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Chapter 4
The Heat Shock Protein-CD91 Pathway 
and Tumor Immunosurveillance

Robert J. Binder

Abstract The intracellular functions of HSPs have been well studied and delineate 
a clear role in the unfolded protein response. The functions of extracellular HSPs 
are only beginning to be appreciated. Specifically, extracellular localization of HSPs 
endorses the initiation of immune responses against aberrant cells. This chapter 
examines the role of extracellular HSPs, and the receptor CD91, in immunosurveil-
lance of cancers. Although the concept of cancer immunosurveillance was described 
over 100 years ago, a molecular description of how the immune responses is initi-
ated has been lacking. Incorporating the HSP-CD91 pathway into cancer immuno-
surveillance provides the first mechanism of how immune responses are primed.
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4.1  Heat Shock Proteins as Chaperones of Macromolecules

Heat shock proteins have long been known for their function as chaperones within 
cells, where they assist proteins and polypeptides fold into their native, most stable 
configurations [1, 2]. Many HSPs are inducible by cellular stress [1], a condition 
where there is a heightened requirement for chaperone function. However, several 
other HSPs are constitutively expressed. Recently, the chaperone function of HSPs 
has been shown to be required for transport of other macromolecules. These macro-
molecules include peptides derived from homeostatic protein turnover [3–9]. This 
latter function has been implicated in several immunological processes and path-
ways. For example, peptides in the MHC I processing and presentation pathway are 
shuttled by HSPs in the cytosol and endoplasmic reticulum [4–6]. Although the 
normal expression pattern of HSPs is solely intracellular, under certain pathological 
conditions, HSPs can be found in the extracellular environment, free as a diffusible 
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soluble protein [10, 11], as part of the extracellular matrix [11] or on the membrane 
of cells [12]. Infection by pathogens, hostile cancer microenvironments, and inflam-
mation associated with these events, very frequently, if not always, include cell 
death which leads to passive release of these abundant chaperones [10]. As described 
below, the chaperone function of HSPs is critical to its role in the immune system.

4.2  Immune Responses Elicited by Extracellular HSPs

In the extracellular environment, select HSPs have been shown to elicit immune 
responses of diverse nature [13–25]. This remarkable property was first observed 
when gp96 was isolated as the immunogenic entity of tumor cells [13]. In that pio-
neering study, when mice where immunized with gp96 preparations derived from a 
tumor, they became resistant to a subsequent challenge of that tumor. This phenom-
enon has been replicated for hsp70 [14], hsp90 [15], calreticulin [16], grp170 [17], 
and hsp110 [17], the major chaperones of cells. HSPs chaperone peptides [3–9], and 
when isolated from tumor cells, the peptide repertoire includes tumor antigens [8, 9, 
13–17]. In other words, purified HSP-peptide complexes represent the antigenic 
fingerprint of the cell from which they are isolated. This has been empirically tested. 
In several antigenically defined systems, HSPs have been shown to be associated 
with antigens that ultimately get presented by MHC I and MHC II molecules thereby 
dictating T cell specificities of the immune response. These systems include HSPs 
isolated from tumors [8, 9, 26–28], infected cells [29–34], allo-MHC cells [35, 36], 
and cells expressing model antigens [35–38]. In studies where crystal structures of 
HSPs have been resolved, peptide binding pockets have been clearly identified [39–
41]. Over two decades of work has elucidated the major immunological mecha-
nisms through which HSPs prime immune responses. These mechanisms are 
dependent on the ability of HSP to bind cell surface receptors on antigen- presenting 
cells (APC) [42]. In the extracellular environment, HSPs engage a cell surface 
receptor, CD91, which is expressed by most APCs [20, 43–55]. On conventional 
dendritic cells, CD91 acts as an endocytic receptor to internalize HSP-peptide com-
plexes [43–46]. Several other cell surface receptors for the immunogenic HSPs have 
been proposed and are discussed elsewhere [42]. Following CD91-dependent endo-
cytosis, the HSP-peptide complexes are processed, and the peptides enter the path-
ways for antigen presentation for MHC I [43, 44, 47] or MHC II [45, 48] of the 
APC. CD91 also acts as a signaling receptor [20]. Upon engagement by HSPs, vari-
ous signaling and transcription factors are activated following phosphorylation of 
the CD91 cytoplasmic chain, leading to production and secretion of cytokines and 
upregulation of co-stimulatory molecules [10, 20, 51]. On conventional dendritic 
cells, the signaling pathways and outcomes are responsible for and supportive of 
Th1 responses and subsequent HSP-mediated rejection of tumors and pathogens 
following vaccination. Interestingly CD91 is expressed by hematopoietic cells of 
both myeloid and lymphoid origin including macrophages and a variety of DC sub-
sets [52–55]. When HSPs are in the extracellular environment, HSPs can engage 

R. J. Binder



65

CD91 on any cell in that microenvironment or can drain to lymph nodes and engage 
(additional) cells at this distal site [52]. Using fluorescent tags, HSPs were shown to 
engage cDCs in vivo at doses capable of priming Th1 responses [52]. However, 
increasing amounts of HSPs will engage additional cells, including pDCs [53, 91]. 
The exact phenotype of the immunological responses is determined by the CD91+ 
APC engaged by the extracellular HSP. For example, pDCs engage extracellular 
HSPs but do not cross-present HSP-chaperoned peptides nor upregulate B7 or CD40 
[53], promoting an immune-regulatory phenotype characterized by T reg [91]. 
These responses have been harnessed for immunotherapy of autoimmune disease 
and amelioration of tissue allograft acceptance [21–23]. Engagement of cDCs by 
the same HSPs promote Th1 response that reject tumors [43, 44, 47, 52]. The influ-
ence of other tumor-secreted molecules, besides HSPs, in the immediate microenvi-
ronment potentially also plays a role in the resulting immune response [20]. 
Molecules like HMGB1 [56], dsDNA [57], and cytokines [20] have been shown to 
be immunologically important and could complement or antagonize the responses 
emanating from the HSP-APC interaction. For example, tumor-secreted TGF-β syn-
ergizes with HSP/CD91-dependent IL-6 and TNF-α released from APCs to prime 
Th17 responses [20]. The resulting immunological response elicited by extracellular 
HSPs will be dependent on the influence of local APCs on cross-priming by cDCs 
in the draining lymph node. Many of these mechanisms, while demonstrated in 
murine models, also hold true in the human setting [58, 59].

4.3  Extracellular HSPs as the Molecular Signature 
for Immunological Responsiveness

A majority of the findings described above have been performed in a vaccination 
setting where purified HSPs are administered to rodents or humans [13–19, 21–24]. 
However in studies examining HSPs released from cells in situ, the same stimula-
tion of APCs can be observed [52, 60]. Under pathological conditions and cell 
death, HSPs are released from cells and delivered to the extracellular environment 
[10–12]. Mechanisms of active secretion of HSPs have also been put forward to 
explain the extracellular presence of HSPs, but these are not fully elucidated [61]. 
Since HSPs contain no consensus sequences for such cellular trafficking and secre-
tion, it is hard to conceive the cell biology comprising such a pathway, especially for 
the cytosolic HSPs. Thus, a passive release mechanism, when membrane integrity 
is compromised, appears more likely. Examples of these pathological conditions 
leading to HSP release include cellular infection by bacteria and viruses, cancer, 
trauma, and associated inflammation. Collectively, HSPs are the most abundant pro-
teins in cells accounting for >5% of the proteome [1]. Thus, they are ideal indicators 
to the immune system of cellular aberrancy. There are now six key HSPs known to 
be rapidly recognized by the APCs [13–17] via cell surface receptor(s). The surpris-
ing discovery of the HSP receptor expressed on APCs afforded a molecular 
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description of these immunological mechanisms [43]. Since the receptor(s) offers a 
significant degree of specificity for recognition of intracellular content, they become 
key players in the immune system, allowing HSPs to be critical initiators and medi-
ators of resulting immune responses. Following the initiation of antigen-specific 
immune responses against cancers or pathogen-infected cells, extracellular HSPs 
exacerbate existing inflammatory conditions or suppress ongoing immunity [60]. 
There is currently a well-developed picture on the cross-presentation of HSP- 
chaperoned peptides to which T cells are primed and pathways which lead to the 
release of cytokines, including the pro-inflammatory IL-1, IL-6, and TNF-α [10, 
20]. Thus, extracellular HSPs have been implicated in the etiology, progression, 
and/or resolution of several diseases including cancer and rheumatoid arthritis [60, 
62, 63]. In rheumatoid arthritis, the presence of extracellular hsp70 and gp96  in 
synovial fluid of inflamed joints has been shown to stimulate local APCs which 
release pro-inflammatory cytokines. These events constitute a cycle of tissue 
destruction, increased release of HSPs, and increased inflammation [62, 63]. 
Recognition of endogenous molecules (HSPs) by their respective receptors can be 
compared on many levels to the recognition of pathogen-associated molecular pat-
terns (PAMPs) by pattern recognition receptors (PRRs) [64].

4.4  The Role of Extracellular HSPs in Tumor 
Immunosurveillance

The original concept of immunosurveillance was that the immune system recog-
nized aberrant cells and eliminated them before progression to cancer occurred 
[65–67]. We now know that priming of T cell and NK cell immunity is necessary for 
rejection of aberrant cells. In the absence of such immunity in mice [68, 69] or in 
humans [70], achieved by the loss of these immune cells themselves or their effector 
molecules, multiple and frequent tumors arise. The tumors that arise under these 
immune-compromised conditions are less edited compared to tumors from wild- 
type mice [68, 71]. The literature, however, until recently, failed to reconcile two 
issues. The first pertains to the miniscule amount of antigen available for priming T 
cell responses at the very earliest stages of nascent tumor development [72, 73]. The 
realization that most tumor rejection antigens are unique and derived from mutated 
proteins [74–77] predicts that antigen levels in (emerging) tumors (and the quantity 
available for cross-presentation) are minute and, as a soluble protein, have indeed 
been shown to be insufficient for cross-priming of T cell responses [72, 73]. Yet, T 
cell responses are easily measurable at these early time points of tumorigenesis (e.g. 
[78, 79]). Mechanisms of antigen transfer and cross-presentation described for other 
systems [80–87] where antigen is abundant or supraphysiological are not justifiable 
for nascent emerging tumors. Thus, a super-efficient mechanism must exist for anti-
gen cross-presentation in this setting [88]. Experimental evidence shows that these 
quantitative restrictions are satisfied if one invokes the HSP-peptide complexes 
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released by tumor cells as a mechanism of antigen transfer [60, 88]. When tumor 
antigen levels are low, peptides derived from tumor antigens and chaperoned by 
HSP are efficiently cross-presented by APCs, a system that is dependent on CD91 
expressed on APCs [43, 44]. One microgram of total immunogenic HSP (an amount 
that will be present in <10,000 cells) will chaperone approximately a nanogram of 
a specific antigenic/mutated peptide. This amount of antigen is sufficient for cross- 
priming only when chaperoned by the HSP (Fig. 4.1).

The second issue relates to the stimuli in the setting of nascent, emerging tumors 
that results in co-stimulation for T cell priming. Over the millennia, the immune 
system has evolved to recognize PAMPs associated with pathogens but are neces-
sarily absent in the host [64]. PAMPs generate co-stimulation and cytokines for T 
cell priming through well-defined pathways. Nascent tumors lack PAMPs and so 
will be unable to elicit co-stimulation via PRRs. Interestingly, a very short list of 
molecules of host origin, typically called DAMPs, can do so [10, 20, 56, 57]. HSPs 
are the prototypical DAMPs, the first group of host molecules found to stimulate 
DCs to release cytokines, upregulate co-stimulatory molecule expression [10], and 
prime immune responses [13]. The HSP/DAMP receptor, CD91, channels intracel-
lular signals to achieve this, and the co-stimulation provided by APCs has been well 
defined [10, 20]. Thus, tumor-derived HSP-peptide complexes are a single entity 
with the capacity of priming robust antigen-specific T cell responses, without the 
requirement of additional adjuvanticity or antigen.

Release of HSP-peptide complexes
from aberrant, pre-malignant cells

Dendritic cells engage 
HSPs via CD91, mature, 
prime T cells and activate 
NK cells

Activated T cells and NK cells eliminate 
aberrant (pre-malignant), antigen positive 
cells, prior to formation of cancer 

Fig. 4.1 HSPs prime immune responses responsible for eradication of premalignant cells. HSPs 
released from aberrant, membrane-compromised cells engage dendritic cells in the draining lymph 
nodes via the receptor CD91. Dendritic cells mature and cross-present HSP-chaperoned antigens 
to T cells. T cells are primed and NK cells are activated by these DCs. Activated effector cells 
eliminate aberrant, premalignant cells prior to formation of cancer
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HSPs have been known to require NK cell activity for effective antitumor immu-
nity [89]. Immunization with tumor-derived HSPs does not lead to tumor rejection 
in mice devoid of NK cells. NK cell activity in mice immunized with HSPs has 
recently been examined and showed that HSPs activate NK cells indirectly via the 
stimulated DC. NK cells are preferentially required for their helper rather than their 
cytotoxic function [92]. Thus, HSPs have the capacity of priming T cell and NK cell 
activity which coordinately and cooperatively reject established or nascent emerg-
ing tumors. We present a new picture of tumor immunosurveillance, one that has the 
HSP-CD91 pathway at the center of cross-priming T cell and activation of NK cell 
responses (Fig. 4.1).

The requirement for T cells or NK cells in tumor immunosurveillance has been 
shown by their selective deficiency which effectively renders the host susceptible to 
multiple and frequent cancers as they are unable to eliminate nascent, emerging 
tumor cells [68, 69]. One would therefore predict that deficiencies in HSPs, CD91, 
or components of this pathway would similarly abrogate T and NK cell immunity 
and lead to enhancement of tumor growth. Several of these aspects have been tested 
empirically to date. In genetically engineered mice with selective deficiency of 
CD91 in APCs, HSPs are unable to cross-present chaperoned peptides and stimulate 
co-stimulation [60]. These mice thus fail to mount tumor-specific T cells and con-
trol tumor growth. The immunogenic HSPs play redundant roles in cross-priming, 
and since their collective deletion in mice is not feasible, the alternative experiment 
with deficiencies in HSPs is technically challenging. However, when HSPs are col-
lectively deleted in tumor cell lysates, the resulting lysates are incapable of priming 
tumor-specific immunity, even though they contain soluble tumor antigen [72]. 
These results cumulatively point to the HSP-CD91 pathway as essential for priming 
immune responses against tumors and for tumor immunosurveillance. While other 
DAMPs such as HMGB1 and dsDNA may contribute additional cytokines or co- 
stimulation through APCs, they do not appear to be essential for tumor immunity, 
but may influence ongoing responses.

4.5  Conclusion

Defining the role of tumor-derived HSPs and CD91 in tumor immunosurveillance is 
still in its infancy, but the current experimental evidence supporting this premise is 
significant. There is now an original molecular mechanism as to how immune 
response, constituting CTL and NK cell activity, is initiated against a nascent, 
emerging tumor and how this leads to rejection of tumors. The evidence supporting 
this model also fulfils the quantitative restrictions defined by the scarcity of the 
tumor antigens. In a tumor microenvironment, with release of multiple HSPs and in 
the presence of several different APC populations, the immune response is fluid but 
can be of the Th1 type for tumor rejection. This response may also be fine-tuned by 
other factors such as additional DAMPs or molecules associated with DNA damage 
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[90]. The clinical implications of HSP-mediated immunogenicity are currently 
being investigated.
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