
RISE: Resolution of Identity Through Similarity
Establishment on Unstructured Job Descriptions

Rakesh Rameshrao Pimplikar1(B), Kalapriya Kannan2, Abhik Mondal3,
Joydeep Mondal1, Sushant Saxena4, Gyana Parija1, and Chandra Devulapalli5

1 IBM Research, Bangalore, India
rakesh.pimplikar@gmail.com, {jomondal,gyana.parija}@in.ibm.com

2 Hewlett Packard Enterprise, Bangalore, India
kalapriya@gmail.com

3 Department of Computer Science, IIT Madras, Chennai, India
abhik.mondal1992@gmail.com

4 Department of Computer Science, IIT Delhi, New Delhi, India
sushant3012@gmail.com

5 IBM Software Lab, Bangalore, India
cdevulap@in.ibm.com

Abstract. Identity resolution of job description involving cross organi-
zational data would go a long way in addressing several high valued busi-
ness problems. Job data normalization/sanitation, automated creation
of better job descriptions with context preference, description reuse and
validation across different sources, semantic classification of jobs, rout-
ing of candidates to suitable jobs across different organization etc. are
some of the business centric functionalities that can be efficiently built by
resolving job description identities. Job descriptions are highly unstruc-
tured with free flow textual data consisting of lines describing important
attributes of job requirements, like education, skills, experience, role,
responsibility etc. Much of the problem is due to the highly unstructured
nature of job descriptions. Further, the attributes that are representative
of the information in a job description are not readily available from the
description. Thus, the process of resolution involves deep data cleansing,
classification, attributes identification, and building highly scalable sim-
ilarity detection algorithms. In this paper, we propose RISE - that uses
values of attributes in the underlying job description data and similar-
ity observed in the attributes to resolve identities across organizations.
It proposes classification followed by similarity establishment processes
that eventually provides high quality of resolution. Through extensive
experiments performed on corpus of job descriptions from several real
world recruitment systems, we demonstrate that RISE can resolve the
identities with high precision and recall.

K. Kannan—A part of the work was done when the author was an employee at IBM
Research - India.
A. Mondal and S. Saxena—A part of the work was done when the authors were
interns at IBM Research - India.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 19–36, 2017.
https://doi.org/10.1007/978-3-319-69035-3_2

20 R.R. Pimplikar et al.

1 Introduction

Identifying right job positions is a key to right opportunity. Job descrip-
tions (JDs) expose job positions by providing information about the positions.
To-date job descriptions are prescriptive and dependent solely on expression
of job details from employers or recruiting systems. As a result job descrip-
tions differ significantly from one employer to another even for the same role or
responsibility, making it difficult for job seekers to identify the right set of jobs.
Thus, Job Data Normalization would go a long way assisting the community of
job seekers to identify the right set of opportunities for their profiles through
standardization of job requirements.

Functional commonalities observed in recruiting systems such as hiring, selec-
tion etc., among organizations result in data (JDs, candidate CVs, processes for
hiring etc.) that exhibit high commonalities. Such data is often non-standard and
each organization chooses its own identifier to refer to each of the records. Our
own analysis of about 27000 JDs across 28 different organizations has revealed
that terms used to refer to roles vary significantly by name. Thus identifying sim-
ilar JDs by role names becomes difficult if not impossible. Often times, manual
inspection of data is employed to assess contents of JDs and establish similarity
and thus identities.

In this paper, we address one such critical problem of resolving identities
of JDs and normalizing them across organizations. We present RISE, an iden-
tity resolution engine that uses underlying similarity in the nature of the data,
representing attributes as a fundamental concept to resolve identities. It estab-
lishes novel methods to process unstructured JDs, identify attributes and con-
vert unstructured textual descriptions into structured information. Similarity
is established against the first class attributes identified to represent the data.
Identities (Job Titles/Department) pertaining to JDs, which are established as
similar, are used to build rules to construct equivalence. We enumerate each of
the steps in the process in detail and show that our approach identifies similarity
across JDs with high accuracy.

Our contributions in this paper can be summarized as follows:

1. Identity resolution of JDs
(a) Identification of important attributes that are descriptive of the informa-

tion in JDs.
(b) Build highly accurate classifier that labels the unstructured text into one

or more of the attributes.
(c) Identify and extract keywords for each of the attributes from unstructured

text.
(d) Establish similarity among JDs based on extracted keywords.
(e) Establish equivalence among identity titles/roles of JDs.

2. Experiments on real world data sets
(a) We performed each of above 5 steps on real world data sets collected

across 28 different organizations.
(b) We extensively validated results at each step to ensure that the overall

process derives similarity with high accuracy.

RISE: Resolution of Identity Through Similarity Establishment 21

Rest of the paper is organized as follows. The system and steps are presented
in detail in Sect. 2. Section 3 is used to present the algorithms that we have used.
We review some of the existing literature as applicable for our work in Sect. 5.
Section 4 presents the details of the experiments and the results. We conclude
with directions to future work in Sect. 6.

2 System Overview and Approach

Before providing system details, we present a list of terms along with their
definitions in Table 1. We use these terms throughout our paper. It will help
readers not to get confused with terms having literally similar meaning.

Table 1. Important terms and definitions

Terms Definitions

Job Description (JD) It is an unstructured textual information describing job
requirements that a candidate profile should satisfy in
order to be considered for the job

Keywords We use this term to refer to a set of words from an
unstructured line of a JD. In general, keywords provide
some specific information

Category It represents a concept/topic for a combination of certain
keywords/single key word. We are going to use categories
as a feature set as described in Sect. 3.2

Attributes It is a set of independent identifiable variables that can be
used to tag the information provided by every line in a JD.
It is also used as a set of labels as described in Sect. 3.2

Our system RISE comprises six different phases. Figure 1 shows all the phases
and respective steps involved in extracting the relevant information from highly
unstructured text describing a job requirement. Details of every phase are as
follows.
1. Attribute Identification Phase (AIP). It uses Principal Component
Analysis (PCA) to identify attributes that are representatives of the information
in JDs (Step 1 in Fig. 1). This is done with the help of the domain and subject
matter experts. Algorithm for identification of these attributes is presented in
detail in Sect. 3.1. The five attributes those were determined through this analy-
sis are {Education, Skills, Experience, Roles, Responsibilities}.
2. Classifier Training Phase (CTP). It is responsible for training a multi-
label ensemble classifier to assign one or more attributes to each line in a
JD. The input to this step is training data where every line of historical
JDs is already labeled. Output is a classifier model. Ground truth, collected
through manual labeling (as described in Sect. 4.1), is used to train the classifier.

22 R.R. Pimplikar et al.

Fig. 1. Phases and steps involved in processing unstructured job descriptions

In step 2 (refer to Fig. 1), we extract unstructured text information from the
JDs only for attributes identified in AIP. Step 3 involves unstructured text
processing, where text is parsed to be broken into a set of lines. Delimiters
that have been used to break the unstructured text into lines are {, . ; newline}.
Based on the keywords present in a line, a set of categories are extracted for that
line. These categories can be in hierarchical order. Eventually a binary feature
set is built for every line where every entry in a feature set indicates whether the
corresponding category is present or absent. In step 4, this feature set is used to
create training data for a classification algorithm. In step 5, a classifier is trained
to output a classifier model as shown in step 6. Details of the algorithms that
are involved in category extraction, feature set generation, and classifier training
are presented in Sect. 3.2.
3. Attribute Association Phase (AAP). It uses the classifier model built in
step 5 of CTP for the classification. Every new JD is passed through unstructured
text processing (step 7), which extracts the features against each line (step 8).
The extracted features are passed through the classifier which associates each
line with one or more attributes (step 9). The output of classifier passes through
text standardization (step 10). The main functionality of this component is to
convert the keywords available in each labeled line into standard recognizable
forms. Trivial differences such as multiple spaces between keywords, presence
of delimiters are also cleaned by the text standardization process. Algorithmic
details of the text standardization process is presented in Sect. 3.3.
4. Extraction Phase (EP). The text is still in the form of unstructured lines
after AAP. This textual lines now with labels are passed into the Extraction
Phase (step 11). In this phase, keywords referring to each of the attributes are
identified and extracted from the text. This step converts the unstructured text

RISE: Resolution of Identity Through Similarity Establishment 23

into a structured JD. The keywords for each of the attributes are stored in
the form of comma separated values. Section 3.4 presents the complete set of
algorithms for extracting keywords related to each of the attributes from the
lines.
5. Similarity Phase (SP). Step 12 of Fig. 1 represents a similarity algorithm
to find similarity between any two JDs. We have used Jaccard similarity measure
to determine the similarity of two JDs based on the attributes education, skills,
roles, and responsibilities. For similarity measures on the experience, we have
provided our own approach of computing similarity based on the number of
years of experience. Algorithmic details are provided in Sect. 3.6.
6. Identity Resolution Phase (IRP). In this phase, we establish and build
a set of rules that can be used to easily identify two equivalent JDs (Step 13 in
Fig. 1). Each job description is identified by its job title (a role oriented descrip-
tor) and department. For every pair of similar JDs identified in previous phase,
their job titles and departments are stored as a rule in the rules repository. We
don’t have to analyze any two JDs for similarity in future, if their jobs titles and
departments are already present among rules.

3 Algorithms

In this section, we primarily describe 4 algorithms, (1) for identifying impor-
tant attributes for JDs, (2) for tagging unstructured lines of JDs as one of 5
attributes {Education, Skills, Experience, Roles, Responsibilities}, (3) for creat-
ing structured job descriptions, and (4) for finding similarity between two job
descriptions.

3.1 Identifying Important Attributes for Job Descriptions

This algorithm is used in the AIP described in Sect. 2. Our aim is to identify a
set of important attributes that are representatives of the information in JDs.
Principal Component Analysis (PCA) is used in dimensionality reduction. We
use a hybrid feature reduction method MSNRPCA based on the combination of
feature ranking with PCA. This method was proposed by Yang et al. [20].

We use labeled data set of JDs, as described in Sect. 4.1 to run MSNRPCA
on it. Labeled data has values of every attribute for all JDs. An exhaustive list
of different attributes derived by qualitative analysis on these JDs is as shown
below.

Depth of knowledge, Process, Tools and Technologies, Skills, Domain knowledge,
Experience, Business knowledge, Efficiency of communication, Roles expected
to perform, Performance expected, Project Management, Schedule Management,
Training undergone, Education level, Education streams, Responsibilities

24 R.R. Pimplikar et al.

MSNRPCA assigns a score to each of these attributes, based on the impor-
tance of every attribute. Higher the score, higher is the importance. For robust-
ness, we create 5 sets of labeled JDs, by randomly sampling 80% of total
JDs every time. MSNRPCA is used to assign an importance score to every
attribute for every sampled instance of labeled JDs. To simplify the analysis,
we map all scores on a rating of 10. Table 2 captures all such scores. You can
think of these scores as ratings given to every attribute by 5 different domain
experts. Co-related variables are removed from this list thus reducing the set of
variables to a minimum number of independent attributes. We perform factor
analysis on these scores to eventually identify 5 important attributes. Those are
{Education, Skills, Experience, Roles, Responsibilities}. Skills attribute can fur-
ther be classified into “Technical Skills” and “Soft Skills”. All skills that involve
a known technology, tools, product or methodology are categorized under tech-
nical skills. Soft skills include those which do not involve a known tool, but
are gained through experience and personal affiliation. Examples of such skills
include management skill, communication skill, etc. In this paper we do not dis-
cuss this classification of skills and consider only 5 important attributes. We refer
these attributes using the notations yedu, yskill, yexp, yrole and yresp respectively.

3.2 Unstructured Text Classification

The bunch of algorithms presented here are used in the CTP and AAP phases
explained in Sect. 2. A job description generally contains unstructured text
describing the requirements of an open job position in terms of important
attributes {Education, Skills, Experience, Roles, Responsibilities}. It is observed
that every line of such a job description describes one or more attributes. So
in order to create a structured description out of an unstructured one, we first
identify which line describes what attributes. This leads to a multi-label classi-
fication problem where we need to assign one or more labels to every line L of a
job description. In our case, a set of possible labels is Y = {yedu, yskill, yexp, yrole,
yresp}. As described in [19], there are two main methods for tackling multi-label
classification problem, (1) problem transformation methods that transform the
multi-label problem into a set of binary classification problems and (2) algorithm
adaptation methods that adapt the algorithms to directly perform multi-label
classification. We use the problem transformation method, where we create 5
binary classifiers one for each label in Y. All the steps involved in multi-label
classification are explained in detail below.

Feature Extraction. This section provides an approach to unstructured text
processing as mentioned in Sect. 2. A set of features is required for a line L to
use any standard classification algorithm. So feature extraction is an important
step in our approach. In a way, our labels Y are the categories which we have to
identify for every line. Such a category identification needs a mapping between
categories and keywords as an input. It looks for keywords in text and based on
mapping it figures out most appropriate category. We use Naive Bayes classifier

RISE: Resolution of Identity Through Similarity Establishment 25

T
a
b
le

2
.
Im

p
o
rt

a
n
ce

sc
o
ri

n
g

o
f
a
ll

a
tt

ri
b
u
te

s

D
e
p
th

o
f

k
n
o
w

l-

e
d
g
e

P
ro

c
e
ss

T
o
o
ls

a
n
d

te
c
h
n
o
lo

g
ie

s

S
k
il
ls

D
o
m

a
in

k
n
o
w

l-

e
d
g
e

E
x
p
e
ri

e
n
c
e

B
u
si

n
e
ss

k
n
o
w

le
d
g
e

E
ffi

c
ie

n
c
y

o
f
c
o
m

m
u
-

n
ic

a
ti

o
n

R
o
le

s
P
e
rf

o
rm

-

a
n
c
e

e
x
p
e
c
te

d

P
ro

je
c
t

m
a
n
a
g
e
-

m
e
n
t

S
c
h
e
d
u
le

m
a
n
a
g
e
-

m
e
n
t

T
ra

in
in

g

u
n
d
e
r-

g
o
n
e

E
d
u
c
a
ti

o
n

le
v
e
l

E
d
u
c
a
ti

o
n

st
re

a
m

s

R
e
sp

o
n
si

-

b
il
it

ie
s

2
2

5
8

2
8

4
2

8
4

5
2

3
8

7
7

4
3

5
8

4
6

5
3

6
3

4
2

1
7

7
8

5
4

6
6

3
7

6
2

8
3

6
3

4
8

9
8

2
3

6
8

4
7

2
2

6
2

6
2

2
7

8
9

5
3

6
8

4
7

3
3

7
2

5
1

2
7

7
7

26 R.R. Pimplikar et al.

to classify text into one of the categories [9]. There are mainly two problems with
this approach, (1) one keyword may be mapped to multiple categories, resulting
in more than one possible categories for L, and (2) it is very difficult to come
up with an exhaustive list of keywords for every category. Thus, using category
identification approach for our problem leads to poor results.

Instead we can have a taxonomy for several different categories (including Y),
such as academics, products, work, business, etc. An example of such a taxonomy
is shown in Fig. 2. Similar taxonomy can easily be found in public domain. Every
parent node in a taxonomy can be considered as a category and children can be con-
sidered as relevant keywords. Using this taxonomy, we can find a set of most suit-
able categories for a line L. Resultant categories may or may not have categories
from Y, but we can deduce categories from Y provided we have some knowledge
about which combination of categories result in which categories from Y.

Fig. 2. Taxonomy of categories

Being a good indicator of informa-
tion present in L, we can use extracted
categories as features fL for L. If given
taxonomy has m categories, then there
will be m binary features for every L.
For all i ∈ {1, ...,m}, feature fi = 1 if
category ci is extracted for L, other-
wise fi = 0. It creates a feature vector
fL = {f1, f2, ..., fm}.

Classifier Training. We provide a multi-label classifier training algorithm in
this section, which is used by step 5 of CTP phase as described in Sect. 2. As
mentioned in the previous section, if we know the rules that map combinations
of categories into one of the categories from Y, we can easily assign a label from
Y to L. Decision Tree is a good choice to learn such a set of rules from the given
data. It also generates a classification tree, which can be used to classify L into
one of the labels from Y. Decision tree assigns only one label to L, while we
need multiple labels. So we create a decision tree for every label in Y. Though
there are several flavors of Decision Tree available in literature, we have used its
generic form for simplicity of explanations. However we have presented results
for C5.0 [1], CHAID [12] and C&RT [5] in Sect. 4.

Decision Tree requires labeled data for training. So we parse several job
descriptions to get a set of lines. During a ground truth collection phase, we receive
a multi-label set yL ⊆ Y for every line L. Thus we get pairs {L, yL} in training
dataset Dtrain. To train a particular classifier for yi ∈ Y, we replace yL from every
{L, yL} pair with a binary value bLi where bLi = 1 if yi ∈ yL, otherwise bLi = 0.
This gives us pairs {L, bLi } in training dataset Di

train for label yi.
Having all labeled data with us and features vectors for every line as described

in Sect. 3.2, we build a decision tree Ti for every label yi.

Multi-label Classification. Given a new unseen line L, we classify it using
each of the decision trees built in training phase. Decision Tree Ti classifies a

RISE: Resolution of Identity Through Similarity Establishment 27

line L and provides label bLi . For example, consider a decision tree Tedu for yedu.
For any L, decision tree returns bLedu = 1 indicating that L describes education
requirements and it returns bLedu = 0 when L is not about education. We combine
all such labels for L from all decision trees and generate a multi-label set yL

where yL contains a label yi if bLi = 1. This approach can be used in step 9 of
AAP phase as mentioned in Sect. 2.

3.3 Text Standardization

To address the problem of standardizing text in step 10 of AAP phase as men-
tioned in Sect. 2, we use ontologies like WordNet1 and Yago2. For example, some
recruiters may write “MS Office” and others may write “Microsoft Office”. If we
don’t standardize words like ‘MS’ into ‘Microsoft’, it would be difficult to find
similarity between two job descriptions, which is our final goal. Ontologies are
useful, because they usually contain common entities and their abbreviations.
WordNet can be used to find even synonyms which can replace certain keywords
in a line. We also use Jaro-Winkler distance [6] on keywords to group similar
keywords together. Input to this distance estimator are keywords from lines and
dictionary of keywords collected through large databases from organizations. For
instance, names of all skills relevant to an organization can be made available
in the form of a dictionary. Each of the keywords of the lines are compared
with the keywords in the dictionary using the Jaro-Winkler distance estimator
to determine the closeness. If two keywords are identified as similar by the algo-
rithm with high confidence level, the keyword in the line is replaced with the
keyword from the dictionary. This ensures uniform representation of keywords
across text.

3.4 Building Structured JDs Using Keywords Extraction

Once we have every line L of every job description classified as one or more labels
from Y, our next task is to extract certain keywords from L, which precisely
tells about the job requirements. This set of algorithms relate to the EP phase
in Sect. 2. For example, consider following line of a job description.

... Masters in statistics or quant-heavy social science program, bachelor
grad must have extensive research assistant experience; experience of program-
ming in SPSS or SAS, C, C++ or Visual BASIC required...

This line should ideally receive labels yedu, yskill and yexp, as it is talking
about education, skills and experience requirements. After labeling, we should
extract bold keywords from this line so as to organize it as follows. Observe that
though the line is labeled as yexp, we do not extract any keywords for experi-
ence. It is because we extract only numeric information for experience attribute,
1 http://wordnet.princeton.edu.
2 www.mpi-inf.mpg.de/yago.

http://wordnet.princeton.edu
www.mpi-inf.mpg.de/yago

28 R.R. Pimplikar et al.

for example, number of years of experience. Line given in this example doesn’t
contain any such information.

Education: Masters in statistics, bachelor grad
Skills: SPSS, SAS, C, C++, Visual BASIC
Experience:

We get a set of keywords SL
i for each attribute yi from Y for every line L.

Eventually we take union of all sets S∗
i over all lines to get a final set of keywords

Si for attribute yi. Such sets for all yi together forms a structured job description.
Next we describe how we can extract important keywords from a line L after it
has been classified into a set of attributes yL.

Keywords Extraction for Education. It is observed that education is usually
specified in following format.

<Degree> {of,in,...} <Field>

For example, “Bachelor of Engineering”. It is easier to get an exhaustive list of
possible values of degree, while set of possible values of field/stream/department
can be huge and we may not be able to create an exhaustive list. But we can
utilize the correlation among keywords of education phrase. It is very clear
from the above format that parts of speech of an education phrase are Noun-
Preposition-Noun. We use NLP (Natural Language Processing) based part of
speech (POS) tagging [3] to tag every phrase of a line, which is labeled as yedu.
We use OpenNLP3 tool, which can tag every keyword from a set of 36 different
POS tags. We pick all the Noun-Preposition-Noun phrases and lookup for degree
related keywords in Noun phrases. For this purpose, we maintain a dictionary of
keywords for degree. This dictionary is used for lookup. Once we find a degree
keyword that must have been tagged as Noun in a phrase, we can tag other
Noun of the phrase as field of the degree. Finally we extract all such phrases,
where we can find degree and field combination.

Another possible format for education phrase can be only <Degree>. It is
applicable for education level lower than graduation where they don’t have any
specialization. This case is easier to handle by having only dictionary lookup for
degree.

Keywords Extraction for Experience. We extract years or months of expe-
rience required for a job position if a line is labeled as yexp. To find experience
phrases in a line, we can use an approach similar to what we do for extracting
education phrases. Formats of experience phrases are observed to be as follows.

<Number> {years, months}
<Number> - <Number> {years, months}

<Number> {to} <Number> {years, months}
3 http://opennlp.apache.org.

http://opennlp.apache.org

RISE: Resolution of Identity Through Similarity Establishment 29

For example, “... 5 years of experience in Java...”, “... 2–3 years of experi-
ence in Databases...”, etc. A number can be written either in digits or in words.
So we again use NLP based POS tagging to find phrases those are tagged as
numbers. If a number phrase is found along with ‘year’ or ‘months’ keywords
then we extract such number as experience. This can be ambiguous sometime
when a time duration is not associated with experience, for example, “... candi-
date should be at least 25 years old...”. To resolve such ambiguities and boost
our confidence, we also look for skills or work related keywords in the vicinity of
experience number. Skills and work related keywords can be found using taxon-
omy of categories mentioned in Sect. 3.2. If we find two numbers separated by ‘-’
or keywords like ‘to’ as shown in possible formats above, we extract the average
of both numbers as experience. For example, we extract keywords “2.5 years”
from a line “... 2–3 years of experience in Databases”.

Keywords Extraction for Skills and Roles. Skills required for a job position
and roles in an organization can be very specific and recruiters use them again
and again while writing job descriptions for several job positions. Hence, it is
easier to maintain dictionaries of exhaustive keywords for skills and roles. If a
line in a job description is labeled as yskill, we lookup into skills dictionary to
check if any keywords from dictionary are present in the line. We extract all such
matching keywords to tag them as skills. We follow the same procedure for the
lines which are labeled as yrole.

Responsibilities of a job position are well understood from entire line instead
of few keywords. Hence we don’t extract any specific keywords for responsibilities
attribute. We consider entire line among responsibilities if the line is labeled as
yresp. We use Jaro-Winkler distance [6] based string similarity for all dictionary
lookups, because it takes into consideration minor spelling mistakes and white
spacing between keywords.

3.5 Enriching Dictionaries

The present dictionaries of exhaustive keywords for skills, roles and education
may not be exhaustive tomorrow due to ever evolving needs of new skills, roles
and education. We propose a way to keep enriching these dictionaries with new
keywords by analyzing the frequent occurrences of nouns in lines labeled as one
or more of yskill, yrole and yedu. As described in algorithm 1, if a noun is not in
any of the dictionaries, we count its frequency in the context of different labels.
For every such noun, we find a label where the noun has maximum frequency and
insert it into the dictionary corresponding to that label, if maximum frequency
is above certain threshold. Frequency based analysis is important, because every
line can be assigned multiple labels and it can be confusing do decide which
dictionary a noun should be inserted into. For simplicity and accuracy, we assume
that a noun belongs to only one dictionary.

30 R.R. Pimplikar et al.

Algorithm 1. Enrich Dictionaries
Input : Dictionaries Dicti ∀yi ∈ {yskill, yrole, yedu}, set of lines L, label vector

yL ∀L ∈ L
Output : Updated dictionaries

Counts of keywords for different labels, C ← 0
forall L ∈ L do

Ltagged ← Tag all keywords in L with part of speech [3]
N ← All nouns from Ltagged

forall n ∈ N do
if n /∈ Dicti ∀yi ∈ {yskill, yrole, yedu} then

forall yj ∈ yL do
Cn,j ← Cn,j + 1

end

end

end

end
forall Cn �= 0 do

i ← argmaxj Cn,j

if Cn,i ≥ threshold then
Dicti ← Dicti ∪ n

end

end

Following the keywords extraction methods for skill, roles and education,
as described in Sect. 3.4, we run the process of enriching dictionaries and then
again try to extract keywords. It helps in extracting those keywords, which we
could not extract in previous iteration due to lack of their presence in relevant
dictionaries.

3.6 Similarity of Job Descriptions

Given two job descriptions J1 and J2, our aim is to find how similar they are in
terms of attributes yedu, yskill, yexp, yrole and yresp. We have provided a detailed
procedure in Sects. 3.2 and 3.4 about how to arrive at a structured job descrip-
tion which has sets of keywords Sedu, Sskill, Sexp, Srole and Sresp for respective
attributes. Having these keyword sets where text has been standardized using
ontologies as mentioned in Sect. 3.3, we just have to find keywords based over-
lap between respective sets of job descriptions. SJk

i represents a set of keywords
for job description Jk and attribute yi. We compute Jaccard similarity score
between two respective sets SJk

i and SJl
i of job descriptions Jk and Jl to get a

score simk,l
i as follows. Cosine similarity [2] can also be used instead of Jaccard.

For the ease of explanation we mention only Jaccard similarity here.

RISE: Resolution of Identity Through Similarity Establishment 31

simk,l
i =

|SJk
i

⋂
SJl
i |

|SJk
i

⋃
SJl
i | (1)

This is repeated for all yi except yexp, because we extract only numbers
for experience attribute and not keywords. So Jaccard does not work for yexp.
Instead we propose a novel similarity measure for finding similarity based on the
numeric values.

Similarity for Experience. Given two numeric values ek and el of experience
attributes for job descriptions Jk and Jl, dissimilarity of experience is equiva-
lent to normalized gap between two values. As both are non-negative numbers,
maximum gap is equal to max{ek, el}, which is used for normalization. Thus
similarity of experience values can be formulated as follows.

simk,l
exp = 1 − |ek − el|

max{ek, el} (2)

We also define a weight vector w = {wedu, wskill, wexp, wrole, wresp} to specify
importance of every attribute for all job descriptions. A weight can be any non-
negative number. All similarity scores simi are scaled by weights wi, added up
and then normalized to get the final similarity score between two job descriptions.
It can be summarized with following equation.

JobSim(Jk, Jl) =

∑
i∈{edu,skill,exp,role,resp}

(
wi × simk,l

i

)

∑
i∈{edu,skill,exp,role,resp} wi

(3)

4 Experiments

We evaluated the performance of every phase of our system by running a set
of experiments over a data set as described below. We categorize our experi-
ments mainly into three sets. First set of experiments were conducted to assess
the accuracy of classification algorithm (CTP and AAP phases). Second set of
experiments were conducted to assess the accuracy of keyword extraction from
labeled text for creating structured JDs (EP phase), and third set of experiments
were conducted to assess the accuracy of similarity algorithm (SP phase). All of
these experiments are described in following subsections.

4.1 Data Set

We collected approximately 27000 JDs from 28 organizations including IBM and
its clients. Client names are not mentioned in this paper to preserve confidential-
ity. These JDs were picked from actual jobs posted by organizations for hiring
candidates. Distribution of number of JDs picked from 28 organizations is 8000,
4000, 2500 and 500 each from remaining organizations. The organizations are in
the area of Information Technology. Thus diverse set of JDs for a single domain

32 R.R. Pimplikar et al.

were considered. It was observed that these JDs were highly unstructured with
free flow text expressing requirements of the job. There was no explicit or con-
sistent expression of lines as skills, experience, roles, etc. These JDs produced
about 0.18 million lines which were used as data.

Approximately 5000 lines, chosen randomly, were manually tagged for col-
lecting the ground truth. Human labelers assigned one or more of the labels
{yedu, yskill, yexp, yrole, yresp} to every line, depending on what a line was describ-
ing. Along with labels, human labelers also annotated the phrases that actually
described the labels assigned. Total 6367 phrases were annotated. 10 people
contributed in this ground truth collection activity. Every line is labeled and
annotated by 2 labelers. Overall agreement on labels and annotations was 86%.
We carefully resolved the conflicts while finalizing the ground truth.

4.2 Classifier Evaluation

We compare the performance of our classification algorithm as described in
Sect. 3.2 with a baseline approach. Our algorithm uses decision tree classifier,
that automatically generates a set of rules for assigning an attribute as a label
to every line. On the contrary, baseline approach relies on a set of rules man-
ually provided by domain experts for every attribute. Given a set of categories
extracted for a line, baseline approach scans through rules for an attribute and if
any rule is satisfied, that particular attribute is assigned to the line. This process
is repeated for every attribute.

We conducted experiments of baseline and our algorithm over a ground truth
of 5000 lines labeled manually. As rules are readily available, baseline approach
doesn’t require any training phase. Baseline predicted attributes for every line
and later we compared them against the ground truth. Whereas a 5 fold cross
validation was used to report precision and recall for our algorithm.

While comparing with baseline, we computed three different set of results
for our classification algorithm by selecting a different decision tree algorithm
every time. Namely we used C5.0 [1], CHAID [12] and C&RT [5] decision tree
algorithms.

As this is multi-label classification problem, we report F1 score for every
attribute as shown in Fig. 3. It is clear that F1 score of our algorithm beats
baseline F1 score or at least at par with baseline F1 score in all three settings
for all attributes except for experience. Improvement ranges from 0 for skills
using C&RT to 0.23 for roles using CHAID. For experience, drop in F1 score
ranges from 0.04 using CHAID to 0.15 using CR&T. Thus, our algorithm works
better than baseline in most of the cases. In remaining cases, our algorithm is
not far behind the baseline in terms of F1 score. Additionally, our algorithm can
be used with larger data sets. Manual rules in baseline approach may not be
exhaustive in case of larger data sets.

Comparing among three different settings for our algorithm, we can infer
from above analysis that CHAID is the best suited for our algorithm and C&RT
is the worst among three.

RISE: Resolution of Identity Through Similarity Establishment 33

Fig. 3. F1 score based comparison

We plot ROC curves for deci-
sion tree classifiers for every attribute
with CHAID technique. Classification
scores obtained for every attribute and
for every line are used for this pur-
pose. These ROC curves are shown in
Fig. 4. It is observed that area under
ROC curve (AU-ROC) is high for all
attributes, that establishes the quality
of our algorithm for classification.

Fig. 4. ROC curve along with AU-ROC value of a classifier for every attribute

4.3 Keyword Extractor Evaluation

We used 5000 lines from ground truth having attributes assigned to them. For
each of these lines, we extracted keywords based on the attributes of lines. We
compare the extracted keywords for every line with the annotated keywords for
that line in the ground truth. We adopt the standard definition of precision to find
the precision of our keyword extraction algorithm in terms of following formula.

Precision =

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
anno, ext

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
ext

(4)

where N i,L
anno, ext is the total number of keywords those were annotated in

the ground truth as well as extracted by our algorithm for a line L and for
attribute i. N i,L

ext is the total number of keywords extracted by our algorithm for
a line L and for attribute i. We calculated the value of above formula to find
what fraction of total extracted keywords were actually describing the attributes
of the lines. The value of Eq. 4 was computed to be as high as 0.954.

We also adopt the standard definition of recall to find the recall of our key-
word extraction algorithm as follows.

Recall =

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
anno, ext

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
anno

(5)

34 R.R. Pimplikar et al.

where N i,L
anno is the total number of keywords annotated in the ground truth

for a line L and for attribute i. This gives us what fraction of total annotated
keywords were actually recognized by our algorithm. The value of Eq. 5 was
computed to be 0.842. This implies that our keyword extraction algorithm is
highly effective with high precision and recall. F1 score can be computed to be
0.896.

4.4 Similarity Algorithm Evaluation

Similarity algorithm provides a score between 0 to 1 for a pair of JDs. Similarity
is high, if the score high. One way to evaluate similarity algorithm is to find
similarity scores of a JD with every other JD from our data set of 27000 JDs.
We can set a threshold on similarity score to find all pair of similar JDs. Then
manually find out how many of those pair are actually similar. There are two
problems in this evaluation approach. First, setting a threshold value is tricky.
One value for a pair of JDs may not be valid for other pair of JDs. Second
problem is that inspecting all similar pairs manually is not feasible for possible
27000 × 27000 pairs. Collecting ground truth for those many pairs is also time
consuming and need a lot many human resources.

We decided to go with ranking approach to address these two problems in
evaluation. We randomly selected 50 JDs out of a data set of 27000 JDs. For
every JD in this set of 50 JDs, we computed similarity scores with every other
JD in 27000 set. For a selected JD, we ranked all JDs in decreasing of their
similarity scores. We picked top 10 and manually observed how many of them
were actually similar. We repeated this for each of the 50 selected JDs. Thus
ground truth collection efforts was brought down to 50× 10 from previous value
27000 × 27000. Setting a threshold value is also not required for this evaluation.
Just that instead of computing precision and recall, we computed area under
ROC curve (AU-ROC) in this setting for each of these 50 ranked lists with 10
JDs each.

We observed that minimum AU-ROC was 0.642, maximum AU-ROC was
0.9 and mean AU-ROC was 0.779. This highlights the effectiveness of similarity
algorithm in ranking similar JDs at the top. Ranked list certainly does not
provide exact list of similar job descriptions, but it provides an ordered list of
JDs, which user can follow to find similar job descriptions. It reduces tremendous
efforts of user of scanning all JDs in random order. Based on the application,
a threshold value for similarity scores can as well be used or top k JDs can be
picked. It will further reduces the screening efforts of user.

We also report precision of similarity algorithm for the sake of complete-
ness, by setting up following experiment. Given above mentioned 50 ranked
lists, we set a high threshold of 0.7 for two JDs to be similar. It gave us a set
of pairs of JDs, that we predicted as similar. It shortlisted on an average top 15
JDs from every ranked list which increases manual labeling effort from 50 × 10
to 50 × 15 pairs. Based on manual labeling, we observed that 88% of predicted
similar JDs were truly similar. This sets a high precision value for our similarity
algorithm.

RISE: Resolution of Identity Through Similarity Establishment 35

5 Related Work

Importance of entity and identity resolution have been established earlier in sev-
eral research works [4,13,17]. Our work is along the lines of recent approaches
which are variants of Fellegi-Sunter Model [8]. In [8] identity resolution is solved
as a classification problem - given a set of similarity scores for different attributes
of two candidates, classify it as a match or a non-match. Several bodies of
research work have advised, compared and learned similarity measures for use
in entity resolution (example, [7,18]). Typically in such work, matching is per-
formed individually on each of the attributes and then a transitive closure is used
to eliminate inconsistencies. In our work, we establish these attributes through
MSNRPCA [20], a hybrid approach for feature reduction based on the combina-
tion of feature ranking with PCA, and utilize the similarity to resolve identity.
We train classification models for attributes using well established decision tree
algorithms such as C5.0 [1], CHAID [12] and C&RT [5].

Entity resolution has been solved in several domains by various research works
(example, [15,16]) and to different types of data, including text (example, [14])
and images (example, [11]). RISE targets resolution of entities in the domain of
Job Descriptions in a recruiting system. We have highlighted the importance of
the problem earlier and the goals of our work have been motivated by real world
requirements of recruiting systems. There has been a pressing demand for iden-
tity resolution systems where identifying right candidates through one channel
for specific organization can be routed to other job descriptions if not found suit-
able. Furthermore, there has been demands for creation of context sensitive job
descriptions based on the existing job descriptions that had the best convergence.
For all these purposes, one requires that similarities are established and identi-
ties are resolved. A big distinguishing factor is that our data source have been
cross organizational. Thus we expect the identities of these job descriptions to be
completely different from one organization to another. The problem is more chal-
lenging also due to the nature of the attributes. For instance, the numeric values
for experience attribute requires different measures for obtaining similarity.

A group of researchers have focused on large databases and resolving identities
in them. Methods were provided to avoid the quadratic number of comparisons
between all pairs of entities (example, [10]). Such methods can be leveraged to
reduce number of comparisons while finding similarities between every pair of JDs.

6 Conclusion and Future Work

We have built a system called RISE that addresses one of the key issues of iden-
tity resolution among job descriptions in recruitment systems. Recruitment sys-
tems typically employ technologies that allow centralized storage of data across
different organizations. Although, centralized yet underlying unstructured data
and lack of resolution techniques have rendered the data less usable for sev-
eral valuable applications. RISEprovides an end-to-end system for establishing
equivalence among identities and resolving them with high precision and recall.

36 R.R. Pimplikar et al.

Our future work includes enabling several key capabilities on top of this system
such as automated creation of job description based on the context, routing of
profiles across different jobs etc.

References

1. C5.0 Decision Tree Algorithm. http://www.rulequest.com/see5-info.html
2. Cosine Similarity Algorithm. http://en.wikipedia.org/wiki/Cosine similarity
3. Stanford Log-linear Part-Of-Speech Tagger. http://nlp.stanford.edu/software/

tagger.shtml
4. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom,

J.: Swoosh: a generic approach to entity resolution. VLDB J. 18, 255–276 (2009)
5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont
(1984)

6. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: IJCAI 2003 Workshop on Information Inte-
gration, pp. 73–78 (2003)

7. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for
matching names and records. In: Proceedings of the KDD 2003 Workshop on Data,
pp. 13–18 (2003)

8. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328),
1183–1210 (1969)

9. Frank, E., Bouckaert, R.R.: Naive Bayes for text classification with unbalanced
classes. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 503–510. Springer, Heidelberg (2006). doi:10.1007/
11871637 49

10. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases.
SIGMOD Rec. 24(2), 127–138 (1995). http://doi.acm.org/10.1145/568271.223807

11. Huang, T., Russell, S.: Object identification: a Bayesian analysis with application
to traffic surveillance. Artif. Intell. 103(1–2), 77–93 (1998)

12. Kass, G.V.: An exploratory technique for investigating large quantities of categor-
ical data. J. R. Stat. Soc. Ser. C 29(2), 119–127 (1980)

13. Li, J., Wang, G.A., Chen, H.: Identity matching using personal and social identity
features. Inf. Syst. Front. 13(1), 101–113 (2011)

14. Li, X., Morie, P., Roth, D.: Semantic integration in text: from ambiguous names
to identifiable entities. AI Mag. 26(1), 45–58 (2005)

15. Norén, G.N., Orre, R., Bate, A.: A hit-miss model for duplicate detection in the
who drug safety database. In: KDD 2005, pp. 459–468 (2005)

16. Ong, I.M., Page, D., Dutra, I., Costa, V.S.: Hyperpaths: extending pathfinding to
moded languages. In: Proceedings of MRDM 2005, p. 57. ACM (2005)

17. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: Proceedings of
ICDM 2006, pp. 572–582. IEEE Computer Society (2006)

18. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: Proceedings of KDD
2002, pp. 350–359 (2002)

19. Tsoumakas, G., Katakis, I.: Multi label classification: an overview. Int. J. Data
Warehouse Min. 3(3), 1–13 (2007)

20. Yang, M.J., Zheng, H.R., Wang, H.Y., McClean, S., Harris, N.: Combining feature
ranking with PCA: an application to gait analysis. In: ICMLC 2010, vol. 1, pp.
494–499 (2010)

http://www.rulequest.com/see5-info.html
http://en.wikipedia.org/wiki/Cosine_similarity
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://dx.doi.org/10.1007/11871637_49
http://dx.doi.org/10.1007/11871637_49
http://doi.acm.org/10.1145/568271.223807

	RISE: Resolution of Identity Through Similarity Establishment on Unstructured Job Descriptions
	1 Introduction
	2 System Overview and Approach
	3 Algorithms
	3.1 Identifying Important Attributes for Job Descriptions
	3.2 Unstructured Text Classification
	3.3 Text Standardization
	3.4 Building Structured JDs Using Keywords Extraction
	3.5 Enriching Dictionaries
	3.6 Similarity of Job Descriptions

	4 Experiments
	4.1 Data Set
	4.2 Classifier Evaluation
	4.3 Keyword Extractor Evaluation
	4.4 Similarity Algorithm Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

