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Abstract. Cloud computing infrastructure has in recent times gained
significant popularity for addressing the ever growing processing, stor-
age and network requirements of scientific applications. In public cloud
infrastructure predicting bandwidth availability on intra cloud network
links play a pivotal role in efficiently scheduling and executing large scale
data intensive workflows requiring vast amounts of network bandwidth.
However, the majority of existing research focuses solely on scheduling
approaches which reduce cost and makespan without considering the
impact of bandwidth variability and network delays on execution per-
formance. This work presents a time series network-aware scheduling
approach to predict network conditions over time in order to improve
performance by avoiding data transfers at network congested times for
a more efficient execution.

Keywords: Cloud computing · Workflow scheduling · Public cloud ·
ARIMA modelling

1 Introduction

Data-intensive applications often modelled as workflows are routinely used
throughout many fields of scientific research. Workflows play a key role in assist-
ing scientists to orchestrate complex multi-step computational analysis on exten-
sively large data sets. Modern day scientific workflows have advanced consider-
ably and are becoming increasingly large, generating terabytes of data which is
expected to soar over the next decade [1]. As a result, workflows require vast
amounts of rich and diverse resources accessible across distributed platforms in
order to address their ever growing processing, storage and network require-
ments.

Recently, cloud computing has emerged as a new service provisioning model
which offers an alternative and more scailable solution to traditional infrastruc-
ture such as computational grids and clusters. Cloud computing services deliver
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on demand access to vast amounts of compute resources charged on a pay per use
basis. The use of virtualisation technology enables users to dynamically procure
virtual machines and release resources on demand with varying combinations of
CPU, memory and storage available to meet both performance requirements and
budget constraints. Through the advancement of cloud based services and in par-
ticular High Performance Computing (HPC) platforms scientists have immediate
access to large scale distributed infrastructure and customized execution envi-
ronments to meet their growing needs. As a result, cloud computing infrastruc-
ture is fast evolving as the target platform for executing large scale scientific
applications requiring high throughput and data analysis [2].

Despite the recent introduction of HPC resources such as Amazons Cluster
Compute (CC) platform which offers improved networking capabilities research
has shown that the overall performance of HPC applications in public clouds
remains limited by poor network throughput [3]. Large data transfers across
distributed cloud resources often hinge on unstable bandwidth availability on
network links due to the shared nature of the resource. Consequently, a decrease
in bandwidth causes an increase in data transfer times, thus increasing total
execution time and associated rental costs of cloud resources. This highlights a
fundamental workflow scheduling issue which is the impact of bandwidth vari-
ability and network congestion on data transfer times between workflow tasks.

As the adoption of cloud computing services continues to grow to facilitate
a new generation of scientific users with high computational and data transfer
requirements, estimating network resources gains significant importance in the
development of efficient and reliable schedulers capable of anticipating dynami-
cally changing network conditions in order to generate more efficient scheduling
decisions. To address this issue we propose a network-aware scheduling app-
roach which employs a time series Autoregressive Integrated Moving Average
(ARIMA) forecasting algorithm. Our approach promotes efficient utilization of
limited network resources by scheduling workflow tasks agnostic to underlying
network conditions in order to avoid peak hours of network congestion while also
meeting a hard deadline constraint and reducing overall costs.

The remainder of the paper is structured as follows. In Sect. 2 related work
in the field is discussed. Section 3 formulates the problem. Section 4 introduces
time series ARIMA modelling. Section 5 presents our preliminary results. Lastly,
Sect. 6 concludes the paper and discusses future work.

2 Related Research

Much of the existing work in this area has focused on scheduling algorithms which
aim to satisfy user Quality of Service (QoS) requirements, namely execution time
and cost [4–6]. However, these works naively assume access to unlimited network
bandwidth at run time and fail to consider the implications of network con-
straints on the execution performance of scientific workflows. However, research
has also been proposed to target issues concerning the availability of resources
on workflow schedules primarily in the form of reactive techniques [7–9].
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While these approaches consider changes in resource availability at run time
the available bandwidth is assumed to be entirely certain. However network
resources are volatile and a function of system load at discrete time intervals [10].
Additionally, some of the suggested approaches involve task rescheduling, this
additional overhead may not be a feasible solution in public clouds due to the
associated rental costs of computational resources.

We propose an alternative approach which we expect to impact the state-of-
the-art in two regards. Firstly, we address a key limitation of current approaches
by considering the implications of dynamically changing network behaviour on
execution time and associated costs of leasing resources from public clouds. More
concretely, we develop a network-aware scheduling algorithm capable of predict-
ing bandwidth availability in public cloud infrastructure where the competition
for network resources is far greater. Secondly, we demonstrate the use of a statis-
tical time series ARIMA modelling approach to the workflow scheduling problem
for learning and predicting bandwidth availability. In particular, we demonstrate
how our approach has the capacity to better align workflow scheduling require-
ments with the dynamic nature of network resources in order to generate a more
reliable schedule and improve execution efficiency.

3 Problem Formulation

A scientific application (workflow) is often modelled as a Directed Acyclic Graph
(DAG) denoted as W =

{
V ,E

}
where V =

{
T1 ,T2 , ...,Tn

}
is a set of tasks

in the workflow which are assigned to a specific resource and E is the set of
directed edges representing the data dependencies between tasks. A directed
edge Ei,j signifies that task Ti is the parent task of task Tj . Child tasks can
only execute once all parent tasks have been processed and the data has been
transferred, while nodes on the same level can be executed in parallel using mul-
tiple resources in order to speed up execution time. In addition, each workflow
W has an assigned deadline constraint. Figure 1(a) illustrates a workflow exam-
ple consisting of 7 nodes in which the edges between tasks denote the file inputs
and outputs. Figure 1(b) depicts a valid schedule for the adjacent workflow. The
objective of our scheduler is to find a mapping of tasks to resources at more opti-
mal times for large data transfers that meet the specified deadline and reduces
the overall execution cost.

The cloud infrastructure network model used in this work was generated
based on measurements of Amazons EC2 network performance [11]. This bench-
mark study provides a model of the bandwidth within Amazons EU region.
In order to keep the focus of the performance around the network we consider
a finite set of homogeneous resources R =

{
r1 , r2 ...rn

}
which we assume have

sufficient CPU, memory and disk to execute each task Ti which has a fixed
processing time of 1 h. We consider file sizes that are fixed but vary across indi-
vidual tasks in the workflow. The execution of task Ti on resource rj incurs an
execution cost. Generally, there is no charge for the transfer of data between
tasks in the same region. Total cost is calculated as a function of processing and
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(a) Workflow (b) Valid schedule

Fig. 1. Sample workflow application with valid schedule

data transfer time. In addition, total execution time can be defined as the latest
completion time of all tasks executed on all cloud resources.

4 Time Series Forecasting: ARIMA Modelling

ARIMA models have become a widely popular methodology for time series
forecasting [12]. An ARIMA model consists of three fundamental components
denoted as (p, d , q). Identifying a valid model is the process of finding suit-
able values for (p, d , q) which capture the systematic patterns in the data. The
autoregressive (AR) component (p) represents the influence of past values on
current values in the series. For example An AR(1 ) model predicts future values
based on the value of the preceding observation defined as:

yt = φ(yt−1) + εt . (1)

Where φ is a parameter of the model and εt is random variation at time t .
The moving average (MA) term (q) models the random variation of the model
as a combination of previous error terms. For example An MA(1 ) model fore-
casts future values based on a combination of the current random variation and
previous error as defined in Eq. 2:

yt = θ(εt−1) + εt . (2)

Where εt−1 is the value of the previous random shock and θ is a parameter of the
model. The integrated component of the model (d) is the order of differencing
applied to the series in order to render the series stationary. A stationary series
is one whose statistical properties such as mean and variance are constant over
time. A non-stationary time series is often unreliable and can result in false
autocorrelations in the series. The combined model assuming differenced data is
defined in Eq. 3:

yt = c + φ1(yt−1) + ... + φp(yp−1) + θ1(εt−1) + ... + θq(εt−q) + εt . (3)
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In addition, Seasonal ARIMA models can be used to model highly seasonal data
formed by including additional ARIMA terms (P ,D ,Q)m , where m signifies
the number of periods per season. To generate the proposed model the Box-
Jenkins methodology was employed which is composed of several steps outlined
below [13].

4.1 Model Identification

The bandwidth data used in this work showed a significant seasonal periodic
component which occurs within each 24 h period. The Autocorrelation Function
(ACF) plot also revealed strong periodic oscillations indicating the implemen-
tation of a seasonal ARIMA model as defined in Eq. 4 to capture the strong
seasonality present. It also confirmed the series was non stationary.

φp(B)ΦP (Bs)Wt = θq(B)ΘQ(Bs)Zt . (4)

Where B denotes the lag operator, φp ,ΦP , θq ,ΘQ are parameters of the seasonal
and non-seasonal model components (p, q)(P ,Q) respectively and Zt represents
the error. In addition, a first order seasonal difference was applied to the data
which proved sufficient in transforming the non stationary series into a stationary
series.

To select the appropriate orders of both the non-seasonal components p, q
and seasonal components P ,Q of the model the ACF and Partial Autocorre-
lation Function (PACF) plots of the differenced data Wt were examined which
identified several alternative values to select from.

4.2 Model Estimation and Diagnostics

To estimate the model parameters φ′
ps,Φ

′
Ps, θ′

qs,Θ
′
Qs in the forecast equation

above the Maximum Likelihood Estimation (MLE) was adopted using R soft-
ware. In order to select the best model to fit the data a common criterion known
as Akaike Information Criterion (AIC) was used. This statistic as defined in
Eq. 5 is a fundamental measurement of the quality of a statistical model for a
series. ARIMA(0 , 0 , 0 )(0 , 1 , 1 )[144 ] was deemed the best model as it produced
the lowest AIC value.

AIC = −2log(L) + 2(p + q + k + 1) . (5)

Where L is the maximum likelihood of the data, k = 1 if c �= 0 while k = 0 if
c = 0 and the final term represents the number of parameters in the model. A
formal Ljung-Box test was also conducted on the residuals which generated a
p-value of 0.735, which concluded that the residuals are independent.

4.3 Forecasting and Validation

To assess the accuracy of the forecasts a test set which equated to 1 week of band-
width values over 10 min intervals was used as a comparison measure. The results
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Fig. 2. Predicted and observed values for the subsequent day based on the previous
weeks bandwidth values used to fit the model

showed that the forecasts generated were all within the 95% confidence limit.
Additionally the Mean Absolute Percentage Error (MAPE) as given by Eq. 6
was calculated where Ot and Pt are the observed and predicted values of the
time series. The MAPE from the resulting forecasts was 2.81% which is deemed
highly accurate [14].

MAPE =
100
n

n∑

t=1

∣
∣
∣
∣
∣
Ot − Pt

Ot

∣
∣
∣
∣
∣
. (6)

5 Preliminary Results

A cloud simulator was developed to evaluate the proposed network-aware
scheduling procedure. As an initial benchmark we compare our approach to
a non network-aware heuristic called Execute-First. To evaluate the proposed
procedure using reasonable deadline constraints the Execute-First heuristic was
run over 30 iterations calculating the makespan of each 10 min interval in a sin-
gle day. The average earliest and latest finish times were computed in order to
define deadline D denoted in Eq. 7, where parameter m is defined as 1, 30 and
60 to evaluate the performance of the algorithms over low, medium and high
deadline constraints.

D = EFTaverage + m × (
LFTaverage − EFTaverage

)
. (7)

Figure 3(a) shows the total execution time in hours for all 3 deadline cate-
gories. These results show the advantage of using the predictive capabilities of
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ARIMA modelling to inform our scheduling decision, our approach selects the
most opportunistic time frame within the deadline to transfer data resulting in
shorter execution times. Evidently, the performance of our approach continues
to increase when deadlines span over a greater number of hours. This is largely
due to the visibility our ARIMA driven algorithm has over dynamically changing
bandwidth availability. Figure 3(b) also shows a significant reduction in cost as
our network-aware scheduler postpones execution until network conditions are
more optimum. Conversely, the Execute-First algorithm incurs larger costs due
to poor scheduling decisions resulting in longer transfer times when the network
is saturated.

Fig. 3. Total execution time over low, medium and high deadline constraints and overall
cost generated by both approaches

6 Conclusion

This work presented an efficient network-aware workflow scheduler based on time
series ARIMA modelling designed to minimize total execution time and costs.
Our empirical results have shown that by adopting a scheduling procedure which
has the capacity to reason over the impact of dynamically changing bandwidth
availability we can achieve significant cost reductions and reduce execution time.
In future work we intend on extending our solution to consider heterogeneous
workflow tasks and cloud resources to further optimize resource availability, while
also considering the impact of additional factors such as queuing and propagation
delays in order to deliver a more complete solution. Eventually, we hope to
evaluate our approach using a live virtualised test bed.
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