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Abstract. Mobile app stores receive numerous reviews that contain
valuable feedbacks raised by users. Incorporating user reviews into itera-
tive delivery of new App versions would improve the quality and ratings
of Apps. To date, there is no explicit answer on whether and to what
degree App developers make use of user reviews sufficiently and timely.
In this paper, we extract requested features in user reviews and updated
features in new versions, identify the latent relation between them, and
discover 7 types of Update Patterns (UPs) by grouping similar Atomic
Update Units (AUs). UPs delineate common behavioral characteristics
of acting on user reviews from perspectives of feature intensity trend,
sufficiency and responsiveness. Statistics are conducted to explore the
similarity/difference between exhibited update patterns w.r.t. Apps, fea-
tures, and time. Results would help developers get a clear understanding
on their own habits on how to act on user reviews, and thus offer sug-
gestions on utilizing user reviews more efficiently in App development.

Keywords: Mobile App · App store · User review · Atomic Update
Unit (AU) · Update Pattern (UP) · Empirical study

1 Introduction

With the flourish of mobile Internet and service-dominant industries, the number
of available mobile Apps grows drastically with the rate 4–7% per month. Mobile
Apps dominate people’s daily lives and have been a major channel through which
people access cloud services anytime and anywhere to fulfill personal demands [2].

App store is a centralized platform for users to acquire Apps. In an App store,
each App has a homepage showing its descriptions along with its developer, size,
versions, etc. Users can submit reviews through its homepage. There are valuable
information lurking in enormous amount of user reviews, such as bug reports,
feature requests, complaints or appraisal, and the rating [10]. Potential App
users could gain a first impression on an App from reviews of its previous users.

User reviews are important to App developers, too. As today’s Internet-based
services usually adopt agile development approaches such as rapid iterations and
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 125–141, 2017.
https://doi.org/10.1007/978-3-319-69035-3_9



126 S. Wang et al.

continuous delivery, App developers would like to acquire feature requests from
reviews, and then to consider fulfilling them in subsequent releases [17]. There
has reached a consensus that user reviews bring positive effects to every phase
of App development, especially requirement engineering and testing [14].

Because the number of user reviews is enormous and high-quality reviews
are often intermingled with much more low-quality ones, App developers have
to filter out those informative reviews [3], read them, extract useful requested
features and perceive customer preferences [23], and fulfill these feature in next
iteration. These actions are regarded as “response to customer voices”. However,
it is not sure whether all developers follow the same behavior pattern, i.e., do
they have the same opinion on the value of user reviews and therefore utilize
them timely and sufficiently? As far as we know, until now there are not enough
research investigating this issue, which is still a great challenge.

The first work of this paper is to reveal the potential correlation between the
features requested in user reviews and the behaviors performed by App devel-
opers on updating App into a new version. Since most of Apps are proprietary
but open source Apps are in the minority, it is difficult to obtain fined-grained
update descriptions by tracking changes of source code or documents. To achieve
this goal, we can make use of update logs (i.e., “What’s New”) written by devel-
opers and publicized on the App homepage. An update log of a specific version
is a text list describing what features have been added or updated in this version
(compared with the previous version) [8]. As there have been many approaches
for extracting requested features from review texts [5,7], it is possible to apply
similar methods to extract updated features mentioned in “What’s New”, too.
If a frequently-requested feature in a specific period appears strikingly in the
update log of a subsequent version, it is indicated that there is latent correlation
between user reviews and update behaviors during this period, thus we may
think developers do elaborately consider user reviews when the App is updated.
Detailed analysis is conducted from the following four perspectives:

– Changing trend of the intensity of a feature requested in user reviews, i.e.,
how does the intensity of a feature mentioned in users reviews fluctuate in the
time interval between two neighboring versions of an App?

– Intensity of a feature updated in a new version, i.e., to what extent is a feature
mentioned in “What’s New” of the version?

– Update sufficiency for a specific feature, i.e., to what extent do App developers
act on specific user expectations sufficiently in a new version?

– Update responsiveness for a specific feature, i.e., how long does it take for App
developers to update an App in terms of the requested feature, or, to what
degree do App developers respond to user requests timely?

Next task is to identify common behavior patterns of how App developers act
on requested features. They are denoted as Update Pattern (UP). The second
work is to present an update pattern mining method by splitting App update
history into a set of Atomic Update Units (AU) and clustering them into groups.
Obtaining UPs would further help us identify their pros and cons, respectively,
so as to utilize user reviews more effectively.
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Fig. 1. Overall research framework with four phases

As Apps belong to different categories, offering diversified functionality to
diversified target users, and developed by different developers having different
working habits, we conjecture that update patterns in different Apps might
not be the same. Even in one App, as it contains multiple features such as UI
aesthetics, security, performance, we guess that the update patterns for different
features might be different. Furthermore, as each feature is updated multiple
times in multiple versions, the update patterns exhibited in different time might
also be different.

The third work is to conduct an empirical study to observe the similarity/
difference among update patterns exhibited in different Apps, on different/
similar features, and at different times, respectively.

To sum up, we address the following research questions (RQs) in this study:

– RQ1: Does the correlation between user reviews and App updates really exist?
If yes, are there common update patterns? And how to identify them?

– RQ2: In terms of different features of the same App, are there significant
difference/similarity between their update patterns?

– RQ3: In terms of similar features of different Apps, are there significant simi-
larity between their update patterns?

– RQ4: For a single feature of an App, are there significant changes of its update
patterns exhibited in different time?

Figure 1 demonstrates our research approach consisting of four phases: (P1)
Data Collection: user reviews and update logs (between March 2016 and March
2017) of 120 representative Apps are collected from Google Play; (P2) Fea-
ture Extraction: topic-based features are extracted from collected texts by NLP
approaches so that raw corpus are transformed into numerical vectors; (P3)
Update Pattern Mining: intensity trend of each feature along with time is calcu-
lated and decomposed into “Atomic Update Units (AUs)”, along with the mea-
surement of sufficiency and responsiveness of each AU, and update patterns are
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identified by clustering AUs; (P4) Empirical Study. P1, P2 and P3 are together
for addressing RQ1, and P4 is for RQ2, RQ3 and RQ4.

The main conclusions from this study are briefly summarized as follows:

– Intensity of a feature requested in user reviews fluctuates along with time: it is
comparatively higher before and after an update (release of a new version) than
at other times. Update sufficiency of features follows a power-law distribution,
but the distribution of update responsiveness shows an obvious right-skewed
shape. Comparatively speaking, App developers tend to act on user requests
in a preferably timely but not quite sufficient manner;

– There are 7 types of update patterns commonly exhibited in developers’
update behaviors. They are differentiated from three perspectives: intensity
trend of a requested feature, update sufficiency, and update responsiveness.

– App developers tend to adopt more similar update patterns for different fea-
tures in their own App. Similar features across multiple Apps more tend to
exhibit diversified update patterns. Therefore the adoption of update patterns
depends largely on “App developers” rather than on “features”. However,
developers’ behaviors lack enough coherence/continuity when they update the
same feature at different times.

The remainder of the paper is organized as follows. Section 2 introduces
the related work. Section 3 describes data collection and processing. Section 4
presents the methods on feature extraction and update pattern mining. Finally,
Sect. 5 reports experimental results and Sect. 6 offers some concluding remarks.

2 Related Work

Extracting Features from Reviews and Update Logs. Feature extrac-
tion from “big data” in App stores is a fundamental problem in the App Store
Analysis [14]. Various NLP techniques have been developed for this purpose.
Finkelstein et al. [5] defined a feature as “a claimed functionality offered by an
App, captured by a set of collocated words in App description and shared by a
set of Apps in the same category”; a tool N-gramCollocationFinder in NLTK
was used to extract featurelets from reviews. Guzman et al. [7] also used collo-
cation finding approach, but added sentiment analysis for extracting sentiments
and opinions associated to features, and topic modeling for grouping related
features. Differently, Iacob et al. [9] used syntax templates (keywords + syntax
rules) to identify features automatically from reviews. The third dominant app-
roach is statistics-based models such as Latent Dirichlet Allocation (LDA), e.g.,
[1,6,21]. Since user reviews are numerous, informative reviews should be selected
and recommended to App developers for elaborate considerations. Chen et al.
[3] used a machine learning approach, EMNB, to classify reviews into “infor-
mative” and “non-informative” ones, then used LDA/ASUM to group reviews
into clusters and prioritize them. Vu et al. [22] analyzed user reviews for key-
words of potential interest which developers can use to search for useful opinions,
including keyword extracting, keyword grouping, and keyword ranking.
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Feature Classification. It is necessary to classify extracted features into
categories so that they are handled by different strategies. Khalid et al. [11]
presented a 12-category classification, e.g., App Crashing, Compatibility,
Feature Removal, Hidden Cost, Functional Error, etc. Pagano and Maalej [18]
presented a classification with four coarse-grained categories and 17 fine-grained
ones, and they used manual annotation and frequent item mining approaches to
identify the frequent co-occurrence of features in reviews. Maalej and Nabil [12]
utilized several probabilistic techniques to automatically classify reviews into
bug reports, feature requests, user experiences, and ratings. McIlroy
et al. [16] distinguished 14 types of features and introduced a supervised multil-
abel classification method. In terms of features in “What’s New”, McIlroy et al.
[15] introduced a classification with 5 types, i.e., new content, new features,
improvement, bug fix, permission, and the frequency of their co-occurrence
is analyzed to empirically study frequently-updated mobile Apps.

Incorporating User Reviews in App Development. Apps as typical
Internet-based services, evolve fast in both external interfaces and internal func-
tionalities [8]. To cope with unpredictable changes and failures, Apps need to
be adaptive, too [4]. Syer et al. [20] found that the evolution of Apps are quite
different from the evolution of traditional software, and direct feedback con-
tained in user reviews facilitates design and testing respectively [10,14]. Nayebi
et al. [17] studied how developers organize release strategy of Apps, and found
that the majority of developers are willing to bend their time-based strategies to
accommodate users’ feedback, and believe that the rationale for release decisions
affects user feedback. Martin et al. [13] studied App update logs and analyzed
the causality between continuous updates of an App and its influence/rating,
i.e., what types of updates would upgrade Apps’ rating more easily. Palomba
et al. [19] analyzed how developers utilize user reviews to improve App rating:
they traced user reviews onto source code changes for monitoring the extent to
which developers accommodate crowd requests and follow-up user reactions as
reflected in their ratings, and results indicate that developers implementing user
reviews are rewarded in terms of ratings.

3 Data Collection and Preprocessing

3.1 App Selection

We choose Google Play as the source to collect mobile Apps and their update logs
and user reviews. Firstly, Android dominates mobile OS marketplace with the
market share above 74%. Secondly, the amount of Apps and users in Google Play
are both the biggest among Android App stores in the world, and the amount
and quality of user reviews are the highest, too. Thirdly, its users are distributed
across the world, thus the user reviews are extensively representative. To specify
the candidate Apps in our study, we choose the top-100 free Apps and top-20
paid Apps from the hot ranking list of Google Play (date: March 1, 2016). User
reviews and update logs of the 120 Apps between March 31, 2016 and March
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30, 2017 are collected. In terms of user reviews, we collect nickname of users,
review text, review date, and ratings. In terms of update logs, we collect App
descriptions, distribution of user ratings, and the text of “What’s new”.

3.2 Dataset Preparation

User reviews and update logs of Apps are both dynamically updated, and Google
Play only shows the latest version in the homepage of an App (previous versions
cannot be seen), and shows only a set of latest user reviews (i.e., not complete
historical reviews). Therefore, it is impossible to crawl required data all at once.
What we adopt is to constantly monitor the homepage of each App and identify
changes of update logs and reviews and record them instantly. We develop our
own Google Play crawler which regularly crawls updated information from Apps’
homepages and store them in an incremental manner. The tool constructs a
virtual HTTP request and sends it to Google Play, then collects the returned
review data (in JSON format), compares with local files, extracts updated reviews
and saves to local files. Similarly, after an App update log is crawled, the tool
compares it with previous update logs and check if it has been changed or not;
if yes, a new version has been released and “What’s New” is stored in local files.

As update frequency of user reviews is higher, we use five servers for the
crawling task. Tasks for collecting reviews of 120 Apps are allocated onto these
servers (each is responsible for 15–25 Apps). The sixth server is responsible for
collecting update logs of 120 Apps one time per day (because the update fre-
quency of Apps is comparatively lower). All the six servers are virtual machines
on Aliyun (the biggest PaaS cloud service provider in China), with the con-
figuration as: 1 GHz CPU, 1 GB memory, 2 Mpbs bandwidth, 40 GB harddisk,
OS Windows Server 2008 R2. The servers are physically located in Silicon Val-
ley, USA.

After 12-month collection, 17,557,170 reviews are collected, with 1,296 times
of App updates. There are totally 5,923,379 distinct users each having con-
tributed at least one review. Majority of the Apps have less than 500 daily
reviews in most of days, while a few Apps have above 4,000 reviews in one day.

Preprocessing of the crawled data includes two main steps as the following:

(1) Remove non-English texts. Although our crawler access Apps only from Eng-
lish zone of Google Play, there are still some non-English review texts. We
use table lookup to filter them out. English vocabulary table is offered by
aspell1. If a word belongs to this table, it is considered as an English word.
If the ratio of non-English words in a review is higher than a threshold (we
use 0.3), this review is considered as a non-English one and is to be dis-
carded. Finally, 51.16% reviews are discarded and 8,575,276 reviews remain
in the dataset.

1 http://wordlist.aspell.net/dicts.

http://wordlist.aspell.net/dicts
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(2) Remove stopwords and stemming. This is a common step in natural lan-
guage processing. Besides the Lextek’s stopword list2, when the reviews of
a specific App are handled, the full and abbreviated names of this App and
the names of its common operations are added to the stopword list.

4 Mining App Update Patterns

4.1 Extracting Features from User Reviews and “What’s New”

BTM (Biterm Topic Model) is employed to extract features from texts of user
reviews and “What’s New”. BTM is an optimized unsupervised LDA model
especially for short texts (e.g., tweets, short reviews) by explicitly modeling the
word co-occurrence patterns to enhance the topic learning and using aggregated
patterns in the whole corpus for learning topics to solve the problem of sparse
word co-occurrence patterns at document-level [24].

Reviews and “What’s New” of each App are the input of BTM and a topic
distribution matrix A is generated. If the total number of reviews is m, total
number of update logs is l, and the number of topics generated by BTM is n,
then A is (m+ l)×n dimensions, and the value Aij is the probability with which
the i-th review or update log covers the j-th topic. Each topic is represented by
a set of keywords and is used as a feature covered by the App.

4.2 Intensity Trend Chart of Feature Request/Update

Next step is to measure the daily intensity of each feature requested in reviews
and updated in new versions, and to get intensity trend of each feature. In terms
of one App, suppose Day(i) is the day when the i-th review is published to
App store, then the daily intensity of the j-th feature fj in the k-th day is
IR(fj , k) =

∑
Day(i)=k Aij (abbr. IRjk). Intensity of feature update in the update

log of a new version IU (fj , k) (abbr. IUjk) is measured similarly.
Changing trend of feature intensity along with time (intensity trend in short)

is obtained based on a feature’s daily intensity. Taking the data of Instagram
App as an example, the intensity trend of a feature f related to feed with key-
words feed, chronological, posts, etc., is shown in Fig. 2. X-axis is time-
line, y-axis is the intensity of feature request/update, the curve is the inten-
sity trend of the feature requested in reviews, and the vertical lines represent
the intensity of the feature updated in new versions. This chart is described
by TC(f, ts, te) = {(k1, IRf,k1

, IUf,k1
), ..., (kN , IRf,kN

, IUf,kN
)} where N is the total

number of days between date ts and te, and k1, ..., kN are N consecutive days.
Such chart combines intensity trends of a specific feature in both user reviews
and update logs, thus is helpful to observe the global correlation between them.

2 http://www.lextek.com/manuals/onix/stopwords1.html.

http://www.lextek.com/manuals/onix/stopwords1.html
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Fig. 2. Feature trend of a feature of Instagram App (Color figure online)

4.3 Atomic Update Units (AU)

The intensity trend for one feature is to be decomposed into a set of
“Atomic Update Units (AU)” in terms of a set of App updates which are
considered as the actions developers take to respond to user requests in
reviews. TC(f, ts, te) → {AU(f, T1), AU(f, T2), ...}, and ∀i, AU(f, Ti) =<
{(ki1, IRf,ki1

), (ki2, IRf,ki2
), ...}, IUf,Ti

>, where ki1, ki2, ... are consecutive days dur-
ing the time interval Ti, and IUf,Ti

is the intensity of f updated in the last day of
Ti. AU(f, Ti) represents an interval Ti in which users make continuous requests
on f in their reviews, and what the developers act on these requests is to make
an update on f in the last day of Ti but there are no other updates during Ti.

Easily to imagine, lengths of different AUs are different. To help identify
update patterns from AUs, we make normalization on the length of AUs by
transforming absolute dates into relative dates and consequently all AUs are
with the same length (e.g., 20 relative time points). A piecewise fitting method
is adopted for this transformation. Detailed steps for decomposing intensity trend
chart into normalized AUs are listed in Algorithm 1.

For each AU , we calculate the sufficiency and responsiveness to measure the
speed and degree describing how developers act on a requested feature in user
reviews after the last update (version) on this feature.

Update sufficiency for a feature, i.e., ratio of the update intensity w.r.t. aggre-
gated request intensity in user views, measures to what degree App developers
could consider the expectation of users. The higher the value is, the more suf-

ficient the update is. It is measured by Suf(f,AUi) = Norm(
IU
f,Ti

∑ts
i

k=te
i
IR
f,k

) where

Norm(·) is a normalization function to make Suf(f,AUi) ∈ (0, 1].
Update responsiveness for a feature, i.e., how long it takes for a developer to

decide whether to update a requested feature into a new version, is measured by
the ratio of the interval in which the features are significantly mentioned w.r.t.
the interval between two neighboring versions that both update this feature.
It demonstrates to what degree developers act on user expectations timely. To
measure responsiveness, in an AUi, we first calculate a specific time di to which
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Algorithm 1. Decomposing intensity trend chart into normalized AUs
Input: Intensity trend TC(f, ts, te) of a specific feature f in a time interval (ts, te),

Number of relative time points in one normalized AU: N
Output: A set of normalized atomic update patterns AU Set
1: size ← number of updates during (ts, te) − 1, AU Set ← ∅
2: for each i ∈ [1, size] do
3: NIS ← ∅, Ti = (tsi , t

e
i ) is the time interval of the i-th AU, Ni = tei − tsi + 1

4: OIS = getFeatureIntensityByDay(TC(f, ts, te), Ti)
5: max int = getMaxIntensity(OIS)
6: for each k ∈ [tsi , t

e
i ] do

7: OIS[k] ← OIS[k]
max int

8: end for
9: NIS[1] ← OIS[tsi ], NIS[N ] ← OIS[tei ]

10: for each k ∈ [2, N − 1] do
11: index ← k

(N−1)×(tei−tsi )

12: if index is an Integer then
13: NIS[k] ← OIS[index]
14: else
15: NIS[k] ← 1

2
(OIS[�index�] + OIS[�index�])

16: end if
17: end for
18: AU(f, Ti) ←< NIS, IUf,Ti

> and add AU(f, Ti) into AU Set
19: end for
20: return AU Set

the interval from the last update is (tsi , di); in this interval, aggregated intensity of
the requested feature is high enough (above a threshold τ), i.e.,

∑di

k=tsi
IRf,k ≥ τ ,

thus Resp(f,AUi) = di−tsi
tei −tsi

. A special case is
∑tei

k=tsi
IRf,k ≤ τ , indicating that

before the aggregated intensity of f in reviews has not yet reached the threshold,
the developers make update on it, thus Resp(f,AUi) = 1. This is the best
case indicating developers always take actions on feature requests as quickly as
possible. In the study we set τ = 4. It should be noted that we have checked
that choosing different threshold results in similar CDF of the responsiveness of
all AUs.

Sufficiency and responsiveness are both relative measures, i.e., we can com-
pare Suf(f,AUi) and Suf(f,AUj) to infer in which AU the feature f is
updated more sufficiently, and compare Resp(f,AUi) and Resp(f,AUj) to infer
in which AU the feature f is updated more timely. Solely observing the values
of Suf(f,AU) or Resp(f,AU) does not help to draw meaningful conclusions.

Figure 3(a) shows an example AU extracted from the history of Instagram,
for a feature Feed, between May 21, 2016 and August 3, 2016 (i.e., the part
between the first and second red lines in Fig. 2). It is normalized by Algorithm 1
and the result is shown in Fig. 3(b). The responsiveness is 1 and the sufficiency
is 0.0249, indicating that this update is comparatively timely, but the developers
did not address the requested feature adequately.



134 S. Wang et al.

0
50

100
150
200
250
300
350
400
450
500

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

O
rig

in
al

 In
te

ns
ity

 o
f F

ea
tu

re
 

Re
qu

es
t/

U
pd

at
e 

 

Timeline : the X th Day from 2016.1.1 

(a) Original intensity trend

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
or

m
al

iz
ed

 In
te

ns
ity

 o
f F

ea
tu

re
 

Re
qu

es
t/

U
pd

at
e  

Timeline a er Normalized  

(b) Normalized intensity trend

Fig. 3. An example Atomic Update Unit for a feature in Instagram

Figure 4(a) and (b) give the distribution of responsiveness and sufficiency of
all 2,429 AUs of 120 Apps, respectively. Sufficiency follows power-law distribu-
tion, while responsiveness is a right-skewed distribution. To note that, we have
checked and found that changing the threshold in the two measurement does
not drastically change the shape of their distribution.

4.4 Mining Frequent Update Patterns

Now the “intensity trend” for each feature is decomposed into a set of AUs,
and one AU(f, Ti) is with four parts: normalized requested intensity in each day
{(ki1, IRf,ki1

), ...}, normalized update intensity in the last day of this AU (IUf,Ti
),

and sufficiency (Suf) and responsiveness (Resp) of this update.
We try to find out the common patterns among all AUs of all Apps in their

history. A clustering approach is employed to partition AUs into groups: AUs in
the same group share comparatively more similar characteristics (requested fea-
ture intensity trend, update intensity, sufficiency and responsiveness), while dis-
tances between AUs in different groups are larger. We take the centroid of each
group to be a representative “Update Pattern”. k-Means algorithm is employed
for clustering and Euclidean distance is used for similarity measurement.

A key issue is to specify the number of clusters (k) in k-Means algorithm.
We assign different values (2 to 18) to k and make experiments and calculate
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the average distance between centroids of clustering results; along with the
increase of k, the average distance gradually decreases, and when k = 7, the
decreasing speed becomes significantly slow. Thus we choose k = 7.

Table 1 gives an overview of the 7 update patterns. It is easy to see that
these patterns show significant diversity on intensity trend of features in user
reviews (column 5), update sufficiency (column 2), and update responsiveness
(column 3), implying they have the ability of differentiating how developers take
update behaviors on user reviews. Take Pattern 2 and Pattern 4 as examples,
Pattern 2’s responsiveness and sufficiency are comparatively lower than the ones

Table 1. Overview of the identified 7 Update Patterns

No.
Sufficiency
(ranking)

Responsiveness
(ranking)

Ratio Intensity trend

Pattern 1 0.195(2) 0.803(4) 6.67%

Pattern 2 0.050(6) 0.455(7) 7.70%

Pattern 3 0.058(4) 0.606(6) 16.43%

Pattern 4 0.349(1) 0.996(1) 8.53%

Pattern 5 0.049(7) 0.745(5) 18.66%

Pattern 6 0.102(3) 0.995(2) 24.84%

Pattern 7 0.054(5) 0.891(3) 17.17%



136 S. Wang et al.

of Pattern 4, and the decreasing trend of the requested intensity in Pattern 2
is more gentle than the one in Pattern 4. Ratios of these UPs (column 4) vary
from 6.67% to 24.84%, indicating that they are widespread in real world.

5 Empirical Study

Since we have got 7 diversified UPs, now we focus on how UPs are adopted on
different/similar features in the same or different Apps, and at different times.

5.1 Update Patterns w.r.t. Different Features in One App

In terms of one App, there are multiple features requested in reviews and updated
in new versions that are conducted by the same developers. We check whether
different update patterns are adopted for different features in the same App.

For each feature in an App, we construct a vector containing the ratios of 7
Update Patterns adopted in all AUs of this App, i.e., v(App, f) = (r1, r2, ..., r7),
and ri is ratio of the i-th UP. If v(App, fj) and v(App, fk) are similar, we can
infer that fj and fk exhibit similar update pattern distributions in this App.
Cosine similarity is used to measure the similarity of two vectors.

For all Apps, the distribution of the similarity of arbitrary feature pairs in
the same App is shown in Fig. 5(a), where each column is an App. Most Apps
show quite scattered distributions in [0, 1], and there are 73.2% Apps having the
variance of feature pair similarity being above 0.2.

(a) w.r.t. different features in one App

(b) w.r.t. similar features in one group

Fig. 5. Distribution of update patterns similarity
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(a) For different features in one App (b) For similar features in one group
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Fig. 6. Classification of update pattern similarity (high, medium, low)

We calculate the ratios of feature pairs in the same App with high (≥ 0.7),
medium [0.3, 0.7) and low (< 0.3) similarity, respectively. Result is shown in
Fig. 6(a) where each column is an App. Different Apps show quite different
observations: a small proportion of Apps on the left side tend to adopt dif-
ferent update patterns for different feature pairs, while a larger proportion on
the right side tend to adopt similar update patterns. Holistically, developers tend
to adopt more similar update patterns for different features in their own Apps.

5.2 Update Patterns w.r.t. Similar Features Across Multiple Apps

Considering multiple Apps together, there are common features across them.
We care about whether similar features in different Apps follow similar update
patterns. First we identify similar features among feature sets of different Apps.
Keyword matching is used for this purpose, i.e., if two features are described
by two similar sets of keywords, there is high probability with which the two
features represent the same one. 17,906 pairs of similar features across Apps are
identified, and they are grouped into 328 clusters in terms of feature similarity.

Similar as in Sect. 5.1, we construct a vector v(App, f) = (r1, r2, ..., r7) for
each f in each App, and then calculate the Cosine similarity between two vectors
v(Appi, fk) and v(Appj , fl) where i �= j and fk, fl belong to the same feature
group. For feature groups, the distribution of similarity of feature pairs in the
same group is shown in Fig. 5(b) where each column is a feature group. We can
see the degree of dispersion is higher than the one in Fig. 5(a).

Figure 6(b) shows the ratios of feature pairs in the same group with high
(≥ 0.7), medium ([0.3, 0.7)) and low (< 0.3) similarity, respectively. Compared
with Fig. 6(a), a larger proportion of groups tend to adopt different update
behaviors. Statistics show that there are 83.5% groups having the variance of
feature pair similarity above 0.2. This implies that similar features across multi-
ple Apps more tend to adopt diversified update patterns compared with different
features in the same App, and the adoption of update patterns on App features
depends more largely on “App developers” themselves rather than on “features”.
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5.3 Update Patterns w.r.t. Timeline

Here we consider the time perspective, i.e., along with time, do the update pat-
terns of a specific feature change frequently or remain stable? We pay attention
to the “update history” of a single feature in an App.

Suppose in a time interval, a feature f is updated n times in n versions, and
the update pattern for the i-th updates is pi. There is an update pattern sequence
Q(f) = p1 → p2 → ... → pn. Because p1, ..., pn are labels of update patterns
rather than numerical values, we cannot measure stability of the sequence from
the numerical fluctuation degree’s perspective. We use two stability measures:

(1) local stability : what proportion of two neighboring updates follow the
same update patterns, i.e., Stabl(f) = 1

n−1 × |{(pi, pi+1)|pi = pi+1,
i = 1, 2, ..., n − 1}|;

(2) global stability : how many different update patterns appear in the sequence
and what the degree of their dispersion is, measured by negative entropy,
i.e., Stabg(f) =

∑
i N(pi) log N(pi) where N(pi) is the times of pi appearing

in Q(f). Then Stabl(f) and Stabg(f) are combined with an average to get
Stab(f).

Figure 7 shows the distribution of update pattern stability of multiple features in
the history of each App. We found that the dispersity of such stability are smaller
compared with Fig. 5(a) and (b), with only about 36.0% having the invariance
larger than 0.2. The median of most Apps is less than 0.4, indicating that most
of them are not stable, i.e., developers tend to lack enough coherence/continuity

Fig. 7. Distribution of update pattern stability of features w.r.t. Apps
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Fig. 8. Classification of update pattern stability w.r.t. Apps (Color figure online)
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when they consider to update the same feature at different time. This can be
also proved by Fig. 8 where the green (very unstable) and red (medium stable)
are dominating, and the blue (very stable) are the minority.

6 Conclusions

In this paper, we identified 7 types of common Update Patterns which generally
appear in App developers’ behaviors that they perform to act on the requests
raised by App users in their reviews. Update patterns are characterized by the
feature intensity trend between two neighboring updates, the update sufficiency,
and the update responsiveness. Statistics are made to validate a set of hypothesis.
This would help developers get a clear understanding on the common habits of
how they act on user reviews during delivery and evolution of their Apps.

Future work is to empirically validate whether there is latent causality
between update patterns and the popularity/rating of an App, i.e., would some
update patterns significantly boost the recognition of Apps, while others not?
This helps recognize App developers’ bad habits on incorporating user reviews in
App updates and give suggestions on adopting more appropriate update patterns
in future’s App updates. Another work is to exploit a machine learning based
predication method which gives App developers advices to update specific fea-
tures based on user reviews published from the last update to the current date,
so that “voices” of App users are to be addressed more timely and adequately.

Acknowledgments. Work in this paper is supported by the Natural Science Foun-
dation of China (No. 61772155, 61472106).
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