Channel with Timelocks

These scripts implement the timelock based multi-party channel in Fig. 7.
Assume p parties. The funding transaction has a regular p-party multisigna-
ture output, Script 4.

376 C. Burchert et al.

It is spent by the kickoff transaction with Script 5.

Script 4: p-party multisignature output
p <pubkey 1> <pubkey 2> ... <pubkey p> p
OP CHECKMULTISIG

Script 5: Input script to spend a p-party multisignature output
0 <sig 1> <sig 2> ... <sig p>

The kickoff transaction creates another output with the same conditions,
again Script 4. The transactions of the invalidation tree have one multisignature
output with an additional timelock, Script 6.

Script 6: p-party multisignature output with a relative timelock
<locktime > OP CHECKSEQUENCEVERIFY OP DROP p <pubkey 1>
<pubkey 2> ... <pubkey p> p OP CHECKMULTISIG

These are all spent with the corresponding input script of the next node in
the tree with Script 5.

The leaves of the tree have any number of outputs, each creating a two-party
subchannel with Script 1.

References

1. Bairn, A.: Ionization protocol: flood routing (2015). http://lists.linuxfoundation.
org/pipermail/lightning-dev/2015-September/000212.html

2. Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., Welten, S.: Have a snack, pay
with bitcoins. In: 13th IEEE International Conference on Peer-to-Peer Computing
(2013)

3. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Cryptographic Eng. 2(2), 77–89 (2012)

4. BtcDrak, Friedenbach, M., Lombrozo, E.: Bip 112: Checksequenceverify (2015).
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki

5. Corallo, M.: Bip 152: compact block relay (2016). https://github.com/bitcoin/
bips/blob/master/bip-0152.mediawiki

6. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller,
A., Saxena, P., Shi, E., Gün, E.: On scaling decentralized blockchains.
In: 3rd Workshop on Bitcoin Research (2016). http://www.tik.ee.ethz.ch/file/
74bc987e6ab4a8478c04950616612f69/main.pdf

7. Decker, C., Wattenhofer, R.: Information propagation in the bitcoin network. In:
13th IEEE International Conference on Peer-to-Peer Computing, September 2013

http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000212.html
http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000212.html
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki
http://www.tik.ee.ethz.ch/file/74bc987e6ab4a8478c04950616612f69/main.pdf
http://www.tik.ee.ethz.ch/file/74bc987e6ab4a8478c04950616612f69/main.pdf

Scalable Funding of Bitcoin Micropayment Channel Networks 377

8. Decker, C., Wattenhofer, R.: A fast and scalable payment network
with bitcoin duplex micropayment channels. In: Pelc, A., Schwarzmann,
A.A. (eds.) SSS 2015. LNCS, vol. 9212, pp. 3–18. Springer, Cham
(2015). doi:10.1007/978-3-319-21741-3 1. http://www.tik.ee.ethz.ch/file/
716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf

9. Dryja, T.: Scalability of lightning with different bips and some back-of-the-envelope
calculations (2015). http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/
overview-of-bips-necessary-for-lightning/

10. Friedenbach, M., BtcDrak, Dorier, N., kinoshitajona: Bip 68: Relative lock-time
using consensus-enforced sequence numbers (2015). https://github.com/bitcoin/
bips/blob/master/bip-0068.mediawiki

11. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: 23rd ACM
Conference on Computer and Communications Security (2016). http://dl.acm.org/
citation.cfm?doid=2976749.2978341

12. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in bitcoin. In: Conference on Computer and Communi-
cations Security (2015)

13. Hearn, M.: Low bandwidth block relay using thin blocks (2015). https://github.
com/bitcoinxt/bitcoinxt/pull/91

14. Karame, G.O., Androulaki, E., Capkun, S.: Two bitcoins at the price of one?
Double-spending attacks on fast payments in bitcoin. In: Conference on Computer
and Communications Security (2012)

15. Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., Saxena, P.: SCP: a
Computationally-Scalable Byzantine Consensus Protocol for Blockchains (2015)

16. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure
sharding protocol for open blockchains. In: Conference on Computer and Commu-
nications Security (2016)

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

18. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant pay-
ments (2016). https://lightning.network/lightning-network-paper.pdf

19. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: an
approach to routing (2016). http://bitfury.com/content/5-white-papers-research/
whitepaper flare an approach to routing in lightning network 7 7 2016.pdf

20. Rosenfeld, M.: Analysis of hashrate-based double-spending (2012). https://bitcoil.
co.il/Doublespend.pdf

21. Russel, R.: Ionization protocol: flood routing (2015). http://lists.linuxfoundation.
org/pipermail/lightning-dev/2015-September/000199.html

22. Russell, R.: Lightning networks part ii: Hashed timelock contracts (HTLCs) (2015).
https://rusty.ozlabs.org/?p=462

23. Russell, R.: Reaching the ground with lightning (2015). https://github.com/
ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf

24. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. (1991)
25. Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing (fast

money grows on trees, not chains) (2013)
26. Towns, A.: Network topology and routing (2015). https://lists.linuxfoundation.

org/pipermail/lightning-dev/2015-September/000188.html
27. Wuille, P.: Elliptic curve schnorr-based signatures in bitcoin (2016). https://

scalingbitcoin.org/transcript/milan2016/schnorr-signatures

http://dx.doi.org/10.1007/978-3-319-21741-3_1
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
http://www.tik.ee.ethz.ch/file/716b955c130e6c703fac336ea17b1670/duplex-micropayment-channels.pdf
http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/overview-of-bips-necessary-for-lightning/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/overview-of-bips-necessary-for-lightning/
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
http://dl.acm.org/citation.cfm?doid=2976749.2978341
http://dl.acm.org/citation.cfm?doid=2976749.2978341
https://github.com/bitcoinxt/bitcoinxt/pull/91
https://github.com/bitcoinxt/bitcoinxt/pull/91
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://bitcoil.co.il/Doublespend.pdf
https://bitcoil.co.il/Doublespend.pdf
http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000199.html
http://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000199.html
https://rusty.ozlabs.org/?p=462
https://github.com/ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf
https://github.com/ElementsProject/lightning/blob/master/doc/deployable-lightning.pdf
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000188.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-September/000188.html
https://scalingbitcoin.org/transcript/milan2016/schnorr-signatures
https://scalingbitcoin.org/transcript/milan2016/schnorr-signatures

Brief Announcement: A Self-stabilizing
Algorithm for the Minimal Generalized

Dominating Set Problem

Hisaki Kobayashi(B), Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University,
1-5 Yamadaoka, Osaka, Suita 565-0871, Japan

{k-hisaki,kakugawa,masuzawa}@ist.osaka-u.ac.jp

1 Introduction

A dominating set in a distributed system is a set of nodes such that each node
is contained in the set or has at least one neighbor in the set. A k-redundant
dominating set is a set of nodes such that each node is contained in the set or
has at least k neighbors in the set. The 1-redundant dominating set problem is
equivalent to the dominating set problem. Hence, the k-redundant dominating
set problem is a generalization of the dominating set problem. We call members
of a dominating set dominators and the remainder dominatees. A dominating set
(resp. k-redundant dominating set) is minimal if and only if no proper subset of
the set is a dominating set (resp. k-redundant dominating set). In these problems,
domination requirement of each node is uniform, that is, each dominate requires
at least one or k dominators in its neighborhood respectively. In this paper, as a
further generalization of these problems, we propose the generalized dominating
set problem in which domination requirements may not be uniform by nodes.
Informally speaking, in this problem, each node i is a dominator or the set of its
neighboring dominators satisfies the domination requirement of node i. Then,
we propose a self-stabilizing algorithm for this problem.

Contribution of this paper: The contribution of this paper is twofold. First, we
introduce the generalized dominating set problem. Second, we propose a self-
stabilizing algorithm for finding a minimal generalized dominating set in an
arbitrary network under the synchronous daemon. In this paper, we assume the
execution model where all nodes execute actions simultaneously in a lock-step
fashion in each round (the synchronous daemon), and the communication model
where each node can directly read local variables of neighbors without delay,
and can update its local state only (the state-reading model). Note that each
node i ∈ V has a unique identifier denoted by IDi which is a non negative
integer value. Our algorithm repeats a sequence of four phases, and all nodes
must execute an identical phase at each round. To realize the synchronization of
the four phases, the self-stabilizing phase-clock synchronization algorithm [1] is
utilized. The convergence time of our algorithm is O(n) rounds, where n is the
number of nodes.
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 378–383, 2017.
https://doi.org/10.1007/978-3-319-69084-1 27

Brief Announcement: A Self-stabilizing Algorithm 379

Related works: Several self-stabilizing algorithms [2,3] for the minimal dominat-
ing set (MDS) problem have been proposed. The first research of self-stabilizing
algorithms for the minimal k-redundant dominating set (MKDS) problem has
been developed by Kamei and Kakugawa [4]. Their work assumes a tree net-
work under the central and the distributed daemons, and the convergence times
of their algorithms are both O(n2) steps. They also presented a self-stabilizing
algorithm for the MKDS problem on an arbitrary network under the synchro-
nous daemon with convergene time of O(n) rounds [5]. Recently, Wang et al.
[6,7] proposed self-stabilizing algorithms for the MKDS problem in an arbitrary
network, assuming the central and the distributed daemons, both of which stabi-
lize in O(n2) steps. The results are summarized in Table 1. Note that MGDS in
the table denotes a minimal generalized dominating set proposed in this paper.
The convergence time of the proposed algorithm is comparable to those of the
algorithms in [5–7], while the proposed algorithm deals with a much wider class
of problems.

Table 1. Self-stabilizing algorithms for various dominating set problems

Reference Problem Topology Daemon Convergence
time

Xu et al. [2] MDS Arbitrary Synchronous 4n rounds

Chiu et al. [3] MDS Arbitrary Distributed 4n steps

Kamei et al. [5] MKDS Arbitrary Synchronous O(n) rounds

Kamei et al. [4] MKDS Tree Central and
Distributed

O(n2) steps

Wang et al. [6,7] MKDS Arbitrary Central and
Distributed

O(n2) steps

This paper MGDS Arbitrary Synchronous O(n) rounds

2 The Generalized Dominating Set Problem

Let G = (V,E) be an undirected graph modeling a distributed system, and Ni

be a set of nodes adjacent to node i, called neighbors.

Definition 1. Let Ci = {W i
1,W

i
2, . . . ,W

i
c(i)} for each node i (0 ≤ i ≤ n − 1)

where W i
x ⊆ Ni (1 ≤ x ≤ c(i)), and let C = (C0, C1, . . . , Cn−1). A generalized

dominating set D of G with respect to C is a subset of V such that for each node
i, i is in D or there exists W i

x ∈ Ci such that W i
x ⊆ D. We call Ci a domination

wish set of node i, and C a domination wish list. ��
Definition 2. A generalized dominating set D of G is minimal if no proper
subset of D is a generalized dominating set of G. ��

380 H. Kobayashi et al.

Definition 3. The MGDS problem is defined as follows.

Input of node i: A domination wish set Ci.
Output of node i: A status di = true or false.
Condition: A node set D = {i ∈ V : di = true} is a minimal generalized

dominating set of G with respect to C = {C0, C1, . . . , Cn−1}. ��
The MGDS problem is equivalent to the MKDS problem when for each node

i, Ci is a k-combination of Ni. So, the MGDS problem is a further generalization
of the MKDS problem. Furthermore, the following application setting shows that
the MGDS problem is a strict generalization of existing domination problems.
Suppose that each node i provides a set of services Xi ⊆ {A,B}, where A and
B are service types. Let Xi = {A}, Xj = {B} and Xk = {A,B} for neighbors i,
j and k of node �. The domination requirement of node � is {{i, j}, {k}} when
node � requires services A and B in its neighborhood (In case node � cannot
satisfy its requirement, node � locally runs the services for itself). Such a dom-
ination requirement cannot be modeled by (weighted) k-redundant dominating
set. On the other hand, (weighted) k-redundant dominating set problem can be
expressed as the generalized dominating set problem proposed in this paper.

We assume that each node i has storage enough to store Ci (possibly in an
effective coding) and an effective way to check whether there exists W i

x ⊆ D.

3 The Proposed Algorithm

Each node i uses two constants, one external variable (controlled by the external
algorithm), two macro symbols and four shared variables. The constants are
described as follows.

– set of nodes Ni ⊆ V : A set of neighbors of node i.
– domination wish set Ci ≡ {W i

1,W
i
2, . . . : W i

x ⊆ Ni}.

The external variable is described as follows.

– int PhaseClocki ∈ {1, 2, 3, 4}: We assume that the external algorithm
makes this variable increase by one (in the circular order) at each round
as 1,2,3,4,1,2,3,4,1,2,. . . and take the same value in all nodes at each round.
Our algorithm implicitly executes the self-stabilizing algorithm [1] for a phase
clock synchronization simultaneously to maintain PhaseClocki. For simplic-
ity, in our algorithm, we omit the description of the phase clock synchroniza-
tion algorithm.

Besides, we use macro symbols as follows.

– set of nodes Di ≡ {j ∈ Ni : dj = true}: A set of neighboring dominators of
node i. Consequently, a set Ni − Di means a set of neighboring dominates of
node i.

– C ′
i ≡ {W i

x ∈ Ci : W i
x ⊆ Di}: A subset of Ci such that for each W i

x ∈ C ′
i, each

node in W i
x is a dominator. A dominatee i is dominated when C ′

i �= ∅.

Brief Announcement: A Self-stabilizing Algorithm 381

The shared variables are described as follows.

– boolean di: This variable is true (resp. false) if node i is a dominator (resp.
dominatee). We call this variable status. Note that the meanings of the status
and state are different in this paper; the state means the set of the variables
of node i.

– boolean Permissionj
i : This variable is used by node i to give a neighboring

dominator j(∈ Di) permission to become a dominatee. Permissionj
i = true

means that a dominatee i is dominated by another set of dominators (∈ C ′
i)

even if j ∈ Di turns to be a dominatee.
– boolean ChangeFlagi: Node i sets this variable true if node i intends to

change its status from a dominator to a dominatee or from a dominatee to a
dominator.

– node name Pointeri: This variable is assigned one node j ∈ Ni ∪ {i} to
approve j’s status change. Node j can change its status if Pointer� points to
j for each node � ∈ Nj ∪ {j}.

The main feature of our algorithm is that once a dominator i turns to be a
dominatee, node i never changes its status afterwards, that is, node i is domi-
nated by at least one set of dominators in C ′

i afterwards. Intuition of the status
change rules of each node i is described as follows.

Rule 1 dominatee dominator: A dominatee i (i.e., di = false) turns to be a
dominator (i.e., di = true) if it is not dominated, that is, C ′

i = ∅.
Rule 2 dominator dominatee: A dominator i turns to be a dominatee if it

is dominated and each neighboring dominatee j(∈ Ni −Di) is also dominated
even if node i turns to be a dominatee.

This idea for the algorithm seems intuitively correct; Rule 1 makes a dom-
inating set, and Rule 2 makes the set minimal. However, its straightforward
implementation does not work correctly under the synchronous daemon. Let us
observe three nodes, say i, j and k in a network such that nodes j and k are
neighbors of node i, but nodes j and k are not neighbors each other, that is,
node i is in the middle of nodes j and k. Suppose that node i is a dominatee
with Ci = {{j}, {k}}, and nodes j and k are dominators. By Rule 2, nodes j
and k simultaneously become dominatees if each of them has at least one set
of dominators in Cj and Ck respectively. Then, node i has no set of domina-
tors in Ci, and node i is still a dominatee; node i is not dominated. To avoid
such a scenario, we disallow the simultaneous status changes of nodes j and k
in the above setting. Generally speaking, we avoid violation of domination by
disallowing simultaneous status changes of two nodes within distance two (e.g,
nodes j and k in the above example). The idea for such a control is described
below. Each node i reads the status from each of its neighbors. Node i can now
detect whether the condition of Rule 1 is satisfied. Concerning Rule 2 at each
neighboring dominator j, node i can detect whether it is still dominated even
if node j turns to be a dominatee. If so, node i notifies node j of permission to
become a dominatee. According to the permissions, each dominator can know

382 H. Kobayashi et al.

whether or not the condition of Rule 2 is satisfied. When node i satisfies the
condition of Rule 1 or Rule 2, it notifies its neighbors that it intends to change
its status by setting ChangeFlagi := true. To disallow nodes within distance
two to simultaneously change their statuses, we use the pointer Pointeri; node
i sets Pointeri := j where j ∈ Ni ∪ {i} is the node with the smallest ID among
{h ∈ Ni ∪ {i} : ChangeFragh = true}. Node i sets Pointeri := null if no node
h in Ni ∪ {i} satisfies ChangeFragh = true. After the pointer assignment, node
i changes its status if node i is pointed by all the neighbors and itself. By this,
we prevent the simultaneous status changes by nodes within distance two. The
proposed algorithm for each node i in each phase is as follows.

– Phase 1: Each node i updates Permissionj
i for each neighbor j. Node i sets

Permissionj
i := true if node i is a dominatee and {s ∈ C ′

i : j �∈ s} �= ∅ holds.
Otherwise Permissionj

i :=false. This variable is used in Phase 2.
– Phase 2: Each node i updates ChangeFlagi. Node i sets ChangeFlagi :=

true if the condition of Rule 1 or Rule 2 (mentioned above) is satisfied, and
ChangeFlagi := false otherwise. This variable is used in Phases 3 and 4.

– Phase 3: Each node i updates its Pointeri. Node i sets Pointeri to one node
j ∈ Ni ∪ {i} with the smallest ID among {h ∈ Ni ∪ {i} : ChangeFlagh =
true}. Node i sets Pointeri := null if there exists no neighbor j such that
ChangeFlagj is true. This variable is used in Phase 4.

– Phase 4: Each node i changes its status (di := ¬di) if the following two
conditions are satisfied.
1. Node i intends to change its status, that is, ChangeFlagi = true.
2. Node i is pointed by every neighbor j and itself, that is, ∀j ∈ Ni ∪ {i} :

Pointerj = i.

Theorem 1. The algorithm is a self-stabilizing algorithm for the minimal gener-
alized dominating set problem with O(n) convergence time under the synchronous
daemon.

References

1. Herman, T., Ghosh, S.: Stabilizing phase-clocks. Inf. Proc. Lett. 5(6), 259–265
(1995)

2. Xu, Z., Hedetniemi, S.T., Goddard, W., Srimani, P.K.: A synchronous selfstabilizing
minimal domination protocol in an arbitrary network graph. In: Proceedings of the
Fifth International Workshop on Distributed Computing, pp. 26–32 (2003)

3. Chiu, W.Y., Chen, C., Tsai, S.Y.: A 4n-move self-stabilizing algorithm for the min-
imal dominating set problem using an unfair distributed daemon. Inf. Proc. Lett.
114(5), 515–518 (2014)

4. Kamei, S., Kakugawa, H.: A self-stabilizing algorithm for the distributed minimal
k-redundant dominating set problem in tree network. In: Proceedings of the Fourth
International Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), pp. 720–724 (2003)

5. Kamei, S., Kakugawa, H.: A self-stabilizing approximation algorithm for the distrib-
uted minimum k-domination. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. E88–A(5), 1109–1116 (2005)

Brief Announcement: A Self-stabilizing Algorithm 383

6. Wang, G., Wang, H., Tao, X., Zhang, J.: A self-stabilizing algorithm for finding a
minimal k -dominating set in general networks. In: Xiang, Y., Pathan, M., Tao, X.,
Wang, H. (eds.) ICDKE 2012. LNCS, vol. 7696, pp. 74–85. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34679-8 8

7. Wang, G., Wang, H., Tao, X., Zhang, J., Zhang, J.: Minimising k -dominating set
in arbitrary network graphs. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O., Yao, M.,
Wang, W. (eds.) ADMA 2013. LNCS, vol. 8347, pp. 120–132. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-53917-6 11

http://dx.doi.org/10.1007/978-3-642-34679-8_8
http://dx.doi.org/10.1007/978-3-642-53917-6_11

Space-Optimal Proportion Consensus
with Population Protocols

Gennaro Cordasco1(B) and Luisa Gargano2

1 University of Campania “L.Vanvitelli”, Viale Ellittico, 81100 Caserta, Italy
gennaro.cordasco@unicampania.it

2 University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
lgargano@unisa.it

Abstract. Population protocols provide a distributed computing model
in which a set of finite-state identical agents cooperate through random
interactions, between neighbors in the interaction graph, to collectively
carry out a computation in a distributed setting. Population protocols
have become very popular in various research areas, such as distributed
computing, sensor or social networks, as well as chemistry and biology. A
central task in this model is majority computation, in which agents need
to reach an agreement on the leading one of two possible initial opin-
ions. In this paper we consider a generalization of the majority problem,
named proportion consensus, which asks for an agreement on the pro-
portion of one opinion, between two possible views (say A or B). The
objective is to reach a configuration where all the agents agree on a
range γA ⊆ [0, 1] which contains the value of the fraction ρA of agents
that started with view A; the goal is to get the size of γA as small as
possible while also minimizing the number of states adopted by agents.
We provide a lower bound on the trade-off between precision ε (the size
of γA) and the number of states required by any population protocol that
solves the proportion consensus problem. In particular, we show that in
any population protocol that solves the proportion consensus problem
with precision ε, any agent must have at least �2/ε� states. We also pro-
vide a population protocol that exactly solves the proportion consensus
problem with precision ε and 6�1/(2ε)�−1 states. We show that in case of
an arbitrary interaction graph our protocol requires O(n6/ε) interactions
(which corresponds to the number of rounds in the sequential commu-
nication model) on any network with n agents. On complete interaction
networks, the expected number of required interactions is O(n2 log n).
Using the random matching communication model, the expected num-
ber of rounds, required to reach a consensus, decreases to O(Δn4/ε) in
case of arbitrary interaction networks (where Δ denotes the maximum
degree among the agents in the network) and O(n log n) for complete
networks.

1 Introduction

Population protocols refer to a standard model of distributed computing
designed to compute global predicates in a distributed setting through random
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 384–398, 2017.
https://doi.org/10.1007/978-3-319-69084-1 28

Space-Optimal Proportion Consensus with Population Protocols 385

interactions of identical agents with very little computational power. Popula-
tion protocols can be used to represent a biological model like a flock of birds,
chemical reactions or, more in general, interacting particles systems [5]. They
became very popular in various research fields, such as distributed computing,
chemistry, social networks, etc. Recently, the relevance and effectiveness of pop-
ulation protocols were also recognized in the biology and nanotechnology areas
showing how they can be used to model biological interactions at the level of
DNA molecules [13].

A population protocol consists of a set of finite-state agents, an interaction
network and a set of interaction rules. The interaction network defines pairs of
agents that may interact; the complete graph represent an important special
case, especially in the context of biological computations. The interacting rules
describe how the behavior of agents (their state) is affected by the interaction
with other agents. We notice that the protocol rules specify the results of any
possible interaction but they do not specify which pairs of agents interact and
when. Interactions may happen in an unpredictable order [9] and usually are
spawn using a probabilistic scheduler. The only assumption is the fairness, that
is if an interaction is possible, sooner or later it will occur).

The evolution of a population protocol can be described through the concept
of configuration, a snapshot of its “global state” at any given time. Since agents
are anonymous and identical, each configuration is completely described by the
number of agents in each state. The goal of a population protocol is to stabilize
to configurations that satisfy some predicate. The performance of a population
protocol is usually evaluated considering the space/speed trade-off, measured in
terms of number of states required by the protocol and number of interactions
needed to reach a stable (output) configuration.

Agreement is a fundamental problem in distributed systems. In several set-
tings, a binary agreement (i.e., yes or no answer) is sufficient to coordinate an
asynchronous system. In such cases the binary agreement can be easily obtained
by solving the majority consensus problem where, initially each node has one of
two possible views (say A or B) and the goal, for each node, is to output A, if
the majority of nodes started their execution with initial view A and to output
B, otherwise [7].

Distributed problems however, can often profit from a more refined agree-
ment than having each agent output the majority opinion. Distributed protocols
may require the execution of common actions that are triggered according to
the proportion of nodes satisfying a specific property (for instance, they have
reached some specific goal, or they agree on a particular opinion, or they have
been infected by a virus, or they have sensed some abnormal behavior, . . .). This
information, on the global state of the system, can be then used to choose an
appropriate action. In this paper we focus on the generalization of the major-
ity/consensus problem toward a more refined agreement. A recent step in this
direction has been taken in [23] that presents a protocol that enables the nodes
to compute an approximation of the proportion of agents that started their
computation with view A. However, since agents do not stabilize on the same

386 G. Cordasco and L. Gargano

output symbol, the protocol proposed in [23] does not represent a solution of the
proportion agreement problem. We address this issue.

Our Results. This paper analyzes the proportion consensus problem which aims
at reaching a consensus on the proportion of one opinion (say A) between two
possible initial views, in an arbitrary interaction network. Namely, to reach a
network configuration where all the nodes agree on a range γA ⊆ [0, 1] which
contains the value ρA that represents the fraction of nodes that initially started
with view A; the goal is to get γA as small as possible while minimizing the
number of different memory states at each node.

We first provide a lower bound on the trade-off between the precision ε (the
size of γA) and the number of memory states per node in any population protocol
that solves the proportion consensus problem. Namely, we show that for any
population protocol with precision ε at least �2/ε� states are necessary.

We then provide a protocol that exactly solves the proportion consensus
problem with precision ε and 6�1/(2ε)� − 1 states per node. We stress that the
proposed protocol reaches an agreement (i.e., all the agents stabilizes on the
same output symbol) for each possible input configuration; in particular, when
ε = 1/2 the agreements is reached also in case of tie between the two opinions.
We also evaluate the completion time of the proposed algorithm.

2 Preliminaries

A population protocol [5] is represented by a 6-tuple (Q,Σ, Y, ι, γ, f) over an
arbitrary interaction network G = (V,E) having n = |V | nodes, where Q is a
finite set of states, Σ is a finite set of input symbols, Y is a finite set of output
symbols, ι : Σ → Q is an input function, γ : Q → Y is an output function, and
f : Q×Q → Q×Q is a transition function that describes how two distinct nodes
update their status when they interact. Note that the interactions are in general
asymmetric, with one node q1 acting as the initiator and the other q2 acting as
the responder. Hence, f(q1, q2) = (q′

1, q
′
2) does not imply that f(q2, q1) = (q′

2, q
′
1).

A population protocol is executed by a fixed finite population of nodes with
states in Q. We assume that each node has an identity v ∈ V , but nodes are
oblivious to their own identity and to identities of nodes they interact with.
Initially, each node is assigned a state according to its initial view (using the
input function ι(·)). The edges of the interaction network indicate the node
interactions that may take place. Interactions between nodes are coordinated by
a uniform probabilistic random scheduler: at each round, any edge is randomly
chosen with a given distribution and the corresponding nodes interact. Note that
the random scheduler is fair, meaning that any possible interaction cannot be
avoided forever with non–zero probability.

The notion of time in population protocols refers to as the number of rounds
at which interactions occur. We consider two communication models. The first
is the sequential communication model, where at every round only two neighbor
nodes interact. Within this model the time of the protocol corresponds with the
number of performed interactions. The other is the random matching commu-
nication model, where at every round the interactions are given by a random

Space-Optimal Proportion Consensus with Population Protocols 387

matching (i.e., an independent edge set). In particular, using an approach simi-
lar to the ones in [12,14], one can color the network edges by means of any edge
coloring algorithm so that no two adjacent edges have the same color. Then at
each round, the random scheduler can selects a random color and for each edge
of the selected color, the two endpoints interact simultaneously.

We assume that the nodes are numbered 1, 2, . . . , n and denote by C
(i)
t the

state of node i at round t. The stochastic process {Ct, t ≥ 0}, where Ct =
(C(1)

t , . . . , C
(n)
t), represents the evolution of the population protocol. A state

Ct : V → Q of this process is also called a protocol configuration. The state
space of each Ct is thus Qn.

2.1 Problem Statement

We consider a set of n nodes, interconnected by an arbitrary underlying inter-
action network G = (V,E), that start their execution in one of two input states
(views) of Σ = {A,B}. We do not assume the existence of a central authority
and we allow every node of G to have only a (small) constant number of available
memory states.

Let nA be the number of nodes whose input state is A and nB be the number
of nodes that start in input state B. The ratio ρA = nA/(nA + nB) (resp.
ρB = nB/(nA + nB)) is the proportion of the nodes that start in state A (resp.
B). The output set Y is a family of intervals that form a partition of the interval
[0, 1].

Definition 1 (The Proportion Consensus Problem). A population proto-
col solves the proportion consensus problem with approximation factor ε ∈ (0, 1)
within τ rounds, if for each t ≥ τ we have

γ(C(1)
t) = γ(C(2)

t) = · · · = γ(C(n)
t) = γA,

where γA = [a, b] ⊆ [0, 1] identifies a subinterval of [0, 1] which contains the value
ρA and has size at most ε (i.e., b − a ≤ ε).

3 Related Work

The population protocol model (PPM) was introduced by Angluin et al. [5] as
a theoretical model that describes the behavior of a population of agents, with
very limited capabilities, that pairwise interact in order to perform a distributed
computation. Subsequently, a formal definition of the model and a complete
characterization of its computational power were given in [6,9].

Population protocols have been used to address different problems including
Majority [1,2,4,7,16,17,20,24], Proportion computation [23], Plurality consensus
[12,17], Leader election [4,10,18,21] and Community detection [11]. In some
cases, the PPM has been slightly extended in order to overcome some of its
limitations: Assuming the knowledge of the number n of interacting nodes [22]

388 G. Cordasco and L. Gargano

or enabling nodes to store arithmetic values [19]. All the above protocols were
developed in a failure-free environment, however the 3-state protocol of [7] is
resilient to (some number of) byzantine nodes. Also, [3] considers a model with
different, CRN-inspired crashes (“leaks”). In [15] the authors show that it is
possible to design a population protocol that computes the above functions in
a way that tolerates crash failures, provided that some preconditions are added
or incorrect responses, for borderline cases, are tolerated.

Two problems that are close to our work are the Majority and the Pro-
portion computation problems. Angluin et al. [7] propose a 3-state population
protocol for majority among two initial views (A and B) on complete interac-
tion networks. Their protocol is able to determinate w.h.p. the initial major-
ity in O(n log n) rounds, provided that the initial bias α = |nA − nB |/n is
ω(log n/

√
n). Thereafter, Mertzios et al. [20] define a 4-state protocol that will

be discussed in detail in Sect. 3.1 as it will be used for introducing the protocol
presented in this work. Alistarh et al. [4] propose a population protocol that
enables a trade-off between speed and memory. The proposed protocol requires
s states and O

(
log n
sα + log n log s

)
parallel time where s satisfies s = O(n) and

s = Ω(log n · log log n). The parallel time corresponds to the number of required
interactions divided by the number of nodes n. The work in [1] improves this
result by introducing a state quantization technique obtaining a poly-logarithmic
parallel time with O(log2 n) states. Finally, in [2] the authors propose a protocol
that uses O(log n) states and stabilizes in time O

(
log n · log 1

|nA−nB |
)
. A 6-state

protocol that provides a consensus even with equality of views (see Sect. 3.1) and
a protocol that solves the majority problem with more than 2 initial views (aka
plurality consensus) are proposed in [17].

The work [23] considers the proportion computation problem which is similar
to the proportion consensus problem studied here: Nodes start in one of two views
(A or B) and the goal is for each agent to determine, an approximation of the
quantity ρA = nA/n up to a certain precision factor ε. The proposed protocol
solves the proportion computation problem with precision ε using an optimal
number of states 2�3/(4ε)� + 1. However, the proportion computation problem
is not a consensus one, since nodes are not required to end up with the same
value. The proportion consensus problem not only asks for the computation of
an approximation of ρA, but it also requires that all the nodes unanimously
agree on identifying a range of values that includes the value ρA, realizing a
Stabilizing Consensus1 [8] as in the protocols for the majority problem [17].
Indeed our protocol guarantees that all agent terminate with the same output
symbol, while this is not true for the protocol in [23] missing the Agreement
requirement of the Stabilizing Consensus [8].

1 The Stabilizing Consensus has been defined in [8], relaxing one of the requirements of
the original consensus problem: agents know when the consensus has been reached.

Space-Optimal Proportion Consensus with Population Protocols 389

3.1 The 4-State Majority Protocol [20] reviewed

In this section we summarize the protocol proposed in [20] by using the same
notation adopted within this paper so that the reader will easily identify sim-
ilarities and differences between the protocols. The 4-state Majority Protocol,
also known as the ambassador protocol is described in the following:

1. Q = {〈−1,R〉, 〈0,L〉, 〈0,R〉, 〈1,L〉} denotes the states;
2. Σ = {A,B} denotes the two initial views (input symbols);
3. ι(B) = 〈−1,R〉, ι(A) = 〈1,L〉;
4. Y = {MA,MB} denotes the two output symbols. MA represents the majority

of A, MB represents the majority of B;
5. γ(〈−1,R〉) = γ(〈0,L〉) = MB , γ(〈0,R〉) = γ(〈1,L〉) = MA;
6. the transition function f is described in Table 1.

Table 1. f(·, ·), the transition function of the ambassador protocol. Row (resp. Col-
umn) titles refer to u (resp. v) while for each entry the first element refers to u and
the second to v. The value = means no changes.

u v

〈−1, R〉 〈0, L〉 〈0, R〉 〈1, L〉
〈−1, R〉 = (〈0, L〉, 〈−1, R〉) (〈−1, R〉, 〈0, L〉) (〈0, R〉, 〈0, L〉)
〈0, L〉 (〈0, L〉, 〈−1, R〉) = (〈0, R〉, 〈0, L〉) (〈1, L〉, 〈0, R〉)
〈0, R〉 (〈−1, R〉, 〈0, L〉) (〈0, R〉, 〈0, L〉) = (〈1, L〉, 〈0, R〉)
〈1, L〉 (〈0, R〉, 〈0, L〉) (〈1, L〉, 〈0, R〉) (〈1, L〉, 〈0, R〉) =

Briefly, each node has an integer weight in [−1, 1] and a label in {L,R}.
Imagine that the majority is represented by a rational number ρ ∈ [−1, 1] (ρ > 0
represents majority of A, ρ < 0 represents majority of B). The label of a node
state indicates in which direction (Left or Right), on the number line, the value
of ρ is supposed to be.

Theorem 1 [20]. Let P be a population protocol that stably computes the major-
ity function in any 2-views population of nodes and for any interaction network.
P has at least 4 states.

Theorem 2 [20]. Let G be an arbitrary connected interaction network with n
nodes. Then
– if there exists initially a majority, then the ambassador protocol stably com-
putes the initial majority value;
– assuming the random scheduler, if initially there are m A nodes and � �= m
B nodes, then the expected number of interactions until the ambassador protocol
converges is O(n6). If, additionally, the interaction network is the complete net-
work Kn, then the expected number of interactions until the ambassador protocol
converges is O

(
lnn

|m−�|n
2
)
.

390 G. Cordasco and L. Gargano

Observation 3. If there is no majority, the ambassador protocol may fail.

For instance, consider a network with two nodes u and v and a single edge
(u, v). If at the initial configuration u support the initial view A while v sup-
ports the view B the protocol will end with final states 〈0,L〉 and 〈0,R〉 which
correspond with different final symbols and consequently there is no consensus.

4 The Proportion Consensus Problem

In this section we present our main results. First, in Sect. 4.1, we provide a lower
bound on the trade-off between the desired precision and the number of states
required by any population protocol for the proportion consensus problem. In
Sect. 4.2, we design a population protocol that exactly solves the proportion
consensus problem for each possible input configuration (see Theorem 6) and we
analyze (see Theorem 7) the number of rounds required to reach an agreement
both on arbitrary and complete interaction networks under two communication
models (sequential and random matching).

4.1 The Lower Bound

We obtain the following bound for the proportion consensus problem; it reattains
the one in Theorem 1 when no requirement on the precision is made.

Theorem 4. For each ε < 1/2, let Pprop be a population protocol that stably
solves the proportion consensus problem with an approximation factor ε in any
2-views population of nodes and for any interaction network. Pprop has at least
�2/ε� states.

Proof. (Sketch)
Assume, for the sake of contradiction, that there is a population protocol

P that stably solves the proportion consensus problem with an approximation
factor ε and uses only

s ≤ �2/ε� − 1 < 2/ε (1)

states.
Let Q(P) = {Q1, Q2, . . . , Qs} be the set of states and Y (P) =

{Y1, Y2, . . . , Yz} be the set of output symbols where each output symbol identi-
fies a certain range of [0, 1]. Observing that the ranges of type [a, b], where b > a,
associated to the symbols in Y (P) must cover the whole range [0, 1], we have
that the number of such ranges is at least 1/ε.

Since by (1) s < 2/ε, there exists at least one output symbol (wlog, Y1) that
identifies a range I = [a, b], which is associated with a single state in Q(P) (wlog,
Q1).

Considering a network G having n nodes, there are n + 1 distinct initial
configurations, one for each value of ρA = nA/n for nA = 0, 1, . . . , n.

Given a range I = [a, b] (where b > a), since ε is fixed, for a sufficiently large
n we have that I covers at least 2 initial configurations (wlog, (i−m)/n, . . . , i/n

Space-Optimal Proportion Consensus with Population Protocols 391

for some 1 ≤ m ≤ i ≤ n). Notice that m ≤ n/2. Otherwise the size of the
interval I, which is at least i−(i−m)

n , becomes larger than 1/2 contradicting the
hypothesis that the approximation factor ε is smaller than 1/2.

Assume now that we have a population V of n nodes, among which S ⊆ V
initially have view A and V \S have view B. We will denote such a configuration
by C(S). By the above discussion, we know that P will output Y1 in all the
configurations C(Sj), such that Sj ⊆ V and |Sj | = i− j for each j = 0, 1, . . . ,m.

In particular, for each j = 0, 1, . . . , m, running P on input C(Sj) (ρA =
(i−j)/n), the protocol will eventually reach a configuration where all nodes are at
state Q1 (moreover since P solves the proportion consensus problem, the protocol
will never leave this configuration). In other words, for each j = 0, 1, . . . ,m
there is a sequence of transitions Tj (equivalently, there is a sequence of pairs of
nodes picked by the scheduler) that transforms the configuration C(Sj) into the
configuration where all nodes are in state Q1.

There are two case to consider according to the value of i.

CASE I: i ≤ (3/4)n. Consider the following increasing sequence of numbers:

i

n + 1
,

i + 1
n + 2

,
i + 1
n + 1

,
i + 2
n + 3

,
i + 2
n + 2

,
i + 3
n + 4

,
i + 3
n + 3

,
i + 4
n + 4

.

Observe that (i) i
n+1 ∈ I = [a, b] (since a ≤ i−1

n < i
n+1 < i

n ≤ b) (ii) i+4
n+4 /∈ I

(since for i ≤ (3/4)n it holds i+4
n+4 ≥ i+1

n > b).
Therefore, we have that there exists 1 ≤ � ≤ 4 such that i+�−1

n+� ∈ I and
i+�
n+� /∈ I.

Suppose now that we have a population V ′ = V ∪ U , i.e. V ′ consists of V
together with � new nodes U = {u1, u2, . . . , u�}. Consider then the following
two initial configurations: (a) C0 = C(S0 ∪ U) and (b) C1 = C(S1 ∪ U). In
particular, ρA(C0) = (i + �)/(n + �) /∈ I, while ρA(C1) = (i + � − 1)/(n + �) ∈ I.
We have the desired contradiction because since ρA(C0) and ρA(C1) fall into
different intervals, it follows that P must output two different symbols when
the starting configurations are C0 and C1. But starting at C0 it is possible to
follow the sequence of transitions T0 (i.e., ignoring nodes in U), thus reaching
a configuration C ′ where all nodes in V are in state Q1 and nodes in U remain
with their initial view A. Similarly, starting at C1 it is possible to follow the
sequence of transitions T1 thus reaching to the same configuration C ′. This is a
contradiction, since P will not be able to tell the difference between the starting
configurations C0 and C1. In particular, the output of P after reaching C ′ will
be wrong for exactly one of the two initial configurations C0 or C1, contradicting
the assumption that P solves the proportion consensus problem.

CASE II: i > (3/4)n. Using an argument similar to the one in the previous
case, it is possible to get a contradiction to the assumption that P solves the
proportion consensus problem. ��

4.2 The Proportion Consensus Protocol

The intuition behind the proportion consensus protocol is as follows. The state
of each node v is represented by a pair 〈w(v), �(v)〉, where w(v) denotes an

392 G. Cordasco and L. Gargano

integer weight between −k and k and �(v) is a label that belongs to {L, E ,R}.
By convention, nodes starting in A have initial state 〈k,L〉, while nodes starting
in B have initial state 〈−k,R〉. The protocol is based on the following idea:
whenever two nodes interact, they average their current values. The protocol is
designed so that the sum of node weights does not change and, at the same time,
the weight of each node converges to the average value avg = (

∑
v∈V w0(v))/n

(see Eq. (2)). We notice that the avg value will be sufficient to compute the
exact proportion value ρA = nA/(nA + nB). Indeed ρA = (avg + k)/2k. Since
only integer values are allowed as node weights, then node weights may not
converge to the avg value but to one of its closest integers. Node labels are used
to maintain the information about the relation between the current weight and
the average value. Three node labels are used:

– L (Left), the current weight is supposed to be larger than the value of avg;
– R (Right), the current weight is supposed to be smaller than the value of avg;
– E (Equal), the current weight is supposed to be equal to the value of avg.

We will prove that using this simple average technique and updating the node
labels according to some simple rules (see Eq. (3)), all nodes weights will converge
to one of the two closest integers of the value avg, while their labels will correctly
report the relation between their weights and the average value. This solves the
proportion consensus with approximation factor 1/(2k) since all the nodes will
agree on two integer values �avg� and �avg� and this approximation will led to
proportion ranges of size at most 1/(2k).

We present the proportion consensus protocol (PCP) in detail below. Let k
be a positive integer that rules the trade-off between the accuracy of the protocol
and the number of states required. In particular, the range [0, 1] is partitioned
into 2k non-overlapping sub-ranges of size 1/(2k). The proportion consensus
protocol is defined by the following elements:

1. the set of states is Q = {〈−k,R〉, 〈−k + 1,L〉, 〈−k+1, E〉, 〈−k+1,R〉,
〈−k+2,L〉, 〈−k+2, E〉, 〈−k+2,R〉, . . . , 〈0,L〉, 〈0, E〉, 〈0,R〉, . . . , 〈k−1,L〉, 〈k−
1, E〉, 〈k − 1,R〉, 〈k,L〉}. Each node v has a state q ∈ Q that is represented
by a weight w(v) ∈ {−k,−k + 1, . . . , k} and a label �(v) ∈ {L, E ,R}. The
weight −k is always associated with the label R while the weight k is always
associated with the label L. Overall we have |Q| = 6k − 1 states;

2. the set of input symbols is Σ = {A,B};
3. the input function is ι(·): ι(A) = 〈k,L〉, ι(B) = 〈−k,R〉;
4. the set of output symbols is Y = {Y1, Y2, . . . , Y2k};
5. the output function is γ(·):

γ(q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 if q ∈ {〈−k, R〉, 〈−k+1, L〉}
Y1 means that ρA ∈ [0, 1

2k

)
;

Yi if q ∈ {〈i−k−1, E〉, 〈i−k−1, R〉, 〈i−k, L〉}, for i = 2, 3, . . . , 2k−1

Yi means that ρA ∈ [i−1
2k

, i
2k

)
;

Y2k if q ∈ {〈k−1, E〉, 〈k−1, R〉, 〈k, L〉}
Y2k means that ρA ∈ [1 − 1

2k
, 1
]
.

Space-Optimal Proportion Consensus with Population Protocols 393

We notice that the size of the ranges identified by the output symbols in Y is
at most 1/(2k). Hence it is possible to design a proportion consensus problem
with precision ε ∈ (0, 1) by choosing k = �1/(2ε)�.

6. The transition function f(·, ·) can be decomposed into two functions fw(·, ·)
and f�(·, ·) which updates the weight and the label respectively.

The functions fw(u, v) exploits an average technique [4,12,23] to balance
the sum of nodes weight among all the nodes.

fw(u, v)=
(

wi+1(u)=
⌊

wi(u) + wi(v)
2

⌋
, wi+1(v)=

⌈
wi(u) + wi(v)

2

⌉)
(2)

The labels are updated according to the following five rules.

f�(u, v)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1) (�i+1(u)=R, �i+1(v)=L) if wi+1(u)<wi+1(v)

2) (�i+1(u)=E, �i+1(v)=E) if wi(u) �=wi(v) and wi+1(u)=wi+1(v)

3) (�i+1(u)=R, �i+1(v)=E) if wi(u)=wi(v) and �i(u)=E and �i(v)=L
4) (�i+1(u)=R, �i+1(v)=E) if wi(u)=wi(v) and �i(u)=E and �i(v)=R
5) (�i+1(u)=�i(u), �i+1(v)=�i(v)) otherwise.

(3)

It is worth mentioning that the protocol is presented here as asymmetric
(indeed, wi+1(u) ≤ wi+1(v) where u is the initiator and v is the responder).
This property is exploited in arbitrary interaction networks in order to let the
nodes swap their states emulating a random walk. In complete networks, it is
possible to use the symmetric version of our protocol that do not explicitly rely
on the distinction between initiator and responder. Moreover, the symmetric
version of the protocol can be used also on arbitrary networks, by using the
simulated random coin technique from [1].

An Example. Table 2 provides the transition function of the proportion con-
sensus protocol with k = 1.

Table 2. f(·, ·), the transition function of the proportion consensus protocol with k = 1
(5-states). Row (resp. Column) titles refers to u (resp. v) while for each entry the first
element refer to u and the second to v. The value = means no changes.

u v

〈−1,R〉 〈0,L〉 〈0, E〉 〈0,R〉 〈1,L〉
〈−1,R〉 = (〈−1,R〉, 〈0,L〉) (〈−1,R〉, 〈0,L〉) (〈−1,R〉, 〈0,L〉) (〈0, E〉, 〈0, E〉)
〈0,L〉 (〈−1,R〉, 〈0,L〉) = (〈0, E〉, 〈0,R〉) (〈0,L〉, 〈0,R〉) (〈0,R〉, 〈1,L〉)
〈0, E〉 (〈−1,R〉, 〈0,L〉) (〈0, E〉, 〈0,R〉) = (〈0, E〉, 〈0,R〉) (〈0,R〉, 〈1,L〉)
〈0,R〉 (〈−1,R〉, 〈0,L〉) (〈0,L〉, 〈0,R〉) (〈0, E〉, 〈0,R〉) = (〈0,R〉, 〈1,L〉)
〈1,L〉 (〈0, E〉, 〈0, E〉) (〈0,R〉, 〈1,L〉) (〈0,R〉, 〈1,L〉) (〈0,R〉, 〈1,L〉) =

Observation 5. This 5-state proportion consensus protocol solves the consensus
majority problem for any possible input. In [17] the author presented a 6-state

394 G. Cordasco and L. Gargano

protocol in order to amend the 4-state protocol [20] (discussed in Sect. 3.1), which
was not able to reach a consensus in case of tie. The difference between the
protocol in [17] and this 5-state protocol is that the 6-state protocol discriminates
three cases (majority of A, majority of B and equality) while our 5-state protocol
discriminates two cases (majority of A or equality and majority of B).

The following theorem proves the correctness of the proposed algorithm.

Theorem 6. The proportion consensus protocol solves the proportion consensus
problem.

Proof. Using the assumption that the scheduler is fair, we will first prove that,
starting at a configuration C(A), where the nodes in A ⊆ V are initially of view
A and B = V \A are initially of view B, G will be led by the protocol in a finite
number of rounds to a configuration where all the node weights differ at most
by 1. Specifically, there exists τ > 0 such that, for each t > τ and for each v ∈ V
we have

�avg� ≤ wt(v) ≤ �avg�, (4)

where

avg =

(∑
v∈V

w0(v)

)
/n = (nA − nB) × k/n. (5)

Let Cmin,max be a family of configurations such that for each v ∈ V we have
min ≤ w(v) ≤ max. Recalling that thanks to Eq. (2), the sum of the nodes
weight does not change we have that the value of avg is constant.

Assume otherwise that the statement above regarding inequality (4) does
not hold, that is starting from a configuration C(A) ∈ C−k,k the protocols stays
for ever at configurations in a family Cx,y where y − x > 1. First recall that,
whenever a node v interacts with a node u such that |wi(u) − wi(v)| > 1, then
|wi+1(u) − wi+1(v)| ≤ 1 (cf. Eq. (2)). Furthermore recall that, whenever two
nodes u and v, such that |wi+1(u) − wi+1(v)| = 1, interacts they may exchange
their weights. Therefore, since G is connected and y − x > 1, there exists a
chain of transitions that leads to a configuration in Cx′,y′ where either x′ > x or
y′ < y. Therefore, since the scheduler is fair, this will eventually happen (in a
finite number of rounds) and we have the desired contradiction.

Hence, G will be led in a finite number of rounds to a configuration in
C�avg�,�avg	. Note now that, once G reaches a configuration in C�avg�,�avg	 it
will stay for ever at a configuration in C�avg�,�avg	 (see Eq. (2)).

We show now that, starting from a configuration in C�avg�,�avg	, the protocol
will always reach a configuration where every node correctly computes the initial
proportion value. There are two cases to consider according to avg being an
integer or not:

– CASE I: �avg� = �avg�. If A = V (that is all nodes start with initial view
A) then the initial configuration is already stable and every node correctly
computes the initial proportion value. Otherwise, let t the round when the
rule 2) of Eq. (3) has been applied for the last time. Hence, at round t,

Space-Optimal Proportion Consensus with Population Protocols 395

there are at least two nodes with label E . Since �avg� = �avg�, all the nodes
have the same weight avg and the rule 1) of Eq. (3) will not be applied
anymore. Consequently, the number of nodes having label E will not decrease.
Furthermore, by rule 4) of Eq. (3), when a node with label E interacts with
a node with label R, they exchange their label while, by rule 3) of Eq. (3),
when a node with label E interacts with a node with label L, the label L
changes to R. Consequently, the number of nodes having label L continuously
decreases and will become 0 in a finite number of rounds. Once G reaches
such a configuration, all the nodes agree on the same output symbol, which
corresponds to a range that contains the initial proportion value.

– CASE II: �avg� �= �avg�. Once the configuration C�avg�,�avg	 has been
reached, the rule 2) of Eq. (3) will not occur anymore and consequently
the number of nodes with label E will not increase. Furthermore, when a
node with weight �avg� (resp. �avg�) and label E interacts with a node with
weight �avg� (resp. �avg�), the rule 1) applies and the label E disappear.
Consequently the number of nodes with labels E continuously decreases and
will become 0 in a finite number of rounds. Furthermore, thanks to rule 1)
of Eq. (3), nodes with weight �avg� will take the label L while nodes with
weight �avg� will take the label R. Once G has reached such a configuration,
all the nodes agree on the same output symbol, which corresponds to a range
that contains the initial proportion value. ��
We derive now upper bounds on the number of rounds needed by the proposed

protocol to converge.

Theorem 7. Let G be interaction network with n nodes. Assuming that inter-
actions between nodes are coordinated by a probabilistic random scheduler. The
expected time until the proportion consensus protocol converges is:

– O(n2 log n), using the sequential communication model and O(n log n), using
the random matching communication model, on complete interaction networks.
– O(kn6), using the sequential communication model and O(kΔn4), where Δ
denotes the maximum degree among the nodes in the network, using the random
matching communication model, on arbitrary connected interaction networks.

Proof. (Sketch)
Here we provide the result for the sequential communication model on a

clique Kn = (V, V × V) network.
Let avg =

(∑
v∈V w0(v)

)
/n = (nA − nB) × k/n.

We denote by T1 the time needed to reach a configuration where for each
v ∈ V we have �avg� ≤ w(v) ≤ �avg�, that is, node weights pairwise differ at
most by 1. Then let T2 denote the time needed to stabilize to the correct label
on all nodes. Clearly, the time needed for the protocol to converge is T1 + T2.

In order to bound E[T1], we partition the time T1 into two sub-intervals:

– T11, which is the time required to reach a configuration where the weights of
nodes in the subsequent configurations will be among the three integers closest
to avg and

396 G. Cordasco and L. Gargano

– T12, which is the time required to reach a configuration where for each v ∈ V
we have �avg� ≤ w(v) ≤ �avg�, starting from a configuration where the weights
of nodes belongs to the three integers closest to avg.

By relying on Theorem 7 of [23] we have that, with high probability, T11

requires O(n log n) rounds.

Let a, a+1, a+2 be the three weights left after T11. Let q, r, s be the number
of nodes having weight a, a + 1 and a + 2 respectively. We notice that when
a node having weight a interacts with a node having weight a + 2, both the
nodes will assume weight a + 1 and the values of q, r and s change, while all
the other kinds of interactions do not change the values of q, r and s. Without
loss of generality assume that q ≤ s. Our goal is to let all the nodes having
weight a meet a node having weight a + 2, so that the weight a disappear. Let
Zi, i = 1, 2, . . . , q be the number of repeating independent Bernoulli trials (i.e.,
rounds needed) until a success is obtained (i.e., the i-th pair of nodes, having
weights a and a + 2 meet). The probability of success of each independent trial
is pi = (q−i+1)(s−i+1)

(n
2)

. Therefore, for each i = 1, 2, . . . , q the expected number of

trial to obtain the first success is E[Zi] = 1/pi, and consequently the expected
time needed to get rid of the weight a is

E[T12] =
q∑

i=1

E[Zi] =
(

n

2

) q∑
i=1

1
(q−i+1)(s−i+1)

≤
(

n

2

) q∑
i=1

1/i2 = O(n2). (6)

Hence, the time needed to reach a configuration where node weights differ at
most by 1 is

E[T1] = O(n log n) + E[T12] = O(n2). (7)

In order to get an upper bound on E[T2], we have two cases to consider
according to avg being an integer or not:

– CASE I: �avg� = �avg�. According to Theorem 6, there are at least two
nodes with label E . Moreover the number of nodes having label E does not
decrease and when a node with label E interacts with a node with label L,
the label L changes to R.

The goal here is to let all the L labels disappear by meeting a node with
label E . Let Zi, i = 1, . . . , n−2 be the time needed for the i-th node with label
L to become R by interacting with node with label E . Then Zi is a geometric
random variable. The probability of success of each independent trial in Zi

is at least pi = 2(n−i−1)

(n
2)

. Therefore, for each i = 1, 2, . . . , n − 2 the expected

number of trials to obtain the first success is E[Zi] = 1/pi, and consequently

E[T2] =
n−2∑
i=1

E[Zi] =
(

n

2

) n−2∑
i=1

1
2(n−i−1)

=
(

n

2

)
1
2

n−2∑
i=1

1
i

= O(n2 log n). (8)

– CASE II: Using an argument similar to the CASE I we are able to show
that

E[T2] = O(n2 log n). (9)

Space-Optimal Proportion Consensus with Population Protocols 397

Overall, by (7), (8) and (9) we have that E[T1] + E[T2] = O(n2 log n). ��

5 Conclusion

We studied the trade-off between accuracy and space (number of states) for
the proportion consensus problem in population protocols, which generalizes
the majority problem. The goal is to reach an agreement on the proportion of
one opinion among two possible initial views. We presented a protocol, which
guarantees that by using 6�1/(2ε)� − 1 states all agents agree on a range γA ⊆
[0, 1] of size at most ε which contains the exact proportion ρA. Our protocol
always guarantees an agreement for any possible initial configuration and uses
a close to optimal number of states.

There are several interesting directions for further investigations. For exam-
ple, how to close the gap between the provided lower and upper bounds. Another
interesting direction is the design of a fast proportion consensus agreement, con-
sidering the trade-off between accuracy, space and speed (number of rounds
required to reach the final agreement), which would provide a natural extension
of the results in [1,2,4] for the Majority problem.

References

1. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space
trade-offs in population protocols. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain,
Hotel Porta Fira, 16–19 January, pp. 2560–2579 (2017)

2. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-Optimal Majority in Population
Protocols. ArXiv e-prints arXiv:1704.04947, April 2017

3. Alistarh, D., Dudek, B., Kosowski, A., Soloveichik, D., Uznanski, P.: Robust detec-
tion in leak-prone population protocols. arXiv arXiv:1706.09937 (2017)

4. Alistarh, D., Gelashvili, R., Vojnović, M.: Fast and exact majority in population
protocols. In: Proceedings of the 2015 ACM Symposium on Principles of Distrib-
uted Computing, PODC 2015, New York, NY, USA, pp. 47–56 (2015)

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253
(2006)

6. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: Ruppert, E., Malkhi, D. (eds.) PODC, pp. 292–299. ACM (2006)

7. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust
approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

8. Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing consensus in mobile networks. In:
Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS,
vol. 4026, pp. 37–50. Springer, Heidelberg (2006). doi:10.1007/11776178 3

9. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bull. Eur. Assoc.
Theoret. Comput. Sci. 93, 98–117 (2007)

10. Beauquier, J., Blanchard, P., Burman, J.: Self-stabilizing leader election in pop-
ulation protocols over arbitrary communication graphs. In: Baldoni, R., Nisse,
N., Steen, M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 38–52. Springer, Cham
(2013). doi:10.1007/978-3-319-03850-6 4

http://arxiv.org/abs/1704.04947
http://arxiv.org/abs/1706.09937
http://dx.doi.org/10.1007/11776178_3
http://dx.doi.org/10.1007/978-3-319-03850-6_4

398 G. Cordasco and L. Gargano

11. Becchetti, L., Clementi, A., Natale, E., Pasquale, F., Raghavendra, P., Trevisan,
L.: Friend or Foe? Population Protocols can perform Community Detection. ArXiv
e-prints arXiv:1703.05045, March 2017

12. Berenbrink, P., Friedetzky, T., Kling, P., Mallmann-Trenn, F., Wastell, C.: Plu-
rality consensus in arbitrary graphs: lessons learned from load balancing. In: 24th
Annual European Symposium on Algorithms (ESA 2016), pp. 10:1–10:18 (2016)

13. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8, 755–762 (2013)

14. Cordasco, G., Gargano, L.: Label propagation algorithm: a semi-synchronous app-
roach. Int. J. Soc. Netw. Mining (IJSNM) 1(1), 3–26 (2012)

15. Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Ruppert, E.: When birds die:
making population protocols fault-tolerant. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 51–66. Springer,
Heidelberg (2006). doi:10.1007/11776178 4

16. Draief, M., Vojnovi, M.: Convergence speed of binary interval consensus. SIAM J.
Control Optim. 50(3), 1087–1109 (2012)

17. Gasieniec, L., Hamilton, D., Martin, R., Spirakis, P.G., Stachowiak, G.: Determin-
istic population protocols for exact majority and plurality. In: 20th International
Conference on Principles of Distributed Systems (OPODIS 2016), vol. 70, pp. 14:1–
14:14 (2017)

18. Gasieniec, L., Stachowiak, G.: Fast space optimal leader election in population
protocols. arXiv e-prints arXiv:1704.07649

19. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Stably com-
puting order statistics with arithmetic population protocols. In: 41st International
Symposium on Mathematical Foundations of Computer Science, MFCS, pp. 68:1–
68:14 (2016)

20. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis, P.G.: Determining
majority in networks with local interactions and very small local memory. Distrib.
Comput. 30(1), 1–16 (2017)

21. Mizoguchi, R., Ono, H., Kijima, S., Yamashita, M.: On space complexity of self-
stabilizing leader election in mediated population protocol. Distrib. Comput. 25(6),
451–460 (2012)

22. Mocquard, Y., Anceaume, E., Aspnes, J., Busnel, Y., Sericola, B.: Counting with
population protocols. In: 2015 IEEE 14th International Symposium on Network
Computing and Applications (NCA), pp. 35–42, September 2015

23. Mocquard, Y., Anceaume, E., Sericola, B.: Optimal proportion computation with
population protocols. In: 2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA), pp. 216–223, October 2016

24. Perron, E., Vasudevan, D., Vojnovic, M.: Using three states for binary consensus
on complete graphs. IEEE INFOCOM 2009, 2527–2535 (2009)

http://arxiv.org/abs/1703.05045
http://dx.doi.org/10.1007/11776178_4
http://arxiv.org/abs/1704.07649

Brief Announcement: Asynchronous,
Distributed, Optical Mutual Exclusion

Ahmed B. Mansour(B), Ramachandran Vaidyanathan, and Shuangqing Wei

Division of Electrical and Computer Engineering,
Louisiana State University, Baton Rouge, USA

{amanso4,vaidy,swei}@lsu.edu

Abstract. We propose an optical network and an algorithm for it to dis-
tribute a token (shared resource) mutually exclusively among a set of n
processing elements (nodes). The token is granted in constant amortized
time following a request, assuming constant propagation time for light
within the environment. Additionally, the distribution of tokens is fair,
ensuring that no token request is denied more than n − 1 times in suc-
cession. The proposed algorithm is distributed (nodes operate without
centralized control) and asynchronous (does not use a common clock).

1 Introduction

Several architectures with optical interconnects have been proposed recently
(for example [3,4,6]) that use optical waveguides and microring resonators (or
simply microrings). External lasers are used to inject light into a waveguide and
the microring acts as an electrically controllable switch that draws light out of
the waveguide. A key need of these architectures is contention resolution. We
propose an optical network and an algorithm to resolve contention for a shared
resource.

Let P = {i : 0 ≤ i < n} be a set of processing elements (PEs), each with
flags Wi and Ti that indicate whether PE i requests, and PE i holds the token,
respectively. Our solution guarantees that at any time, at most one requesting
PE holds the token (safety). The system delay (token request to grant time) is
O(n) in the worst case, and O(1) when amortized over several requests (liveness).
Each request is granted within n − 1 token cycles (time between two successive
grants); this ensures fairness.

Similar mutual exclusion problems have been addressed in different contexts
before [1,2]. The closest previous work that employs similar ideas is that of
Vantrese et al. [5] that presents two arbitration schemes oriented towards com-
munication on a ring topology. The method does not appear to easily translate
for general mutual exclusion use; it is not asynchronous, and employs a cen-
tralized controller to ensure fairness. Our work, on the other hand, is limited
primarily by the delay and attenuation on the waveguide, which is small for
inter-, or even intra-chip communication.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 399–404, 2017.
https://doi.org/10.1007/978-3-319-69084-1_29

400 A.B. Mansour et al.

2 Base and Token Network

A microring (if activated) can redirect the light from one waveguide to another.
This, in combination with an optical detector (that converts light to an electrical
Boolean signal), produces an electrically controllable “switch” to tap and detect
light from a waveguide. We first describe the Base Network (Fig. 1) in which a set
of n “switches” (one per PE) share a single waveguide. In the example of Fig. 1,
only the rightmost two “switches” have been activated (m1 = m2 = 1, whereas
m0 = 0). As a result, the light entering from the left is withdrawn at switch 1
producing a1 = 1 (Fig. 1(b)) and, consequently, PE 2 has a2 = 0, even though
m2 = 1. The key idea is that the upstream node (PE 1) receives a1 = 1 (the
token) rather than PE 2 (downstream) that also has m2 = 1. Here mi indicates
a token request and ai represents the token.

waveguide

m0 m1 m2
a0 a1 a2

laser
from

sink
to

1

1 0

0 1 1

0

0 1 0
(a) (b)

Fig. 1. Operation of a 3-PE base network with m0 = 0 and m1 = m2 = 1.

The Base Network allows preemption. The “Token Network” (Fig. 2) solves
this problem using “blue” and “red” Base Networks. The key point here is that
if PE i wins the token, then a PE k with k < i cannot wrest the token away
from PE i as it is downstream of PE i in the red network. Additionally, PE j
with j > i cannot cause PE i to lose the token as it is downstream of PE i in the

a0 a1 an−1

from external laser

mb,0 mb,1 mb,n−1

from external laser

mr,0 mr,1 mr,n−1

b0 b1
Latches

bn−1

Fig. 2. The token network: bi = 1 implies PE i has the token (Color figure online)

Brief Announcement: Asynchronous, Distributed, Optical Mutual Exclusion 401

blue network. Some timing details that ensure safety and non-preemption have
been omitted for brevity.

3 Fair Network

The Token Network places upstream nodes of the blue network at a higher
priority for the token. Hence, it is not fair. If the relative positions can be altered,
fairness can be achieved. It can be shown that the Fair Network (Fig. 3) ensures
that a requesting node obtains the token at least once every n−1 token cycles. In
Fig. 3, the circular waveguides Bc and Rc do the job of the blue and red networks
of the Token Network. However since Bc and Rc are circular, their starting and
ending points can be changed. This requires an additional “handover” step when
the token is released by one PE and picked up by another PE. For this, a handover
network is used. Nevertheless at each competition, the logical structure of the
Fair Network is the same as that of a Token Network.

blue
network

network
red

element ielement 0 element n − 1

network
handover

Be

Re

Rc

H�

Hr

3

1

2
7

4

5

6

Bc

ai

cibi

ci,2

ci,1
AND

Fig. 3. The fair network. (Color figure online)

PE i uses flag Wi to access elements of the Fair Network, which produces
Boolean values ai, bi, ci to finally generate a value for the flag Ti (indicating the
token); here ci = ci,1 AND ci,2. Figure 5 shows the procedures used for this.

402 A.B. Mansour et al.

The blue network has an “external waveguide,” Be, into which a laser injects
unmodulated light. Notice that the microrings numbered 3, 4 can redirect light
from waveguide Be or Re to Bc or Rc. The remaining five microrings of a PE
are parts of switches described in Sect. 2. We will refer to microrings of PE i
as mi,k, for 1 ≤ k ≤ 7 and multiple microrings of PE i are indicated by a set
S ⊆ {1, 2, · · · , 7} . Microrings mi,{3,4} allow PE i to control the flow of light to
the circular waveguides. Each PE also has a sink microring, mi,7 in waveguide
Rc to end the light path in the red network. In the blue waveguide Bc, microring
mi,1 outputs ai and also serves as a light sink.

Suppose that only PE i has activated its microrings mi,{1,3,4,7}. In the blue
network, the light from Be is transferred by microring mi,3 to the circular
waveguide Bc. This light moves along Bc, all the way around, until it is drawn
out by microring mi,1. The net effect of this arrangement is to logically seg-
ment the circular waveguide Bc. For any j, since mj,1 produces aj , the above
configuration is equivalent to a waveguide that traverses PEs (i + x)(mod n),
for 1 ≤ x ≤ n (in order of increasing x); that is, it is a waveguide that logically
starts at PE (i+1)(mod n) and ends at PE i. A similar argument for the red side
shows that light passes by PEs i, i−1 up to PE i+1(mod n) in Rc. Collectively,
a Token Network is generated.

In the handover waveguides ci = 1 = ci,1 = ci,2 iff PE i is the only one to
have activated microrings mi{5,6}.

The working of the Fair Network can be intuitively understood in terms of
five possible states of each of the n PEs in the system (see Fig. 4). A PE moves
between states based on five Boolean values: Ti, Wi, ai, bi and ci. Each edge in
the state diagram is labeled with a transition expression that has to be satisfied
for the transition to occur; if no transition expression is satisfied, then there is
no state change.

T ′
i

bi

Wi · ci · ai

ci

W ′
i · c ′

i

Wi

W
i
·(c

′ i
+

c i
·a

′ i)

Busy Leader

Winner Ready

Idle

Fig. 4. PE states in the fair network. Logical AND, OR and NOT are indicated by ·,
+ and ′. We use the variable ci = ci,1 · ci,2.

A PE is in Busy state iff it holds the token. It is Idle if it is not interested
in the token. A PE in Ready state is competing for the token. A Winner PE has

Brief Announcement: Asynchronous, Distributed, Optical Mutual Exclusion 403

won the competition and is poised to obtain the token (pending handover). A
Leader PE has the lowest priority in the current Token Network configuration
and is responsible for maintaining this configuration. At any given point in time,
there can be at most one PE in the Busy, Winner or Leader states. However,
several PEs may be simultaneously be in the Idle or Ready states.

The four routines of Fig. 5 transition the PEs through the five states. Specif-
ically, each procedure is executed when its starting condition is satisfied.

Algorithm Free Fair (i)
1. if {Wi = 0 and Ti = 1} PE i has finished its use of the token
2. Ti ←− 0; It no longer holds the token
3. mi,2 ←− 0; It allows light into the red network
4. mi,{3,4,7} ←− 1 Lines 3 and 4 collectively allow light into

the blue and red networks

Algorithm Get Fair (i)
1. if {Ti = 0, ci = 0,mi,{3,4,7} = 0 and Wi = 1} PE i is not the leader and

wishes to obtain the token
2. mi,1 ←− 1 Start competition procedure
3. wait until ai = 1 Wait for ai “Temporary Token”
4. mi,2 ←− 1 Check for bi
5. if bi = 1, then bi = 1 means PE i is the winner
6. mi,{5,6} ←− 1 Seek handover
7. wait until ci = 1 Wait for handover
8. Ti ←− 1 Token obtained

Algorithm Get Fair Leader (i)
1. if {Ti = 0, ci = 1,Wi = 1 and mi,{3,4,7} = 1} PE i, the leader,

wishes to obtain the token
2. if ai = 1, then Microring mi,2 is activated.

Element i, being the first on the red network, will have bi = 1.
3. mi,{3,4,7} ←− 0; lock the light out of the red and blue networks
4. Ti ←− 1; token obtained

Algorithm Handover (i)
1. if {Ti = 0, ci = 0 and mi,{3,4,7} = 1} PE i hands over leadership to winner
2. mi,{1,3,4,7} ←− 0; removes itself from the start of the red and end of the

blue networks
3. mi,{5,6} ←− 0; releases the handover signal

Fig. 5. Algorithms for the Fair Architecture. Note that ci = 1 iff ci,1 = ci,2 = 1

Theorem 1. Assuming constant propagation delay for light in the chip, the Fair
Network solves the mutual exclusion problem for n PEs in O(n) worst case time,
and O(1) time when amortized over a large number of competitions. It ensures
that no token request is denied more than n − 1 times. �

404 A.B. Mansour et al.

4 Concluding Remarks

Several performance improvements are possible that reduce the cost of the net-
work. Practical constraints can also be factored in; this will largely affect the
performance (number of PEs supported and system delay), but not the ideas
expressed in Theorem 1.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. John Wiley Interscience, Hoboken (2004)

2. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1996)

3. Nitta, C., Farrens, M., Akella, V.: DCAF - a directly connected arbitration-free
photonic crossbar for energy-efficient high performance computing. In: Proceedings
of International Parallel Distributed Processing Symposium, pp. 1144–1155 (2012)

4. Pan, Y., Kumar, P., Kim, J., Memik, G., Zhang, Y., Choudhary, A.: Firefly: illumi-
nating future network-on-chip with nanophotonics. In: SIGARCH Computer Archi-
tecture News, vol. 37(3), pp. 429–440, June 2009

5. Vantrease, D., Binkert, N., Schreiber, R., Lipasti, M.: Light speed arbitration and
flow control for nanophotonic interconnects. In: Proceedings of International Sym-
posium on Microarchitecture (MICRO), pp. 304–315, December 2009

6. Vantrease, D., Schreiber, R., Monchiero, M., McLaren, M., Jouppi, N.P., Fiorentino,
M., Davis, A., Binkert, N., Beausoleil, R.G., Ahn, J.H.: Corona: system implications
of emerging nanophotonic technology. In: Proceedings of International Symposium
on Computer Architecture, pp. 153–164 (2008)

Brief Announcement: Passive and Active
Attacks on Audience Response Systems Using

Software Defined Radios

Khai T. Phan, Ryan Ewing(B), David Starobinski, and Liangxiao Xin

Boston University, Boston, MA 02115, USA
{kphan95,rjewing,staro,xlx}@bu.edu

Abstract. Audience response systems, also known as clickers, are used
at many academic institutions to offer active learning environments.
Since these systems are used to administer graded assignments, and
sometimes even exams, it is crucial to assess their security. Our work
seeks to exploit and document potential vulnerabilities of clickers. For
this purpose, we use software defined radios to perform jamming, sniff-
ing and spoofing attacks on an audience response system in production,
which provide different possible methods of cheating. The results of our
study demonstrate that clickers are easily exploitable. We build a pro-
totype and show that it is practically possible to covertly steal or forge
answers of a peer or even an entire classroom, with high levels of con-
fidence. Additionally, we find that the receivers software of the system
lacks protection against unexpected answers, which allows our spoofer
to submit any ASCII character and opens the receiver up to possible
fuzzing attacks. As a result of this study, we discourage using clickers for
high-stake assessments, unless they provide proper security protection.

1 Introduction

Many institutions employ Turning Technologies’ Response Cards [7], also known
as clickers, to create active learning environments and encourage students’ par-
ticipation in their classes. Clickers are wireless devices that let instructors poll
students for purposes such as taking attendance, and administering quizzes
and/or surveys. Research has shown that such a learning tool can greatly improve
students’ learning abilities and engagement with material if the clickers are used
effectively [4–6].

While many universities limit their use of these clickers to attendance moni-
toring and in-class polls, some educational institutions go so far as to administer
clicker-based exams. University of Maryland of Baltimore County shows evi-
dence of having administered these types of exams in the past. A post on the
university’s Division of Information Technology page includes a quotation of a
student expressing favor for these exams, commenting “I liked taking the exam
on the clickers because we had our own exam booklet in front of us and could
go at our own pace. I also liked getting my grade back right away.” [1]

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 405–409, 2017.
https://doi.org/10.1007/978-3-319-69084-1 30

406 K.T. Phan et al.

The popularity of clickers raises the question of whether these devices are
actually secure. In particular, since clickers transmit over radio frequencies, is it
possible for a student or another party to block, eavesdrop, or change answers
submitted by other students?

In this paper, we answer this question in the affirmative. We build a prototype
of a fake receiver (sniffer) and a fake clicker (spoofer) using the HackRF One
software defined radio platform [2]. Using information provided by the sniffer or
the functionality of a spoofer, a student can cheat in various ways, e.g., by finding
out the most commonly submitted answer, looking at the answer submitted by
a particular student (assuming the clickerID of that student is known), or by
altering the answer submitted by other students. Furthermore, we uncover new
information about the TurningPoint receiver and polling software that could lead
to additional vulnerabilities in the form of fuzzing. Specifically, we find these
technologies do not fully sanitize user input, allowing our spoofer to submit
unexpected answers to polls.

2 The Tools

2.1 The HackRF One

The specific software defined radio used in this project to assess the security
of Turning Technologies’ Response Cards is Scott Gadgets’ HackRF One. The
HackRF One [2] is a hardware device able to capture radio signals via an antenna
and stream the signal data captured through USB into another device, oftentimes
a computer operating on a Linux-based operating system. This stream of data
can then be modified and analyzed with software.

2.2 GNU Radio

With the HackRF One offering the hardware support for this project, the soft-
ware GNU Radio [3] is used to perform signal processing and analysis on the
digital input received via USB port. GNU Radio has become an increasingly pop-
ular tool for research, due to its customizability and simple GUI interface [8].
This user-friendly GUI interface is known as GNU Radio Companion, often
abbreviated GRC. GNU Radio offers the software equivalent of nearly every
hardware tool used in signal processing, making it an extremely powerful tool
for this project.

3 Reverse Engineering

The procedure of receiving a data packet requires filtering the signal, demodulat-
ing it with the correct modulation scheme, synchronizing clocks with the signal’s
data rate, transforming the demodulated signal into a binary data stream (data
consisting of 0 and 1 values), then interpreting the binary data stream in order
to discover packets sent by the clicker. In order to implement attacks such as

Brief Announcement: Passive and Active Attacks 407

sniffing and spoofing, it is important to determine how clickers operate. To find
the necessary information, we take advantage of specifications of the Nordic
nRF24LE1 chip, data from the FCC website, and analysis of the clicker signal
captured through the HackRF One. The information we found is summarized in
Table 1.

Table 1. TurningPoint clicker specifications

Operating freq Bandwidth Modulation scheme Baud rate

2.401 GHz - 2.482 GHz 1 MHz GFSK 1 Mbps

The final information required is the packet structure for the sake of sniff-
ing and spoofing packets. The packet structure contains 8-bit preamble, 24-bit
target address, 24-bit source address, 8-bit payload, and 16-bit CRC, where the
preamble and target address are permanently 0x55 and 0x123456 and the CRC
algorithm is CRC-CCITT (0xFFFF).

4 Sniffer Implementation

4.1 Flowgraph Blocks

The GNU Radio flowgraph (see Fig. 1) consists of the following blocks:

Fig. 1. GNU Radio implementation of the receiver.

1. The Osmocom Source generates a stream of complex numbers based on the
signal that the HackRF One receives via its antenna.

2. This stream of numbers is passed through a Low Pass Filter in order to
filter out all signals aside from the desired 1 MHz bandwidth clicker trans-
mission channel.

3. That filtered stream of data is then passed through a GFSK Demod block
which demodulates a GFSK modulated signal into bits.

4. Lastly, this stream of deciphered bits is pushed into the File Sink which
saves the binary stream into a file.

408 K.T. Phan et al.

4.2 GRC Implementation

The only remaining step is to find a way to parse the binary stream in real
time. To that end, we create a new block using GRC itself to decipher the
packets. GNU Radio provides the option of writing custom blocks using C++
or Python, based on so-called Out-of-Tree (OOT) modules. Such modules are
useful when one needs to implement a new function that GRC does not provide
in its existing library. Toward this end, we create a simple Man-in-the-Middle
block which directly parses the output from the GFSK Demod and logs the found
packets to GRC’s built-in console. We call the block Hex Decode (see Fig. 1),
as it decodes the binary stream into hex.

5 Results

In order to assess the security of using clickers for high-stake graded assignments,
we demonstrate jamming attacks, sniffing attacks, and spoofing attacks using the
HackRF One device and gauge the efficiency of these attacks.

5.1 Sniffing

The goal of sniffing is to stealthily and passively acquire knowledge of others’
answers and packet submissions. According to benchmarking results, sniffing
should perform extraordinarily well within a lecture hall or classroom setting.
An accuracy near or above 90% is achieved at almost all distances within 25 feet,
with distance within 10 feet having near perfect results. Additionally, the sniffer
receives on average twice as many packets as the receiver does, which means
it is less prone to errors and could receive an answer earlier then the receiver.
We note that in most scenarios, the user would be sitting near other clickers,
generally within a vicinity of 25 feet radius. Thus, the clickers are extremely
vulnerable to a sniffing attack, as such an attack is expected to receive nearly
all answers that are submitted within the classroom.

5.2 Spoofing

Throughout our tests, we discovered several possible attacks using spoofed
packets.

1. Forging answers. One attack involves changing the answers of other stu-
dents. Once a clicker ID is known, the attacker can spoof a packet with the
same ID with a different answer. The receiver, believing the packet is sent
from the real clicker simply changes the answer stored for that ID, without
notifying the student whose answer was altered. Since the HackRF One can
quickly switch between transmitting and receiving, it is possible to collect
IDs from an entire classroom of students and alter each answer in seconds.

Brief Announcement: Passive and Active Attacks 409

2. Tampering course statistics. A second vulnerability lies in sending fake
answers using fake IDs. Because all clicker IDs are a 6 digit hex number,
it is possible to randomize an ID and an answer to provide false data. The
TurningPoint software provides in-depth statistics to the teacher or professor
for each question and poll. With skewed data, teachers and professors could
apply inaccurate curves to quizzes and exams or focus on teaching material
which most students already understand.

3. Fuzzing. Furthermore, while experimenting with the HackRF One spoofer,
we found that the TurningPoint receiver has the ability to receive any two
digit ASCII code in hex. While the TurningPoint clickers can only submit
single digit, numerical answers (i.e., 0–9), the spoofer has the ability to send
other two-digit ASCII hex code, including letters, mathematical symbols,
punctuation, and control characters, such as the “Null” character. We dis-
covered that the TurningPoint receiver does not outrightly reject or ignore
such malformed inputs, which implies that the polling software could be open
to brand new fuzzing attacks.

Acknowledgments. The authors thank Prof. Ari Trachtenberg for his suggestion to
investigate fuzzing attacks. This work was supported in part by NSF under grants
CNS-1409053, CNS-1563753 and CNS-1717858. The views expressed in this paper are
those of the authors only, and do not necessarily reflect the views of NSF.

References

1. Students more accepting of using clickers for exams, April 2014. http://my.umbc.
edu/groups/doit/posts/44012

2. HackRF One (2016). https://greatscottgadgets.com/hackrf/
3. The GNU Radio Foundation, Inc.: GNU Radio (2017). http://gnuradio.org/
4. Han, J.H., Finkelstein, A.: Understanding the effects of professors’ pedagogical

development with clicker assessment and feedback technologies and the impact on
students’ engagement and learning in higher education. Comput. Educ. 65, 64–76
(2013). http://www.sciencedirect.com/science/article/pii/S0360131513000237

5. Kastner, M.: The use of an audience response system to monitor students’ knowledge
level in real-time, its impact on grades, and students’ experiences. In: 2016 49th
Hawaii International Conference on System Sciences (HICSS), pp. 104–113, January
2016

6. Kulatunga, U., Rameezdeen, R.: Use of clickers to improve student engagement in
learning: observations from the built environment discipline. Int. J. Constr. Educ.
Res. 10(1), 3–18 (2014)

7. Turning technologies: ResponseCard RF (2017). https://www.turningtechnologies.
com/response-solutions/responsecard-rf

8. Valerio, D.: Open source software-defined radio: A survey on gnuradio and its
applications. Technical report FTW-TR-2008-002, August 2008. http://www.astro.
square7.ch/Datenblaetter/SDRreport.pdf

http://my.umbc.edu/groups/doit/posts/44012
http://my.umbc.edu/groups/doit/posts/44012
https://greatscottgadgets.com/hackrf/
http://gnuradio.org/
http://www.sciencedirect.com/science/article/pii/S0360131513000237
https://www.turningtechnologies.com/response-solutions/responsecard-rf
https://www.turningtechnologies.com/response-solutions/responsecard-rf
http://www.astro.square7.ch/Datenblaetter/SDRreport.pdf
http://www.astro.square7.ch/Datenblaetter/SDRreport.pdf

Cryptocurrency Smart Contracts for Distributed
Consensus of Public Randomness

Peter Mell1(B), John Kelsey1,2, and James Shook1

1 National Institute of Standards and Technology, Gaithersburg, MD, USA
peter.mell@nist.gov

2 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Leuven, Belgium

Abstract. Most modern electronic devices can produce a random num-
ber. However, it is difficult to see how a group of mutually distrusting
entities can have confidence in any such hardware-produced stream of
random numbers, since the producer could control the output to their
gain. In this work, we use public and immutable cryptocurrency smart
contracts, along with a set of potentially malicious randomness providers,
to produce a trustworthy stream of timestamped public random numbers.
Our contract eliminates the ability of a producer to predict or control
the generated random numbers, including the stored history of random
numbers. We consider and mitigate the threat of collusion between the
randomness providers and miners in a second, more complex contract.

1 Introduction

Most modern computing devices can produce secure random numbers. However,
there are applications which require that many parties share and trust some
source of random numbers. For example, running a lottery requires some trust-
worthy source of public random numbers. In the rest of the paper, we define
a lottery abstractly as any mechanism that randomly picks a proper subset of
elements from some larger set. It is necessary to ensure that the chosen subset
cannot be predicted (before some published time), controlled (deliberately set),
or influenced (biased toward values that are more desirable for some party).
The interesting research question is: how can we get trustworthy public random
numbers sampled from a uniform distribution, especially when the producer of
random numbers has a financial incentive to cheat?

Currently an individual ‘beacon’ service, a public producer of randomness,
may use specialized hardware setups and cryptography to reduce the possibil-
ity of the numbers to be compromised [3]. However, the ability to control the
numbers (by the beacon owner or some attacker that has compromised the bea-
con) may remain. What is needed is a consensus protocol for a set of mutually
distrusting entities to collaborate to produce a trustworthy stream of publicly
available random numbers.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 410–425, 2017.
https://doi.org/10.1007/978-3-319-69084-1 31

Cryptocurrency Smart Contracts 411

Our solution is to create an Ethereum1 [22] smart contract, called a light-
house, which implements a beacon service while taking as input random num-
bers from one or more external and potentially malicious randomness producers.
To produce the lighthouse output, we combine producer input with blockchain
hashes while forcing producers to commit to future values. In creating the dis-
tributed consensus protocol, we leverage the security capabilities associated with
smart contracts and blockchains along with a novel commitment system we call
Merlin chains (which mitigates a vulnerability common in other systems). Our
lighthouse service’s timestamped random outputs are published on the Ethereum
blockchain, which ensures their immutability and their public visibility. This
merging of beacons, smart contracts, and blockchains enables the production
of public random numbers at an extremely high level of security, even when
assuming the presence of powerful malicious actors in the system (as long as all
participating actors aren’t malicious).

We provide two main proposed designs:

1. A single-producer contract which provides security against control or
influence from the randomness producer or a large coalition of miners com-
peting in the digital currency system, but not against both.

2. A multiple-producer contract which provides security against control or
influence from all k of the randomness providers colluding, or a large coalition
of miners conspiring with k − 1 of the randomness providers.

Both designs publish random numbers along with a time before which the
random number could not have been predicted by any entity, thus eliminat-
ing prediction attacks. With these designs, we have provided a solution for the
trustworthy public production of streams of immutable public random numbers.
Finally, we create such a contract and empirically test it on the Ethereum test
network using both the single and multiple producer models.

Usage of lighthouse services can greatly benefit any public lottery so that
selection of random numbers is no longer done behind closed doors, where the
public has to trust that no cheating is taking place. Lotteries enable a limited
set of resources to be fairly chosen for, or distributed to, a set of customers.
Among many other areas, their uses include school placements, dorm rooms
allocations, gambling, military drafts, jury duty, immigration applications, elec-
tion site auditing, and large public financial games run by governments. The
utility of a beacon extends far beyond lotteries, but a complete discussion of
those applications is outside the scope of this paper.

Different types of public lotteries are more or less sensitive to the three attack
types mentioned previously: prediction, control, and influence. For example,
with election site auditing an attacker primarily wants to ensure that the elec-
tion sites chosen for auditing do not correspond to the compromised sites. The
attacker then primarily wants influence to change the sites chosen for audit if the
unmodified result is going to include a compromised site. However, in a gambling
1 Any mention of commercial products is for information only; it does not imply

recommendation or endorsement by NIST.

412 P. Mell et al.

scenario, the attacker probably wants to predict the winning number or, even
better, control the result. Our approach must mitigate all three types of attack.

The rest of this paper is organized as follows. Section 2 discusses previous
and related work. Section 3 discusses background information. Section 4 provides
partial solutions that build towards our final solution. Section 5 describes our
design for a single producer contract. Section 6 describes our multiple producer
contract; Sect. 7 discusses our empirical work; and Sect. 8 concludes.

2 Previous and Related Work

The original idea of a beacon (a public service that publishes signed,
timestamped random numbers) comes from Rabin [16]. More recently, in [11],
Fischer et al. propose the usefulness of a beacon service, and describe the NIST
beacon. They also propose a general protocol to allow many beacons to be used
together to decrease required trust in a single TTP/point of failure, and describe
some practical applications for a beacon service. There have also been many
attempts to find verifiable public random numbers for use in other applications,
such as election auditing [10] and the choice of parameters in cryptographic
standards [7].

The simplest way to build a beacon is to simply set up a trusted machine,
which generates and signs timestamped random numbers. Existing services such
as the NIST Beacon [3] and the beacon-like random.org [6] follow this approach.
For many applications of a beacon, this provides sufficient practical security.
However, it has a single point of failure – the owner of the beacon (or anyone
who compromises the trusted machine on which the beacon is running) can
influence or predict future random numbers2.

2.1 Entropy from the Environment

In order to avoid a single point of failure or trust, many people have tried to use
unpredictable data from the world to generate public random numbers. In order
to be useful, these numbers need to be public, widely-attested, and not under
anyone’s control.

In [10], the authors consider using financial data as a source of randomness,
particularly for election auditing, and use existing tools from finance to estimate
the entropy and difficulty of influencing these numbers. [7] considers the use
of public financial lotteries to generate random numbers (intended for use in
defining cryptographic standards). [8] uses the hash of a block from the Bitcoin
blockchain and analyzes the cost of exerting influence on these random numbers
by bribing miners to discard inconvenient mined blocks. Our approach uses block
hashes in a related way and we have to consider similar attacks.
2 The NIST Beacon’s published format includes features to mitigate some attacks–for

example, the beacon operator cannot directly control the beacon outputs, as they’re
the result of a SHA512 hash. However, he can predict and influence future random
numbers.

http://random.org/

Cryptocurrency Smart Contracts 413

2.2 Combining Randomness from Multiple Parties

Still another approach is to combine random values from multiple sources, with
the goal of getting a trustworthy public random number if enough of the con-
tributors are honest. This may be done by first collecting commitments from
participants3, and then asking each participant to reveal their commitments.

For example, if Alice and Bob want to each furnish a part of a shared random
number, Alice generates random number RA and publishes hash(RA), while Bob
generates RB and publishes hash(RB). After both commitments are published,
Alice and Bob reveal their random numbers, and agree to use RA ⊕RB as their
shared random number. (This is referred to as a commit-then-reveal protocol.)
The generic attack against this kind of scheme is for Alice to wait until Bob has
published RB , and then decide whether she likes the resulting random number
or not. If not, she can “hit the reset button,” claiming to have suffered a system
failure that caused her to lose RA. If this leads to the shared random number
being generated again in an actual random way (even in a way that excludes
Alice), she has now exerted some influence on the shared random number.

Commit-Then-Reveal Approaches. The new NIST Beacon format [12] has a pre-
commitment field intended to allow for combining of beacons using a commit-
then-reveal protocol. However, preventing the ‘hit the reset button’ attack is
left to be handled by reputation–a beacon that skips providing an output often
will get a reputation for unreliability. The Randao [4] is an Ethereum service
that tries to solve this problem by requiring each party that contributes a com-
mitment to also post a performance bond. Anyone who refuses to reveal their
random number forfeits the bond. [19] describes an elaborate set of protocols to
use verifiable secret sharing and Byzantine agreement to generate public random
numbers from 3k independent participants, so that the shared random numbers
will be trustworthy (and impossible to prevent from being published) so long as
at least k + 1 participants are trustworthy.

Variants Using Slow Computations. [13] takes a different approach to combin-
ing contributions from multiple parties. Contributions from the public as well
as environmental inputs from a public video camera are hashed together and
the hash is published. The inputs are fed into an inherently sequential compu-
tationally slow hash function, and much later after the hash is computed the
result is published. Since nobody could have known the result of the slow hash
function when the inputs were hashed and published, nobody could have influ-
enced the output by deciding what or whether to send an input in. A related
approach is considered in [9], in which a computationally slow function is used to
produce shared random numbers from Bitcoin or Ethereum block hashes while
preventing miners from influencing the resulting random numbers. The same
paper describes a set of protocols for ensuring that the computationally slow
function is correctly computed, and considers the necessary financial rewards for
3 Without these commitments, Alice can always wait for Bob to publish a random

number, and then choose hers to control the resulting shared value.

414 P. Mell et al.

incentivizing participants to keep verifying the correctness of the computation.
Another related possibility to prevent an attacker “hitting the reset button” is
to use time-lock puzzles, as described in [17]. If Alice publishes TL(RA), where
TL() is a time-lock scheme with a minimum time to unlock of one hour, and
then five minutes later all parties reveal their random numbers, the attack is
prevented. Even if Alice wants to hit the reset button (refuse to publish her
number to stop the beacon from publishing), she can only delay knowledge of
the shared random number for one hour.

Merlin Chains. In this paper, we describe still another approach, called a Merlin
chain, to address this problem by giving participants a way to credibly commit to
being able to recover their ‘lost’ random numbers after hitting the reset button.
This is an example of a common situation, in which a party in a protocol becomes
more capable by restricting its future freedom of action4.

3 Background

Beacons are entities that produce a stream of random numbers [16] (see [3] for
a currently-operating example). Each time a beacon releases a random number,
it is called a ‘pulse’. Beacons have three properties:

1. A beacon will put a random number R, unpredictable to anyone outside the
beacon itself, in each message.

2. A beacon will never release a signed random number with a timestamp T
before time T (so nobody outside the beacon could have known the random
number earlier than that time).

3. A beacon will emit only one random number for each timestamp T .

In order to be useful, the outputs from a beacon must be publicly available
and must be immutable. A beacon pulse may have many fields, but only two are
really essential: the random number, R, and the timestamp, T .

Blockchains are immutable digital ledger systems and were first used for
digital cash with Bitcoin [15]. Each ‘block’ contains a set of transactions as
well as the hash of the previous block (thus forming the ‘chain’). They can be
implemented in a distributed fashion (without any central authority) and enable
a community of users to record transactions in an immutable public ledger.
This technology has undergirded the emergence of cryptocurrencies where digital
transfers of money take place in distributed systems; it has enabled the success
of currencies such as Bitcoin [15] and Litecoin [2]. In such systems, a community
of ‘miners’ maintain a blockchain by competing to solve a mathematical puzzle.
The solution is evidence that the miner is performing computation, and for this
reason such system are called ‘proof-of-work’ systems. The ‘miner’ that solves
the current puzzle can then publish the next ‘block’ which contains recent digital

4 A more general version of this idea appears in [18], applied to many real-world
situations that can be modeled by game theory.

Cryptocurrency Smart Contracts 415

cash transactions. The winning miner receives a block award and may receive fees
from included transactions, both in terms of the applicable electronic currency.
Some blockchains use other techniques, such as consensus among trusted nodes,
proof-of-stake, or proof-of-storage. Without modification, our protocol will work
only with ‘proof-of-work’ systems.

Ethereum [22] is a blockchain-based cryptocurrency that supports ‘smart
contracts’. Contracts are programs whose code and state exist on the public
blockchain and they can both send and receive funds while performing arbitrary
computations. They can act as a trusted third party in financial transactions,
since the code is public but immutable. The programming language used for
contract transactions, Solidity [5], is limited in functionality but is Turing Com-
plete [20]. Ethereum charges a fee for contract execution, called ‘gas’. The orig-
inator of any transaction must pay this fee or the transaction aborts. There is
a maximum gas limit, currently 3 000 000, to prevent computationally expensive
programs from being submitted to the Ethereum miners (since each miner will
execute each transaction in parallel).

3.1 Merlin Chains

In the rest of this paper, we use a sequence of unpredictable numbers we call a
Merlin chain5. This is a (usually long) sequence of values where every value Vx is
the hash of the value with the next higher index Vx+1 (i.e., Vx = SHA3(Vx+1)).
This use of a hash function then provides a series of random values taken from
a uniform distribution but where each value is related to the previous value
(because the current value is created by hashing the previous value).

A Merlin chain has three important properties:

1. An attacker who has seen all previous entries (V0,1,2,...,j−1) in the Merlin
chain cannot predict anything about the next entry (Vj).

2. Each entry in the chain works as a commitment to the next entry in the chain.
Once an entity has revealed V0, it has no valid choice except to follow this
with V1, then V2, and so on.

3. By storing Vn offsite, the entity revealing the chain entries can guarantee
that even a catastrophic hardware or software failure will not prohibit the
production of chain values (as would happen were the chain data lost).

The most important feature of the Merlin chain is that it takes away the
choices of the entity using it, while still allowing that entity to produce numbers
(unpredictable to everyone else). For the user of the Merlin chain, “Everything
not forbidden is compulsory” [21].

5 The Merlin Chain is named after the character of Merlin in White’s The Once and
Future King [21], who lives his life backwards in time.

416 P. Mell et al.

4 Preliminary Approaches

In this section, we describe some plausible-sounding strategies to make a beacon.
These approaches don’t work but will build towards our proposed solution, thus
motivating our design choices in the rest of the paper.

4.1 Block Hashes

Each block in the Ethereum blockchain is hashed using 256-bit SHA3 and this
result is published on the blockchain along with a timestamp. This meets our
definition of a beacon in Sect. 3 and one might consider using these hashes as
a source of public randomness. However, in this case it turns out that it is
possible for the Ethereum miners to influence the beacon results. Consider the
situation where a coalition controlling a fraction F of all the processing power
of the Ethereum miners is working to predict, control, or influence a block hash.
Predicting the block hash would require knowing all transactions to be included
in the blockchain up to and including the block whose hash will be used for a
random number. Thus, prediction a very short time in advance is sometimes
possible for a coalition of miners but prediction far in advance would require
control of the whole mining pool and a very visible-to-the-world denial of service
attack on the transactions submitted to Ethereum. With respect to control, it’s
clear that even when F = 100%, there is no way for the coalition to control the
value of the block hash, since it’s the output of a hash function.

However, influencing the block hash is quite feasible. Consider a coalition
controlling F% of the total mining power, which wants to force a single bit of
the block hash to be a one. The coalition members attempt to mine the next
block, but when they reach a valid proof of work (so that they’ve successfully
mined a block) they check to see whether the resulting block hash has the desired
bit set. If not, they simply throw the block hash away and keep trying to mine
the next block. Table 1 shows the result of simulating this attack, for various
fractions of mining power controlled by the coalition.

Table 1. Extent to which a coalition of miners can influence one bit of the block hash

Fraction of processing
power in coalition

Bias in targeted
bit

5% 0.01

10% 0.03

20% 0.06

30% 0.09

40% 0.13

50% 0.17

As the table shows, even a coalition with only 10% of the miners’ processing
power can impose a potentially significant amount of bias on a selected bit of
the block hash, causing the selected bit to have probability 0.53 of being a one.

Cryptocurrency Smart Contracts 417

4.2 Adding a Producer of Randomness

The above analysis demonstrates why the block hash alone cannot be used as a
public source of randomness. We now consider adding an external producer of
randomness, moving us closer to a useful solution. The producer sends a random
number V , and then the contract produces an output R = SHA3(H ‖ V), where
H is the block hash of the previous block. If the producer does not reveal V until
the block hash is calculated, the miners no longer can exert any influence over
R. However, in this scenario the producer can choose V after H is generated and
thus influence R. In addition, this influence is greater since it is very easy for
the producer to compute many R values by simply changing the V input (it is
much harder for the miners because to compute a new candidate R value they
must create a blockchain block that wins the current block competition).

Our solution to these residual security issues is for the contract to require the
producer to generate V prior to H being computed. It does this by requiring that
the producer submit the hash of V before it records the value of H to be used.
Then only after H is computed by the miners, the producer submits V to the
contract. The contract can check that this is the value the producer committed
to upfront by simply hashing V . The miners can’t influence R because they don’t
know V when computing the block hash. The producer can’t influence R because
it can’t know the block hash when initially committing to a V value (when it
sends the hash of V to the contract). The next sections more formally present
this approach and handle a variety of security issues that arise (including the
possibility that the producer and miners might collaborate to circumvent the
security architecture).

5 Single Producer Contract

In this section we present a contract whose input comes from a single producer
and whose output is a beacon. It is designed to produce a 32-byte random
number on the blockchain with a maximum frequency of about once every 30 s
(more precisely once every other Ethereum block). To maximize the usability of
the provided beacon service, we recommend that the producer provide input to
the contract at some fixed interval greater than 30 s.

The producer will provide unpredictable values from a Merlin chain, and
so must pre-compute all inputs that will be provided to the contract for its
lifetime. Let n represent the chosen number of input values. The value Vn is
chosen randomly, Vn−1 = SHA3(Vn), Vn−2 = SHA3(Vn−1) and so on until the
computation of V1. The Merlin values are released to the contract starting with
V1 (the reverse of the order in which they were generated).

The function B() will provide the block number in which some input or out-
put is processed by the contract. The function BH() provides the block hash of
some block number. Lastly, the function timestamp() provides the Ethereum
timestamp for some block.

The producer will periodically provide the contract some message containing
a Vx value along with a timestamp Ux. The contract in response may produce

418 P. Mell et al.

a random value Rx and a timestamp Tx (note that in certain circumstances
the contract may not publish an Rx value). Tx will be the time before which
no entity could have predicted Rx, including the producer (usually this will be
about 30 s prior to Rx being publicly released).

The core idea is that for each message (containing some Vx) received from
the producer, the contract will attempt to generate Rx using as input both an
Ethereum block hash and Vx. The block hash used will be one that was generated
after Vx−1 was submitted to the contract but before Vx was submitted. This
way the miners can’t know Vx when the relevant block hash is created and they
can’t then influence Rx (assuming that the producer and a group of miners
are not colluding). Likewise, the producer can’t influence Rx because Vx was
predetermined by the submission of Vx−1 and this was done before the relevant
block hash was generated. Tx is then generated by taking the minimum of Ux−1

and the Ethereum timestamp for the block in which Vx−1 was submitted (taking
the minimum eliminates malicious producers from being able claim a Merlin
value was revealed later than it was revealed). The actual protocol is slightly
more complicated (to account for unexpected input, messages submitted too
early, and Ethereum implementation issues). It is outlined below.

5.1 Single Producer Protocol

For each message, with associated Vx and Ux values, the contract checks the
following prior to accepting the input:

1. The message must come from the Ethereum address registered in the contract
as the one pertaining to the producer.

2. Vx must be the next value on the producer’s Merlin chain (i.e., Vx−1 =
SHA3(Vx)). This ensures that the producer can’t influence Rx.

However, Vx is not considered ‘valid’ for producing a random number, Rx,
and a timestamp, Ux, unless the following hold (assume that Ry is the last
produced R value, usually Rx−1):

1. The block number in which Vx is processed by the contract must be at least
2 more than the block number where the last valid V value was processed by
the contract6 (i.e., B(Vx) ≥ B(Ry) + 2). This ensures that the miners can’t
use the block hash to influence Rx (since miners can discard a block after
computing the block hash).

2. The contract must have access to BH(B(Ry) + 1). The contract will retrieve
this given any activity (either from the producer or any customer retrieving
random numbers) but Ethereum only provides access to the blockhashes for

6 The producer can ensure this is always true by verifying that it doesn’t send the
next (Vx, Ux) message until it has seen at least one block go past on the blockchain
since the last random output.

Cryptocurrency Smart Contracts 419

the last 256 blocks. If this is not available7, the contract will output a public
error log message and reset the block hash used to be the one from the next
Ethereum block (i.e., BH(B(Vx) + 1).)

If these conditions are satisfied, Rx and Tx are generated according to the
following formulas:

Rx = SHA3(Vx ‖ BH(B(Ry) + 1)) (1)

Tx = min(timestamp(B(Ry)), Ux) (2)

Figure 1 provides an example of two valid messages arriving to the contract
and shows how the contract uses them to generate R and T values. In the figure,
we use bx to represent the block number at which some Vx arrived to the contract.

Fig. 1. The single producer protocol

5.2 Mitigated Security Flaws

We now analyze different attack scenarios and discuss how they are mitigated:

1. The producer might try to use Vx to influence Rx. However, this won’t work
because Vx is fixed based on Vx−1 and the block hash used was generated
after Vx−1 was revealed.

7 This availability could be ensured by setting up another provider which does nothing
except send a message to the lighthouse contract once every 256 blocks (since block-
hashes produced more than 256 blocks in the past are irretrievable in the Ethereum
system).

420 P. Mell et al.

2. The producer might try to delay sending Vx to influence Rx. This was possible
in earlier designs where the block hash used for Rx was the one prior to Vx.
In this case, the producer could watch the block hashes being produced and
then quickly issue a pulse after a desirable block hash was published on the
blockchain. We mitigated this by fixing the block hash to be used to be
BH(B(Ry) + 1).

3. A producer could purposefully submit a message too early. However, the
message is rejected as invalid and this simply updates the Merlin value V
stored on the contract (which is fine since the relevant block hash has not yet
been generated).

4. Because of a design limitation in the Ethereum Solidity language, the contract
is only able to retrieve up to the last 256 block hashes (about 68 min of
blockchain operation). The threat is that prior to revealing Vx, a producer
might calculate Rx and find it undesirable. The producer may then wait 256
blocks prior to releasing Vx so that the correct blockhash can’t be retrieved.
This effectively changes the result since the contract can no longer retrieve
the block hash BH(B(Ry) + 1). We mitigate this by enabling the contract to
retrieve the block hash during any transaction (including customer retrieval
of V values). Thus, even if the producer waits, other activity will enable the
contract to retrieve the needed value within the period of availability. If this
does not happen, the contract emits an error log and resets the block hash
used to be one not yet generated. To strongly mitigate this problem for little
used beacons, the contract owner should arrange for some party to access the
contract at least every 256 blocks to ensure that the block hash is retrieved
within the time constraints.

5. Miners (not collaborating with the producer) may try to affect Rx by throwing
out discovered blocks that have block hashes that will produce undesirable
random numbers. However, miners must compute the block hash to be used,
BH(B(Ry) + 1), prior to Vx being revealed and thus this won’t work. This is
why the block number in which Vx is processed by the contract must be at
least 2 more than the block number where the last valid V value was processed
by the contract. Note that a separate vulnerability arises if one uses the block
hash of the block where the last V value was processed and so that was not
available as an option.

6. The contract owner has only the ability to register and de-register the pro-
ducer. De-registration only occurs after a set number of blocks (eliminating
the possibility of the contract owner seeing a revealed Vx value message and
trying to remove the producer before the contract processes it). With respect
to registering a producer, its first message is used only to set the initial Vx

Merlin value and so registration can’t be used to influence or control the V
values.

7. An attacker could compromise the producer but they would still have to pro-
duce the values on the pre-determined Merlin chain. To influence the results
they would have to collaborate with a group of miners (this attack is discussed
in the next section).

Cryptocurrency Smart Contracts 421

8. The producer who has sent some Vx can predict an Rx+1 after the next block
hash has been calculated. Our mitigation of this is for the contract to publish
Tx+1 which indicates at what time the producer could have predicted Rx+1

(this is usually less than a minute in the past).
9. Since the producer can predict the next R value, it may not send some Vx

because revealing it will generate an Rx that is deemed undesirable (e.g., the
producer made a bet on the outcome). However, then it must stop producing
any values because the contract will wait for Vx. We mitigate this by requir-
ing producers to keep an offsite backup copy of their Merlin chain. This does
not stop a producer from refusing to reveal Vx. However, it does eliminate
their ability to claim an inability to reveal due to a hardware failure or nat-
ural disaster. This weakness could be more strongly mitigated in future work
by requiring the producer to submit a timelock puzzle [17] along with each
V value. Such puzzles would allow contract customers to perform an expen-
sive computation on a Vx−1 to reveal any Vx withheld by the producer. The
producer couldn’t lie at the right moment because they can’t predict an Rx

when sending in a Vx−1 (and lying in general is easy to detect by solving the
timelock puzzle).

5.3 Residual Security Flaw

The remaining security flaw is that the producer (or an attacker that has com-
promised the producer) may collaborate with a set of miners to attempt to
influence, but not control, Rx. The malicious producer would provide the collab-
orating miners the value Vx, enabling them to compute a candidate Rx if they
successfully mine block B(Ry) + 1. If this is a desirable outcome, they publish
the completed block to the mining community. If not, they discard the com-
pleted block and lose the associated block reward and transaction fee funds. We
mitigate this attack with our multiple producer contract.

6 Multiple Producer Contract

The multiple producer contract permits multiple producers to submit values to
mitigate the possibility of a single producer collaborating with a group of min-
ers. Each producer is handled independently using the single producer protocol
from Sect. 5.1 (with some exceptions) and the contract maintains a beacon inde-
pendently for each producer. When all beacons have pulsed, the contract pulses
R and T values derived from the combination of beacon pulses. We call this
combined output a lighthouse pulse. We change our notation to handle multiple
producers as follows. We identify each producer with an integer, add this as a
subscript to each variable, and let each variable refer to its most recent value.
Thus, R1 references the most recent R value for producer 1. We use RL and TL

to refer to the most recent lighthouse output.
The contract handles each producer using the single producer protocol from

Sect. 5.1 with the following exceptions (that force the beacons to progress in a
lockstep manner):

422 P. Mell et al.

1. Once pulsed, beacons are not allowed to pulse again until the lighthouse
pulses. If a producer sends additional messages prior to the lighthouse pulse,
they are marked as invalid.

2. The ‘Ry’ references in Sect. 5.1 now correspond to the RL values produced by
the lighthouse (not the particular producer’s beacon). This causes all beacons
to use the same block hash for each beacon pulse.

Once all beacons have pulsed, the lighthouse pulses as follows:

RL = R1 ⊕ R2 ⊕ ... ⊕ Rm (3)

where ⊕ is exclusive or (XOR) and m represents the number of participating
beacons. This has the convenient feature that the lighthouse output using only
a single producer is identical to that producer’s beacon output.

TL = max(T1, T2, ..., Tm) (4)

While not necessary, the lighthouse will work more efficiently if all producers
synchronize their time (e.g., using the Network Time Protocol [14]) and issue
messages at some agreed upon interval.

Each producer’s beacon follows the single producer protocol and thus has
the same security advantages. The small exceptions to the protocol in Sect. 6
do not affect the per beacon security analysis. Each beacon is still secure unless
both the producer and a group of miners collude. The small exceptions cause the
beacons to produce in lockstep. Due to the common block hash used, no beacon
can predict the lighthouse output until after the block hash has been calculated
(at which point the potentially malicious beacon has already committed to its
next value).

This leaves open the possibility that a set of t malicious producers could
collaborate on which will refuse to reveal in order to try to manipulate 2t bits.
However, any such activity will be publicly viewable, will cause the lighthouse to
stop production, and cause the contract owner to deregister any such producers.
The producers can’t claim technical failures because they are required to keep a
backup copy of their Merlin chains.

The only way to influence the RL values then is for all producers to collab-
orate with each other and also with a group of miners. They can then throw
out successfully mined but undesirable blocks (those that would produce an
unwanted RL value). In no situation can the RL value be controlled (i.e., directly
chosen).

However, there is one remaining weakness that must be addressed. If all
producers colluded when initially creating their Merlin chains then they could
use the same V value making the beacons all pulse the same value. If there are
an even number of producers, this will force RL to be 0 since it used XOR. To
mitigate this, our contract simply refuses to pulse an RL value equal to 0. This
obviously reduces the output state space by 1.

Cryptocurrency Smart Contracts 423

7 Empirical Work

We implemented our multiple producer contract using the Solidity language [5]
and deployed it to the Ethereum test network. The test network is identical to
the production network except the Ether has no real world value. Given that
our system does not rely on the transfer of digital assets, the test network works
just as well for our lighthouse as the real Ethereum network. We also created
distributed application (DApp) software to enable producers to submit pulses to
the contract and for customers to retrieve R values. We used multiple producers
and tested the contract’s ability to generate the independent beacon values as
well as the lighthouse values.

We found that coding our contracts in Solidity was rather straightforward.
The main challenges were that we easily ran out of gas (performed too much
computation) or ran out the very limited stack space for individual functions.
However, creating the beacon software that submitted pulses to the contract was
much more difficult since very little documentation exists on how to enable a
program outside of Ethereum to communicate with an Ethereum contract.

We didn’t use the main Ethereum network for our empirical testing because
the current contract execution prices made it too expensive (due to Ether cur-
rency speculation). The price of Ethereum has risen from $8.00 per Ether to
$358 per Ether in six months [1] (as of June 20, 2017) and the gas fees have
not dropped accordingly although Ethereum has a mechanism to do so. Table 2
shows the costs of the main functions in terms of Ether, USD on January 2017,
and USD on June 2017.

Table 2. Approximate ether and USD costs of lighthouse functions as of 2017-06-15

Request type Gas Ether USD (2017-06-20) USD (2017-01-01)

Contract deployment 1.9M .0399 $14.29 $0.32

Register producer 205k .0043 $1.54 $0.035

Producer pulse 200k .0042 $1.50 $0.034

Retrieve output 22k .000462 $0.17 $0.0037

If a producer pulses once a minute, the cost using June 2017 prices would
be $673,000 USD per year. Using January 2017 prices, it would be $17,870 USD
(which the authors believe to still be excessively high).

Due to these cost issues, future implementations of our contract may use
an alternate to Ethereum or a private Ethereum network. This latter approach
is fully supported by the Ethereum development tools and would be privately
managed but publicly accessible. Another option is to design the system so that
the users of the system pay the cost by charging a small fee for each delivered
random number.

424 P. Mell et al.

8 Conclusion

It is possible to use cryptocurrency smart contracts to create a distributed con-
sensus protocol to publicly produce a stream of trustworthy random numbers.
Our contract design eliminates both prediction and control attacks. Neither is it
possible for any entity to change the values once published. What is possible is
that the output might be indirectly influenced without being directly controlled
but this can be mitigated by registering multiple producers.

References

1. Ethereumprice. https://ethereumprice.org/. Accessed 27 June 2017
2. Litecoin. https://litecoin.org/. Accessed 16 June 2017
3. National Institute of Standards and Technology Beacon Program. https://beacon.

nist.gov/home. Accessed 16 June 2017
4. Randao. https://github.com/randao/randao. Accessed 10 July 2017
5. Solidity Language. https://solidity.readthedocs.io/en/develop/. Accessed 16 June

2017
6. www.random.org. https://www.random.org/. Accessed 10 July 2017
7. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.:

Trap me if you can - million dollar curve. IACR Cryptology ePrint Archive 2015,
1249 (2015)

8. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive 2015, 1015 (2015)

9. Bünz, B., Goldfeder, S., Bonneau, J.: Proofs-of-delay and randomness beacons
in Ethereum. IEEE Secur. Priv. Blockchain (2017). http://www.jbonneau.com/
publications.html

10. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. IACR
Cryptology ePrint Archive 2010, 361 (2010). http://eprint.iacr.org/2010/361

11. Fischer, M.J., Iorga, M., Peralta, R.: A public randomness service. In: 2011
Proceedings of the International Conference on Security and Cryptography
(SECRYPT), pp. 434–438. IEEE (2011)

12. Kelsey, J.: The new nist beacon protocol and combining beacons (2017)
13. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. IACR Cryp-

tology ePrint Archive 2015, 366 (2015)
14. Mills, D., Martin, J., Burbank, J., Kasch, W.: RFC 5905: Network Time Protocol

Version 4: Protocol and Algorithms Specification. Internet Engineering Task Force
(IETF) (2010). tools.ietf.org/html/rfc5905

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
16. Rabin, M.O.: Transaction protection by beacons. J. Comput. Syst. Sci. 27(2),

256–267 (1983)
17. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto (1996)
18. Schelling, T.C.: The Strategy of Conflict. Oxford University Press, Oxford (1960)
19. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fis-

cher, M.J., Ford, B.: Scalable bias-resistant distributed randomness. In: 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May
2017, pp. 444–460 (2017). https://doi.org/10.1109/SP.2017.45

https://ethereumprice.org/
https://litecoin.org/
https://beacon.nist.gov/home
https://beacon.nist.gov/home
https://github.com/randao/randao
https://solidity.readthedocs.io/en/develop/
https://www.random.org/
http://www.jbonneau.com/publications.html
http://www.jbonneau.com/publications.html
http://eprint.iacr.org/2010/361
http://tools.ietf.org/html/rfc5905
https://doi.org/10.1109/SP.2017.45

Cryptocurrency Smart Contracts 425

20. Turing, A.M.: On computable numbers, with an application to the entscheidung-
sproblem. Proc. London Math. Soc. 2(1), 230–265 (1937)

21. White, T.H.: The Once and Future King. Ace Books, New York (1987)
22. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151 (2014)

TorBricks: Blocking-Resistant Tor Bridge
Distribution

Mahdi Zamani1(B), Jared Saia2, and Jedidiah Crandall2

1 Visa Research, Palo Alto, CA, USA
mzamani@visa.com

2 University of New Mexico, Albuquerque, NM, USA
{saia,crandall}@cs.unm.edu

Abstract. Tor is currently the most popular network for anonymous
Internet communication. It critically relies on volunteer nodes called
bridges to relay Internet traffic when a user’s ISP blocks connections
to Tor. Unfortunately, current methods for distributing bridges are vul-
nerable to malicious users who obtain and block bridge addresses. In this
paper, we propose TorBricks, a protocol for privacy-preserving distri-
bution of Tor bridges to n users, even when an unknown number t < n of
these users are controlled by a malicious adversary. TorBricks distrib-
utes O(t log n) bridges and guarantees that all honest users can connect
to Tor with high probability after O(log t) rounds of communication with
the distributor. Our empirical evaluations show that TorBricks requires
at least 20x fewer bridges and two orders of magnitude less running time
than the state-of-the-art.

1 Introduction

Mass surveillance and censorship increasingly threaten democracy and freedom
of speech. A growing number of governments around the world restrict access
to the Internet to protect their domestic political, social, financial, and security
interests [27,31]. Countering this trend is the rise of anonymous communication
systems, which strive to foil censorship and preserve the anonymity of individuals
in cyberspace. Tor [14] is the most popular of such systems with more than 2.5
million users on average per day [2]. Tor relays Internet traffic via more than
6,500 volunteer nodes called relays spread across the world [3]. By routing data
through random paths in the network, Tor can protect the private information
of its users such as their identity, geographical location, and content accessed.

Since the list of all relays is publicly available, governments can block access
to them. When access to Tor is blocked, users can use bridges, which are volunteer
relays not listed in Tor’s public directory [13]. Bridges serve only as entry points
into the rest of the Tor network, and their addresses are carefully distributed to
the users, with the hope that they will not be learned by censors. As of March
2016, about 3,000 bridge nodes were running daily in the Tor network [1].

M. Zamani—This work was done when the author was a student at the University
of New Mexico.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 426–440, 2017.
https://doi.org/10.1007/978-3-319-69084-1 32

TorBricks: Blocking-Resistant Tor Bridge Distribution 427

Currently, bridges are distributed to users based on strategies such as
CAPTCHA-enabled email-based distribution [13]. Unfortunately, censors now
use sophisticated attacks to obtain and block bridges, rendering Tor unavailable
for many users [12,22,33]. Additionally, current techniques for bridge distrib-
ution either (1) cannot provably guarantee that all honest1 users can access
Tor [24,30,32]; (2) only work when the number of dishonest users is known in
advance [23]; (3) require fully trusted distributors [23,24,30]; and/or (4) cannot
resist malicious attacks from the distributors [23,24,30,32].

In this paper, we describe TorBricks, a bridge distribution protocol that
guarantees Tor access to all honest users with high probability, even when there
is an unknown number of corrupt users that can block access to all bridges they
receive. TorBricks distributes O(t log n) bridges, where n is the total number
of users, and t < n is the number of corrupt users. This significantly improves
over prior work by Mahdian [23], which distributes O(t2 log n/ log log n) bridges,
and also requires knowledge of t in advance.

Additionally, TorBricks uses secure multi-party computation protocols to
ensure that distributors do not learn user-bridge assignments, even when up to a
1/3 fraction of the distributors are controlled by an adversary. Finally, we stress
that TorBricks can run independently from Tor so that the Tor network can
focus on its primary purpose of providing anonymity.

The rest of this paper is organized as follows. In Sect. 1.1, we describe our
network and threat model. In Sect. 1.2, we state our main result as a theorem.
We review related work in Sect. 2. In Sect. 3, we describe our protocol for reliable
bridge distribution; we start from a basic protocol and improve it as we continue.
We describe our implementation of TorBricks and our simulation results in
Sect. 5. Finally, we summarize and state our open problems in Sect. 6.

1.1 Our Model

We now define our problem model, which is depicted, at a high-level, in Fig. 1.
We assume there are n users who want to obtain bridge addresses to access

Tor. Initially, we assume a single trusted server called the distributor, which has
access to a reliable supply of bridge addresses. Later, we generalize to multiple
distributors.

We assume an adversary (or censor) which can control up to t of the users.
We call these adversarially-controlled users corrupt. The adversary is adaptive in
that it can corrupt users at any point of the protocol, up to the point of taking
over t users. The adversary has the ability to block any bridges received by any of
the corrupt users. He is not required to block bridges immediately upon receipt,
but may rather strategically decide the best time to block a bridge. Users which
are not corrupt are called honest. Each honest user seeks to obtain one bridge
that is not blocked.

1 By honest users, we mean the users that are not controlled by the censor to obtain
the bridge addresses assigned to them.

428 M. Zamani et al.

Distributor(s)

ISP

Destination Tor network

BridgeRelay

Relay

Censorship territory

Users

Firewall

Fig. 1. Our network model

We make the standard assumption that there exists a rate-limited channel,
such as email, that allows users to send requests for bridges to the distributor,
and the distributor to send bridges to the users.2 The distributor runs our bridge
distribution protocol locally and sends bridge assignments back to the users via
the same channel. We assume the adversary has no knowledge of the private
random bits used by our protocol.

Bridge Reachability. We assume the distributor learns which bridges are
blocked using scanning algorithms deployed outside the censored countries.
Efficient scanning algorithms are described in recent work by Dingledine [11],
Ensafi et al. [17], and Burnett and Feamster [9].

1.2 Our Result

Below is our main theorem, which we prove in Sect. 3.

Theorem 1. There exists a bridge distribution protocol that guarantees the fol-
lowing properties with probability 1 − 1/nc, for some constant c ≥ 1:

1. The number of bridges distributed is O(t log n);
2. All honest users can connect to Tor after �log �(t + 1)/32�� + 1 rounds of

communication with the distributors;

We simulate a proof-of-concept prototype of TorBricks to measure the
running time and bridge cost of the protocol. We discuss our simulation results
in Sect. 5.

2 Related Work

Proxy Distribution. The bridge distribution problem has been studied under
the name proxy distribution, where a set of proxy servers outside a censorship
territory are distributed among a set of users inside the territory.
2 Completely blocking a service such as email would likely impose significant economic

consequences for censors. However, unfortunately, email alone does not enable real-
time interaction with the Web.

TorBricks: Blocking-Resistant Tor Bridge Distribution 429

The work closest to our own is that of Mahdian [23]. To the best of our
knowledge, this is the only other result that gives theoretical guarantees against
an omniscient adversary. Mahdian’s work assumes that the number of corrupt
users, t, is known in advance. His algorithms may use up to O(t2 log n/ log log n)
bridges.

Remaining related work on proxy distribution uses three main approaches.
First, proof-of-work based schemes, including the system of Feamster et al. [18].
Second, social networks based schemes, including the Kaleidoscope system of
Sovran et al. [30], and the Proximax system of McCoy et al. [24]. Finally, repu-
tation based schemes, including the rBridge system proposed by Wang et al. [32].
Our approach is essentially orthogonal to these schemes, in that proof-of-work,
social networks, and reputation management can potentially be heuristically
incorporated into the TorBricks system.

Handling DPI and Active Probing. The Tor Project has developed a vari-
ety of tools known as pluggable transports [5] to obfuscate the traffic trans-
mitted between users and bridges. This makes it hard for the censor to perform
deep packet inspection (DPI) attacks, since distinguishing actual Tor traffic from
legitimate-looking obfuscated traffic is hard.

The censor can also block bridges using active probing [16]: he can pas-
sively monitor the network for suspicious traffic, and then actively probe dubi-
ous servers to block those identified as running the Tor protocol. Depending on
the sophistication of the censor, TorBricks may be used in parallel with tools
that can handle DPI and active probing to provide further protection against
blocking.

Resource-Competitive Analysis. Our analytical approach to bridge distribu-
tion can be seen as an application of the resource-competitive analysis introduced
by Gilbert et al. [6,19], which measures the performance of a system with respect
to the unknown resource budget of an adversary: if the adversary has a budget of
t, then the worst-case resource cost of the algorithm is measured by some function
of t. The adversary’s budget is frequently expressed by the number of corrupt
nodes controlled by the adversary. This model allows the system to adaptively
increase/decrease its resource cost with the current amount of corruption by the
adversary. Inspired by this model, we design resource-competitive algorithms for
bridge distribution that scale reasonably with the adversary’s budget.

3 Our Protocol

We first construct a bridge distribution protocol that is run locally by a trusted
distributor. Then, we extend this protocol to multiple distributors, where no
subset of less than a 1/3 fraction of the distributors learns any information
about the user–bridge assignments.

We say an event occurs with high probability, if it occurs with probability at
least 1 − 1/nc, for some constant c ≥ 1. We denote the set of integers {1, ..., n}
by [n], the natural logarithm of any real number x by lnx, and the logarithm to

430 M. Zamani et al.

the base 2 of x by log x. We denote a set of n users participating in our protocol
by {u1, ..., un}. We define the latency of our protocol as the maximum number
of rounds of communication that any user has to perform with the distributor(s)
until he obtains at least one unblocked bridge.

3.1 Basic Protocol

The most naive approach to distribute a set of bridges is to assign a unique
bridge to each user. Unfortunately, this does not scale: while the number of Tor
users has nearly tripled in the past two years [4], the number of bridges in the
network has at best remained the same [1].

Thus, TorBricks assigns each bridge to multiple users. In particular, we
start with a “small” set of bridges, and assign each user a bridge selected uni-
formly at random from this set. But how do we choose the size of this set? If the
set is too small, an adversary can corrupt a small number of bridges and easily
prevent any users from accessing Tor. If the set is too large, then we are wasting
precious bridges.

The key idea is to adjust the number of bridges distributed in each round
based on the number of bridges that have been blocked. Our protocol is divided
into rounds incremented by i. We advance to the next round when the number
of bridges blocked in the current round (bi) exceeds a geometrically increasing
threshold. In each round, we increase geometrically the size of the set of bridges
that we assign (this size is the value di). In this way, we ensure that the number
of bridges TorBricks uses is a slowly growing function of the number of bridges
blocked.

One may divide the set of users into randomly-chosen disjoint subsets and
assign a unique bridge to all users in each subset. While this approach would
produce a fully load-balanced distribution of the users across the bridges, it
seems hard to be implemented efficiently in a decentralized setting such as our
multiple distributors model.3

The number of bridges distributed in every round is determined based on
the threshold in that round as depicted in Fig. 2. The exponential growth of
the number of bridges distributed in each round allows us to achieve a loga-
rithmic latency (in t) until all users can connect to Tor with high probability
(see Lemma 2). In Lemma 1, we show that if one instance of steps 1–13 of Algo-
rithm1 is executed, then it guarantees that all users can connect to Tor with
some constant probability. Therefore, if we run 3 log n instances in parallel, we
can guarantee that all users connect to Tor with high probability.

3.2 Some Modifications

Reusing Bridges. In every round, TorBricks only distributes unblocked
bridges. A heuristic to reduce the total number of bridges required is to use

3 We are not aware of any efficient decentralized algorithm to partition a set of n
elements into k randomly-chosen disjoint subsets.

TorBricks: Blocking-Resistant Tor Bridge Distribution 431

Algorithm 1. TorBricks – Basic Protocol

Goal: Distributes a set of O(t logn) bridges among a set of users {u1, ..., un}.
Run 3 log n instances of the following algorithm in parallel with disjoint sets of

bridges:
1: i ← 1
2: while true do
3: di ← 2i+4

4: {B1, ..., Bdi
} ← di unblocked bridges

5: for all j ∈ [n] do � Distribute di bridges
6: Pick k ∈ [di] uniformly at random
7: Send bridge Bk to user uj

8: end for
9: while bi < 0.6 × 2i+4 do

10: bi ← # blocked bridges in {B1, ..., Bdi
}

11: end while
12: i ← i + 1
13: end while

unblocked bridges from previous rounds in the current distribution round. This
can be done by removing blocked bridges from the pile of previously used bridges
and adding a sufficient number of new bridges to accommodate the new load.
One may choose to further reduce the number of bridges used by assigning new
bridges only to those users who still do not have an unblocked bridge.

In the unlikely case that the censor blocks a significant number of the bridges
such that the number of bridges to be distributed over all 3 log n instances
exceeds the number of users, n, then it becomes more reasonable to assign each
user a unique bridge. This avoids distributing more than n bridges, which is
overkill. Algorithm1 can be modified to add an if-statement after Line 3 to
check if di ≥ n

3 log n . If this is true, then the algorithm trivially assigns a unique
bridge to every user and terminates. Otherwise, it executes lines 4–8. The if-
statement on Line 3 of Algorithm 1 does this check and changes the distribution
strategy as appropriate. Note that this happens only if the adversary blocks a
significant number of bridges, which we believe does not occur in most practical
cases.

Handling Serialization Attacks. If the 3 log n instances run completely inde-
pendently, then the adversary can take advantage of this to increase the latency
of the algorithm by a factor of 3 log n using a serialization attack. In this attack,
the adversary can strategically coordinate with its corrupt users to block the
assigned bridges in such a way that the instances proceed to the next round
one at a time. TorBricks prevents this attack by maintaining a single round
counter, i, for all instances: whenever the number of blocked bridges in any of
the instances exceeds the threshold for the current round, all instances are taken

432 M. Zamani et al.

… S U S S S U S S S S S U S S U S …

Round Round Round

Iterations

……

Fig. 2. Number of bridges distributed in round i of Algorithm 1. S and U indicate
successful and unsuccessful iteration of the while-loop in Algorithm 1. An iteration is
called successful when all users are able to connect to Tor in that iteration. Otherwise,
it is called an unsuccessful iteration.

to the next round. Since all instances are run by the distributor locally, i can be
easily synchronized between them.

Handling User Churn. Algorithm 1 can only distribute bridges among a fixed
set of users. A more realistic scenario is when users join or leave the algorithm
frequently. One way to handle this is to add the new users to the algorithm at the
beginning of the next round (i.e., after i increments). This, however, introduces
two challenges. First, the adversary can arbitrarily delay the next round, causing
a denial of service attack. Second, our proof of robustness (Lemma1) would not
necessarily hold if n changes, because the algorithm is repeated 3 log n times to
ensure it succeeds with high probability.

To resolve these challenges, TorBricks can assign 3 log n random bridges
from the set of bridges used in the last round (i.e., the last time i was incre-
mented) to every new user. If the total number of users, n, is doubled since the
last round, we use 3 × 2i+4 unblocked bridges and assign 3 of them randomly
to each user. This ensures that the number of parallel instances always remains
3 log n even if n changes, because log n is increased by one when n is doubled.
Therefore, each existing user must receive 3 new bridges so that Lemma 1 holds
in the setting with churn. Our remaining lemmas hold if users leave the system;
thus, we only need to update n when nodes leave.

Since distributing new bridges among existing users is done only after the
number of users is doubled, the latency is increased by at most a log n term,
where n is the largest number of users in the system during a complete run of
the algorithm.

3.3 Privacy-Preserving Bridge Distribution

We now consider a multiple distributors model, where a group of m � n dis-
tributors collectively distribute bridge addresses among the users. Our goal is to
ensure that user–bridge assignments remain hidden from any coalition of up to

TorBricks: Blocking-Resistant Tor Bridge Distribution 433

a 1/3 fraction of distributors. We assume that a sufficient number of bridges
have already registered their addresses in the system so that in each round the
protocol can ask some of them to provide their IP addresses to the system to
be distributed by the protocol. We also assume that the distributors are con-
nected to each other pairwise with private and authenticated channels. In this
model, the adversary not only can corrupt an unknown number of the users, t
but can also maliciously control and read the internal state of up to �m/3	 of
the distributors. The corrupted distributors can deviate from our protocols in
any arbitrary manner, e.g., by sending invalid messages or remaining silent.

One approach is to design a leader-based protocol, where an honest-but-
curious distributor called the leader locally runs Algorithm1 over anonymous
bridge addresses. The leader then sends anonymous user-bridge assignments to
other distributors who can collectively “open” the assignments for the users. In
each round i, the leader requests a group of at most di bridges to secret-share
their IP addresses among all distributors (including the leader) using Shamir’s
scheme [29]. Let (B1, ...Bdi

) denote the sequence of shares the leader receives
once the bridges finish the secret sharing protocol. The leader runs Algorithm1
locally to assign Bj ’s to the users randomly, for all j ∈ [di]. Then, the leader
broadcasts the pair (uk, Ik) to all distributors, where Ik is the set of indices of
bridges assigned to user uk, for all k ∈ [1, ..., n]. Each distributor then sends its
shares of bridge addresses to the appropriate user with respect to the assignment
information received from the leader. Finally, each user is able to reconstruct
the bridge addresses assigned to him, because at least a 2/3 fraction of the
distributors are honest and have correctly sent their shares to the user.

To remove the assumption of an honest-but-curious distributor, we can use
secure multi-party computation (MPC). In MPC, the goal is to compute a func-
tion over private inputs distributed over many nodes, even when up to a 1/3
fraction of the nodes are controlled by an adversary, and to do so without reveal-
ing any information about the private input held by any node. Seminal work by
Goldreich et al. [20] described a protocol to solve MPC for any function. Recent
results have improved on this seminal work in terms of bandwidth and latency
costs, and practicality [7,8,10] (see also [21,28] for surveys).

We can use MPC to solve our multiple distributors problem in the following
manner. Initially, each bridge address is divided into m shares that are given to
each distributors in such a way that (1) no subset of less than a 1/3 fraction
of the distributors can learn the bridge address by sharing their shares; and
(2) any subset of a 2/3 fraction of the distributors can reconstruct the bridge
address with their shares. Standard approaches using Shamir secret sharing [29]
and Reed-Solomon codes [26] can achieve this.

Next, we use any MPC protocol to essentially compute the function in Algo-
rithm1. In particular, after running this MPC, for each user, each distributor
learns a share of the appropriate bridge to be sent to that user, and sends that
share to the user. In this way, (1) no coalition of less than a third of the distrib-
utors will learn which bridges map to which users; and (2) all users will receive
enough correct shares to reconstruct the bridges assigned to them.

434 M. Zamani et al.

Corollary 1. There exists a bridge distribution protocol that can run among m
distributors and guarantee the properties described in Theorem1 as well as the
following properties with probability 1 − 1/nc, for some constant c ≥ 1, in the
presence of a malicious adversary corrupting at most �m/3	 of the distributors:

1. Each user receives m messages in each round;
2. Each distributor sends/receives O(m2 + n) messages;
3. Each message has length O(log n) bits.

4 Protocol Analysis

We now prove Theorem 1. We assume a user can connect to Tor in an iteration
of the while loop if and only if at least one unblocked bridge is assigned to it.
Although the adversary can corrupt up to t users, only some of the corrupt users
might be actively blocking bridges in any given round. From the distributor’s
perspective, since t is unknown, only those users who have blocked at least one
bridge in any round so far are considered corrupt and are counted towards the
adversary’s total budget. If a corrupt user has only attempted to block bridges
that have already been blocked by other corrupt users, then our algorithm obvi-
ously cannot identify this user as a corrupt user until the user blocks at least
one unblocked bridge in future rounds.

Before stating our first lemma, we define the following variables:

– bi: number of bridges blocked in round i.
– di: number of bridges distributed in round i.
– ti: number of corrupt users that have blocked at least one bridge in round i.

Lemma 1 (Robustness). In round i of Algorithm1, if bi < 0.6 × 2i+4, then all
honest users can connect to Tor with high probability.

Proof. We first consider the execution of only one of the 3 log n instances of
Algorithm 1. For each user, the algorithm chooses a bridge independently and
uniformly at random and assigns it to the user. Without loss of generality, assume
the corrupt users are assigned bridges first.

For k = 1, 2, ..., ti, let {Xk} be a sequence of random variables each repre-
senting the bridge assigned to the k-th corrupt user. Also, let Y be a random
variable corresponding to the number of bad bridges, i.e., the bridges that are
assigned to at least one corrupt user that has blocked a bridge in this round.
Since each user is assigned a fixed bridge with probability 1/di, the probability
that a bridge is assigned to at least one such corrupt user is 1 − (1 − 1/di)ti .
Thus, by linearity of expectation,

E[Y] =
(
1 − (1 − 1/di)

ti
)

di < (1 − e−(ti+1)/di)di.

We know ti < 2i+4, because in each round di = 2i+4 bridges are distributed
and each corrupt user is assigned exactly one bridge. Hence,

E[Y] < (1 − 1/e1+1/2i+4
)di ≤ (1 − 1/e2)di (1)

TorBricks: Blocking-Resistant Tor Bridge Distribution 435

Therefore, in expectation at most a constant fraction of the bridges become bad
in each instance of the algorithm.

We now show that the actual values of Y are not much larger than its
expected value. The sequence {Zk = E[Y |X1, ...,Xk]} defines a Doob martin-
gale [15, Chapt. 5], where Z0 = E[Y]. Since |Zk+1 − Zk| ≤ 1, Z0 = E[Y], and
Zti = Y , by the Azuma-Hoeffding inequality [15, Theorem 5.2],

Pr(Y > E[Y] +
√

di) ≤ e−2di/ti < 1/e2. (2)

The last step holds since ti < di. Hence, with probability 1 − 1/e2, any user is
assigned a bad bridge with probability at most.

E[Y] +
√

di

di
<

(1 − 1/e1+1/2i+4
)di +

√
di

di

= 1/e1+1/2i+4
+ 1/

√
di, (3)

where the first step is achieved using (1).
Now, let p1 = Pr(Y > E[Y] +

√
di), and let p2 be the probability that a fixed

honest user is assigned a bad bridge in a fixed instance and a fixed round.
From (2) and (3), we have

p1 < 1/e2 and p2 < 1/e1+1/2i+4
+ 1/

√
di.

Thus, the probability that a fixed user fails to receive a good bridge in a fixed
instance and a fixed round is equal to p1 + (1 − p1)p2, which is at most 0.6.

Over the 3 log n instances, the probability that a user only receives bad
bridges is at most 0.6�3 log n� ≤ 1/n2. By a union bound, the probability that
any of the n users receives only bad bridges in a round is at most 1/n.

Lemma 2 (Latency). By running Algorithm1, all honest users can connect
to Tor with high probability after at most �log �(t + 1)/32�� + 1 iterations of the
while loop.

Proof. Let k denote the smallest number of rounds required until all users can
connect to Tor with high probability. Intuitively, k is bounded, because the
number of corrupt nodes, t, is bounded. In the following, we find k with respect
to t.

Fix one of the parallel instances of Steps 1–13 of Algorithm1. The adversary
must block at least 0.6 × 2i+4 bridges in round i to force the algorithm to proceed
to the next round. Let � be the smallest integer such that 2� ≥ t. In round �,
the adversary has enough corrupt users to take the algorithm to round � + 1.
However, in round � + 1, the adversary can block at most 2� < 2�+1 bridges.
Thus, by Lemma 1, at the end of round � + 1, all honest users can connect to
Tor with high probability. Since 2� ≥ t, and the algorithm starts by distributing
32 bridges, � + 1 ≤ �log �(t + 1)/32�� + 1.

436 M. Zamani et al.

Lemma 3 (Bridge Cost). The total number of bridges used by Algorithm1 is
at most min [(10t + 96) log n, 2n].

Proof. Consider one of the 3 log n instances of Algorithm 1. The algorithm starts
by distributing 32 bridges. In every round i > 0, the algorithm distributes a new
bridge only to replace a bridge blocked in round i − 1. Let Mi be the total
number of bridges used until round i; and let ai be the number of new bridges
distributed in round i. Then,

Mi = ai +
i−1∑
j=0

bj . (4)

In round i, ai ≤ 2i+4 and bi < 0.6 × 2i+4. Thus,

Mi < 2i + 0.6
i−1∑
j=5

2j < 32 · (2i−4 − 1)

Mi < 2i+4 + 0.6
i−1∑
j=1

2j+4 = 9.6(2i − 2) + 2i+4.

From Lemma 2, it is sufficient to run the algorithm k = �log �(t + 1)/32�� + 1
rounds. Then,

Mk < 32 · (2�log �(t+1)/32��+1 − 1) ≤ 4t + 32.

Mk < 9.6(2k − 2) + 2k+4 ≤ 3.2t + 32.

Summing over all 3 log n instances, we get that the total number of bridges is
at most (10t + 96) log n. If, when the number of bridges to be distributed in the
current round across all instances becomes larger than n, the algorithm sends
one bridge to each user, we get that the total number bridges used is at most
min [(10t + 96) log n, 2n].

Algorithm 1 does not necessarily assign the same number of users to each
bridge. However, in the following lemma, we show that each bridge is assigned to
almost the same number of users as other bridges with high probability providing
a reasonable level of load-balancing.

Lemma 4 (Bridge Load-Balancing). Let X be a random variable representing
the maximum number of users assigned to any bridge, Y be a random variable
representing the minimum number of users assigned to any bridge, μ = n/di be
the average number of users per bridge, and z = Θ

(
lnn

ln lnn

)
. Then, we have

Pr (X ≥ μz) ≤ 2/n and Pr (Y ≤ μz) ≤ 2/n.

TorBricks: Blocking-Resistant Tor Bridge Distribution 437

Proof. Each round of Algorithm1 can be seen as the classic balls-and-bins
process: n balls (users) are thrown independently and uniformly at random into
di bins (bridges). Then it is well known that the distribution of the number of
balls in a bin is approximately Poisson with mean μ = n/di [25, Chap. 5].

Let Xj be the random variable corresponding to the number of users assigned
to the j-th bridge, and let X̃j be the Poisson random variable approximating
Xj . We have μ = E[Xj] = E[X̃j] = n/di. We use the following Chernoff bounds
from [25, Chap. 5] for Poisson random variables:

Pr(X̃j ≥ x) ≤ e−μ(eμ/x)x, when x > μ (5)

Pr(X̃j ≤ x) ≤ e−μ(eμ/x)x, when x < μ (6)

Let x = μy, where y = ez. From (5), we have

Pr(X̃j ≥ μy) ≤
(

ey−1

yy

)μ

≤ ey−1

yy
=

1
e

(
1
zz

)e

<
1
n2

. (7)

The second step is because yy > ey−1 (since z > 1) and μ > 1. The last step is
because z = Θ

(
lnn

ln lnn

)
is the solution of zz = n. To show this, we take log of

both sides of zz = n twice, which yields ln z + ln ln z = ln lnn. Note that ln z ≤
ln z+ln ln z = ln lnn < 2 ln z. Then, since z ln z = ln n, we have z/2 < lnn

ln lnn ≤ z.

Therefore, z = Θ
(

lnn
ln lnn

)
.

It is shown in [25, Corollary 5.11] that for any event that is monotone in the
number of balls, if the event occurs with probability at most p in the Poisson
approximation, then it occurs with probability at most 2p in the exact case. Since
the maximum and minimum bridge loads are both monotonically increasing in
the number of users, from (7) we have

Pr(Xj ≥ μy) ≤ 2Pr(X̃j ≥ μy) < 2/n2.

By applying a union bound over all bridges, the probability that the number
of users assigned to any bridge will be more than μz is at most 2/n. The bound
on the minimum load can be shown using inequality (6) in a similar way.

5 Evaluation

We implemented a proof-of-concept prototype of TorBricks and tested it in
a simulated environment with 8, 192 users and one distributor. We assume the
adversary blocks bridges aggressively meaning that it blocks every bridge it
receives immediately. Experiments with other adversarial strategies gave similar
results to those presented here. “We also implemented the dynamic bridge dis-
tribution algorithm of Mahdian [23] to compare with TorBricks. We set the

438 M. Zamani et al.

Fig. 3. Simulation results for n = 8, 192 and variable number of corrupt users showing
bridge cost (left) and latency (right) of TorBrix and the dynamic bridge distribution
algorithm of Mahdian [23].

parameters of both protocols in such a way that it fails with probability at most
10−5. We increase the number of corrupted users, t, from 0 to 225 with incre-
ments of 10 and measure the bridge cost and latency of both schemes. The results
are shown in Fig. 3. All numbers are averaged over 10 runs of each protocol.

Figure 3 shows that the number of bridges used by TorBricks is less than
those used by Mahdian’s algorithm when t ≥ 15. Moreover, this number scales
significantly better for TorBricks than Mahdian’s algorithm for larger values
of t. For example, TorBricks requires 20x fewer bridges for t = 200. Figure 3
also shows it takes TorBricks significantly less time to guarantee robust bridge
assignments. For example, TorBricks requires at least two orders of magnitude
less time than [23] to guarantee every user receives at least one unblocked bridge.
In the TorBricks plots, sharp increases can be seen around t = 5, 10, 25, 55,
and 115 that are due to the increase in the number of rounds required until the
protocol converges.

6 Conclusion and Open Problems

We described TorBricks, a bridge distribution system that allows all honest
users to connect to Tor in the presence of an adversary that corrupts an unknown
number of users, Our algorithm can adaptively increase the number of bridges
according to the behavior of the adversary and it uses a near-optimal number
of bridges. and can hide the bridge assignments from a colluding adversary.
Empirical evaluations show that TorBricks requires at least 20x fewer bridges
and two orders of magnitude less running time than the state-of-the-art. As
a future work, the current algorithm uses a relatively large number of bridges
when the number of corrupt users is large. Is it possible to make the bridge cost
sublinear in t with practical constant terms?

Another interesting direction is to use inexpensive honeypot (fake) bridges
to detect and blacklist corrupt users. The protocol can assign a number of fake
bridges to every user proportional to the number of blocked bridges (fake or real)
assigned to the user in the previous round. This technique requires a mechanism

TorBricks: Blocking-Resistant Tor Bridge Distribution 439

such as CAPTCHA to prevent the adversary from distinguishing real bridges
from the fake ones. Moreover, a colluding adversary may be able to compare
bridges assigned to its corrupt users to detect honeypots.

To better explore the possibility of achieving a sublinear bridge cost, one
may consider finding lower bounds for different scenarios. For example, when
each user is assigned at least one bridge, it seems impossible to achieve a sub-
linear bridge cost unless some of the bridges are fake, or we only distribute real
bridges in random-chosen rounds. What is the lower bound for the number of
rounds in these scenarios? Another interesting open problem is to examine if our
current notion of robustness is overkill for practice. For example, is it possible
to significantly reduce our costs by guaranteeing access for all but a constant
number of users?

References

1. The Tor Project metrics: bridges in the network between March 1, 2016 and March
31, 2016

2. The Tor Project metrics: direct users connecting between January 1, 2015 and
March 31, 2015

3. The Tor Project metrics: relays in the network between January 1, 2015 and March
31, 2015

4. TorMetrics: Directly connecting users. https://metrics.torproject.org/userstats-
relay-country.html

5. The Tor Project: Pluggable transport (2015)
6. Bender, M.A., Fineman, J.T., Movahedi, M., Saia, J., Dani, V., Gilbert, S., Pettie,

S., Young, M.: Resource-competitive algorithms. ACM SIGACT News 46(3), 57–71
(2015)

7. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03549-4 20

8. Boyle, E., Chung, K.-M., Pass, R.: Large-scale secure computation: multi-party
computation for (parallel) RAM programs. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 742–762. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48000-7 36

9. Burnett, S., Feamster, N.: Encore: lightweight measurement of web censorship with
cross-origin requests. SIGCOMM Comput. Commun. Rev. 45(4), 653–667 (2015)

10. Dani, V., King, V., Movahedi, M., Saia, J.: Quorums quicken queries: efficient asyn-
chronous secure multiparty computation. In: Chatterjee, M., Cao, J., Kothapalli,
K., Rajsbaum, S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 242–256. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-45249-9 16

11. Dingledine, R.: Research problem: five ways to test bridge reachability (2011)
12. Dingledine, R.: Research problems: ten ways to discover Tor bridges (2011)
13. Dingledine, R., Mathewson, N.: Design of a blocking-resistant anonymity system.

Technical report, The Tor Project Inc. (2006)
14. Dingledine, R., Mathewson,N., Syverson, P.: Tor: the second-generation onion

router. In: Proceedings of the 13th USENIX Security Symposium, Berkeley, CA,
USA (2004)

15. Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Ran-
domized Algorithms. Cambridge University Press, New York (2009)

https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1007/978-3-662-48000-7_36
http://dx.doi.org/10.1007/978-3-662-48000-7_36
http://dx.doi.org/10.1007/978-3-642-45249-9_16

440 M. Zamani et al.

16. Ensafi, R., Fifield, D., Winter, P., Feamster, N., Weaver, N., Paxson, V.: Exam-
ining how the great firewall discovers hidden circumvention servers. In: Internet
Measurement Conference (IMC). ACM (2015)

17. Ensafi, R., Knockel, J., Alexander, G., Crandall, J.R.: Detecting intentional packet
drops on the internet via TCP/IP side channels. In: Faloutsos, M., Kuzmanovic,
A. (eds.) PAM 2014. LNCS, vol. 8362, pp. 109–118. Springer, Cham (2014). doi:10.
1007/978-3-319-04918-2 11

18. Feamster, N., Balazinska, M., Wang, W., Balakrishnan, H., Karger, D.: Thwarting
web censorship with untrusted messenger discovery. In: Dingledine, R. (ed.) PET
2003. LNCS, vol. 2760, pp. 125–140. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-40956-4 9

19. Gilbert, S., Saia, J., King, V., Young, M.: Resource-competitive analysis: a new
perspective on attack-resistant distributed computing. In: Proceedings of the 8th
International Workshop on Foundations of Mobile Computing, FOMC 2012, pp.
1:1–1:6. ACM, New York (2012)

20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 1987, pp. 218–229. ACM, New York (1987)

21. Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. J. Priv. Confid. 1(1), 5 (2009)

22. Ling, Z., Luo, J., Yu, W., Yang, M., Fu, X.: Extensive analysis and large-scale
empirical evaluation of tor bridge discovery. In: 2012 Proceedings IEEE INFO-
COM, pp. 2381–2389, March 2012

23. Mahdian, M.: Fighting censorship with algorithms. In: Boldi, P., Gargano, L. (eds.)
FUN 2010. LNCS, vol. 6099, pp. 296–306. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13122-6 29

24. McCoy, D., Morales, J.A., Levchenko, K.: Proximax: measurement-driven proxy
dissemination (short paper). In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp.
260–267. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27576-0 21

25. Mitzenmacher, M., Upfal, E., Probability, C.: Randomized Algorithms and Prob-
abilistic Analysis. Cambridge University Press, Cambridge (2005)

26. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl.
Math. (SIAM) 8(2), 300–304 (1960)

27. Rushe, D.: Google reports ‘alarming’ rise in censorship by governments. The
Guardian, June 2012

28. Saia, J., Zamani, M.: Recent results in scalable multi-party computation. In: Ital-
iano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R.
(eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 24–44. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46078-8 3

29. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
30. Sovran, Y., Libonati, A., Li, J.: Pass it on: social networks stymie censors. In:

Proceedings of the 7th International Conference on Peer-to-peer Systems, IPTPS
2008, Berkeley, CA, USA, p. 3. USENIX Association (2008)

31. Turner, K.: Mass surveillance silences minority opinions, according to study. The
Washington Post, March 2016

32. Wang, Q., Lin, Z., Borisov, N., Hopper, N.: rBridge: user reputation based tor
bridge distribution with privacy preservation. In: Network and Distributed System
Security Symposium, NDSS 2013. The Internet Society (2013)

33. Winter, P., Lindskog, S.: How the great firewall of China is blocking Tor. In: 2nd
USENIX Workshop on Free and Open Communications on the Internet, Berkeley,
CA (2012)

http://dx.doi.org/10.1007/978-3-319-04918-2_11
http://dx.doi.org/10.1007/978-3-319-04918-2_11
http://dx.doi.org/10.1007/978-3-540-40956-4_9
http://dx.doi.org/10.1007/978-3-540-40956-4_9
http://dx.doi.org/10.1007/978-3-642-13122-6_29
http://dx.doi.org/10.1007/978-3-642-13122-6_29
http://dx.doi.org/10.1007/978-3-642-27576-0_21
http://dx.doi.org/10.1007/978-3-662-46078-8_3

Cover Time in Edge-Uniform
Stochastically-Evolving Graphs

Ioannis Lamprou1(B), Russell Martin1, and Paul Spirakis1,2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{Ioannis.Lamprou,Russell.Martin,P.Spirakis}@liverpool.ac.uk

2 Computer Technology Institute and Press “Diophantus” (CTI), Patras, Greece

Abstract. We define a general model of stochastically evolving graphs,
namely the Edge-Uniform Stochastically-Evolving Graphs. In this model,
each possible edge of an underlying general static graph evolves indepen-
dently being either alive or dead at each discrete time step of evolution
following a (Markovian) stochastic rule. The stochastic rule is identical
for each possible edge and may depend on the past k ≥ 0 observations
of the edge’s state.

We examine two kinds of random walks for a single agent taking place
in such a dynamic graph: (i) The Random Walk with a Delay (RWD),
where at each step the agent chooses (uniformly at random) an incident
possible edge (i.e. an incident edge in the underlying static graph) and
then it waits till the edge becomes alive to traverse it. (ii) The more
natural Random Walk on what is Available (RWA) where the agent only
looks at alive incident edges at each time step and traverses one of them
uniformly at random. Our study is on bounding the cover time, i.e. the
expected time until each node is visited at least once by the agent.

For RWD, we provide the first upper bounds for the cases k = 0, 1 by
correlating RWD with a simple random walk on a static graph. More-
over, we present a modified electrical network theory capturing the k = 0
case and a mixing-time argument toward an upper bound for the case
k = 1.

For RWA, we derive the first upper bounds for the cases k = 0, 1, too,
by reducing RWA to an RWD-equivalent walk with a modified delay.
Finally, for the case k = 1, we prove that when the underlying graph
is complete, then the cover time is O(n logn) (i.e. it matches the cover
time on the static complete graph) under only a mild condition on the
edge-existence probabilities determined by the stochastic rule.

Keywords: Dynamic graphs · Random walk · Cover time ·
Stochastically-evolving network · Edge-independent

1 Introduction

In the modern era of Internet, modifications in a network topology can occur
extremely frequently and in a disorderly way. Communication links may fail from

P. Spirakis was partially supported by the EPSRC grant “Algorithmic Aspects of
Temporal Graphs”.

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 441–455, 2017.
https://doi.org/10.1007/978-3-319-69084-1_33

442 I. Lamprou et al.

time to time, while connections amongst terminals may appear or disappear
intermittently. Thus, classical (static) network theory fails to capture such ever-
changing processes. In an attempt to fill this void, different research communities
have given rise to a variety of theories on dynamic networks. In the context of
algorithms and distributed computing, such networks are usually referred to as
temporal graphs [13]. A temporal graph is represented by a (possibly infinite)
sequence of subgraphs of the same static graph. That is, the graph is evolving
over a set of (discrete) time steps under a certain group of deterministic or
stochastic rules of evolution. Such a rule can be edge- or graph-specific and may
take as input some graph instances observed in previous time steps.

In this paper, we focus on stochastically evolving temporal graphs. We define
a new model of evolution where there exists a single stochastic rule which is
applied independently to each edge. Furthermore, our model is general in the
sense that the underlying static graph is allowed to be a general connected
graph, i.e. with no further constraints on its topology, and the stochastic rule
can include any finite number of past observations.

Assume now that a single mobile agent is placed on an arbitrary node of
a temporal graph evolving under the aforementioned model. Next, the agent
performs a simple random walk; at each time step, after the graph instance is
fixed according to the model, the agent chooses uniformly at random a node
amongst the neighbors of its current node and visits it. The cover time of such a
walk is the expected number of time steps until the agent has visited each node
at least once. Herein, we prove some first bounds on the cover time for a simple
random walk as defined above, mostly via the use of Markovian theory.

Random walks constitute a very important primitive in terms of distributed
computing. Examples include their use in information dissemination [1] and
random network structure [3]; also, see the short survey in [5]. In this work,
we consider a single random walk as a fundamental building block for other
more distributed scenarios to follow.

1.1 Related Work

A paper which is very relevant with respect to ours is the one of Clementi
et al. [7], where they consider the flooding time in Edge-Markovian dynamic
graphs. In such graphs, each edge independently follows a one-step Markovian
rule and their model appears as a special case of ours (matches our case k = 1).
Further work under this Edge-Markovian paradigm includes [4,8].

Another work related to our paper is the one of Avin et al. [2] where they
define the notion of a Markovian Evolving Graph, i.e. a temporal graph evolving
over a set of graphs G1, G2, . . . , where the process transits from Gi to Gj with
probability pij , and consider random walk cover times. Note that their approach
becomes intractable if applied to our case; each of the possible edges evolves
independently, thence causing the state space to be of size 2m, where m is the
number of possible edges in our model.

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 443

Clementi et al. [9] study the broadcast problem when at each time step
the graph is selected according to the well-known Gn,p model. Also, Yamauchi
et al. [18] study the rendezvous problem for two agents on a ring when each edge
of the ring independently appears at every time step with some fixed probability
p. Lastly, there exist a few papers considering random walks on different models
of stochastic graphs, e.g. [12,15,16], but without considering the cover time.

In the analysis to follow, we employ several seminal results around the theory
of random walks and Markov chains. For random walks, we base our analysis
on the seminal work in [1] and the electrical network theory presented in [6,10],
while for results regarding the mixing time of a Markov chain we cite textbooks
[11,14].

1.2 Our Results

We define a general model for stochastically evolving graphs where each possible
edge evolves independently, but all of them evolve following the same stochastic
rule. Furthermore, the stochastic rule may take into account the last k states of
a given edge. The motivation for such a model lies in several practical examples
from networking where the existence of an edge in the recent past means it is
likely to exist in the near future (e.g. for telephone or Internet links). In some
other cases, existence may mean that an edge has “served its purpose” and is
now unlikely to appear in the near future (e.g. due to a high maintenance cost).

Special cases of our model have appeared in previous literature, e.g. in [9,18]
for k = 0 and in the line of work starting from [7] for k = 1, however they
only consider special graph topologies (like ring and clique). On the other hand,
the model we define is general in the sense that no assumptions, aside from
connectivity, are made on the topology of the underlying graph and any amount
of history is allowed into the stochastic rule. Thence, we believe it can be valued
as a basis for more general results to follow capturing search or communication
tasks in such dynamic graphs.

We hereby provide the first known upper bounds relative to the cover time
of a simple random walk taking place in such stochastically evolving graphs for
k = 0 and k = 1. To do so, we make use of a simple, yet fairly useful, modified
random walk, namely the Random Walk with a Delay (RWD), where at each
time step the agent is choosing uniformly at random from the incident edges of
the static underlying graph and then waits for the chosen edge to become alive
in order to traverse it. Moreover, we consider the natural random walk on such
graphs, namely the Random Walk on What’s Available (RWA), where at each
time step the agent only considers the currently alive incident edges and chooses
to traverse one out of them uniformly at random.

For the case k = 0, that is when each edge appears at each round with a
fixed probability p, we prove that the cover time for RWD is upper bounded by
2m(n − 1)/p, where n (respectively m) is the number of vertices (respectively
edges) of the underlying graph. The result can be obtained both by a careful
mapping of the RWD walk to its corresponding simple random walk on the static
graph and by generalizing the standard electrical network theory literature in

444 I. Lamprou et al.

[6,10]. Later, we proceed to prove that the cover time for RWA is upper bounded
by 2m(n − 1)/(1 − (1 − p)δ) where δ is the min degree of the underlying graph.
The main idea here is to reduce RWA to an RWD walk where at each step the
traversal delay is lower bounded by (1 − (1 − p)δ).

For k = 1, the stochastic rule takes into account the previous (one time step
ago) state of the edge. If an edge were not present, then it becomes alive with
probability p, whereas if it were alive, then it dies with probability q. Let τmix

stand for the mixing time of this process. We prove that the RWD cover time
is upper bound by τmix + 2m(n − 1)(p2 + q)/(p2 + pq) by carefully computing
the expected traversal delay at each step after mixing is attained. Moreover, we
show another 2m(n − 1)/ξmin bound by considering the minimum probability
guarantee of existence at each round, i.e. ξmin = min{p, 1−q}, and we discuss the
trade-off between these two bounds. As far as RWA is concerned, we upper bound
its cover time by 2m(n − 1)/(1 − (1 − ξmin)δ) again by a reduction to an RWD-
equivalent walk. Finally, we obtain a quite important result in the context of
complete underlying graphs where we prove an upper bound of O(n log n) (which
matches the cover time for complete static graphs) under the soft restriction
ξmin ∈ Ω(log n/n) via some cautious coupon-collector-type arguments.

1.3 Outline

In Sect. 2 we provide preliminary definitions and results regarding important
concepts and tools that we use in later sections. Then, in Sect. 3, we define our
model of stochastically evolving graphs in a more rigorous fashion. Afterwards,
in Sects. 4 and 5, we provide the analysis of our cover time upper bounds when
for determining the current state of an edge we take into account its last 0 and
1 states, respectively. Finally, in Sect. 6, we cite some concluding remarks.

2 Preliminaries

Let us hereby define a few standard notions related to a simple random walk
performed by a single agent on a simple connected graph G = (V,E). By d(v),
we denote the degree (i.e. the number of neighbors) of a node v ∈ V . A simple
random walk is a Markov chain where, for v, u ∈ V , we set pvu = 1/d(v), if
(v, u) ∈ E, and pvu = 0, otherwise. That is, an agent performing the walk
chooses the next node to visit uniformly at random amongst the set of neighbors
of its current node. Given two nodes v, u, the expected time for a random walk
starting from v to arrive at u is called the hitting time from v to u and is
denoted by Hvu. The cover time of a random walk is the expected time until
the agent has visited each node of the graph at least once. Let P stand for
the stochastic matrix describing the transition probabilities for a random walk
(or, in general, a discrete-time Markov chain) where pij denotes the probability
of transition from node i to node j, pij ≥ 0 for all i, j and

∑
j pij = 1 for

all i. Then, the matrix P t consists of the transition probabilities to move from
one node to another after t time steps and we denote the corresponding entries

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 445

as p
(t)
ij . Asymptotically, limt→∞ P t is referred to as the limiting distribution of

P . A stationary distribution for P is a row vector π such that πP = π and∑
i πi = 1. That is, π is not altered after an application of P . If every state can

be reached from another in a finite number of steps (i.e. P is irreducible) and the
transition probabilities do not exhibit periodic behavior with respect to time, i.e.
gcd{t : p

(t)
ij > 0} = 1, then the stationary distribution is unique and it matches

the limiting distribution; this result is often referred to as the Fundamental
Theorem of Markov chains. The mixing time is the expected number of time
steps until a Markov chain approaches its stationary distribution. Below, let p

(t)
i

stand for the i-th row of P t and tvd(t) = maxi ||p(t)i −π|| = 1
2 maxi

∑
j |p(t)ij −πj |

stand for the total variation distance of the two distributions. We say that a
Markov chain is ε-near to its stationary distribution at time t if tvd(t) ≤ ε. Then,
we denote the mixing time by τ(ε): the minimum value of t until a Markov chain
is ε-near to its stationary distribution. A coupling (Xt, Yt) is a joint stochastic
process defined in a way such that Xt and Yt are copies of the same Markov
chain P when viewed marginally, and once Xt = Yt for some t, then Xt′ = Yt′

for any t′ ≥ t. Also, let Txy stand for the minimum expected time until the two
copies meet, i.e. until Xt = Yt for the first time, when starting from the initial
states X0 = x and Y0 = y. We can now state the following Coupling Lemma
correlating the coupling meeting time to the mixing time:

Lemma 1 (Lemma 4.4 [11]). Given any coupling (Xt, Yt), it holds tvd(t) ≤
maxx,y Pr[Txy ≥ t]. Consequently, if maxx,y Pr[Txy ≥ t] ≤ ε, then τ(ε) ≤ t.

Furthermore, asymptotically, we need not care about the exact value of the
total variation distance since, for any ε > 0, we can force the chain to be ε-
near to its stationary distribution after a multiplicative time of log ε−1 steps
due to the submultiplicativity of the total variation distance. Formally, it holds
tvd(kt) ≤ (2 · tvd(t))k.

Fact 1. Suppose τ(ε0) ≤ t for some Markov chain P and a constant 0 < ε0 < 1.
Then, for any 0 < ε < ε0, it holds τ(ε) ≤ t log ε−1.

3 The Edge-Uniform Evolution Model

Let us define a general model of a dynamically evolving graph. Let G = (V,E)
stand for a simple, connected graph, from now on referred to as the underlying
graph of our model. The number of nodes is given by n = |V |, while the number
of edges is denoted by m = |E|. For a node v ∈ V , let N(v) = {u : (v, u) ∈ E}
stand for the open neighborhood of v and d(v) = |N(v)| for the (static) degree
of v. Note that we make no assumptions regarding the topology of G besides
connectedness. We refer to the edges of G as the possible edges of our model.
We consider evolution over a sequence of discrete time steps (namely 0, 1, 2, . . .)
and denote by G = (G0, G1, G2, . . .) the infinite sequence of graphs Gt = (Vt, Et)
where Vt = V and Et ⊆ E. That is, Gt is the graph appearing at time step t
and each edge e ∈ E is either alive (if e ∈ Et) or dead (if e /∈ Et) at time step t.

446 I. Lamprou et al.

Let R stand for a stochastic rule dictating the probability that a given pos-
sible edge is alive at any time step. We apply R at each time step and at each
edge independently to determine the set of currently alive edges, i.e. the rule
is uniform with regard to the edges. In other words, let et stand for a random
variable where et = 1, if e is alive at time step t, or et = 0, otherwise. Then
R determines the value of Pr(et = 1|Ht) where Ht is also determined by R
and denotes the history length (i.e. the values of et−1, et−2, . . .) considered when
deciding for the existence of an edge at time step t. For instance, Ht = ∅ means
no history is taken into account, while Ht = {et−1} means the previous state of
e is taken into account when deciding for its current state.

Overall, the aforementioned Edge-Uniform Evolution model (shortly EUE)
is defined by the parameters G and R. In the following sections, we consider
some special cases for R and provide first bounds for the cover time of G under
this model. Each time step of evolution consists of two stages: in the first stage,
the graph Gt is fixed for time step t following R, while in the second stage, the
agent moves to a node in Nt[v] = {v} ∪ {u ∈ V : (v, u) ∈ Et}. Notice that,
since G is connected, then the cover time under EUE is finite since R models
edge-specific delays.

4 Cover Time with Zero-Step History

We hereby analyze the cover time of G under EUE in the special case when no
history is taken into consideration for computing the probability that a given
edge is alive at the current time step. Intuitively, each edge appears with a fixed
probability p at every time step independently of the others. More formally, for
all e ∈ E and time steps t, Pr(et = 1) = p ∈ [0, 1].

4.1 Random Walk with a Delay

A first approach toward covering G with a single agent is the following: The
agent is randomly walking G as if all edges were present and, when an edge is
not present, it just waits for it to appear in a following time step. More formally,
suppose the agent arrives on a node v ∈ V with (static) degree d(v) at the second
stage of time step t. Then, after the graph is fixed for time step t + 1, the agent
selects a neighbor of v, say u ∈ N(v), uniformly at random, i.e. with probability
1

d(v) . If (v, u) ∈ Et+1, then the agent moves to u and repeats the above procedure.
Otherwise, it remains on v until the first time step t′ > t+1 such that (v, u) ∈ Et′

and then moves to u. This way, p acts as a delay probability, since the agent
follows the same random walk it would on a static graph, but with an expected
delay of 1

p time steps at each node. Notice that, in order for such a strategy
to be feasible, each node must maintain knowledge about its neighbors in the
underlying graph; not just the currently alive ones. From now on, we refer to
this strategy for the agent as the Random Walk with a Delay (shortly RWD).

Now, let us upper bound the cover time of RWD by exploiting its strong
correlation to a simple random walk on the underlying graph G. Below, let CG

stand for the cover time of a simple random walk on the static graph G.

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 447

Theorem 1. For any connected underlying graph G, the cover time under RWD
is expectedly CG/p.

Proof. Consider a simple random walk, shortly SRW, and an RWD (under the
EUE model) taking place on a given connected graph G. Given that RWD
decides on the next node to visit uniformly at random based on the underlying
graph, that is in exactly the same way SRW does, we use a coupling argument
to enforce RWD and SRW to follow the exact same trajectory (i.e. sequence of
visited nodes) in G.

Then, let the trajectory end when each node in G has been visited at least
once and denote by T the total number of node transitions made by the agent.
Such a trajectory under SRW will cover all nodes in expectedly E[T] = CG time
steps. On the other hand, in the RWD case, for each transition we have to take
into account the delay experienced until the chosen edge becomes available. Let
Di ≥ 1 be a random variable where 1 ≤ i ≤ T standing for the actual delay
corresponding to node transition i in the trajectory. Then, the expected number
of time steps till the trajectory is realized is given by E[D1+ . . .+DT]. Since the
random variables Di are independent and identically distributed (by the edge-
uniformity of our model), T is a stopping time for them and all of them have
finite expectations, then we can apply Wald’s Eq. [17] to get E[D1 + . . .+DT] =
E[T] · E[D1] = CG · 1/p. �	

For an explicit general bound on RWD, it suffices to use CG ≤ 2m(n − 1)
proved by Aleliunas et al. in [1].

A Modified Electrical Network. Another way to analyze the above procedure is
to make use of a modified version of the standard literature approach of electri-
cal networks and random walks [6,10]. This point of view gives us in addition
expressions for the hitting time between any two nodes of the underlying graph.
That is, we hereby (in Lemmata 2, 3 and Theorem 2) provide a generalization
of the results given in [6,10] thus correlating the hitting and commute times of
RWD to an electrical network analog and reaching a conclusion for the cover
time similar to the one of Theorem 1.

In particular, given the underlying graph G, we design an electrical network,
N(G), with the same edges as G, but where each edge has a resistance of r = 1

p
ohms. Let Hu,v stand for the hitting time from node u to node v in G, i.e. the
expected number of time steps until the agent reaches v after starting from u and
following RWD. Furthermore, let φu,v declare the electrical potential difference
between nodes u and v in N(G) when, for each w ∈ V , we inject d(w) amperes
of current into w and withdraw 2m amperes of current from a single node v. We
now upper-bound the cover time of G under RWD by correlating Hu,v to φu,v.

Lemma 2. For all u, v ∈ V , Hu,v = φu,v holds.

In the lemma below, let Ru,v stand for the effective resistance between u and
v, i.e. the electrical potential difference induced when flowing a current of one
ampere from u to v.

448 I. Lamprou et al.

Lemma 3. For all u, v ∈ V , Hu,v + Hv,u = 2mRu,v holds.

Theorem 2. For any connected underlying graph G, the cover time under the
RWD is at most 2m(n − 1)/p.

4.2 Random Walk on What’s Available

Random Walk with a Delay does provide a nice connection to electrical network
theory. However, depending on p, there could be long periods of time where
the agent is simply standing still on the same node. Since the walk is random
anyway, waiting for an edge to appear may not sound very wise. Hence, we now
analyze the strategy of a Random Walk on what’s Available (shortly RWA).
That is, suppose the agent has just arrived at a node v after the second stage at
time step t and then Et+1 is fixed after the first stage at time step t + 1. Now,
the agent picks uniformly at random only amongst the alive edges at time step
t + 1, i.e. with probability 1

dt+1(v)
where dt+1(v) stands for the degree of node v

in Gt+1. The agent then follows the selected edge to complete the second stage
of time step t+1 and repeats the strategy. In a nutshell, the agent keeps moving
randomly on available edges and only remains on the same node if no edge is
alive at the current time step. Below, let δ = minv∈V d(v) and Δ = maxv∈V d(v).

Theorem 3. For any connected underlying graph G with min-degree δ, the cover
time for RWA is at most 2m(n − 1)/(1 − (1 − p)δ).

Proof. Suppose the agent follows RWA and has reached node u ∈ V after time
step t. Then, Gt+1 becomes fixed and the agent selects uniformly at random
a neighboring edge to move to. Let Muv (where v ∈ {w ∈ V : (u,w) ∈ E})
stand for a random variable taking value 1 if the agent moves to node v and 0
otherwise. For k = 1, 2, . . . , d(u) = d, let Ak stand for the event that dt+1(u) = k.
Therefore, Pr(Ak) =

(
d
k

)
pk(1 − p)d−k is exactly the probability k out of the d

edges exist since each edge exists independently with probability p. Now, let
us consider the probability Pr(Muv = 1 |Ak): the probability v will be reached
given that k neighbors are present. This is exactly the product of the probability
that v is indeed in the chosen k-tuple (say p1) and the probability that then v
is chosen uniformly at random (say p2) from the k-tuple. p1 =

(
d−1
k−1

)
/
(

d
k

)
= k

d

since the model is edge-uniform and we can fix v and choose any of the
(

d−1
k−1

)

k-tuples with v in them out of the
(

d
k

)
total ones. On the other hand, p2 = 1

k by
uniformity. Overall, we get Pr(Muv = 1|Ak) = p1 · p2 = 1

d . We can now apply
the total probability law to calculate

Pr(Muv = 1) =
∑d

k=1 Pr(Muv = 1 |Ak)Pr(Ak) = 1
d

∑d
k=1

(
d
k

)
pk(1 − p)d−k = 1

d (1 − (1 − p)d)

To conclude, let us reduce RWA to RWD. Indeed, in RWD the equivalent tran-
sition probability is Pr(Muv = 1) = 1

dp, accounting both for the uniform choice
and the delay p. Therefore, the RWA probability can be viewed as 1

dp′ where
p′ = (1 − (1 − p)d). To achieve edge-uniformity we set p′ = (1 − (1 − p)δ) which
lower bounds the delay of each edge and finally we can apply the same RWD
analysis by substituting p by p′. Applying Theorem2 completes the proof. �	

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 449

The value of δ used to lower-bound the transition probability may be a
harsh estimate for general graphs. However, it becomes quite more accurate in
the special case of a d-regular underlying graph where δ = Δ = d.

5 Cover Time with One-Step History

We now turn our attention to the case where the current state of an edge affects
its next state. That is, we take into account a history of length one when com-
puting the probability of existence for each edge independently. A Markovian
model for this case was introduced in [7]; see Table 1. The left side of the table
accounts for the current state of an edge, while the top for the next one. The
respective table box provides us with the probability of transition from one state
to the other. Intuitively, another way to refer to this model is as the Birth-Death
model: a dead edge becomes alive with probability p, while an alive edge dies
with probability q.

Table 1. Birth-Death chain
for a single edge [7]

Dead Alive
Dead 1 − p p
Alive q 1 − q

Let us now consider an underlying graph G evolv-
ing under the EUE model where each possible edge
independently follows the aforementioned stochas-
tic rule of evolution. In order to bound the RWD
cover time, we apply a two-step analysis. First, we
bound the mixing time of the Markov chain defined
by Table 1 for a single edge and then for the whole
graph by considering all m independent edge processes evolving together. Lastly,
we estimate the cover time for a single agent after each edge has reached the
stationary state of Birth-Death.

On the other hand, for RWA, we make use of the “being alive” probabilities
ξmin = min{p, 1−q} and ξmax = max{p, 1−q} in order to bound the cover time
by following a similar argument to the one of Theorem3 (starting again from an
RWD analysis). In the special case of a complete underlying graph, we employ
a coupon-collector-like argument to achieve an improved upper bound.

5.1 RWD for General (p, q)-Graphs via Mixing

As a first step, let us prove the following upper-bound inequality, which helps
us break our analysis to follow into two separate phases.

Lemma 4. Let τ(ε) stand for the mixing time for the whole-graph chain up to
some total variation distance ε > 0, Cτ(ε) for the expected time to cover all
nodes after time step τ(ε) and C for the cover time of G under RWD. Then,
C ≤ τ(ε) + Cτ(ε) holds.

The above upper bound discards some walk progress, however, intuitively,
this may be negligible in some cases: if the mixing is rapid, then the cover time
Cτ(ε) dominates the sum, whereas, if the mixing is slow, this may mean that
edges appear rarely and thence little progress can be made anyway.

450 I. Lamprou et al.

Phase I: Mixing Time. Let P stand for the Birth-Death Markov chain given in
Table 1. It is easy to see that P is irreducible and aperiodic and therefore its
limiting distribution matches its stationary distribution and is unique. We hereby
provide a coupling argument to upper-bound the mixing time of the Birth-Death
chain for a single edge. Let Xt, Yt stand for two copies of the Birth-Death chain
given in Table 1 where Xt = 1 if the edge is alive at time step t and Xt = 0
otherwise. We need only consider the initial case X0
= Y0. For any t ≥ 1, we
compute the meeting probability Pr(Xt = Yt|Xt−1
= Yt−1) = Pr(Xt = Yt =
1|Xt−1
= Yt−1) + Pr(Xt = Yt = 0|Xt−1
= Yt−1) = p(1 − q) + q(1 − p).

Definition 1. Let p0 = p(1 − q) + q(1 − p) denote the meeting probability under
the above Birth-Death coupling for a single time step.

We now bound the mixing time of Birth-Death for a single edge.

Lemma 5. The mixing time of Birth-Death for a single edge is O(p−1
0).

Proof. Let Txy denote the meeting time of Xt and Yt, i.e. the first occurrence of
a time step t such that Xt = Yt. We now compute the probability the two chains
meet at a specific time step t ≥ 1:

Pr[Txy = t] = Pr(Xt = Yt|Xt−1
= Yt−1,Xt−2
= Yt−2, . . . , X0
= Y0)

= Pr(Xt = Yt|Xt−1
= Yt−1) · Pr(Xt−1
= Yt−1|Xt−2
= Yt−2) · . . . · Pr(X1
= Y1|X0
= Y0) · Pr(X0
= Y0)

= p0 · (1 − p0)t−1

where we make use of the total probability law and the one-step Markovian
evolution. Finally, we accumulate and then bound the probability the meeting
time is greater to some time-value t:

Pr[Txy ≤ t] =
∑t

i=1 Pr[Txy = i] =
∑t

i=1 p0(1 − p0)i−1 = p0
1−(1−p0)

t

p0
= 1 − (1 − p0)t

Then, Pr[Txy > t] = (1 − p0)t ≤ e−p0t, by applying the inequality 1 − x ≤ e−x

for all x ∈ R. By setting t = c · p−1
0 for some constant c ≥ 1, we get Pr[Txy >

c · p−1
0] ≤ e−c and apply Lemma 1 to bound τ(e−c) ≤ c · p−1

0 . �	
The above result analyzes the mixing time for a single edge of the underlying

graph G. In order to be mathematically accurate, let us extend this to the
Markovian process accounting for the whole graph G. Let Gt, Ht stand for two
copies of the Markov chain consisting of m independent Birth-Death chains; one
per edge. Initially, we define a graph G∗ = (V ∗, E∗) such that V ∗ = V and
E∗ ⊆ E; any graph with these properties is fine. We set G0 = G∗ and H0 = G∗
which is a worst-case starting point since each pair of respective G, H edges has
exactly one alive and one dead edge. To complete the description of our coupling,
we enforce that when a pair of respective edges meets, i.e. when the coupling
for a single edge as described in the proof of Lemma 5 becomes successful, then
both edges stop applying the Birth-Death rule and remain at their current state.
Similarly to before, let TG,H stand for the meeting time of the two above defined
copies, that is, the time until all pairs of respective edges have met. Furthermore,
let T e

x,y stand for the meeting time associated with edge e ∈ E.

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 451

Lemma 6. The mixing time for any underlying graph G where each edge inde-
pendently applies the Birth-Death rule is at most O(p−1

0 log m).

Phase II: Cover Time After Mixing. We can now proceed to apply Lemma 4 by
computing the expected time for RWD to cover G after mixing is attained. As
before, we use the notation Cτ(ε) to denote the cover time after the whole-graph
process has mixed to some distance ε > 0 from its stationary state in time τ(ε).
The following remark is key in our motivation toward the use of stationarity.

Fact 2. Let D be a random variable capturing the number of time steps until a
possible edge becomes alive under RWD once the agent selects it for traversal. For
any time step t ≥ τ(ε), the expected delay for any single edge traversal e under
RWD is the same and equals E[D|et = 1]Pr(et = 1) + E[D|et = 0]Pr(et = 0).

That is, due to the uniformity of our model, all edges behave similarly. Fur-
thermore, after convergence to stationarity has been achieved, when an agent
picks a possible edge for traversal under RWD, the probability Pr(et = 1) that
the edge is alive for any time step t ≥ τ(ε) is actually given by the stationary dis-
tribution in a simpler formula and can be regarded independently of the edge’s
previous state(s).

Lemma 7. For any constant 0 < ε < 1 and ε′ = ε · min{p,q}
p+q , it holds that

Cτ(ε′) ≤ 2m(n − 1) · (1 + 2ε) p2+q
p2+pq .

Proof. We compute the stationary distribution π for the Birth-Death chain P
by solving the system πP = π. Thus, we get π = [q

p+q , p
p+q].

From now on, we only consider time steps t ≥ τ(ε′), i.e. after the chain has
mixed, for some ε′ = ε·min{p,q}

p+q ∈ (0, 1). We have tvd(t) = 1
2 maxi

∑
j |p(t)ij −πj | ≤

ε′ implying that for any edge e, we get Pr(et = 1) ≤ (1 + 2ε) p
p+q . Similarly,

Pr(et = 0) ≤ (1 + 2ε) q
p+q . Let us now estimate the expected delay until the

RWD-chosen possible edge at some time step t becomes alive. If the selected
possible edge exists, then the agent moves along it with no delay (i.e. we count 1
step). Otherwise, if the selected possible edge is currently dead, then the agent
waits till the edge becomes alive. This will expectedly take 1/p time steps due
to the Birth-Death chain rule. Overall, the expected delay is at most 1 · (1 +
2ε) p

p+q + 1
p · (1+2ε) q

p+q = (1+2ε) p2+q
p2+pq , where we condition on the above cases.

Since for any time t ≥ τ(ε) and any edge e, we have the same expected delay
to traverse an edge, we can extract a bound for the cover time by consider-
ing an electrical network with each resistance equal to (1 + 2ε) p2+q

p2+pq . Applying
Theorem 2 completes the proof. �	

The following theorem is directly proven by plugging into the inequality of
Lemma 4 the bounds computed in Lemmata 6 and 7.

Theorem 4. For any connected underlying graph G and the Birth-Death rule,
the cover time of RWD is O(p−1

0 log m + mn · (p2 + q)/(p2 + pq)).

452 I. Lamprou et al.

5.2 RWD and RWA for General (p, q)-Graphs via Min-Max

In the previous subsection, we employed a mixing-time argument in order to
reduce the final part of the proof to the zero-step history case. Let us hereby
derive another upper bound for the cover time of RWD (and then extend it for
RWA) via a min-max approach. The idea here is to make use of the “being alive”
probabilities to prove lower and upper bounds for the cover time parameterized
by ξmin = min{p, 1−q} and ξmax = max{p, 1−q}. Let us consider an RWD walk
on a general connected graph G evolving under EUE with a zero-step history
rule dictating Pr(et = 1) = ξmin for any edge e and time step t. We refer to this
walk as the Upper Walk with a Delay, shortly UWD. Below, we make use of UWD
in order to bound the cover time of RWD and RWA in general (p, q)-graphs.

Lemma 8. For any connected underlying graph G and the Birth-Death rule, the
cover time of RWD is at most 2m(n − 1)/ξmin.

Notice that the above upper bound improves over the one in Theorem4 for a
wide range of cases, especially if q is really small. For example, when q = Θ(m−k)
for some k ≥ 2 and p = Θ(1), then Lemma 8 gives O(mn) whereas Theorem 4
gives O(mk) since the mixing time dominates the whole sum. On the other hand,
for relatively big values of p and q, e.g. in Ω(1/m), then mixing is rapid and the
upper bound in Theorem4 proves better.

Let us now turn our attention to the RWA case with the subsequent theorem.

Theorem 5. For any connected underlying graph G evolving under the Birth-
Death rule, the cover time of RWA is at most 2m(n − 1)/(1 − (1 − ξmin)δ).

Proof. Suppose the agent follows RWA with some stochastic rule R of the form
Pr(et = 1|Ht) which incorporates some history Ht when making a decision
about an edge at time step t. Let us now proceed in fashion similar to the proof
of Theorem 3. Assume the agent follows RWA and has reached node u ∈ V
after time step t. Then Gt+1 becomes fixed and the agent selects uniformly at
random an alive neighboring node to move to. Let Muv (where v is a neighbor
to u) stand for a random variable taking value 1 if the agent moves to v at time
step t+1 and 0 otherwise. For k = 0, 1, 2, . . . , d(u) = d, let Ak(Ht) stand for the
event that dt+1 = k given some history Ht about all incident possible edges of u.
We compute Pr(Muv = 1) =

∑d
k=1 Pr(Muv = 1|Ak(Ht))Pr(Ak(Ht)). Similarly

to the proof of Theorem 3, Pr(Muv = 1|Ak(Ht)) = p1 · p2 = 1/d where p1 is
the probability v is indeed in the chosen k-tuple (which is k/d) and p2 is the
probability it is chosen uniformly at random from the k-tuple (which is 1/k).
Thus, we get Pr(Muv = 1) = 1

d

∑d
k=1 Pr(Ak(Ht)) = 1

d (1 − Pr(A0(Ht))) where
A0 is the event no edge becomes alive at this time step.

Moving forward, by definition, UWD depicts a zero-step history RWD walk.
Let us denote by UWA its RWA corresponding walk. Furthermore, let PU be
equal to the probability Pr(Muv = 1) under the UWA walk. Then, we can
substitute p by ξmin to apply Theorem3 and get PU = 1

d (1− (1−ξmin)d). In the

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 453

Birth-Death model, we know Pr(A0(H1)) ≤ (1−ξmin)d since each possible edge
becomes alive with probability at least ξmin. Thus, it follows PU ≤ Pr(Muv = 1).

To wrap up, UWA can be viewed as an RWD walk with delay probability (1−
(1− ξmin)d) which lower bounds the (1−Pr(A0(Ht)) probability associated with
RWA. Inverting the inequality to account for the delays, we have C ≤ CU for the
cover times. Finally, Theorem3 gives CU ≤ 2m(n − 1)/(1 − (1 − ξmin)δ). �	

5.3 RWA for Complete (p, q)-Graphs

We now proceed towards providing an upper bound for the cover time in the
special case when the underlying graph G is complete, i.e. between any two
nodes there exists a possible edge for our model. We utilize the special topology
of G to come up with a different analytical approach and derive a better upper
bound than the one given in Theorem5. In this case, let |V | = n+1 to make the
calculations to follow more presentable. In other words, each node has n possible
neighbors. Below, again, let ξmin = min{p, 1 − q} and ξmax = max{p, 1 − q}.
Also, let dt(v) stand for a random variable depending on the Birth-Death process
and denoting the actual degree of v ∈ V at time step t. Since all nodes have the
same static degree, we simplify the notation to dt.

Lemma 9. For some constants β ∈ (0, 1) and α ≥ 3/β2, if ξmin ≥ α log n
n , then

it holds with high probability that dt ∈ [(1 − β)ξminn, (1 + β)ξmaxn].

Theorem 6. For any complete underlying graph G and the Birth-Death rule
with ξmin ≥ α log n

n , for a constant α ≥ 3, the cover time of RWA is O (n log n).

Proof. At some time step t, i + 1 out of the n + 1 nodes of G have already been
visited at least once, while n + 1 − (i + 1) = n − i nodes remain unvisited. The
agent now lies on some arbitrary node v ∈ V . Let us consider all n possible
edges with v as their one endpoint: n − i of them lead to an unvisited node.
That is, each possible edge leads to an unvisited node with probability n−i

n .
This observation holds for all edges, therefore also for alive edges at node v at
time step t. We denote the alive edges by e1, e2, . . . , edt

. Then, let U1, U2, . . . , Udt

stand for random variables where Uj = 1 if ej leads to an unvisited node (that
is with probability n−i

n) and Uj = 0 otherwise. We calculate

Pr[∪dt
j=1Uj = 1] = 1 − Pr[∩dt

j=1Uj = 0] = 1 − Pr[Uj = 0]dt = 1 − (1 − n − i

n
)dt

In order for an unvisited node to be visited at this step, it is required that at
least one such node can be reached via an alive edge and that such an edge will
be selected by RWA. Below, let Mi stand for a random variable where Mi = 1
if one of the i unvisited nodes is chosen to be visited and Mi = 0 otherwise.
Furthermore, let R stand for a random variable where R = 1 if RWA selects an
edge leading to an unvisited node and R = 0 otherwise. We compute

Pr[Mi = 1] = Pr[R = 1|∃j : Uj = 1] · Pr[∪dt
j=1Uj = 1] ≥ 1

dt
· (1 − (1 − n − i

n
)dt)

454 I. Lamprou et al.

since if at least one unvisited node can be reached, then it will be reached with
probability at least 1

dt
due to the uniform choice of RWA. To lower-bound the

above probability, we make use of the auxiliary inequalities 1 − x ≤ e−x for any
x ∈ R and ex ≤ 1 + x + 1

2x2 for any x ≤ 0.

Pr[Mi = 1] ≥ 1
dt

· (1 − (1 − n−i
n)dt) ≥ 1

dt
· (1 − e−n−i

n dt) ≥
≥ 1

dt
· (1 − (1 − n−i

n dt + 1
2 (−n−i

n dt)2) ≥ 1
dt

· (n−i
n dt − 1

2 (n−i
n dt)2) =

= n−i
n − 1

2 (n−i
n)2dt ≥ n−i

n − 1
2
(n−i)2

n ξ

where in the last inequality ξ = (1 + β)ξmax follows by Lemma 9. Then, let ti
stand for the time until one of the i unvisited nodes is visited and thus E[ti] =
1/Pr[Mi = 1] for any i = 1, 2, . . . n − 1. Overall, the cover time is given by
∑n−1

i=1 E[ti] ≤ ∑n−1
i=1 (n−i

n − 1
2n (n− i)2ξ)−1 ≤ ∫ n−1

1
(n−x

n − 1
2n (n−x)2ξ)−1dx . We

compute
∫ n−1

1
(n−x

n − 1
2n (n − x)2ξ)−1dx = n log(| 2

x−n + ξ|)
∣
∣
∣
n−1

1
= n(log(| − 2 +

ξ|) − log(| 2
1−n + ξ|)). Then, log(| − 2 + ξ|) = log(2 − ξ) ≤ log 2 since ξ ∈ [0, 1]

and log(| 2
1−n + ξ|) = log(| 2−ξ(n−1)

1−n |) = log(|2 − ξ(n − 1)|) − log(|1 − n|) =
log(ξ(n − 1) − 2) − log(n − 1) ≥ log(2) − log(n − 1) since 2 − ξ(n − 1) ≤ 0 and
log(ξ(n − 1) − 2) ≥ log(2) for a sufficiently large choice of α at Lemma 9. �	

Notice that the latter bound matches exactly the cover time upper bound
for a simple random walk on a complete static graph. Intuitively, the condition
ξmin ∈ Ω(log n/n) indicates the graph instance Gt is almost surely connected
at each time step t given that each graph instance can be viewed as “lower-
bounded” by a G(n, ξmin) Erdős-Rényi graph. In other words, an expected degree
of Ω(log n) alive edges at each time step suffices to explore the complete graph
at asymptotically the same time as in the case when all n of them are available.

6 Further Work

Our results can directly be extended for any history length considered by the
stochastic rule. Of course, if we wish to take into account the last k states of
a possible edge, then we need to consider 2k possible states, thus making some
tasks computationally intractable for large k. On the other hand, the min-max
guarantee is easier to deal with for any value of k. Finally, it remains open
whether the O(n log n) bound can be extended for a wider family of underlying
graphs, thus making progress over the general bound stated in Theorem5.

Our model seems to be on the opposite end of the Markovian evolving graph
model introduced in [2]. There, the evolution of possible edges directly depends
on the family of graphs selected as possible instances. Thus, a new research
direction we suggest is to devise another model of partial edge-dependency.

Acknowledgements. We would like to acknowledge an anonymous reviewer who
identified an important technical error in a previous version of this extended abstract
and another anonymous reviewer who suggested the use of Theorem 1 as an alternative
to electrical network theory and several other useful modifications.

Cover Time in Edge-Uniform Stochastically-Evolving Graphs 455

References

1. Aleliunas, R., Karp, R., Lipton, R., Lovasz, L., Rackoff, C.: Random walks, uni-
versal traversal sequences and the complexity of maze problems. In: 20th IEEE
Annual Symposium on Foundations of Computer Science, pp. 218–223 (1979)

2. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (cover
time of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-70575-8 11

3. Bar-Ilan, J., Zernik, D.: Random leaders and random spanning trees. In: Bermond,
J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 1–12. Springer, Heidel-
berg (1989). doi:10.1007/3-540-51687-5 27

4. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. In: Proceedings of 28th ACM Symposium on Principles of Distributed
Computing (PODC 2009), pp. 260–269. ACM (2009)

5. Bui, M., Bernard, T., Sohier, D., Bui, A.: Random walks in distributed comput-
ing: a survey. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H. (eds.)
IICS 2004. LNCS, vol. 3473, pp. 1–14. Springer, Heidelberg (2006). doi:10.1007/
11553762 1

6. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resis-
tance of a graph captures its commute and cover times. In: Proceedings of 21t
Annual ACM Symposium on Theory of Computing (STOC 1989), pp. 574–586.
ACM (1989)

7. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time
in edge-Markovian dynamic graphs. In: PODC 2008, pp. 213–222. ACM (2008)

8. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in sta-
tionary Markovian evolving graphs. IEEE Trans. Parallel Distrib. Syst. 22(9),
1425–1432 (2011)

9. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Communication in dynamic
radio networks. In: PODC 2007, pp. 205–214. ACM (2007)

10. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks (2006)
11. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B.: Probabilistic Methods

for Algorithmic Discrete Mathematics. Springer, Heidelberg (1998)
12. Hoffmann, T., Porter, M.A., Lambiotte, R.: Random walks on stochastic temporal

networks. In: Holme, P., Saramäki, J. (eds.) Temporal Networks. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-36461-7 15

13. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Inter-
net Math. 12(4), 239–280 (2016)

14. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1998)
15. Ramiro, V., Lochin, E., Snac, P., Rakotoarivelo, T.: Temporal random walk as

a lightweight communication infrastructure for opportunistic networks. In: Pro-
ceeding of IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, pp. 1–6 (2014)

16. Starnini, M., Baronchelli, A., Barrat, A., Pastor-Satorras, R.: Random walks on
temporal networks. Phys. Rev. E 85, 056115 (2012)

17. Wald, A.: Sequential Analysis. Wiley, New York (1947)
18. Yamauchi, Y., Izumi, T., Kamei, S.: Mobile agent rendezvous on a probabilistic

edge evolving ring. In: Proceedings of 3rd International Conference on Networking
and Computing (ICNC 2012), pp. 103–112 (2012)

http://dx.doi.org/10.1007/978-3-540-70575-8_11
http://dx.doi.org/10.1007/978-3-540-70575-8_11
http://dx.doi.org/10.1007/3-540-51687-5_27
http://dx.doi.org/10.1007/11553762_1
http://dx.doi.org/10.1007/11553762_1
http://dx.doi.org/10.1007/978-3-642-36461-7_15

Bitcoin a Distributed Shared Register

Emmanuelle Anceaume1(B), Romaric Ludinard2, Maria Potop-Butucaru3,
and Frédéric Tronel4

1 CNRS / IRISA, Campus de Beaulieu, Rennes, France
anceaume@irisa.fr

2 CREST / ENSAI, Rennes, France
3 LIP6, Université P. & M. Curie, Paris, France

4 CentraleSupélec, Rennes, France

Abstract. Distributed Ledgers (e.g. Bitcoin) occupy currently the first
lines of the economical and political media and many speculations are
done with respect to their level of coherence and their computability
power. Interestingly, there is no consensus on the properties and abstrac-
tions that fully capture the behaviour of distributed ledgers. The interest
in formalising the behaviour of distributed ledgers is twofold. Firstly, it
helps to prove the correctness of the algorithms that implement existing
distributed ledgers and explore their limits with respect to an unfriendly
environment and target applications. Secondly, it facilitates the identi-
fication of the minimal building blocks necessary to implement the dis-
tributed ledger in a specific environment.

Even though the behaviour of distributed ledgers is similar to abstrac-
tions that have been deeply studied for decades in distributed systems
no abstraction is sufficiently powerful to capture the distributed ledger
behaviour.

This paper introduces the Distributed Ledger Register, a register that
mimics the behaviour of one of the most popular distributed ledger, i.e.
the Bitcoin ledger. The aim of our work is to provide formal guarantees
on the coherent evolution of Bitcoin. We furthermore show the conditions
under which the Bitcoin blockchain maintenance algorithm satisfies the
distributed ledger register properties. Moreover, we prove that the Dis-
tributed Ledger Register verifies the specification of a regular register.
We show that in partially synchronous systems, the strongest coherency
implemented by Bitcoin is regularity when reads are sparse. This study
contradicts the common belief that Bitcoin implements strong coherency
criteria in a totally asynchronous system. To the best of our knowledge,
our work is the first one that makes the connection between the distrib-
uted ledgers and the classical theory of distributed shared registers.

1 Introduction

Blockchain has become one of the most omnipresent buzzwords in economical,
political and scientific media. Bitcoin [15] and Ethereum [17], the most popular
blockchain applications nowadays are cited as the universal solution for managing

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 456–468, 2017.
https://doi.org/10.1007/978-3-319-69084-1_34

Bitcoin a Distributed Shared Register 457

a broad range of goods ranging from bank accounts and client transactions oper-
ations to energy or notarial agreements management. Political analysts predict
that blockchains will be used in the near future as regular bases in administration
or national and international economical exchanges.

Bitcoin and Ethereum, beyond their incontestable assets such as decentrali-
sation, simple design and relatively easy use, are neither riskless nor free of lim-
itation. For example, the most popular issue that has been reported regarding
Ethereum functioning was the theft of 60 million dollars due to the exploitation
of an error in a smart contract code. It seems clear that neither Bitcoin nor
Ethereum are mature enough to be used in critical economical and administra-
tive applications, as shown by a recent scientific analysis [6] which enlightens the
main limitations exposed by Bitcoin, including low quality of services, storage
limitations, low throughput, high cost, security weakness, and weak coherency.
The point is that an increasing number of areas promote the use of blockchains
for the development of their applications, and undeniably, the properties enjoyed
by these blockchains should be studied to fit such applications requirements,
together with their relationships with blockchain-based applications.

Such challenges can be mitigated by laying down the theoretical foundations
of blockchains, and more generally distributed ledgers. Connection between the
distributed computing theory and Bitcoin distributed ledger has been pioneered
by Garay et al. [9]. The main focus of the distributed community [5,7–10,12,16]
has so far been the distributed ledger agreement aspects. Our paper investigates
consistency properties of the distributed ledger and tries to make the connection
between the distributed ledgers and the read-write distributed registers.

Our Contribution. Interestingly, the Bitcoin related literature is not yet agreeing
on the level of coherency offered by Bitcoin. Some of the studies, as for example
the one carried off by Decker et al. [7] advocate for strong consistency. Before
discussing the level of consistency verified by Bitcoin one should first capture
the properties of this system in terms of safety and liveness. The aim of our
work is to provide formal guarantees on the coherent evolution of Bitcoin. Our
work is the first one that makes the connection between distributed ledgers and
the classical read-write distributed registers. First, we show that the classical
definitions of read-write registers, including their stabilisation extensions, do
not capture Bitcoin behaviour. Then, we introduce and formalise what we call
the Distributed Ledger Register (DLR), which mimics the behaviour of Bitcoin.
We finally show that the Bitcoin blockchain algorithm satisfies the Distributed
Ledger Register properties.

Paper Roadmap. The remaining of the paper is organised as follows. Section 2
recalls the main principles of the Bitcoin system, and Sect. 3 presents its compu-
tational model. Section 4 provides a brief summary of shared registers and their
extensions. We end this section by enlightening why these definitions do not fully
capture the Bitcoin behaviour. In Sect. 5, we extend the read-write registers with
a new register that we call the Distributed Ledger Register, and we show that

458 E. Anceaume et al.

Bitcoin implements such a register. Section 6 concludes and presents some open
problems.

2 Bitcoin Background

In 2008, Satoshi Nakamoto, a pseudonymous author, published a white paper
describing the Bitcoin network, a way to create, distribute and manage a cur-
rency that does not rely on a trusted third party [15]. Since then many crypto-
currencies have been proposed, including the popular Ethereum [17]. An imple-
mentation of Bitcoin was released shortly after under the name Bitcoin Core.
In the following we focus on the functioning of Bitcoin, since Ethereum follows
almost the same pattern and its differences are not relevant for our study. Most
of the following is drawn from [3].

The Bitcoin network is a peer-to-peer payment network that relies on distrib-
uted algorithms and cryptographic functions to allow entities to pseudonymously
buy goods with digital currencies called bitcoins. Bitcoin mainly relies on three
types of data structures (i.e. transactions, blocks and the distributed ledger –
also called the blockchain) and three types of entities (i.e., user, Bitcoin node
and miner) to offer such functionalities.

Transactions allow users to transfer bitcoins from a set of input accounts to a
set of output accounts. An account is described by a key, derived from the public
key of the public/private key generated by Bitcoin users. Note that to hide their
profile, users should generate a new public/private key for each transaction they
are recipient of. Keys are used to prove the ownership of bitcoins. Recipients of
a transaction are credited once the transaction is confirmed in the blockchain.
Users voluntarily pay a small transaction fee which will be kept by the miner
that will succeed in confirming users transaction in the blockchain. In this case,
the total amount of bitcoins in the input accounts is greater than the amount of
bitcoins transferred to the output accounts.

To describe the evolution of user accounts, Anceaume et al. [3] have adopted
a place/transition model as depicted in Fig. 1. User accounts are represented by
places (circles) and transactions by transitions (vertical bars). The place from
which an arc runs to a transition is an input place of the transition, and the
place to which an arc runs to, is an output place of the transition. The number
of bitcoins in a user account represents the tokens of the place. A transition may
fire if there are sufficiently many tokens in its input places (except for coinbase
transactions as described below), and it consumes all of them upon firing. Places
and transitions are dynamically created. In Fig. 1, Alice creates transaction T1

to transfer the 50 bitcoins of her account a1 to Bob and Carol’s accounts: 30
bitcoins to b1 and 20 to c1. Transaction T4 contains a transaction fee equal to
(25 + 20) − (20 + 21 + 3) = 1 bitcoin. Transaction T2 is a special transaction
called coinbase. Coinbase transactions are the way bitcoins are created, and their
amount is currently set to 12.5 bitcoins plus the transaction fees included in the
block.

A transaction T is locally valid at Bitcoin node p if p has received all the
transactions that have credited all the input accounts of T and has never received

Bitcoin a Distributed Shared Register 459

Transaction T1

Transaction T3

Transaction T4

Transaction T2

a1

50

b1

30

c1

20

c2

25

d1

30

b2

20

d2

21

c3

3

Fig. 1. Modelling the evolution of users’ accounts

transactions already using any of those inputs. Indeed, an important aspect of
Bitcoin accounts is their indivisibly, meaning that once an account has been
created by a user, it will be credited by a single transaction and will be debited
by a single subsequent transaction. If there exists some transaction T ′ such that
both T and T ′ share some input account, then this input account is said to be
in a double-spending situation. We say that transaction T is conflict-free if none
of the input accounts of T is involved in a double-spending situation and all
of the transactions that credited T ’s inputs are conflict-free. By construction,
the induction is finite because Bitcoin creates money only through coinbase
transactions, which do not rely on input accounts.

The solution adopted in Bitcoin to mitigate double-spending attacks, with-
out relying on a central trusted authority, consists in gathering transactions
into blocks and totally ordering them in a publicly accessible and distributively
managed ledger. This is the role of miners.

A block contains a list of transactions, a reference to its parent block (hence
the name of blockchain), and a proof-of-work, that is a nonce such that the hash
of the block matches a given target. This target is calibrated so that the average
generation time of a block by the network is equal to 10 min despite fluctuations
of the peer-to-peer network.

We say that a block b is locally valid if it only contains locally valid trans-
actions. Bitcoin nodes locally maintain a copy of the blockchain, and once val-
idated, propagate newly transactions and blocks to all the entities of Bitcoin.
Blocks are generated by miners, a subset of the Bitcoin nodes involved in the
proof-of-work competition. The incentive to participate to such a competition is
provided by the coinbase transactions that are credited to the successful miner
accounts. This competition may result in multiple blocks referencing the very

460 E. Anceaume et al.

same parent block, and hence the creation of a tree with several chains. This
situation is known as blockchain fork. Bitcoin defines the notion of best chain
(the common history of the distributed ledger on which all Bitcoin nodes agree),
which corresponds to the longest chain starting from the genesis block of the dis-
tributed ledger (the blockchain is bootstrapped with the genesis block). In the
case of Ethereum the best chain is the heaviest one. The level of confirmation
of a block b belonging to the best chain of the distributed ledger is equal to the
number of blocks included in the best chain starting from b. Nakamoto [15] as
well as subsequent studies [9,11,14] has shown that if the proportion of malicious
miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can be rejected if
its level of confirmation in a local copy of the blockchain is less than 6. In case
of Ethereum this level is not well defined, and seems to be around 12 [1]. We say
that a transaction is deeply confirmed once it reaches such a confirmation level.

3 Computing Model

We model the Bitcoin system as a partially synchronous distributed system
(Distributed Ledger system) composed of an arbitrary finite number of users,
miners and bitcoin nodes. In the following we assume that all bitcoin nodes
have enough computation resources to mine blocks. Thus we do not distinguish
anymore miners from bitcoin nodes.

Each miner in the distributed system is a state machine, whose state, called
“local state”, is defined by the current values of its local variables. A configura-
tion, or global state, of the Distributed Ledger system is composed of the local
state of each miner in the system. The passage of time is measured by a fictional
global clock. Miners do not have access to the fictional global time. At each time
t, each miner is characterised by its local state.

It is assumed that the system has a built-in communication abstraction,
denoted broadcast, that allows miners to communicate by exchanging messages
via a broadcast() and deliver() operations. This communication abstraction is
defined by the following properties.

– τ -delivery. There exists τ > 0 such that if a miner invokes broadcast(m) then
every correct miner eventually delivers m within τ time units.

– Validity. If a correct miner delivers a message m from p then p has previously
invoked broadcast(m).

By correct miner, we mean a miner that follows the prescribed protocols.
We suppose on the other hand that some of them can suffer arbitrary failures—
such miners are said incorrect. For instance, an incorrect miner can manipulate
the communication primitive by broadcasting inconsistent messages, or by not
broadcasting messages or by stopping its execution. We assume that less than
a third of the computational power of the system is owned by incorrect miners.
No such restrictions hold for incorrect users.

Bitcoin a Distributed Shared Register 461

4 Background on Distributed Registers

This section recalls the main properties of classical distributed read-write reg-
isters, and shows that with these definitions, we cannot entirely describe the
properties of the blockchain. Hence the need for a new type of register.

A distributed read-write register REG is a shared variable accessed by a
set of processes through two operations, namely REG .write() and REG .read().
Informally, the REG .write() operation updates the value stored in the shared
variable while the REG .read() obtains the value contained in the shared variable.
Every operation issued on a register is, generally, not instantaneous and can be
characterised by two events occurring at its boundaries: an invocation event
and a reply event. Both events occur at two different instants with respect to
the fictional global time: the invocation event of an operation op (i.e., op =
REG .write() or op = REG .read()) occurs at the invocation time denoted by
tB(op) and the reply event of op occurs at the reply time denoted by tE(op).

Given two operations op and op′ on a register, we say that op precedes op′

(op ≺ op′) if and only if tE(op) < tB(op′). If op does not precede op′ and op′

does not precede op, then op and op′ are concurrent (noted op||op′).
An operation op is terminated if both the invocation event and the reply

event occurred (i.e., the entity executing the operation does not crash between
the invocation time and the reply time). A terminated operation can either be
successful and thus returns true or can return abort when, for example, some
operational conditions are not met. More details will be given in the following.
On the other hand, an operation that does not terminate is said failed.

4.1 Classical Distributed Read-Write Registers

The semantic of a distributed read-write register (simply called read-write reg-
ister) can be classified as safe, regular or atomic [13]. In this paper, we will refer
mainly to the safe and regular semantics. The safe register ensures that a read
which does not overlap with a write returns the last completed write. The result
of a read overlapping a write can be any value from the register domain. The reg-
ular register verifies the safe semantic when reads are not concurrent with writes.
For reads concurrent with writes the read will return either the last written value
or the value of the concurrent write. A safe distributed register REG is defined
by the following properties:

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest REG .write() preceding this
REG .read() operation), or any value of the register domain in case the
REG .read() operation is concurrent to a REG .write() operation.

A regular distributed register REG is defined by the following properties:

462 E. Anceaume et al.

– Liveness: Any invocation of REG .write() or REG .read() eventually termi-
nates.

– Safety : A REG .read() operation returns the last value written before its
invocation (i.e. the value written by the latest REG .write() preceding this
REG .read() operation), or a value written by a REG .write() operation con-
current with it.

An atomic register is a regular register that verifies the no new/old inversion
property defined as follows:

– no new/old inversion: For any two read operations, the set of writes that do
not strictly follow either of them must be perceived by both reads as occurring
in the same order.

4.2 Extension to Stabilising Distributed Registers

Recently, classical registers definitions [13] have been extended to the self-
stabilising area [4] for which the system can be hit by arbitrary errors. We
assume that there is a time τ1w at which the first write operation invoked in the
system terminated.
A stabilising safe register REG is defined by the following properties:

– Liveness. Any invocation of REG .write() or REG .read() terminates.
– Eventual safety. There is a finite time τstab > τ1w after which each REG .read()

r returns a value v that was written by a REG .write() operation w such that
(a) w is the last REG .write() operation executed before r, or (b) v is any
value in the register domain if a REG .write() operation is concurrent with r.

A stabilising regular register REG is defined by the following properties:

– Liveness. Any invocation of REG .write() or REG .read() terminates.
– Eventual regularity. There is a finite time τstab > τ1w after which each
REG .read() r returns a value v that was written by a REG .write() opera-
tion w such that (a) w is the last REG .write() operation executed before r,
or (b) w is a REG .write() operation concurrent with r.

Similarly, the stabilising atomic register is the eventual version of the atomic
register defined above.

4.3 Bitcoin and Distributed Shared Registers

Interestingly enough, none of these definitions capture the behaviour of the Bit-
coin blockchain. Classically, values written in a register are potentially indepen-
dent, and during the execution, the size of the register remains the same. In
contrast, a new block cannot be written in the blockchain if it does not depend
on the previous one, and successive writings in the blockchain increase its size.
Looking at the stabilising register, it implements some type of eventual consis-
tency, in the sense that, there exists a prefix of the system execution for which

Bitcoin a Distributed Shared Register 463

there are no guarantees on the value of the shared register: register semantics
hold only from a certain time in the execution. In contrast, the prefix of the
blockchain eventually converges at every entity, while no guarantees hold for the
last created blocks.

Therefore, we need to further extend the distributed shared registers spec-
ification to a new register, which captures the semantics of Bitcoin. We call
this new register the Distributed Ledger Register (DLR). We first show that
the Distributed Ledger Register satisfies the regular properties and then prove
that the Bitcoin blockchain algorithm satisfies the Distributed Ledger Register
properties.

5 Distributed Ledger Register

In this section, we aim at specifying a new type of read/write register that mimics
the behaviour of the Bitcoin distributed ledger (i.e., Bitcoin blockchain), and that
must be both writable and readable by any number of miners. In the following,
this new register will be named the multi-writer multi-reader Distributed Ledger
Register, or simply DLR. Prior to formalising the properties of the distributed
ledger register, we first illustrate its functioning.

As described in the introduction, each miner needs to locally manage a data
structure from which it can extract the blockchain. Specifically, this data struc-
ture is a tree, denoted by T B, and the blockchain, denoted by B, is the longest
chain in this tree. By construction, the root of T B is the genesis block, a common
block for all the miners. In terms of read and write operations, the blockchain
protocol informally translates as follows: When a miner wishes to create a new
block, it first invokes a read operation on T B. This read returns the longest chain
of T B, denoted by B. From B, the miner creates its new block, appends it to
B, and invokes a write operation with B as parameter. The miner broadcasts B
in the system. Note that from a practical point of view, only the new block is
broadcast to the system, and if necessary miners wait from their neighbours for
blocks in B they are not aware of.

Let us now formalise the operations and the properties guaranteed by the
distributed ledger register. The DLR has a tree structure, whose root is the
genesis block, and where each branch is a sequence of blocks. The value of DLR
is its longest sequence of blocks, starting from the root. The value of the DLR is
called the blockchain and is denoted by B. The DLR is equipped with write and
read operations. The DLR.write operation allows any miner to try to change the
value of DLR with value B, where B is a sequence of blocks. The DLR.read()
operation allows any miner to retrieve the value of DLR.

Note 1. Note that the value returned by the read() operation is different in Bit-
coin and Ethereum. In Bitcoin, the longest chain is returned while in Ethereum
the heaviest one is returned.

As recalled in Sect. 2, the level of confirmation k of a block b in a blockchain
provides guarantees on the likelihood that b can be pruned from the blockchain.

464 E. Anceaume et al.

The blockchain properties are closely related to the value of k. We now introduce
the notion of k-valid write.

Definition 1 (k-valid write). Operation DLR.write(B) is k-valid if and only
if there exist a time t > 0 and an integer k > 0 such that a virtual DLR.read()
invoked at time t′ > t after the invocation of DLR.write(B) returns a chain B′

such that B is a prefix of B′ and length(B′) ≥ length(B) + k, where function
length(B) returns the number of blocks that compose chain B.

Operation DLR.write(B) returns true if DLR.write(B) is k-valid otherwise it
returns abort.

As described in Sect. 2 the value of k depends on the proportion β of malicious
miners in the system. It has been shown by Nakamoto [15], that if the proportion
β of malicious miners is ≤ 10%, then with probability ≤ 0.1%, a transaction can
be rejected if its level of confirmation in a local copy of the blockchain is less
than or equal to than 6.

The presence of the genesis block is very similar to the classical assumption in
registers theory which states that before the first read at least one virtual write
operation happened. Therefore, for the distributed ledger register we consider
that before the first read there was at least a virtual k-valid write.

5.1 Specification of the Distributed Ledger Register

A DLR multi-reader multi-writer register is defined by the following properties.

– Liveness: Any invocation of a DLR.write(B) or a DLR.read() terminates.
– k-coherency: Any DLR.read() returns a value B whose prefix B′ is the value

of the register written by the last k-valid DLR.write(B′) operation that pre-
cedes DLR.read().

As recalled in the previous section, the semantic of a distributed shared
register can be classified as safe, regular or atomic according to the returned
values read in presence of concurrent writes [13]. In the following we establish the
relationships between those classical registers and the newly defined distributed
ledger register.

Theorem 1. The Distributed Ledger Register satisfies the regular register
semantic.

Proof. The liveness property of DLR register being identical to the liveness prop-
erty for the regular register, we only need to prove that the distributed ledger
register satisfies the safety property of the regular register.

Consider a read operation of DLR r that is not concurrent with any write oper-
ations. By the k-coherency property, the value B returned by r is a value whose
prefix B′ is the value of the register written by the last k-valid DLR.write(B′)
operation that preceded r. Let w be this k-valid write operation. By construction
r returns the value written by w, which makes the safety property of regularity

Bitcoin a Distributed Shared Register 465

satisfied. Now suppose that r is concurrent with write operations that started
after operation w. By the k-coherency property, r may return any of the chains
written by those writes. However, all these chains have as common prefix the
chain written by w, which completes the proof.

Theorem 2. The Distributed Ledger Register does not satisfy the atomic regis-
ter semantic.

Proof. From Theorem 1 DLR satisfies the regular register specification. We now
show that DLR does not satisfy the no new/old inversion property. Consider two
read operations r1 and r2 such that r1 happens before r2. Let w=DLR.write(B)
be the last k-valid write that precedes r1 and r2. Consider two different k-valid
write operations w1=DLR.write(B′) and w2=DLR.write(B′′) that happen after
w and that are concurrent with r1 and r2. By definition of the k-validity, B is a
prefix for both B′ and B′′, while both B′ and B′′ are different. By the k-coherency
property, r1 may return B′ while r2 may return B′′ which violates the no new/old
inversion property.

5.2 Bitcoin and the Distributed Ledger Register

The DLR-Algorithm below describes the maintenance of the Bitcoin blockchain
in terms of read/write invocations over the blockchain tree. Each miner man-
ages one local variable, called T B, that stores the blockchain tree, and has
access to two functions, the best chain function whose argument is (T B), and
the update tree() functions whose arguments are T B and a sequence of blocks
B. Specifically,

– Function best chain(T B) returns the longest chain of T B starting from the
genesis block.

– Function update tree(T B, B) fusions T B with the sequence of B. Specifically,
if T B contains a branch which prefixes B, then this branch is replaced by B,
otherwise B is added to T B. Note that B must be well-formed and must start
with the genesis block.

As described above, the DLR-algorithm run by any miner is quite simple. Its
pseudo-code appears in Fig. 2. The block creation process requires that a miner
invokes the DLR.read() on T B to get the best chain B (see Fig. 3). From B, the
miner creates its block b by solving the required proof-of-work, appends b to
B, and invokes the DLR.write(B) on T B (see Fig. 3). This operation updates its
local tree, and then diffuses the updated longest chain in the network by invoking
the broadcast primitive. The DLR.write(B) operation does not return until the
new block b is valid, i.e. k other blocks have been appended to the local tree
after b. Therefore, the miner will read its local tree until the above condition is
verified. The DLR-algorithm assumes that miners continuously DLR.write new
blocs otherwise the liveness of the algorithm would not hold, as shown in the
sequel.

466 E. Anceaume et al.

DLR-Algorithm % run by a miner %

(01) B = DLR.read()
(02) create the well-formed block b from B
(03) append b to B
(04) DLR.write(B)
(05) return

Fig. 2. Algorithm run by any miner

Operation DLR.read () is % issued by a reader %
(01) return(best chain(T B))

Operation DLR.write (B) is % issued by a writer %
(02) update tree(T B, B)
(03) broadcast (<propose B>)
(04) repeat
(05) B′ = DLR.read ()
(06) until length(B′) ≥ length(B) + k
(07) if B= prefix(B′) return true
(08) else return abort
———————————————————–
(09) upon deliver(<propose B>)
(10) update tree(T B, B)

Fig. 3. read() and write() operations of the DLR register.

It may happen that, due to concurrent writes, the longest returned blockchain
has not B as a prefix. In that case the miner knows that its DLR.write(B) oper-
ation is not successful, i.e., returns abort. It returns true otherwise.

We now prove that DLR-Algorithm conditionally satisfies the distributed
ledger register properties.

Lemma 1. DLR-Algorithm satisfies the liveness property of the DLR register.

Proof. The liveness property is trivial and follows directly from the code. Indeed,
a DLR.read() operation always returns since the read is executed locally. For
the write operations the only blocking part of the code is the repeat loop. By
assumption of the DLR-Algorithm, miners continuously try to create blocks
which gives rise to the invocation of the DLR.write() operation every 10 min
in expectation. Thus the loop stops, which allows the DLR.write() operation to
either return true or abort, which terminates the DLR-Algorithm.

Lemma 2. Each non aborted DLR.write() invoked by the DLR-Algorithm satis-
fies the k-validity property.

Bitcoin a Distributed Shared Register 467

Proof. Let w be any non-aborting DLR.write() operation that writes some chain
B at time say t > 0. Note that this operation returns only when the best chain
in the T B tree, say B′, has B as a prefix and has at least k additional blocks. Let
r be a DLR.read() that happens after w. If r is invoked by the same miner then
the property trivially follows. Assume now that r has been invoked by a miner
different from the writer. By the τ -delivery property of the broadcast primitive,
there is a time t′ > τ + t such that B′ has reached every miner in the system.
Hence any read r invoked after τ + t returns B′, which completes the proof of
the lemma.

Lemma 3. DLR-Algorithm satisfies the k-coherency property of the DLR reg-
ister under the hypothesis that each read is invoked after that τ time units have
elapsed since the last k-valid write.

Proof. Let r be a read() operation invoked at time t′. Let w be the last k-valid
write that happened before r at time t < t′. At t, the longest chain read by w is
B′. By the the τ -delivery property of the boradcast primitive, then in the worst
case at time t + τ , chain B reaches every miner in the system, and in particular
the reader. Any read() invoked at t′ ≥ t + τ verifies the k-coherency property.
Note that a read() operation invoked at t ≤ t′ < t+τ may return the last k-valid
write that happened before w. This ends the proof of the lemma.

The following theorem is a direct consequence of the three above lemmata.

Theorem 3. DLR-Algorithm satisfies the DLR specification under the hypoth-
esis that each read is invoked after that τ time units have elapsed since the last
k-valid write.

Note that when reads are invoked without any constraints the DLR-
Algorithm does not satisfy the k-coherency.

6 Conclusions and Open Questions

In this paper we have shown that classical distributed shared registers do not
capture totally the behaviour of Bitcoin ledger, which has led us to propose a
specification of a distributed ledger register with a regular flavour.

We have then proven that the blockchain maintenance of Bitcoin satisfies
the distributed ledger register specification under strict conditions and only in
partially synchronous systems. The first conclusion of our study is that Bitcoin
does not implement strong coherency criteria even in partially synchronous sys-
tems. This finding explains the constant adjustments that Bitcoin experienced
since its creation.

Our paper opens several research directions. The implementation of the dis-
tributed ledger register with strong coherency guarantees (i.e. similar to the lin-
earisability) in a adversarial asynchronous environment is a real challenge that
might be mitigated by relying on tools such as k-quorums abstraction defined
in [2]. Another interesting research direction is the identification of the minimal
building blocks necessary to implement a blockchain-based transactional system
in an adversarial model.

468 E. Anceaume et al.

Acknowledgements. The authors would like to thank Sara Tucci Piergiovanni and
Antonella del Pozzo for insightful comments on a preliminary version of this paper.

References

1. Ethereum Stack Exchange (2016). https://ethereum.stackexchange.com/questions/
319/what-number-of-confirmations-is-considered-secure-in-ethereum

2. Aiyer, A.S., Alvisi, L., Bazzi, R.A.: Byzantine and multi-writer k-quorums. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 443–458. Springer, Heidelberg
(2006). doi:10.1007/11864219 31

3. Anceaume, E., Lajoie-Mazenc, T., Ludinard, R., Sericola, B.: Safety analysis of bit-
coin improvement proposals. In: 15th IEEE International Symposium on Network
Computing and Applications (NCA) (2016)

4. Bonomi, S., Dolev, S., Potop-Butucaru, M., Raynal, M.: Stabilizing server-based
storage in Byzantine asynchronous message-passing systems: extended abstract. In:
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing,
PODC 2015, Donostia-San Sebastián, Spain, July 21–23, 2015, pp. 471–479 (2015)

5. Cachin, C.: Blockchain - from the anarchy of cryptocurrencies to the enterprise
(Keynote Abstract). In: Proceedings of the OPODIS International Conference
(2016)

6. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol.
9604, pp. 106–125. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53357-4 8

7. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In: Pro-
ceedings of the ICDCN International Conference (2016)

8. Eyal, I., Gencer, A.E., Sirer, E.G., Van Renesse, R.: Bitcoin-NG: a scalable
blockchain protocol. In Proceedings of the USENIX NSDI Symposium (2016)

9. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and
applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol.
9057, pp. 281–310. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6 10

10. Shafer, S.: Keynote address. In: Tomayko, J.E. (ed.) SEI 1991. LNCS, vol. 536, p.
1. Springer, Heidelberg (1991). doi:10.1007/BFb0024281

11. Karame, G.O., Androulaki, E., Roeschlin, M., Gervais, A., Čapkun, S.: Misbehavior
in bitcoin: a study of double-spending and accountability. ACM Trans. Inf. Syst.
Secur. 18(1), 2 (2015)

12. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collec-
tive signing. In Proceedings of the USENIX Security Symposium (2016)

13. Lamport, L.: On inter-process communications, part I: basic formalism and part
II: algorithms. Distrib. Comput. 1(2), 77–101 (1986)

14. Miller, A., LaViola Jr., J.J.: Anonymous Byzantine consensus from moderately-
hard puzzles: a model for bitcoin (2014). http://bravenewcoin.com/assets/
Whitepapers/

15. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

16. Pass R., Seeman L., Shelat A.: Analysis of the blockchain protocol in asynchronous
networks. In: Proceedings of the EUROCRYPT International Conference (2017)

17. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. http://
gavwood.com/Paper.pdf

https://ethereum.stackexchange.com/questions/319/what-number-of-confirmations-is-considered-secure-in-ethereum
https://ethereum.stackexchange.com/questions/319/what-number-of-confirmations-is-considered-secure-in-ethereum
http://dx.doi.org/10.1007/11864219_31
http://dx.doi.org/10.1007/978-3-662-53357-4_8
http://dx.doi.org/10.1007/978-3-662-46803-6_10
http://dx.doi.org/10.1007/BFb0024281
http://bravenewcoin.com/assets/Whitepapers/
http://bravenewcoin.com/assets/Whitepapers/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://gavwood.com/Paper.pdf
http://gavwood.com/Paper.pdf

Broadcast Encryption with Both Temporary
and Permanent Revocation

Dan Brownstein1(B), Shlomi Dolev1, and Niv Gilboa2

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

{danbr,dolev}@cs.bgu.ac.il
2 Department of Communication Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

gilboan@bgu.ac.il

Abstract. Broadcast encryption enables a sender to broadcast data
that only an authorized set of users can decrypt and is therefore an
essential component of secure content distribution. Public key broadcast
encryption separates the roles of a key manager who provides keys to
users and content providers who distribute content to users. This sepa-
ration is useful for flexible content distribution and for simplifying the
process of additional content providers joining the network. A content
provider or key manager can control the authorized set of users by user
revocation which has two types, temporary revocation and permanent
revocation. A content provider sending a message can determine the set
of users authorized for the message by using temporary revocation. A
key manager can use permanent revocation to remove a user from the
set of authorized users as a better alternative to temporarily revoking
the user in all subsequent messages. In this paper we present the first
public-key, broadcast encryption scheme that achieves both temporary
and permanent revocation and has essentially the same performance as
state of the art schemes that achieve only one of the two types of revo-
cation. The scheme combines and optimizes the broadcast encryption
systems of Delerablée et al. (Pairing 2007) and Lewko et al. (Security
and Privacy 2010) and is generically secure over groups that support
bilinear maps.

S. Dolev—This research was partially supported by the Rita Altura Trust Chair in
Computer Sciences; the Lynne and William Frankel Center for Computer Science;
grant of the Ministry of Science, Technology and Space, Israel, and the National
Science Council (NSC) of Taiwan; the Ministry of Foreign Affairs, Italy; the Ministry
of Science, Technology and Space, Infrastructure Research in the Field of Advanced
Computing and Cyber Security and the Israel National Cyber Bureau.
N. Gilboa—Supported by ISF grant 1638/15, a grant by the BGU Cyber Center, the
Israeli Ministry Of Science and Technology Cyber Program and by the European
Union’s Horizon 2020 ICT program (Mikelangelo project).

c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 469–483, 2017.
https://doi.org/10.1007/978-3-319-69084-1 35

470 D. Brownstein et al.

1 Introduction

In broadcast encryption a single broadcaster can send encrypted messages to a
group of users so that only authorized users can decrypt the messages. Since the
introduction of broadcast encryption by Fiat and Naor in [FN93] there has been
a great deal of work, e.g. [CGI+99,CMN99,GSW00,NNL01,DF02,GST04], and
[BGW05,DPP07,GW09,NP10,LSW10] on extending the framework of broad-
cast encryption, improving its security and optimizing its performance.

One of the factors driving interest in broadcast encryption is its commercial
importance in content distribution, e.g. television networks. Historically, such
networks were developed and administered by a single broadcaster who distrib-
uted both content and keys to registered users. In this setting it is perfectly
reasonable to use symmetric-key encryption in which the broadcaster holds all
the keys of the receivers.

A more flexible system enables separation of the key distribution and con-
tent distribution functions. In this setting a single key manager generates and
distributes keys, but multiple content providers can directly send encrypted con-
tent to users. The benefits of such an approach are lower barriers of entry for
both key providers and content providers and potentially greater choice and
lower cost for users. However, the separation of functions typically rules out
symmetric-key encryption since the key manager would not want to share all
the system’s keys with a content provider. Public-key broadcast encryption
[DF02,BGW05,DPP07,GW09,LSW10] solves this problem by separating the
keys into a public key allowing a content provider to encrypt content and secret
keys allowing each authorized user to decrypt content.

Broadcast encryption schemes differ in the way they determine authorized
users. Upon joining the system a user is authorized to receive a subset of the
distributed content. This authorization is enforced by the keys that the key man-
ager provides to the user. The key manager can decide to expand the subset of
the content for which the user is authorized by providing additional keys. How-
ever, reducing the user’s authorization or completely revoking that authorization
requires a revocation procedure that invalidates the user’s decryption keys.

Revocation in broadcast encryption schemes can be divided into two types,
temporary and permanent. In temporary revocation [NNL01,BGW05,GW09]
and [LSW10] authorization is attached to a specific encrypted message and
therefore revoking a user does not extend to subsequent messages. In permanent
revocation [CGI+99,CMN99,GSW00] and the third construction of [DPP07] the
key manager revokes the authorization of a user preventing it from decrypting
future messages. Permanent revocation can be simulated by temporary revoca-
tion in which the revoked user is temporarily revoked in each message. However,
that approach suffers from two drawbacks. The first is an obvious performance
penalty since the complexity of sending a message keeps growing as a function
of historical revocations. The other is that when the roles of key management
and content distribution are separate it may not be possible for a broadcaster
to keep track of all the revoked users.

Broadcast Encryption with Both Temporary and Permanent Revocation 471

Most works on revocation for broadcast encryption limit their goals either
to temporary revocation only or to permanent revocation only, often without
explicitly stating the difference1. However, in practice both types of revocation
are important. Permanent revocation is the consequence of a user canceling his
subscription and is therefore a common feature of real-world broadcast encryp-
tion systems. A motivating example for temporary revocation is when a content
provider distributes a content encryption key for some premium content, e.g.
a televised pay-per-view event, only to users who paid for the content. Subse-
quently the content is encrypted wit this content encryption key and is broadcast
to all users in the system, but only the authorized users who received the key
can decrypt it.

The security of broadcast encryption can be loosely defined as the property of
non-authorized users being unable to decrypt ciphertexts and can be typically
reduced to the security of a cryptographic primitive. Such primitives include
any symmetric key encryption [CGI+99,CMN99,GSW00,GST04], Hierarchical
Identity Based Encryption [DF02], several q-type assumptions2 on bilinear maps
[BGW05,DPP07,GW09] and a combination of the Bilinear Decisional Diffie-
Hellman assumption and the Decisional Linear assumption [LSW10].

Security definitions for broadcast security differ in modeling the adversary.
One feature of the adversary model is the number of users that the adversary
may corrupt. Most broadcast encryption schemes assume that the adversary can
control multiple users, possibly an unbounded number of them, and therefore
require collusion resistance, i.e. that even a coalition of unauthorized users work-
ing together cannot decrypt ciphertexts. A second feature determines whether
the adversary (and the associated security proof) is adaptive or is only selective.
An adaptive adversary decides dynamically which users to corrupt while in the
selective setting the adversary selects the set of corrupted users before the key
manager sets system parameters.

The performance of broadcast encryption is measured by the size of the
objects in the system and the time required to perform the algorithms in the
scheme as a function of the n users in the system and the number of revoked
users. The measured objects include encryption and decryption keys, ciphertext
length and messages for user revocation, which are part of the ciphertext in the
case of temporary revocation and are separate for permanent revocation.

The performance of different broadcast encryption schemes is sometimes dif-
ficult to compare because each optimizes different parameters. For example, the
simplest broadcast encryption scheme involves encrypting a plaintext message
separately with each authorized user’s symmetric/public key. In this scheme the
encryption key, ciphertext length and time to perform encryption are O(n − r)
for n users in the system and r revoked users. However, all other measures

1 The work of Delerablée et al. [DPP07] is an exception, considering both types of
revocation.

2 A q-type assumption is a family of hardness assumptions indexed by an integer q,
which corresponds to the number of queries the adversary makes in the security
proof.

472 D. Brownstein et al.

are O(1) and revocation is especially trivial for all users actually requiring less
work for the key manager and broadcaster. In contrast, two efficient schemes
are the public-key, temporary revocation scheme of Lewko et al. [LSW10] and
the symmetric-key, permanent revocation scheme, which is the third scheme, of
[DPP07]3. In both schemes the size of all keys is O(1), while in [LSW10] the
ciphertext size and encryption and decryption time are O(r) for r temporarily
revoked users and in [DPP07] the length of a permanent revocation message,
the time to construct the permanent revocation message and the time to update
each secret user key are all O(r′) for r′ permanently revoked users. An immediate
implication is that if it is critical to minimize the running time of user devices
then the simple broadcast encryption scheme is sufficient while if communica-
tion complexity and the key manager’s workload are more important then other
schemes such as [DPP07,LSW10] are preferable.

1.1 Contribution

The main contribution of this work is a public-key, broadcast encryption scheme
that enables both temporary and permanent revocation with performance that
in every measure is as good as the best broadcast encryption systems that
achieve either temporary revocation or permanent revocation separately. At a
high level we define a broadcast encryption scheme with temporary and per-
manent revocation as a protocol between a key manager, n receivers (or users)
and an unbounded number of broadcasters. The protocol includes six algorithms:
setup, key generation, encryption, decryption, (permanent) revocation and key
update.

The key manager runs setup to generate system parameters including a mas-
ter key, which it retains, and a public key which is published. The key manager
also performs key generation to create a secret key for each user in the system.
It is assumed that a user receives the secret key in a secure, out-of-band method,
e.g. by VPN between the key manager and the user. A broadcaster executes the
encryption algorithm which takes a set of temporarily revoked users as one of its
parameters and outputs a ciphertext. A user can decrypt this ciphertext if and
only if it is not one of the temporarily revoked users. The key manager performs
the revocation algorithm which enables each of the non-revoked users to run key
update and derive new secret keys. The revoked users will not be able to update
their keys and will be unable to decrypt any ciphertexts in the future. However,
it is always possible for a user to go through the key generation process again,
receiving fresh keys.

The scheme combines ideas from the public-key, temporary revocation system
of [LSW10] and the symmetric-key, permanent revocation suggested in [DPP07].
A seemingly attractive approach is to paste the two systems together in the
sense of having each user hold independent keys for each system. A broadcaster

3 The first scheme of Delerablée et al. [DPP07] is a public-key construction with public
key of size O(n) for n users.

Broadcast Encryption with Both Temporary and Permanent Revocation 473

secret shares each message and encrypts one share with the temporary revoca-
tion system and the other share with the permanent revocation system. Then
a legitimate user can decrypt both shares and a revoked user will be unable to
decrypt. However, this approach is insecure when considering collusion between
users who are only temporarily revoked and users who are only permanently
revoked.

As an alternative to pasting, our construction merges the keys of the two
schemes and modifies the six algorithms appropriately to ensure correctness.
The security of the scheme is proved in the generic group model which implies
that any attack on the system must rely on the representation of the group used
to implement the scheme.

The generic group model was introduced by Shoup in [Sho97] and extended
by Boneh et al. in [BBG05] to groups G with prime order p that are endowed with
a bilinear map e : G×G → GT . [BBG05] introduces a General Decisional Diffie-
Hellman Exponent assumption, which is in fact a family of hardness assumptions
that include many, but not all, hardness assumptions over bilinear groups. This
setting defines two sequences P,Q ∈ Fp[x1, . . . , xn]s of multivariate polynomials
and an additional polynomial f ∈ Fp[x1, . . . , xn]. The adversary receives two
sequences of elements (gP (x1,...,xn), e(g, g)Q(x1,...,xn)) ∈ G

s × GT
s for a generator

g ∈ G and tries to distinguish between e(g, g)f(x1,...,xn) and a random element
in GT . A theorem in [BBG05] shows that any instance of the General Decisional
Diffie-Hellman Exponent problem is secure in the generic group model as long
as there doesn’t exist a linear combination of quadratic polynomials in P and
of Q, which is equal to f . A different way to view this result is that in the
generic group model the adversary is restricted to group operations and bilinear
mappings on elements of G and to group operations on elements of GT and if
they don’t equal gf(x1,...,xn) then that element appears random.

The General Decisional Diffie-Hellman Exponent setting does not cover prob-
lems in which the adversary is given functions of the secrets x1, . . . , xn ∈ Fp in
addition to (gP (x1,...,xn), e(g, g)Q(x1,...,xn)). Such is the case for the construction
in [DP08].

A second contribution of our work consists of defining the Diffie-Hellman
Mixed Exponent Assumption (DH-MEA) which generalizes the General Deci-
sional Diffie-Hellman Exponent by adding functions of the exponents x1, . . . , xn

to the information that adversary receives. The DH-MEA is a family of assump-
tions in which a specific member is defined by three sequences of multivari-
ate polynomials P,Q,Z ∈ Fp[x1, . . . , xn]s and an additional polynomial f ∈
Z[x1, . . . , xn]. The adversary receives the pair (gP (x1,...,xn), e(g, g)Q(x1,...,xn)) and
Z(x1, . . . , Xn) and must distinguish between e(g, g)f(x1,...,xn) and a random ele-
ment in GT .

While in the generic group model the adversary is limited in the way it can
manipulate the group elements gP (x1,...,xn) and e(g, g)Q(x1,...,xn), there is no such
limitation when it is presented with a function z(x1, . . . , xn) ∈ Fp. If there exists
a linear combination of polynomials of two types: νi,j(Z(x1, . . . , xn))pipj and
μk(Z(x1, . . . , xn))qk that is equal to f when pi, pj are part of P , qk is part of

474 D. Brownstein et al.

Q and νi,j , μk are arbitrary functions over Fp then the adversary can break the
assumption since it can test whether the challenge is e(g, g)f(x1,...,xn). We show
that if such a combination does not exist then the DH-MEA assumption is secure
in the generic group model.

We prove the security of our broadcast encryption scheme by showing that
what an adversary learns in the security game is an instance of the DH-MEA.
Security of the broadcast encryption scheme in the generic group model follows
from the general theorem on DH-MEA.

Our construction has similar performance to a combination of the perfor-
mance of [DPP07,LSW10]. The public key and each secret key are of size O(1)
group elements. A ciphertext which determines the temporary revocation of r
users is of length O(r) group elements and the time complexity of both encryp-
tion and decryption is O(r). Similarly, the output of the revocation algorithm,
which is used for permanent revocation of r′ users is of length O(r′) and the
time complexity of both the revocation and key update algorithms are O(r′).

2 Preliminaries

2.1 Revocation Systems

A revocation scheme that supports both temporary and permanent revoca-
tions consists of six algorithms: Setup, KeyGen, Revoke, UpdateKey, Encrypt and
Decrypt.

Setup(λ). The setup algorithm takes as input the security parameter λ and out-
puts public parameters PP and a master secret key MSK.

KeyGen(MSK, ID). The key generation algorithm takes as input the master
secret key MSK and an identity ID and outputs a secret key SKID. Each key
has a boolean property SKID. revoked which is set by default to false.

Revoke(S, PP,MSK). The revocation algorithm takes as input the master secret
key MSK, the public parameters PP and a set S of identities to (permanently)
revoke. The algorithm outputs a new master secret MSK ′, new public parame-
ters PP ′ and a key update message SUM . PP ′ and SUM are broadcast to all
users.

UpdateKey(SKID, SUM, ID). The key update algorithm takes as input the
user’s secret key SKID, the key update message SUM and the user’s iden-
tity ID. The algorithm outputs a new secret key SK ′

ID. If ID is in the set of
revoked users that corresponds to SUM , the algorithm sets SK ′

ID.revoked =
true.

Encrypt(S, PP,M). The encryption algorithm takes as input a set S of identi-
ties to (temporarily) revoke, the public parameters PP and a message M . The
algorithm outputs a ciphertext CT .

Decrypt(SKID, CT, PP). The decryption algorithm takes as input a secret key,
SKID, a ciphertext CT and the public parameters PP . If SKID.revoked = true

Broadcast Encryption with Both Temporary and Permanent Revocation 475

or ID is in the set of revoked users that corresponds to CT , the algorithm
outputs ⊥. Otherwise it outputs the message M associated with CT .

The system must satisfy the following correctness and security properties.

Correctness. For all messages M , sets of identities S, S1 . . . , Sn and all ID /∈
n⋃

i=1

Si ∪ S, if (PP0,MSK0) ← Setup(λ), SKID,0 ← KeyGen(MSK, ID) and for

i = 1, . . . , n:

(MSKi, PPi, SUMi) ← Revoke(Si, PPi−1,MSKi−1),
SKID,i ← UpdateKey(SKID,i−1, SUMi, ID)

then if CT ← Encrypt(S, PPn,M) then Decrypt(SKID,n, CT, PPn) = M .

Security. The security of a scheme with both permanent and temporary revo-
cation is defined as a game between a challenger and an attack algorithm A with
the following phases:

Setup. The challenger runs the Setup algorithm with security parameter λ to
obtain the public parameters PP and the master secret key MSK. It maintains
a set of identities Q initialized to the empty set and then sends PP to A.

Key Query and Revocation. In this phase A adaptively issues secret key and
revocation queries. For every private key query for identity ID, the challenger
adds ID to Q, runs KeyGen(MSK, ID) → SKID and sends A the corresponding
secret key SKID. For every revocation query for a set S of Identities, the chal-
lenger updates Q ← Q \ S, runs Revoke(S, PP,MSK) → (MSK ′, PP ′, SUM),
replaces (MSK,PP) with (MSK ′, PP ′) and sends A the new PP and the cor-
responding key update messages SUM .

Challenge. A sends the challenger a set S of identities and two messages M1,
M2. In case Q � S the challenger sends ⊥ to A and aborts. Otherwise, the
challenger flips a random coin b ∈ {0, 1}, runs the Encrypt(S, PP,Mb) algorithm
to obtain an encryption of Mb and sends it to A.

Guess. A outputs a guess b′ ∈ {0, 1} and wins if b = b′.

The advantage A has in the security game for a revocation scheme with
security parameter λ is defined as

AdvA,λ =
∣
∣
∣
∣Pr[A wins] − 1

2

∣
∣
∣
∣

A scheme with both permanent and temporary revocation is adaptively secure
if for all poly-time algorithms A we have that AdvA,λ = negl(λ).

We note that selective security is defined similarly, except that the revoked
sets of identities are declared by the adversary before it sees the public parame-
ters in an Init phase.

476 D. Brownstein et al.

2.2 Bilinear Maps

For groups G, GT of the same prime order p, a bilinear map e : G
2 → GT

satisfies:

1. Bilinearity. For every g1, g2 ∈ G and α ∈ Fp it holds that

e(gα
1 , g2) = e(g1, gα

2) = e(g1, g2)α.

2. Non-degeneracy. If g1, g2 ∈ G are generators of G then e(g1, g2) is a generator
of GT .

We call G a (symmetric) bilinear group and GT the target group.

2.3 Decision Diffie-Hellman Mixed Exponent Problem

Notation 1. For a prime p and field with p elements, Fp, let Fp[X] denote the
ring of polynomials in n variables X = x1, . . . , xn over Fp. Let Z,P,Q ∈ Fp[X]s

be three sequences of s polynomials, which we denote by P = (p1, . . . , ps), Q =
(q1, . . . , qs), Z = (z1, . . . , zs) and let p1 = q1 = 1. Let f ∈ Fp[X] be the target
polynomial.

Let G be a bilinear group of order p with target group GT , let g be a generator
of G and let e : G × G → Gt be a bilinear mapping. The decision Diffie-Hellman
Mixed Exponent problem is defined as follows.

Definition 1. Let H(X) = (Z(X), gP (X), e(g, g)Q(X)) ∈ Z
s
p × G

s × G
s
t . We say

that an algorithm B has advantage ε in the Decision (Z,P,Q, f)-Diffie-Hellman
mixed exponent problem in G if

∣
∣
∣Pr[B(H(X), e(g, g)f(X)) = 0] − Pr[B(H(X), T) = 0]

∣
∣
∣ > ε

where T ∈ Gt is chosen uniformly at random and the probability is taken over
the random choices of g,X, T and the random bits consumed by B.

Intuitively, for some combinations of polynomial sequences Z,P,Q and f this
decision problem is easy. The following definition addresses such combinations:

Definition 2. Let Z,P,Q ∈ Fp[X]s, where p1 = q1 = 1 and let f ∈ Fp[X]. We
say that f is dependent on (Z,P,Q) if there exist functions {νi,j}s

i,j=1, {μk}s
k=1 :

Z
s
p → Zp such that

f =
s∑

i,j=1

νi,j(Z(X1, . . . , Xn))pipj +
s∑

k=1

μk(Z(X1, . . . , Xn))qk

We say that f is independent of Z,P and Q if it is not dependent on them.

Broadcast Encryption with Both Temporary and Permanent Revocation 477

3 Public Key Revocation Scheme

Setup (λ). The setup algorithm, given a security parameter λ, chooses a bilinear
group G of prime order p such that |p| ≥ λ. It then chooses random generators
g, w ∈ G, random exponents α, γ, b ∈ Zp and sets ST = 1. Finally, the setup
algorithm randomly chooses a function φ4 from Fλ, a pseudo-random family of
permutations over Zp.

The master secret key is

MSK = (α, b, γ, w, ST, φ)

And the public parameters are

PP = (g, gbST , gb2ST , wbST , e(g, g)αST)

KeyGen(MSK, ID). Given a user identity ID ∈ Zp and the master secret key
MSK, the algorithm computes t = φ(ID) ∈ Zp and sets:

D1 = g−t,D2 = (gbIDw)t,

D3 =
1

α + b2t
− γ,D4 = g(α+b2t)·ST

D5 = false

The output of the algorithm is SKID = {D1, . . . , D5}.

Revoke (S, PP,MSK). The algorithm is given a set S = {ID1, . . . , IDr} of iden-
tities to revoke, the public parameters and the master secret key. The algorithm
sets ST ′ = ST and for i = 1 to r it computes:

1. ST ′ = ST ′ · (α + b2ti)
2. Si,1 = 1

α+b2ti
− γ, Si,2 = gST ′

where ti = φ(IDi). The algorithm then:

1. Updates the master secret key by replacing ST with ST ′.
2. Updates the public parameters by replacing gbST , gb2ST , wbST and e(g, g)αST

with gbST ′
, gb2ST ′

, wbST ′
and e(g, g)αST ′

respectively.
3. Broadcasts the key update message SUM = {Si,1, Si,2}r

i=1.

UpdateKey (SKID, SUM, ID). Given a key update message SUM for r revoked
identities, the algorithm updates the secret key SKID. It first checks if D3 ∈
r⋃

i=1

Si,1 and if so it sets D5 = true. Otherwise, it sets h0 = D4. Then, for i = 1 to

r it sets hi =
(Si,2

hi−1

) 1
D3−Si,1 . Finally, the algorithm updates SKID by replacing

D4 with hr.
4 We slightly abuse notation and use φ to denote both the function and a concrete

description of this function.

478 D. Brownstein et al.

We note that hr = g(α+b2t)·ST where ST is the new state in the master secret
key after the corresponding revocation. For example, if ST = 1, t = φ(ID) and
t̂ = φ(ˆID), then the update process of SKID after the revocation of ˆID is

h1 =
(

S1,2

h0

) 1
D3−S1,1

=

(
gα+b2 t̂

gα+b2t

) 1(
1

α+b2t
−γ

)
−
(

1
α+b2 t̂

−γ

)

= g(α+b2t)(α+b2 t̂)

Encrypt (S, PP,M). The encryption algorithm takes as input the public para-
meters PP , a message M ∈ GT and a set S of r revoked identities. The algorithm

randomly chooses s1, . . . , sr ∈ Zp, computes s =
r∑

i=1

si, sets

C0 = M · e(g, g)αsST , C1 = gs

and for i = 1 to r it sets

Ci,1 = IDi, Ci,2 = (gbST)si , Ci,3 = (gb2STIDiwbST)si

The output of the algorithm is CT = {C0, C1, {Ci,1, Ci,2, Ci,3}r
i=1}.

Decrypt (SKID, CT, PP). The algorithm is given a secret key SKID, a cipher-

text CT and the public parameters PP . First, if D5 = true or ID ∈
r⋃

i=1

Ci,1 the

algorithm outputs ⊥. Otherwise the algorithm calculates:

A = e(C1,D4) = e(gs, g(α+b2t)·ST)

= e(g, g)αsST · e(g, g)b2stST

B =
r∏

i=1

(
e(Ci,2,D2) · e(Ci,3,D1)

) 1
ID−Ci,1

=
r∏

i=1

(
e((gbST)si , (gbIDw)t) · e((gb2STIDiwbST)si , g−t)

) 1
ID−IDi

= e(g, g)
r∑

i=1
b2sitST

= e(g, g)b2stST

Finally the algorithm retrieves the message

M = C0/(A/B)

4 Security Analysis

We prove the security of our construction in the generic group model in three
stages. We first state a theorem that the DH-MEA problem is hard in the generic
group model. We then show how to transform an attack on the broadcast encryp-
tion system to an attack on an ad hoc security assumption that we refer to as
the n − q Decisional Assumption (n − q DA). Finally, we prove that the n − q
DA is an instance of DH-MEA and is therefore generically secure.

Broadcast Encryption with Both Temporary and Permanent Revocation 479

4.1 Generic Security of DH-MEA

Recall that the DH-MEA is easy when f is dependent on (Z,P,Q). While it
is possible that for some specific groups the problem is easy even when f is
independent of (Z,P,Q), the following result shows that the independence of
f implies security in the generic group model in which group operations and
bilinear mappings are provided by oracles.

Theorem 1. Let Z = (z1, . . . , zs), P = (p1, . . . , ps), Q = (q1, . . . , qs) ∈ Fp[X]s,
p1 = q1 = 1 and let f ∈ Fp[X1, . . . , Xn]. If f is independent of (Z,P,Q) and
deg = max{2degP , degf , degQ} then the advantage of any generic adversary A
that performs at most y queries to the oracles (for group operations in G, GT

and evaluations of e) in the Decision (Z,P,Q, f)-Diffie-Hellman Mixed Exponent
Problem is bounded by:

Adv(A) = O(
(y + s)2 · deg

p
)

The full proof is omitted due to space constraints and will appear in the full
version of the paper.

Corollary 1. For Z,P,Q and f as in Theorem1, if f is independent of (Z,P,Q)
and deg = max{2degP , degf , degQ} then any adversary A that has advantage 1/2
in solving the decision (Z,P,Q, f)-Diffie-Hellman mixed exponent problem in a
generic bilinear group G must make at least Ω(

√
p/deg − s) queries to the group

oracles.

4.2 Security of the Broadcast Encryption System

Theorem 2. The scheme in Sect. 3 is a broadcast encryption system with per-
manent and temporary revocation which is adaptively secure in the generic group
model.

Proof. We first write the elements that an adversary learns during the security
game, from which we state a computational assumption. Let τ be the number
of permanent revocation requests that the adversary performs. Let ρi denote
the number of revoked users in the i-th request. We denote their identities by
IDij

where i is in [1, τ] and j is in [1, ρi]. Similarly, we use STi,j to denote
the state after the revocation of the j-th identity in the i-th group. Let ψi

denote the number of secret key requests the adversary performs after the i-th
permanent revocation request (ψ0 is the number of secret key requests prior to
the first revocation). We denote the identities for which the adversary requests
keys by IDkm

where k is in [0, τ] and m is in [1, ψi] and tk,m to denote φ(IDkm
).

Let q denote the number of users the adversary revoke during the temporary
revocation. We denote their identities by IDi where i in [1, q].

From the public parameters and revocation requests, the adversary learns

∀i ∈ [0, τ], j ∈ [1, ρi] gSTi,j , gb·STi,j , gb2·STi,j , wb·STi,j , e(g, g)α·STi,j

480 D. Brownstein et al.

where STi,j =
i∏

i′=1

j∏

j′=1

(α + b2ti′
j′). From the secret key requests, the adversary

learns

∀k ∈ [0, τ],m ∈ [1, ψk] g−tkm , (gbIDkm w)tkm ,
1

α + b2tkm

− γ, g(α+b2tkm)STk,m

where STk,m =
k∏

k′=1

ρ′
k∏

m′=1

(α+ b2tk′
m′). Finally, from the challenge, the adversary

learns

gs,M · e(g, g)αsSTfinal

∀i ∈ [1, q](gbSTfinal)si , (gb2STfinalIDiwb)si

where STfinal =
τ∏

i=1

ρi∏

j=1

(α + b2tij
).

The adversary obtains keys only for identities IDkm
such that either IDkm

is revoked in one of the (τ − k) permanent revocations following the creation
of SKIDkm

, or that IDkm
is revoked in the temporary revocation during the

challenge phase. Thus, the next assumption captures the security of our scheme.

The (n−q)-Decisional Assumption. Let G be a bilinear group of prime order
p. For any (τ, ρ1, . . . , ρτ , ψ0, . . . , ψτ) such that

τ∑

k=0

ψk = n mod p and
τ∑

i=1

ρi = n − q mod p

the (n − q)-Decisional problem is defined as follows. A challenger chooses gener-
ators g, w ∈ G and random exponents α, b, γ, {tkm

}k∈[0,τ],m∈[1,ψk] ∈ Zp. Suppose
an adversary is given X =

∀i∈[0,τ],j∈[1,ρi]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
i∏

i′=1

j∏
j′=1

(α+b2ti′
j′)

− γ, g

i∏
i′=1

j∏
j′=1

(α+b2ti′
j′)

,

g
b·

i∏
i′=1

j∏
j′=1

(α+b2ti′
j′)

, g
b2·

i∏
i′=1

j∏
j′=1

(α+b2ti′
j′)

,

w
b·

i∏
i′=1

j∏
j′=1

(α+b2ti′
j′)

, e(g, g)
α·

i∏
i′=1

j∏
j′=1

(α+b2ti′
j′)

∀k∈[0,τ],m∈[1,ψk]

⎧
⎪⎨

⎪⎩

IDkm
, g−tkm , (gbIDkm w)tkm , 1

α+b2tkm
− γ,

g
(α+b2tkm)·

k∏
k′=1

ρ′
k∏

m′=1
(α+b2tk′

m′)

gs

∀�∈[1,q] (g
b·

τ∏
i=1

ρi∏
j=1

(α+b2tij
)

)s� , (g
b2·

τ∏
i=1

ρi∏
j=1

(α+b2tij
)·ID�

wb)s�

Broadcast Encryption with Both Temporary and Permanent Revocation 481

such that

{IDkm
}k∈[0,τ],m∈[1,ψk] \

({IDij
}i∈[0,τ],j∈[1,ρi] ∪ {ID�}�∈[1,q]

)
= ∅

Then it must be hard to distinguish

T = e(g, g)
αs·

τ∏
i=1

ρi∏
j=1

(α+b2tij
)

from a random element R ∈ GT . An algorithm A that outputs z ∈ {0, 1} has
advantage ε in solving the (n − q)-Decisional problem in G if

Advnqd(n, q,A) := |Pr[A(X, T)] − Pr[A(X, R)]| ≥ ε

We say that the (n − q)-Decisional Assumption holds if no poly-time algorithm
has a non-negligible advantage in solving the (n − q)-Decisional problem.

It is clear that the (n−q) DA is equivalent to breaking the broadcast encryp-
tion scheme. However, showing that it is an instance of the DH-MEA requires to
present it using the terminology of Definition 1 as a (Z,P,Q, f) mixed exponent
problem (denoting w = gω).

Z = {∀ i∈[0,τ]
j∈[1,ρi]

1
i∏

i′=1

j∏

j′=1

(α + b2ti′
j′)

− γ}

P = {1, s}

∪ {∀ i∈[0,τ]
j∈[1,ρi]

i∏

i′=1

j∏

j′=1

(α + b2ti′
j′), b ·

i∏

i′=1

j∏

j′=1

(α + b2ti′
j′),

ωb ·
i∏

i′=1

j∏

j′=1

(α + b2ti′
j′), b2 ·

i∏

i′=1

j∏

j′=1

(α + b2ti′
j′)}

∪ {∀ k∈[0,τ]
m∈[1,ψk]

−tkm
, (bIDkm

+ ω)tkm
, (α + b2tkm

) ·
k∏

k′=1

ρ′
k∏

m′=1

(α + b2tk′
m′)}

∪ {∀�∈[1,q]

(
b ·

τ∏

i=1

ρi∏

j=1

(α + b2tij
)
)
s�,

(
b2 ·

τ∏

i=1

ρi∏

j=1

(α + b2tij
) · ID� + ωb

)
s�}

Q = {1}

∪ {∀ i∈[0,τ]
j∈[1,ρi]

α ·
i∏

i′=1

j∏

j′=1

(α + b2ti′
j′)}

and f = αs ·
τ∏

i=1

ρi∏

j=1

(α + b2tij
).

The maximum degree of f and of any polynomial in P,Q is 3n + 3 and
the number of polynomials in each of P and Q is at most 2q + 3n + 3(n − q).

482 D. Brownstein et al.

Therefore, by Corollary 1 if we prove that f is independent of (Z,P,Q) we are
done since to have a noticeable advantage in the security game the adversary
must make an exponential number of oracle queries.

Since f = αs ·
τ∏

i=1

ρi∏

j=1

(α + b2tij
) is a product of terms including s and s

appears in a single polynomial in Z,P or Q that polynomial, which is s itself,
must be part of any combination of elements that is equal to f . Any function

of a single element in Z is not equal to
ρi∏

j=1

(α + b2tij
) due to the masking by

γ. A function of two elements or more from Z can remove γ but at the cost
of creating sums of elements in Z such that again any function on them is not

equal to
ρi∏

j=1

(α + b2tij
).

Therefore, producing
ρi∏

j=1

(α+b2tij
) must use a linear combination of elements

of P which will then be multiplied with s. Note that the coefficients of the
polynomials of P can be arbitrary functions of Z. The only useful polynomials

in P for this purpose are of the form (α + b2tkm
) ·

k∏

k′=1

ρ′
k∏

m′=1

(α + b2tk′
m′). There

are two cases:

1. tkm
corresponds to a temporarily revoked user. We show that sb2tkm

cannot
be realized. In order to realize that term we have two cases:
(a) Use

(
b2 ·

τ∏

i=1

ρi∏

j=1

(α + b2tij
) · ID� + ωb

)
s�

However, this creates a wbs� term that can only be canceled by a prod-

uct of (bIDkm
+ ω)tkm

and (b ·
τ∏

i=1

ρi∏

j=1

(α + b2tij
)s�). In turn, this creates

a b2tkm
term that can only be canceled by a product of (−tkm

) and
(
b2 ·

τ∏

i=1

ρi∏

j=1

(α + b2tij
) · ID� + ωb

)
s�. This leads us to b2s�tkm

(IDkm
−

ID�). Since tkm
corresponds to a temporarily revoked user, there exists

an in [1, q] such that IDkm
= ID� and b2s�tkm

cannot be realized. Since
s =

∑
s�, sb2tkm

cannot be realized.
(b) Use (bIDkm

+ ω)tkm
. This case is symmetric to the previous case.

2. tkm
corresponds to a permanently revoked user. We note that the product

ρ′
k∏

m′=1

(α + b2tk′
m′) cannot be altered to include the term (α + b2tkm

) which

is part of
τ∏

i=1

ρi∏

j=1

(α + b2tij
) since tkm

corresponds to a permanently revoked

user. To see why that is the case, it might be easier to denote 1
(α+b2tij

) − γ

by xij . In this representation, the task is to calculate 1
(xij−γ)2 from the pair

(xij ,
1

(xij−γ)). Recall that xij ∈ Z, 1
(xij−γ) ∈ P and since it is only possible

to do additions of elements in P , knowing xij is of no value.

Broadcast Encryption with Both Temporary and Permanent Revocation 483

It follows from Corollary 1, that in order to break the assumption with non-
negligible probability, the adversary must make at least O(

√
p/n) queries.

References

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. IACR Cryptology ePrint Archive 2005:15 (2005)

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption
with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). doi:10.1007/11535218 16

[CGI+99] Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.:
Multicast security: a taxonomy and some efficient constructions. In: INFOCOM,
pp. 708–716. IEEE (1999)

[CMN99] Canetti, R., Malkin, T., Nissim, K.: Efficient communication-storage trade-
offs for multicast encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol.
1592, pp. 459–474. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 32

[DF02] Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In:
Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-44993-5 5

[DP08] Delerablée, C., Pointcheval, D.: Dynamic threshold public-key encryption. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 317–334. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-85174-5 18

[DPP07] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys. In: Takagi,
T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575,
pp. 39–59. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73489-5 4

[FN93] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 40

[GST04] Goodrich, M.T., Sun, J.Z., Tamassia, R.: Efficient tree-based revocation in
groups of low-state devices. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 511–527. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 31

[GSW00] Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In:
Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidel-
berg (2000). doi:10.1007/3-540-44598-6 21

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems
(with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479,
pp. 171–188. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 10

[LSW10] Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small
private keys. In: IEEE Symposium on Security and Privacy, pp. 273–285. IEEE
Computer Society (2010)

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for state-
less receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62.
Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 3

[NP10] Naor, M., Pinkas, B.: Efficient trace and revoke schemes. Int. J. Inf. Secur.
9(6), 411–424 (2010)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems. In:
Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer,
Heidelberg (1997). doi:10.1007/3-540-69053-0 18

http://dx.doi.org/10.1007/11535218_16
http://dx.doi.org/10.1007/3-540-48910-X_32
http://dx.doi.org/10.1007/978-3-540-44993-5_5
http://dx.doi.org/10.1007/978-3-540-85174-5_18
http://dx.doi.org/10.1007/978-3-540-73489-5_4
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/3-540-48329-2_40
http://dx.doi.org/10.1007/978-3-540-28628-8_31
http://dx.doi.org/10.1007/3-540-44598-6_21
http://dx.doi.org/10.1007/978-3-642-01001-9_10
http://dx.doi.org/10.1007/3-540-44647-8_3
http://dx.doi.org/10.1007/3-540-69053-0_18

Brief Announcement: Optimal Asynchronous
Rendezvous for Mobile Robots with Lights

Takashi Okumura1, Koichi Wada2(B), and Yoshiaki Katayama3

1 Graduate School of Science and Engineering,
Hosei University, Tokyo 184-8584, Japan
takashi.okumura.4e@stu.hosei.ac.jp

2 Faculty of Science and Engineering, Hosei University, Tokyo 184-8485, Japan
wada@hosei.ac.jp

3 Graduate School of Engineering, Nagoya Institute of Technology,
Nagoya 466-8555, Japan
katayama@nitech.ac.jp

Abstract. We study a Rendezvous problem for 2 autonomous mobile
robots in asynchronous settings with persistent memory called light. It
is well known that Rendezvous is impossible when robots have no lights
in basic common models, even if the system is semi-synchronous. On
the other hand, Rendezvous is possible if robots have lights with a con-
stant number of colors in several types of lights [4,10]. In asynchronous
settings, Rendezvous can be solved by robots with 3 colors of lights
in non-rigid movement and with 2 colors of lights in rigid movement,
respectively [10], if robots can use not only own light but also other
robot’s light (full-light), where non-rigid movement means robots may
be stopped before reaching the computed destination but can move a
minimum distance δ > 0 and rigid movement means robots always reach
the computed destination. In semi-synchronous settings, Rendezvous can
be solved with 2 colors of full-lights in non-rigid movement.

In this paper, we show that in asynchronous settings, Rendezvous can
be solved with 2 colors of full-lights in non-rigid movement if robots know
the value of the minimum distance δ. We also show that Rendezvous can
be solved with 2 colors of full-lights in non-rigid movement if we consider
some reasonable restricted class of asynchronous settings.

1 Introduction

The computational issues of autonomous mobile robots have been research object
in distributed computing fields. In particular, a large amount of work has been
dedicated to the research of theoretical models of autonomous mobile robots
[1,2,6,9]. In the basic common setting, a robot is modeled as a point in a
two dimensional plane and its capability is quite weak. We usually assume that
robots are oblivious (no memory to record past history), anonymous and uni-
form (robots have no IDs and execute identical algorithms) [3]. Robots operate in
Look-Compute-Move (LCM) cycles in the model. In the Look operation, robots
obtain a snapshot of the environment (locations of other robots) and they execute
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 484–488, 2017.
https://doi.org/10.1007/978-3-319-69084-1 36

Brief Announcement: Optimal Asynchronous Rendezvous 485

the same algorithm with the snapshot as an input in the Compute operation,
and move towards the computed destination in the Move operation. Repeating
these cycles, all robots perform a given task. It is difficult for these robot sys-
tems to accomplish the task to be completed. Revealing the weakest capability
of robots to attain a given task is one of the most interesting challenges in the
theoretical research of autonomous mobile robots.

Previous Results. In this paper, we focus on Rendezvous in asynchronous set-
tings and we reveal the weakest additional assumptions for Rendezvous. Table 1
shows results to solve Rendezvous by robots with lights in each scheduler and
movement restriction. In the table, full-light means that robots can see not only
lights of other robots but also their own light, and external-light and internal-
light mean that they can see only lights of other robots and only own light,
respectively. In the movement restriction, Rigid means that robots always reach
the computed destination. In Non-Rigid, robots may be stopped before reaching
the computed destination but move a minimum distance δ > 0. Non-Rigid(+δ)
means it is Non-Rigid and robots know the value δ.

Table 1. Rendezvous algorithms by robots with lights.

scheduler movement full-light[10] external-light[4] internal-light[4] no-light[3, 8]

FSYNC Non-Rigid ©

SSYNC
Non-Rigid 2 3 ?

×Rigid ? 6

Non-Rigid(+δ) ? 3

ASYNC
Non-Rigid 3 ? ? ×

Rigid 2 12 ?
Non-Rigid(+δ) ? 3 ?

Back slash indicates that this part has been solved in a weaker condition.
? means this part is not solved.

Our Contribution.
In this paper, we consider whether we can solve Rendezvous in ASYNC with
the optimal number of colors of light. In SSYNC, Rendezvous cannot be solved
with one color but can be solved with 2 colors in Non-Rigid and full-light. On
the other hand, Rendezvous in ASYNC can be solved with 3 colors in Non-Rigid
and full-light [10], with 3 colors in Non-Rigid(+δ) and external-light [4], and
with 12 colors in Rigid and internal-light [4], respectively.

In this paper we consider Rendezvous algorithms in ASYNC with the optimal
number of colors of light. We give a basic Rendezvous algorithm with 2 colors
of full-lights (A and B) and it can solve Rendezvous in ASYNC and Rigid and
its variant can also solve Rendezvous in ASYNC and Non-Rigid(+δ). These two
algorithms can behave correctly if the initial color of each robot is A. However
if the initial color of each robot is B, the algorithm cannot solve Rendezvous
in ASYNC and Rigid. It is still open whether Rendezvous can be solved with

486 T. Okumura et al.

2 colors in ASYNC and Non-Rigid, however we introduce some restricted class
of ASYNC called LC-atomic and we show that our basic algorithm can solve
Rendezvous in this scheduler and Non-Rigid with arbitrary initial color, where
LC-atomic ASYNC means we consider from the beginning of each Look opera-
tion to the end of the corresponding Compute operation as an atomic one, that
is, any robot cannot observe between the beginning of each Look operation and
the end of each Compute one in every cycle. This is a reasonable sufficient condi-
tion Rendezvous is solved with the optimal number of colors of light in ASYNC
and Non-Rigid.

2 Asynchronous Rendezvous Algorithms for Robots
with Lights

The details of the model of autonomous mobile robots and necessary terminolo-
gies and all proofs are included in [7].

Algorithm 1. Rendezvous (scheduler, movement, initial-light)
Parameters: scheduler, movement-restriction, Initial-light
Assumptions: full-light, two colors (A and B)
1: case me.light of
2: A:
3: if other.light =A then
4: me.light ← B
5: me.des ← the midpoint of me.position and other.position
6: else me.des ← other.position
7: B:
8: if other.light = A then
9: me.des ← me.position // stay
10: else me.light ← A
11: endcase

Algorithm 1 is used as a basic Rendezvous algorithm which has three para-
meters, schedulers, movement restriction and an initial color of light and assumes
full-light and uses two colors A and B1.

Theorem 1. Rendezvous(ASYNC, Rigid, A) solves Rendezvous. That is, Ren-
dezvous can be solved in ASYNC and Rigid movement with 2 colors if the initial
configuration is predetermined.

LC-atomic ASYNC and Non-Rigid Movement
Algorithm 1 belongs to the class L [10], where an algorithm is in L if every
destination and every next color of light computed in the algorithm depend only

1 This algorithm is essentially the same as Algorithm 1 in [10].

Brief Announcement: Optimal Asynchronous Rendezvous 487

on the current colors of the two robot’s lights. It is shown in [10] that there is no
algorithm of class L that solves Rendezvous using 2 colors, in ASYNC and Non-
Rigid movement even assuming that both robots are set to a predetermined color
in the initial configuration, and Rendezvous can be solved with an L algorithm
using 3 colors in ASYNC and Non-Rigid movement regardless of the colors in
the initial configuration. We show a sufficient condition of scheduler (LC-atomic
ASYNC) in which Algorithm 1 (an L algorithm) solves Rendezvous with 2 colors
in ASYNC and Non-Rigid movement from any initial configuration.

Theorem 2. Rendezvous(LC-atomic ASYNC, Non-Rigid, any) solves Ren-
dezvous. That is, Rendezvous can be solved by an L-algorithm in LC-atomic
ASYNC and Rigid movement with 2 colors regardless of the initial configuration.

ASYNC and Non-Rigid Movement (+δ)
Although it is still open whether asynchronous Rendezvous can not be solved in
Non-rigid with two colors of lights, if we assume Non-Rigid(+δ), we can solve
Rendezvous modifying Rendezvous(ASYNC, Non-Rigid(+δ), A) and using the
minimum moving value δ in it (Algorithm 2).

Algorithm 2. RendezvousWithDelta (ASYNC, Non-Rigid(+δ), A)
Assumptions: full-light, two colors (A and B)

1: case dis(me.position, other.position)(= DIST) of
2: DIST > 2δ:
3: if me.light =other.light =B then
4: me.des ← the point moving by δ/2 from me.position to other.position
5: else me.light ← B
6: 2δ ≥ DIST ≥ δ:
7: if me.light = other.light = A then
8: me.light ← B
9: me.des ← the midpoint of me.position and other.position
10: else me.light ← A
11: δ > DIST : //Rendezvous(ASYNC, Rigid, A)
12: case me.light of
13: A:
14: if other.light =A then
15: me.light ← B
16: me.des ← the midpoint of me.position and other.position
17: else me.des ← other.position
18: B:
19: if other.light = A then me.des ← me.position // stay
20: else me.light ← A
21: endcase
22: endcase

488 T. Okumura et al.

Theorem 3. RedezvousWithDelta(ASYNC, Non-Rigid(+δ), A) solves Ren-
dezvous. That is, Rendezvous can be solved in ASYNC and Non-Rigid move-
ment with 2 colors if robots know the value δ and the initial configuration is
predetermined.

3 Concluding Remarks

We have shown that Rendezvous can be solved in ASYNC with the optimal
number of colors of lights if Non-Rigid(+δ) movement is assumed. We have
also shown that Rendezvous can be solved by an L-algorithm in ASYNC and
Non-Rigid with the optimal number of colors of lights if ASYNC is LC-atomic.
Interesting open problems are whether can Rendezvous be solved in ASYNC and
Non-Rigid with 2 colors or not2, and what condition of ASYNC can L-algorithms
be solved in Non-Rigid with 2 colors?

Acknowledgment. This work is supported in part by KAKENHI no. 17K00019 and
15K00011.

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM J. Comput. 36, 56–82 (2006)

2. Défago, X., Gradinariu Potop-Butucaru, M., Clément, J., Messika, S., Raipin
Parvédy, P.: Fault and byzantine tolerant self-stabilizing mobile robots gathering
- feasibility study -. CoRRabs/1602.05546 (2016)

3. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by oblivious mobile
robots. Synth. Lect. Distrib. Comput. Theor. 10, 1–171 (2012). Morgan & Clay-
pool

4. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous with constant
memory. Theoret. Comput. Sci. 621, 57–72 (2016)

5. Heriban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. Research
report, HAL Id: hal-01575451, UPMC Sorbonne Universités, August 2017

6. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. Comput. 41(1), 26–46 (2012)

7. Okumura, T., Wada, K., Katayama, Y.: Optimal asynchronous rendezvous for
mobile robots with lights. Technical report, arXiv:1707.04449v1, July 2017

8. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theoret. Comput. Sci. 384(2–3), 222–231 (2007)

9. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of
geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

10. Viglietta, G.: Rendezvous of two robots with visible bits. Technical report,
arXiv:1211.6039 (2012)

2 Very recently it has been solved affirmatively [5].

http://arxiv.org/abs/1707.04449v1
http://arxiv.org/abs/1211.6039

Brief Announcement: Space-Efficient Uniform
Deployment of Mobile Agents in Asynchronous

Unidirectional Rings

Masahiro Shibata1(B), Hirotsugu Kakugawa2, and Toshimitsu Masuzawa2

1 Department of Computer Science and Electronics, Kyushu Institute of Technology,
680-4, Kawatsu, Iizuka, Fukuoka 820-8502, Japan

shibata@cse.kyutech.ac.jp
2 Graduate School of Information Science and Technology, Osaka University,

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
{kakugawa,masuzawa}@ist.osaka-u.ac.jp

1 Introduction

In this paper, we consider the uniform deployment problem (or the uniform scat-
tering problem) of mobile agents in ring networks, which requires agents initially
deployed at arbitrary nodes to spread uniformly in the ring. As related works,
Flocchini et al. [1] and Yotam and Alfred [2] considered the uniform deployment
problem in ring networks, and Barriere et al. [3] considered it in grid networks.
All of them proposed uniform deployment algorithms under the assumption that
agents are oblivious (or memoryless) but can observe multiple nodes within its
visibility range. This assumption is often called a Look-Compute-Move model.
On the other hand, Shibata et al. [4] considered the uniform deployment prob-
lem in asynchronous unidirectional ring networks for agents that have memory
but cannot observe nodes except for the nodes that they are currently visiting.
They considered two problem settings: agents with knowledge of k and agents
without knowledge of k, where k is the number of agents. For the first (resp.,
second) model, they proposed two (resp., one) algorithms to solve the problem.

In this paper, we consider the uniform deployment problem in unidirectional
asynchronous ring networks. Similarly to [4], we consider agents that have mem-
ory but cannot observe nodes except for the nodes they are visiting. In this
paper, we focus on the memory space per agent required to solve the problem.
We also analyze the time complexity and the total moves. We assume that agents
have knowledge of k and each agent initially has a token and can release it on
the node it is visiting. After a token is released at some node, agents cannot
remove the token. In Table 1, we compare our contributions with the results for
agents with knowledge of k in [4]. Note that, agents in [4] were assumed to have
communication capability, that is, they can send a message to the agents at the
same node. However, in this paper we assume that agents do not have such abil-
ity. We consider two problem settings. At first, we consider agents without weak
multiplicity detection, that is, agents cannot detect whether there exists another
agent or not at the current node. In this model, we show that each agent requires
c© Springer International Publishing AG 2017
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, pp. 489–493, 2017.
https://doi.org/10.1007/978-3-319-69084-1 37

490 M. Shibata et al.

Table 1. Results for agents with knowledge of k

First result in [4] Second result in [4] Model 1 Model 2

Communication Available Available Not Available Not Available

Weak multiplicity
detection

Required Required Not Required Required

Agent memory O(k log n) O(logn) O(k + log n) O(log k + log log n)

Time complexity Θ(n) O(n log k) O(n log k) O(n2 logn)

Total moves Θ(kn) Θ(kn) O(kn log k) O(kn2 logn)

n: the number of nodes, k: the number of agents

Ω(log n) memory space to solve the problem, where n is the number of nodes.
In addition, we propose an algorithm to solve the uniform deployment problem
with O(k + log n) memory space per agent, O(n log k) time, and O(kn log k)
total moves. Next, we consider agents with the weak multiplicity detection, that
is, agents can detect whether there exists another agent at the current node or
not, but cannot get the exact number of the agents. Then, our proposed algo-
rithm reduces the memory requirement per agent to O(log k+log log n), but uses
O(n2 log n) time and O(kn2 log n) total moves. To the best of our knowledge,
this is the first research considering the effect of the weak multiplicity detection
on the memory space required to solve problems.

2 Agents Without Weak Multiplicity Detection

In this section, we consider the uniform deployment problem for agents without
weak multiplicity detection. First, for these agents we can show the following
lower bound of memory requirement per agent.

Theorem 1. For agents without weak multiplicity detection, a lower bound on
the memory requirement per agent to solve the uniform deployment problem is
Ω(log n).

Next, we propose an algorithm to solve the uniform deployment problem
with O(k + log n) memory space per agent, O(n log k) time, and O(kn log k)
total moves. The algorithm consists of two phases as do the two algorithms in
[4]: the selection phase and the deployment phase. In the selection phase, agents
select some base nodes, which are the reference nodes for uniform deployment. In
the deployment phase, based on the base nodes, each agent determines a target
node where it should stay and moves to the node. In this paper, we mainly
explain the selection phase.

In the selection phase, some home nodes (the nodes agents are initially
located at) are selected as the base nodes to satisfy the following three con-
ditions called the base node conditions [4]: (1) There exists at least one base
node, (2) the distance between every pair of adjacent base nodes is the same,
and (3) the number of home nodes between every pair of adjacent base nodes

Brief Announcement: Space-Efficient Uniform Deployment of Mobile Agents 491

(a) (b)

Fig. 1. (a): Home nodes of a1, a2, and a3 satisfy the base node conditions since
every part between them has the same distance and the same number of home nodes.
(b): An ID of an active agent ai (vj and v′

j are active and v� and v′
� are followers)

is the same. An example of base nodes is shown in Fig. 1 (a). We call an agent
a leader (but probably not unique) when its home node is selected as a base
node, and call it a follower otherwise. The state of an agent is active, leader
or follower. Active agents are candidates for leaders, and initially all agents are
active. Once an agent becomes a follower or a leader, it never changes its state.
In the following, we say that node v is active (resp., follower) when v is the home
node of an active (resp., a follower) agent.

The selection phase consists of at most 2�log k� sub-phases. In each sub-
phase, agents use IDs and decrease the number of active agents. Let vHOME(ai)
be the ai’s home node. Then, each active agent ai is assigned an ID, IDi =
(di, fNumi), where di denotes the distance from vHOME(ai) to the next active
node, say vnext, and fNumi is the number of followers between vHOME(ai) and
vnext (Fig. 1 (b)). Each agent manages the state of every agent by a boolean
array isActivenow[0..k − 1]. In each sub-phase, each active agent ai travels once
around the ring. During the traversal, ai gets its own ID IDi and compares it
with other IDs of active agents one by one. If all the active agents have the
same IDs, their home nodes satisfy the base node conditions. Hence, the active
agents become leaders and all agents enter to the deployment phase. If IDi is
the maximum, ai remains active and executes the next sub-phase. Otherwise, ai

becomes a follower and simulates the behavior of the nearest active agent in the
following sub-phases. Agents execute such a sub-phase until the base nodes are
selected.

In the deployment phase, each agent moves to its target node based on the
base nodes. When all agents move to their target nodes, the finial configuration
is a solution of the uniform deployment problem. We have the following theorem
for the proposed algorithm in Sect. 2.

Theorem 2. For agents without weak multiplicity detection, our proposed algo-
rithm solves the uniform deployment problem with O(k + log n) memory space
per agent, O(n log k) time, and O(kn log k) total moves.

492 M. Shibata et al.

3 Agents with Weak Multiplicity Detection

In this section, we consider agents with weak multiplicity detection, and propose
an algorithm to solve the uniform deployment problem that reduces the memory
requirement per agent to O(log k + log log n), but uses O(n2 log n) time and
O(kn2 log n) total moves. The algorithm consists of three phases: the selection
phase, the collection phase, and the deployment phase. In the selection phase,
agents select the base nodes similarly to Sect. 2. In the collection phase, agents
move in the ring so that they stay at nodes consecutively following the base
nodes. In the deployment phase, agents determine their target nodes and move
to the nodes.

In the selection phase, some home nodes are selected as base nodes similarly
to Sect. 2. The basic idea is the same as that in Sect. 2, that is, agents use IDs
created from the distances and the number of followers between active nodes
and decrease the number of active agents using the IDs. However, compared
with the algorithm in Sect. 2, memory space for the selection phase is reduced to
O(log k + log log n) from O(k + log n). We use two techniques for the reduction:
(i) A follower remains at its home node and informs an active agent of its state
using the weak multiplicity detection: when an agent is detected at a node with
a token (actually at its home node), it is recognized as a follower. This makes
it possible to improve memory space from O(k) since the algorithm in Sect. 2 is
not allowed such communication and requires O(k) memory space per agent to
maintain the states of all agents. (ii) Comparison between distances in IDs are
carried out using Chinese Remainder Theorem (CRT) [5]: to satisfy the base node
condition, what the selection phase has to guarantee is that the leaders should
have the same ID. The CRT allows improvement of memory space from O(log n).
The CRT says that for two positive integers n1 and n2 (n1, n2 < n), if their
remainders of the integer division by each of prime numbers 2, 3, 5, . . . , log2 n is
the same, then n1 = n2 holds. Agents use this theorem and compute distance
between several token nodes. Agents use the above two techniques and get IDs
(e.g., Fig. 2).

Fig. 2. An ID of an active agent ai (the prime number is 3 and v� and v′
� are followers)

In the collection phase, leader agents instruct follower agents so that they
should move to and stay at nodes near the base nodes. When all agents finish
their movements, the agents are divided into groups (possibly only one group)
such that agents in the same group are deployed at consecutive nodes starting

Brief Announcement: Space-Efficient Uniform Deployment of Mobile Agents 493

from a base node. In the deployment phase, leader agents inform follower agents
of the nodes they should stay at to achieve the uniform deployment. When all
agents finish their movements, the final configuration is a solution of the uniform
deployment problem. We have the following theorem in Sect. 3.

Theorem 3. For agents with weak multiplicity detection, our proposed algo-
rithm solves the uniform deployment problem with O(log k + log log n) memory
space per agent, O(n2 log n) time, and O(kn2 log n) total moves.

References

1. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a ring.
Theoret. Comput. Sci. 402(1), 67–80 (2008)

2. Yotam, E., Alfred, B.M.: Uniform multi-agent deployment on a ring. Theoret. Com-
put. Sci. 412(8), 783–795 (2011)

3. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of
autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(03), 679–697
(2011)

4. Shibata, M., Mega, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Uniform deploy-
ment of mobile agents in asynchronous rings. In: PODC, pp. 415–424 (2016)

5. Apostol, T.M.: Introduction to Analytic Number Theory. Springer Science & Busi-
ness Media, Heidelberg (2013)

Erratum to: Brief Announcement: Federated
Code Auditing and Delivery for MPC

Frederick Jansen, Kinan Dak Albab, Andrei Lapets,
and Mayank Varia

Erratum to:
Chapter “Brief Announcement: Federated Code Auditing
and Delivery for MPC” in: P. Spirakis and P. Tsigas (Eds.):
Stabilization, Safety, and Security of Distributed
Systems, LNCS 10616,
https://doi.org/10.1007/978-3-319-69084-1_20

The original version of the paper starting on p. 298 was revised. An acknowledgement
has been added. The original article was corrected.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-69084-1_20

© Springer International Publishing AG 2018
P. Spirakis and P. Tsigas (Eds.): SSS 2017, LNCS 10616, p. E1, 2017.
https://doi.org/10.1007/978-3-319-69084-1_38

https://doi.org/10.1007/978-3-319-69084-1_20
https://doi.org/10.1007/978-3-319-69084-1_20

Author Index

Albab, Kinan Dak 298
Anceaume, Emmanuelle 456

Beauquier, Joffroy 46
Bernard, Thibault 46
Bhagat, Subhash 341
Bonakdarpour, Borzoo 219
Brownstein, Dan 469
Burchert, Conrad 361
Burman, Janna 46

Chatterjee, Shankha 78
Chatzigiannakis, Ioannis 33
Chen, Lin 282
Cohen, Johanne 46
Cordasco, Gennaro 384
Crandall, Jedidiah 426

Datta, Ajoy K. 18, 303
De Carufel, Jean-Lou 126
Decker, Christian 361
Dolev, Shlomi 469
Dornhaus, Anna 157

Ewing, Ryan 405

Faghih, Fathiyeh 219
Feldmann, Michael 250
Flocchini, Paola 126

Gao, Zhimin 282
Gargano, Luisa 384
Gilboa, Niv 469
Gillet, Noël 308
Golab, Wojciech 78
Gotoh, Tsuyoshi 234

Hanusse, Nicolas 308

Inoue, Michiko 93

Jansen, Frederick 298

Kakugawa, Hirotsugu 234, 378, 489
Katayama, Yoshiaki 484

Kelsey, John 410
Kijima, Shuji 172
Kobayashi, Hisaki 378

Lamprou, Ioannis 441
Lapets, Andrei 298
Larmore, Lawrence L. 303
Laveau, Marie 46
Lenzen, Christoph 187
Lu, Yang 282
Ludinard, Romaric 456
Lynch, Nancy 157

Manoussakis, George 46
Mansour, Ahmed B. 399
Martin, Russell 441
Masuzawa, Toshimitsu 18, 234, 303,

378, 489
Medina, Moti 187
Mell, Peter 410
Monde, Akihiro 172
Mukhopadhyaya, Krishnendu 341

Okumura, Takashi 484
Ooshita, Fukuhito 18, 93, 234

Patt-Shamir, Boaz 1
Perry, Mor 1
Phan, Khai T. 405
Pilard, Laurence 46
Pires, Miguel 203
Potop-Butucaru, Maria 356, 456
Poudel, Pavan 323

Ravi, Srivatsan 203
Rodrigues, Rodrigo 203

Saia, Jared 426
Scheideler, Christian 250
Shah, Nolan 282
Sharma, Gokarna 265, 323
Shi, Weidong 282

Shibata, Masahiro 489
Shook, James 410
Solat, Siamak 356
Spirakis, Paul 33, 441
Starobinski, David 405
Su, Hsin-Hao 157
Su, Lili 157
Sudo, Yuichi 303

Talmage, Edward 142
Tixeuil, Sébastien 93
Trahan, Jerry L. 265
Tronel, Frédéric 456
Tseng, Lewis 109
Turau, Volker 62

Vaidyanathan, Ramachandran 265, 399
Varia, Mayank 298

Wada, Koichi 484
Wattenhofer, Roger 361
Wei, Shuangqing 399
Welch, Jennifer L. 142

Xin, Liangxiao 405
Xu, Lei 282

Yamashita, Masafumi 172
Yamauchi, Yukiko 172

Zamani, Mahdi 426

496 Author Index

	Preface
	Organization
	Contents
	Proof-Labeling Schemes: Broadcast, Unicast and in Between
	1 Introduction
	2 Model and Preliminaries
	3 Techniques for the MCAST Model
	4 Verification Complexity Trade-Offs in the MCAST(r) Model
	4.1 Verification of Matchings
	4.2 The Edge Agreement Problem
	4.3 An Advanced Example: The Maximum Flow Problem

	5 Verification in Congested Cliques
	5.1 Crossing in Congested Cliques
	5.2 Minimum Spanning-Tree Verification

	6 Conclusion
	References

	Self-stabilizing Rendezvous of Synchronous Mobile Agents in Graphs
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Our Contributions
	1.4 Outline

	2 Preliminaries
	2.1 Network and Agents
	2.2 Self-stabilizing Rendezvous

	3 A Self-stabilizing Rendezvous Algorithm for Arbitrary Graphs
	4 A Polynomial-Time Self-stabilizing Rendezvous Algorithm for Trees
	5 A Polynomial-Time Self-stabilizing Rendezvous Algorithm for Rings
	6 Extension to Gathering of More Than Two Agents
	7 Conclusions
	References

	The Dynamics and Stability of Probabilistic Population Processes
	1 Introduction
	2 The General Model (Switching Probabilistic Processes -- SPP)
	2.1 SPP Includes the Probabilistic Population Protocols

	3 Stability of Nonlinear Dynamic Systems: A Sufficient Condition for Decidability
	4 Switching Population Processes with Specifications Independent of the Configuration
	5 A Special Case of Random Pairing Population Protocols (Linear Viral Processes -- LVP)
	6 Conclusions
	References

	Self-stabilizing Distributed Stable Marriage
	1 Introduction
	1.1 Historical Background
	1.2 Overview of Results

	2 Model
	3 Self-stabilizing Solution to Stable Marriage
	3.1 Algorithm Description and Code

	4 Proof of Correctness and Time Complexity
	References

	Computing the Fault-Containment Time of Self-Stabilizing Algorithms Using Markov Chains and Lumping
	1 Introduction
	2 Related Work
	3 System Model
	4 Contamination Radius
	5 Containment Time
	5.1 Lumpable Markov Chains
	5.2 Example

	6 Algorithm Acol
	7 Fault Containment Time of Algorithm Acol
	7.1 Message Corruption
	7.2 Memory Corruption

	8 Conclusion
	References

	Self-tuning Eventually-Consistent Data Stores
	1 Introduction
	2 Background and Definitions
	3 Spectral Shifting
	3.1 Inner-Outer Consistency
	3.2 Adaptive Tuning Framework

	4 Experimental Evaluation
	5 Related Work
	6 Discussion and Conclusion
	References

	An Efficient Silent Self-stabilizing 1-Maximal Matching Algorithm Under Distributed Daemon for Arbitrary Networks
	1 Introduction
	1.1 Background
	1.2 Related Works
	1.3 Our Contribution

	2 Preliminaries
	3 Algorithm
	3.1 MM1D
	3.2 MM1DG

	4 Correctness
	5 Conclusion
	References

	An Improved Approximate Consensus Algorithm in the Presence of Mobile Faults
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Models and Round-Based Algorithms
	3.2 Notation
	3.3 Correctness of Round-Based Approximate Algorithms

	4 Algorithm CC
	4.1 Algorithm Specification
	4.2 Reduce Function

	5 Analysis
	5.1 Key Properties of V
	5.2 Correctness

	6 Impossibility Result
	7 Conclusion
	References

	Fault-Induced Dynamics of Oblivious Robots on a Line
	1 Introduction
	2 Preliminaries
	2.1 Model and Notation
	2.2 Background Results: Point-Convergence and Scattering

	3 Robots' Dynamics in Presence of Two Faults
	3.1 Basic Properties
	3.2 Convergence of Mutual Chains

	References

	Relaxed Data Types as Consistency Conditions
	1 Introduction and Background
	2 Model
	2.1 Data Types
	2.2 Consistency Conditions

	3 Relaxed Data Types
	4 Converting Relaxations to Consistency Conditions
	5 Consistency Condition to Relaxation
	5.1 k-Atomicity

	6 Placing New Consistency Conditions
	7 Conclusion and Future Work
	References

	Ant-Inspired Dynamic Task Allocation via Gossiping
	1 Introduction
	1.1 The Model
	1.2 Problem Formulation
	1.3 Our Contribution
	1.4 Related Work
	1.5 Organization

	2 The Move-and-Fill Algorithm
	3 The Token Passing Algorithm
	3.1 The First Variant
	3.2 The Second Variant

	4 The Ranking Algorithm
	4.1 The First Variant
	4.2 The Second Variant

	5 Open Problems Motivated by This Work
	References

	Self-stabilizing Localization of the Middle Point of a Line Segment by an Oblivious Robot with Limited Visibility
	1 Introduction
	1.1 Background
	1.2 Problem: Localization of the Midpoint
	1.3 Our Results
	1.4 Related Works

	2 Problem Description
	2.1 Self-stabilizing Localization of the Midpoint by a Robot
	2.2 Formal Description of the Problem

	3 Relaxation 1: Convergence
	3.1 Preliminary
	3.2 Proof of Theorem1

	4 Relaxation 2: D Is Rational
	5 Relaxation 3: With a Single-Bit Memory
	6 Impossibility of a Symmetric Algorithm
	7 Concluding Remark
	References

	Robust Routing Made Easy
	1 Introduction
	2 High-Level Overview
	3 Preliminaries
	4 Strong Reinforcement Under Byz(p)
	5 Strong Reinforcement Under Om(p)
	6 More Efficient Reinforcement
	6.1 A Toy Example
	6.2 Partitioning the Graph
	6.3 Simulation Under Om(p)
	6.4 Simulation Under Byz(p)

	7 Discussion
	8 Conclusion
	References

	Generalized Paxos Made Byzantine (and Less Complex)
	1 Introduction
	2 Background and Related Work
	2.1 Paxos and Its Variants
	2.2 Byzantine Fault Tolerant Replication

	3 Model
	4 Protocol
	4.1 Overview
	4.2 View-Change
	4.3 Agreement Protocol
	4.4 Classic Ballots
	4.5 Fast Ballots
	4.6 Correctness

	5 Conclusion and Discussion
	References

	ASSESS: A Tool for Automated Synthesis of Distributed Self-stabilizing Algorithms
	1 Introduction
	2 Model of Computation
	2.1 Distributed Programs
	2.2 Predicates
	2.3 Topology

	3 Synthesis of Distributed Self-stabilizing Systems
	3.1 The Functional Behavior
	3.2 The Problem of Synthesizing Self-stabilizing Protocols

	4 Tool Description
	4.1 Input to the Tool
	4.2 SMT-Based Synthesis
	4.3 Output of the Tool

	5 Selected Case Studies and Experimental Results
	5.1 Maximal Matching
	5.2 The Three-Coloring Problem

	6 Related Work
	7 Conclusion
	References

	How to Simulate Message-Passing Algorithms in Mobile Agent Systems with Faults
	1 Introduction
	2 Preliminaries
	2.1 Network
	2.2 Message-Passing Model
	2.3 Mobile Agent Model

	3 Agent-Based Simulation of Message-Passing Algorithms
	3.1 A Case of a Finite Number of Messages
	3.2 A Case of an Infinite Number of Messages

	4 Conclusion
	References

	A Self-stabilizing General De Bruijn Graph
	1 Introduction
	1.1 Model
	1.2 Related Work
	1.3 Our Contribution

	2 Topology and Routing
	2.1 Classical De Bruijn Graphs and Hashing
	2.2 Base Construction
	2.3 Routing

	3 The BuildQDeBruijn Protocol
	3.1 Node Variables
	3.2 List Edges
	3.3 Q-Neighborhood
	3.4 Standard De Bruijn Edges
	3.5 General De Bruijn Edges
	3.6 Join and Leave

	4 Protocol Analysis
	5 Conclusion and Future Work
	References

	Constant-Time Complete Visibility for Asynchronous Robots with Lights
	1 Introduction
	2 Model and Preliminaries
	3 Beacon-Directed Curve Positioning
	4 O(1)-Time ASYNC COMPLETE VISIBILITY Algorithm
	References

	On Security Analysis of Proof-of-Elapsed-Time (PoET)
	1 Introduction
	2 Blockchain and PoET with Trusted Computing
	2.1 Blockchain and Proof-of-Work
	2.2 Proof of Elapsed Time

	3 Preliminaries
	4 Abstract Model of PoET
	5 Security Analysis of PoET
	5.1 Discussion on Fixed Probability Distributions
	5.2 Discussion on the Probability Distribution in Sawtooth Lake

	6 Related Works
	7 Conclusion
	References

	Brief Announcement: Federated Code Auditing and Delivery for MPC
	1 Introduction
	2 Related Work
	3 The Secure Multi-Party Computation Ecosystem
	4 Implementation
	5 Discussion and Future Work
	References

	Brief Announcement: Reduced Space Self-stabilizing Center Finding Algorithms in Chains and Trees
	1 Introduction
	2 Preliminaries
	3 Center_Chain
	4 Center_Tree
	5 Sync(P)
	References

	A Fully Asynchronous and Fault Tolerant Distributed Algorithm to Compute a Minimum Graph Orientation
	1 Introduction
	1.1 The Minimum Orientation of Bi-directed Graphs
	1.2 The Distributed Model
	1.3 Our Contribution
	1.4 Related Works

	2 Preliminaries
	2.1 Basic Definitions and Notations
	2.2 The Minimum Orientation Problem for Faulty Networks

	3 The Algorithm AvgDegAsync
	3.1 The Peeling Process
	3.2 Main Issues in the Asynchronous Model with Faults
	3.3 Description of Algorithm AvgDegAsync

	4 Analysis
	4.1 Preliminaries
	4.2 Approximation
	4.3 Completion Time
	4.4 Memory and Messages

	5 Conclusion and Perspectives
	References

	Universally Optimal Gathering Under Limited Visibility
	1 Introduction
	2 Model and Preliminaries
	3 O(DE) Time Algorithm for the Grid
	4 O(DE) Time Algorithm for the Euclidean Plane
	5 Gathering Under One-Axis Agreement
	6 Concluding Remarks
	References

	Optimum Algorithm for Mutual Visibility Among Asynchronous Robots with Lights
	1 Introduction
	1.1 Earlier Works
	1.2 Our Contribution

	2 Model and Definitions
	3 Algorithm MutualVisibility()
	3.1 States of a Robot
	3.2 Different Actions of a Robot
	3.3 Eligible Robots for Movements
	3.4 Computation of Destination Point
	3.5 Correctness

	4 Conclusion
	References

	Brief Announcement: ZeroBlock: Timestamp-Free Prevention of Block-Withholding Attack in Bitcoin
	1 Introduction
	2 ZeroBlock Algorithm
	References

	Scalable Funding of Bitcoin Micropayment Channel Networks
	1 Introduction
	1.1 Challenges

	2 Ingredients
	2.1 Blockchain Transactions
	2.2 Micropayment Channels
	2.3 Transaction Replacement Using Timelocks
	2.4 Transaction Replacement Using Punishments

	3 Channel Factories
	3.1 Replaceable Allocations
	3.2 Settlement
	3.3 Moving Funds
	3.4 Splice Out
	3.5 Higher Order Systems
	3.6 Risks
	3.7 Signature Aggregation
	3.8 Fees

	4 Evaluation
	5 Related Work
	5.1 Payment Networks

	6 Conclusion
	A Appendix
	A.1 Coordination of Allocation Updates
	A.2 Scripts
	A.3 Two-Party Channel with Timelocks
	A.4 Multi-party Channel with Timelocks

	References

	Brief Announcement: A Self-stabilizing Algorithm for the Minimal Generalized Dominating Set Problem
	1 Introduction
	2 The Generalized Dominating Set Problem
	3 The Proposed Algorithm
	References

	Space-Optimal Proportion Consensus with Population Protocols
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement

	3 Related Work
	3.1 The 4-State Majority Protocol reviewed

	4 The Proportion Consensus Problem
	4.1 The Lower Bound
	4.2 The Proportion Consensus Protocol

	5 Conclusion
	References

	Brief Announcement: Asynchronous, Distributed, Optical Mutual Exclusion
	1 Introduction
	2 Base and Token Network
	3 Fair Network
	4 Concluding Remarks
	References

	Brief Announcement: Passive and Active Attacks on Audience Response Systems Using Software Defined Radios
	1 Introduction
	2 The Tools
	2.1 The HackRF One
	2.2 GNU Radio

	3 Reverse Engineering
	4 Sniffer Implementation
	4.1 Flowgraph Blocks
	4.2 GRC Implementation

	5 Results
	5.1 Sniffing
	5.2 Spoofing

	References

	Cryptocurrency Smart Contracts for Distributed Consensus of Public Randomness
	1 Introduction
	2 Previous and Related Work
	2.1 Entropy from the Environment
	2.2 Combining Randomness from Multiple Parties

	3 Background
	3.1 Merlin Chains

	4 Preliminary Approaches
	4.1 Block Hashes
	4.2 Adding a Producer of Randomness

	5 Single Producer Contract
	5.1 Single Producer Protocol
	5.2 Mitigated Security Flaws
	5.3 Residual Security Flaw

	6 Multiple Producer Contract
	7 Empirical Work
	8 Conclusion
	References

	TorBricks: Blocking-Resistant Tor Bridge Distribution
	1 Introduction
	1.1 Our Model
	1.2 Our Result

	2 Related Work
	3 Our Protocol
	3.1 Basic Protocol
	3.2 Some Modifications
	3.3 Privacy-Preserving Bridge Distribution

	4 Protocol Analysis
	5 Evaluation
	6 Conclusion and Open Problems
	References

	Cover Time in Edge-Uniform Stochastically-Evolving Graphs
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Outline

	2 Preliminaries
	3 The Edge-Uniform Evolution Model
	4 Cover Time with Zero-Step History
	4.1 Random Walk with a Delay
	4.2 Random Walk on What's Available

	5 Cover Time with One-Step History
	5.1 RWD for General (p,q)-Graphs via Mixing
	5.2 RWD and RWA for General (p,q)-Graphs via Min-Max
	5.3 RWA for Complete (p,q)-Graphs

	6 Further Work
	References

	Bitcoin a Distributed Shared Register
	1 Introduction
	2 Bitcoin Background
	3 Computing Model
	4 Background on Distributed Registers
	4.1 Classical Distributed Read-Write Registers
	4.2 Extension to Stabilising Distributed Registers
	4.3 Bitcoin and Distributed Shared Registers

	5 Distributed Ledger Register
	5.1 Specification of the Distributed Ledger Register
	5.2 Bitcoin and the Distributed Ledger Register

	6 Conclusions and Open Questions
	References

	Broadcast Encryption with Both Temporary and Permanent Revocation
	1 Introduction
	1.1 Contribution

	2 Preliminaries
	2.1 Revocation Systems
	2.2 Bilinear Maps
	2.3 Decision Diffie-Hellman Mixed Exponent Problem

	3 Public Key Revocation Scheme
	4 Security Analysis
	4.1 Generic Security of DH-MEA
	4.2 Security of the Broadcast Encryption System

	References

	Brief Announcement: Optimal Asynchronous Rendezvous for Mobile Robots with Lights
	1 Introduction
	2 Asynchronous Rendezvous Algorithms for Robots with Lights
	3 Concluding Remarks
	References

	Brief Announcement: Space-Efficient Uniform Deployment of Mobile Agents in Asynchronous Unidirectional Rings
	1 Introduction
	2 Agents Without Weak Multiplicity Detection
	3 Agents with Weak Multiplicity Detection
	References

	Erratum to: Brief Announcement: Federated Code Auditing and Delivery for MPC
	0 Erratum to: Chapter “Brief Announcement: Federated Code Auditing and Delivery for MPC” in: P. Spirakis and P. Tsigas (Eds.): Stabilization, Safety, and Security of Distributed Systems, LNCS 10616, https://doi.org/10.1007/978-3-319-69084-1_20

	Author Index

