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Abstract. Microservice-based software architecture design has been
widely discussed, and best practices have been published as architec-
ture design patterns. However, conformance to those patterns is hard to
ensure and assess automatically, leading to problems such as architec-
tural drift and erosion, especially in the context of continued software
evolution or large-scale microservice systems. In addition, not much in
the component and connector architecture models is specific (only) to
the microservices approach, whereas other aspects really specific to that
approach, such as independent deployment of microservices, are usually
modeled in other views or not at all. We suggest a set of constraints
to check and metrics to assess architecture conformance to microservice
patterns. In comparison to expert judgment derived from the patterns,
a subset of these constraints and metrics shows a good relative perfor-
mance and potential for automation.

1 Introduction

Many approaches have been proposed for service-based architecture decomposi-
tion (see e.g. [16,19,21,28]). An approach which evolved from established best
practices are microservices, as Newman [15] points out: “The microservices app-
roach has emerged from real-world use, taking our better understanding of sys-
tems and architecture to do SOA well.” Lewis and Fowler [14] describe microser-
vices as “an approach to developing a single application as a suite of small
services, each running in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are built around busi-
ness capabilities and independently deployable by fully automated deployment
machinery.” More detailed discussions can be found in [18,27].
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This paper focuses on architecture decomposition based on the microservices
approach. Many required decisions about how to perform the major architecture
decomposition into microservices have already been described in form of architec-
tural design patterns [21]. However, those and related patterns can lead to archi-
tecture designs in many different variants and combinations of pattern-based
design options, making it hard to automatically or semi-automatically judge
questions such as: When designing a microservice architecture, how much did a
project deviate from the established best practices? After evolving a microservice
architecture, are we still in conformance with the chosen microservice patterns?
When moving from a monolithic architecture to a microservice architecture, how
big is the gap to a microservice-based design?

For checking or assessing such questions related to pattern conformance of
the microservice architecture, a high level of automation would be very useful.
While it is possible to judge these questions for a small scale architecture man-
ually, in practice it is rarely done in each architecture evolution step, leading
to architectural drift and erosion [20]. For larger scale projects, manual assess-
ment is more difficult. For instance, consider the work of an integration architect
judging pattern conformance in hundreds of microservices. Here, manual assess-
ment can only work in a cost-effective way, if every team is very disciplined
and assesses their own conformance in each evolution step. Further, without
automation, at a larger scale with many different stakeholders, judging pattern
conformance objectively and uniformly across teams and stakeholders is difficult.
These points have led us to address the following research questions:

RQ1: Which measures can be defined to automatically check or assess pattern
conformance in microservice decomposition architectures?
RQ2: How well do such measures perform in relation to expert judgment?
RQ3: Given that many defining aspects of microservices (like independent
deployment) are modeled outside of a microservice decomposition architec-
tures, what is a set of minimal elements needed in a microservice decomposi-
tion architecture to compute meaningful measures?

Our major contributions are the following. Based on existing microservice
patterns [21] we have hypothesized a number of constraints and metrics to make
an automated judgment on microservice architecture decomposition. To evalu-
ate those constraints and metrics, we have modeled 13 architecture models taken
from the practitioner literature and assessed each of them manually regarding its
quality and violations of microservice patterns (following as closely as possible
the expert judgment of the pattern authors). We have then compared the results
in depth and statistically over the whole evaluation model set. Our results are: A
subset of the constraints and metrics are quite close to the pattern-based assess-
ment based on the expert judgment taken from the patterns. We identified only
a few necessary modeling elements in microservice decomposition architectures,
meaning that they are rather easy to create semi-automatically (e.g. using the
approach from [6]). Moreover, in those models not much is (only) specific to
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microservices so that there is still room for improvement. Such further improve-
ment would require detailed modeling of the microservices and thus more manual
effort.

This paper is organized as follows. Section 2 compares to related work. Next,
we discuss a minimal formal model for microservice-based architecture decom-
position in Sect. 3. Section 4 introduces our suggested microservice design con-
straints and metrics, and Sect. 5 evaluates them for 13 models from practice.
Section 6 discusses the RQs regarding the evaluation results, analyses the threats
to validity, and concludes.

2 Related Work

Many studies currently study microservice-based architectures in the context of
DevOps or container-technologies like Docker (see e.g. [3,8,9]). In addition, quite
a number of studies analyse the application of microservices in various applica-
tion domains such as data centers [12], digital archives [10], or Web apps [25], to
name but a few. A recent mapping study [1] confirms that the major interests
in these and other studies are mostly the concrete system architectures often in
relation to deployment, cloud, monitoring, performance, APIs, scalability, and
container-technologies. That is, these studies are related to ours, so far, as their
architectures are potential targets for our approach. The additional aspects that
are studied in those approaches (like performance, scalability, or deployment
aspects) are potential extensions of our approach, as possible future work.

First engineering approaches, specific to microservices are emerging. We have
based our work on the microservice patterns by Richardson [21]. For instance,
the API Gateway pattern is beneficial in a Microservice Architecture, but not
a must. This pattern proposes “a single entry point for all clients.” A variant
of API Gateway is the Backend for Frontend pattern that “defines a separate
API Gateway for each kind of client.” With regard to data stores, the rec-
ommended pattern is Database per Service, i.e., “an architecture which keeps
each microservice’s persistent data private to that service and accessible only
via its API.” Loosely coupled interaction is usually the only intended way how
microservices should communicate with each other. This is typically achieved
using event-driven communication or messaging [7], in both cases with focus on
an eventually consistent approach for communication of data-related operations.

Another set of microservice patterns has been published by Gupta [5], general
best practices are discussed in [14], and other similar approaches are summarized
in another recent mapping study [16]. So far, however, no automated software
engineering tools have been proposed for microservice decomposition in the liter-
ature. Engineering approaches rather focus on aspects like support for modeling
and composition [11] or migration from monolithic architectures [13]. Related
general service design methods focus e.g. on QoS-aware service composition [22]
or the involved architecture decisions [28]. While much of the work on service
metrics is focused on runtime properties like QoS, some specific design met-
rics for Web services have been proposed, e.g. focusing on loose coupling [19].
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To the best of our knowledge, no general conformance approach for architecture
decomposition of microservices – or services in general – exists so far.

Software architecture conformance checking is often based on automated
extraction techniques, which could be used as a basis for our approach as well
(here following [6]), e.g. using architecture reconstruction approaches [4,24]. Such
approaches often can check conformance to architecture patterns [4,6] or other
kinds of architectural rules [24]. Other static architecture conformance check-
ing techniques are: dependency-structure matrices, source code query languages,
and reflexion models [17]. In such approaches often general software engineer-
ing metrics like complexity metrics play a role [17]. Our approach follows the
same general strategy like those approaches, but in contrast we focus on spe-
cific constraints (or more generally, architecture rules) and metrics derived from
microservices best practices – not applicable in a general context, but at the
same time more powerful in our specific microservice (or service) context.

3 Modeling Microservice-Based Architecture
Decomposition

Figure 1 shows a simple sample microservice decomposition model, as they are
modeled in practice (see e.g. [21]). It uses UML2 component model notation with
one extension: a Directed Connector is modeled using a directed arrow (not part
of UML2). Not much in such a model is (only) specific to microservices, but at the
same time many aspects may be modeled in a way which is violating some parts
of the microservice patterns. This might lead to severe problems in other views of
the architecture or system, such as logical, detailed design or deployment views.
For instance, a decomposition that would hinder independent deployment, uses
many shared dependencies and is mainly based on strongly coupled connectors,
so that it would not be following the microservice best practices well.

From an abstract point of view, a microservice-based architecture decom-
position is a decomposition into a directed components and connectors graph
with a set of component types for each component and a set of connec-
tor types for each connector, formally: An architecture decomposition model
M is a tuple (CP,CN,CPT,CNT, cp directtype, cn directtype, cp supertype,
cn supertype, cp type, cn type) where:

– CP is a finite set of component nodes.
– CN ⊆ CP × CP is an ordered finite set of connector edges.
– CPT is a set of component types.
– CNT is a set of connector types.
– cp directtype : CP → P(CPT ) is a function that maps each component node

cp to its set of direct component types,
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– cp supertype : CPT → P(CPT ) is a function called component type
hierarchy. cp supertype(cpt) is the set of direct supertypes of cpt; cpt is
called the subtype of those supertypes. The transitive closure1 cp supertype∗

defines the inheritance in the hierarchy such that cp supertype∗(cpt) contains
the direct and indirect (aka transitive) supertypes of cpt. The inheri-
tance hierarchy is cycle free, i.e. ∀cpt ∈ CPT : cp supertype∗(cpt)∩{cpt} = ∅.

– cp type : CP → P(CPT ) is a function that maps each component to its set of
direct and transitive component types, i.e., ∀cp ∈ CP, dt ∈ CPT : dt =
cp directtype(cp) ⇒ cp type(cp) = dt ∪ cp supertype∗(dt).

– cn directtype : CN → P(CNT ) is a function that maps each connector cn to
its set of direct connector types.

– cn supertype : CNT → P(CNT ) is a function called connector type
hierarchy. cn supertype(cnt) is the set of direct supertypes of cnt; cnt is
called the subtype of those supertypes. The transitive closure cn supertype∗

defines the inheritance in the hierarchy such that cn supertype∗(cnt) contains
the direct and indirect (aka transitive) supertypes of cnt. The inheri-
tance hierarchy is cycle free, i.e. ∀cnt ∈ CNT : cn supertype∗(cnt)∩{cnt} = ∅.

– cn type : CN → P(CNT ) is a function that maps each connector to its set of
direct and transitive connector types, i.e., ∀cn ∈ CN, dt ∈ CNT : dt =
cn directtype(cn) ⇒ cn type(cn) = dt ∪ cn supertype∗(dt).

With this definition, we can rephrase RQ3 to the question: Which elements
of CPT and CNT and which type hierarchy dependencies of those are actually
needed in order to compute meaningful constraints and metrics?

«ClientComponent»
MobileApp

«ClientComponent»
Browser

«ServiceFacadeComponent»
APIGateway

«ServiceComponent»
AccountService

«ServiceComponent»
InventoryService

«ServiceComponent»
ShippingService

«WebUIComponent»
Storefront

«MongoDBComponent»
AccountDB

«MongoDBComponent»
InventoryDB

«MySQLDBComponent»
ShippingDB

«RESTfulConnector»

«RESTfulConnector»

«RESTfulConnector»

«RESTfulConnector»«RESTfulConnector»

«RESTfulConnector» «RESTfulConnector»

«JDBCConnector»«MongoWireConnector»«MongoWireConnector»

«HTTPConnector, HTTPSConnector»

Fig. 1. Sample microservice architecture decomposition model (adapted from [21])

1 All transitive closures in this article are assumed to be calculated with a standard
algorithm for transitive closures like Warshall’s algorithm.



416 U. Zdun et al.

4 Microservice Design Constraints and Metrics

4.1 Constraints and Metrics Based on Independent Deployment

As microservices are emphasized to be independent units of deployment, one
hypothesis we have developed was that a good indicator for microservice-based
decomposition could be to check whether all components are independently
deployable or to what degree they are independently deployable. From the view-
point of an architecture decomposition model, independently deployable means
that no components that are part of a microservice have in-memory connec-
tors (or subclasses thereof or similar strongly coupled connectors) to other
components that are part of that microservice. In particular, we do not con-
sider external components, as they are not part of a microservice. Finally,
microservice should contain components at the same level of abstraction con-
nected only via loosely coupled interfaces. More formally, we assume there is
a supertype of all in-memory connectors (and similar strongly coupled con-
nectors) InMemoryConnector ∈ CNT and a supertype of all external com-
ponents ExternalComponent ∈ CPT (with a subtype ClientComponent, i.e.
ExternalComponent ∈ cp supertype∗(ClientComponent)).

– The function imc : CP → P(CP ) maps a component to the set of compo-
nents that are directly connected to the component via connectors typed as
InMemoryConnector. We call imc(cp) the direct in-memory cluster of
a component cp with ∀cp ∈ CP : imc(cp) = {co ∈ CP | ∃cn ∈ CN : cn =
(cp, co) ∧ InMemoryConnector ∈ cn type(cn)}.

– The transitive closure imc∗ : CP → P(CP ) defines the set of components
directly and indirectly connected to a component cp via InMemoryConnector
edges. We call imc∗(cp) the in-memory cluster of a component cp.

– The function idcc : CP → P(CP ) maps a component to its independently
deployable component cluster such that ∀cp ∈ CP : idcc(cp) = {co ∈
({cp} ∪ imc∗(cp)) |ExternalComponent /∈ cp type(co)}.

– The function idccs : M → P(P(CPm)) maps a model to the set of its indepen-
dently deployable component clusters (i.e., a set of component clusters
(CPS) computed with the function idcc): ∀m ∈ M : idccs(m) = {CPS ∈
P(CPm) | ∀cp ∈ CPm : idcc(cp) ∈ CPS}2.

Based on these definitions we can define the constraint all components
are independently deployable (CAID), CAID : M → Boolean, using the
formula below, which computes all independently deployable component clusters
CPS in a model m and checks for all CPS that their size is less or equal to 1 using
the aggregate function Fcount. Here, we use the standard aggregate function
from relational algebra which counts the number of elements in the collection to
compute the size, i.e., it has the same semantics as in SQL. Regarding CAID,

2 We use the notation ‘CPm’, ’CNm’ etc. in formulas taking models as input to denote
the tuple of elements of the model m; in formulas considering any model, like the
previous ones, we omit notation for brevity.
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the boolean value 0 means false, i.e. a constraint violation, and 1 means true,
i.e. that the constraint is not violated:

∀m ∈ M : CAID(m) =

{
1 if: ∀CPS ∈ idccs(m) : Fcount(CPS) ≤ 1
0 if: ∀CPS ∈ idccs(m) : Fcount(CPS) > 1

Our implementation of the constraint additionally computes the clusters that
have failed to provide precise failure information to the user. Additionally, there
is a function for computing the components violating independent deploy-
ability, cvid : M → P(CP ), which simply executes the CAID constraint, and
returns an empty set if it is not violated, otherwise all components in the vio-
lating clusters. We suggest two metrics that can be derived from this constraint
and its underlying functions:

– Ratio of components violating independent deployability to non-
external components (RVID) is based on the constraint CAID. It uses the
function cvid to execute the constraint, and returns the number of violating
components or an empty set in case of no violation. Then RVID sets their
number in ratio to the total number of non-external components. nec : M →
P(CP ) is a helper function returning all components in a model that are not
of type ExternalComponent (non-external components). Here, and in a
number of the following metrics counting unique non-external components,
we set the component counts in ratio to the model size in terms non-external
components, which – compared to the component counts themselves – scales
the metric to the interval [0, 1]. This, thus, makes metric results for different
models more comparable. RV ID : M → R is defined as follows:

∀m ∈ M : RV ID(m) =
Fcount(cvid(m))
Fcount(nec(m))

– Ratio of independently deployable component clusters to non-
external components (RIDC), RIDC : M → R, sets the number of inde-
pendently deployable component clusters in ratio to the size of the model (in
terms of non-external components):

∀m ∈ M : RIDC(m) =
Fcount(idccs(m))
Fcount(nec(m))

4.2 Constraints and Metrics Based on Shared Dependencies

Many of the microservice patterns [21] (for a short summary see Sect. 2) focus
on decompositions which avoid sharing other components or sharing them in a
strongly coupled fashion. Hence, another major idea for constraints and metrics
was to base them on the notion of shared components, sharing components,
and shared dependencies in the architecture decomposition. With regard to con-
straints we have envisioned three basic types of constraints: no shared compo-
nents which checks whether there is no shared component; no sharing compo-
nents which checks whether there is no sharing component; no shared dependen-
cies which checks whether there is no shared dependency of two components.
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As typically different clients can share a microservice, and microservices can
themselves share third-party microservices, all external components need to be
excluded from these constraints (and metrics). All three constraints are based on
the same algorithm for finding the set of shared dependencies of each component
in the model, requiring the following functions for this:

– acd : CP → P(CP ) is a function which calculates all direct compo-
nent dependencies of a component. That is, acd(cp) is defined formally as:
∀cp ∈ CP : acd(cp) = {cd ∈ CP | ∃cn ∈ CN : cn = (cp, cd)}. The transitive
closure acd∗ defines all direct and indirect component dependencies of
a component cp.

– ascd : M → P(CPm × (CPm × CPm)) is a function which maps a model
m ∈ M to a set of tuples containing a component cp ∈ CPm and the set
of all shared component dependencies of that component cp (excluding
external components). Each of these shared component dependencies is itself
a tuple (oc, sd) being oc ∈ CPm the other component with which cp shares
a dependency and sd ∈ CPm the component which is shared both by oc
and cp, expressed formally: ∀m ∈ M : ascd(m) = {(cp, (oc, sd)) | cp, oc, sd ∈
CPm ∧ sd ∈ acd(cp) ∧ sd ∈ acd(oc) ∧ ExternalComponent /∈ cp type(cp) ∧
ExternalComponent /∈ cp type(oc) ∧ ExternalComponent /∈ cp type(sd)}.

– sic : M → P(CPm) is a function that provides the set of all sharing non-
external components, formally defined as: ∀m ∈ M : sic(m) = {cp ∈
CPm | ∃oc, sdCPm : (cp, (oc, sd)) ∈ ascd(m)}.

– sdc : M → P(CPm) is a function that provides the set of all shared non-
external components, formally defined as: ∀m ∈ M : sdc(m) = {sd ∈
CPm | ∃oc, cpCPm : (cp, (oc, sd)) ∈ ascd(m)}.

The closer study of the three types of constraints revealed that they lead
to exactly the same violations: as a shared dependency leads to a sharing and
a shared component, either all these constraints are violated or none of them.
For this reason, it is enough for us to formally define and study one of those
constraints. Here, we define the constraint no shared non-external compo-
nent dependencies (NSCD), NSCD : M → Boolean, as (0 = false, i.e. a
constraint violation, and 1 = true, i.e. no constraint violation):

∀m ∈ M : NSCD(m) =

{
1 if: ∀SD ∈ ascd(m) : Fcount(SD) = 0
0 if: ∀SD ∈ ascd(m) : Fcount(SD) > 0

Further for this constraint (and all related metrics) below, we suggest – in
addition to the basic constraint – three variants.

– NSCD-F excludes Facade components from the constraint. Many microservice
models (as well as monolithic models) contain Facades, such as an APIGateway
in Fig. 1, as an acceptable way to share microservice components [2]. We thus
assume a class Facade ∈ CPT with classes like APIGateway as its subclasses
(thus also ∈ CPT through e.g. Facade ∈ cp supertype∗(APIGateway) and
so on). At first we envisioned to automatically compute which components
are Facades, but unfortunately this design intent is impossible to compute
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in an unambiguous way. For instance, our evaluation model RB (see Table 1)
contains microservices that are directly connected to clients, and, without fur-
ther information, there is no way to automatically distinguish those from a
model in which only Facades are modeled. For this reason, all *-F variants of
constraints and metrics require Facades to be explicitly modeled. The ratio-
nale behind the *-F variants is: If Facades are modeled, we hypothesize that
excluding them from the constraints and metrics could lead to a better identifi-
cation of real issues with regard to shared dependencies. For space reasons, we
omit the formal definition here, as it is analogous to the functions/constraints
defined above, just excluding Facades in the functions.

– NSCD-C excludes loosely coupled connectors (event-driven, publish/subscribe
style interaction, and message queuing) from further investigation. We assume
a class LooselyCoupledConnector ∈ CNT with subclasses such as EventBased-
Connector, PubSubConnector, MessagingConnector (all also ∈ CNT , using
cn supertype∗ relations). That is, only strongly coupled connectors can lead
in *-C variants of constraints and metrics to constraint violations or lower
metrics values. As the patterns suggest to use only loosely coupled interaction
in event-driven, publish/subscribe style between microservices, we hypothe-
size that excluding them from the constraints and metrics could lead to a
better identification of a real issue with regard to shared dependencies. We
expect that the exclusion of loosely coupled connectors makes the results more
comparable for different models in the sense that in this way the same model,
modeled at different levels of detail, leads to the same metric values and con-
straint violations. For space reasons, we omit the formal definition here, as it
is analogous to the functions/constraints defined above, just excluding Loose-
lyCoupledConnectors in the functions.

– NSCD-FC is the combination of NSCD-F and NSCD-C.

All metrics below are defined analogously in a basic version plus three vari-
ants. Here, however, the differences between shared components, sharing com-
ponents, and shared dependencies play a major role, and it is interesting to
study which of those basic counts is better suited as a foundation for a shared
dependency metric. Firstly, we define the ratio of sharing non-external com-
ponents to non-external components (RSIC), RSIC : M → R, based on
the count of components returned by the functions sic (defined above) set in
relation to the non-external components count (based on nec) as:

∀m ∈ M : RSIC(m) =
Fcount(sic(m))
Fcount(nec(m))

Secondly, we define the ratio of shared non-external components to
non-external components (RSCC), RSCC : M → R, based on functions
sdc and nec:

∀m ∈ M : RSCC(m) =
Fcount(sdc(m))
Fcount(nec(m))
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Finally, we suggest a metric ratio of shared dependencies of non-
external components to possible dependencies (RSDP), RSDP : M →
R based directly on the number of shared dependencies returned by the function
ascd. Here we scale the metric using the number of all possible dependencies
(i.e., the number of counted components squared). As this value has no spe-
cific meaning in the context of our model, we have also compared other scalings
in our evaluation like no scaling, the model size in terms components, and all
component dependencies. We have chosen only the scaling based on all possible
dependencies here, as all other metrics perform weaker in our evaluation, and at
the same time none of the other options scales the metric to the normed interval
[0, 1]. As a result, we suggest the metric:

∀m ∈ M : RSDP (m) =
Fcount(ascd(m))

(Fcount(nec(m)))2

All metrics, defined in this section, also have *-F, *-C, and *-FC variants,
with analogous reasoning to the discussion for NSCD. The differences in formal
definition to the base variants are the following: The metrics must use adapted
versions of the functions, analogously to the NSCD variants, and the function
nec in the divisor of the metrics should be adapted to not consider Facades
for the two *-F and *-FC variants, as scaling should be done according to the
considered components.

5 Evaluation

For performing our evaluation, we have fully implemented our formal model,
constraints, metrics, and related algorithms using the Frag Modeling Framework
(FMF), a runtime modeling, domain-specific language and generator framework
implemented on top of Java/Eclipse which enables us to easier change design
decisions made and perform experimentation than in comparable frameworks
like the Eclipse Modeling Framework (EMF) (see [26] for more details). Besides
extensive test cases, a code generator to generate R scripts has been imple-
mented, used to perform statistical comparison of achieved and expected results
for the different constraints and metrics. In addition, we have fully modeled
and implemented 13 models in an evaluation model set, summarized in Table 1.
Each of the models is either taken directly from a model published by practition-
ers or adapted according to discussions on the respective referenced Web sites.
While the models taken from 4 independent sources3 are still examples, they all

3 We have adapted Models EC1-8 from [21]. Model RB is adapted from:
http://eventuate.io/exampleapps.html. The Models TH1-TH3 are adapted from:
https://www.nginx.com/blog/introduction-to-microservices/. Model SA is adapted
from: https://www.slideshare.net/smancke/fros-con2014-microservicesarchitecture.
For all models, we aimed to stay close to the original model; adaptation mainly
means modeling them using our approach to architecture decomposition modeling
and in the model variants introducing the described variations.

http://eventuate.io/exampleapps.html
https://www.nginx.com/blog/introduction-to-microservices/
https://www.slideshare.net/smancke/fros-con2014-microservicesarchitecture
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Table 1. Summary of models used for evaluation and manual assessment of pattern
compliance

ID Size Short description Major violations of patterns VMP MQ

EC1 10 comp., 11 conn. E-Commerce model with 3

independent microservices,

an API gateway, a Web UI,

databases per service,

inter-service communication

not modeled

None 0 1.0

EC2 13 comp., 19 conn. Similar to EC1; additionally

1 service consists of 4

components which are

realizing different business

capabilities

A service contains different

subdomains/capabilities or is

not modeled at the same

abstraction level

1 0.6

EC3 11 comp., 17 conn. Similar to EC1; additionally

models inter-service

communication using the

Event Sourcing pattern

None 0 1.0

EC4 11 comp., 17 conn. Similar to EC1; additionally

models inter-service

communication using the

Transaction Log Trailing (or

Database Trigger) pattern

None 0 1.0

EC5 8 comp., 11 conn. Similar to EC1; with only

one database, which is shared

among the microservices

Shared database 1 0.6

EC6 8 comp., 11 conn. Same components as in EC1

but all in one shared address

space, shared database, API

gateway, Web UI

No decomposition into

multiple services (all other

violations are secondary)

1 0.0

EC7 8 comp., 14 conn. Similar to EC6; with all

in-memory component

dependencies explicitly

modeled

No decomposition into

multiple services (all other

violations are secondary)

1 0.0

EC8 11 comp., 19 conn. Similar to EC2; with only

one database, which is shared

among the microservices

A service contains different

subdomains/capabilities or is

not modeled at the same

abstraction level; shared

database

1 0.4

RB 4 comp., 3 conn. Single service for restaurant

booking, no clients modeled,

follows CQRS pattern, uses

REDIS for fast denormalized

querying

None 0 1.0

TH1 18 comp., 17 conn. Taxi hailing application: 3

microservices with a layer of

3 backend services in addition

to 3 databases per service,

shared payment component

Shared, strongly coupled

component

1 0.6

TH2 18 comp., 17 conn. Same as TH1, avoids shared

component using loosely

coupled connectors

None 0 1.0

TH3 15 comp., 19 conn. Same components as in TH1

but all in one shared address

space, 1 shared database, 1

API gateway, 1 Web UI

No decomposition into

multiple services (all other

violations are secondary)

1 0.0

SA 15 comp., 19 conn. Web shop app with 7

services, 5 different data

stores, 2 modular Web UIs

None 0 1.0
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originate from models developed by practitioners with microservice and mono-
lith implementation experience. Hence, we assume that our evaluation models
are close to models used in practice and real practical needs for microservice
decomposition (compared e.g. to models created solely by ourselves).

The table also shows our manual, pattern-based assessment of the architec-
ture conformance of each of the models. There are two assessments: Does the
model violate at least one of the microservice patterns (from [21])? We carefully
assessed each model for major violations of the patterns. If at least one occurs,
we marked it in column Violations of Microservice Patterns (VMP) of Table 1
as true = 1, otherwise as false = 0. In addition, we tried to objectively measure
the quality of the model with regard to conformance to the microservice patterns
[21]. For this, we use the following rules to compute the Microservice Architec-
ture Quality (Column MQ in Table 1) based on a detailed manual inspection of
the compliance of the models to the architecture patterns:

– If the Microservice Architecture pattern cannot be found at all, that is, the
architecture clearly follows a Monolithic Architecture, we set MQ=0.

– Otherwise we set MQ=1, and then if one of the violations listed below (each
one can occur multiple times) is found, we reduce MQ by 0.4 on the first
occurrence, by another 0.2 on the second occurrence (of the same or another
pattern), another 0.1 on the third occurrence, and so on. Thus, the violation
penalty is divided by factor 2 from one violation occurrence to the next because
if such a minor violation occurs, the model should not be better rated than 0.6.
But even if multiple minor violations happen, the rating should still stay bet-
ter than the monolithic score of 0. The violations analyzed are the following:
(1) A minor violation of the Microservice Architecture pattern occurs, such
as some microservices contain components corresponding to multiple different
capabilities or subdomains, or not all microservices are modeled at the same
abstraction level. (2) Internal components share other internal components
not using loosely coupled connectors, e.g. realized using Event-driven Archi-
tecture (or the realization of an Event-driven Architecture violates established
patterns for event-based communication among microservices such as Event
Sourcing, Transaction Log Tailing, Database Triggers, Application Publishes
Events, Command Query Responsibility Segregation, see [21]). (3) The Data-
base per Service pattern is not used, but a Shared Database.

– The use of the two API Gateway patterns is beneficial, but does not change
the quality assessment. The reason is that API Gateways are also commonly
used in monolithic architectures, and a microservice architecture that does not
use them is not less well decomposed w.r.t. the microservice patterns. Note
that although the API Gateway patterns are still important for our approach,
their use is important for calculating some of our constraints and metrics (see
discussion on Facades below).

We have chosen this scoring scheme because it is close to the suggestions in
the patterns and introduces no major subjective bias. In the course of our eval-
uations, we have compared it to other reasonable scorings, including subjective
expert judgment by the authors, and a number of similar mechanical scorings.
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The sensitivity to those scorings was generally low, as long as we followed the
suggestions from the patterns closely. The evaluation of the constraints leads to
binary vectors indicating for each model whether the constraint is violated or
not. Below we discuss the results of each of these vectors in detail. In addition,
we calculated the Jaccard similarity [23] to the vector built from VMP values in
Table 1 (JS VMP in Table 2) to get a quick estimate of how well the respective
constraint performs in relation to the manual, pattern-based assessment for our
evaluation model set. The Jaccard similarity is a common index for binary sam-
ples, which is defined as the quotient between the intersection and the union of
the pairwise compared variables among two vectors.

Metrics evaluation leads to vectors with positive values which should indicate
the quality of the microservice decomposition. Again, we discuss them in detail
below. In addition, we compute the Cosine similarity with the vector MQ from
Table 1 (CS MQ in Table 3) to get a quick estimate of how well the respective
metric performs in relation to the pattern-based assessment for our evaluation
model set. Cosine similarity is a common measure of similarity between two
vectors based on the cosine of the angle between them [23]. Some of the met-
rics below are reversed compared to MQ in the sense that their best value is
0.0, with higher values indicating better quality. Consequently, we compared
those metrics to the reversed MQ, which is defined as MQR = 1 – MQ (below

Table 2. Evaluation results: constraints (1 - constraint is violated, and 0 - it is not
violated)

Constraint EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 RB TH1 TH2 TH3 RSA JS VMP

CAID 0 1 0 0 0 1 1 1 0 0 0 1 0 0.71

NSCD 1 1 1 1 1 1 1 1 1 1 1 1 1 0.54

NSCD-F 0 1 1 1 1 1 1 1 1 1 1 1 1 0.58

NSCD-C 1 1 1 1 1 1 1 1 0 1 1 1 0 0.64

NSCD-FC 0 1 0 0 1 1 1 1 0 1 0 1 0 1.0

Table 3. Evaluation results: metrics

Metric EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 RB TH1 TH2 TH3 SA CS MQ CS MQR

RVID 0.0 0.36 0.0 0.0 0.0 0.83 0.83 0.44 0.0 0.0 0.0 0.89 0.0 0.96

RIDC 1.0 0.73 1.0 1.0 1.0 0.33 0.33 0.67 1.0 1.0 1.0 0.22 1.0 0.97

RSIC 0.63 0.73 0.56 0.89 0.83 0.83 0.83 0.89 0.5 0.33 0.33 0.56 0.64 0.73

RSIC-F 0.0 0.44 0.43 0.86 0.75 0.75 0.75 0.86 0.5 0.22 0.22 0.43 0.5 0.74

RSIC-C 0.63 0.73 0.56 0.56 0.83 0.83 0.83 0.89 0.0 0.33 0.33 0.56 0.0 0.81

RSIC-FC 0.0 0.44 0.0 0.0 0.75 0.75 0.75 0.86 0.0 0.22 0.0 0.43 0.0 0.91

RSCC 0.75 0.82 0.78 0.78 0.67 0.67 0.67 0.78 0.25 0.5 0.5 0.78 0.64 0.70

RSCC-F 0.0 0.44 0.14 0.14 0.25 0.25 1.0 0.57 0.25 0.11 0.11 0.29 0.33 0.80

RSCC-C 0.75 0.82 0.67 0.67 0.67 0.67 0.67 0.78 0.0 0.5 0.42 0.78 0.0 0.76

RSCC-FC 0.0 0.44 0.0 0.0 0.25 0.25 1.0 0.57 0.0 0.11 0.0 0.29 0.0 0.85

RSDP 0.38 0.89 0.54 0.99 0.72 0.72 1.56 1.51 0.13 0.11 0.11 0.62 0.35 0.79

RSDP-F 0.0 0.37 0.12 0.61 0.38 0.38 0.75 0.98 0.13 0.02 0.02 0.16 0.08 0.72

RSDP-C 0.38 0.89 0.3 0.3 0.72 0.72 1.56 1.51 0.0 0.11 0.07 0.62 0.0 0.85

RSDP-FC 0.0 0.37 0.0 0.0 0.38 0.38 0.75 0.98 0.0 0.02 0.0 0.16 0.0 0.79
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indicated as CS MQR). Alternatively, we could calculate the associated distance
metrics, where the distance d is also defined in relation to its associated similarity
metric as d = 1 – s.

5.1 Evaluation for Constraints and Metrics Based on Independent
Deployment

Table 2 shows the results for the constraint all components are indepen-
dently deployable (CAID)4. We can see an acceptable Jaccard similarity
(0.71) of the constraint violation vector to the pattern-based assessment VMP.
Inspecting the violations closer, we can see that two violations are not found
(false negatives): the violations in Models EC5 and TH1. That is, the constraint
does not work well for non-monolithic structures that share a database as in
EC5 or a component as in TH1. The constraint works, however, if this issue is
combined with other violations as in Model EC8.

We have suggested two metrics based on independent deployment: Ratio
of components violating independent deployability to non-external
components (RVID) and ratio of independently deployable component
clusters to non-external components (RIDC). RVID sets the unique com-
ponents in the violations in ratio; that is, 0 indicates the highest possible quality,
and higher values indicate lesser quality. Thus, the metric must be compared to
the reversed microservice quality vector MQR. The cosine similarity CS MQR
shows a very high similarity of 0.96. RIDC, in contrast, has values ranging from 0
to 1, with 1 indicating the best possible quality, meaning it must be compared to
the microservice quality vector MQ. Here, we see an even slightly higher cosine
similarity CS MQ of 0.97. As both metrics are based on the functions used in
CAID, they also have the same weakness of not identifying the shared data-
base/component issues in Models EC5/TH1, but the high similarity measures
show that the indication of quality with regard to the other microservice pat-
terns is rather good for both metrics, with RIDC performing slightly better for
our evaluation model set.

5.2 Evaluation for Constraints and Metrics Based on Shared
Dependencies

No shared non-external component dependencies (NSCD) is violated by
all models (6 false positives) and has only a Jaccard similarity of 0.54; it is not a
good match. Its variant NSCD-F, which excludes sharing by Facade components,
is slightly better suited, but still has 5 false positives and a Jaccard similarity
of only 0.58; the variant NSCD-C, which considers only strongly coupled con-
nectors as leading to shared components, is slightly better with 4 false positives
and a Jaccard similarity of 0.64. The combination NSCD-FC considering no
Facades and no loosely coupled connectors produces exactly the same vector
as the pattern-based assessment VMP (and thus the Jaccard similarity is 1.0).

4 In Table 2, 1 means that the constraint is violated, and 0 that it is not violated.
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This very good result might be surprising, as the uncombined constraints NSCD-
F and NSCD-C produce rather weak results alone. A closer inspection revealed
that in our models there was indeed in each false positive in NSCD-F a loosely
coupled connector and NSCD-C a sharing Facade that caused the violation.

For all shared dependencies metrics, the value 0.0 is the best possible value,
and higher values indicate lower quality. Thus, the metrics must be compared
to the reversed microservice quality vector MQR. The ratio of sharing non-
external components to non-external components (RSIC) shows a mod-
erate cosine similarity CS MQR of 0.73, which is gradually improved by its two
variants RSIC-F and RSIC-C with cosine similarities 0.74 and 0.81, respec-
tively. The combined variant RSIC-FC shows the best results with a high cosine
similarities of 0.91.

For ratio of shared non-external components to non-external com-
ponents (RSCC) the cosine similarity CS MQR has a moderate value of 0.70.
Its variants RSCC-F and RSCC-C perform better with cosine similarities of
0.80 and 0.76, respectively. Again, the combined variant RSCC-FC shows the
best results with a high cosine similarities of 0.85, but it is less similar for our
evaluation model set than RSIC-FC.

Finally, ratio of shared dependencies of non-external components to
possible dependencies (RSDP) has a good cosine similarity of 0.79 already
in its basic variant, but interestingly RSDP-F performs weaker with a cosine
similarity of only 0.72. Close inspection of the dependencies revealed that this
effect is due to the fact that, on the one hand, the Facade dependencies make
the values for high quality microservice architectures worse, but, on the other
hand, they make them much more worse for monolithic architecture, as for them
Facades have many more dependencies. Thus, monolithic architectures gain in
the variant RSDP-F comparatively too much. This can, in our numbers for
instance, be easily retraced using the values for Models EC1 and EC6. While
RSDP-F leads to a comparatively better result for EC1 (0.0 instead of 0.38 for
RSDP), the monolith EC6 improves from 0.72 (which was close to the expected
reversed quality of 1.0) to 0.38 (which is much more distant from 1.0). RSDP-
C leads to the expected improvement with a cosine similarity of 0.85. RSDP-
FC suffers from the same effect for Facade dependencies, and thus has only a
moderate cosine similarity of 0.79.

6 Discussion, Threats to Validity and Future Work

Discussion of RQs. With regard to RQ1 and RQ2, we have suggested a
number of constraints for checking the quality of microservice decomposition in
software architecture models. The variant NSCD-FC of the shared dependency
based constraints performs best, correctly identifying all constraint violations.
The constraint CAID based on independent deployment performs worse than
NSCD-FC (but better than all other NSCD variants), as it has issues with cor-
rectly identifying violations related to shared databases or components. Nonethe-
less, both constraints are useful and should be combined in their use. As both
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identify different lists of violations, inspecting the results of both constraints can
help developers to more easily find the root cause of a violation. In addition, our
evaluation revealed that CAID has only false negatives; that is, in our evalua-
tion model set, all violations identified are actually violations. Hence, it can be
used in addition to NSCD-FC with no danger of suggesting non-issues to be
fixed. This is not the case for any of the other NSCD variants, which yield false
positives.

We have also suggested a number of metrics for measuring the quality of
microservice decomposition in software architecture models. For both of the
metrics based on independent deployment, RDIC and RVID, we can assess a
very high similarity to our pattern-based assessments, and hence they seem to
be both good candidates for measuring the quality of microservice decomposi-
tion. RDIC performs slightly better than RVID, but given that the values and
interpretations used in the pattern-based quality assessment contain a certain
level of subjectivity, our empirical evaluation does not really identify a clear
favorite. As they are based on CAID, we should be aware that the base function
suffers from some false negatives which are part of the metrics’ values. Further
research would be needed to improve the metrics in this regard.

For the metrics related to shared dependencies, we can assess that none
of the metrics is a perfect match for our pattern-based quality assessment, but
considering that the values and interpretations used in the pattern-based quality
assessment contain a certain level of subjectivity, the achieved similarities of the
two metric RSIC-FC and RSCC-FC, with values of 0.91 and 0.85 are actually
quite good matches, with RSIC-FC performing a bit better for our evaluation
model set. It is interesting that all three *-FC metrics yield the correct value of
0.0 for well-designed microservice models, and never assign the perfect value for
a model with a violation. Unfortunately, the strength of the effect of violations
on metrics values is not optimal yet in any of the metrics. For instance, in
the best matching metric RSIC-FC, EC8 is the worst model; however, in our
pattern-based assessment we see its violations as less severe than those e.g. in
EC6. RSSC-FC is more correct in this regard, but assigns a very strong effect to
the violation in EC7, which is actually the same model as EC6, but just models
the violation in more detail. It is unfortunate that the metric RSDP suffers
from the issues related to the strong effect on removing Facade dependencies,
but its variant RSDP-C performs for our evaluation model set just as well as
RSCC-FC. Therefore, an interesting direction of further research could be to
investigate other ways to mitigate the effects of the shared dependencies of the
Facades instead of excluding them.

Overall, based on our empirical results using one of the metrics RDIC or
RVID seems advisable. The results show that the shared dependency metrics
in their current form are inferior. However, our results also indicate that shared
dependency constraints and metrics can be improved by modeling more details.
Here, we have studied Facades and loosely coupled connectors, as they are impor-
tant structures in the microservice patterns and rather easy to model. Please note
that modeling additional details is less needed for constraints and metrics based
on independent deployment.
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In the context of RQ3, we can assess that our decomposition model needs
rather minimal extensions (the few component and connector types named
above) and is easy to map to existing modeling practices. In particular, in order
to fully model our evaluation model set, we needed to introduce 20 component
types and 42 connector types, ranging from general notions like ExternalCompo-
nent and its sub-class ClientComponent, to very technology-specific classes like
MongoWireConnector (a subclass of DatabaseConnector connecting to a Mon-
goDBComponent, a subclass of DatabaseComponent). These would not always
be easy to map automatically, but our study has shown that for the suggested
constraints and metrics, only a small subset is needed: The constraints on inde-
pendent deployment require at least that ExternalComponents (and its subclass
ClientComponent) and the connector type InMemoryConnectors are modeled.
The shared dependencies based constraints require two additional abstractions to
be modeled: loosely coupled connectors (as subclasses of LooselyCoupledConnec-
tor) and Facade components. All except Facade components are relatively easy
to compute automatically, e.g. by inspecting the used technology for a connec-
tion. We can claim that our approach can easily be mapped using an automated
mapping from the source code to an architecture model, assuming standard com-
ponent model abstractions, such as those in UML2, e.g. with approaches like our
architecture abstraction approach [6].

Future Work. In our approach, we have focused only on modeling additionally
details with no to low effort, to enable a high potential for automation and less
extra effort compared to existing modeling practices. An interesting direction
for future research could be to study how modeling more details could lead to
better results in the metrics. For instance, modeling capabilities or subdomains
of the microservices, or the detailed domain model, are promising directions to
further improve the metrics.

Major Threats to Validity. A threat to validity is that potentially the pat-
terns or our models are not well chosen as study objects and do not represent the
domain of microservices well. However, as related practices and similar models
have been proposed by many other authors, we judge this threat to be rather
low. However, many authors also model other architectural views, and they might
have an influence on architecture decomposition – which we want to study as
future work. Potentially the authors could have been biased in their judgment,
but as we have followed a quite mechanical scoring scheme (based on the pat-
terns, not our own judgment), this threat is mostly limited to our evaluations
based on the pattern-based quality assessments (see Sect. 5). Even though we
have aimed to follow the argumentations in the microservice patterns [21] as
closely as possible, a major threat remains that at least the evaluation scores
introduced are subjective to a certain degree. Note that we have tested in the
course of our evaluations some other kinds of reasonable scoring scheme, leading
to comparable but slightly different results. The sensitivity to those scores was
generally low, as long as we followed the suggestions from the patterns closely.
In addition, this potential threat to validity is not necessarily a problem, in the
sense that a project aiming to apply the constraints and metrics could easily
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re-run our evaluations with different values that introduce scores according to
the project’s needs. As we have used pretty basic and standard statistics, we see
no major threats to statistical conclusion validity.

Concluding Remarks. In summary, our results show that a subset of the con-
straints or metrics are quite close to the pattern-based assessment based on the
expert judgment taken from the patterns, and we have also shown where the
metrics and constraints could be substantially improved. Our results indicate
that the best way to reach this goal seems to be more detailed modeling of the
microservices (e.g. based on capabilities, subdomains, domain-specific models,
and/or modeling at different abstraction levels). However, each of these pos-
sible future works would also mean more manual effort, and less potential for
automation, but this might not be an issue in all those application cases where
designing a well-defined architecture is the goal. With modest effort our results
are applicable to other service decomposition schemes than microservices as well.
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