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Chapter 3
Extracellular Heat Shock Proteins  
as Stress Communication Signals

Antonio De Maio

Abstract  Intercellular communication is a fundamental process necessary to main-
tain homeostasis and to mount an orchestrated response to stress. Although heat 
shock proteins (HSP) play a critical role by participating in the repair of damaged 
products as a result of the stress in the intracellular milieu, it is now evident that they 
play an alternative role when they escape from the cells and are placed in circula-
tion, participating in a systemic stress response. Extracellular HSP appear as signal-
ing molecules involved in intercellular communication during stress conditions. 
They have been found to modulate the function of many target cells. Moreover, 
extracellular HSP have been detected in several biological fluids, particularly from 
patients suffering from a large number of maladies. Extracellular HSP are released 
by many cell types and by several mechanisms, including passive dissemination 
after necrosis and active export by a nonclassical secretory pathway. Among several 
potential mechanisms for the export of HSP, their release associated with extracel-
lular vesicles has gained increasing support. The appearance of extracellular vesi-
cles containing HSP emerges as a new form of cellular communication during stress 
conditions directed at avoiding the propagation of the insult.
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3.1  �Introduction

Cellular communication is a major physiological event that is crucial to maintain 
homeostasis. In this regard, unicellular organisms use chemical gradients to syn-
chronize their metabolism and growth. Plants release volatile compounds as signals 
to coordinate development, attract pollinizing insects, and repel predators. 
Multicellular organisms send signals to their counterpart cells to regulate metabo-
lism, growth, and stress response. Intercellular communication is particularly 
important in tissue homeostasis, in which a synchronized propagation of signals 
among cells is required to adapt to changes in nutrients and other environmental 
factors. For example, hepatocytes within the hepatic acinus are interconnected by 
various mechanisms of communication to modulate their response to changes in the 
delivery of nutrients, such as glucose and oxygen. Cellular communication is also 
critical for an efficient response of the immune system. Thus, the communication 
between T, B, and antigen-presenting cells is necessary to orchestrate the adaptive 
immune response. Similarly, macrophages, dendritic cells, and neutrophils secrete 
cytokines and chemokines in response to infection and injury to promote an initial 
response to the insult. Therefore, a coordinated intercellular communication is vital 
to preserve normal physiological conditions and mount a sound response to stress.

3.2  �Types of Cellular Communication

Cells communicate by a variety of mechanisms. The most common is via soluble 
molecules that are placed in the extracellular environment or in circulation directed 
at interacting with adjacent or distant cells. A typical example of this type of com-
munication is when hormones and cytokines are released by a certain type of cell 
and captured by another via specific receptors. The ligand-receptor interaction trig-
gers a signal transduction pathway within the plasma membrane or within internal 
compartments directed at activating the right response to the external stimuli. In 
other cases, cells communicate via surface contact molecules, such as adhesion pro-
teins, resulting in cellular synapses [1]. A great example is the immune synapse 
between antigen presenting cells and lymphocytes [2]. Cells in close proximity can 
also interact via exchanging surface molecules by the direct transfer of plasma 
membrane portions, which is known as trogocytosis, by membrane tethers, or by 
nanotubes [3]. A very important form of cellular communication is via the transfer 
of low-molecular-weight metabolites via gap junctions. Gap junctions are larger 
channels or pores formed by similar proteins within the plasma membrane of adja-
cent cells that allow the passage of ions (e.g., calcium), nucleotides (e.g., ATP), and 
other small molecules in a regulated process, creating a network of signals across 
the multicellular environment [4].

An alternative mechanism for cellular communication is mediated by the release 
of membrane vesicles into the extracellular medium. These extracellular vesicles 
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(ECV) contain surface molecules, lipids, and cargo (e.g., proteins, nucleic acids, 
carbohydrates, and ions). The critical aspect of ECV is that they contain a large 
number of molecules within a very small volume [5–7]. These ECV are captured by 
target cells delivering the cargo, such as signaling proteins or microRNAs, which 
can modulate the function of the receiving cell. More importantly, the target cell 
senses a multiplicity of different molecules simultaneously, which is likely to result 
in a synergy of information. In other words, different components within ECV could 
concurrently activate various cellular pathways. Moreover, the concentration of a 
ligand within a small vesicle (e.g., 100 nm in diameter) is theoretically calculated in 
the millimolar range, which is much larger than the circulating concentration of any 
hormone. ECV could also travel long distances, delivering information to very dis-
tant cells. The fact that ECV are formed by membrane-encapsulated macromole-
cules assures the protection of the cargo from external environmental factors, such 
as circulating proteases and RNAses. The final stage for communication via ECV 
requires the recognition by the target cell that it could be mediated by various mech-
anisms. For example, ECV may contain surface molecules that are recognized by 
specific receptors on target cells acting as “zip codes.” In addition, ECV could be 
taken by cells in a non-receptor-mediated process, such as macropinocytosis, or 
they could fuse with the plasma membrane delivering the cargo into the cytosol.

3.3  �Extracellular HSP as Communication Signals

Heat shock proteins (HSP) were first discovered as part of the cellular response to 
elevated temperatures, initiated by the discovery of the heat shock response by 
Ritossa [8], followed by the identification of HSP by Tissières et al. [9]. Subsequent 
studies showed that HSP correspond to a large family of proteins expressed after a 
variety of stress conditions [10, 11]. Various homologs to the stress-inducible HSP 
were identified afterward participating in normal basic cellular processes, including 
folding of newly synthesized polypeptides, translocation of polypeptides across 
subcellular compartments, assembly of macromolecule complexes, stabilization of 
receptors, and signal transduction [11, 12]. The capability of folding denatured pro-
teins or stabilizing protein complexes gave rise to their denomination as molecular 
chaperones [13]. Various HSP belong to particular families that are classified 
according to their molecular weight, for example the Hsp70 family, which has a 
molecular weight of 70 kDa, is composed of four members: Hsp70 (the stress induc-
ible form), Hsc70 (the constitutive cytosolic form), Mit70 and Grp78 (both constitu-
tive forms located in the mitochondria and endoplasmic reticulum, respectively). 
Recently, a new nomenclature for HSP has been proposed [14], displayed in 
Table 3.1.

Although the most recognized function of HSP is as molecular chaperones in the 
cytosol and other subcellular compartments, they have been found outside cells. 
The first observations regarding the presence of HSP in the extracellular environ-
ment was made on Hsp70 by studies of Tytell et al. [15] and Hightower and Guidon 
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[16]. These pioneer findings were followed by more recent observations document-
ing the presence of Hsp70 in the extracellular medium in a variety of conditions 
(reviewed by De Maio) [6]. Today, practically all members of the HSP family have 
been detected outside cells. Thus, Hsp90α (HSPC3) was identified as a secreted 
oxidative stress-induced factor by vascular smooth cells [17]. Hsp90β (HSPC4) was 
reported released by osteosarcoma cells [18]. Grp75 (HSPA9) or mortalin, which is 
a mitochondrial chaperone protein, has been shown to be released after complement 
treatment of cells [19]. Grp78 (HSPA5) and Grp94 (HSPC4), which are endoplas-
mic reticulum (ER) residents, have been found in the extracellular space [20–22]. 
HSP60 (HSPD1) has been detected in circulation of patients suffering from various 
conditions [23]. Hsp25/27 (HspB1) was observed in the extracellular environment 
of astrocytes [24]. Finally, a large member of the HSP family, Grp170 (HSPH4), has 
also been detected outside cells [25].

Extracellular HSP are secreted by a variety of cell types and captured by others. 
The function of extracellular HSP has not been associated to their chaperone activ-
ity, which is not surprising since it requires cochaperones and nucleotides for the 
function. On the contrary, extracellular HSP act as signaling molecules involved in 
the communication between cells, inducing an array of activities. For example, 
Hsp70 (HSPA1) secreted by parenchymal cells has been shown to induce a robust 
activation of macrophages [26–28], dendritic cells [29], and natural killer cells [30, 
31]. Extracellular Hsp70 has also been shown to modulate the response of mono-
cytes to endotoxin [32, 33], activate chemotaxis [34], and phagocytosis [35–37]. 

Table 3.1  Classification of 
HSP

Family name Common name New name

HSP 100 HSP105 HSPH1
HSP110 HSPH2
Grp170 HSPH4

HSP90 HSP90α HSPC2
HSP90β HSPC3
Grp94 HSPC4

HSP70 HSP70(HSP72) HSPA1
HSC70(HSP73) HSPAB
Grp78(BIP) HSPA5
Utp70 (Grp75) HSPA9

HSP40 HSP40 (Dnaj) DNAJB1
Small HSP αA-Crystallin HSPB4

αB-Crystallin HSPB5
HSP25 HSPB1
HSP27 HSPB2
HSP20 HSPB6
HSP22 HSPB8

Chaperonins GloEL (HSP60) HSPD1
GloES HSPE1
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They also could modulate antigen presentation [36]. Mycobacterium tuberculosis-
derived DnaK has been shown to polarize macrophages to M2-like phenotype [38] 
and induce anti-inflammatory response [39]. Recently, Hsp70, Hsp90 (HSPC), and 
Hsp40 (DNAJB1) have been proposed to promote protein homeostasis in distant 
cells [40]. Moreover, extracellular Hsp70 has been associated with both immunos-
timulatory and immunosuppressive activities [41]. Extracellular Hsp90 has been 
shown to transport antigens from the outside to the cytosol, resulting in cross-
presentation [42]. Small HSP are also secreted by cells and modulate the immune 
system [43]. Hsp90α was detected outside cells participating in wound reepithelial-
ization and healing [37, 44, 45]. Extracellular Hsp70 has been shown to affect car-
diomyocyte contractile dysfunction [46], and increase tumor growth and resistance 
to apoptosis [46]. Exogenous Hsp70 appeared to disrupt gap junction communica-
tion between human microvascular endothelial cells [47].

Extracellular HSP may be recognized by a variety of cell surface targets [48]. 
The list of potential receptors for extracellular HSP is large, including CD91 [49, 
50], CD40 [13, 51], Scavenger receptor A [52], Lox 1 [53], mannose receptor [54], 
and even the β-subunit of ATP synthase [55]. Recently, Hsp70 was shown to bind to 
Siglec-5 and Siglec-14, which are Ig-superfamily lectins on mammalian leukocytes 
that recognize sialic acid-bearing glycans [56]. Some lipids have also been pro-
posed as targets for HSP, such as sphingolipids [57, 58], phosphatidylserine [59, 60] 
and phospholipid bis(monoacylglycero)phosphate [61]. In general, it appears that 
HSP have a large appetite for molecules, raising the possibility that a single receptor 
model may not be correct.

3.4  �Extracellular HSP in Pathological Conditions

Extracellular HSP has been associated with several clinical conditions, following 
their detection in various biological fluids (Table 3.2). In addition, antibodies against 
HSP have been found in the serum of a variety of patients [23, 62]. For example, 
circulating levels of Hsp70 and Hsp60 or their antibodies have been proposed as a 
risk factor for coronary heart disease [63–65]. Similarly, Hsp60 has been detected 
in circulation of individuals suffering from cardiovascular diseases [66, 67]. 
Extracellular Hsp25 has been shown to reduce cardiotoxicity induced by doxorubi-
cin [68]. Hsp70 has been reported to be present in the serum of patients with chronic 
hepatitis, liver cirrhosis, and hepatocellular carcinoma [69]. Hsp27 has been 
detected in the serum of patients with chronic pancreatitis and pancreatic carcinoma 
[70, 71]. Hsp60 has also been observed in the saliva and serum of patients with type 
2 diabetes mellitus [72] and Hsp70 in patients presenting diabetic ketoacidosis [73].

Extracellular HSP have been associated with infection and other pathologies. 
Thus, extracellular Hsp70 has been identified following acute infection in humans 
[86]. Hsp70 and Hsp60 were found in wound fluids at the site of soft tissue injury 
[83]. Moreover, the presence of Hsp70  in circulation has also been linked with 
improved survival of critically ill patients [80–82]. In other studies, Hsp70 was 
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found to be released from human fetal membranes after exposure to E. coli [87]. 
Hsp70 has also been detected in normal and pathological pregnancies, including 
preeclampsia [88, 89]. Moreover, Hsp70 has been observed in amniotic fluid [90]. 
Circulating Hsp70 has been detected after extenuating exercise [91–93]. Finally, 
extracellular Hsp70 was present in the blood of experimental rodent models of dia-
betes [94], sepsis [95], and ischemia–reperfusion injury [85].

The central nervous system has also been a target for extracellular HSP activity. 
For example, extracellular Hsp70 has been observed after brain and spinal cord 
ischemia [84]. Several small HSP, including Hsp20 and Hsp22, have been detected 
in closed proximity of amyloid β deposits in the brains of Alzheimer disease patients 
[96]. Moreover, they were found to block amyloid β aggregation in vitro [96, 97]. 
Similar observations regarding inhibition of amyloid β aggregation have been 
made for Hsp70 and Hsp90 [98] and Hsp40 [99]. Moreover, HspB1 (Hsp25/27) 
was reported released by astrocytes in response to amyloid β exposure [24]. 

Table 3.2  Heat shock proteins in clinical conditions

Pathology HSP Reference

Heart disease Hsp70, Hsp60 [66]
[63]
[74]
[75]
[64]
[65]
[46]

Cancer Hsp70, Hsc70 [76]
[77]
[78]
[69]

Liver cirrhosis Hsp70 [69]
Hepatitis [69]
Pancreatitis Hsp27 [71]

[70]
Diabetes Hsp60, Hsp70 [79]

[73]
[72]

Trauma Hsp70, Hsp60 [80]
[81]
[82]
[83]

Ischemia–reperfusion injury Hsp70 [75]
[84]
[85]

Infection Hsp70 [86]
[87]

Preeclampsia Hsp70 [88]
[89]

A. De Maio



49

Extracellular Hsp70 has been shown to protect Schwann cells [100] and neurons 
[101]. Both αA-crystallin (HSPB4) and αB-crystallin (HSPB5) have been reported 
to protect astrocytes from various toxic agents [102].

3.5  �Mechanisms of HSP Export

Extracellular HSP are released from at least two different sources. HSP are dissemi-
nated by a passive process secondary to cell lysis after necrosis [29, 85] or exported 
by an active mechanism independent of cell death, which could not be blocked by 
typical inhibitors of the ER-Golgi pathway, such as brefeldin A [16, 79]. The only 
exceptions are ER-resident HSP, Grp78 and Grp94, which are already in place 
within the classical secretory pathway. In contrast, the majority of HSP lack the 
consensus signal required for secretion via the ER-Golgi pathway. Therefore, they 
are likely exported by an alternative mechanism that has been named the nonclassi-
cal or unconventional secretory pathway. Many proteins besides HSP use this path-
way for export, including interleukin-1β, high-mobility group box 1, galectin 1 and 
3, and fibroblast growth factor 1 [103].

The major argument against the active export of HSP is that these proteins are 
localized in the cytosol. In order to reach the extracellular environment, they need to 
cross the plasma membrane. Thermodynamically, the passing of a protein across a 
lipid membrane results in a less favorable change of free energy [104]. Therefore, it 
should not be a spontaneous process. In spite of the prior assumption, there is sub-
stantial evidence that Hsp70s can spontaneously get inserted into lipid bilayers. 
Indeed, our pioneering work showed that Hsc70 got inserted into artificial lipid 
bilayers opening ion conductance pathways [105]. This observation has been con-
firmed by others [106] and extended to Hsp70 [28]. Additional studies showed that 
both Hsp70 and Hsc70 interact with liposomes resulting in their aggregation in a 
process that was concentration dependent and requiring the presence of nucleotides 
[4]. Moreover, Hsp70 have been demonstrated to get spontaneously and selectively 
inserted into phosphatidylserine (PS) liposomes, forming high molecular mass oligo-
mers [107]. The interaction of Hsp70 with PS liposomes has been confirmed by oth-
ers [108]. Similarly bacterial Hsp70 (DnaK) also gets inserted into liposomes, but the 
translocation was not lipid specific and only forms dimeric forms within the mem-
brane [109]. These observations suggest that HSP, at least Hsp70, could move spon-
taneously from the cytosol into the plasma membrane. Indeed, Hsp70 has been 
extensively reported to be present in the plasma membrane of transformed cells [110, 
111]. The presence of Hsp70 on the plasma membrane was resistant to acid washes 
indicating that it was actually inserted into the lipid bilayer [28, 57]. Therefore, the 
question that emerges is whether Hsp70 could also spontaneously come out from the 
lipid membrane outside the cells. Although this option has not been demonstrated 
experimentally, it may be an interesting possibility to explain the extracellular release 
of this protein. Other mechanisms that have been proposed for the active secretion of 
HSP include the lysosome–endosome pathway, in which the protein translocates into 
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the lysosome lumen via ATP-binding cassette (ABC) transport-like system and is 
further released outside cells via the endocytic process [112]. This pathway has also 
been proposed for the secretion of IL-1β, which also moves from the cytosol to out-
side the cell without passing through the ER-Golgi pathway [113]. Other studies 
have suggested the release of Hsp70 via secretory-like granules [114].

A well-accepted mechanism for the export of HSP is their association with ECV 
[6]. These vesicles are derived from the plasma membrane by various processes. 
Protuberances or blebs can be formed in the outer side of the plasma membrane by 
a process of ectocytosis, resulting in the release of large vesicles known as microves-
icles (>1  μm) particles or smaller vesicles named ectosomes (about 100  nm). 
Alternatively, ECV could be produced by endocytosis of the plasma membrane-
forming endosomes. The membrane of these endosomes invaginates toward the 
lumen resulting in the formation of new vesicles included within a large vesicle that 
has been named multiple vesicular bodies X. The vesicles inside the multiple vesic-
ular bodies have the same topology of the plasma membrane. When these multiple 
vesicular bodies fuse with the plasma membrane the vesicle content within the 
lumen are released outside the cell. ECV derived from this process are known as 
exosomes [5, 6]. There is extensive evidence that HSP are present within different 
ECV that is summarized in Table 3.3. The detection of HSP within ECV has primar-
ily been made by mass spectroscopic analysis and, in some cases, confirmed by 
Western blotting. Since HSP are mainly present in the cytosol, their localization 
within ECV was assumed to be in the lumen as a result of trapping these proteins 
during the formation of the vesicles. However, it has been proposed that the compo-
sition of ECV is not random but rather a very selective process [6, 115]. Other 
observations have shown that HSP are located within the membranes of ECV, as in 
the case of Hsp70 [28, 31, 116], Hsp90 [117], and Hsp60 [118, 119]. The presence 
of HSP on the membrane (surface) of ECV is important because it may explain a 
specific interaction with target cells, most likely by a process mediated by surface 
receptors. On the contrary, the potential biological role of HSP within the lumen of 
ECV is less evident, which should require the fusion of the vesicles with the plasma 
membrane or by the burst of ECV liberating the cargo within the extracellular 
milieu. The presence of HSP on the membrane of ECV has led us to postulate that 
insertion into the lipid bilayer is the first step in the secretion of this protein [6]. 
Additional observations have shown that the export of Hsp70 and Hsc70 within 
ECV was blocked by the reduction of membrane cholesterol levels [79, 120]. 
Indeed, Hsp70 within ECV was resistant to nonionic detergents, such as Triton 
X-100, suggesting that the protein is within lipid rafts in the vesicles [28]. In this 
regard, several studies have shown that Hsp70 is present within lipid rafts of cells 
[28, 79, 121, 122].

Although the evidence for the active secretion of HSP from living cells is well 
established, it cannot be ignored that, under other circumstances, HSP are released 
into the extracellular medium after cell necrosis. Indeed, the concentration of 
HSP70 released after necrosis could be potentially very high [29]. In this regard, 
expression of HSP70 has also been observed after ischemia–reperfusion (I/R) 
injury, which resulted in a necrotic focus [85].
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3.6  �The Stress Observation System

There is clear evidence that cells secrete ECV during normal physiological condi-
tions as well as after stress. We have argued that the composition of ECV reflects the 
physiological stage of the cell [6]. Thus, constitutive proteins are present in ECV 
derived from cells under normal conditions, such as CD9 and CD63, which belong 
to the family of tetraspanin proteins [132]. During stress conditions, ECV should 
reflect the insult type, such as the presence of stress-inducible HSP. Then, ECV are 
recognized by other cell types, in particular cells of the immune system, as part of 
an assessment of the stress conditions. If there is not stress, it is unlikely that there 
is a response. However, ECV during stress conditions are likely to activate the 
immune system to prepare a preemptive response directed at avoiding the propaga-
tion of the insult (Fig. 3.1). The process of sensing stress via ECV has been termed 
“Stress Observation System” [6]. Thus, ECV derived from macrophages infected 
with intracellular pathogens were observed to activate uninfected macrophages by a 
Toll-like receptor and myeloid differentiation factor 88 dependent mechanism 
[133]. They also induced polymorphonuclear leukocyte recruitment in lungs after 

Table 3.3  Detection of HSP in ECV

HSP Cells Reference

HSP70 Dendritic cells [123]
HSP90 Dendritic cells [124]
HSP70 Peripheral blood mononuclear cells [125]
HSP70, HSC70,
HSP27, HSP90

B cells [126]

HSC70/HSP70 Reticulocytes [127]
HSP70, HSP90, Grp78 Hepatocytes [128]
HSP60 Cardiac myocytes [118]
HSP70 Pancreas carcinoma

Colon carcinoma
[31]

HSP70 Hepatoblastoma [28]
HSP70 Thymolymphoma

Mammary carcinoma
Colon carcinoma

[116]

HSP90 Glioblastoma
Fibroblastoma
Mammary gland adenocarcinoma

[129]

HSP90, HSC70 Mesothelioma [130]
HSP60 Cardiac myocytes [118]
HSP60 Bronchial carcinoma

Lung adenocarcinoma
Erythroleukemia

[119]

HSP70 Mycobacterium smegmatis and Mycobacterium  
avium-infected RAW 264.7

[131]
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intranasal delivery [133]. Moreover, ECV containing Hsp70 isolated from 
mycobacteria-infected cells induced an inflammatory response in macrophages 
[134]. ECV containing Hsp70 on their surface displayed a robust and specific acti-
vation of macrophages, which was higher than the same concentration of recombi-
nant Hsp70  in solution [28]. Finally, Hsp70-positive ECV were also found to 
stimulate the cytotoxic capacity of NK cells [31].

3.7  �Conclusions

HSP appear to display a different role in the extracellular environment than the 
well-characterized function as molecular chaperones. Extracellular HSP emerge as 
new signaling molecules involved in intracellular communication. The presence of 
extracellular HSP has been detected in biological fluids from individuals suffering 
from a large number of illnesses. Therefore, they are likely to become biomarkers 
of various disease conditions. Extracellular HSP are released by many cell types and 
by at least two main mechanisms, including the passive dissemination after necrosis 

Fig. 3.1  During normal physiological conditions, cells release ECV containing markers for cel-
lular homeostasis that when captured by immune cells do not trigger any response. However, the 
composition of these ECV changes after stress, resulting in a signal for the immune system to 
mount an appropriate response directed at mitigating the insult.
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or an active export process independent on cell death, named the nonclassical secre-
tory pathway. Extracellular HSP come in various flavors. Thus, they can be found in 
a soluble form within biological fluids, trapped in the lumen of ECV or exposed to 
the surface of these vesicles in a membrane-bound fashion. Finally, HSP associated 
with ECV appear to be part of a mechanism directed at both alerting the immune 
system to the presence of an insult and avoiding the propagation of stress.
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