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Chapter 8
An Ancestral Immune Surveillance System 
in the Amphibian Xenopus Connecting 
Certain Heat Shock Proteins with Classical 
and Nonclassical MHC Class I Molecules

Jacques Robert, Maureen Banach, and Eva-Stina Edholm

Abstract Studies in the amphibian Xenopus, a vertebrate species that diverged 
from a common ancestor with mouse and human more than 350 million years ago, 
provide evolutionary insights into the convergent roles of certain hsps such as gp96 
and HSP70 as well as classical and nonclassical MHC class I molecules in cancer 
immune surveillance. Evidence that in Xenopus gp96 and HSP70 can elicit potent 
antitumor responses dependent on antigen representation by nonclassical MHC 
class Ib molecules and presumably involving innate T cells suggests the existence 
of an ancestral immune surveillance system in antigen-presenting cells such as mac-
rophages integrating hsps with classical and nonclassical MHC molecules. The par-
ticular connection revealed in Xenopus between hsps and nonclassical MHC 
molecules presenting conserved patterns to innate T cells affords new avenues to 
develop therapeutic strategies against cancer.

Keywords Comparative immunology · Innate T cells · Tumor immunity · Evolution 
· Unconventional T cells

8.1  Introduction

Heat shock proteins (hsps) are evolutionarily ancient and highly conserved molecu-
lar chaperones constituting several multigenic families that are produced by all cell 
types and perform essential biological functions under normal as well as stressful 
physiological conditions [1]. Some of these hsps including gp96 (a member of the 
hsp90 family) and the cytosolic 70  kDa hsps or HSP70 (defining indistinctively 
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both the inducible hsp72 and the constitutively expressed hsc73) have received a lot 
of attention because of their potential use in tumor immunotherapy (reviewed in 
[2–4]). HSP70 and gp96 have been shown to elicit potent CD8 T-cell responses 
specific against the antigenic peptides they chaperone not only in humans and mice 
[5–7] but also in frogs [8, 9]. These hsp-mediated CD8 T-cell responses are MHC 
class I restricted and depend on the internalization of the hsp-antigen complexes by 
endocytic receptors such as the α2-macroglobulin receptor CD91 at the surface of 
antigen-presenting cells (APCs; [10, 11]). This is followed by the representation of 
chaperoned antigenic peptides by MHC class Ia molecules on APCs to CD8 T cells 
[7, 12, 13]. The functional connection between hsp chaperoning and MHC class I 
antigen presentation may have even further ramifications than previously thought 
considering that in addition to classical MHC class Ia (class Ia) a growing number 
of nonclassical MHC class Ib (class Ib) and class I-like gene have been character-
ized (reviewed in [14, 15]). Some of these class Ib genes encode proteins that are 
hypothesized to be indicators of intracellular stress and malignancy (reviewed in 
[16, 17]. The potential role of these class Ib molecules is of particular relevance in 
immune surveillance and recognition of aggressive class Ia low or negative tumor 
cells through their interaction with T-cell receptors and/or non-T-cell inhibitory or 
triggering receptors expressed by NK and unconventional T cells.

Focusing on two of the most conserved hsps, gp96 and hsp70, studies in the 
amphibian Xenopus have provided compelling evidence that the immunological 
properties of these molecular chaperones, especially their significant antitumor 
responses, have been conserved during evolution (Reviewed in [18]. Comparably, 
while nonclassical MHC class Ib genes in Xenopus do not share a direct common 
ancestor with their mammalian counterparts, some of these genes encode molecules 
with striking analogous functions including class Ib-restricted unconventional 
T-cell-mediated antitumor immune responses.

We review here recent advances using the amphibian Xenopus to explore the 
potential of an ancestral immune surveillance system composed of hsps such as 
gp96 and hsp70, endocytic receptors such as CD91 and classical and nonclassical 
MHC class I molecules.

8.2  The Xenopus Immune System

The immune system of the South African clawed frog Xenopus laevis exhibits all 
the basic elements of jawed vertebrate immunity. The primary immune organs thy-
mus and spleen and adaptive B- and T-cell effectors expressing a wide Ig and TCR 
repertoire generated by RAG-mediated somatic diversification as well as innate cell 
effectors such as neutrophils and macrophages are all conserved in Xenopus 
(reviewed in [19]). In fact, the fully sequenced and annotated genomes of two dif-
ferent Xenopus species, X. tropicalis and X. laevis, have provided compelling 
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evidence of the remarkably high degree of overall conservation of immune genes 
between Xenopus and human.

One intriguing aspect of anuran amphibians such as Xenopus that is not encoun-
tered in mammals is that the development of the immune system occurs at two dis-
tinct times: first during larval life and then again during the metamorphic transition 
from tadpole to adult [20, 21]. Specifically, the Xenopus thymus is first colonized by 
embryonic stem cells a few days after fertilization [22]. During metamorphosis, the 
thymus loses about 90% of its lymphocytes [23]. This loss is followed by a second 
wave of stem cell immigration [24, 25]. The tadpole is free-swimming and amena-
ble to a variety of surgical (e.g., thymectomy, transplantation) and nonsurgical (e.g., 
adoptive transfer of leucocytes, injection of hormones, antibodies) interventions. 
Therefore, studies in Xenopus tadpoles can be helpful in collecting valuable infor-
mation otherwise difficult to gather from in utero studies in mammals (e.g., devel-
opment of self-tolerance to adult-specific antigens, acquisition of a second T-cell 
repertoire, and ontogeny of T-cell subsets in a natural setting).

A second aspect of Xenopus immunology that makes it attractive as a model is 
the absence of classical MHC class Ia protein expression in tadpoles until the onset 
of metamorphosis. Surface class Ia expression is first detected on erythrocytes and 
on splenic leukocyte populations at pro-metamorphic stages [21, 26, 27]. Although 
tadpoles are immunocompetent and have CD8 T cells, the larval thymus lacks sig-
nificant expression of class Ia and LMP7 genes until metamorphosis, which sug-
gests an inefficient class Ia-restricted T-cell education during larval life [21, 28]. 
Conversely, multiple class Ib genes are expressed by thymocytes at the onset of 
thymic organogenesis consistent with a role of class Ib molecules in early T-cell 
development.

Thus, the high degree of functional conservation of the Xenopus immune system 
with human, the natural class Ia-deficient tadpole stages, as well as the amenability 
of Xenopus to in vivo experimentation make it a highly relevant nonmammalian 
model (reviewed in [19, 29]). In particular, Xenopus is well suited to study tumor 
immune surveillance and as such has proven instrumental to exploring innovative 
approaches for cancer immunotherapy (reviewed in [19, 30]).

8.3  Lymphoid Tumors and Tumor Immunity in Xenopus

X. laevis is the only amphibian species in which a series of true lymphoid tumor cell 
lines have been derived and characterized from spontaneously occurring thymic 
tumors ([31, 32]. Two similar thymic tumors were also reported at the Xenopus 
colony at Tulane University around the same time [33]. More recently, another type 
of spontaneous leukocytic, possibly monocytic, tumor very different from the thy-
mic tumors originally characterized was described [34].

Importantly, the occurrence of spontaneous thymic tumors in MHC-defined inbred 
and X. laevis/X. gilli isogenetic clones has provided a unique opportunity to derive 
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lymphoid tumor lines growing in in vitro culture as well as in vivo following trans-
plantation in compatible X. laevis host [32, 35]. From the partially inbred F strain 
homozygous of the f MHC haplotype, two different tumor lines (B3B7 and ff-2) were 
derived, whereas from the isogenetic clone LG-15 heterozygous for the MHC haplo-
type a/c, 15/0 and 15/40 lines were obtained. These cell lines are all nonadherent and 
grow continuously at 27 °C with a generation time of 18–24 h [36]. All four tumor 
lines share a mixed immature T-/B-cell phenotype: they all express several pan T-cell 
markers such as CD8 and CD5 but have also rearranged their Ig gene loci. All the 
tumor cell lines also express the cortical thymocyte-specific Xenopus cell surface 
marker (CTX), a marker of immature thymocytes that in the organism is only 
expressed by cortical thymocytes [37, 38]. Another salient feature exhibited by all 
these tumor lines is the expression of high level expression of several Xenopus non-
classical MHC class Ib (XNC) genes, including XNC1, 4, 10, and 11 as well as 
β2-microglobulin [39]. In contrast, only the ff-2 tumor expresses low levels of classi-
cal MHC class Ia at the cell surface, whereas 15/0, 15/40, and B3B7 cell lines are all 
class Ia-negative [32, 35].

Two of these lymphoid tumor cell lines have remained transplantable in com-
patible hosts. The ff-2 tumor is transplantable in the MHC homozygous f/f par-
tially inbred F strain, whereas the 15/0 can grow in the isogenetic LG-15 
background. Interestingly, the ff-2 tumor line is tumorigenic when transplanted 
into F tadpoles but not into F adults. The rejection of ff-2 tumor in F adults is 
abrogated by γ-irradiation that preferentially depletes thymocytes and is impaired 
in T-cell- deficient thymectomized animals, which suggests the critical involve-
ment of adult T cells that differentiate just after metamorphosis [35, 40]. 
Comparably, the 15/0 tumor cells are highly tumorigenic when transplanted into 
both tadpole and adult LG-15 hosts [32, 35]. In addition, the 15/0 tumor line is 
transplantable and tumorigenic in another isogenetic clone, LG-6, that shares the 
same MHC haplotypes (a/c) with LG-15 animals but differs at multiple minor 
histocompatibility (H) loci [41]. This difference in minor H-antigens has been 
instrumental in exploring antigen- specific antitumor immunity in Xenopus as 
delineated in the next chapter.

Initial in vivo and in vitro studies have revealed that in X. laevis as in mammals 
NK and CD8 T cells are critical antitumor cell effectors [41]. Briefly, the involve-
ment of NK cells was demonstrated by anti-NK antibody treatment followed by 
tumor transplantation assays and by an in vitro cytotoxic assay [41–43]. Thymectomy 
at early developmental stage before cell precursor immigration and sublethal 
γ-irradiation that mainly affect dividing thymocytes and circulating T cell provided 
evidence of CD8 T cells requirement to control malignancy [35, 40, 44]. Importantly, 
taking advantage of the absence of class Ia expression by 15/0 tumor cells has 
allowed us to shed light on the unappreciated roles of nonclassical MHC class Ib 
molecules and unconventional class Ib-restricted T cell in X. laevis tumor immunity 
(see Chap. 5).
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8.4  Conservation of Antitumor Properties of Heat Shock 
Proteins

The X. laevis tumor immunity model has provided evolutionary evidence of the 
ability of certain hsps such as the endoplasmic resident gp96 and the cytosolic 
HSP70 to elicit potent antitumor protective T-cell responses. In mammals, these 
molecules can induce pro-inflammatory cytokines, stimulate NK cells, and elicit 
potent cytotoxic CD8 T-cell responses against the antigenic peptides they chaperone 
[2–4]. The representation of antigens chaperoned by these hsps in the context of 
MHC class Ia by APCs critically involves the endocytic receptor CD91 [10, 11] as 
well as other scavenger receptors [45–47]. The additional interaction of these hsps 
with various signalling receptors such as TLRs is associated with their ability to 
stimulate inflammation [48, 49].

Given the high degree of evolutionarily conservation of gp96 and hsp70 across 
vertebrate and even invertebrate species, it was of interest to determine whether the 
immunostimulatory properties of these hsps, especially regarding antitumor immu-
nity, were also conserved in amphibians such as Xenopus. Using minor H-Ags dif-
ferences between LG-15 and LG-6 cloned frogs, it was first demonstrated that, as in 
mouse and human, both gp96 and hsp70 were able to represent chaperoned minor 
H-Ags and generate efficient CD8 T-cell responses recognizing and killing targets 
expressing the same minor H-Ags in a MHC-restricted fashion [8]. Immunization 
by direct subcutaneous injection of hsp70 or gp96 chaperoning minor H-Ags as 
well as by adoptive transfer of macrophages pulsed with hsp70/gp96-minor H-Ag 
complexes was shown to generate immunological memory to minor H-Ags leading 
to accelerated rejection of minor H-Ag-matched skin grafts [8, 50]. As in mammals, 
Xenopus gp96 and HSP70 can interact with the endocytic receptor CD91 at the 
surface of APCs, which leads to its rapid internalization and the representation of its 
bound antigens by MHC class Ia [51]. These studies in Xenopus strongly suggest 
that certain hsps (gp96, HSP70) and hsp receptors (CD91) are all integral parts of 
an ancestral system of immune surveillance. The importance of this system in con-
trolling neoplasia is highlighted by its conservation for more than the 350 million 
years that separate amphibian and mammals from their common ancestor.

Furthermore, since, in contrast to skin grafts, the 15/0 lymphoid tumor does 
not express class Ia molecules, our comparative tumor immunity model has per-
mitted investigation of the potential roles of hsps in stimulating MHC class 
Ia-unrestricted NK and unconventional T cells in the context of antitumor immu-
nity. Both in  vivo and in  vitro studies demonstrated that immune responses 
against 15/0 tumor cells in X. laevis involve NK cells and unconventional classi-
cal class Ia-unrestricted CD8 cytotoxic T cells (CCU-CTLs) that both were 
shown to kill 15/0 tumor cells but not class Ia expressing non-tumoral lympho-
blast targets in  vitro [41]. The critical involvement of chaperoned antigens in 
hsp-mediated anti-15/0 tumor immune responses in the absence of class Ia pre-
sentation is supported by several lines of evidence. For both gp96 and hsp70, 
native forms purified from non-tumoral organs (e.g., liver) or recombinant forms 
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produced from bacteria or non-15/0 cells (e.g., B3B7 cells) did not elicit signifi-
cant anti-15/0 tumor immune response and the removal of ligands from hsp70 by 
ADP abrogated anti-15/0 immunogenicity [9, 50].

To specifically address MHC class Ia-dependent and class Ia-independent anti-
gen representation, we developed an in vivo adoptive cell transfer assay using X. 
laevis peritoneal macrophage (pMac) as APCs that is depicted in Fig. 8.1. First, we 
demonstrated that adoptive transfer of pMac exposed to either gp96- or hsp70- 
minor H-Ags complexes generated a CD8 T-cell response specifically against minor 
H-skin Ags and that this response was dependent on the endocytic receptor CD91 
[51]. We then showed that a similar but class Ia-independent representation of hsp 
chaperoned antigens was involved in the case of the anti-15/0 tumor immune 
response [50]. Accordingly, LG-6 pMac exposed to tumor-derived gp96 and adop-
tively transferred into LG-6 hosts markedly impaired the growth of transplanted 
15/0 tumor in a CD91-dependent manner.

Hsp-comlexes
purification

Cloned LG-6 frog
Isolate peritoneal

macrophages

15/0 tumor cells
(LG-15 background)

WT or hsp-transfectants

LG-15 skin graft
Anti-Minor H-Ags response

15/0 tumor transplantation
Anti-tumor + minor H-Ags response

LG-6 recipient
Adoptive cell transfer

(i.p)

LG-6 APCs
Pulsed with hsp complexes

(tumor Ags +LG-15 minor H-Ags)

Fig. 8.1 Schematic of the antigen representation assay developed in Xenopus. Peritoneal macro-
phages elicited by stimulation with heat-killed E. coli are recovered from LG-6 adults by perito-
neal lavage and used as APCs. Hsps are purified from 15/0 tumor WT or stable transfectant 
expressing tagged recombinant Xenopus hsps. Since 15/0 tumor is on the LG-15 background, hsps 
chaperone both minor H and tumor Ags. LG-6 macrophages are pulsed for 1 h on ice with the hsp 
complexes at a concentration of 0.5–1 mg per 1 × 105 cells, extensively washed, and then adop-
tively transferred into LG-6 recipients (5 × 105 cells per animal). Hsp-mediated immune responses 
elicited against minor H-Ags can be monitored in vivo by monitoring the rejection time of minor 
H-disparate LG-15 skin graft. Hsp-mediated antitumor immune response can be monitored by 
determining the time of tumor appearance following injection of 15/0 tumors
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In the case of hsp70, we went further to distinguish the respective role of the 
inducible hsp72 and the cognate or constitutively expressed hsc73. Although these 
two types of cytosolic hsp70 share very similar primary structure, they exhibit sig-
nificant differences in their peptide- or ligand-binding domains, subcellular local-
ization, and some of their function [52]. To be able to examine the tumor 
immunogenicity of each hsp70 isoform, we produced X. laevis recombinant cognate 
hsc73 and the inducible hsp72 from stable 15/0 tumor transfectants. Both hsp72 and 
hsc73-Ag complexes exhibited a similar ability for eliciting class Ia-mediated T-cell 
responses against minor H-Ag skin grafts. In contrast, our in vivo representation 
assay revealed that hsp72 was more potent than hsc73  in generating protective 
immune responses against the class Ia-negative 15/0 tumors in an Ag-dependent and 
putatively class Ib-mediated manner. This study provided the first evidence that 
although hsc73 is as potent as hsp72  in facilitating class Ia-restricted T-cell 
responses, it is less efficient than hsp72 in eliciting class Ia-unrestricted antitumor 
T-cell responses that are class Ib-mediated.

8.5  Conserved Roles of Nonclassical MHC and Innate  
T Cells in Tumor Immunity

As a method of immune evasion, tumors often downregulate their class Ia expres-
sion and thus facilitate their escape from conventional T-cell-mediated immune rec-
ognition and killing [53]. Importantly, loss of class Ia expression constitutes a loss 
of “self-signal” and can subsequently render malignant cells more susceptible to 
NK cell-mediated cytotoxicity. Consequentially, in order to avoid NK-mediated 
killing, many different types of tumors induce or upregulate the expression of class 
Ib genes [16]. Accordingly, an increased expression of certain class Ib molecules 
has been postulated to be an indicator of malignancy and/or intracellular stress [16]. 
Although the critical implication of classical MHC class Ia in tumor immune sur-
veillance by eliciting effective antitumor CD8 cytotoxic T-cell effectors is well 
established from Xenopus to mammals, the roles of nonclassical MHC class Ib mol-
ecules and the effectors interacting with these molecules from NK to unconven-
tional and innate T cells are less well understood.

The functional relevance of class Ib molecules in the cancer field is still unclear 
and often contradictory. Clinical studies have confirmed class Ib upregulated expres-
sion as a hallmark of certain tumors and shown that this typically correlates with 
unfavorable prognostics. HLA-E and HLA-G, in particular, have been shown to be 
indicators of poor clinical outcome in several different types of cancer [54–58]. On 
the other hand, other class Ib proteins, both in human and mouse, have been credited 
with the ability to mediate protective immunity against a variety of different can-
cers. In fact, due to their critical regulatory roles in immunity, certain class Ib mol-
ecules have emerged as attractive therapeutic targets against malignant neoplastic 
growths [59, 60]. Among potential class Ib targets, CD1d is perhaps the most 
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 studied. CD1d is critical for the development and function of CD1d-restricted 
invariant natural killer T-cells (iNKT) cells, which despite their relatively small 
numbers play critical regulatory roles promoting antitumor responses [59–61]. 
Several ongoing clinical trials are evaluating the effect of CD1d-mediated stimula-
tion of iNKT cells with α-galactosylceramide (α-GalCer) on cancer patients 
(reviewed in [62]). Even though no clear tumor regression was observed, the iNKT-
based therapies increased INF-γ blood levels, provided disease stabilization, and 
prolonged mean survival in patients no longer responding to chemo- or 
radiotherapies.

However, efficient clinical implementation of CD1 and iNKT cell-based thera-
pies is still far from realization and requires a deeper and comprehensive under-
standing of the biology of this system.

From an evolutionary perspective, both class Ia and class Ib genes have been 
found in all jawed vertebrates studied to date (reviewed in [63]). Although relation-
ships between evolutionarily distant class Ib molecules are difficult to establish, 
functional analogs, such as the primate HLA-E and the mouse Qa-1b, have been 
identified [64]. Representatives of the CD1 family of genes are found in mammals 
[65, 66], birds [67, 68], and reptiles [69] but in neither fish nor amphibians. In X. 
laevis there are at least 23 class Ib (XNCs) genes that, like other vertebrate class Ibs, 
are heterogeneous, less polymorphic, and less ubiquitously expressed than class Ia 
[39, 70–72]. Many of these XNC genes have an unusually high degree of conserva-
tion between X. laevis and X. tropicalis species both in primary sequence and 
genomic organization [70, 72]. The strong gene selection maintained in these two 
Xenopus species that diverged from a common ancestor as long ago as primates and 
rodents (~65 million years; [73]), is in support of important biological functions of 
XNC genes.

In this context, the high expression levels of several XNC genes by tumor lines 
derived from several independent lymphoid thymic tumors take on particular rele-
vance. The possible involvement of certain XNC genes and XNC-restricted innate T 
cells in tumorigenesis and antitumor immunity in connection with hsps are all excit-
ing avenues of investigation offered by the Xenopus model. To begin elucidating the 
functions of these XNCs in our tumor immunity model, we have chosen a loss-of- 
function reverse genetic approach based on RNA interference to silence XNCs at the 
level of the tumor. More specifically, the relevance of these XNCs for 15/0 tumori-
genicity was investigated both indirectly by silencing b2m, which is usually required 
for surface expression of MHC class I molecules including class Ibs, and directly by 
silencing the expression of multiple XNC genes by targeting a consensus sequence 
shared by most XNC transcripts [74]. In fact in the case of XNC10, we were able to 
show the requirement of b2m surface expression. Interestingly, both types of silenc-
ing resulted in comparable results. 15/0 tumor transfectants deficient in either b2m 
or XNCs expression were more susceptible to NK-mediated killing but more resis-
tant to killing by CD8 T cells in vitro. Moreover, 15/0 tumor transfectants were 
more tumorigenic in vivo upon transplantation in LG-15 adult recipients [74]. The 
faster tumor development of these XNC- or b2m-deficient tumor transfectants 
despite their decreased resistance to NK cell killing in vitro further suggested an 
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important involvement of unconventional T cells interacting with XNC molecules 
rather than being restricted by MHC class Ia molecules.

However, further elucidation of the role of distinctive XNC gene products in this 
tumor model has revealed this to be more complex than previously thought. XNC10 
represented an ideal candidate to focus on, since it is among the highest XNC 
expressed in 15/0 tumor and it is conserved, not only in X. laevis and tropicalis but 
also across ten different Xenopus species. Intriguingly, the specific silencing of 
XNC10 in 15/0 tumor resulted in an acute rejection of these tumor transfectants by 
syngeneic LG-15 adults as well as naturally class Ia-deficient LG-15 tadpoles [75]. 
In tadpoles, the rejection was more potent toward 15/0 tumor transfectants with 
stronger XNC10 knockdown. Furthermore, the rejection of XNC10-deficient tumors 
implicated cell-mediated cytotoxicity that could be enhanced by priming [75]. As 
such, XNC10 is necessary for the immune evasion of the thymic-derived 15/0 
tumors to escape immune recognition and class Ia-independent cytotoxicity. Taken 
together these findings suggest that various XNC molecules have different and pos-
sibly even opposing roles in immune surveillance, underlining the critical roles of 
class Ib molecules in tumor immunity. It is possible that different XNCs interact 
with distinct effector cells resulting in a balance between inhibitory and activating 
signals leading to either increased or decreased tumorigenicity.

8.6  Conserved Roles of Class Ib-Restricted Innate T Cell 
in Antitumor Immunity

Among MHC class Ib-restricted effector cells, innate T (iT) cells such as CD1d- 
restricted iNKT cells have recently emerged as a potentially critical component of 
tumor immunity as they can orchestrate both innate and adaptive immunity [76–79]. 
These lymphocytes are T cells with natural killer cell markers and expressing semi- 
invariant T-cell receptor (TCR) repertoires [14]. Although iT cells generally occur 
at low frequencies [80], they can control immune responses via rapid and potent 
release of either pro-inflammatory or anti-inflammatory cytokines [81].

Notably, we have recently demonstrated that iT cells are not only conserved in 
Xenopus, but may constitute a more prominent component of their immune system 
than in mammals, especially during tadpole life [82]. To date we have been able to 
characterize the iT cell subset restricted by XNC10 [15, 82]. Using a reverse genetic 
approach combining transgenesis with RNA interference, we showed that XNC10 
is required for the development of these iT cells. Furthermore, based on TCR diver-
sity, XNC10 tetramer binding, and CD8 antibody staining, two subpopulations have 
been characterized within the Xenopus XNC10-restricted iT cells, type I XNC10-T+/
CD8− and XNC10-Tdim+CD8dim+, which are reminiscent of mammalian type I iNKT 
and type II NKT cells, respectively [82].

Interestingly, rapid infiltration of XNC10-iT cells is observed following intra-
peritoneal 15/0 tumor transplantation into LG-15 tadpoles [75]. Similar early 
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 infiltration of XNC10-iT cells also occurs when transplanting ff-2 tumor into inbred 
F tadpoles (Banach and Robert, unpublished observations). Intriguingly, knock-
down of XNC10  in 15/0 tumor triggers a substantially increased infiltration of 
XNC10-iT cells, which is again consistent with the use of XNC10 as an immune 
evasion strategy by the 15/0 tumors.

8.7  Conclusions and Perspective

Antigen presentation by classical MHC class Ia molecules as a way to induce potent 
antigen-specific CD8 T-cell responses is a pivotal component of the immune sur-
veillance system. More specifically, in the context of tumor immune surveillance, 
APCs are postulated to acquire tumor antigens generated by deregulated gene 
expression and/or mutations from the malignant cell and then generate an adaptive 
T-cell response specific to these antigens. Hsps, such as cytosolic HSP70, and 
ER-resident gp96 can contribute to elicit this antitumor response by chaperoning 
tumor antigens thus facilitating efficient cross-presentation as well as by enhancing 
the co-stimulation responses important for potent activation of T cells.

Here, we propose that hsps, classical MHC class Ia, nonclassical MHC class Ib 
molecules, and their respective effector cells are integrated in an ancestral immune 
surveillance system (Fig. 8.2). Indeed, the critical involvement of class Ib molecules 

Tumor cell
necrosis

Hsp-Ag complex

HSPR
(CD91)

APC (Macrophages, DC)
NK

iTCR

Class Ia
(1) Class Ia Ag
re-presentation

(2) Pro-inflammatory
responses

TCR
CTL

iT

Class Ib
(3) Class Ib
responses

Hsp-PAMP
complex

Fig. 8.2 Proposed ancestral immune surveillance system. Hsp-peptide complexes released in the 
extracellular compartment from infected or stressed cells (e.g., apoptosis, cell lysis) are internal-
ized by APCs through receptor-mediated endocytosis (e.g., CD91). (1) Antigenic peptides chan-
neled into the class Ia presentation pathway activate CD8 T cells. (2) Hsps internalized by the same 
receptors or interacting with other receptors (e.g., TLRs) stimulate pro-inflammatory responses. 
(3) Hsps are proposed to also stimulate class Ib-mediated responses by an as yet unknown mecha-
nism that is likely to be Ag-specific and involve iT cell populations

J. Robert et al.



151

in amphibian hsp-mediated antitumor responses and the finding that class 
Ib-restricted antitumor iT cells are present and prominent outside mammals raise 
the intriguing possibility that this system is ancestral and widespread across jawed 
vertebrates. Although the role of nonclassical MHC molecules and unconventional 
T cells, including iT cells in tumor immunity, is still far from fully elucidated, the 
inherent ability of class Ib molecules to present nonprotein antigens such as lipids 
and other conserved molecular motifs or patterns offers an extended avenue of 
detectable antitumor determinants. The limited variation of these class Ib-binding 
patterns and their conservation during evolution could be exploited as target of 
choice for future immunotherapy. In addition, the potent and rapid activation of 
unconventional class Ia-unrestricted T cells such as iT cells may be critical in pro-
moting antitumor versus pro-tumor suppressive microenvironments.

In this context, the ability of hsps to also promote iT cell responses through class 
Ib molecules is a promising new avenue to investigate. Given that during tumor 
progression class Ia molecules are often downregulated, cancer immunotherapies 
that exploit class Ia-restricted T-cell effectors are usually insufficient to maintain 
potent antitumor responses. Conversely, as some class Ib molecules remain 
expressed on tumors or in some cases are even upregulated, these molecules and 
their interacting immune effector cells could serve as additional persisting immuno-
genic targets. Thus, the elucidation of the roles of class Ib molecules in tumor 
immunity is of fundamental scientific and clinical interest.
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