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Abstract. Configurable process models are increasingly used in many
industries as reference processes shared between different process ten-
ants. These processes are configured and adapted according to their spe-
cific needs through configurable elements (i.e. the variation points). Since
configuration decisions are taken prior to execution, incorrect ones may
lead to critical behavioral issues such as deadlocks. In this work, we
propose a formal behavioral model based on the Symbolic Observation
Graph (SOG) allowing to find the set of correct configuration choices
while avoiding the state-space explosion problem. This set of configura-
tion choices, jointly provided with the configurable process, will support
and help business analysts in deriving deadlock-free variants.

Keywords: Business process management · Configurable process
model · Process variants · Formal verification

1 Introduction

A configurable business process model [11,17] represents a family of a large
number of related process models. Such a process model is reused and config-
ured according to a given application context by selecting one design option for
each configurable element (i.e. a variation point). The non-configurable elements
represent the commonalities in the configurable model. The configuration deci-
sions of a configurable element are made at design-time [17] leading to configured
processes called variants. For instance, In Fig. 1, a simplified example of a config-
urable process model designed by a process provider for a hotel booking agency
is presented. The process is modeled using the Configurable Business Process
Model and Notation (C-BPMN) [5,14], a configurable extension to BPMN. The
travel agency has a number of branches in different countries. Depending on spe-
cific needs of a country, each branch performs a different variant of this process
model in terms of structure and behavior. For instance, a process tenant may
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need an exclusive execution of the connector S1 ’s outputs (configurable con-
nectors are modeled with a thicker border). This refers to configuring S1 to an
XOR-split. Another tenant may choose to execute them concurrently by config-
uring S1 to an AND-split.

As the configuration decisions of the configurable elements are applied at
design-time [17], any design mistake (e.g. configuring S1 to OR-split and j3 to
AND-join leads to a deadlock) should be avoided in order to avert execution
errors in the derived variants. Furthermore, configurable processes may be large
with complex inter-dependencies between the different possible configurations.
Consequently, the configuration can not be done manually and a correctness
verification phase is essential. So far, a number of approaches have addressed
the verification of the process configuration correctness. Some of them have only
discussed the syntactical correctness (e.g. [11,17]), others have attempted to
verify behavioral correctness but have faced the exponential number of state-
space problems (e.g. [13]). Very few have addressed the configuration behavior
verification while trying to reduce state explosion problem (e.g. [1,4]) but still
suffer from the exponential complexity of generating their reachability graph.
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Fig. 1. A configurable hotel booking process model

The aim of this paper is to address this state space problem while verifying
one of the most important behavioral correctness properties a process execution
should hold, the deadlock-freeness. We propose an abstraction of a configurable
process model using the Symbolic Observation Graph (SOG for short) [12,15]
based on its configurable elements. This abstraction offers a two-fold advantage:
(1) the analysis and the verification of the corresponding configurable process
can be reduced to the analysis of its abstraction, and (2) the set of possible
combinations of elements configurations that result in deadlock-free variants are
obtained prior to configuration time. Once found, these combinations are used
to assist the business analyst in deriving deadlock-free variants.

The SOG is a versatile symbolic representation formalism that allows to
build an abstraction of the reachability state graph of a formally modeled sys-
tem (e.g. using Petri net). In our case, this abstraction is achieved by observing
the configurable elements of the process (that label the SOG arcs) and by hid-
ing non configurable elements inside the aggregates (the SOG nodes). Moreover,
without limiting the generality of our approach, we propose to use C-BPMN as
input notation. BPMN is highly adopted by stakeholders of different roles (e.g.
IT architects, business analysts, etc.) since it is considered as the internationally
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recognized industry standard notation for business process description. Also,
since the large majority of modeling languages can be mapped into it, we use
Petri-net as a pivot formalism to represent C-BPMN process model and its corre-
sponding semantics. This semantics depicts the generic behavior of configurable
connectors and thus all possible behavior.

Figure 2 depicts the milestones followed in order to obtain deadlock-free
process variants using our SOG-based approach. First of all, as depicted on the
left-hand side of the figure, C-BPMN is used as input process. Then, we map
this process to a Petri net-based model; and we define new semantics to take
into account configurable connectors (step 1, see Sect. 3). Afterward, we extend
the algorithm of SOG graph construction by three main points (step 2): (i) by
observing and highlighting configurable connectors in the graph arcs; (ii) by hid-
ing non-configurable elements’ states in aggregates (see Sect. 4.1); and (iii) by
restricting the graph nodes to the ones leading to deadlock-free configurations
(see Sect. 4.2). As a result, we obtain a reduced SOG graph that groups the
behavior of all correct configurations. The set of correct configurations combi-
nations is then extracted (step 3). The last three steps are performed on-the-fly
during the SOG construction. The correct configurations are finally supplied to
the business analyst in order to derive deadlock-free variants, with no need to
verify correctness at each intermediate configuration step.
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Fig. 2. Our approach overview

The remainder of the paper is organized as follows. In Sect. 2, some prelimi-
nary concepts on Petri nets are described. New Petri net-based models for busi-
ness process and then for configurable process models as well as their semantics
are defined in Sect. 3. Then, in Sect. 4.1, we define a new Symbolic Observation
Graph associated with the configurable Petri net-based model and we explain
our approach based on the SOG construction algorithm. Our approach is eval-
uated in Sect. 5. We present the related work in Section 6. Finally, we conclude
and provide insights for future work.

2 Preliminaries and Notations

In this work, we use Petri nets, which offer a formal model for concurrent systems.
Note that our approach does not rely on specific Petri net properties but can be
applied to any formal model as soon as states and transition relation are well
defined.
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Definition 1 (Petri Nets). A Petri net is a tuple N = 〈P, T, F,W 〉 s.t.:

– P is a finite set of places and T a finite set of transitions with (P ∪ T ) �= ∅
and P ∩ T = ∅,

– A flow relation F ⊆ (P × T ) ∪ (T × P ),
– W : F → IN+ is a mapping assigning a positive weight to arcs.

Each node x ∈ P ∪ T of the net has a pre-set and a post-set defined respec-
tively as follows: •x = {y ∈ P∪T | (y, x) ∈ F}, and x• = {y ∈ P∪T | (x, y) ∈ F}.
For a transition t, W−(t) ∈ IN|P | (resp. W+(t) ∈ IN|P |) denotes the vector where,
∀p ∈ P , W−(t)(p) = W (p, t) (resp. W+(t)(p) = W (t, p)). A marking of a Petri
net N is a function m : P → IN.

Semantics: Let m be a marking of t ∈ T , a transition t is said to be enabled by
m, denoted by m t−→, iff W−(t) ≤ m. When t is enabled by m, its firing leads
to a new marking m′, denoted by m t−→m′, s.t. m′ = m − W−(t) + W+(t).

For a finite sequence σ = t1 . . . tn, mi
σ−→mn denotes the fact that σ is enabled

by mi, and that its firing leads to mn. Given a set of markings S, we denote by
Enable(S) the set of transitions enabled by elements of S. The set of markings
reachable from a marking m in N is denoted by R(N,m). The reachability graph
of a Petri net N , denoted by G(N,mi) (mi is the initial marking), is the graph
where nodes are elements of R(N,mi) and an arc from m to m′, labeled with t,
exists iff m t−→m′. The set of markings reachable from a marking m, by firing the
transitions of a subset T ′ only is denoted by Sat(m,T ′). By extension, given a
set of markings S and a set of transitions T ′, Sat(S, T ′) =

⋃
m∈S Sat(m,T ′). For

a marking m, m �→ denotes that m is a dead marking (i.e., there is no transition
s.t. m t−→ which means Enable({m}) = ∅).

Definition 2 (WF-Nets). Let N = 〈P, T, F,W 〉 be a Petri net and F ∗ is the
reflexive transitive closure of F. N is a Workflow net (WF-net) iff:

– there exists exactly one input place i ∈ P , s.t. |•i| = 0,
– there exists exactly one output place o ∈ P , s.t. |o•| = 0,
– each node is on a directed path from the input place to the output place, i.e.

∀n ∈ P ∪ T, (i, n) ∈ F ∗and(n, o) ∈ F ∗.

Definition 3 (Deadlock-free WF-Net). Let N = 〈P, T, F,W 〉 be a WF-net
and mi, mf be the initial (i.e. only i is marked) and final (i.e. only o is marked)
markings respectively. N is said to be deadlock-free iff � ∃m ∈ (R(N,mi) \ {mf})
s.t. m �→.

3 Formal Model for Configurable Business Processes

In order to obtain an abstract formal definition of a business process model,
we formally map a process in BPMN notation to Petri nets, specifically into a
new model called Business Process Petri Nets (BP2PN ). Then, we extend the
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BP2PN to take into account configurable connectors, leading to a new model,
namely the Configurable Business Process Petri Nets (CBP2PN ). Authors in
[10] have established a mapping from well-formed BPMN models to Petri nets.
In this work, we extend this mapping by preserving blocks as transitions allowing
to define configurable transitions.

3.1 Business Process Petri Nets (BP2PN)

Definition 4 (BP2PN). A BP2PN is a tuple B = 〈P, T ∪ OP,F,W,O〉 where:

– 〈P, T ∪ OP,F,W 〉 is a WF-Net,
– F ⊆ (P × T ∪ OP ) ∪ (T ∪ OP × P ) is the flow relation,
– O : OP → {OR−, OR+,XOR−,XOR+, AND−, AND+} is a mapping that

assigns a type to each operator,

BP2PN is a Workflow net such that, the set of places P corresponds to the
set of conditions determining the enabling of a task or a connector; and the set of
transitions T ∪ OP corresponds to the set of tasks and connectors. These nodes
are interconnected through a set of arcs (using F ). Each connector must either
be a join (the − right exponent) or a split (the + exponent) while having a type:
OR, XOR or AND.

Semantics: In the previous notation, we retain the connectors blocks and we
define new execution semantics inspired from the original semantics of Petri
nets.

Given a marking m of a BP2PN B , the fireability and the firing of any tran-
sition in T ∪ {t ∈ OP | O(t) ∈ {AND−, AND+}} follows the original semantics
of Petri nets. However, transition t s.t. O(t) ∈ {OR−, OR+,XOR−,XOR+}
follows a new semantics:

Let m be a marking and t be a transition of OP , the fact that t is enabled
by m is denoted by m t−→, and m t−→m′ denotes that m′ is reached by firing t
from m:

– O(t) = OR−
• m enables t iff ∃S ⊆ •t s.t. m|S ≥ W−(t)|S
• when m enables t, the firing of t from m leads to a marking m′ iff m′ =

m−W−(t)|S +W+(t) where S is the biggest subset of •t satisfying m|S ≥
W−(t)|S .

– O(t) = XOR−
• m enables t iff ∃p ∈ •t s.t. m(p) ≥ W−(t)(p) ∧ ∀q ∈ •t, m(q) < W−(t)(q)
• when m enables t, the firing of t from m leads to a marking m′ iff m′ =

m−W−(t))|{p} +W+(t) where p is the sole place satisfying the firability
condition.

– O(t) = OR+ (resp. O(t) = XOR+)
• when m enables t, the firing of t from m leads to a marking m′ iff ∃S ⊆ t•

(resp. ∃p ∈ t•) s.t. m′ = m−W−(t)+W+(t)|S (resp. m′ = m−W−(t)+
W+(t)|{p}).
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Note that only the firing of transitions t s.t. O(t) ∈ {OR+,XOR+} is defined
because the fireability follows original semantics. It is worth mentioning that
the previous semantics of OR+ and XOR+ leads to non-deterministic firing.
For instance, having a split transition OR+ with 2 output places p1 and p2, its
firing leads to 3 possible reachable markings m1 (only p1 is marked), m2 (only
p2 is marked), and m1 2 (both places are marked). Also, we emphasize that the
semantics of a join transition OR− is inline with the well defined pattern 8 in [3]
(Multi merge), that expressly allows the firing of the join as soon as it condition
is satisfied (without synchronizing the different flows).

3.2 Configurable Business Process Petri Nets (CBP2PN)

Definition 5 (CBP2PN). A CBP2PN is a tuple CB = 〈P, T ∪ OP,F,W,
O ,C 〉 where:

– 〈P, T ∪ OP,F,W,O〉 is a BP2PN;
– C : OP → {true, false} is a function determining the configurable operators

(i.e. any t ∈ OP s.t. C (t) = true).

Back to our example, our C-BPMN process is mapped onto CBP2PN
in Fig. 3. In this notation, according to Definition 5, activities and connec-
tors are modeled by transitions and their ordering is modeled by places con-
necting the different transitions. Configurable transitions are also highlighted
with a thick border. This example includes 6 configurable transitions: s1, s3,
s4, j2, j3 and j4. We denote by OP c the set of configurable operators s.t.
OP c = {o ∈ OP | C (o) = true}. A configurable operator cc ∈ OP c includes a
generic behavior which is restricted using the configuration phase. It is config-
ured by changing its type (e.g. from OR to AND) w.r.t. the set of configuration
constraints [17] defined in Table 1. Each row corresponds to a configurable con-
nector that can be configured to one or more of the connectors in columns. Thus,
these constraints allow to specify which regular connector’s type may be used in
the derived process variant. For example, a configurable OR can be configured
to any connector’s type while a configurable AND can only be configured to
an AND. In the following, we define a configuration of a connector tc ∈ OP c

by Conf(tc) ∈ {OR−, OR+,XOR−,XOR+, AND−, AND+} and the set of all
possible configurations of tc by AllConf(tc).

Table 1. Constraints for the
configuration of connectors
[17], x ∈ {+,−}.

ORx XORx ANDx

ORx √ √ √
XORx √
ANDx √

Note that, when configuring all configurable con-
nectors of a CBP2PN, we obtain a BP2PN, as a con-
figurable connector is changed into regular connec-
tor after configuration. One possible configuration
of the process net of Fig. 3 can be done by selecting
the following configuration choices: (i) s1, s3 and
s4 are configured to regular XOR+, (ii) j2 is con-
figured to a regular AND−; and (iii) j3 and j4 are
configured to regular XOR−.
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Fig. 3. The CBP2PN of the configurable process in Fig. 1

Semantics: The semantics of CBP2PN is described in the following, on the one
hand, by inheriting the dynamics of BP2PN for non configurable connectors, on
the other hand, by adding new semantics for configurable ones. This semantics
is defined such that any reachable marking by any possible instance of a con-
figuration is represented. In the following, we consider a configurable transition
as the union of all possible configurations. That way, we can define its enabling
and firing rules as if it is the union of all executable configured transitions. Since
a configuration of AND−, AND+, XOR− and XOR+ do not change type,
its semantics remains the same as previously defined. Regarding configurable
OR− and OR+ transitions, the fireability and the firing rules follow the new
semantics as follows. Let m be a marking and tc be a transition of OP c, s.t.
O(tc) ∈ {OR−, OR+}:

– m enables tc, denoted by m tc−→ iff ∃x ∈ AllConf(tc) s.t. m x−→
– when m enables tc, for some configuration x of tc, the firing of tc from m,

under configuration x, leads to a marking m′, denoted by m tc,x−→m′ iff m x−→m′

Using this semantics, the reachability marking graph associated with a
CBP2PN covers the behavior of all the possible configurations. For instance,
having the CBP2PN of Fig. 3, the configurable transition s1 could be config-
ured either to: (i) AND+, with all of its output places marked, (ii) XOR+, with
only one of the output places marked, or (iii) OR+ with one or more output
places marked.

Definition 6 (Deadlock-free CBP2PN). Let CB be a CBP2PN. CB is said
to be deadlock-free if at least one deadlock-free BP2PN could be configured
from CB.

Our CBP2PN of Fig. 3 is considered correct since one can configure at least
one correct variant by choosing XOR type as configuration choice for all its
configurable connectors (the correctness of such a variant is proven in Sect. 4.2).
However, incorrect variants could be derived from this process as well. For
instance, one can choose the alternatives presented earlier that leads to a dead-
lock caused by an exclusive choice XOR+ (i.e. s1) followed by a synchronizing
join AND− (i.e. j2). In this situation, in order to be enabled, the transition
AND− will be waiting for both places p8 and p9 to be marked, however only one
could be marked. So, the resulting variant could never terminate properly and
the corresponding reachability graph contains a dead marking. In the following,
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we propose to use the SOG in order to abstract the reachability graph of a
CBP2PN, and to extract the correct configurations (leading to deadlock-free
BP2PN ).

4 Symbolic Observation Graph for Process Configuration

In this paper, we check the behavior correctness of all possible configurations of
a configurable model. This refers to verifying the reachability graph that covers
them all. In order to reduce the underlying state space explosion problem, we
propose to use the Symbolic Observation Graph (SOG). The SOG-based abstrac-
tion technique was introduced for model checking of concurrent systems [12] and
then applied on the verification of inter-enterprise business processes [15].

4.1 Symbolic Observation Graph

Given a CBP2PN, the set of observed transitions, denoted by Obs is the set of
configurable connectors i.e. Obs = OP c, while any other transition belongs to the
set of unobserved transitions, denoted by UnObs, i.e., UnObs = (T ∪OP )\Obs.
In such a way, we construct the Symbolic Observation Graph (SOG) as a graph
where each node is a set of states linked by unobserved transitions and each arc
is labeled by an observed transition. Nodes of the SOG are called aggregates
and are represented and managed efficiently using Binary Decision Diagrams
(BDDs). As a result, by highlighting observable transitions, the SOG represents
the global behavior of a process configuration in only one reduced graph. In the
following, we first formally define an aggregate, and then the SOG associated
with a CBP2PN.

Definition 7 (Aggregate). Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be a CBP2PN
having mi and mf as initial and final markings respectively. An aggregate of N
is a triplet 〈S, d, f〉 s.t.:

– S ⊆ R(N ,mi) is a set of reachable markings, where ∀s ∈ S:
- (∃(s′, u) ∈ R(N ,mi) × UnObs | s u−→s′) ⇔ s′ ∈ S;
- (∃(s′, o) ∈ R(N ,mi) × Obs | s o−→s′) ∧ (�(s′′, u) ∈ S × UnObs) | s′′ u−→s′) ⇔
s′ �∈ S.

– d ∈ {true, false}; d = true iff S contains a dead state.
– f ∈ {true, false}; f = true iff S contains a final state.

In addition to the d and f attributes of an aggregate, the above definition spec-
ifies the states that must belong to an aggregate (the aggregation criterium)
and those that must be excluded: For any state s in the aggregate, any state s′

being reachable from s by the occurrence of an unobserved transition, belongs
necessarily to the same aggregate. (2) For any state s in the aggregate, any
state s′ which is reachable from s by the occurrence of an observed transition
is necessarily outside the aggregate, unless s′ is reachable from a state s′ in the
aggregate by an unobserved transition.
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Before defining the SOG, let us introduce the following operation: Out(a, t):
returns, for an aggregate a and an observed transition t, the set of states outside
a that are reachable from some state in a by firing t, i.e., Out(a, t) = {s′ ∈
R(N ,mi) | ∃s ∈ a.S, s t−→s′}
Definition 8 (Deterministic SOG). Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be
a CBP2PN having mi and mf as initial and final markings respectively. The
Deterministic Symbolic Observation Graph (SOG) associated with N is a graph
G = 〈A,Obs,→, A0,Ω〉 where:

(1) A is a non empty finite set of aggregates satisfying :
– ∀a ∈ A, ∀t ∈ Obs, Out(a, t) �= ∅ =⇒ ∃a′ ∈ A s.t. a′ = Sat(Out(a, t),

UnObs)
(2) →⊆ A × Act × A is the transition relation where:

– ((a, t, a′) ∈→′) ⇔ ((t ∈ Obs)∧Out(a, t) �= ∅∧a′ = Sat(Out(a, t),UnObs))
(3) A0 is the initial aggregate s.t. A0.S = Sat(mi, UnObs).
(4) Ω = {a ∈ A | mf ∈ a.S}.

The nodes of the symbolic observation graph are aggregates (1). The finite set
of aggregates A of a SOG is defined in a complete manner so that the necessary
aggregates are represented. Point (2) defines the transitions relation: there exists
an arc, labeled with an observed transition t, from a to a′ iff a′ is obtained by
saturation on the set of reached states (Out(a, t)) by the firing of t from a.S. The
last two points of Definition 8 characterize the initial aggregate and the set of
final aggregates respectively. Starting from the initial marking, the original SOG
construction algorithm introduced in [12] follows a classical depth first search
based traversal of the built aggregates. Each aggregate is built by a transitive
closure application on unobserved transitions. The successor a′ of an aggregate
a is built by, first, firing an observed transition from states of a, then by adding
all the reachable states by unobserved transition.

At this stage, the correctness of the SOG can be characterized as follows.

Definition 9 (Correct SOG). Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be a
CBP2PN. Let G = 〈A,Obs,→, A0,Ω〉 the SOG associated with N .

G is correct iff there exists a configuration c of N (c = {〈t, Conf(t)〉 : t ∈
OP c}) s.t. for every path π = A0

t1,conf(t1)−−−−−−−→ A1 . . . An−1
tn,conf(tn)−−−−−−−→ An, with

An ∈ Ω; if {〈ti, Conf(ti)〉 : 0 ≤ i ≤ n} =c then ∀0 ≤ i ≤ n,Ai.d = false.

Based on Definition 6, characterizing a deadlock-free CBP2PN, and Defini-
tion 9, characterizing a correct SOG associated with a CBP2PN, the following
result naturally links these two characterizations.

Proposition 1. Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be a CBP2PN. Let G =
〈A,Obs,→, A0,Ω〉 the SOG associated with N . Then, N is deadlock-free iff G
is correct.
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Proof. Let N be a CBP2PN and G its corresponding SOG. First, according
to Definition 9, if G is correct then there exists a configuration c s.t. for every

path π in the SOG having π = A0
t1,conf(t1)−−−−−−−→ A1 . . . An−1

tn,conf(tn)−−−−−−−→ An, with
An ∈ Ω; if it’s configurations set {〈ti, Conf(ti)〉 : 0 ≤ i ≤ n} is equal to c,
then all aggregates are deadlock-free, i.e. Ai.d = false, 0 ≤ i ≤ n. Since the
SOG preserves by construction all possible configurations of N , then each path
from the initial to the final aggregate represents one configuration allowing to
derive one variant. Hence, there exist at least a deadlock-free variant of N .
Consequently, according to Definition 6, N is correct.

In the following, we propose to adapt the original SOG construction algo-
rithm [12], associated with a CBP2PN, in three ways. First, by adopting the new
semantics. Second, the deadlock-freeness property is checked on the fly, such that
any aggregate containing a deadlock state is not inserted in the graph and so are
all the underlying paths. Finally, the set of correct configurations is extracted
on-the-fly.

4.2 Extracting Correct Configurations Using the SOG

In this section, we present the core contribution of this paper: A construction
algorithm of the SOG associated with a CBP2PN. Regarding to the original
SOG construction algorithm [12], Algorithm 1 allows to reduce the SOG, by
removing, on-the-fly, the paths involved in incorrect configurations, and by sav-
ing, within the initial aggregate the correct configurations. To reach this goal,
two new attributes are added to an aggregate: (1) c, which is the set of correct
(possibly partial) configurations, starting from this aggregate (and leading to a
final aggregate). (2) nc, which is the set of incorrect (possibly partial) configu-
rations, starting from this aggregate (leading to a dead one). Once the SOG is
built, the set of correct configurations will be saved within the initial aggregate.

In the following, we go through Algorithm 1 to explain the main steps while
using our running example, and the corresponding (reduced) SOG, in Fig. 4a for
illustration. Note that the main novelties of this algorithm w.r.t. the algorithm
of [12], are underlined.

Two main data are used: The SOG graph G , containing aggregates and edges,
and a stack containing the to-be-treated aggregates associated with the set of
fireable observed transitions Fobs.

The first step of Algorithm 1 (lines 5–10) allows to build the initial aggregate
and to push it onto the stack. Then, the main loop (lines 11–49) processes the set
of to-be-treated aggregates as follows: a stack item (line 12) and the correspond-
ing current observed transition in Fobs (line 14) are picked, and the successor of
the current aggregate by that transition, if any, is calculated using the semantics
of Subsect. 3.2 (line 15–20). This includes the computation of the dead (line 19)
and final (line 20) attributes of the obtained successor aggregate. If the latter
is deadlock-free aggregate, and if it has not already been explored, then it is
pushed onto the stack with its set if fireable observed transitions (lines 21–24).
For instance, following the path at the top of Fig. 4a, new aggregates A0 until the
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final one A6 are consecutively pushed onto the stack. Since A6 is a final aggre-
gate (does not enable any observable transition), it will be popped from the stack
(line 38), and we start the loop again by picking A5 to consider its remaining
observed transitions (in this case the transition 〈j4, OR〉 leads again to A6), and
so on.

If the newly built successor aggregate a′ has already been treated
(lines 25–30), then the current aggregate a inherits from a′ its correct and
incorrect configuration (to which the transition linking a to a′ is added). This
is ensured by functions UpdateC and UpdateNC (lines 26–29). The function
UpdateC also verifies that, starting from the same aggregate a, a correct con-
figuration do not include an existing (or to-be-treated) incorrect one, as in this
case it leads to a deadlock in a different transitions’ firing order. This way,
correct and incorrect configurations are computed backwards starting from the
final aggregate to the initial one. For instance, in Fig. 4a, consider the aggre-
gate A10 obtained through A8 and A9, the firing of 〈j3, AND〉 leads to the
existing aggregate A4. As A4 was already dealt with earlier through the path
on top of the graph, this means that 3 correct partial configurations are added
to this aggregate, namely {〈s4,XOR〉,〈j4,XOR〉}, {〈s4,XOR〉, 〈j4, OR〉} and
{〈s4, AND〉,〈j4, AND〉}. Hence, A10 inherits these configurations while being
concatenated to the current fired transition 〈j3, AND〉. Similarly, going back-
wards to A0 after entirely processing A8 and A9, we obtain the complete correct
configurations 13 − 15 depicted in Fig. 3(b).

Regarding an aggregate a′ holding a dead state, firstly, the corresponding
fired observed transition is concatenated to the incorrect configurations of its
predecessor a (line 33). Obviously, a′ is not pushed onto the stack and no edge
is created. Then, we recursively verify its predecessors starting from a using the
function recRemoveAggregate( a, t) (line 34). Using this function, each predeces-
sor aggregate is removed only if the states enabling the current one becomes
dead (i.e. there is no other enabled transition from that state). In this case, its
successors are also recursively eliminated in case they do not have other pre-
decessors. As an example, the red path in Fig. 4(a) refers to firing 〈s1, AND〉,
〈s3,XOR〉 then 〈j2, OR〉. According to our semantics, 〈j3, OR〉 may be fired by 4
possible markings in the aggregate A12, namely m12, m10 14, m11 14 and m12 14.
However, in case of firing by either m10 14 or m11 14, the obtained aggregate
will allow a second firing of the same transition (i.e. using the remaining token
in p10 or p11). This leads to a final state holding two tokens, which is a dead
state in our approach. Hence, according to Algorithm 1 the obtained aggregate
is eliminated as well as its predecessors A12 and A11 (following the blue dashed
line). And yet, since it enables 〈S3, AND〉, A10 is not deleted.

It is worth noting that before popping an aggregate from the stack and storing
it in the graph (lines 38–39), a final check is carried out on its correct config-
urations by the function CompareCorrect (line 37). Actually, many observed
transitions may be fired from the same aggregate, so some of the correspond-
ing correct configurations may refer to the same one. Hence, a correct sequence
is preserved if, for every first fired observed transition op, (i) it is fireable by
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nofillcomment 1. Deadlock-free Symbolic Observation Graph
Require: N 〈P, T ∪ OP, F, W,O,C 〉, Obs, mi, mf

Ensure: G 〈A,Obs, →, A0, Ω〉 , C
1: Vertices A=∅; vertex a, a′; # Aggregates
2: Vertices C=∅; # Correct configurations
3: set S, S′, UnObs = (T ∪ OP ) \ Obs, Fobs, F ′

obs;
4: stack st; Edges E= ∅;
5: S = Sat({mi}, UnObs); # first Aggregate
6: a.S = S;
7: a.d = DetectDead(a.S);
8: a.f = IsFinal(a);
9: Fobs = fireableObs(a); # fireable observed transitions of a

10: st.Push(〈a, Fobs〉);
11: while st == ∅ do
12: 〈a, Fobs〉 = st.Top();
13: if (Fobs �= ∅) then
14: t = Fobs.next();
15: S′ = Out(a.S, t)
16: if (S′ �= ∅) then
17: S′ = Sat(S′, UnObs);
18: a′.S = S′;
19: a′.d = DetectDead(a′.S);
20: a′.f = IsFinal(a′);
21: if (¬a′.d) then # there is no dead state in a’

22: if ( � ∃x ∈ A s.t. x == a′) then # a’ found for the first time
23: F ′

obs = fireableObs(a′);
24: st.Push(〈a′, F ′

obs〉);
25: else # a’ is an existing aggregate
26: free a′;
27: Let a′ be the already existing aggregate;
28: UpdateC(a, a′, t);

29: UpdateNC(a, a′, t);

30: end if
31: E = E ∪{a, 〈t, Conf(t)〉, a′};
32: else # there is a dead state in a’
33: a.nc = a.nc ∪ {〈t, Conf(t)〉};

34: recRemoveAggregate(a, t)

35: end if
36: end if
37: CompareCorrect(a);

38: st.Pop();
39: A = A ∪ {a} ;

40: if (mi ∈ a.S) then

41: C = a.c;
42: end if
43: end if
44: end while

the states that have fired another sequence starting by op (i.e. different con-
figurations), or (ii) if their common operators have the same configured type
(i.e. the same configurations but in a different order). Otherwise, the sequence
is considered as incorrect and is eliminated.

Finally, the set of correct configurations is obtained from the initial aggregate,
the last one popped from the stack. As a result, each path of the obtained SOG
starting from the initial aggregate and leading to a final aggregate, represents one
possible configuration and belongs to the set of configurations C. In this case,
this configuration leads to a deadlock-free BP2PN. Note that, different paths
could represent a configuration (e.g. two concurrent configurable connectors).
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A0

A1

S1,XOR

A2
S3,XOR

A3

J2,OR

J2,XOR

A4
J3,OR

J3,XOR

A8

S1,AND

A11
S3,XOR

3

A12
J2,OR

2

A13
J3,OR

1

A9
S3,AND

A10
J2,AND

J3,AND

A5

S4,XOR

A7

S4,AND

A6
J4,OR

J4,XOR

J4,AND

(a) The reduced SOG

S1 S2 J2 J3 S4 J3
1 XOR+ XOR+ XOR− XOR− XOR+ XOR+

2 XOR+ XOR+ XOR− XOR− XOR+ OR+

3 XOR+ XOR+ XOR− XOR− AND+ AND+

4 XOR+ XOR+ XOR− OR− XOR+ XOR+

5 XOR+ XOR+ XOR− OR− XOR+ OR+

6 XOR+ XOR+ XOR− OR− AND+ AND+

7 XOR+ XOR+ OR− XOR− XOR+ XOR+

8 XOR+ XOR+ OR− XOR− XOR+ OR+

9 XOR+ XOR+ OR− XOR− AND+ AND+

10 XOR+ XOR+ OR− OR− XOR+ XOR+

11 XOR+ XOR+ OR− OR− XOR+ OR+

12 XOR+ XOR+ OR− OR− AND+ AND+

13 AND+ AND+ AND− AND− XOR+ XOR+

14 AND+ AND+ AND− AND− XOR+ OR+

15 AND+ AND+ AND− AND− AND− AND−

(b) Deadlock-free configurations

Fig. 4. Reduced SOG and extracted configurations for the CBP2PN in Fig. 3

The reduced SOG of our example contains 8 nodes and 10 arcs, and all correct
configurations are summarized in Fig. 3(b). Hence, the analyst may be helped
on-the-fly during the configuration process by confronting his/her configurations
with the correct configurations in this table.

For instance, we can evaluate the correctness of the BP2PN variant dis-
cussed in Sect. 3.2. After applying 〈s1,XOR〉, the control-flow is either propa-
gated through the place p2 or p8. In this case, it is clear that the connector j2
(i.e. after applying 〈j2, AND〉) could never be enabled, which causes a deadlock.
Relying on Fig. 3(b), we can notice that there is no configuration starting with
{〈s1,XOR〉, 〈j2, AND〉}.

Using the SOG, the state space is greatly reduced in three fashions: (i) only
configurable transitions are observed, and the remaining transitions are hided in
aggregates; (ii) the graph is deterministic since it groups, for each configuration,
all reachable markings in one aggregate; and (iii) the different process variants
share common markings in one common SOG graph, instead of constructing
graphs as much as the number of possible configurations. In the following section,
we conduct experiments to demonstrate such mitigation of the state explosion
problem as well as the feasibility of our approach.

5 Experiments and Evaluation

To prove its feasibility, we have implemented and deployed our approach as an
extension of an existing tool that initially computes the SOG of a petri-net model
w.r.t. a set of observed transitions. As explained previously, this extension takes
into account the new semantics presented in this paper for CBP2PN models. It
also allows to symbolically detect on-the-fly deadlocks within aggregates and to
reduce the SOG accordingly. The developed tool takes as input a GrML (Graph
Markup Language) file [8] describing the CBP2PN model (i.e. transitions, oper-
ators annotated as configurable, and arcs) and returns the reduced SOG and the
correct configurations.

In order to evaluate its performances and to demonstrate the opportunities
offered by our approach, we performed experiments to show (i) the reduction
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of the space explosion problem and (ii) the impact of the input model struc-
ture on the size of the obtained SOG. Firstly, we propose to explore the size
of the constructed SOG using our tool against a naive approach, where each
variant of a CBP2PN is built and analyzed separately. Secondly, we propose
to analyse the impact of the variation of the structure complexity and the
number of observed transitions of a CBP2PN, on the size of the correspond-
ing SOG. Taking our running example model (Fig. 3), this variation leads to 86
different process models. We basically evaluate the structure complexity using
the well known metric CFC (Control Flow Complexity)[9] which is defined as:∑

c∈AND+ 1 +
∑

c∈XOR+ |c•| +
∑

c∈OR+(2|•c| − 1).
Table 2 contains three multi-columns. The first one varies the considered

parameters of the CBP2PN model (i.e. CFC and observed transitions (Obs)) and
gives the number of possible configurations for each variation. Then, the size of
the obtained SOG is evaluated in terms of number of correct configurations (Nb
correct confs), aggregates (A), edges (E) and execution time. This graph is finally
compared against the naive approach. However, since the naive approach is very
fastidious, we built only the reachability graphs corresponding to the correct
configurations. The three first columns give the average number if states, arcs
and execution time over these correct configurations. The last column, gives the
worst execution time in case all the configuration have been analyzed to extract
correct ones. The construction of the reachability graph has been performed with
our SOG-based tool as well, by observing all the transitions of the model (in this
case, the SOG coincides with the reachability graph).

In this evaluation, as we can observe from the Table 2, we took into account
three levels of complexity (depending on the number of OR+). The higher the
value of CFC, the more complex is a process’s configuration, since the number of

Table 2. Checking deadlock-freeness on SOG vs RG

CBP2PN SOG Naive approach (RG)

CFC

(avg)

Obs Nb

possible

confs(avg)

Nb

correct

confs(avg)

A(avg) E(avg) Exec

time

(sec)

Sates

(sum)

Arcs

(sum)

Exec

time

correct

(sec)

Overall

Exec

time(sec)

21 6 729 15 13 26 1.580 283.50 331.95 0.051 2.478

5 243 5.66 8.66 16 0.693 104.14 133.57 0.017 0.729

3OR+ 4 81 2.33 5.66 8.66 0.353 42.17 49.62 0.007 0.243

3 27 1 4 4 0.044 18 21 0.003 0.070

15.5 6 243 11.33 11 21 0.093 208.47 243.25 0.037 0.802

5 81 5 7.77 13.77 0.051 93 106.30 0.017 0.267

2OR+ 4 57.85 3.66 6.09 10.33 0.030 66.72 77.81 0.012 0.191

3 22.50 2 4.33 5.83 0.018 36.20 42.20 0.006 0.068

10 6 81 8 9.50 17.50 0.015 144 168 0.024 0.243

5 54 4 7 11.83 0.010 72 84 0.014 0.184

1OR+ 4 18 4.25 5.75 9.87 0.008 76.71 89.46 0.014 0.058

3 13.24 2.58 4.23 6.29 0.006 46.44 54.18 0.008 0.040
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possible configurations increases with the number of configurable OR connectors.
For example, the CFC value 21 regards the process with only OR connectors, we
can observe that the number of possible configurations as well as the extracted
correct ones are relatively high compared to those having CFC 10. Moreover,
the more transitions are observed, the less reduced is the SOG comparing to the
reachability graph.

Comparing to the naive approach, the obtained results in Table 2 show that
the SOG is always significantly smaller in terms of number of states and arcs. For
example, in case of a model having 6 configurable operators with OR type (i.e.
the first row), we can observe that the obtained SOG includes only 13 aggregates
and 26 arcs which is very reduced comparing to the size of the original graph
of 729 possible configurations. Indeed, after applying a naive approach on only
correct configurations (i.e. extracted from the SOG), the obtained graph has
almost 283 states and 331 arcs resulting from the sum of 15 reachability graphs.
Consequently, our work not only helps finding correct configurations but also
further minimize the memory usage and the computing time, since only one
reduced graph is constructed. To ensure the reproducibility of our experiments,
please refer to our web page1.

6 Related Work

In order to facilitate the design of configurable process models, a range of process
modeling languages have been recently extended with variable elements such as
Event-driven Process Chain (EPC) (e.g. [17,18]), Business Process Model Nota-
tion (BPMN) (e.g. [5,14]) and Yet Another Workflow Language (YAWL) (e.g.
[11]). Based on some of them, a number of approaches have attempted to reach
correct process configuration either syntactically [11,17] or behaviorally. Tradi-
tionally, behavioral correctness related to process configuration can be handled
by verifying every single possible configuration using existing work on verification
of business processes and workflows [2] and some existing tools such as Woflan
[19]. However, these methods are too time-consuming and lead to the state space
explosion problem. Authors in [13] discuss the Provop approach [14] for ensuring
soundness of process variants derived by options. However, this approach is not
feasible in large processes and runs into the state space problem. In [1], Petri net
was used to formalize and verify correctness and soundness properties of Con-
figurable EPC (C-EPC) processes. They derive propositional logic constraints
that guarantee the behavioral correctness of the configured model. However, in
these approaches authors achieve correctness by checking constraints at each
configuration step. Also, authors impose that the C-EPC process model should
be syntactically correct. In our work, we propose a model that finds all possible
correct configurations at design time instead of configuration time without any
restriction on the input C-BPMN process. This allows the process analyst to
derive correct processes without intermediate computing. In [4], based on part-
ner synthesis, the approach characterize all weakly terminating configurations
1 http://www-inf.it-sudparis.eu/SIMBAD/tools/SOGImplementation.

http://www-inf.it-sudparis.eu/SIMBAD/tools/SOGImplementation
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using configuration guidelines. This technique was applied on C-YAWL and the
configuration is built by hiding and blocking transitions while our approach con-
figures C-BPMN process by changing configurable connectors behavior.

[16], which is applied on C-EPC using questionnaire models, and [6], which is
applied on C-BPMN using configuration guidelines, have attempted to provide
guidance to analysts for process configuration, however, these approaches espe-
cially ensure domain compliant variant and they do not consider any correctness
criterion.

In our previous work [7], a formal approach for deriving correct process
variants from a C-BPMN was proposed. It models the process using Event-B
language and verifies the different constraints and properties using predicates.
These predicates must be satisfied by each configuration step. This work con-
tributes essentially to prevent structural correctness issues in process models
configuration using a systematic design. However, structural correctness may
not be sufficient. To the best of our knowledge, our previous work is the first
one attempting to achieve correctness for specifically C-BPMN configurations.
In the current work, we aim to especially achieve the behavioral correctness cap-
turing the dynamics of the executable configured process model. Thus, for all
possible instances of an executable configured process model, deadlocks should
never occur. Our approach can be easily adapted to obtain sound [2] process
variants, due to the lack of space, we focus in this work on the deadlock-freeness
property.

7 Conclusion and Further Work

In this work, we propose an approach to assist business analyst to configure
configurable processes correctly. In this paper, the correction criterion is char-
acterized by the deadlock freeness of the obtained variant. We use a SOG-based
abstraction model to find all correct configurations, i.e. leading to deadlock-free
process variants. Such anomalies are excluded on-the-fly during the construction
of the SOG. As a result, we obtain a reduced graph as well as a set of correct
configurations. Then, this set will serve to support analysts during configura-
tion. Our approach was implemented as an extension to an existing tool. And
preliminary experiments show that our approach outperform naive approaches
in terms of size of the explored configurable model.

As future work, we plan to first take into account other types of process con-
figurations such as, activity and resource configuration as well as other patterns
of OR-join, i.e. Synchronizing merge and Discriminator [3]. Then, we aim to
entirely automate our approach procedure (depicted by Fig. 2). Finally, we aim
to adapt the SOG construction algorithm in order to integrate other correct-
ness constraints: generic properties, e.g. soundness, and specific properties, e.g.
domain constraints.
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