
Michael Maximilien
Antonio Vallecillo
Jianmin Wang
Marc Oriol (Eds.)

 123

15th International Conference, ICSOC 2017
Malaga, Spain, November 13–16, 2017
Proceedings

Service-Oriented
ComputingLN

CS
 1

06
01

Se
rv

ice
s S

cie
nc

e

Lecture Notes in Computer Science 10601

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Michael Maximilien • Antonio Vallecillo
Jianmin Wang • Marc Oriol (Eds.)

Service-Oriented
Computing
15th International Conference, ICSOC 2017
Malaga, Spain, November 13–16, 2017
Proceedings

123

Editors
Michael Maximilien
IBM Clouds Lab
San Francisco, CA
USA

Antonio Vallecillo
ETSI Informatica
Universidad Malaga
Malaga
Spain

Jianmin Wang
Tsinghua University
Tsinghua
China

Marc Oriol
Polytechnic University of Catalonia
Barcelona
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-69034-6 ISBN 978-3-319-69035-3 (eBook)
https://doi.org/10.1007/978-3-319-69035-3

Library of Congress Control Number: 2017956085

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
The chapter ‘Risk-Based Proactive Process Adaptation’ is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see
license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-8139-9986
http://creativecommons.org/licenses/by/4.0/

Preface

Welcome to the Proceedings of ICSOC 2017, the 15th International Conference on
Service-Oriented Computing. ICSOC is the premier international forum for academics,
industry researchers, developers, and practitioners to report and share ground-breaking
work on all topics related to services and service-oriented computing. ICSOC fosters
cross-community scientific innovation and excellence by gathering experts from var-
ious disciplines, such as business process management, distributed systems, computer
networks, wireless and mobile computing, cloud computing, cyber-physical systems,
networking, scientific workflows, services science, data science, management science,
and software engineering.

ICSOC 2017, the 15th event in this series, took place in Málaga, Spain, during
November 13–16, 2017. Following on the ICSOC tradition, it featured three keynote
presentations, a research and industry presentations track, as well as workshops, tool
demonstrations, tutorials, and a PhD track.

Since its beginnings, services have become a core principle in software develop-
ment. They provide perfect mechanisms for modularization, encapsulation, and for
designing, analyzing, and deploying the architecture of large software systems, at the
right level of abstraction, and in terms of loosely coupled, independent, and reusable
parts with well-defined interfaces. Recently, services have gained rapid popularity
across most software disciplines, showing all their benefits for building complex and
critical applications in domains such as cloud computing, the Internet of Things (IoT),
cyber-physical systems, mobile computing, and so on. This pervasive use of services
has become industrially accepted best practice in all these application areas.

The increased success of using services in software and systems engineering has
also raised new challenges, requiring collaborative research across multiple disciplines,
groups, companies, and centers. As with previous editions, this year’s call for papers
generated substantial interest from the community. A total of 179 full research and
industry submissions were received from 23 countries across six continents. Each paper
submission was carefully reviewed by at least three members of the Program Com-
mittee (PC), followed by discussions moderated by a senior PC member who made a
recommendation in the form of a meta-review. The PC consisted of 172 world-class
experts in service-oriented computing and related areas (153 PC members and 19
senior PC members) from 28 different countries. The ICSOC 2017 program featured 33
full papers (acceptance rate of 18%) and 20 short papers. The selected papers cover a
wide variety of important topics in the area of service-oriented computing, including
foundational issues on service discovery and service-systems design, business process
modelling and management, economics of service-systems engineering, as well as
services on the cloud, social networks, IoT, and data analytics.

We would like to express our gratitude to all individuals, institutions, and sponsors
that supported ICSOC 2017. This high-quality program would not have been possible
without the expertise and dedication of our PC members and in particular our senior PC

members. We are also grateful for the guidance of the General Chair, Carlos Canal, the
untiring efforts of external reviewers, and the complete ICSOC Steering Committee.
All of them helped make ICSOC 2017 a great success. Finally, we would like to thank
all the authors who submitted papers to the conference, and we congratulate those
authors whose papers appear in these proceedings. These papers reflect the quality
of the current state of the art in service oriented computing research and practice. We
hope that you find these papers interesting and stimulating.

August 2017 Michael Maximilien
Antonio Vallecillo

Jianmin Wang

VI Preface

Organization

General Chair

Carlos Canal University of Málaga, Spain

Program Chairs

Michael Maximilian IBM Cloud Labs, USA
Antonio Vallecillo University of Málaga, Spain
Jianmin Wang Tsinghua University, China

Steering Committee Liaison

Jian Yang Macquarie University, Australia

Steering Committee

Boualem Benatallah UNSW, Australia
Fabio Casati University of Trento, Italy
Bernd J. Krämer FernUniversität in Hagen, Germany
Winfried Lamersdorf University of Hamburg, Germany
Heiko Ludwig IBM, USA
Mike Papazoglou Tilburg University, The Netherlands
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Workshop Chairs

Lars Braubach Hochschule Bremen, Germany
Juan M. Murillo University of Extremadura, Spain

Demonstration Chairs

Nima Kaviani IBM and Curatio.me, USA
Manuel Lama University of Santiago de Compostela, Spain

Industry Chairs

Flavio de Paoli University of Milano-Bicocca, Italy
Antonio Ruiz University of Seville, Spain

Panel Chairs

Schahram Dustdar Technical University, Vienna, Austria
Michael Sheng University of Adelaide, Australia

PhD Symposium Chairs

Loli Burgeño University of Málaga, Spain
Naouel Moha Université du Qüebec à Montréal, Canada

Finance Chair

Bernd J. Krämer FernUniversität in Hagen, Germany

Local Organization Chair

Ernesto Pimentel University of Málaga, Spain

Local Organization

Jose M. Álvarez Palomo University of Málaga, Spain
Francisco Durán University of Málaga, Spain
Nathalie Moreno University of Málaga, Spain
Alejandro Pérez Vereda University of Málaga, Spain
Mónica Trella University of Málaga, Spain

Publication Chair

Marc Oriol Universitat Politècnica de Catalunya

Publicity Chairs

Guadalupe Ortiz University of Cádiz, Spain
Juan Manuel Vara Rey Juan Carlos University, Spain
Genoveva Vargas-Solar CNRS, France

Web Chairs

Javier Berrocal University of Extremadura, Spain
J. Manuel García-Alonso University of Extremadura, Spain

Senior Program Committee

Boualem Benatallah UNSW, Australia
Athman Bouguettaya University of Sydney, Australia
Fabio Casati University of Trento, Italy

VIII Organization

Flavio De Paoli Università di Milano Bicocca, Italy
Schahram Dustdar TU Wien, Austria
Xavier Franch Universitat Politècnica de Catalunya, Spain
Aditya Ghose University of Wollongong, Australia
Mohand Said Hacid University of Lyon, France
Grace Lewis Carmegie Mellon Software Engineering Institute, USA
Cesare Pautasso University of Lugano, Switzerland
Barbara Pernici Politecnico di Milano, Italy
Gustavo Rossi UNLP, Argentina
Antonio Ruiz-Cortés University of Seville, Spain
Michael Sheng University of Adelaide, Australia
Stefan Tai TU Berlin, Germany
Zahir Tari RMIT University, Australia
Samir Tata IBM Research – Almaden, USA
Mathias Weske HPI/University of Potsdam, Germany
Jian Yang Macquarie University, Australia
Liang Zhang Fudan University, China

Program Committee

Rama Akkiraju IBM, USA
Pedro Álvarez Universidad de Zaragoza, Spain
Vasilios Andrikopoulos University of Groningen, The Netherlands
Alvaro Arenas Instituto de Empresa Business School, Spain
Ebrahim Bagheri Ryerson University, Canada
Luciano Baresi Politecnico di Milano, Italy
Nejib Ben Hadj-Alouane National School of Engineers of Tunis (ENIT), Tunisia
Moez Ben Haj Hmida National Engineering School of Tunis (ENIT), Tunisia
Salima Benbernou Université Paris Descartes, France
Djamal Benslimane University of Lyon, France
Sami Bhiri Telecom SudParis, France
Domenico Bianculli University of Luxembourg, Luxembourg
Walter Binder University of Lugano, Switzerland
Omar Boucelma Aix-Marseille University, France
Lars Braubach Hochschule Bremen, Germany
Christoph Bussler Oracle Corporation, USA
Cristina Cabanillas Vienna University of Economics and Business, Austria
Manuel Carro UPM and IMDEA Software Institute, Spain
Wing-Kwong Chan City University of Hong Kong, SAR China
Francois Charoy University of Lorraine, France
Faouzi Ben Charrada University of Tunis El Manar, Tunisia
Sanjay Chaudhary Ahmedabad University, India
Liang Chen RMIT, Australia
Shiping Chen CSIRO, Australia
Lawrence Chung The University of Texas at Dallas, USA
Edward Curry Insight Centre, Ireland

Organization IX

Hoa Khanh Dam University of Wollongong, Australia
Florian Daniel University of Trento, Italy
Bruno Defude Telecom Sud Paris, France
Shuiguang Deng Zhejiang University, China
Nirmit Desai IBM T.J. Watson Research Center, USA
Hai Dong RMIT, Australia
Khalil Drira LAAS Toulouse, France
Yucong Duan Hainan University, China
Joyce El Haddad University of Paris Dauphine, France
Rik Eshuis Eindhoven University of Technology, The Netherlands
Onyeka Ezenwoye Georgia Regents University, USA
Noura Faci Université Lyon 1, CNRS, France
Marcelo Fantinato University of São Paulo, Brazil
Pablo Fernández Universidad de Sevilla, Spain
Joao E. Ferreira University of Sao Paulo, Brazil
Marios-Eleftherios Fokaefs York University, Canada
Xiang Fu Hofstra, USA
Walid Gaaloul Telecom SudParis, France
N.D. Gangadhar MS Ramaiah University of Applied Sciences, India
G.R. Gangadharan IDRBT, Hyderabad, India
Felix Garcia Universidad Castilla-La mancha, Spain
Paolo Giorgini University of Trento, Italy
Claude Godart University of Lorraine, France
Mohamed Graiet ISIMM, Tunisia
Sven Graupner HP Labs, Palo Alto, USA
Daniela Grigori University of Paris Dauphine, France
Georg Grossmann University of South Australia, Australia
Armin Haller Australian National University, Australia
Jun Han Swinburne University of Technology, Australia
Chihab Hanachi IRIT Laboratory, Toulouse University, France
Qiang He Swinburne University of Technology, Australia
Bernhard Holtkamp Fraunhofer ISST, Germany
Richard Hull IBM Research, USA
Patrick Hung University of Ontario, Canada
Fuyuki Ishikawa National Institute of Informatics, Japan
Hai Jin HUST, China
Nima Kaviani IBM and Curatio.me, USA
Ejub Kajan State University of Novi Pazar, Serbia
Anup Kalia IBM Research NY, USA
Dimka Karastoyanova Kühne Logistics University, Germany
Raman Kazhamiakin Fondazione Bruno Kessler, Italy
Marouane Kessentini University of Michigan–Dearborn, USA
Kais Klai University of Paris 13, France
Ryan Ko University of Waikato, New Zealand
Gerald Kotonya Lancaster University, UK
Peep Kungas University of Tartu, Estonia

X Organization

Philippe Lalanda Joseph Fourier University, France
Manuel Lama University of Santiago de Compostela, Spain
Philipp Leitner University of Zurich, Switzerland
Henrik Leopold VU University Amsterdam, The Netherlands
Frank Leymann University of Stuttgart, Germany
Ying Li Zhejiang University, China
Marin Litoiu York University, Canada
Xuanzhe Liu Peking University, China
Xumin Liu Rochester Institute of Technology, USA
Alessio Lomuscio Imperial College London, UK
Jiangang Ma Victoria University, Australia
Zakaria Maamar Zayed University, United Arab Emirates
Javam Machado UFC, Brazil
Zaki Malik Wayne State University, USA
Maude Manouvrier University of Paris Dauphine, France
Jordi Marco Universitat Politècnica de Catalunya, Spain
Massimo Mecella Sapienza Università di Roma, Italy
Brahim Medjahed University of Michigan – Dearborn, USA
Tommi Mikkonen Mozilla and Tampere University of Technology,

Finland
Lars Moench University of Hagen, Germany
Mohamed Mohamed IBM Almaden Research Center, USA
Hamid Reza

Motahari-Nezhad
IBM Research, USA

Juan M. Murillo Universidad Extremadura, Spain
Michael Mrissa University of Lyon, France
Nanjangud C. Narendra Ericsson Research, Bangalore, India
Surya Nepal CSIRO, Australia
Anne Ngu Texas State University, USA
Talal H. Noor Taibah University, Saudi Arabia
Alex Norta Tallinn University of Technology, Estonia
Helen Paik UNSW, Australia
Olivier Perrin Lorraine University, France
Pierluigi Plebani Politecnico di Milano, Italy
Pascal Poizat Université Paris Ouest and LIP6, France
Artem Polyvyanyy Queensland University of Technology, Australia
Karthikeyan Ponnalagu IBM Research, India
Mu Qiao IBM Almaden Research Center, USA
Mohamed Quafafou Aix-Marseille University, France
Manfred Reichert University of Ulm, Germany
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Stefanie Rinderle-Ma University of Vienna, Austria
Colette Roland Universite Paris1 Panthéon Sorbonne, France
Mohammad Sadoghi IBM T.J. Watson Research Center, USA
Diptikalyan Saha IBM Research, India
Iman Saleh University of Miami, USA

Organization XI

Aviv Segev KAIST, South Korea
Lionel Seinturier University of Lille, France
Mohamed Sellami ISEP, France
Jun Shen University of Wollongong, Australia
Ignacio Silva-Lepe IBM, USA
Sergey Smirnov SAP, Germany
George Spanoudakis City University London, UK
Eleni Stroulia University of Alberta, Canada
Yehia Taher University of Versailles-St-Quentin-en-Yvelines,

France
Guiling Wang North China University of Technology, China
Jianwu Wang University of Maryland, Baltimore County, USA
Xianzhi Wang The University of Adelaide, Australia
Yan Wang Macquarie University, Australia
Zhongjie Wang Harbin Institute of Technology, China
Ingo Weber NICTA, Australia
Lijie Wen Tsinghua University, China
Matthias Weidlich Imperial College London, UK
Hanchuan Xu Harbin Institute of Technology, China
Hamdi Yahyaoui Kuwait University, Kuwait
Sami Yangui Concordia University, Canada
Lina Yao UNSW, Australia
Jianwei Yin Zhejiang University, China
Sira Yongchareon Unitec Institute of Technology, New Zealand
Jian Yu Auckland University of Technology, New Zealand
Qi Yu Rochester Institute of Technology, USA
Uwe Zdun University of Vienna, Austria
Weiliang Zhao Macquarie University, Australia
Yan Zheng Aalto University/Xidian University, Finland
Zibin Zheng Sun Yat-sen University, China
Zhangbing Zhou China University of Geosciences (Beijing), China
Floriano Zini University of Bologna, Italy
Andrea Zisman City University London, UK
Ying Zou Queens University, Canada

Additional Reviewers

Hiba Alili Paris-Dauphine University, France
Moayad Alshangiti Rochester Institute of Technology, USA
Mohammad-Javad Amiri University of California at Santa Barbara, USA
Kahina Bessai Lorraine University, France
Walid Fdhila University of Vienna, Austria
Manuel Gall University of Vienna, Austria
Conrad Indiono University of Vienna, Austria
Diana Jlailaty Paris-Dauphine University, France
Georg Kaes University of Vienna, Austria

XII Organization

Veronica Leisaputra Unitec, New Zealand
Rodrigo Alves Lima University of Sao Paulo, Brazil
Xuan Lu Peking University, China
Yun Ma Peking University, China
Hoang Long Nguyen Lorraine University, France
Bruno Padilha University of Sao Paulo, Brazil
Yevgen Pikus Fraunhofer ISST, Germany
Ignacio García-Rodríguez University of Castilla-La Mancha, Spain
Guillaume Rosinosky Lorraine University, France
Sana Sellami Aix-Marseille University, France
Manuel Angel Serrano

Martín
University of Castilla-La Mancha, Spain

Upendra Sharma IBM Watson Health, USA
Fatma Slaimi Aix-Marseille University, France
Weishi Shi Rochester Institute of Technology, USA
Florian Stertz University of Vienna, Austria
Daniel Sun CSIRO, Australia
Gael Thomas Telecom SudParis, Samovar, France
Norbert Weissenberg Fraunhofer ISST, Germany

Organization XIII

Keynote Papers

A Research Agenda for the Programmable
World: Software Challenges for IoT Era

Tommi Mikkonen

University of Helsinki, Gustav Hällströmin katu 2b, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. The Internet of Things (IoT) represents the next significant step in the
evolution of the connectivity and programmability. While the majority of
research work in the IoT area today is about data acquisition, real-time and
offline analytics, machine learning, data visualization and other fashionable big
data topics, in this keynote we argue that there is in fact even more profound
change that we are facing – the programmability aspect that is intimately
associated with all IoT systems. Advances in computing hardware development
are making it feasible to introduce full-fledged operating systems in even
smallest devices; advances in radio and battery technologies are enabling con-
stant connectivity in the Global scale. This new world that is populated by
programs of various degree of complexity requires programming skills in var-
ious fields that we now typically consider distinct, including in particular web
and mobile development on the surface, and embedded and distributed software
development at the core. Combining the characteristics of these fields will also
force us to reconsider some of the fundamentals of software engineering in the
process.

Keywords: Internet of Things • Programmable world • Software engineering •

Embedded software • Web programming

Semantic Search

Ricardo Baeza-Yates

NTENT, USA & Spain
ricardo.baeza@upf.edu

Abstract. Semantic search lies in the cross roads of information retrieval and
natural language processing and is the current frontier of search technology. The
first part consist in building a semantically annotated index with the help of a
knowledge base. For this we first need to predict the language of each document
and parse it accordingly to that language. Second, we need to extract all entities
and concepts mentioned in the document with the help of the knowledge base.
All the knowledge base infrastructure needs to be independent of the language
and we instantiate each language in the lexicon of the knowledge base.

The second part is predicting the intention behind the query, which implies
doing semantic query understanding. This process implies the same semantic
processing as document. After, based on all this information, we have to predict
one or more possible intentions with a certain probability, which is particularly
important for ambiguous queries. These scores will be one of the inputs for the
final semantic ranking. For example, given the query “bond”, possible results for
query understanding are a financial instrument, the movie character, a chemical
reaction, or a term for endearment.

Semantic ranking refers to ranking search results using semantic information.
In a standard search engine, a rank is computed by using signals or features
coming from the search query, from the documents in the collection being
searched and from the search context, such as the language and device being
used. In our case we add semantic relations between the entities and concepts
found in the query was the same objects in the documents, that will come from
different data sources. For this we use machine learning in several stages. The
first stage selects the data sources that we should use to answer the query. In the
second stage, each data source generates a set of answers using “earning to
rank.” The third and final stage ranks these data sources, selecting and ordering
the intentions as well as the answers inside each intention (e.g., news) that will
appear in the final composite answer. All these stages are language independent,
but may use language dependent features.

We will cover the process above having in mind a services-based approach,
including the data science needed to use as relevance feedback the usage log
stream of the semantic search engine.

“Uber Scale”. Stories and Lessons
from the History of Scaling Uber SOA

Chritopher Adams

UBER
cadams@uber.com

Abstract. In this talk, Chris will discuss how Uber scaled several key compo-
nents of its SOA infrastructure, and extrapolate some lessons and useful
strategies that other companies can apply as they scale.

Contents

Applications

Similarity Computation Exploiting the Semantic and Syntactic
Inherent Structure Among Job Titles . 3

Sarthak Ahuja, Joydeep Mondal, Sudhanshu Shekhar Singh,
and David Glenn George

RISE: Resolution of Identity Through Similarity Establishment
on Unstructured Job Descriptions . 19

Rakesh Rameshrao Pimplikar, Kalapriya Kannan, Abhik Mondal,
Joydeep Mondal, Sushant Saxena, Gyana Parija,
and Chandra Devulapalli

Social-Sensor Cloud Service for Scene Reconstruction. 37
Tooba Aamir, Athman Bouguettaya, Hai Dong, Sajib Mistry,
and Abdelkarim Erradi

Quark: A Methodology to Transform People-Driven Processes
to Chatbot Services . 53

Anup K. Kalia, Pankaj R. Telang, Jin Xiao, and Maja Vukovic

Foundations

Cloud Certification Process Validation Using Formal Methods 65
Maria Krotsiani, Christos Kloukinas, and George Spanoudakis

Validation of Service Blueprint Models by Means of Formal
Simulation Techniques. 80

Montserrat Estañol, Esperanza Marcos, Xavier Oriol,
Francisco J. Pérez, Ernest Teniente, and Juan M. Vara

Deadlock-Freeness Verification of Business Process Configuration
Using SOG . 96

Souha Boubaker, Kais Klai, Katia Schmitz, Mohamed Graiet,
and Walid Gaaloul

Formally Modeling, Executing, and Testing Service-Oriented Systems
with UML and OCL . 113

Loli Burgueño and Martin Gogolla

http://dx.doi.org/10.1007/978-3-319-69035-3_1
http://dx.doi.org/10.1007/978-3-319-69035-3_1
http://dx.doi.org/10.1007/978-3-319-69035-3_2
http://dx.doi.org/10.1007/978-3-319-69035-3_2
http://dx.doi.org/10.1007/978-3-319-69035-3_3
http://dx.doi.org/10.1007/978-3-319-69035-3_4
http://dx.doi.org/10.1007/978-3-319-69035-3_4
http://dx.doi.org/10.1007/978-3-319-69035-3_5
http://dx.doi.org/10.1007/978-3-319-69035-3_6
http://dx.doi.org/10.1007/978-3-319-69035-3_6
http://dx.doi.org/10.1007/978-3-319-69035-3_7
http://dx.doi.org/10.1007/978-3-319-69035-3_7
http://dx.doi.org/10.1007/978-3-319-69035-3_8
http://dx.doi.org/10.1007/978-3-319-69035-3_8

Mining and Analytics

App Update Patterns: How Developers Act on User Reviews
in Mobile App Stores . 125

Shance Wang, Zhongjie Wang, Xiaofei Xu, and Quan Z. Sheng

Predicting the Evolution of Service Value Features from User Reviews
for Continuous Service Improvement . 142

Xu Chi, Haifang Wang, Zhongjie Wang, Shiping Chen, and Xiaofei Xu

Confidence-Aware Reputation Bootstrapping in Composite
Service Environments . 158

Lie Qu, Athman Bouguettaya, and Azadeh Ghari Neiat

Compound Trace Clustering to Generate Accurate and Simple
Sub-Process Models . 175

Yaguang Sun, Bernhard Bauer, and Matthias Weidlich

An Approach to Modeling and Discovering Event Correlation
for Service Collaboration . 191

Meiling Zhu, Chen Liu, Jianwu Wang, Shen Su, and Yanbo Han

Energy Efficient Scheduling of Application Components via Brownout
and Approximate Markov Decision Process . 206

Minxian Xu and Rajkumar Buyya

Predicting the Available Bandwidth on Intra Cloud Network Links
for Deadline Constrained Workflow Scheduling in Public Clouds 221

Rachael Shaw, Enda Howley, and Enda Barrett

Inferring Calling Relationship Based on External Observation
for Microservice Architecture . 229

Shinya Kitajima and Naoki Matsuoka

Quality of Service

A QoS-Aware Resource Allocation Controller for Function
as a Service (FaaS) Platform. 241

MohammadReza HoseinyFarahabady, Young Choon Lee,
Albert Y. Zomaya, and Zahir Tari

Probabilistic Qualitative Preference Matching in Long-Term
IaaS Composition . 256

Sajib Mistry, Athman Bouguettaya, Hai Dong, and Abdelkarim Erradi

XXII Contents

http://dx.doi.org/10.1007/978-3-319-69035-3_9
http://dx.doi.org/10.1007/978-3-319-69035-3_9
http://dx.doi.org/10.1007/978-3-319-69035-3_10
http://dx.doi.org/10.1007/978-3-319-69035-3_10
http://dx.doi.org/10.1007/978-3-319-69035-3_11
http://dx.doi.org/10.1007/978-3-319-69035-3_11
http://dx.doi.org/10.1007/978-3-319-69035-3_12
http://dx.doi.org/10.1007/978-3-319-69035-3_12
http://dx.doi.org/10.1007/978-3-319-69035-3_13
http://dx.doi.org/10.1007/978-3-319-69035-3_13
http://dx.doi.org/10.1007/978-3-319-69035-3_14
http://dx.doi.org/10.1007/978-3-319-69035-3_14
http://dx.doi.org/10.1007/978-3-319-69035-3_15
http://dx.doi.org/10.1007/978-3-319-69035-3_15
http://dx.doi.org/10.1007/978-3-319-69035-3_16
http://dx.doi.org/10.1007/978-3-319-69035-3_16
http://dx.doi.org/10.1007/978-3-319-69035-3_17
http://dx.doi.org/10.1007/978-3-319-69035-3_17
http://dx.doi.org/10.1007/978-3-319-69035-3_18
http://dx.doi.org/10.1007/978-3-319-69035-3_18

An Embedding Based Factorization Machine Approach for Web Service
QoS Prediction . 272

Yaoming Wu, Fenfang Xie, Liang Chen, Chuan Chen, and Zibin Zheng

A Deep Learning Approach for Long Term QoS-Compliant
Service Composition . 287

Hamza Labbaci, Brahim Medjahed, and Youcef Aklouf

Run-time Service Operation and Management

An Artifact-Driven Approach to Monitor Business Processes
Through Real-World Objects . 297

Giovanni Meroni, Claudio Di Ciccio, and Jan Mendling

BenchFoundry: A Benchmarking Framework for Cloud Storage Services 314
David Bermbach, Jörn Kuhlenkamp, Akon Dey,
Arunmoezhi Ramachandran, Alan Fekete, and Stefan Tai

Automated Analysis of Cloud Offerings for Optimal Service Provisioning . . . 331
José María García, Octavio Martín-Díaz, Pablo Fernandez,
Antonio Ruiz-Cortés, and Miguel Toro

Middleware for Dynamic Upgrade Activation and Compensations
in Multi-tenant SaaS . 340

Dimitri Van Landuyt, Fatih Gey, Eddy Truyen, and Wouter Joosen

Service Adaptation

Risk-Based Proactive Process Adaptation . 351
Andreas Metzger and Philipp Bohn

A Debt-Aware Learning Approach for Resource Adaptations
in Cloud Elasticity Management . 367

Carlos Mera-Gómez, Francisco Ramírez, Rami Bahsoon,
and Rajkumar Buyya

Large-Scale and Adaptive Service Composition Using Deep
Reinforcement Learning . 383

Hongbing Wang, Mingzhu Gu, Qi Yu, Huanhuan Fei, Jiajie Li,
and Yong Tao

Service Engineering

: An Adaptive Orchestration Platform for Hybrid Dataflows
across Cloud and Edge . 395

Pushkara Ravindra, Aakash Khochare, Siva Prakash Reddy,
Sarthak Sharma, Prateeksha Varshney, and Yogesh Simmhan

Contents XXIII

http://dx.doi.org/10.1007/978-3-319-69035-3_19
http://dx.doi.org/10.1007/978-3-319-69035-3_19
http://dx.doi.org/10.1007/978-3-319-69035-3_20
http://dx.doi.org/10.1007/978-3-319-69035-3_20
http://dx.doi.org/10.1007/978-3-319-69035-3_21
http://dx.doi.org/10.1007/978-3-319-69035-3_21
http://dx.doi.org/10.1007/978-3-319-69035-3_22
http://dx.doi.org/10.1007/978-3-319-69035-3_23
http://dx.doi.org/10.1007/978-3-319-69035-3_24
http://dx.doi.org/10.1007/978-3-319-69035-3_24
http://dx.doi.org/10.1007/978-3-319-69035-3_25
http://dx.doi.org/10.1007/978-3-319-69035-3_26
http://dx.doi.org/10.1007/978-3-319-69035-3_26
http://dx.doi.org/10.1007/978-3-319-69035-3_28
http://dx.doi.org/10.1007/978-3-319-69035-3_28

Ensuring and Assessing Architecture Conformance to Microservice
Decomposition Patterns . 411

Uwe Zdun, Elena Navarro, and Frank Leymann

Polly: A Language-Based Approach for Custom Change Detection
of Web Service Data . 430

Elyas Ben Hadj Yahia, Jean-Rémy Falleri, and Laurent Réveillère

Design and Evaluation of a Self-Service Delivery Framework. 445
Constantin Adam, Nikos Anerousis, Muhammed Fatih Bulut,
Robert Filepp, Anup Kalia, Brian Peterson, John Rofrano,
Maja Vukovic, and Jin Xiao

Automated Generation of REST API Specification from Plain
HTML Documentation. 453

Hanyang Cao, Jean-Rémy Falleri, and Xavier Blanc

Efficient Keyword Search for Building Service-Based Systems Based
on Dynamic Programming . 462

Qiang He, Rui Zhou, Xuyun Zhang, Yanchun Wang, Dayong Ye,
Feifei Chen, Shiping Chen, John Grundy, and Yun Yang

Supporting the Decision of Migrating to Microservices
Through Multi-layer Fuzzy Cognitive Maps . 471

Andreas Christoforou, Martin Garriga, Andreas S. Andreou,
and Luciano Baresi

A Tree-Based Reliability Analysis for Fault-Tolerant Web
Services Composition . 481

Yanjun Shu, Decheng Zuo, Hongwei Liu, Quan Z. Sheng,
Wei Emma Zhang, and Jian Yang

Modernization of Information Systems at Red.es: An Approach Based
on Gap Analysis and ADM . 490

Marcos López-Sanz, Valeria de Castro, Esperanza Marcos,
and Jorge Moratalla

Improving Web Services Design Quality Using Dimensionality
Reduction Techniques . 499

Hanzhang Wang and Marouane Kessentini

Service Recommendation

ARA-Assessor: Application-Aware Runtime Risk Assessment
for Cloud-Based Business Continuity. 511

Min Fu, Shiping Chen, Jian Yang, Surya Nepal, and Liming Zhu

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-69035-3_29
http://dx.doi.org/10.1007/978-3-319-69035-3_29
http://dx.doi.org/10.1007/978-3-319-69035-3_30
http://dx.doi.org/10.1007/978-3-319-69035-3_30
http://dx.doi.org/10.1007/978-3-319-69035-3_31
http://dx.doi.org/10.1007/978-3-319-69035-3_32
http://dx.doi.org/10.1007/978-3-319-69035-3_32
http://dx.doi.org/10.1007/978-3-319-69035-3_33
http://dx.doi.org/10.1007/978-3-319-69035-3_33
http://dx.doi.org/10.1007/978-3-319-69035-3_34
http://dx.doi.org/10.1007/978-3-319-69035-3_34
http://dx.doi.org/10.1007/978-3-319-69035-3_35
http://dx.doi.org/10.1007/978-3-319-69035-3_35
http://dx.doi.org/10.1007/978-3-319-69035-3_36
http://dx.doi.org/10.1007/978-3-319-69035-3_36
http://dx.doi.org/10.1007/978-3-319-69035-3_37
http://dx.doi.org/10.1007/978-3-319-69035-3_37
http://dx.doi.org/10.1007/978-3-319-69035-3_38
http://dx.doi.org/10.1007/978-3-319-69035-3_38

Personalized Quality Centric Service Recommendation 528
Yiwen Zhang, Xiaofei Ai, Qiang He, Xuyun Zhang, Wanchun Dou,
Feifei Chen, Liang Chen, and Yun Yang

Cataloger: Catalog Recommendation Service for IT Change Requests 545
Anup K. Kalia, Jin Xiao, Muhammed F. Bulut, Maja Vukovic,
and Nikos Anerousis

ATLAS: A World-Wide Travel Assistant Exploiting Service-Based
Adaptive Technologies. 561

Antonio Bucchiarone, Martina De Sanctis, and Annapaola Marconi

Services in Organizations, Business and Society

A Variability Model for Store-Oriented Software Ecosystems:
An Enterprise Perspective . 573

Bahar Jazayeri, Olaf Zimmermann, Gregor Engels,
and Dennis Kundisch

An Analysis of RESTful APIs Offerings in the Industry 589
Antonio Gamez-Diaz, Pablo Fernandez, and Antonio Ruiz-Cortes

Efficient Influential Individuals Discovery on Service-Oriented
Social Networks: A Community-Based Approach . 605

Fanghua Ye, Jiahao Liu, Chuan Chen, Guohui Ling, Zibin Zheng,
and Yuren Zhou

Empirical Study on REST APIs Usage in Android Mobile Applications. 614
Mohamed A. Oumaziz, Abdelkarim Belkhir, Tristan Vacher,
Eric Beaudry, Xavier Blanc, Jean-Rémy Falleri, and Naouel Moha

Services in the Cloud

Revenue-Driven Service Provisioning for Resource Sharing
in Mobile Cloud Computing . 625

Hongyue Wu, Shuiguang Deng, Wei Li, Jianwei Yin, Qiang Yang,
Zhaohui Wu, and Albert Y. Zomaya

Continuous Learning as a Service for Conversational Virtual Agents 641
Shivali Agarwal, Shubham Atreja, and Gargi Dasgupta

Costradamus: A Cost-Tracing System for Cloud-Based Software Services . . . 657
Jörn Kuhlenkamp and Markus Klems

An Automatic Approach for Transforming IoT Applications
to RESTful Services on the Cloud. 673

Yu Zhao, Ying Zou, Joanna Ng, and Daniel Alencar da Costa

Contents XXV

http://dx.doi.org/10.1007/978-3-319-69035-3_39
http://dx.doi.org/10.1007/978-3-319-69035-3_40
http://dx.doi.org/10.1007/978-3-319-69035-3_41
http://dx.doi.org/10.1007/978-3-319-69035-3_41
http://dx.doi.org/10.1007/978-3-319-69035-3_42
http://dx.doi.org/10.1007/978-3-319-69035-3_42
http://dx.doi.org/10.1007/978-3-319-69035-3_43
http://dx.doi.org/10.1007/978-3-319-69035-3_44
http://dx.doi.org/10.1007/978-3-319-69035-3_44
http://dx.doi.org/10.1007/978-3-319-69035-3_45
http://dx.doi.org/10.1007/978-3-319-69035-3_46
http://dx.doi.org/10.1007/978-3-319-69035-3_46
http://dx.doi.org/10.1007/978-3-319-69035-3_47
http://dx.doi.org/10.1007/978-3-319-69035-3_48
http://dx.doi.org/10.1007/978-3-319-69035-3_49
http://dx.doi.org/10.1007/978-3-319-69035-3_49

RobOps: Robust Control for Cloud-Based Services 690
Cheng Chen, Jordi Arjona Aroca, and Diego Lugones

Serverless Execution of Scientific Workflows . 706
Qingye Jiang, Young Choon Lee, and Albert Y. Zomaya

A Market-Based Approach for Detecting Malware in the Cloud
via Introspection . 722

Nada Alruhaily, Carlos Mera-Gómez, Tom Chothia, and Rami Bahsoon

Trustless Intermediation in Blockchain-Based Decentralized
Service Marketplaces . 731

Markus Klems, Jacob Eberhardt, Stefan Tai, Steffen Härtlein,
Simon Buchholz, and Ahmed Tidjani

Author Index . 741

XXVI Contents

http://dx.doi.org/10.1007/978-3-319-69035-3_50
http://dx.doi.org/10.1007/978-3-319-69035-3_51
http://dx.doi.org/10.1007/978-3-319-69035-3_52
http://dx.doi.org/10.1007/978-3-319-69035-3_52
http://dx.doi.org/10.1007/978-3-319-69035-3_53
http://dx.doi.org/10.1007/978-3-319-69035-3_53

Applications

Similarity Computation Exploiting the Semantic
and Syntactic Inherent Structure

Among Job Titles

Sarthak Ahuja1(B), Joydeep Mondal1, Sudhanshu Shekhar Singh1,
and David Glenn George2

1 IBM Research Lab, New Delhi, India
sarahuja@in.ibm.com

2 IBM Talent Management Solutions, Portsmouth, UK

Abstract. Solutions providing hiring analytics involve mapping com-
pany provided job descriptions to a standard job framework, thereby
requiring computation of a similarity score between two jobs. Most sys-
tems doing so apply document similarity computation methods to all
pairs of provided job descriptions. This approach can be computationally
expensive and adversely impacted by the quality of the job descriptions
which often include information not relevant to the job or candidate qual-
ifications. We propose a method to narrow down pairs of job descriptions
to be compared by comparing job titles first. The observation that each
job title can be decomposed into three components, domain, function
and attribute, forms the basis of our method. Our proposal focuses on
training the machine learning models to identify these three components
of any given job title. Next we do a semantic match between the three
identified components, and use those match scores to create a composite
similarity score between any two pair of job titles. The elegance of this
solution lies in the fact that job titles are the most concise definition
of the job and the resulting matches can easily be verified by human
experts. Our results show that the approach provides extremely reliable
results.

1 Introduction

The problem of finding similarity between a pair of documents lays groundwork
for the problem of clustering similar documents together. Most of the initial
research in this domain was based on standard document similarity computing
methods such as tf- IDF, LSA, LDA etc. In certain specific scenarios, such as
job descriptions in recruitment domain, the documents have very precise titles
as well. Doing a preliminary match between pairs of titles can greatly reduce the
effort required to eventually compare documents for similarity.

In our work for the recruitment analytics domain, and the recent develop-
ments therein, one problem that we have faced time and again is that of identi-
fying which job requisitions are similar. This problem arises in two contexts:
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 3–18, 2017.
https://doi.org/10.1007/978-3-319-69035-3_1

4 S. Ahuja et al.

1. Machine Learning models to identify good candidates: A typical application
of machine learning in hiring is to learn success models for various jobs. To
be meaningful, the models need to be learnt at a job group level instead of
job level, so that sufficient data can be obtained for training the models.

2. Candidates’ previous jobs need to be matched with the opening they apply
to (or to the openings that can be recommended to them). This requires
comparing an applicant’s job previous jobs to the job openings available in
the applicant tracking system.

Job requisitions typically consist of several well-defined components: required
skills, years of experience, job title, job location and a job description. Since
required skills, years of experience and job location are well-defined structured
fields, the complexity comes in matching job title and job descriptions across
jobs. In this paper, we present a Parts Of Title (POT) tagging and wordnet
based matching technique to create a match score for two job titles.

Our work here is based on the basic premise that any given job title can be
broken into three components Attribute, Function and Domain. Attribute typi-
cally denotes some sense of hierarchy (Senior, Junior, lead etc.), function denotes
functionality (Manager, supervisor, director etc.), while domain is about the core
job area. For example, a senior software engineer is a software (domain) engineer
(function) at senior level. A senior electrical engineer is an electrical (domain)
engineer at senior level. Although the two job titles have two out of three com-
mon words, they are obviously not the same jobs. A software engineer or even a
junior software developer is a much closer job to senior software engineer than
senior electrical engineer.

These three components might contains multiple words, or can also be null
depending upon the context. Our work here describes a method that utilizes
semantic match scoring between the three components, and combining those
scores using logical domain insights to create a match score between a pair of
job titles.

This paper is organized as follows. The next section describes some liter-
ature on title or phrase similarity/clustering. Section 3 describes the complete
pipeline and methodology. Section 4 explains the methodology, Sect. 5 presents
our evaluation and results. Section 6 concludes and discusses some future work.

2 Literature Survey

In typical text document classification and clustering tasks, the definition of a
distance or similarity measure is essential. The most common methods employ
keyword matching techniques. Methods such TFIDF [2] leverage the frequency
of words occurring in a document to infer on similarity. The assumption is that if
two documents have a similar distribution of words or have common keywords,
then they are similar. Researchers have also extended this to N-gram based
models, where group of consecutive words are taken together to capture the
context. With large N gram models, typically large corpus of documents are
required to obtain sufficient statistical information. As could be seen from the

Similarity Computation Exploiting 5

senior software engineer versus senior electrical engineer example in the previous
section, these traditional document similarity methods do not work so well when
matching short snippets of text, such as job titles. There are methods involving
web based kernel function [10], wherein results of web search query are used to
provide context to the short terms being compared. This paper defines a semantic
similarity kernel function based on query search results, mathematically analyze
some of its properties (similarity score going to 1 for similar queries as the query
results sets cover all the relevant documents; the kernel measuring mean topical
distance between the queries), and provide examples of its efficacy.

An alternative classification system [3] employs lazy learning from labeled
phrases, and present a strong argument in favor of their method when the prop-
erty of near sufficiency (most of information on document labels is captured
in phrases) holds. They also reveal that in all practical cases from small-scale
to very large-scale manual labeling of phrases is feasible as natural language
constrains the number of common phrases composed of a vocabulary to grow
linearly with the size of the vocabulary. Variants of phrase based classification
have been studied in Information retrieval [9] and it has the advantage of ease
of explainability.

Rich document representations and similarity measures are also an option
for job title classification [11]. Semantic enrichment strategies replace the bag
of words (BOW) representation that is more popular text classification as it is
less adept at handling synonyms, polysemous words and multi word expressions.
A machine learning- based semi-supervised job title classification system [4],
leveraging a varied collection of classification and clustering tools and techniques,
can be used to tackle the challenges of designing a scalable classification system
for a large taxonomy of job categories.

A technical report [8] on learning compound noun semantics discusses an
annotation scheme for compound nouns to derive compound relations (BE,
HAVE, IN, ABOUT, ACTOR, (INST(rument))), and uses this annotation
scheme to meaningfully compare compound nouns. This report inspired us to
create learners to tag the three components of a job descriptions for a mean-
ingful comparison between them. The final paper [7] combines pattern-based
extraction and bootstrapping for noun compounds interpretation. They use a
two-step algorithm to jointly harvest NCs and patterns (verbs and prepositions)
that interpret them for a given abstract relation.

3 Methodology

Our proposed approach to generate a similarity score between two titles T and T ′

is illustrated in Figs. 1 and 2. In the former we illustrate the steps for setting up
the system and in the latter we depict the steps that take place in the deployed
system.

We start with a labeled dataset of titles, where each constituent keyword
has been labeled with a particular context in which it occurs. For our training
phase as described in Fig. 1 we use 90% of this data, while the remaining 10%

6 S. Ahuja et al.

Fig. 1. Training Phase. In (1) titles for all documents available in the training set are
extracted and their keywords are labeled with the ground truth context. Next in (2) for
each of these keywords a dictionary is built using WordNet to maintain top synonyms
and corresponding similarity scores on a cloud database for faster computation. Later in
(3) feature vectors for each keyword are extracted and passed onto the Model Training
phase. Finally, all permutations of arrangement of models are trained on the dataset
and the arrangement with the highest validation accuracy is stored for deployment and
evaluation on the testing dataset.

Similarity Computation Exploiting 7

Fig. 2. System Deployment. In (1) incoming documents have their titles extracted and
feature vectors for their constituent keywords created. Moving to (2), based on the
arrangement of the models, the keywords are labeled with their context. Next in (3),
for each context the assignment problem is formulated and solved to identify one-to-one
matches for keywords within a particular context. Here, these matches are depicted in
green. Finally in (4) the similarity scores over each context are computed using the
dictionary created over the training phase and later aggregated to generate an overall
similarity score.

8 S. Ahuja et al.

is used for testing. Our goal is to create classification models which are able to
label keywords of a jobTitle with their context. Once we have a system capable
of doing this type of labeling, we move on to using these contextual labels to
calculate similarity scores over these contexts and finally aggregate these scores
to generate an overall similarity score.

In this section we explain these steps alongside their system implementation
in greater detail.

3.1 Title Representation

Each title Ti is treated as a set of sequenced keywords K(ki1, ki2, ...kin). When
comparing two titles, it is imperative that the similarity between two keywords
that have the same context contributes towards the final score and not the
similarity among two keywords with a different context. In the specific case of
Job Titles, we hypothesize that a constituent keyword can have three contexts
i.e. each title can be represented as a collection of keywords organized into three
sets domain, function and attribute as depicted below

Assistant Software Engineer can be represented as -
Domain - [Software]
Function - [Engineer]
Attribute - [Assistant]
similarly Senior Call Center Consultant can be represented as -
Domain - [Call, Center]
Function - [Consultant]
Attribute - [Senior]

Here domain symbolizes words which are representative of the field/industry
of work, function symbolizes the line/position of work, while attribute corre-
sponds to any supporting characteristic of the function and domain. Given the
diversity of job titles that appear on resumes and job databases, any two of the
three sets may be empty. Throughout this paper, we will refer to this collection
of sets representation of a title Ti as Ri, consisting of RD

i , RF
i and RA

i , with con-
stituent elements being denoted as [di1, di2...dij], [fi1, fi2...fik] and [ai1, ai2...ail]
respectively as depicted in Fig. 1.

3.2 Preprocessing

For each keyword in a title we perform basic preprocessing to clean the data:

1. Lower Case: All titles are converted to lower case characters and trailing
spaces are trimmed off.

2. Abbreviation Expansion: We expand common abbreviations such as sr.
to senior, jr. to junior using a hard coded list of common abbreviations.

3. Punctuation and Number Pruning: Punctuation marks like ‘ ’, ‘-’, etc.
are removed by pruning all non-alphabet characters.

Once the data is cleaned, we move on to constructing the feature vectors on
which the classification models will be trained.

Similarity Computation Exploiting 9

3.3 Feature Extraction

In our approach we create 3 separate binary classification models for each of the
aforementioned contexts - domain, function and attribute. For each title Ti, the
three classifiers label each constituent keyword Ki. The label with the highest
confidence for the positive class is taken as the label for the keyword. This section
elaborates on the features extracted features and the intuition behind choosing
them.

Position. The position of a keyword comes out to be an important parameter
in determining it’s context. For example, in the job titles - Assistant Software
Engineer and Assistant Manager, the word Assistant acts as an attribute
when it appears in the beginning of the word, while in the job title Lab Assis-
tant , it acts as a function.

It is important to understand at this juncture, that the same word can
appear in different contexts depending on it’s position, hence making posi-
tion an important feature. In our approach we define 3 boolean features -
position begin which denotes whether the keyword appears at the beginning
of the title, position end which denotes whether the keyword appears at the end
of the title and position between which denotes whether the keyword appears
in the middle of the title.

Suffix. We listed a set of common keywords found in Domains, Functions and
Attributes and noticed some patterns with the suffixes. For example:

Words labeled as Domain: Ophthalmologist, Dentist, Psychiatrist, etc.
Words labeled as Function: Engineer, Doctor, Manager, etc.
Words labeled as Attribute: Junior, Senior, etc.

Our first observation was the pattern of -ist suffix for the Domain words.
This observation is consistent with the definition of -ist being forming nouns
denoting a member of a profession or business activity [1]. However for the
Functions and Attributes the suffix usage is tightly correlated with its context.
As example, -or can be used to denote a person or thing performing the action
of a verb [1]. It also can be used to form comparative adjectives.

Based on these observations, in our approach we define two suffix lists for
the three contexts and for each define the feature as a boolean on whether the
suffix of the keyword is present in the concerned list. For example, the suffix list
defined for the function and attribute classifier was defined as [‘or’, ‘er’, ‘ors’,
‘ers’, ‘ar’, ‘ars’] and hence, the feature vector for the keyword Manager marks
the suffix feature as 1 for the function classifier. Similar list is created for the
domain classifier as [‘ist’, ‘ists’].

It should be noted that we limit the size of these lists, to only include the most
common observations using basic knowledge of English grammar and vocabulary,
and do not mine for any suffix patterns explicitly.

10 S. Ahuja et al.

Keyword POS Tag. Next we append to the feature vector a Part-Of-Speech
Tag for the corresponding keyword using the Stanford POS Tagger. The tagger
can tag the keyword with 1 of the 36 labels.

An important fact we note is that the POS Tag of the keyword is at times
different from the POS Tag of other versions of the same keyword. For example,
manager is tagged as noun while manage is tagged as verb. Considering that
ideally both should be labeled with the same context, besides the original POS
Tag, we reduce the keyword to it’s root and add the POS Tag of the root word
as well. Hence, for this feature we append two values to the feature vector, POS
Tag of the keyword and POS Tag of the root of the keyword.

In our implementation, we refer to vocabulary.com to extract the root of a
keyword.

3.4 Feature Vector Construction

The features explained in the previous subsection are combined to form a fea-
ture vector. If we assume that all three classification models are independent
of each other we get each keyword being depicted in the form of 3 feature vec-
tors each of length 7. But we observe that as humans we do not label all the
keywords independently. Once we have obtained the prediction for one or two
of the context labels for a keyword in the title, we get contextual information
that increases our confidence to label it for a different context. For example, for
Assistant Software Developer, once we identify that Software is not the
function word, we get more confident about labeling it as domain. Given our
problem, we assert that this ruling out step will play a crucial role in improv-
ing the classifier accuracies. Keeping this in mind, based on the dependencies
amongst classifiers, the feature vector for a classifier may also have the predicted
label of a previously checked classifier. In the previously mentioned example, if
we identify that the domain classifier is dependent on the function classifier, we
will see the feature vector being fed into the former be of length (7 + 1), after
appending the prediction of the function classifier to the feature vector. In the
training stage, instead of actual model predictions we use the ground truth value,
while in the testing (system deployment) stage, we use the actual prediction of
the trained models. Figure 3 displays the possible arrangements of the models.

Fig. 3. All possible dependency relationships that can exist between three models. Here
a, b and c can represent any of Domain, Function and Attribute, hence generating a
total of 16 possible arrangements.

Similarity Computation Exploiting 11

In our case we perform an evaluation on all 16 possible arrangements,
explained in Sect. 5 and choose the best arrangement based on validation accu-
racy. This selected arrangement of models represents the identified dependencies
among the context classifiers, and is deployed in the system and used on the
testing dataset for our final evaluation.

The next section explains the training procedure for each individual model.

3.5 Model Creation

For each context, we train models using SPSS’s autoclassifier module which
trains a bunch of classifiers on the data - neural net, C5, Logistic Regression,
CHAID, Quest, C&R, Bayesian Network, Decision List. We use 90% of our
labeled dataset for this model creation. We apply a 10-fold validation on this
dataset and select the model with the highest average validation accuracy as
depicted in Table 1. Our selected arrangement of models is depicted in Figs. 1
and 2. The best classifier for Domain and Function context comes out to be C5,
while for Attribute it comes out to be a neural net.

3.6 Assignment Problem Formulation

As depicted in Fig. 2, the two documents, D1 and D2, are represented by their
tokenized titles T1 and T2. After our selected arrangement of the three context
classifiers labels these keywords as either Domain,Function or Attribute they
are then represented as two sets of triplets, S1([RD

1 , RF
1 , RA

1]) and S2([RD
2 ,

RF
2 , RA

2]), each with elements [[d11, d12...d1j], [f11, f12...f1k], [a11, a12...a1l]]
and [[d21, d22...d2j], [f21, f22...f2k], [a21, a22...a2l]] respectively. Similarity score
between these two documents can be interpreted as the similarity score between
these two sets of triplets. The similarity function is explained in detail in the
next subsection, and is denoted by F for now. As mentioned earlier, when com-
paring two titles, it is imperative that the similarity between two keywords that
have the same context contributes towards the final score. There is no relevance
in the similarity among two keywords with a different context. To calculate the
similarity score between two sets, we calculate the similarity score independently
amongst the three contexts and aggregate them to get a final similarity score.
This aggregator function is explained in detail in the next subsection, and is
denoted by A for now. To find the similarity between two sets of the same con-
text, a naive approach would be to calculate the similarity score between each
pair of elements from two sets (example, RD

1 and RD
2), greedily pick the pair

with the highest similarity score and repeat the process till either one of the sets
has no element left. This greedy approach, although simple, does not provide an
optimal match between the sets being compared. We assume that there are no
repeating keywords in the Job Title, hence, the representative set for a document
too will not have synonymous elements. This assumption motivates a one-to-one
mapping among the two sets being compared for similarity.

To find this mapping among the aforementioned two sets, we formulate the
problem as an assignment problem. In a generic assignment problem, given the

12 S. Ahuja et al.

cost of assignment among each pair of elements in two sets, the task is to find an
optimal one-to-one assignment among the elements that maximizes/minimizes
the total cost of assignment. Our problem of finding such a one-to-one mapping
among one of the context sets of the S1 and S2 can be formulated in a similar
way - given F as the cost of assignment function among each pair of elements
in the two sets, the task is to find an optimal one-to-one assignment among the
elements that maximizes the aggregate similarity score.

Next, we use the Hungarian Method to extract out the matches. This method
takes as input a nxn square cost matrix and post applying a set of matrix oper-
ations, outputs an optimal set of n assignments, one per row and column, which
offer a maximum cumulative assignment score. Given ours is an imbalanced
assignment problem, the 2 sets with m and n keywords each, we start with a
mxn cost matrix, where each cell contains the similarity score between the cor-
responding row and column elements of the matrix. Without loss of generality,
we assume n > m, and add zero padding to extend the mxn matrix to a nxn
one. Rest of the steps for applying the Hungarian Method remain the same, as
for a typical score maximization assignment problem.

This assignment task is done independently for each of the three contexts.
Post this assignment, the following subsection defines the similarity and aggre-
gation functions.

3.7 Final Score Computation

In this subsection we define the previously mention similarity(F) and aggrega-
tor(A) functions.

Similarity Function. We use WordNet as the basis of our similarity function to
compute a semantic similarity score between two keywords. Any other methods
such as Word2Vec, etc. which provide a semantic similarity score between two
words could be possible alternatives to WordNet. WordNet is a large lexical
database of English language. Nouns, verbs, adjectives and adverbs are grouped
into sets of cognitive synonyms which is called synsets. Each synsets expresses
a distinct concept which interlinked by means of conceptual-semantic and lexical
relations. Wordnet provides synsets for a given English word [6]. To calculate
simsem between w1 and w2 we calculate wup similarity score between two synsets
corresponding to w1 and w2. Wu Palmer Similarity or wup similarity provides
a score denoting how similar two word senses are, based on the depth of the
two senses in the taxonomy and that of their Least Common Subsumer (most
specific ancestor node). After getting the scores between each sysnset we took an
average of the scores to get the semantic similarity score between w1 and w2 and
denoted it as simsemw1,w2

. Algorithm to find simsem is described in Algorithm 1.
On obtaining the simsem score between matches provided by the solution of the
assignment problem, the final Similarity Score for a context is taken to be the
average of all the simsem scores. We denote the Similarity Score for each context
- Domain, Function and Attribute as SimScored, SimScoref and SimScorea
respectively.

Similarity Computation Exploiting 13

To make the computation of this Similarity Score faster we employed some
optimizations in the scoring process. After obtaining the tokenized keywords
from a Job Title we used memoization and precomputation techniques to build
a dictionary Dict of keywords. The structure of the dictionary is depicted as in
Fig. 4. In the dictionary, every word w has been stored with its synonym list
synw. We used Wordnet dictionary from NLTK [5] to get synw for a given w.
We used cloudant Database to store this dictionary as JSONs. The structure of
the JSON is in Fig. 4. synw for a w consists of only the words which exist in
Dict and cross a threshold of semantic similarity score (simsem).

When Dict is empty and the algorithm encounters a new word it creates Dict
and stores an entry corresponding to the word. When Dict exists in the cloudant
database and algorithm encounters a w then it first checks whether it is present in
Dict or not. If w is not present in Dict then it will create an entry for w and will
generate a corresponding synw by calculating simsem with every other words in
Dict. The simsem of every other words of Dict will also be updated accordingly.
While processing each keyword, we precompute the semantic similarity scores
among the words and store them in a database.

Algorithm 1. SimSem Function
1: procedure SimSemFunction
2: Input: w1, w2

3: Output: simsemw1,w2
4: simsemw1,w2

← 0
5: synSetsw1 ← null
6: synSetsw2 ← null
7: synSetsw1 ← synsets from Wordnet for w1

8: synSetsw2 ← synsets from Wordnet for w2

9: div ← 0
10: for each synSetw1 of synSetsw1 do
11: for each synSetw2 of synSetsw2 do
12: wupscore ← wup similarity between synSetw1 & synSetw2

13: if wupscore is not null then
14: simsemw1,w2

← simsemw1,w2
+ wupscore

15: div ← div + 1
16: end if
17: end for
18: end for

19: simsemw1,w2
← simsemw1,w2

div
20: end procedure

Aggregator Function. The aggregator function is meant to collate the sim-
ilarity scores generated among matches provided by the solution of the assign-
ment problem. The definition of this function is described in Algorithm 2. The
equation is basically a weighted average of the three context similarity scores
where more weight is given to the Domain similarity, Function similarity and

14 S. Ahuja et al.

(a) Dictionary Structure for Keyword (b) JSON Structure for saving on Cloudant

Fig. 4. (a) Dictionary Structure for Keyword (b) JSON Structure for saving on
Cloudant

then Attribute similarity, in that order. Special care is taken in the averaging
process so that if both sets of a particular context turn out to be empty, they
are not included in the normalizing denominator.

Algorithm 2. Aggregator Function
1: procedure AggregatorFunction
2: Input: SimScored, SimScoref , SimScorea
3: Output: SimScore

4: SimScore =
1

(1SimScorea �=0 + 1SimScoref �=0 + 1SimScored �=0)
∗ (SimScored ∗

(1 + SimScoref ∗ (1 + SimScorea)))
5: end procedure

4 Experimental Setup and Dataset

We used a Spark cluster with 6 executors each having 8GB of RAM for run-
ning our experiments. Apache Spark framework has been used to incorporate
parallelization to carry out the experiments. All the codes have been written in
python. We used PySpark library to include Apache Spark environment into our
system. Cloudant services have been incorporated as database resource. We also
used Standford Core NLP Parser and Wordnet from NLTK library.

Job description documents from IBM Talent Framework Data sets have been
used to carry out all the experiments. Our training and validation set consists
of 4471 job titles, leading up to 16180 keywords. For our test set, we have 421
job titles corresponding to 71 different job families. Other details of the dataset
can’t be revealed here due to confidentiality issues.

5 Evaluation

Aspart of our evaluationwe first present the results of the training phase inTable 1.
Here for all 16 possible arrangements of model dependencies we calculate the train-
ing and validation accuracy. We observe that the maximum validation accuracy of

Similarity Computation Exploiting 15

Table 1. Selecting best arrangement of models

Arrangement Domain Function Attribute Average

Training Validation Training Validation Training Validation Training Validation
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

80.48 80.507 88.54 88.77 92.25 92.257 87.093 87.178

80.48 80.507 88.54 88.77 92.77 92.91 87.26 87.39

80.48 80.507 88.54 88.77 92.80 92.62 87.27 87.30

80.48 80.507 90.96 91.94 92.25 92.257 87.9 87.96

86.62 86.36 88.54 88.77 92.25 92.257 89.14 89.12

80.48 80.507 89.18 89.227 92.25 92.257 87.30 87.33

83.81 83.75 88.54 88.77 92.25 92.257 88.20 88.26

86.62 86.36 88.54 88.77 92.78 92.76 89.31 89.29

90.71 90.59 88.54 88.77 92.77 92.91 90.67 90.76

90.71 90.59 89.18 89.227 92.25 92.257 90.71 90.69

83.81 83.75 92.89 92.79 90.25 90.257 89.65 89.60

80.48 80.507 92.89 92.79 92.80 92.62 88.72 88.64

80.48 80.507 90.96 91.94 92.78 92.76 88.07 88.13

80.48 80.507 92.89 92.79 92.25 92.257 88.54 88.51

80.48 80.507 88.54 88.77 92.78 92.76 87.27 87.34

90.71 90.59 88.54 88.77 92.25 92.257 90.50 90.54

90.76% is obtained for a linear relationship among the context classifiers (f →
a → d). This arrangement is hence chosen for deployment and testing.

For our chosen model, in the testing phase we observe

1. an accuracy of 78.04% for the domain classifier
2. an accuracy of 87.01% for the function classifier.
3. an accuracy of 93.43% for the attribute classifier.

We did a job family based evaluation to test our method. Since we are using
IBM Kenexa talent frameworks, we can utilize its default clustering of jobs into
job families. We would expect jobs within a family (intra) to have higher title sim-
ilarity scores than those outside the job family (inter). The scores for intra vs inter
job family titles’ similarity were calculated, and averaged for reporting. The com-
parison of scores for some of the biggest job families can be seen in Fig. 5.

16 S. Ahuja et al.

Fig. 5. Inter versus intra job family title comparison scores.

As expected, the scores for inter job family title distances are higher than
those for intra job family distances. They are not very high, as there are many
different roles and functions even within the same job family. For example, both
“talent analyst senior” and “international human resources manager” in the job
family “HR”, but they are very different from each other.

In some of the smaller job families, the intra scores average was lower (or
equal) than the inter scores average. On investigation we found out that those
job families had only 2–3 jobs, and they all seemed very different. Where as
those jobs seem to have several common domain synonyms with job titles in
other families.

We compare our method to another approach of directly using WordNet
semantic similarity. For this comparison, we use the ratio of the average inter and
intra cluster similarity as our evaluation metric. The lower this ratio is, the better
is the cluster quality. For WordNet based semantic similarity we take the average
of all WordNet generated similarity scores for all possible pairs of keywords
between two given titles. We show the results for the biggest job families in
Fig. 6. We observe that our method leads to a consistently better cluster quality
compared to the method of simply using WordNet based average score as the
similarity metric.

Fig. 6. Comparison based on inter/intra cluster similarity ratio

Similarity Computation Exploiting 17

6 Conclusion and Future Work

In this paper, we described an approach to find similarity between job titles based
on the observation that each job title consist of three components - domain,
function and attribute. We used classifier models to identify the tokens in a
job description as one of the three components. Then we used a hierarchical
approach with domain, function and attribute as the levels of hierarchy to find
the similarity score between any two jobs.

As we observed via the intra vs inter job title similarity scores, the approach
gives fairly accurate results. In some of the smaller job families, the intra scores
average were not higher than the inter scores average. The accuracy of overall
matching scores depends on the accuracy of classifiers and the engine used to
match the three components with each other.

We believe that another way of identifying the three components of a job
description could be based on approaches used for finding similarities between
compound nouns. That exact approach will not suffice since job titles do not just
consist of nouns. Other semantic approaches to identify the three components,
or compound noun based approach to find similarity between domain words can
improve our results.

References

1. English Dictionary. https://en.oxforddictionaries.com/spelling/
nouns-ending-in-er-or-and-ar

2. Aizawa, A.: An information-theoretic perspective of Tf-idf measures. Inf. Process.
Manag. 39, 45–65 (2003)

3. Bekkerman, R., Gavish, M.: High-precision phrase-based document classification
on a modern scale. In: Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM (2011)

4. Javed, F., Luo, Q., McNair, M., Jacob, F., Zhao, M., Kang, T.S.: Carotene: a
job title classification system for the online recruitment domain. In: 2015 IEEE
First International Conference on Big Data Computing Service and Applications
(BigDataService), pp. 286–293. IEEE (2015)

5. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics, ETMTNLP 2002, Associ-
ation for Computational Linguistics, Stroudsburg, PA, USA, vol. 1, pp. 63–70
(2002). http://dx.doi.org/10.3115/1118108.1118117

6. Miller, G.A.: WordNet: a lexical database for english. Commun. ACM 38(11),
39–41 (1995)

7. Nakov, P.I., Hearst, M.A.: Semantic interpretation of noun compounds using ver-
bal and other paraphrases. ACM Trans. Speech Lang. Process. (TSLP) 10(3), 13
(2013)

8. Ó Séaghdha, D.: Learning compound noun semantics. Technical report, University
of Cambridge, Computer Laboratory (2008)

9. Riloff, E., Lehnert, W.: Information extraction as a basis for high-precision text
classification. ACM Trans. Inf. Syst. (TOIS) 12(3), 296–333 (1994)

https://en.oxforddictionaries.com/spelling/nouns-ending-in-er-or-and-ar
https://en.oxforddictionaries.com/spelling/nouns-ending-in-er-or-and-ar
http://dx.doi.org/10.3115/1118108.1118117

18 S. Ahuja et al.

10. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the simi-
larity of short text snippets. In: Proceedings of the 15th International Conference
on World Wide Web, pp. 377–386. ACM (2006)

11. Zhu, Y., Javed, F., Ozturk, O.: Semantic similarity strategies for job title classifi-
cation. arXiv preprint arXiv:1609.06268 (2016)

http://arxiv.org/abs/1609.06268

RISE: Resolution of Identity Through Similarity
Establishment on Unstructured Job Descriptions

Rakesh Rameshrao Pimplikar1(B), Kalapriya Kannan2, Abhik Mondal3,
Joydeep Mondal1, Sushant Saxena4, Gyana Parija1, and Chandra Devulapalli5

1 IBM Research, Bangalore, India
rakesh.pimplikar@gmail.com, {jomondal,gyana.parija}@in.ibm.com

2 Hewlett Packard Enterprise, Bangalore, India
kalapriya@gmail.com

3 Department of Computer Science, IIT Madras, Chennai, India
abhik.mondal1992@gmail.com

4 Department of Computer Science, IIT Delhi, New Delhi, India
sushant3012@gmail.com

5 IBM Software Lab, Bangalore, India
cdevulap@in.ibm.com

Abstract. Identity resolution of job description involving cross organi-
zational data would go a long way in addressing several high valued busi-
ness problems. Job data normalization/sanitation, automated creation
of better job descriptions with context preference, description reuse and
validation across different sources, semantic classification of jobs, rout-
ing of candidates to suitable jobs across different organization etc. are
some of the business centric functionalities that can be efficiently built by
resolving job description identities. Job descriptions are highly unstruc-
tured with free flow textual data consisting of lines describing important
attributes of job requirements, like education, skills, experience, role,
responsibility etc. Much of the problem is due to the highly unstructured
nature of job descriptions. Further, the attributes that are representative
of the information in a job description are not readily available from the
description. Thus, the process of resolution involves deep data cleansing,
classification, attributes identification, and building highly scalable sim-
ilarity detection algorithms. In this paper, we propose RISE - that uses
values of attributes in the underlying job description data and similar-
ity observed in the attributes to resolve identities across organizations.
It proposes classification followed by similarity establishment processes
that eventually provides high quality of resolution. Through extensive
experiments performed on corpus of job descriptions from several real
world recruitment systems, we demonstrate that RISE can resolve the
identities with high precision and recall.

K. Kannan—A part of the work was done when the author was an employee at IBM
Research - India.
A. Mondal and S. Saxena—A part of the work was done when the authors were
interns at IBM Research - India.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 19–36, 2017.
https://doi.org/10.1007/978-3-319-69035-3_2

20 R.R. Pimplikar et al.

1 Introduction

Identifying right job positions is a key to right opportunity. Job descrip-
tions (JDs) expose job positions by providing information about the positions.
To-date job descriptions are prescriptive and dependent solely on expression
of job details from employers or recruiting systems. As a result job descrip-
tions differ significantly from one employer to another even for the same role or
responsibility, making it difficult for job seekers to identify the right set of jobs.
Thus, Job Data Normalization would go a long way assisting the community of
job seekers to identify the right set of opportunities for their profiles through
standardization of job requirements.

Functional commonalities observed in recruiting systems such as hiring, selec-
tion etc., among organizations result in data (JDs, candidate CVs, processes for
hiring etc.) that exhibit high commonalities. Such data is often non-standard and
each organization chooses its own identifier to refer to each of the records. Our
own analysis of about 27000 JDs across 28 different organizations has revealed
that terms used to refer to roles vary significantly by name. Thus identifying sim-
ilar JDs by role names becomes difficult if not impossible. Often times, manual
inspection of data is employed to assess contents of JDs and establish similarity
and thus identities.

In this paper, we address one such critical problem of resolving identities
of JDs and normalizing them across organizations. We present RISE, an iden-
tity resolution engine that uses underlying similarity in the nature of the data,
representing attributes as a fundamental concept to resolve identities. It estab-
lishes novel methods to process unstructured JDs, identify attributes and con-
vert unstructured textual descriptions into structured information. Similarity
is established against the first class attributes identified to represent the data.
Identities (Job Titles/Department) pertaining to JDs, which are established as
similar, are used to build rules to construct equivalence. We enumerate each of
the steps in the process in detail and show that our approach identifies similarity
across JDs with high accuracy.

Our contributions in this paper can be summarized as follows:

1. Identity resolution of JDs
(a) Identification of important attributes that are descriptive of the informa-

tion in JDs.
(b) Build highly accurate classifier that labels the unstructured text into one

or more of the attributes.
(c) Identify and extract keywords for each of the attributes from unstructured

text.
(d) Establish similarity among JDs based on extracted keywords.
(e) Establish equivalence among identity titles/roles of JDs.

2. Experiments on real world data sets
(a) We performed each of above 5 steps on real world data sets collected

across 28 different organizations.
(b) We extensively validated results at each step to ensure that the overall

process derives similarity with high accuracy.

RISE: Resolution of Identity Through Similarity Establishment 21

Rest of the paper is organized as follows. The system and steps are presented
in detail in Sect. 2. Section 3 is used to present the algorithms that we have used.
We review some of the existing literature as applicable for our work in Sect. 5.
Section 4 presents the details of the experiments and the results. We conclude
with directions to future work in Sect. 6.

2 System Overview and Approach

Before providing system details, we present a list of terms along with their
definitions in Table 1. We use these terms throughout our paper. It will help
readers not to get confused with terms having literally similar meaning.

Table 1. Important terms and definitions

Terms Definitions

Job Description (JD) It is an unstructured textual information describing job
requirements that a candidate profile should satisfy in
order to be considered for the job

Keywords We use this term to refer to a set of words from an
unstructured line of a JD. In general, keywords provide
some specific information

Category It represents a concept/topic for a combination of certain
keywords/single key word. We are going to use categories
as a feature set as described in Sect. 3.2

Attributes It is a set of independent identifiable variables that can be
used to tag the information provided by every line in a JD.
It is also used as a set of labels as described in Sect. 3.2

Our system RISE comprises six different phases. Figure 1 shows all the phases
and respective steps involved in extracting the relevant information from highly
unstructured text describing a job requirement. Details of every phase are as
follows.
1. Attribute Identification Phase (AIP). It uses Principal Component
Analysis (PCA) to identify attributes that are representatives of the information
in JDs (Step 1 in Fig. 1). This is done with the help of the domain and subject
matter experts. Algorithm for identification of these attributes is presented in
detail in Sect. 3.1. The five attributes those were determined through this analy-
sis are {Education, Skills, Experience, Roles, Responsibilities}.
2. Classifier Training Phase (CTP). It is responsible for training a multi-
label ensemble classifier to assign one or more attributes to each line in a
JD. The input to this step is training data where every line of historical
JDs is already labeled. Output is a classifier model. Ground truth, collected
through manual labeling (as described in Sect. 4.1), is used to train the classifier.

22 R.R. Pimplikar et al.

Fig. 1. Phases and steps involved in processing unstructured job descriptions

In step 2 (refer to Fig. 1), we extract unstructured text information from the
JDs only for attributes identified in AIP. Step 3 involves unstructured text
processing, where text is parsed to be broken into a set of lines. Delimiters
that have been used to break the unstructured text into lines are {, . ; newline}.
Based on the keywords present in a line, a set of categories are extracted for that
line. These categories can be in hierarchical order. Eventually a binary feature
set is built for every line where every entry in a feature set indicates whether the
corresponding category is present or absent. In step 4, this feature set is used to
create training data for a classification algorithm. In step 5, a classifier is trained
to output a classifier model as shown in step 6. Details of the algorithms that
are involved in category extraction, feature set generation, and classifier training
are presented in Sect. 3.2.
3. Attribute Association Phase (AAP). It uses the classifier model built in
step 5 of CTP for the classification. Every new JD is passed through unstructured
text processing (step 7), which extracts the features against each line (step 8).
The extracted features are passed through the classifier which associates each
line with one or more attributes (step 9). The output of classifier passes through
text standardization (step 10). The main functionality of this component is to
convert the keywords available in each labeled line into standard recognizable
forms. Trivial differences such as multiple spaces between keywords, presence
of delimiters are also cleaned by the text standardization process. Algorithmic
details of the text standardization process is presented in Sect. 3.3.
4. Extraction Phase (EP). The text is still in the form of unstructured lines
after AAP. This textual lines now with labels are passed into the Extraction
Phase (step 11). In this phase, keywords referring to each of the attributes are
identified and extracted from the text. This step converts the unstructured text

RISE: Resolution of Identity Through Similarity Establishment 23

into a structured JD. The keywords for each of the attributes are stored in
the form of comma separated values. Section 3.4 presents the complete set of
algorithms for extracting keywords related to each of the attributes from the
lines.
5. Similarity Phase (SP). Step 12 of Fig. 1 represents a similarity algorithm
to find similarity between any two JDs. We have used Jaccard similarity measure
to determine the similarity of two JDs based on the attributes education, skills,
roles, and responsibilities. For similarity measures on the experience, we have
provided our own approach of computing similarity based on the number of
years of experience. Algorithmic details are provided in Sect. 3.6.
6. Identity Resolution Phase (IRP). In this phase, we establish and build
a set of rules that can be used to easily identify two equivalent JDs (Step 13 in
Fig. 1). Each job description is identified by its job title (a role oriented descrip-
tor) and department. For every pair of similar JDs identified in previous phase,
their job titles and departments are stored as a rule in the rules repository. We
don’t have to analyze any two JDs for similarity in future, if their jobs titles and
departments are already present among rules.

3 Algorithms

In this section, we primarily describe 4 algorithms, (1) for identifying impor-
tant attributes for JDs, (2) for tagging unstructured lines of JDs as one of 5
attributes {Education, Skills, Experience, Roles, Responsibilities}, (3) for creat-
ing structured job descriptions, and (4) for finding similarity between two job
descriptions.

3.1 Identifying Important Attributes for Job Descriptions

This algorithm is used in the AIP described in Sect. 2. Our aim is to identify a
set of important attributes that are representatives of the information in JDs.
Principal Component Analysis (PCA) is used in dimensionality reduction. We
use a hybrid feature reduction method MSNRPCA based on the combination of
feature ranking with PCA. This method was proposed by Yang et al. [20].

We use labeled data set of JDs, as described in Sect. 4.1 to run MSNRPCA
on it. Labeled data has values of every attribute for all JDs. An exhaustive list
of different attributes derived by qualitative analysis on these JDs is as shown
below.

Depth of knowledge, Process, Tools and Technologies, Skills, Domain knowledge,
Experience, Business knowledge, Efficiency of communication, Roles expected
to perform, Performance expected, Project Management, Schedule Management,
Training undergone, Education level, Education streams, Responsibilities

24 R.R. Pimplikar et al.

MSNRPCA assigns a score to each of these attributes, based on the impor-
tance of every attribute. Higher the score, higher is the importance. For robust-
ness, we create 5 sets of labeled JDs, by randomly sampling 80% of total
JDs every time. MSNRPCA is used to assign an importance score to every
attribute for every sampled instance of labeled JDs. To simplify the analysis,
we map all scores on a rating of 10. Table 2 captures all such scores. You can
think of these scores as ratings given to every attribute by 5 different domain
experts. Co-related variables are removed from this list thus reducing the set of
variables to a minimum number of independent attributes. We perform factor
analysis on these scores to eventually identify 5 important attributes. Those are
{Education, Skills, Experience, Roles, Responsibilities}. Skills attribute can fur-
ther be classified into “Technical Skills” and “Soft Skills”. All skills that involve
a known technology, tools, product or methodology are categorized under tech-
nical skills. Soft skills include those which do not involve a known tool, but
are gained through experience and personal affiliation. Examples of such skills
include management skill, communication skill, etc. In this paper we do not dis-
cuss this classification of skills and consider only 5 important attributes. We refer
these attributes using the notations yedu, yskill, yexp, yrole and yresp respectively.

3.2 Unstructured Text Classification

The bunch of algorithms presented here are used in the CTP and AAP phases
explained in Sect. 2. A job description generally contains unstructured text
describing the requirements of an open job position in terms of important
attributes {Education, Skills, Experience, Roles, Responsibilities}. It is observed
that every line of such a job description describes one or more attributes. So
in order to create a structured description out of an unstructured one, we first
identify which line describes what attributes. This leads to a multi-label classi-
fication problem where we need to assign one or more labels to every line L of a
job description. In our case, a set of possible labels is Y = {yedu, yskill, yexp, yrole,
yresp}. As described in [19], there are two main methods for tackling multi-label
classification problem, (1) problem transformation methods that transform the
multi-label problem into a set of binary classification problems and (2) algorithm
adaptation methods that adapt the algorithms to directly perform multi-label
classification. We use the problem transformation method, where we create 5
binary classifiers one for each label in Y. All the steps involved in multi-label
classification are explained in detail below.

Feature Extraction. This section provides an approach to unstructured text
processing as mentioned in Sect. 2. A set of features is required for a line L to
use any standard classification algorithm. So feature extraction is an important
step in our approach. In a way, our labels Y are the categories which we have to
identify for every line. Such a category identification needs a mapping between
categories and keywords as an input. It looks for keywords in text and based on
mapping it figures out most appropriate category. We use Naive Bayes classifier

RISE: Resolution of Identity Through Similarity Establishment 25

T
a
b
le

2
.
Im

p
o
rt

a
n
ce

sc
o
ri

n
g

o
f
a
ll

a
tt

ri
b
u
te

s

D
e
p
th

o
f

k
n
o
w

l-

e
d
g
e

P
ro

c
e
ss

T
o
o
ls

a
n
d

te
c
h
n
o
lo

g
ie

s

S
k
il
ls

D
o
m

a
in

k
n
o
w

l-

e
d
g
e

E
x
p
e
ri

e
n
c
e

B
u
si

n
e
ss

k
n
o
w

le
d
g
e

E
ffi

c
ie

n
c
y

o
f
c
o
m

m
u
-

n
ic

a
ti

o
n

R
o
le

s
P
e
rf

o
rm

-

a
n
c
e

e
x
p
e
c
te

d

P
ro

je
c
t

m
a
n
a
g
e
-

m
e
n
t

S
c
h
e
d
u
le

m
a
n
a
g
e
-

m
e
n
t

T
ra

in
in

g

u
n
d
e
r-

g
o
n
e

E
d
u
c
a
ti

o
n

le
v
e
l

E
d
u
c
a
ti

o
n

st
re

a
m

s

R
e
sp

o
n
si

-

b
il
it

ie
s

2
2

5
8

2
8

4
2

8
4

5
2

3
8

7
7

4
3

5
8

4
6

5
3

6
3

4
2

1
7

7
8

5
4

6
6

3
7

6
2

8
3

6
3

4
8

9
8

2
3

6
8

4
7

2
2

6
2

6
2

2
7

8
9

5
3

6
8

4
7

3
3

7
2

5
1

2
7

7
7

26 R.R. Pimplikar et al.

to classify text into one of the categories [9]. There are mainly two problems with
this approach, (1) one keyword may be mapped to multiple categories, resulting
in more than one possible categories for L, and (2) it is very difficult to come
up with an exhaustive list of keywords for every category. Thus, using category
identification approach for our problem leads to poor results.

Instead we can have a taxonomy for several different categories (including Y),
such as academics, products, work, business, etc. An example of such a taxonomy
is shown in Fig. 2. Similar taxonomy can easily be found in public domain. Every
parent node in a taxonomy can be considered as a category and children can be con-
sidered as relevant keywords. Using this taxonomy, we can find a set of most suit-
able categories for a line L. Resultant categories may or may not have categories
from Y, but we can deduce categories from Y provided we have some knowledge
about which combination of categories result in which categories from Y.

Fig. 2. Taxonomy of categories

Being a good indicator of informa-
tion present in L, we can use extracted
categories as features fL for L. If given
taxonomy has m categories, then there
will be m binary features for every L.
For all i ∈ {1, ...,m}, feature fi = 1 if
category ci is extracted for L, other-
wise fi = 0. It creates a feature vector
fL = {f1, f2, ..., fm}.

Classifier Training. We provide a multi-label classifier training algorithm in
this section, which is used by step 5 of CTP phase as described in Sect. 2. As
mentioned in the previous section, if we know the rules that map combinations
of categories into one of the categories from Y, we can easily assign a label from
Y to L. Decision Tree is a good choice to learn such a set of rules from the given
data. It also generates a classification tree, which can be used to classify L into
one of the labels from Y. Decision tree assigns only one label to L, while we
need multiple labels. So we create a decision tree for every label in Y. Though
there are several flavors of Decision Tree available in literature, we have used its
generic form for simplicity of explanations. However we have presented results
for C5.0 [1], CHAID [12] and C&RT [5] in Sect. 4.

Decision Tree requires labeled data for training. So we parse several job
descriptions to get a set of lines. During a ground truth collection phase, we receive
a multi-label set yL ⊆ Y for every line L. Thus we get pairs {L, yL} in training
dataset Dtrain. To train a particular classifier for yi ∈ Y, we replace yL from every
{L, yL} pair with a binary value bLi where bLi = 1 if yi ∈ yL, otherwise bLi = 0.
This gives us pairs {L, bLi } in training dataset Di

train for label yi.
Having all labeled data with us and features vectors for every line as described

in Sect. 3.2, we build a decision tree Ti for every label yi.

Multi-label Classification. Given a new unseen line L, we classify it using
each of the decision trees built in training phase. Decision Tree Ti classifies a

RISE: Resolution of Identity Through Similarity Establishment 27

line L and provides label bLi . For example, consider a decision tree Tedu for yedu.
For any L, decision tree returns bLedu = 1 indicating that L describes education
requirements and it returns bLedu = 0 when L is not about education. We combine
all such labels for L from all decision trees and generate a multi-label set yL

where yL contains a label yi if bLi = 1. This approach can be used in step 9 of
AAP phase as mentioned in Sect. 2.

3.3 Text Standardization

To address the problem of standardizing text in step 10 of AAP phase as men-
tioned in Sect. 2, we use ontologies like WordNet1 and Yago2. For example, some
recruiters may write “MS Office” and others may write “Microsoft Office”. If we
don’t standardize words like ‘MS’ into ‘Microsoft’, it would be difficult to find
similarity between two job descriptions, which is our final goal. Ontologies are
useful, because they usually contain common entities and their abbreviations.
WordNet can be used to find even synonyms which can replace certain keywords
in a line. We also use Jaro-Winkler distance [6] on keywords to group similar
keywords together. Input to this distance estimator are keywords from lines and
dictionary of keywords collected through large databases from organizations. For
instance, names of all skills relevant to an organization can be made available
in the form of a dictionary. Each of the keywords of the lines are compared
with the keywords in the dictionary using the Jaro-Winkler distance estimator
to determine the closeness. If two keywords are identified as similar by the algo-
rithm with high confidence level, the keyword in the line is replaced with the
keyword from the dictionary. This ensures uniform representation of keywords
across text.

3.4 Building Structured JDs Using Keywords Extraction

Once we have every line L of every job description classified as one or more labels
from Y, our next task is to extract certain keywords from L, which precisely
tells about the job requirements. This set of algorithms relate to the EP phase
in Sect. 2. For example, consider following line of a job description.

... Masters in statistics or quant-heavy social science program, bachelor
grad must have extensive research assistant experience; experience of program-
ming in SPSS or SAS, C, C++ or Visual BASIC required...

This line should ideally receive labels yedu, yskill and yexp, as it is talking
about education, skills and experience requirements. After labeling, we should
extract bold keywords from this line so as to organize it as follows. Observe that
though the line is labeled as yexp, we do not extract any keywords for experi-
ence. It is because we extract only numeric information for experience attribute,
1 http://wordnet.princeton.edu.
2 www.mpi-inf.mpg.de/yago.

http://wordnet.princeton.edu
www.mpi-inf.mpg.de/yago

28 R.R. Pimplikar et al.

for example, number of years of experience. Line given in this example doesn’t
contain any such information.

Education: Masters in statistics, bachelor grad
Skills: SPSS, SAS, C, C++, Visual BASIC
Experience:

We get a set of keywords SL
i for each attribute yi from Y for every line L.

Eventually we take union of all sets S∗
i over all lines to get a final set of keywords

Si for attribute yi. Such sets for all yi together forms a structured job description.
Next we describe how we can extract important keywords from a line L after it
has been classified into a set of attributes yL.

Keywords Extraction for Education. It is observed that education is usually
specified in following format.

<Degree> {of,in,...} <Field>

For example, “Bachelor of Engineering”. It is easier to get an exhaustive list of
possible values of degree, while set of possible values of field/stream/department
can be huge and we may not be able to create an exhaustive list. But we can
utilize the correlation among keywords of education phrase. It is very clear
from the above format that parts of speech of an education phrase are Noun-
Preposition-Noun. We use NLP (Natural Language Processing) based part of
speech (POS) tagging [3] to tag every phrase of a line, which is labeled as yedu.
We use OpenNLP3 tool, which can tag every keyword from a set of 36 different
POS tags. We pick all the Noun-Preposition-Noun phrases and lookup for degree
related keywords in Noun phrases. For this purpose, we maintain a dictionary of
keywords for degree. This dictionary is used for lookup. Once we find a degree
keyword that must have been tagged as Noun in a phrase, we can tag other
Noun of the phrase as field of the degree. Finally we extract all such phrases,
where we can find degree and field combination.

Another possible format for education phrase can be only <Degree>. It is
applicable for education level lower than graduation where they don’t have any
specialization. This case is easier to handle by having only dictionary lookup for
degree.

Keywords Extraction for Experience. We extract years or months of expe-
rience required for a job position if a line is labeled as yexp. To find experience
phrases in a line, we can use an approach similar to what we do for extracting
education phrases. Formats of experience phrases are observed to be as follows.

<Number> {years, months}
<Number> - <Number> {years, months}

<Number> {to} <Number> {years, months}
3 http://opennlp.apache.org.

http://opennlp.apache.org

RISE: Resolution of Identity Through Similarity Establishment 29

For example, “... 5 years of experience in Java...”, “... 2–3 years of experi-
ence in Databases...”, etc. A number can be written either in digits or in words.
So we again use NLP based POS tagging to find phrases those are tagged as
numbers. If a number phrase is found along with ‘year’ or ‘months’ keywords
then we extract such number as experience. This can be ambiguous sometime
when a time duration is not associated with experience, for example, “... candi-
date should be at least 25 years old...”. To resolve such ambiguities and boost
our confidence, we also look for skills or work related keywords in the vicinity of
experience number. Skills and work related keywords can be found using taxon-
omy of categories mentioned in Sect. 3.2. If we find two numbers separated by ‘-’
or keywords like ‘to’ as shown in possible formats above, we extract the average
of both numbers as experience. For example, we extract keywords “2.5 years”
from a line “... 2–3 years of experience in Databases”.

Keywords Extraction for Skills and Roles. Skills required for a job position
and roles in an organization can be very specific and recruiters use them again
and again while writing job descriptions for several job positions. Hence, it is
easier to maintain dictionaries of exhaustive keywords for skills and roles. If a
line in a job description is labeled as yskill, we lookup into skills dictionary to
check if any keywords from dictionary are present in the line. We extract all such
matching keywords to tag them as skills. We follow the same procedure for the
lines which are labeled as yrole.

Responsibilities of a job position are well understood from entire line instead
of few keywords. Hence we don’t extract any specific keywords for responsibilities
attribute. We consider entire line among responsibilities if the line is labeled as
yresp. We use Jaro-Winkler distance [6] based string similarity for all dictionary
lookups, because it takes into consideration minor spelling mistakes and white
spacing between keywords.

3.5 Enriching Dictionaries

The present dictionaries of exhaustive keywords for skills, roles and education
may not be exhaustive tomorrow due to ever evolving needs of new skills, roles
and education. We propose a way to keep enriching these dictionaries with new
keywords by analyzing the frequent occurrences of nouns in lines labeled as one
or more of yskill, yrole and yedu. As described in algorithm 1, if a noun is not in
any of the dictionaries, we count its frequency in the context of different labels.
For every such noun, we find a label where the noun has maximum frequency and
insert it into the dictionary corresponding to that label, if maximum frequency
is above certain threshold. Frequency based analysis is important, because every
line can be assigned multiple labels and it can be confusing do decide which
dictionary a noun should be inserted into. For simplicity and accuracy, we assume
that a noun belongs to only one dictionary.

30 R.R. Pimplikar et al.

Algorithm 1. Enrich Dictionaries
Input : Dictionaries Dicti ∀yi ∈ {yskill, yrole, yedu}, set of lines L, label vector

yL ∀L ∈ L
Output : Updated dictionaries

Counts of keywords for different labels, C ← 0
forall L ∈ L do

Ltagged ← Tag all keywords in L with part of speech [3]
N ← All nouns from Ltagged

forall n ∈ N do
if n /∈ Dicti ∀yi ∈ {yskill, yrole, yedu} then

forall yj ∈ yL do
Cn,j ← Cn,j + 1

end

end

end

end
forall Cn �= 0 do

i ← argmaxj Cn,j

if Cn,i ≥ threshold then
Dicti ← Dicti ∪ n

end

end

Following the keywords extraction methods for skill, roles and education,
as described in Sect. 3.4, we run the process of enriching dictionaries and then
again try to extract keywords. It helps in extracting those keywords, which we
could not extract in previous iteration due to lack of their presence in relevant
dictionaries.

3.6 Similarity of Job Descriptions

Given two job descriptions J1 and J2, our aim is to find how similar they are in
terms of attributes yedu, yskill, yexp, yrole and yresp. We have provided a detailed
procedure in Sects. 3.2 and 3.4 about how to arrive at a structured job descrip-
tion which has sets of keywords Sedu, Sskill, Sexp, Srole and Sresp for respective
attributes. Having these keyword sets where text has been standardized using
ontologies as mentioned in Sect. 3.3, we just have to find keywords based over-
lap between respective sets of job descriptions. SJk

i represents a set of keywords
for job description Jk and attribute yi. We compute Jaccard similarity score
between two respective sets SJk

i and SJl
i of job descriptions Jk and Jl to get a

score simk,l
i as follows. Cosine similarity [2] can also be used instead of Jaccard.

For the ease of explanation we mention only Jaccard similarity here.

RISE: Resolution of Identity Through Similarity Establishment 31

simk,l
i =

|SJk
i

⋂
SJl
i |

|SJk
i

⋃
SJl
i | (1)

This is repeated for all yi except yexp, because we extract only numbers
for experience attribute and not keywords. So Jaccard does not work for yexp.
Instead we propose a novel similarity measure for finding similarity based on the
numeric values.

Similarity for Experience. Given two numeric values ek and el of experience
attributes for job descriptions Jk and Jl, dissimilarity of experience is equiva-
lent to normalized gap between two values. As both are non-negative numbers,
maximum gap is equal to max{ek, el}, which is used for normalization. Thus
similarity of experience values can be formulated as follows.

simk,l
exp = 1 − |ek − el|

max{ek, el} (2)

We also define a weight vector w = {wedu, wskill, wexp, wrole, wresp} to specify
importance of every attribute for all job descriptions. A weight can be any non-
negative number. All similarity scores simi are scaled by weights wi, added up
and then normalized to get the final similarity score between two job descriptions.
It can be summarized with following equation.

JobSim(Jk, Jl) =

∑
i∈{edu,skill,exp,role,resp}

(
wi × simk,l

i

)

∑
i∈{edu,skill,exp,role,resp} wi

(3)

4 Experiments

We evaluated the performance of every phase of our system by running a set
of experiments over a data set as described below. We categorize our experi-
ments mainly into three sets. First set of experiments were conducted to assess
the accuracy of classification algorithm (CTP and AAP phases). Second set of
experiments were conducted to assess the accuracy of keyword extraction from
labeled text for creating structured JDs (EP phase), and third set of experiments
were conducted to assess the accuracy of similarity algorithm (SP phase). All of
these experiments are described in following subsections.

4.1 Data Set

We collected approximately 27000 JDs from 28 organizations including IBM and
its clients. Client names are not mentioned in this paper to preserve confidential-
ity. These JDs were picked from actual jobs posted by organizations for hiring
candidates. Distribution of number of JDs picked from 28 organizations is 8000,
4000, 2500 and 500 each from remaining organizations. The organizations are in
the area of Information Technology. Thus diverse set of JDs for a single domain

32 R.R. Pimplikar et al.

were considered. It was observed that these JDs were highly unstructured with
free flow text expressing requirements of the job. There was no explicit or con-
sistent expression of lines as skills, experience, roles, etc. These JDs produced
about 0.18 million lines which were used as data.

Approximately 5000 lines, chosen randomly, were manually tagged for col-
lecting the ground truth. Human labelers assigned one or more of the labels
{yedu, yskill, yexp, yrole, yresp} to every line, depending on what a line was describ-
ing. Along with labels, human labelers also annotated the phrases that actually
described the labels assigned. Total 6367 phrases were annotated. 10 people
contributed in this ground truth collection activity. Every line is labeled and
annotated by 2 labelers. Overall agreement on labels and annotations was 86%.
We carefully resolved the conflicts while finalizing the ground truth.

4.2 Classifier Evaluation

We compare the performance of our classification algorithm as described in
Sect. 3.2 with a baseline approach. Our algorithm uses decision tree classifier,
that automatically generates a set of rules for assigning an attribute as a label
to every line. On the contrary, baseline approach relies on a set of rules man-
ually provided by domain experts for every attribute. Given a set of categories
extracted for a line, baseline approach scans through rules for an attribute and if
any rule is satisfied, that particular attribute is assigned to the line. This process
is repeated for every attribute.

We conducted experiments of baseline and our algorithm over a ground truth
of 5000 lines labeled manually. As rules are readily available, baseline approach
doesn’t require any training phase. Baseline predicted attributes for every line
and later we compared them against the ground truth. Whereas a 5 fold cross
validation was used to report precision and recall for our algorithm.

While comparing with baseline, we computed three different set of results
for our classification algorithm by selecting a different decision tree algorithm
every time. Namely we used C5.0 [1], CHAID [12] and C&RT [5] decision tree
algorithms.

As this is multi-label classification problem, we report F1 score for every
attribute as shown in Fig. 3. It is clear that F1 score of our algorithm beats
baseline F1 score or at least at par with baseline F1 score in all three settings
for all attributes except for experience. Improvement ranges from 0 for skills
using C&RT to 0.23 for roles using CHAID. For experience, drop in F1 score
ranges from 0.04 using CHAID to 0.15 using CR&T. Thus, our algorithm works
better than baseline in most of the cases. In remaining cases, our algorithm is
not far behind the baseline in terms of F1 score. Additionally, our algorithm can
be used with larger data sets. Manual rules in baseline approach may not be
exhaustive in case of larger data sets.

Comparing among three different settings for our algorithm, we can infer
from above analysis that CHAID is the best suited for our algorithm and C&RT
is the worst among three.

RISE: Resolution of Identity Through Similarity Establishment 33

Fig. 3. F1 score based comparison

We plot ROC curves for deci-
sion tree classifiers for every attribute
with CHAID technique. Classification
scores obtained for every attribute and
for every line are used for this pur-
pose. These ROC curves are shown in
Fig. 4. It is observed that area under
ROC curve (AU-ROC) is high for all
attributes, that establishes the quality
of our algorithm for classification.

Fig. 4. ROC curve along with AU-ROC value of a classifier for every attribute

4.3 Keyword Extractor Evaluation

We used 5000 lines from ground truth having attributes assigned to them. For
each of these lines, we extracted keywords based on the attributes of lines. We
compare the extracted keywords for every line with the annotated keywords for
that line in the ground truth. We adopt the standard definition of precision to find
the precision of our keyword extraction algorithm in terms of following formula.

Precision =

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
anno, ext

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
ext

(4)

where N i,L
anno, ext is the total number of keywords those were annotated in

the ground truth as well as extracted by our algorithm for a line L and for
attribute i. N i,L

ext is the total number of keywords extracted by our algorithm for
a line L and for attribute i. We calculated the value of above formula to find
what fraction of total extracted keywords were actually describing the attributes
of the lines. The value of Eq. 4 was computed to be as high as 0.954.

We also adopt the standard definition of recall to find the recall of our key-
word extraction algorithm as follows.

Recall =

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
anno, ext

∑
L∈{all lines}

∑
i∈{edu,skill,exp,role,resp} N

i,L
anno

(5)

34 R.R. Pimplikar et al.

where N i,L
anno is the total number of keywords annotated in the ground truth

for a line L and for attribute i. This gives us what fraction of total annotated
keywords were actually recognized by our algorithm. The value of Eq. 5 was
computed to be 0.842. This implies that our keyword extraction algorithm is
highly effective with high precision and recall. F1 score can be computed to be
0.896.

4.4 Similarity Algorithm Evaluation

Similarity algorithm provides a score between 0 to 1 for a pair of JDs. Similarity
is high, if the score high. One way to evaluate similarity algorithm is to find
similarity scores of a JD with every other JD from our data set of 27000 JDs.
We can set a threshold on similarity score to find all pair of similar JDs. Then
manually find out how many of those pair are actually similar. There are two
problems in this evaluation approach. First, setting a threshold value is tricky.
One value for a pair of JDs may not be valid for other pair of JDs. Second
problem is that inspecting all similar pairs manually is not feasible for possible
27000 × 27000 pairs. Collecting ground truth for those many pairs is also time
consuming and need a lot many human resources.

We decided to go with ranking approach to address these two problems in
evaluation. We randomly selected 50 JDs out of a data set of 27000 JDs. For
every JD in this set of 50 JDs, we computed similarity scores with every other
JD in 27000 set. For a selected JD, we ranked all JDs in decreasing of their
similarity scores. We picked top 10 and manually observed how many of them
were actually similar. We repeated this for each of the 50 selected JDs. Thus
ground truth collection efforts was brought down to 50× 10 from previous value
27000 × 27000. Setting a threshold value is also not required for this evaluation.
Just that instead of computing precision and recall, we computed area under
ROC curve (AU-ROC) in this setting for each of these 50 ranked lists with 10
JDs each.

We observed that minimum AU-ROC was 0.642, maximum AU-ROC was
0.9 and mean AU-ROC was 0.779. This highlights the effectiveness of similarity
algorithm in ranking similar JDs at the top. Ranked list certainly does not
provide exact list of similar job descriptions, but it provides an ordered list of
JDs, which user can follow to find similar job descriptions. It reduces tremendous
efforts of user of scanning all JDs in random order. Based on the application,
a threshold value for similarity scores can as well be used or top k JDs can be
picked. It will further reduces the screening efforts of user.

We also report precision of similarity algorithm for the sake of complete-
ness, by setting up following experiment. Given above mentioned 50 ranked
lists, we set a high threshold of 0.7 for two JDs to be similar. It gave us a set
of pairs of JDs, that we predicted as similar. It shortlisted on an average top 15
JDs from every ranked list which increases manual labeling effort from 50 × 10
to 50 × 15 pairs. Based on manual labeling, we observed that 88% of predicted
similar JDs were truly similar. This sets a high precision value for our similarity
algorithm.

RISE: Resolution of Identity Through Similarity Establishment 35

5 Related Work

Importance of entity and identity resolution have been established earlier in sev-
eral research works [4,13,17]. Our work is along the lines of recent approaches
which are variants of Fellegi-Sunter Model [8]. In [8] identity resolution is solved
as a classification problem - given a set of similarity scores for different attributes
of two candidates, classify it as a match or a non-match. Several bodies of
research work have advised, compared and learned similarity measures for use
in entity resolution (example, [7,18]). Typically in such work, matching is per-
formed individually on each of the attributes and then a transitive closure is used
to eliminate inconsistencies. In our work, we establish these attributes through
MSNRPCA [20], a hybrid approach for feature reduction based on the combina-
tion of feature ranking with PCA, and utilize the similarity to resolve identity.
We train classification models for attributes using well established decision tree
algorithms such as C5.0 [1], CHAID [12] and C&RT [5].

Entity resolution has been solved in several domains by various research works
(example, [15,16]) and to different types of data, including text (example, [14])
and images (example, [11]). RISE targets resolution of entities in the domain of
Job Descriptions in a recruiting system. We have highlighted the importance of
the problem earlier and the goals of our work have been motivated by real world
requirements of recruiting systems. There has been a pressing demand for iden-
tity resolution systems where identifying right candidates through one channel
for specific organization can be routed to other job descriptions if not found suit-
able. Furthermore, there has been demands for creation of context sensitive job
descriptions based on the existing job descriptions that had the best convergence.
For all these purposes, one requires that similarities are established and identi-
ties are resolved. A big distinguishing factor is that our data source have been
cross organizational. Thus we expect the identities of these job descriptions to be
completely different from one organization to another. The problem is more chal-
lenging also due to the nature of the attributes. For instance, the numeric values
for experience attribute requires different measures for obtaining similarity.

A group of researchers have focused on large databases and resolving identities
in them. Methods were provided to avoid the quadratic number of comparisons
between all pairs of entities (example, [10]). Such methods can be leveraged to
reduce number of comparisons while finding similarities between every pair of JDs.

6 Conclusion and Future Work

We have built a system called RISE that addresses one of the key issues of iden-
tity resolution among job descriptions in recruitment systems. Recruitment sys-
tems typically employ technologies that allow centralized storage of data across
different organizations. Although, centralized yet underlying unstructured data
and lack of resolution techniques have rendered the data less usable for sev-
eral valuable applications. RISEprovides an end-to-end system for establishing
equivalence among identities and resolving them with high precision and recall.

36 R.R. Pimplikar et al.

Our future work includes enabling several key capabilities on top of this system
such as automated creation of job description based on the context, routing of
profiles across different jobs etc.

References

1. C5.0 Decision Tree Algorithm. http://www.rulequest.com/see5-info.html
2. Cosine Similarity Algorithm. http://en.wikipedia.org/wiki/Cosine similarity
3. Stanford Log-linear Part-Of-Speech Tagger. http://nlp.stanford.edu/software/

tagger.shtml
4. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom,

J.: Swoosh: a generic approach to entity resolution. VLDB J. 18, 255–276 (2009)
5. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont
(1984)

6. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: IJCAI 2003 Workshop on Information Inte-
gration, pp. 73–78 (2003)

7. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for
matching names and records. In: Proceedings of the KDD 2003 Workshop on Data,
pp. 13–18 (2003)

8. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328),
1183–1210 (1969)

9. Frank, E., Bouckaert, R.R.: Naive Bayes for text classification with unbalanced
classes. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 503–510. Springer, Heidelberg (2006). doi:10.1007/
11871637 49

10. Hernández, M.A., Stolfo, S.J.: The merge/purge problem for large databases.
SIGMOD Rec. 24(2), 127–138 (1995). http://doi.acm.org/10.1145/568271.223807

11. Huang, T., Russell, S.: Object identification: a Bayesian analysis with application
to traffic surveillance. Artif. Intell. 103(1–2), 77–93 (1998)

12. Kass, G.V.: An exploratory technique for investigating large quantities of categor-
ical data. J. R. Stat. Soc. Ser. C 29(2), 119–127 (1980)

13. Li, J., Wang, G.A., Chen, H.: Identity matching using personal and social identity
features. Inf. Syst. Front. 13(1), 101–113 (2011)

14. Li, X., Morie, P., Roth, D.: Semantic integration in text: from ambiguous names
to identifiable entities. AI Mag. 26(1), 45–58 (2005)

15. Norén, G.N., Orre, R., Bate, A.: A hit-miss model for duplicate detection in the
who drug safety database. In: KDD 2005, pp. 459–468 (2005)

16. Ong, I.M., Page, D., Dutra, I., Costa, V.S.: Hyperpaths: extending pathfinding to
moded languages. In: Proceedings of MRDM 2005, p. 57. ACM (2005)

17. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: Proceedings of
ICDM 2006, pp. 572–582. IEEE Computer Society (2006)

18. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: Proceedings of KDD
2002, pp. 350–359 (2002)

19. Tsoumakas, G., Katakis, I.: Multi label classification: an overview. Int. J. Data
Warehouse Min. 3(3), 1–13 (2007)

20. Yang, M.J., Zheng, H.R., Wang, H.Y., McClean, S., Harris, N.: Combining feature
ranking with PCA: an application to gait analysis. In: ICMLC 2010, vol. 1, pp.
494–499 (2010)

http://www.rulequest.com/see5-info.html
http://en.wikipedia.org/wiki/Cosine_similarity
http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/tagger.shtml
http://dx.doi.org/10.1007/11871637_49
http://dx.doi.org/10.1007/11871637_49
http://doi.acm.org/10.1145/568271.223807

Social-Sensor Cloud Service for Scene
Reconstruction

Tooba Aamir1(B), Athman Bouguettaya2, Hai Dong1, Sajib Mistry2,
and Abdelkarim Erradi3

1 School of Science, RMIT University, Melbourne, Australia
{tooba.aamir,hai.dong}@rmit.edu.au

2 School of Information Technologies, The University of Sydney, Sydney, Australia
{athman.bouguettaya,sajib.mistry}@sydney.edu.au

3 College of Engineering, Qatar University, Doha, Qatar
erradi@qu.edu.qa

Abstract. We propose a new social-sensor cloud services selection
framework for scene reconstruction. The proposed research represents
social media data streams, i.e., images’ metadata and related posted
information, as social sensor cloud services. The functional and non-
functional aspects of social sensor cloud services are abstracted from
images’ metadata and related posted information. The proposed frame-
work is a 4-stage algorithm, to select social-sensor cloud services based
on the user queries. The selection algorithm is based on spatio-temporal
indexing, spatio-temporal and textual correlations, and quality of ser-
vices. Analytical results are presented to prove the efficiency of the
proposed approach in comparison to a traditional approach of image
processing.

1 Introduction

The user-base of multiple social networks is getting wider and more active in pro-
ducing content about real world events almost in real time [1]. Social sensors,
i.e., users contributing their individual ‘data’ [3], publish a large amount of data
streams (images, videos and texts) over the social networks (also called social
clouds [2]). Social-sensor data streams related to public events, especially multi-
media content, may contain critical information that describes a situation from
various aspects, e.g., what is happening, where it is happening, who are involved
and what the effects on surrounding are. Monitoring the events or scenarios over
social-sensor data streams assists concerned officials to analyse an unfolding sit-
uation, such as in crisis management, urban management and scene analysis.
Hence, utilising these social-sensor data streams can significantly facilitate the
task of scene reconstruction and aid in comprehending evolving situations [3].

Scene reconstruction is generating a 3D model of a scene given multiple 2D
photographs of the scene [19]. The extensive availability of social sensors (e.g.
twitter feeds) helps in gathering indirect pictorial view of the event. Various stud-
ies focus on visual and spatio-temporal scene reconstruction in social media [3,5].
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 37–52, 2017.
https://doi.org/10.1007/978-3-319-69035-3_3

38 T. Aamir et al.

One of the major challenges in current scene reconstruction process is the effi-
cient and real time delivery of sensors’ (e.g., cctv, accelerometer, etc.) data to
the end users, e.g., urban management, that meet their requirements (time, loca-
tion, content relatedness, quality, price, coverage, etc.) [5]. Most of current work
focuses on utilising image processing. However, the traditional approach of image
processing relies on performance of hardware and software which is both costly
and time consuming [20]. To overcome this challenge, this research employs the
theory of Service Oriented Architecture (SOA) instead of image processing, by
defining a social sensor cloud service model based on metadata of social media
images and related posted information.

Social-sensor data streams are generated from multiple sources and in mul-
tiple formats. SOA abstracts social-sensor data streams into small independent
function(s), namely services. This results in uniform and ubiquitous delivery of
social-sensor data as a service, making it easy to access and reuse in multiple
applications over different platforms. This reduces the complexity of social-sensor
data collection. The functionality of social-sensor data (e.g., spatio-temporal,
textual and context information of an image) is abstracted as a service and the
qualitative features (e.g., price, coverage) are abstracted as non-functional prop-
erties of the service. Access to social sensor data streams and implementation
for scene reconstruction will be simplified based on the service model. Other
benefits include higher availability, better scalability, dynamic deployment and
greater testability.

Usually a single service may not satisfy users’ requirements. The challenge is
to design an efficient method for selecting the social-sensor cloud services that
are in the same information context, i.e., covering same event or segment of an
area at any given time required by the user and also meet user’s quality demand.
Most of the existing techniques developed for standard Web service discovery
cannot be directly applicable to sensor services [4]. Due to the large number of
images over the Web and its time-location dependency, sensor services need to
be organised in a way to allow efficient search based on their spatio-temporal
properties, e.g., time or location.

This paper focuses on proposing a novel social-sensor cloud service model
and a social-sensor service selection algorithm for collecting images for scene
reconstruction based on spatio-temporal, textual and QoS parameters of the ser-
vice. To the best of our knowledge, existing approaches to use social media
data are mainly data centric. Current approaches are built upon data mining
and information retrieval techniques without concerning qualitative aspects of
images. The proposed approach conceptualize the spatio-temporal and textual
aspects of social-sensor data streams as social-sensor cloud services’ functional
attributes, and the qualitative aspects as their non-functional attributes. The
proposed framework is a 4-stage algorithm capable of context-aware selection of
social-sensor cloud services by using their functional and non-functional proper-
ties. Functional properties includes spatio-temporal parameters, spatio-textual
context, etc., and non-functional requirements includes image quality, price, res-
olution, etc. The 4-stages of algorithm are (1) service indexing, (2) selection w.r.t

Social-Sensor Cloud Service for Scene Reconstruction 39

spatio-temporal features, (3) filtering w.r.t textual-correlation and (4) coverage
assessment and QoS-aware selection.

The novelty of this research lies on (1) abstracting social media image meta-
data and related posted data, i.e., social-sensor data streams, as social-sensor
cloud services, (2) supporting efficient and real time access to high-quality and
related images for scene reconstruction without image processing. The rest of
the paper is structured as follows: Sect. 2 reviews the related background work.
Section 3 describes the motivating scenario. Section 4 formally defines the model
for a social-sensor cloud service along with functional and quality attributes.
Section 5 details the proposed selection approach. Section 6 describes the exper-
iments and evaluation of the approach. Section 7 concludes the work.

2 Related Work

Our social-sensor cloud service selection approach draws background work from
two main areas: sensing-as-a-service and service selection [1–9].

Social Sensing and Sensing-as-a-Service. is a large-scale sensing paradigm
based on the power of IoT devices, including smart phones, smart vehicles and
wearable devices, etc. [3,5]. This allows the increasing number of mobile phone
users to share local knowledge (e.g., local information, event coverage, and traffic
conditions) acquired by their sensor-enhanced devices and the information can
be further aggregated in the cloud for large-scale sensing [10]. A broad range of
applications are thus enabled, including traffic planning [3], environment mon-
itoring [13], mobile social recommendation [17], public safety [18], and so on.
Spatio-temporal social media analysis for abnormal event detection is discussed
in [6]. Another research proposes an approach towards multi-scale event detec-
tion using social media data, which takes into account different temporal and
spatial scales of events in the data [7]. However, most of these approaches are
data centric, built upon data mining and analysis techniques. This require con-
siderable amount of expertise and time. Moreover, transition from a traditional
cloud systems to the SOA-based sensor-cloud raises the need to consider spatio-
temporal aspects of sensor data with better performance and faster access to new
services. Thus, using SOA and social sensors for scene analysis is far better than
using image processing over the batch of images or traditional cloud computing
to build the scene.

Service Selection. is one of the major research problems in service-oriented
computing [4,9,11,12]. The service selection and composition have been applied
in a number of domains including scene analysis and visual surveillance [12]. The
service composition problem can be categorized into two areas. The first area
focuses on the functional composability among component services. The second
area aims to do optimal service composition based on non-functional properties
(QoS). In [11], service composition from media service perspective has been dis-
cussed. [4] and [9] propose a composition approach for Sensor-Cloud and crowd
sourced services based on dynamic features such as spatio-temporal aspects.

40 T. Aamir et al.

Algorithms are presented in both papers to support the proposed approaches.
Analytical and simulation results of the proposed approaches are presented to
validate their feasibility. However, social-sensor cloud service selection using
functional/non-functional attributes through social-sensor is yet to be explored.

3 Motivating Scenario

A typical scenario of scene reconstruction for car accidents is used to illustrate
the challenges in scene analysis. Given a segment A on the road, suppose an
accident happens at time t0, as shown in Fig. 1a, b and c, depicts the scenario
before the accident happens. The fan shapes are 2D representation of the social-
sensor cloud services’ coverage.

(a) (b) (c)

Fig. 1. Accident timeline

It is assumed that scene reconstruction of the accident is required by urban
management to determine the cause(s) or aftermath(s) of the accident to pre-
vent further incidents of a similar kind. The wide deployment and availability of
smart-phones users and their connectivity with social networks and services, i.e.,
the commuters using social media/networks, might provide extra visual cover-
age by either sharing images or posts. For instance, in the South Melbourne Bus
Accident1, multiple posts with hundreds of images on this event were reported
on various social networks. In such cases, the commuters can be regarded as
social sensors sharing their image data over social sensor clouds, i.e., social net-
works. Using social media images’ metadata and related posted data as services,
i.e., social-sensor cloud services, can help to fulfil the user’s need of maximum
coverage. The idea is to leverage freely available information over social network
clouds to help investigators to analyse the accidents scene.

The aim is to develop a new framework for social-sensor cloud services
selection. The algorithm will be based on spatio-temporal information, tex-
tual features, spatio-textual correlation and quality of service parameters. As

1 Bus Crash in South Melbourne - http://www.theage.com.au/victoria/bus-crashes-
in-south-melbourne-trapping-commuters-20160221-gmzyko.html.

http://www.theage.com.au/victoria/bus-crashes-in-south-melbourne-trapping-commuters-20160221-gmzyko.html
http://www.theage.com.au/victoria/bus-crashes-in-south-melbourne-trapping-commuters-20160221-gmzyko.html

Social-Sensor Cloud Service for Scene Reconstruction 41

shown in Fig. 4, the proposed solution would be a multi-stage selection algo-
rithm, to select social-sensor cloud services based on a user’s query. Let us
assume that the user’s query q is defined as (R, d, ts, te, QU). R is represented
as a tuple (P < x, y >, l, w) that indicates the region of interest, where P <
x, y > is a geospatial co-ordinate set, i.e., decimal longitude-latitude position
(e.g., -37.8089435,144.9651172) and l (e.g., 5 m) and w (e.g., 2m) are length and
width distances from P to the edge of region of interest. ts (e.g., 2:29:23 pm
AEST, Wednesday, 14 June 2017) and te (e.g., 2:59:23 pm AEST, Wednesday,
14 June 2017) give start and end time of scene. d is a phrase describing the event
(e.g., ‘Melbourne Central, Accident’). QU is a set of non-functional attributes
(e.g., P, i.e., price of the service is not more than $0.5). Therefore, given the
services, the proposed framework will select the services that, in the given time
frame, are spatially located in the user defined region and textually related to
the user’s description, and meet the user’s QoS requirements.

The functional attributes of a social-sensor cloud service Serv include:

– Time T of the service at which the image is taken
– Set of special mentions and keywords M providing additional information

regarding an image or a service
– Service location L(x, y), i.e., longitude and latitude position of the service

The non-functional attributes of a social-sensor cloud service Serv include:

– Textual correlation TxtCo, the textual similarity between the tags/keywords,
i.e., Serv.M, of an atomic service Serv and the query q ’s description q.d.

– Coverage Cov of the total area covered in the user required region R

First, for any location of the query q, all indexed services available in the area
of interest defined by the region R, across time ts to te are selected. However,
the region R is expanded if the selection does not meet query demands. It is
assumed that the R encloses S, a set of services, relevant to query q. Textual
correlation is considered next, i.e., similarity between d and M, between the
query and services in the region R. For example for every special mention M
(e.g., Melbourne Central station) of the service Serv and description d (e.g.,
Melbourne center) of the query q, their textual correlation relationt is calculated
as the similarity ratio between a service Servi and a query q. The similarity is
measured between 0.0 (the lowest) and 1.0 (the highest) and denoted as θ. This
gives a subset of services that are spatio-temporally and textually correlated
to the query. Next, the coverage of all selected services is assessed. The best
available services are selected that are both spatially located in the user defined
region and textually related to the user’s description. The selection is finalized
until all selected services achieve the maximum coverage. The selected services
can assist in reconstruction for the required scene.

4 Model for Social Sensor Cloud Service

In this section, we define several concepts to locate a social-sensor cloud service.
The aim is to locate and select the social-sensor cloud services which are in the

42 T. Aamir et al.

same spatial and visual context based on the functional properties of the service.
The selected services can assist in building a visual summary of a required scene
in given space and time.

4.1 Model for an Atomic Social Sensor Cloud Service

Here we discuss the key concepts to model an atomic social-sensor cloud. We
define the model of a crowd-sourced social sensor cloud service, in terms of
spatio-temporal features of crowd-sourced social sensor.

Definition 1: Scene S is defined as an observation on a real world happening.
This observation is a collection of connected images in same spatial and temporal
dimension.

Definition 2: Visual summary VisSum is defined by a set of 2D images that
are highly relevant to the scene S. VisSum gives viewer an accurate impression
of what a particular scene S looks like. Any two images are considered highly
relevant if at least one feature of the images is common.

Next we define the model of social-sensor cloud service, in terms of spatio-
temporal features of social-sensor.

Definition 3: Crowd-sourced Social Sensor SocSen is the user of a social media.
A sensor posts content on social media, i.e., Social Sensor Cloud. It is assumed
that the data shared by a social sensor contains visual information, textual
reference, time and location.

Definition 4: Social Sensor Cloud SocSenCl is a social media hosting data from
the social sensors. It is defined by

– Social Sensor Cloud ID SocSenCl id, i.e., a unique sensor id
– Sensor Set SenSet = {SocSen idi, 1 ≤ i ≤m} represents a finite set of sensors
SocSen that collect and host sensor data in the respective cloud. It is assumed
that each cloud hosts data from at least one sensor.

Definition 5: Atomic Social Sensor-Cloud service Serv is defined by

– Serv id is a unique service id of the service provider SocSen.
– SocSenCl id is an ID of the cloud where the service is available.
– F is a set of functional properties of the service Serv. For each Serv, F = {T,
M, L, dir,VisD, α}.

– nF is a set of non-functional properties of the service Serv. For each Serv, nF
= {TxtCo}.

4.2 Functional Model of an Atomic Social Sensor Cloud Service

Functional requirements capture the intended behaviour of the service and forms
the baseline functionality necessary from an Atomic Service. The following pro-
pose the minimal functional requirements associated with an atomic service:

Social-Sensor Cloud Service for Scene Reconstruction 43

– T is time of the service at which the image is taken
– M is special mentions and keywords, providing additional information regard-

ing image.
– L 〈 x,y 〉 is the service location where 〈x,y〉 is longitude and latitude position

of the service
– VisD is the visible distance i.e., the maximum distance, covered by the service.
– dir is the orientation angle of the service.
– α is the angular extent of the scene covered by the service.

Thus, the functional model of each service is represented by the service coverage
model Servc, as shown in Fig. 2.

Fig. 2. Servc model Fig. 3. Query region and coverage model q.R

4.3 Quality Model of an Atomic Social Sensor Cloud Service

Discovering and selecting the best available services satisfying the user’s require-
ments is an important challenge. The first step is to define a QoS model, i.e., a set
of QoS aggregation rules. However, the user’s QoS demands can be different from
the system’s QoS matrix for optimal and effective selection. For this purpose the
QoS model for both User and Social Sensor Cloud services are introduced. The
proposed system-defined QoS criteria of an atomic services include:

– Qserv is a tuple 〈 Q1, Q2... Qn 〉, where each Qi denotes a Quality of service
(QoS) of Serv. The QoS criteria include:

• TxtCo is the textual similarity between the tags/keywords, i.e., Serv.M, of
an atomic service Serv and the query q ’s description q.d. WordNet-based
approach LIN [15] is used to calculate the textual similarity between tex-
tual description q.d and Serv.M of the service Serv. It measures semantic
relatedness of concepts based on the ratio of the amount of information
needed to state the commonality of the information content of the d, i.e.,
IC(q.d), along with the information content of Serv, i.e., IC(Serv.M), to
the amount of information needed to describe them.
The measure is determined by [15]:

relatedLIN (q.d, Serv.M) =
2IC(lcs(q.d, Serv.M))
IC(q.d) + IC(Serv.M)

(1)

44 T. Aamir et al.

where, IC(description) = −log(Probability(description)), and,
lcs(q.d, Serv.M), i.e., least common subsumer is the quantity of infor-
mation common to two descriptions. It is determined by the information
content of the lowest concept in the hierarchy that subsumes both q.d
and Serv.M [15].

• Cov is the total area of patches covered in the user required region R
(Fig. 3). Coverage can be illustrated by:

Cov ←− {
n∑

i=1

Servi ∈ S′ |
n∑

i=1

Servi < ·R, t0 ≤ t ≤ t1} (2)

where, Servi < · R means Servi covers some of the region R. S′ is the
set of services spatio-temporally and textually related to the query. Since
it is uncertain that the user desired time gives the best available results,
we limit the temporal range between t0 and t1.

Moreover, for the effective and efficient selection as per user demands, user
defined QoS parameters are also required. For this purpose some baseline QoS
attributes for Social Sensor Cloud services are introduced:

– QU is a tuple 〈 QU1, QU2... QUn 〉, where each QUi denotes a Quality of service
(QoS) requirement of user. The QoS criteria include:

• P is the price of the service, i.e., does the service need any sort of financial
incentive for service providers or not.

• Res is the minimum requirement of image resolution to be provided by
services.

• ColQ is images’ definition, i.e., grey scale or high definition.

5 QoS-Aware Social Sensor Cloud Service Indexing
and Selecting Approach

We propose a framework to index, filter and select the best available Social
Sensor Cloud Service according to a user’s query. The query q can be defined
as q = (R, d, ts, teQU), giving the region of interest, description and quality
parameters of the required service(s). The entry:

– R = {P < x, y >, l, w} (Fig. 3), where P is a geospatial co-ordinate set, i.e.,
decimal longitude-latitude position and l and w are length and width distance
from P to the edge of region of interest.

– ts is the start time of the query
– te is the end time of query.
– d is a phrase describing the query e.g., Melbourne Central.
– QU is a set of non-functional attributes, e.g., Coverage, Resolution, Pricing

etc.

Social-Sensor Cloud Service for Scene Reconstruction 45

Figure 4 shows the proposed selection framework for social-sensor cloud ser-
vices. The aim of our approach is to efficiently locate the available services that
match with the users’ requirements by constructing and indexing the informa-
tion and location context of the service with the functional and non-functional
properties. To manage and enable fast discovery of the social sensor cloud ser-
vices:

– First we index all the available services. Considering the spatio-temporal
nature of the services, we index both location and time of service using R-tree.

– Then the search space is reduced by selecting a set of all the spatio-temporally
close services S from the BR. BR is the user-defined region of interest defined
in a spatio-temporal cube.

– Further, we calculate txtCo of each service in S with q.d. Considering txtCo,
we select set S′ of services textually related to the query.

– Next, we assess the coverage, i.e., ServC of all the services in S′ and compute
the spatial coverage of region.

– Finally, QU is used to select the best available service(s).

If the desired coverage is not achieved the search space BR is increased
dynamically until the maximum coverage and QoS parameters are achieved.
The system defined QoS attributes are determined in two ways:

– Before selection, the values are given based on previous executions of services
or user’s feedback.

– During selection, the values are given by monitoring services and query QoS
attributes and dynamically evaluating the attributes.

The implementation process of the selection approach is:

Fig. 4. Social-sensor cloud service selection framework

46 T. Aamir et al.

5.1 Service Indexing and Spatio-Temporal Filtering

Indexing and spatio-temporal filtering of services enable the fast discovery of
services (Algorithm 1). We index services considering their spatio-temporal fea-
tures using a 3D R-tree [4]. 3D R-tree [21] is a tree data structure which is used
as a spatio-temporal index to handle time and location based queries. Time is
considered as the third dimension in the 3D-R Tree. The leaf nodes of the 3D
R-tree represent services which are organized using minimum bounded region
(MBR) [21] that encloses the service spatio-temporal region. It is assumed that
all available services are associated to a two-dimensional geo-tagged location and
time. For the effective area of query q, we define a cube shape region BR using
user-defined rectangular event area R and start and end time of the service, i.e.,
ts and te. Region BR encloses a set of services relevant to q. The services outside
this region are assumed to have little probability of being relevant to the query.
Figure 5 illustrates the query region R and the bounded region BR across time
ts to te.

Fig. 5. Illustration of q.R and BR Fig. 6. Illustration of coverage

The 3D R-tree efficiently answers typical range queries, e.g., “select all ser-
vices bounded by the rectangle R in time ts to te”. This results in filtering of all
the services outside the bounded region of interest BR.

5.2 Textual Co-relation Between Service and Query

To improve the efficiency of the proposed approach, the textual correlation is
considered. It might happen that the service does lie spatially in the query area
Region, but has no textual relation with the query q. In such cases the textual
correlation in terms of spatio-textual similarity is used for service filtration.

Equation (1) measures the relatedness of the two descriptions. The related-
ness score is between 0.0 (the lowest) to 1.0 (the highest). For implementation
a Java based library, WS4J (WordNet Similarity for Java) is used. The use of
this library is defined in an on-line documentation2. We have used θ′ to define

2 “JWNL - JavaWordNet Library - Dev Guide”, http://jwordnet.sourceforge.net/
handbook.html.

http://jwordnet.sourceforge.net/handbook.html
http://jwordnet.sourceforge.net/handbook.html

Social-Sensor Cloud Service for Scene Reconstruction 47

Algorithm 1. Service indexing and spatio-temporal filtering
Input: S is the collection of services - each service is associated with its geo-tagged
location < x, y >; a query q with location l < x, y >; a query region’s length l and
width w, start and end time of service, i.e., ts and te.
Output: The set S′ of all services which lie in region BR

1: BR = Cube Region based on R = {P < x, y >, l, w}, ts and te
2: for Each i do
3: Insert Servi in 3D R-Tree

4: for Each indexed Serv in S do
5: if Serv ∩ BR then
6: Serv ∈ S′

Algorithm 2. Textual Correlation Filtering
Input: S′ is the collection of services - each service is associated with its geo-tagged
location < x, y > and mention M ; a query q with location l < x, y > and textual
description d; a query region’s length l and width w, start and end time of the service,
i.e., ts and te; textual similarity threshold θ
Output: The set of all spatio-textually correlated services S′′ which lie in the region
BR such that d is similar to M

1: for Each Serv in S′ do
2: Calculate θ′ between Serv.M and q.d using LIN
3: if θ′ ≥ θ then
4: Serv ∈ S′′

relatedlin(q.d, Serv.M). The higher value of θ′ shows higher textual correlation.
On the basis of TxtCo, the set of services S′ is selected. Algorithm 2 shows the
textual correlation filtering.

5.3 Coverage Assessment Using ServC

ServC is a 2D representation of the service coverage, illustrated as the grey region
in Fig. 3. If the user requires the coverage of R between time ts to te, all the Serv
in S′ overlapping the bounded region BR are selected. The relationship between
ServC and R can be illustrated as:

Coverage ←− {Servi ∈ S′ | Servi ∩ BR, t0 ≤ t ≤ t1}

Thus all the services with ServC which overlap with the region BR are selected
(Algorithm 3). Since it is uncertain that the user desired time gives the best
available results, we limit the temporal range between t0 and t1. Pictorial illus-
tration of coverage is shown in Fig. 6.

Coverage can be calculated by:

Cov =
∫ e

t=s

AREA(R)dt−(
∫ e

t=s

Area(∪n
i=1Servi)dt−

∫ e

t=s

Area(∩n
i=1Servi)dt)}

(3)

48 T. Aamir et al.

Algorithm 3. Coverage Computation and re-adjusting R
Input: S′ is the collection of services - each service is associated with its geo-tagged
location < x, y > ; a query q with location l < x, y > ; a query region’s length l and
width w, start and end time of service, i.e., ts and te
Output: The set of all spatio-textually correlated services S′′ which lie in the region
BR and meet the coverage requirements

1: for Each Serv in S′ do
2: Calculate Cov using Eq. (3)
3: if CoV = max then
4: EXIT
5: elseR ←− R′(P < x, y >, l + 7, w + 7)

where:
AREA(R) = l ∗ w (4)

Area(∪n
i=1Servi) =

n∑

i=1

(∪n
i=1(0.5 ∗ Servi.V isD ∗ Servi.α) (5)

Area(∩n
i=1Servi)) =

n∑

i=1

(∩n
i=1(0.5)(Servi.V isD)((Servi.α)) (6)

If selection does not meet the maximum achievable coverage, i.e., Cov is not
met, the R is adjusted and increased to R′. Further, spatio-temporal selection
and filtering w.r.t textual correlation is repeated until the maximum coverage is
achieved. R′ is achieved by increasing the length l and width w of the region R.
The minimum unit of increase is 7 m, i.e., average lease measurable increment in
decimal latitude and longitude values. If required l and w are further incremented
in multiples of 7 m.

5.4 QoS-Aware Service Selection

In the final stage of service selection (Algorithm 4), the user defined quality
parameters are considered in selection of the best suited services. The threshold
values of these parameters are adjusted by the user of the service at time of
query generation.

6 Experiments and Results

A set of experiments is conducted to evaluate, analyse and investigate the con-
tribution of our proposed framework in comparison to image processing.

Social-Sensor Cloud Service for Scene Reconstruction 49

Algorithm 4. QoS-Aware Service Selection
Input: QU , i.e., quality requirements of the user and S′ is the set of filtered services
related to query
Output: The set of selected services SelServ, related to query.

1: for Each Serv in S′ do � System defined QoS
2: for Each Qi in QServ do
3: if Serv.Q ≥ Qi then � TxtCo and CovR are separately
4: Serv ∈ S′′ � compared. If all true then condition satisfies

5: for Each Serv in S′′ do � User defined QoS
6: for Each Qi in Qi do
7: if Serv.Q ≥ Qi then � Res, ColQ are separately
8: Serv ∈ SelServ � compared. If all true then condition satisfies

6.1 Experimental Setup

To the best of our knowledge, there is no real spatio-temporal service test case
to evaluate our approach. Therefore, we focus on evaluating the proposed app-
roach using the real dataset. The set is a collection of 10000 user uploaded images
downloaded from social networks (flicker, twitter, google images, etc.). To create
the services based on images, we have extracted its geo-tagged location, special
mentions and tags as its textual description. Time when an image was captured,
camera direction, maximum visible distance of a camera and camera viewable
angle are abstracted as the functional property values dir, VisD and α respec-
tively. Quality features, i.e., colour quality and resolution, are abstracted as QoS
property values. In addition, QoS parameters of price are manually assigned
to all services. The threshold values of these parameters {textual correlation}
are adjusted by the user of the service. For textual correlation, using previous
research as reference we have set the value of threshold θ = 0.5 [16]. For coverage,
we have arbitrarily used above 80% for experimental purpose.

We generated 10 different queries based on the locations in our dataset.
In these experiments we evaluate service selection based spatio-textual features.
For our proposed approach, we have conducted the experiments with 10 different
queries, e.g.,

q < R, d, ts, te,Qi > - where

– R(< x, y >, l, w) = (-37.8101008,144.9634339, 5m, 2m)
– d = (Melbourne Central, Melbourne CBD)
– ts = 2:39:20 pm AEST, Wednesday, 14 June 2017
– te = 2:59:23 pm AEST, Wednesday, 14 June 2017
– QU = ($0.0, 1600x1200, any)

The results of these experiments are evaluated against the traditional image
processing technique using SIFT (Scale-Invariant Feature Transform) [14]. In
the second part of the experiment we have set a baseline for comparison. All
the images are manually analysed by human to form a baseline for this experi-
ment. We have used a 360o structured image dataset I of the area of interest R.

50 T. Aamir et al.

The image set is extracted from Google Map Street View. The selection is
achieved by similarity analysis between the SIFT features of the image set I
and our experiment dataset. This is achieved by individually comparing the key
point feature vector of the images in I and the experiment dataset, and finding
the images’ matching features based on Euclidean distance of their feature vec-
tors. To transform the matching keypoints into a scalar quantity, the percentage
of keypoints that match the reference map is calculated [14], i.e., the number of
matching keypoints (Number of mKP) divided by the total number of keypoints
(Total number of KP) for each image [14]. Further, images are selected if the
percentage of similarity is above 80% for the experiment purpose.

All the experiments are implemented in Java and Matlab. All the experiments
are conducted on a Windows 7 desktop with a 2.40 GHZ Intel Core i5 processor
and 8 GB RAM.

6.2 Evaluation

We have aimed to evaluate the proposed approach on the basis of (1) effectiveness
in selecting related services (precision), (2) accurate and required coverage of the
user required region (recall) and (3) time taken to select related services (exe-
cution time). Precision and recall matrices are used for evaluating the proposed
framework against the image processing approach. All the images and selected
services are manually analysed by human to form a baseline for this experiment.
We have investigated that how precision and recall of the query result vary by
applying the proposed approach in comparison to SIFT image processing. The
experiments show that in terms of precision and recall the proposed approach
shows slightly better performance than the image processing. The reason being
that the proposed approach focuses on event based selection where as the image
processing approach is location oriented. Our proposed approach helps in bet-
ter selection of images for scene reconstruction because it considers the related
textual data that describes a situation from various aspects, e.g., what is hap-
pening, where it is happening, who are involved and what are the effects on
surrounding. Whereas, the image processing approach is more location oriented
because it selects the images based on the similarity of surrounding landmarks
rather than the insight of event being covered. Moreover, in terms of execution
time efficiency, the experiments’ results show that the time ratio between the

Fig. 7. Precision Fig. 8. Recall

Social-Sensor Cloud Service for Scene Reconstruction 51

Table 1. Execution time

proposed approach and image processing is 1:100. The results are depicted in
Figs. 7 and 8 and Table 1.

7 Conclusion

In conclusion, this paper proposes a social-sensor cloud service selection frame-
work based on spatio-temporal and textual correlation, and QoS parameters. We
conducted the experiments to evaluate the proposed framework in comparison
to a traditional image processing approach. Experimental results show that our
approach is better than the traditional image processing approach. In future, we
plan to focus on social-sensor clouds services composition for fast visual summary
of the scene for scene building and event analysis.

Acknowledgement. This research was made possible by DP160103595 grant from
Australian Research Council and NPRP 9-224-1-049 grant from the Qatar National
Research Fund (a member of The Qatar Foundation). The statements made herein are
solely the responsibility of the authors.

References

1. Rosi, A., Mamei, M., Zambonelli, F., Dobson, S., Stevenson, G., Ye, J.: Social
sensors and pervasive services: approaches and perspectives. In: PERCOM 2011
(2011)

2. Chard, K., Caton, S., Rana, O., Bubendorfer, K.: Social cloud: cloud computing
in social networks. In: IEEE 3rd ICCC 2010, pp. 99–106 (2010)

3. Aggarwal, C., Abdelzaher, T.: Social sensing. In: Aggarwal, C. (ed.) Managing and
Mining Sensor Data, pp. 237–297. Springer, Boston (2013)

4. Neiat, A.G., Bouguettaya, A., Sellis, T., Ye, Z.: Spatio-temporal composition of
sensor cloud services. In: ICWS 2014 (2014)

5. Elers, S.: Online investigation: using the internet for investigative policing practice.
Australasian Policing 6(1), 7–9 (2014)

6. Socialsensors.com.sg, Social Sensors - Sensing real-world activities from Social
Media. http://socialsensors.com.sg/. Accessed 10 Dec 2015

7. Chae, J., Thom, D., Bosch, H., Jang, Y., Maciejewski, R., Ebert, D.S., Ertl, T.:
Spatiotemporal social media analytics for abnormal event detection and examina-
tion using seasonal-trend decomposition. In: VAST 2012 (2012)

8. Dong, X., Mavroeidis, D., Calabrese, F., Frossard, P.: Multiscale event detection
in social media. In: DMKD 2014 (2014)

9. Ghari Neiat, A., Bouguettaya, A., Sellis, T.: Spatio-temporal composition of crowd-
sourced services. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.)
ICSOC 2015. LNCS, vol. 9435, pp. 373–382. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48616-0 26

http://socialsensors.com.sg/
http://dx.doi.org/10.1007/978-3-662-48616-0_26
http://dx.doi.org/10.1007/978-3-662-48616-0_26

52 T. Aamir et al.

10. Guo, B., et al.: From participatory sensing to mobile crowd sensing. In: PERCOM
Workshops. IEEE (2014)

11. Fernndez, J., et al.: An intelligent surveillance platform for large metropolitan areas
with dense sensor deployment. Sensors 13(6), 7414–7442 (2013)

12. Balke, W.-T., Diederich, J.: A quality-and cost-based selection model for multime-
dia service composition in mobile environments. In: ICWS 2006 (2006)

13. Perera, C., Arkady, Z., Peter, C., Dimitrios, G.: Sensing as a service model for
smart cities supported by internet of things. Trans. ETT 25(1), 81–93 (2014)

14. Lowe, D.G.: Distinctive image features from scale-invariant key points. Int. J.
Comp. Vis. 60(2), 91–110 (2004)

15. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness
for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol.
2588, pp. 241–257. Springer, Heidelberg (2003). doi:10.1007/3-540-36456-0 24

16. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based mea-
sures of text semantic similarity. In: AAAI 2006, vol. 6 (2006)

17. Gretzel, U., Marianna, S., Zheng, X., Chulmo, K.: Smart tourism: foundations and
developments. Electron. Mark. 25(3), 179–188 (2015)

18. Kantarci, B., Hussein, M.: Trustworthy crowdsourcing via mobile social networks.
In: GLOBECOM 2014, pp. 2905–2910. IEEE (2014)

19. Slabaugh, G., et al.: A survey of methods for volumetric scene reconstruction from
photographs. In: Mueller, K., Kaufman, A.E. (eds.) Volume Graphics 2001. Euro-
graphics. Springer, Vienna (2001)

20. Limna, T., Tandayya, P.: A flexible and scalable component-based system archi-
tecture for video surveillance as a service, running on infrastructure as a service.
Multimed. Tools Appl. 75(4), 1765–1791 (2016)

21. Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-temporal indexing for large
multimedia applications. In: Proceedings of the 3rd IEEE International Conference
on Multimedia Computing and Systems, pp. 441–448 (1996)

http://dx.doi.org/10.1007/3-540-36456-0_24

Quark: A Methodology to Transform
People-Driven Processes to Chatbot Services

Anup K. Kalia1(B), Pankaj R. Telang2, Jin Xiao1, and Maja Vukovic1

1 IBM T.J. Watson, Yorktown Heights, NY, USA
anup.kalia@ibm.com, {jinoaix,maja}@us.ibm.com

2 SAS Institute Inc., Cary, NC, USA
ptelang@gmail.com

Abstract. Human is a key cost factor in today’s service- and business-
oriented processes. To reduce labor, we propose an approach to convert
people driven processes to a chatbot service. Current approaches to cre-
ate a chatbot service are based on formal representations or dialog based
methodologies. Formal representations provide techniques for soundness
verification and exception handling, however, do not provide a software
methodology that capture steps for developers to build a chatbot service.
Dialog based methodologies provide different step-wise approaches to cre-
ate a chatbot service, however, ignore the formal aspects. To bridge the
gap, we propose a novel methodology, Quark, that guides developers in
producing a model that is complete and sound. Specifically, Quark takes
a business process flow as input and produces a Watson Conversation
model. Quark employs the notions of goals and commitments which pro-
vide a formal means for completeness and soundness. We present Quark
using a change management process scenario.

1 Introduction

Traditional business processes involve multiple process steps that humans exe-
cute. Such processes suffer from unpredictable delays and errors caused by the
humans. The human errors may arise due to inadequate skill level or other cog-
nitive state such as disinterest, distraction, and tiredness. The delays and errors
can be reduced by employing automated agents for a subset of business tasks
that do not need human oversight. An automated agent that provides an effective
natural language interface for a human to interact is a chatbot.

To ensure a desired business outcome, the human-chatbot interactions need
to be designed in a principled manner. Researchers have proposed various
approaches for designing human-chatbot interactions. These approaches are
either too formal for practitioners’ effective use, or too informal leading to spec-
ifications that cannot be effectively verified. We propose a novel methodology,
Quark, to bridge the gap between the formal and informal approaches.

Quark employs well studied abstractions of goals and commitments [11,13]
for designing the human-chatbot interactions. A goal models a condition that
a human or an (automated) agent desires to bring about. In a commitment,
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 53–61, 2017.
https://doi.org/10.1007/978-3-319-69035-3_4

54 A.K. Kalia et al.

a debtor agent commits to a creditor agent to bring about a consequent condition
if an antecedent condition holds.

Quark considers a business process model as its input and produces a dialog
model. Specifically, we adopt BPMN [10] for the process model, and Watson
Conversation [7] for the dialog model. From the process model, Quark identify
roles that can be automated by a chatbot. For each role, Quark identifies goals
and commitments. From the goals and commitments, Quark produces a set of
interactions that are complete and sound. Finally, it generates a set of intents
and a dialog model for the Watson conversation to build a chatbot service.
Contributions. This paper proposes a novel methodology, Quark, for develop-
ing a Watson Conversation model starting from a business process model. We
demonstrate the methodology on a change management process.

2 Related Work

Researchers have extensively studied the topic of developing conversation mod-
els. For example, in services, Ardissono et al. [2] propose a conversation model
that enables a conversation flow between the web-service consumers and the
web-service providers. Bentahar et al. [3] provide a formal model of conver-
sations based on the concepts of commitments and arguments. Cost et al. [5]
propose Colored Petri Nets (CPN) for modeling conversations. Nezhad et al. [9]
propose eAssistant that identifies actions in terms of request and promises to
auto-triage the user conversations.

In the area of dialog-based approaches Traum [6] provides a methodology
to create a computational model for a virtual human meant to operate in a
specific domain. In terms of robustness checking, Traum do not clearly emphasize
that his model will be robust on all interaction paths. Alès et al. [1] provide
a methodology to extract a dialog model from a corpus by extracting several
aspects from human dialogs, such as speech acts, social aspects, and gazes.

In multiagent systems, Bresciani et al. [4] propose the Tropos methodology
that allows developers to design softwares in terms of goals. The methodol-
ogy Gaia [14] assists developers to design organizations using responsibilities,
permission, activities, and protocols. The methodology Comma [12] helps devel-
opers to capture business scenarios using commitments and creates a process
that is sound with respect to commitments. The methodology Muon [8] helps
developers to capture commitments semantics from interaction scenarios, handle
exceptions, and then use the semantics to create sound processes. These method-
ologies unlike dialog based methodologies are formal, however, do not provide
an approach to create a chatbot service.

From the related work, we infer the following requirements for a chatbot
service: (1) ascribe meanings to messages or requests, (2) provide a meaning-
ful response at each conversational turn that ensures reliability and flexibility
provided by the chatbot, (3) ensure soundness of a conversation. To meet the
requirements, we use the notion of goals and commitments to model a chatbot

Quark: A Methodology to Transform People-Driven Processes 55

service. Goals capture the agent intentions, and commitments capture the mean-
ings of messages exchanged between the participants in a service. The meanings
provide a basis for verifying the soundness of conversations.

3 Quark Methodology

To describe our methodology, we consider the change management business
process. In the process, a user interacts with a help desk to provide its request.
The help desk validates the request of the user and sends it to a dispatcher.
The dispatcher comprehends the intent of the request (e.g., a database change
request or a memory change request) and sends it to the appropriate subject
matter expert (SME). The SME extracts the parameters in the request. If the
SME finds a parameter missing in the request, the SME requests the parameter
from the user. Once the user provides the missing parameter, the SME sends
the complete parameters to the change owner for a technical risk assessment.
Then, the change owner sends them to the account owner for a business risk
assessment. The account owner after its assessment, sends the request to the
approver. Once the approver approves the request, it sends the request to the
change owner. The change owner sends the request to the executor. The executor
executes the request and sends the report to the user.

Quark takes a business process model as its input and produces an IBM
Watson model of human-chatbot interactions that are necessary to realize the
business process. We now describe the steps of the Quark methodology.

3.1 M1: Identify Roles Served by Humans That Can Be Automated

This step identifies roles served by humans that can be automated by a service.
The step requires organizational knowledge and domain expertise. A human is
necessary for a role in a process if that role’s business tasks are not clearly
defined, or if the business tasks inherently require human insight. Generally, a
role whose business tasks are formally defined is a good candidate for automa-
tion. After identifying the roles for automation, this step combines those roles
in a single role. For convenience, we call this role bot. Next, the step reduces
the business process by removing the roles identified for automation, and adds
the single role bot. All the tasks under the roles identified for automation are
transferred over to the role bot.

For the change management process, we identify Help Desk, Dispatcher,
SME, Account Owner, Change Owner, approver, and Executor as
roles that can be automated.

3.2 M2: Identify Goals of Each Role

This step identifies the goals of each role. For each role, the tasks from the busi-
ness process map into the (success conditions of) goals of that role. Specifically,
for a task a in the process model, we specify a goal G(x, p, a, f) in which x

56 A.K. Kalia et al.

is the role, p is the preceding task that is a necessary precondition for task a,
the success condition is the task a, and the failure condition is f . If the failure
condition is not explicitly modeled in the business process, then process domain
expertise is necessary to identify it. For example, User wants to execute its
change request. Thus, execute change is as a goal of user. Similarly, given a
change request, bot needs to identify the correct parameters for the change.
Thus, correct params is a goal of bot with the precondition that the change
request has been provided.

Table 1 shows the goals of the roles: user and bot. In the table, t is a
timeout that represents the failure condition, and the operator ∧ represents
logical conjunction.

Table 1. Roles and their goals for the change management process.

Actors Goals

User G1 = G(User, T, execute change, t)

bot G2 = G(bot, provide request, validate request, t)

G3 = G(bot, validate request, identify intent, t)

G4 = G(bot, identify intent, correct params, t)

G5 = G(bot, correct params, perform tech risk
assessments, t)

G6 = G(bot, correct params, perform biz risk assessments,
t)

G7 = G(Bot, perform tech risk assessments ∧ perform biz
risk assessments, approve, t)

G8 = G(bot, approve, execute change, t)

G9 = G(bot, execute change, send report to user, t)

3.3 M3: Identify Commitments Between Roles

This step identifies the commitments by analyzing goals of each role. For each
goal, the step first asks the question: can the role satisfy the goal on its own, that
is, can the role bring about the success condition of the goal on its own? If yes,
then a commitment is not necessary. If no, then the step adds a commitment.
The different elements of the commitment are identified as below.

– Debtor: is the role that can be bring about the goals’s success condition.
– Creditor: is the role that has the given goal.
– Antecedent: is a form of a precondition that the creditor brings about in

exchange of bringing about the goal’s success condition. The precondition
might be a form of a payment, or some other action. In some cases, the
precondition might be already met. In those cases, it is set to true (�).

– Consequent: is the success condition of the goal.

Quark: A Methodology to Transform People-Driven Processes 57

In the change management scenario from user has the goal of execute change.
The user cannot satisfy this goal on her own. bot can bring about execute
change. So the step identifies a commitment: C(bot, user, provide request, send
report to user). Observe that provide request is a necessary precondition for bot
to execute the change and to send a report. Similarly, bot has a goal to identify
correct parameters for the change. bot cannot achieve this goal on her own.
So, the step identifies a commitment: C(user, bot, modification request, correct
params). Here, user commits to bot to provide the correct parameters when
bot makes a modification request.

Table 2 shows the commitments from the change management process.

Table 2. Commitments for the change management process.

Roles Commitments

User C1 = C(User, bot, modification request, correct params)

bot C2 = C(bot, User, provide request, send report)

3.4 M4: Produce a Set of Interactions

The fourth step in our methodology is to identify a set of interactions based on
the roles, goals, and commitments identified from Steps M1, M2, and M3. Kalia
et al. [8] provides several guidelines for developers to create such interactions.
They are as follows.

– Interactions should represent the core positive outcomes. For example the
scenario where User provides a request and it’s executed by bot provides
desirable enactments. However, a scenario where User refusing to provide
appropriate request when asked for is not useful.

– Interactions should reflect social or organizational relationships. For example,
the interactions between bot and User should lead to creation of commit-
ments.

– Interactions should ignore irrelevant messages. For example, greeting message
exchanged between User and bot can be ignored.

– Interactions should avoid irrelevant roles and role instances. For example, we
cannot add additional roles that are not part of desirable enactments.

Based on the guidelines, we create a set of interactions that activate and
satisfy the goals and commitments for User and bot. Table 3 describes a set of
interactions that captures the modeled goals and commitments.

58 A.K. Kalia et al.

Table 3. A set of interactions between user(S) and bot(R), act represents active, and
sat represents satisfied.

S R Message Goals Commitments

User bot Hi

bot User provide your request act(C2)

User bot add 2GB of memory
to my server

act(G1) ∧ act(G2) ∧
act(G3) ∧ act(G4)

det(C2)

bot User provide the server
details

sat(G2, G3) act(C1) ∧ det(C1)

User bot server info is
cobalt.ibm.com

sat(G4) ∧ act(G4) ∧
act(G5) ∧ act(G6) ∧
act(G7) ∧ act(G8) ∧
act(G9)

sat(C1)

bot User here is the report sat(G4) ∧ sat(G5) ∧
sat(G6) ∧ sat(G7)
∧ sat(G8) ∧ sat(G9)

sat(C2)

3.5 M5: Repeat Steps M2 and M3 to Produce Additional Goals and
Commitments

The fifth step of our methodology is to repeat steps M2 and M3 to identify
additional goals and commitments required to provide robustness to the chatbot
service. In this step, developers can consider scenarios that are not present in
the current change management process. For example, developers can think of
possible deviations such as what happens if bot could not identify the intent
of User’s request? or what happens if bot does not approve User’s request?.
To address such scenarios, we can first create goals and commitments required
to address the scenarios and then we can add additional set of interactions to
satisfy the goals and commitments.

For addressing what happens if bot could not identify the intent of User’s
request?, we look for the goals and commitments. Since, the goal of bot to iden-
tify the intent is present in Table 1, we do not add any new goal. To achieve
the goal, bot needs a new request from User. Thus, it requests a commitment
from User to provide a correct change request. If User agrees, the new commit-
ment is created. Similarly, for the second scenario, the goal of bot to approve is
present in Table 1. However, if bot cannot achieve its goal, it can request User
to create a commitment to provide a correct change request. In both the cases,
User has the autonomy to create new commitments or terminate the existing
commitments. Based on new commitments identified we generate a new set of
interactions that create and satisfy the commitments. We show the interactions
in the next step of our methodology (Table 4).

Quark: A Methodology to Transform People-Driven Processes 59

Table 4. Additional commitments for the change management process.

Roles Commitments

User C3 = C(User, bot, intents not identifiable, provide new request)

User C4 = C(User, bot, cannot be approved, provide new request)

3.6 M6: Translate the Interactions to IBM Watson Model

In this step, we accomplish two things. First, we add the natural language inter-
face to the current methodology. Then, we build a chatbot service. In IBM
Watson’s model [7], the first step is create intents and entities.

An intent captures the purpose of User’s request. bot, identifies the intent
and then make an appropriate response. The guidelines to construct an intent
is as follows.

– Collect as many as User’s request and categorize them. For example, for the
change management process, we can gather User’s request for different kinds
of change requests such as hardware, database, os management, and so on.

– If intents are too similar cluster them together or else keep them separate. For
example, we can keep hardware related change requests such as cpu and mem-
ory specific changes together. Similarly, we can keep database run operations
and management together.

– Keep refining the intents. With more data, intents can be refined further.

Based on specific entities, bot chooses specific actions to perform. For exam-
ple, consider two change requests. One, where User requests to add memory to
its VM and another where User requests to add cpu to its VM. Both the change
request gets identified with #hardware intent. Then, based on the entities such
as cpu and memory, appropriate action is taken by bot.

A child node is same as a node, however, it matches a user requests with an
entity as its condition. Recall, that the output from the previous step M4 was
a set of additional commitments. Using the additional commitments, we refine
the interactions in Table 5. We considered the interactions that is verified with
respect to goals and commitments for creating a dialog model. Based on user’s
request, we identify intents and entities.

Based on intents and entities identified, we construct a dialog model as shown
in Fig. 1. Consider an example, if User provides a hardware request add 2cpu to
server cobalt.ibm.com. The dialog model in can identify cpu as one of the entity,
however, it cannot identify the server information, if it’s not explicitly provided.
Thus, goals and commitments to validate cpu request could have been used to
refine the dialog model.

60 A.K. Kalia et al.

Table 5. A set of interactions between user and bot that captures the intents I and
the entities E.

S R Message Intents Entities

User bot Hi I1 = #conv start

bot User provide your request resp(I1)

User bot add 2 to my server I2 = #none

bot User provide a valid request resp(I2)

User bot add 2GB memory to my server I3 = #hardware E1 = memory

bot User provide server details resp(I3)

User bot server info is cobalt.ibm.com E2 = server

bot User here is the report resp(E2)

Fig. 1. Output : the dialog model created from intents and entities.

4 Conclusion and Future Work

This paper describes a novel methodology for developing human-chatbot inter-
actions. We develop Quark using a typical change management process. We
formally define the concepts that Quark employs. We evaluate Quark on a loan
processing scenario. Quark produces human-chatbot interactions that are com-
plete and sound.

In the future, we plan to develop tooling for Quark that will guide develop-
ers through the methodology steps. We will also conduct developer studies to
evaluate Quark’s effectiveness.

References

1. Alès, Z., Duplessis, G.D., Şerban, O., Pauchet, A.: A methodology to design human-
like embodied conversational agents. In: International Workshop on Human-Agent
Interaction Design and Models, Valencia, Spain, pp. 1–16 (2012)

2. Ardissono, L., Cardinio, D., Petrone, G., Segnan, M.: A framework for the server-
side management of conversations with web services. In: Proceedings of the 13th
International World Wide Web Conference on Alternate Track Papers and Posters,
pp. 124–133. ACM, New York (2004)

Quark: A Methodology to Transform People-Driven Processes 61

3. Bentahar, J., Moulin, B., Chaib-draa, B.: Towards a formal framework for conver-
sational agents. In: Proceedings of Agent Communication Languages and Conver-
sation Policies Workshop, Melbourne, Australia, pp. 1–11 (2003)

4. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an
agent-oriented software development methodology. J. Auton. Agents Multi Agent
Syst. 8(3), 203–236 (2004)

5. Cost, R.S., Chen, Y., Finin, T., Labrou, Y., Peng, Y.: Using colored petri nets
for conversation modeling. In: Dignum, F., Greaves, M. (eds.) Issues in Agent
Communication. LNCS, vol. 1916, pp. 178–192. Springer, Heidelberg (2000). doi:10.
1007/10722777 12

6. Traum, D.: Talking to virtual humans: dialogue models and methodologies for
embodied conversational agents. In: Wachsmuth, I., Knoblich, G. (eds.) Modeling
Communication with Robots and Virtual Humans. LNCS, vol. 4930, pp. 296–309.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-79037-2 16

7. IBM. Conversation. IBM (2016). https://www.ibm.com/watson/developercloud/
conversation.html

8. Kalia, A.K., Singh, M.P.: Muon: designing multiagent communication protocols
from interaction scenarios. JAAMAS 29(4), 621–657 (2015)

9. Nezhad, H.R.M., Gunaratna, K., Cappi, J.: eAssistant: cognitive assistance for
identification and auto-triage of actionable conversations. In: Proceedings of the
26th International Conference on World Wide Web Companion, WWW, Perth,
Australia, pp. 89–98 (2017)

10. OMG. Business process model and notation (BPMN), version 2.0 beta. Object
Management Group (2010). http://bpmn.org/

11. Singh, M.P.: An ontology for commitments in multiagent systems: toward a unifi-
cation of normative concepts. Artif. Intell. Law 7(1), 97–113 (1999)

12. Telang, P.R., Kalia, A.K., Singh, M.P.: Engineering service engagements via com-
mitments. IEEE Internet Comput. 18(3), 46–54 (2014)

13. Telang, P.R., Meneguzzi, F., Singh, M.P.: Hierarchical planning about goals
and commitments. In: Proceedings of the 2013 International Conference on
Autonomous Agents and Multi-Agent Systems, St. Paul, MN, USA, pp. 877–884
(2013). IFAAMS

14. Woolridge, M., Jennings, N., Kinny, D.: The gaia methodology for agent-oriented
analysis and design. J. Auton. Agents Multi Agent Syst. 3(3), 285–312 (2000)

http://dx.doi.org/10.1007/10722777_12
http://dx.doi.org/10.1007/10722777_12
http://dx.doi.org/10.1007/978-3-540-79037-2_16
https://www.ibm.com/watson/developercloud/conversation.html
https://www.ibm.com/watson/developercloud/conversation.html
http://bpmn.org/

Foundations

Cloud Certification Process Validation Using
Formal Methods

Maria Krotsiani(B), Christos Kloukinas, and George Spanoudakis

City, University of London, London, UK
{Maria.Krotsiani,C.Kloukinas,G.E.Spanoudakis}@city.ac.uk

Abstract. The importance of cloud-based systems is increasing con-
stantly as they become crucial for completing tasks in an effective and
affordable manner. Yet, their use is affected by concerns about the secu-
rity of the data and applications provisioned through them. Security
certification provides a means of increasing confidence in such systems,
by establishing that they fulfil certain security properties of interest. Cer-
tification processes involve security property assessments against specific
threat models. These processes may be based on self-assessment, testing,
inspection or runtime monitoring of security properties, and/or combina-
tions of such methods (hybrid certification). One important question for
all such processes is whether they actually deliver what they promise.
This question is open at the moment and is the focus of our work.
To address it, we have developed an approach that formalises certifica-
tion processes, by translating them in the language of the Prism model-
checker and uses Prism to verify properties of interest on the model of
the certification process, under specific environmental assumptions.

Keywords: Cloud certification · Validation · Probabilistic model
checking

1 Introduction

Certification of cloud systems security is important for increasing confidence in
cloud service provision. Security certification has traditionally been based on
standards and certification schemes (e.g., ISO27001 [22], ISO27002 [22], Com-
mon Criteria [9]), which define the security controls that a system should imple-
ment to be secured under specific threat models. Certification processes tend to
be lengthy and costly, reducing their use [14]. A number of certification schemes
focusing on cloud systems and services has also emerged. Some of these schemes
are based on self-assessment [12,15,16]. Other certification processes use test-
ing [13] or a combination of formal analysis and testing [8]. Most current cer-
tification schemes do not involve a continuous assessment of security, leading
to proposals incorporating continuous monitoring of cloud systems and services
security, as for example in the CUMULUS project [19,20]. In CUMULUS, secu-
rity properties are expressed in Event Calculus [27] and are continuously moni-
tored using the EVEREST [28] monitoring platform.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 65–79, 2017.
https://doi.org/10.1007/978-3-319-69035-3_5

66 M. Krotsiani et al.

In this paper, we present an approach that enables the analysis and valida-
tion of cloud certification processes themselves – a necessity for both certifiers
and those seeking certification, so that they can better understand what they
are committing to when agreeing to a particular certification process. It is based
on formalising the process, in order to enable the formal analysis of its conse-
quences under different environment assumptions, i.e., different probabilities for
the occurrence of specific environment events (e.g., monitoring results and/or
outcomes of the testing process).

Our approach allows a Certification Authority (CA), i.e., the stakeholder,
who establishes and oversees the operation of a certification scheme, to define a
Certification Model (CM) as an input for the certification process. These CMs are
specified in an XML-based language and then translated into probabilistic timed
automata, in the language of the probabilistic model-checker PRISM [4,21].
Thus, one can verify different properties, e.g., find the probability of issuing
a certificate after monitoring a cloud system for a given period of time, or the
probability of revoking a certificate within a given period time after it was issued.

In the following, Sect. 2 presents the overall framework and Sect. 3 gives a
running example of a CM. Section 4 presents the certification process and how
this is mapped at a high-level into a PRISM model. In Sect. 5 we present the
translation from our CM language to PRISM. Section 6 presents the outcomes
of experiments that we have conducted, while Sect. 7 reviews related work and,
finally, Sect. 8 provides concluding remarks and future directions.

2 Framework Overview

A certification process starts when a Certification Authority (CA) submits a
Certification Model (CM) to the CUMULUS Certification Platform. The Certi-
fication Platform in Fig. 1 has three main components. The CM2Monitor Trans-
lator component translates the CM into an executable format for the platform.
It also extracts the operational monitoring specification (i.e., monitoring rules)
for the Monitor to check against the systems events. The Certification Manager
component manages the overall certification process. It receives the translated
CM and it communicates with the monitor (sending rules and receiving moni-
toring results). Finally, the Anomaly Manager component detects anomalies by
using the monitoring results. Monitoring rules in CUMULUS are divided into
anomaly and assertion rules, i.e., soft constraints requiring further inspection
(anomalies) and hard constraints that must be met always (assertions).

The Deployment Infrastructure builds on a general-purpose monitoring archi-
tecture [17], and it consists of event sensors, a monitor, and a CM2Monitor
Translator. This infrastructure automates the certification process at run-time,
but since CMs and system behaviours can be complex, CMs themselves must be
validated. For this purpose, we have extended the framework with a tool-chain
for formal validation of CMs. We have also re-implemented the Certification
Manager execution engine to follow the formal semantics. Validation is based on
translating CMs to the Prism model-checker’s language [4,21]. In order to explore

Cloud Certification Process Validation Using Formal Methods 67

Fig. 1. Overall Architecture (Color figure online)

the CM consequences for specific systems, it also produces a formal model of its
environment. This environment is inside the light blue shaded area in Fig. 1,
comprising the Anomaly Manager, the system itself, and the system’s monitor.
Since the environment is too complex to be described formally in details, it is
abstracted away and represented as a source of stochastic monitoring results. By
using Prism, involved parties can check for properties such as:

– Is the CM respecting the high-level certificate life cycle?
– What is the probability of having to revoke an issued certificate?
– How is this probability affected by other parameters through time?

The outcomes of this validation are passed back to the responsible CA to adapt
the CM accordingly, e.g., adjust terms to reduce the possibility of a revocation.

3 Running Example

Figure 2 presents an example to demonstrate the different aspects of our app-
roach. In this example, a certificate starts in the sInit state. The transi-
tion issue to the state sAccept occurs when guardI is satisfied. This guard
states that: (i) violated assertion rules should not be excessive (Violated-
Assertions() < TooManyVio); (ii) unresolved anomalies should be below their
threshold; (iii) accumulated evidence should be at least EnoughEvents; and (iv)
the cloud service should be monitored for at least the defined monitoringTime.

The satisfaction of the guardRf in the state sInit fires the refuse transition
that leads to the final state sFinal. The satisfaction of the guardRv in the
sAccept state fires the revoke transition, which also leads to the sFinal state.
Finally, the satisfaction of the guardE in the sAccept state fires the expire
transition that leads back to the sInit state, where the whole process starts
again.

68 M. Krotsiani et al.

Fig. 2. Example Certification

4 Certification Process and Prism Model

4.1 Certification Model

Schema. The certification model is specified in XML, with its BNF equivalent as
produced by the K Framework [26] shown in Fig. 3. The top element of the model
of interest to this paper is the LifeCycle. LifeCycle declares the unit of time
that is assumed for the certification process and a list of typed parameters (i.e.,
constants) of interest to the specifier “Ps”, such as the TooManyVio in Fig. 2.
Parameters can be of four different types: boolp, intp, floatp, and durationp (i.e.,
integers associated with a time unit). LifeCycle also declares typed variables
“Vs”. These can be of one of the following five types: bool, int, duration, enu-
meration, and clock. Variables cannot be of type float as Prism does not support
such a type [4]. Parameters and variables have a name and an initial value. In
addition, int and duration variables have min and max values, e.g.,usedevents
in Fig. 2. Finally, LifeCycle declares a list “Ts” of model transitions Each tran-
sition has a type, a guard, and a sequence of variable assignments. Type can be
a user-defined one (other) or a fixed one (issue, expire, refuse, and revoke).
The guard is a predicate (Pred in Fig. 3) over variables and parameters and the
predefined Certification Manager functions (SeenEvents, etc.– cf. next section).

A certification model also contains other XML elements of use to the frame-
work that we omit here as they are of no relevance to this paper (e.g., the Target
of Certification defining the service to be certified, etc.).

Cloud Certification Process Validation Using Formal Methods 69

Fig. 3. BNF representation of the Certification Model XML Schema (fragment)

Semantics. The overall model comprises the certification process manager that
receives events from its environment, which is represented by five parameters:

AnomalyP : Probability of an event to be an anomaly and not an assertion
rule;

ViolationP : The (conditional) probability of an assertion rule to be violated;
UnresolvedP : The (conditional) probability of an anomaly to not be resolved;
minRuleTime : Minimum time it takes for a new rule event; and
maxRuleTime : Maximum time it takes for a new rule event.

Using these parameters, the environment produces anomaly and assertion events
with a temporal distance in [minRuleTime, maxRuleTime]. Moreover, it updates a
set of model variables representing the Certification Manager counter functions:

SeenEvents : Events produced since the beginning of time, t = 0;
DetectedAnomalies : Anomaly events produced since t = 0;
ResolvedAnomalies : Anomaly events resolved since t = 0;

UnresolvedAnomalies : Anomaly events not resolved since t = 0;
SatisfiedAssertions : Satisfied assertion events since t = 0;
ViolatedAssertions : Violated assertion events since t = 0;

Formal Modelling Framework. As we require probabilities and time to represent
the environment and express the properties of interest for validating a certifica-
tion process, our model uses Probabilistic Timed-Automata (PTA) [25], as sup-
ported by the Prism model checker [21]. A PTA is a tuple P = (Locs , l0,Clocks,
Act , Inv ,EnabConds ,ProbTrans,Lab), where [25]:

– Locs is a finite set of locations, and l0 ∈ Locs;
– Clocks is a finite set of clocks, and Act a finite set of action names;
– Inv is an invariant on Locs and clock constraints – Inv : Locs → CC (Clocks);

70 M. Krotsiani et al.

Listing 1.1. Environment in Prism
1 formula SeenEvents =

2 min(MaxInteger , SatisfiedAssertions + ViolatedAssertions + ResolvedAnomalies +

UnresolvedAnomalies);

3 formula DetectedAnomalies = min(MaxInteger , ResolvedAnomalies + UnresolvedAnomalies);

4 timeToNextRuleResult : clock; // Clock used for the environment events .
5 // Functions .
6 ViolatedAssertions : [0 .. MaxInteger] init 0; UnresolvedAnomalies: [0 .. MaxInteger

] init 0;

7 SatisfiedAssertions: [0 .. MaxInteger] init 0; ResolvedAnomalies : [0 .. MaxInteger]

init 0;

8 invariant (timeToNextRuleResult <= maxRuleTime) endinvariant

9 // The stochastic behaviour of the environment :
10 [event] (timeToNextRuleResult >= minRuleTime)

11 -> AnomalyP *(1- UnresolvedP): (timeToNextRuleResult ’=0)

12 & (ResolvedAnomalies ’ = min(MaxInteger ,ResolvedAnomalies +1))

13 + AnomalyP * UnresolvedP : (timeToNextRuleResult ’=0)

14 & (UnresolvedAnomalies ’ = min(MaxInteger ,UnresolvedAnomalies +1))

15 + (1-AnomalyP)*(1- ViolationP) : (timeToNextRuleResult ’=0)

16 & (SatisfiedAssertions ’ = min(MaxInteger ,SatisfiedAssertions +1))

17 + (1-AnomalyP)* (ViolationP) : (timeToNextRuleResult ’=0)

18 & (ViolatedAssertions ’ = min(MaxInteger ,ViolatedAssertions +1));

– EnabConds are clock conditions – EnabConds : Locs × Act → CC (Clocks);
– ProbTrans is a partial probabilistic transition function, which given a location

and an action name, gives a probability distribution over the next states
(defined by a subset of clocks that are reset to zero by the transition named
with action that leads to a new location, and that location) – ProbTrans :
Locs × Act → Dist(2Clocks × Locs); and

– Lab labels each location with a set of atomic propositions – Lab : Locs → 2AP

Clock constraints over a set of Clocks, CC (Clocks), are defined by the syntax
χ :: = true|x ≤ d|c ≤ x|x + c ≤ y + d|¬χ|χ ∧ χ, where x, y ∈ Clocks and c, d ∈
N [25]. A PTA is well-formed when all enabled transitions take the automaton
to states satisfying the clock invariant – see [25].

Environment Model. Listing 1.1 shows the environment part of the Prism model.
It uses the clock variable timeToNextRuleResult (in line 4) to produce events
between minRuleTime and maxRuleTime time units. The clock invariant (line 8)
imposes the upper bound, while the clock guard (line 10) imposes the lower
bound. Each time an event is produced we have a probabilistic choice between
four possible alternative new states – two relating to anomalies (so conditioned on
AnomalyP) and two to assertions (conditioned on (1−AnomalyP)). In each case
the event is marked as negative (with probability UnresolvedP or ViolationP)
or positive (with their complements), and we update the respective counter
function.

Environment transitions are followed by transitions encoding the CM process.
Process transitions in the Prism model correspond one-to-one to the actions in
the process definition. Thus, for each action in the definition, there is a new
transition with the same guard as the action and the same assignments. The
transition name is the same as the name of the action. An action can be one
of the standard ones: issue, refuse, expire, and revoke. For non-standard
actions, the transition name is prefixed with “u ”, to highlight it as non-standard.

Cloud Certification Process Validation Using Formal Methods 71

Fig. 4. High-level Certificate Life Cycle

Similarly, all user variables have the same prefix to avoid clashes with the con-
stants, variables, and formulæ that we use for book-keeping, e.g., MaxInteger,
SatisfiedAssertions, SeenEvents. In this way, non-standard actions, e.g.,
“notify”, and user-specified variable assignments cannot alter the model seman-
tics.

Listing 1.2. Lifecycle Observer Module
1 module HighLevelLifecycle

2 error : bool init false;

3 active: bool init true;

4 issued: bool init false;

5 [issue] active & !issued & !error

6 -> (issued ’=true);

7 [issue] !(active & !issued & !error)

8 -> (error ’=true);

9 [refuse] active & !issued & !error

10 -> (issued ’= false) & (active ’= false);

11 [refuse] !(active & !issued & !error)

12 -> (error ’=true);

13 [expire] active & issued & !error

14 -> (issued ’= false);

15 [expire] !(active & issued & !error)

16 -> (error ’=true);

17 [revoke] active & issued & !error

18 -> (issued ’= false) & (active ’= false);

19 [revoke] !(active & issued & !error)

20 -> (error ’=true);

21 endmodule//

Semantics of the High-Level Certificate Life Cycle. The semantics also include
the definition of the high-level certificate life cycle as shown in Fig. 4. A certificate
starts at the state NotIssued, where it can be either refused or issued. If it is
issued (Issued), then it can be either expired or revoked. Actions refuse and
revoke end the certificate life cycle, while action expire changes the abstract
certificate state back to the NotIssued state. The high-level certificate life cycle
does not consider any user-defined actions. The HighLevelLifecycle module
in Listing 1.2 observes whether one of the standard actions is taken in a state
where it is not applicable. In this case it sets the variable error to true and
refuses to take any more standard actions (all guarded by !error). The Prism
property “Pmax=? [F (error)]|” verifies that this life cycle is respected, by
asking for the maximum probability of eventually (F) reaching a state where
error is true – this should be zero.

5 Code and Prism Model Generator

As shown in Fig. 1, there are two components that translate the Certifica-
tion Model (CM) – the CM2Prism Translator and the CM2Monitor Translator.

72 M. Krotsiani et al.

Listing 1.3. Pseudo-code for Combining Types (fragment)
1 conv combineAdd(type tpA , type tpB) {

2 bool swapd=false; type tp1=tpA , tp2=tpB;

3 if (tpA > tpB) {tp1=tpB; tp2=tpA; swapd=true;}

4 switch (tp1) {

5 case INT:

6 switch (tp2) {

7 case INT: return INT;

8 case FLOAT: return FLOAT;

9 }

10 case SECONDS:

11 switch (tp2) {

12 case SECONDS: return SECONDS;

13 case MINUTES:

14 return conv(SECONDS ,

15 swapd ? 60 : 1, swapd ? 1 : 60);

16 default: // ask MINUTES

17 conv r=combineAdd(MINUTES , tp2);

18 return conv(SECONDS ,

19 (swapd? 60*r.scale1 :r.scale0),

20 (swapd? r.scale0 :60*r.scale1));

21 }

22 // ... other types

23 }

24 return NONE;

25 }

The former component is responsible for producing a formal Prism model for
analysing the CM and deciding whether it is fit for purpose. The latter compo-
nent produces a set of monitoring rules that are passed to the runtime monitor
(work described in [17]) and at the same time produces an executable version of
the CM for the Certification Manager. As the translation happens at runtime,
we translate to Lisp, as it can execute code produced dynamically.

The translations to the Prism model and Lisp code are done by the same piece
of code – a decision taken to make it easier to track both artefacts and increase
our confidence that they follow the same logic. The translator traverses the XML
structure of the CM using a reflective Java visitor and applies a method visitX
to each element X. Each method visitX updates certain global information (e.g.,
names and types of variables), calls the appropriate visitors for the sub-elements
of the element X and produces one string for the Prism model and another one
for the Lisp code. We keep a (hash) Map of IDs to type information (a name
and a type pair). Thus, a variable definition “bool foo false” will insert into
the symbol map the mapping “foo” → (“u foo”, BOOL). The abstract syntax
tree node for each XML element X contains the type of X, its representation in
Prism, and its representation in Lisp. So for a declaration like “int bar min (3
* 6) max (100 - 7) init (40 + 2)”, which declares an integer variable with
min/max values and an initial value, we create a node of type INT with the
following two strings: (i) “u bar : [(3 + 6)..(100 - 7)] init (40 + 2);”
for Prism, and (ii) “(defparameter u bar (+ 40 2))” for the Lisp interpreter
(which does not need any type information, nor min/max values for the variable).

Type Conversions. The translation is mostly straightforward – what makes it
more interesting is the type-checking and type promotion that is performed,
e.g., when we add a float to an integer the result is a float, in particular for

Cloud Certification Process Validation Using Formal Methods 73

Listing 1.4. Life-cycle Execution Loop Body
1 (defun lifecycle-loop ()

2 (progn

3 (update-time) ;; used by guard and actions

4 (let ((tr (find-if (lambda (x)

5 (funcall (transition-guard x)))

6 *** transitions ***)))

7 (when tr

8 (funcall (transition-action tr))))))

duration expressions. Expressions involving durations are being transformed into
the lowest unit used, e.g.,adding seconds to minutes results in seconds. Listing
1.3 shows the pseudo-code for type conversion when we have an additive expres-
sion. We see that INT+INT produces an INT, INT+FLOAT a FLOAT, and
SECONDS+MINUTES produces SECONDS with scaling factors of 1 for the
first expression and 60 for the second one. When the first type is SECONDS and
the other is not MINUTES, we call the same function recursively pretending
that the first type was MINUTES, so as to see if we can convert to MINUTES
first and then to SECONDS. The recursion terminates at type WEEKS, the last
duration type, that knows only how to add itself to another type WEEKS – it
is always the smaller type that knows how to convert the type that is one level
up. Similar functions exist for multiplication and division, as one can multiply
two INTs to get an INT, an INT and a DURATION to get a DURATION but
cannot multiply two DURATIONs, and can divide two DURATIONs but not an
INT and a DURATION. Type translation is needed for both the Prism formal
model and the Lisp code we generate, as otherwise we would not be able to have
duration expressions where units are mixed. For the Lisp code all durations are
eventually converted to nano-seconds, as that is the smallest unit supported by
its system clock.

Lisp Interpreter. The Lisp code that is called continuously at run-time is shown
in Listing 1.4. It first updates the time of the clocks by storing the current time in
global variable ***now***. It then selects the first transition (based on the order
defined in the CM), whose guard is true. If there is such a transition, it executes
its actions. Listing 1.5 shows the code corresponding to the issue transition of
the example in Fig. 2. We use ABCL, a Java-based Common Lisp, to execute
the CM, as this allows smooth interfacing with the rest of the framework.

Language Constraints. As aforementioned in Sect. 4, our XML schema permits
FLOAT parameters but not FLOAT variables, as the Prism modelling language
does not support the latter – see the on-line Prism Manual [4]. Another inherited
constraint has to do with the treatment of clock variables. While PTAs allow
comparisons between clocks and both strict (e.g., <) and non-strict (e.g., ≤)
comparisons, currently Prism only supports non-strict ones in all the analysis
engines it has. For this reason we decided to also include this constraint, which
may make it somewhat harder to express some guards, as now one needs to be
careful to not introduce strict comparisons, e.g., through negation.

74 M. Krotsiani et al.

Listing 1.5. Transition Definition in Lisp
1 (make-transition :name "issue"

2 :guard (lambda ()

3 (and (= u_state u_sInit)

4 (< (*** ViolatedAssertions ***) u_TooManyVio)

5 (< (*** UnresolvedAnomalies ***)

6 u_TooManyUnresolved)

7 (>= (- (*** SeenEvents ***) u_usedevents)

8 u_EnoughEvents)

9 (>= (- ***now*** u_localClock)

10 (* 1000000000 u_monitoringTime))))

11 :action (lambda ()

12 (progn

13 (assert (= *lstate* *slPreIssued *) ()

14 "*lstate*�is�~S" *lstate *)

15 (setq *lstate* *slIssued *)

16 (setq u_state u_sAccept)

17 (setq u_localClock ***now ***)

18 (setq u_usedevents (*** SeenEvents ***)))))

5.1 Differences Between Prism Model and Code

Variable types & limits. We have already seen that variable names in Lisp do not
have types, as they do in the Prism model, and integers do not have min/max
values either, as they are actually bignums, i.e., arbitrary length integers. But
these are not the only differences between the two artefacts we produce.

Clock resets. By comparing the issue transition in Fig. 2 and in Listing 1.5, we
can see that instead of resetting the clock variable localClock to zero, as it is
done in the Prism model, we assign to it the current time of the global clock
now. A similar change is also in the guard – instead of comparing the
clock against the duration monitoringTime directly, we compare its distance
from ***now*** (after converting the duration to nano-seconds).

Time granularity. In the implementation, all clocks and durations are expressed
in nano-seconds. In the Prism model, clocks do not have a unit, so all durations
are transformed to the same unit (that needs to be provided in the CM as Time-
Unit). Dividing a duration expression by TimeUnit should produce a natural
number, since clocks in PTAs can be compared against natural numbers only.

Tracking of the high-level life cycle state. The model and the implementation
track the high-level life cycle state differently. In the Prism model we use an
additional module called HighLevelLifecycle (see Listing 1.2), which synchro-
nises with the main model module and checks if there are erroneous transitions.
Instead, in the Lisp code each transition assigns an internal variable *llstate*
to keep track of the current high-level life cycle state of the certificate – see line
15 in Listing 1.5. It uses this variable to assert the correct state of the certificate,
before performing any of the transition assignments – see line 13 in Listing 1.5.

Continuous vs discrete execution points. In the Prism model, a transition like
the issue one (Listing 1.2) can fire at any time point that satisfies its guard.
In the Lisp code, the respective transition (Listing 1.5) will only be considered

Cloud Certification Process Validation Using Formal Methods 75

every d seconds, where d depends on implementation issues, e.g., the delay we
have introduced in the main evaluation loop to avoid constant re-evaluation of
transitions.

Non-deterministic vs deterministic behaviour and eager execution. The most
important difference is that the Prism model has a non-deterministic behaviour
– whenever multiple transitions are enabled it can execute any of them. It can
actually elect to not execute any transition at all and instead simply let the
time pass – Prism does not support urgent transitions [25] that must be taken
immediately when they are enabled without allowing time to advance. The code
we produce on the other hand, will always choose the first enabled transition
and will execute it in an eager manner, without allowing time to pass.

Due to the last difference (and the one before it), the Lisp code that we
produce simulates the behaviour of the Prism model, i.e., exhibits only one
possible behaviour among the behaviours that it can have. This is the usual
case with all implementations of some formal model – the model is by definition
more general, both because it has abstracted a number of implementation details
away (e.g., the execution speed of the system), and because it needs to describe a
family of implementations and not a single one. For example, another reasonable
implementation may choose to execute the last enabled transition. Yet another
may choose a transition “non-deterministically”, by evaluating the guards of
the transitions in parallel and choosing the one whose guard evaluates to true
first. This is something that will depend heavily not only on the expression each
guard has to evaluate, but also on the current system state when evaluating
these expressions, such as the current memory usage, the CPU load, etc.

6 Experimental Results

We have performed a number of experiments with the CM example of Sect. 3.

Experiment 1 – Respecting the high-level certificate life-cycle. Prism establishes
that there is no error in the defined life-cycle of the CM, by calculating that
the maximum probability of “Pmax=? [F (error)]” is zero (in 197.063 s). In a
previous version of the CM, the result of this probability was non-zero, as we had
mistakenly guarded the refuse action, with the certificate being at the sAccept
instead of the sInit state.

Experiment 2 – Establish the maximum probability of revoking an issued cer-
tificate. Given the “Pmax=? [F (revokeGuard)]”, Prism reports that Pmax is
0.262144 (in 209.7 s), which is too high – revoking a certificate is undesirable,
since we have certified something as trustworthy, when in fact it is not.

Experiment 3 – Explore the system behaviour. We need to explore the system
behaviour to understand why revocations can occur with such a high proba-
bility. One can analyse the probability of having an assertion or an anomaly

76 M. Krotsiani et al.

Fig. 5. Violations of
assertions vs anomalies

Fig. 6. [F (revokeGuard)]

vs monitoringTime

Fig. 7. [F (revokeGuard)]

vs EnoughEvents

rule violation within T time units, as in Fig. 5. Anomaly rule violations start
with a probability of 0.19 at time point 10 and reach a probability of 0.64 at
time point 50. Assertion violations are more probable – they start with 0.58 and
reach 0.99, so it is almost certain to have observed an assertion violation by time
point 50.

Experiment 4 – Identify parameters that should be modified. We need to identify
parameters that are too lax and discover better values for them to exclude this
undesirable behaviour. A primary target is monitoringTime – maybe increas-
ing it will render revocations improbable. Figure 6 shows the results (maximum
probability for revocation) when monitoringTime ranges in [20, 100] with a step
of 10 (each point calculated in between 241.859 s and 694.947 s). The maximum
probability drops constantly as the minimum monitoring time is increased. For
a duration of 90 it drops to 0.00154 and for 100 to practically zero (6.33 ∗ 10−4).

Another interesting parameter is EnoughEvents – the minimum number of
monitoring results we wish to observe before issuing a certificate. Exploring the
behaviour of the system for values of this variable in the range [2, 6] with a step
of 1, produces the results in Fig. 7 (calculated in between 6.928 s and 237.929 s).
The maximum probability for revoking the certificate stays constant at 0.262144
until we ask to observe at least 6 monitoring results, in which case it drops to
exactly zero. So the parameter EnoughEvents offers better control. It also leads
to models that can be analysed much faster than those that depend on the
monitoringTime – this is because temporal constraints are far more expensive
to analyse in PTAs than constraints involving discrete variables.

Experiment 5 – Re-validating chosen parameter values. The maximum probabil-
ity of revoking a certificate when the probability of violation ranges in [0.01, 0.35]
(with a step of 0.02) validates setting EnoughEvents to 6 as a good choice. All
cases report a zero probability, in between 6.372 and 8.201 s for each case.

7 Related Work

There is substantial work in validating and verifying cloud service providers or
cloud services. Extensive work concerns the way evidence is collected to verify

Cloud Certification Process Validation Using Formal Methods 77

security properties of cloud services. Evidence collection can be based on (i)
assessments regarding specific standards or regulations, performed by either the
cloud providers or third party authorities, known as self-assessment; (ii) trusted
platform modules (TPM); (iii) performing tests; or (iv) continuous monitoring.

In self-assessment one either completes a specific questionnaire, as in the case
of CSA STAR Level 1 and Level 2 [12], or completes reports regarding specific
national or international standards, such as the CIF Guidance [10], COBIT [2],
the compliance framework FISMA [16], or TRUSTe [6].

Trusted computing targets the integrity of software, processes, or data by
collecting evidence through TPMs and related hardware. Muñoz and Maña [24]
combine software and hardware-based cloud certification, aiming to bridge the
gap between cloud certification and trusted computing. Another approach is
MyCloud by Li et al. [23]. MyCloud is an architecture used for privacy protection
based on traditional encryption mechanisms. It aims to allow clients to configure
their own privacy protection, by decreasing as much as possible the trusted
computing base and the cloud providers’ ability to modify privacy settings.

With test-based evidence collection, research has mostly focused on the prob-
lem of testing web services. Damiani et al. [13] use security certificates based on
signed test cases for assessing and certifying web services. A first step in the area
of web service certification was done by SEI in 2008, which defined a web service
certification and accreditation process for the US Army CIO/G-6 [5]. Anisetti
et al. [7] provided a test-based security certification solution for services and a
first approach to its integration within the SOA environment. The ASSERT-
4SOA EU project also focused on formal and test-based service certification [8].

Finally, monitoring and dynamic collection of evidence for cloud services is
a more recent development, due to its additional complexity. It requires unin-
terrupted monitoring services, even though the monitoring capabilities available
in a service-based system change due to the dynamic nature of cloud services.
To address these needs the SLA@SOI EU project has developed a dynamically
configurable monitoring infrastructure for dynamically checking SLA monitora-
bility, which runs on cloud systems and adapts automatically to changes in the
available monitoring capabilities in service based systems [17,18]. Monitoring has
also been used at the hypervisor layer to provide incident detection even when
the guest OS experiences critical conditions and monitoring agents are unable
to communicate with monitoring systems. Amazon’s CloudWatch is a system of
this category [1]. Moreover, Cloud Security Alliance’s Cloud Trust Protocol [11]
provides interfaces for extracting monitoring data from cloud systems.

Thus, most of the work in cloud certification focuses so far mainly on verifying
and validating security properties of cloud providers and cloud services. To the
best of our knowledge, our approach is the first one focusing on the exploration
and validation of the certification process itself, prior to employing it.

8 Conclusion and Future Work

In this paper, we have presented an approach for analysing and validating
cloud certification processes based on formal method techniques. This approach

78 M. Krotsiani et al.

translates a certification model (CM) into a model for the Prism model checker
and into an executable version of it, in Lisp code.

For the Prism model, the environment of the certification process is mod-
elled with probabilistic timed automata. The actions of the environment are
abstracted by the probability of their occurrence. This probability is either esti-
mated, obtained from historical data, or obtained by observing the system at
run-time. This formal model enables analysing the process for different proper-
ties, from adherence to the expected high-level certificate life cycle, to min/max
probabilities of revoking an issued certificate, etc. This allows one to explore
whether the CM behaves as desired and can be used to certify cloud services.

At the same time, we translate the CM to code to be executed at run-time
for certifying the cloud service in question. This code is produced alongside the
Prism model and follows its behaviour, so that the analysis results remain valid.

In the future we plan to extend our framework so that it can also con-
sider additional constraints on the expected behaviour of a cloud service and
sufficiency conditions on this behaviour that must be met in order to issue a
certificate. Currently our approach considers only the monitoring results for the
properties we check on the cloud service, while the extended version would also
observe the primitive execution events of the service. This capability would allow
to observe a particular set of primitive event patterns for issuing a certificate.

Acknowledgments. This work was partly supported by the EU-funded project
CyberSure [3] (grant no 734815).

References

1. Amazon CloudWatch, http://aws.amazon.com/cloudwatch/
2. COBIT, http://www.isaca.org
3. CyberSure (CYBER Security inSURancE), http://cybersure.eu/
4. Prism Model Checker, http://www.prismmodelchecker.org/
5. Securing Web services for army SOA, www.sei.cmu.edu/solutions/softwaredev/

securing-web-services.cfm
6. TRUSTe, http://www.truste.com/
7. Anisetti, M., Ardagna, C.A., Damiani, E.: Defining and matching test-based cer-

tificates in open SOA. In: 2011 IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW), pp. 520–522. IEEE
(2011)

8. Anisetti, M., Ardagna, C.A., Guida, F., Gürgens, S., Lotz, V., Maña, A., Pandolfo,
C., Pazzaglia, J.-C., Pujol, G., Spanoudakis, G.: ASSERT4SOA: toward security
certification of service-oriented applications. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 38–40. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16961-8 11

9. Ccdb, USB Working Group: Common Criteria (CC) for Information Technology
Security Evaluation (2012), http://www.commoncriteriaportal.org

10. Cloud Industry Forum: CIF Guidance, www.cloudindustryforum.org/about-us
11. CSA: Cloud Trusted Protocol, https://cloudsecurityalliance.org/research/ctp/
12. CSA: CSA Security, Trust and Assurance Resigtry (STAR), https://cloudsecurity

alliance.org/star/

http://aws.amazon.com/cloudwatch/
http://www.isaca.org
http://cybersure.eu/
http://www.prismmodelchecker.org/
www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm
www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm
http://www.truste.com/
http://dx.doi.org/10.1007/978-3-642-16961-8_11
http://www.commoncriteriaportal.org
www.cloudindustryforum.org/about-us
https://cloudsecurityalliance.org/research/ctp/
https://cloudsecurityalliance.org/star/
https://cloudsecurityalliance.org/star/

Cloud Certification Process Validation Using Formal Methods 79

13. Damiani, E., Ardagna, C.A., El Ioini, N.: Open Source Systems Security Certifi-
cation. Springer, US (2008)

14. ENISA: Security Certification Practice in the EU: Information Security Manage-
ment Systems - A Case Study (2013), https://www.enisa.europa.eu/

15. FedRAMP Office: Guide to Understanding FedRAMP (2013), www.gsa.gov/
portal/mediaId/170599/fileName/Guide to Understanding FedRAMP 042213

16. FISMA: Federal Information Security Management, https://www.dhs.gov/federal-
information-security-management-act-fisma

17. Foster, H., Spanoudakis, G.: Advanced service monitoring configurations with SLA
decomposition and selection. In: Proceedings of ACM Symposium on Applied Com-
puting, pp. 1582–1589. ACM (2011)

18. Foster, H., Spanoudakis, G.: Smart: A workbench for reporting the monitorability
of services from SLAs. In: Proceedings of 3rd International Workshop on Principles
of Engineering Service-Oriented Systems, pp. 36–42. ACM (2011)

19. Katopodis, S., Spanoudakis, G., Mahbub, K.: Towards hybrid cloud service certifi-
cation models. In: IEEE International Conference on Services Computing, SCC, pp.
394–399. IEEE Computer Society (2014), http://dx.doi.org/10.1109/SCC.2014.59

20. Krotsiani, M., Spanoudakis, G., Mahbub, K.: Incremental certification of cloud ser-
vices. In: SECURWARE 2013–7th International Conference on Emerging Security
Information, Systems and Technologies, pp. 72–80 (2013)

21. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

22. Lagazio, M., Barnard-Wills, D., Rodrigues, R., Wright, D.: Certification schemes
for cloud computing. EU Commission Report, http://dx.doi.org/10.2759/64404

23. Li, M., Zang, W., Bai, K., Yu, M., Liu, P.: MyCloud: Supporting user-configured
privacy protection in cloud computing. In: Proceedings of 29th Annual Computer
Security Applications Conference, pp. 59–68. ACM (2013)

24. Muñoz, A., Maña, A.: Bridging the gap between software certification and trusted
computing for securing cloud computing. In: Ninth World Congress on Services,
pp. 103–110. IEEE (2013)

25. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013), http://dx.doi.org/
10.1007/s10703-012-0177-x

26. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr.
Program. 79(6), 397–434 (2010), http://dx.doi.org/10.1016/j.jlap.2010.03.012

27. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS, vol. 1600, pp. 409–430. Springer,
Heidelberg (1999). doi:10.1007/3-540-48317-9 17

28. Spanoudakis, G., Kloukinas, C., Mahbub, K.: The SERENITY runtime monitor-
ing framework. In: Kokolakis, S., Gómez, A.M., Spanoudakis, G. (eds.) Security
and Dependability for Ambient Intelligence. AIDS, vol. 45, pp. 213–237. Springer,
Boston (2009), http://dx.doi.org/10.1007/978-0-387-88775-3 13

https://www.enisa.europa.eu/
www.gsa.gov/portal/mediaId/170599/fileName/Guide_to_Understanding_FedRAMP_042213
www.gsa.gov/portal/mediaId/170599/fileName/Guide_to_Understanding_FedRAMP_042213
https://www.dhs.gov/federal-information-security-management-act-fisma
https://www.dhs.gov/federal-information-security-management-act-fisma
http://dx.doi.org/10.1109/SCC.2014.59
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.2759/64404
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/3-540-48317-9_17
http://dx.doi.org/10.1007/978-0-387-88775-3_13

Validation of Service Blueprint Models
by Means of Formal Simulation Techniques

Montserrat Estañol2, Esperanza Marcos1, Xavier Oriol2, Francisco J. Pérez1,
Ernest Teniente2, and Juan M. Vara1(B)

1 Kybele Research Group, University Rey Juan Carlos, Madrid, Spain
{esperanza.marcos,francisco.perez,juanmanuel.vara}@urjc.es

2 Universitat Politàcnica de Catalunya, Barcelona, Spain
{estanyol,oriol,teniente}@essi.upc.edu

Abstract. As service design has gained interest in the last years, so
has gained one of its primary tools: the Service Blueprint. In essence, a
service blueprint is a graphical tool for the design of business models,
specifically for the design of business service operations. Despite its level
of adoption, tool support for service design tasks is still on its early days
and available tools for service blueprint modeling are mainly focused on
enhancing usability and enabling collaborative edition, disregarding the
formal aspects of modeling. In this paper we present a way to support
the validation of service blueprint models by simulation. This approach
is based on annotating the models with formal semantics, so that each
task can be translated into formal logics, and from them, to executable
SQL statements. This works opens a new direction in the way to bridge
formal techniques and creative service design processes.

Keywords: Service blueprint · Validation · Simulation

1 Introduction

Beyond the computational point of view, services have been a matter of interest
for the academia since the appearance of the first studies on services marketing
in the early 50’s [1] to the advent of Service Science from IBM [2]. More recently,
the fact that approximately 60% of the world’s workforce is currently employed
by either public or private branches of the Service Sector and this value rises to
80% in developed countries has significantly contributed to renew the interest in
services and related disciplines.

One of those disciplines is Service Design, which aims at helping in the devel-
opment or improvement of services in order to deliver user-centered services by
focusing on the interactions (or touchpoints) between the provider and the con-
sumer [3]. Its main principles are: human-orientation, value co-creation, process-
based nature, tangible evidences and holistic view. Born also in the context of
research on services marketing, service design evolved and gained impact through

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 80–95, 2017.
https://doi.org/10.1007/978-3-319-69035-3_6

Validation of Service Blueprint Models 81

the impulse of IDEO1 and has finally been established as the entry point to ser-
vice development for any organization seriously concerned about user experience,
digital transformation and the like (see for instance the efforts on this issue of
the British government around the Government Digital Service2).

The most popular service design technique is service blueprinting [4]. In
essence, a (service) blueprint is a graphical tool to visualize the different parts
of a given service and the interactions between the stakeholders of such service.
In contrast with BPMN, an organization-focused notation for business process
modeling, service blueprinting is a user-centered approach to business process
modeling. This has turned to be key for service designers in the digital age, where
most of the innovation has to happen at the touch points between provider and
consumer.

Despite the fact that service blueprinting was originally intended to enable
a more rigorous control and analysis of service delivery, it has partially failed
since despite its widespread adoption, it is most commonly used as an sketching
tool to provide first-draft solutions but they are rarely used to support any kind
of formal reasoning.

By contrast, bringing some degree of formability to service blueprinting has
proven to contribute to ensure the success of the process and in turn increases the
effectiveness of the blueprint, improving the rationality of the decisions within
the company [5]. As a matter of fact, even though there exists a number of
proposals to bring formalization to other existing techniques for business process
modeling exist (see [6,7] for instance), to the best of our knowledge there exists
no similar proposal for service blueprinting.

The main goal of this paper is to introduce a framework that permits for-
mally defining service blueprints, and validating them. To do so, we propose to,
during the definition of the service blueprint, annotate its tasks with some for-
mal semantics. Thus, each task unambiguously specify its behavior. As a result,
we can validate the service blueprint by interpreting such semantics, simulat-
ing its execution, and checking that no undesirable situation occurs during the
simulation.

In order to support the full process of this framework, we extend the INNo-
VaServ3 modeling tool, and propose its integration with the OpExec simulating
library4. The former is an EMF-based toolkit [8] with a visual DSL for service
blueprint modeling, thus, offering very good capabilities for easily defining ser-
vice blueprints. The latter is a Java library that permits simulating processes
described in formal logics, while checking validation conditions (aka integrity
constraints). Thus, the integration of both tools covers our framework entirely,
permitting the definition and formal validation of service blueprints.

1 https://www.ideo.com/.
2 https://gds.blog.gov.uk/.
3 http://www.kybele.etsii.urjc.es/innovaserv/index.php.
4 http://www.essi.upc.edu/∼xoriol/opexec/.

https://www.ideo.com/
https://gds.blog.gov.uk/
http://www.kybele.etsii.urjc.es/innovaserv/index.php
http://www.essi.upc.edu/~xoriol/opexec/

82 M. Estañol et al.

2 Context

This section presents the research context of this work. To that end, we first sum-
marize service blueprinting notions, to later introduce INNoVaServ, the toolkit
in which to integrate the process simulation capabilities.

2.1 Service Blueprinting

The service blueprint is a graphical tool for the design of business models, specif-
ically for the design of business service operations, which is focused on detailing
the interaction between the customer and the service provider in the provision of
a given service [9]. Being a tool for service design and giving the process nature of
services, service blueprinting is actually another technique for process modeling.
The notably difference being in this case the focus on the customer experience,
which is clearly illustrated by making explicit the touchpoints, the physical evi-
dences related with the provision of the service and the limits between frontstage
and backstage.

For instance, Fig. 1 shows an excerpt5 of the renting process of car2go service
blueprint: the user needs to rent a car and therefore he turns to the car2go app
(online/physical evidence); a couple of consumer-provider interactions take then
place along the line of interaction. Data provided by the user is then checked
in the backstage whereas external entities are contacted to order vehicle mainte-
nance and process payments.

As can be shown, a service blueprint is composed by five lanes or regions
of activity that help to distinguish those actions that are specific to the service
provider from those performed by the customer/consumer. Such lanes are listed
below from top to bottom:

– Physical Evidence. This region represents the evidences, facts or global actions
that give rise to the interaction between the customer and the service provider.
A user who has the need of renting a car for private transportation to go some-
where is something that gives rise to the interaction between the customer
and car2go.

– Attendee Action. It is devoted to describing the actions that a client performs
while interacting with the front-end of the service, like selecting the car to rent
or notifying car2go when he has arrived to the destination. Lower bound of
this region is called Line of Interaction and it detaches the actions performed
by the customer from those performed by the service provider.

– Frontstage Interactions. The activities performed by the service provider
which entail some type of interaction with the customer are represented here.
Asking the user to select a car or to check his car2go account are examples
of this kind of activities.

5 Full version can be found at http://www.kybele.es/publications/-car2go renting
Process extended.png.

http://www.kybele.es/publications/-car2go_rentingProcess_extended.png
http://www.kybele.es/publications/-car2go_rentingProcess_extended.png

Validation of Service Blueprint Models 83

– Back of Stage Interactions. The activities performed in the shadow by the
provider to operate the service, like updating the vehicle status when a car
is rented, are represented in this region. These are actions needed to deliver
the service but which the customer cannot see or interact with.

– Support Processes. Actions supporting the service, sometimes performed by
third parties, are represented here. The interaction between the maintenance
company and car2go to order vehicles maintenance is one of those actions
that remain hidden for the customer.

Fig. 1. Excerpt of a service blueprint made with INNoVaServ - car2Go renting process

As the next section will show, service blueprint diagrams can be faithfully
represented with the modeling environment provided by INNoVaServ.

2.2 Introducing INNoVaServ

INNoVaServ6 is a modeling environment for the design of business models and
service process operations which, to date, supports 4 different notations: Canvas
[10], e3Value [11], Process Chain Network (PCN) [12] and the Service Blueprint.

It is a first step towards solving the lack of proper tool support for bridging
existing business modeling notations. To that end, INNoVaServ integrates differ-
ent tools to register and manage the relationships between models defined with
6 http://www.kybele.etsii.urjc.es/innovaserv.

http://www.kybele.etsii.urjc.es/innovaserv

84 M. Estañol et al.

the different techniques for business (process) modeling. In the medium term,
the aim is at automating the identification of such relationships and enlarge the
number of notations supported.

Basically, the toolkit can be thought of as a set of four integrated visual
DSLs, one for each modeling notation supported by the tool. Each of such DSLs
was developed atop EMF and GMF [8] following the guidelines sketched in [13]
for the development of model-based tools that take the shape of DSL toolkits.

It is worth noting that due to the fact that it has been entirely developed atop
of EMF/GMF, it is immediately interoperable with any other EMF/GMF based
tool. Since EMF/GMF has converted in the de-facto standard for the develop-
ment of model-based tooling, the scope of tools with which INNoVaServ can
then interoperate is huge. The different tools supporting BPMN, like the Eclipse
BPMN Modeler7 or the Obeo BPMN Designer8 (there is indeed many others
BPMN editors based on EMF/GMF), Papyrus UML and any other EMG/GMF-
based editor, etc.

3 Enabling Formal Verification of Service Blueprint
Models in INNoVaServ

This section describes our approach for enabling formal verification of service
blueprint models. We start by showing the architecture for integrating INNo-
VaServ with the OpExec tool, which will be the basis for this verification. Then,
we explain our proposal for formally defining service blueprint tasks and we show
how to achieve the intended formal semantics for validation.

3.1 Functional Architecture and Design

In Fig. 2 we summarize the architecture of INNoVaServ (according to the con-
vention widely adopted by Eclipse developers to represent the architecture of
their proposals), together with our proposed integration with the OpExec sim-
ulation tool.

The technological basis of INNoVaServ is Eclipse. DSLs are mainly developed
atop of EMF/GMF while some minor refinements coded with the aid of JFace
and SWT to obtain the desired functionality from diagrammers. INNoVaServ
can validate its defined processes by means of bringing them to the OpExec tool,
and simulating the execution of its tasks. In its turn, OpExec works by storing
in memory a logic representation of the process to simulate, and persisting the
data of the process in a relational database.

3.2 Formally Defining Service Blueprint Tasks

Service blueprints, as they are, provide an intuitive and understandable overview
of the different tasks and activities required to provide a service or achieve a
7 http://www.eclipse.org/bpmn2-modeler/.
8 http://marketplace.obeonetwork.com/module/bpmn.

http://www.eclipse.org/bpmn2-modeler/
http://marketplace.obeonetwork.com/module/bpmn

Validation of Service Blueprint Models 85

Eclipse

EMF SWT

GEF

GMF

Draw2D
Epsilon

EVL

INNoVaServ

OpExec

Database

Logic Models

Fig. 2. Overview of technological dependencies of INNoVaServ and OpExec

certain goal. However, there is no formal meaning attached to each of the tasks.
From their names, we may have an intuitive idea of what they imply, but we
do not know exactly what it is they do. Therefore, if we wish to validate the
model considering what the tasks do, it is necessary to enrich the initial service
blueprint as explained below.

In order to provide the tasks with meaning, it is necessary to have an under-
lying data model, to represent the relevant information that will be manipulated
by them. We propose using a UML class diagram for this purpose. Figure 3 shows
the class diagram for the service blueprint in Fig. 1.

This class diagram keeps information about the company’s Vehicles (id, sta-
tus, battery level, etc.) together with their Location and the ServiceBills which
have resulted from the use of the Vehicle. The system also stores information
about which User is currently using or has booked a Vehicle (if any) and the
ServiceBills of a certain User. Apart from the User basic information, such as
id, name or accountStatus, the system also keeps track of the BankAccounts of
User and their funds.

The data represented in the class diagram should satisfy some additional
conditions (aka integrity constraints), in order to ensure the correct behavior of
the service. For instance, each UML class could have an identifier (i.e. “primary
key”). In our example, Vehicle, User, ServiceBill and BankAccount are identified
by their id. Location, on the other hand, is identified by its coordinates. More
complex conditions might be observed. For example, damaged Vehicles cannot
be booked by a User.

Then, given the data model, it is possible to specify unambiguously what
each of the tasks is doing. Our approach will use structured natural language for
this purpose.

86 M. Estañol et al.

Fig. 3. Class diagram representing the underlying data model for car2go.

Structured Natural Language. In order to formalize the meaning of the
tasks in the service blueprint we propose using structured natural language.
This language is based on using a few keywords and following certain patterns,
which result in sentences which can be easily understood. By using these it
is possible to state selection and basic changes over data (creation, updates,
deletions). Hence, we strike a balance between understandability, simplicity and
expressibility.

The grammar defining this structured language is the following:

select ClassName [with Att r ibute s]
delete c ClassName
ClassAct ion ClassName Att r ibute s

Assoc ia t i onAct ion AssociationName (ClassName , C l a s s e s)

ClassAct ion → check | change | create
Assoc ia t i onAct ion → associate | delete a

Att r ibute s → attributeName(value) | attributeName(value) , At t r ibute s
C la s s e s → ClassName | ClassName , C l a s s e s

Keywords are in bold. Class and attribute names are in italics, and should
be replaced by any class or attribute name in the model, respectively. Square
brackets represent optional parameters. value should be replaced by either a
value (e.g. string, integer) or an input parameter, the latter representing an
input value provided by the user.

Validation of Service Blueprint Models 87

select and check both refer to conditions that must be true of the particular
object they are applied to. check refers to an object that has been obtained
previously and which must fulfill a certain condition. select, on the other hand,
obtains a new object which had not been obtained previously; select...with...
obtains a new object which fulfills the conditions stated in the with (which will
refer to its attributes).

The remaining keywords correspond to changes made to the underlying data.
create will create a new instance of a class with the given attribute values.
delete c will delete the given instance of a class. change will update an attribute
(or several) of a class to the given values or input parameters.

Similarly, associate will create an instance of the named association with
the indicated classes. delete a will delete the instance of the association with
the given name and the participating classes.

This results in statements such as the following, where the first corresponds
to task User chooses and selects a car and the second to Change Vehicle Status
(reserved):

select Vehicle with status(‘available’)
change Vehicle status(‘reserved’)

We assume that references to a class point to an instance or object of the class
in question which has obtained previously. Therefore, in the previous example
statements refer to the same vehicle.

3.3 Executing the Formal Semantics for Validation

Once the service blueprint is annotated with the formal semantics, it is unam-
biguous enough to validate its execution. In particular, we aim at ensuring that,
when executing the process, its data state never becomes inconsistent (i.e., never
stores a state that cannot occur in the real world). For doing so, we need to define
some integrity constraints, that is, some conditions that consistent data states
always satisfy, thus, any violation of a constraint points an inconsistency.

Hence, our validation approach consists in (1) translating such annotations
into an executable language, (2) run the process, and (3) check that such execu-
tion satisfies our defined set of integrity constraints.

For our purposes, we use as executable language (a subset of) the executable
logic rules stated in [14]. Such rules can be executed by means of a prototype
tool we call OpExec, which essentially persists the data of the process into a rela-
tional database, and checks that such data satisfy a set of user-defined integrity
constraints. In this manner, if the OpExec tool detects a violation of some of
these constraints, we can realise that the service is ill-defined.

In the following, we first present the executable logic rules we use. Then, we
show how to translate the previous patterns annotated in the service blueprint
into such logics. Finally, we show how to validate the service blueprint by running
these rules over the OpExec tool.

88 M. Estañol et al.

Executable Logic Rules. In our particular case, the executable logic rules are
some rules following one of these forms:

ins C (x) : −taskName(), arg0 (x0), ..., argn(xn)
ins Select C (x) : −taskName(), arg0 (x0), ..., argn(xn),C (x)
del C (x) : −taskName(),Select C (x)
del Select C (x) : −taskName(),Select C (x)
ins R(x) : −taskName(), Select C0(x), ..., Select Cn(x)
del R(x) : −taskName(), Select C0(x), ..., Select Cn(x)
query(x) : −taskName(), arg0 (x0), ..., argn(xn),C (x)

Intuitively, the first two rules state that an insertion/selection of an instance of
class C should be realized if the task called taskName is invoked with arguments
x0, ..., xn, where such arguments are used to specify the values of attributes of
the object being created/selected. In addition, the second rule forces the instance
of C to exists in order to be selected. Similarly, the third and forth rule states a
deletion/deselection of an instance of C that was previously selected. Then, the
fifth and sixth rules state that a creation/deletion of an association R with the
selected objects should be performed. The last rule is only a query to check the
existence/inexistence of some instance of C.

Translating Natural Language Patterns into Executable Logic Rules.
Now, we show how to translate the natural language patterns used to annotate
the service blueprint into such executable logic rules.

Intuitively, each natural pattern presented is mapped to one or more exe-
cutable rules. This is because, for instance, the creation/deletion of an object
in some class C might encompass the creation/deletion of the same object in
its sub/superclasses C ′/C ′′, and each creation requires its own executable logic
rule.

Table 1 summarizes these mappings. For each task in the service blueprint
with its corresponding annotation in natural language, we generate the exe-
cutable logic rules stated in the right column. In particular, the task name of
the pattern brings the name to the taskName() atom of the rule, and each user
given value vi in the pattern originates a arg i(vi) atom. As expected, the atoms
using classes/associations C/R take its name from the classes/associations C/R
used in the pattern, and user-defined constants from the pattern are propagated
to the rule.

For instance, in our example, the annotation of the tasks User chooses vehicle
and Change vehicle status would be translated into:

ins Select Vehicle(v) :- UserChoosesVehicle(),Vehicle(v, ‘available’, b, d, rt)

del Select Vehicle(v) :- UserChoosesVehicle(),Select Vehicle(v)

ins Vehicle(v, ‘reserved’, b, d, rt):-ChangeVehicleStatus(), Select V ehicle(v), V ehicle(v, s, b, d, rt)

del Vehicle(v, s, b, d, rt) :- ChangeVehicleStatus(),Select Vehicle(v),Vehicle(v, s, b, d, rt)

Validation of Service Blueprint Models 89

Table 1. Natural language patterns to executable logic rules

N.L. Pattern Derivation rules to create

create C ins C(c, v0, ..., vn) :- taskName(), arg0(v0), ..., argn(vn)

at0(v0), ..., atn(vn) ins C′(c, v0, ..., v0) :- taskName(), arg0(v0), ...,
argn(vn); for each C � C′

delete c C del C(c) :- taskName(), Select C(c)

del C′(c) :- taskName(), Select C(c), C′(c); for each C′

� C

del C′′(c) :- taskName(), Select C(c); for each C � C′′

associate R(C0,...,Cn) ins R(c0,...,cn) :- taskName(), Select C0(c0), ...,
Select Cn(cn)

delete a R(C0,...,Cn) del R(c0,...,cn) :- taskName(), Select C0(c0), ...,
Select Cn(cn)

change C at(vi) ins C(c, ..., vi, ...) :- taskName(), arg0(vi), Select C(c),
C(c, v0, ..., vn)

del C(c) :- taskName(), Select C(c)

select C with ins Select C(c) :- taskName(), arg0(v0), ..., arg0(vn),
C(c, v0, ..., vn)

at0(v0), ..., atn(vn) del Select C(c) :- taskName(), Select C(c)

check C query(v0, ..., vn) :- taskName(), arg0(v0), ..., argn(vn),
C(c, v0, ..., vn)

at0(v0), ..., atn(vn)

The first rule selects a vehicle that is available when the user executes the
task UserChoosesVehicle. The second rule is used to deselect any other previ-
ously selected vehicle. The third and forth rule are in charge of updating the
state status of the selected vehicle to “reserved” when the user executes the
ChangeVehicleStatus task.

Validation Through Executing the Logic Rules. The idea now is to use
the OpExec tool to (1) load the executable logic rules representing the business
process tasks, (2) load some integrity constraints to check while executing the
process, and (3) execute the process to validate the satisfaction of the constraints.

In order to load the executable logic rules, OpExec only needs the rules
themselves, and some relational database connection containing one table for
each class/association, and one Select C table for each class C in order to store
the current instances selected for each class.

OpExec can then load integrity constraints written in the of form denial
constraints, that is, logic formulas stating the condition that should never occur
in the database. For instance, the condition damaged Vehicles cannot be booked
by a User can be written as

90 M. Estañol et al.

⊥ :- Vehicle(v, s, b, d, rt), s = ‘reserved’, d = ‘true’

Then, at runtime, OpExec is in charge of executing the logic rules according
to the client invocations (INNoVaServ, in this case). Such invocations cause
the insertion/deletion of objects in the database, or their selection (which is
stored in the corresponding Select C table), according to the translation of the
natural language patterns. The check pattern requires special attention since it
is translated as a new query that checks the condition. In this case, OpExec
executes the query and returns the result to the client, so, the client can take
the decision of what to do next (such as repeating the last task if the checking
did not succeed).

The important feature of OpExec w.r.t. validating the process is its ability to
validate user-defined integrity constraints over its execution. That is, whenever
a new object/relation is created/deleted, OpExec ensures that no defined con-
straint is being violated, otherwise, the data update is rejected and a warning is
returned to the client. For instance, when executing the Change Vehicle Status
task, we might violate the condition that damagedVehicles cannot be booked by a
User. If this is the case, OpExec notifies the client about this problem and rejects
the execution of the task. Thus, the user might notice that the User chooses and
selects a car task, requires selecting a car which is not only available, but also
not damaged. Note that data inconsistencies might arise independently of the
Service Blueprint lane in which the data update is performed, thus, they are not
taken into account in our validation approach.

In order to ensure the efficiency of these checking, OpExec integrates an
incremental checking approach [15], that is, it only checks those constraints that
might be violated according to the data update, and only for the relevant values.
It is worth mentioning that OpExec is implemented as a Java library that can
be invoked from any other tool.

We plan then to integrate both OpExec and INNoVaServ as follows: model
validation will rely on EVL scripts bundled in INNoVaServ, so that when such
validation is run, the EVL rules invoke internally OpExec functions, which will
then return the results that will be graphically displayed by INNoVaServ. Even
though this process is slightly less efficient than simple EVL or OCL-based val-
idation, it ensures not only syntactic but also semantic correctness.

4 Related Works

This section reviews existing works in the are of service blueprinting and process
executability.

Even though service blueprinting emerged in the 80’s [4], it has not attracted
too much attention from academics until recently and most of the existing litera-
ture is focused on the application of the technique to different contexts. Regard-
ing the combination with formal techniques, in [16] Berkley uses phase distrib-
utions to control service operations whereas fuzzy graph is used in [17] to mod-
ularize product extension service blueprints. There are also some works on the

Validation of Service Blueprint Models 91

combination of service blueprinting with the Theory of Inventive Problem Solv-
ing (TRIZ), like the one from Lee et al. [18]. As well, there are different works
on the revision or extension of service blueprinting for specific purposes. For
instance, Flieb and Kleinatelkamp presented a revised version of service blue-
prints in [19] based on the production-theoretic approach to identify starting
points for improving process efficiency.

Regarding tool-support for service blueprinting, as the rise of product-service-
systems [20] has contributed to increase the interest in this user-centered tech-
nique for business process modeling, most of existing works have emerged
recently from the industry. This way, tools like Canvanaizer9 and Real Time
Board10 to name a few are web-based applications that support collaborative
edition of (canvas and) service blueprints. They bundle a simple and intuitive
graphical interface (specially the latter) but, in contrast with INNoVaServ they
were not devised to work with models, so they are limited to offer graphical
representations of the blueprint, which can not be processed later.

From a more academic point of view, some remarkable works are those from
Liang et al. [21], who use a CAD-based system for service blueprinting and the
one from Lao [22] who developed a collaborative tabletop tool for service design
based on some of the principles of service blueprinting. All in all, these are tools
focused on usability and collaborative properties which have dismissed the utility
of model-based tool support as a way to enable the systematic processing of the
information collected in the blueprint. Thus they are very far from being ready
to incorporate any kind of formal reasoning.

On the other hand, a quick look at the plenty of systematic literature reviews
on business process modeling and the topics covered by them shows that this is
somehow a most mature field. Recent reviews are indeed not focused on charac-
terizing existing proposals, since that has been largely done in the past, but on
available mechanisms to assess their quality [23] or complexity [24].

Regarding process executability, the approach in [14] uses a UML class dia-
gram, a BPMN diagram and a set of OCL operation contracts to achieve process
executability. Some of the advantages of [14] in contrast to our work are that it
uses the de-facto standard modeling languages for data and processes, together
with the fact that the OCL language has a more expressive power than structured
natural language. Thus, it requires that the modeler and business people know
BPMN and OCL, whereas service blueprints and structured natural language
are simpler and more intuitive.

BPEL (or WS-BPEL) allows to specify executable business processes using
an XML format which makes it difficult to read. Although there is a map-
ping between BPMN 2.0 and BPEL it is incomplete and suffers from several
issues [25]. The approach in [26] uses XML nets, a Petri-net-based process
modelling approach which is meant to be executable. It uses a graphical lan-
guage, which maps to a DTD (XML Document Type Definition) to represent
the data required by the process, and the data manipulations are graphically

9 https://canvanizer.com/.
10 https://realtimeboard.com/.

https://canvanizer.com/
https://realtimeboard.com/

92 M. Estañol et al.

shown in the XML net. In contrast to our approach, this solution is technology-
based, as the specification of the models is based on XML, and details of how to
achieve executability are not explained.

YAWL [27] is a workflow graphical language whose semantics are formally
defined and based on Petri nets, with its corresponding execution engine. Intu-
itively, the tasks are annotated with their inputs and outputs, without defining
what changes are made by each of them. Thus, the execution engine only detects
missing information and it is not able to fully execute the operation.

In [28] it is possible to obtain automatically an imperative model that is
executable in a standard Business Process Management System. However, data
is defined as a set of unstructured variables and the pre and postconditions
merely state conditions over the data, instead of indicating exactly what is done
by the different tasks.

Earlier attempts are [29,30]. Both approaches focus on defining a conceptual
model which can then be automatically translated to achieve execution. How-
ever, the purpose of [29] is different to ours: their main goal is to be able to
validate the model through execution, while ours is to achieve executability by
using a combination of UML class diagram and service blueprint enriched with
structured natural language. Similarly, the approach in [30] - which translates
the models into Pascal - is outdated by object-oriented programming languages.

Finally, there are many different works that deal with verification and vali-
dation in business process models, such as [31,32]. However, these techniques do
not execute the model as we do and, to the best of our knowledge, none of them
use service blueprints.

To sum up, none of the analysed works rely on service blueprints as a way of
modeling the business process. Moreover, not all of them provide the ability of
executing the model automatically using a structured data model. Finally, none
use structured natural language to specify the meaning of each of the tasks, thus
requiring concrete knowledge of the language used to do so.

5 Conclusion and Further Work

This work has presented a framework for defining service blueprints that can be
validated using simulation techniques. Moreover, we have proposed the imple-
mentation of the framework integrating two tools: INNoVaServ, which is model-
based tool for service blueprinting, and OpExec which is a model simulator. The
linkage is done by attaching semantic annotations to service blueprint tasks, and
translating them into executable logic rules.

To the best of our knowledge, this is the first work that relies on service
blueprinting as an executable business process modeling technique. Moreover,
it does so in the context of a toolkit for business modeling that enables the
development of bridges with other notations for business (process) like Canvas
[33], e3Value [11], Process Chain Networks [12] or BPMN.

Validation of Service Blueprint Models 93

This paper addresses consequently one of those which has been acknowl-
edged to be the main problems of service design: the lack of proper technical
support [20]. The constant and rapid development of new services, products or
product-service offerings to address new needs as soon as they appear is indeed
a must for any organization, giving rise to an increasing interest in the discipline
of service design. However, being an emerging field, this is one of those areas in
which industry is ahead of academia, giving rise to the advent of solutions which
does not always meet the desirable criteria in terms of quality.

The development of this type of proposals will help as well to mitigate the
differences and challenges that emerge between different worlds that speak differ-
ent languages, as it is the case with the variety of stakeholders typically involved
in the development of digital products or services nowadays [34].

Acknowledgments. This research has been funded by the Ministry of Sci-
ence and Innovation under the ELASTIC project (TIN2014-52938-C2-1-R), the
Government of Madrid under the SICOMORo-CM project (S2013/ICE- 3006) and
by the SSME Research Excellence Group (Ref. 30VCPIGI05) co-funded by URJC and
Banco Santander.

References

1. Fisk, R.P., Brown, S.W., Bitner, M.J.: Tracking the evolution of the services mar-
keting literature. J. Retail. 69(1), 61–103 (1993)

2. Spohrer, J., Maglio, P.P., Bailey, J., Gruhl, D.: Steps toward a science of service
systems. Computer 40(1), 71–77 (2007)

3. Cook, L.S., Bowen, D.E., Chase, R.B., Dasu, S., Stewart, D.M., Tansik, D.A.:
Human issues in service design. J. Oper. Manage. 20(2), 159–174 (2002)

4. Shostack, G.L.: Designing services that deliver. Harvard Bus. Rev. 62(1), 133–139
(1984)

5. Gounaris, S., Tanyeri, M., Kostopoulos, G., Gounaris, S., Boukis, A.: Service blue-
printing effectiveness: drivers of success. Int. J. Manag. Serv. Qual. 22(6), 580–591
(2012)

6. Van Gorp, P., Dijkman, R.: A visual token-based formalization of BPMN 2.0 based
on in-place transformations. Inf. Softw. Technol. 55(2), 365–394 (2013)

7. Noguera, M., Hurtado, M.V., Rodŕıguez, M.L., Chung, L., Garrido, J.L.: Ontology-
driven analysis of UML-based collaborative processes using OWL-DL and CPN.
Sci. Comput. Program. 75(8), 726–760 (2010)

8. Gronback, R.C.: Eclipse Modeling Project: A Domain-specific Language (DSL)
Toolkit. Pearson Education, London (2009)

9. Bitner, M.J., Ostrom, A.L., Morgan, F.N.: Service blueprinting: a practical tech-
nique for service innovation. Calif. Manag. Rev. 50(3), 66–94 (2008)

10. Osterwalder, A., Pigneur, Y.: Business Model Generation: A Handbook for Vision-
aries, Game Changers, and Challengers. Wiley, Hoboken (2010)

11. Gordijn, J., Akkermans, H., Van Vliet, J.: Designing and evaluating e-business
models. IEEE Intell. Syst. 16(4), 11–17 (2001)

12. Sampson, S.E.: Visualizing service operations. J. Serv. Res. 15(2), 182–198 (2012)

94 M. Estañol et al.

13. Vara, J.M., Marcos, E.: A framework for model-driven development of information
systems: technical decisions and lessons learned. J. Syst. Softw. 85(10), 2368–2384
(2012)

14. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN
processes to achieve executable models. In: Dubois, E., Pohl, K. (eds.) CAiSE
2017. LNCS, vol. 10253, pp. 612–628. Springer, Cham (2017). doi:10.1007/
978-3-319-59536-8 38

15. Oriol, X., Teniente, E., Rull, G.: TINTIN: a tool for incremental integrity checking
of assertions in SQL server. In: Proceedings of the 19th International Conference
on Extending Database Technology, EDBT 2016, Bordeaux, France, 15–16 March
2016, pp. 632–635 (2016)

16. Berkley, B.J.: Analyzing service blueprints using phase distributions. Eur. J. Oper.
Res. 88(1), 152–164 (1996)

17. Song, W., Wu, Z., Li, X., Xu, Z.: Modularizing product extension services: an
approach based on modified service blueprint and fuzzy graph. Comput. Indust.
Eng. 85, 186–195 (2015)

18. Lee, C.H., Wang, Y.H., Trappey, A.J.: Service design for intelligent parking based
on theory of inventive problem solving and service blueprint. Adv. Eng. Inform.
29(3), 295–306 (2015)

19. FlieB, S., Kleinaltenkamp, M.: Blueprinting the service company. J. Bus. Res.
57(4), 392–404 (2004). European Research in Service Marketing

20. Cavalieri, S., Pezzotta, G.: Product - service systems engineering: state of the art
and research challenges. Comput. Ind. 63(4), 278–288 (2012)

21. Liang, T.P., Wang, Y.W., Wu, P.J.: A system for service blueprint design. In:
2013 Fifth International Conference on Service Science and Innovation (ICSSI),
pp. 252–253. IEEE (2013)

22. Lau, N.: ServiceSketch: a collaborative tabletop tool for service design (2011)
23. de Oca, I.M.M., Snoeck, M., Reijers, H.A., Rodriguez-Morffi, A.: A systematic lit-

erature review of studies on business process modeling quality. Inf. Softw. Technol.
58, 187–205 (2015)

24. Polančič, G., Cegnar, B.: Complexity metrics for process models - a systematic
literature review. Comput. Stand. Interfaces 51, 104–117 (2017)

25. Fabra, J., de Castro, V., Álvarez, P., Marcos, E.: Automatic execution of business
process models: exploiting the benefits of model-driven engineering approaches. J.
Syst. Softw. 85(3), 607–625 (2012)

26. Lenz, K., Oberweis, A.: Modeling interorganizational workflows with XML nets.
In: HICSS-34. IEEE Computer Society (2001)

27. Foundation, T.Y.: YAWL - User Manual. Version 4.1. (2016). http://www.
yawlfoundation.org/pages/support/manuals.html

28. Parody, L., López, M.T.G., Gasca, R.M.: Hybrid business process modeling for the
optimization of outcome data. Inf. Softw. Technol. 70, 140–154 (2016)

29. Lindland, O.I., Krogstie, J.: Validating conceptual models by transformational pro-
totyping. In: Rolland, C., Bodart, F., Cauvet, C. (eds.) CAiSE 1993. LNCS, vol.
685, pp. 165–183. Springer, Heidelberg (1993). doi:10.1007/3-540-56777-1 9

30. Mylopoulos, J., Borgida, A., Greenspan, S.J., Wong, H.K.T.: Information system
design at the conceptual level - the taxis project. IEEE Database Eng. Bull. 7(4),
4–9 (1984)

http://dx.doi.org/10.1007/978-3-319-59536-8_38
http://dx.doi.org/10.1007/978-3-319-59536-8_38
http://www.yawlfoundation.org/pages/support/manuals.html
http://www.yawlfoundation.org/pages/support/manuals.html
http://dx.doi.org/10.1007/3-540-56777-1_9

Validation of Service Blueprint Models 95

31. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verification of GSM-based artifact-
centric systems by predicate abstraction. In: Barros, A., Grigori, D., Narendra,
N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 253–268. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48616-0 16

32. Deutsch, A., Hull, R., Vianu, V.: Automatic verification of database-centric sys-
tems. SIGMOD Rec. 43(3), 5–17 (2014)

33. Ovans, A.: What is a business model. Harvard Bus. Rev. 23 (2015)
34. Gray, J., Rumpe, B.: Models for the digital transformation. Softw. Syst. Model.

16(2), 1–2 (2017)

http://dx.doi.org/10.1007/978-3-662-48616-0_16

Deadlock-Freeness Verification of Business
Process Configuration Using SOG

Souha Boubaker1,2, Kais Klai3(B), Katia Schmitz3, Mohamed Graiet4,
and Walid Gaaloul1

1 Telecom SudParis, UMR 5157 Samovar, Universite Paris-Saclay, Paris, France
souha.boubaker@telecom-sudparis.eu

2 ENIT, UR-OASIS, University of Tunis El Manar, Tunis, Tunisia
3 LIPN, CNRS UMR 7030, University of Paris 13, Villetaneuse, France

kais.klai@lipn.univ-paris13.fr
4 ISIMM, Monastir University, Monastir, Tunisia

Abstract. Configurable process models are increasingly used in many
industries as reference processes shared between different process ten-
ants. These processes are configured and adapted according to their spe-
cific needs through configurable elements (i.e. the variation points). Since
configuration decisions are taken prior to execution, incorrect ones may
lead to critical behavioral issues such as deadlocks. In this work, we
propose a formal behavioral model based on the Symbolic Observation
Graph (SOG) allowing to find the set of correct configuration choices
while avoiding the state-space explosion problem. This set of configura-
tion choices, jointly provided with the configurable process, will support
and help business analysts in deriving deadlock-free variants.

Keywords: Business process management · Configurable process
model · Process variants · Formal verification

1 Introduction

A configurable business process model [11,17] represents a family of a large
number of related process models. Such a process model is reused and config-
ured according to a given application context by selecting one design option for
each configurable element (i.e. a variation point). The non-configurable elements
represent the commonalities in the configurable model. The configuration deci-
sions of a configurable element are made at design-time [17] leading to configured
processes called variants. For instance, In Fig. 1, a simplified example of a config-
urable process model designed by a process provider for a hotel booking agency
is presented. The process is modeled using the Configurable Business Process
Model and Notation (C-BPMN) [5,14], a configurable extension to BPMN. The
travel agency has a number of branches in different countries. Depending on spe-
cific needs of a country, each branch performs a different variant of this process
model in terms of structure and behavior. For instance, a process tenant may

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 96–112, 2017.
https://doi.org/10.1007/978-3-319-69035-3_7

Deadlock-Freeness Verification of Business Process Configuration Using SOG 97

need an exclusive execution of the connector S1 ’s outputs (configurable con-
nectors are modeled with a thicker border). This refers to configuring S1 to an
XOR-split. Another tenant may choose to execute them concurrently by config-
uring S1 to an AND-split.

As the configuration decisions of the configurable elements are applied at
design-time [17], any design mistake (e.g. configuring S1 to OR-split and j3 to
AND-join leads to a deadlock) should be avoided in order to avert execution
errors in the derived variants. Furthermore, configurable processes may be large
with complex inter-dependencies between the different possible configurations.
Consequently, the configuration can not be done manually and a correctness
verification phase is essential. So far, a number of approaches have addressed
the verification of the process configuration correctness. Some of them have only
discussed the syntactical correctness (e.g. [11,17]), others have attempted to
verify behavioral correctness but have faced the exponential number of state-
space problems (e.g. [13]). Very few have addressed the configuration behavior
verification while trying to reduce state explosion problem (e.g. [1,4]) but still
suffer from the exponential complexity of generating their reachability graph.

Web form
request (a1)

Find user
profile (a2)

O

X

New user (a3)

Search hotel
(a5)

Select hotel
(a6)O O

Online
payment (a7)

Cash payment
(a8)

O Confirma on
(a9)

X

s1

s2

j2 j3

Select
package (a4)

O

O
j1 s3

s4 j4

Fig. 1. A configurable hotel booking process model

The aim of this paper is to address this state space problem while verifying
one of the most important behavioral correctness properties a process execution
should hold, the deadlock-freeness. We propose an abstraction of a configurable
process model using the Symbolic Observation Graph (SOG for short) [12,15]
based on its configurable elements. This abstraction offers a two-fold advantage:
(1) the analysis and the verification of the corresponding configurable process
can be reduced to the analysis of its abstraction, and (2) the set of possible
combinations of elements configurations that result in deadlock-free variants are
obtained prior to configuration time. Once found, these combinations are used
to assist the business analyst in deriving deadlock-free variants.

The SOG is a versatile symbolic representation formalism that allows to
build an abstraction of the reachability state graph of a formally modeled sys-
tem (e.g. using Petri net). In our case, this abstraction is achieved by observing
the configurable elements of the process (that label the SOG arcs) and by hid-
ing non configurable elements inside the aggregates (the SOG nodes). Moreover,
without limiting the generality of our approach, we propose to use C-BPMN as
input notation. BPMN is highly adopted by stakeholders of different roles (e.g.
IT architects, business analysts, etc.) since it is considered as the internationally

98 S. Boubaker et al.

recognized industry standard notation for business process description. Also,
since the large majority of modeling languages can be mapped into it, we use
Petri-net as a pivot formalism to represent C-BPMN process model and its corre-
sponding semantics. This semantics depicts the generic behavior of configurable
connectors and thus all possible behavior.

Figure 2 depicts the milestones followed in order to obtain deadlock-free
process variants using our SOG-based approach. First of all, as depicted on the
left-hand side of the figure, C-BPMN is used as input process. Then, we map
this process to a Petri net-based model; and we define new semantics to take
into account configurable connectors (step 1, see Sect. 3). Afterward, we extend
the algorithm of SOG graph construction by three main points (step 2): (i) by
observing and highlighting configurable connectors in the graph arcs; (ii) by hid-
ing non-configurable elements’ states in aggregates (see Sect. 4.1); and (iii) by
restricting the graph nodes to the ones leading to deadlock-free configurations
(see Sect. 4.2). As a result, we obtain a reduced SOG graph that groups the
behavior of all correct configurations. The set of correct configurations combi-
nations is then extracted (step 3). The last three steps are performed on-the-fly
during the SOG construction. The correct configurations are finally supplied to
the business analyst in order to derive deadlock-free variants, with no need to
verify correctness at each intermediate configuration step.

Configurable Business
Process (C-BPMN)

Correct
Configura ons

List

Input

<OR,OR>

< ?,? >

Configurable Business
Process Petri Net

Process
Configura on

1

New
seman cs

Construc ng
algorithm

2

Corresponding
SOG

A0

A1

A2

A3

A4

A5

A6
3 4

Output

Deadlock-free Process
Variant

Fig. 2. Our approach overview

The remainder of the paper is organized as follows. In Sect. 2, some prelimi-
nary concepts on Petri nets are described. New Petri net-based models for busi-
ness process and then for configurable process models as well as their semantics
are defined in Sect. 3. Then, in Sect. 4.1, we define a new Symbolic Observation
Graph associated with the configurable Petri net-based model and we explain
our approach based on the SOG construction algorithm. Our approach is eval-
uated in Sect. 5. We present the related work in Section 6. Finally, we conclude
and provide insights for future work.

2 Preliminaries and Notations

In this work, we use Petri nets, which offer a formal model for concurrent systems.
Note that our approach does not rely on specific Petri net properties but can be
applied to any formal model as soon as states and transition relation are well
defined.

Deadlock-Freeness Verification of Business Process Configuration Using SOG 99

Definition 1 (Petri Nets). A Petri net is a tuple N = 〈P, T, F,W 〉 s.t.:

– P is a finite set of places and T a finite set of transitions with (P ∪ T) �= ∅
and P ∩ T = ∅,

– A flow relation F ⊆ (P × T) ∪ (T × P),
– W : F → IN+ is a mapping assigning a positive weight to arcs.

Each node x ∈ P ∪ T of the net has a pre-set and a post-set defined respec-
tively as follows: •x = {y ∈ P∪T | (y, x) ∈ F}, and x• = {y ∈ P∪T | (x, y) ∈ F}.
For a transition t, W−(t) ∈ IN|P | (resp. W+(t) ∈ IN|P |) denotes the vector where,
∀p ∈ P , W−(t)(p) = W (p, t) (resp. W+(t)(p) = W (t, p)). A marking of a Petri
net N is a function m : P → IN.

Semantics: Let m be a marking of t ∈ T , a transition t is said to be enabled by
m, denoted by m t−→, iff W−(t) ≤ m. When t is enabled by m, its firing leads
to a new marking m′, denoted by m t−→m′, s.t. m′ = m − W−(t) + W+(t).

For a finite sequence σ = t1 . . . tn, mi
σ−→mn denotes the fact that σ is enabled

by mi, and that its firing leads to mn. Given a set of markings S, we denote by
Enable(S) the set of transitions enabled by elements of S. The set of markings
reachable from a marking m in N is denoted by R(N,m). The reachability graph
of a Petri net N , denoted by G(N,mi) (mi is the initial marking), is the graph
where nodes are elements of R(N,mi) and an arc from m to m′, labeled with t,
exists iff m t−→m′. The set of markings reachable from a marking m, by firing the
transitions of a subset T ′ only is denoted by Sat(m,T ′). By extension, given a
set of markings S and a set of transitions T ′, Sat(S, T ′) =

⋃
m∈S Sat(m,T ′). For

a marking m, m �→ denotes that m is a dead marking (i.e., there is no transition
s.t. m t−→ which means Enable({m}) = ∅).

Definition 2 (WF-Nets). Let N = 〈P, T, F,W 〉 be a Petri net and F ∗ is the
reflexive transitive closure of F. N is a Workflow net (WF-net) iff:

– there exists exactly one input place i ∈ P , s.t. |•i| = 0,
– there exists exactly one output place o ∈ P , s.t. |o•| = 0,
– each node is on a directed path from the input place to the output place, i.e.

∀n ∈ P ∪ T, (i, n) ∈ F ∗and(n, o) ∈ F ∗.

Definition 3 (Deadlock-free WF-Net). Let N = 〈P, T, F,W 〉 be a WF-net
and mi, mf be the initial (i.e. only i is marked) and final (i.e. only o is marked)
markings respectively. N is said to be deadlock-free iff � ∃m ∈ (R(N,mi) \ {mf})
s.t. m �→.

3 Formal Model for Configurable Business Processes

In order to obtain an abstract formal definition of a business process model,
we formally map a process in BPMN notation to Petri nets, specifically into a
new model called Business Process Petri Nets (BP2PN). Then, we extend the

100 S. Boubaker et al.

BP2PN to take into account configurable connectors, leading to a new model,
namely the Configurable Business Process Petri Nets (CBP2PN). Authors in
[10] have established a mapping from well-formed BPMN models to Petri nets.
In this work, we extend this mapping by preserving blocks as transitions allowing
to define configurable transitions.

3.1 Business Process Petri Nets (BP2PN)

Definition 4 (BP2PN). A BP2PN is a tuple B = 〈P, T ∪ OP,F,W,O〉 where:

– 〈P, T ∪ OP,F,W 〉 is a WF-Net,
– F ⊆ (P × T ∪ OP) ∪ (T ∪ OP × P) is the flow relation,
– O : OP → {OR−, OR+,XOR−,XOR+, AND−, AND+} is a mapping that

assigns a type to each operator,

BP2PN is a Workflow net such that, the set of places P corresponds to the
set of conditions determining the enabling of a task or a connector; and the set of
transitions T ∪ OP corresponds to the set of tasks and connectors. These nodes
are interconnected through a set of arcs (using F). Each connector must either
be a join (the − right exponent) or a split (the + exponent) while having a type:
OR, XOR or AND.

Semantics: In the previous notation, we retain the connectors blocks and we
define new execution semantics inspired from the original semantics of Petri
nets.

Given a marking m of a BP2PN B , the fireability and the firing of any tran-
sition in T ∪ {t ∈ OP | O(t) ∈ {AND−, AND+}} follows the original semantics
of Petri nets. However, transition t s.t. O(t) ∈ {OR−, OR+,XOR−,XOR+}
follows a new semantics:

Let m be a marking and t be a transition of OP , the fact that t is enabled
by m is denoted by m t−→, and m t−→m′ denotes that m′ is reached by firing t
from m:

– O(t) = OR−
• m enables t iff ∃S ⊆ •t s.t. m|S ≥ W−(t)|S
• when m enables t, the firing of t from m leads to a marking m′ iff m′ =

m−W−(t)|S +W+(t) where S is the biggest subset of •t satisfying m|S ≥
W−(t)|S .

– O(t) = XOR−
• m enables t iff ∃p ∈ •t s.t. m(p) ≥ W−(t)(p) ∧ ∀q ∈ •t, m(q) < W−(t)(q)
• when m enables t, the firing of t from m leads to a marking m′ iff m′ =

m−W−(t))|{p} +W+(t) where p is the sole place satisfying the firability
condition.

– O(t) = OR+ (resp. O(t) = XOR+)
• when m enables t, the firing of t from m leads to a marking m′ iff ∃S ⊆ t•

(resp. ∃p ∈ t•) s.t. m′ = m−W−(t)+W+(t)|S (resp. m′ = m−W−(t)+
W+(t)|{p}).

Deadlock-Freeness Verification of Business Process Configuration Using SOG 101

Note that only the firing of transitions t s.t. O(t) ∈ {OR+,XOR+} is defined
because the fireability follows original semantics. It is worth mentioning that
the previous semantics of OR+ and XOR+ leads to non-deterministic firing.
For instance, having a split transition OR+ with 2 output places p1 and p2, its
firing leads to 3 possible reachable markings m1 (only p1 is marked), m2 (only
p2 is marked), and m1 2 (both places are marked). Also, we emphasize that the
semantics of a join transition OR− is inline with the well defined pattern 8 in [3]
(Multi merge), that expressly allows the firing of the join as soon as it condition
is satisfied (without synchronizing the different flows).

3.2 Configurable Business Process Petri Nets (CBP2PN)

Definition 5 (CBP2PN). A CBP2PN is a tuple CB = 〈P, T ∪ OP,F,W,
O ,C 〉 where:

– 〈P, T ∪ OP,F,W,O〉 is a BP2PN;
– C : OP → {true, false} is a function determining the configurable operators

(i.e. any t ∈ OP s.t. C (t) = true).

Back to our example, our C-BPMN process is mapped onto CBP2PN
in Fig. 3. In this notation, according to Definition 5, activities and connec-
tors are modeled by transitions and their ordering is modeled by places con-
necting the different transitions. Configurable transitions are also highlighted
with a thick border. This example includes 6 configurable transitions: s1, s3,
s4, j2, j3 and j4. We denote by OP c the set of configurable operators s.t.
OP c = {o ∈ OP | C (o) = true}. A configurable operator cc ∈ OP c includes a
generic behavior which is restricted using the configuration phase. It is config-
ured by changing its type (e.g. from OR to AND) w.r.t. the set of configuration
constraints [17] defined in Table 1. Each row corresponds to a configurable con-
nector that can be configured to one or more of the connectors in columns. Thus,
these constraints allow to specify which regular connector’s type may be used in
the derived process variant. For example, a configurable OR can be configured
to any connector’s type while a configurable AND can only be configured to
an AND. In the following, we define a configuration of a connector tc ∈ OP c

by Conf(tc) ∈ {OR−, OR+,XOR−,XOR+, AND−, AND+} and the set of all
possible configurations of tc by AllConf(tc).

Table 1. Constraints for the
configuration of connectors
[17], x ∈ {+,−}.

ORx XORx ANDx

ORx √ √ √
XORx √
ANDx √

Note that, when configuring all configurable con-
nectors of a CBP2PN, we obtain a BP2PN, as a con-
figurable connector is changed into regular connec-
tor after configuration. One possible configuration
of the process net of Fig. 3 can be done by selecting
the following configuration choices: (i) s1, s3 and
s4 are configured to regular XOR+, (ii) j2 is con-
figured to a regular AND−; and (iii) j3 and j4 are
configured to regular XOR−.

102 S. Boubaker et al.

Fig. 3. The CBP2PN of the configurable process in Fig. 1

Semantics: The semantics of CBP2PN is described in the following, on the one
hand, by inheriting the dynamics of BP2PN for non configurable connectors, on
the other hand, by adding new semantics for configurable ones. This semantics
is defined such that any reachable marking by any possible instance of a con-
figuration is represented. In the following, we consider a configurable transition
as the union of all possible configurations. That way, we can define its enabling
and firing rules as if it is the union of all executable configured transitions. Since
a configuration of AND−, AND+, XOR− and XOR+ do not change type,
its semantics remains the same as previously defined. Regarding configurable
OR− and OR+ transitions, the fireability and the firing rules follow the new
semantics as follows. Let m be a marking and tc be a transition of OP c, s.t.
O(tc) ∈ {OR−, OR+}:

– m enables tc, denoted by m tc−→ iff ∃x ∈ AllConf(tc) s.t. m x−→
– when m enables tc, for some configuration x of tc, the firing of tc from m,

under configuration x, leads to a marking m′, denoted by m tc,x−→m′ iff m x−→m′

Using this semantics, the reachability marking graph associated with a
CBP2PN covers the behavior of all the possible configurations. For instance,
having the CBP2PN of Fig. 3, the configurable transition s1 could be config-
ured either to: (i) AND+, with all of its output places marked, (ii) XOR+, with
only one of the output places marked, or (iii) OR+ with one or more output
places marked.

Definition 6 (Deadlock-free CBP2PN). Let CB be a CBP2PN. CB is said
to be deadlock-free if at least one deadlock-free BP2PN could be configured
from CB.

Our CBP2PN of Fig. 3 is considered correct since one can configure at least
one correct variant by choosing XOR type as configuration choice for all its
configurable connectors (the correctness of such a variant is proven in Sect. 4.2).
However, incorrect variants could be derived from this process as well. For
instance, one can choose the alternatives presented earlier that leads to a dead-
lock caused by an exclusive choice XOR+ (i.e. s1) followed by a synchronizing
join AND− (i.e. j2). In this situation, in order to be enabled, the transition
AND− will be waiting for both places p8 and p9 to be marked, however only one
could be marked. So, the resulting variant could never terminate properly and
the corresponding reachability graph contains a dead marking. In the following,

Deadlock-Freeness Verification of Business Process Configuration Using SOG 103

we propose to use the SOG in order to abstract the reachability graph of a
CBP2PN, and to extract the correct configurations (leading to deadlock-free
BP2PN).

4 Symbolic Observation Graph for Process Configuration

In this paper, we check the behavior correctness of all possible configurations of
a configurable model. This refers to verifying the reachability graph that covers
them all. In order to reduce the underlying state space explosion problem, we
propose to use the Symbolic Observation Graph (SOG). The SOG-based abstrac-
tion technique was introduced for model checking of concurrent systems [12] and
then applied on the verification of inter-enterprise business processes [15].

4.1 Symbolic Observation Graph

Given a CBP2PN, the set of observed transitions, denoted by Obs is the set of
configurable connectors i.e. Obs = OP c, while any other transition belongs to the
set of unobserved transitions, denoted by UnObs, i.e., UnObs = (T ∪OP)\Obs.
In such a way, we construct the Symbolic Observation Graph (SOG) as a graph
where each node is a set of states linked by unobserved transitions and each arc
is labeled by an observed transition. Nodes of the SOG are called aggregates
and are represented and managed efficiently using Binary Decision Diagrams
(BDDs). As a result, by highlighting observable transitions, the SOG represents
the global behavior of a process configuration in only one reduced graph. In the
following, we first formally define an aggregate, and then the SOG associated
with a CBP2PN.

Definition 7 (Aggregate). Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be a CBP2PN
having mi and mf as initial and final markings respectively. An aggregate of N
is a triplet 〈S, d, f〉 s.t.:

– S ⊆ R(N ,mi) is a set of reachable markings, where ∀s ∈ S:
- (∃(s′, u) ∈ R(N ,mi) × UnObs | s u−→s′) ⇔ s′ ∈ S;
- (∃(s′, o) ∈ R(N ,mi) × Obs | s o−→s′) ∧ (�(s′′, u) ∈ S × UnObs) | s′′ u−→s′) ⇔
s′ �∈ S.

– d ∈ {true, false}; d = true iff S contains a dead state.
– f ∈ {true, false}; f = true iff S contains a final state.

In addition to the d and f attributes of an aggregate, the above definition spec-
ifies the states that must belong to an aggregate (the aggregation criterium)
and those that must be excluded: For any state s in the aggregate, any state s′

being reachable from s by the occurrence of an unobserved transition, belongs
necessarily to the same aggregate. (2) For any state s in the aggregate, any
state s′ which is reachable from s by the occurrence of an observed transition
is necessarily outside the aggregate, unless s′ is reachable from a state s′ in the
aggregate by an unobserved transition.

104 S. Boubaker et al.

Before defining the SOG, let us introduce the following operation: Out(a, t):
returns, for an aggregate a and an observed transition t, the set of states outside
a that are reachable from some state in a by firing t, i.e., Out(a, t) = {s′ ∈
R(N ,mi) | ∃s ∈ a.S, s t−→s′}
Definition 8 (Deterministic SOG). Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be
a CBP2PN having mi and mf as initial and final markings respectively. The
Deterministic Symbolic Observation Graph (SOG) associated with N is a graph
G = 〈A,Obs,→, A0,Ω〉 where:

(1) A is a non empty finite set of aggregates satisfying :
– ∀a ∈ A, ∀t ∈ Obs, Out(a, t) �= ∅ =⇒ ∃a′ ∈ A s.t. a′ = Sat(Out(a, t),

UnObs)
(2) →⊆ A × Act × A is the transition relation where:

– ((a, t, a′) ∈→′) ⇔ ((t ∈ Obs)∧Out(a, t) �= ∅∧a′ = Sat(Out(a, t),UnObs))
(3) A0 is the initial aggregate s.t. A0.S = Sat(mi, UnObs).
(4) Ω = {a ∈ A | mf ∈ a.S}.

The nodes of the symbolic observation graph are aggregates (1). The finite set
of aggregates A of a SOG is defined in a complete manner so that the necessary
aggregates are represented. Point (2) defines the transitions relation: there exists
an arc, labeled with an observed transition t, from a to a′ iff a′ is obtained by
saturation on the set of reached states (Out(a, t)) by the firing of t from a.S. The
last two points of Definition 8 characterize the initial aggregate and the set of
final aggregates respectively. Starting from the initial marking, the original SOG
construction algorithm introduced in [12] follows a classical depth first search
based traversal of the built aggregates. Each aggregate is built by a transitive
closure application on unobserved transitions. The successor a′ of an aggregate
a is built by, first, firing an observed transition from states of a, then by adding
all the reachable states by unobserved transition.

At this stage, the correctness of the SOG can be characterized as follows.

Definition 9 (Correct SOG). Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be a
CBP2PN. Let G = 〈A,Obs,→, A0,Ω〉 the SOG associated with N .

G is correct iff there exists a configuration c of N (c = {〈t, Conf(t)〉 : t ∈
OP c}) s.t. for every path π = A0

t1,conf(t1)−−−−−−−→ A1 . . . An−1
tn,conf(tn)−−−−−−−→ An, with

An ∈ Ω; if {〈ti, Conf(ti)〉 : 0 ≤ i ≤ n} =c then ∀0 ≤ i ≤ n,Ai.d = false.

Based on Definition 6, characterizing a deadlock-free CBP2PN, and Defini-
tion 9, characterizing a correct SOG associated with a CBP2PN, the following
result naturally links these two characterizations.

Proposition 1. Let N = 〈P, T ∪ OP,F,W,O ,C 〉 be a CBP2PN. Let G =
〈A,Obs,→, A0,Ω〉 the SOG associated with N . Then, N is deadlock-free iff G
is correct.

Deadlock-Freeness Verification of Business Process Configuration Using SOG 105

Proof. Let N be a CBP2PN and G its corresponding SOG. First, according
to Definition 9, if G is correct then there exists a configuration c s.t. for every

path π in the SOG having π = A0
t1,conf(t1)−−−−−−−→ A1 . . . An−1

tn,conf(tn)−−−−−−−→ An, with
An ∈ Ω; if it’s configurations set {〈ti, Conf(ti)〉 : 0 ≤ i ≤ n} is equal to c,
then all aggregates are deadlock-free, i.e. Ai.d = false, 0 ≤ i ≤ n. Since the
SOG preserves by construction all possible configurations of N , then each path
from the initial to the final aggregate represents one configuration allowing to
derive one variant. Hence, there exist at least a deadlock-free variant of N .
Consequently, according to Definition 6, N is correct.

In the following, we propose to adapt the original SOG construction algo-
rithm [12], associated with a CBP2PN, in three ways. First, by adopting the new
semantics. Second, the deadlock-freeness property is checked on the fly, such that
any aggregate containing a deadlock state is not inserted in the graph and so are
all the underlying paths. Finally, the set of correct configurations is extracted
on-the-fly.

4.2 Extracting Correct Configurations Using the SOG

In this section, we present the core contribution of this paper: A construction
algorithm of the SOG associated with a CBP2PN. Regarding to the original
SOG construction algorithm [12], Algorithm 1 allows to reduce the SOG, by
removing, on-the-fly, the paths involved in incorrect configurations, and by sav-
ing, within the initial aggregate the correct configurations. To reach this goal,
two new attributes are added to an aggregate: (1) c, which is the set of correct
(possibly partial) configurations, starting from this aggregate (and leading to a
final aggregate). (2) nc, which is the set of incorrect (possibly partial) configu-
rations, starting from this aggregate (leading to a dead one). Once the SOG is
built, the set of correct configurations will be saved within the initial aggregate.

In the following, we go through Algorithm 1 to explain the main steps while
using our running example, and the corresponding (reduced) SOG, in Fig. 4a for
illustration. Note that the main novelties of this algorithm w.r.t. the algorithm
of [12], are underlined.

Two main data are used: The SOG graph G , containing aggregates and edges,
and a stack containing the to-be-treated aggregates associated with the set of
fireable observed transitions Fobs.

The first step of Algorithm 1 (lines 5–10) allows to build the initial aggregate
and to push it onto the stack. Then, the main loop (lines 11–49) processes the set
of to-be-treated aggregates as follows: a stack item (line 12) and the correspond-
ing current observed transition in Fobs (line 14) are picked, and the successor of
the current aggregate by that transition, if any, is calculated using the semantics
of Subsect. 3.2 (line 15–20). This includes the computation of the dead (line 19)
and final (line 20) attributes of the obtained successor aggregate. If the latter
is deadlock-free aggregate, and if it has not already been explored, then it is
pushed onto the stack with its set if fireable observed transitions (lines 21–24).
For instance, following the path at the top of Fig. 4a, new aggregates A0 until the

106 S. Boubaker et al.

final one A6 are consecutively pushed onto the stack. Since A6 is a final aggre-
gate (does not enable any observable transition), it will be popped from the stack
(line 38), and we start the loop again by picking A5 to consider its remaining
observed transitions (in this case the transition 〈j4, OR〉 leads again to A6), and
so on.

If the newly built successor aggregate a′ has already been treated
(lines 25–30), then the current aggregate a inherits from a′ its correct and
incorrect configuration (to which the transition linking a to a′ is added). This
is ensured by functions UpdateC and UpdateNC (lines 26–29). The function
UpdateC also verifies that, starting from the same aggregate a, a correct con-
figuration do not include an existing (or to-be-treated) incorrect one, as in this
case it leads to a deadlock in a different transitions’ firing order. This way,
correct and incorrect configurations are computed backwards starting from the
final aggregate to the initial one. For instance, in Fig. 4a, consider the aggre-
gate A10 obtained through A8 and A9, the firing of 〈j3, AND〉 leads to the
existing aggregate A4. As A4 was already dealt with earlier through the path
on top of the graph, this means that 3 correct partial configurations are added
to this aggregate, namely {〈s4,XOR〉,〈j4,XOR〉}, {〈s4,XOR〉, 〈j4, OR〉} and
{〈s4, AND〉,〈j4, AND〉}. Hence, A10 inherits these configurations while being
concatenated to the current fired transition 〈j3, AND〉. Similarly, going back-
wards to A0 after entirely processing A8 and A9, we obtain the complete correct
configurations 13 − 15 depicted in Fig. 3(b).

Regarding an aggregate a′ holding a dead state, firstly, the corresponding
fired observed transition is concatenated to the incorrect configurations of its
predecessor a (line 33). Obviously, a′ is not pushed onto the stack and no edge
is created. Then, we recursively verify its predecessors starting from a using the
function recRemoveAggregate(a, t) (line 34). Using this function, each predeces-
sor aggregate is removed only if the states enabling the current one becomes
dead (i.e. there is no other enabled transition from that state). In this case, its
successors are also recursively eliminated in case they do not have other pre-
decessors. As an example, the red path in Fig. 4(a) refers to firing 〈s1, AND〉,
〈s3,XOR〉 then 〈j2, OR〉. According to our semantics, 〈j3, OR〉 may be fired by 4
possible markings in the aggregate A12, namely m12, m10 14, m11 14 and m12 14.
However, in case of firing by either m10 14 or m11 14, the obtained aggregate
will allow a second firing of the same transition (i.e. using the remaining token
in p10 or p11). This leads to a final state holding two tokens, which is a dead
state in our approach. Hence, according to Algorithm 1 the obtained aggregate
is eliminated as well as its predecessors A12 and A11 (following the blue dashed
line). And yet, since it enables 〈S3, AND〉, A10 is not deleted.

It is worth noting that before popping an aggregate from the stack and storing
it in the graph (lines 38–39), a final check is carried out on its correct config-
urations by the function CompareCorrect (line 37). Actually, many observed
transitions may be fired from the same aggregate, so some of the correspond-
ing correct configurations may refer to the same one. Hence, a correct sequence
is preserved if, for every first fired observed transition op, (i) it is fireable by

Deadlock-Freeness Verification of Business Process Configuration Using SOG 107

nofillcomment 1. Deadlock-free Symbolic Observation Graph
Require: N 〈P, T ∪ OP, F, W,O,C 〉, Obs, mi, mf

Ensure: G 〈A,Obs, →, A0, Ω〉 , C
1: Vertices A=∅; vertex a, a′; # Aggregates
2: Vertices C=∅; # Correct configurations
3: set S, S′, UnObs = (T ∪ OP) \ Obs, Fobs, F ′

obs;
4: stack st; Edges E= ∅;
5: S = Sat({mi}, UnObs); # first Aggregate
6: a.S = S;
7: a.d = DetectDead(a.S);
8: a.f = IsFinal(a);
9: Fobs = fireableObs(a); # fireable observed transitions of a

10: st.Push(〈a, Fobs〉);
11: while st == ∅ do
12: 〈a, Fobs〉 = st.Top();
13: if (Fobs �= ∅) then
14: t = Fobs.next();
15: S′ = Out(a.S, t)
16: if (S′ �= ∅) then
17: S′ = Sat(S′, UnObs);
18: a′.S = S′;
19: a′.d = DetectDead(a′.S);
20: a′.f = IsFinal(a′);
21: if (¬a′.d) then # there is no dead state in a’

22: if (� ∃x ∈ A s.t. x == a′) then # a’ found for the first time
23: F ′

obs = fireableObs(a′);
24: st.Push(〈a′, F ′

obs〉);
25: else # a’ is an existing aggregate
26: free a′;
27: Let a′ be the already existing aggregate;
28: UpdateC(a, a′, t);

29: UpdateNC(a, a′, t);

30: end if
31: E = E ∪{a, 〈t, Conf(t)〉, a′};
32: else # there is a dead state in a’
33: a.nc = a.nc ∪ {〈t, Conf(t)〉};

34: recRemoveAggregate(a, t)

35: end if
36: end if
37: CompareCorrect(a);

38: st.Pop();
39: A = A ∪ {a} ;

40: if (mi ∈ a.S) then

41: C = a.c;
42: end if
43: end if
44: end while

the states that have fired another sequence starting by op (i.e. different con-
figurations), or (ii) if their common operators have the same configured type
(i.e. the same configurations but in a different order). Otherwise, the sequence
is considered as incorrect and is eliminated.

Finally, the set of correct configurations is obtained from the initial aggregate,
the last one popped from the stack. As a result, each path of the obtained SOG
starting from the initial aggregate and leading to a final aggregate, represents one
possible configuration and belongs to the set of configurations C. In this case,
this configuration leads to a deadlock-free BP2PN. Note that, different paths
could represent a configuration (e.g. two concurrent configurable connectors).

108 S. Boubaker et al.

A0

A1

S1,XOR

A2
S3,XOR

A3

J2,OR

J2,XOR

A4
J3,OR

J3,XOR

A8

S1,AND

A11
S3,XOR

3

A12
J2,OR

2

A13
J3,OR

1

A9
S3,AND

A10
J2,AND

J3,AND

A5

S4,XOR

A7

S4,AND

A6
J4,OR

J4,XOR

J4,AND

(a) The reduced SOG

S1 S2 J2 J3 S4 J3
1 XOR+ XOR+ XOR− XOR− XOR+ XOR+

2 XOR+ XOR+ XOR− XOR− XOR+ OR+

3 XOR+ XOR+ XOR− XOR− AND+ AND+

4 XOR+ XOR+ XOR− OR− XOR+ XOR+

5 XOR+ XOR+ XOR− OR− XOR+ OR+

6 XOR+ XOR+ XOR− OR− AND+ AND+

7 XOR+ XOR+ OR− XOR− XOR+ XOR+

8 XOR+ XOR+ OR− XOR− XOR+ OR+

9 XOR+ XOR+ OR− XOR− AND+ AND+

10 XOR+ XOR+ OR− OR− XOR+ XOR+

11 XOR+ XOR+ OR− OR− XOR+ OR+

12 XOR+ XOR+ OR− OR− AND+ AND+

13 AND+ AND+ AND− AND− XOR+ XOR+

14 AND+ AND+ AND− AND− XOR+ OR+

15 AND+ AND+ AND− AND− AND− AND−

(b) Deadlock-free configurations

Fig. 4. Reduced SOG and extracted configurations for the CBP2PN in Fig. 3

The reduced SOG of our example contains 8 nodes and 10 arcs, and all correct
configurations are summarized in Fig. 3(b). Hence, the analyst may be helped
on-the-fly during the configuration process by confronting his/her configurations
with the correct configurations in this table.

For instance, we can evaluate the correctness of the BP2PN variant dis-
cussed in Sect. 3.2. After applying 〈s1,XOR〉, the control-flow is either propa-
gated through the place p2 or p8. In this case, it is clear that the connector j2
(i.e. after applying 〈j2, AND〉) could never be enabled, which causes a deadlock.
Relying on Fig. 3(b), we can notice that there is no configuration starting with
{〈s1,XOR〉, 〈j2, AND〉}.

Using the SOG, the state space is greatly reduced in three fashions: (i) only
configurable transitions are observed, and the remaining transitions are hided in
aggregates; (ii) the graph is deterministic since it groups, for each configuration,
all reachable markings in one aggregate; and (iii) the different process variants
share common markings in one common SOG graph, instead of constructing
graphs as much as the number of possible configurations. In the following section,
we conduct experiments to demonstrate such mitigation of the state explosion
problem as well as the feasibility of our approach.

5 Experiments and Evaluation

To prove its feasibility, we have implemented and deployed our approach as an
extension of an existing tool that initially computes the SOG of a petri-net model
w.r.t. a set of observed transitions. As explained previously, this extension takes
into account the new semantics presented in this paper for CBP2PN models. It
also allows to symbolically detect on-the-fly deadlocks within aggregates and to
reduce the SOG accordingly. The developed tool takes as input a GrML (Graph
Markup Language) file [8] describing the CBP2PN model (i.e. transitions, oper-
ators annotated as configurable, and arcs) and returns the reduced SOG and the
correct configurations.

In order to evaluate its performances and to demonstrate the opportunities
offered by our approach, we performed experiments to show (i) the reduction

Deadlock-Freeness Verification of Business Process Configuration Using SOG 109

of the space explosion problem and (ii) the impact of the input model struc-
ture on the size of the obtained SOG. Firstly, we propose to explore the size
of the constructed SOG using our tool against a naive approach, where each
variant of a CBP2PN is built and analyzed separately. Secondly, we propose
to analyse the impact of the variation of the structure complexity and the
number of observed transitions of a CBP2PN, on the size of the correspond-
ing SOG. Taking our running example model (Fig. 3), this variation leads to 86
different process models. We basically evaluate the structure complexity using
the well known metric CFC (Control Flow Complexity)[9] which is defined as:∑

c∈AND+ 1 +
∑

c∈XOR+ |c•| +
∑

c∈OR+(2|•c| − 1).
Table 2 contains three multi-columns. The first one varies the considered

parameters of the CBP2PN model (i.e. CFC and observed transitions (Obs)) and
gives the number of possible configurations for each variation. Then, the size of
the obtained SOG is evaluated in terms of number of correct configurations (Nb
correct confs), aggregates (A), edges (E) and execution time. This graph is finally
compared against the naive approach. However, since the naive approach is very
fastidious, we built only the reachability graphs corresponding to the correct
configurations. The three first columns give the average number if states, arcs
and execution time over these correct configurations. The last column, gives the
worst execution time in case all the configuration have been analyzed to extract
correct ones. The construction of the reachability graph has been performed with
our SOG-based tool as well, by observing all the transitions of the model (in this
case, the SOG coincides with the reachability graph).

In this evaluation, as we can observe from the Table 2, we took into account
three levels of complexity (depending on the number of OR+). The higher the
value of CFC, the more complex is a process’s configuration, since the number of

Table 2. Checking deadlock-freeness on SOG vs RG

CBP2PN SOG Naive approach (RG)

CFC

(avg)

Obs Nb

possible

confs(avg)

Nb

correct

confs(avg)

A(avg) E(avg) Exec

time

(sec)

Sates

(sum)

Arcs

(sum)

Exec

time

correct

(sec)

Overall

Exec

time(sec)

21 6 729 15 13 26 1.580 283.50 331.95 0.051 2.478

5 243 5.66 8.66 16 0.693 104.14 133.57 0.017 0.729

3OR+ 4 81 2.33 5.66 8.66 0.353 42.17 49.62 0.007 0.243

3 27 1 4 4 0.044 18 21 0.003 0.070

15.5 6 243 11.33 11 21 0.093 208.47 243.25 0.037 0.802

5 81 5 7.77 13.77 0.051 93 106.30 0.017 0.267

2OR+ 4 57.85 3.66 6.09 10.33 0.030 66.72 77.81 0.012 0.191

3 22.50 2 4.33 5.83 0.018 36.20 42.20 0.006 0.068

10 6 81 8 9.50 17.50 0.015 144 168 0.024 0.243

5 54 4 7 11.83 0.010 72 84 0.014 0.184

1OR+ 4 18 4.25 5.75 9.87 0.008 76.71 89.46 0.014 0.058

3 13.24 2.58 4.23 6.29 0.006 46.44 54.18 0.008 0.040

110 S. Boubaker et al.

possible configurations increases with the number of configurable OR connectors.
For example, the CFC value 21 regards the process with only OR connectors, we
can observe that the number of possible configurations as well as the extracted
correct ones are relatively high compared to those having CFC 10. Moreover,
the more transitions are observed, the less reduced is the SOG comparing to the
reachability graph.

Comparing to the naive approach, the obtained results in Table 2 show that
the SOG is always significantly smaller in terms of number of states and arcs. For
example, in case of a model having 6 configurable operators with OR type (i.e.
the first row), we can observe that the obtained SOG includes only 13 aggregates
and 26 arcs which is very reduced comparing to the size of the original graph
of 729 possible configurations. Indeed, after applying a naive approach on only
correct configurations (i.e. extracted from the SOG), the obtained graph has
almost 283 states and 331 arcs resulting from the sum of 15 reachability graphs.
Consequently, our work not only helps finding correct configurations but also
further minimize the memory usage and the computing time, since only one
reduced graph is constructed. To ensure the reproducibility of our experiments,
please refer to our web page1.

6 Related Work

In order to facilitate the design of configurable process models, a range of process
modeling languages have been recently extended with variable elements such as
Event-driven Process Chain (EPC) (e.g. [17,18]), Business Process Model Nota-
tion (BPMN) (e.g. [5,14]) and Yet Another Workflow Language (YAWL) (e.g.
[11]). Based on some of them, a number of approaches have attempted to reach
correct process configuration either syntactically [11,17] or behaviorally. Tradi-
tionally, behavioral correctness related to process configuration can be handled
by verifying every single possible configuration using existing work on verification
of business processes and workflows [2] and some existing tools such as Woflan
[19]. However, these methods are too time-consuming and lead to the state space
explosion problem. Authors in [13] discuss the Provop approach [14] for ensuring
soundness of process variants derived by options. However, this approach is not
feasible in large processes and runs into the state space problem. In [1], Petri net
was used to formalize and verify correctness and soundness properties of Con-
figurable EPC (C-EPC) processes. They derive propositional logic constraints
that guarantee the behavioral correctness of the configured model. However, in
these approaches authors achieve correctness by checking constraints at each
configuration step. Also, authors impose that the C-EPC process model should
be syntactically correct. In our work, we propose a model that finds all possible
correct configurations at design time instead of configuration time without any
restriction on the input C-BPMN process. This allows the process analyst to
derive correct processes without intermediate computing. In [4], based on part-
ner synthesis, the approach characterize all weakly terminating configurations
1 http://www-inf.it-sudparis.eu/SIMBAD/tools/SOGImplementation.

http://www-inf.it-sudparis.eu/SIMBAD/tools/SOGImplementation

Deadlock-Freeness Verification of Business Process Configuration Using SOG 111

using configuration guidelines. This technique was applied on C-YAWL and the
configuration is built by hiding and blocking transitions while our approach con-
figures C-BPMN process by changing configurable connectors behavior.

[16], which is applied on C-EPC using questionnaire models, and [6], which is
applied on C-BPMN using configuration guidelines, have attempted to provide
guidance to analysts for process configuration, however, these approaches espe-
cially ensure domain compliant variant and they do not consider any correctness
criterion.

In our previous work [7], a formal approach for deriving correct process
variants from a C-BPMN was proposed. It models the process using Event-B
language and verifies the different constraints and properties using predicates.
These predicates must be satisfied by each configuration step. This work con-
tributes essentially to prevent structural correctness issues in process models
configuration using a systematic design. However, structural correctness may
not be sufficient. To the best of our knowledge, our previous work is the first
one attempting to achieve correctness for specifically C-BPMN configurations.
In the current work, we aim to especially achieve the behavioral correctness cap-
turing the dynamics of the executable configured process model. Thus, for all
possible instances of an executable configured process model, deadlocks should
never occur. Our approach can be easily adapted to obtain sound [2] process
variants, due to the lack of space, we focus in this work on the deadlock-freeness
property.

7 Conclusion and Further Work

In this work, we propose an approach to assist business analyst to configure
configurable processes correctly. In this paper, the correction criterion is char-
acterized by the deadlock freeness of the obtained variant. We use a SOG-based
abstraction model to find all correct configurations, i.e. leading to deadlock-free
process variants. Such anomalies are excluded on-the-fly during the construction
of the SOG. As a result, we obtain a reduced graph as well as a set of correct
configurations. Then, this set will serve to support analysts during configura-
tion. Our approach was implemented as an extension to an existing tool. And
preliminary experiments show that our approach outperform naive approaches
in terms of size of the explored configurable model.

As future work, we plan to first take into account other types of process con-
figurations such as, activity and resource configuration as well as other patterns
of OR-join, i.e. Synchronizing merge and Discriminator [3]. Then, we aim to
entirely automate our approach procedure (depicted by Fig. 2). Finally, we aim
to adapt the SOG construction algorithm in order to integrate other correct-
ness constraints: generic properties, e.g. soundness, and specific properties, e.g.
domain constraints.

112 S. Boubaker et al.

References

1. Aalst, W.V.D., et al.: Preserving correctness during business process model con-
figuration. Formal Asp. Comput. 22(3–4), 459–482 (2008)

2. Aalst, W.V.D., et al.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Asp. Comput. 23(3), 333–363 (2011)

3. Aalst, W.V.D., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

4. Aalst, W.V.D., Lohmann, N., Rosa, M.L.: Ensuring correctness during process
configuration via partner synthesis. Inf. Syst. 37(6), 574–592 (2012)

5. Assy, N.: Automated support of the variability in configurable process models.
Ph.D. thesis, University of Paris-Saclay, France (2015)

6. Assy, N., Gaaloul, W.: Extracting Configuration Guidance Models from Business
Process Repositories. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.)
BPM 2015. LNCS, vol. 9253, pp. 198–206. Springer, Cham (2015). doi:10.1007/
978-3-319-23063-4 14

7. Boubaker, S., et al.: A formal guidance approach for correct process configura-
tion. In: Service-Oriented Computing - 14th International Conference, pp. 483–498
(2016)

8. Brandes, U., et al.: GraphML Progress Report Structural Layer Proposal, pp. 501–
512 (2002)

9. Cardoso, J.S.: Business process control-flow complexity: Metric, evaluation, and
validation. Int. J. Web Serv. Res. 5(2), 49–76 (2008)

10. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

11. Gottschalk, F., et al.: Configurable workflow models. Int. J. Coop. Inf. Syst. 17(02),
177–221 (2008)

12. Haddad, S., Ilié, J.-M., Klai, K.: Design and evaluation of a symbolic and
abstraction-based model checker. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299,
pp. 196–210. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30476-0 19

13. Hallerbach, A., et al.: Guaranteeing soundness of configurable process variants in
provop. In: IEEE Conference on Commerce and Enterprise Computing, CEC, pp.
98–105 (2009)

14. Hallerbach, A., et al.: Capturing variability in business process models: the provop
approach. J. Softw. Maintenance 22(6–7), 519–546 (2010)

15. Klai, K., Tata, S., Desel, J.: Symbolic abstraction and deadlock-freeness verification
of inter-enterprise processes. Data Knowl. Eng. 70(5), 467–482 (2011)

16. La Rosa, M., et al.: Questionnaire-based variability modeling for system configu-
ration. Softw. Syst. Model. 8(2), 251–274 (2008)

17. Rosemann, M., Aalst, W.V.D.: A configurable reference modelling language. Inf.
Syst. 32(1), 1–23 (2007)

18. Van Der Aalst, W., et al.: Configurable Process Models as a Basis for Reference
Modeling, pp. 512–518. Springer, Berlin (2006)

19. Verbeek, H., Basten, T., Aalst, W.V.D.: Diagnosing workflow processes using
woflan. Comput. J. 44(4), 246–279 (2001)

http://dx.doi.org/10.1007/978-3-319-23063-4_14
http://dx.doi.org/10.1007/978-3-319-23063-4_14
http://dx.doi.org/10.1007/978-3-540-30476-0_19

Formally Modeling, Executing, and Testing
Service-Oriented Systems with UML and OCL

Loli Burgueño1,2(B) and Martin Gogolla3

1 Universidad de Málaga, Málaga, Spain
loli@lcc.uma.es

2 Marbella International University Centre, Marbella, Spain
loli@miuc.org

3 University of Bremen, Bremen, Germany
gogolla@informatik.uni-bremen.de

Abstract. One of the issues that developers of service-oriented systems
currently discuss is the lack of practical, but formal modeling notations
and tools that can address the many different, important aspects. This
paper presents an approach to model structural and behavioral proper-
ties of service-oriented systems with UML and OCL models. Essential
service-oriented concepts as service request, service provision or orches-
tration are formally represented by UML concepts. The models can be
executed, tested and analyzed. Feedback is given to the developer in
terms of the UML and OCL model.

1 Introduction

In recent years, service-oriented systems have become increasingly complex.
There has been an explosion on the number of services available—either pro-
duced within the companies internal development process or provided by third
parties—that are integrated into service-oriented applications. Although follow-
ing the principles of the Service-Oriented Architecture (SOA), this fact of encom-
passing such a high number of software components makes the task of reasoning
about the systems as a whole difficult. Another reality that has a strong impact
on the complexity of these applications is that SOA systems are generally dis-
tributed and weakly-coupled among themselves.

As for any software to be developed, it has been proved over the years [1,3,4]
that the modeling of SOA applications is an essential task. This is the reason
why there exists a wide range of tools and frameworks. In our view, there is
a lack of practical tools for reasoning about the compositions of the services
that service developers, integrators and choreographers build. To the best of our
knowledge, current “formal” models for service composition or choreography
rely on formalisms such as process algebras, temporal logic or petri nets. These
models are useful to analyze some properties, but not so easy to be practically
applied from a development perspective. In this sense, a lightweight approach
with strong formal foundations could provide easy and cheap formalization of

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 113–122, 2017.
https://doi.org/10.1007/978-3-319-69035-3_8

114 L. Burgueño and M. Gogolla

systems. Specially if its models are not only useful from a theoretical perspective
but also from a practical point of view.

In this contribution we have decided to make use of the tool USE (UML-based
Specification Environment)1. Instead of using proprietary modeling techniques,
USE is based on the Unified Modeling Language (UML) [5] extended with OCL
constraints. The main motivation for our decision is the fact that, UML/OCL
models can be formal and at the same time they are very useful from a practical
point of view, because they can be applied to develop systems in an automated
(or semi-automated) way using MDE (Model-Driven Engineering) principles,
techniques and tools.

In this paper we present an approach to model structural and behavioral
properties of service-oriented systems with UML and OCL models. Essential
SOA concepts as service request, service provision or orchestration are formally
represented by UML concepts. Behavioral properties are formally described with
UML protocol state machines and operation contracts. OCL is applied for mak-
ing the structure and behavior precise. Our models can be executed and analyzed
for consistency, among other properties. Feedback is given to the developer solely
in terms of the UML model. There is no need to work with a second verification
language. Our approach supports the automatic generation of test scenarios in
which, for example, the availability of services or requests can be checked. The
consistency of the service model can be proved by constructing test scenarios.

The rest of the paper is organized as follows. Section 2 introduces the pro-
posed approach and Sect. 3 concludes and outlines future research lines. Due to
space limitations both the background to our work and related work are not
discussed in this contribution, but in a full version of this work available in [2].

2 Service Modeling, Execution and Testing

This section explains our approach to model service-oriented systems with a
case study, a process for an Online Test for students: A teacher designs an online
test and then requests from a service provider to make the test online available;
students as service requester conduct the test online; the results are recorded
and are passed to the teacher for evaluation and result declaration as another
service; a second service provider is the examination administration that offers
a service to check for the legitimation of the students to participate in the test
and record their results.

2.1 Case Study: Online Test

Figure 1 illustrates the basic artifacts for our case study. The left upper part
displays a question sheet stating several questions and possible answers for an
online multiple choice test that is designed by a teacher and is to be conducted
by students. From the sheet, an online form (in the right part of the figure) will

1 http://useocl.sourceforge.net/w/index.php/Main Page.

http://useocl.sourceforge.net/w/index.php/Main_Page

Formally Modeling, Executing, and Testing Service-Oriented Systems 115

be generated where students enter their email address and their answers to the
questions. Each student reply will be recorded in an answer sheet (in the left
bottom part of the figure) with a line for each student holding the student’s
email and her answers as well as two evaluation columns indicating the number
of achieved points and a list of incorrectly answered questions.

Fig. 1. Artifacts for the case study Online Test.

Fig. 2. Use case flow diagram for the Online Test.

The use case diagram-like representation in Fig. 2 gives an overview on the
case study and shows the involved actors and use cases as well as the flow
between the use cases. In the following text, actors and use cases are indicated
using the codetypewriter font. We call this representation a use case flow dia-
gram. We identify two service requesters (Student, Teacher) and two service
providers (Sheet Provider, Exam Admin as a shortcut for Examination Admin-
istration). The process is initiated by the actor Teacher through fixing the
Question Sheet by stating questions and answers. We represent data stor-
ages like the Question Sheet as (passive) actors. The use case fix question
and answer may be repeated several times. The Teacher then uploads the
online test. In this use case also the Sheet Provider is involved and responsible

116 L. Burgueño and M. Gogolla

for transforming the Question Sheet into an Online Form. The Teacher then
invites some Students to participate in the online test. The email addresses
of the Students have to be validated by the Exam Admin before they get
enrolled for the test. Every Student can then conduct the test through which
the Sheet Provider fills the Answer Sheet. After closing the test, the Teacher
can evaluate the answers and declares the result to the Students and to the
Exam Admin.

2.2 Structural and Behavioral Service Modeling

Figure 3 displays the structural model in form of a UML class diagram for
the case study as a screenshot from our tool USE. One identifies four impor-
tant abstract classes that realize service-oriented concepts: ServiceRequester,
ServiceProvider, Orchestrated, and DataStorage: (a) the first two abstract
classes will be manifested with concrete classes taking the role indicated by the
abstract class name (here the service requesters Teacher and Student, and the
service providers SheetProvider and ExamAdmin); (b) class Orchestrated will
be used for the orchestration of services; this class will embody protocol state
machines (PSMs) that synchronize operation calls touching different requesters
and providers; (c) the class DataStorage will realize information storages. Please
note that different ‘high-level’ concepts from service-orientation (service pro-
vision, service request, orchestration, data) are formally realized by the same
‘low-level’, modeling concept (mapping of requests, provisions, orchestrations
and data to object-oriented classes). Such a method that maps high-level into
low-level concepts is often successfully applied, for example, when an Entity-
Relationship database schema is realized by a Relational database schema, in
which entities and relationships are mapped to relations.

The structural model is enriched by explicit class invariants that formulate
model-specific requirements that must hold when no operation is active; during
operation execution invariants may temporarily fail. For the case study, we have
implemented some typical invariants (uniqueName, uniqueEMail, oneTeacher,
oneExamAdmin, oneSheetProvider and Points VS WrongAnswers). The imple-
mentation of some is shown in the following listing.

context Teacher inv uniqueName: Teacher.allInstances->isUnique(name)

context Teacher inv oneTeacher: Teacher.allInstances->size=1

context AnswerSheet inv Points_VS_WrongAnswers:

Rows->forAll(r|r.Points+r.WrongAnswers->size=r.answers->size)

The class diagram in Fig. 3 also shows operation signatures and thus deter-
mines part of the behavioral model. In order to distribute the functional-
ity required by the use case flow diagram in Fig. 2 to the individual classes,
we have applied the following method: If a class Cls participates in a use
case u, that class will embody an operation uC (use case name u and C
being the first letter of the class name) that is responsible for performing
the respective actions of the use case on Cls objects. For example, the use

Formally Modeling, Executing, and Testing Service-Oriented Systems 117

Fig. 3. UML class diagram for the Online Test.

118 L. Burgueño and M. Gogolla

Fig. 4. UML protocol machines for the Online Test.

case inviteStudent is realized with the operations Teacher::inviteStudentT
and Student::inviteStudentS. The object initiating the use case performs its
own actions and calls the respective operations on the other objects participating
in the use case.

Figure 4 shows central parts of the behavioral model for the case study in
form of UML protocol state machines from our tool USE. One can identify in
the top four protocol machines, one for each of the four provider and requester
classes. These machines determine the order in which the services are requested
or provided, i.e., it is specified in which order the operations from the respective
classes are called; only guards and operations from a single class are handled
here. The two protocol state machines at the bottom are responsible for the
essential orchestration task. These two machines are attached to the abstract

Formally Modeling, Executing, and Testing Service-Oriented Systems 119

class Orchestrated, and the behavior restrictions are inherited to the specialized
requester and provider classes. Orchestration in this context means that condi-
tions (in form of guards) and events (in form of operation calls) from different
classes are considered. The class referred to in the guard and the class belonging
to the operation are different. For example, the next-to-last machine restricts
a sequence of Student::inviteStudentS() and Student::conductTestS()
operation calls by guards that refer to the inviting Teacher and require that
this inviting teacher is in a particular protocol state.

In addition to the protocol state machine, the behavioral model is determined
by giving an operation an imperative implementation, which is formulated on the
modeling level without going into programming language details and is written
in the language SOIL (Simple OCL-like Imperative Language). The behavioral
model can be further sharpened by stating the operation effects in a declarative
way with operation contracts in form of OCL pre- and postconditions. The oper-
ation implementation in terms of SOIL is guided and must respect the operation
contracts. Correctness of the operation implementation relative to the operation
contracts is checked in USE when test cases are run. As an example we show
the implementation and the contract for one operation.

Teacher::inviteStudentT(s:Student)

begin

insert (self,s) into Teacher_Student;

s.inviteStudentS()

end

pre studentHasEMail: s.EMail<>null and s.EMail<>’’

pre notInvited: self.invitedS->excludes(s)

post invited: self.invitedS->includes(s)

2.3 Service Model Execution

Figure 5 shows an example execution run of the complete model. The twelve exe-
cuted operations are stated as a listing in the lower right corner. The execution
run involves exactly one object from every class, and each operation from every
class is called once. Therefore, this run demonstrates that the behavioral service
model can be instantiated and that the model is consistent and free from con-
tradictions: All protocol state machines work properly together, and the reached
final system state as well as the intermediate system states satisfy the model-
inherent constraints (wrt multiplicity) and all explicit invariants from the class
diagram; all operation contracts are satisfied. The sequence diagram shows life-
lines for the single objects. The operation calls are indicated as message arrows
from one lifeline to another lifeline. On the lifelines, the reached protocol states
of the respective object are indicated. Thus the development of the objects from
one protocol state to the next protocol state can easily be traced.

Due to space limitations, our testing approach to service-oriented systems is
not presented in this paper. It is available in our technical report in [2].

120 L. Burgueño and M. Gogolla

Fig. 5. UML sequence diagram for an example execution run.

Formally Modeling, Executing, and Testing Service-Oriented Systems 121

3 Conclusions and Future Work

This paper presents an approach in which service-oriented systems are modeled
using UML in combination with OCL. These models do not only focus on one
aspect in service-orientation, but consider requests, provisions, orchestrations
and data in a coherent manner. Based on the models of a system, properties
such as the consistency and instantiability of service request, service provision
and service orchestration can be verified by automatically building test scenarios
where both processes and data are considered. The application of our approach to
practical cases requires developer expertise in UML and OCL. The static system
properties must be formulated with UML class diagrams and OCL invariants,
and the dynamic properties with UML protocol machines and OCL contracts.
The developer is supported in the process by USE in semi-automatically con-
structing test scenarios.

Currently, the test cases generated by our approach are system states that
embody (a) structural aspects in form of object attributes and links between
objects and (b) behavioral aspects in form of object states referring to the
dynamic behavior and the orchestration in form of protocol state machines.
We can check for the applicability of services, i.e. operations. In the future, we
will consider system state sequences with service request and service provisions
as transitions in between and properties of such system state sequences. Our
plans also include the extension of our approach in order to allow the definition
of initial states and support for checking whether a particular generated system
state can be reached via service requests/provisions from the initial states. This
implies an extension of the model validator in order to handle protocol states.
Direct support for concepts like requester, provider, or data will be provided
as well. To do so, we will equip such classes with predefined PSMs that can
be extended according to the application needs. Furthermore, we will ease the
definition of PSMs by allowing the definition of regular expressions over opera-
tions and derive PSMs from them. We also plan to provide predefined interfaces
among requesters and providers supporting a direct and better communication
between them. In order to check the applicability of our approach, firstly, we
will work on larger and existing case studies based on real data and; finally,
on the integration of our approach with existing SOA systems that needs to be
modernized or integrated with others.

Acknowledgments. This work has been partially funded by Spanish Research
Project TIN2014-52034-R.

References

1. Barjis, J.: The importance of business process modeling in software systems design.
Sci. Comput. Program. 71(1), 73–87 (2008)

2. Burgueño, L., Gogolla, M.: Formally modeling, executing, and testing service-
oriented systems with UML and OCL. Technical report (2017). http://www.db.
informatik.uni-bremen.de/publications/intern/BG2017.pdf

http://www.db.informatik.uni-bremen.de/publications/intern/BG2017.pdf
http://www.db.informatik.uni-bremen.de/publications/intern/BG2017.pdf

122 L. Burgueño and M. Gogolla

3. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: Proceedings of the FOSE 2007, pp. 37–54. IEEE Computer Society
(2007)

4. Mohammadi, M., Mukhtar, M.: A review of SOA modeling approaches for enterprise
information systems. Procedia Technol. 11, 794–800 (2013)

5. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Pearson Higher Education, London (2004)

Mining and Analytics

App Update Patterns: How Developers Act
on User Reviews in Mobile App Stores

Shance Wang1, Zhongjie Wang1(B), Xiaofei Xu1, and Quan Z. Sheng2

1 Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
{shance.wang,rainy,xiaofei}@hit.edu.cn

2 Macquarie University, Sydney, NSW 2109, Australia
michael.sheng@mq.edu.au

Abstract. Mobile app stores receive numerous reviews that contain
valuable feedbacks raised by users. Incorporating user reviews into itera-
tive delivery of new App versions would improve the quality and ratings
of Apps. To date, there is no explicit answer on whether and to what
degree App developers make use of user reviews sufficiently and timely.
In this paper, we extract requested features in user reviews and updated
features in new versions, identify the latent relation between them, and
discover 7 types of Update Patterns (UPs) by grouping similar Atomic
Update Units (AUs). UPs delineate common behavioral characteristics
of acting on user reviews from perspectives of feature intensity trend,
sufficiency and responsiveness. Statistics are conducted to explore the
similarity/difference between exhibited update patterns w.r.t. Apps, fea-
tures, and time. Results would help developers get a clear understanding
on their own habits on how to act on user reviews, and thus offer sug-
gestions on utilizing user reviews more efficiently in App development.

Keywords: Mobile App · App store · User review · Atomic Update
Unit (AU) · Update Pattern (UP) · Empirical study

1 Introduction

With the flourish of mobile Internet and service-dominant industries, the number
of available mobile Apps grows drastically with the rate 4–7% per month. Mobile
Apps dominate people’s daily lives and have been a major channel through which
people access cloud services anytime and anywhere to fulfill personal demands [2].

App store is a centralized platform for users to acquire Apps. In an App store,
each App has a homepage showing its descriptions along with its developer, size,
versions, etc. Users can submit reviews through its homepage. There are valuable
information lurking in enormous amount of user reviews, such as bug reports,
feature requests, complaints or appraisal, and the rating [10]. Potential App
users could gain a first impression on an App from reviews of its previous users.

User reviews are important to App developers, too. As today’s Internet-based
services usually adopt agile development approaches such as rapid iterations and
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 125–141, 2017.
https://doi.org/10.1007/978-3-319-69035-3_9

126 S. Wang et al.

continuous delivery, App developers would like to acquire feature requests from
reviews, and then to consider fulfilling them in subsequent releases [17]. There
has reached a consensus that user reviews bring positive effects to every phase
of App development, especially requirement engineering and testing [14].

Because the number of user reviews is enormous and high-quality reviews
are often intermingled with much more low-quality ones, App developers have
to filter out those informative reviews [3], read them, extract useful requested
features and perceive customer preferences [23], and fulfill these feature in next
iteration. These actions are regarded as “response to customer voices”. However,
it is not sure whether all developers follow the same behavior pattern, i.e., do
they have the same opinion on the value of user reviews and therefore utilize
them timely and sufficiently? As far as we know, until now there are not enough
research investigating this issue, which is still a great challenge.

The first work of this paper is to reveal the potential correlation between the
features requested in user reviews and the behaviors performed by App devel-
opers on updating App into a new version. Since most of Apps are proprietary
but open source Apps are in the minority, it is difficult to obtain fined-grained
update descriptions by tracking changes of source code or documents. To achieve
this goal, we can make use of update logs (i.e., “What’s New”) written by devel-
opers and publicized on the App homepage. An update log of a specific version
is a text list describing what features have been added or updated in this version
(compared with the previous version) [8]. As there have been many approaches
for extracting requested features from review texts [5,7], it is possible to apply
similar methods to extract updated features mentioned in “What’s New”, too.
If a frequently-requested feature in a specific period appears strikingly in the
update log of a subsequent version, it is indicated that there is latent correlation
between user reviews and update behaviors during this period, thus we may
think developers do elaborately consider user reviews when the App is updated.
Detailed analysis is conducted from the following four perspectives:

– Changing trend of the intensity of a feature requested in user reviews, i.e.,
how does the intensity of a feature mentioned in users reviews fluctuate in the
time interval between two neighboring versions of an App?

– Intensity of a feature updated in a new version, i.e., to what extent is a feature
mentioned in “What’s New” of the version?

– Update sufficiency for a specific feature, i.e., to what extent do App developers
act on specific user expectations sufficiently in a new version?

– Update responsiveness for a specific feature, i.e., how long does it take for App
developers to update an App in terms of the requested feature, or, to what
degree do App developers respond to user requests timely?

Next task is to identify common behavior patterns of how App developers act
on requested features. They are denoted as Update Pattern (UP). The second
work is to present an update pattern mining method by splitting App update
history into a set of Atomic Update Units (AU) and clustering them into groups.
Obtaining UPs would further help us identify their pros and cons, respectively,
so as to utilize user reviews more effectively.

How App Developers Act on User Reviews 127

Google Play

Select hot Apps
from ranking list

Acquire meta-data
of Apps

Acquire review
data of Apps

Acquire update
data of Apps

Extract requested
features from
user reviews

Extract updated
features from
“What’s New”

Analyze intensity
trends of feature
request/update

Empirical
Study

Extract Atomic
Update Units

Mine frequent
update patterns

P1 P2 P3 P4

Fig. 1. Overall research framework with four phases

As Apps belong to different categories, offering diversified functionality to
diversified target users, and developed by different developers having different
working habits, we conjecture that update patterns in different Apps might
not be the same. Even in one App, as it contains multiple features such as UI
aesthetics, security, performance, we guess that the update patterns for different
features might be different. Furthermore, as each feature is updated multiple
times in multiple versions, the update patterns exhibited in different time might
also be different.

The third work is to conduct an empirical study to observe the similarity/
difference among update patterns exhibited in different Apps, on different/
similar features, and at different times, respectively.

To sum up, we address the following research questions (RQs) in this study:

– RQ1: Does the correlation between user reviews and App updates really exist?
If yes, are there common update patterns? And how to identify them?

– RQ2: In terms of different features of the same App, are there significant
difference/similarity between their update patterns?

– RQ3: In terms of similar features of different Apps, are there significant simi-
larity between their update patterns?

– RQ4: For a single feature of an App, are there significant changes of its update
patterns exhibited in different time?

Figure 1 demonstrates our research approach consisting of four phases: (P1)
Data Collection: user reviews and update logs (between March 2016 and March
2017) of 120 representative Apps are collected from Google Play; (P2) Fea-
ture Extraction: topic-based features are extracted from collected texts by NLP
approaches so that raw corpus are transformed into numerical vectors; (P3)
Update Pattern Mining: intensity trend of each feature along with time is calcu-
lated and decomposed into “Atomic Update Units (AUs)”, along with the mea-
surement of sufficiency and responsiveness of each AU, and update patterns are

128 S. Wang et al.

identified by clustering AUs; (P4) Empirical Study. P1, P2 and P3 are together
for addressing RQ1, and P4 is for RQ2, RQ3 and RQ4.

The main conclusions from this study are briefly summarized as follows:

– Intensity of a feature requested in user reviews fluctuates along with time: it is
comparatively higher before and after an update (release of a new version) than
at other times. Update sufficiency of features follows a power-law distribution,
but the distribution of update responsiveness shows an obvious right-skewed
shape. Comparatively speaking, App developers tend to act on user requests
in a preferably timely but not quite sufficient manner;

– There are 7 types of update patterns commonly exhibited in developers’
update behaviors. They are differentiated from three perspectives: intensity
trend of a requested feature, update sufficiency, and update responsiveness.

– App developers tend to adopt more similar update patterns for different fea-
tures in their own App. Similar features across multiple Apps more tend to
exhibit diversified update patterns. Therefore the adoption of update patterns
depends largely on “App developers” rather than on “features”. However,
developers’ behaviors lack enough coherence/continuity when they update the
same feature at different times.

The remainder of the paper is organized as follows. Section 2 introduces
the related work. Section 3 describes data collection and processing. Section 4
presents the methods on feature extraction and update pattern mining. Finally,
Sect. 5 reports experimental results and Sect. 6 offers some concluding remarks.

2 Related Work

Extracting Features from Reviews and Update Logs. Feature extrac-
tion from “big data” in App stores is a fundamental problem in the App Store
Analysis [14]. Various NLP techniques have been developed for this purpose.
Finkelstein et al. [5] defined a feature as “a claimed functionality offered by an
App, captured by a set of collocated words in App description and shared by a
set of Apps in the same category”; a tool N-gramCollocationFinder in NLTK
was used to extract featurelets from reviews. Guzman et al. [7] also used collo-
cation finding approach, but added sentiment analysis for extracting sentiments
and opinions associated to features, and topic modeling for grouping related
features. Differently, Iacob et al. [9] used syntax templates (keywords + syntax
rules) to identify features automatically from reviews. The third dominant app-
roach is statistics-based models such as Latent Dirichlet Allocation (LDA), e.g.,
[1,6,21]. Since user reviews are numerous, informative reviews should be selected
and recommended to App developers for elaborate considerations. Chen et al.
[3] used a machine learning approach, EMNB, to classify reviews into “infor-
mative” and “non-informative” ones, then used LDA/ASUM to group reviews
into clusters and prioritize them. Vu et al. [22] analyzed user reviews for key-
words of potential interest which developers can use to search for useful opinions,
including keyword extracting, keyword grouping, and keyword ranking.

How App Developers Act on User Reviews 129

Feature Classification. It is necessary to classify extracted features into
categories so that they are handled by different strategies. Khalid et al. [11]
presented a 12-category classification, e.g., App Crashing, Compatibility,
Feature Removal, Hidden Cost, Functional Error, etc. Pagano and Maalej [18]
presented a classification with four coarse-grained categories and 17 fine-grained
ones, and they used manual annotation and frequent item mining approaches to
identify the frequent co-occurrence of features in reviews. Maalej and Nabil [12]
utilized several probabilistic techniques to automatically classify reviews into
bug reports, feature requests, user experiences, and ratings. McIlroy
et al. [16] distinguished 14 types of features and introduced a supervised multil-
abel classification method. In terms of features in “What’s New”, McIlroy et al.
[15] introduced a classification with 5 types, i.e., new content, new features,
improvement, bug fix, permission, and the frequency of their co-occurrence
is analyzed to empirically study frequently-updated mobile Apps.

Incorporating User Reviews in App Development. Apps as typical
Internet-based services, evolve fast in both external interfaces and internal func-
tionalities [8]. To cope with unpredictable changes and failures, Apps need to
be adaptive, too [4]. Syer et al. [20] found that the evolution of Apps are quite
different from the evolution of traditional software, and direct feedback con-
tained in user reviews facilitates design and testing respectively [10,14]. Nayebi
et al. [17] studied how developers organize release strategy of Apps, and found
that the majority of developers are willing to bend their time-based strategies to
accommodate users’ feedback, and believe that the rationale for release decisions
affects user feedback. Martin et al. [13] studied App update logs and analyzed
the causality between continuous updates of an App and its influence/rating,
i.e., what types of updates would upgrade Apps’ rating more easily. Palomba
et al. [19] analyzed how developers utilize user reviews to improve App rating:
they traced user reviews onto source code changes for monitoring the extent to
which developers accommodate crowd requests and follow-up user reactions as
reflected in their ratings, and results indicate that developers implementing user
reviews are rewarded in terms of ratings.

3 Data Collection and Preprocessing

3.1 App Selection

We choose Google Play as the source to collect mobile Apps and their update logs
and user reviews. Firstly, Android dominates mobile OS marketplace with the
market share above 74%. Secondly, the amount of Apps and users in Google Play
are both the biggest among Android App stores in the world, and the amount
and quality of user reviews are the highest, too. Thirdly, its users are distributed
across the world, thus the user reviews are extensively representative. To specify
the candidate Apps in our study, we choose the top-100 free Apps and top-20
paid Apps from the hot ranking list of Google Play (date: March 1, 2016). User
reviews and update logs of the 120 Apps between March 31, 2016 and March

130 S. Wang et al.

30, 2017 are collected. In terms of user reviews, we collect nickname of users,
review text, review date, and ratings. In terms of update logs, we collect App
descriptions, distribution of user ratings, and the text of “What’s new”.

3.2 Dataset Preparation

User reviews and update logs of Apps are both dynamically updated, and Google
Play only shows the latest version in the homepage of an App (previous versions
cannot be seen), and shows only a set of latest user reviews (i.e., not complete
historical reviews). Therefore, it is impossible to crawl required data all at once.
What we adopt is to constantly monitor the homepage of each App and identify
changes of update logs and reviews and record them instantly. We develop our
own Google Play crawler which regularly crawls updated information from Apps’
homepages and store them in an incremental manner. The tool constructs a
virtual HTTP request and sends it to Google Play, then collects the returned
review data (in JSON format), compares with local files, extracts updated reviews
and saves to local files. Similarly, after an App update log is crawled, the tool
compares it with previous update logs and check if it has been changed or not;
if yes, a new version has been released and “What’s New” is stored in local files.

As update frequency of user reviews is higher, we use five servers for the
crawling task. Tasks for collecting reviews of 120 Apps are allocated onto these
servers (each is responsible for 15–25 Apps). The sixth server is responsible for
collecting update logs of 120 Apps one time per day (because the update fre-
quency of Apps is comparatively lower). All the six servers are virtual machines
on Aliyun (the biggest PaaS cloud service provider in China), with the con-
figuration as: 1 GHz CPU, 1 GB memory, 2 Mpbs bandwidth, 40 GB harddisk,
OS Windows Server 2008 R2. The servers are physically located in Silicon Val-
ley, USA.

After 12-month collection, 17,557,170 reviews are collected, with 1,296 times
of App updates. There are totally 5,923,379 distinct users each having con-
tributed at least one review. Majority of the Apps have less than 500 daily
reviews in most of days, while a few Apps have above 4,000 reviews in one day.

Preprocessing of the crawled data includes two main steps as the following:

(1) Remove non-English texts. Although our crawler access Apps only from Eng-
lish zone of Google Play, there are still some non-English review texts. We
use table lookup to filter them out. English vocabulary table is offered by
aspell1. If a word belongs to this table, it is considered as an English word.
If the ratio of non-English words in a review is higher than a threshold (we
use 0.3), this review is considered as a non-English one and is to be dis-
carded. Finally, 51.16% reviews are discarded and 8,575,276 reviews remain
in the dataset.

1 http://wordlist.aspell.net/dicts.

http://wordlist.aspell.net/dicts

How App Developers Act on User Reviews 131

(2) Remove stopwords and stemming. This is a common step in natural lan-
guage processing. Besides the Lextek’s stopword list2, when the reviews of
a specific App are handled, the full and abbreviated names of this App and
the names of its common operations are added to the stopword list.

4 Mining App Update Patterns

4.1 Extracting Features from User Reviews and “What’s New”

BTM (Biterm Topic Model) is employed to extract features from texts of user
reviews and “What’s New”. BTM is an optimized unsupervised LDA model
especially for short texts (e.g., tweets, short reviews) by explicitly modeling the
word co-occurrence patterns to enhance the topic learning and using aggregated
patterns in the whole corpus for learning topics to solve the problem of sparse
word co-occurrence patterns at document-level [24].

Reviews and “What’s New” of each App are the input of BTM and a topic
distribution matrix A is generated. If the total number of reviews is m, total
number of update logs is l, and the number of topics generated by BTM is n,
then A is (m+ l)×n dimensions, and the value Aij is the probability with which
the i-th review or update log covers the j-th topic. Each topic is represented by
a set of keywords and is used as a feature covered by the App.

4.2 Intensity Trend Chart of Feature Request/Update

Next step is to measure the daily intensity of each feature requested in reviews
and updated in new versions, and to get intensity trend of each feature. In terms
of one App, suppose Day(i) is the day when the i-th review is published to
App store, then the daily intensity of the j-th feature fj in the k-th day is
IR(fj , k) =

∑
Day(i)=k Aij (abbr. IRjk). Intensity of feature update in the update

log of a new version IU (fj , k) (abbr. IUjk) is measured similarly.
Changing trend of feature intensity along with time (intensity trend in short)

is obtained based on a feature’s daily intensity. Taking the data of Instagram
App as an example, the intensity trend of a feature f related to feed with key-
words feed, chronological, posts, etc., is shown in Fig. 2. X-axis is time-
line, y-axis is the intensity of feature request/update, the curve is the inten-
sity trend of the feature requested in reviews, and the vertical lines represent
the intensity of the feature updated in new versions. This chart is described
by TC(f, ts, te) = {(k1, IRf,k1

, IUf,k1
), ..., (kN , IRf,kN

, IUf,kN
)} where N is the total

number of days between date ts and te, and k1, ..., kN are N consecutive days.
Such chart combines intensity trends of a specific feature in both user reviews
and update logs, thus is helpful to observe the global correlation between them.

2 http://www.lextek.com/manuals/onix/stopwords1.html.

http://www.lextek.com/manuals/onix/stopwords1.html

132 S. Wang et al.

0

50

100

150

200

250

300

350

400

450

500

91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

14
5

15
1

15
7

16
3

16
9

17
5

18
1

18
7

19
3

19
9

20
5

21
1

21
7

22
3

22
9

23
5

24
1

24
7

25
3

25
9

26
5

27
1

27
7

28
3

28
9

29
5

30
1

30
7

31
3

31
9

32
5

33
1

33
7

34
3

34
9

35
5

36
1

36
7

37
3

37
9

38
5

39
1

39
7

40
3

40
9

41
5

42
1

42
7

43
3

43
9

44
5

45
1

In
te

ns
ity

 o
f F

ea
tu

re
 R

eq
ue

st
/U

pd
at

e

Timeline : the X th Day from 2016.1.1

Fig. 2. Feature trend of a feature of Instagram App (Color figure online)

4.3 Atomic Update Units (AU)

The intensity trend for one feature is to be decomposed into a set of
“Atomic Update Units (AU)” in terms of a set of App updates which are
considered as the actions developers take to respond to user requests in
reviews. TC(f, ts, te) → {AU(f, T1), AU(f, T2), ...}, and ∀i, AU(f, Ti) =<
{(ki1, IRf,ki1

), (ki2, IRf,ki2
), ...}, IUf,Ti

>, where ki1, ki2, ... are consecutive days dur-
ing the time interval Ti, and IUf,Ti

is the intensity of f updated in the last day of
Ti. AU(f, Ti) represents an interval Ti in which users make continuous requests
on f in their reviews, and what the developers act on these requests is to make
an update on f in the last day of Ti but there are no other updates during Ti.

Easily to imagine, lengths of different AUs are different. To help identify
update patterns from AUs, we make normalization on the length of AUs by
transforming absolute dates into relative dates and consequently all AUs are
with the same length (e.g., 20 relative time points). A piecewise fitting method
is adopted for this transformation. Detailed steps for decomposing intensity trend
chart into normalized AUs are listed in Algorithm 1.

For each AU , we calculate the sufficiency and responsiveness to measure the
speed and degree describing how developers act on a requested feature in user
reviews after the last update (version) on this feature.

Update sufficiency for a feature, i.e., ratio of the update intensity w.r.t. aggre-
gated request intensity in user views, measures to what degree App developers
could consider the expectation of users. The higher the value is, the more suf-

ficient the update is. It is measured by Suf(f,AUi) = Norm(
IU
f,Ti

∑ts
i

k=te
i
IR
f,k

) where

Norm(·) is a normalization function to make Suf(f,AUi) ∈ (0, 1].
Update responsiveness for a feature, i.e., how long it takes for a developer to

decide whether to update a requested feature into a new version, is measured by
the ratio of the interval in which the features are significantly mentioned w.r.t.
the interval between two neighboring versions that both update this feature.
It demonstrates to what degree developers act on user expectations timely. To
measure responsiveness, in an AUi, we first calculate a specific time di to which

How App Developers Act on User Reviews 133

Algorithm 1. Decomposing intensity trend chart into normalized AUs
Input: Intensity trend TC(f, ts, te) of a specific feature f in a time interval (ts, te),

Number of relative time points in one normalized AU: N
Output: A set of normalized atomic update patterns AU Set
1: size ← number of updates during (ts, te) − 1, AU Set ← ∅
2: for each i ∈ [1, size] do
3: NIS ← ∅, Ti = (tsi , t

e
i) is the time interval of the i-th AU, Ni = tei − tsi + 1

4: OIS = getFeatureIntensityByDay(TC(f, ts, te), Ti)
5: max int = getMaxIntensity(OIS)
6: for each k ∈ [tsi , t

e
i] do

7: OIS[k] ← OIS[k]
max int

8: end for
9: NIS[1] ← OIS[tsi], NIS[N] ← OIS[tei]

10: for each k ∈ [2, N − 1] do
11: index ← k

(N−1)×(tei−tsi)

12: if index is an Integer then
13: NIS[k] ← OIS[index]
14: else
15: NIS[k] ← 1

2
(OIS[�index�] + OIS[�index�])

16: end if
17: end for
18: AU(f, Ti) ←< NIS, IUf,Ti

> and add AU(f, Ti) into AU Set
19: end for
20: return AU Set

the interval from the last update is (tsi , di); in this interval, aggregated intensity of
the requested feature is high enough (above a threshold τ), i.e.,

∑di

k=tsi
IRf,k ≥ τ ,

thus Resp(f,AUi) = di−tsi
tei −tsi

. A special case is
∑tei

k=tsi
IRf,k ≤ τ , indicating that

before the aggregated intensity of f in reviews has not yet reached the threshold,
the developers make update on it, thus Resp(f,AUi) = 1. This is the best
case indicating developers always take actions on feature requests as quickly as
possible. In the study we set τ = 4. It should be noted that we have checked
that choosing different threshold results in similar CDF of the responsiveness of
all AUs.

Sufficiency and responsiveness are both relative measures, i.e., we can com-
pare Suf(f,AUi) and Suf(f,AUj) to infer in which AU the feature f is
updated more sufficiently, and compare Resp(f,AUi) and Resp(f,AUj) to infer
in which AU the feature f is updated more timely. Solely observing the values
of Suf(f,AU) or Resp(f,AU) does not help to draw meaningful conclusions.

Figure 3(a) shows an example AU extracted from the history of Instagram,
for a feature Feed, between May 21, 2016 and August 3, 2016 (i.e., the part
between the first and second red lines in Fig. 2). It is normalized by Algorithm 1
and the result is shown in Fig. 3(b). The responsiveness is 1 and the sufficiency
is 0.0249, indicating that this update is comparatively timely, but the developers
did not address the requested feature adequately.

134 S. Wang et al.

0
50

100
150
200
250
300
350
400
450
500

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

21
3

O
rig

in
al

 In
te

ns
ity

 o
f F

ea
tu

re

Re
qu

es
t/

U
pd

at
e

Timeline : the X th Day from 2016.1.1

(a) Original intensity trend

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
or

m
al

iz
ed

 In
te

ns
ity

 o
f F

ea
tu

re

Re
qu

es
t/

U
pd

at
e

Timeline a er Normalized

(b) Normalized intensity trend

Fig. 3. An example Atomic Update Unit for a feature in Instagram

Figure 4(a) and (b) give the distribution of responsiveness and sufficiency of
all 2,429 AUs of 120 Apps, respectively. Sufficiency follows power-law distribu-
tion, while responsiveness is a right-skewed distribution. To note that, we have
checked and found that changing the threshold in the two measurement does
not drastically change the shape of their distribution.

4.4 Mining Frequent Update Patterns

Now the “intensity trend” for each feature is decomposed into a set of AUs,
and one AU(f, Ti) is with four parts: normalized requested intensity in each day
{(ki1, IRf,ki1

), ...}, normalized update intensity in the last day of this AU (IUf,Ti
),

and sufficiency (Suf) and responsiveness (Resp) of this update.
We try to find out the common patterns among all AUs of all Apps in their

history. A clustering approach is employed to partition AUs into groups: AUs in
the same group share comparatively more similar characteristics (requested fea-
ture intensity trend, update intensity, sufficiency and responsiveness), while dis-
tances between AUs in different groups are larger. We take the centroid of each
group to be a representative “Update Pattern”. k-Means algorithm is employed
for clustering and Euclidean distance is used for similarity measurement.

A key issue is to specify the number of clusters (k) in k-Means algorithm.
We assign different values (2 to 18) to k and make experiments and calculate

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95 1

Cu
m

ul
a

ve
 P

ro
po

on

Sufficiency

(a) Distribution of sufficiency

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
0.
05 0.
1

0.
15 0.
2

0.
25 0.
3

0.
35 0.
4

0.
45 0.
5

0.
55 0.
6

0.
65 0.
7

0.
75 0.
8

0.
85 0.
9

0.
95 1

Cu
m

ul
a

ve
 P

ro
po

on

Responsiveness

(b) Distribution of responsiveness

Fig. 4. Distribution of Sufficiency and Responsiveness of AUs of 120 Apps in one year

How App Developers Act on User Reviews 135

the average distance between centroids of clustering results; along with the
increase of k, the average distance gradually decreases, and when k = 7, the
decreasing speed becomes significantly slow. Thus we choose k = 7.

Table 1 gives an overview of the 7 update patterns. It is easy to see that
these patterns show significant diversity on intensity trend of features in user
reviews (column 5), update sufficiency (column 2), and update responsiveness
(column 3), implying they have the ability of differentiating how developers take
update behaviors on user reviews. Take Pattern 2 and Pattern 4 as examples,
Pattern 2’s responsiveness and sufficiency are comparatively lower than the ones

Table 1. Overview of the identified 7 Update Patterns

No.
Sufficiency
(ranking)

Responsiveness
(ranking)

Ratio Intensity trend

Pattern 1 0.195(2) 0.803(4) 6.67%

Pattern 2 0.050(6) 0.455(7) 7.70%

Pattern 3 0.058(4) 0.606(6) 16.43%

Pattern 4 0.349(1) 0.996(1) 8.53%

Pattern 5 0.049(7) 0.745(5) 18.66%

Pattern 6 0.102(3) 0.995(2) 24.84%

Pattern 7 0.054(5) 0.891(3) 17.17%

136 S. Wang et al.

of Pattern 4, and the decreasing trend of the requested intensity in Pattern 2
is more gentle than the one in Pattern 4. Ratios of these UPs (column 4) vary
from 6.67% to 24.84%, indicating that they are widespread in real world.

5 Empirical Study

Since we have got 7 diversified UPs, now we focus on how UPs are adopted on
different/similar features in the same or different Apps, and at different times.

5.1 Update Patterns w.r.t. Different Features in One App

In terms of one App, there are multiple features requested in reviews and updated
in new versions that are conducted by the same developers. We check whether
different update patterns are adopted for different features in the same App.

For each feature in an App, we construct a vector containing the ratios of 7
Update Patterns adopted in all AUs of this App, i.e., v(App, f) = (r1, r2, ..., r7),
and ri is ratio of the i-th UP. If v(App, fj) and v(App, fk) are similar, we can
infer that fj and fk exhibit similar update pattern distributions in this App.
Cosine similarity is used to measure the similarity of two vectors.

For all Apps, the distribution of the similarity of arbitrary feature pairs in
the same App is shown in Fig. 5(a), where each column is an App. Most Apps
show quite scattered distributions in [0, 1], and there are 73.2% Apps having the
variance of feature pair similarity being above 0.2.

(a) w.r.t. different features in one App

(b) w.r.t. similar features in one group

Fig. 5. Distribution of update patterns similarity

How App Developers Act on User Reviews 137

(a) For different features in one App (b) For similar features in one group

0

0.2

0.4

0.6

0.8

1

>=0.6 (0.3, 0.6] <0.3

0

0.2

0.4

0.6

0.8

1

>=0.6 (0.3, 0.6] <0.3

Fig. 6. Classification of update pattern similarity (high, medium, low)

We calculate the ratios of feature pairs in the same App with high (≥ 0.7),
medium [0.3, 0.7) and low (< 0.3) similarity, respectively. Result is shown in
Fig. 6(a) where each column is an App. Different Apps show quite different
observations: a small proportion of Apps on the left side tend to adopt dif-
ferent update patterns for different feature pairs, while a larger proportion on
the right side tend to adopt similar update patterns. Holistically, developers tend
to adopt more similar update patterns for different features in their own Apps.

5.2 Update Patterns w.r.t. Similar Features Across Multiple Apps

Considering multiple Apps together, there are common features across them.
We care about whether similar features in different Apps follow similar update
patterns. First we identify similar features among feature sets of different Apps.
Keyword matching is used for this purpose, i.e., if two features are described
by two similar sets of keywords, there is high probability with which the two
features represent the same one. 17,906 pairs of similar features across Apps are
identified, and they are grouped into 328 clusters in terms of feature similarity.

Similar as in Sect. 5.1, we construct a vector v(App, f) = (r1, r2, ..., r7) for
each f in each App, and then calculate the Cosine similarity between two vectors
v(Appi, fk) and v(Appj , fl) where i �= j and fk, fl belong to the same feature
group. For feature groups, the distribution of similarity of feature pairs in the
same group is shown in Fig. 5(b) where each column is a feature group. We can
see the degree of dispersion is higher than the one in Fig. 5(a).

Figure 6(b) shows the ratios of feature pairs in the same group with high
(≥ 0.7), medium ([0.3, 0.7)) and low (< 0.3) similarity, respectively. Compared
with Fig. 6(a), a larger proportion of groups tend to adopt different update
behaviors. Statistics show that there are 83.5% groups having the variance of
feature pair similarity above 0.2. This implies that similar features across multi-
ple Apps more tend to adopt diversified update patterns compared with different
features in the same App, and the adoption of update patterns on App features
depends more largely on “App developers” themselves rather than on “features”.

138 S. Wang et al.

5.3 Update Patterns w.r.t. Timeline

Here we consider the time perspective, i.e., along with time, do the update pat-
terns of a specific feature change frequently or remain stable? We pay attention
to the “update history” of a single feature in an App.

Suppose in a time interval, a feature f is updated n times in n versions, and
the update pattern for the i-th updates is pi. There is an update pattern sequence
Q(f) = p1 → p2 → ... → pn. Because p1, ..., pn are labels of update patterns
rather than numerical values, we cannot measure stability of the sequence from
the numerical fluctuation degree’s perspective. We use two stability measures:

(1) local stability : what proportion of two neighboring updates follow the
same update patterns, i.e., Stabl(f) = 1

n−1 × |{(pi, pi+1)|pi = pi+1,
i = 1, 2, ..., n − 1}|;

(2) global stability : how many different update patterns appear in the sequence
and what the degree of their dispersion is, measured by negative entropy,
i.e., Stabg(f) =

∑
i N(pi) log N(pi) where N(pi) is the times of pi appearing

in Q(f). Then Stabl(f) and Stabg(f) are combined with an average to get
Stab(f).

Figure 7 shows the distribution of update pattern stability of multiple features in
the history of each App. We found that the dispersity of such stability are smaller
compared with Fig. 5(a) and (b), with only about 36.0% having the invariance
larger than 0.2. The median of most Apps is less than 0.4, indicating that most
of them are not stable, i.e., developers tend to lack enough coherence/continuity

Fig. 7. Distribution of update pattern stability of features w.r.t. Apps

0

0.2

0.4

0.6

0.8

1

>=0.6 (0.3, 0.6] <0.3

Fig. 8. Classification of update pattern stability w.r.t. Apps (Color figure online)

How App Developers Act on User Reviews 139

when they consider to update the same feature at different time. This can be
also proved by Fig. 8 where the green (very unstable) and red (medium stable)
are dominating, and the blue (very stable) are the minority.

6 Conclusions

In this paper, we identified 7 types of common Update Patterns which generally
appear in App developers’ behaviors that they perform to act on the requests
raised by App users in their reviews. Update patterns are characterized by the
feature intensity trend between two neighboring updates, the update sufficiency,
and the update responsiveness. Statistics are made to validate a set of hypothesis.
This would help developers get a clear understanding on the common habits of
how they act on user reviews during delivery and evolution of their Apps.

Future work is to empirically validate whether there is latent causality
between update patterns and the popularity/rating of an App, i.e., would some
update patterns significantly boost the recognition of Apps, while others not?
This helps recognize App developers’ bad habits on incorporating user reviews in
App updates and give suggestions on adopting more appropriate update patterns
in future’s App updates. Another work is to exploit a machine learning based
predication method which gives App developers advices to update specific fea-
tures based on user reviews published from the last update to the current date,
so that “voices” of App users are to be addressed more timely and adequately.

Acknowledgments. Work in this paper is supported by the Natural Science Foun-
dation of China (No. 61772155, 61472106).

References

1. Carreño, L.V.G., Winbladh, K.: Analysis of user comments: an approach for soft-
ware requirements evolution. In: International Conference on Software Engineering,
pp. 582–591. IEEE (2013)

2. Cerf, V.G.: Apps and the web. Commun. ACM 59(2), 7–7 (2016)
3. Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: Ar-miner: mining informative

reviews for developers from mobile app. marketplace. In: International Conference
on Software Engineering, pp. 767–778. ACM (2014)

4. Cugola, G., Ghezzi, C., Pinto, L.S., Tamburrelli, G.: Adaptive service-oriented
mobile applications: A declarative approach. In: International Conference on
Service-Oriented Computing, pp. 607–614. Springer (2012)

5. Finkelstein, A., Harman, M., Jia, Y., Martin, W., Sarro, F., Zhang, Y.: App. store
analysis: Mining app. stores for relationships between customer, business and tech-
nical characteristics. Research Note of UCL Department of Computer Science 14,
10 (2014)

6. Gorla, A., Tavecchia, I., Gross, F., Zeller, A.: Checking app. behavior against app.
descriptions. In: International Conference on Software Engineering, pp. 1025–1035.
ACM (2014)

140 S. Wang et al.

7. Guzman, E., Maalej, W.: How do users like this feature? a fine grained sentiment
analysis of app. reviews. In: International Conference on Requirements Engineer-
ing, pp. 153–162. IEEE (2014)

8. Hao, Y., Wang, Z., Xu, X.: Empirical study on the interface and feature evolutions
of mobile apps. In: International Conference on Service-Oriented Computing, pp.
657–665. Springer (2016)

9. Iacob, C., Harrison, R.: Retrieving and analyzing mobile apps feature requests from
online reviews. In: IEEE Working Conference on Mining Software Repositories, pp.
41–44. IEEE (2013)

10. Iacob, C., Harrison, R., Faily, S.: Online reviews as first class artifacts in mobile
app. development. In: International Conference on Mobile Computing, Applica-
tions, and Services, pp. 47–53. Springer (2013)

11. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.E.: What do mobile app users
complain about? IEEE Softw. 32(3), 70–77 (2015)

12. Maalej, W., Nabil, H.: Bug report, feature request, or simply praise? on automati-
cally classifying app. reviews. In: IEEE International Conference on Requirements
Engineering, pp. 116–125. IEEE (2015)

13. Martin, W., Sarro, F., Harman, M.: Causal impact analysis applied to app. releases
in google play and windows phone store. Research Note of UCL Department of
Computer Science 15, 07 (2015)

14. Martin, W., Sarro, F., Jia, Y., Zhang, Y., Harman, M.: A survey of app. store analy-
sis for software engineering. IEEE Transactions on Software Engineering, PP(99),
1–32 (2016)

15. McIlroy, S., Ali, N., Hassan, A.E.: Fresh apps: an empirical study of frequently-
updated mobile apps in the google play store. Emp. Softw. Eng. 21(3), 1346–1370
(2016)

16. McIlroy, S., Ali, N., Khalid, H., Hassan, A.E.: Analyzing and automatically
labelling the types of user issues that are raised in mobile app reviews. Emp.
Softw. Eng. 21(3), 1067–1106 (2016)

17. Nayebi, M., Adams, B., Ruhe, G.: Release practices for mobile apps-what do users
and developers think?. In: IEEE International Conference on Software Analysis,
Evolution, and Reengineering, vol. 1, pp. 552–562. IEEE (2016)

18. Pagano, D., Maalej, W.: User feedback in the appstore: An empirical study. In:
IEEE International Conference on Requirements Engineering, pp. 125–134. IEEE
(2013)

19. Palomba, F., Linares-Vásquez, M., Bavota, G., Oliveto, R., Di Penta, M., Poshy-
vanyk, D., De Lucia, A.: User reviews matter! tracking crowdsourced reviews to
support evolution of successful apps. In: IEEE International Conference on Soft-
ware Maintenance and Evolution, pp. 291–300. IEEE (2015)

20. Syer, M.D., Nagappan, M., Hassan, A.E., Adams, B.: Revisiting prior empirical
findings for mobile apps: An empirical case study on the 15 most popular open-
source android apps. In: Conference of the Center for Advanced Studies on Col-
laborative Research, pp. 283–297. IBM Corp. (2013)

21. Takahashi, H., Nakagawa, H., Tsuchiya, T.: Towards automatic requirements elic-
itation from feedback comments: Extracting requirements topics using lda. In:
International Conference on Software Engineering and Knowledge Engineering,
pp. 489–494 (2015)

22. Vu, P.M., Nguyen, T.T., Pham, H.V., Nguyen, T.T.: Mining user opinions in mobile
app. reviews: A keyword-based approach. In: International Conference on Auto-
mated Software Engineering, pp. 749–759. IEEE (2015)

How App Developers Act on User Reviews 141

23. Wang, H., Wang, Z., Xu, X.: Time-aware customer preference sensing and satis-
faction prediction in a dynamic service market. In: International Conference on
Service-Oriented Computing, pp. 236–251. Springer (2016)

24. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In:
International World Wide Web Conference, pp. 1445–1456. ACM (2013)

Predicting the Evolution of Service Value
Features from User Reviews for Continuous

Service Improvement

Xu Chi1, Haifang Wang1, Zhongjie Wang1(B), Shiping Chen2, and Xiaofei Xu1

1 Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
{chixujohnny,wanghaifang,rainy,xiaofei}@hit.edu.cn

2 CSIRO DATA61, Eveleigh, NSW 2109, Australia
shiping.chen@data61.csiro.au

Abstract. Facing with a highly competitive service market where cus-
tomers have more choices on services to fulfill their demands, service
providers have to improve their services continuously to make them
adapt to constantly-changing value expectations of customers. An enor-
mous quantity of reviews published by customers who have experienced
services is an essential basis for service providers to understand which
fine-grained features are cared more by customers and what others are
less. In this paper, we present a method (VFAMine) for extracting Ser-
vice Value Features (VF) from review texts by text mining and mea-
suring customers’ attention degrees on VFs by sentiment analysis. As a
result, a Time-series Service Value Feature Distribution model (TSVFD)
is constructed to delineate the evolution history of attention degrees on
various VFs. To help providers identify VFs which are to be extensively
concerned by customers and improve them in advance, we give a con-
volutional sliding window and random forest based algorithm (CSRF) for
predicting the future trend of the attention degree on one VF, either
for a single service or for services belonging to the same region/domain.
In terms of Maximum Information Coefficient (MIC) based correlation
analysis, we find that there are latent correlations between the evolution
history of different VFs, and such correlation would help service providers
improve multiple correlated VFs together. Experiments are conducted on
a Yelp dataset and the results demonstrate the effectiveness of our app-
roach.

Keywords: Service Value Feature (VF) · Service improvement · User
reviews · Attention degree · Evolution trend · Prediction

1 Introduction

More and more services have been deployed on Internet and thus offer a wider
range of choices to customers for fulfilling their demands [18]. On the condition
that there are abundant mutually-substitutable competitive services for cus-
tomers to choose, services providers are faced with a great pressure on improv-
ing their services to cater to the common value expectations of a larger scale
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 142–157, 2017.
https://doi.org/10.1007/978-3-319-69035-3_10

Predicting Value Feature Evolution from User Reviews 143

of customers. Besides, customers’ demands and preferences evolve as time goes
by [16], which requires service providers to continuously improve their services
accordingly. User reviews, which are direct feedback submitted by users after
they use a service, contain valuable information that have been considered as an
important basis for service improvement.

Take a service named Liholiho Yacht Club in San Francisco as an example.
It joined Yelp in February 2015. Because it is very popular in the local region, in
most cases customers have to wait in line in order to enjoy the service; thus it is
as expected that most user reviews on Yelp are mainly focused on “wait time”.
In July 2017, this club improved its service by adding an online reservation
feature; from then on, its ratings on Yelp increased significantly.

However, as user reviews are numerous and the amount increases drastically
along with time, service providers cannot go through all the reviews piece by
piece [4]. It is needful to extract high-level valuable information from reviews
and offer them to service providers for references. A customer tends to focus on
one or several specific features in each of his review. For example, a customer
has a review on a restaurant: The staff was super friendly and most importantly
the food was tasty and fresh, and we see that he cares about staff and food. We
call them Service Value Features (VF). Compared with the numeric ratings (e.g.,
scores between 1 and 5), VFs delineate more specific facets that customers care
about and are considered as “focus of attentions” or “preferences” of customers
[15], hence they are useful for service providers to have a deeper understand-
ing on their customers and could be used as important evidences for further
improvement on their services. There are diversified VFs in each service, but
common VFs across different services in the same domain do widely exist.

Due to constant changes of the service market, changes of user identities
and social positions, etc., the scope of VFs that customers are concerned and
their attention degrees on each specific VF at different times change frequently,
too. In order for service providers to improve their services in advance as far as
possible, it is useful to predict the future changing trend of massive customers’
attention degrees on VFs and find out those VFs that would have growth spurts
in the recent future. In RQ1 of this paper, we focus on such prediction for one
service provider with the objective of providing service improvement suggestions
to it. In RQ2, we focus on the prediction for a group of services that belong
to the same “region” (such as the Bay Area in California) or the same “service
domain” (such as food and nightlife), with the objective of analyzing and
predicting the holistic evolution trend of one region or service domain, so that
new service providers who would like to enter this region or service domain may
have a deeper acquaintance on how to set up their new services to better cater
to the future’s customer expectations.

Besides, as there are many VFs hidden in user reviews, we wonder if there are
latent correlations between the attention degrees of different VFs. For instance,
for three VFs {f1, f2, f3}, when the attention degree on f1 increases along with
time, the one of f2 increases synchronously, while the one on f3 decreases syn-
chronously. If such correlations really exist, VFs are to be grouped and VFs in

144 X. Chi et al.

each group should be simultaneously considered when service providers improve
their services. If they do like this, the difficulty of service improvement would be
significantly decreased. RQ3 of this paper is to present a method of validating
the existence of the correlation among the changing trends of attention degrees
on different VFs and measure the correlation degrees.

To mine VFs from massive user reviews, we propose a mining algorithm
VFAMine based on text mining and sentiment analysis. It looks for VFs by analyz-
ing grammatical structures of review texts by applying a set of heuristic rules and
represents a VF as one or several keywords, and sentiment analysis is employed
to measure the attention degree by emotional factors such as dissatisfaction,
criticism, complains or praise exposed in review texts.

For RQ1, we use a machine learning approach and propose a convolutional
sliding window method (CSRF) to build a model that depict the underlying char-
acteristics of the evolution of the attention degree on one VF in a certain period,
then use this model to predict the attention degree on the same VF in the recent
future. RQ2 adopts a quite similar approach but the prediction is for a group of
services in the same region or service domain. In both RQ1 and RQ2, a time-
series prediction accuracy index (loss) is used to assess the prediction accuracy.
For RQ3, we adopt Maximum Information Coefficient (MIC) to measure the
correlation between the evolution history of attention degrees on multiple VFs.
Experiments are conducted on a dataset released by Yelp Dataset Challenge1

(including 800,000 services, 680,000 users, and 2.68 million user reviews pub-
lished between Jan. 2010 and Jun. 2016), and the results validate the effective-
ness of the proposed methods.

In summary, this paper makes the following contributions:

– We define a Time-series Service Value Distribution model (TSVFD) to quan-
titatively delineate the evolution history of users’ attention degrees on VFs.
It is a useful tool for the prediction and correlation analysis of VFs.

– Based on the experiments conducted on Yelp dataset, the text mining and
sentiment analysis based VF mining method VFAMine is effective for identi-
fying VFs from review texts, with the accuracy being more than 86%.

– The prediction model for the future evolution of attention degrees of VFs can
reach good performance for both one service provider and multiple providers
in one region/domain, and the average loss value is limited within 0.15.

– Certain correlations do really exist between the evolution of different VFs’
attention degrees, but the density of highly correlated VF pairs is rather low.
The adopted correlation measurement (i.e., MIC) can reach at an accuracy
rate above 0.85.

The remainder is organized as follows. Section 2 presents the VF mining
algorithm VFAMine. Section 3 presents the TSVFD model and gives the method
CSRF for predicting the evolution trend of one VF. Section 4 gives the correlation

1 https://www.yelp.com/dataset challenge

https://www.yelp.com/dataset_challenge

Predicting Value Feature Evolution from User Reviews 145

analysis method for the co-evolution of multiple VFs’ attention degrees. Section 5
is related work, and Sect. 6 is conclusions and future work.

2 Service Value Feature and the Mining Algorithm

2.1 Service Value Feature (VF)

User reviews contain latent information on how a user looks upon a service, i.e.,
what features he prefers more when he chooses candidate services to fulfill his
demand [16]. If he does not mention a feature in his review at all, there are
two possibilities: (1) the performance that the service exhibits on this feature is
equal to or beyond his expectation on this feature; (2) he does not care about
the performance on this feature. To sum up, user reviews reveal what a user
minds and indirectly, what he does not mind; or to say, his value preferences.
We define it by “Service Value Features (VF)”.

Definition 1. A review is denoted by r = (s, u, d, text), representing that a
user u publishes a review r with text in natural language on a service s on the
date d.

Definition 2. Service Value Feature (VF). A VF is a noun or a noun phrase
describing a specific feature that a service could deliver to its customers, and
there is a numeric value associated with the VF to quantitatively measure the
degree with which it is concerned by one or a group of customers (namely,
attention degree).

Since service are significantly “personalized”, different users have quite diver-
sified value propositions and value expectations, thus the VFs hidden in the
reviews of different users might be quite diversified. Still, there are some com-
mon VFs that multiple users together care about.

2.2 VFAMine: Mining Service Value Features from User Reviews

It is difficult to get value propositions/expectations directly from users, i.e., most
users cannot express their preferences explicitly before he uses a service. Only
after he uses a service and has got rich experiences on it, does he find out what
he cares and what does not. As text mining has been proved to be an effective
way of extracting structural information from texts, here we use a heuristic text
mining approach to identify VFs from user reviews.

The heuristic rules are straightforward:

– Rule 1: If a noun is modified by one or multiple qualifiers (e.g., adjectives)
which appear in a limited range before or after this noun, then there is a
significant probability that it represent a VF;

– Rule 2: If two candidate VFs identified by Rule 1 are neighbors in review
texts or they are connected by conjunctions such as of and for, and they are
modified by the same qualifiers, then they are combined into one VF.

146 X. Chi et al.

Although these heuristic rules cannot cover all possible circumstances (espe-
cially on the condition that users seldom follow strict grammar rules when they
write review texts), our approach tries to reach at a tradeoff between the mining
precision and the computation time by avoiding complicated semantics analysis.
The mining process includes three steps:

– Review texts are separated into words and part-of-speech (POS) tagging is
conducted to give each word a tag such as NN (Noun), NNS (Noun, plural), J
(Adjective), JJR (Adjective, comparative), and JJS (Adjective, superlative).
This is implemented based on NLTK APIs2;

– Irrelevant words such as articles (a, an, the) and verbs are removed;
– For each sentence in review texts, above-mentioned heuristic rules are applied

and a set of candidate VFs are identified.

Here is an example review on a restaurant service: The environment of the
restaurant is nice, but size of food is too big. There are four nouns: environment,
restaurant, size, and food. The nouns environment and restaurant are both
modified by the qualifier nice and they are connected by of, so they are com-
bined into one VF: environment of restaurant. Similarly there is another VF
size of food modified by the adjective big. Here the range where qualifiers are
detected is 3–5 words before and after a noun.

After VFs are identified, the next step is to measure the attention degree on
each VF. In natural languages, different adverbs or adjectives exhibit different
degrees of emotions (e.g., excellent food and good food), or called emotional
factors. For each VF which has been represented by a noun phase, we first extract
all the emotional words that appear in a specific range before and after the noun
phase, and then look up the emotional factors (ranging from 1 to 5) of these
words from the publicly-available emotional term dictionary3. The aggregated
value of these emotional factors are used to measure the user’s attention degree
on this VF. If there are no emotional words found around the VF, the value is
set to 2.5 (indicating it is a VF with neutral attention degree).

The mining process is conducted on each review ri correspondingly, and
one or several VFs are identified. After all reviews are dealt with (no matter
which services they belong to), synonym dictionary based similarity analysis is
conducted to merge similar candidate VFs. The final identified VFs are V F =
{f1, f2, ..., fn}. ∀fj ∈ V F and a review ri, vij is the emotional factor of fj in ri,
i.e., the attention degree of the user u(ri) on fj in ri. If ri does not cover fj ,
then vij = 0, indicating that u(ri) does not care about fj in this review.

To sum up, we identify VFs from review texts and merge similar VFs, and
approximately measure the attention degrees of each VF in each review. Due to
limited space, we do not show the detailed algorithm for this process.

2 http://www.nltk.org/api/nltk.tag.html.
3 http://www.keenage.com/download/sentiment.rar.

http://www.nltk.org/api/nltk.tag.html
http://www.keenage.com/download/sentiment.rar

Predicting Value Feature Evolution from User Reviews 147

We conduct an experiment on Yelp dataset to validate the accuracy of
VFAMine. We select top-5 hottest service domains in terms of the amount of
reviews: Food, Nightlife, Shopping Medical, and Home-Service. From each
domain we use a random sampling approach to choose 230 reviews, respectively,
and manually annotate VFs covered by these reviews. The annotation results
are used as the test set. Then, VFAMine is applied to automatically identify VFs
from the same reviews, and the results are compared with manually-annotated
results.

Experiment result: for the five domains, the precisions are 91.3%, 92.1%,
88.6%, 85.4%, and 89.7%, respectively. All precisions keep above 85%, indicating
that the mining accuracy is relatively high. The nightlife domain receives the
highest precision, while the medical domain has the lowest precision. As for the
reasons, we guess that customers of nightlife services are mostly young guys who
would like to carefully write reviews on the services they have experienced, while
customers of medical services tend to be older and they are apt to write shorter
reviews which are more unlikely to follow strict grammar rules, and consequently,
the accuracy of VF mining is deteriorated.

2.3 Time-Series Service Value Feature Distribution (TSVFD)

To facilitate predicting the changing trend of VFs in the future, for each service s,
we construct a matrix M(s) to represent the distribution of aggregated attention
degrees by all users on each VF over a long period. It is called Time-Series Service
Value Feature Distribution matrix (TSVFD). Table 1 shows the visual form of
TSVFD.

Table 1. Time-series service value feature distribution (TSVFD) matrix

t1 t2 . . . tm

f1 v♦
1,1 v♦

1,2 . . . v♦
1,m

f2 v♦
2,1 v♦

2,2 . . . v♦
2,m

.

fn v♦
n,1 v♦

n,2 . . . v♦
n,m

Rows of the matrix are n VFs (i.e., f1, f2, ..., fn) identified from reviews of
all services, and columns are m consecutive but non-overlapping time intervals
with equal lengths (i.e., t1, t2, ..., tm), e.g., each tj is a calendar month. v♦

k,j is
the aggregated attention degree on fk in the reviews that are published for the
service s during the period tj and is calculated by:

v♦
k,j =

∑

∀ri,s(ri)=s,d(ri)∈tj

vik (1)

where vik is the attention degree of fk in the review ri.

148 X. Chi et al.

Similarly, we can construct the TSVFD for a group of services belonging
to the same region R or domain D, denoted by M(R) and M(D). The only
difference is that when calculating v♦

k,j , we replace the condition s(ri) = s by
s(ri) ∈ R or s(ri) ∈ D, i.e., to group reviews by regions or domains instead of
just for one service.

v♦
k,j =

∑

∀ri,s(ri)∈R,d(ri)∈tj

vik (2)

TSVFD of a service/region/domain demonstrates the global view of how
massive users care about various VFs at different times, i.e., the changing his-
tory of “user concerns”. It is used for VF’s evolution analysis and prediction in
subsequent sections.

Figure 1 shows the evolution of four VFs (abbr. service, location, coffee
and customer) in the TSVFD of the nightlife service domain. The history of
how attention degree changes from Jan. 2010 to Jun. 2016 is visualized by line
charts. We can see that different VFs shows quite diversified changing trends:
the first and the second VFs show an increasing trend, the third VF shows a
decreasing trend, while the fourth VF fluctuates with a smaller scale compared
with the other three.

0

300

600

900

1200

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

20
15
-0
1

20
16
-0
1

(a) “Service”

0

150

300

450

600

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

20
15
-0
1

20
16
-0
1

(b) “Location”

0

175

350

525

700

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

20
15
-0
1

20
16
-0
1

(c) “Coffee”

0

22.5

45

67.5

90

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

20
15
-0
1

20
16
-0
1

(d) “Customer”

Fig. 1. Evolution history of attention degrees of 4 VFs in Nightlife domain

Predicting Value Feature Evolution from User Reviews 149

3 Evolution Analysis and Trend Prediction of an VF

In this section we focus mainly on one VF and study how to predict the future
changing trend of users’ attention degree on this VF. In Sect. 4 the focus is
switched to the correlation between the evolution history of multiple VFs.

3.1 CSRF: A ML-based Model for VF Evolution and Prediction

In the matrix of TSVFD, the changing history of the attention degree of a VF
fk in m consecutive time intervals is represented by the row vector V (fk) =
(v♦

k,1, ..., v
♦
k,m). Our goal is to predict the values of (v♦

k,m+1, v
♦
k,m+2, ..., v

♦
k,m+ρ),

where ρ is the prediction horizon, i.e., the number of future time intervals in
which the attention degrees on fk are to be predicted.

Since V (fk) is time-series data, this is a typical time series prediction prob-
lem. There are many time series prediction models such as ARIMA (Auto Regres-
sive Integrated Moving Average) which has been proved to have good predic-
tion accuracy. Nevertheless, before prediction by ARIMA, manual interventions
have to be conducted for stationary handling in case that original data is non-
stationary. This is a time-consuming task, especially when there are hundreds
of VFs each of which requires prediction. To deal with this issue, we propose a
machine learning based method (CSRF) which learns the fluctuation character-
istics of the time series data, so that the pre-processing and prediction process
becomes more efficient.

Specifically, CSRF has two phases: a convolutional sliding window model (CS)
is firstly used to split the time-series data into multiple time-series samples in
terms of specific size and step value of sliding windows, and then a random forest
regression model (RF) is applied on these samples to learn the latent fluctuation
patterns and to predict the changing trend of V (fk) in the recent future. Detailed
steps are shown in Algorithm 1.

CSRF algorithm has four inputs: V is the row vector for a specific VF whose
changing trend is to be predicted; wsmin and wsmax are the minimal and maxi-
mal sizes of sliding windows, respectively; ρ is the prediction horizon (the num-
ber of time intervals during which the values of attention degree on the VF is
to be predicted); and δ is the step value when V is split into samples by the
convolutional sliding window approach.

The outer loop (Steps 3–19) is to predict the attention degree of the VF in
the next period, i.e., v♦

k,m+1 where m is the length of current V ; in the next loop
for predicting v♦

k,m+2, the predicted value in the first loop is added into V (Step
18) and thus its length becomes m + 1; the loop continues until all the expected
values within the time intervals in the prediction horizon ρ are obtained and
recorded in Vpred as the output.

The inner loop (Steps 4–17) is to look for a best size of sliding windows
that could result in minimal loss (measuring the error between the real value
and the predicted value) and get the best prediction value bestPrediction by
looking for the minimal loss (see Steps 14–15). In terms of the selected size

150 X. Chi et al.

Algorithm 1. The CSRF Algorithm
Require: V, wsmin, wsmax, ρ, δ
Ensure: Vpred

1: Vpred ← ∅, bestLoss ← 1, bestPrediction ← 0
2: train ← V [: −ρ], test ← V [−ρ :]
3: for ∀round ∈ [1, ρ] do
4: for ∀w ∈ [wsmin, wsmax] do
5: Samples ← ∅, y ← ∅, i ← 0
6: while i ≤ length(train − w − 1) do
7: Samples.add(train[i, i + w])
8: y.add(train[i + w + 1])
9: i ← i + δ

10: end while
11: Regression model ← sklearn.RandomForestRegressor(Samples, y)
12: prediction ← Predict(Regression model, train[−w,])
13: loss ←Loss(test, prediction)
14: if loss < bestLoss then
15: bestLoss ← L, bestPrediction ← prediction
16: end if
17: end for
18: train.add(bestPrediction), Vpred.add(bestPrediction)
19: end for
20: return Vpred

of sliding windows (w in Step 4), Steps 6–10 are to use convolutional sliding
window modeling to split V into a set of samples. Each sample is composed of
w time-series features (denoted by w columns in Table 2, i.e., t′1, t

′
2, ..., t

′
w) and a

target value (i.e., the last column y in Table 2). All obtained samples (denoted by
Samples in the algorithm) are used as the train set for training the regression
model between the first w attention degrees and the (w + 1)-th one. We will
discuss the regression process later.

Here we take fi as an example to demonstrate the process of constructing
samples from V (fi). The first sample starts from the first time interval and ends
with the w-th time interval, and the attention degrees are <v♦

i,1, v
♦
i,2, ..., v

♦
i,w>

(see the second row of Table 2), and the value v♦
i,w+1 in the (w+1)-th time interval

is used as the target value y. Hence, the first sample has been constructed. For
the second sample, in terms of the step value δ, it should start from the (δ + 1)-
th time interval and ends with (δ + w)-th time interval with the corresponding
attention degrees, namely <v♦

i,δ+1, v
♦
i,δ+2, ..., v

♦
i,δ+w>, and v♦

i,δ+w+1 is used as the
target value y. Repeatedly, total k = m − w − 1 samples are to be constructed
(where m is the length of vectors in the train set of the current loop) and they
are shown in Table 2.

Based on the constructed training set (Samples), Step 11 is to use random
forest as the regression model for training. Here we use RandomForestRegressor

Predicting Value Feature Evolution from User Reviews 151

Table 2. Constructing samples by convolutional sliding window approach

t′
1 t′

2 . . . t′
w y

Sample1 v♦
i,1 v♦

i,2 . . . v♦
i,w v♦

i,w+1

Sample2 v♦
i,δ+1 v♦

i,δ+2 . . . v♦
i,δ+w v♦

i,δ+w+1

.

Samplek v♦
i,(k−1)×δ+1 v♦

i,(k−1)×δ+2 . . . v♦
i,(k−1)×δ+w v♦

i,(k−1)×δ+w+1

provided by sklean ML library4) to fulfill this task. Afterwards, Step 12 makes
the prediction, and the loss is measured by comparing the prediction value and
the test set in Step 13.

3.2 Predicting a VF’s Future Trend for One Service and for One
Region or Service Domain

We first apply the CSRF algorithm on the reviews of one single service and predict
the changing trend of a VF’s attention degree in the future ρ times intervals.
The result would be a valuable reference for the service provider to know which
perspectives should be improved with higher priority in the future.

The prediction horizon (the parameter ρ in Algorithm 1) could be of any
length, but along with the increasing ρ, the prediction accuracy would decrease
drastically. In our experiments, we set ρ = 6, i.e., we predict the attention degrees
of a VF in the subsequent 1st, 2nd, ..., and 6th months, respectively.

The CSRF algorithm could also be applied on the reviews of services belonging
to the same region or the same service domain to predict the changing trend of
a VF’s attention degree, so that new service providers who would like to join
this region or domain may have a clear acquaintance on how to set up their new
services to better cater to user expectations. Compared with the prediction for
a service provider, this prediction involves a broader range of services.

Figure 2(a) and (b) shows the prediction results of two VFs of a restaurant
service, and Fig. 2(c) and (d) is the results of two VFs from the food domain.
Blue lines are the evolution history of VFs’ attention degrees, and red lines are
the prediction results.

To evaluate the prediction accuracy, we use the loss metrics which measures
the aggregated errors between the prediction and the real values of all the fea-
tures in one service or in all services belonging to the same region/domain:

loss =
1

n × m

n∑

i=1

m∑

t=1

|v
♦
i,t − vP

i,t

v♦
i,t + vP

i,t

| (3)

where v♦
i,t is the real value of the attention degree of the i-th VF in the t-th

month, and vP
i,t is the corresponding prediction value.

4 http://scikit-learn.org.

http://scikit-learn.org

152 X. Chi et al.

0

17.5

35

52.5

70

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

(a) VF1 of a restaurant service

0

30

60

90

120

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

(b) VF2 of a restaurant service

50

100

150

200

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

(c) VF1 of food domain

0

75

150

225

300

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

(d) VF2 of food domain

Fig. 2. Comparison between the actual evolution history and the prediction

Figure 3 shows the distribution of loss values for multiple services in each
service domain. In the five domains, the values are mostly distributed in the
range [0.08, 0.15] with the medium in the range [0.11, 0.13]. This indicates that
the prediction results are accurate and acceptable. For comparison, the Food
domain has more amount of reviews and thus has higher prediction accuracy
than other domains, and we do find that CSRF performs better on the services
that have more reviews than on the services having fewer reviews.

4 Correlation Analysis for the Evolution of Multiple
Service Value Features

4.1 MIC-based Correlation Analysis on Multiple VFs

We conjecture that the evolution of multiple VFs might not be absolutely inde-
pendent but sometimes they are correlated, i.e., there is a phenomenon called
“co-evolution of VFs”. In this section we validate whether this hypothesis is true.
If it is valid, it is possible to group highly-correlated VFs together so that service
providers would improve them holistically and consequently, more efficiently.

The first step is to determine which correlation measure is suitable for this
goal. Pearson correlation coefficient5, Kenall’s rank coefficient6, and Spearman’s
5 https://en.wikipedia.org/wiki/Pearson product-moment correlation coefficient.
6 https://en.wikipedia.org/wiki/Kendall rank correlation coefficient.

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Kendall_rank_correlation_coefficient

Predicting Value Feature Evolution from User Reviews 153

Fig. 3. Distribution of loss values for VFs in 5 service domains

rank correlation coefficient7 are all widely-adopted correlation measures. How-
ever, because a VF’s attention degree usually evolves periodically, there would
be nonlinear correlations between the evolution history of different VFs, and
unfortunately, above three correlation measures are all weak in handling such
nonlinear correlation. If they are applied in this scenario, some closely-related
VFs might be considered as weakly- or non-correlated ones.

Here we use MIC (Maximal Information Coefficient)8 to measure the correla-
tion between non-linearly correlated VFs. In statistics, MIC is a measure of the
strength of the linear or non-linear association between two random continuous
variables X and Y . It uses binning as a means to apply mutual information on X

and Y , i.e., I[X;Y] =
∫

Y

∫
X

p(x, y) log p(x,y)
p(x)p(y) , and the rationale is that the bins

for both variables should be chosen in such a way that the mutual information
between the variables be maximal.

MIC coefficient falls in the range [−1, 1], and the sign of MIC (i.e., <0 or >0)
indicates whether it is negative or positive correlation. If the correlation between
the evolution history of attention degrees of two VFs falls in the range [0.8, 1]
or [−1,−0.8], the two VFs are closely correlated.

In terms of one service or one region/domain, for arbitrary two VFs fi and
fj and their corresponding attention degrees’ time-series evolution vectors V (fi)
and V (fj), we calculate their MIC correlation coefficient MIC(fi, fj) using the
MIC API provided by minepy library9. In order to evaluate the effectiveness,
similar as the approach in Algorithm 1, we split each V (fi) into train set and
test set, measure MIC(fi, fj) on the two sets separately, and then compare their
results to measure precision, recall and F1-score, respectively.

4.2 Experiments

We select top-100 popular services from five domains and conduct MIC-based
correlation analysis on their VFs. We manually identify and label some corre-
7 https://en.wikipedia.org/wiki/Spearman%27s rank correlation coefficient.
8 https://en.wikipedia.org/wiki/Maximal information coefficient.
9 https://pypi.python.org/pypi/minepy.

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Maximal_information_coefficient
https://pypi.python.org/pypi/minepy

154 X. Chi et al.

lations, then compare them with the analysis results of the proposed approach
to measure the performance. It is shown in Fig. 4(a). The precision is above
85% in average, the recall is above 65% in average, and F1-Score is above 0.75,
indicating that MIC has good performance for correlation analysis.

0

0.225

0.45

0.675

0.9

Food Nightlife Shopping Medecal Home&Service

Precision Recall F1-score

(a) Precision/Recall/F1-score (b) A Partial Correlation Network

Fig. 4. Experiment results of VF correlation analysis

Experiment result shows that there are 73.86% VF pairs that have no cor-
relation or are weakly correlated (|MIC| ∈ [0, 0.2), 23.59% VF pairs being
slightly correlated (|MIC| ∈ [0.2, 0.4)), 1.62% VF pairs being moderately corre-
lated (|MIC| ∈ [0.4, 0.6)), 0.72% VF pairs being relatively correlated (|MIC| ∈
[0.6, 0.8)), and only 0.21% VF pairs being closely correlated (|MIC| ≥ 0.8). This
shows that such time-series correlation between the attention degrees’ evolution
of different VFs does really exist but the density of highly or moderately corre-
lated VF pairs is fairly low, and most of VF pairs keep relatively independent.
Because of this, it is of great significance to identify those highly correlated VF
pairs from a mass of VFs and recommend them to service providers, so that
these VF pairs are to be considered simultaneously when services are improved.

Specifically, Table 3 demonstrates detailed distribution of various correlation
levels in five popular domains in Yelp. Chi-square test shows there is no signifi-
cant difference among the MIC distribution in different domains, indicating that
different domains exhibit similar correlation characteristics among their VFs.

Table 3. Distribution of MIC correlation coefficient between VFs in 5 domains

|MIC| Food Nightlife Shopping Medical Home & Service

[0.8, 1] 0.21% 0.20% 0.12% 0.18% 0.15%

[0.6, 0.8) 0.72% 0.83% 0.64% 0.92% 0.79%

[0.4, 0.6) 1.62% 2.06% 1.98% 2.59% 2.28%

[0.2, 0.4) 23.59% 26.09% 24.32% 30.33% 20.01%

[0, 0.2) 73.86% 70.55% 72.94% 64.98% 76.77%

Predicting Value Feature Evolution from User Reviews 155

Here are two examples of highly related VF pairs: a VF flavor is positively
correlated with another VF size of food, while size of food is negatively
correlated with the VF price, and the correlation degree between flavor and
ize of food (0.893) is higher than the one between size and price (−0.831).

Another interesting phenomenon is that, in terms of those closely correlated
VF pairs, there are about 77.9% correlations being positive ones, and only 22.1%
correlations being negative ones; for those relatively correlated VF pairs, the two
numbers are 71% and 29%, respectively. This can be observed from Fig. 4(b)
which is partial correlation network among VFs in the food domain. Closely
correlated VF pairs with |MIC| ≥ 0.8 are connected by lines, red lines are for
negative correlated VFs, and black lines are for positive correlated VFs. The
ratio of positive ones is much higher than the ratio of negative ones.

5 Related Work

Values are the ultimate goal that providers and customers expect to get from
delivering and using a service. Provider value is often exhibited by the earn-
ing from the economics perspective, while customer value concerns mainly with
experiences and satisfactions, i.e., whether and to what degree a service could
meet a customer’s demand. Zeithaml [19] defined customer value as “customers
overall assessments on products”. Gale [7] defined customer value as the relative
price in market and product quality adjustment. Patricio et al. [13] proposed
a multilevel service design method which takes customer value into full consid-
eration. On the other hand, research on how to improve provider value seems
inadequate. Wang et al. [17] suggested that dynamic service selection and com-
position should consider costs and earning of service providers. Wancheng et al.
[14] put forward a competitive mechanism in commodity market to maintain
balance in service selection by pricing based on member services. Chawathe et
al. [3] proposed a method of distributing combined service earnings.

Mining user reviews has attracted wide attentions in previous research.
Using available training corpus from open websites where each review has been
appointed a class (e.g., thumbs-up and thumbs-downs, or some other quanti-
tative or binary ratings), Hu et al. [9] designed and experimented a number
of methods for building sentiment classifiers of reviews. Eirinaki et al. [6] pre-
sented a method to mine users’ opinions from blogs and social network. Zhang
et al. [20] gave a method to extract entity from users’ opinions. To analyze the
sentimental opinion expressed in a review, sentiment analysis techniques are typ-
ically conducted at two levels: (1) in the document level: to distinguish positive
reviews from negative ones [2]; (2) in the sentiment level or phrase level: to
perform tasks such as multi-perspective question answering and summarization,
and opinion-oriented information extraction [11]. However, these methods are of
limited usefulness for deriving useful information to represent the value features
of services that are cared by customers.

Time-series correlation analysis is an important issue in data mining [1,5]
and is applied in various domains, e.g., Kumar et al. [10] adopted the ARIMA

156 X. Chi et al.

algorithm to forecast the ambient air pollutants and achieves good performance;
Gao et al. [8] used the random forest regression model to predict the volume of
railway freight. CNN for extracting and modeling samples is also used in time-
series data mining to create convolution sliding window modeling method [12].

6 Conclusions and Future Work

Numerous user reviews on third-party service platforms such as Yelp are a great
treasure for service providers to collect valuable feedbacks from customers so as
to improve their services. We propose two methods (VFAMine and CSRF) to help
service providers extract Service Value Features (VFs) from review texts, quan-
tify the evolution history of the attention degrees on these VFs (e.g., TSVFD),
and predict the future trends of their attention degrees. They are not only useful
for a single service provider to improve his service in advance in terms of user
concerns (e.g., the VFs with increasing attention degrees in the future), but also
for providers who plan to enter a new region or a new service domain to be full
aware of the trend of massive users’ attention degrees on specific VFs. Based on
MIC-based correlation analysis, we also find that the evolution of different VFs
are sometimes closely correlated.

Future work include: (1) Deep semantics analysis techniques are required to
further improve the precision and recall of VFAMine (currently only some simpli-
fied heuristic rules are used); (2) After the prediction of a VF’s attention degree
in the future time intervals is obtained, how are service providers to be given
more specific suggestions for improving the VF? (3) A method for grouping VFs
in terms of the MIC correlation degree between them is required, and operational
suggestions on how to take highly-correlated VFs into consideration at the same
time during service improvement is of significance to service providers, too.

Acknowledgments. This work is supported by Natural Science Foundation of China
(No. 61772155, 61472106)

References

1. Bankó, Z., Abonyi, J.: Correlation based dynamic time warping of multivariate
time series. Expert Syst. Appl. 39(17), 12814–12823 (2012)

2. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and
sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013)

3. Chawathe, S.S.: Strategic web-service agreements. In: International Conference on
Web Services, pp. 119–126. IEEE (2006)

4. Chen, N., Lin, J., Hoi, S.C., Xiao, X., Zhang, B.: AR-Miner: mining informative
reviews for developers from mobile app marketplace. In: International Conference
on Software Engineering, pp. 767–778. ACM (2014)

5. Dorr, D.H., Denton, A.M.: Establishing relationships among patterns in stock mar-
ket data. Data Knowl. Eng. 68(3), 318–337 (2009)

6. Eirinaki, M., Pisal, S., Singh, J.: Feature-based opinion mining and ranking. J.
Comput. Syst. Sci. 78(4), 1175–1184 (2012)

Predicting Value Feature Evolution from User Reviews 157

7. Gale, B., Wood, R.C.: Managing Customer Value: Creating Quality and Service
that Customers can See. Simon and Schuster, New York (1994)

8. Gao, J., Lu, X.: Forecast of china railway freight volume by random forest regres-
sion model. In: International Conference on Logistics, Informatics and Service Sci-
ences, pp. 1–6. IEEE (2015)

9. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 168–177.
ACM (2004)

10. Kumar, U., Jain, V.: ARIMA forecasting of ambient air pollutants (O3, NO, NO2

and CO). Stoch. Env. Res. Risk Assess. 24(5), 751–760 (2010)
11. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on

the web. In: International World Wide Web Conference, pp. 342–351. ACM (2005)
12. Papandreou, G., Kokkinos, I., Savalle, P.A.: Modeling local and global deforma-

tions in deep learning: epitomic convolution, multiple instance learning, and sliding
window detection. In: IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 390–399 (2015)

13. Patricio, L., Fisk, R.P., Cunha, J.F., Constantine, L.: Multilevel service design:
from customer value constellation to service experience blueprinting. J. Serv. Res.
14(2), 180–200 (2011)

14. Wancheng, N., Lingjuan, H., Lianchen, L., Cheng, W.: Commodity-market based
services selection in dynamic web service composition. In: IEEE Asia-Pacific Ser-
vice Computing Conference, pp. 218–223. IEEE (2007)

15. Wang, H., Chi, X., Wang, Z., Xu, X., Chen, S.: Extracting fine-grained service value
features and distributions for accurate service recommendation. In: International
Conference on Web Services. IEEE (2017)

16. Wang, H., Wang, Z., Xu, X.: Time-aware customer preference sensing and satis-
faction prediction in a dynamic service market. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 236–251. Springer, Cham
(2016). doi:10.1007/978-3-319-46295-0 15

17. Wang, X.Z., Xu, X.F., Wang, Z.J.: A profit optimization oriented service selection
method for dynamic service composition. Chin. J. Comput. 33(11), 2104–2115
(2010)

18. Yao, L., Sheng, Q.Z., Segev, A., Yu, J.: Recommending web services via combining
collaborative filtering with content-based features. In: IEEE International Confer-
ence on Web Services, pp. 42–49. IEEE (2013)

19. Zeithaml, V.A.: Consumer perceptions of price, quality, and value: a means-end
model and synthesis of evidence. J. Mark. 52, 2–22 (1988)

20. Zhang, L., Liu, B.: Aspect and entity extraction for opinion mining. In: Chu, W.
(ed.) Data Mining and Knowledge Discovery for Big Data. Studies in Big Data,
vol. 1, pp. 1–40. Springer, Heidelberg (2014). doi:10.1007/978-3-642-40837-3 1

http://dx.doi.org/10.1007/978-3-319-46295-0_15
http://dx.doi.org/10.1007/978-3-642-40837-3_1

Confidence-Aware Reputation Bootstrapping
in Composite Service Environments

Lie Qu(B), Athman Bouguettaya, and Azadeh Ghari Neiat

University of Sydney, Sydney, Australia
{lie.qu,athman.bouguettaya,azadeh.gharineiat}@sydney.edu.au

Abstract. We propose a novel reputation bootstrapping approach for
both composite and atomic services in service-oriented environments. We
consider multiple factors which may implicitly represent reputations of
new services. Our approach does not rely on empirical assumptions. In
contrast, we propose a data-driven method to determine how much a
factor can represent service reputation. The reputation-related factors
are modelled in a layer-based framework. This aims to quantitatively
describe the importance of factors in reputation bootstrapping. Further-
more, we define confidence to represent how reliable the bootstrapped
reputation of a new service is. We evaluate our approach based on a
real-world dataset. The experimental results demonstrate the feasibility
and outperformance of our approach.

1 Introduction

Reputation is an effective way to determine the performance quality of a ser-
vice based on prior performance experiences (or records). However, performance
experiences may not be always available when a new service emerges. Conse-
quently, its reputation cannot be assessed, and thus trust establishment between
consumers and the new service becomes challenging. Reputation bootstrapping
is a key enabler to assign appropriate initial reputations for new services.

Reputation bootstrapping has been extensively studied in the literature
[1,6,8,10,14,15]. These studies are typically based on particular empirical
assumptions in which the reputation of a new service can be extracted from
its inherent characteristics. For example, the approach proposed in [11] presents
that a new service provided by a reputable provider tends to offer good per-
formance. The approach proposed in [14] assumes that the reputation of a new
service may approach to those of its similar services. However, such an assump-
tion may not always hold under various circumstances. Moreover, because a new
service usually has multiple characteristics, each of which can relatively reflect
its future performance to some extent. How effectively each characteristic can
represent the new service’s reputation is usually unclear in real-world situations.
Therefore, we investigate that reputation bootstrapping should only depend on
the assumptions that can be practically validated in particular cases. Other-
wise, the validity of the assumptions should be studied, i.e., determining which
characteristic can more effectively reflect new services’ future reputations.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 158–174, 2017.
https://doi.org/10.1007/978-3-319-69035-3_11

Confidence-Aware Reputation Bootstrapping 159

Service composition provides an elegant means to aggregate services to pro-
vide a value-added service that meets consumers’ complex requirements. Repu-
tation bootstrapping for composite services is a key challenge because the cor-
relation between the performance of a composite service and that of its corre-
sponding component services is unclear and may vary case by case. Whether the
reputation of a composite service can be represented by those of its component
services may usually be unknown in practice. Therefore, such a correlation should
be studied in a particular case, and cannot be taken as a common assumption
for reputation bootstrapping. Furthermore, although the reputations of a com-
posite service and its component services are quite correlated, the reputation
bootstrapping for composite services is more challenging than that for atomic
services. It needs to be addressed in the following three cases: (1) reputations of
component services are available; (2) reputations of component services are par-
tially available. (3) reputations of component services are totally unavailable. In
the first case, an effective reputation bootstrapping approach should first deter-
mine the effectiveness of reputation correlation between a composite service and
its component services, and then identify the specific correlation between each
other. For the other cases, reputation bootstrapping for atomic services should
be performed first to predict the unavailable reputations of component services.
The first-case approach is then applied for further bootstrapping. In this paper,
we focus on the first case. The other cases will be discussed in our future work.

In this paper, we study reputation bootstrapping in composite service envi-
ronments. Our main contributions are summarised as follows:

1. We propose a novel service reputation bootstrapping approach by consider-
ing multiple characteristic factors1 which may implicitly represent new ser-
vices’ future reputations. Our approach does not rely on particular empirical
assumptions. Instead, a data-driven method is proposed to explore the impor-
tance of reputation-related factors in terms of particular cases.

2. A layer-based bootstrapping framework is proposed, which aims to quanti-
tatively model the importance of reputation-related factors. The proposed
framework can easily be extended to a general case. That makes the frame-
work compatible with diverse situations in service-oriented environments.

3. We define confidence which describes the reliability of new services’ boot-
strapped reputations. The notion confidence would help consumers make a
more comprehensive evaluation on reputation bootstrapping.

4. We conduct experiments based on a real-world dataset from GitHub to eval-
uate the proposed approach. The experimental results demonstrate the fea-
sibility and outperformance of our work.

Motivating Scenario: the problem of reputation bootstrapping is illustrated
using a real-world scenario of a mobile application company which provides a
location-based review service through an app (e.g., Foursquare App2).

1 To avoid ambiguity, we use the term “factor” to represent “inherit characteristic” in
the rest of this paper.

2 foursquare.com.

http://foursquare.com

160 L. Qu et al.

Fig. 1. The Motivating Scenario

The company outsources the sub-functional modules from an open-source
software platform (e.g., GitHub) to reduce development cost. By composing
these sub modules, the company can offer its own review service to a mar-
ket. Although the newly developed service has no past performance records, it
has multiple characteristic factors to represent its future reputation. The fac-
tors include the reputation of its provider (the company), the reputation of the
community (e.g., Google Play) it belongs to, the reputations of similar review
services, the past performance records of its sub modules, etc. In this scenario, we
consider the review service as a composite service whose component services are
the sub modules. Figure 1 illustrates the scenario. The review service is composed
of three sub modules. In practice, the sub modules of a repository at GitHub are
specified in a .gitmodules file. The review service and its sub modules have their
distinct providers. On the other hand, there are a number of users for each ser-
vice. They consume the services and provide feedback (e.g., the star reputation
system at GitHub3) for service performance assessment. In addition, a service
may belong to a community which may be a reputable commercial company or
a certified organisation. For example, some open-source repositories at GitHub
belong to Google. In this scenario, although the review service has no histori-
cal performance records, its reputation can be predicted according to multiple
factors, e.g., provider reputation, community reputation and component service
reputation. However, which factor is dominant in reputation representing is still
unclear. Our proposed approach focuses on determining the importance of factors
in reputation bootstrapping, and presents the confidence of every bootstrapped
reputation. As the data at GitHub contain all the features which can appear
in service-oriented environments, we employ a GitHub dataset to evaluate our
proposed approach.

3 help.github.com/articles/about-stars

http://help.github.com/articles/about-stars

Confidence-Aware Reputation Bootstrapping 161

2 The Layer-Based Framework

In this section, we propose a layer-based framework to model the importance
of reputation-related factors of a service. Considering our motivating scenario,
the boostrapped reputation of the new review service can be computed based
on some implicit factors. Specifically, the factors are summarised as follows: a
reputable provider has a high probability of providing good services; a service
belonging to a reputable community may have good quality; a service composed
of good-performance component services tends to perform well since the quality
of its sub modules is satisfactory. Moreover, similar services may have similar
reputations in some cases. In this regard, service similarity can also be used to
predict new services’ reputations [14]. However, the importance degree of each
factor in representing service reputation is still unknown. In practice, the factor
importance may change in terms of different circumstances.

We propose a layer-based framework to quantitatively model the importance
of these reputation-related factors. Figure 2 describes the proposed framework
of reputation transfer among the factors. Each factor is modelled in a layer of
the framework. The main reason that we model the reputation-related factors
in a layer-based structure is to intuitively illustrate the importance of these fac-
tors. According to our motivating scenario, the framework consists of user layer,
provider layer, community layer, similar service layer and component service
layer, where the user layer outputs the direct reputation of a service, and all
the other layers reflect its indirect reputation. In this paper, we consider that
consumers’ feedback is the most reliable information to assess service reputation.
That is because feedback is generated based on the actual experiences of ser-
vice performance. Although there may exist biased or malicious feedback, user
feedback is still the most direct way to evaluate service reputation. Furthermore,
some studies [7,13] focus on credibility evaluation of user feedback to improve its

Fig. 2. The Layer-based Framework

162 L. Qu et al.

reliability. Consequently, the feedback from the user layer is employed to evaluate
the direct reputation of a service. The reputations computed from other layers
are taken as the indirect reputations of the service. Except for the user layer,
each of the other layers contains a reputation transfer process. The reputation
transfer processes are shown via arrow lines in Fig. 2. In a reputation transfer
process, the direct reputation of a new service is estimated through the indirect
reputations from other layers.

In particular cases, some reputation-related factors may be unavailable. For
example, if a service does not belong to any community, then community infor-
mation cannot be used to estimate its reputation. On the other hand, there may
also exist new factors, which are not included in Fig. 2. A new factor can be
modelled in a new layer of the framework. This guarantees the generality of our
reputation bootstrapping approach. The proposed framework can also be applied
for reputation bootstrapping of atomic services. This is equivalent to the case of
removing the component service layer from the framework.

The reputation-related factors may have different degrees of importance in
representing a service’s reputation. We model these factors in the framework by
following this rule: “the more important a factor is in reputation representing,
the higher layer it stays in”. Therefore, as aforementioned, we put the user layer
in the first place as it represents the direct reputation. The order of other layers
is not fixed, and depends on particular cases. The layer order is determined by
our data-driven bootstrapping approach introduced in the next section.

3 The Reputation Bootstrapping Approach

In this section, we first introduce the details of the proposed reputation boot-
strapping approach in Sects. 3.1 and 3.2, and then introduce confidence in
Sect. 3.3.

3.1 Reputation Evaluation

In this paper, the evaluation of service reputation is assumed to be performed
by aggregating users’ feedback during a particular period. We assume that user
feedback is converted into normalised numerical values in this paper. In [7],
Malik and Bouguettaya propose that service reputation evaluation should con-
sider multiple metrics, including rater credibility, personal preferences, temporal
sensitivity, majority ratings and past rating history. As reputation evaluation is
not the main contribution of this paper, we only consider users’ credibility of
giving feedback since it is the most influential factor in reputation evaluation.
In this regard, the direct reputation of a service is computed as follows:

rj =

∑
u(fu

j × cu)
∑

u cu
, (1)

where rj denotes the direct reputation of service j, fu
j denotes the feedback given

by user u to service j, and cu is the credibility of u.

Confidence-Aware Reputation Bootstrapping 163

User credibility is usually computed in different ways under various circum-
stances. As we apply a GitHub dataset to evaluate our work (see Sect. 4), we
consider how to compute the credibility of GitHub users and reputations of
repositories. At GitHub, a user gives stars to other users to express his/her
appreciation on their work. Through this starring system, all users are connected
as a directed graph. Figure 3 illustrates an example of the star network. In this
network, if a user obtains more stars from others, he/she is considered more capa-
ble of giving fair feedback since many other users recognise his/her expertise. In
addition, a star given by a user who has more stars should be considered more
important than a star given by a user who has fewer stars. Given a star network,
we compute user credibility of giving feedback using PageRank [12], which is a
well-known approach to identify the importance of Web pages. In PageRank, a
Web page has a high rank if the sum of the ranks of the pages which cite it is
high. As a result, it is a recursive process to compute the importance of all pages.
Due to the space limitation, we omit the detailed process of applying PageRank
to compute the user credibility cu at GitHub. Furthermore, the GitHub users
also give stars to repositories. The direct reputation of a repository is computed
based on the number of stars it obtains. Every star is weighted by the credibility
of the user who gives the star.

Fig. 3. User Starring Network

3.2 Reputation Bootstrapping

Suppose a complete framework denoted as L contains all possible reputation-
related factors. L ⊆ L is a subset of L. L describes the situation where some of the
reputation-related factors for services may be unavailable. Let r denote the direct
reputation of a service. Our reputation bootstrapping approach aims to identify
a function R(L) = r̂ to make r̂ ≈ r, where r̂ is the bootstrapped reputation of a
new service, and is computed based on the reputation-related factors modelled
in L. Furthermore, our approach quantitatively determines the importance of
factors in reputation bootstrapping. Given the complete framework L, a function
I(L) =

⇀
i outputs a vector

⇀
i which contains the importance value of every factor

164 L. Qu et al.

in L. The functions R and I are learned based on the historical records of existing
services. A set of features are extracted based on the factor modelled in each layer
of L. For example, the factor “provider” is modelled in the provider layer of L, in
which several features related to service providers are extracted. These features
may include the reputation of a provider, the reputations of the provider’s past
services, the number of its services, etc. The features in every layer of L are then
collected and trained through a learning method to compute functions R and I.

Function Learning : we apply Random Decision Forest [2], which is an ensem-
ble learning algorithm based on Decision Tree, to determine the functions R and
I. The standard Random Forest algorithm is modified to apply to our work.
The reason to adopt Random Forest is: (1) in comparison with the complete
framework L, some reputation-related factors may be unavailable in a particular
case L, i.e., L ⊆ L. Random Forest can naturally handle various cases of incom-
plete factors through a feature bagging process [2]; (2) Random Forest can easily
compute feature importance in a learning process. As a result, the importance of
each reputation-related factor can be computed by summing up the importance
value of every feature in each layer of L; and (3) the efficiency of Random Forest
is very high in training and prediction processes, compared to most of other
learning algorithms.

Algorithm 1. Forest Building for Reputation Bootstrapping
Input:

the training set N containing n samples;
the complete layer-based framework L;
the set {Li} containing all possible subsets of L, where Li ⊂ L;
the feature set F containing all features in L;
the feature set Fi for Li, where Fi ⊂ F .

Output: the structure of a decision forest.
1: for each Li ∈ {Li} do
2: for t = 1 . . . T (T is the number of times of bagging.) do
3: Sample Bagging: randomly select samples from N with replacement for n times to form a

new sample set Nt
i ;

4: Feature Bagging: randomly select features from Fi to form a sub feature set ft
i ;

5: Tree Building: build an unpruned decision tree trt
i based on Nt

i and ft
i .

6: end for
7: end for
8: Build a standard random forest {trt′} containing trees denoted as trt′

based on N and F ;

9: return a decision forest FR based on the combination of {trt
i} and {trt′ }.

In the standard tree bagging process [2] of Random Forest, data samples and
data features are randomly selected with replacement from the original dataset.
The random selection process is repeated several times to form a number of
subsets of data. A decision tree is built based on each subset. All of these trees
form a forest. The result of a prediction is the aggregation of the results obtained
from all the trees in the forest. The randomness and aggregation in Random
Forest improve prediction accuracy and effectively control overfitting. In our
work, we modify the standard bagging process in order to deal with various cases
of L. For every possible L, a corresponding sub forest is built only based on the

Confidence-Aware Reputation Bootstrapping 165

reputation-related factors modelled in L before the standard bagging process.
If a service can only be modelled in a particular L according to its factors, its
future reputation is predicted only through the sub forest that is built on L. For
example, a new composite service only has the information of its provider and
component services. It is reasonable to bootstrap its reputation only based on a
particular L consisting of a provider layer and a component service layer. On the
other hand, the importance of all possible reputation-related factors is learned
based on the complete framework L.

Compared to standard Random Forest, the bagging process of our modified
forest consists of two steps:

1. Build a sub forest for every possible L ⊂ L, where each sub forest is a standard
random forest which is built on L only.

2. Build a standard random forest based on L.

The whole forest for reputation bootstrapping is the combination of the decision
trees built in Steps 1&2. Algorithm 1 presents the details of the forest building
process. Lines 1–7 describe the sub forest building process in Step 1, where Lines
2–7 is a standard bagging process in Random Forest. Lines 8 and 9 describe the
process in Step 2. In the end, a forest-based reputation prediction model is built
by training actual data. The sub forest building in Step 1 effectively addresses the
real-world situations where only partial reputation-related factors are available
for service reputation bootstrapping.

Note that we apply classification trees in our proposed approach rather than
regression trees. The reason is that a reputation value of a service usually needs
to be mapped into a trust degree to describe how possible the service performs
satisfactorily. A trust degree is typically represented by a probabilistic tuple
(belief, uncertainty, disbelief) [5]. In this regard, classification trees are more
suitable and easier to map reputation values into a trust degree.

Factor Importance : Random Forest has the ability to rank feature impor-
tance in a training process. Given a decision forest FR, the importance of every
reputation-related factor is determined by aggregating the importance values of
all the features belonging to the factor. In a ready-trained decision tree, every
node of the tree contains a part of samples. Except for leaf nodes, every node
is split into two child nodes in order to make similar samples stay in the same
node. Every split is performed according to a condition on a single feature. The
optimal condition is determined by sample “impurity”, which describes the con-
fusion degree of samples in a node. The training process of a decision tree is
to determine how quickly each feature can reduce sample impurity until similar
samples stay in the same node. Therefore, in a single decision tree, the unnor-
malized importance of a feature can be defined as follows:

importance = imn × sn − iml × sl − imr × sr, (2)

where im denotes impurity values, s denotes the number of samples in a
node. n, l and r respectively denote the current node, its left child node and right

166 L. Qu et al.

child node. The impurity values are typically computed through Gini impurity or
information gain [2]. The unnormalised importance values are then normalised,
i.e., make the sum of the importance of all features equal to 1. The global
importance of features in a decision forest is the average of the importance of
features computed in every single tree. Let importancef denote the importance
of a factor f in FR built on L; importancei

f denotes the importance of a feature i
belonging to f . The importance of f in reputation bootstrapping is the sum of
the importance of all the features belonging to it:

importancef =
∑

i

importancei
f . (3)

Through factor importance, the order of layers in L can be determined. Con-
sequently, the bootstrapped reputations computed based on more important
factors are considered more reliable.

3.3 Confidence of Bootstrapped Reputations

We propose confidence to describe how much a bootstrapped reputation is reli-
able. The confidence of a bootstrapped reputation is denoted as a tuple (a, e),
where a represents the overall accuracy of reputation bootstrapping in a partic-
ular case (i.e., for a particular L), and e describes the uncertainty of the boot-
strapped reputation of a particular service. For example, suppose a new service s
only has its provider information and community information. Its reputation-
related factors are modelled in a framework Lpc which is composed of a provider
layer and a community layer. After training a decision forest FR through Algo-
rithm 1, a is the prediction accuracy computed from the sub forest which is built
on Lpc. The accuracy a describes the general accuracy of reputation bootstrap-
ping in the case of Lpc. a is computed as follows:

a =
The number of correctly predicted samples

The total number of samples
. (4)

On the other hand, e is computed based on the probability estimate of the
bootstrapped reputation of s. In a decision tree, given a particular sample, the
probability of every class to which the sample belongs can be estimated. Suppose
there exist c classes. After the tree training, a sample s (i.e., service s) is finally
classified into a leaf node l. The probability of s belonging to a particular class
C is computed using Laplace estimate [9] as follows:

Probability Estimate =
The number of samples belonging to C in l + 1

The total number of samples in l + c
.

(5)
This probability estimate is suitable for balanced datasets, i.e., the number

of samples belonging to each class is approximately equal. In this paper, we use
a balanced dataset to evaluate the proposed approach.

In a random forest, the overall probability estimate of every class to which
s belongs is the mean probability estimate of all the trees. e describes how

Confidence-Aware Reputation Bootstrapping 167

Table 1. Dataset Statistics

Data Type Statistic

The number of repositories 4715

The number of repositories

with sub modules

417

The average number of sub

modules per repository

1.28

The minimum number of stars

a repository obtains

1

The maximum number of stars

a repository obtains

9992

Fig. 4. The Distribution of Stars

certainly the bootstrapped reputation of s belongs to a particular reputation
class, and is a necessary amendment for a. For example, suppose there are
three reputation classes for services, which are represented by “bad”, “fair”
and “good”. The probability estimate for s is (0.2, 0.6, 0.2). Another new service
s′ is bootstrapped under the same circumstance. The probability estimate of s′

is (0.1, 0.9, 0). Although the predicted reputation class of s and s′ is the same
(i.e., “fair”), the uncertainty of their predictions is not equal. The prediction of
s is less reliable than that of s′ since the probability of s belonging to “fair” is
smaller than that of s′. To this end, we use the entropy of a probability estimate
to quantitatively describe the uncertainty e:

e = −
∑

j

p(Cj) log p(Cj), (6)

where p(Cj) denotes the probability estimate of a new service’s bootstrapped
reputation belonging to a particular reputation class Cj . The higher e is, the
more unreliable the bootstrapped reputation is. It should be noted that, the
effectiveness of e representing uncertainty of reputation bootstrapping is influ-
enced by the bootstrapping accuracy a. If a is quite low, the effectiveness of e is
low as the bootstrapping model learned via Algorithm1 cannot output correct
probability estimates. Even if such a situation occurs, a is still an effective metric
to evaluate the confidence of reputation bootstrapping.

4 Experimental Results

We conduct a set of experiments to evaluate the proposed reputation bootstrap-
ping approach. These experiments show: (1) the importance levels of reputation-
related factors; (2) reputation bootstrapping accuracy; and (3) the effectiveness
of reputation bootstrapping uncertainty e.

168 L. Qu et al.

4.1 Experiment Setup

Dataset : we collect the data from GitHub via its RESTful API4 that pro-
vides an access to all public repositories. The collected information contains
the reputation-related factors which can appear in a general composite service
environment. We assume that a repository is a service. If a repository has sub
modules, its sub modules are considered as its component services. The multiple
contributors of a repository is considered as a whole entity, which is the provider
of the repository. At GitHub, every repository has an owner that can be a user
or an organisation. An owner can have multiple repositories. We assume that
the owner of a repository is a community. In addition, similar repositories with
the same keywords can be identified through the semantic search function pro-
vided by the API. The keywords are extracted from repository descriptions by
removing stop words and duplicated words.

After analysing the GitHub data, we discover that the number of stars of a
repository follows a Pareto (long tail) distribution that is illustrated in Fig. 4.
As can be seen, most of repositories have been given quite few stars. The num-
ber of repositories having a particular number of stars is quite imbalanced. An
imbalanced dataset would bring bias in prediction accuracy evaluation. To avoid
such bias, we collect the approximately same number of repositories from five
different reputation intervals. Every reputation interval represents a reputation
class to which a repository can belong. The dataset contains 4715 repositories,
in which 417 repositories have sub modules. At GitHub, most of repositories
with sub modules have zero star. The repositories with zero star cannot provide
effective information. Therefore, we only keep the repositories having at least
one star in the dataset. This also indicates the small proportion of repositories
with sub modules in the dataset (i.e., only 417 from 4715 repositories). In addi-
tion, we find that most of the repositories with sub modules have only one sub
module. Table 1 reports the statistics of the GitHub dataset.

We apply the reputation evaluation approach introduced in Sect. 4.1 to com-
pute the reputations of either repositories or users. The actual reputations of
repositories are taken as a ground truth to evaluate whether the proposed app-
roach can accurately bootstrap service reputation.
Model Learning : we build a framework based on Fig. 2. The features are
extracted from each layer of the framework:

– There is one feature in the provider layer: the average reputation of top-
10 contributors of a repository. The reputations of these contributors are
weighted by the numbers of their commits.

– There are three features in the community layer: the reputation of the owner
of a repository, the average reputation of the owner’s other repositories, and
whether the owner is a user or an organisation.

– There are two features in the similar service layer: the average reputation of
Top-5 similar repositories, and the average reputation of the owners of similar

4 developer.github.com/v3.

http://developer.github.com/v3

Confidence-Aware Reputation Bootstrapping 169

repositories. The reputations of the similar repositories and their owners are
weighted by the similarity scores computed by the search API.

– There are two features in the component service layer: the average reputation
of sub module repositories, and the average reputation of the owners of sub
module repositories.

80% of the dataset forms a training set. The rest forms a test set. We apply
Algorithm 1 to build a decision forest. We evaluate the proposed approach
by comparing the predicted reputations of repositories and their corresponding
actual reputations.

Table 2. The Importance Level of Factors

Features Normalised Importance

Provider Layer: 0.238

Average reputation of contributors 0.238

Community Layer: 0.722

Reputation of the owner 0.127

Average reputation of the other repositories of the owner 0.532

User or organisation 0.063

Similar Service Layer: 0.024

Average reputation of similar repositories 0.013

Average reputation of the owners of similar repositories 0.011

Component Service Layer 0.016

Average reputation of sub modules 0.010

Average reputation of the owners of sub modules 0.006

4.2 Results

Factor Importance : in the first experiment, we explore which factor plays an
important role. Table 2 reports the normalised importance of the factors on the
GitHub dataset through model learning. The results demonstrate that the factor
community is the dominant factor to predict service reputation. Consequently,
it is more reliable for reputation bootstrapping of new services. In contrast,
the other factors are insignificant. An interesting finding is that, in the provider
layer, the reputations of the contributors of a repository do not directly influence
the reputation of the repository. The importance of the factor provider is only
0.238. In addition, the reputation of the owner of a repository also has low
importance (0.127). On the contrary, the reputations of the other repositories of
the owner has very high importance (0.532). This phenomenon may be caused
by the starring system at GitHub. The stars given to a user may more greatly
reflect his/her social relations (following or followed at GitHub) rather than
his/her reputation on project development. Instead, his/her past experiences
more effectively reflect his/her ability on providing valuable repositories.

170 L. Qu et al.

Fig. 5. User Starring Network

The experimental results also show that the factors similar service and com-
ponent service have quite low importance in reputation prediction. The possible
reasons may include: (1) semantic similarity cannot be applied to group reposi-
tories with similar reputations; and (2) the reputation of a composite repository
is more influenced by its own developers rather than its sub module repositories.

Bootstrapping Accuracy : In the second experiment, we evaluate the reputa-
tion bootstrapping accuracy of our approach. We apply the proposed approach
in five cases, i.e., consider all the reputation-related factors and consider every
single factor (provider, community, similar service and component service). In
addition, we compare our approach to a baseline approach that applies the inher-
itance mechanism proposed in [11]. The baseline approach uses the past repu-
tations of the existing services of a provider to bootstrap the reputation of the
provider’s new service.

We use the metrics accuracy, precision and recall to illustrate the compar-
ison results. Figure 5 demonstrates that the accuracy of our approach is quite
low in terms of the factors similar service and component service. The accu-
racy is slightly higher than that of random guessing (approximate 0.2 due to
five classes with approximately equal size). The accuracy in terms of the fac-
tor provider is higher, but only 0.452. As the dominant factor, the accuracy in
terms of community is much higher and reaches approximate 0.88. In addition,
the baseline approach is equivalent to reputation bootstrapping based on the
feature average reputation of the other repositories of the owner. This feature
is in the community layer, and its importance is very high (0.532). Therefore,
the bootstrapping accuracy of the baseline approach reaches approximate 0.82.
However, it is still 8% lower than the accuracy of our approach in terms of all the
factors (0.907). The comparison results demonstrate that the more important
a reputation-related factor is, the more accurate the reputation bootstrapping
in terms of the factor is. Compared to the baseline approach which only takes
a single factor into account, our reputation bootstrapping approach considers
multiple factors and is able to identify the most important factor. Therefore,
our approach is more adaptable under diverse circumstances.

Confidence-Aware Reputation Bootstrapping 171

Fig. 6. Evaluation of e

Evaluation of e: In the last experiment, we evaluate the effectiveness of the
proposed bootstrapping uncertainty e. For every sample in the dataset, we con-
duct reputation bootstrapping and compute its e using Eq. (6). All the e values
are sorted in a descending order. The maximum and minimum values of e are
used to build an uncertainty interval [Min(e), Max(e)]. The interval is equally
divided into several sub intervals. We collect all the samples whose reputations
are not correctly bootstrapped. The number of incorrectly reputation bootstrap-
ping in every uncertainty sub interval is counted. We compute the proportion of
incorrectly reputation bootstrapping in each sub interval over the total number
of incorrectly bootstrapping. The proportions are shown in Fig. 6. The results
demonstrate that most of incorrectly bootstrapping has a high value of e. Over
99% of incorrectly bootstrapping has an e over 0.5. The overall trend indicates
that the higher an uncertainty e is, the more unreliable a bootstrapped repu-
tation is. Although the trend fluctuates in particular cases due to reputation
prediction errors, the overall trend remains stable.

5 Related Work

The approaches of reputation or trust bootstrapping are typically classified
into three categories: characteristic-based, guarantee-based and trial -based
approaches. We briefly overview the principal related work in these three areas.

Characteristic-based Approaches: this category of approaches focuses on
predicting a new service’s future reputation via its reputation-related charac-
teristics. In [11], a reputation bootstrapping model is proposed through three
mechanisms: inheritance, referral and guarantee. The inheritance mechanism
uses provider reputation to predict service reputation; the referral mechanism
uses community reputation to estimate service reputation; the guarantee mecha-
nism is a guarantee-based approach which allows a new service to provide a com-
mitment for its future performance. In [1], a trust bootstrapping approach is pro-
posed in a multi-agent environment based on the notion stereotype. A stereotype
is learned from past experiences to describe the correlation between an agent’s

172 L. Qu et al.

characteristics and its expected probability of good performance. This approach
does not consider concrete characteristics and their corresponding importance
in trust bootstrapping. In [14], a trust bootstrapping approach is proposed for
Web services based on a tagging system. The system allows users to tag different
services which they are interested in. Therefore, similar services can be identified
through the tagging system. The trustworthiness of a new service is predicted
according to the similarity of other services with common tags. In addition, some
approaches assign a single population statistic as the bootstrapped reputation
or trust for every new entity. In [3] and [16], the mean trust value and the mini-
mum trust value of the whole system is assigned to every newcomer respectively.
None of the above studies take factor/characteristic importance and bootstrap-
ping confidence into account.

Guarantee-based Approaches: this category of approaches allows a newcomer
to provide evidence to guarantee that it will offer good performance. The guar-
antee can be the referral from other trustworthy parties [4,8,10]. The referral
also requires past transactions between newcomers and the trustworthy parties.
However, this requirement can be hardly meet in practice as newcomers may be
quite new without any historical transaction records. Another way to obtain a
guarantee is to ask a newcomer to offer a monetary commitment before trans-
actions [6,11]. In such a case, if the newcomer performs unsatisfactorily, it will
lose money. This also requires a centralised authority to manage monetary com-
mitments.

Trial-based Approaches: this category of approaches gives a newcomer a trial
period to build its reputation. In this period, newcomers are allowed to make
transactions with other parties under some restrictions. In [8], a newcomer can
only make transactions with the selected parties that have high credibility. In
addition, the full transaction payment can be obtained only when the trial period
finishes. The newcomer’s reputation is then computed based on its performance
during the trial period. In [15], the trust patterns of service performance are
first modelled through Hidden Markov Model (HMM) based on the prior obser-
vations of the entire service population. The performance of a new service is
then evaluated during a trial period to obtain its specific trust pattern.

Our proposed approach is classified into the characteristic-based category.
Compared to the other two categories, it requires no extra process (e.g., com-
mitment management or a trial period). As a result, it is more practical and
easier to achieve in real-world situations.

6 Conclusion

This paper proposed a novel reputation bootstrapping approach in composite
service environments. The proposed approach is based on a number of factors
which may implicitly reflect new services’ future reputations. We introduced a
layer-based framework where the importance of these factors are modelled. A
data-driven approach based on a modified version of Random Forest was pro-
posed to quantitatively determine the importance of the factors and predict new

Confidence-Aware Reputation Bootstrapping 173

services’ reputations. The proposed framework can also be extended to a general
case, and thus can effectively deal with diverse reputation-related factors in real-
world situations. In addition, the notion confidence was proposed to describe the
reliability of bootstrapped reputations. In our experiments, we demonstrated the
effectiveness of our approach using a GitHub dataset.

Acknowledgement. This research was made possible by DP150100149 grant from
Australian Research Council. The statements made herein are solely the responsibility
of the authors.

References

1. Burnett, C., Norman, T.J., Sycara, K.P.: Bootstrapping trust evaluations through
stereotypes. In: 9th International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS), pp. 241–248 (2010)

2. Ho, T.K.: Random decision forests. In: 3rd International Conference on Document
Analysis and Recognition (ICDAR), pp. 278–282 (1995)

3. Huang, K., Liu, Y., Nepal, S., Fan, Y., Chen, S., Tan, W.: A novel equitable trust-
worthy mechanism for service recommendation in the evolving service ecosystem.
In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 510–517. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45391-9 43

4. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: Certified reputation: how an agent
can trust a stranger. In: 5th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pp. 1217–1224 (2006)

5. Ismail, R., Jøsang, A.: The beta reputation system. In: 15th Bled eConference:
eReality: Constructing the eEconomy, pp. 324–337 (2002)

6. Jiao, H., Liu, J., Li, J., Liu, C.: A framework for reputation bootstrapping based
on reputation utility and game theories. In: IEEE 10th International Conference
on Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 344–351 (2011)

7. Malik, Z., Bouguettaya, A.: Rateweb: reputation assessment for trust establishment
among web services. VLDB J. 18(4), 885–911 (2009)

8. Malik, Z., Bouguettaya, A.: Reputation bootstrapping for trust establishment
among web services. IEEE Internet Comput. 13(1), 40–47 (2009)

9. Margineantu, D.D., Dietterich, T.G.: Improved class probability estimates from
decision tree models. Nonlinear Estimation Classif. 171, 173–188 (2003)

10. Maximilien, E.M., Singh, M.P.: Reputation and endorsement for web services.
SIGecom Exchanges 3(1), 24–31 (2002)

11. Nguyen, H.T., Yang, J., Zhao, W.: Bootstrapping trust and reputation for web
services. In: 14th IEEE International Conference on Commerce and Enterprise
Computing (CEC), pp. 41–48 (2012)

12. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web. In: 7th International World Wide Web Conference, pp.
161–172 (1998)

13. Qu, L., Wang, Y., Orgun, M.A., Liu, L., Liu, H., Bouguettaya, A.: CCCloud:
Context-aware and credible cloud service selection based on subjective assessment
and objective assessment. IEEE Trans. Serv. Comput. 8(3), 369–383 (2015)

http://dx.doi.org/10.1007/978-3-662-45391-9_43

174 L. Qu et al.

14. Skopik, F., Schall, D., Dustdar, S.: Start trusting strangers? bootstrapping
and prediction of trust. In: Vossen, G., Long, D.D.E., Yu, J.X. (eds.) WISE
2009. LNCS, vol. 5802, pp. 275–289. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04409-0 30

15. Yahyaoui, H., Zhioua, S.: Bootstrapping trust of web services through behav-
ior observation. In: Auer, S., Dı́az, O., Papadopoulos, G.A. (eds.) ICWE
2011. LNCS, vol. 6757, pp. 319–330. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22233-7 22

16. Zacharia, G., Moukas, A., Maes, P.: Collaborative reputation mechanisms for elec-
tronic marketplaces. Decis. Support Syst. 29(4), 371–388 (2000)

http://dx.doi.org/10.1007/978-3-642-04409-0_30
http://dx.doi.org/10.1007/978-3-642-04409-0_30
http://dx.doi.org/10.1007/978-3-642-22233-7_22
http://dx.doi.org/10.1007/978-3-642-22233-7_22

Compound Trace Clustering to Generate
Accurate and Simple Sub-Process Models

Yaguang Sun1(B), Bernhard Bauer1, and Matthias Weidlich2

1 Software Methodologies for Distributed Systems, University of Augsburg,
Augsburg, Germany

{yaguang.sun,bernhard.bauer}@informatik.uni-augsburg.de
2 Humboldt-Universität zu Berlin, Berlin, Germany

matthias.weidlich@hu-berlin.de

Abstract. Business process model discovery targets the construction of
conceptual models from event data that has been recorded during the
execution of a business process. While a plethora of discovery techniques
have been proposed in the literature, most existing techniques fail to cope
with complex control-flow patterns as they are observed in event logs of
highly flexible processes. In this paper, we follow the idea of splitting-
up an event log into sub-logs, before applying process model discovery.
This yields a set of sub-process models, one per sub-log, each describing
a major variant of the business process. Unlike existing techniques, our
clustering approach is guided by the result of model discovery: It first
optimises the average complexity of the resulting models, before improv-
ing the accuracy of each model in isolation. Our experimental evaluation
highlights that our approach yields more accurate sub-process models
(that are of comparatively low complexity) than state-of-the-art trace
clustering techniques.

Keywords: Business process mining · Process model discovery · Trace
clustering · Model fitness improvement · Model complexity reduction

1 Introduction

Manual elicitation of business process models is regarded a complex, time con-
suming, and error-prone task. In recent years, therefore, techniques for auto-
mated business process model discovery (BPMD) have been developed, which
aim at the construction of conceptual models from event data that has been
recorded during the execution of a business process [1]. The starting point for
BPMD is an event log that is generated by information systems and contains
information on traces. A trace is a sequence of events that denote activity exe-
cutions for a particular instance of a business process.

While a large number of BPMD techniques have been described in the liter-
ature, see [7,11,18], most existing approaches fail to cope with complex control-
flow patterns in real-life event logs, which usually stem from business processes

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 175–190, 2017.
https://doi.org/10.1007/978-3-319-69035-3_12

176 Y. Sun et al.

Raw
event log

Complex and
inaccurate process

model mined

Sub-model1 Sub-model2 Sub-modeln

Sub
Log1

Sub
Log2

Sub
Logn

BPMD
Technique

Trace Clustering
Technique

Simpler and more
accurate sub-models

Fig. 1. The basic setting of using trace clustering in business process model discovery.

implemented in highly flexible environments, e.g., healthcare, customer relation-
ship management (CRM), and product development [6]. For such processes, the
phenomenon of ‘spaghetti-like’ process models has been described in multiple
case studies. Such models are often inaccurate and too complex to be inter-
preted by domain experts [4], and thus of limited use. This problem is largely
due to the presence of diverse variants of a business process within a single event
log [3].

Against this background, it has been argued that trace clustering [2–6,8–10]
shall be applied before BPMD. As outlined in Fig. 1, an event log is first split
into sub-logs, each containing traces of similar structure. Afterwards, BPMD
techniques are applied to each of the generated sub-logs to obtain a set of sub-
process models that provide a more accurate and comprehensible view on the
business process. However, existing trace clustering techniques are largely decou-
pled from process model discovery. They are primarily guided by the similarity
of traces in an event log, but are agnostic to the impact of clustering decisions
on the quality of the discovered models. Consequently, applying traditional trace
clustering in BPMD may yield inaccurate sub-process models.

In this paper, we therefore put forward a new trace clustering technique
named Compound Trace Clustering (CTC). It considers the accuracy and com-
plexity of the resulting sub-process models during the clustering procedure. More
specifically, it first optimises the average complexity of the sub-process models,
before the accuracy of each model is improved separately.

In the remainder of this paper, we first exemplify the issues of applying
traditional trace clustering in BPMD with experimental results (Sect. 2) and
introduce basic formal notions and notations (Sect. 3). We then elaborate on the
details of the proposed CTC technique (Sect. 4). To test the efficiency of our
method, we carried out a comprehensive evaluation with four real-world event
logs (Sect. 5). As part of that, we also compared CTC with six traditional trace

Compound Trace Clustering 177

clustering techniques. Finally, we review related work (Sect. 6) and conclude
(Sect. 7).

2 Issues of Traditional Trace Clustering in BPMD

Existing trace clustering techniques are decoupled from business process model
discovery and focus on the detection of similarity between traces in a given event
log. As such, they largely neglect the implications of certain clustering decisions
on the accuracy of the sub-process models derived per sub-log [6]. Some of the
resulting sub-process models are therefore likely to be of low quality.

We illustrate this issue with experimental insights obtained for the event
log of the loan and overdraft approval process [12] that has been published as
part of the Business Process Intelligence Challenge (BPIC) in 2012. Using two
traditional trace clustering techniques, namely GED [4] and sequence cluster-
ing (SCT) [5], and setting the number of generated sub-logs to five, yields the
results shown in Table 1. For each method, the table lists the number of traces
in the respective sub-logs as well as the quality of the sub-process model discov-
ered from it. Models have been constructed with the Flexible Heuristics Miner
(FHM) [11] and accuracy is measured in terms of fitness [13], i.e., the amount
of behaviour present in the log that is covered by the discovered model.

Table 1. The information about the sub-process models mined from the sub-logs of
LOA generated by two traditional trace clustering techniques.

Method Metrics Model of
sub-log 1

Model of
sub-log 2

Model of
sub-log 3

Model of
sub-log 4

Model of
sub-log 5

GED Fitness 0.9718 0.9959 0.8049 0.5193 0.6197

#Traces 1509 1607 8073 784 1114

SCT Fitness 0.9095 0.8436 0.9636 0.932 0.7828

#Traces 2091 1839 1740 2765 4652

The results illustrate that both trace clustering techniques will generate one
or more sub-logs, for which the discovered sub-process models have low fitness.
For example, the fitness of the model discovered from sub-log 4 as constructed
by GED is only 0.5193, meaning that a large part of the behaviour of the sub-log
cannot be replayed in the model. For the case of SCT, we observe that the model
generated for sub-log 5 has a comparatively low fitness value of 0.7828.

The above results exemplify that conducting trace clustering independent of
business process model discovery may yield sub-process models of low quality. In
the remainder, we will therefore present a new clustering mechanism that helps
to generate accurate and simple sub-process models.

178 Y. Sun et al.

3 Preliminaries

In this section, we introduce fundamental concepts and notations needed to
define our approach to compound trace clustering.

Let I be a set of items (we will later consider activities as items), S(I)
be the set of all finite sequences over I. A sequence s ∈ S(I) of length m
is denoted 〈it1, it2, . . . , itm〉, where each element itk is an item from I. For
two sequences X = 〈x1, x2, . . . , xl〉 and Y = 〈y1, y2, . . . , yq〉 from S(I), of
length l and q, respectively, X is a sub-sequence of Y , denoted as X � Y , if
1 ≤ p1 < p2 < · · · < pl ≤ q such that x1 = yp1 , x2 = yp2 , . . . , xl = ypl

.
We also need notions related to frequent sequences. Let DS be a set (or

database) of sequences. By support(seq), we denote the number of sequences in
DS that contain the sequence seq as a sub-sequence. Given a minimum support
value min sup, with 0 < min sup < 1, a sequence seq is called a sequential
pattern (or a frequent sequence), if support(seq) ≥ min sup × |DS|. The set
of sequential patterns, SP , consists of all sub-sequences of DS, for which the
support values are no less than min sup×|DS|. Acknowledging that SP contains
partly redundant information in terms of sequential patterns that are contained
in other patterns, we also define the set of closed sequential patterns as CSP =
{α ∈ SP | � β ∈ SP : α � β ∧ support(α) = support(β)}. Many algorithms for
the detection of sequential patterns have been proposed in the literature, see [15,
16]. For our purposes, it suffices to abstract from a specific algorithm for closed

sequential pattern mining, which we assume to be given as Γ : DS+ min sup−→
CSP+, where DS+ is the universe of sequence databases, CSP+ is the universe
of sets of closed sequential patterns, and min sup is a minimum support value.

Next, we turn to the notion of an event log, as recorded by information
systems during the execution of a business process. Let A be the universe of
activities of a business process. Then, an event e denotes the execution of an
instance of a particular activity a ∈ A. With E as the universe of such events,
we define an event log as follows.

Definition 1 (Trace, Event Log). A trace t ∈ S(E) is a sequence of events. An
event log L is a non-empty multiset of traces.

For instance, L = {〈a, b, c, d〉23, 〈a, c, b, d〉16} denotes an event log built of 156
events that refer to four activities (a, b, c and d). The events are part of 39
traces, with the variant 〈a, b, c, d〉 appearing 23 times, while the variant 〈a, c, b, d〉
appears 16 times in L.

With L+ as the universe of event logs and M+ as the universe of process
models, Λ : L+ → M+ is a BPMD algorithm. To evaluate the result quality of
BPMD, we further consider a process model complexity measure, Σ : M+ → R.

4 Compound Trace Clustering for Process Discovery

This section presents a novel trace clustering technique named Compound Trace
Clustering (CTC) for process discovery. An overview of our approach is given in

Compound Trace Clustering 179

Fig. 2. In essence, we proceed in two stages. In the first stage, the given event
log is split into sub-logs, so that the sub-process models derived from these logs
with some business process model discovery technique have an optimal aver-
age complexity. In a second stage, the accuracy of these sub-models created in
stage 1 is assessed and, if needed, improved by employing an algorithm pro-
posed in our earlier work [17]. Below, we first present details of our novel trace
clustering technique for stage 1 (Sect. 4.1), before providing a short summary of
the algorithm for improving model accuracy in stage 2 (Sect. 4.2). Finally, we
integrate these building blocks and define the complete algorithm for compound
trace clustering for process discovery (Sect. 4.3).

BPMD
Technique

Original
event log

Clustering traces for
generating sub-process
models with optimal
average complexity

Stage : 1

Sub
Log 1

Sub
Log 2

Sub
Log n

Sub-model
space

Sub
Log m

Sub-model 1 Sub-model 2 Sub-model n

BPMD Technique

Sub-log
space

Judge if sub-model m is
accurate or not Input

sub-model m ,

YES

NO
Stage : 2Output

Sub
Log m*

Sub
Log m

Input Output

Input

Output Output Output

Input Input Input

Output Output Output

Input

BPMD Technique

Input

Output

Continue to judge next sub-model
from sub-model space

Sub-model m* Sub-model m* is
more accurate than

sub-model m

Inaccurate and
complex modelNote 1

Note 2

Fig. 2. Outline of the basic idea for the proposed trace clustering technique CTC.

4.1 Stage 1: Trace Clustering

For the first stage of our approach, we developed a new trace clustering method,
referred to as top-down trace clustering (TDTC). The main idea of our method
is to convert the traditional trace clustering problem that is based on a notion of

180 Y. Sun et al.

similarity of traces, into a clustering problem that is guided by the complexity
of the sub-process models derived for the sub-logs.

Let Φ = {φ1, φ2, . . . , φn} be a solution space, where each solution φm ∈ Φ
stands for a unique way to divide the original event log into a fixed number of
sub-logs. TDTC employs a greedy strategy to search for the optimal solution φop

of Φ, which is characterised by an optimal weighted average complexity of the
sub-process models constructed for the generated sub-logs. As shown in Fig. 3,
for a log L and a target number (three in this example) of sub-logs, TDTC first
searches for the optimal way to divide L into two sub-logs L1 and L2. Then,
TDTC continues to detect the optimal way to split L2 (which is assumed to lead
to a sub-model with the highest complexity) into L3 and L4. This basic idea
is instantiated based on the following concepts related to sequential patterns in
traces, henceforth called trace behaviours.

Log L

Log L1 Log L2

Best way
to divide

Log L1

Log L2

Log L3 Log L4

Set of sublogs

Find the log that leads
to a process model with

highest complexity

Input Output

Best way
to divide

Set of sublogs

Fig. 3. Illustration of the basic idea for top-down trace clustering.

Significant Trace Behaviours. A complex business process can often be
divided into several simpler sub-processes, where each sub-process is charac-
terised by specific behavioural patterns [6]. We refer to the representation of
these behavioural patterns in the event log as trace behaviours. When conducting
trace clustering, we are particularly interested in trace behaviours that adhere
to a sub-process model that is simpler than the one that would be discovered for
the whole event log. We call these trace behaviours complexity-related significant
behaviours (CRSB) and detecting them enables us to split up an event log, such
that the discovered sub-process models are of low complexity.

We first define trace behaviours in a formal way, based on the notion of
sequential patterns as introduced in Sect. 3. That is, a trace behaviour is a
sequential pattern mined from a given event log, as the latter can be seen as
a database of sequences.

Definition 2 (Trace Behaviours). Let Γ be a closed sequential pattern mining
algorithm and min sup be a minimum support value. Then, the set of trace
behaviours Θ of an event log L is defined as Θ = {θ | θ ∈ Γ (L, min sup)}.

The idea behind grounding trace behaviours in sequential patterns is that cer-
tain frequent sub-sequences among the traces of an event log are able to reveal

Compound Trace Clustering 181

some significant criteria about the behavioural patterns in business processes.
They may therefore help to distinguish sub-process models that represent differ-
ent variations of a business process. Moreover, we note that relying on sequential
patterns is also in line with the idea of most advanced BPMD algorithms, which
cope with noise in the event data by taking the frequency of behavioural patterns
into account in the construction of a process model.

As a next step, we classify trace behaviours of an event log into complexity-
related significant behaviours (CRSB) and complexity-related insignificant
behaviours (CRIB). Let L be an event log; θ be a trace behaviour of L; L1 ⊆ L
be a sub-log of L which contains all the traces with sub-sequence θ from L;
L2 ⊆ L be a sub-log of L which consists of all the traces from L without sub-
sequence θ; and m1 = |L1| and m2 = |L2| be the total numbers of traces in sub-
logs L1 and L2 respectively. Furthermore, let vL = Σ(Λ(L)), vL1 = Σ(Λ(L1))
and vL2 = Σ(Λ(L2)) be three assessed values generated by implementing the
process model complexity evaluation mechanism Σ on the process models for
L, L1 and L2. Based thereon, we define sub-model improvement on complex-
ity SMIC(L1, L2, L) as a measure to quantify the impact of a particular trace
behaviour to split the log L into sub-logs L1 and L2:

SMIC(L1, L2, L) =
(vL − (m1 · vL1 + m2 · vL2)/(m1 + m2))

vL
. (1)

Using this measure, we characterise complexity-related significant behaviours
(CRSB) and complexity-related insignificant behaviours (CRIB). That is, a trace
behaviour θ is judged to be a CRSB, if it is able to divide the original event log L
into two sub-logs, such that the weighted average complexity of the sub-models
discovered from the sub-logs can be decreased by at least η, in comparison to
the complexity of the model discovered for the original event log.

Definition 3 (CRSB and CRIB). Given a minimum threshold η, a trace behav-
iour θ ∈ ΘL is a complexity-related significant behaviour, if SMIC(L1, L2, L) ≥ η,
otherwise θ is a complexity-related insignificant behaviour.

Top-Down Trace Clustering (TDTC). Using the above notions, Algorithm1
describes our top-down trace clustering method. TDTC applies a greedy strategy,
which detects the best CRSB for iteratively splitting the event log. According
to Algorithm 1, for an input event log L, TDTC first acquires the set of trace
behaviours TB for L and initialises the set of logs SL (line 1). Afterwards,
TDTC iteratively divides the log L into several sub-logs until the total number
of generated sub-logs reaches μ or no log in SL can be further divided (lines 2–9).
As shown in line 6, if the found trace behaviour tbm is not a CRSB, then it will
not be utilised for dividing the log. This means that, if the average complexity of
the sub-process models discovered from the generated sub-logs (i.e., Ln1 and Ln2)
cannot be decreased to a certain extent compared to the quality of the model
discovered from the original event log (i.e., Ln), then it is not worth splitting the
log. Intuitively, this requirement is derived from the goal to achieve a balance

182 Y. Sun et al.

between the integrity and the quality of the resulting models. Additionally, if
the number of traces in the generated sub-logs (i.e., Ln1 and Ln2) is less than
threshold κ, then the found trace behaviour tbm will also not be used for splitting.
Here, threshold κ is used to prevent TDTC from generating sub-logs with too
few traces. Finally, an array of sub-logs SL is returned by TDTC.

Algorithm 1. Top-down trace clustering (TDTC)
Input: an event log L, a minimum support min sup for mining closed sequential

patterns, a minimum threshold η for detecting CRSB, the minimum size κ for each
generated sub-log, the target number of generated sub-logs μ.
Let TB be a set of trace behaviours.
Let SL be a set of event log.

1: TB ← Γ (L, min sup), SL ← SL ∪ L
2: repeat
3: find the log Ln ∈ SL which leads to a model with the highest complexity
4: find the trace behaviour tbm ∈ TB to generate the highest SMIC for log Ln

5: split log Ln into Ln1 and Ln2 by employing trace behaviour tbm
6: if SMIC(Ln1, Ln2, Ln) ≥ η and |Ln1| ≥ κ and |Ln2| ≥ κ then
7: remove Ln from SL and put Ln1 and Ln2 in SL
8: end if
9: until (no log in SL can be further divided or the cluster number μ is reached)
Output: a set of event logs SL.

4.2 Stage 2: Process Model Fitness Improvement

As part of our compound trace clustering technique, the accuracy of the sub-
process models stemming from stage 1 is improved in a second stage (see Fig. 2).
In particular, we consider fitness [13] as a well-established measure for the accu-
racy in process model discovery. Specifically, we employ a fitness improvement
algorithm named HIF [17] and apply it to each of the sub-process models. In
essence, HIF locates behavioural patterns recorded in the event log, which cannot
be expressed by the utilised BPMD algorithm. It then converts these patterns
into behavioural structures that can be expressed by the discovery algorithm, so
that a more fitting process model will be obtained.

4.3 The Compound Trace Clustering (CTC) Algorithm

Putting the above techniques together, the complete approach of compound
trace clustering for process discovery is formalised in Algorithm 2. In addition
to the above notions, this algorithm relies on a process model fitness evaluation
measure Δ : (M+, L+) → R, where M+ is the universe of process models and
L+ is the universe of event logs.

As described above before, CTC contains two stages. In stage 1, TDTC
(introduced in Algorithm1) is employed to divide the original event log L into
a fixed number (indicated by parameter μ) of sub-logs, which are then stored in

Compound Trace Clustering 183

set SL (line 2 of Algorithm 2). In stage 2, if a sub-log sl from SL leads to a sub-
process model with a fitness value less than a given target value ε (line 4), then
HIF is used to transform the respective sub-log until the discovered sub-process
model has a fitness value of no less than ε (line 5). Finally, the sub-process
models with improved fitness are stored in MO (lines 6 and 8), which forms the
output of CTC. Note that the time complexity of CTC depends on the chosen
algorithms for closed sequential pattern mining (Γ) and BPMD (Λ).

Algorithm 2. The compound trace clustering technique: CTC
Input: an event log L, a minimum support min sup for mining closed sequential

patterns, a minimum threshold η for detecting CRSB, the minimum size κ for each
generated sub-log, the target number of generated sub-logs μ, a target fitness value
ε for the sub-process model.
Let SL be an array of event log.
Let MO be a set of sub-process models.

1: SL ← null, MO ← null
Stage 1: cluster traces for generating sub-process models with optimal complexity

2: SL ← TDTC(L, min sup, η, κ, μ)
Stage 2: generate high-fitness sub-process models

3: for each sub-log sl ∈ SL do
4: if Δ(Λ(sl), sl) < ε then
5: sl ← HIF (sl, ε)
6: MO ← MO ∪ Λ(sl)
7: else
8: MO ← MO ∪ Λ(sl)
9: end if

10: end for
Output: a set of sub-process models MO, an array of event log SL.

5 Evaluation

This section presents an experimental evaluation of the proposed method of com-
pound trace clustering for process discovery. We first review the used datasets
and experimental setup, before turning to a discussion of the obtained results.

Datasets. We tested the effectiveness of CTC on four real-life event logs: an
event log of a Volvo IT incident and problem management process (VIPM)
published as part of the Business Process Intelligence Challenge (BPIC) 2013;
a log of a loan and overdraft approvals process (LOA) of BPIC 2012; a log of
an ICT service process (KIM); and a log of a CRM process (MCRM) from [6].
Descriptive statistics of these event logs are given in Table 2.

Experimental setup. To evaluate the quality of the discovered models, a
process model complexity measure is used. To this end, we exploit the insights
reported in [14], which highlight that the density, the number of control-flows
arcs, and the number of model elements are the main factors that influence the

184 Y. Sun et al.

Table 2. Basic information of the evaluated logs.

Log Traces Events Event types

VIPM 7554 65533 13

LOA 13087 262200 36

KIM 24770 124217 18

MCRM 956 11218 22

comprehensibility of a process model that is expressed as a Petri-net [1]. More
specifically, we rely on the Place/Transition Connection Degree (PT-CD) metric
for quantifying complexity of a Petri-net, see [6]. With |ar| as the total number
of arcs in the model, |P | as the number of places, and |T | as the number of
transitions, the PT-CD is defined as:

PT − CD =
1
2

|ar|
|P | +

1
2

|ar|
|T | (2)

Here, large values of the PT-CD metric indicate a high complexity of the
model. As an alternative measure for model complexity, we further consider the
Extended Cardoso metric (E-Cardoso) [19]. It quantifies the control flow com-
plexity of process models. A higher E-Cardoso value indicates a more complex
model.

In our experiments, we further use the Flexible Heuristics Miner (FHM) [11],
as implemented in ProM 61 as the business process model discovery algorithm.
This choice is motivated by the algorithm’s robustness against noise and its
computational efficiency. Since FHM constructs a process model that is given as
a Heuristics Net, we rely on the Heuristics Net to Petri Net plugin in ProM 6
to convert the result of FHM into a Petri-net. The complexity of this Petri-net
is then assessed based on the aforementioned measures.

To assess the accuracy of the discovered models, we rely on the ICS fitness
measure [13], which falls into rage (−∞, 1] and can be computed efficiently. In
addition, we consider the F-score, which is defined as the harmonic mean of
recall (fitness) and precision (appropriateness) [18]. To quantify precision of the
discovered sub-process models, we utilise the ETConformance Checker as it is
implemented in ProM 6.

When running CTC, the minimum support value min sup for closed sequen-
tial pattern mining is set to 0.1 for the logs VIPM, KIM, and MCRM; and to
0.25 for log LOA. The reason being that the first three logs contain less process
variants compared to LOA. The minimum threshold η for detecting CRSB is
set to 0 (i.e., condition SMIC > 0 should be fulfilled), while the minimum size
κ for each sub-log is set to 50. The target number of generated sub-logs μ is
varied in the experiments up to a value of 6. The target fitness value ε for each
sub-process model is set to 1.

1 http://www.promtools.org.

http://www.promtools.org

Compound Trace Clustering 185

Results. A first overview of our evaluation results (when μ is set to 5) is shown in
Table 3. For each measure and log, Table 3 first gives the obtained value for the
sub-process models obtained by CTC (averaged over all sub-process models),
before also listing the value for the model discovered from the original event
log. For instance, the weighted average ICS fitness of the sub-process models
obtained with CTC on the log VIPM is 0.9159 while the ICS fitness of the
model discovered from the original event log is 0.3594.

The evaluation results shown in Table 3 highlight that the weighted average
fitness of the generated sub-models for each event log is much higher than the
fitness of the model discovered from the original log, whereas the average com-
plexity of these sub-models is relatively low. As such, the results demonstrate the
effectiveness of our approach to compound trace clustering for process discovery.

Table 3. Evaluation results for the sub-models generated by CTC. First values are the
average over all sub-process models, whereas the second values are those obtained for
the model discovered from the original event log.

Event log Weighted average Weighted average Weighted average

ICS fitness PT-CD E-Cardoso

VIPM 0.9159/0.3594 2.3577/2.8848 47.3313/54

LOA 0.9909/0.7878 2.4845/3.1478 110.7463/148

KIM 0.9461/0.7904 2.8626/3.4797 63.2614/79

MCRM 0.9512/−0.1379 2.2818/2.4545 51.7364/64

We also compared CTC to six traditional trace clustering techniques, specif-
ically 3-gram [2], ATC [6], MR and MRA [3], GED [4] and sequence clustering
(SCT) [5]. For each log, we evaluate the trace clustering technique with differ-
ent numbers of clusters (from 3, 4, 5 and 6). Figure 4 shows the comparison
results from the perspective of fitness.The results illustrate that CTC performs
much better on event logs LOA, VIPM and MCRM than the other six trace
clustering methods. For the log KIM, ATC has better overall performance than
CTC because ATC also has a fitness improvement mechanism that is applied to
the sub-process models. However, the mechanism provided by CTC seems more
stable on the four real-world event logs.

Figure 5 shows the comparison results on F-score. It can be seen that CTC
also performs better than the traditional trace clustering techniques on most of
the tested logs. Figure 6 highlights the comparison results from the angle of PT-
CD. Here, CTC and SCT outperform the other techniques. Figure 7 depicts
the comparison results on E-Cardoso, hinting at an average performance of
CTC in comparison to the other methods. The main reason is that the fit-
ness improvement method HIF utilised by CTC may decrease the performance
of CTC on optimising the complexity (evaluated by E-Cardoso) of the potential

186 Y. Sun et al.

sub-models. Nevertheless, we conclude that under a comprehensive assessment,
CTC improves beyond the state-of-the-art in trace clustering in the context of
process model discovery.

3 4 5 6
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 4. Comparison of weighed average fitness of the sub-models output by the seven
trace clustering techniques.

6 Related Work

In the literature, many trace clustering techniques have been put forward to
overcome the negative impact of a large variety of complex control-flow patterns
recorded in event logs. We classify these proposed techniques into passive trace
clustering methods and active trace clustering methods.

Passive trace clustering methods such as [2–5] try to detect the similarity of
traces recorded in event logs and then group the traces with similar structures
into the same sub-log. For example, in [2], traces are expressed by profiles. Every
profile is a set of items that characterise a trace in terms of a particular aspect.
Five profiles, such like the case attributes profile and the event attributes profile,
are introduced in [2]. The distance between any two traces is then measured by
transforming the defined profiles into an aggregate vector. In [3], the authors
pointed out that the feature sets based on repeated sub-sequences of traces are
context-aware and able to exhibit some common functionality. The traces that
have a lot of common features should be placed in the same cluster. In [4], an

Compound Trace Clustering 187

3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
0.58

0.63

0.68

0.73

0.78

0.83

0.88

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 5. Comparison of weighted average F-score of the sub-models output by the seven
trace clustering techniques.

3 4 5 6
2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
2.65

2.7

2.75

2.8

2.85
2.9

2.95

3

3.05

3.1
3.15

3.2

3.25

3.3

3.35
3.4

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
2.2

2.3

2.4

2.5

2.6
2.7

2.8

2.9

3

3.1
3.2

3.3

3.4

3.5

3.6
3.7

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 6. Comparison of weighted average PT-CD of the sub-models output by the seven
trace clustering techniques.

188 Y. Sun et al.

3 4 5 6
80

85

90

95

100

105

110

115

120

125

130

135

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
37.5

40

42.5

45

47.5

50

52.5

55

57.5

60

62.5

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
34.5

37
39.5

42
44.5

47
49.5

52
54.5

57
59.5

62
64.5

67
69.5

72
74.5

77
79.5

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
45

47

49

51

53

55

57

59

61

63

65

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 7. Comparison of weighted average E-Cardoso of the sub-models output by the
seven trace clustering techniques.

edit distance-based approach for trace clustering is proposed. The context-aware
knowledge is integrated into the calculation procedure so that the calculated
edit distance between any two traces becomes more accurate. In [5], sequence
clustering technique is proposed, which learns a first-order Markov model for
each cluster. A trace will be put into the cluster that is assigned the Markov
model that is able to generate this trace with the highest probability. However,
passive trace clustering methods suffer from the gap between the clustering bias
and the model evaluation bias [6]. As a result, these techniques cannot ensure
the accuracy of the sub-process models constructed from the resulting sub-logs.

Active trace clustering methods such as [6,8–10] assume an integrated view
on the clustering bias and the model evaluation bias. For example, ATC as pre-
sented in [6], directly optimises the accuracy of the sub-process models derived
from sub-logs, similar to CTC proposed in this paper. However, as demonstrated
in our experimental evaluation, the mechanism provided by ATC turns out to
be not very stable. In contrast, CTC achieves the best results under a compre-
hensive assessment, when compared to existing active trace clustering methods.

7 Conclusions

In this paper, we proposed a new trace clustering technique named CTC to
generate accurate and simple sub-process models. Our technique consists of two

Compound Trace Clustering 189

stages. In a first stage, it generates sub-process models while striving for an opti-
mal average complexity of the resulting models. In a second stage, the accuracy
of the resulting models is improved. Our experimental results demonstrated the
effectiveness of our technique, also in comparison to six traditional trace clus-
tering techniques.

In future work, we will focus on improving the performance of CTC by devel-
oping new methods to filter trivial trace behaviours found by CTC from real-
life event logs. Also, techniques that help to explore the parameter spaces in
the configuration of our technique (such as the minimum threshold to detect
complexity-related significant behaviours or the minimum size per sub-log) will
be explored. Furthermore, we plan to conduct further evaluation studies, vali-
dating our methods in additional application domains.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016)

2. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp.
109–120. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00328-8 11

3. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12186-9 16

4. Bose, R., van der Aalst, W.M.P.: Context aware trace clustering: towards improving
process mining results. In: SIAM International Conference on Data Mining, pp.
401–402 (2009)

5. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining
with sequence clustering: experiments and findings. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75183-0 26

6. Weerdt, J.D., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clus-
tering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38697-8 17

8. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Slice, mine and
dice: complexity-aware automated discovery of business process models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40176-3 6

9. Garcia, L., Dumas, M., Rosa, M.L., Weerdt, J.D., Ekanayake, C.C.: Controlled
automated discovery of collections of business process models. Inf. Syst. 46, 85–
101 (2014)

10. Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process models by clus-
tering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

http://dx.doi.org/10.1007/978-3-642-00328-8_11
http://dx.doi.org/10.1007/978-3-642-12186-9_16
http://dx.doi.org/10.1007/978-3-540-75183-0_26
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-642-40176-3_6

190 Y. Sun et al.

11. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). BETA
Working Paper Series, WP 334. Eindhoven University of Technology, Eindhoven
(2010)

12. Adriansyah, A., Buijs, J.C.A.M.: Mining process performance from event logs. In:
La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 217–218. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36285-9 23

13. de Medeiros, A.A.: Genetic process mining. Ph.D. thesis, Eindhoven University of
Technology (2006)

14. Mendling, J., Strembeck, M.: Influence factors of understanding business process
models. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 142–
153. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79396-0 13

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2000)

16. Shengnan, C., Han, J., David, P.: Parallel mining of closed sequential patterns. In:
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining, KDD 2005, pp. 562–567. ACM, New York (2005)

17. Sun, Y., Bauer, B.: A novel heuristic method for improving the fitness of mined
business process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.)
ICSOC 2016. LNCS, vol. 9936, pp. 537–546. Springer, Cham (2016). doi:10.1007/
978-3-319-46295-0 33

18. Conforti, R., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Beyond tasks and gate-
ways: discovering BPMN models with subprocesses, boundary events and activity
markers. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659,
pp. 101–117. Springer, Cham (2014). doi:10.1007/978-3-319-10172-9 7

19. Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for workflow nets. Inf.
Softw. Technol. 51(3), 610–626 (2009)

http://dx.doi.org/10.1007/978-3-642-36285-9_23
http://dx.doi.org/10.1007/978-3-540-79396-0_13
http://dx.doi.org/10.1007/978-3-319-46295-0_33
http://dx.doi.org/10.1007/978-3-319-46295-0_33
http://dx.doi.org/10.1007/978-3-319-10172-9_7

An Approach to Modeling and Discovering
Event Correlation for Service Collaboration

Meiling Zhu1,2,3(&), Chen Liu2,3, Jianwu Wang4,
Shen Su2,3, and Yanbo Han2,3

1 School of Computer Science and Technology,
Tianjin University, Tianjin 300350, China

meilingzhu2006@126.com
2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream

Data, North China University of Technology, Beijing 100144, China
{liuchen,sushen,hanyanbo}@ncut.edu.cn

3 Cloud Computing Research Center, North China University of Technology,
Beijing 100144, China

4 Department of Information Systems, University of Maryland,
Baltimore County, Baltimore, MD 21250, USA

jianwu@umbc.edu

Abstract. In an IoT (Internet of Things) environment, event correlation
becomes more complex as events usually span over many interrelated sensors.
This paper refines event correlations in an IoT environment. We extend our
previous service hyperlink model to encapsulate such event correlations. To
effectively discover service hyperlinks, we transform the event correlation dis-
covery problem into a frequent sequence mining problem and propose
CorFinder algorithm. Moreover, we apply our approach to improve anomaly
warning in a power plant instead of simulation. Besides the application, we have
made extensive experiments to verify the effectiveness of our approach.

Keywords: IoT service � Service hyperlink � Sensor event � Event stream �
Event correlation

1 Introduction

Nowadays, sensors are widely deployed in industrial environments to monitor devices’
status in real-time. A sensor continuously generates sensor events and a series of sensor
events are correlated with each other. Such event correlations are modeled to enable
application-level sensor collaboration. We designed an event log based on a stream
data processing infrastructure [1, 2]. However, the correlations can be dynamically
interwoven, and data-driven analysis would be of help.

Event correlation discovery problem is concerned about how to identify relation-
ships among sensor events. Similar research has also received notable attention for the
discovery, monitoring and analysis of processes. In those studies, relationships among
sensor events refer to semantic relationship herein [3–7].

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 191–205, 2017.
https://doi.org/10.1007/978-3-319-69035-3_13

In our previous work [1, 2], we studied a new kind of relationship among sensor
events, called statistical correlation. We used Pearson coefficient to measure such
relationship. Specifically, we tried to map physical sensors into a software-defined
abstraction, called proactive data service. A proactive data service takes event streams
derived from physical sensors or other services as inputs and transforms them into new
streams based on user-defined operations. In [2], we also proposed a new abstraction,
called service hyperlink, to encapsulate correlations between streams received and
outputted by two data services. With service hyperlinks, a service can dynamically
route an event to other services at runtime. In this way, the knowledge segment about
how these sensors collaborate with each other can be depicted at the software layer.

In this paper, we further refine event correlation on when and how a type of event
causes another type. Such event correlation can be easily transformed into a relation-
ship between two IoT services. The main contributions include: (1) We propose an
algorithm, called CorFinder, to discover such event correlations in a log of sensor
events. To reach this goal, we update classic frequent sequence mining algorithm.
(2) In a real application, we apply our approach to make anomaly warnings in a power
plant based on discovered event correlations. We elaborate on how our approach works
and what the differences with the traditional approaches are. (3) Furthermore, a lot of
experiments are done to show the effectiveness of our approach based on a dataset from
a power plant.

2 Problem Analysis

Figure 1 shows a real case of anomaly detection in a power plant. Fan stall is a major
failure for the important equipment – primary air fan (PAF) in a power plant. It will
cause severe damages to the whole air and flue system. Currently, detecting such
equipment failures in a power plant mainly depends on the observation and judgment
of envelope range. They detect anomalies through various phenomena, like the sharp
descending of exit air pressure, electricity, and air volume in a PAF. However, when
such phenomena are observed, an anomaly has already occurred and the loss is
inevitable.

From a systematic view, a severe failure is often caused by some trivial anomalies
step by step. The paths of anomaly propagation are usually hidden behind the corre-
lations of sensor events in an IoT system. Figure 1 shows several possible event
propagation paths lead to the fan stall failure. We can observe that each propagation
path is formed of several correlated sensors.

For example, a decrease of valve degree (Valve Degree Descending Event) will
reduce the inlet air header pressure (Inlet Air Header Pressure Descending Event). To
maintain the output of the boiler, valve degree (Valve Degree Ascending Event) is
automatically increased to prevent inlet air header pressure event from decreasing in
this case. Following its rise, air pressure (Air Degree Ascending Event) increases and
will lead to the growth of electricity and exit air pressure. Unfortunately, excess air
pressure will cause a fan stall, which manifests as a sharp drop of electricity (Electricity
Descending Event) and exit air pressure (Exit Air Pressure Descending Event).

192 M. Zhu et al.

However, we find such correlations are not always available. For example, con-
sidering exit air pressure sensor and inlet air header pressure sensor, their correlations
only exist when the value of exit air pressure sensor exceeds 5. In this situation, the
value of inlet air header pressure sensor usually will keep the accordance with exit air
pressure sensor after about 3 min. Lots of similar cases can be found.

The above case shows, to make warnings in advance, we need to clearly
under-stand the way how an event transforms itself and propagates among different
devices. An effective way is to mine the event correlations. If we find such correlations,
we can merge these correlations to form an event propagation path as Fig. 1 shows.

3 Definitions

A sensor event e consists of four elements: a generation timestamp, a unique identifier,
a sensor id and a value. A sensor event log records events from all sensors in an IoT
system. We formulate a sensor event log as follows.

Definition 1 (Sensor Event log): given a set of sensors S ¼ s1; s2; . . .; smf g, a sensor
event log is a set of sensor events L ¼ e1; e2; . . .; enf g, where ei i ¼ 1; ::; nð Þ is a sensor
event generated from a sensor sj 2 S.

Fig. 1. Partial possible cases of fan stall in the primary air fan: a real case.

An Approach to Modeling and Discovering Event Correlation 193

For example, a sample of sensor event log is L = {
2015-11-15 02:24:20, 118967, A110(Valve Degree), 0.359347557;
2015-11-15 02:24:20, 118968, A763(Coal Consumption), 36.54394756;
2015-11-15 02:24:20, 118969, A945(Electricity), 123.4148096;
2015-11-15 02:24:20, 118970, A658(Vibration), 97.32905983;
2015-11-15 02:24:21, 118967, A110(Valve Degree), 0.359347557; …
}.
From a sensor event log L, an event sequence is a set of events

from the same sensor in ascending order by their timestamps. The correlation between
event sequences is defined as follows.

Definition 2 (Event Correlation): Given two event sequences , let
be the event correlation between and , where is the source, is

the target, Dt is the time delayed to , and conf is a measure of relationship between
and .
The left part of Fig. 2 elaborates an example of event correlation. In this picture, the

red dashes line marks out and respectively. Dt is 4 s.

4 Discovery of Event Correlation

4.1 The Rationales

The main idea is to transform the event correlation discovery into a frequent sequence
mining problem. To do this, as the right part of Fig. 2 shows, a numerical event
sequence from a sensor is firstly transformed into a symbol sequence [8]. Essentially,
symbolization is a coarse-grained description since each symbol corresponds to a
segment of the original sequence. In this manner, if a sequence correlates with another
one, there probably exists a frequent sequence between their symbolized sequences [8].
It inspires us to use the frequent sequence to measure event correlation. In another
word, if two symbolized sequences and have a long enough frequent sequence,
there is a correlation between them.

25

50

75

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Coal Consump on

0.3

0.55

0.8

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Valve Degree

Δt=4s

:target

:source

25

35

45

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Coal Consump on

0.3
0.32
0.34
0.36
0.38
0.4

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Valve Degree
l
n n n n

l
g
f f f f f g f

c
b b bb b c c c

h
i
l
n
n n n

i
l

n o n n
m

g ff f g f h g
c b bb b b c c c

h i
l
n o n

Fig. 2. An example of event correlation.

194 M. Zhu et al.

One challenge is how to identify the time delay between two correlated event
sequences shown in Fig. 2. It actually reflects how long that a sensor will be affected by
the value changes of its correlated sensor. However, traditional frequency sequence
mining algorithm cannot directly solve such problem. Traditional algorithms only
focused on the occurrence frequency of a sequence in a sequence set [9, 10]. Hence, we
try to design an algorithm which can discover a frequent sequence, each element of
which occurs in a sequence set within a short time period, i.e., time delay Dt in
Definition 2. Another challenge is how to determine the target and source by a frequent
sequence. If each element of a frequent sequence occurs in same order in the sequence
set, such frequent sequence can identify the target and source. Taking the right picture
in Fig. 2 as an example, each element occurs a little earlier (no more than 4 s) in valve
degree sequence than in coal consumption sequence. It indicates that valve degree
sequence is the source, and coal consumption sequence is the target. In a word, if two
symbol sequences si and sj have a long-enough frequent sequence, each element of
which occurs in si and sj in same order within the time period Dt, the original sequences
of si and sj have an event correlation . In this way, conf can be
computed as the ratio of the frequent sequence length to the length of .

Based on the above discussion, we propose an algorithm called CorFinder to
discover event correlations. Firstly, it uses a classic algorithm, called SAX [8], to
symbolize each event sequence in a sensor event log. Secondly, it mines the above
frequent sequences. Notably, we take gap constraint [9] into consideration. A gap
constraint c means any two adjacent elements in a frequent sequence skip no more than
the predefined consecutive elements in any sequence containing the frequent sequence.
A gap constraint can identify uncorrelated segments from correlated sequences.

Symbolization. In this paper, the classic symbolic representation algorithm Symbolic
Aggregate approXimation (SAX) [8] is used to preprocess our input numerical event
sequences. SAX algorithm allows an event sequence of length n to be reduced to a
symbol sequence of length m m � nð Þ composed of k different symbols. We will attach
a timestamp to each symbol. The sequences in Table 1 are the symbolization of four
event sequences from a sensor event log in a power plant via SAX algorithm with
k ¼ 15. The first two event sequences are shown in Fig. 2.

Frequent Sequence Mining. Before introducing our algorithm, we list some related
concepts about frequent sequence mining. A sequence in a sequence set D is associated

Table 1. A sample of a symbolized event sequence set (running example).

An Approach to Modeling and Discovering Event Correlation 195

with an identifier, called a SID. A support of a sequence is the number contained in
D. A sequence becomes frequent if its support exceeds a pre-specified minimum
support threshold in D. A frequent sequence with length l is called l-frequent sequence.
It becomes closed if there is no super-sequence of it with the same support in D. A
projection database of sequence in L is defined as (b is the
minimum prefix of η containing).

Projection-based algorithms are a classic category of traditional algorithms in
frequent sequence mining [10]. They adopt a divide-and-conquer strategy to discover
frequent sequences by building projection database. These algorithms firstly generate
1-frequent sequences F1, where F1 ¼ s1 : sup1; s2 : sup2; . . .; sn : supnf g, si is a
1-frequent sequence and supi is its support. This step is followed by the construction of
projection database for each 1-frequent sequence. In each projection database above,
they generate 1-frequent sequences F2 and projection database of each element in F2.
The process is repeated until there is no 1-frequent sequence. We propose two data
structures as follows to update the classic algorithms.

Loose k;Dt; lð Þ-frequent sequence and k-projection database. We propose several
concepts in this section. Traditionally, a frequent sequence with length 1 is called
1-frequent sequence. In this paper, a 1-frequent sequence occurring in time period Dt is
called Dt; 1ð Þ-frequent sequence. The concept is extended as loose Dt; 1ð Þ-frequent
sequence s0 : SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDm; tmð Þh i, where s0 occurs in SIDi at ti and
tiþ 1 � ti �Dt. Generalize loose Dt; 1ð Þ-frequent sequence into length l as follows.
Given a set of Dt; 1ð Þ-frequent sequences s01; s

0
2; . . .; s

0
l for id-list

SID1; SID2; . . .; SIDmh i, if s01; s
0
2; . . .; s

0
l orderly occurs in SIDj j ¼ 1; 2; . . .;mð Þ,

is a loose Dt; lð Þ-frequent sequence for the id-list. A loose Dt; lð Þ-
frequent sequence becomes a loose k;Dt; lð Þ-frequent sequence if it satisfies gap
constraint k, i.e., s0i and s0iþ 1 i ¼ 1; 2; . . .; l� 1ð Þ skips no more than k consecutive
elements in SIDj j ¼ 1; 2; . . .;mð Þ:

According to previous analysis, loose k;Dt; lð Þ-frequent sequences is the formu-
lation of the frequent sequences our algorithm focuses on. It can identify our
event correlations. To discover loose k;Dt; lð Þ-frequent sequences, we propose
c-projection database. c-projection database of sequence is denoted as

(b is the minimum prefix of η containing, a is
the prefix of h with length c + 1).

Some examples of the above concepts are shown in Table 1. Let Dt = 5 s and
c = 2. l: 〈(VD, t1), (CC, t2)〉 is a Dt; 1ð Þ-frequent sequence (grey squares in Table 1); c:
〈(E, t14), (VD, t15), (CC, t16)〉 is a loose Dt; 1ð Þ-frequent sequence (blue squares in
Table 1), and {(VD, 〈(b,t16), (b,t17)〉), (CC,〈(b,t17), (b,t18)〉), (E,〈(e,t15), (c,t16)〉)} is its
c-projection database (red squares in Table 1); 〈c, h〉: 〈(VD, 〈t23, t24〉), (CC, 〈t24, t25〉)〉
is a loose (c, Dt, 2)-frequent sequence (green squares in Table 1); 〈c, i〉: 〈(E,〈t22, t26〉),
(V,〈t22,t26〉)〉 is a loose Dt; 2ð Þ-frequent sequence but not (c, Dt, 2) one (purple squares
in Table 1).

196 M. Zhu et al.

4.2 The CorFinder Algorithm

In this paper, we improve the classic projection-based algorithms and propose the
CorFinder algorithm to solve our problem. Traditional 1-frequent sequence s:sup does
not consider occurrence time of s. Consequently, we propose the concept of Dt; 1ð Þ-
frequent sequence. However, any adjacent Dt; 1ð Þ-frequent sequences for same
sequence s are overlapped. It will increase storage cost and lead to repeated counting.
For instance, adjacent Dt; 1ð Þ-frequent sequences for c, c:〈(E, t14), (VD, t15)〉 and c:
〈(VD, t15), (CC, t16)〉, are overlapped in (VD, t15). Therefore we extend Dt; 1ð Þ-frequent
sequence into loose Dt; 1ð Þ-frequent sequence. The following Theorem 1 lays the
foundation of the completeness of our algorithm.

Theorem 1. Each Dt; 1ð Þ-frequent sequence in a given sequence set D is contained by
a loose Dt; 1ð Þ-frequent sequence in D. Versa, any element of each loose Dt; 1ð Þ-
frequent sequence in D is contained by a Dt; 1ð Þ-frequent sequence.
Proof. We prove the theorem by reduction to absurdity. Let D be a sequence set, and
there is a Dt; 1ð Þ-frequent sequence s : SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDk; tkð Þh i in
D. Assume that there is no loose Dt; 1ð Þ-frequent sequence containing s. Thus, any
SIDi 2 s i\kð Þ, tiþ 1 � ti [Dt. Obviously, tk � t1 [k � 1ð Þ � Dt. Therefore s :
SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDk; tkð Þh i is not a Dt; 1ð Þ-frequent sequence. It is a con-

tradiction in the assumption.
On the other hand, assume that there is an element SIDi; tið Þ of a loose Dt; 1ð Þ-

frequent sequence s0 : SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDm; tmð Þh i, and SIDi; tið Þ is contained
by none of Dt; 1ð Þ-frequent sequences in D. Let SIDj be the nearest element to SIDi

under SIDi 6¼ SIDj. Since SIDi; tið Þ is not contained by any Dt; 1ð Þ-frequent sequence,
ti � tj
�
�

�
�[Dt. It is in contradiction with the assumption that s0 is a loose Dt; 1ð Þ-

frequent sequence. So far, Theorem 1 is proved.
Loose Dt; lð Þ-frequent sequence can tell the target and source in an event correlation

while considering time delay Dt between the target and source. It is a measure of our
event correlation. Our CorFinder algorithm aims at discovering loose k;Dt; lð Þ-fre-
quent sequences for finding event correlations. The Theorem 2 inspires us to discover a
loose k;Dt; lð Þ-frequent sequence in c-projection database of its l-1 prefix.

Theorem 2. Any loose k;Dt; lð Þ-frequent sequence can be discovered in
the id-lists of and s0l, where is the prefix of with length l-1 and s0l is a loose
Dt; 1ð Þ-frequent sequence in c-projection database of .

Proof. Obviously, is a loose k;Dt; l� 1ð Þ-frequent sequence. Let be the c-
projection database of . Because is a loose k;Dt; lð Þ-frequent sequence, assume
its id-list is SID1; SID2; . . .; SIDmh i, we get and s0l must
be a loose Dt; 1ð Þ-frequent sequence for the id-list. Therefore, s0l is a loose Dt; 1ð Þ-
frequent sequence in . Theorem 2 is proved.

Theorem 2 indicates that we can discover a loose k;Dt; lð Þ-frequent sequence
with l-1 prefix by the following steps. (1) Generate and all loose Dt; 1ð Þ-
frequent sequence in . (2) For each loose Dt; 1ð Þ-frequent sequence s0l, discover

An Approach to Modeling and Discovering Event Correlation 197

frequent sequences in id-lists of and s0l. (3) Generate loose k;Dt; lð Þ-frequent
sequences in the frequent sequences.

Consequently, the recursion of generating c-projection databases and loose Dt; 1ð Þ-
frequent sequences can discover all loose k;Dt; lð Þ-frequent sequences. Finally,
CorFinder algorithm can discover event correlations by these loose k;Dt; lð Þ-frequent
sequences.

5 Application of Event Correlation for Anomaly Warning

5.1 The Service Collaboration Framework

Our previous work proposed an IoT service model to encapsulate sensor events into a
service [1, 2]. It can serve as the fundamental unit to form an IoT application. When
building a service, a user customizes its functionality by customizing the input event
sensors as well as operations. Each service processes its input sensor events by pre-
defined operations and generates higher-level events in form of stream. A created
service can be encapsulated into a Restful-like API so that other services or applica-
tions can use it conveniently and simply. Moreover, our service has an important
component, which is called service hyperlink. Hyperlink is responsible for indicating
target services for an outputted event. In this way, our services can run proactively to

Fig. 3. The framework of our approach to correlating and collaborating with sensor events.

198 M. Zhu et al.

correlate and collaborate with sensor events to serve IoT applications. Figure 3 presents
the framework of our approach.

Different from traditional service models and frameworks with the “request-and-
response” model, ours works in a more automatic and real-time way with the ‘stimuli-
and-response’ pattern while maintaining the common data service capabilities. To
reach this goal, service hyperlink is the key point. A service hyperlink enables
higher-level events outputted from a service (source service) to be routed to another
one (target service). After a higher-level event is routed to a target service, the target
service will be stimulated and autonomously respond to the event.

Our previous work encapsulated correlations among input sensor events as service
hyperlinks and used Pearson coefficient to weigh the correlation degree. However, it is
hard to tell the source and the target between two correlated services. To consummate
the previous work, we encapsulate event correlation in this paper as service hyperlinks.
With hyperlinks, a service can route an event to another service involving the target
sequence of encapsulated event correlation.

5.2 The Process to Make Anomaly Warnings in a Power Plant

Service Customization. Making early warnings in a power plant is a typical case for
our framework. As the beginning of the paper elaborates, we make early warnings by
event propagation paths, e.g., a valve degree ascending event propagates along the way
as valve degree ! coal consumption ! electricity ! vibration and finally leads to a
fan stall in Fig. 1. To reach this goal, we create services inputting sensor events from
different sensors. Each service will detect and output trivial anomaly events, such as a
valve degree ascending event. How to define and detect the trivial anomaly events
precisely is the first problem in this case. It can be solved in two ways. On the one
hand, such events can be defined based on business knowledge. On the other hand,
those events can be identified by clustering techniques [11]. According to the defined
events, we customize operations in each service so that a service can detect these trivial
anomaly events autonomously.

Fig. 4. The example of valve degree service.

An Approach to Modeling and Discovering Event Correlation 199

For example, we build a valve degree data service as Fig. 4 presents. In this service, we
select valve degree sensor events as its inputs. To detect a valve degree ascending
event, we customize subtraction as one of its operations. The subtracting operation will
subtract the value of a sensor event from that of the previous one. We perform K-means
algorithm on a real data set within 6 months in a power plant and conclude that valve
degree difference (short for diff) exceeding 14.97% is a trivial anomaly event. Thus, a
filtering operation diff > 14.97% is selected to detect valve degree ascending events.
Besides, inspection man concludes that the valve degree suddenly opening to all is a
trivial anomaly event. According to the business knowledge, we select another filtering
operation: diff > 0 ^ valve degree = 100%. Valve degree and valve degree difference is
the key attributes (KPIs) to be exposed with REST-like APIs. Based on the Fig. 2, the
hyperlink of this service indicates that coal consumption service is its target service.

Event Propagation. A service hyperlink encapsulates an event correlation
. An outputted event e related to sensor of will be routed along the

hyperlink to its target service. The target service keeps detecting trivial anomaly events.
If it detects e’ with respect to sensor of in time period Dt after e arrives, the target
service will record a composite event by appending e to trivial anomaly event e’.
Instead of e’, the composite event will be routed along the hyperlink related to e’.
A composite event records the event propagation path. Figure 5 presents four corre-
lated services. The composite event in vibration service indicates an event propagation
path as valve degree ascending event ! coal consumption ascending event ! elec-
tricity ascending event ! vibration ascending event.

Anomaly Warning. So far, we can get the propagation paths of trivial anomaly events
in each service. But it is still insufficient to make early warnings since the trivial
anomaly events are not equal to equipment anomalies. Practically, an inspector

Fig. 5. An example of event propagation path.

200 M. Zhu et al.

performs scheduled maintenances and records equipment anomalies in maintenance
records. A maintenance record r = 〈rid, anomaly_desc, rec_time, anomaly_obj〉 con-
sists of record id, anomaly description, recorded time, and anomaly object. For
example, there is a maintenance record r = 〈118977, vibration increases - fan stall,
2015/10/12 05:12:00, vibration in #2 primary air fan in #3 boiler〉. According to
recorded time and anomaly description in a maintenance record, we can infer causality
between event propagation paths and anomalies. For instance, an event propagation
path in Fig. 5 often occurred before a fan stall anomaly. Thus we can infer causality as
valve degree ascending event ! coal consumption ascending event ! electricity
ascending event ! vibration ascending event) fan stall. Once such a propagation
path occurs in the runtime, a warning of a fan stall can be made. Consequently, each
service is initialized with an operation for comparing runtime event propagation paths
with historical ones. This operation takes composite events as input, and outputs
warnings to users or other applications. The process to make anomaly warnings in a
service after receiving a sensor event is shown in Fig. 6.

6 Experiments

6.1 Experiment Setup

Datasets: The following experiments use a sensor event log from a power plant. The
log contains sensor events from 2015-07-26 23:58:30 to 2016-08-17 07:55:00. Totally
480 sensors are involved and each sensor generates one event per second. The log is
divided into two sets. The training set is from 2015-07-26 23:58:30 to 2016-01-31
23:59:55. This set is responsible for discovering event correlations. The testing set is
from 2016-02-01 00:00:00 to 2016-08-17 07:55:00. It is used for making early
warnings by our approach. In this set, events from same source are sent to our services
as a stream. The time interval between two adjacent events is in accordance with real

Fig. 6. Process of responding stimuli autonomously and proactively in a service.

An Approach to Modeling and Discovering Event Correlation 201

intervals when they were generated. Besides, we use maintenance records of this plant
power from 2015-07-26 23:58:30 to 2016-01-31 23:59:55 to verify the accuracy of our
approach.

Environments: The experiments are done on a PC with four Intel Core i5-2400 CPUs
3.10 GHz and 4.00 GB RAM. The operating system is Windows 7 Ultimate. All the
algorithms are implemented in Java with JDK 1.8.0.

6.2 Experiment Results

To verify the effectiveness of our approach, firstly, we create services according to
physical sensors. We learn business knowledge from a power plant during the creation.
Besides, sensors related to one attribute of devices’ status are inputted into one service,
such as events from bearing temperature 1, 2, 3 and 4 sensor in primary air fan are the
inputs of bearing temperature service. We created 108 services from all 440 sensors.
Secondly, we input the training set into CorFinder algorithm to discover service
hyperlinks. Next, on top of business knowledge and K-means clustering algorithm, we
customize operations in our services to detect trivial anomaly events. After this, we sent
testing set into our services as event streams. Once a service makes an early warning of
an anomaly, it will print the message in the console. We compare the warnings with
maintenance records to verify the accuracy of our approach. To measure the accuracy,
we use the following indicators. Precision is the number of correct results divided by
the number of all results. Recall is the number of correct results divided by the number
of results that should have been returned. Notably, in this paper, our approach makes
early warnings of the anomalies occurred both in training set and testing set.

To avoid loss, it is better to make early warnings of anomalies before they occur.
To achieve this goal, we compute the precision and recall of our approach under
different lengths of the trivial anomaly event propagation path. In the experiments, we
set the length from 5 to 20 and draw the results as Figs. 7 and 8.

0

0.2

0.4

0.6

0.8

1

5 10 15 20

pr
ec

is
io

n

length of event propaga on path

Fig. 7. The precision of our approach.

202 M. Zhu et al.

As Fig. 7 shows, the precision of our approach increases with the growth of
propagation path’s length. The reason is that longer propagation path can specify an
anomaly more clearly. When the length is short, the event has multiple possible
propagation paths so that it may evolve into different anomalies. Consequently, the
shorter the length of event propagation path is, the lower the precision of our approach
is. Meanwhile, shorter path needs less time to make a warning. It indicates that higher
precision needs more time. In this experiment, our approach makes warnings of
anomalies before the complete event propagation path is formed. It is the main reason
that the precision keeps below 100%.

On the other hand, as the Fig. 8 shows, our approach’s recall decreases with the rise
of propagation path’s length. Different from precision, our recall can reach 91.67%
when the length is 5. It is because shorter event propagation path can specify more
possibilities of anomalies, including those should have been made warnings. Besides,
we analyze the details of the results and find that, regardless of the path’s length, there
are several anomalies our approach cannot discover. The reason is their propagation
path is not completely covered by the paths in training set. Our approach cannot search
the corresponding anomaly in training set. Fortunately, the anomaly occurs frequently
in testing set, and we find that paths of the undiscovered anomalies can be covered by
testing set. It inspires us to solve this problem by updating training set periodically.

Our experiment results show that we can make warnings of anomalies before they
happen for 5 days ahead at most and 39.8 h ahead averagely, while the precision and
recall exceeding 80%.

7 Related Works

Service correlation has attracted much attention in the field of service computing. Dong
et al. tried to capture the temporal dependencies based on the amounts of calls to
different services [12]. Hashmi et al. proposed a framework for web service negotiation
management based on dependency modeling for different QoS parameters among
multiple services [13]. Wang et al. considered that a dependency is a relation between

0

0.2

0.4

0.6

0.8

1

5 10 15 20

re
ca

ll

length of event propaga on path

Fig. 8. The recall of our approach.

An Approach to Modeling and Discovering Event Correlation 203

services wherein a change to one of the services implies a potential change to the others
[14]. They utilized a service dependency matrix to solve the service replacement
problem.

However, most of the existing work only considers input/output dependency,
pre/post condition dependency, correlations among services and so on. Neither of them
takes the dependency of the involved data, which can be regarded as events. Hence,
existing studies of event correlation is also the foundation of our work.

Reguieg et al. regarded event correlation as correlation condition, which is a
predicate over the attributes of events that can verify which sets of events belong to the
same instance of a process [3]. It presented a framework and techniques with multi-pass
algorithms to discover correlation conditions in process discovery and analysis tasks
over big event datasets using MapReduce framework. It guarantees the efficiency and
scalability by partitioning, replication and optimizing the I/O cost. Motahari-Nezhad
et al. focused on event correlations in service-based processes [4]. It proposed the
notion of correlation condition mentioned above. It developed an algorithm to discover
event correlation (semi-) automatically from service interaction logs. Liu et al. pre-
sented an event correlation service for distributed middleware-based applications [5]. It
enables complex event properties and dependencies to be explicitly expressed in cor-
relation rules. Remarkably, these correlation rules can be accessed and updated at
runtime. These event correlation studies provide foundations for our study. However,
they do not consider the event correlation in an IoT environment.

Recently, some researchers focus on event dependencies. Song et al. mined activity
dependencies (i.e., control dependency and data dependency) to discover process
instances when event logs cannot meet the completeness criteria [6]. In this paper, the
control dependency indicates the execution order and the data dependency indicates the
input/output dependency in service dependency. A dependency graph is utilized to
mine process instances. In fact, the authors do not consider the dependency among
events. Plantevit et al. presented a new approach to mine temporal dependencies
between streams of interval-based events. [7]. Two events have a temporal dependency
if the intervals of one are repeatedly followed by the appearance of the intervals of the
other, in a certain time delay.

8 Conclusion

In this paper, we elaborate service hyperlink by encapsulating event correlations in an
IoT environment to consummate our previous work. We transform service hyperlink
discovery into frequent sequence mining problem and propose the CorFinder algo-
rithm. Moreover, we apply our approach to make anomaly warnings in a power plant.
Experiments show that, our approach can make warning of anomalies before they
happen for 5 days ahead at most, and 39.8 h ahead in average while the precision and
recall exceed 80%.

204 M. Zhu et al.

Acknowledgement. Funding: This work was supported by National Natural Science Founda-
tion of China (No. 61672042), Models and Methodology of Data Services Facilitating Dynamic
Correlation of Big Stream Data; Beijing Natural Science Foundation (No. 4172018), Building
Stream Data Services for Spatio-Temporal Pattern Discovery in Cloud Computing Environment;
The Program for Youth Backbone Individual, supported by Beijing Municipal Party Committee
Organization Department, Research of Instant Fusion of Multi-Source and Large-scale Sensor
Data.

References

1. Han, Y., Wang, G., Yu, J., Liu, C., Zhang, Z., Zhu, M.: A service-based approach to traffic
sensor data integration and analysis to support community-wide green commute in china.
IEEE Trans. Intell. Transp. Syst. 17(9), 2648–2657 (2016)

2. Han, Y., Liu, C., Su, S., Zhu, M., Zhang, Z.: A proactive service model facilitating stream
data fusion and correlation. Int. J. Web Serv. Res. 14(3), 1–16 (2017)

3. Reguieg, H., Benatallah, B., Nezhad, H.R.M., Toumani, F.: Event correlation analytics:
scaling process mining using mapreduce-aware event correlation discovery techniques. IEEE
Trans. Serv. Comput. 8(6), 847–860 (2015)

4. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for
process discovery from web service interaction logs. VLDB J. 20(3), 417–444 (2011)

5. Liu, Y., Gorton, I., Lee, V.: The architecture of an event correlation service for adaptive
middleware-based applications. J. Syst. Softw. 81(12), 2134–2145 (2008)

6. Song, W., Jacobsen, H.A., Ye, C., Ma, X.: Process discovery from dependence-complete
event logs. IEEE Trans. Serv. Comput. 9(5), 714–727 (2016)

7. Plantevit, M., Robardet, C., Scuturici, V.M.: Graph dependency construction based on
interval-event dependencies detection in data streams. Intell. Data Anal. 20(2), 223–256
(2016)

8. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with
implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. Association for
Computing Machinery, San Diego, CA, United States (2003)

9. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth
methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

10. Mooney, C.H., Roddick, J.F.: Sequential pattern mining - approaches and algorithms. ACM
Comput. Surv. 45(2), 1–39 (2013)

11. Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in
financial domain. Future Gener. Comput. Syst. 55(6), 278–288 (2016)

12. Dong, F., Wu, K., Srinivasan, V., Wang, J.: Copula analysis of latent dependency structure
for collaborative auto-scaling of cloud services. In: Proceedings of the 25th International
Conference on Computer Communication and Networks, pp. 1–8. Institute of Electrical and
Electronics Engineers Inc., Waikoloa, HI, United States (2016)

13. Hashmi, K., Malik, Z., Najmi, E., Alhosban, A., Medjahed, B.: A web service negotiation
management and QoS dependency modeling framework. ACM Trans. Manag. Inf. Syst. 7
(2), 1–33 (2016)

14. Wang, R., Peng, Q., Hu, X.: Software architecture construction and collaboration based on
service dependency. In: Proceedings of 2015 IEEE 19th International Conference on
Computer Supported Cooperative Work in Design, pp. 91–96. Institute of Electrical and
Electronics Engineers Inc., Calabria, Italy (2015)

An Approach to Modeling and Discovering Event Correlation 205

Energy Efficient Scheduling of Application
Components via Brownout and Approximate

Markov Decision Process

Minxian Xu(B) and Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory,
School of Computing and Information Systems,

The University of Melbourne, Melbourne, Australia
minxianx@student.unimelb.edu.au, rbuyya@unimelb.edu.au

Abstract. Unexpected loads in Cloud data centers may trigger over-
loaded situation and performance degradation. To guarantee system per-
formance, cloud computing environment is required to have the ability
to handle overloads. The existing approaches, like Dynamic Voltage Fre-
quency Scaling and VM consolidation, are effective in handling partial
overloads, however, they cannot function when the whole data center
is overloaded. Brownout has been proved to be a promising approach
to relieve the overloads through deactivating application non-mandatory
components or microservices temporarily. Moreover, brownout has been
applied to reduce data center energy consumption. It shows that there
are trade-offs between energy saving and discount offered to users (rev-
enue loss) when one or more services are not provided temporarily. In
this paper, we propose a brownout-based approximate Markov Decision
Process approach to improve the aforementioned trade-offs. The results
based on real trace demonstrate that our approach saves 20% energy
consumption than VM consolidation approach. Compared with existing
energy-efficient brownout approach, our approach reduces the discount
amount given to users while saving similar energy consumption.

Keywords: Cloud energy efficiency · Application component ·
Microservices · Brownout · Markov decision process

1 Introduction

Given the scenario that budget and resource are limited, overloaded situation
may lead to performance degradation and resource saturation, in which some
requests cannot be allocated by providers. Thus, some users may experience high
latencies, and others may even not receive services at all [14], which directly
affects the requests that have Quality of Service (QoS) constraints. Unfortu-
nately, current resource management approaches, like Dynamic Voltage Fre-
quency Scaling (DVFS) [13] and VM consolidation [18], cannot function when
the holistic data center is overloaded. The saturated resource not only brings
over-utilized situation to hosts, but also causes high energy consumption.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 206–220, 2017.
https://doi.org/10.1007/978-3-319-69035-3_14

Energy Efficient Scheduling of Application Components 207

Energy consumed by the cloud data centers has currently become one of the
major concerns of the computing industry. It is reported that U.S. data centers
will consume 140 billion kWh of electricity annually by 2020, which equals to
the annual output of about 50 brown power plants [9]. Analysts also forecast
that data centers will roughly triple the amount of electricity consumed in the
next decade [2]. The servers hosted in data centers dissipate heat and need to
be maintained in a fully air-conditioned and engineered environment. Though
the cooling system is already efficient, servers remain one of the major energy
consumers. One of the main reasons of high energy consumption lies in that
computing resource are not efficiently utilized by server applications. Currently,
building applications with microservices provides a more efficient approach to
utilize infrastructure resource.

Applications can be constructed via set of self-contained components which
are also called microservices. The components encapsulate its logic and expose its
functionality through interfaces, which makes them flexible to be deployed and
replaced. With components or microservices, developers and users can benefit
from their technological heterogeneity, resilience, scalability, ease of deployment,
organizational alignment, composability and optimization for replaceability [16].
This also brings the advantage of more fine-grained control over the application
resource consumption.

Therefore, we take advantage of a paradigm called brownout [14] to han-
dle with overloaded situation and save energy. It is inspired by the concept of
brownout in electric grids and originates from the voltage shutdown that copes
with emergency cases, in which light bulbs emit fewer lights and consume less
power [10]. In Cloud scenario, brownout can be applied to applications compo-
nents or microservices that are allowed to be disabled temporarily.

It is common that application components or microservices have this brownout
feature. A brownout example for online shopping system is introduced in [14], in
which the online shopping application provides a recommendation engine to rec-
ommend products that users may be interested in. The recommendation engine
component helps service provider to increase profits, but it is not required to be
running all the time. Recommendation engine also requires more resource in com-
parison with other components. Accordingly, with brownout, under overloaded
situation, the recommendation engine could be deactivated to serve more clients
who require essential services and have QoS constraints. Another example is the
online document process application that contains the components for spell check-
ing and report generation. These components are not essential to run all the time
and can be deactivated for a while to reduce resource utilization. Apart from these
two examples, brownout is available for other application components or microser-
vices that are not required to be available all the time.

In this paper, we consider component-level control in our system model. The
model could also be applied to container or microservices architecture. We model
the application components as either mandatory or optional, and if required,
optional components can be deactivated. By deactivating the optional compo-
nents selectively and dynamically, the application utilization is reduced to save

208 M. Xu and R. Buyya

total energy consumption. While under market scenario, service provider may
provide discount for users as one or more services are deactivated.

In our scenario, the meaning of discount is not limited to the discount offered
to users. Additionally, it can also be modelled as the revenue loss of service
providers (i.e. SaaS service providers) that they charge lower price for services
under brownout. For example, in an online shopping system, the recommenda-
tion engine helps the service provider to improve their revenue by recommend-
ing similar products. If the recommendation engine is deactivated, the service
provider is unable to obtain the revenue from recommendation engine.

The key contributions of this paper are: our approach considers the trade-
offs between saved energy and the discount that is given to a user if components
or microservices are deactivated; we propose an efficient algorithm based on
brownout and approximate Markov Decision Process that considers the afore-
mentioned trade-offs and achieves better trade-offs than baselines.

The remainder of this paper is organized as follows: after discussing the related
work in Sect. 2, we present the brownout system model and problem statement
in Sect. 3. Section 4 introduces our proposed brownout-based Markov Decision
Process approach, and Sect. 5 demonstrates the experimental results of our pro-
posed approach. The summary along with the future work are concluded in Sect. 6.

2 Related Work

A large body of literature has focused on reducing energy consumption in cloud
data centers, and the dominant categories for solving this problem are VM con-
solidation and Dynamic Voltage Frequency Scaling (DVFS).

VM consolidation is viewed as an act of combining into an integral whole,
which saves energy by allocating work among fewer machines and turning off
unused machines [18]. Using this approach, VMs allocated to underutilized hosts
are consolidated to other servers and the remaining hosts are transformed into
low power mode. Mastroianni et al. [15] presented a self-organizing and adaptive
approach for consolidation of VMs CPU and RAM resource, which is driven
by probabilistic processes and local information. Corradi et al. [8] considered
VM consolidation in a more practical viewpoint related to power, CPU and
networking resource sharing and tested VM consolidation in OpenStack, which
shows VM consolidation is a feasible solution to lessen energy consumption.

The DVFS technique introduces a trade-off between computing performance
and energy consumed by the server. The DVFS technique lowers the frequency
and voltage when the processor is lightly loaded, and utilizes maximum frequency
and voltage when the processor is heavily loaded. Kim et al. [13] proposed several
power-aware VM schemes based on DVFS for real-time services. Hanumaiah et
al. [12] introduced a solution that considers DVFS, thread migration and active
cooling to control the cores to maximize overall energy efficiency.

Most of the proposed brownout approaches in Cloud scenarios focused on
handling overloads or overbooking rather than energy efficiency perspective.
Klein et al. [14] firstly borrowed the approach of brownout and applied it to cloud

Energy Efficient Scheduling of Application Components 209

applications, aiming to design more robust applications under unpredictable
loads. Tomas et al. [19] used brownout along with overbooking to ensure grace-
ful degradation during load spikes and avoid overload. In a brownout-compliant
application or service, the optional parts are identified by developers, and a con-
trol knob called dimmer that controls these optional parts is also introduced.
The dimmer value represents a certain probability given by a control variable
and shows how often these optional parts are executed. Moreover, a brownout
controller is also required to adjust the dimmer value.

Markov Decision Process (MDP) is a discrete time stochastic optimization
approach and provides a way to solve the multiple state probabilistic decision-
making problem, which has been adopted to solve resource management prob-
lems in Cloud scenarios. Toosi et al. [20] used finite MDP for requests admis-
sion control in Clouds, while their objective is maximizing revenues rather than
reducing power consumption. Han et al. [11] applied MDP to determine VM
migration for minimizing energy consumption, while our work is adopting MDP
to determine the deactivation of application components.

In our previous work [21], several heuristic policies were proposed to find the
components that should be deactivated and investigated the trade-offs between
energy and discount. In this paper, we adopt approximate MDP to improve the
aforementioned trade-offs.

3 System Model and Problem Definition

3.1 System Model

Our system model is presented in Fig. 1 and it consists of the following entities:

Users: Users submit service requests to cloud data centers. The users entity
contains user information and requested applications (services).

Applications: The applications provide different services for users and are con-
sisted of a set of components, which are identified as mandatory or optional.

Mandatory component: The mandatory component keeps running all the
time when the application is launched.

Optional component: The optional component can be set as activated or
deactivated according to the system status. These components have parameters
like utilization u(Appc) and discount d(Appc). Utilization indicates the amount
of utilization, and discount represents the amount of discount that is offered
to the users (or revenue loss of service provider). The operations of optional
components are controlled by the brownout controller, which makes decisions
based on the system overloaded status and brownout algorithm.

To adapt the dimmer to our model, different from the dimmer in [14] that
requires a dimmer per application, our dimmer is only applied to the applications
with optional components. Rather than response time, another adaptation is
that our dimmer value is computed based on the number of overloaded hosts
and adapts to the severity of overloaded events (more details are presented in
Sect. 4.1).

210 M. Xu and R. Buyya

Fig. 1. System model with brownout

Cloud Providers: Cloud providers offer physical resources to meet service
demands, which host a set of VMs or containers to run applications.

3.2 Power Model

We adopt the servers power model derived from [22]. The power of server i is
Pi(t) that is dominated by the CPU utilization:

Pi(t) =

{
P idle

i +
∑Ni

j=1 u(V Mi,j(t)) × P dynamic
i , Ni > 0

0 , Ni = 0
(1)

Pi(t) is composed of idle power and dynamic power. The idle power is
regarded as constant and the dynamic power is linear to the total CPU uti-
lization of all the VMs on the server [22]. If no VM is hosted on a server, the
server is turned off to save power. V Mi,j refers to the jth VM on server i, Ni

means the number of VMs assigned to server i. And u(V Mi,j(t)) refers to the
VM utilization at time interval t, which is represented as:

u(V Mi,j(t)) =
Cj∑
c=1

u(Appc) (2)

where Cj is the number of application components on VM, and u(Appc) is the
utilization of application component c when it is activated.

Then the total energy consumption during time interval t, with M servers is:

E(t) =
M∑
i=1

∫ t

t−1

Pi(t)dt (3)

Notes: In our power model, we assume that the time required to turn on/off
hosts (including the time to deactivate and activate components) is lees than a
scheduling time interval (like 5 min). When the host is turned off/on, the host
is assumed to be consuming the idle power.

Energy Efficient Scheduling of Application Components 211

3.3 Discount Amount

As introduced in Sect. 1, the meaning of discount could be either the discount
offered to users or the revenue loss of service providers that they charge lower
price for services under brownout. In this paper, we note them as discount.

The total discount amount at time interval t is modeled as the sum of discount
of all deactivated application components at t:

D(t) =
M∑
i=1

Ni∑
j=1

d(V Mi,j(t)) (4)

where D(t) is the total discount amount at t that obtained from all VMs on hosts,
Ni is the number of VMs assigned to server i, M is the number of servers. The
individual discount d(V Mi,j(t)) is the sum of discount amount of deactivated
application components d(Appc) of V Mi,j , which is shown in Eq. (5):

d(V Mi,j) =
Cj∑
c=1

d(Appc) (5)

where Cj is the number of application components hosted on V Mj , and only
the deactivated components are counted.

3.4 Problem Definition

Let Q(t) ∈ Q, where Q = η1, . . . , η|Q|, ηi ∈ Q. The Q(t) is a combination of
two vectors: energy consumption vector E(t) and discount amount vector D(t),
representing the possible energy consumption and discount amount at different
system states. Let C(t) to be all the application component states at t, we have

Definition 1. The system state at time interval t can be specified as:

S(t) � [Q(t), C(t)] (6)

The system state S(t) contains the energy consumption and discount amount as
well as their corresponding application components states.

At each time interval, we calculate the state information as:

g(t) = E(t) + λD(t) (7)

where λ is the weight of discount. The higher λ implicates that more weights are
given to the discount amount. In the whole scheduling period T under policy π,
our optimization objective is:

min
π

g(π) =
T∑

t=0

[E(t) + λD(t)] (8)

212 M. Xu and R. Buyya

4 Proposed Approach

4.1 Approximate Markov Decision Process Model

To adopt the Markov model, we assume that the workload satisfies the Markov
property, which means the state transitions caused by workloads are memory-
less. Our experiments are conducted with Planetlab workload, which has been
validated to satisfy Markov chain property [4]. In our model, we assume that the
probability of application components to transfer their states at the next time
period only depends on the workloads of the current time period and indepen-
dent on earlier states. We formulate our problem as finite horizon MDP that we
investigate a fixed length of time.

Then we can solve our objective function by using Bellman equation [3]:

V ∗(Si) = arg min
γ∈R

[g(Si) +
∑

Sj∈S

Pr[Sj |Si, γ]V ∗(Sj)] (9)

g(Si) is the instant cost under system state Si, and V ∗(Si) is the expected
energy consumption and discount obtained from Sj to Si. We also denote γ(t) �
[γ1(t), . . . , γn(t)] ∈ R as the operations (activation or deactivation actions) for
application components. V ∗(Si) can be found by iteratively obtaining minimum
energy consumption and discount until convergence.

Let ˆpi,j denote the estimated transition probability that the application com-
ponent changes its state. The transition probability is computed as:

p̂i,j =

√
M̂

M
× Pr(

u(Appc)
d(Appc)

= zC) (10)

Pr(u(Appc)
d(Appc)

= zC) is the probability that the ratio of component utilization and

discount u(Appc)
d(Appc)

falls into category zC . We divide the probability into C (the
maximum number of components on a VM) categories. For all the components
with the probability falls into the same category, we apply the same operation.
To avoid the curse of dimension, noted by [11], we adopt key states to reduce
state space. With key states, the component states on a VM is reduced to the
maximum number of components on a VM as |C|. M̂ is the estimated number
of overloaded hosts, which is calculated based on a sliding window [5]. The
advantage of sliding window is to give more weights to the values of recent time
intervals. Let Lw to be the window size, and N(t) to be the number of overloaded
hosts at t, we estimate M̂ as:

M̂(Lw) =
1

Lw

Lw−1∑
t=0

N(t) (11)

We denote the states as key states Sk as described above. With proof in [11],
∀Si ∈ Sk for all the VMs, the equivalent Bellman’s equation in Eq. (9) can be

Energy Efficient Scheduling of Application Components 213

approximately formulated as:

V ∗(Si) ≈
M∑

m=1

Nm∑

n=1

(g(Si) + arg min
γn∈Rn

{
∑

Sj∈Sk

Pr[Sj |Si, γn]Ṽ ∗
n (Sj)}) (12)

The state spaces thus are reduced to polynomial with linear approximation. The
M is the number of hosts and Nm is the number of VM assigned to server m.

4.2 Brownout Algorithm Based on Markov Decision Process
(BMDP)

Our novel brownout algorithm is embedded within a VM placement and con-
solidation algorithm. We adopt the VM placement and consolidation algorithm
(PCO) proposed in [4], which is also one of our baselines in Sect. 5.

The PCO algorithm is a heuristic to reduce energy consumption through
VM consolidation. In the initial VM placement phase, PCO sorts all the VMs in
decreasing order by their current CPU utilization and allocates each VM to the
host that increases the least power consumption due to this allocation. In the
VM consolidation phase, PCO optimizes VM placement by separately picking
VMs from over-utilized and under-utilized hosts to migrate, and finding new
placements for them. After migration, the over-utilized hosts are not overloaded
any more and the under-utilized hosts are switched to sleep mode.

Our brownout algorithm based on approximate Markov Decision Process is
shown in Algorithm 1 and includes 6 steps:

(1) System initialization (lines 1–2): Initializing the system configura-
tions, including overloaded threshold TP , dimmer value θt, vector Q that con-
tains the D(t) and E(t) information, as well as objective states Sd, and applying
VM placement algorithm in PCO to initialize VM placement.

(2) Estimating transition probability of each application compo-
nent (lines 3–14): At each time interval, the algorithm firstly estimates the

number of overloaded hosts. The dimmer value is computed as
√

M̂
M , which is

adaptive to the number of overloaded hosts. If no host is overloaded, the value is
0 and no component is deactivated. If there are overloaded hosts, the transition
probabilities of application components are computed using Eq. (10).

(3) Finding the states that minimize the objective function (lines
15–17): Traversing all the key states by value iteration according to Eq. (12),
where D

′
(t) and E

′
(t) are the temporary values at the current state.

(4) Updating system information (lines 18–20): The algorithm updates
the obtained energy consumption and discount values if g(t) in Eq. (7) is reduced,
and records the optimized states. The current states are substituted by the state
with lower g(t).

(5) Deactivating the selected components (line 22): The brownout
controller deactivates the selected components to achieve objective states.

(6) Optimize VMs placement (line 24): The algorithm uses the VM con-
solidation approach in PCO to optimize VM placement via VM consolidations.

214 M. Xu and R. Buyya

Algorithm 1 Brownout based Markov Decision Process Algorithm (BMDP)
Input: host list hl with size M , VM list, application components information, overloaded power

threshold TP , dimmer value θt at time t, destination states Sd(t), energy consumption E(t) and
discount amount D(t) in Q

Output: total energy consumption, discount amount
1: TP ← 0.8; θt ← 0; ∀E(t), ∀D(t) ∈ Q ← max; Sd(t) ∈ Sd ← NULL
2: use PCO algorithm to initialize VMs placement
3: while true do
4: for t ← 0 to T do

5: θt ← =

√
M̂t
M

6: for all hi in hl do
7: if hi is overloaded then
8: for all V Mi,j on hi do
9: for all Appc on V Mi,j do

10: Pr(Appc) ← θt × Pr(
u(Appc)
d(Appc) = zC)

11: end for
12: end for
13: end if
14: end for
15: for all Sj(t) ∈ Sk(t) do

16: V ∗(Si) =
∑m=M

m=1
∑n=Nm

n=1 (g(Si) + minγn∈Rn{∑Sj∈Sk
Pr[Sj |Si, γn]Ṽ ∗

n (Sj)})
17: g(t) = E

′
(t) + λD

′
(t)

18: if g(t) < E(t) + λD(t) then

19: E(t) ← E
′
(t) ; D(t) ← D

′
(t) ; Sd(t) ← Sj(t)

20: end if
21: end for
22: deactivate the selected components to achieve state Sd(t)
23: end for
24: use VM consolidation in PCO algorithm to optimize VM placement
25: end while

The complexity of the BMDP algorithm at each time interval is consisted of
the brownout part and VM consolidation part. The complexity of the transition
probability computation is O(C · N · M), where C is the maximum number of
components in all applications, N is the maximum number of VMs on all the
hosts and M is the number of hosts. With the key states, the space state of the
MDP in brownout part is O(C · N · M). According to Eq. (12), the actions are
reduced to O(C ·N ·M), so the overall MDP complexity is O(C2 ·N2 ·M2). The
complexity of the PCO part is O(2M) as analyzed in [4]. Therefore, the overall
complexity is O(C · M · N + C2 · N2 · M2 + 2M) or equally O(C2 · N2 · M2).

5 Performance Evaluation

5.1 Methodology

We use the CloudSim framework [6] to simulate a cloud data center. The data
center contains two types of hosts and four types of VMs that are modeled
based on current offerings in EC2 as shown in Table 1. The power models of the
adopted hosts are derived from IBM System x3550 M3 with CPU Intel Xeon
X5670 and X5675 [1]. We set the time required to turn on/off hosts as 0.5 min.

We implemented application with optional components, and each component
has its corresponding CPU utilization and discount amount. The components are
uniformly distributed on VMs.

Energy Efficient Scheduling of Application Components 215

We adopt the realistic workload trace from more than 1000 PlanetLab
VMs [17] to create an overloaded environment [5]. Our experiments are sim-
ulated under one-day scheduling period and repeated for 10 different days. The
brownout is invoked every 5 min (one time interval) if hosts are overloaded. The
sliding window size Lw in Eq. (11) to estimate the number of overloaded hosts
is set as 12 windows (one hour).

The CPU resource is measured with capacity of running instructions. Assum-
ing that the application workload occupies 85% resource on a VM and the VM
has 1000 million instructions per second (MIPS) computation capacity, then it
represents the application constantly requires 0.85 × 1000 = 850 MI per second
in the 5 min time interval.

Table 1. Host/VM types and capacity

Name CPU Cores Memory Bandwidth Storage

Host Type 1 1.86 GHz 2 4 GB 1 Gbit/s 100 GB

Host Type 2 2.66 GHz 2 4 GB 1 Gbit/s 100 GB

VM Type 1 2.5 GHz 1 870 MB 100 Mbit/s 1 GB

VMType 2 2.0 GHz 1 1740 MB 100 Mbit/s 1 GB

VM Type 3 1.0 GHz 1 1740 MB 100 Mbit/s 1 GB

VM Type 4 0.5 GHz 1 613 MB 100 Mbit/s 1 GB

We use three baseline algorithms for comparison as below:
(1) VM Placement and Consolidation algorithm (PCO) [4]: the algo-

rithm has been described at the beginning of Sect. 4.2.
(2) Utilization-based Probabilistic VM consolidation algorithm

(UBP) [7]: for VM initial placement, UBP adopts the same approach as PCO.
For VM consolidation, UBP applies a probabilistic method [15] to select VMs
from overloaded host. The probabilistic method calculates the migration proba-
bility fm(u) based on host utilization u as: fm(u) = (1− u−1

1−Th
)α, where Th is the

upper threshold for detecting overloads and α is a constant to adjust probability.
(3) Brownout algorithm with Highest Utilization and Price

Ratio First Component Selection Algorithm (HUPRFCS) [21]: it is
a brownout-based heuristic algorithm. This algorithm deactivates the applica-
tion components from the one with the highest u(App)

d(Appc)
to the others with lower

u(Appc)
d(Appc)

until the deactivated components obtain the expected utilization reduc-
tion, which is a deterministic algorithm. HUPRFCS is an efficient approach to
reduce energy consumption under discount amount constraints.
To evaluate algorithms’ performance, we mainly explore two parameters:

(1) Overloaded threshold: it identifies the CPU utilization threshold that
determines the overloaded hosts, and it is varied from 80% to 95% in increments
of 5%. We adopt this parameter since both [4] and [15] have shown that it
influences energy consumption.

216 M. Xu and R. Buyya

(2) Percentage of optional utilization in an application: it shows
how much utilization in application is optional and can be deactivated. It is
varied from 25% to 100% in increments of 25%. An application with 100%
optional utilization represents that the application components or microservices
are self-contained and each of them is allowed to be disabled temporarily (not
disabling all the components at the same time), such as a stateless online doc-
ument processing application. We assume the application maximum discount is
identical to the percentage of optional utilization, for example, 50% optional
utilization in an application comes along with 50% discount amount.

We assume that the optional components utilization u(Appc) and discount
d(Appc) conform normal distribution u(Appc)�N(μ, σ2), d(Appc)�N(μ, σ2), the
μ is the mean utilization of component utilization or discount, which is com-
puted as the percentage of optional utilization (or discount amount) divided
by the number of optional components. The σ2 is the standard deviation of
optional components utilization or discount. In our experiments, we consider
both optional component utilization standard deviation and discount standard
deviation are less than 0.1, which represents that the optional components are
designed to have balanced utilization and discount.

5.2 Results

5.2.1 Comparison with Different λ

To investigate the impacts of different discount weights in Eq. (7), we conduct
a series of experiments with different λ. In these evaluations, the hosts number
and VMs number are set to 200 and 400 respectively, the overloaded threshold is
set to 85% and the percentage of optional utilization is set to 50%. Figure 2 indi-
cates that energy consumption increases and discount amount decreases when λ
increases. The reason lies in that larger λ will guide our algorithm to find the
states that offer less discount. From the results, we notice that when λ value is
less than 4500, BMDP saves more energy than UBP and PCO, and in comparison
to HUPRFCS, BMDP has similar energy consumption and reduces significant
discount amount.

Fig. 2. Comparison with different λ. The parameter λ is the weight of discount.

Energy Efficient Scheduling of Application Components 217

Fig. 3. Varying overloaded threshold

In the following evaluations, we set λ to a small value (i.e. λ = 100) so that
the energy consumption of BMDP is below two baselines (PCO and UBP) and
close to HUPRFCS. Additionally, with this λ value, the discount of BMDP is
less than the discount produced by HUPRFCS.

5.2.2 Comparison Under Varied Overloaded Thresholds
The performance evaluated under different overloaded thresholds is shown in
Fig. 3. Other parameters are configured as same as in Sect. 5.2.1. In Fig. 3(a),
we observe that the energy consumption of all the algorithms are reduced when
the overloaded threshold increases, for example, PCO-80% has 699.6 kWh with
95% Confidence Interval (CI) (682.6, 716.6) and reduces it to 649.9 kWh with
95% CI: (635.8, 664.1) in PCO-95%; BMDP-80% has 607.8 kWh with 95% CI:
(598.1, 617.4) and saves it as 558.4 kWh with 95% CI: (549.6, 567.2) in BMDP-
95%. The reason lies in that higher overloaded thresholds allow more VMs to
be packed on the same host, so that more hosts are shutdown. When overloaded
thresholds are between 80% to 90%, UBP reduces around 5% energy consump-
tion compared to PCO, while HUPRFCS and BMDP save about 14–16% more
energy consumption than PCO. When the overloaded threshold is 95%, PCO
and UBP achieve close energy consumption, while HUPRFCS and BMDP still
reduce around 16% energy compared with them.

As the energy consumption of HUPRFCS and BMDP are quite close, we
conduct paired t-tests for HUPRFCS and BMDP as shown in Table 2. We notice
that the differences between them are less than 2%, and when the overloaded
thresholds are 85% and 95%, the p-values are 0.09 and 0.45 respectively, which
indicates weak evidence to prove that they are different.

Comparing the discount amount, Fig. 3(b) shows that there is no discount
offered in PCO and UBP, but HUPRFCS offers 11% to 20% discount and BMDP
reduces it to 3% to 11% as the trade-off due to components deactivation. This
is because, based on heuristics, HUPRFCS quickly finds the components with
higher utilization and discount ratio, while BMDP steps further based on MDP
to optimize the component selection.

218 M. Xu and R. Buyya

Table 2. Paired T-Tests with 95% CIs for Comparing Energy Consumption by
HUPRFCS and BMDP under Different Overloaded Thresholds

Algorithm 1 (kWh) Algorithm 2 (kWh) Difference (kWh) p-value

HUPRFCS-80% (598.01) BMDP-80% (607.78) −9.77 (−15.14, −4.39) 0.0026

HUPRFCS-85% (595.87) BMDP-85% (599.24) 3.37 (−0.77, 7.52) 0.099

HUPRFCS-90% (581.91) BMDP-90% (587.97) −6.05 (−9.41 −2.69) 0.0027

HUPRFCS-95% (557.03) BMDP-95% (558.41) −1.38 (−5.36, 2.6) 0.45

5.2.3 Comparison Under Varied Percentage of Optional Utilization
In Fig. 4, we compare the algorithms with different percentages of optional uti-
lization. Other parameters are set the same as those in Sect. 5.2.1. As shown
in Fig. 4(a), for PCO and UBP, their energy consumption are not influenced
by different percentage of optional utilization. PCO has 684 kWh with 95%
CI: (667.4, 700.6), and UBP has reduced 4.7% to 651.9 with 95% CI: (637.3,
666.5). Compared with PCO, HUPRFCS-25% reduces 11% energy to 605kWh
with 95% CI: (596.6, 613.4), and BMDP-25% reduces 9% energy to 615.9
kWh with 95% CI: (605.9, 625.8). When the percentage of optional utilization
increases, the more energy consumption is saved by HUPRFCS and BMDP. For
instance, HUPRFCS-100% and BMDP-100% achieve around 20% energy saving
as 556.9kWh with 95% CI: (550.9, 562.3) and 551.6kWh with 95% CI: (545.8,
557.4) respectively. The reason is that higher percentage of optional percent-
age allows more utilization to be reduced. For the discount amount comparison
in Fig. 4(b), it shows that HUPRFCS offers 10% to 25% discount amount as
trade-offs, while BMDP only offers 3% to 10% discount amount.

Because the energy consumption of HUPRFCS and BMDP are quite close,
we conduct the paired t-test for HUPRFCS and BMDP as illustrated in Table 3.
When the percentage of optional utilization are 75% and 100%, the p-values are
0.099 and 0.057, which indicates weak evidence to prove that they are differ-
ent. And with other percentage of optional utilization, the energy consumption
differences are less than 2%.

Fig. 4. Varying percentage of optional utilization

Energy Efficient Scheduling of Application Components 219

Table 3. Paired T-Tests with 95% CIs for Comparing Energy Consumption by
HUPRFCS and BMDP under Different Percentage of Optional Utilization

Algorithm 1 (kWh) Algorithm 2 (kWh) Difference (kWh) p-value

HUPRFCS-25% (617.57) BMDP-25% (628.10) −10.52 (−12.52, −8.52) 0.00082

HUPRFCS-50% (595.0) BMDP-50% (605.88) −10.88 (−15.26, −6.5) 0.00032

HUPRFCS-75% (575.87) BMDP-75% (579.24) −3.37 (−7.52 −0.78) 0.099

HUPRFCS-100% (551.56) BMDP-100% (556.59) −3.12 (−5.08, −1.16) 0.0057

6 Conclusions and Future Work

Brownout has been proven to be effective to solve the overloaded situation in
cloud data centers. Additionally, brownout can also be applied to reduce energy
consumption. In this paper, we introduced the brownout system model by deac-
tivating optional components in applications or microservices temporarily. In
the model, the brownout controller can deactivate the optional components or
microservices to deal with overloads and reduce data center energy consumption
while offering discount to users. We also propose an algorithm based on brownout
and approximate Markov Decision Process namely BMDP, to find the compo-
nents should be deactivated. The simulations based on real trace showed that
BMDP reduces 20% energy consumption than non-brownout baselines and saves
discount amount than brownout baseline. As future work, we plan to implement
a brownout prototype based on Docker Swarm.

Acknowledgments. This work is supported by China Scholarship Council, Australia
Research Council Future Fellowship and Discovery Project Grants. We thank Chenhao
Qu, Adel Nadjaran Toosi and Satish Narayana Srirama for their valuable suggestions.

References

1. Standard performance evaluation corporation. http://www.spec.org/power-
ssj2008/results/res2010q2/

2. Bawden, T.: Global warming: Data centres to consume three times as much energy
in next decade, experts warn (2016). http://www.independent.co.uk/environment/
global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-
decade-experts-warn-a6830086.html

3. Bellman, R.: Dynamic programming and lagrange multipliers. Proc. Nat. Acad.
Sci. 42(10), 767–769 (1956)

4. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuris-
tics for efficient management of data centers for cloud computing. Future Gener.
Comput. Syst. 28(5), 755–768 (2012)

5. Beloglazov, A., Buyya, R.: Managing overloaded hosts for dynamic consolidation
of virtual machines in cloud data centers under quality of service constraints. IEEE
Trans. Parallel Distrib. Syst. 24(7), 1366–1379 (2013)

http://www.spec.org/power-ssj2008/results/res2010q2/
http://www.spec.org/power-ssj2008/results/res2010q2/
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html

220 M. Xu and R. Buyya

6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and eval-
uation of resource provisioning algorithms. Softw. Pract. Experience 41(1), 23–50
(2011)

7. Chen, Q., Chen, J., Zheng, B., Cui, J., Qian, Y.: Utilization-based VM consolida-
tion scheme for power efficiency in cloud data centers. In: 2015 IEEE International
Conference on Communication Workshop (ICCW), pp. 1928–1933. IEEE (2015)

8. Corradi, A., Fanelli, M., Foschini, L.: VM consolidation: a real case based on open-
stack cloud. Future Gener. Comput. Syst. 32, 118–127 (2014)

9. Delforge, P.: Data center efficiency assessment - scaling up energy efficiency across
the data center industry: evaluating key drivers and barriers (2014). https://www.
nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf

10. Dürango, J., Dellkrantz, M., Maggio, M., et al.: Control-theoretical load-balancing
for cloud applications with brownout. In: 53rd IEEE Conference on Decision and
Control, pp. 5320–5327 (2014)

11. Han, Z., Tan, H., Chen, G., Wang, R., Chen, Y., Lau, F.C.M.: Dynamic virtual
machine management via approximate markov decision process. In: IEEE INFO-
COM 2016 - The 35th Annual IEEE International Conference on Computer Com-
munications, pp. 1–9, April 2016

12. Hanumaiah, V., Vrudhula, S.: Energy-efficient operation of multicore processors by
DVFs, task migration, and active cooling. IEEE Trans. Comput. 63(2), 349–360
(2014)

13. Kim, K.H., Beloglazov, A., Buyya, R.: Power-aware provisioning of virtual
machines for real-time cloud services. Concurrency Comput. Pract. Experience
23(13), 1491–1505 (2011)

14. Klein, C., Maggio, M., Årzén, K.E., Hernández-Rodriguez, F.: Brownout: building
more robust cloud applications. In: Proceedings of the 36th International Confer-
ence on Software Engineering, pp. 700–711 (2014)

15. Mastroianni, C., Meo, M., Papuzzo, G.: Probabilistic consolidation of virtual
machines in self-organizing cloud data centers. IEEE Trans. Cloud Comput. 1(2),
215–228 (2013)

16. Newman, S.: Building Microservices. O’Reilly Media Inc., Sebastopol (2015)
17. Park, K., Pai, V.S.: CoMon: a mostly-scalable monitoring system for planetlab.

ACM SIGOPS Operating Syst. Rev. 40(1), 65–74 (2006)
18. Pecero, J.E., Huacuja, H.J.F., Bouvry, P., Pineda, A.A.S., Locés, M.C.L.,

Barbosa, J.J.G.: On the energy optimization for precedence constrained appli-
cations using local search algorithms. In: International Conference on High Perfor-
mance Computing and Simulation (HPCS), pp. 133–139 (2012)

19. Tomás, L., Klein, C., Tordsson, J., Hernández-Rodŕıguez, F.: The straw that broke
the camel’s back: safe cloud overbooking with application brownout. In: Interna-
tional Conference on Cloud and Autonomic Computing, pp. 151–160 (2014)

20. Toosi, A.N., Vanmechelen, K., Ramamohanarao, K., Buyya, R.: Revenue maxi-
mization with optimal capacity control in infrastructure as a service cloud markets.
IEEE Trans. Cloud Comput. 3(3), 261–274 (2015)

21. Xu, M., Dastjerdi, A.V., Buyya, R.: Energy efficient scheduling of cloud application
components with brownout. IEEE Trans. Sustain. Comput. 1(2), 40–53 (2016)

22. Zheng, K., Wang, X., Li, L., Wang, X.: Joint power optimization of data center
network and servers with correlation analysis. In: IEEE INFOCOM 2014-IEEE
Conference on Computer Communications, pp. 2598–2606 (2014)

https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
https://www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf

Predicting the Available Bandwidth on Intra
Cloud Network Links for Deadline Constrained

Workflow Scheduling in Public Clouds

Rachael Shaw(B), Enda Howley, and Enda Barrett

College of Engineering and Informatics,
National University of Ireland, Galway, Ireland

{r.shaw4,ehowley,enda.barrett}@nuigalway.ie

Abstract. Cloud computing infrastructure has in recent times gained
significant popularity for addressing the ever growing processing, stor-
age and network requirements of scientific applications. In public cloud
infrastructure predicting bandwidth availability on intra cloud network
links play a pivotal role in efficiently scheduling and executing large scale
data intensive workflows requiring vast amounts of network bandwidth.
However, the majority of existing research focuses solely on scheduling
approaches which reduce cost and makespan without considering the
impact of bandwidth variability and network delays on execution per-
formance. This work presents a time series network-aware scheduling
approach to predict network conditions over time in order to improve
performance by avoiding data transfers at network congested times for
a more efficient execution.

Keywords: Cloud computing · Workflow scheduling · Public cloud ·
ARIMA modelling

1 Introduction

Data-intensive applications often modelled as workflows are routinely used
throughout many fields of scientific research. Workflows play a key role in assist-
ing scientists to orchestrate complex multi-step computational analysis on exten-
sively large data sets. Modern day scientific workflows have advanced consider-
ably and are becoming increasingly large, generating terabytes of data which is
expected to soar over the next decade [1]. As a result, workflows require vast
amounts of rich and diverse resources accessible across distributed platforms in
order to address their ever growing processing, storage and network require-
ments.

Recently, cloud computing has emerged as a new service provisioning model
which offers an alternative and more scailable solution to traditional infrastruc-
ture such as computational grids and clusters. Cloud computing services deliver

R. Shaw—This work is supported by the Irish Research Council through the Gov-
ernment of Ireland Postgraduate Scholarship Scheme.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 221–228, 2017.
https://doi.org/10.1007/978-3-319-69035-3_15

222 R. Shaw et al.

on demand access to vast amounts of compute resources charged on a pay per use
basis. The use of virtualisation technology enables users to dynamically procure
virtual machines and release resources on demand with varying combinations of
CPU, memory and storage available to meet both performance requirements and
budget constraints. Through the advancement of cloud based services and in par-
ticular High Performance Computing (HPC) platforms scientists have immediate
access to large scale distributed infrastructure and customized execution envi-
ronments to meet their growing needs. As a result, cloud computing infrastruc-
ture is fast evolving as the target platform for executing large scale scientific
applications requiring high throughput and data analysis [2].

Despite the recent introduction of HPC resources such as Amazons Cluster
Compute (CC) platform which offers improved networking capabilities research
has shown that the overall performance of HPC applications in public clouds
remains limited by poor network throughput [3]. Large data transfers across
distributed cloud resources often hinge on unstable bandwidth availability on
network links due to the shared nature of the resource. Consequently, a decrease
in bandwidth causes an increase in data transfer times, thus increasing total
execution time and associated rental costs of cloud resources. This highlights a
fundamental workflow scheduling issue which is the impact of bandwidth vari-
ability and network congestion on data transfer times between workflow tasks.

As the adoption of cloud computing services continues to grow to facilitate
a new generation of scientific users with high computational and data transfer
requirements, estimating network resources gains significant importance in the
development of efficient and reliable schedulers capable of anticipating dynami-
cally changing network conditions in order to generate more efficient scheduling
decisions. To address this issue we propose a network-aware scheduling app-
roach which employs a time series Autoregressive Integrated Moving Average
(ARIMA) forecasting algorithm. Our approach promotes efficient utilization of
limited network resources by scheduling workflow tasks agnostic to underlying
network conditions in order to avoid peak hours of network congestion while also
meeting a hard deadline constraint and reducing overall costs.

The remainder of the paper is structured as follows. In Sect. 2 related work
in the field is discussed. Section 3 formulates the problem. Section 4 introduces
time series ARIMA modelling. Section 5 presents our preliminary results. Lastly,
Sect. 6 concludes the paper and discusses future work.

2 Related Research

Much of the existing work in this area has focused on scheduling algorithms which
aim to satisfy user Quality of Service (QoS) requirements, namely execution time
and cost [4–6]. However, these works naively assume access to unlimited network
bandwidth at run time and fail to consider the implications of network con-
straints on the execution performance of scientific workflows. However, research
has also been proposed to target issues concerning the availability of resources
on workflow schedules primarily in the form of reactive techniques [7–9].

Predicting Bandwidth for Deadline Constrained Workflow Scheduling 223

While these approaches consider changes in resource availability at run time
the available bandwidth is assumed to be entirely certain. However network
resources are volatile and a function of system load at discrete time intervals [10].
Additionally, some of the suggested approaches involve task rescheduling, this
additional overhead may not be a feasible solution in public clouds due to the
associated rental costs of computational resources.

We propose an alternative approach which we expect to impact the state-of-
the-art in two regards. Firstly, we address a key limitation of current approaches
by considering the implications of dynamically changing network behaviour on
execution time and associated costs of leasing resources from public clouds. More
concretely, we develop a network-aware scheduling algorithm capable of predict-
ing bandwidth availability in public cloud infrastructure where the competition
for network resources is far greater. Secondly, we demonstrate the use of a statis-
tical time series ARIMA modelling approach to the workflow scheduling problem
for learning and predicting bandwidth availability. In particular, we demonstrate
how our approach has the capacity to better align workflow scheduling require-
ments with the dynamic nature of network resources in order to generate a more
reliable schedule and improve execution efficiency.

3 Problem Formulation

A scientific application (workflow) is often modelled as a Directed Acyclic Graph
(DAG) denoted as W =

{
V ,E

}
where V =

{
T1 ,T2 , ...,Tn

}
is a set of tasks

in the workflow which are assigned to a specific resource and E is the set of
directed edges representing the data dependencies between tasks. A directed
edge Ei,j signifies that task Ti is the parent task of task Tj . Child tasks can
only execute once all parent tasks have been processed and the data has been
transferred, while nodes on the same level can be executed in parallel using mul-
tiple resources in order to speed up execution time. In addition, each workflow
W has an assigned deadline constraint. Figure 1(a) illustrates a workflow exam-
ple consisting of 7 nodes in which the edges between tasks denote the file inputs
and outputs. Figure 1(b) depicts a valid schedule for the adjacent workflow. The
objective of our scheduler is to find a mapping of tasks to resources at more opti-
mal times for large data transfers that meet the specified deadline and reduces
the overall execution cost.

The cloud infrastructure network model used in this work was generated
based on measurements of Amazons EC2 network performance [11]. This bench-
mark study provides a model of the bandwidth within Amazons EU region.
In order to keep the focus of the performance around the network we consider
a finite set of homogeneous resources R =

{
r1 , r2 ...rn

}
which we assume have

sufficient CPU, memory and disk to execute each task Ti which has a fixed
processing time of 1 h. We consider file sizes that are fixed but vary across indi-
vidual tasks in the workflow. The execution of task Ti on resource rj incurs an
execution cost. Generally, there is no charge for the transfer of data between
tasks in the same region. Total cost is calculated as a function of processing and

224 R. Shaw et al.

(a) Workflow (b) Valid schedule

Fig. 1. Sample workflow application with valid schedule

data transfer time. In addition, total execution time can be defined as the latest
completion time of all tasks executed on all cloud resources.

4 Time Series Forecasting: ARIMA Modelling

ARIMA models have become a widely popular methodology for time series
forecasting [12]. An ARIMA model consists of three fundamental components
denoted as (p, d , q). Identifying a valid model is the process of finding suit-
able values for (p, d , q) which capture the systematic patterns in the data. The
autoregressive (AR) component (p) represents the influence of past values on
current values in the series. For example An AR(1) model predicts future values
based on the value of the preceding observation defined as:

yt = φ(yt−1) + εt . (1)

Where φ is a parameter of the model and εt is random variation at time t .
The moving average (MA) term (q) models the random variation of the model
as a combination of previous error terms. For example An MA(1) model fore-
casts future values based on a combination of the current random variation and
previous error as defined in Eq. 2:

yt = θ(εt−1) + εt . (2)

Where εt−1 is the value of the previous random shock and θ is a parameter of the
model. The integrated component of the model (d) is the order of differencing
applied to the series in order to render the series stationary. A stationary series
is one whose statistical properties such as mean and variance are constant over
time. A non-stationary time series is often unreliable and can result in false
autocorrelations in the series. The combined model assuming differenced data is
defined in Eq. 3:

yt = c + φ1(yt−1) + ... + φp(yp−1) + θ1(εt−1) + ... + θq(εt−q) + εt . (3)

Predicting Bandwidth for Deadline Constrained Workflow Scheduling 225

In addition, Seasonal ARIMA models can be used to model highly seasonal data
formed by including additional ARIMA terms (P ,D ,Q)m , where m signifies
the number of periods per season. To generate the proposed model the Box-
Jenkins methodology was employed which is composed of several steps outlined
below [13].

4.1 Model Identification

The bandwidth data used in this work showed a significant seasonal periodic
component which occurs within each 24 h period. The Autocorrelation Function
(ACF) plot also revealed strong periodic oscillations indicating the implemen-
tation of a seasonal ARIMA model as defined in Eq. 4 to capture the strong
seasonality present. It also confirmed the series was non stationary.

φp(B)ΦP (Bs)Wt = θq(B)ΘQ(Bs)Zt . (4)

Where B denotes the lag operator, φp ,ΦP , θq ,ΘQ are parameters of the seasonal
and non-seasonal model components (p, q)(P ,Q) respectively and Zt represents
the error. In addition, a first order seasonal difference was applied to the data
which proved sufficient in transforming the non stationary series into a stationary
series.

To select the appropriate orders of both the non-seasonal components p, q
and seasonal components P ,Q of the model the ACF and Partial Autocorre-
lation Function (PACF) plots of the differenced data Wt were examined which
identified several alternative values to select from.

4.2 Model Estimation and Diagnostics

To estimate the model parameters φ′
ps,Φ

′
Ps, θ′

qs,Θ
′
Qs in the forecast equation

above the Maximum Likelihood Estimation (MLE) was adopted using R soft-
ware. In order to select the best model to fit the data a common criterion known
as Akaike Information Criterion (AIC) was used. This statistic as defined in
Eq. 5 is a fundamental measurement of the quality of a statistical model for a
series. ARIMA(0 , 0 , 0)(0 , 1 , 1)[144] was deemed the best model as it produced
the lowest AIC value.

AIC = −2log(L) + 2(p + q + k + 1) . (5)

Where L is the maximum likelihood of the data, k = 1 if c �= 0 while k = 0 if
c = 0 and the final term represents the number of parameters in the model. A
formal Ljung-Box test was also conducted on the residuals which generated a
p-value of 0.735, which concluded that the residuals are independent.

4.3 Forecasting and Validation

To assess the accuracy of the forecasts a test set which equated to 1 week of band-
width values over 10 min intervals was used as a comparison measure. The results

226 R. Shaw et al.

Fig. 2. Predicted and observed values for the subsequent day based on the previous
weeks bandwidth values used to fit the model

showed that the forecasts generated were all within the 95% confidence limit.
Additionally the Mean Absolute Percentage Error (MAPE) as given by Eq. 6
was calculated where Ot and Pt are the observed and predicted values of the
time series. The MAPE from the resulting forecasts was 2.81% which is deemed
highly accurate [14].

MAPE =
100
n

n∑

t=1

∣
∣
∣
∣
∣
Ot − Pt

Ot

∣
∣
∣
∣
∣
. (6)

5 Preliminary Results

A cloud simulator was developed to evaluate the proposed network-aware
scheduling procedure. As an initial benchmark we compare our approach to
a non network-aware heuristic called Execute-First. To evaluate the proposed
procedure using reasonable deadline constraints the Execute-First heuristic was
run over 30 iterations calculating the makespan of each 10 min interval in a sin-
gle day. The average earliest and latest finish times were computed in order to
define deadline D denoted in Eq. 7, where parameter m is defined as 1, 30 and
60 to evaluate the performance of the algorithms over low, medium and high
deadline constraints.

D = EFTaverage + m × (
LFTaverage − EFTaverage

)
. (7)

Figure 3(a) shows the total execution time in hours for all 3 deadline cate-
gories. These results show the advantage of using the predictive capabilities of

Predicting Bandwidth for Deadline Constrained Workflow Scheduling 227

ARIMA modelling to inform our scheduling decision, our approach selects the
most opportunistic time frame within the deadline to transfer data resulting in
shorter execution times. Evidently, the performance of our approach continues
to increase when deadlines span over a greater number of hours. This is largely
due to the visibility our ARIMA driven algorithm has over dynamically changing
bandwidth availability. Figure 3(b) also shows a significant reduction in cost as
our network-aware scheduler postpones execution until network conditions are
more optimum. Conversely, the Execute-First algorithm incurs larger costs due
to poor scheduling decisions resulting in longer transfer times when the network
is saturated.

Fig. 3. Total execution time over low, medium and high deadline constraints and overall
cost generated by both approaches

6 Conclusion

This work presented an efficient network-aware workflow scheduler based on time
series ARIMA modelling designed to minimize total execution time and costs.
Our empirical results have shown that by adopting a scheduling procedure which
has the capacity to reason over the impact of dynamically changing bandwidth
availability we can achieve significant cost reductions and reduce execution time.
In future work we intend on extending our solution to consider heterogeneous
workflow tasks and cloud resources to further optimize resource availability, while
also considering the impact of additional factors such as queuing and propagation
delays in order to deliver a more complete solution. Eventually, we hope to
evaluate our approach using a live virtualised test bed.

Acknowledgments. The primary author would like to acknowledge the ongoing
financial support provided to her by the Irish Research Council.

References

1. Yang, X., Wallom, D., Waddington, S., Wang, J., Shaon, A., Matthews, B., Wilson,
M., Guo, Y., Guo, L., Blower, J.: Cloud computing in e-Science: research challenges
and opportunities. J. Supercomput. 70(1), 408–464 (2014). Springer

228 R. Shaw et al.

2. Lifka, D., Foster, I., Mehringer, S., Parashar, M., Redfern, P., Stewart, C., Tuecke,
S.: XSEDE cloud survey report. Technical report, National Science Foundation
(2013)

3. Expósito, R.R., Taboada, G.L., Ramos, S., González-Domı́nguez, J., Touriño, J.,
Doallo, R.: Analysis of I/O performance on an Amazon EC2 cluster compute and
high I/O platform. J. Grid Comput. 4(11), 613–631 (2013). Springer

4. Abrishami, S., Naghibzadeh, M., Epema, D.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput.
Syst. 29(1), 158–169 (2013). Elsevier

5. Barrett, E., Howley, E., Duggan, J.: A learning architecture for scheduling work-
flow applications in the cloud. In: 2011 Ninth IEEE European Conference on Web
Services (ECOWS), pp. 83–90. IEEE (2011)

6. Pandey, S., Wu, L., Guru, M.S., Buyya, R.: A particle swarm optimization-based
heuristic for scheduling workflow applications in cloud computing environments.
In: 2010 24th IEEE International Conference on Advanced Information Networking
and Applications (AINA), pp. 400–407. IEEE (2010)

7. Allen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C., Radke, T., Seidel, E.,
Shalf, J.: The Cactus worm: experiments with dynamic resource discovery and
allocation in a grid environment. Int. J. High Perform. Comput. Appl. 15(4), 345–
358 (2001). Sage Publications, Thousand Oaks

8. Batista, D.M., da Fonseca, N.L., Miyazawa, F.K., Granelli, F.: Self-adjustment of
resource allocation for grid applications. Comput. Netw. 52(9), 1762–1781 (2008).
Elsevier

9. Tang, W., Jenkins, J., Meyer, F., Ross, R., Kettimuthu, R., Winkler, L., Yang, X.,
Lehman, T., Desai, N.: Data-aware resource scheduling for multicloud workflows:
a fine-grained simulation approach. In: 2014 IEEE 6th International Conference on
Cloud Computing Technology and Science (CloudCom), pp. 887–892. IEEE (2014)

10. Duggan, M., Duggan, J., Howley, E., Barrett, E.: A network aware approach for
the scheduling of virtual machine migration during peak loads. Cluster Comput.
20(2083), 1–12 (2017)

11. Sanghrajka, S., Mahajan, N., Sion, R.: Cloud performance benchmark series: Net-
work performance-Amazon EC2. Technical report, Stony Brook University (2011)

12. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts,
Melbourne (2013)

13. Box, G.E., Jenkins, G.M.: Time Series Analysis, Control, and Forecasting, vol.
3226(3228), p. 10. Holden Day, San Francisco (1976)

14. Kenneth, D.L., Ronald, K.K.: Advances in Business and Management Forecasting.
Emerald Books, UK (1982)

Inferring Calling Relationship Based on External
Observation for Microservice Architecture

Shinya Kitajima(B) and Naoki Matsuoka

Software Laboratory, Fujitsu Laboratories Limited, 4-1-1 Kamikodanaka,
Nakahara, Kawasaki, Kanagawa 211-8588, Japan

{kitajima.shinya,matsuoka.naoki}@jp.fujitsu.com

Abstract. In recent years, a web service architecture namely microser-
vices has attracted attention. Although the microservice architecture
provides various advantages, it also has the disadvantage of making the
root cause analysis of the complicated system. For root cause analysis, it
is important to know the calling relationships between services since the
service may call the other service and the latency of the called service
may be wrong. Therefore, in this paper, we propose a method to infer
the calling relationship between the services from communication logs
observed from outside of the services.

Keywords: Microservice architecture · Distributed tracing system ·
Visualization · PaaS

1 Introduction

In recent years, a web service architecture namely microservices has attracted
attention. In the microservice architecture, a web system is structured as a collec-
tion of loosely coupled services, and the services in the microservice architecture
communicate via web APIs [5]. Microservice architecture was originally a spon-
taneously generated technique from companies with huge web system, such as
Amazon and Netflix. Lewis et al. named the technique microservices [4].

There are various advantages of microservice architecture, including diver-
sity of technologies, resilience, scalability, reliability, reusability and agility [2].
There are disadvantages, however, to constructing a web system as a distributed
system [3], one of which is the complexity of root cause analysis. For root cause
analysis, it is important to know the calling relationships between services since
the service may call the other service and the latency of the called service may
be wrong. It is thus difficult to discover the cause of a processing delay or error
from the services since there are dozens or hundreds of services in a microservice
architecture.

In the microservice architecture, a distributed tracing system, such as Open-
Zipkin1 and OpenTracing2, are the most famous methods for solving this prob-
lem. However, in order to use OpenZipkin and OpneTracing, it is necessary to
1 http://zipkin.io/.
2 http://opentracing.io/.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 229–237, 2017.
https://doi.org/10.1007/978-3-319-69035-3_16

http://zipkin.io/
http://opentracing.io/

230 S. Kitajima and N. Matsuoka

modify the source code of each service. This forms large barriers toward the use
of these methods since developers must add codes and libraries that are specific
to the distributed tracing system. In addition, Aguilera et al. [1] proposed meth-
ods that can trace the system without modifications to the source code of the
services, their methods do not consider reusability, scalability and agility of the
microservice architecture.

Therefore, in this paper, we propose a method for inferring the calling rela-
tionship between the services from communication logs observed from outside of
the services. We call the trigger message as the parent message, and the triggered
message by the parent message as the child message.

The remainder of this paper is organized as follows. We describe our assump-
tions in Sect. 2. We explain our method for inferring the parents from commu-
nication logs in Sect. 3. We then evaluate the accuracy of our method in Sect. 4.
Finally, we provide our conclusions in Sect. 5.

2 Assumptions

The typical examples of systems based on microservice architecture are A huge
EC site and online movie site. Figure 1 shows our assumed environment. Each
service is developed and operated by the independent team. In addition, each
service is constantly updated and new services are added to the system at any
time. Each service runs in cooperation with loosely coupled with other services.

A large-scale web system

Adding new feature

Updating

Redundancy

Adding new instance

means each service

Fig. 1. The assumed environment.

Each service is often executed as a container application, since the character-
istics of the container, such as portability and agility, match well for the microser-
vice architecture. A container management infrastructure, such as Kubernetes3

and Cloud Foundry4, is often used to manage the container.

3 https://kubernetes.io/.
4 https://www.cloudfoundry.org/.

https://kubernetes.io/
https://www.cloudfoundry.org/

Inferring Calling Relationship Based on External Observation 231

The advantages of the microservice architecture are various, including diver-
sity of technologies, resilience, scalability, reliability, reusability and agility. How-
ever, in the microservice architecture, it is very difficult to find out the cause
when a processing delay or an error occurs, since the configuration of the system
changes from time to time. Therefore, it is important to know the calling rela-
tionships between services in the microservice architecture. We call the visualized
calling relationships between the services flow.

3 Method for Inferring the Parents

In this section, we propose a method for inferring the calling relationship between
the services in the microservice architecture using communication logs (sender,
receiver, and timestamp) that can be acquired on each server. Our method
assumes that each message was triggered by another message, and collects com-
munication logs of messages received within a given threshold from the sent
time of the child message as the parent candidate messages. After our method
has performed this process for a certain number of messages and obtained a set
of parent candidate messages, it infers the parent messages heuristically.

3.1 Enumeration of the Parent Candidate Messages

Our method infers the calling relationship by assuming that there is another
message that triggered the message of interest. In general, web applications are
listening for connections from clients on specific ports with specific IP addresses.
Here, we define an IP address as IP and the pair of listening IP address and
port of a service as S. In addition, we define a mapping function getip : S → IP .

S1Time S2IP1

TH

TH

Parent candidate of m3
• m1 (Source IP is IP1)
• m2 (Source IP is IP2)m3

IP2 IP3

m6

m1

m2

m4

m5 Parent candidate of m6
• m4 (Source IP is IP2)
• m5 (Source IP is IP3)

t3

t6

t1
t2

t4
t5

Fig. 2. Overview of proposed method for inferring the method.

Figure 2 shows that our method focuses on S1 and enumerates all of the
messages of which the source IP address is getip(S1) (m3 and m6 in the figure)
and that are received within the threshold TH from the sent time of m3 and m6

232 S. Kitajima and N. Matsuoka

(t3 and t6 in the figure) as the parent candidate messages (m1 and m2 for m3,
and m4 and m5 for m6 in the figure). We cannot determine which message is
the parent message if the service receives messages from multiple IP addresses
within the threshold TH. We suppose that the optimal TH is different for each
service. In this paper, for simplicity, we use the same TH for all services.

The amount of communication logs that our method uses for the inferring
varies depending on the purpose. For example, we acquire the communication
logs at all times, and when a failure occurs, our method uses the communication
logs of the past hour to infer the flow to identify the cause.

We define the number of hosts as p and the set of communication logs
acquired on a host Hk(1 ≤ k ≤ p) as Mk = {mk,1,mk,2, . . . ,mk,nk

}. More-
over, we define the source IP address of a communication mk,i as IPsk,i, the
destination IP address as IPrk,i, the destination port number as Prk,i, and the
occurrence time as tk,i. tk,i is the sent time if Hk sent mk,i, and tk,i is the
received time if Hk received mk,i. We define the set CMk,i of the parent can-
didate messages for mk,i. CMk,i is the set of all communications for which the
source IP address is the same as the source IP address IPsk,i of mk,i, and for
which the occurrence time tk,j is before tk,i and after tk,i − TH. So, CMk,i can
be represented as,

CMk,i = {mk,j | IPrk,j = IPsk,i, tk,i − TH < tk,j < tk,i}(1 ≤ j ≤ nk). (1)

3.2 Aggregation of the Parent Candidate Messages

In this section, we aggregate the enumerated set of parent candidate messages
and calculate how often the parent candidates appear, among those appearing in
message from a certain host to a certain service. First, among the communication
logs acquired by a certain host Hk, we enumerate the parent candidates sent to
the service sk,i(1 ≤ i ≤ nsk). Table 1 shows an example of the enumerated parent
candidates. Here, if two or more services are running on one host, it is necessary
to extract only the communication logs by the specific service in the host and
enumerate only the parent candidates sent to the service. The IDs in the table
are allocated in order of occurrence of communication from host Hx to service
sx,y. As for ID3 and ID5, there are cases in which a parent candidate message
includes an IP address more than once among its source IP addresses.

We count the number of the source IP addresses for each parent candidate in
the set of parent candidate messages enumerated in the above. Table 2a shows
the result of counting these using the information in Table 1. If there is no parent
candidate message, we count the number as “None.” Moreover, when a source
IP address appears more than once for a given parent candidate message, we
only count it once. This is because several communications that have the same
source IP address are included in a set of parent candidate messages when the
access frequency from the client is high.

Inferring Calling Relationship Based on External Observation 233

Table 1. From the communication logs acquired on the host Hx, the set of the parent
candidate messages for communication sent to the service sx,y

Source IP addresses of parent candidate messages

ID1 IP1

ID2 IP1, IP3

ID3 IP1, IP2, IP4, IP1

ID4 IP2, IP5

ID5 IP1, IP1, IP4, IP1

ID6 IP2, IP3

ID7 None

Table 2. Number of source IP addresses appearing as parent candidate messages.

3.3 Inferring the Parent Message

In this section, we guess the parent based on the result of Sect. 3.2 with the
following steps.

1. We select the parent candidate massage for which the source IP address
appears most frequently as the parent message.

2. We check whether the parent message is included in each set of parent can-
didate messages, and exclude those set of parent candidate messages that
include the parent message.

3. We go back to the Step 1 while a set of parent candidate messages exists.

As an example, we apply these steps to Table 2a. In Step 1, IP1 is selected as the
parent message since it has the highest total number of appearances. Next by
applying Step 2, we get Table 2b by excluding the sets of the parent candidate
messages that include IP1. After that, we apply Step 3, which takes us back
to Step 1 by which we select IP2 as the parent message, since it has the most
appearances at this point. In this way, we apply these steps until we finally
select “None” as the parent message and conclude the process. As a result, we

234 S. Kitajima and N. Matsuoka

select the communication from IP1 to H1, IP2 to H1, and “None” as the parent
message of the communication from Hx to sx,y.

4 Evaluation

In this section, we evaluate our method according to the following three criteria.
We define the set of parent messages in the inferred result as Cresult, the set
of correct parent messages, which we defined in advance, as Ccorrect, and the
intersection of these sets as CTP = Cresult ∩ Ccorrect.

– Precision: The ratio of the number of messages included in the set the correct
parent messages divided by the number of parent messages included in the
inferred result (Precision = |CTP |/|Cresult|).

– Recall: The ratio of the number of messages included in the set of parent
messages in the inferred result divided by the number of correct parent mes-
sages (Recall = |CTP |/|Ccorrect|).

– F-measure: Defined as follows using Precision and Recall:

F =
2 × Precision × Recall

Precision + Recall
. (2)

Rate

Goods

Price

Stock

DB-Price

Goods-
Genre

DB-GoodsGenre

DB-Stock

DB-Rate

Genre
DB-Goods

Goods

Client

(a) Configuration diagram

RouterHAProxy

Cell1

Cell2

Genre1

Goods1

DB-Rate1

DB-
GoodsGenre1

Goods2

DB-Goods1

DB-Price1

DB-Stock1

(b) Configuration on Cloud Foundry

Fig. 3. Configurations.

4.1 Evaluation Environment

For the evaluation, we used a system based on microservice architecture that
we implemented by imitating an EC site. Figure 3a shows the configuration of
this system. This system consists of seven services, five of which are services
connected to the database and the other two of which are services accessing
multiple services. The Genre service and the Goods service each call four services
that connect to the database at the same time. After all results are returned to
them, they return results to the user. The implementation languages of the
services and the databases are Go and MySQL, respectively.

Inferring Calling Relationship Based on External Observation 235

Each service is running as an application on Cloud Foundry. A unique URL
is allocated to each application, and we can access each application using that
URL. Figure 3b shows the communication path to the applications inside Cloud
Foundry. The access from the client to the application is sent to the Router via
HAProxy, and the Router allocates access to instances of each application. When
there are multiple instances of an application, access is sequentially allocated in
a round-robin manner. Each application instance is running as an application
container on the Cell, and each application listens for access at a specific port
on the Cell.

If we applied the method as it is to the Cloud Foundry environment, the
parent message of all messages would be message from the HAProxy to the
Router. Therefore, we added a process to check which message calls the message
from the HAProxy to the Router and to rewrite the sender of the message. That
is, the source of the message from the HAProxy to the Router is replaced by
client or one of the services.

We define the message from component A to component B as [A,B]. In
addition, we call the Goods service and the Genre service Front because client
accesses them first, and we call the other services, which access the database,
Backend.

(a) Precision, Recall, and F-measure
when changing TH.

(b) Effect of changing the number of
services on the F-measure.

Fig. 4. Evaluation results.

4.2 Evaluation Result

Impact of TH. Figure 4a shows the evaluation result of Precision, Recall and F-
measure of our method while changing TH from 0.5 to 20 ms. In this evaluation,
clients only access the Goods service, and a client’s access pattern is equal access
once every 5 s for 5 min. We set the number of each service to 1.

The results show that Recall is low when TH is low, and Precision is low
when TH is high. As a result, the F-measure is highest when 5.5 ≤ TH ≤
12.5. When TH is low, there are few messages included in the set of parent
candidate messages, and the correct parent message is not included in the result.

236 S. Kitajima and N. Matsuoka

On the other hand, when the TH is high, the set of parent candidate messages
includes message that is not correct parent message, and the result also includes
message that is not correct.

The breakdown of the incorrect answers shows that [Client,Router]
is selected as the parent message of [Router,Backend] in addition to
[Goods,Router], which is the correct answer, resulting in low Precision. In the
system that we used for the evaluation, first the client accesses the Goods ser-
vice, and then the Goods service calls the Backend. Therefore, when TH is high,
[Client,Router] is included as parent candidate message of [Router,Backend],
resulting in low Precision.

Impact of the Number of Services. Figure 4b shows the F-measure when
the client accesses only the Goods service and when the client accesses both the
Goods and the Genre services. We set the number of instances of each service
to 1, and we vary TH from 0.5 to 20 ms. In this evaluation, the client’s access
pattern is equal access once every 5 s. When the client accesses both the Goods
and Genre services, the client’s access pattern is equal access once every 5 s
for both the Goods and Genre services, and the Goods and Genre services are
accessed at almost the same time every time.

The results show that the F-measure is lower when the client accesses
both the Goods and Genre services. When the client accesses both the
Goods and Genre services every time, our method cannot determine
whether [Goods,Router] or [Genre,Router] is the correct parent message of
[Router,Backend]. This is because [Goods,Router] and [Genre,Router] are
included in the set of parent candidate messages almost every time, and our
method selects either [Goods,Router] or [Genre,Router] as the parent.

In a real situation, we suppose that it is unrealistic for a client to access
the same several services at almost the same time every time. Even in such a
situation, the F-measure is more than 0.9 when TH > 10, and our method can
mostly infer the calling relationship correctly.

5 Conclusion

In this paper, we proposed a method to infer the calling relationship between
the services from the communication logs observed outside the services, such as
sender, receiver, and timestamp. Our method assumes that each message is trig-
gered by another message, and infers the trigger message considering scalability
and agility of the microservice architecture. The evaluation results show that
our method can infer the calling relationships with high accuracy.

In the future, we will propose a method that automatically defines the opti-
mal TH. In addition, we will confirm and improve the performance of our method
in real systems based on microservice architecture.

Inferring Calling Relationship Based on External Observation 237

References

1. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance debugging for distributed systems of black boxes. In: 9th ACM Symposium
on Operating Systems Principles (SOSP), pp. 74–89 (2003)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

3. Ciuffoletti, A.: Automated deployment of a microservice-based monitoring
infrastructure. Procedia Comput. Sci. 68, 163–172 (2015)

4. Lewis, J., Fowler, M.: Microservices (2014). http://martinfowler.com/articles/
microservices.html

5. Newman, S.: Building Microservices, Designing Fine-Grained Systems. O’Reilly
Media, Sebastopol (2015)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

Quality of Service

A QoS-Aware Resource Allocation Controller
for Function as a Service (FaaS) Platform

MohammadReza HoseinyFarahabady1(B), Young Choon Lee2,
Albert Y. Zomaya1, and Zahir Tari3

1 Centre for Distributed and High Performance Computing,
The University of Sydney, Sydney, NSW, Australia
{reza.hoseiny,albert.zomaya}@sydney.edu.au

2 Department of Computing, Macquarie University, Sydney, NSW, Australia
young.lee@mq.edu.au

3 School of Computer Science and IT, RMIT University, Melbourne, VIC, Australia
zahir.tari@rmit.edu.au

Abstract. Function as a Service (FaaS) is a recent event-driven server-
less paradigm that allows enterprises to build their applications in a
fault tolerant distributed manner. Having been considered as an attrac-
tive replacement of traditional Service Oriented Architecture (SOA), the
FaaS platform leverages the management of massive data sets or the han-
dling of event streams. However, the realization of such leverage is largely
dependent on the effective exploitation of FaaS elasticity/scalability.

In this paper, we present a closed-loop resource allocation controller
to dynamically scale resources by predicting the future rate of incom-
ing events and by considering the Quality of Service (QoS) enforcements
requested by end-users. The performance evaluation is carried out by
comparing the proposed controller with some well-known heuristics such
as round robin and best-effort strategies. Experimental results confirm
that the proposed controller increases the overall resource utilization by
21% on average, while reducing QoS violations by a factor of almost 3.

Keywords: Function as a Service (FaaS) · Microservices · Serverless
Lambda Platform · Dynamic resource allocation

1 Introduction

Function as a Service (FaaS) provides enterprises with a cloud-native serverless
solution to build robust, scalable, and loosely-coupled distributed applications
with a low operational cost. Clients can use such a platform to encapsulate the
complex business logic into independent micro-services that communicate with
each other via provided application programming interfaces (API). The FaaS
platform is responsible for responding properly to outside events by triggering
calls to such APIs in a loosely-coupled manner [16]. Amazon Web Services (AWS)
and Google provide an enterprise-scale realization of such a paradigm as the AWS

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 241–255, 2017.
https://doi.org/10.1007/978-3-319-69035-3_17

242 M. HoseinyFarahabady et al.

Lambda [1] and Google Cloud Functions [12] services, respectively. Due to the
intrinsic ability of FaaS to be hosted as a platform for concrete implementation
of applications that follow decoupled architecture principles, it is believed to play
the major role of future SOA [1,14,18]. In this paper, we use FaaS and Lambda
platform interchangeably.

By using a combination of in-house and cloud-based FaaS servers, develop-
ers can put their attentions fully to the design and implementation of business
logic without concerning about activities related to servers’ maintenance issues
(such as server provisioning, capacity planning, configuration setup, deploying
the micro-services, and so on). The main idea behind using a FaaS platform is
to remove the need for the traditional “always on” servers running behind the
users’ scripts [26]. FaaS can remarkably bring down the operational cost at least
in a twofold aspect. In particular, its adoption helps in realizing “pay-per-use”
pricing at finer granularity than current hourly base cloud pricing. In addition,
it enables users to create applications much faster by developing fine-grained
actions (e.g., micro-services) rather than handling coarse-grained components
(e.g., monolithic applications); this in turn contributes to cost reduction.

To enable better scaling, a service provider of FaaS platform may decide
to host thousands of function services (or Lambda functions in AWS Lambda)
on the available resources to achieve both clients and operator goals with low
cost. In many situations, however, these goals are conflicting with each other,
e.g. the fast execution time demanded by the end-users versus the high resource
utilization targeted by the service providers. Scheduling and resource allocation
plays a crucial role in reconciling these conflicting objectives. Current resource
allocation strategies for distributed systems and virtualized platforms are often
QoS-oblivious. In other words, resource allocation is carried out irrespective of
the QoS requirement of each application or the ever-changing resource utiliza-
tion level of each host [29,32]. While each application has its own utilization
characteristics (e.g. CPU/memory requirements) and different incoming traffic
rate of each event source, none of them is known to the scheduler in advance
[28,30,33].

In this paper, we present a closed-loop (feedback) resource controller, which
increases the overall utilization of the resources while achieving QoS levels
enforced by the end-users. The proposed controller makes its decisions based
on the following parameters in each time epoch: (1) an estimation of the genera-
tion rate of events associated with each FaaS function that is taking place in the
near future time periods, (2) the amount of QoS violation incidents occurred in
the past epochs as the feedback loop, and (3) the reconfiguration cost (similar
to the migration cost in a hypervisor-based system). We have conducted our
evaluation study with two existing heuristics (round-robin and best-effort) with
respect to three different metrics of resource utilization, QoS violation and scal-
ability. Our solution outperforms both the round-robin and best-effort strategies
by an average improvement of 21% in the overall resource utilization, while it
reduces the QoS violation incidents by a factor of 3 on average.

A QoS-Aware Resource Allocation Controller 243

The rest of the article is organized as follows. In Sect. 2, we give the back-
ground knowledge and related work associated with the FaaS platform. In Sect. 3,
we define a metric for measuring QoS violation incidents. Section 4 formally
presents the design principle of our resource allocation controller. In Sect. 5, we
evaluate the performance of our solution through experiments on real systems.
We then draw our conclusion in Sect. 6.

2 Background and Related Work

To build an application using a FaaS (Lambda) platform, the software devel-
opment team needs to represent the whole business logic as the two core com-
ponents of actions and event sources. An event is simply the detection of an
internal or external condition which triggers a signal to be sent to a set of
proper actions [6]. Examples include a change in database records, reading data
by an Internet of things (IoT) sensor, posting a new tweet, an HTTP request,
and a file uploading notice. Each event normally invokes a corresponding action
by triggering a specific set of rules that is defined by the application owner.

Nevertheless, a FaaS action (also called Lambda function in platforms like
AWS Lambda) is a piece of code which must be instantaneously executed when-
ever a corresponding event trigger fires. In some platforms, a chain of actions
can be defined such that each action is executed one after another once the
associated event occurs [17]. Each action needs to be designed as a stateless (or
idempotent) component; hence, all the required data must be given as the input
parameters [16]. This allows the platform to execute multiple instantiations of
an action at the same time, while each instantiation keeps its own state. Typi-
cal examples of use-cases that can be adapted seemly to this paradigm include
decomposition of traditional applications into micro-services, mobile server-side
applications, file processing, big data analytic, and web servers [1,17,18].

The kernel of FaaS/Lambda platform is responsible for determining the
amount of CPU, RAM, and other resources that must be devoted to the run-time
in order to execute instantiations of every action. We assume that every action
in the system is accompanied by a QoS enforcement level which is stated in
the service level agreement (SLA). This value defines the minimum service level
(expressed as a set of performance metrics) to be guaranteed by the platform
for actions.

QoS enforcements and the concept of fairness can significantly affect the way
that a resource allocation strategy works. Many studies in the context of the dis-
tributed platforms tend to focus on devising a “fair” resource allocation strategy,
e.g. [5,9,10,23]. Some suggested that simply minimizing the total number of QoS
violations is sufficient for satisfying SLA, e.g., [3]. In contrast, Gabor et al. [9]
justified that employing a fair schema (as suggested by [5,10,23]) cannot always
provide a proper satisfaction level in such systems as promised. Gabor et al. in
[9] also showed that in a fair resource allocation strategy a situation can be con-
sidered good as long as almost every action running in the system experiences a
similar performance degradation level (even a severe one).

244 M. HoseinyFarahabady et al.

Obviously such a constraint is not permissible in practice; hence, fair policy
cannot lead a desirable output for all cases. Yet the strategy suggested by [3]
which minimizes the number of QoS violations could cause some adverse conse-
quence, too. Let us consider a moment when the rate of multiple events abruptly
increases at once. So, applying the avoidance strategy proposed in [3] might end
up revoking resources from important actions, as such a strategy only concerns
with reducing the total number of QoS violations of all hosts. As a result, our aim
is to find a sensible objective function to minimize explicitly the number of QoS
violations of important actions/clients in case of resource scarcity. It seems that
a similar metric first proposed by [15,16] can be adjusted to the new platform.

The goal of an elastic solution is to devise some mechanisms to scale up or
down the assigned resources when the rate of requests fluctuates. Authors in
[8,31] introduced several techniques that use threshold-based rules on the actual
CPU and I/O capacities for deciding when to add/remove resources. In [11]
a new metric called congestion index was introduced to decide the number of
replica in an SPE platform. However, almost all techniques ignore different level
of QoS constraints that can be enforced by different applications. Our approach
is different from the mentioned projects as we propose a well-defined controlling
mechanism to be replaced with a heuristic-based algorithm. To this end, we
introduce a set of metrics to address the resource utilization, QoS constraints,
and the cost of changing re-configuration.

3 QoS Detriment Metric

We define a metric to distinguish a situation where any QoS violation happens
during the execution time (the original idea is borrowed from [15]). Apparently
different applications tolerate the performance degradation occurrence in differ-
ent manners (e.g., delay in average response time). For example, the QoS level
of actions tied with the applications in the high-frequency trading domain can
be easily affected by any delay in response time, while an action in the domain
of environmental monitoring is less sensitive to such an issue. This confirms that
the service provider has to devise a mechanism to categorize and charge applica-
tions’ owners independently based on their QoS levels. In this section, we explain
why both solutions might lead to some adverse outcomes in a Lambda platform.
We then fill this gap by introducing a new metric, called QoS detriment, to
quantify the QoS violation incidents.

We assume that there are exactly Q different classes, each represents a QoS
contract that users can ask. We also assume that the desirable performance
metric from user’s perspective is the average end-to-end delay of running the
corresponding actions during a given interval T = (t, t + ΔT). Thus, a value of
ω∗

q is assigned to each class 1 ≤ q ≤ Q (q is the quantifier of each QoS class)
that represents an upper-bound of the absolute delay that is acceptable and
must be guaranteed by the Lambda kernel for all actions that belong to class q.
To decide if an action experiences a QoS violation within a given interval, we
need to compare the value of the measured target performance (i.e., end-to-end
delay) with the value of ω∗

q .

A QoS-Aware Resource Allocation Controller 245

However, avoiding QoS violation incidents is almost impossible when actions
are executed. To relax this limit, we allow the resource allocation controller to
violate QoS constraints for some actions in a managed way. Thus, we define a
new function for each class of QoS contract, denoted by Vq(ΔT), that accepts
class q as its input, and its output regulates the percentage of QoS violation
incidents that is allowed to happen during any interval of size ΔT for all actions
belong to such a class.

Based on this new concept, we can express the definition of a QoS violation
incident as follows. A sensible choice for V is a simple linear rule like V =
1− q

Q+C , where C is a constant and Q denotes the total number of QoS contract
classes. Thus, for any arbitrary action ai that belongs to class q, we say it is
experiencing a QoS violation incident during any arbitrary interval T if the delay
of processing is higher than ω∗

q for a fraction of time more than
(
1 − q

Q+C

)
%

of any arbitrary interval.
We can define QoS detriment, denoted by Dm,T , as a metric to quantify the

total amount of QoS violations happening in any host m as follows.

Dm,T =
∑

ai∈Vm,T

I(ai), (1)

where Vm,T denotes the set of Lambda functions experiencing a QoS violation
during interval T . Symbol I(ai) is the importance coefficient of each action ai.
This term expresses the amount of contribution of action ai to the total amount
of QoS detriment factor in case of ai experiences any QoS violation. One good
candidate for such an importance function can be regarded as I(ai) = qai

. This
means the higher the QoS enforcement level is, the more it is counted in Eq. 1.
One of the main goals of our work is to cut (or reduce) the total amount of QoS
enforcement over all running hosts, i.e., to decrease

∑
m,T

Dm,T .

4 Closed-Loop Resource Allocation Controller

The proposed strategy is essentially a closed-loop (feedback) model predictive
controller (MPC) that seeks a model to predict the dynamic behavior of the
underlying platform in the near future, and then makes the (near-) optimal
decision based on the value of input vectors as the feedback loop. The resource
allocation controller employes an action that forces the output of the system to
follow a “reference trajectory”. Such a method has been widely accepted in mul-
tiple domains of computing systems, such as energy-aware capacity provisioning
in Cloud platforms [15,21], as well as elastic scaling of stream data processing
[3,4]. Interested readers are referred to [25] for a thorough review in the theory
and design of MPC.

There are three main components of the proposed controller: the model, the
predictor, and the optimizer. The model provides the controller with an abstrac-
tion layer of the run-time behavior of the Lambda platform. The predictor can
be used by the controller to give a rough estimation of future input values such as

246 M. HoseinyFarahabady et al.

incoming traffic rates. The optimizer is responsible for finding the best possible
values for controllable variables, which are denoted by uτ , such that the output
of the system, shown by zτ , converges to an ideal set-point trajectory, denoted
as rτ , at any time τ .

An important property of the proposed controller is that we gradually (i.e., in
more than one step) apply the supposedly optimum input vector, i.e., ũτ+1, into
the system. More formally, let us suppose that Tref > 1 represent a response
speed. Also, let us assume that ζτ = |zτ − rτ | represent the deviation of the
current output from the ideal set-point trajectory, at time τ . In our controller,
we expect that such a deviation converges to zero with an exponential rate in
the next f steps, i.e., ζτ+f = e−fΔ/Tref ζτ , where Δ is the sampling interval.
For example, choosing the ratio of Δ/Tref = 1/3 is a sensible choice in practical
situations that not only imposes a low computational overhead, but also provides
an effective mechanism to reduce the adverse impact of errors in the prediction
tool or the system model.

Response Time Model. We use a Kalman filter as a light optimal estimator
tool to effectively infer input parameters from uncertain past observations by
taking advantage of correlations between the values of the system state and
the input vector. By propagating the current state of the system, including the
statistical influence of dynamic perturbations and the outcomes of all previous
measurements, the Kalman filter can minimize the mean square error of the
estimated input parameters if the system noise is Gaussian [13].

Let N̄ (ej , τ) and T̄ (ai, τ) denote the average number of events emitted by
the event source ej and the average computation time of the associated action
ai at any arbitrary interval τ , respectively. Hence, the average response time
of the event ej associated with each instance of the action ai at machine pk,
shown by RT τ

ai|pk
, can be estimated by employing a proper Kalman filter over

the past record of resource usage measurements allocated in each machine to run
the action at any arbitrary interval τ . For the sake of this project, we focus our
attention on CPU and RAM as the two main resources in each server, but an
extension of this work can be employed to include other I/O or network resources
similarly. The values of dependency of response time parameter to the resource
utilization need to be continuously updated whenever a new measurement data
is collected by the controller.

Prediction Model. To predict the future values of non-controllable input para-
meters (i.e., N̄ (ej , τ), as an indicator for the future rate of incoming events, and
T̄ (ai, τ) as an indicator for the total computational requests), we employ the
well-known auto regressive integrated moving average (ARIMA). Using such
a model, the future values of a random variable, such as û, can be prog-
nosticated by applying a linear model over a series of past observations as:
ûτ = c + εt +

∑h
�=1 β�uτ−� + θ�ετ−�, where c is a constant and ε’s are inde-

pendent and identically distributed errors from a normal distribution with mean

A QoS-Aware Resource Allocation Controller 247

zero and a finite variance, e.g., a white noise function. β�’s and θ�’s are coef-
ficients to be updated using least-squares regression method right after a new
observation becomes known.

Optimization Process. The controller continuously solves an optimization
problem with an objective function that is the sum of three cost functions as
given below.

– Resource utilization residue (C(U)). The study in [27] discussed the need to
keep CPU utilization constantly between 60%–80% in order to reach the best
balance between the performance of each host and its energy consumption
(the exact value depends on the CPU architecture). We use the residue func-
tion to penalize any derivation from the ideal utilization level for CPU. We
propose a cost function that penalizes more any derivation from the upper
bound comparing to the derivation from the lower threshold, employing such
a cost function enables us to avoid the exploitation of full CPU capacity,
known as “meltdown point” problem, that has the over-utilized CPU become
a bottleneck of the system.

C(U) =

⎧
⎪⎪⎨
⎪⎪⎩

|U−U∗,upper
CPU

1−U∗,upper
CPU

|2 if U ≥ U∗,upper
CPU

0 if U∗,lower
CPU ≤ U ≤ U∗,upper

CPU

|1 − U

U∗,lower
CPU

|2 if U ≤ U∗,lower
CPU

, (2)

where U is the measured value of average CPU utilization of the host at any
given interval.

– Total QoS detriment (
∑

pk
Dpk

). To favor a resource allocation decision that
results in fewer QoS violations, we propose a cost function that explicitly
evaluates the sum of QoS detriment over all machines (Sect. 3).

– Total switching cost (
∑

SW). Changing the current configuration is costly.
The switching cost evaluates the difference (e.g. the Euclidean norm) between
the decision vectors applied at two successive steps to avoid exceeding changes
in the configuration states. This enables the controller to be more conservative
in adopting abrupt changes in the reconfiguration decisions.

The proposed objective function to be minimized is expressed as the sum of
three above-mentioned costs as Eq. 3.

min Jτ =
τ+f∑

t=τ+1

∑
pk

(
γ1C(U) + γ2Dpk,t + γ3SWt

)
, (3)

where f is the prediction horizon length, and γi coefficients are the weight for
each cost function to be set separately. We compute the norm of a normalized
vector of all terms in Eq. 3 whose components are the original values of the
measured/estimated values of the corresponding metrics, each divided by its
maximum expected value. For simplicity, we use equal weights for γi’s in this
paper. While the optimizer module solves the above problem for the future f > 1

248 M. HoseinyFarahabady et al.

steps, the controller only applies the solution for the first step as the system’s
input vector. Then, the whole cycle of prediction and optimization process is
repeated in the next step (as the feedback loop).

To solve the optimization problem, we use a technique based on particle
swarm optimization (PSO) heuristic. PSO is a population based stochastic opti-
mization technique developed by Eberhart and Kennedy in 1995 as an advanced
fast evolutionary computational technique [20] for solving continuous and dis-
crete optimization problems with multiple local extrema. PSO can converge to
the (near-) optimal results in a faster, cheaper way comparing with other opti-
mization methods [24].

We adopt two additional techniques to reduce the potentially large compu-
tational overhead due the exponential size of the feasible state space. Firstly,
we allow the optimization module to run only for a fix fraction (e.g. 1%) of the
control step interval. For example, if ΔT is selected to be one minute, then the
maximum time that the solver is allowed to find a solution is limited to 600 ms.
Within such a period, the best solution obtained by the PSO solver, is consid-
ered as the input vector of the controller in the next step. Secondly, we allow the
PSO solver to continue searching for a better solution until the data of the next
step comes out. While such a solution cannot be used for the system input at
the current step, it is greatly beneficial as the starting point for the next round
of the PSO solver.

5 Experimental Evaluation

In this section, we present our evaluation results in terms of primarily (1)
response time (latency), (2) resource utilization and (3) QoS violations. We also
present the sensitivity analysis and the scalability of our resource controller.

5.1 Experimental Setup

System Environment. We evaluated our approach by conducting an exten-
sive set of experiments on our local cluster to measure the effectiveness of our
approach with respect to the three parameters of resource utilization, QoS viola-
tion incidents, and scalability. We used a local cluster consisting of two machines
with a total of 16 cores, and 32 GB of main memory. Each machine equipped
with a 3.40 GHz i7 CPU, 16 GB of RAM, and 8 MB LLC and Ubuntu 14.04. To
imitate a heterogeneous environment, we use Xen hypervisor 4.4.2 to create 8
virtual machines each with one dedicated core and 2 GB of main memory (one
VM shared with Dom-0), and another 4 virtual machines (VM), each with two
dedicated cores and 4 GB of RAM. All Dom-0 and guest VMs run the same
Linux kernel version 4.2.0.

The proposed solution as a feedback controller for the above-mentioned plat-
form is implemented in Python 2.7 and runs in a dedicated machine equipped
with Intel i7-4712HQ 2.3 GHz with 16 GB of RAM, and 512 Samsung PM851
SSD disk. We installed Dask framework [22] on all guest VMs to implement

A QoS-Aware Resource Allocation Controller 249

a Lambda platform as a distributed cluster. Being equipped with a versatile
library for distributed computing over a cluster of hundreds of machines, Dask
provides a library for running a set of pre-defined functions in parallel and/or
out-of-core computational fashion [19]. The Dask model allows us to build a com-
plex network of actions that might depend on each other to be run once after
an associated event occur. It has dynamic asynchronous primitives that provide
a very low-latency mechanism among working threads. Due to its asynchronous
nature, the task scheduler of Dask framework can flexibly handle a variety of
functions simultaneously [22].

Workload Attributes. We created a synthetic event/action data-set by ana-
lyzing on a subset of real twitter data gathered by [2]. For the scope of this paper,
our comprehensive analysis relies on a synthetic workload that runs in our own
test-bed, we left exploration of such an analysis in the real implementation with
alternatives found in the industry as a subject for future investigation.

We created |A| = {10, 20, 30, 40, 50, 60} functions each running either a web-
service script, representing latency-sensitive workloads, or a data-analytic script,
representing data-intensive workloads. Both workloads are taken from Cloud-
Suite benchmark [7]. Each action ai ∈ A is associated with only one event
source ei. The rate of event generation of each event source is taken from a Pois-
son distribution with parameter of λ ∈ {1, 3, 6}. The λ parameter indicates the
average number of events generated per millisecond. The execution time required
to process each event ranges from 40 ms up to 21 s, with an average of 1078 ms.
The number of generated events per action in each scenario varies from 5000
to 10000 depending on the scenario parameters, with an average of 7000 events
per action. We allow each scenario to run for the period of one hour. There are
two different QoS enforcement classes, i.e. |Q| = 2 in our setting. The associated
upper bounds of QoS classes are Vq=1..2 ∈ {0.99, .090}. In this way, we assign
each stream to one of the QoS classes randomly. We choose the sampling interval
epoch and the maximum number of CPU cores to be used in each scenario to
be one second and M = 16, respectively.

Compared Heuristics. The proposed solution is compared against two other
heuristics, namely round robin and best-effort. The former uses a round robin
policy to balance the associated events amongst the associated threads with
the main aim of distributing evenly the incoming events among each Lambda
functions. This is the policy which is mainly implemented in major Lambda
engines, including IBM OpenWhisk. Based on our implementation, we fixed the
number of threads associated with each action based on the QoS class that it
belongs to (i.e. 9 and 7 for two different QoS classes, respectively).

The best-effort approach uses f irst f it decreasing (FFD) algorithm to deter-
mine the number of appropriate worker threads per Lambda function in order
to achieve a compromise between resources’ usages and QoS violation incidents.
Best-effort adds an additional worker thread only if the amount of QoS vio-
lation experienced by the corresponding function exceeds a certain threshold

250 M. HoseinyFarahabady et al.

(i.e. 2 min in our experiments). Further, if a physical host becomes fully utilized,
then best-effort looks for the next machine to execute a thread.

5.2 Results

All reported analytical results reflect the behavior of the system when the per-
formance of the system remains stable right after passing a short transient state.
During such a transient period, the latency of serving events might be noticeably
higher than its average in the steady states. We left the study of the transient
period behavior of a Lambda platform as a future work.

Fig. 1. Average latency achieved by the proposed algorithm against round robin and
best-effort as the number of actions varies from 10 to 60. Scenarios are distinguished
by different values of θ ∈ {3, 6}, and number of cores |M| ∈ {8, 16}.

Response Time. Figure 1 demonstrates the average response time (latency)
achieved by our approach as it is compared with the other two heuristics in four
different scenarios. The x axis in all figures represents the number of Lambda
functions that is increasing gradually from 10 to 60. Each scenario differs with
another one with respect to either the event generation rate, θ, or the maximum
number of cores that can be employed in that scenario, denoted by |M|. The
result achieved by the proposed approach when θ = 1 is similar to the ones
shown here and we do not repeat them.

The trend confirms that the response time monotonically increases when the
number of actions increases (from 10 to 60) or when the rate of event generation
increases (from 1 to 6) irrespective of resource allocation strategies. Further, no
anomalies can be seen in any scenario. This result is expected because the work-
load of each working thread monotonically increases in both cases. However, the
effectiveness of both the round-robin and best-effort schema is less than the pro-
posed algorithm mainly because ours can dynamically adapt to the spike in the
event generation rates by assigning more computing resources to those actions
which are suffering from obtaining enough resources to process the corresponding
events (as reflected via the first term of the objective function). Particularly, the

A QoS-Aware Resource Allocation Controller 251

improvement in average processing time per Lambda function achieved by the
proposed controller is more significant when θ = 6 (high incoming traffic rate)
and less resources are available. Overall, the proposed controller enhances the
average processing time by 19.9% on average compared with the best outcome
of other two heuristics.

Fig. 2. Steady state core utilization for
active CPUs which are appointed by dif-
ferent resource allocation policies to run
some Lambda functions. Two Scenarios
are selected based on different values of
θ as the event generation rate, and the
total number of available cores, |M|, to
be employed by each policy.

Fig. 3. Normalized percentage of QoS
violation incidents achieved by each
resource allocation heuristic as the num-
ber of Lambda functions varies from 10
to 60 for the two extreme scenarios when
|M| = 8. The improvement of the pro-
posed solution is 301% in average (max
358%) comparing to round-robin policy.

Resource Utilization. Figure 2 depicts a summary of the average core uti-
lization gathered in all machines achieved by three resource allocation strategies
under the two synthetic scenarios distinguished by different values of θ as the
event generation rate, and the total number of accessible cores by each pol-
icy, |M|. A significant achievement by applying the proposed controller is its
ability to keep the utilization of all the employed CPU cores around the ideal
utilization level in most scenarios (which is set to between [60%–80%] through-
out the experiments). Such an achievement can be leveraged by putting other
non-working cores into the deep sleep mode to save energy usage.

In contrary, both the round robin and best-effort policies are oblivious of such
ideal level. By employing almost all available cores blindly, these policies keep
the CPU utilization of some cores higher than the ideal level, i.e., more than
80%, while allowing the rest of cores run at a level much below the ideal value.
It is worth noting that because the core utilization has a direct impact on the
total energy consumption of each host, it is desirable to force each core to work
either on 0% or close to the ideal level. Altogether, the results obtained from
all experiments scenarios (including those who are not depicted here) revealed
that the proposed controller enhances the utilization of working CPUs by 21%
on average compared with the best outcome of the other heuristics which is
achieved by employing best-effort policy.

252 M. HoseinyFarahabady et al.

QoS Violation. Figure 3 depicts the percentage of QoS violation incidents,
according to the definition of QoS detriment metric in Sect. 3. The results com-
pared the amount of QoS violation achieved by the proposed controller versus
those achieved by the other two strategies. We only depict the results in scenar-
ios that the event generation rate is deliberately high, i.e., the value of θ is 6,
while the number of CPU cores to be used in each scenario is low (=8).

As the rate of incoming events and the requested processing time for each
corresponding action are substantially high, it is difficult for a QoS-oblivious
scheduler to assign enough resources to the most important actions to avoid the
occurrence of QoS violation for such actions. The experimental results confirmed
that the proposed QoS-aware controller can effectively reduce the QoS violation
incidents by a factor of 3.0 on average compared to the round-robin strategy
which uses all available cores in an almost balanced manner and shows the best
result with regard to this factor.

Sensitivity Analysis. When one tries to build a model for a complex system
(such as a Lamdba platform), it is almost impossible to prevent the occurrence
of errors in prediction phase. A promising controller must be tolerant to the
negative consequences of such errors in the decision making phase. To help reduce
the risk of such errors, we incorporate two methods in the proposed controller
as follows.

– Using εt in prediction model to explicitly introduce randomness
– Choose the value of response speed rate, Tref , strictly greater than one (in our

case 3). Such a selection allows the system to gradually adapt to the input
changes in more than one step (see Sect. 4).

To perform the sensitivity analysis, we first start with a prediction model
with zero error. Progressively, we inject errors ranging from 10% to 90% to the
prediction of input variables, and then measure the influence of such errors on
the system outputs. We define a parameter called sensitivity coefficient, denoted
by κ, for each performance metrics, such as Z, as follows.

κε,Z =
‖Z(x) − Z(x ± ε)‖

‖Z(x)‖ (4)

κ reflects how much the target output is sensitive when the input parameter x
is estimated with an error of εx.

Figure 4 shows a summary of average sensitivity coefficients for both response
time and CPU utilization with respect to the errors in the prediction model. The
trend confirms that even an error of 90% puts a little negative stress on the target
performance metrics (below 34% in the worst case scenario).

Scalability. As we force the optimizer module to return the best achievable
solution found within the 1% of the time-frame, the computational time of the
proposed controller is limited to a fixed amount (e.g., 600 ms in our experiments).

A QoS-Aware Resource Allocation Controller 253

Fig. 4. The sensitivity coefficient curve for two parameters of average latency (left)
and average CPU utilization (right) as the prediction error varies from 10% to 90%
(x-axis).

We performed a set of experiments (by increasing the number of active cores
and Lambda actions) to examine the scalability of the proposed controller. So,
we allow the optimizer module to find an approximate solution within 10% of
the optimal solution and collect the running time of such an optimizer. Table 1
presents the computational time that the optimizer module needs to find such a
solution. The results confirmed that the technique can find a reasonable effective
solution in less than 2.15 s when the number of machines and Lambda actions
increase to 100 and 800, respectively.

Table 1. Average Running time of the optimizer module to find an 1.1 approximation
solution when the number of cores and FaaS actions varies.

|M| |A| Running time

30 100 0.7 s

50 250 1.05 s

100 800 2.15 s

6 Conclusion

Understanding the run-time behavior of FaaS/Lambda functions can be of great
practical importance for designing efficient resource allocation strategies for a
FaaS/Lambda platform. We have presented a solution based on the famous
model predictive controller (MPC) for achieving a dynamic QoS-aware resource
allocation in such a platform. Our solution makes appropriate resource allo-
cation decisions by predicting the future rate of events coming to the sys-
tem as well as considering the QoS enforcements requested by each function.

254 M. HoseinyFarahabady et al.

The proposed controller achieves an average improvement of 21% in resource
utilization and a 3-times reduction of QoS-violation incidents compared with the
best result achieved by the round-robin or best-effort strategy, while maintaining
the mean latency of actions 19.9% less than the result achieved by best-effort
strategy.

As reported by several past research projects (such as [27,29,32]), collocated
applications can compete fiercely with each other to acquire the shared resources
(e.g., CPU cache, memory bandwidth). Such a contention not only causes an
overall performance degradation, but also can increase the power consumption
of the whole system. We left an investigation on the effect of the proposed method
on energy consumption of an in-house Lambda platform as a future work.

Acknowledgments. Authors acknowledge support of the Australian Research Coun-
cil Linkage-Industry Grant (LP160100406). Authors are also thankful to the anonymous
reviewers whose constructive suggestions helped improve and clarify this manuscript.

References

1. Amazon Inc.: AWS Lambda: How It Works (2016). http://docs.aws.amazon.com/
lambda/

2. Cheng, Z., Caverlee, J., Lee, K., Sui, D.: Exploring millions of footprints in location
sharing services. In: International Conference on Weblogs & Social, pp. 81–88.
AAAI (2011)

3. De Matteis, T., Mencagli, G.: Proactive elasticity and energy awareness in data
stream processing. J. Syst. Softw. 127(C), 302–319 (2017)

4. De Matteis, T., Mencagli, G.: Keep calm & react with foresight: strategies for low-
latency & energy-efficient elastic data stream processing. In: SIGPLAN Principles
& Practice of Parallel Programming, pp. 13:1–13:12. ACM (2016)

5. Ebrahimi, E., Lee, C.J., Mutlu, O., Patt, Y.N.: Prefetch-aware shared resource
management for multi-core systems. In: International Symposium on Computer
Architecture, ISCA 2011, vol. 39, pp. 141–152. ACM (2011)

6. Faison, T.: Event-Based Programming: Taking Events to the Limit. Apress, Berkely
(2006)

7. Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Alisafaee, M., Jevdjic, D.,
Kaynak, C., et al.: Clearing the clouds: a study of emerging scale-out workloads
on modern hardware. SIGPLAN Not. 47(4), 37–48 (2012)

8. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating scale
out & fault tolerance in stream proc. using operator state management. In:
SIGMOD Management of Data, pp. 725–736. ACM (2013)

9. Gabor, R., Mendelson, A., Weiss, S.: Service level agreement for multithreaded
processors. ACM Trans. Archit. Code Optim. 6(2), 1–33 (2009)

10. Gabor, R., Weiss, S., Mendelson, A.: Fairness enforcement in switch on event mul-
tithreading. ACM Trans. Archit. Code Optim. 4(3), 34 (2007)

11. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

12. Google Inc.: Google Cloud Functions (2016). http://cloud.google.com/functions/
docs/

http://docs.aws.amazon.com/lambda/
http://docs.aws.amazon.com/lambda/
http://cloud.google.com/functions/docs/
http://cloud.google.com/functions/docs/

A QoS-Aware Resource Allocation Controller 255

13. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice with MAT-
LAB, 4th edn. Wiley-IEEE Press (2014)

14. Heck, D.: Lambda architecture with SAP HANA platform (2016). www.linkedin.
com/pulse/ep-7-lambda-architecture-sap-hana-platform-didier-heck

15. Hoseinyfarahabady, M., Lee, Y.C., Zomaya, A., Tari, Z., Song, A.: A model predic-
tive controller for contention-aware resource allocation in virtualized data centers.
In: Symposium on Modeling, Analysis & Simulation of Computer & Telecommu-
nication Systems (MASCOTS 2016), pp. 277–282. IEEE, London (2016)

16. Hoseinyfarahabady, M., Taheri, J., Tari, Z., Zomaya, A.: A dynamic resource con-
troller for a lambda architecture. In: 46th International Conference on Parallel
Processing (ICPP). IEEE, Bristol (2017)

17. IBM Corp.: High Level Architecture (2016). http://developer.ibm.com/
openwhisk/

18. IBM Corp.: IBM Bluemix OpenWhisk (2016). www.ibm.com/cloud-computing/
bluemix/openwhisk/

19. VanderPlas, J.: Out-of-Core Dataframes in Python (2015). http://jakevdp.github.
io/blog/2015/08/14/out-of-core-dataframes-in-python/

20. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Neural Networks, vol.
4, pp. 1942–1948. IEEE, November 1995

21. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power & perfor-
mance management of virtualized computing environments via lookahead control.
Cluster Comput. 12(1), 1–15 (2009)

22. Rocklin, M.: Dask (2017). http://dask.pydata.org
23. Mutlu, O., Moscibroda, T.: Stall-time fair memory access scheduling for chip multi-

processors. In: Symposium on Microarchitecture, pp. 146–160. IEEE/ACM (2007)
24. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell.

1(1), 33–57 (2007)
25. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design. Nob

Hill, Madison (2009)
26. Sbarski, P.: Serverless Architectures on AWS: With examples using AWS Lambda.

Manning Publications, Shelter Island (2017)
27. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-

puting. In: Power Aware Computing and Systems, HotPower 2008, p. 10. USENIX
Association (2008)

28. Subramanian, L., Seshadri, V., Ghosh, A., Khan, S., Mutlu, O.: The applica-
tion slowdown model: Quantifying and controlling the impact of inter-application
interference at shared caches and main memory. In: International Symposium on
Microarchitecture, pp. 62–75. MICRO-48. ACM (2015)

29. Tembey, P., Gavrilovska, A., Schwan, K.: Merlin: application & platform-aware
resource allocation in consol. servers. In: SOCC 2014, pp. 1–14 (2014)

30. Usui, H., Subramanian, L., Chang, K.K.W., Mutlu, O.: Dash: deadline-aware high-
performance memory scheduler for heterogeneous systems with hardware acceler-
ators. ACM Trans. Archit. Code Optim. 12(4), 1–28 (2016)

31. Valduriez, P., Soriente, C., Jim, R.: Streamcloud: elastic & scalable data streaming.
IEEE Trans. Parallel Distrib. Syst. 23(12), 2351–2365 (2012)

32. Yang, H., Breslow, A., Mars, J., Tang, L.: Bubble-flux: precise online QOS manage-
ment for increased utilization in warehouse scale computers. SIGARCH Comput.
Archit. News 41(3), 607–618 (2013)

33. Ye, K., Wu, Z., Wang, C., Zhou, B.B., Si, W., Jiang, X., Zomaya, A.Y.: Profiling-
based workload consolidation and migration in virtualized data centers. IEEE
Trans. Parallel Distrib. Syst. 26(3), 878–890 (2015)

www.linkedin.com/pulse/ep-7-lambda-architecture-sap-hana-platform-didier-heck
www.linkedin.com/pulse/ep-7-lambda-architecture-sap-hana-platform-didier-heck
http://developer.ibm.com/openwhisk/
http://developer.ibm.com/openwhisk/
www.ibm.com/cloud-computing/bluemix/openwhisk/
www.ibm.com/cloud-computing/bluemix/openwhisk/
http://jakevdp.github.io/blog/2015/08/14/out-of-core-dataframes-in-python/
http://jakevdp.github.io/blog/2015/08/14/out-of-core-dataframes-in-python/
http://dask.pydata.org

Probabilistic Qualitative Preference Matching in
Long-Term IaaS Composition

Sajib Mistry1(B), Athman Bouguettaya1, Hai Dong2, and Abdelkarim Erradi3

1 School of Information Technologies, University of Sydney, Sydney, Australia
{sajib.mistry,athman.bouguettaya}@sydney.edu.au

2 School of Science, RMIT University, Melbourne, Australia
hai.dong@rmit.edu.au

3 Department of Computer Science and Engineering, Qatar University, Doha, Qatar
erradi@qu.edu.qa

Abstract. We propose a qualitative similarity measure approach to
select an optimal set of probabilistic Infrastructure-as-a-Service (IaaS)
requests according to the provider’s probabilistic preferences over a long-
term period. The long-term qualitative preferences are represented in
probabilistic temporal CP-Nets. The preferences are indexed in a k -d
tree to enable the multidimensional similarity measure using tree match-
ing approaches. A probabilistic range sampling approach is proposed to
reduce the large multidimensional search space in temporal CP-Nets.
A probability distribution matching approach is proposed to reduce
the approximation error in the similarity measure. Experimental results
prove the feasibility of the proposed approach.

1 Introduction

IaaS providers (e.g., Amazon and Windows Azure) offer Virtual Machines (VMs)
as services in a cloud market [1]. IaaS services (i.e., configurations of VMs) are
usually customized to fit the requirements of consumers. Consumers (e.g., univer-
sities, governments, and Software-as-a-Service (SaaS) providers) are more likely
to require long-term IaaS services according to their business goals and budget
constraints. A typical IaaS request includes functional attributes, such as CPU,
memory, and network units, and Quality of Services (QoSs) attributes, such as
availability, throughput, response time and price [1]. The IaaS composition is
defined as to select an optimal set of custom consumer requests that maximizes
the revenue and profit of the provider [8,16].

The provider’s long-term business strategies are typically qualitative in
nature. For example, the provider may have a promotional strategy (discounted
prices for services) in the first year. In the following years, it may have profit-
maximization strategies considering the market completion. Similarly, long-
term consumer requests are usually variable over a time period and qualita-
tive in nature. For example, a consumer may prefer an IaaS service that has
higher throughput in the first year. While in the second year, the consumer
may find throughput is less important and may require price-sensitive services.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 256–271, 2017.
https://doi.org/10.1007/978-3-319-69035-3_18

Probabilistic Qualitative Preference Matching 257

In the qualitative IaaS composition, the acceptance or rejection of an incoming
request should follow the business strategies of the provider as accepted requests
are committed for the whole period [9]. A key limitation of exiting approaches
is that the business strategies need to be deterministic, i.e., the provider should
have 100% confidence to determine future changes in advance. Another limitation
is that consumers are not allowed to represent their preferences in a qualitative
manner.

We consider probabilistic qualitative IaaS requests from the consumers and
probabilistic qualitative business strategies of the providers in the long-term com-
position. Here, consumers provide their probabilistic IaaS service requests based
on their predicted business needs. For example, a university may calculate the
required IaaS services based on the number of students and staffs for the first
year. However, there is a 40% chance that the number of students and staffs will
increase in two folds in the second year. Hence, there is 60% probability that the
consumer’s preference will remain similar and 40% probability to be changed in
the second year. Similarly, providers’ business strategies are constructed based
on different environment variables such as available resources and number of
consumers. For example, business strategies are constructed assuming a fixed
size of resources for a long-term period in [9]. However, such an assumption is
hardly applicable in the real world as available resources tend to be probabilistic
rather than deterministic. For example, the provider may invest in increasing
new resources or sell a part of existing resources to other providers in the fol-
lowing years [5]. Similarly, the future demand for IaaS services is probabilistic
in nature and hard to predict with 100% confidence.

We assume that an IaaS provider has already developed its long-term proba-
bilistic qualitative service delivery preferences. It receives different long-term
probabilistic qualitative service requirements from different consumers. Note
that, how the probabilities are determined is out of the scope of this paper.
Our target is to find the optimal set of requests where their probable preferences
are best matched with the provider’s uncertain preferences. We have identified
the following research challenges in the probabilistic long-term IaaS composition:

– Probabilistic temporal preference representation: We require not only
an intuitive tool for structuring the provider’s qualitative preferences but
also a support for assigning temporal transition probabilities. For example,
a provider may prefer providing CPU based services over Network based
services in the first year. In the second year, there is 80% probability that
provider will stick to its existing preference order, but there is 20% proba-
bility to deliver services with a different preference order. The semantics of
preferences may not be static during the whole period of composition. For
example, 10ms response time is treated as a high QoS in this year, but it may
become a moderate QoS in the next year due to an upgrade of the hardware
in the market.

– Probabilistic qualitative similarity measure: Upon receiving probabilis-
tic qualitative temporal preferences from the consumers, we have to quantify
their similarity measure with the provider’s temporal qualitative preferences.

258 S. Mistry et al.

However, as we are considering long-term composition, each time segments
should have several probable temporal preferences and each of them may have
several probable temporal preferences in the next temporal segments. Hence,
the number of temporal sequences or orders of preferences might be large for
the whole composition period. It is computationally inefficient to compare
every pair of sequences for the similarity measure. We require a probabilis-
tic similarity matching approach that can approximate to the optimal result
using fewer number of comparisons.

We represent preferences in probabilistic Temporal CP-Nets (PrTempCP-
Net), where dynamic TempCP-Nets have a transition probability matrix among
composition intervals. The dynamic semantics of the preferences are indicated
using a Conditional Preference Table (CPT) [3] of the PrTempCP-Net. We
assume that the dynamic semantics of preferences are global across the con-
sumers for simplicity. However, we transform semantics of consumers’ preferences
to match the dynamic semantics of the provider’s preferences and apply compo-
sition aggregation rules [16] for the similarity measure. Moreover, the induced
preference graph [13] from TempCP-Net is indexed in a multidimensional k -d
tree [2] to effectively match with the attributes of the consumer preferences.

Although long-term IaaS composition is a preference maximization combina-
torial optimization problem [8], we only focus on probabilistic similarity match-
ing approach in the composition. We apply a brute force approach to gener-
ate all possible combinations of IaaS requests. Instead of comparing all prefer-
ence sequences in the PrTempCP-Net (a computationally inefficient matching
process), we propose a novel probabilistic range sampling approach. The ranges
are selected in a way so that they approximate to an optimal spectrum of sim-
ilarity deviations from any random preference sequences matching. We use the
Kolmogorov-Smirnov test (K-S test) [4] as a statistical distribution matching
algorithm to determine the weight of a given preference range in the similarity
measure. The weighted similarity measures of all the preference range samples
are aggregated to determine the highest matched, i.e., the optimal set of requests.

2 Related Work

Graphical models are proposed to represent user-preferences where relative
ordering among preference attributes are determined by economic variables such
as cost and profit [14]. A Conditional Preference Network (CP-Net) [3] is a
dependency graph that represents consumers’ preferences qualitatively. A CP-
Net based graphical model is proposed for the service composition from the con-
sumers’ perspective [12]. The composition approach from incomplete consumer
preferences [13] performs preference amendment, i.e., the similar consumer detec-
tion and historical preference voting. Graph based similarity measure are applied
to find the optimal composition in web service compositions [7]. A deterministic
temporal CP-Net is proposed to represent the provider’s long-term qualitative
preferences [9]. To the best of our knowledge, exiting research does not consider
probabilistic qualitative preferences in the long-term IaaS composition.

Probabilistic Qualitative Preference Matching 259

Cluster sampling and multistage sampling are applied to generalize the
results to the target population [10]. Convenience sampling and probabilistic
range sampling are nonprobability sampling techniques which approximate a
sample of subjects/units from a population [15]. It is useful especially when ran-
domization is impossible like when the population is very large [15]. Kolmogorov-
Smirnov (K-S) test is efficient to measure the similarity between the probability
distributions of two samples [4]. To the best of our knowledge, statistical analysis
is yet to be applied to reduce the large search space and to perform similarity
measure in the probabilistic qualitative IaaS composition.

3 Motivation: Probabilistic Qualitative IaaS Composition

Let us assume, a new IaaS provider starts offering virtual CPU services associ-
ated with QoS of availability for simplicity. Consumer A and B are interested
in using services from the provider. We assume that both the provider and con-
sumers have same semantic interpretation of the qualitative preferences on CPU,
availability, and price for simplicity. We represent the semantic levels as high,
moderate, and low, as shown in Fig. 1(a).

The CP-Net can elegantly represent these qualitative preferences. For exam-
ple, an arc from “CPU” to “availability” means the preference of “availability”
depends on the preference of “CPU” units. The provider may have different
business strategies represented in CP-Nets. For example, the provider prefers
to provide high-quality services with relatively lower prices, to build its reputa-
tion in the market. Hence, the provider decides that “availability” of a service
is the most important attribute, followed by “CPU” and “price”. CP1 is the
corresponding CP-Net for reputation building (Fig. 1(b)). In CP1, the “high”
availability has a higher priority than the “moderate” availability, i.e., A1 � A2.
Note that, the “low” availability (A3) is not in the provider’s preference in CP1.
The choice of availability dictates the choice of CPU units. Finally, the price of
the service is chosen based on the selection of the levels of availability and CPU
units. As this is a reputation building phase, the provider will not charge “high”
price (P1) while providing “moderate” CPU units (C2 : P2 � P3). In CP1, the
most preferred service provision is (A1, C1, P1) and the least preferred choice
is (A2, C1, P3). Similarly, CP2 and CP3 capture the profit maximization and
risk management strategies respectively (Fig. 1(b)). In CP2, the most preferred
service provision is (P1, C3, A3) and the least preferred service is (P2, C2, A2)
expressing the preference on the higher price. In CP3, the most preferred service
provision is (C3, P1, A3) and the least preferred service provision is (C2, P3, A3).

Consumers may have different qualitative preferences represented in CP-
Nets based on their requirements. In Fig. 1(c), CP4 captures the “availability
sensitive” preferences. Here, consumers do not prefer “low” availability and are
able to pay “high” price for “high” availability and CPU units. CP5 captures
the “price sensitive” preferences where consumers do not prefer “high”-priced
services and are satisfied with“low” CPU and availability if the service price is
“low”. CP6 captures the “CPU sensitive” preferences. Here, consumers do not

260 S. Mistry et al.

prefer “low” CPU and are able to pay “high” price for “high” CPU units and
availability. CP7 also captures the “availability sensitive” preferences. It decides
CPU and price values based on “low to moderate” availability preferences. In
CP7, the highest preferred service is (A2, C1, P2) and the least preferred service
is (A3, C1, P3).

Fig. 1. (a) Semantic representation of preferred service attributes, (b) A provider’s
qualitative preferences, (c) Consumers’ qualitative preferences

The provider’s business strategies probably change in the long-term period
(Fig. 2(a)). For example, the provider is determined to apply the reputation
building strategy (CP1) in the first year. In the second year, the profit maxi-
mization strategy (CP2) has a 60% chance to be applied, because the number
of consumers may turn out lower than expected. Hence, there is 40% proba-
bility to continue the reputation building strategy (CP1) from the first year.
Similarly, the risk management strategy (CP3) has a 10% chance to be applied
in the third year due to possible hardware failures in the aging infrastructure.
Uncertainties around consumers’ qualitative preferences are also a natural phe-
nomena in a long-term period (Fig. 2(a)). For example, consumer A may fore-
cast a 60% chance of using “availability-sensitive” services (CP4) only for the
three year period. It also predicts that there is a 40% chance to use “price-
sensitive” services (CP4) due to a possible economic recession in business. The
temporal changes in qualitative preferences and their transition probabilities
from one CP-Net to another CP-Net are captured in a probabilistic tempo-
ral CP-Net model denoted as PrTempCP-Net. In Fig. 2(a), the provider uses
{CP1, CP2 and CP3}, the Consumer A uses {CP4, CP5 and CP6}, and Con-
sumer B uses {CP6, CP7 and CP4} to build their PrTempCP-Nets.

Here, all possible compositions in a brute force manner are {A}, {B} and
{A,B}. The aggregated CPU and availability requirements of Consumer A and

Probabilistic Qualitative Preference Matching 261

Time

1st year

2nd year

3rd year

CP6

CP7 CP4

CP7

CP6

CP6

0.6 0.4

0.6 0.2

0.2 0.6

0.3 0.1

CP2

CP1 CP3

CP1

CP1

CP2

0.7 0.3

0.6 0.3

0.1 0.6

0.3 0.1

CP4

CP5 CP6

CP5

CP4

CP4

0.6 0.4

0.6 0.2

0.2 0.6

0.3 0.1

Provider Consumer A Consumer B

Similarlity (P,A)Provider (P) Consumer A Consumer B Similarlity (P,B)

Probable run-time temporal preference sequences

1st: CP1, CP2, CP2

1st: CP1, CP2, CP2

2nd: CP1, CP2, CP1

2nd: CP1, CP2, CP1

1st: CP4, CP4, CP4

2nd: CP4, CP4, CP5
1st: CP4, CP4, CP4

2nd: CP4, CP4, CP5

1st: CP6, CP6, CP6

2nd: CP6, CP6, CP7

1st: CP6, CP6, CP6

2nd: CP6, CP6, CP7

High

Low

High

Low

Almost High

Almost High

Moderate

Moderate

Similarity Index

(a)

(b)

Fig. 2. (a) Probabilistic Temporal CP-Nets (b) Runtime similarity index

B are greater than the provider’s maximum resource limit, we select either
{A} or {B} as the best composition. Each PrTempCP-Net in Fig. 2(a) has 6
sequences of CP-Nets with different probabilities. First, we apply a greedy app-
roach and match the highest probable sequences (Provider: (CP1, CP2, CP2),
Consumer A: (CP4, CP4, CP4), Consumer B: (CP6, CP6, CP6)) in Fig. 2(b).
Here, CP2 is highly matched with CP4 and CP6 as consumers are able to pay
“high” prices for “high” availability and CPU units. However, CP1 is better
matched with CP4 (higher availability in both preferences) than CP6 (CPU-
sensitive preferences). Hence, A is better matched (high) than B (almost high)
for highest probable CP-Net sequences. Next, we compare the provider’s high-
est sequences (CP1, CP2, CP2) with second highest sequences of Consumer A
(CP4, CP4, CP5) and Consumer B (CP6, CP6, CP7). As CP5 does not prefer
higher priced services, but CP2 does prefer the opposite, the similarity mea-
sure between the provider and Consumer A is lower than the similarity measure
between the provider and Consumer B. The similarity measure of the first two
probable sequences are described in Fig. 2(b). Although {A} is best matched
with the highest probable sequences, B has the best averaged similarity in all the
sequences (it never goes low in similarity measure). Hence, the greedy approach
may not be applicable in runtime. If there are m CP-Nets and t time segments in
a PrTempCP-Net, O(mt2) are required to find the optimal composition. It may
not be feasible to compare all the sequences for large m and t values. Hence,
we apply probabilistic statistical sampling and matching techniques to reduce the
search space in runtime.

4 Probabilistic Temporal CP-Net

We require not only an intuitive tool for structuring the probabilistic qualitative
preferences, but also a support for a matching process. We model the long-term

262 S. Mistry et al.

preferences as probabilistic temporal CP-Net (PrTempCP-Net). PrTempCP-Net
is defined as 6-tuple < V,M,N, I, I0, P (., .) > where:

– V = {X1, ...,Xn} represents a set of functional and non-functional attributes.
Typical functional attributes are CPU (C), Network bandwidth (NB), and
Memory (M), and QoS attributes are Availability (A), Response time (RT),
Throughput(TP) and Price(P).

– M = {CP1, CP2,, CPm} is a finite set of CP-Nets. A CP-Net in the inter-
val Ik, CP Ik is a directed graph G over V whose nodes are annotated with
conditional preference tables CPT (Xi) for each Xi ∈ V . Each conditional
preference table CPT (Xi) describes the qualitative preferences over the val-
ues of the variable Xi given every combination of parent values. For exam-
ple, in CP1, the CPT (C) contains {A1, A2} while preferences are made over
{C1, C2} (Fig. 1(b)). A CP-Net generates a total ordered (�) preference rank-
ing over the set of service configurations: o1 � o2 means that a configuration
o1 is equally or more preferred than o2. We use o1 � o2 to denote the fact that
provisioning or consuming service o1 is more preferred than o2 (i.e., o1 � o2
and o2 � o1), while o1 ∼ o2 denotes that the provider’s or consumers’ pref-
erence is indifferent between the configurations o1 and o2 (i.e., o1 � o2 and
o2 � o1).

– N = {Sem Table1, Sem Table2,, Sem Tablen} is a finite set of semantic
tables. Sem Tablek represents the kth semantic interpretations over ranges of
the variable Xi. Figure 1(a) is such a semantic table that maps 70–100 units
of CPU as a “high” CPU value.

– I = {I1, I2,, It} is the finite set of intervals. Here, the total composition
time, T is divided into t intervals where, T =

∑t
i=1 Ii.

– I0 represents the starting interval in the matching process of a composition
which is defined by the provider or consumer.

– P (CPs, Sem Tables, Is| ´CPs, ´Sem Tables, Ís) is the probability to choose a
particular service preference CPs in interval Is with the corresponding seman-
tic table (Sem Tables) from service preference ´CPs which is applied in inter-
val Ís with the semantic table ´Sem Tables. We assume that all probabilities
are generated before the composition. In Fig. 2(a), the probability to transit
from (CP1, first year) to (CP2, second year) is 0.7.

A probabilistic TempCP-Net produces different deterministic TempCP-Nets
based on I0. A deterministic TempCP-Net is generated by applying transition
probabilities to a CP-Net in an interval. Usually, the matching process is per-
formed from left to right, i.e., first interval to second interval and so on. Here, the
first interval is set as I0. For example, {(CP1, 1st Year), (CP2, 2nd year), (CP2,
3rd year)} is the highest probable deterministic TempCP-Net as the transition
probabilities are 0.7 and 0.7 respectively. The set of consequences o � ó of an
acyclic TempCP-Net constitutes a partial order over the service configuration.
This partial order can be represented by an acyclic directed graph, referred to
as the induced preference graph. The nodes of the induced preference graph cor-
respond to the complete assignments to the variables of the network. There is
an edge from node ó to node o iff the assignments at ó and o differ only in the

Probabilistic Qualitative Preference Matching 263

Fig. 3. (a) Induced preference model, (b) k-d tree indexing

value of a single variable X. Given the values assigned by ó and o to Pa(X), the
value assigned by o to X is preferred to the value assigned by ó to X. Figure 3(a)
depicts the induced preference graph of CP1. There is no outgoing edge from
(A1, C1, P1) as it is the most preferred request configuration. Similarly, there
is no incoming edge to (A2, C1, P3) as it is the least preferred configuration. If
n is the number of attributes in the TempCP-net and q is the number of out-
put configurations in an interval, the time complexity for ordering queries in an
interval is O(nq2).

5 TempCP-Net Matching Using k-d Tree Indexing

First, we perform similarity measure between two deterministic TempCP-Nets,
A = {(CP 1

A, Sem Table1A, I1),, (CPm
A , Sem Tablem

A , Im)} and B = {(CP 1
B ,

Sem Table1B , I1),, (CPm
B , Sem Tablem

B , Im)}. We consider it as a base to
match probabilistic TempCP-Nets. We assume that the temporal lengths of the
CP-Nets are same in each TempCP-Nets. CP-Nets within the same interval are
matched and the similarity measure is averaged over the number of intervals (m)
as follows:

Sim(A,B) =
∑m

i=1 SimA,B(CP i
A, Sem Tablei

A, CP i
B , Sem Tablei

B)
m

(1)

The induced preference graph enables similarity measure between two CP-
Nets constructed with the same semantic table (i.e., SimA,B). Each tuple (s1,,
sn) in the induced preference graph of CP i

A is linearly traversed over the induced
preference graph of CP i

B . The similarity measure is then defined as the aver-
aged number of traversals required to search all tuples (time complexity O(n2))
[12]. Here, a lower value indicates a higher similarity index. Considering the
tuple (s1,, sn) as a multidimensional vector, we improve the matching process
using the k -d tree [2]. The k -d tree is a binary tree in which every node is a k-
dimensional point (Fig. 3(b)). Every non-leaf node can be thought of as implicitly
generating a splitting hyperplane that divides the space into two parts, known

264 S. Mistry et al.

as half-spaces. Points on the left and right sides of this hyperplane are rep-
resented by the left and right subtree of that node respectively. We use the
canonical method to construct the k -d tree [2]:

– The selection of splitting planes follows a cycle as the construction algorithm
moves down on the tree. For example, in Fig. 3(b), the root is an “Availability-
aligned” plane, the root’s children both have “CPU-aligned planes”, the root’s
grandchildren have “Price-aligned” planes, the root’s great-grandchildren
have again “Availability-aligned” planes, and so on.

– As all the n points are available from the induced preference graph, we insert
points by selecting the median of the points being put into the subtree, with
respect to their coordinates in the axis being used to create the splitting plane.
This would result in a balanced k -d tree construction in O(n log(n)) times
[2]. Each node in the k -d tree is annotated with its respective preference order
from the induced graph. For example, the root node (A2, C2, P2) is annotated
with the preference ranking 6 in Fig. 3(b).

At first, CP i
A and CP i

B are indexed in corresponding k -d trees. We apply
semantic transformation to one of the k -d trees as follows:

– Semantic Transformation: if Sem Tablei
A �= Sem Tablei

B and the average
value of “high” semantics in Sem Tablei

A is greater than the average value
of “high” semantics in Sem Tablei

B , semantic transformation is applied to
CP i

B . The average value of a semantic “X” in range [a, b] is calculated as
Avg(X) = (a+b)

2 . For all “X” in CP i
B , if Avg(X) is within the range [á, b́] of a

semantic “Y ” in Sem Tablei
A, “X” is replaced with “Y ” in CP i

B . If Avg(X)
is below the “low” semantic in Sem Tablei

A (i.e., no range found), “X” is
replaced with “low” in CP i

B . For example, if “high” availability (A1) of CP i
A

is ranged in [80,100] (avg. 90) and “high” availability (A1) of CP i
B is ranged

in [60,90] (avg. 75), A1 of CP i
B is semantically transformed to “moderate”

A2 as it is ranged in [60,80] in Sem Tablei
A.

We start the matching process SimAB(CP i
A, CP i

B) using the indexed k -d
trees after the semantic transformation. We consider each tuple (s1,, sn) of
CP i

B as search points. Starting with the root node of CP i
A, a search point (rank-

ing rb) moves down on the tree recursively, in the same way that it would
if the search point was being inserted. If the search point is matched with a
node, it returns the annotated ranking value, ra. For example, the search point
(A2, C1, P3) of rank 1 in CP i

B returns rank 10 in CP i
A using only 4 comparisons.

A non-matched search point returns L which is a large number indicating the
lowest ranking. The normalized difference between ra and rb indicates a simi-
larity measure (Eq. 2). In the previous example, it indicates a dissimilarity as
the non-negative normalized difference between ra and rb is 0.9. SimAB = 0
indicates the highest match and SimAB = 1 indicates the lowest match, i.e.,
dissimilarity. The time complexity of the k -d tree based similarity measure in
an interval is O(n log(n)).

SimAB(CP i
A, CP i

B) =
abs|ra, rb|

max(ra, rb)
| ∀ ra ∈ CP i

A and rb ∈ CP i
B (2)

Probabilistic Qualitative Preference Matching 265

6 Similarity Measure Between PrTempCP-Nets

The similarity measure between probabilistic temporal CP-Nets should be reflec-
tive of a matching between runtime temporal CP-Nets. Let us assume there
are two probabilistic temporal CP-Nets (PA and PB) and two random deter-
ministic or runtime tempCP-Nets, A and B are generated from PA and PB
respectively. If Sim(A,B) = α, then the similarity measure between PrCP-Nets,
Sim(PA,PB) = β indicates that the difference |α − β| has a higher probability
to be less than the standard deviation. Based on the prediction of the possible
runtime CP-Nets, two approaches could be applied for the similarity measure
between PrTempCP-Nets:

– Greedy approach: The most runtime likelihood sequences of CP-Nets are gen-
erated from PA and PB and are matched using Eqs. 1 and 2 in this approach.
We define the following recursive procedure:
1. Base case: O(0) = {φ} denotes the empty sequence at no interval and the

total probability TP (0) = 1.
2. Recursion: O(n) = {CPn, O(n − 1)} denotes the maximum likelihood

sequence where, TP (n) = P (X,CPn−1) × TP (n) is maximum for X =
CPn.

– Brute force approach: It is not guaranteed that the similarity measure with
the greedy approach has a higher probability to be less than the standard
deviation from all possible sequences in PrTempCP-Nets. Hence, the brute
force approach generates all possible sequences of deterministic TempCP-Nets
from PA and PB and perform pair-wise similarity measure using Eqs. 1 and
2. If q is the total number of comparisons, the probabilistic similarity measure
is calculated as the averaged mean value:

Sim(PA,PB) =
∑q

i=1 Simi(A,B)
q

| ∀ A ∈ PA, B ∈ PB (3)

We apply statistical analysis and sampling techniques to reduce the large
number of comparisons in the brute force approach and to approximate the
similarity measure within the standard deviation. The approach consists of two
steps: (a) probabilistic range sampling to compress CP-Nets into fewer numbers,
(b) reducing approximation error by applying deviations in probability distrib-
utions using the K-S test.

6.1 Probabilistic Range Sampling of PrTempCP-Net

Stratified sampling is an effective technique where the solution space embraces
a number of distinct categories, the whole solution space can be organized into
separate “strata” [15]. Each stratum is then sampled as an independent sub-
space, out of which individual elements can be randomly selected [15]. Due to
different probability distributions in a PrTempCP-Net, we can apply stratified
sampling to compress CP-Nets into fewer numbers, where each “starta” is a

266 S. Mistry et al.

probability range. We create the set of m probability ranges, denoted as RG,
where each interval in a range is 1

m . If m = 5, the set of probability ranges
are {[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0)}. For each probability range in
RG, we compress CP-Nets with the same probability interval. Total |RG| num-
bers of deterministic TempCP-nets are created from a PrTempCP-Net. Given a
probability range [x, y], we apply weighted aggregation to compress the CP-Nets.
For each interval I in a PrTempCP-Net, we filter CP-Nets where their probabil-
ities are within the range [x, y]. For example, if the probability range is [0,0.4],
the filtered provider’s PrTempCP-Net is {(CP1, I1), (CP1, I2), (CP1, CP3, I3)}
in Fig. 2. Note that, CP2 is excluded because its probabilities is out of the range
[0,0.4].

We aggregate CP-Nets as a compression mechanism in each interval to
create the deterministic TempCP-Nets. Pairwise aggregation order is applied
for multiple CP-Nets. For example, CP a, CP b, and CP c are aggregated as
((CP a + CP b) + CP c). The aggregation procedure of CP a and CP b along with
associated probabilities P a and P b uses tuple aggregation rules [9] as follows:

1. CP a and CP b are transformed into their corresponding k -d trees where each
node is a tuple (x1, x2, ..., xn).

2. Select tuples from the same level of the k -d trees. For example, both roots of
k -d trees are selected in the first level. If N tuples are selected, we apply the
following weighted summation rule for resource attributes (x) and weighted
maximization rule for QoS attributes (y):

Summation: x̄i =
N∑

i=1

P i × xi,where xi ∈ {C,M,NB,RT, P,Rank} (4)

Maximization: ȳi = max(P i × yi),∀ i ∈ [1, N] where yi ∈ {A, TP}

3. Starting from the first level, the aggregation is performed in every level and
the corresponding ranking in attached with each tuple.

The m probability ranges are applied in both PA and PB. If P i
mean is the

mean probability of the ith probability range, the similarity measure is calculated
as follows:

Sim(PA,PB) =
∑m2

i=1(P
i
mean × Simi(A,B))

m2
| ∀ A ∈ PA, B ∈ PB (5)

6.2 Reducing Approximation Error in Sim(PA, PB) Using K-S Test

The similarity measure between TempCP-Nets with higher probability ranges
is given higher weight in the computation of total similarity measure between
PrTempCP-Nets in Eq. 5. It is based on the heuristic that the probability distri-
bution of attributes in a higher probability range TempCP-Net is significantly
greater than the probability distribution of attributes in a lower probability range
TempCP-Net. Hence, a change in the probability distribution may not change

Probabilistic Qualitative Preference Matching 267

the similarity measure in the runtime. For example, the similarity measure with
the probability range [80,100] is not expected to change to a similarity measure
with the probability range [0,20] in runtime. However, such heuristic may not
be applicable when probability distributions of TempCP-Nets are close to each
other.

We apply Kolmogorov-Smirnov test (K-S test) [4] to find the closeness of
probability distribution of TempCP-Nets which are filtered with probabilistic
range sampling. Given two TempCP-Nets A and B and an attribute x, we first
derive the cumulative probability distribution FA(x) and FB(x). The null hypoth-
esis is that both the preferences are generated by the same distribution. The null
hypothesis is tested in the K-S test with two values Lm,n and Lm,n,α defined
in Eq. 6. Here Lm,n is the maximum difference in the cumulative distribution
functions and Lm,n,α is the critical value from Kolmorogov distribution func-
tions [4]. α is the confidence level to reject the null hypothesis. According to the
recommendation in [4], we reject the null hypothesis (at significance level α) if
Lm,n > Lm,n,α. For example, α = 0.05 gives 95% confidence to reject the null
hypothesis.

Lm,n = maxx|F (x) − G(x)| (6)

Lm,n,α = c(α)

√
m + n

mn

c(α) = the inverse of the Kolmorogov distribution at α

Let us assume, AvgA(α) is the averaged similarity measure in the pairwise
probability distributions between A and rest of the TempCP-Nets. A higher
AvgA(α) indicates that A is highly similar with other distributions and it has
higher chance to change in runtime. Hence, the initial probability which is
attached to A should consider such changing probability to reduce the approxi-
mation error. Hence, we update the Eq. 5 using (α) as follows:

Sim(PA,PB) =

∑m2

i=1
P i

mean×Simi(A,B)
max(AvgA(α),AvgB(α))

m2
| ∀ A ∈ PA, B ∈ PB (7)

7 Experiments and Results

As our focus is not on the optimization of IaaS composition, the optimal compo-
sition is selected by the brute-force combinatorial optimization. It generates all
combinations of consumers’ PrTempCP-Nets along with the brute-force similar-
ity measure. The brute-force similarity measure compares all possible TempCP-
Nets with the provider’s PrTempCP-Net. We compare the efficiency of the pro-
posed similarity measure with the greedy approach to find the optimal compo-
sition in a fewer number of comparisons between TempCP-Nets. All the experi-
ments are conducted on computers with Intel Core i7 CPU (2.13 GHz and 4GB
RAM). Java is used to implement the algorithms.

268 S. Mistry et al.

Number of CP-Nets in an interval

Ac
cu

ra
cy

10 20 30 40 50

0
0.2

0.4
0.6

0.8
1

Greedy Approach
Proposed Approach (m = 10)
Proposed Approach (m = 15)
Proposed Approach (m = 20)
Proposed Approach (m = 25)

(a)

Number of intervals

Ac
cu

ra
cy

10 20 30 40 50

0
0.2

0.4
0.6

0.8
1

Greedy Approach
Proposed Approach (m = 10)
Proposed Approach (m = 15)
Proposed Approach (m = 20)
Proposed Approach (m = 25)

(b)

Number of CP-Nets in an interval

Ac
cu

ra
cy

10 20 30 40 50

0
0.2

0.4
0.6

0.8
1

Proposed Approach (m = 10)
Similarity measure without K-S test

(c)

Number of CP-Nets in an interval

Ac
cu

ra
cy

10 20 30 40 50

0
0.2

0.4
0.6

0.8
1

Proposed Approach with K-S test (= 0.01)
Proposed Approach with K-S test (= 0.05)
Proposed Approach with K-S test (= 0.10)
Proposed Approach with K-S test (= 0.15)

(d)

Fig. 4. (a) Accuracy in different m values, (b) Accuracy in scalable intervals, (c) Impor-
tance of K-S tests, (d) Accuracy in different α values

7.1 Data Description

We create the PrTempCP-Nets using Google Cluster resource utilization [11],
real world cloud QoS performance [6], and synthetic price. Google Cluster data
include CPU and Memory utilization and allocation time series of 70 jobs over
a 1-month period. The real world QoS data [6] include two time series (i.e.,
response time and throughput) for 100 cloud services over a 6-month period. We
randomly pick 70 Google Cluster jobs and make one-to-one mapping with the
100 sets of QoS data. A 6-month request is extended to a 12-month request using
ARIMA model [17] with a confidence score. We create 50 such long-term requests
from one Google Cluster job with random confidence scores in the range (0, 100].
Each TempCP-Net has 12 monthly intervals and each interval contains different
CP-Nets where dependencies among the attributes are randomly generated from
the same segment of 50 long-term requests. The probabilities in the transition
matrix are mapped with the confidence scores which are used to generate the
long-term preferences. The generated PrTempCP-Nets are separated into 10
groups (G1 to G10). In a group, a random PrTempCP-Net is considered as the

Probabilistic Qualitative Preference Matching 269

provider’s business strategy and the rest 6 PrTempCP-Nets are considered as
consumers’ preferences. For the K-S test, we set α = 0.05.

7.2 Efficiency of the Proposed Probabilistic Range Sampling

We consider the brute force similarity measure as our baseline. Let us assume,
s optimal compositions are returned from m groups by the brute force app-
roach. However, r compositions are optimal from the m returned compositions
using greedy or the proposed approach. Hence, we compute the accuracy of a
similarity measure as r

s in the range [0,1]. Here, 1 means the perfect accuracy.
Figure 4(a) depicts the accuracy of the proposed probabilistic sampling with
different numbers of probability ranges (m). We find that the proposed app-
roach is more accurate when higher numbers of probability ranges are used to
sample. There are no significant improvement in accuracy after m = 20. The
greedy approach performs similar to the proposed approach when the number
of CP-Nets is lower in the PrTempCP-Net. We find that the proposed approach
is significantly accurate than the greedy approach for higher numbers of CP-
Nets in Fig. 4(a). Figure 4(b) depicts the scalablity of the proposed approach in
long-term compositions. We find that the accuracy is relatively lower when the
number of intervals is increased. The proposed approach does not perform better
than the greedy approach when the number of intervals are set to 50. If each
interval represents a month, the proposed approach is applicable in a 4-year long
composition which is acceptable in the real world. Figure 4(c) depicts the impor-
tance of reducing approximation error using K-S tests. We find that K-S tests
are unnecessary when the number of CP-Nets is lower in an interval. However, it
improves the accuracy significantly for a higher number of CP-Nets. Figure 4(d)
depicts the importance of appropriate significance level (α) in K-S tests in the
proposed similarity measure. We find that α = 0.5, i.e., 95% confidence interval
is appropriate as it maximizes the similarity measures than other values.

Number of CP-Nets in an interval

No
 of

 co
mp

ar
iso

ns

10 20 30 40 50

0
20

00
0

80
00

0
32

00
00

64
00

00
12

80
00

0

Brute force Approach
Proposed Approach (m = 20)
Greedy Approach

(a)

Number of CP-Nets in an interval

No
 of

 co
mp

ar
iso

ns

10 20 30 40 50

0
20

00
0

40
00

0
16

00
00

32
00

00
64

00
00 Similarity measure without k-d tree indexing

Similarity measure with k-d tree indexing

(b)

Fig. 5. (a) Time complexity, (b) Significance of k -d tree indexing

270 S. Mistry et al.

7.3 Time Complexity Analysis

Although the brute force approach is more accurate, it is not appreciable in
runtime due to its exponential nature (Fig. 5(a)). We find that the greedy app-
roach is the most time efficient which is linearly correlated with the number of
CP-Nets in an interval. However, the time complexity of proposed approach is
quadratic and related to the value of m. For m = 20, the proposed similarity
measure takes around 75% less time than the brute force approach. Figure 5(b)
depicts the importance of k-d tree indexing. For a large number of CP-Nets in
TempCP-nets, k -d tree reduces the number of comparisons by the factor log(n)

n .

8 Conclusion

We represent the long-term qualitative preferences using a novel probabilistic
temporal CP-Nets in the IaaS composition. We propose sampling and probabilis-
tic distribution matching in the similarity measure between PrTempCP-Nets.
Although the greedy approach is the most time-efficient, the proposed approach
is significantly accurate than the greedy approach and has an acceptable run-
time efficiency. In the future work, we explore an efficient optimization process
in relation with PrTempCP-Nets.

Acknowledgements. This research was made possible by NPRP 7-481-1-088 grant
from the Qatar National Research Fund (a member of The Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

References

1. Armbrust, M., Fox, A., Griffith, R.: Above the clouds: a berkeley view of cloud
computing. Technical Report. University of California, Berkeley (2009)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. 21, 135–191 (2004)

4. Fasano, G., Franceschini, A.: A multidimensional version of the kolmogorov-smirnov
test. Roy. Astron. Soc. 225(1), 155–170 (1987)

5. Goiri, Í., Guitart, J., Torres, J.: Economic model of a cloud provider operating in
a federated cloud. Inf. Syst. Front. 14, 827–843 (2012)

6. Jiang, W., Lee, D., Hu, S.: Large-scale longitudinal analysis of soap-based and
restful web services. In: Proceedings of ICWS, pp. 218–225 (2012)

7. Limthanmaphon, B., Zhang, Y.: Web service composition with case-based reason-
ing. In: Proceedings of ADC, pp. 201–208. ACS (2003)

8. Mistry, S., Bouguettaya, A., Dong, H., Qin, A.K.: Metaheuristic optimization for
long-term IaaS service composition. IEEE TSC PP(99), 1 (2016)

9. Mistry, S., Bouguettaya, A., Dong, H., Erradi, A.: Qualitative economic model for
long-term IaaS composition. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.)
ICSOC 2016. LNCS, vol. 9936, pp. 317–332. Springer, Cham (2016). doi:10.1007/
978-3-319-46295-0 20

http://dx.doi.org/10.1007/978-3-319-46295-0_20
http://dx.doi.org/10.1007/978-3-319-46295-0_20

Probabilistic Qualitative Preference Matching 271

10. Puzicha, J., Hofmann, T., Buhmann, J.M.: A theory of proximity based clustering:
Structure detection by optimization. Pattern Recogn. 33(4), 617–634 (2000)

11. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: format +
schema, Technical report. Google Inc., Mountain View, CA, USA (2011)

12. Santhanam, G.R., Basu, S., Honavar, V.: Web service substitution based on pref-
erences over non-functional attributes. In: Proceedings of SCC, pp. 210–217 (2009)

13. Wang, H., Shao, S., Zhou, X., Wan, C., Bouguettaya, A.: Preference recommenda-
tion for personalized search. Knowl.-Based Syst. 100, 124–136 (2016)

14. Wang, H., Zhang, J., Sun, W., Song, H., Guo, G., Zhou, X.: WCP-nets: a weighted
extension to CP-nets for web service selection. In: Liu, C., Ludwig, H., Toumani,
F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 298–312. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34321-6 20

15. Wang, J.F., Stein, A., Gao, B.B., Ge, Y.: A review of spatial sampling. Spat. Stat.
2, 1–14 (2012)

16. Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based
on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC
2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34321-6 8

17. Zhang, G.P.: Time series forecasting using a hybrid arima and neural network
model. Neurocomputing 50, 159–175 (2003)

http://dx.doi.org/10.1007/978-3-642-34321-6_20
http://dx.doi.org/10.1007/978-3-642-34321-6_8
http://dx.doi.org/10.1007/978-3-642-34321-6_8

An Embedding Based Factorization Machine
Approach for Web Service QoS Prediction

Yaoming Wu1,2, Fenfang Xie1,2, Liang Chen1,2, Chuan Chen1,2,
and Zibin Zheng1,2(B)

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
{wuym25,xieff5}@mail2.sysu.edu.cn,

{chenliang6,chenchuan,zhzibin}@mail.sysu.edu.cn
2 Key Laboratory of Machine Intelligence and Advanced Computing,
Ministry of Education, Sun Yat-sen University, Guangzhou, China

Abstract. As an important property of Web services, Quality of Service
(QoS) is usually engaged for describing the non-functional characteristics
of Web services. However, QoS value is considerable sparse since users
only invoke a limited number of services in the real-world applications.
In this way, predicting QoS value is a good choice to solve such ‘sparsity’
problem. Although several methods have been proposed to predict QoS
value for users, most of them are always time-consuming and expensive
to implement.

To solve the drawbacks of high dimensionality and huge sparse, we
introduce embedding technique to map data from resource space to tar-
get space in injective and structural-preserving way. To efficiently express
pairwise interactions in sparse datasets, we further introduce factoriza-
tion machine, which is an impactful algorithm to deal with sparse data
prediction in the world of machine learning and can be computed in lin-
ear time.

Based on the above characteristics of our scenario and the advantages
of factorization machine and embedding, this paper proposes an embed-
ding based factorization machine approach to predict missing QoS values
for Web services. First of all, user id and service id are encoded by one-
hot encoding. And then, the one-hot encoding of user id and service
id are mapped to different embedding vectors. Finally, the embedding
vectors are regarded as implicit vectors and the idea of factorization
machine is exploited to make missing QoS value prediction. Experiments
on real-world dataset validate the effectiveness of our approach, which
outperforms the other state-of-the-art methods in terms of QoS predic-
tion accuracy.

Keywords: Web service · QoS prediction · Embedding · Factorization
machine

1 Introduction

Web services are self-described software applications designed to support inter-
operable machine-to-machine interaction over a network via standard interfaces
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 272–286, 2017.
https://doi.org/10.1007/978-3-319-69035-3_19

EFMPred for Web Service QoS Prediction 273

and communication protocols [17]. With the increasing adoption of Service Ori-
ented Architecture (SOA), the number of Web services are increasing rapidly
on the Internet. Among the massive Web services, lots of them provide similar
functions. However, the quality of these similar Web services is different. Qual-
ity of Service (QoS) is usually used to describe the nonfunctional characteristics
of Web services [16]. In general, the QoS of Web services has some properties,
including price, response time, throughput, reliability, availability, etc. In the
scenario of service selection, QoS is an important factor to impact users’ deci-
sion. How to choose the services that satisfy users is an urgent problem. On the
basis of functional matching, considering the QoS of Web services is an effective
solution. Therefore, investigating Web services QoS is becoming more and more
important.

Previous QoS-based studies have been applied for Web service recommenda-
tion, Web service composition, Web service selection, and so on. It’s essential to
provide accurate QoS value of Web services to make these QoS-based approaches
work well. In general, the QoS value of Web services can be measured on the
server-side or client-side. As for measured by server-side (e.g., price, popular-
ity, etc.), QoS value is usually declared by service providers or the third party
(e.g., UDDI), and it is identical for different users. The QoS value measured by
client-side (e.g., response-time, throughput, availability, etc.) is closely related to
network status, geographical location, service runtime environment, etc. There-
fore, the QoS experience of different users is quite different. In reality, a service
user usually only invokes a limited number of Web services in the past and thus
only observes QoS values of these invoked Web services. For the sake of obtain-
ing accurate and personalized QoS value of users, Web service QoS evaluation
is indispensable for enhancing the service users’ experience.

However, in practice, invoking Web service for evaluation purpose at the
client-side is quite difficult and has the following critical drawbacks:

1. Web service invocations may be charged because the Web services are usually
provided and hosted by other organizations. Even if the Web services are
free, executing real-world Web service invocations for evaluation purposes
consumes resources of service providers and imposes costs of service users.

2. It is time-consuming and impractical for service users to evaluate all the Web
service candidates, since there are massive Web services in the Internet.

3. Service users are usually not experts on Web service evaluation and the com-
mon time-to-market constraints make in-depth evaluations of the target Web
services difficult.

Based on the above analysis, it is an urgent task to accurately predict the
missing QoS value of the candidate services for different service users, so that it
can provide support for Web service recommendation, Web service composition,
Web service selection, and so on. Although several methods [9,18,19] have been
proposed to predict QoS value for users, most of them are always time-consuming
and expensive to implement. In neural network, embedding maps the data from
resource space to target space injective and structural-preserving. Further, the
processing of embedding can solve the drawbacks of high dimensionality and

274 Y. Wu et al.

huge sparse. In the world of machine learning, factorization machine can estimate
interactions even in problems with huge sparsity. It is a remarkably smart way to
express pairwise interactions in sparse datasets. Moreover, it can be computed
in linear time and it depends only on a linear number of parameters [5].

Due to the above characteristics of our scenario and the advantages of factor-
ization machine and embedding, we propose an Embedding based Factorization
Machine approach, called EFMPred, to Predict missing QoS values for Web
services. User id and service id are firstly encoded by one-hot encoding. And
then, the one-hot encoding of user id and service id are mapped to embedding
vectors. Specifically, the embedding vectors are regarded as implicit vectors to
model the pairwise interaction between users and services. Finally, we exploit
EFMPred model to make missing QoS value prediction. Extensive experiments
on real-world dataset demonstrate that our EFMPred model can improve the
QoS value prediction accuracy effectively.

In summary, the main contributions of this paper are as follows:

1. To the best of our knowledge, this is the first work applying embedding tech-
nique to traditional factorization machine for QoS prediction.

2. EFMPred can capture the implicit relationship between users and services
by performing user id and service id embedding. In addition, EFMPred can
predict missing QoS information for every user-service pair.

3. Extensive experiments on real-world dataset are conducted to evaluate the
effectiveness of our approach. The experimental results demonstrate that our
approach outperforms the other state-of-the-art baseline methods in terms of
prediction accuracy.

The remainder of this paper is organized as follows. Section 2 presents
our missing QoS prediction problem and gives an overview of our framework.
Section 3 introduces our EFMPred model for personalized QoS value prediction.
Section 4 discusses and analyses the experimental results. Related works are pre-
sented in Sect. 5 and a conclusion of this paper is drawn in Sect. 6.

2 Preliminaries

In this section, we firstly describe the QoS property prediction problem in
Sect. 2.1. Then we introduce the framework of our embedding based factorization
machine model in Sect. 2.2.

2.1 Problem Description

In this paper, the problem we investigate is how to accurately predict missing
QoS information for service users based on the historical QoS usage experience.
Given a list of users and services, users invoke services to mark the property of
QoS. The detailed description is as follows.

Let U = {u1, u2, ..., um} be the set of m users and S = {s1, s2, ..., sn} be the
set of n Web services. The QoS value qij of service sj which is observed by user

EFMPred for Web Service QoS Prediction 275

ui is presented as a triple (i, j, qij). As mentioned before, the QoS property of
Web services includes price, response time, throughput, reliability, availability,
etc. Herein, qij denotes a k dimension vector representing the QoS values of
k − th criteria. Let Ω be the set of all QoS values, Δ be the set of all existing
known QoS values, Λ = Ω − Δ is the set of missing QoS values. The missing
QoS values yij will be predicted by the existing QoS values in Δ.

A toy example is shown in Fig. 1 to better comprehend the idea of unknown
QoS prediction. The interaction between users and services is illustrated by a
user-service matrix as shown in Fig. 1(a), each element in the user-service matrix
denotes a QoS value observed by a user on a certain service. The problem we
study in this paper is then transferred to how to precisely predict the missing
entries in the user-service matrix based on the existing entries. We can provide
users with personalized QoS information once the missing entries are accurately
predicted. We observe that although a part of the entries are already known in
Fig. 1(a), every pair of users still have very few commonly invoked services. Based
on the idea of collaborative filtering and our embedding based factorization
machine model, we can complete the missing entries in the matrix for service
users as shown in Fig. 1(b).

(a) User-Service Matrix (b) Predicted User-Service Matrix

Fig. 1. A toy example for missing QoS prediction

2.2 Prediction Framework of EFMPred

In this section, we present our missing QoS value prediction framework of EFM-
Pred. As shown in Fig. 2, our QoS prediction framework mainly includes four
components: Input Feature Vector, Embedding Vectors, EFMPred Model and
Prediction Score. The detailed functionality of each component is as follows:

1. Input Feature Vector. Based on the historical Web service QoS data that
a service user observes on a certain service, the user id and service id are
encoded with one-hot encoding respectively.

2. Embedding Vectors. After being encoded, the one-hot encoding of user id and
service id are mapped into different embedding vectors via back propagation
algorithm [11].

276 Y. Wu et al.

Fig. 2. Framework of EFMPred

3. EFMPred Model. The embedding vector of user is multiplied by the embed-
ding vector of service (e.g. the dot product operation in factorization machine)
to model the interactions between users and services.

4. Prediction Score. After obtaining the interactions between users and services,
we can predict the missing QoS value for every pair of user-service.

Unlike the traditional factorization machine, our EFMPred model apply
embedding technique to represent feature vectors. The detailed description about
how to map the user id and service id to embedding vectors is shown in Fig. 3.
We present the user id and service id (e.g., ID = 3) to the corresponding one-
hot encoding (e.g., ‘001000’), and then, the one-hot encoding of user id and
service id are mapped to the corresponding embedding vector (e.g., V3) via a
fully connected mapping. As can be seen in Fig. 3, the weight of red line directly
corresponds to the output node value (e.g., v31, v32, v33). That is the value of
each dimension of the embedding vector.

3 Approach

In this section, we introduce our embedding based factorization machine app-
roach for the missing QoS value prediction. Our EFMPred model mainly include
two phases, we will describe them in detail in the following subsections.

EFMPred for Web Service QoS Prediction 277

Fig. 3. Toy example of id embedding

3.1 Extracting Embedding Features from User ID and Service ID

The method of one-hot encoding is using n bit status register to encode the n
states, each state has an independent register bit. For example, if we want to
use one-hot coding to express four seasons in a whole year, we need four binary
features, each of them representing one season. That is, ‘1000’ indicates spring,
‘0100’ indicates summer, ‘0010’ indicates autumn, ‘0001’ indicates winter.

In order to obtain the embedding vectors, we firstly exploit one-hot encoding
to represent user id and service id. And then, we regard the one-hot encoding
vectors as input of the full connection layer. Next, we apply back propagation
algorithm [11] to calculate the weight of every edge in the full connection layer.
The output layer of the full connection layer is embedding layer (e.g., embedding
vectors of user id and service id).

Embedding maps the data from resource space to target space injective and
structural-preserving. The processing of embedding can solve the drawbacks of
one-hot encoding, e.g. high dimensionality and huge sparse.

3.2 Embedding Based Factorization Machine Model

After obtaining the embedding vectors of user id and service id, we exploit the
idea of factorization machine to predict the missing QoS value for Web services.
Given a m ∗ n user-service matrix, the factorization machine model equation is

278 Y. Wu et al.

defined as:

ŷ(X) = w0 +
f∑

i=1

wixi +
f∑

i=1

f∑

j=i+1

<Vi, Vj>xixj , (1)

Wherein, X = (x1, x2, ..., xm+n) is the feature vector, which is concatenated by
user id and service id. f is the length of the feature vector. Vi describes the
i − th embedding vector. <Vi, Vj> is the dot product of the embedding vector
of user id and service id. w0 is the global bias, wi is the weight of the i − th
variable. W = {w1, ..., wf}, V = {V1, ..., Vf}. A row Vi within V describes the
i − th variable with k factors.

<Vi, Vj> =
k∑

l=1

vi,l · vj,l, (2)

Herein, k is a hyperparameter that decides the dimensionality of the embedding
vectors. vi,l and vj,l are the l − th value in the i − th embedding vector of user
id and the j − th embedding vector of service id respectively. <Vi, Vj> models
the interaction between users and services.

The pairwise interactions between users and services can be reformulated as
follows, the detailed derivation process can be found in [5]:

f∑

i=1

f∑

j=i+1

<Vi, Vj>xixj =
1
2

k∑

l=1

((
f∑

i=1

vilxi)2 −
n∑

i=1

v2
ilx

2
i), (3)

In order to estimate the quality of EFMPred model, a loss function should be
conducted for evaluating the error between the estimated value and the original
value. The square of the errors between the estimated value and the original
value is usually applied to define the loss function. Therefore, the loss function
of our EFMPred model is as follows:

min
θ

L (y, ŷ) =
1
2

m∑

i=1

n∑

j=1

Iij (yij − ŷij)
2
, (4)

where, θ = {w0,W, V } is the model parameters, Iij is the indicator function that
is equal to 1 if user ui invoked Web service vj and is equal to 0 otherwise. The
optimization problem of the loss function is to minimize the sum-of-squared-
errors objective function.

A local minimum of the objective function given by (4) can be solved by
performing stochastic gradient descent in θ:

∂L (y, ŷ)
∂θ

= (ŷ − y)
∂ŷ

∂θ
, (5)

∂ŷ

∂θ
=

⎧
⎨

⎩

1, if θ = w0

xi, if θ = wi

xi
∑f

j=1 vjlxj − vilx
2
i , if θ = vil

(6)

EFMPred for Web Service QoS Prediction 279

3.3 Complexity Analysis

The main computation of our embedding based factorization machine model is
to evaluate the object function L and its gradients against the variables. Since
xi

∑f
j=1 vjlxj − vilx

2
i is extensively related to l, in the process of parameters

iteration, we only need to compute all of the l in the formulation
∑f

j=1 ujlxj

in the first time. And then, it is convenient to obtain all of the gradient of vjl.
Obviously, the complexity of computing all l in the formulation

∑f
j=1 ujlxj is

O(kf). When
∑f

j=1 ujlxj is known, the complexity to compute every gradient of
parameter is O(f). After obtaining the gradient of parameters, the complexity of
updating parameters is O(1). In the EFMPred model, the number of parameters
is kf + f + 1. Therefore, the computation complexity of our EFMPred model is
O(kf). In summary, our EFMPred algorithm can complete the training model
in linear time. This complexity analysis demonstrates that our EFMPred model
is very efficient and can be scaled to large datasets.

4 Experiment

In this section, we conduct a series of extensive experiments on a real-world
dataset to validate our EFMPred model by comparing our approach with several
state-of-the-art approaches and analyzing the experimental results.

In the following subsections, we describe the statistics of our dataset in
Sect. 4.1. The evaluation metrics are presented in Sect. 4.2. The performance
comparison between our EFMPred model and other state-of-the-art approaches
is introduced in Sect. 4.3. And the impact of parameters and the analysis of
experimental results are presented in Sects. 4.4 and 4.5 respectively.

4.1 Dataset Description

We conduct experiments on a publicly accessible dataset: WSDream1. Which
includes 339 service users and 5825 Web services. Moreover, it collects 1,974,675
records that service users invoke Web services, namely, the QoS properties values
are observed by service users on real-world Web services. The WSDream dataset
we use mainly collects the response time and throughput values. Therefore, we
can obtain two 339 ∗ 5825 user-service matrices. The entries on the two user-
service matrices are response time values and throughput values respectively.
The ranges of response time and throughput are in the interval [0, 20] and
[0, 1000] respectively (Table 1).

Although we mainly focus on two QoS properties (e.g. response time and
throughput) in this paper, Our EFMPred model can be easily scaled to the
prediction of other QoS properties without any modification. When conducting
experiments to predict the other QoS properties, the entries on user-service
matrix are just need to be set to the corresponding QoS property value that
observed by a user on a certain Web service.
1 http://inpluslab.sysu.edu.cn/wsdream/.

http://inpluslab.sysu.edu.cn/wsdream/

280 Y. Wu et al.

Table 1. Statistics of web service QoS dataset

Statistics Values

Number of service users 339

Number of web services 5825

Number of web services invocations 1,974,675

Range of response time 0–20 s

Range of throughput 0–1000 kbps

4.2 Metrics

In statistics, Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) are evaluation metrics used to measure how close the prediction results
are to the reality outcomes [12]. In the experiment, we use MAE and RMSE to
evaluate the errors between our prediction results and the real QoS properties
values. MAE is given by:

MAE =

∑
ij |r̂ij − rij |

N
, (7)

and RMSE is defined as follows:

RMSE =

√∑
ij (r̂ij − rij)2

N
. (8)

where, N represents the number of predicted QoS values, r̂ij represents the
predicted QoS value of service sj observed by user ui, while rij is the real QoS
value of service sj would be observed by user ui in the dataset. Smaller MAE
and RMSE values indicate better performance.

4.3 Performance Comparison

In this section, in order to verify the effectiveness of our EFMPred model, we
compare our approach with the following approaches:

1. UMEAN (user mean). This approach employs a service user’s average QoS
value on the used Web services to predict the QoS values of the unused Web
services.

2. IMEAN (item mean). This approach employs the average QoS value of the
Web services observed by other service users to predict the QoS value for a
service user who never invoke this Web service previously.

3. UPCC (user-based collaborative filtering method using PCC) [8]. This app-
roach is a very classical approach. In this paper, it employs similar users for
the QoS value prediction.

4. IPCC (item-based collaborative filtering method using PCC) [6]. This app-
roach is widely used in industry company. In this paper, it employs similar
Web services for the QoS value prediction.

EFMPred for Web Service QoS Prediction 281

5. UIPCC [18]. This approach employs both of the user-based and item-based
collaborative filtering approaches to make QoS prediction. It utilizes the his-
torical QoS usage experience from similar users and similar services to predict
missing QoS values.

6. PMF (probabilistic matrix factorization) [7]. This approach is proposed by
Salakhutdinov and Minh, and it employs user-item matrix to predict the
missing QoS value.

7. NMF (nonnegative matrix factorization) [2]. This approach is proposed by Lee
and Seung. Compared to traditional matrix factorization approach, it mainly
add an extra constraint to the model. That is the values in the factorized
latent factors must be nonnegative.

8. NIMF (neighborhood-integrated matrix factorization) [19]. This approach
employs the concept of user-collaboration for Web service QoS prediction.
It finds out a list of similar users for the current user and integrate the infor-
mation of similar users and all available QoS values to predict missing QoS
values for service users.

In practice, service users only invoke a limited number of Web services. There-
fore, the user-service matrix is very sparse. In this paper, we conduct the exper-
iments by randomly remove a part of entries on the user-service matrix to make
the matrix with different sparsity (i.e., 10% to 90%). For example, 10% denotes
that we remove 90% entries on the user-service matrix. And then we set the 90%
entries as testing set, the remaining 10% entries as training set. The QoS pre-
diction accuracy results are shown in Table 2. As can be seen that our EFMPred
model outperforms other state-of-the-art approaches in both of the response time
and throughput. The table only presents the results of matrix density that is
10% and 90%, all results and impact of matrix density will be presented and
discussed in Sect. 4.4.

Fig. 4. Impact of matrix density (QoS property is response time)

282 Y. Wu et al.

Table 2. QoS prediction accuracy comparison

QoS properties Methods Matrix density = 10% Matrix density = 90%

MAE RMSE MAE RMSE

Response time UMEAN 0.8767 1.8540 0.8738 1.8527

IMEAN 0.6894 1.5416 0.6790 1.5267

UPCC 0.5561 1.3092 0.3999 1.0857

IPCC 0.5962 1.3433 0.3464 1.0280

UIPCC 0.5836 1.3298 0.3447 1.0175

PMF 0.4865 1.3134 0.3733 1.0505

NMF 0.4785 1.2813 0.3700 1.0524

NIMF 0.4792 1.2912 0.3677 1.0399

EFMPred 0.4446 1.2475 0.3048 0.9914

Throughput UMEAN 53.8912 110.3553 53.6560 109.7997

IMEAN 26.8734 64.8046 26.4225 63.3956

UPCC 22.6047 54.5224 13.5505 39.6461

IPCC 26.1821 60.3531 16.9515 42.9243

UIPCC 22.3635 54.4206 13.1886 38.4147

PMF 15.9794 48.1784 11.9442 35.5825

NMF 15.5678 47.9248 11.7964 35.9721

NIMF 15.1393 47.0530 11.7977 35.6185

EFMPred 15.0268 44.0291 9.8157 30.5278

4.4 Impact of Matrix Density

The matrix density is an important factor to impact QoS prediction accuracy.
It represents how much QoS information observed by users on Web services we
can utilize. In order to study impact of matrix density, we vary the density of
user-service matrix from 10% to 90% with a step value of 10%. In addition, the
embedding vector dimensionality of response time and throughput is set as 70
and 400 respectively in this experiment.

Figures 4 and 5 correspondingly show the experimental results of response
time and throughput. Figure 4 demonstrates that when increasing the user-
service matrix density from 10% to 50%, the MAE value and RMSE value show
a downward trend significantly. However, when the user-service matrix density
is increased from 50% to 90%, the magnitude of decrease in MAE value and
RMSE value changes to relatively slow. Figure 5 shows the same trend as Fig. 4.
This observation indicates that when the matrix density is very sparse, collecting
more QoS information can do great favor to QoS prediction accuracy. However,
when the matrix density is come to some extent (e.g. 50%), the effect of collecting
more QoS information is not quite so obvious.

EFMPred for Web Service QoS Prediction 283

Fig. 5. Impact of matrix density (QoS property is throughput)

Fig. 6. Impact of embedding vector dimensionality (matrix density = 10%)

4.5 Impact of Dimensionality

Dimensionality determines how many embedding features are extracted from
user id and service id, e.g. the dimensionality of embedding vectors in the EFM-
Pred model. In order to study impact of the embedding vector dimensionality,
we set the embedding vector dimensionality varying from 50 to 100 with a step
value of 10 for response time. With regard to throughput, the embedding vector
dimensionality is set from 100 to 1000 with a step value of 100. In this experi-
ment, we set the matrix density as 10%. Figures 6 and 7 show the experimental
results of response time and throughput respectively. Figure 6 demonstrates that
when increasing the embedding vector dimensionality from 50 to 70, the MAE
value and RMSE value show a downward trend. While the embedding vector
dimensionality is from 70 to 100, the MAE value and RMSE value show an
upward tendency. This observation shows that relatively large dimensionality
(e.g., 70) can enhance the QoS prediction accuracy. However, if the dimensional-
ity is set too large will cause the overfitting problem, which will potentially hurt
the prediction quality. Figure 7 shows the same trend as Fig. 6. But we can obtain
the lowest MAE value and RMSE value under the condition of the embedding

284 Y. Wu et al.

vector dimensionality is equal to 400, because the range of throughput is wider
than response time.

Fig. 7. Impact of embedding vector dimensionality (matrix density = 10%)

5 Related Work

In this section, we present some related investigations on missing QoS value
prediction. In the field of service oriented computing, most of the QoS predic-
tion approaches are based on collaborative filtering. The collaborative filtering
approaches can be categorized into three types: memory-based, model-based and
hybrid. In the following, we will discuss them separately.

The memory-based collaborative filtering approach employs users’ historical
records to compute the similarity between users or items. This approach includes
user-based approach, item-based approach, and the hybrid of them. User-based
approaches predict the missing QoS values by measuring the similarity between
users. Item-based approaches predict the missing QoS values for the current
user by measuring the similarity between services. Examples of memory-based
approaches are as follows. Sun et al. [10] present a new similarity measure for
Web service similarity computation and propose a novel normal recovery collab-
orative filtering approach. Xiong et al. [14] propose a collaborative approach to
QoS prediction of Web services on unbalanced data distribution. Ma et al. [4]
propose an unknown QoS values prediction algorithm to realize some important
characteristics of objective QoS datasets.

The model-based collaborative filtering approach tend to apply machine
learning algorithms to predict users’ rating of unrated items. Examples of model-
based approaches are as follows. Wu et al. [13] propose a novel two-phase K-
means clustering based credibility-aware QoS prediction method to address the
problem of unreliable data offered by untrustworthy users. Yu et al. [15] propose
a novel neighbor factor model by taking the latent physical location and network
status information into consideration. Zheng et al. [19] propose a neighborhood
integrated matrix factorization approach for Web services QoS prediction by
taking advantages of the past Web service usage experiences of service users.

EFMPred for Web Service QoS Prediction 285

The hybrid collaborative filtering approach integrates the memory-based
and the model-based collaborative filtering approaches. Examples of hybrid
approaches are as follows. Chen et al. [1] propose a neighborhood regularized
matrix factorization method by properly incorporating both user and Web ser-
vice neighborhood relationships. Su et al. [9] present a novel hybrid Web service
QoS prediction approach by integrating the direct similarity and transitive indi-
rect similarity of services. Lo et al. [3] propose an extended matrix factorization
framework with relational regularization terms inside a neighborhood.

The above memory-based, model-based and hybrid methods can solve the
problem of missing QoS prediction to some extent. However, the drawbacks
of these approaches are huge sparsity, high time complexity and expensive to
implement. But our EFMPred model employs the embedding features extracting
techniques to represent the vectors of user id and service id. The embedding
vectors can model the interactions between users and Web services. In addition,
our embedding based factorization machine model can solve the problem of data
sparsity and can be calculated in linear time.

6 Conclusion

This paper proposes an embedding based factorization machine approach to
predict missing QoS values for Web service in order to improve the prediction
accuracy and avoid time-consuming and expensive Web services invocation. By
employing embedding technique and factorization machine model, we can reduce
the dimensionality of vectors, learn features with large data sparsity and our
EFMPred can be computed in linear time. Therefore, our EFMPred model can
be easily extended to large data sets. Comprehensive experiments demonstrate
that our approach outperforms other state-of-the-art baseline approaches.

At present, we mainly focus on response time and throughput value pre-
diction. In future, we’d like to apply our model to other QoS properties of the
real-world Web services (i.e., failure tolerance, reliability, availability, etc.). Other
characteristics of service users and Web services can also be taken into consid-
eration to integrate them into our model.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable feedback and comments. The work described in this paper was sup-
ported by the National Key Research and Development Program (2016YFB1000101),
the National Natural Science Foundation of China (61472338), the Pearl River S&T
Nova Program of Guangzhou (201710010046) and the Fundamental Research Funds
for the Central Universities under Grant (17lgpy117).

References

1. Chen, Z., Shen, L., You, D., Li, F.: A user dependent web service QoS collaborative
prediction approach using neighborhood regularized matrix factorization. In: 2016
IEEE 20th International Conference on Computer Supported Cooperative Work
in Design (CSCWD), pp. 316–321. IEEE (2016)

286 Y. Wu et al.

2. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788–791 (1999)

3. Lo, W., Yin, J., Deng, S., Li, Y., Wu, Z.: An extended matrix factorization app-
roach for QoS prediction in service selection. In: 2012 IEEE Ninth International
Conference on Services Computing (SCC), pp. 162–169. IEEE (2012)

4. Ma, Y., Wang, S., Hung, P.C., Hsu, C.H., Sun, Q., Yang, F.: A highly accurate pre-
diction algorithm for unknown web service QoS values. IEEE Trans. Serv. Comput.
9(4), 511–523 (2016)

5. Rendle, S.: Factorization machines. In: 2010 IEEE 10th International Conference
on Data Mining (ICDM), pp. 995–1000. IEEE (2010)

6. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, pp. 175–186. ACM (1994)

7. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS, vol. 1,
pp. 2–1 (2007)

8. Shao, L., Zhang, J., Wei, Y., Zhao, J., Xie, B., Mei, H.: Personalized QoS prediction
forWeb services via collaborative filtering. In: 2007 IEEE International Conference
on Web Services, ICWS 2007, pp. 439–446. IEEE (2007)

9. Su, K., Ma, L., Xiao, B., Zhang, H.: Web service QoS prediction by neighbor infor-
mation combined non-negative matrix factorization. J. Intell. Fuzzy Syst. 30(6),
3593–3604 (2016)

10. Sun, H., Zheng, Z., Chen, J., Lyu, M.R.: Personalized web service recommendation
via normal recovery collaborative filtering. IEEE Trans. Serv. Comput. 6(4), 573–
579 (2013)

11. Van Ooyen, A., Nienhuis, B.: Improving the convergence of the back-propagation
algorithm. Neural Netw. 5(3), 465–471 (1992)

12. Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over
the root mean square error (RMSE) in assessing average model performance. Cli-
mate Res. 30(1), 79–82 (2005)

13. Wu, C., Qiu, W., Zheng, Z., Wang, X., Yang, X.: QoS prediction of web services
based on two-phase k-means clustering. In: 2015 IEEE International Conference
on Web Services (ICWS), pp. 161–168. IEEE (2015)

14. Xiong, W., Li, B., He, L., Chen, M., Chen, J.: Collaborative web service QoS pre-
diction on unbalanced data distribution. In: 2014 IEEE International Conference
on Web Services (ICWS), pp. 377–384. IEEE (2014)

15. Yu, D., Liu, Y., Xu, Y., Yin, Y.: Personalized QoS prediction for web services
using latent factor models. In: 2014 IEEE International Conference on Services
Computing (SCC), pp. 107–114. IEEE (2014)

16. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

17. Zhang, L.J., Cai, H., Zhang, J.: Services Computing. Springer, Heidelberg (2007)
18. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware web service recommendation

by collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)
19. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Collaborative web service qos prediction

via neighborhood integrated matrix factorization. IEEE Trans. Serv. Comput. 6(3),
289–299 (2013)

A Deep Learning Approach for Long Term
QoS-Compliant Service Composition

Hamza Labbaci1,2, Brahim Medjahed2(B), and Youcef Aklouf1

1 USTHB University, Algiers, Algeria
hlabbaci@umich.edu, yaklouf@usthb.dz

2 University of Michigan - Dearborn, Dearborn, USA
brahim@umich.edu

Abstract. In this paper, we propose a deep learning approach for long-
term Quality of Service (QoS)-based service composition. Existing tech-
niques for quality-aware service composition mostly focus on static QoS
values observed during composition time. They do not consider potential
QoS fluctuations in the long run when selecting services for composi-
tion or substitution. Our approach uses deep recurrent Long Short Term
Memories (LSTMs) to forecast future QoS. The predicted QoS values are
used to accurately recommend components and substitutes in long-term
service compositions. Experiments show promising results compared to
existing QoS prediction techniques.

Keywords: Service composition · Substitution · Quality of Service
(QoS) · Deep learning · LSTMs

1 Introduction

During the last decade, many organizations embraced service-oriented comput-
ing technologies, seeking better visibility and more market opportunities. Web
services (APIs) with complementary functionalities (called components) collabo-
rate as part of the same service composition to provide value-added services [5,7].
The success and longevity of collaborations in a service composition strongly
depend on the ability of the different components to maintain long-term Quality
of Service (QoS) requirements [4]. Developing long-term compositions raises the
challenge of selecting components that satisfy QoS requirements over long time
periods. Such selection implies predicting long-term QoS trends (i.e., QoS during
a long period). The main challenge related to forecasting long-term QoS is that
QoS values may fluctuate in the future.

We identify three advantages for leveraging long-term QoS trends during
composition. First, developers rely on predicted QoS to accurately select the
best services that are likely to fulfill composition requirements over a long time
period. This caters for durable partnerships among component services. Sec-
ond, component services undergo several changes during their lifespan (e.g., a
service going out of business) that may lead to breaking contracts between com-
posite and component services. Developers will then be able to substitute com-
ponents by services with comparable long-term QoS. Third, service providers
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 287–294, 2017.
https://doi.org/10.1007/978-3-319-69035-3_20

288 H. Labbaci et al.

(e.g., cloud providers) may rely on QoS prediction for better resources man-
agement and workload balancing. For instance, they may harness more server
resources (processor and memory) during peak periods. Accurate QoS prediction
allows service providers to adjust their cloud resources to satisfy users’ demands
as accurately as possible in the future. This reduces contract disruption between
long-term composite services and their components because of QoS violations.

Several techniques for QoS-based service composition have been proposed
in the literature [9,11,12]. However, they mostly focus on static QoS values
observed during composition time. In practice, QoS varies over time; such future
variations need to be taken into consideration while designing composite ser-
vices. Unlike current techniques, we propose a deep learning approach for long-
term service compositions. We use deep recurrent Long Short Term Memories
(LSTMs) [3] to predict long-term QoS trends. Such predictions cater for select-
ing best Web services that satisfy QoS-related composition requirements in the
long run. To the best of our knowledge, this is the first work that uses deep
learning and particularly deep recurrent LSTMs for long-term QoS-aware ser-
vice composition and substitution.

The rest of the paper is organized as follows. Section 2 describes our deep
learning approach for QoS prediction. Section 3 presents our technique for lever-
aging the predicted QoS during composition and substitution times. Section 4
discusses the experimental study. Section 5 reviews related work. Section 6 con-
cludes the paper.

2 Using Deep Learning for QoS Prediction

The aim of the proposed approach is to assist developers in designing composite
services and substituting components while considering long-term QoS trends.
The composition middleware implements techniques to identify, orchestrate, and
substitute component services. The way component and substitute services are
selected by the middleware is out of the scope of this paper. Our approach
augments any existing composition and substitution technique such as the ones
proposed in [5] with long-term QoS prediction and compliance capabilities.

2.1 QoS Composition Requirements

Developers provide two kinds of composition requirements to the composition
middleware: middleware-specific requirements such as functional and semantic
features (out of the scope of this paper) and QoS requirements. For each QoS
metric, developers specify preferred and acceptable intervals. Figure 1 shows an
example of QoS requirements for processing speed between [T0, T1] (e.g., this
year’s summer season), [T1, T2] (e.g. this year’s fall season), ..., [T7, T8]. Gray
and dark rectangles refer to acceptable and preferred QoS intervals, respectively.
Figure 1 also shows the predicted computation speed Q1(t), Q2(t), and Q3(t)
that three services S1, S2, and S3 are likely to guarantee the next two years. Our
approach compares the areas under the predicted curves with the area under the
required QoS that are either bounded by the acceptable or preferred rectangles.

A Deep Learning Approach 289

Fig. 1. Examples of QoS Prediction Trends

2.2 Predicting Long-Term QoS Trends

The QoS Predictor (QP) handles QoS prediction for all services and stores the
predicted QoS curves in a QoS Repository. It has access to log files that contain
QoS data observed over time for the different Web services in the system. The
way QoS is monitored and obtained is out of the scope of this paper. [4] and [2]
give details about QoS monitoring techniques.

QP learns from the history of observed QoS values to forecast long-term QoS
trend. For that purpose, we train deep recurrent Long Short Term Memories
(LSTMs) [3] with sequences of QoS values observed at different periods of time.
LSTM is a particular type recurrent nets with the ability to avoid the long-
term dependency problem. They can remember information for long periods of
time. Unlike classic recurrent nets, LSTMs overcome very well the problem of
vanishing gradient and can learn from size variable sequences of data. LSTM
is trained with n raw data Xj . Each Xj is composed by an input Qi and an
output Qi+1 where Qi and Qi+1 denote observed service QoS at times Ti and
Ti+1 respectively. The goal behind training the LSTM with sequences of QoS is
to predict services future QoS values for a given period of time.

Predicting QoS trends is time consuming. To minimize the incurred over-
head on the overall composition development (during component selection) and
execution (during component substitution) times, we define two techniques for
bootstrapping QoS prediction: random and first-hit. The random technique arbi-
trarily selects a service in the system during off-peak hours, and executes predic-
tion algorithms for that service. This technique has the advantage of calculating
predictions offline, with little or no impact on composition/substitution times.
However, it may perform prediction for services that are never used in com-
positions/substitutions. The first-hit bootstrapping technique runs prediction
algorithms for a service when it first participates in a composition/substitution.

290 H. Labbaci et al.

In contrast to random bootstrapping, this technique carries out prediction only
for services that are used in compositions or substitutions. Although the first-hit
method is executed online (during composition or substitution), its overhead is
reduced by limiting it to first-time composed or substituted services.

Once QoS prediction trends are generated, there is a need to keep them up-
to-date as more QoS data is gathered. Performing prediction on more QoS data
improves prediction accuracy. We define three event-based techniques for updat-
ing QoS predictions: periodic, popularity-based, and change-based QoS update
techniques. The periodic technique updates prediction at the end of each time
period T (e.g., at the end of each week). The popularity-based technique updates
prediction whenever a service reaches a new popularity level. We say that a
service is popular if it participated in N composition and substitution since the
latest update. The change-based technique updates prediction for a given service
whenever big changes, above a certain level C, are noticed in the QoS log of that
service. Note that values of T, N, and C are selected by cloud providers and may
be adjusted to deal with various environment conditions.

3 Long-Term QoS Compliance Checking

The composition middleware sends two types of recommendation requests to
the Long-Term QoS Compliance Checker (LQCC): composition and substitution
requests. A composition recommendation request includes the ID of a potential
component along with QoS requirements to LQCC. LQCC requests the QoS
prediction trend for the component from the QoS Predictor. Then, it checks
compatibility between the QoS prediction and QoS requirement intervals, and
returns a composition recommendation to the middleware. A substitution rec-
ommendation request includes IDs of the services to substitute and potential
substitutes to LQCC. LQCC obtains the QoS prediction trends for the com-
ponent to substitute and potential substitute from the QoS Predictor. Then,
it checks whether the two trends are close enough to each other and returns a
substitution recommendation to LQCC.

3.1 Checking Compliance for Service Composition

We introduce two heuristics to check long-term QoS compliance for composition:
Conservative and Soft heuristics. The conservative heuristic states that a service
S is long-term QoS compliant with the developer’s QoS requirement iff for each
time interval [Ti, Ti+1] in the prediction time interval [α, β], the area under the
predicted QoS curve of S is greater than the area under the lower bound of the
preferred QoS requirement curve, and is less than or equal the area under the
higher bound of the preferred QoS requirement curve. The rational behind this
heuristic is to make sure the component’s QoS prediction curve remains within
the preferred interval throughout the various time periods.

∫ ti+1

ti

(q(t) − plower(t)) > ε and

∫ ti+1

ti

(phigher(t) − q(t)) > ε

A Deep Learning Approach 291

where ε (ε ≥ 0) is a composition compliance threshold, q(t), phigher(t), and
plower(t) stand for the component’s predicted QoS, the preferred higher bound
QoS, and the preferred lower bound QoS respectively.

The soft composition compliance heuristic states that a component is long-
term QoS compliant with the developer’s QoS requirements iff the sum of the
areas under the component’s predicted QoS curves is superior to the sum of the
areas under the lower bound of the acceptable QoS curves, and is less than or
equals to the sum of the areas under the higher bound of the preferred QoS
curves. The rationale behind this heuristic is to make sure that the overall com-
ponent’s QoS prediction curve is within any of the preferred or acceptable QoS
intervals. The component’s curve may fall outside the QoS requirement bound-
aries within a certain time period [Ti, Ti+1] as long as there are other time periods
that make up for the QoS loss in [Ti, Ti+1].

(
i=β−1∑

i=α

∫ ti+1

ti

(q(t) − alower(t))) > ε and (
i=β−1∑

i=α

∫ ti+1

ti

(phigher(t) − q(t))) > ε

where ε is a composition compliance threshold (ε ≥ 0), q(t), phiger(t), and
alower(t) stand for the predicted QoS, the preferred QoS requirement upper
bound, and the acceptable QoS requirement lower bound.

3.2 Checking Compliance for Service Substitution

Similarly to composition, we introduce two heuristics to check long-term QoS
compliance for substitution: Conservative and Soft substitution heuristics. The
conservative heuristic states that a service S is long-term QoS compliant with
a potential candidate substitute C iff for each time interval [Ti, Ti+1] in the
prediction time interval [α, β], the difference between the two areas under the
predicted QoS curves of S and C is less than or equal a threshold value ε (ε ≥ 0).

∫ ti+1

ti

|(qS(t) − qC(t))| ≤ ε

where qS(t) and qC(t) stand for the predicted QoS of S and C respectively.
The soft heuristic states that a service S is long-term QoS compliant with a

potential candidate substitute C iff the sum of the differences between the areas
under the predicted QoS curves of S and C is less than or equal to the sum of
the areas under the required QoS curves.

(
i=β−1∑

i=α

∫ ti+1

ti

|(qS(t) − qC(t))|) ≤ ε

where ε is a threshold such that ε ≥ 0, qS(t) and qC(t) stand for the predicted
QoS of S and C, respectively.

292 H. Labbaci et al.

4 Experimental Study

The goal of our experiments is to assess the ability of the proposed approach to
correctly recommend services for composition and substitution. The accuracy of
such recommendation strongly depends on the accuracy of forecasting long-term
QoS. We ran our experiments on a 64-bit Windows 10 environment, in a machine
equipped with an intel i7 and 12 GO RAM. We used Keras1 with Google’s
Tensorflow2 as back-end for implementing and training the LSTM model. As
it is difficult to get the history of real QoS values, we generated synthetic QoS
values (disk storage usage) over different periods of time. Generated values are
used to train our QoS prediction models.

Fig. 2. Comparison of Predicted Storage with LSTMs and ARIMA Models

We compare the accuracy of the proposed prediction with the one that uses
ARIMA model [9]. ARIMA (AutoRegressive Integrated Moving Averages) has
been successfully used for time series forecasting. Auto regressive means the
prediction of x(t) depends on p = k, p, k ∈ N previous terms. For instance, for
p = 3, the prediction of x(t) depends on x(t − 1),x(t − 2), and x(t − 3). Moving
averages means the prediction depends on the q = k, q, k ∈ N previous errors.

Figure 2 shows a comparison of the prediction accuracy of our approach
(LSTM) and ARIMA. Both models are trained with service storage data from
Summer-2009 until Spring-2011 and tested with service storage data from
Summer-2012 until Spring-2012. Figure 2 shows that both LSTM and ARIMA
achieves comparable accuracy on the training data. However, LSTM outperforms
1 https://keras.io/.
2 http://www.tensorflow.com/.

https://keras.io/
http://www.tensorflow.com/

A Deep Learning Approach 293

ARIMA on test data. The justification is that LSTM uses many deep hidden lay-
ers with non linear transformations among the layers such as sigmoid and tanh
functions. LSTM also saves information longer by using the forget and update
gates, hence the bigger the training set, the better LSTM learns and the more
accurate is the prediction. On the other hand, ARIMA bases the prediction on
p lags which means that the prediction depends on p previous terms.

5 Related Work

In this section, we review the main techniques related to QoS-aware composi-
tion of Web services. [9] used the Autoregressive Integrated Moving Average
(ARIMA) model to predict future behaviours of the service requests. However,
it is not suitable for designing long-term composition as it does not gather sto-
chastic request arrivals. [13] used matrix factorization of a user-service matrix
to predict future QoS that can be used for designing compositions. Singular
Value Decomposition SVD decomposes the user-service matrix into the prod-
uct of a user matrix and a service matrix. The reconstructed matrix from the
previous product contains the predicted QoS values. Previous approaches rely
on instantaneous service QoS values for predicting future QoS that can be used
for designing compositions. Our approach uses deep recurrent LSTMs to foresee
how QoS values are expected to evolve in time. Such prediction allows providers
to better allocate resources to services and developers to better select services for
designing long-term compositions. Our approach achieves a more accurate QoS
forecasting than the linear methods such as ARIMA [9]. Deep recurrent LSTMs
use many hidden layers and non linear transformations between the layers such
as tanh function. [10] proposed a model for cloud service providers that predicts
consumer’s service usage behavior (i.e., next requests) and computes the costs
of these requests with the goal to maximize cloud service providers incomes. [8]
proposes an approach to compose customer requests using the provider long-
term qualitative model. Long-term qualitative model is represented as a tem-
poral CP-net. IaaS composition is transformed as a preference maximization
optimization problem. [6] defines an approach for long-term QoS-aware cloud
service composition. It introduces three meta-heuristic namely Genetic Algo-
rithm, Simulated annealing, and Tabu search to select only services with the
best averaged long-term QoS. Our approach relies on deep learning for service
QoS prediction. Additionally, we use QoS prediction for both long-term service
composition and substitution. LSTMs have been successfully used to solve differ-
ent prediction problems such as predicting human trajectory in crowded spaces
[1]. To the best of our knowledge, this is the first work that uses deep learning for
designing long-term QoS aware service composition and substitution techniques.

6 Conclusion

In this paper, we proposed a deep learning approach for service composition using
long-term predicted QoS trends. We used deep recurrent Long Short Term Mem-
ories (LSTMs) to predict QoS trends over future time periods. The predicted

294 H. Labbaci et al.

QoS is used during (i) composition time to ascertain that selected components
statisfy developers’ QoS requirements in the long run and (ii) substitution to
verify that a component and its potential substitute have similar QoS trends.
Experiments conducted over synthetic data show that the use of LSTMs for QoS
prediction outperforms other techniques such as ARIMA.

References

1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social
lstm: Human trajectory prediction in crowded spaces. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

2. Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F., Wang, W.: Quality-of-service
in cloud computing: modeling techniques and their applications. J. Internet Serv.
Appl. 5(1), 11:1–11:17 (2014)

3. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

4. Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benbernou, S.:
I, B., Kertész, A., Parkin, M., Carro, M.: A survey on service quality description.
ACM Comput. Surv. 46(1), 1:1–1:58 (2013)

5. Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of
techniques and tools. ACM Comput. Surv. 48(3), 33:1–33:41 (2016)

6. Liu, S., Wei, Y., Tang, K., Qin, A.K., Yao, X.: Qos-aware long-term based service
composition in cloud computing. In: IEEE Congress on Evolutionary Computation
(CEC) 2015, pp. 3362–3369 (2015)

7. Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A.H.H., Elmagarmid, A.K.:
Business-to-business interactions: issues and enabling technologies. VLDB J. 12(1),
59–85 (2003)

8. Mistry, S., Bouguettaya, A., Dong, H., Erradi, A.: Qualitative economic model
for long-term iaas composition. In: International Conference on Service-Oriented
Computing, pp. 317–332 (2016)

9. Mistry, S., Bouguettaya, A., Dong, H., Qin, A.K.: Predicting dynamic requests
behavior in long-term iaas service composition. In: IEEE International Conference
on Web Services (ICWS) 2015, pp. 49–56. IEEE (2015)

10. Mistry, S., Bouguettaya, A., Dong, H., Qin, A.: Metaheuristic optimization for
long-term iaas service composition. IEEE Trans. Serv. Comput. (2017)

11. Wang, S., Zhu, X., Yang, F.: Efficient qos management for qos-aware web service
composition. Int. J. Web Grid Serv. 10(1), 1–23 (2014)

12. Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: Qos-
aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5),
311–327 (2004)

13. Zhu, J., He, P., Zheng, Z., Lyu, M.R.: Towards online, accurate, and scalable qos
prediction for runtime service adaptation. In: IEEE 34th International Conference
on Distributed Computing Systems (ICDCS) 2014, pp. 318–327 (2014)

Run-time Service Operation and
Management

An Artifact-Driven Approach to Monitor
Business Processes Through Real-World Objects

Giovanni Meroni1(B), Claudio Di Ciccio2, and Jan Mendling2

1 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

giovanni.meroni@polimi.it
2 Institute for Information Business,

Vienna University of Economics and Business, Vienna, Austria
{claudio.di.ciccio,jan.mendling}@wu.ac.at

Abstract. Nowadays, many business processes once intra-
organizational are becoming inter-organizational. Thus, being able to
monitor how such processes are performed, including portions carried
out by service providers, is paramount. Yet, traditional process moni-
toring techniques present some shortcomings when dealing with inter-
organizational processes. In particular, they require human operators to
notify when business activities are performed, and to stop the process
when it is not executed as expected. In this paper, we address these
issues by proposing an artifact-driven monitoring service, capable of
autonomously and continuously monitor inter-organizational processes.
To do so, this service relies on the state of the artifacts (i.e., physi-
cal entities) participating to the process, represented using the E-GSM
notation. A working prototype of this service is presented and validated
using real-world processes and data from the logistics domain.

Keywords: Artifact-driven process monitoring · Physical artifacts ·
E-GSM · Inter-organizational monitoring service · Autonomous process
monitoring

1 Introduction

In recent years, a large number of organizations opted to outsource some of their
business services to external service providers, either partially or entirely [12]. By
doing so, many traditionally intra-organizational business processes have become
inter-organizational. The adoption of this strategy has brought several advan-
tages. For example, organizations can now focus on their core business, rather
than having to deal with support processes, e.g., logistics. Furthermore, special-
ized service providers usually deal with the externalized processes more efficiently
and effectively than internal divisions of organizations operating on different
markets. However, outsourcing has also brought some issues, one of which is the
inability for an organization to directly control how the outsourced processes are
executed. It is up to the service provider to execute these processes as agreed with
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 297–313, 2017.
https://doi.org/10.1007/978-3-319-69035-3_21

298 G. Meroni et al.

the organization. In such a case, a service capable to constantly monitor the exe-
cution of inter-organizational processes becomes crucial. A process monitoring
service allows an organization to know a.o. (i) when business activities com-
posing the process are executed, and (ii) if their execution order complies with
the process model, namely the formal specification of how the process should be
performed. This way, countermeasures can be taken in case violations in the exe-
cution occur, and a better coordination among the organization and the service
providers can be achieved.

Traditionally, monitoring services are included in Business Process
Management Systems (BPMSs), namely the software components responsible for
automating the execution of business processes [10]. However, a BPMS presents
shortcomings when monitoring inter-organizational processes. Firstly, unless an
activity is completely automated and fully executed by the BPMS, human oper-
ators have to manually notify the BPMS that an activity starts or ends. Such
a task disrupts the operator’s work, and can be easily forgotten or postponed,
thus negatively affecting the reliability of the monitoring. Secondly, whenever the
process is not executed as agreed, BPMS usually halt the execution of the process
until the violation is manually solved by a human operator. Consequently, the
process execution is not tracked until the violation is solved. This is undesirable:
In an inter-organizational process, service providers could continue running their
processes even though the BPMS halted. Such an issue can be partially mitigated
by instructing the BPMS not to halt in case of violations, so as to successively
resort to mining techniques to detect the disruptions in the recorded execution
log. However, such an approach impedes an organization to promptly react to
violations.

To overcome these issues, we propose a novel monitoring service which can
autonomously (i) monitor the execution of non-automated activities, as long as
they interact with machine-tracked real-world objects, and (ii) identify incor-
rectly executed activities yet continue monitoring the process after a violation
occurs. The approach we present is built upon the usage of the Extended-
GSM (E-GSM) artifact-centric language [20] for the automated monitoring of
processes. Our approach is implemented with a software prototype. We demon-
strate the efficacy of our approach with an application on a real-world use case
from the logistics domain.

The remainder of this paper is structured as follows. Section 2 introduces a
motivating example used to describe, in Sect. 3, our approach. The architecture
of a monitoring service based on our approach is discussed in Sect. 4. Section 5
validates our work against real processes and data. Finally, Sect. 6 surveys related
work and Sect. 7 concludes the paper outlining the future research plans.

2 Motivating Example

To better understand the need for an inter-organizational monitoring service,
we focus on a real scenario taken from the logistics domain, which will be used
throughout this paper. However, logistics is only one of the possible case studies.

An Artifact-Driven Approach to Monitor Business Processes 299

In fact, our solution is beneficial to every inter-organizational business process
interacting with real-world objects.

A manufacturer located in the United Kingdom, M , has a long-term pro-
visioning contract with customer C, located in Germany. To send its goods to
C, M relies on logistics company L, headquartered in Amsterdam, which owns
several inland terminals located nearby the principal airports of Europe. Instead
of performing the actual shipments, L outsources them to several truck shippers
S, each one responsible for one or more legs (i.e., for all the shipments from
the headquarters to a specific terminal and vice-versa). The shipment process
from M to C is organized as follows. At first, a container is shipped from the
plant of M to a terminal located near London Heathrow Airport, which serves
the UK market. We call this leg M-TU. Then, the container is shipped to the
headquarters of L (TU-HQ leg). After that, the container is shipped to a terminal
located near Frankfurt, which serves the German market (HQ-TG leg). Finally,
the container is delivered to C (TG-C leg).

The TU-HQ leg is organized as follows. Firstly, the container is loaded onto
a truck of S (Load container), which subsequently starts traveling in the UK
(Travel in UK) until either a break is taken (Take break in UK), or the entrance to
the Channel tunnel is reached. The alternation of traveling hours with breaks
forms a loop which we name UK Loop. In the first case, once the break ends,
the truck continues traveling in the UK. In the second case, the truck takes
the Channel tunnel (Take Channel tunnel), then continues traveling on continental
Europe (Travel in EU) until either it reaches the headquarters, or it takes a break
(Take break in EU). We name this loop of travel and breaks within continental
Europe as EU Loop. In the first case, the container is unloaded (Unload container)
and the process ends. In the last case, the truck continues traveling in Europe
once the break ends. The other legs are organized similarly. Once the container
is loaded, the truck starts traveling (either in the UK or in continental Europe,
depending on the location of the leg) until either the destination is reached, or a
break is taken. Similarly to the TU-HQ leg, once the break ends, the truck starts
traveling again.

UK Loop EU Loop

Shipment started

M-TU HQ-TG

Shipment ended

TU-HQ
started

Load
container

Travel in
UK

Take break
in UK

Take Channel
tunnel

TU-HQ
ended

Travel in
EU

Take break
in EU

TU-HQ TG-C

Unload
container

Fig. 1. BPMN diagram of the running example: High-level process model (top), and
expanded subprocess TU-HQ (bottom).

300 G. Meroni et al.

The upper part of Fig. 1 depicts the whole shipment process using the Busi-
ness Process Model and Notation (BPMN) language. The lower part of Fig. 1,
on the other hand, depicts the TU-HQ leg. It is worth noting that none of the
involved organizations has full control of the execution of the whole process.
Since each leg is outsourced to a different truck shipping company S, S controls
only those activities inside its own leg, and cannot alter the execution of the
other ones. P , C, and L, who are the only organizations interested in the whole
process, have no direct control on it. Therefore, to allow each organization to
know how the whole process is being run, a monitoring service is needed.

3 Approach

The underlying idea of our approach is that the execution of an activity involving
real-world objects is reflected in the modification of their status. In the example
of Fig. 1, e.g., the loaded truck updating its position from the European end of the
Channel tunnel towards Frankfurt in the physical world indicates the enactment
of activity Travel in EU in the sub-process TU-HQ. Updates on the status of trucks
are typically provided by AIS/GPS on-board units to the systems of the logistic
control rooms. The transmitted information is elaborated and can lead in the
process environment to a change of state of the related artifacts. The platform
can thus observe the real-world objects involved in the process execution, and
compare the evolution of their status with the expected enactment of the process.
This allows for a monitoring that does not require a human intervention to signal
the progress of process instances. When the process instances’ execution differs
from the prescribed one, a violation is detected. The platform becomes aware of
such a discrepancy when the observed artifacts’ state changes do not match with
the model of the running process. It can identify which activities are affected,
flag them as non compliant, and alert the involved stakeholders.

We propose a four-steps procedure to provide the necessary information.
The first step is taking as input a BPMN process diagram, one of the most
used formalisms for process modeling, representing the process to be monitored.
The second step requires the designer to enrich the BPMN diagram by includ-
ing information on the artifacts participating in the process. The third step
automatically translates the BPMN diagram into an E-GSM process, suited for
monitoring distributed processes. The fourth step automatically defines criteria
to map real-world objects to the artifacts at runtime. This way, organizations
can reuse existing process models, without having to learn new languages and
remodel processes from scratch. Our approach poses the following three main
requirements.

R1. The platform must be made aware of the process model and the involved
artifacts. Such an input can be provided at deploy time for the process.

R2. The platform must be made aware of the physical entities to observe.
The second requirement pertains to the run-time link between real-world objects
and artifacts. Not the same truck will be used for all deliveries: Different real-
world objects may embody the same process artifact. However, it may not be

An Artifact-Driven Approach to Monitor Business Processes 301

possible to know at design-time which real-world objects will be involved in the
carry-out of every process instance. Oftentimes such an information is available
only after the process instance started.

Such a binding should be definable at runtime. By the same line of reasoning,
the information on the previously involved artifacts may be no longer relevant to
the ongoing process at some stage, as in the case of the truck moving away from
the logistics company headquarters once activity TU-HQ is concluded. Hence the
following requirement.

R3. The binding and unbinding of physical entities to process instances has
to be made declarable.

In the following, we explain how our solution meets those requirements.

UK Loop EU Loop

TU-HQ
started

Load
container

Travel in
UK

Take break
in UK

Take Channel
tunnel

TU-HQ
ended

Truck

Truck
[heathrow,s ll]

Truck
[heathrow,moving]

Truck
[cheriton,s ll]

Truck
[highwayUK,s ll]

Truck
[highwayUK,moving]

Travel in
EU

Take break
in EU

Truck
[amsterdam,s ll]

Truck
[highwayEU,s ll]

Truck
[highwayEU,moving]

Truck
[coquelles,moving]

Container

Shipment started

M-TU HQ-TG

Shipment ended

TU-HQ TG-C

Container
[unhooked]

Container
[hooked]

Unload
container

Truck
[amsterdam,moving]

Fig. 2. BPMN process model enriched with information on the participating artifacts.

3.1 Enrichment of the BPMN Process Model with Artifacts

A BPMN process diagram specifies which activities are executed in a process
and their control flow relationships. However, to be able to infer when activities
start or end based on the state of the artifacts, the diagram must capture this
information (requirement R1). Furthermore, the following binding and unbinding
mechanisms among artifacts and real-world objects must be specified in the
diagram: (i) When an artifact starts interacting with the process (R3); (ii) How
the object impersonating the artifact is notified to the process (R2); (iii) When
an artifact is no longer related to the process (R3).

To this extent, we resort on the standard BPMN data objects, rather than
introducing yet another extension of BPMN. Data objects traditionally serve
for documentation purposes, yet we use them to model the artifacts and their
interactions with the process. Moreover, we establish the following set of rules

302 G. Meroni et al.

to guarantee at design-time that the process model contains enough information
to completely and unambiguously automate the monitoring of the process at
run-time. The explanatory examples provided for the rules are shown in Fig. 2.

– An artifact must be modeled with data objects. The name of the data object
identifies the artifact (e.g., Truck), whereas the data state identifies in which
condition the artifact is supposed to be (e.g., [highwayUK,moving]).

– Each monitored activity must have at least one input and one output data
object. The activity is supposed to start (resp., finish) only when all input
(output) data objects exist and have the specified data state. If an activity
has two input (output) data objects referring to the same artifact in different
data states, the artifact must assume one of the specified states. For exam-
ple, Travel in UK starts when Truck is either in state [highwayUK,moving], or in
[heathrow,moving]. It ends when Truck is either in state [highwayUK,still] or in
[cheriton,still].

– For each artifact, at least one output data object with no data state must be
defined in the diagram and associated to a start event. The artifact is sup-
posed to begin interacting with the process when that event occurs. Before-
hand, the artifact and its state is ignored. The payload of the event indicates
the object that instantiates the artifact. In the example, Container starts inter-
acting with the process at its initial event, and Truck is bound to the beginning
of TU-HQ.

– For each artifact, zero or more input data objects with no data state can
be defined in the diagram and associated to an end event. The artifact is
supposed to become unrelated to the process when the event occurs (after
such an event, the artifact and its state will be ignored when the process is
executed). For instance, Truck will be no longer related to the process once
TU-HQ finishes.

– Data associations must not contradict the semantics of the control flow as
they are used to identify when activities start or end. For example, Travel

in UK cannot be declared to start only when Truck is in [heathrow,moving],
otherwise it could not start again after a break along the journey through
UK, far from the airport (despite the loop in the process model). Therefore
Truck[highwayUK,moving] is set as another input for Travel in UK and as an
output of Take break in UK.

Example. Figure 2 shows the process model obtained by extending the one pre-
sented in Sect. 2 according to the previously mentioned rules. The input and
output data objects of Unload container indicate the preconditions and postcon-
ditions for that activity to be executed. To execute Unload container, the container
must be hooked to the truck, and the truck must already be parked in the head-
quarters of L. When Unload container finishes, the container will be unhooked
from the truck, and the truck will leave the headquarters of L. As the container
participates in the whole process, its data object is associated to the start and
end events of the process. On the other hand, a specific truck may only partic-
ipate to a single subprocess. As such, the data object representing the truck is
associated to the start and end events of each subprocess.

An Artifact-Driven Approach to Monitor Business Processes 303

3.2 Generation of the E-GSM Process Model

Due to its imperative nature, BPMN treats control flow information in a pre-
scriptive way: The only possible executions of the process are the ones that
comply with the control flow. Therefore, no other way of enacting the process
can take place than the prescribed ones. This assumption is suitable for intra-
organization execution scenarios. However, when it comes to inter-organization
monitoring scenarios, a different paradigm is needed in order to deal with devia-
tions that may arise from the different parties involved. To overcome this limita-
tion, we make use of the E-GSM language [3], an extension of the Guard-Stage-
Milestone (GSM) notation [15] especially devised for monitoring: E-GSM treats
control flow in a descriptive way, and as such it can monitor any possible execu-
tion of a process. When a deviation from the control flow is detected, an E-GSM
engine flags the part of the process causing such a deviation as non compliant,
without halting the monitoring.

In E-GSM the units of work that can be performed when the process is exe-
cuted are represented by stages. Stages can be atomic, thus representing a single
task, or can nest other stages, thus representing a process fragment. The con-
ditions that determine when stages become opened (the unit of work is being
performed) are represented by data flow guards, which we will indicate as “DFG”.
The conditions that determine when stages are closed (the unit of work is com-
pleted) are represented by milestones, indicated as “M”. Each stage must have at
least one data flow guard and one milestone attached. Control-flow dependen-
cies among stages are represented by process-flow guards, henceforth identified
by the acronym “PFG”. They are assessed before a stage becomes opened. If
they are evaluated as false, the stage is flagged either as out of order (executed
although it should not) or skipped (not executed when it should). Starting from
the enriched BPMN process model obtained in the previous step, an E-GSM
model of that process can be automatically produced. To do so, we apply the
following translation rules. They are based upon [4], which we extend to detect
when activities are executed based on the state of the artifacts. The effect of the
application of such rules on the model of Fig. 2 is shown in Fig. 3.

– Given a BPMN atomic activity (e.g., Unload container), a corresponding E-
GSM stage is produced (e.g., UnloadContainer).

– For each artifact Ar, if a change in its state occurs, events are raised to
signal that it leaves the previous state (henceforth denoted as Ar l) and
enters the current one (Ar e). For instance, when Truck transitions from
[heathrow,still] to [heathrow,moving], events Truck l and Truck e are produced.
Truck l is raised when Truck leaves [heathrow,still], and Truck e is raised when
it enters [heathrow,moving].

– The data flow guard (milestone) of a stage is evaluated on Ar e (Ar l) for
each artifact Ar associated with each input (output) data objects of Ar. The
stage is opened (closed) if the state assumed by all Ar’s is the one indi-
cated by the input (output) data objects of the associated activity. For
example, LoadContainer.DFG1 is evaluated when Container e or Truck e occur.
LoadContainer is opened if Container is [unhooked], and Truck is in [heathrow,still].

304 G. Meroni et al.

– Given a BPMN event E (e.g., TU-HQ started), a stage is produced (e.g.,
TU-HQStarted). One data flow guard and one milestone, both requiring E to
be raised, are attached to the stage. This way, TU-HQStarted is opened and
immediately closed when TU-HQ started occurs.

– As discussed in detail in [4], the BPMN model is decomposed into nested
process blocks identified by (i) control-flow patterns (e.g., the loop blocks
UK Loop and EU Loop, containing the fragments of the process with a struc-
tured loop), (ii) subprocess activities (e.g., TU-HQ). Each block B is trans-
lated into a stage BS that encloses the inner stages derived from activi-
ties, events or process blocks therein. The data flow guard of the block-
stage BS is the union of the data flow guards of the inner stages, whereas
the milestone of BS and the process flow guard of the inner stages reflect
the control flow pattern expressed by B. For instance, TU-HQ is trans-
lated into a stage TU-HQSeq containing TU-HQStarted, LoadContainer, UKLoop,
TakeChnTunnel, EULoop, UnloadContainer and TU-HQEnded. TU-HQEnded.DFG1 is
fulfilled only if the control flow is respected, i.e., TU-HQEnded is executed only
once and immediately after UnloadContainer ends.

TU-HQSeq

Load
Container

M1: on container_l or truck_l
if container[hooked]
and truck[heathrow,moving]

M1: on container_l or truck_l
if container[hooked]
and truck[heathrow,moving]

D

DFG1: on container_e or truck_e
if container[unhooked]

and truck[heathrow,s ll]
D

DFG1: on container_e or truck_e
if container[unhooked]

and truck[heathrow,s ll]

Unload

Container

M1: on container_l
or truck_l if
container[unhooked] and
truck[amsterdam,moving]

M1: on container_l
or truck_l if
container[unhooked] and
truck[amsterdam,moving]

D
DFG1: on container_e or

truck_e if container[hooked]
and truck[amsterdam,s ll]

D
DFG1: on container_e or

truck_e if container[hooked]
and truck[amsterdam,s ll]

PPFG1: EULoop.M1 and not
UnloadContainer.M1

PPFG1: EULoop.M1 and not
UnloadContainer.M1

TU-HQ

Started

M1: on TU-HQ_startedM1: on TU-HQ_startedDDFG1: on TU-HQ_started DDFG1: on TU-HQ_started

EULoop M1: if EUIte.M1M1: if EUIte.M1DDFG1:EUIte.DFG1 DDFG1:EUIte.DFG1

P
PFG1:

TakeChnTunnel.M1 and
not EULoop.M1

P
PFG1:

TakeChnTunnel.M1 and
not EULoop.M1

D

DFG1:
TU-HQStarted.DFG1

U LoadContainer.DFG1
U UKLoop.DFG1

U TakeChnTunnel.DFG1
U EULoop.DFG1

U UnloadContainer.DFG1
U TU-HQEnded.DFG1

D

DFG1:
TU-HQStarted.DFG1

U LoadContainer.DFG1
U UKLoop.DFG1

U TakeChnTunnel.DFG1
U EULoop.DFG1

U UnloadContainer.DFG1
U TU-HQEnded.DFG1

M1: if
TU-HQStarted.M1
and LoadContainer.M1
and UKLoop.M1
and TakeChnTunnel.M1
and EULoop.M1
and UnloadContainer.M1
and TU-HQEnded.M1

M1: if
TU-HQStarted.M1
and LoadContainer.M1
and UKLoop.M1
and TakeChnTunnel.M1
and EULoop.M1
and UnloadContainer.M1
and TU-HQEnded.M1

PPFG1: TU-HQStarted.M1
and not LoadContainer.M1

PPFG1: TU-HQStarted.M1
and not LoadContainer.M1

UKLoop M1: if UKIte.M1M1: if UKIte.M1DDFG1: UKIte.DFG1 DDFG1: UKIte.DFG1

PPFG1: LoadContainer.M1
and not UKLoop.M1

PPFG1: LoadContainer.M1
and not UKLoop.M1

PPFG1: not
TU-HQStarted.M1 PPFG1: not
TU-HQStarted.M1

TakeChn
Tunnel

M1: on truck_l if
truck[coquelles,moving]
M1: on truck_l if
truck[coquelles,moving]D

DFG1: on truck_e if
truck[cheriton,s ll] D
DFG1: on truck_e if
truck[cheriton,s ll]

PPFG1: UKLoop.M1 and
not TakeChnTunnel.M1

PPFG1: UKLoop.M1 and
not TakeChnTunnel.M1

TU-HQ

Ended

M1: on TU-HQ_endedM1: on TU-HQ_endedDDFG1: on TU-HQ_ended DDFG1: on TU-HQ_ended

PPFG1: UnloadContainer.M1
and not TU-HQEnded.M1

PPFG1: UnloadContainer.M1
and not TU-HQEnded.M1

Fig. 3. E-GSM process model derived from the TU-HQ subprocess. For the sake of
clarity, stages inside UK Loop and EU Loop are omitted.

Example. Figure 3 shows the E-GSM process model derived from the BPMN
process model of Fig. 2. Here, UnloadContainer.DFG1 is evaluated whenever
the artifacts Truck or Container change their state, thus generating events
Truck l or Truck e. To mark UnloadContainer as opened (i.e., to represent
the fact that the container is currently being unloaded from the truck),
UnloadContainer.DFG1 requires that Truck is in [amsterdam,still], and Container

is [hooked]. UnloadContainer.M1 is evaluated when Truck or Container change
their state, thus generating events Truck l or Container l respectively. To mark
UnloadContainer as closed (i.e., to signal that the unloading of the container
finished), UnloadContainer.M1 requires that Truck is in [amsterdam,moving], and
Container is [unhooked]. Finally, to ensure that UnloadContainer is executed at the
right time, UnloadContainer.PFG1 requires that UnloadContainer has not already

An Artifact-Driven Approach to Monitor Business Processes 305

been executed (thus requiring UnloadContainer.M1 not to be achieved). Also,
UnloadContainer.PFG1 needs that EULoop (directly preceding UnloadContainer)
has already been executed, hence that EULoop.M1 was achieved.

3.3 Generation of the Artifact-to-object Mapping Criteria

The E-GSM model generated in the previous step allows us to detect when activ-
ities are executed based on the state of the artifacts participating to the process.
However, the E-GSM model does not indicate which real-world object will imper-
sonate each artifact (e.g., the artifact Truck is impersonated by the physical truck
having license plate “AB123XY”). We capture the mapping criteria among arti-
facts and objects in a separate document. Such a choice allows us to decouple the
process logic from the artifact instantiation logic, which significantly improves
the scalability of the platform. Starting from the enriched BPMN process model
obtained in the first step, the criteria to map real-world objects to the artifacts
can be applied in an automated way. To do so, the following rules are applied:

– Each data association between a BPMN start event and a data object is
translated to a mapping criterion. The criterion states that, whenever the
event is detected, the artifact represented by the data object is bound to the
object identified in the payload of the event. Should the artifact be already
bound to a different object, the new binding would replace the existing one.
For instance, when the event TU-HQ started occurs, Truck is bound to the
physical truck whose license plate is specified in the payload of TU-HQ started.

– Each data association between a data object and a BPMN end event is trans-
lated into a mapping criterion. The criterion states that, whenever the event
is detected and the artifact represented by the data object is bound to an
object, it becomes unbound. If the artifact is already unbound, no action is
taken. For instance, when the event TU-HQ ended occurs, no truck is bound
to Truck.

Example. Figure 4 shows the artifact-to-object mapping criteria derived from
the BPMN process model of Fig. 2. Because the Container artifact interacts with
the whole process, the binding is expected to occur when the process starts, and
the unbinding to occur once the process finishes. Therefore, to bind a physical
container to Container, event Shipment started should occur. Once Shipment started

Fig. 4. Artifact-to-object mapping criteria.

306 G. Meroni et al.

is detected, Container is bound to the container whose unique identifier (e.g., its
serial number) is equal to the one specified in the payload of Shipment started . To
unbind Container, shipment ended should occur. The Truck artifact, on the other
hand, interacts when each subprocess is running. Therefore, to bind a physical
truck to Truck, any of the events M-TU started , TU-HQ started , HQ-TG started , or
TG-C started should occur. Similarly, to unbind Truck, M-TU ended , TU-HQ ended ,
HQ-TG ended , or TG-C ended should occur.

4 Architecture and Implementation

Figure 5 shows the architecture of the monitoring service we developed to sup-
port inter-organizational processes. To completely automate the monitoring, we
assume that the real-world objects embodying the artifacts can autonomously
infer their state and submit such an information to the service. This is a feasi-
ble assumption in the context of a Wireless Sensor Network (WSN) [1] or the
Internet of Things (IoT) [2], where environmental data can be collected by the
objects, which can then infer their own state.

To allow the objects to communicate with the service, a Message Queue
Telemetry Transport (MQTT) Broker is used. MQTT1 is a queue-based pub-
lish/subscribe protocol, which is especially suited for applications where com-
puting power and bandwidth are constrained. The MQTT Broker contains
as many topics (i.e., queues) as the objects that can participate to the
process. Each of these topics adheres to the following naming convention:
/{artifact type}/{object id}, where artifact type is the artifact represented
by the object (e.g., a truck), and object id is the unique identifier of the object
(e.g., the license plate of the truck). Whenever the object changes its state, it
publishes the updated state on its own topic. The MQTT Broker also con-
tains as many topics as the process instances that are currently being car-
ried out. Each of these topics adheres to the following naming convention:

Monitoring Service
E-GSM EngineMQTT Broker

Container SN9876

Truck AB123XY
Publish

Publish

/Truck/ab123xy

/Container/sn9876

/Process/inst1
Publish

Actors

Events Router

Subscribe

Subscribe

Subscribe
<–––––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>
<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>

Ar fact-to-object
mapping criteria

Forward

No fy

No fy

No fy

REST API
Interact

––––––

––

––––––
–––––––

DDPP

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

DD

DD

PP

––––––
–––––––

DD

PP

PP

––––––

––

––––––
–––––––

DP

P

––––––
–––––––

D

––––––
–––––––

D

P

––––––
–––––––

D

––––––
–––––––

D

P

D

D

P

––––––
–––––––

D

P

P

E-GSM process model

––––––––

––––––
–––––––

DD

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

PP

––––––
–––––––

DD

PP

PPDD

––––––––

––––––
–––––––

D

P

––––––
–––––––

D

––––––
–––––––

D

P

––––––
–––––––

D

––––––
–––––––

D

P

P

––––––
–––––––

D

P

PD

Fig. 5. Architecture of the monitoring service.

1 http://mqtt.org/.

http://mqtt.org/

An Artifact-Driven Approach to Monitor Business Processes 307

/{process name}/{instance id}, where process name is the name of process model
to be monitored (i.e., the shipment from M to C, henceforth MtoCProcess), and
instance id is the unique identifier of the process instance (i.e., the actual execu-
tion of the process) that is being run. These topics are used by the organizations
to send events related to the running processes, but not related to the state of
the artifacts (i.e., when a subprocess starts or ends).

The E-GSM Engine2 is the component responsible for monitoring the execu-
tion of each process instance. This component takes as input the E-GSM models
produced according to Sect. 3.2. Whenever a new execution of the process starts,
the E-GSM Engine creates a new model instance, whose identifier instance id

is the same as the one of the running process instance. For each model instance,
the E-GSM Engine (i) keeps track of which activities are ongoing, (ii) detects
whether they follow the execution flow defined in the model and, if not, (iii)
marks them as not compliant.

To support late binding and unbinding among objects and artifacts refer-
enced by the process, the Events Router component is introduced.3 By receiving
as input the artifact-to-object mapping criteria produced according to Sect. 3.3,
the Events Router forwards to each E-GSM model instance only the events pro-
duced by the objects that effectively take part in that process execution. Note
that, by keeping the binding logic separate from the process logic, the E-GSM
instance receives only events coming from those objects that are bound to the
running processes. This way, the scalability of the E-GSM engine is affected
only by (i) the number of processes being run, and (ii) the number of objects
interacting with those processes, which is way lower than the total number of
objects under observation. To do so, the Events Router subscribes to all the
/{process name}/{instance id} topics (e.g., /MtoCProcess/inst1). Whenever a
new event is published (e.g., process started), the Events Router checks if a
mapping criterion is defined for that event. If no mapping criterion exists, the
Events Router forwards the event to the E-GSM instance whose identifier is
instance id (e.g., inst1). If a binding criterion exists, the Events Router sub-
scribes to topic /{artifact type}/{object id}, where object id is the object
specified in the payload of the event (e.g., /Container/sn9876), and associates
to that topic the instance id (e.g., inst1). From that point on, whenever a new
change of state is published in /{artifact type}/{object id}, the Events Router
forwards it to the E-GSM model instance whose identifier is instance id . For
example, if the truck having license plate AB123XY publishes on /Truck/AB123XY

that its state changed to [heathrow,moving], the Events Router will notify that
Truck is in [heathrow,moving], together with the raising of Truck l and Truck e

events, to the E-GSM instance inst1 . If an unbinding criterion exists, the Events
Router unsubscribes to topic /{artifact type}/{object id}, where object id is
the object specified in the payload of the event.

Finally, the Representational State Transfer (REST) [22] API offers an
interface for the organizations and the service providers to interact with the

2 Source code at https://bitbucket.org/polimiisgroup/egsmengine.
3 Source code at https://bitbucket.org/polimiisgroup/eventsrouter.

https://bitbucket.org/polimiisgroup/egsmengine
https://bitbucket.org/polimiisgroup/eventsrouter

308 G. Meroni et al.

monitoring service. It allows (i) the E-GSM Engine to be provided with the E-
GSM model, (ii) the Events Router to be instructed with the artifact-to-object
mapping criteria, and (iii) the organizations and the service providers to deter-
mine if the processes are correctly executed. In addition to that, it is responsible
for the management of the communication channels between the organizations
and service providers, and the monitoring instances: Whenever a new process
execution takes place, the REST API instructs the MQTT Broker to create a
new /{process name}/{instance id} topic. Then, the REST API instructs (i) the
Events Router to listen to that topic for evaluating the mapping criteria, and
(ii) the E-GSM Engine to create a new model instance whose identifier is the
same as instance id . Finally, it forwards the instance id to the involved service
providers, to specify the topic on which they should publish the events related to
the running process. For instance, when a new shipment from M to C takes place,
a new instance id (e.g., inst1) is defined, the MQTT topic /MtoCProcess/inst1

is created, a new E-GSM instance is run, and the notification that inst1 is up is
sent to all involved parties. The organizations can then use /MtoCProcess/inst1

to send events concerning that shipment.

Fig. 6. Screenshot of our service showing a non compliant execution of the TU-HQ leg.

Figure 6 shows a screenshot of the monitoring service displaying a non-
compliant execution of the TU-HQ leg. In this case, the truck took a ferry instead
of the Channel tunnel. Therefore, our service marks stage TakeChannelTunnel
as skipped (dark gray). Since TU-HQStarted, LoadContainer, TravelInUK and
TakeBreakInUK were executed in compliance with the control flow, they are
marked as on track (green). Since the truck has not yet taken a break in the
European continent, and the end event has not yet been received, TakeBreakInEU
and TU-HQEnded are not executed yet (light gray). As the truck is traveling in
the European continent, stage TravelInEU is still being executed (yellow). Note
that, although a compliance violation occurred, the monitoring is still running.

An Artifact-Driven Approach to Monitor Business Processes 309

5 Validation

To demonstrate the applicability and efficacy of our approach on a real-world
case, we have conducted an experiment with truck shipments data provided by a
European logistics company. 4 This provided material consisted of (i) a dataset
with the registered positions and speed of trucks involved in the shipments,
captured by on-board AIS/GPS systems and henceforth indicated as GPS log,
and (ii) a dataset indicating the shipments’ activities start and completion times,
manually triggered by the truck drivers and hereinafter denoted as activity log.
We replayed the GPS log within our platform and checked whether the start
and completion events detected by our platform matched with the manually
inserted information in the activity log. This way, we could compare our fully-
automated approach with a traditional one relying on human intervention. We
focused on routes connecting the premises in Amsterdam (AMS) to four other
major European airports, namely the London Heathrow airport (LHR), Brussels
(BRU), Paris Charles de Gaulle (CDG), and Frankfurt (FRA). For every route,
we considered both inbound and outbound routes from/to Amsterdam.

The GPS log and the activity log contained 19966 and 815 entries, respec-
tively, distributed over 77 shipments. The reported shipments took on average
533 min, ranging from less than 3 to more than 27 hours. By analyzing the activ-
ity log, we built a BPMN process for the routes, structured similarly to the legs
described in Sect. 2. We identified the possible discrete states that each truck can
assume through the inspection of the GPS log. Then, we followed the approach
described in Sect. 3: First, we enriched each BPMN model with artifacts rep-
resenting the truck and its states. Then, we generated the E-GSM models and
the artifact-to-object mapping criteria. This output was then used to instruct
the monitoring platform on which processes to monitor. After that, we used
the WSO2 Complex Event Processing platform5 to replay the GPS log, let our
system detect when the truck changed state, and forward such changes to the
monitoring service. Finally, we compared the results of the monitoring platform
with the activity log. Table 1 shows the results of our experiment.

The monitoring service was able to correctly determine the actual execution
of a process for 93.13% of the total instances. For the remaining 6.87%, the
issues lay in the determination of when activity Load container was executed. For
example, during one shipment of the BRU-AMS route, Load container was not
identified as completed, even though it was. This has to be imputed to the lim-
ited information available to determine the state of trucks: Our system had only
access to their speed and position, thus anomalous slow progressions due to con-
gestions at the logistic platform and along the road caused the misinterpretation
of their state.

Moreover, the monitoring service detected activities to be started or ended
more often than what had been notified by the truck drivers. The matching

4 The (anonymized) dataset is available at http://purl.org/polimi/martifact/
logisticsds-anon (password: GM-CDC-JM-dataset).

5 See http://wso2.com/products/complex-event-processor/.

http://purl.org/polimi/martifact/logisticsds-anon
http://purl.org/polimi/martifact/logisticsds-anon
http://wso2.com/products/complex-event-processor/

310 G. Meroni et al.

Table 1. Results of the validation.

Shipment AMS-

LHR

LHR-

AMS

AMS-

BRU

BRU-

AMS

AMS-

CDG

CDG-

AMS

AMS-

FRA

FRA-

AMS

Global

Instances 12 15 9 11 8 10 4 8 77

Median

duration [min]

806.28 720.05 306.67 256.30 813.48 483.69 481.32 396.30 533.01

Min. duration

[min]

338.47 138.02 153.00 159.62 387.57 353.00 396.10 279.32 138.02

Max. duration

[min]

1328.56 1622.03 519.12 388.30 1583.52 723.25 567.47 357.32 1622.03

Correctness

[%]

91.67% 100.00% 100.00% 90.91% 100.00% 100.00% 75.00% 87.50% 93.13%

Completeness

[%]

58.33% 53.33% 77.78% 90.91% 87.50% 60.00% 100.00% 62.50% 73.79%

Median

detection

delay [min]

2.73 −0.50 5.33 1.09 14.79 0.80 7.10 2.44 4.22

Median

absolute d.

delay [min]

12.53 4.57 7.10 5.17 16.57 4.18 8.87 4.88 7.98

cases amounted to 73.79%. Whether the missing entries in the activity log were
due to an omission of the driver, or rather due to a wrong detection of the
system, is debatable and needs further investigation. However, e.g., whenever
the monitoring service notified that activity Travel in EU was ended, and no
notification was sent by the truck driver, we inspected the GPS log and noticed
that the truck had reached Europe and its speed had amounted to zero for more
than a quarter of an hour, which suggests the first hypothesis to be more likely.

To assess the time gain for the detection of the status changes in the process,
we computed the delay between when each activity was started or ended, as
reported by the manual entries of the activity log, and when the monitoring
platform detected it, based on the GPS log. We will henceforth name such time
difference as detection delay. On average, the median of the detection delays
amounted to 4.22 min (7.98 considering the absolute values of the delays), which
is negligible for processes that last on average 533 min.

6 Related Work

In this section we briefly report on related work about (i) the monitoring of
business processes by their interaction with physical objects, and (ii) techniques
to coordinate inter-organizational processes.

In [14], BPMN data objects are adopted to model information on the arti-
facts manipulated by the activities composing a process. With respect to our
work, [14] expects information on the artifacts to be stored in a relational data-
base. Also, binding mechanisms are implemented as an extension of the BPMN
syntax, while our work relies solely on BPMN 2.0 OMG standard constructs.
[18] proposes a platform to monitor a process based on its interactions with

An Artifact-Driven Approach to Monitor Business Processes 311

real-world objects and human operators. Additionally, binding relationships are
automatically inferred by observing the execution of the process. However, infor-
mation on when activities are performed must be explicitly sent to the platform.
Also, only the occupation of objects and operators (i.e., if the operator is busy or
idle) is taken into consideration. [7] focuses on the process execution monitoring
based on physical objects’ data. To do so, BPMN constructs are extended to
define which events produced by a Complex Event Processing (CEP) determine
their activation and termination. Similarly, [5,8] propose to annotate activities
with constraints on attributes that are monitored when the process is executed.
This way, it is possible to report if an activity is not executed as expected as
soon as a violation occurs. [9] applies that approach to detect anomalies and
diversions in the context of air-freight cargo transportation. [17], on the other
hand, relies on artifacts and their lifecycle to monitor all the parameters relevant
for the execution of a process. This way, Key Performance Indicators (KPIs) on
the overall execution of the process and each single activities are derived. None
of these solutions deal with the detection of deviations in the process execution
flow. Concerning the generation of GSM models from activity-centric languages,
different approaches have been proposed by [11,16]. However, these approaches
treat the execution flow in a prescriptive way. Our solution, which extends [4],
treats instead execution flow in a descriptive way, thus allowing more flexibility,
and uses information on the artifacts to derive guards and milestones.

Traditionally, to monitor process portions carried out by service providers,
commitments have been used. Commitments are formal contracts that specify
how the interactions between the organization and the service provider should
be performed [23]. However, they are mainly focused on the outcome of the out-
sourced process portion carried out by the service provider, rather than on the
activities composing the process. Our work, on the other hand, is better suited
whenever the process must strictly adhere to the model, or when a detailed log
on how the process was performed is needed. [19], on the other hand, proposes
a GSM-based collaboration hub to coordinate logistics processes at the activity
level. The hub also adopts GSM to keep track of the execution of the process.
However, it relies on explicit notifications to determine when activities are exe-
cuted. [13] overcomes this limitation by adopting the IoT paradigm: they take
advantage of Guards and Milestones to identify when Stages are being executed
by predicating on sensor data coming from smart objects. However, the GSM
model is expected to be modeled from scratch. Also, both solutions lack mech-
anisms to detect deviations in the execution of the process with respect to its
model.

7 Conclusions and Future Work

This paper presented a monitoring service based on E-GSM to monitor the
execution of inter-organizational processes based on the status of the artifacts
being manipulated. The paper has also shown how a standard BPMN process
model can be used to automatically produce all the information to drive the

312 G. Meroni et al.

monitoring service. Finally, mechanisms to dynamically bind and unbind real-
world objects to a process execution were presented.

A limitation of this service is the support for only one-to-one mappings among
real-world objects and artifacts. Therefore, we plan to also support one-to-many
and many-to-many mappings to support batch processes [21]. Furthermore, we
will introduce tool support to check the soundness of the annotated BPMN
process model (i.e., if changes in the states of the artifacts during a compli-
ant execution do not contradict the control flow). To improve the accuracy of
the automatic artifact state-change determination, it is in our plans to integrate
machine-learning techniques such as automated discriminative classifiers, as pro-
posed in [6,8,9]. Additionally, we are going to distribute the monitoring service
onto the real-world objects impersonating the artifacts, so as to completely take
advantage of the IoT paradigm. An extension of this service to monitor processes
involving non-tangible objects (e.g., invoices or purchase orders) is also planned.

Acknowledgments. This work has been partially funded by the Italian Project ITS
Italy 2020 under the Technological National Clusters program.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Baresi, L., Meroni, G., Plebani, P.: A GSM-based approach for monitoring cross-
organization business processes using smart objects. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 389–400. Springer, Cham (2016). doi:10.
1007/978-3-319-42887-1 32

4. Baresi, L., Meroni, G., Plebani, P.: Using the guard-stage-milestone notation for
monitoring BPMN-based processes. In: Schmidt, R., Guédria, W., Bider, I., Guer-
reiro, S. (eds.) BPMDS/EMMSAD-2016. LNBIP, vol. 248, pp. 18–33. Springer,
Cham (2016). doi:10.1007/978-3-319-39429-9 2

5. Baumgraß, A., Botezatu, M., Di Ciccio, C., Dijkman, R., Grefen, P., Hewelt, M.,
Mendling, J., Meyer, A., Pourmirza, S., Völzer, H.: Towards a methodology for the
engineering of event-driven process applications. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 501–514. Springer, Cham (2016). doi:10.
1007/978-3-319-42887-1 40

6. Baumgrass, A., Cabanillas, C., Di Ciccio, C.: A conceptual architecture for an
event-based information aggregation engine in smart logistics. In: EMISA, pp.
109–123. GI (2015)

7. Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: BPMN extension for business
process monitoring. In: EMISA 2014, pp. 85–98. GI (2014)

8. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task
monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). doi:10.1007/
978-3-319-10172-9 31

9. Di Ciccio, C., van der Aa, H., Cabanillas, C., Mendling, J., Prescher, J.: Detect-
ing flight trajectory anomalies and predicting diversions in freight transportation.
Decis. Support Syst. 88, 1–17 (2016)

http://dx.doi.org/10.1007/978-3-319-42887-1_32
http://dx.doi.org/10.1007/978-3-319-42887-1_32
http://dx.doi.org/10.1007/978-3-319-39429-9_2
http://dx.doi.org/10.1007/978-3-319-42887-1_40
http://dx.doi.org/10.1007/978-3-319-42887-1_40
http://dx.doi.org/10.1007/978-3-319-10172-9_31
http://dx.doi.org/10.1007/978-3-319-10172-9_31

An Artifact-Driven Approach to Monitor Business Processes 313

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

11. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing 98(4), 1–29 (2015)

12. Gilley, K.M., Rasheed, A.: Making more by doing less: an analysis of outsourcing
and its effects on firm performance. J. Manage. 26(4), 763–790 (2000)

13. Gnimpieba, Z.D.R., Nait-Sidi-Moh, A., Durand, D., Fortin, J.: Using internet of
things technologies for a collaborative supply chain: application to tracking of
pallets and containers. Procedia Comput. Sci. 56, 550–557 (2015)

14. Herzberg, N., Meyer, A., Weske, M.: Improving business process intelligence by
observing object state transitions. Data Knowl. Eng. 98, 144–164 (2015)

15. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Linehan,
M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the guard-
stage-milestone approach for specifying business entity lifecycles. In: Bravetti, M.,
Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19589-1 1

16. Köpke, J., Su, J.: Towards quality-aware translations of activity-centric processes
to guard stage milestone. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM
2016. LNCS, vol. 9850, pp. 308–325. Springer, Cham (2016). doi:10.1007/
978-3-319-45348-4 18

17. Liu, R., Vacuĺın, R., Shan, Z., Nigam, A., Wu, F.: Business artifact-centric model-
ing for real-time performance monitoring. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 265–280. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23059-2 21

18. Maamar, Z., Faci, N., Sellami, M., Boukadi, K., Yahya, F., Barnawi, A., Sakr,
S.: On business process monitoring using cross-flow coordination. Serv. Oriented
Comput. Appl. 11(2), 203–215 (2017)

19. Meijler, T.D., Stollberg, M., Winkler, M., Erler, K.: Coordinating variable collab-
oration processes in logistics. In: MITIP 2011 (2011)

20. Meroni, G., Di Ciccio, C., Mendling, J.: Artifact-driven process monitoring: dynam-
ically binding real-world objects to running processes. In: CAiSE 2017 Forum, pp.
105–112 (2017). CEUR-WS.org

21. Pufahl, L., Weske, M.: Batch processing across multiple business processes
based on object life cycles. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.)
BIS 2016. LNBIP, vol. 255, pp. 195–208. Springer, Cham (2016). doi:10.1007/
978-3-319-39426-8 16

22. Richardson, L., Ruby, S.: RESTful Web Services - Web Services for the Real World.
O’Reilly, Sebastopol (2007)

23. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Trans. Serv. Comput. 5(3), 305–318
(2012)

http://dx.doi.org/10.1007/978-3-642-19589-1_1
http://dx.doi.org/10.1007/978-3-319-45348-4_18
http://dx.doi.org/10.1007/978-3-319-45348-4_18
http://dx.doi.org/10.1007/978-3-642-23059-2_21
http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-39426-8_16
http://dx.doi.org/10.1007/978-3-319-39426-8_16

BenchFoundry: A Benchmarking Framework
for Cloud Storage Services

David Bermbach1(B), Jörn Kuhlenkamp1, Akon Dey2,4,
Arunmoezhi Ramachandran3, Alan Fekete4, and Stefan Tai1

1 Information Systems Engineering Research Group,
Technische Universität Berlin, Berlin, Germany

{db,jk,st}@ise.tu-berlin.de
2 Awake Security Inc., Mountain View, CA, USA

akon@awakesecurity.com
3 Tableau Software Inc., Palo Alto, CA, USA

arunmoezhi@gmail.com
4 University of Sydney, Sydney, Australia
{akon.dey,alan.fekete}@sydney.edu.au

Abstract. Understanding quality of services in general, and of cloud
storage services in particular, is often crucial. Previous proposals to
benchmark storage services are too restricted to cover the full variety
of NoSQL stores, or else too simplistic to capture properties of use by
realistic applications; they also typically measure only one facet of the
complex tradeoffs between different qualities of service. In this paper, we
present BenchFoundry which is not a benchmark itself but rather is a
benchmarking framework that can execute arbitrary application-driven
benchmark workloads in a distributed deployment while measuring mul-
tiple qualities at the same time. BenchFoundry can be used or extended
for every kind of storage service. Specifically, BenchFoundry is the first
system where workload specifications become mere configuration files
instead of code. In our design, we have put special emphasis on ease-of-
use and deterministic repeatability of benchmark runs which is achieved
through a trace-based workload model.

Keywords: Cloud storage services · Benchmarking · Quality of service

1 Introduction

The ability to assess the quality of a service is of great importance in any service-
oriented application architecture. Naturally, a variety of techniques have been
proposed to this end. Many collect basic monitoring data for a specific quality
like performance while some may also include user ratings. Others focus on a
specific objective such as formalization in SLAs or service composition in busi-
ness processes. Surprisingly, little attention has been paid to assessing services
by running arbitrary application-driven workloads in a distributed deployment
(which is in some cases required by measurement approaches, e.g., [4], but also
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 314–330, 2017.
https://doi.org/10.1007/978-3-319-69035-3_22

BenchFoundry: A Benchmarking Framework 315

a prerequisite for benchmark scalability) while measuring multiple qualities at
the same time. For this, different application-driven workloads are necessary to
impose different kinds of stress to the service under consideration. Distribution-
aware quality assessments are needed to reveal otherwise undiscoverable insights.
Additionally, each single quality should also be seen in the context of other,
potentially conflicting qualities and their particular trade-offs.

In this paper, we will focus on cloud storage services. Today, the sheer num-
ber of available cloud storage services and database systems is staggering – in
May 2017, nosql-databases.org lists more than 225 NoSQL database projects, a
number that does not even include traditional relational database systems and
services (RDBMS). Selecting a service from this extensive set for an application
scenario requires an understanding of at least two main criteria: (a) functionality,
i.e., implemented features, data model, etc., and (b) non-functional properties,
i.e., the system qualities provided by the storage service. In this paper, we will
focus on the comparability of cloud storage services in terms of quality. We sug-
gest a novel benchmarking approach and middleware to provide the necessary
insights into this: For our purposes, a benchmark is a standard workload that
is applied to the system or service under test (SUT) while a standard set of
measurements are collected in a standard way. For example, the Transaction
Processing Council (TPC) has defined TPC-E representing the workload of a
brokerage firm, to evaluate on-line transaction processing performance by met-
rics such as transactions-per-second in relational database systems. The term
micro-benchmark is used when the workload does not have the entire range of
features of a realistic application, but is limited to exploring the sensitivity to
key variables in the workload characteristics [6].

There is a plethora of previous work, not only in general service quality
assessment but especially on database benchmarking. However, existing data-
base benchmarking approaches have severe disadvantages: Some approaches,
e.g., TPC benchmarks or OLTPBench [9], have strict functional and non-
functional requirements on supported database systems which are currently only
fulfilled by RDBMS, e.g., Amazon RDS1. As such, these benchmarks cannot
be used to study NoSQL systems such as Amazon’s DynamoDB2 or S33 ser-
vices. Other approaches, e.g., YCSB [8] or YCSB++ [14] are essentially micro-
benchmarks [6]. While these are useful for understanding how tiny changes in
workloads affect system quality, they rarely mimic realistic application work-
loads. Existing approaches are also lacking in regards to extensibility of work-
loads, multi-quality measurements, (geo-)distribution support of the benchmark
out of the box, fine-grained result collection, or ease-of-use. Finally, database
benchmarking typically focuses on the database system rather than the ser-
vice(s) that the database system provides – an important detail when it comes
to assessing quality also from a service consumer perspective.

1 aws.amazon.com/rds.
2 aws.amazon.com/dynamodb.
3 aws.amazon.com/S3.

https://nosql-databases.org
https://aws.amazon.com/rds
https://aws.amazon.com/dynamodb
https://aws.amazon.com/S3

316 D. Bermbach et al.

Today, application developers often face a significant challenge: to implement
the benchmark for all storage services of interest from scratch. Addressing this
real-world concern, we present in this paper the result of designing and actu-
ally implementing ideas from our previous vision paper [3]: BenchFoundry is not
a benchmark itself, rather it is a benchmarking framework which can execute
arbitrary application-driven benchmark workloads in a distributed deployment,
measure multiple qualities at the same time, and can be used or extended for
every kind of storage service. Specifically, BenchFoundry is the first system in this
domain where workload specifications become mere configuration files instead of
code. In our design, we have put special emphasis on ease-of-use and determin-
istic repeatability of benchmark runs which is achieved through a trace-based
workload model.

One contribution of this paper is to capture detailed requirements or desir-
able features of benchmarks for cloud services such as storage services; this is in
Sect. 2 along with related work. Another contribution is the BenchFoundry pro-
posal as a way to meet these requirements; Sect. 3 gives the high-level overview
and Sect. 4 some implementation details. Our final contribution is to evaluate
BenchFoundry (Sect. 5) by showing how some requirements are met during case-
study experiments. We also discuss limitations and effects of design choices in
our approach (Sect. 6).

2 Modern Storage Service Benchmarking

In this section, we use our extensive experience in cloud service benchmarking,
e.g., [6], to identify requirements for modern benchmarks in general (and for
benchmarking cloud storage services in particular) including their implementa-
tions. We also discuss existing work in this field.

(R1) Multi-Quality: Benchmarks should measure all sides of a partic-
ular tradeoff. Exceptions are only permissible where the respective other
qualities are comparable; this should be verified by another benchmark.

Traditionally, database benchmarking has mainly been done for performance
evaluation, e.g., through TPC4 benchmarks or with YCSB [8]. Over the last
few years, some approaches have been developed for consistency benchmark-
ing with varying degrees of meaningfulness5, e.g., [2,4,14,17], security impacts
on performance, e.g., [13], as well as an open source project for testing ACID
isolation guarantees6. However, these are all more or less single quality bench-
marks. Still, measuring more than one quality at the same time is crucial since
modern distributed database systems and services are inherently affected by
tradeoffs [1,4] – being top ranked for one quality is trivial when disregarding the

4 tpc.org.
5 One of the core requirements for benchmarks is to use meaningful and understand-

able metrics as well as to offer relevant results to a broad target audience [3,10–12].
6 github.com/ept/hermitage.

www.tpc.org
https://github.com/ept/hermitage

BenchFoundry: A Benchmarking Framework 317

respective other qualities. To make such tradeoff decisions transparent, modern
benchmarking should always imply multi-quality benchmarking.

(R2) No Assumptions: Benchmarks should make as little assumptions
on the service under test (SUT) as possible. Instead an ideal case should be
identified, deviations tolerated and measured as additional quality metrics
for broad applicability and benchmark portability.

Existing benchmark tools often have strict functional and non-functional require-
ments on supported storage services, e.g., requiring transactional features with
strict ACID guarantees [9]. However, it would be preferable to reach a broader
applicability and stronger portability [10,12] by transforming such strict require-
ments into measured qualities instead. For instance, transactions could also be
executed in a best-effort way while tracking ACID violations as an additional
quality metric.

(R3) Realistic Workloads: Benchmarks should use realistic application-
driven workload that mimick the target application as closely as possible.

Micro-benchmarks certainly have their benefits for some use cases: they are a
perfect fit for studying how a system reacts to small workload changes or to
test isolated features. They are also easier to implement. However, the relevance
of benchmarking results for a given application depends on the similarity of
application workload and benchmarking workload – the greater the difference
the less relevant are results. Therefore, application-driven benchmarking with
realistic workloads that emulate the given use case as close as possible is typically
preferable over synthetic micro-benchmarks like YCSB.

(R4) Extensibility: Benchmarks should be extensible and configurable to
account for future application scenarios and new storage services.

Modern applications evolve at an as yet unheard of pace. As such, modern bench-
marking tools need to be extensible and configurable: They must be able to
support changes in benchmark workloads which reflect new application develop-
ments as well as new storage services which do not exist at the time of designing
the benchmark. Typically, this is achieved through adapter mechanisms and suit-
able abstractions, e.g., in [8]. However, these abstractions should be carefully
chosen, e.g., the data model of YCSB is obviously focused on column stores,
which makes it a less than perfect fit for other kinds of storage services. We
believe that a modern benchmark should distinguish a logical and physical data
model in its adapter layer.

(R5) Distribution: Benchmarks should always be distribution-aware and
implementations should come with the necessary coordination logic for run-
ning multiple instances in parallel.

318 D. Bermbach et al.

Modern applications as well as underlying storage services are inherently dis-
tributed or even geo-distributed. Consequently, a modern benchmark should
also be designed for distribution and its implementation should build on mea-
surement clients that can be distributed. Parallelization through distribution is
also important when measuring the scalability of storage services or simply for
benchmarking a service that is already at scale (scalability of the benchmark
tool). Also, some benchmarking approaches heavily rely on distributed execu-
tion, e.g., [4]. However, distributing workloads is a challenging problem, e.g.,
asserting that inserts precede updates to the same database key.

(R6) Fine-Grained Results: Benchmarks should always log fine-grained
results, they should never voluntarily delete information.

Often, benchmarking tools only report aggregated results, e.g., [8]. While this is
convenient for reporting purposes, this effectively loses a wealth of information:
results such as the saw pattern or the night/day pattern from [4] would never
have been found if the available information were only aggregates or even a CDF.
Therefore, benchmarking tools should log detailed results at operation level, i.e.,
for each operation the outcome, start and end timestamp, retrieved results of
read requests, etc.

(R7) Deterministic Execution: Benchmarks should be able to deter-
ministically re-execute the exact same workload.

A key aspect of benchmarking is repeatability, i.e., repeating a benchmark run
several times should yield identical or comparable results. In this regard, all
benchmarking approaches known to the authors have a fundamental problem:
they randomly select database keys and generate data at benchmark runtime.
While such an approach has obvious benefits, it also means that repeated exe-
cutions may not always yield comparable results or that seemingly comparable
results may in fact have been produced by fundamentally different workloads.
When using such implementations, the only way to counter this effect to a cer-
tain degree is to use long-running experiments, up to several hours or even days,
or to carefully inspect the generated data afterwards (which, however, due to
the unavailability of detailed results (R6) is typically not possible). We believe,
therefore, that modern benchmarks should be trace-based, i.e., should be able
to replay a given workload in a fully deterministic way. In a distributed work-
load generator, fixing the seed for randomization is not sufficient for producing a
deterministic workload, due to the non-deterministic speeds of execution across
multiple machines.

(R8) Ease-of-use: Benchmarks should have ease-of-use as a core focus.

A benchmark should focus on ease-of-use to foster adoption and use. Often,
it is not possible to benchmark all services – relying on results of third parties
may be an option. However, this is only possible in case of widespread use of the
specific benchmark and also depends on the willingness of people to share their

BenchFoundry: A Benchmarking Framework 319

results. Setting up open source systems is often a tedious exercise; we, therefore,
believe that a core design focus of benchmark tools should be on ease-of-use.
Obviously, this requires benchmarks to also come with an implementation as
done for the more recent TPC benchmarks. Ease-of-use is also emphasised by
Seybold and Domaschka [16].

3 BenchFoundry Design and Architecture

In BenchFoundry, we address each of the requirements from Sect. 2 through a
combination of mechanisms. We will now give an overview of these mechanisms,
see also Fig. 1 for a high-level overview of the BenchFoundry architecture.

InputTrace
Generator

Analyzer

Database

Scheduler Schema
Converter Adapters

Result
Logger

BOP;0;0
BOT;0
1;2;3

Output

Request

Detailed
Request
Result BenchFoundry

Coordinator

BenchFoundry Slaves

Fig. 1. High-level architecture

3.1 Trace-Based Workload Generation

The first novelty is that we break down the workload generator component into
two components: a trace generator and a scheduler. The trace generator produces
a workload trace which precisely specifies the order of operations and the time
when each operation shall be executed relative to the experiment start. This trace
is generated independently of a specific benchmark run, in fact, it may be based
on real application traces and is supposed to be reused frequently. At runtime of
the experiment, the scheduler retrieves entries from the trace and submits them
as independent tasks to a variable-sized thread pool. This happens at the time
specified in the trace – BenchFoundry also tracks scheduling precision.

Following this trace-based approach enables us to have fully deterministic
executions where all elements of chance are captured within the trace generator
(R7). Beyond repeatability, this trace-based approach also means that Bench-
Foundry is the first benchmarking toolkit where workloads become mere configu-
ration files: Instead of writing a new workload generator, which typically includes
aspects like thread management but also coordination in case of a distributed
deployment, we can add new workloads to BenchFoundry by creating a static
configuration file – manually, based on an existing real application trace, or pro-
grammatically through an existing or new trace generator. While one could argue

320 D. Bermbach et al.

that writing a trace generator instead of a workload generator only shifts the
problem, a workload generator has to be rewritten for every benchmark imple-
mentation while a trace generator has to be written just once. Hence, Bench-
Foundry is also extensible for new workloads (parts of R4).

3.2 Runtime Measurements and Offline Analysis

The second novelty is that we separate data collection from data interpretation:
To our knowledge, existing general purpose database benchmarking tools all cal-
culate metrics at runtime – obviously, this is not very extensible for new metrics.
Furthermore, some measurement approaches require data from various measure-
ment clients (e.g., [4]), i.e., calculating metrics creates a significant amount of
communication. However, this is something to be avoided at runtime so as not
to interfere with precise workload generation. In BenchFoundry, we log detailed
results about every single request that we execute. At the moment, we log the
operation ID (which together with the trace file specifies all details of the oper-
ation), start and end timestamps, returned values for reads, and whether the
operation was successful. After completing the benchmark, these raw results are
interpreted through offline analysis, i.e., we separate data collection from data
interpretation.

Based on this information, calculating quality levels at arbitrary levels of
aggregation is possible for a variety of system qualities and metrics, e.g., latency
and throughput, consistency (staleness, ordering guarantees), or violations of
ACID guarantees.

BenchFoundry logs results as detailed as possible (R6) and, thus, provides
information for a variety of qualities and quality metrics (R1). It also aims to
transform non-functional requirements into quality metrics (parts of R2).

3.3 Application-Focused Workload Abstraction

Existing benchmarking tools like YCSB typically use independent operations
that are generated synthetically as a basis of their workload model; TPC bench-
marks usually use transactions comprising multiple operations as their base unit
but also describe the notion of emulated clients. In this regard, TPC bench-
marks resemble real applications more closely: real database-application inter-
actions typically happen within the scope of a session during which a sequence
of transactions is executed by the storage service.

In BenchFoundry, we make this session explicit in our workload abstraction:
The basic unit of execution is the business process7. A business process describes
a sequence of database-application interactions, i.e., all interactions that would
happen within the scope of a client session for real world applications. All entries
of a business process are executed strictly sequentially, there is never parallelism.

7 Which should not be confused with the process understanding of the BPM
community.

BenchFoundry: A Benchmarking Framework 321

The subunit of a business process is called business transaction. A business
transaction is a logical sequence of business operations that should ideally, if
supported by the storage service, be executed as ACID transactions. However,
in the absence of transactional features, BenchFoundry simply executes these
on a best effort base and tracks ACID violations. This allows us to compare
transactional and non-transactional storage services fairly.

On a logical data schema level, a business operation is an atomic unit that
corresponds to a database query. However, only RDBMS use a normalized data
schema as their physical schema. Other database classes, e.g., column stores,
rely on denormalization where data is kept redundantly to avoid costly queries.
Logical updates may, hence, require several service calls. In BenchFoundry, we
reflect this through the use of database class-specific requests, e.g., a column
store request. In the case of RDBMS, each business operation has exactly one
request; in the case of other database classes, one or more depending on the
physical schema design.

All input files of BenchFoundry are specified on the logical schema level, i.e.,
BenchFoundry does not make assumptions on the physical schema of the storage
service. Instead, it reads the logical schema, automatically creates a physical
schema recommendation from this, and then creates the requests based on the
physical schema and the original query. In case of column stores and key-values
stores, we plan to use one of the approaches from [5,7] for this, for RDBMS we
can simply use the normalized data schema, for other datastore classes schema
mappings need to be determined and imported manually.

Using a workload abstraction that focuses on the behavior of client applica-
tions instead of taking the perspective of the storage service, is a very natural way
of modeling workloads. Therefore, using the concepts of business processes, trans-
actions, and operations easily allows developers to model application behavior
which then results in the workload that the database experiences. The alterna-
tive of using independent operations as a base unit may also lead to very realistic
workloads – however, we believe that this is much harder to “get right”. As such,
BenchFoundry (which is not a benchmark itself) does not guarantee R3 but cer-
tainly helps developers achieve it through an easy-to-use workload abstraction.
By differentiating logical and physical schema levels, BenchFoundry also gets rid
of functional requirements on the SUT which helps for a broad applicability (R2).

3.4 Managed Distribution and Benchmark Phases

BenchFoundry has been designed to be regularly deployed on multiple machines
that together form a BenchFoundry cluster. As basic unit of distribution, we
use business process instances, i.e., when we run BenchFoundry in a distributed
setting, a trace splitter will assign each business process in the trace to a dif-
ferent BenchFoundry instance. As business processes are by definition indepen-
dent (each process includes all interactions within the scope of a client session),
these instances can be executed independently without requiring coordination.

322 D. Bermbach et al.

For other aspects which require coordination, BenchFoundry follows a master-
slave approach – however, the master cannot become a bottleneck for the system
as all coordination happens before the actual benchmark run (see also Fig. 2):

Master

Slave(s)

Config data,
physical schema,
requests, par al
traces

Propose:
Experiment
start

mestamp

Accept or
alterna ve

mestamp

Repeat
while
necessary

Local
configura on

Trigger
Preload
and
Warmup

Execute preload
and warmup trace

Execute preload
and warmup trace

Configure SUT

Execute
experiment trace

Agreed
start

m
e

Execute
experiment trace

Commit
start

mestamp

Experiment

Clean SUT

Init Preload Warmup Cleanup

Experim
ent end

Fig. 2. Execution Phases and Distributed Coordination

During the init phase, the master parses all input files, splits the preload
and experiment traces, and configures the SUT (e.g., by creating tables in an
RDBMS). Afterwards, the master forwards the partial traces, the warmup trace,
and configuration details (including physical schema and requests) to all slaves.
When all BenchFoundry instances have been configured, the master signals all
slaves to proceed to the preload phase during which the initial data set is loaded
into the SUT. This is immediately followed by the warmup phase which serves
to warm up database caches.

Once the warmup phase is started, the master proposes a start timestamp
for the experiment phase to all slaves. For this, it uses a Two-Phase Commit
variant: Instead of denying or accepting the proposal, slaves simply respond with
an alternative (later) start timestamp or the proposed timestamp if it is accepted.
The master then broadcasts a “commit” with the latest returned timestamp. At
the agreed start time, all business processes of the warmup phase are forcibly
terminated and the scheduler for the experiment phase is started. Instances that
have completed their (partial) experiment trace, terminate autonomously and
assert that all results have been logged. The master then proceeds to clean up
the SUT, i.e., deletes all data that was written during the benchmark, etc.

All in all, BenchFoundry instances only communicate (a) for distribution of
input data, (b) for starting the preload phase, and (c) for agreeing on the start

BenchFoundry: A Benchmarking Framework 323

timestamp of the experiment phase. The trace and the business process-based
workload abstraction already capture all dependencies in the workload which
is why we use them as unit of distribution. Based on this, all other decisions
can be made entirely locally without requiring communication. However, it is,
therefore, necessary to synchronize the clocks of all BenchFoundry machines.

Since the BenchFoundry design avoids coordination where possible and keeps
it outside of the experiment phase when unavoidable, we believe BenchFoundry
to be highly scalable. As such, the system is also a natural fit for distributed
or even geo-distributed deployments (R5). At the same time, using the master-
slave approach together with the phase concept allows us to focus on ease-of-use:
All slaves are only started with a port parameter, the master parses all input
files and forwards it to slaves which self-configure upon receipt. The master also
configures and cleans up the SUT.

4 BenchFoundry Implementation

In this section, we will give an overview of select implementation aspects of our
proof-of-concept prototype8. We begin by discussing the input formats, before
describing already implemented trace generators.

4.1 Input Formats

In BenchFoundry, we decided to split the input trace into several files: Especially
long-running benchmarks will have many repetitive entries in the trace, e.g.,
when issuing an operation repeatedly with different parameters. We, hence, use
deduplication both in the input files but also for the in-memory data structures
which follow the same format. Figure 3 gives an overview of the trace input files.

Operation List: This file contains all queries that are used in a given workload
along with a unique ID. In the queries, we use wildcards for the actual parameter
values, e.g., the actual ID value in “SELECT * FROM customer WHERE id=?”.
All operations are kept in memory where queries are accessible by their ID. In
the input file, we use SQL to specify the queries.

Parameter List: This file contains parameter sets along with a unique ID and
is also kept in-memory. Using both a parameter ID and an operation ID, an
executable query can be assembled at runtime.

Trace: This file contains information on business processes, their composition,
and their respective start time. As the file will typically be very large, it contains
all entries ordered by time and can, therefore, be read in a streaming mode with
a lookahead buffer. Typically, a scheduler will read at least two seconds ahead
in the trace to have sufficient time for parameter and operation lookups and,
thus, to guarantee on time scheduling. The file format itself demarcates busi-
ness processes with BOP/EOP (begin/end of process) and business transactions

8 https://github.com/dbermbach/BenchFoundry.

https://github.com/dbermbach/BenchFoundry

324 D. Bermbach et al.

within those with BOT/EOT (begin/end of transaction). The BOP entry also
includes the (relative) start timestamp of the process whereas the BOT entry
may include an optional delay before starting the respective transaction to model
think time of emulated users. Operations in the main trace file are specified as
a combination of operation ID, parameter ID, and custom parameter ID (see
below). In a BenchFoundry deployment, we will typically have one trace each
for preload, warmup, and experiment phase.

Custom Parameter List: This file uses the same format as the parameter list.
However, these entries are not used by BenchFoundry directly. Essentially, cus-
tom parameters are parameters that are uninterpretedly passed to the actual
storage service connectors which may (but do not have to) use them. Example
use cases could be consistency levels or the IP address of a specific replica.

Other Files: Beyond the trace files, we also have an input file for the logical data
schema which uses SQL DDL statements and a general properties file.

Trace

BOP;0;0
BOT;0
1;2;1
…
EOT
…
EOP

Opera ons

1: SELECT *
FROM
customer
WHERE id=?;
2: …

Params

1: Doe;John
2: 42
3: …

Custom
Params

1: QUORUM
2: ALL
3: …

Opera on: SELECT * FROM customer WHERE id=42;
Consistency Level: QUORUM

Fig. 3. File and In-Memory Representation of Workloads

When creating an experiment trace, only the experiment trace and the opera-
tion list are mandatory. Preload and warmup traces as well as custom parameters
are optional and parameters may already be included in the queries.

4.2 Implemented Workloads

Currently, we have implemented two trace generators for BenchFoundry: The
first generates traces based on the consistency benchmarking approach from [4]
(consbench), i.e., it creates a workload that is designed to provoke upper bounds
for staleness. The consbench trace generator is interactively configured with,
e.g., the estimated number of replicas, the desired benchmark duration, and
the number of tests. It then automatically decides on an appropriate number of
BenchFoundry machines based on probability analysis as described in [4] and
builds the corresponding input files. The second trace generator is based on

BenchFoundry: A Benchmarking Framework 325

TPC-C9, TPC’s current order and inventory management benchmark. The orig-
inal TPC-C benchmark describes four transactions; in our BenchFoundry trace
generator, users can configure how they want to assemble these into processes.

To ease the implementation of additional trace generators, we have imple-
mented an easy-to-use builder class where trace generators can simply create
new business processes through method chaining. This builder class then auto-
matically handles parameter and query deduplication while creating the correct
input formats.

5 Evaluation

In this section, we present the results of our evaluation beyond the already
presented proof-of-concept implementation; specifically, we present two things:
First, we discuss how BenchFoundry fulfills the requirements described in Sect. 2.
Second, we take a “systems perspective” and present the results of two experi-
ments which show that BenchFoundry offers precise scheduling for normal load
levels but is able to sustain a higher throughput level at the cost of accuracy
as well as results showing that BenchFoundry can easily be scaled through
distribution.

5.1 Discussion of Requirements in BenchFoundry

In this section, we will briefly discuss how BenchFoundry addresses each of the
requirements for modern storage service benchmarks from Sect. 2.

(R1) Multi-Quality: R1 demands that benchmarks should measure all sides
of a particular tradeoff. In BenchFoundry, we log detailed results about each
operation including start and end timestamp as well as the values actually writ-
ten. This allows to determine consistency behavior, performance, availability,
and other qualities. Scalability and elasticity can be measured by varying the
workload intensity (i.e., the “density” of business process starts in the workload
trace).

(R2) No Assumptions: R2 demands that benchmarks should make as little
assumptions on the SUT as possible, instead they should measure deviations
from an ideal state. BenchFoundry only assumes that an SUT should expose
a service interface with operations for data manipulation. The mapping to a
concrete storage service is handled through adapter mechanisms.

(R3) Realistic Workloads: R3 demands that benchmarks should use realis-
tic application-driven workload that mimick the target application as close as
possible. BenchFoundry itself is not a benchmark but rather an execution envi-
ronment for arbitrary application-driven benchmarks. For this purpose, Bench-
Foundry offers a partly-open workload model [15] based on business operations,
business transactions, and business processes (which is the most realistic one for

9 tpc.org/tpcc

www.tpc.org/tpcc

326 D. Bermbach et al.

most scenarios) to benchmark designers. It also comes with a scheduler for closed
workload models as used in YCSB [8] and an open workload model is obviously
a special case of the partly-open one for which the respective scheduler in Bench-
Foundry can be “misused”. Therefore, we believe that BenchFoundry offers as
much support for R3 as possible without actually designing a benchmark.

(R4) Extensibility: R4 demands that benchmarks should be extensible and
configurable to account for both future application scenarios as well as new stor-
age services. BenchFoundry executes arbitrary workload traces and is based on
an adapter architecture for storage systems as presented in Fig. 1; it is also exten-
sible with regards to quality metrics measured as it separates the benchmark run
from data analysis and logs raw measurement results. We, hence, believe that it
is safe to conclude that it fulfills R4.

(R5) Distribution: R5 demands that benchmarks should be designed for dis-
tribution. BenchFoundry uses a workload model that can easily be distributed
and shifts all necessary coordination logic to a pre-benchmark phase.

(R6) Fine-Grained Results: R6 demands that benchmarks should always log
fine-grained results. We could not think of any further measurement results that
could possibly be logged in BenchFoundry. However, extending this would be
straightforward.

(R7) Deterministic Execution: R7 demands that benchmarks should be able
to deterministically re-execute the exact same workload. We address this by using
a trace-based workload model which is fully deterministic.

(R8) Ease-of-use: R8 demands that benchmarks should have ease-of-use as a
core focus. We tried to reach this goal as much as possible, e.g., by automatically
configuring slave machines; if we managed to be successful is to be decided by
BenchFoundry users.

5.2 Experiments

While we believe that BenchFoundry fulfills all the requirements initially identi-
fied, we also wanted to take a “systems perspective” and experimentally verify
whether BenchFoundry is able to scale through distribution (the DISTRIBU-
TION experiment) and also to analyze how scheduling precision of workloads,
i.e., the repeatability and determinism of workload execution, is affected by over-
loading the machines (the LOAD experiment).

Experiment Setup. For our experiment setup, we chose a setup that stresses
BenchFoundry while keeping our SUT lightly loaded. In a regular benchmarking
experiment, this would of course be exactly the other way around. We, therefore,
deployed up to five BenchFoundry instances on Amazon EC210 t2.small instances
and a single MariaDB node as SUT on an m4.xlarge instance.

10 aws.amazon.com/ec2.

https://aws.amazon.com/ec2

BenchFoundry: A Benchmarking Framework 327

We preloaded the database with a small data set of 4211 rows in 9 tables
based on the TPC-C specification. For our workload, we also used TPC-C as a
basis and designed 4 different business processes with one of the TPC-C transac-
tions each as business transaction; transactions always contained several business
operations. We configured our trace generator so that it created a trace with a
base unit of 2 business processes per second (constant target throughput) that
could be scaled through a load factor. In the following, we will refer to through-
put based on the load factor, e.g., a load factor of 10 means that we ran a
workload that scheduled 20 business processes per second, each containing a sin-
gle business transaction with several business operations. In each test run, we
sustained the respective throughput for 120 s.

As a metric for the scheduling precision and, thus, the ability to precisely
re-execute a given workload, we used the scheduling latency which is defined
as the absolute difference in time between the planned start timestamp of a
business process and its actual start timestamp. We would also like to point out
that collecting data for this metric along with debug-level logging, of course,
negatively affects the scheduling latency, i.e., users can expect values at least as
good in real benchmark runs.

As already mentioned, we ran two experiments: the LOAD experiment and
the DISTRIBUTION experiment. In the LOAD experiment, we used a single
BenchFoundry instance and measured the scheduling latency for different target
throughputs to (a) analyse scheduling precision for normal load levels and (b) to
measure maximum sustainable throughputs on a single instance. We, therefore,
tried to use the load factors 1, 5, 25, 125, 250 and 625. In the DISTRIBUTION
experiment, we used a constant load factor of 50 (a level that was no longer
sustainable on a single small instance with reasonable scheduling precision) and
ran that workload distributed over two to five BenchFoundry instances.

Results. For each experiment, we show a single chart with a single boxplot for
each run. Each boxplot represents a total of 6,000 measurements and shows 5,
25, 50, 75, and 95 percentiles (of scheduling latency in ms) for the corresponding
test run.

In the LOAD experiment (see Fig. 4a, note the logarithmic scale), we were
not able to reach load factors of 250 or 625. In both cases, we encountered an
out of memory error so that we recommend to always pay special attention
to heap size configuration. In all other experiment runs, we saw the expected
behavior: low scheduling latencies for normal load levels that increased with
higher sustained throughputs. At a load level of 125, the (small) instance was
effectively overloaded resulting in unacceptably high scheduling latencies.

In the DISTRIBUTION experiment (see Fig. 4b), we also saw the expected
results: BenchFoundry scales almost linearly with the number of nodes, i.e.,
increasing the number of nodes improves scheduling precision for constant work-
loads. Since BenchFoundry instances are completely independent during bench-
mark runs, doubling the load while using twice the number of machines should

328 D. Bermbach et al.

(a) LOAD Experiment (b) DISTRIBUTION Experiment

Fig. 4. Experiment Results

not affect scheduling precision negatively, thus, also guaranteeing linear scala-
bility in this regard.

All in all, BenchFoundry is – as expected – able to offer a high scheduling
precision (<5–10 ms) and, thus, repeatability for workloads at “normal” load
levels, i.e., when the machine is not fully loaded, and experiments indicate that
it scales well.

6 Limitations and Effects of Design Choices

In a distributed trace, there may be situations where a faster database service
or more powerful compute instances running BenchFoundry may allow some
clients to complete a process more quickly than others. This can, of course,
result in out-of-order execution of operations from different processes that have
implicit dependencies. However, such implicit dependencies should be avoided
in a workload design following our process abstraction. Furthermore, faster or
slower execution of businesses processes may endanger precise repeatability for
very long process instances. Future extensions of BenchFoundry could replace
fixed delays between transactions with dynamic delays that depend on execution
speed, e.g., execute at t = 100 or after 50 ms whatever happens first.

BenchFoundry needs to log fine-grained results to satisfy (R6) which leads to
a certain overhead. In our design, we aimed to mitigate any potential impacts.
First, we decoupled logging from execution and measurements by using two sep-
arate modules for this which communicate asynchronously. Second, we avoid
network contention and minimize CPU overheads by having BenchFoundry
instances only log raw data locally: Costly correlation of measurements and
interpretation of raw results is done after completion of the benchmark run.
Third, BenchFoundry was designed to scale well so that the overhead of writing
fine-grained results instead of coarse aggregation can be mitigated by adding
additional virtual machines to the benchmarking cluster. We believe that this
keeps any impact on measurement and workload execution within reasonable

BenchFoundry: A Benchmarking Framework 329

bounds. The cost for additional machines is the price we have to pay for getting
more meaningful results – in today’s inexpensive compute services, this should
be negligible in most cases.

7 Conclusion

In this paper, we have presented BenchFoundry, a benchmarking framework that
can execute arbitrary application-driven workloads in a distributed deployment
while measuring multiple system qualities of a cloud storage service. To our
knowledge, BenchFoundry is the first framework that uses trace-based workloads
where workloads become mere configuration files for this purpose. Beyond this
convenience aspect, trace-based workloads also guarantee precise repeatability
of benchmark runs.

We started by identifying requirements for modern storage benchmarks.
Based on this, we presented the design and architecture of BenchFoundry before
covering implementation details and evaluating our approach. In future work,
we plan to implement additional trace generators and database connectors.

Acknowledgements. We would like to thank Sherif Sakr for his contributions during
the early stages of the project, Daniel Wenzel for his support during some of our
experiments, and Amazon Web Services for providing free access to their services.

References

1. Abadi, D.: Consistency tradeoffs in modern distributed database system design:
cap is only part of the story. IEEE Comput. 45(2), 37–42 (2012)

2. Anderson, E., Li, X., Shah, M.A., Tucek, J., Wylie, J.J.: What consistency does
your key-value store actually provide? In: Proceedings of HOTDEP. USENIX
(2010)

3. Bermbach, D., Kuhlenkamp, J., Dey, A., Sakr, S., Nambiar, R.: Towards an exten-
sible middleware for database benchmarking. In: Nambiar, R., Poess, M. (eds.)
TPCTC 2014. LNCS, vol. 8904, pp. 82–96. Springer, Cham (2015). doi:10.1007/
978-3-319-15350-6 6

4. Bermbach, D.: Benchmarking Eventually Consistent Distributed Storage Systems.
Ph.D. thesis, Karlsruhe Institute of Technology (2014)

5. Bermbach, D., Mueller, S., Eberhardt, J., Tai, S.: Informed schema design for
column store-based database services. In: Proceedings of SOCA. IEEE (2015)

6. Bermbach, D., Wittern, E., Tai, S.: Cloud Service Benchmarking: Measuring Qual-
ity of Cloud Services from a Client Perspective. Springer, Cham (2017)

7. Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for apache
cassandra. In: Proceedings of BigData. IEEE (2015)

8. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of SOCC. ACM (2010)

9. Difallah, D.E., Pavlo, A., Curino, C., Cudre-Mauroux, P.: OLTP-bench: An exten-
sible testbed for benchmarking relational databases. Proceedings of VLDB 7(4),
277–288 (2013)

http://dx.doi.org/10.1007/978-3-319-15350-6_6
http://dx.doi.org/10.1007/978-3-319-15350-6_6

330 D. Bermbach et al.

10. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Bench-
marking in the cloud: what it should, can, and cannot be. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-36727-4 12

11. Huppler, K.: The art of building a good benchmark. In: Nambiar, R., Poess, M.
(eds.) TPCTC 2009. LNCS, vol. 5895, pp. 18–30. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10424-4 3

12. von Kistowski, J., Arnold, J.A., Huppler, K., Lange, K.D., Henning, J.L., Cao, P.:
How to build a benchmark. In: Proceedings of ICPE (2015)

13. Müller, S., Bermbach, D., Tai, S., Pallas, F.: Benchmarking the performance impact
of transport layer security in cloud database systems. In: Proceedings of IC2E.
IEEE (2014)

14. Patil, S., Polte, M., Ren, K., Tantisiriroj, W., Xiao, L., López, J., Gibson, G., Fuchs,
A., Rinaldi, B.: Ycsb++: benchmarking and performance debugging advanced fea-
tures in scalable table stores. In: Proceedings of SOCC. ACM (2011)

15. Schroeder, B., Wierman, A., Harchol-Balter, M.: Open versus closed: a cautionary
tale. In: Proceedings of NSDI, vol. 6, p. 18 (2006)

16. Seybold, D., Domaschka, J.: A cloud-centric survey on distributed database eval-
uation. In: Proceedings of ADBIS (2017)

17. Wada, H., Fekete, A., Zhao, L., Lee, K., Liu, A.: Data consistency properties
and the trade-offs in commercial cloud storages: the consumers’ perspective. In:
Proceedings of CIDR (2011)

http://dx.doi.org/10.1007/978-3-642-36727-4_12
http://dx.doi.org/10.1007/978-3-642-10424-4_3

Automated Analysis of Cloud Offerings
for Optimal Service Provisioning

José Maŕıa Garćıa(B), Octavio Mart́ın-Dı́az, Pablo Fernandez,
Antonio Ruiz-Cortés, and Miguel Toro

Universidad de Sevilla, Seville, Spain
{josemgarcia,omartindiaz,pablofm,aruiz,migueltoro}@us.es

Abstract. Cloud computing paradigm has brought an overwhelming
variety of cloud services from different providers, each one offering a
plethora of configuration and purchasing options for them. Users may
have certain requirements and preferences not only concerning service
configuration, but also with respect to their usage schedule. In this situ-
ation, an appropriate provisioning plan considering all restrictions would
help users to achieve their goals while taking into account the different
available providers, their pricing and even the usage discounts they pro-
vide. In this work, we describe an automated solution that analyzes user
needs that include scheduling restrictions to obtain optimized provision-
ing plans for different cloud providers, which allow users to compare
several offerings that possibly consider volume or usage discounts. We
validate this solution against a realistic use case, while also providing a
prototype implementation in the form of publicly available microservices.

Keywords: Cloud services · Pricing · Provisioning · Analysis

1 Introduction

The emergence of cloud computing have brought a significant shift in the IT
industry economics for service providers and consumers alike [1,2]. Cloud ser-
vices such as Amazon Elastic Computing Cloud (EC2) or Google Compute
Engine offer virtual processing and storage resources (commonly referred to as
Infrastructure as a Service, or IaaS in short), so that customers can purchase
them as a way to reduce operational costs if compared with the procurement
of on-premise, private computing infrastructures. However, the myriad of cloud
service providers, as well as their overwhelming variety of configuration and pur-
chasing options [3], result in a highly complex provisioning scenario for service
consumers.

In this setting, there are major heterogeneity issues that make the compar-
ison among providers rather difficult, e.g. different variables for configurations,
additional purchasing variants apart from the usual pay-as-you-go option, billing
and charge processes, and particular discount rules, to name a few. Furthermore,

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 331–339, 2017.
https://doi.org/10.1007/978-3-319-69035-3_23

332 J.M. Garćıa et al.

users may also find convenient to specify their needs for cloud services provision-
ing including specific scheduling restrictions. These restrictions provide addi-
tional beforehand information concerning not only the number of instances of
particular configurations that are needed at a certain time, but also the amount
of time they are going to be used.

There are some on-line tools that allow consumers to search for an opti-
mal configuration, such as Cloudorado.com and CloudScreener.com, according
to their particular needs. However, these tools do not take into account schedul-
ing. In this work, we present an automatic analysis framework that analyzes and
compares cloud service offerings from multiple providers to obtain an optimal
provisioning plan according to user needs. This plan specifies the amount and
type of instances that have to be purchased and when they have to be initiated
and terminated in order to fulfill user needs. We have developed a prototype
implementation that has been validated in a particular scenario with two differ-
ent providers.

The rest of the paper is structured as follows. Section 2 introduces a case
study that further motivates our work. Next, Sect. 3 describes the conceptual
model of the provisioning process and our solution to obtain optimal plans.
Then, Sect. 4 presents the architecture of our solution, and Sect. 5 showcases our
validation results. Section 6 discusses the related work. Finally, Sect. 7 concludes
the paper and outlines our future work.

2 Motivation

There are several service provisioning scenarios where the usage schedule is
known a priori. Thus, users can specify their needs including scheduling informa-
tion so that a corresponding provisioning plan can be derived from it. We can
characterize these service scenarios depending on the complexity of the usage
scheduling and the configuration of services needed. On the one hand, the usage
scheduling may consist on a simple interval when the service will be needed, or
rather a complex schedule that includes several intertwined temporal slots. On
the other hand, needed services complexity may range from a single service with
a particular configuration, to a number of highly configurable services [4].

In the following we focus on a case study on the virtualization of laboratory
classes in the context of our Software Engineering courses, which falls on the
most complex scenario since there may be several different software needs for
each course with varying scheduling needs. Furthermore, laboratory classes may
have a dynamic evolution from two viewpoints: (1) the software being used on
those classes may evolve, usually requiring increasing computing resources, and
thus possibly rendering the corresponding hardware obsolete at short notice; and
(2) the demand, due to the number of students, may vary along the academic
year. In order to increase flexibility and save costs, these classes can be virtualized
by purchasing cloud infrastructure to support their dynamic environment.

As an example, let us consider that we need to provide infrastructure for
the laboratory classes of a year course beginning on Monday 19th September

https://www.cloudorado.com/
https://www.cloudscreener.com/

Automated Analysis of Cloud Offerings for Optimal Service Provisioning 333

2016, which requires a very simple hardware configuration of a two-core CPU
with 4 GB RAM. The usage scheduling contemplates weekly, 2-hour sessions
for several groups of varying number of students during each semester, which
comprises 15 weeks, in addition to open classrooms and specific examination
days.

In order to actually provision the infrastructural needs for these labora-
tory classes, we need to carry out corresponding provisioning actions against
a cloud infrastructure service provider. Thus, our solution analyzes user needs,
derives their associated provisioning plans aggregating the necessary provision-
ing actions according to the scheduling restrictions, and searches for suitable
service offerings to obtain a corresponding charge plan that sums up the total
cost, hence allowing the user to choose the best option in each case. Note that
we are not considering additional costs, such as communication expenses, due
to the difficulty to estimate a priori these aspects.

3 From User Needs to Cloud Services Provisioning Plans

In order to automatically generate a plan that specifies the provisioning events
that fulfill certain user needs, we first need to model the relevant descriptions so
that our solution can analyze and transform them into the resulting plan. User
needs specifies the client’s requirements on particular services (in our case study
cloud infrastructure services, or IaaS in short). These requirements mainly state
(1) the configurations which are needed to execute the client’s software, and (2)
the expected usage schedule.

Fig. 1. Conceptual model for user needs

Figure 1 shows our conceptual model representing user needs. User needs are
composed of a series of services that represent the different software components
that the client needs to deploy to the cloud. In our example, each course is inter-
preted as a different service, which consists in a virtual machine containing all
the relevant software for that course. According to this, each service is associated
with its required configuration, which describes the hardware requirements for
the requested cloud service instance. Thus, a configuration in case of an IaaS

334 J.M. Garćıa et al.

may contain requirements about CPU, memory, IO performance, and storage,
among others [3].

Regarding the expected usage schedule, each service enumerated in the user
needs is associated with one or more scheduled usage items, which are temporal
composites that detail the number of instances of the same configuration and
the time interval when they are needed. Additionally, a global validity interval
can be also specified. Unlike the latter, usage intervals may be periodic and
disjoint or overlapped with others. In our motivating example, each course is
given in several groups possibly with different timetables. Therefore, each group
corresponds to a scheduled usage that specifies both the time interval when
the course is given and the number of service instances that are needed, which
depends on the group size.

Starting from the user needs, a provisioning plan that contains the actions to
fulfill them is generated. It is optimal since (1) each chosen service is the best fit
for the configuration expressed in the user needs, and (2) it minimizes the number
of instances for each configuration for the whole validity period according to the
usage schedule, favoring reserved instances, and hence decreasing the operational
costs of cloud infrastructure.

The first step involved in the optimal plan generation is the optimization
of usage scheduling. We analyze each service to be deployed separately, since
we aim at minimizing the total number of instances needed for each configura-
tion. Our solution takes the scheduling of every service and removes overlaps
between time intervals. This is achieved by normalizing and coalescing the time
sequence of the scheduling, which are well-known operations in the context of
temporal databases [5]. Note that overlapping intervals leads to a higher number
of instances to be run simultaneously, while disjoint intervals enables reusing of
instances from one interval to the next, increasing their usage percentage so that
reservation becomes a better purchasing option, hence diminishing the overall
operational costs.

Once the optimal usage scheduling for each service is computed, the second
step searches for the optimal service configuration from different providers. Dif-
ferent approaches can be applied to discover a suitable configuration from the
pricing lists advertised by various IaaS providers. Our approach looks for the
instance configuration from each available provider whose parameters are the
closest to those stated in the user needs as in [3].

From the usage scheduling, our solution finally generates a particular pro-
visioning plan for each cloud service provider, describing the minimum number
of deployment actions that fulfills the usage schedule. Furthermore, purchasing
options are also optimized so that the best purchasing type is chosen for each ser-
vice instance in order to minimize the total cost of the cloud infrastructure to pro-
vision. As explained above, if the expected usage for an instance is long enough
then it will be better to make a reservation as long as the provider offers such
option. Otherwise, the instance will be used on-demand or pay-as-you-go basis.
Thus, our approach enables the comparison of several offerings from different
providers, taking into account their available configurations and pricing options.

Automated Analysis of Cloud Offerings for Optimal Service Provisioning 335

4 Solution Architecture

In order to realize our approach, we developed a prototype solution that is
based on the models described in Sect. 3 and implemented within a microservice
architecture integrated in the Governify service management platform1. Cur-
rently, the prototype implementation supports two widely used cloud providers:
Amazon EC2 and Google Compute Engine, but the architecture is designed to
provide a systematic extension mechanism by means of adding new RESTful
services that share a common interface.

Fig. 2. Microservice architecture of the prototype.

On the one hand, pricing listings are automatically imported and standard-
ized in our system using a JSON-LD [6] parser that takes JSON files published by
service providers, such as Amazon2 or Google3, and annotate some properties to
identify common properties (such as base price, CPU, or memory) using JSON-
LD facilities. We use some cloud computing ontologies previously developed [7]
as the fundamental schema to annotate configuration and pricing information
from these providers, enabling interoperability of their original JSON schemas.

1 https://governify.io.
2 https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/

index.json.
3 https://cloudpricingcalculator.appspot.com/static/data/pricelist.json.

https://governify.io
https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/index.json
https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/AmazonEC2/current/index.json
https://cloudpricingcalculator.appspot.com/static/data/pricelist.json

336 J.M. Garćıa et al.

Then, annotated JSON pricing listings are parsed in order to populate the cat-
alog of service offerings from different providers.

On the other hand, user needs are instantiated according to the model dis-
cussed in Sect. 3. First, the scheduling items are analyzed to optimize the usage
schedule, and then the provisioning plan optimizer component analyzes user
needs with its scheduling restrictions in order to obtain a specific provisioning
plan that optimize costs for each provider.

From a deployment standpoint, Fig. 2 depicts the microservices architecture
of the prototype describing the responsibility distribution and data interaction
among services. As a high level overview, the flow starts when some user needs
are sent (1) to the Plan Optimizer that acts as the main façade of the overall
pricing analysis. This element interacts with the Schedule Analyzer microservice
in order to obtain (2) an optimized version of the usage schedule as described
in Sect. 3. Next, the Plan Optimizer uses the Instance Ranker microservice to
develop a global search over different providers in order to obtain (5) a sorted set
of instance type pricing options based on the preferences in the user needs (i.e.
configurations). This search is based on the data maintained by the Offering Har-
vesters that gather service offerings from different cloud providers (3) to obtain
a unified view annotated with JSON-LD that is fed (4) to the Instance Ranker.
Finally, the Plan Optimizer, based on the ranking of instance types pricing and
the optimized schedule, generates the actual provision plan with lower cost and
send it (6) to the the Provisioning Controller. This controller is in charge of both
(7) storing the plan in the appropriate persistence layer on a MongoDB provider
and deploying (7) a new Instance Manager in an AWS Lambda platform that
is responsible for executing the provisioning plan by means of actions (such as
start or stop an instance) over the provider control API (8).

The implemented services are publicly available4 with their interface doc-
umented following the Open API Initiative Specification5; in order to test the
services, they all integrate an interactive testing on-line tool based on the Swag-
ger6 framework. We also developed a GUI for an end-user consisting on a wizard
prototype7. This tool provides a user-friendly interface for defining needs and
launch the appropriate microservices in a user-friendly way.

5 Case Study Validation Results

In order to validate our solution, we carried out the case study described in
Sect. 2 using the implemented prototype. We considered service offerings from
Amazon and Google. As stated by our user needs, our tool searched for the closer
configuration to “Cpu:2 Mem:4” in their catalogs, using the approach presented
in [3]. According to the on-demand purchasing type, the results of the search
return a t2.medium configuration for Amazon (with a base price of 0.052$/h),
4 https://pricing.governify.io/.
5 https://openapis.org/.
6 https://swagger.io/.
7 https://designer.governify.io/demo/PlanOptimizer/wizard.

https://pricing.governify.io/
https://openapis.org/
https://swagger.io/
https://designer.governify.io/demo/PlanOptimizer/wizard

Automated Analysis of Cloud Offerings for Optimal Service Provisioning 337

while in case of Google the most suited configurtion corresponds to n1-std-2-pr
machine with a base price of 0.020$/h, as of price listings retrieved on October,
1st 2016.

Based on these configurations, our solution generates a different provisioning
plan for each provider. These plans allow a fine grained analysis of operational
costs. Concretely, a comparative study of corresponding charge plans can be
carried out, including the different expected charges per month along with the
total cost for the whole provisioning plan. Table 1 shows the optimal charge
plan, including discounts, for each provider derived from the provisioning plan
generated by our prototype. It is interesting to note that in the Amazon case the
maximum savings are derived from a full upfront (advanced payment of reserved
instances) at the beginning which results in a considerable initial charge.

Table 1. Charge plans for our case study, discounts applied.

Amazon Google

Date Type Cost Date Type Cost

Sep 19 2016 Upfront 12080.0$ Sustained-use discounts are being applied.

Oct 01 2016 On-demand 20.12$ Oct 02 2016 On-demand 180.52$

Nov 01 2016 On-demand 67.08$ Nov 02 2016 On-demand 601.72$

Dec 01 2016 On-demand 67.08$ Dec 02 2016 On-demand 601.72$

... ...

Total cost 12884.96$ Total cost 7220.66$

As a consequence of our analysis, we can determine that in our case study
Google is the best option in terms of costs. Moreover, based on a preliminary
analysis we realize that Amazon reserved instances prove to be competitive only
if their usage is greater than approximately 75% of daily-usage, for a full year.
Alternatively Google provides usage-sustained discounts of 25% of monthly-
usage starting at the first month without the need for longer reservation periods
as in the Amazon case.

The performed experiment validates that our proposal actually optimizes
cloud provisioning, automatically generating plans from user needs while con-
sidering pricing models and discount rules of several cloud service providers.
Although our use case has been kept deliberately simple for the sake of clarity,
we can extend the scenario to include multiple courses in order to reach a higher
usage ratio. We have already made some initial experiments on this matter,
resulting in different comparative results. In particular, we found that Amazon
provides more cost-effective options when the instance usage ratio is significant.

6 Related Work

Optimization of cloud provisioning can be considered from different perspec-
tives. From an economic perspective, pricing models are extensively discussed

338 J.M. Garćıa et al.

in [8,9]. In [10] authors present a comprehensive method to calculate the total
cost of ownership of a cloud infrastructure. In [11] the search is modeled as a
multi-objective optimization problem to minimize the overall cost due to data
storage, communication, and execution. In [12] different approaches are pre-
sented to compute the pricing in the context of offering REST APIs to multiple
customers. Modeling pricing and scheduling aspects for edge devices can also
establish sharing economy principles in edge and cloud computing [13].

Regarding scheduling, there are some approaches to the provisioning scenario
which takes into account the scheduling restrictions for optimization issues using
different techniques [14,15]. In [16] authors present a service management which
takes into account the optimal trade-off between cost and QoS in the context
of elasticity of highly variable workloads. Ran et al. apply a probabilistic model
for determining the amount of the reserved instances to minimize the total cost
while keeping QoS [17], as in our approach. Note that over-provisioned instances
may lead to a low usage ratio and a greater cost, while a scarce reservation
will have a poorer waiting time that leads to QoS degradation. Similarly, in [18]
authors also get the optimum number for long-term reservation of resources in
order to minimize provisioning costs.

7 Conclusions and Future Work

Provisioning plans are of utmost importance when trying to optimize computa-
tional resources required to fulfill some user needs during specific time periods.
This article presents a solution to automatically derive provisioning plans from
user needs specification including scheduling restrictions. After modeling user
needs for a particular scenario, our prototype implementation searches for appro-
priate service configurations from different providers and generates correspond-
ing provisioning plans, optimized both in terms of scheduling and purchasing
options, for each provider. Then, our provisioning controller realizes the chosen
plan, which is comprised of events that contain the necessary actions needed to
fulfill user requirements. As future work, we plan to automatically crawl pric-
ing and service configuration options from other cloud providers, to support
multi-cloud provisioning plans, which may provide better performance and cost
minimization in certain scenarios, as well as to analyze log files to improve the
optimization and execution of existing provisioning plans.

Acknowledgments. Authors would like to thank Felipe Serafim and Daniel Arteaga
for their support on the prototype implementation. This work has been partially sup-
ported by the EU Commission (FEDER), Spanish and Andalusian R&D&I programmes
under grants TIN2015-70560-R, and P12-TIC-1867.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

Automated Analysis of Cloud Offerings for Optimal Service Provisioning 339

2. Ma, R.T., Lui, J.C., Misra, V.: On the evolution of the internet economic ecosys-
tem. In: Proceedings of the 22nd International Conference on World Wide Web,
WWW 2013, pp. 849–860. ACM (2013)

3. Garćıa-Galán, J., Trinidad, P., Rana, O.F., Cortés, A.R.: Automated configuration
support for infrastructure migration to the cloud. Future Generat. Comp. Syst. 55,
200–212 (2016)

4. Garćıa-Galán, J., Garćıa, J.M., Trinidad, P., Fernandez, P.: Modelling and
analysing highly-configurable services. In: Proceedings of the 21st International
Systems and Software Product Line Conference, SPLC 2017. vol. A, pp. 114–122.
ACM (2017)

5. Jensen, C.S., et al.: The consensus glossary of temporal database concepts — Feb-
ruary 1998 version. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Temporal Data-
bases: Research and Practice. LNCS, vol. 1399, pp. 367–405. Springer, Heidelberg
(1998). doi:10.1007/BFb0053710

6. Lanthaler, M., Gütl, C.: On using JSON-LD to create evolvable RESTful services.
In: Proceedings of the Third International Workshop on RESTful Design, WS-
REST 2012, pp. 25–32. ACM (2012)

7. Garćıa, J.M., Fernandez, P., Pedrinaci, C., Resinas, M., Cardoso, J., Ruiz-Cortés,
A.: Modeling service level agreements with linked USDL agreement. IEEE Trans.
Serv. Comput. 10(1), 52–65 (2017)

8. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing
models: a survey. Int. J. Grid Distrib. Comput. 6(5), 93–106 (2013)

9. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: An analysis of RESTful APIs
offerings in the industry. In: Maximilien, M., et al. (eds.) ICSOC 2017. LNCS, vol.
10601, pp. 589–604. Springer, Cham (2017)

10. Li, X., Li, Y., Liu, T., Qiu, J., Wang, F.: The Method and tool of cost analysis for
cloud computing. In: 2009 IEEE International Conference on Cloud Computing,
pp. 93–100 (2009)

11. Wen, Z., Cala, J., Watson, P., Romanovsky, A.: Cost effective, reliable and secure
workflow deployment over federated clouds. IEEE Trans. Serv. Comput. (2016). In
press

12. Vukovic, M., Zeng, L.Z., Rajagopal, S.: Model for service license in API ecosystems.
In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 590–597. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45391-9 51

13. Garćıa, J.M., Fernandez, P., Ruiz-Cortés, A., Dustdar, S., Toro, M.: Edge and cloud
pricing for the sharing economy. IEEE Internet Comput. 21(2), 78–84 (2017)

14. van den Bossche, R., Vanmechelen, K., Broeckhove, J.: Cost-optimal scheduling in
hybrid IaaS clouds for deadline constrained workloads. In: 2010 IEEE International
Conference on Cloud Computing, pp. 228–235 (2010)

15. Netjinda, N., Sirinaovakul, B., Achalakul, T.: Cost optimal scheduling in IaaS for
dependent workload with particle swarm optimization. J. Supercomput. 68(3),
1579–1603 (2014)

16. Björkqvist, M., Spicuglia, S., Chen, L., Binder, W.: QoS-aware service VM provi-
sioning in clouds: experiences, models, and cost analysis. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 69–83. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45005-1 6

17. Ran, Y., Yang, J., Zhang, S., Xi, H.: Dynamic IaaS computing resource provisioning
strategy with QoS constraint. IEEE Trans. Serv. Comput. 10(2), 190–202 (2017)

18. Hwang, R., Lee, C., Chen, Y., Zhang-Jian, D.: Cost optimization of elasticity cloud
resource subscription policy. IEEE Trans. Serv. Comput. 7(4), 561–574 (2014)

http://dx.doi.org/10.1007/BFb0053710
http://dx.doi.org/10.1007/978-3-662-45391-9_51
http://dx.doi.org/10.1007/978-3-642-45005-1_6

Middleware for Dynamic Upgrade Activation
and Compensations in Multi-tenant SaaS

Dimitri Van Landuyt(B), Fatih Gey, Eddy Truyen, and Wouter Joosen

imec-DistriNet, Department of Computer Science, KU Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{dimitri.vanlanduyt,fatih.gey,eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract. Multi-tenant Software as a Service (SaaS) is the cloud com-
puting delivery model that maximizes resource sharing up to the level
of a single application instance, servicing many customer organizations
(tenants) at once. Due to this scale of delivery, a SaaS offering, once suc-
cessful, becomes difficult to upgrade and evolve without affecting service
continuity, and this in turn limits its capabilities to respond to the reality
of changing customer requirements.

However, not all tenants are equal, and to some organizations such
disruptions are more costly than to others. Supporting different quality
trade-offs for different tenants is often a manual, error-prone task and
far from trivial.

This short paper outlines our middleware design for fine-grained, grad-
ual and continuous evolution of multi-tenant SaaS applications, providing
automated and systematic support for (i) tenant-aware upgrade enact-
ment, and (ii) compensations that allow recovering from negative side-
effects of the upgrade enactment.

1 Introduction

In the Software as a Service (SaaS) delivery model, Internet services are offered
to customer organizations (tenants) on a subscription basis. The SaaS provider
and tenants typically agree on individual service quality levels that such an
application must reliably provide.

A key advantage of SaaS applications is their cost-efficiency which is attained
at large scale due to economies-of-scale effects [2]: Run-time resources (such as
the hardware, platforms and supportive services) are shared among multiple ten-
ants up to the level of application instances (an architectural tactic called multi-
tenancy [7]). To minimize the costs per tenant, configuration and customization
activities are commonly outsourced to tenant administrators, a principle called
self service [25].

Such a multi-tenant SaaS application becomes difficult to change and evolve
without affecting overall service continuity and thereby many tenant businesses.
As a result, its capabilities to respond to the reality of changing customer require-
ments [21] (for example, through continuous delivery [24]) are limited. More
specifically, a SaaS application that is expected to attain high levels of service
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 340–348, 2017.
https://doi.org/10.1007/978-3-319-69035-3_24

Middleware for Dynamic Upgrade Activation and Compensations 341

continuity cannot be taken offline for maintenance, i.e. to enact an upgrade, but
must continue servicing tenant requests even during upgrade enactment. In addi-
tion, due to the high level of resource sharing among tenants, it must be ensured
that changes applied for one tenant do not negatively affect other tenants (ten-
ant isolation). Furthermore, service continuity cannot always be ensured (e.g.
during the enactment of an incompatible upgrade [4]), such that either the SaaS
application becomes temporarily unavailable, or different service qualities are
sacrificed, for example functionality and integrity.

An upgrade enactment that maintains one metric of service continuity at
the cost of another provides a specific quality compromise. A multi-tenant SaaS
application that traditionally evolves in one shot [4,11] has no room for consid-
erations on a per-tenant basis. Moreover, in this context, the large scale of oper-
ation of the SaaS application has a multiplying effect, which leads to upgrades
that potentially have a profound impact on many tenant businesses. This ren-
ders traditional approaches such as waiting for application-wide quiescence [19]
unfeasible. As different compromises (in terms of quality or functionality) may
be considered acceptable to different tenants (depending for example on the
tenant SLA), systematic support is required for compromises on a per-tenant
basis, both during the upgrade enactment and/or after the enactment, i.e. by
supporting compensatory measures that are enacted after the fact (e.g. rolling
back inconsistent transactions). This short paper presents middleware support
for continuous evolution of multi-tenant SaaS applications that provides support
for both types of compromises on a fine-grained, per-tenant basis.

The remainder of this paper is structured as follows: Sect. 2 derives and moti-
vates the main requirements, whereas Sect. 3 presents our middleware. Section 4
discusses related work, and Sect. 5 concludes the paper.

2 Motivation and Requirements

The following key observations contribute to our motivation: (i) Incompatible
software upgrades demand for different quality compromises with respect to the
upgrade enactment process; (ii) related work on dynamic software upgrades and
dynamic adaptations provides several alternative strategies [1,19,22,23,28], each
involving fundamentally different quality compromises (e.g. consistency over
availability or vice versa); (iii) to some tenants, software failures (as a cost of a
quality compromise) are only harmful for tenants if their effects remain perma-
nent, and when anticipated, such negative consequences can often be corrected
though compensatory measures.

The above observations highlight the potential to perform evolution of multi-
tenant on a per-tenant, customized manner, but current solutions either involve
enacting upgrades in a single shot operation, or require manual effort and are
therefore error-prone and expensive.

As such, we state the following requirements for supporting continuous evolu-
tion of multi-tenant SaaS applications in a systematic and maximally automated
fashion:

342 D. Van Landuyt et al.

R1 Customization support: The nature of the SaaS service degradation
and service quality compromises should be customizable and controllable by
tenants. This entails:

R1a Tenant-isolated upgrade enactment: Allowing the activation
of an upgrade for one tenant without affecting other tenants (tenant
isolation) is a key enabler for fine-grained per-tenant customization, as
this allows the activation of an upgrade for one tenant to be timely
and functionally decoupled from other tenants [14]. It enables, moreover,
approaches such as phased cut-off, i.e. to overlap the phase-out of the
current version and the phase-in of the upgraded version of service com-
ponents.
R1b Awareness of the upgrade compatibility: Alternative upgrade
paths that each involve different compromises (in terms of quality and
functionality) must exploit the compatibility nature [4] of upgrades. This
implies in particular that different upgrade activation mechanisms must
be developed and supported by the SaaS developer.

R2 Compensation support: For each quality compromise made during
upgrade enactment for which significant service degradations are anticipated,
automated compensation facilities should be provided that revert or counter-
act these, again on a per-tenant basis, in isolation and tailored to the nature
of the upgrade at hand (thus, provided by the SaaS developer and configured
by the tenant administrator).

3 Middleware Support

Fig. 1 provides an overview of the proposed middleware solution. The top of the
figure represents the SaaS application which is structured as a service-oriented
application (SOA). Section 3.1 first introduces the DSlookup component, which
supports tenant- and context-aware dynamic service composition [14,29]. The
Activation Controller and Compensation Controller components both rely
extensively on this component and are discussed in Sects. 3.2 and 3.3 respectively.

3.1 Dynamic Multi-tenant Service Composition

Our middleware relies extensively on the underlying ability to manipulate service
compositions at run time, and we leverage this mechanism for tenant-aware
customization of service bindings [29].

Dynamic service lookup is accomplished by the DSlookup component that
implements a lazy service composition approach: it resolves only to a specific
service binding of a composition at request time. In addition, DSlookup allows
manipulating its service lookup logic through changing the transaction context
of the triggering service request. Multi-tenant customization is accomplished by
defining a set of service compositions that serve specific variants of services spe-
cific to a tenant (these are part of the tenant configurations, stored in the Tenant
Configuration Repository) (step (0) in Fig. 2). Tenant context tokens [18,29]

Middleware for Dynamic Upgrade Activation and Compensations 343

Fig. 1. High-level overview of our middleware, which is comprised of the DSlookup

component, the Activation Controller, and the Compensation Controller.

are attached to the call chain when new application transactions are started,
and the tenant identity is derived, for example, from authentication data [29].

To allow ensuring version-consistent behavior [23], the dynamic service com-
position must additionally be aware of the end-to-end application transaction
context. This is done with a transaction context token that is attached to all
service requests of an application transaction. A service component instance
that issues outbound service requests rO in the course of processing an inbound
request rI must copy the tenant and transaction context of rI to rO [18].

Figure 2 illustrates the workings of the DSlookup component. A service
component instance addresses DSlookup to lookup another service component
instance that provides a specific interface, attaching the tenant and transac-
tion context token (step (1) in Fig. 2). To fulfill the request, DSlookup consults
the corresponding tenant configuration from the tenant configuration repository
(step (2b)), specifically to find a matching service binding. If successful, the refer-
ence to an instance1 of the specified target service is returned to the caller (return
arrow for step (1)) who now is able to invoke that service call ((3) in Fig. 2). It
is worth noting that service instances are identified by an identifier/type and a
version.
1 This involves consulting the Service Registry, which is omitted here for simplicity.

344 D. Van Landuyt et al.

Fig. 2. Dynamic context-aware service composition using Dynamic Service lookup.

Service cache. For performance and scalability reasons, each service compo-
nent instance caches service instance identifiers in a hierarchical cache. The
cache is queried in the reverse hierarchy order (step (2a) in Fig. 2): only if
transaction-specific service instance references cannot be found, generic refer-
ences are searched.

3.2 Activation Support

Our middleware enables configuration of upgrade activations dynamically and on
a per-tenant basis. Upgrade activation is accomplished by dynamically manipu-
lating service compositions, to reroute service lookups to new service versions. As
shown in Fig. 1, the key component for coordinating these upgrade activations
is the ActivationController.

More specifically, the possible upgrade paths for a specific upgrade are
encoded in a set of Activation scripts (provided by the SaaS developer), and these
can be selected or configured by the tenant or SaaS operator. These are code
artifacts that are defined in terms of pre-defined service composition manipula-
tion primitives. The following manipulation primitives are currently supported
by the middleware:

InitVer Change version for initial tenant context: this primitive provides
the capability to change the tenant configuration version used for initial ten-
ant contexts which is stored in the tenant configuration repository. This effec-
tively means that for all tenants that do not refer to a specific version in their
service compositions, the newer version will picked as a default.

TokenVer Change version of tenant context token: with this primitive, at
DSlookup, the configuration version entry of a tenant context token can be

Middleware for Dynamic Upgrade Activation and Compensations 345

manipulated for specific service-lookup queries before the actual lookup. This
effectively overrides the selected version.

FailLookup Deliberately fail service lookup: using this primitive, DSlookup
can be set to fail a specific lookup deliberately, i.e. to return that no service
component instances are available.

FlushSC Flush service reference cache: the service cache (maintained by
every service component instance locally) can be cleared for transaction-
specific or generic service instance references, e.g. to immediately effectuate
a version upgrade.

As depicted in Fig. 1, the Activation Controller monitors new application
transactions (beginning and end), and coordinates the execution of Activation
scripts, which in turn entails the invocation of the service composition manipu-
lation primitives discussed above.

3.3 Compensation Support

A compensation is essentially an additional behavior to prevent or recover
from a negative side-effect of upgrade enactment. Similarly to the Activation
Controller, the Compensation Controller actively monitors the application
transactions and perform actions in response to specific events. As with the
activation controller scripts, a compensation is put together with Compensation
Primitives. The following compensation primitives are currently supported:

ManipSC Manipulate service composition instance: this primitive is equiv-
alent to the TokenVer primitive discussed earlier.

FailReq Deliberately fail service requests: similarly, this primitive is
already supported by the FailLookup primitive.

TempComp Deploy temporary service components: an upgrade may be
shipped with temporary service components that are only deployed during
the activation of an upgrade by a compensation artifact (for example, to
attain graceful degradation).

Req Issue service requests: a compensation may issue additional service
requests, for example to start new transactions on behalf of the end user.

A Compensation script consists of two key elements: one for specifying events
it may have interest in (the monitor), and one for defining the appropriate
reaction to these events (action). Event filters are installed at the DSlookup
component at the start of an upgrade. Event filters may refer to service compo-
nent instances involved, tenant context used at the beginning and the end of the
service lookup2, and the application transaction context.

Relevant events are propagated from DSlookup to the Compensation
Controller, which in turn coordinates the execution of the corresponding Com-
pensation script.

2 Note: these two may differ when TokenVer is used.

346 D. Van Landuyt et al.

4 Related Work

We first discuss the broader set of related work on dynamic software updates
(DSU), then we focus on existing support for evolution or customization of cloud
applications and finally, we discuss related work w.r.t. compensation support.

Dynamic Software Updates. Updating an application at run time has been stud-
ied for decades [3,15,19], increasingly reducing the impact on its normal opera-
tion. There are two dominant and fundamentally different approaches:
(i) Dynamic software updates [16] score well on service continuity and focus
on update safety, but are limited to specific types of upgrades; moreover, they
usually depend on memory-invasive operations which are not applicable in a
cloud context.
(ii) Dynamic Adaptation techniques [1,17,19,22,23,28] are applied in terms of
components and connectors and are therefore applicable for any type of upgrade
and technology-independent. These techniques can be further divided in two
classes: those that require a safe state (e.g. quiescence) of the application before
performing the upgrade [19,28], and those that support a mixed mode where old
and new versions co-exist [1,17,26].

Although showing this in further detail is part of our future work, using the
manipulation primitives for service composition presented in Sect. 3.2, we can
effectively support these different classes of upgrade strategies simultaneously.
Similar to [17,22,27], our middleware provides an open and versatile platform
for upgrades, specific to the domain of cloud-scale evolution [4].

Middleware Support for Evolution of Cloud Applications. Dumitras et al. [11]
propose a middleware that moves an entire application to a “parallel universe” to
avoid inconsistencies of otherwise incremental upgrades of enterprise-sized cloud
applications. Opposed to theirs, our approach promotes a service component as
the smallest unit for evolution. Others [13,20] support adaptation and evolu-
tion of a SaaS application for anticipated upgrades. Ertel et al. [12] present a
framework to support dynamic evolution of dataflow programs. While their sup-
port is based on types of applications that are different from multi-tenant SaaS
applications, their work is complementary to ours as it focuses on algorithms
for automated enactment, accounting for state-transfer, referential integrity and
timeliness of dependent upgrades.

Compensations. In relational database transactions [8,9], supporting compensa-
tions is a strategy for forward error recovery which is an alternative to backward
error recovery (i.e. roll-back). Automatic workaround [5,6,10] as a related self-
healing tactic on the other hand provides a computed recovery strategy as a
compensation.

Although showing this in further detail is part of our future work, using the
compensation primitives defined in Sect. 3.3, we support the following types of
compensations: (i) inverting or repeating service requests (Req), (ii) changing
behavior for specific requests (ManipSC and TempComp), (iii) deliberately failing
service requests (FailReq).

Middleware for Dynamic Upgrade Activation and Compensations 347

5 Conclusion

We have presented dedicated middleware support for continuous evolution of
multi-tenant SaaS applications that essentially implements two measures to
reduce the impact of –or at least to increase control over– an upgrade enact-
ment: customization and compensation. Our middleware allows per-tenant, cus-
tomized and fine-grained service continuity compromises when enacting different
types of software upgrades. Compromises that entail a significant sacrifice are
complemented by a compensation to alleviate their effect in an automated fash-
ion. Our approach allows the SaaS developer to implement upgrade activation
and compensation scripts that are based on common manipulation and compen-
sation primitives respectively that are built into the middleware.

The systematic support for both types of measures allow controlling the over-
all cost of enacting a change (in the course of software evolution) in multi-tenant
SaaS applications that are subject to continuous service delivery guarantees, and
as such these mechanisms may contribute greatly in reducing the time-to-market
of new features.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven, the ADDIS research program funded by KU Leuven GOA, and the DeCoMAdS
SBO strategic research project.

References

1. Ajmani, S., Liskov, B., Shrira, L.: Modular Software Upgrades for Distributed Sys-
tems. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006). doi:10.1007/11785477 26

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

3. Bloom, T., Day, M.: Reconfiguration and module replacement in argus: theory and
practice. Softw. Eng. J. 8(2), 102–108 (1993)

4. Brewer, E.: Lessons from giant-scale services. IEEE Internet Comput. 5(4), 46–55
(2001)

5. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web
applications. In: FSE 2010, pp. 237–246. ACM, New York (2010)

6. Carzaniga, A., Gorla, A., Pezzè, M.: Self-healing by means of automatic
workarounds. In: SEAMS 2008, pp. 17–24. ACM, New York (2008)

7. Chong, F., Carraro, G.: Architectural strategies for catching the long tail (2006).
http://msdn.microsoft.com/en-us/library/aa479069.aspx

8. Colombo, C., Pace, G.J.: Recovery within long-running transactions. ACM Com-
put. Surv. 45(3), 28:1–28:35 (2013)

9. Davies Jr., C.T.: Recovery semantics for a db/dc system. In: Proceedings of the
ACM Annual Conference, pp. 136–141. ACM, New York (1973)

10. de Lemos, R., et al.: Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35813-5 1

http://dx.doi.org/10.1007/11785477_26
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://dx.doi.org/10.1007/978-3-642-35813-5_1

348 D. Van Landuyt et al.

11. Dumitraş, T., Narasimhan, P.: Why Do Upgrades Fail and What Can We Do about
It? In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp.
349–372. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10445-9 18

12. Ertel, S., Felber, P.: A framework for the dynamic evolution of highly-available
dataflow programs. In: Middleware (2014)

13. Garćıa-Galán, J., Pasquale, L., Trinidad, P., Ruiz-Cortés, A.: User-centric adapta-
tion of multi-tenant services: Preference-based analysis for service reconfiguration.
In: SEAMS (2014)

14. Gey, F., Van Landuyt, D., Joosen, W., Jonckers, V.: Continuous evolution of multi-
tenant saas applications: a customizable dynamic adaptation approach. In: PESOS,
May 2015

15. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version
change. Softw. Eng. 22(2), 120–131 (1996)

16. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and veri-
fying the correctness of dynamic software updates. In: Verified Software (2012)

17. Hillman, J., Warren, I.: An open framework for dynamic reconfiguration. In: Pro-
ceedings of the 26th International Conference on Software Engineering, ICSE 2004,
pp. 594–603. IEEE Computer Society, Washington (2004)

18. Jørgensen, B.N., Truyen, E.: Evolution of Collective Object Behavior in Presence
of Simultaneous Client-Specific Views. In: Konstantas, D., Léonard, M., Pigneur,
Y., Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817, pp. 18–32. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45242-3 4

19. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. Softw. Eng. 16(11), 1293–1306 (1990)

20. Kumara, I., Han, J., Colman, A., Kapuruge, M.: Runtime Evolution of Service-
Based Multi-tenant SaaS Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 192–206. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45005-1 14

21. Lehtonen, T., Suonsyrjä, S., Kilamo, T., Mikkonen, T.: Defining metrics for contin-
uous delivery and deployment pipeline. In: Symposium on Programming Languages
and Software Tools (2015)

22. Li, W.: Evaluating the impacts of dynamic reconfiguration on the qos of run-
ning systems. JSS 84(12) (2011). http://www.sciencedirect.com/science/article/
pii/S0164121211001439

23. Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna, V., Lu, J.: Version-consistent
dynamic reconfiguration of component-based distributed systems. In: FOSE (2011)

24. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe
it is not that easy). In: Agile Conference (AGILE), 2013, pp. 121–128 (2013)

25. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H.: Software as a service: Configuration
and customization perspectives. In: Services (2008)

26. Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jorgensen, B.: A dynamic cus-
tomization model for distributed component-based systems. In: Distributed Com-
puting Systems Workshop, pp. 147–152, April 2001

27. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for distributed adapta-
tions in aspect-oriented middleware. In: AOSD (2008)

28. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. Softw. Eng.
33(12), 856–868 (2007)

29. Walraven, S., Truyen, E., Joosen, W.: A Middleware Layer for Flexible and Cost-
Efficient Multi-tenant Applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middle-
ware 2011. LNCS, vol. 7049, pp. 370–389. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25821-3 19

http://dx.doi.org/10.1007/978-3-642-10445-9_18
http://dx.doi.org/10.1007/978-3-540-45242-3_4
http://dx.doi.org/10.1007/978-3-642-45005-1_14
http://www.sciencedirect.com/science/article/pii/S0164121211001439
http://www.sciencedirect.com/science/article/pii/S0164121211001439
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/978-3-642-25821-3_19

Service Adaptation

Risk-Based Proactive Process Adaptation

Andreas Metzger(B) and Philipp Bohn

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Essen, Germany

{andreas.metzger,philipp.bohn}@paluno.uni-due.de

Abstract. Proactive process adaptation facilitates preventing or mit-
igating upcoming problems during process execution, such as process
delays. Key for proactive process adaptation is that adaptation decisions
are based on accurate predictions of problems. Previous research focused
on improving aggregate accuracy, such as precision or recall. However,
aggregate accuracy provides little information about the error of an indi-
vidual prediction. In contrast, so called reliability estimates provide such
additional information. Previous work has shown that considering reli-
ability estimates can improve decision making during proactive process
adaptation and can lead to cost savings. So far, only constant cost func-
tions have been considered. In practice, however, costs may differ depend-
ing on the magnitude of the problem; e.g., a longer process delay may
result in higher penalties. To capture different cost functions, we exploit
numeric predictions computed from ensembles of regression models. We
combine reliability estimates and predicted costs to quantify the risk of
a problem, i.e., its probability and its severity. Proactive adaptations are
triggered if risks are above a pre-defined threshold. A comparative eval-
uation indicates that cost savings of up to 31%, with 14.8% savings on
average, may be achieved by the risk-based approach.

Keywords: Predictive monitoring · Proactive adaptation · Risk · Busi-
ness process · Machine learning

1 Introduction

Proactive process adaptation allows preventing the occurrence of problems or
mitigating the impact of upcoming problems during process execution [29].
Thereby, proactive process adaptation addresses shortcomings of reactive adap-
tation, such as loss of money (e.g., due to contractual penalties) or time-con-
suming roll-back and compensation activities [1,20].

Proactive adaptation relies on predictive process monitoring to forecast
potential problems [1]. Predictive process monitoring predicts how an ongoing
process instance will unfold up to its completion [19,22]. If a potential problem
is predicted, this problem is analyzed and adaptation decisions are triggered
to prevent or mitigate the predicted problem. As an example, a delay in the
expected delivery time for a freight transport process may incur contractual
c© The Author(s) 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 351–366, 2017.
https://doi.org/10.1007/978-3-319-69035-3_25

352 A. Metzger and P. Bohn

penalties [6,14]. If during the execution of such freight transport process a delay
is predicted, alternative and thus faster transport services (such as air deliv-
ery instead of road delivery) can be scheduled before the delay actually occurs,
thereby avoiding contractual penalties.

Problem Statement. A key requirement for proactive adaptation is that
the adaptation decisions are based on accurate predictions. Informally, predic-
tion accuracy characterizes the ability of a prediction technique to forecast as
many true violations as possible, while – at the same time – generating as few
false alarms as possible [29]. Prediction accuracy is important for two main
reasons [23]. First, accurate predictions mean more true violations and thus
triggering more required adaptations. Each missed required adaptation means
one less opportunity for proactively preventing or mitigating a problem. Second,
accurate predictions mean less false alarms, and thus triggering less unnecessary
adaptations. Unnecessary adaptations incur additional costs for executing the
adaptations, while not addressing actual problems.

Previous research on predictive process monitoring and proactive adaptation
(see Sect. 5) focused on aggregate accuracy, such as precision or recall. How-
ever, aggregate accuracy does not provide direct information about the error
of an individual prediction. In contrast, so called reliability estimates provide
such additional information [2]. As an example, an aggregate accuracy of 75%
means that, for all predictions, there is the same 75% chance that a prediction
is correct. In contrast, the reliability estimate of one prediction may be 60%
while for another prediction it may be 90%. Reliability estimates thus facilitate
distinguishing between more and less reliable predictions on a case by case basis.
In our previous work, we have introduced a predictive monitoring approach that
considers such reliability estimates [21]. Experimental results indicate that con-
sidering reliability estimates during proactive process adaptation may lead to
better decisions in 83% of the cases, entailing cost savings of 14% on average.

Yet, previous work is based on simplistic cost models that only consider
constant cost functions. In practice, however, costs may differ depending on the
magnitude of the problem (e.g., see [17,24,30]). As an example, a longer delay
in the freight transport process may result in higher penalties.

Contributions. We introduce a risk-based proactive process adaptation app-
roach that can capture different cost functions. We understand risk as the com-
bination of the severity and the probability of a potential problem (e.g., see ISO
31000 [27]). Risk severity is computed by feeding the predicted magnitude of
the problem into the respective cost function. The magnitude of the problem is
predicted using ensembles of neural-network regression models. Risk probabil-
ity is given by the reliability estimate of the prediction. Similar to our previous
work, reliability estimates are computed from neural-network ensembles. During
run time, an adaptation is triggered if a risk is detected that is greater than a
pre-defined risk threshold.

We experimentally analyze the effect of considering risks during proactive
adaptation in terms of cost savings. To this end, we perform a comparative

Risk-Based Proactive Process Adaptation 353

evaluation of the risk-based approach with our previous approach, which was
based on binary predictions computed from ensembles of classification models.

The remainder of the paper is structured as follows. Section 2 describes
the risk-based adaptation approach. Section 3 explains the experimental design,
while Sect. 4 presents the experimental results. Section 5 discusses related work,
and Sect. 6 concludes with an outlook on future work.

2 Risk-Based Adaptation

This section provides a conceptual overview of our approach for risk-based proac-
tive process adaptation. It explains how we build and combine the prediction
models and implement the approach using machine learning technology.

2.1 Conceptual Overview

Figure 1 depicts how our approach computes risk r during process execution,
and how this risk is considered for proactive process adaptation.

Fig. 1. Overview of risk-based process adaptation (Ensemble size n)

As mentioned above, we quantify risk as a combination of two factors: the
probability of the occurrence of a risk event and the severity of that risk event
(e.g., such as in ISO 31000 [27]). In our approach, a risk event is the violation
of a service level objective; e.g., a delay in a transport process.

Our approach uses an ensemble of regression models to compute the two
aforementioned risk factors. Ensemble prediction is a meta-prediction technique
that combines the predictions of n prediction models trained to perform the same
task [26]. The main aim of ensemble prediction is to increase predictive perfor-
mance and, in particular, aggregate prediction accuracy. Additionally, ensemble
prediction facilitates computing reliability estimates (e.g., see [2,21]).

In our approach, each prediction model i ∈ {1, . . . , n} gives a prediction ai

pertaining to the service level objective of interest.

354 A. Metzger and P. Bohn

We use these n predictions to compute the two risk factors as follows.
Risk probability. The reliability estimate, ρ, of the prediction gives the risk

probability. The intuition here is that a higher reliability of a predicted violation
indicates a higher probability for that risk event to actually occur.

The reliability estimate ρ is computed by counting how many models in the
ensemble agree on their prediction. Assuming an expected service level objective
A for a given process instance, ρ is computed from the predictions ai as follows:

ρ = maxi=1,...,n(
|i : ai |= A|

n
,
|i : ai �|= A|

n
),

with ai |= A meaning that the predicted service level objective fulfills the
expected service level objective.

Risk severity. For risk severity, first the average predicted deviation, δ, from
the expected service level objective A is computed as:

δ =
1
n

·
∑

i=1,...,n

(ai − A)

A δ > 0 indicates a violation. Without loss of generality, we assume that a
smaller service level objective value is better.

Using a penalty function, penalty(δ), this gives the predicted penalty (see
Sect. 3.2 for a definition of this function).

Risk. Together, these two risk factors give risk as r = ρ · penalty(δ). During
run time, numeric predictions are generated using process monitoring data col-
lected for the specific process instance. A running process instance is proactively
adapted if r > R, with R being a pre-defined risk threshold.

2.2 Implementation

We use artificial neural networks (ANNs [15]) as prediction models, which have
shown good success in our earlier work [21,22]. In particular, we use multilayer
perceptrons as a specific form of ANNs. We use the implementation of multilayer
perceptrons (with their standard parameters) of the WEKA open source machine
learning toolkit1. As attributes for the prediction models, we take the expected
and actual times for all services of the process until the point of prediction.

To automatically train the ensembles of ANNs and to compute reliability
estimates as well as predicted deviations, we developed a Java tool that exploits
the libraries of the WEKA machine learning toolkit.

We use bagging (bootstrap aggregating) as a concrete ensemble technique.
Bagging uses a single type of prediction technique (ANNs in our case), but
uses different training data sets to generate different prediction models. Bagging
generates n new training data sets from the whole training set by sampling from
the whole training data set uniformly and with replacement. For each of the
n new training data sets an individual prediction model is trained. Bagging is
generally recommended and used for ANNs [9].
1 http://www.cs.waikato.ac.nz/ml/weka/.

http://www.cs.waikato.ac.nz/ml/weka/

Risk-Based Proactive Process Adaptation 355

We introduce a normalization factor for deviations in our implementation
that ensures that δ lies in the interval [0, 1]. This is not a limitation of the
approach, but serves to define alternative cost functions in a comparable way.
The normalization factor can be computed using the largest observed actual
deviation from the training data set, i.e., the data set which is used to train
the prediction models. Together with normalizing the cost functions to [0, 1] this
gives normalized risks values r ∈ [0, 1].

3 Comparative Evaluation

This section explains our experimental design and execution, in particular focus-
ing on the cost model with the different considered cost functions.

We aim to experimentally analyze the effect that considering risk has on
the overall costs of process execution. We perform a series of experiments,
using a real-world process model and data set from the transport and logis-
tics industry. We compare our risk-based approach with the baseline approach
introduced previously [21]. This baseline approach uses binary predictions (i.e.,
“violation”/“non-violation” predictions) computed from ensembles of classifica-
tion models. The baseline approach only considers constant cost functions.

3.1 Cost Model

We consider two cost factors of proactive process adaptation [21,23]. On the one
hand, one may face penalties in case an adaptation is missed or not effective,
as problems remain. On the other hand, an adaptation of the running processes
may require effort and resources, and thus incur costs. Figure 2 shows a cost
model (in the form of a decision tree) that incorporates these cost factors.

Costs
Adapta on Cost

Adapta on Cost
+ Penalty

r > R

r ≤ R No
Adapta on

Adapta on

Predicted Risk r

Viola on

Non-Viola oneffec ve

not
effec ve

0

PenaltyViola on

Non-Viola on

Fig. 2. Costs of proactive process adaptation

In this model, the actual costs of executing a single process instance depend
on three main factors: (1) the predicted risk and whether it triggers an adapta-
tion; (2) the fulfillment of the service level objective after a triggered adaptation;
(3) the fulfillment of the service level objective if no adaptation is triggered.

356 A. Metzger and P. Bohn

3.2 Costs Functions

Penalties and adaptation costs may differ depending on the magnitude of devi-
ation (δ) from expected service level objectives and the extent of adaptation
required. As an example, penalties faced in the transport process may be higher
if the actual delays in a transport process are longer. Also, using an air transport
service for an alternative transport leg may be more expensive compared with
using a road transport service.

In particular, this means the cost functions for penalties and adaptation costs
may take different shapes. Different types of cost functions have been identified
in the literature (e.g., see [18,24,30]). These cost functions share two main char-
acteristics [18]: (1) Cost functions are monotonically increasing; e.g., the penalty
for a longer delay is never smaller than the penalty for a shorter delay; (2) Cost
functions have a point discontinuity. Before that and including that point, the
costs are generally 0, beyond this point costs incur. For our experiments we
consider the point discontinuity to be at δ = 0.

To keep the complexity of our experiments manageable, we have chosen three
cost functions that represent typical shapes of costs as described in the literature
and which may be faced in the transport and logistics domain (the domain of
our data set; see Sect. 3.4). The variants of these shapes, as we use them, are
shown in Fig. 3. For the step-wise costs, we consider 5 steps, i.e., s = 5, for our
experiments (the higher s the closer the function will be to the linear function).

To ensure a fair comparison among the resulting costs when using the differ-
ent cost functions, we choose the parameters for the cost models such that their
average costs (across δ ∈ [0, 1]) are the same. This means, cconst = 1/2 · clin and
cstep = s/(s + 1) · clin.

Fig. 3. Different shapes of cost functions

Risk-Based Proactive Process Adaptation 357

3.3 Experimental Variables

In our experiments, we consider cost as a dependent variable. For each process
instance, we compute its individual costs according to the cost model defined in
Sect. 3.1. The two cost drivers considered are penalties in case of violations and
the costs for proactive process adaptation. The total costs are the sum of the
individual costs of all process instances.

We consider the following independent variables.

– Penalty cost function: We use each of the three cost functions introduced
in Sect. 3.2 for determining penalties. Penalty functions serve two purposes:
(1) we use the penalty function to compute the predicted penalty and thus
severity of the risk (see Sect. 2.1); (2) we use the penalty function to compute
the actual penalty according to the cost model in Sect. 3.1.

– Adaptation cost function: We consider different shapes of adaptation costs
by using each of the three cost functions from Sect. 3.2. Together with the
three cost functions used for penalties, this leads to nine combinations of cost
functions considered during our experiments.

– Adaptation effectiveness α ∈ (0, 1]: If an adaptation helps achieve the expected
service level objectives, we consider such adaptation effective. We use α to
represent the fact that not all adaptations might be effective. More concretely,
α represents the probability that an adaptation is effective; e.g., α = 1 means
that all adaptations are effective.

– Risk threshold R ∈ [0, 1]: An adaptation is triggered if risk r > R. We vary R
to reflect difference attitudes towards process risks.

Note that for a concrete problem situation in practice, the concrete values
for all of the aforementioned independent variables – with the exception of the
risk threshold – are given. The penalty cost function is defined by the respective
service level agreement (SLA). The adaptation cost function and the adaptation
effectiveness are characteristics of the process execution environment.

3.4 Industry Data Set and Experiment Execution

The data set we use in our experiments stems from operational data of an inter-
national freight forwarding company. The data set covers five months of business
operations and includes event logs of 3,942 business process instances, compris-
ing a total of 56,082 service executions2.

The processes and event data comply with IATA’s Cargo 2000 standard3.
Figure 4 shows the BPMN model of the business processes covered by the data
set. Up to three smaller shipments from suppliers are consolidated and in turn
shipped together to customers to benefit from better freight rates or increased
cargo security. The process involves the execution of transport and logistics
services, which are labeled using the acronyms of the Cargo 2000 standard.
2 The industry data set is available from http://www.s-cube-network.eu/c2k. The

predictions used in our experiments are available from https://uni-duisburg-essen.
sciebo.de/index.php/s/oYnNH2PAudkWDfg.

3 Cargo 2000 (now Cargo iQ: http://cargoiq.org/) is an initiative of IATA.

http://www.s-cube-network.eu/c2k
https://uni-duisburg-essen.sciebo.de/index.php/s/oYnNH2PAudkWDfg
https://uni-duisburg-essen.sciebo.de/index.php/s/oYnNH2PAudkWDfg
http://cargoiq.org/

358 A. Metzger and P. Bohn

RCS: Receive freight at departure warehouse
RCF: Store freight at arrival warehouse

Point of
Predic on

DEP: Deliver freight to aircra
DLV: Deliver freight from arrival warehouse

Fig. 4. Cargo 2000 transport process and services

In our experiments, we predict, during process execution, whether a trans-
port process instance violates its stipulated delivery deadline. Predictions may
be performed at any point in time during process execution, but the point of pre-
diction has an impact on prediction accuracy; e.g., earlier points usually imply
lower prediction accuracy [22]. For our experiments, we perform the predictions
immediately after the synchronization point of the incoming transport processes
as indicated in Fig. 4. Our earlier work indicated reasonably good prediction
accuracy (>70%) for this point in process execution, while still leaving time to
execute actions required to respond to violations or mitigate their effects [22].

4 Experimental Results

Here, we present and discuss the results of our experimental evaluation.

4.1 Results

Figure 5 gives a first impression of the effect of risk-based proactive adaptation
on costs. The figure shows the relative cost savings of our risk-based approach
compared with the baseline approach of our previous work for all nine combi-
nations of cost functions. We have chosen α = 0.9, which is a relatively high

Risk-Based Proactive Process Adaptation 359

probability of effective process adaptations. Our previous approach has already
shown high cost savings for such high α, and thus poses a more challenging
baseline for further savings.

co
n
st

a
n
t

p
en

a
lt
y

Risk threshold R

C
os

t
sa

vi
ng

s >

>

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

st
ep

-w
is

e
p
en

a
lt
y

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

li
n
ea

r
p
en

a
lt
y

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

0 0,2 0,4 0,6 0,8 1

-20

-10

0

10

20

Fig. 5. Relative cost savings [%] when considering risk-based adaptation for α = 0.9

As can be seen from Fig. 5, the risk-based approach performs worse than the
baseline if we face constant penalties. This is not surprising, as in such case the
severity of the risk is constant and thus does not have an effect of risk-based
decision making. However, the risk-based approach shows clear cost savings if
penalties are non-constant. For the chosen α = 0.9, cost savings can be as high
as 26%. Cost savings are achieved for all combinations of the non-constant cost
functions for risk thresholds that are greater than 0.3.

Table 1 shows the maximum cost savings for different values for α. These
results show an interesting trend. The smaller the chance of effective process

360 A. Metzger and P. Bohn

adaptation, the higher the cost savings of the risk-based approach when com-
pared to the baseline. We attribute this to the fact that the risk-based approach
is more conservative and precise when deciding on whether to proactively adapt,
and thus would rather avoid an adaptation. This in particular leads to benefits
in situations where adaptations might not be effective.

Table 1. Maximum relative cost savings [%] for given α

Table 2 shows how different risk threshold values impact on cost savings.
The table shows the cost savings for given values of R, averaged over α =
{0.1, 0.2, 0.3, . . . , 1}. As can be seen from the results, higher thresholds ensure
that cost savings (highlighted in gray) will be achieved in more situations. Yet,
these cost savings may be smaller than the cost savings that may be achieved
for thresholds in the medium range.

Table 2. Relative cost savings [%] averaged over α = {0.1, 0.2, 0.3, . . . , 1}

Overall, in our experiments the risk-based approach led to cost savings of
14.8% on average. Considering non-constant cost models only, the risk-based
approach led to cost savings of 23.4% on average. The maximum savings we
measured in our experiments were 31%.

Risk-Based Proactive Process Adaptation 361

4.2 Discussion

Below we discuss the experimental results with respect to potential threats to
validity and limitations in practice.

Internal Validity. To minimize the risk of bias in our results, we performed
a 10-fold cross-validation for training and testing the prediction models.

The success of ensemble prediction depends on the accuracy of the individual
models, but also on the so called diversity among these models [4]. To ensure
diversity of the ensemble, we used bagging to generate the individual models
(see Sect. 2.2). As bootstrap size (which is the size of the newly generated train-
ing data set), we used 80%. Our previous experiments indicated that different
bootstrap sizes did not impact the general shape of the experimental results [21].

We used an ensemble of size 100 in our experiments. The size of the ensemble
did not lead to different principal findings in our experiments. Yet, by using
such a large ensemble, we gain more fine-grained reliability estimates than by
using a smaller ensemble. In our case, the ensemble of size 100 delivers reliability
estimates with a granularity of 0.01. Training such a large ensemble, however,
takes more time than training a smaller ensemble. In our experimental setting,
training the ensemble took around one day on a standard desktop PC.

External Validity. Our experimental results are based on a relatively large,
industry data set. We have specifically chosen different risk thresholds (R), differ-
ent probabilities of effective process adaptations (α), as well as different shapes
of penalties and adaptation costs to cover different possible situations that may
be faced in practice. The process model covers many relevant workflow pat-
terns [31]: sequence; exclusive choice and simple merge; cycles; parallel split and
synchronization. Still, our data set is from a single application domain which
thus may limit generalizability.

Construct Validity. We took great care to ensure we measure the right
things. In particular, we used normalized costs as a common reference to perform
the comparative evaluation between the risk-based approach and the baseline
approach. Yet, so far, we have not considered aggregate or frame SLAs. In these
kinds of SLAs, the presence of multiple service level objective violations incurs
penalties; e.g., if more than 5% of the process instances are delayed (e.g., see [6,
14]). To address these kinds of SLAs, we plan to explore approaches for predicting
aggregate process outcomes (e.g., see [25]).

5 Related Work

We discuss related work from three angles: reliability, cost and risk.
Reliability-based Prediction and Adaptation. Research on predictive

process monitoring (such as [3,5,7,12,13,22,33]) and proactive adaptation (such
as [1,20,23]) focused on aggregate prediction accuracy. Only recently, reliability
estimates have been considered in the context of predictive process monitoring.

Maggi et al. [19] use decision tree learning for prediction and for computing
reliability estimates. They observe that filtering predictions using reliability esti-

362 A. Metzger and P. Bohn

mates may improve aggregate accuracy. However, they do not factor in reliability
for decision making during process adaptation.

Francescomarino et al. [11] use decision trees and random forests. Only if
the reliability of a prediction is above a certain threshold, the prediction is con-
sidered. In their experiments, they measure “failure rate” to assess the perfor-
mance of their predictions. “Failure rate” is defined as the percentage of process
instances for which no reliable prediction could be given. Yet, they do not further
analyze the effectiveness of their approach in case a process adaptation is made.

In our previous work [21], we employed ensembles of classification models
to compute reliability estimates. We have analyzed the effect of using these
reliability estimates for process adaptation and have measured an increase of
non-violation rates, i.e., the rates of successful process executions.

Cost-based Adaptation. Different ways of factoring in costs during predic-
tive monitoring and proactive adaptation have been presented in the literature.
On the one hand, costs may be considered by the prediction technique itself.
A prominent class of approaches is cost-sensitive learning [10]. Cost-sensitive
learning incorporates asymmetric costs into the learning of prediction models to
minimize costs due to prediction errors [34,35]. However, existing cost-sensitive
learning techniques do not consider reliability estimates.

On the other hand, costs may be considered when deciding on proactive
process adaptations. Cost-based adaptation attempts to minimize the overall
costs of process execution and adaptation. Leitner et al. [17] consider the costs
of adaptation when deciding on the adaptation of service-oriented workflows.
They formalize an optimization problem taking into account costs of violations
and costs of applying adaptations. Their experimental results indicate that cost
reductions of up to 56% may be achieved. Aschoff and Zisman [1] consider
response time and cost values during the proactive adaptation of service com-
positions. Their experimental results indicate that the cheapest executions were
selected in 85% of the cases. However, both aforementioned cost-aware proactive
adaptation approaches do not consider prediction reliability.

In our previous work [21], we analyzed the effect of using reliability estimates
on costs. In 82.9% of the situations, considering reliability estimates had a pos-
itive effect on costs, leading to cost savings of up to 54%, with 14% savings on
average. However, we only used a simple cost model with constant costs and did
not consider different shapes of costs.

Risk-aware Process Management. Risk-aware process management aims
to (1) minimize risks in business processes by design, and (2) to monitor the
emergence of risks and apply risk mitigation actions at run time [32]. While
research focused mainly on (1), a few approaches have been presented for (2).

Conforti et al. [8] augment process models with so called risk sensors, which
collect information from running process instances and exploit historical process
data. Each sensor is associated to a risk condition that combines the probability
of a problem with a risk threshold. If the probability is greater than the thresh-
old, process managers are notified. Pika et al. [25] follow an approach similar to
risk sensors. They propose defining so called process risk indicators, which are

Risk-Based Proactive Process Adaptation 363

patterns observable in event logs that may indicate risks. While the aforemen-
tioned authors focused on risk detection and prediction, Kim et al. [16] propose
an integrated risk management approach that facilitates proactively mitigating
risks at run time. Risk mitigation strategies are expressed as event-condition-
action rules. All three aforementioned approaches, however, only quantify the
probability of a risk event, but do not quantify the severity of the risk event.
Also, the approaches have not been evaluated with respect to how such risk
information may improve overall process adaptation; e.g., in terms of costs.

Rogge-Solti and Weske [28] focus on the risk of missing a process deadline.
They consider costs incurred by a deadline violation in addition to the probability
of that deadline violation. They use stochastic Petri nets to predict the risk of
missing a given process deadline. For each of these deadlines specific costs may
be assigned. However, the specific costs for each deadline are always constant
and thus independent of the magnitude of the deadline violation. In contrast,
our approach takes into account cost functions that depend on the magnitude
of deviation from expected service level objectives.

6 Conclusion

We have introduced a risk-based approach for proactive process adaptation,
which exploits ensembles of regression models to compute the probability and
the severity of service level objective violations. Our comparative evaluation
provided empirical evidence that risk-based proactive process adaptation may
lead to additional cost savings when compared with proactive adaptation based
on probability only. Additional cost savings were 14.8% on average (23.4% if
considering non-constant cost models), with maximum savings of 31%.

Building on these promising results, we plan to gather further empirical evi-
dence by replicating our experiments using other process models and data sets,
such as from port logistics and e-commerce. Further, to handle aggregate and
frame SLAs, we will extend our approach to consider penalties caused by multi-
ple service level objective violations.

Acknowledgments. We cordially thank Christina Bellinghoven, Felix Föcker, and
Adrian Neubauer for helpful pointers during earlier drafts of the paper. Research lead-
ing to these results received funding from the EU’s Horizon 2020 research and innova-
tion programme under grant agreement no. 731932 (TransformingTransport) and from
the EFRE co-financed operational program NRW.Ziel2 under grant agreement 005-
1010-0012 (LoFIP – Cockpits for Operational Management of Transport Processes).

References

1. Aschoff, R., Zisman, A.: QoS-driven proactive adaptation of service compo-
sition. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 421–435. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25535-9 28

2. Bosnic, Z., Kononenko, I.: Automatic selection of reliability estimates for individual
regression predictions. Knowl. Eng. Rev. 25(1), 27–47 (2010)

http://dx.doi.org/10.1007/978-3-642-25535-9_28
http://dx.doi.org/10.1007/978-3-642-25535-9_28

364 A. Metzger and P. Bohn

3. Breuker, D., Delfmann, P., Matzner, M., Becker, J.: Designing and evaluating an
interpretable predictive modeling technique for business processes. In: Fournier,
F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 541–553. Springer, Cham
(2015). doi:10.1007/978-3-319-15895-2 46

4. Brown, G., Wyatt, J.L., Tiño, P.: Managing diversity in regression ensembles. J.
Mach. Learn. Res. 6, 1621–1650 (2005)

5. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task
monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). doi:10.1007/
978-3-319-10172-9 31

6. Marquezan, C.C., Metzger, A., Franklin, R., Pohl, K.: Runtime management of
multi-level SLAs for transport and logistics services. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 560–574. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45391-9 49. (Industry paper)

7. Castellanos, M., Salazar, N., Casati, F., Dayal, U., Shan, M.C.: Predictive business
operations management. Int. J. Comput. Sci. Eng. 2(5/6), 292–301 (2006)

8. Conforti, R., Rosa, M.L., Fortino, G., ter Hofstede, A.H.M., Recker, J., Adams,
M.: Real-time risk monitoring in business processes: a sensor-based approach. J.
Syst. Softw. 86(11), 2939–2965 (2013)

9. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F.
(eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.
1007/3-540-45014-9 1

10. Elkan, C.: The foundations of cost-sensitive learning. In: Nebel, B. (ed.) 7th Intl
Joint Conference on Artificial Intelligence (IJCAI 2001), Seattle, Washington, pp.
973–978. Morgan Kaufmann (2001)

11. Di Francescomarino, C., Dumas, M., Federici, M., Ghidini, C., Maggi, F.M., Rizzi,
W.: Predictive business process monitoring framework with hyperparameter opti-
mization. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS,
vol. 9694, pp. 361–376. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5 22

12. Ghosh, R., Ghose, A., Hegde, A., Mukherjee, T., Mos, A.: QoS-driven management
of business process variants in cloud based execution environments. In: Sheng, Q.Z.,
Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 55–69.
Springer, Cham (2016). doi:10.1007/978-3-319-46295-0 4

13. Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business
process intelligence. Comput. Ind. 53(3), 321–343 (2004)

14. Gutiérrez, A.M., Cassales Marquezan, C., Resinas, M., Metzger, A., Ruiz-Cortés,
A., Pohl, K.: Extending WS-Agreement to Support Automated Conformity Check
on Transport and Logistics Service Agreements. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 567–574. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-45005-1 47

15. Haykin, S.: Neural Networks and Learning Machines: A Comprehensive Founda-
tion, 3rd edn. Prentice Hall, Englewood Cliffs (2008)

16. Kim, J., Lee, J., Lee, J., Choi, I.: An integrated process-related risk management
approach to proactive threat and opportunity handling: a framework and rule
language. Knowl. Process Manag. 24(1), 23–37 (2017)

17. Leitner, P., Hummer, W., Dustdar, S.: Cost-based optimization of service compo-
sitions. IEEE Trans. Serv. Comput. 6(2), 239–251 (2013)

18. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring, prediction and
prevention of SLA violations in composite services. In: International Conference on
Web Services (ICWS 2010), Miami, Florida, pp. 369–376. IEEE Computer Society
(2010)

http://dx.doi.org/10.1007/978-3-319-15895-2_46
http://dx.doi.org/10.1007/978-3-319-10172-9_31
http://dx.doi.org/10.1007/978-3-319-10172-9_31
http://dx.doi.org/10.1007/978-3-662-45391-9_49
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/978-3-319-39696-5_22
http://dx.doi.org/10.1007/978-3-319-46295-0_4
http://dx.doi.org/10.1007/978-3-642-45005-1_47

Risk-Based Proactive Process Adaptation 365

19. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 31

20. Metzger, A., Chi, C.H., Engel, Y., Marconi, A.: Research challenges on online
service quality prediction for proactive adaptation. In: ICSE 2012 Workshop on
European Software Services and Systems Research (S-Cube), Zurich, Switzerland.
IEEE (2012)

21. Metzger, A., Föcker, F.: Predictive business process monitoring considering reli-
ability estimates. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253,
pp. 445–460. Springer, Cham (2017). doi:10.1007/978-3-319-59536-8 28

22. Metzger, A., Leitner, P., Ivanović, D., Schmieders, E., Franklin, R., Carro, M.,
Dustdar, S., Pohl, K.: Comparing and combining predictive business process mon-
itoring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 276–290 (2015)

23. Metzger, A., Sammodi, O., Pohl, K.: Accurate proactive adaptation of service-
oriented systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.)
Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 240–265. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36249-1 9

24. Pernici, B., Siadat, S.H., Benbernou, S., Ouziri, M.: A penalty-based approach
for QoS dissatisfaction using fuzzy rules. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 574–581. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25535-9 43

25. Pika, A., van der Aalst, W.M.P., Wynn, M.T., Fidge, C.J., ter Hofstede, A.H.M.:
Evaluating and predicting overall process risk using event logs. Inf. Sci. 352–353,
98–120 (2016)

26. Polikar, R.: Ensemble based systems in decision making. IEEE Circ. Syst. Mag.
6(3), 21–45 (2006)

27. Purdy, G.: ISO 31000: 2009 - setting a new standard for risk management. Risk
Anal. 30(6), 881–886 (2010)

28. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
markovian stochastic petri nets. Inf. Syst. 54, 1–14 (2015)

29. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. 42(3), 10:1–10:42 (2010)

30. Schuller, D., Siebenhaar, M., Hans, R., Wenge, O., Steinmetz, R., Schulte, S.:
Towards heuristic optimization of complex service-based workflows for stochas-
tic QoS attributes. In: International Conference on Web Services (ICWS 2014),
Anchorage, Alaska, pp. 361–368. IEEE Computer Society (2014)

31. Skouradaki, M., Ferme, V., Pautasso, C., Leymann, F., van Hoorn, A.: Micro-
benchmarking BPMN 2.0 workflow management systems with workflow patterns.
In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694,
pp. 67–82. Springer, Cham (2016). doi:10.1007/978-3-319-39696-5 5

32. Suriadi, S., et al.: Current research in risk-aware business process management -
overview, comparison, and gap analysis. Commun. Assoc. Inf. Syst. (CAIS) 34, 52
(2014)

33. Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Di Francescomarino, C.: Com-
plex symbolic sequence clustering and multiple classifiers for predictive process
monitoring. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp.
218–229. Springer, Cham (2016). doi:10.1007/978-3-319-42887-1 18

34. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and prob-
abilities are both unknown. In: Lee, D., Schkolnick, M., Provost, F.J., Srikant,

http://dx.doi.org/10.1007/978-3-319-07881-6_31
http://dx.doi.org/10.1007/978-3-319-59536-8_28
http://dx.doi.org/10.1007/978-3-642-36249-1_9
http://dx.doi.org/10.1007/978-3-642-25535-9_43
http://dx.doi.org/10.1007/978-3-319-39696-5_5
http://dx.doi.org/10.1007/978-3-319-42887-1_18

366 A. Metzger and P. Bohn

R. (eds.) 7th International Conference on Knowledge Discovery and Data Mining
(KDD 2001), San Francisco, California, pp. 204–213. ACM (2001)

35. Zhao, H., Sinha, A.P., Bansal, G.: An extended tuning method for cost-sensitive
regression and forecasting. Decis. Support Syst. 51(3), 372–383 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Debt-Aware Learning Approach for Resource
Adaptations in Cloud Elasticity Management

Carlos Mera-Gómez1,2(B), Francisco Ramı́rez1, Rami Bahsoon1,
and Rajkumar Buyya3

1 School of Computer Science, University of Birmingham, Edgbaston B15 2TT, UK
{cxm523,fmr067,r.bahsoon}@cs.bham.ac.uk

2 Facultad de Ingenieŕıa en Electricidad y Computación,
ESPOL Polythecnic University, Escuela Superior Politécnica del Litoral, ESPOL,

Campus Gustavo Galindo Km 30.5 Vı́a Perimetral, P.O. Box 09-01-5863,
Guayaquil, Ecuador

cjmera@espol.edu.ec
3 Cloud Computing and Distributed Systems (CLOUDS) Lab,

School of Computing and Information Systems, The University of Melbourne,
Melbourne, Australia

rbuyya@unimelb.edu.au

Abstract. Elasticity is a cloud property that enables applications and
their execution systems to dynamically acquire and release shared com-
putational resources on demand. Moreover, it unfolds the advantage of
economies of scale in the cloud through a drop in the average costs of
these shared resources. However, it is still an open challenge to achieve
a perfect match between resource demand and provision in autonomous
elasticity management. Resource adaptation decisions essentially involve
a trade-off between economics and performance, which produces a gap
between the ideal and actual resource provisioning. This gap, if not prop-
erly managed, can negatively impact the aggregate utility of a cloud cus-
tomer in the long run. To address this limitation, we propose a techni-
cal debt-aware learning approach for autonomous elasticity management
based on a reinforcement learning of debts in resource provisioning; the
adaptation pursues strategic decisions that values the potential utility
produced by the gaps between resource supply and demand. We extend
CloudSim and Burlap to evaluate our approach. The evaluation indicates
that a debt-aware elasticity management obtains a higher utility for a
cloud customer, while conforming expected levels of performance.

1 Introduction

Elasticity is the essential characteristic of cloud computing that supports an
on-demand provision and release of shared resources based on environmental
changes to meet an expected quality of service [10]. This characteristic is one
of the enablers for the cloud economies of scale, dropping the average cost of
computing resources [2]. Therefore, elasticity decisions on resource adaptation
should be driven not only by performance considerations but also by an eco-
nomics perspective to pursue a long-term utility under uncertainty.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 367–382, 2017.
https://doi.org/10.1007/978-3-319-69035-3_26

368 C. Mera-Gómez et al.

Although elasticity management techniques continuously perform dynamic
resource adaptations; in practical terms, it is impossible to achieve a perfect
match between resource provisioning and demand between consecutive adap-
tations [11,26]. Therefore, this gap between the ideal and actual resource pro-
visioning calls for a dynamic valuation that incorporates a strategic trade-off
between performance and economics. On one hand, this valuation should con-
sider that effects of elasticity adaptations on performance, for example, are not
instantaneous due to the spin-up time [16]. On the other hand, the same valua-
tion should consider that the economics of these adaptations depends on billing
cycles, pricing schemes and resource bundles granularity [28]; as in the case of
a partial usage waste [14], which results from the additional time charged for a
resource between its release and the end of the billing cycle.

In our previous work [23], we proposed an elasticity conceptual model that
identifies technical debts that are linked to cloud elasticity adaptations taken
under uncertainty, and we defined the term elasticity debt as the valuation gap
between the ideal and actual resource provisioning in elasticity adaptations.

The novel contribution of this paper is an elasticity management approach
that autonomously learns the value of elasticity debts and dynamically trades off
performance against economics in adaptation decisions. The adaptation pursues
to take decisions that maximise the long-term utility of the elastic system by
incurring strategic debts. The approach contributes to the fundamentals of tech-
nical debt management, where our work is the first to transit the debt analysis
from a static to a dynamic perspective through a reinforcement learning app-
roach to make strategic adaptation decisions. Technical debt is a metaphor that
supports a trade-off analysis between a quick engineering decision that yields
immediate benefits at the expense of compromising long-run objectives [15].
Elasticity adaptation can incur an elasticity debt that renders short-term ben-
efits but compromises performance, economics or both. The debt can accumu-
late if not properly valued. These debts can be retrospectively analysed in a
threshold-based reactive management for elasticity or dynamically learnt with a
proactive perspective in a reinforcement learning based elasticity management.
Reinforcement learning [29] is an approach that seeks optimality in decision-
making through a continuous learning that forgoes short-term rewards to achieve
higher long-term gains.

The technical debt metaphor has been applied in software architecture, soft-
ware maintenance and evolution, cloud service selection among others [17]. Addi-
tionally, elasticity management based on reinforcement learning with perfor-
mance and cost metrics has been already applied [4,19]. However, to our knowl-
edge, our work is the first to value, as a debt, the potential utility produced
by the gap of an imperfect elasticity adaptation. We shared this self-adaptive
perspective for technical debt in the recent Dagstuhl Seminar 16162 [3]; the
suggestion was well received by the technical debt community. Moreover, the
contribution is the first to introduce an online learning approach for technical
debt; the approach identifies, tracks, and monitors the debt and payback strate-
gies of adaptation decisions in the context of cloud elasticity. We evaluate the

A Debt-Aware Learning Approach for Resource Adaptations 369

approach through a simulation tool that extends CloudSim [5] and Burlap [20].
The results indicate that a reinforcement learning of technical debts achieves a
higher aggregate utility for a service provider.

The rest of the paper is organized as follows. Section 2 presents the problem
statement and motivates the need for an online learning of elasticity debts, while
Sect. 3 provides a detailed overview of our debt-aware learning approach and
explains its components. We report the evaluation of our approach in Sect. 4,
followed by a discussion of related works in Sect. 5. Finally, Sect. 6 summarizes
our conclusions and directions for future research.

2 Problem Statement

In practice, it is impossible to achieve a perfect elasticity i.e. exactly match
resource supply with demand [11,26] due to several reasons such as the difficulty
to predict resource demand, coarse computing resource granularities, spin-up
times, restrictions on the number of computing resource that can be acquired
at once, pricing schemes granularity and billing cycles among others [12,28].
Hence, elasticity management decisions should optimize for a dynamic resource
provision not only in terms of performance metrics but also from an economics
perspective that can maximise the utility of the Software as a Service (SaaS)
provider (cloud customer) in the long run.

Currently, elasticity is analysed from a performance [11], cost-aware [9,27] or
economics-driven perspective [7,24]. However, none of these approaches incor-
porate a strategic valuation of imperfect elastic adaptations to make explicit
trade-offs in the decision-making when adjusting a resource provisioning. Con-
sequently, these myopic adaptations lead to a provision of resources that obtains
short-term gains when matching the resource demand but can be suboptimal in
the long-term with hidden consequences that waste resources or degrade quality
of service attributes (e.g. performance, security, reliability), which diminishes
the aggregate utility of the cloud customer over time.

The technical debt metaphor supports a reasoned decision-making about
quick engineering decisions taken to obtain short-term benefits at the cost of
introducing liabilities that compromise long-term system objectives. In dynamic
environments, the utility of these decisions can be systematically learnt through
a reinforcement learning approach. Reinforcement learning is a technique where
a farsighted agent learns from continuous interactions with an environment how
to maximize a long-term reward without any a priori knowledge. We combine
this online learning with the technical debt metaphor in the context of cloud elas-
ticity to evaluate dynamic trade-offs carried out by elastic adaptation decisions.
The consideration of debt motivates a value-oriented perspective to adaptation
that systematically links the consequences of these decisions with environmental
uncertainty, such as unexpected workload variations, dynamic changes in quality
of service or resource failures.

We advocate that elasticity can benefit from a debt-aware learning perspec-
tive by making the elasticity debts visible, revealing the performance and eco-
nomics consequences of adaptation decisions (e.g. over- or under-provisioning

370 C. Mera-Gómez et al.

states) that are prone to uncertainty and therefore improving the utility achieved
by a cloud stakeholder (e.g. SaaS provider) in terms of reducing penalties that
relate to Service Level Agreement (SLA) violations and operating costs mini-
mization.

3 Proposed Approach

3.1 Technical Debt on Elasticity

Technical debt is a metaphor that makes visible the valuation of alternatives in
a trade-off between an ideal and an actual decision making [8]; where the debt is
determined by the valuation of the gap between these two alternatives [18]. The
metaphor has shown to be effective to identify, measure and monitor tradeoffs
over time. In our previous work [23], we developed the foundations for intro-
ducing the built-in decision support of technical debt analysis into the large
scale dynamic and adaptive context of cloud elasticity management. We defined
elasticity technical debt as the valuation of the gap between an optimal and
an actual adaptation decision. This debt trades off the performance to obtain
with the provisioning of an elasticity adaptation against the economics of that
adaptation.

Like a debt in finance, an elasticity debt can be either strategic or unin-
tentional. The former refers to adaptations that intend to anticipate changing
conditions (e.g. workload variations) or mitigate undesired effects (e.g. spin-up
time, partial usage waste); whereas the latter refers to delayed or wrong choice
of adaptations (e.g. resource thrashing) as a consequence of poor considerations
for uncertainty or elasticity determinants. The value of elasticity debts can be
observed retrospectively in threshold-based elasticity management approaches,
or proactively in debt-aware approaches that utilise this valuation to analyse
and decide elasticity adaptations.

Different from traditional approaches, that mostly consider avoiding over-
and under-provisioning states, we argue that an elasticity debt-aware approach
recognizes the fact that it is practically impossible to achieve a perfect elasticity;
and makes use of this fact to explicitly reveal the potential of using this imperfec-
tion in the trade-off between economics and performance to adjust strategically
the resource provisioning and preserve the utility of the stakeholder. For exam-
ple, we may intentionally delay an over-provisioning state if the next billing cycle
of the resources to be released is not immediate; or if we consider that the spin-
up time of launching new resources may affect the SLA performance compliance
during a imminent growth in the load.

Figure 1(a) illustrates three cases of debts using a graph that represents a
resource demand and supply over time. The first gap is caused by the spin-up
time when new virtual machines are launched; the second gap is a consequence
of the available resource granularity that makes impossible to launch one and a
half machines; and the third less evident gap is the result of a partial usage waste
after one machine is released but still charged until the end of the billing cycle.
In any case, the debt is not the gap itself. We highlight that a debt corresponds

A Debt-Aware Learning Approach for Resource Adaptations 371

(a) Examples of elasticity debts (b) Arrival rates from French Wikipedia trace

Fig. 1. Elasticity debts and French Wikipedia trace

to the valuation in terms of the potential utility produced by the gap, where the
debt originates.

3.2 Reinforcement Learning

Reinforcement learning [29] is a framework that pursues an optimal decision-
making based on the maximization of a cumulative reward in the long-term.
The decision-maker or agent learns through consecutive interactions with an
environment, where each action modifies the environmental state and produces
a reward, which is the utility that the agent receives from the action. Both, the
set of variables that characterizes the new state and the reward are perceived by
the agent. This learning technique has already been applied to cloud elasticity
management [4,19], where an agent takes resource adaptation decisions based
on the current state, which is usually identified by performance thresholds, and
achieves a reward, which is given by the new performance monitored after the
adaptation takes place.

We follow a model-free reinforcement learning strategy rather a model-based
because our learning environment lacks of a predefined transition model that
describes the effect of each action a in a given state s by determining the prob-
ability of reaching a specific subsequent state st+1. A model-free strategy uses
an action-utility function, known as Q(s, a), to estimate the value of performing
an action a over a state s. From the available algorithms in this kind of learning
strategy, we have adopted Q-learning [29] because it is more flexible to explore
changes in the environment, making it more convenient for highly dynamic con-
texts. Furthermore, it is the most common extended algorithm with respect to
elasticity management [19].

The Q-learning algorithm learns an optimal decision-making by repeatedly
updating the utility of an action a given a state s according to the following
update rule:

Q(s, a) ← (1 − α) ∗ Q(s, a) + α ∗ [r + γ ∗ maxat+1Q(st+1, at+1)], (1)

372 C. Mera-Gómez et al.

where α is the learning rate (a value that usually starts at 1 and decreases
over time), r is the reward of the action, γ is the discount factor (a value between
0 and 1 that adjusts a learner from myopic to far-sighted respectively), and st+1

is the resulting state, and at+1 is the best possible action to take thereafter.
Interactions with the environment are classified as exploration or exploitation.

The former aims to perform random actions to experience environmental changes
to preclude from focus on immediate gains; whereas the latter aims to only
make use of what the agent already knows. This trade-off between exploration
and exploitation depends on an ε-greedy policy, which means that a learner
exploits the best action with probability (1−ε) and explores a random action
with probability ε.

3.3 Learning Elasticity Debts

We propose an elasticity management based on a reinforcement learning of tech-
nical debts incurred by elasticity adaptations. Our debt-aware learning approach
explores and learns elasticity debts over time and then uses this knowledge from
previous experiences to incur in strategic adaptations intended to achieve a
higher aggregate utility. Making use of the function defined in [24], the util-
ity achieved by a SaaS provider when processes a workload w, composed of jobs
or incoming requests denoted by x, is calculated in terms of revenue, penalty and
operating costs incurred during the monitored period (i.e. between consecutive
elasticity adaptations) by means of Eq. 2:

U(w) = R(x) ∗ xs − P (x) ∗ xf −
N∑

i=1

C(vmi)
∫ L

0

mi(t)dt, (2)

where R(x) and P(x) functions return the revenues and penalties per request,
respectively; xs and xf represent the number of successful and failed requests,
respectively, from workload w with respect to defined in the SLA; and C(vmi)
function returns the cost of each of the N virtual machine (VM) types corre-
sponding to their mi launched instances over the execution time L.

Equation 3 calculates the debt of each adaptation as the utility difference
between the actual and the ideal resource provisioning:

ElasticityDebt ← Uactual − Uideal, (3)

where U represents the utility obtained by a SaaS provider as cloud customer
during a monitoring period. In the best scenario, the elasticity debt would be
zero when the actual resource provisioning matched the ideal one required in the
period. Otherwise, it will be a negative number.

The approach calculates the debt of an adaptation action (i.e. launch, release
or maintain) taken at time ti when the next one is adopted at tj , where tj > ti.
For each action, we recreate the circumstances under which this adopted action
was serving (from ti to tj) and simulate the other two discarded elasticity actions
at time ti to retrospectively determine the ideal action that would have produced

A Debt-Aware Learning Approach for Resource Adaptations 373

VM3VM1 VMk+2Vmk+1 VMmVMm-1VMk-1

launch/release/monitor

receive <s, a, r, s’> receive <s, a, r, s’>

Tenant 1

Public
Network

Tenant i Tenant n

submit requests, SLA 1 submit requests, SLA n

submit requests, SLA i

Incoming service requests

send <s, a, r, s’> send <s, a, r, s’>

Debt-aware
Coordinatorforward requests/messages forward requests/messages

forward requests/messages

VM2 VMk

VM
VMVM managed by one agent

VM managed by several agents

Key:

<state, ac on, reward, next state> <s, a, r, s’>

launch/release/monitor

Debt-aware
Learning
Agent i

Debt-aware
Learning
Agent n

Debt-aware
Learning
Agent 1

launch/release/monitor

Fig. 2. Reference system model of our debt-aware approach

the highest utility among the three. Then, once we have this ideal utility, we
proceed to calculate the incurred debt of the actual adaptation action taken at
time ti by means of Eq. 3.

A reference system model of our approach is shown in Fig. 2, where sev-
eral tenants subscribe to a multi-tenant SaaS service with a SLA tailored to
each individual need. We envision an agent-oriented architecture with hierarchy
where agents tend to realise the requirements of multi-tenant users in a decen-
tralised fashion, which promotes a scalable solution and facilitates the collabora-
tion between different agents promising optimization for inter-agents knowledge
exchange.

In the model, we grouped running virtual resources in clusters and each of
them is managed by a debt-aware learning agent, which corresponds to a single
tenant. Each debt-aware learning agent is responsible for launching, releasing,
and monitoring VMs; it also performs a load balancing and dispatches the incom-
ing requests to be executed in one of the VM in the cluster. Some VMs can be
managed simultaneously by more than one learning agent to optimise resource
utilization during under-provisioned states.

The incoming requests are received by the debt-aware coordinator, which
is responsible for creating and destroying learning agents, forwarding incoming
service requests from a tenant to the corresponding learning agent, and sending
coordination messages such as changes in expected SLAs or refinements in the
reinforcement learning process.

The approach can be instantiated with either a single debt-aware learning
agent or a multi-agent version. For the latter, we advocate the use of a parallel
reinforcement learning mechanism [21]; where multiple agents can learn simulta-
neously elasticity debts and share their learning to speed-up the convergence time.

374 C. Mera-Gómez et al.

Table 1. Reinforcement learning elements

Element Definition

Environment Cloud elasticity

Agent Debt-aware learning agent, debt-aware coordinator

Actions Launch, release or maintain VMs

State variables 1. Proportion of VMs with queued requests (i.e. High,
Medium and Low)
2. Proportion of VMs close to a next billing cycle and
without queued requests (i.e. High, Medium and Low)
3. The last action taken by the agent (i.e. Launch,
Release or Maintain)

Reward Elasticity Debt

Table 1 defines the elements of our reinforcement learning approach. A debt-
aware learning agent takes one of the possible elasticity management actions (i.e.
launch, release or maintain), and receives a reward, determined by the elasticity
debt that corresponds to the adopted action. Additionally, the learning agent
considers the following variables to define a state: (i) a proportion of running
VMs with queued request; where the proportion is equally categorized into high,
medium or low; (ii) a proportion of running VMs close to a next billing cycle and
without queued request; where the proportion is equally categorized into high,
medium or low; and (iii) the last action taken by the agent. We avoid unnecessary
exploration by including preconditions for two actions: launch and release. For
instance, only launch action is available if there is a high number of VMs with
queued jobs; or only release action is permitted when a high proportion of VMs
are close to a next billing cycle and without queued request.

4 Evaluation

Our experiment intends to compare the aggregate utility that a SaaS provider
achieves when adopts a debt-aware reinforcement learning elasticity management
against a common threshold-based rule elasticity mechanism and investigate the
implication of debt-awareness over time. We are also interested in analysing the
results in terms of both performance, through request failure rates, and eco-
nomics, through deployed VMs and total costs. We instantiated two scenarios
from the reference system model in Fig. 2: (i) one with a single debt-aware learn-
ing agent; and (ii) another with two agents to illustrate the parallel learning with
a minimum inter-agent coordination overhead.

The common threshold-based elasticity management implements the voting
process offered by Right Scale [25]. In this voting mechanism, resource adapta-
tions are taken based on the outcome of a voting process, where each virtual
machine votes according to a performance metric (e.g. CPU utilization) decision
threshold.

A Debt-Aware Learning Approach for Resource Adaptations 375

4.1 Experiment Setup

We extended CloudSim [5], a framework for modelling and simulation of cloud
infrastructures and services, to support experiments with both the debt-aware
learning and the threshold-based approach. For the debt-aware learning, we
extended Burlap [20], a framework for implementing reinforcement learning solu-
tions, and integrated this extension with CloudSim. We have made available
our implementation for validation and replication in a Git repository1. Besides
the core functionality, we implemented load balancing and horizontal scaling
using a single type of virtual machines, where we considered processing capacity
expressed in terms of millions of instructions per second (MIPS). As spin-up
times in real infrastructures are variable [22], we make the simulation more
realistic with spin-up times that conform to a Gaussian distribution. For the
experiments, we extracted 15 days (from day 24 to 38 inclusive) of the French
Wikipedia trace available in the Wikipedia page view statistics [30] but scaled to
last 27 h to demand a controllable amount of resources, as seen in Fig. 1(b). We
parsed the original workload file into the Standard Workload Format to ensure
compatibility with CloudSim.

We assume that the multi-tenant SaaS service is hosted by an Infrastruc-
ture as a Service (IaaS) provider such as CloudSigma [6] with its pay-as-you-
go pricing scheme and five minute-based billing cycle, a resource granularity in
terms of VMs, and a horizontal elasticity method. General simulation parameters
are specified in Table 2. Additional specific parameters for the threshold-based
and the debt-aware approach, required by Eq. 1, are shown in Tables 3 and 4,
respectively.

We performed the experiments on a laptop that runs Windows 10 x64 oper-
ating system with 16 GB RAM and Intel Core i7-4500U CPU at 1.8 GHz. We
ran the simulation tool 100 times per approach, where average execution times

Table 2. Simulation parameters

Parameter Value

Spin-up time a mean of 59.8 s with a standard deviation of 0.03 s

Cool down period 60 s

Billing cycle Every 5 min

SLA constraint 90% of jobs handled up to 2 s

Price per request $ 0.0012344

Request’s size 4 millions of instructions

Penalty per failed request $ 0.002

VM processing capacity 14 MIPS

VM cost $ 0.07 per cycle

1 Link to the repository: https://bitbucket.org/cxm523/kdebtrepo.

https://bitbucket.org/cxm523/kdebtrepo

376 C. Mera-Gómez et al.

Table 3. Threshold-based approach simulation parameters

Parameter Value

Lower CPU threshold 30%

Upper CPU threshold 95%

Voting agreement threshold Relative majority among actions

Table 4. Debt-aware approach simulation parameters

Parameter Value

Learning rate α per state-action pair Starts at 1, then decays at 0.05 per
adaptation up to a minimum of 0.1

Discount factor γ 0.99

ε probability 0.05

Proportion of VMs with queued requests Low (<33%), Medium, High (>66%)

Proportion of VMs close to a next billing
cycle and without queued requests

Low (<33%), Medium, High (>66%)

Number of agents for parallel
reinforcement learning

2

for the threshold-based approach, the single debt-aware learning and the parallel
one are 278, 267 and 222 s, respectively.

4.2 Results

We integrated JFreeChart [13], a chart library, with CloudSim to draw box-
and-whisker plots that show the mean, median and quartiles related to failure
rates, deployed VMs, total costs and aggregate utilities for the experiments with
each approach. Additionally, we draw line charts to depict average failure rates
over time and average aggregate utility over time. We start analysing the per-
formance, followed by the economics to end with the overall utility achieved by
each mechanism.

Regarding the performance, we compare box-and-whisker plots of failure
rates obtained from the management approaches. Figure 3(a) depicts that debt-
aware learning experiments achieved a lower number of SLA violations. The
average of failures for the threshold-based approach is 7.2%, whereas the sin-
gle debt-aware approach has a mean of 2.8%. Moreover, the parallel debt-aware
approach yields a similar performance with a 2.9% of failed requests. Figure 3(b)
illustrates the average failure rates over time for each approach. We observed
that both debt-aware learning experiments had a higher failure rate than the
threshold-based approach at the beginning of the workload execution. However,
after this initial learning period, debt-aware learning experiments drastically
improved their performance and the single surpassed the threshold-based man-
agement after 22,000 s, whereas the parallel after 35,000 s, approximately.

A Debt-Aware Learning Approach for Resource Adaptations 377

(a) Failure rates per approach (b) Average failure rates over time per approach

Fig. 3. Performance of the experiments

Considering the economics, Fig. 4(a) presents a box-and-whisker plot with
the number of VMs provisioned per approach. The experiment results indicate
that debt-aware approaches make a more efficient use of resources. The single
and the parallel debt-ware approaches reached an average of 26 and 58 vir-
tual machines, respectively. On the other hand, the threshold-based approach
launched more VMs with an average of 133 virtual machines. Consequently,
there is a reduction of the total costs incurred by debt-aware elasticity man-
agement mechanisms. Figure 4(b) shows a box-and-whisker plot with total costs
per approach. Average overall costs for the threshold-based approach are $9.40,

(a) Deployed VMs per approach (b) Total costs per approach

Fig. 4. Economics of the experiments

378 C. Mera-Gómez et al.

whereas for the single and parallel debt-aware approaches are $1.80 and $4.08,
respectively.

Concerning the utility, Fig. 5(a) depicts a box-and-whisker plot with the util-
ity achieved by each mechanism. Both debt-aware mechanisms yielded a higher
utility than the threshold-based approach. The single and the parallel debt-aware
mechanisms achieved an average aggregate utility of $3,265 and $3,248. On the
other side, the threshold-based approach yielded an average aggregate utility
of $2,851, as a consequence that this mechanism is more negatively affected
by incurred penalties and the deployment of VMs. Figure 5(b) shows the aver-
age aggregate utility over time per approach. Debt-aware learning experiments
started achieving a higher aggregate utility when approximately a third of the
total workload length has been executed.

(a) Aggregate utilities per approach (b) Average utility over time per approach

Fig. 5. Utility of the experiments

4.3 Threats to Validity

We carried out the evaluation of our approach through a simulation that resem-
bles a cloud environment. We built our simulation tool on CloudSim and Burlap,
which are the most widely extended frameworks for simulating cloud environ-
ments and implementing reinforcement learning experiments, respectively. Our
controlled environment facilitates a faster experimentation with diverse scenarios
and different IaaS providers. Additionally, we performed the experiments using
a real workload trace.

For the sake of simplicity, we considered a SLA with only one quality of ser-
vice attribute: response time. But, the model is extensible to multiple attributes
(e.g. availability, reliability) and multiple SLAs.

A Debt-Aware Learning Approach for Resource Adaptations 379

5 Related Work

Technical debt community has applied the metaphor in a wide range of decision-
making process under uncertainty such as software maintenance and evolution
[15], architectural design [18], cloud service selection [1], software testing, sus-
tainability design among others [17]. It has been used as a way to identify, mea-
sure and monitor a decision that trades off a quality compliance concern against
an economics concern. Furthermore, the metaphor has shown to be effective to
raise the visibility of the impact on utility of a suboptimal decision if a change
materialises. For example, Li et al. [18] evaluated architectural decisions from
a value-oriented perspective and used the debt to monetise the gap between
an optimal and suboptimal architecture when a change scenario occurs. Also,
Alzaghoul et al. [1] extended the metaphor into cloud service selection to adopt
a service substitution that is aware of the potential debt introduced in the com-
position by each candidate service and makes a decision based on the potential
of the selected service to clear the debt when the change scenario materialise.
However, none of these works addresses the problem of automating the learning
of technical debts. To the best of our knowledge, we are the first to propose
an autonomous management of technical debts based on learning and, differ-
ent from previous works, we are revisiting the metaphor to support run-time
management of debts and value creation in self-adaptive and self-management
contexts such as cloud elasticity.

Reinforcement learning has already been used as an underlying technique for
elasticity management [19]. For instance, Barret et al. [4] designed a parallel Q-
learning approach to build an elasticity manager based on a multi-agent system,
where each virtual resource is an agent that makes its decisions depending on the
load of incoming requests, experienced penalties and deploying costs. However,
state variables are purely performance metrics and the reward is based on a min-
imization of costs and penalties; consequently, the learning ignores the strategic
valuation and potential utility of continuous gaps between resource supply and
demand as a result of imperfect elasticity adaptations. Jamshidi et al. [12] built
a fuzzy control based reinforcement learning approach for autonomous elastic-
ity management that modifies fuzzy elasticity rules for resource provisioning at
run-time. However, this work is focused on tuning and improving fuzzy rules to
reduce user-dependency in elasticity management. In contrast to prior works,
we designed a reinforcement learning approach that considers state variables
related to both economics and performance aspects of cloud elasticity and a
reward linked to elasticity debts, in order to achieve a management that proac-
tively uses this autonomous learning of technical debts in resource adaptations
to estimate the conditions where these debts will potentially pay off.

6 Conclusions and Future Work

We proposed an autonomous elasticity management approach intended to make
adaptations that are aware of the unavoidable imperfections of elasticity adap-
tations in the cloud. Our approach implements a reinforcement learning solution

380 C. Mera-Gómez et al.

that values the potential utility produced by the dynamic gaps between the
ideal and actual resource provisioning over time. We are the first to propose an
elasticity decision-making analysis that integrates the strategic decision-making
achieved through reinforcement learning techniques, and the value oriented per-
spective promoted by the technical debt metaphor in changing environments.
Simulation results indicate that a reinforcement learning of dynamic techni-
cal debts in resource provisioning achieves a higher aggregate utility for the
SaaS provider. Moreover, the underlying foundations of our dynamic technical
debt approach are generic enough to be applied in other self-adaptive and self-
management contexts, where decisions with a trade-off analysis can be strategi-
cally taken and aimed at long-term rewards.

In our ongoing research, we are looking at the sensitivity of our approach to
attributes of technical debt, including interest, principal, amnesty and leverage.
Additionally, we are introducing a technical debt-oriented perspective for multi-
tenant applications hosted in inter-clouds architectures.

Acknowledgments. We thank Rommy Márquez and Tao Chen for their helpful com-
ments on the paper.

References

1. Alzaghoul, E., Bahsoon, R.: Economics-driven approach for managing technical
debt in cloud-based architectures. In: Proceedings of the 6th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing (UCC 2013), pp. 239–242.
IEEE (2013)

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

3. Bahsoon, R.: Dynamic and adaptive management of technical debt: managing tech-
nical debt @runtime. In: Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C. (eds.)
Managing Technical Debt in Software Engineering (Dagstuhl Seminar 16162), vol.
6, p. 118. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

4. Barrett, E., Howley, E., Duggan, J.: Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Concur-
rency Comput. Pract. Exp. 25(12), 1656–1674 (2013)

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

6. CloudSigma. https://www.cloudsigma.com/ Accessed 1 Oct 2016
7. Fokaefs, M., Barna, C., Litoiu, M.: Economics-driven resource scalability on the

cloud. In: Proceedings of the 11th International Workshop on Software Engineering
for Adaptive and Self-Managing Systems, pp. 129–139. ACM (2016)

8. Guo, Y., Seaman, C.: A portfolio approach to technical debt management. In:
Proceedings of the 2nd Workshop on Managing Technical Debt, pp. 31–34. ACM
(2011)

https://www.cloudsigma.com/

A Debt-Aware Learning Approach for Resource Adaptations 381

9. Han, R., Ghanem, M.M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Gener. Comput. Syst.
32, 82–98 (2014)

10. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: what it
is, and what it is not. In: ICAC, pp. 23–27 (2013)

11. Herbst, N.R., Kounev, S., Weber, A., Groenda, H.: Bungee: an elasticity benchmark
for self-adaptive IAAS cloud environments. In: Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, pp. 46–56. IEEE Press (2015)

12. Jamshidi, P., Pahl, C., Mendonça, N.C.: Managing uncertainty in autonomic cloud
elasticity controllers. IEEE Cloud Comput. 3(3), 50–60 (2016)

13. JFree. Jfreechart (2016). https://goo.gl/oi39. Accessed 1 Dec 2016
14. Jin, H., Wang, X., Wu, S., Di, S., Shi, X.: Towards optimized fine-grained pricing

of iaas cloud platform. IEEE Trans. Cloud Comput. 3(4), 436–448 (2015)
15. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and

practice. IEEE Softw. 29(6), 18–21 (2012)
16. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: comparing public cloud

providers. In: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, pp. 1–14. ACM (2010)

17. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

18. Li, Z., Liang, P., Avgeriou, P.: Architectural debt management in value-oriented
architecting. In: Economics-Driven Software Architecture, pp. 183–204. Elsevier
(2014)

19. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

20. MacGlashan, J.: Burlap: The brown-umbc reinforcement learning and planning,
June 2016. https://goo.gl/ePrWFA. Accessed 1 Nov 2016

21. Mannion, P., Duggan, J., Howley, E.: Parallel learning using heterogeneous agents.
In: Proceedings of the Adaptive and Learning Agents workshop (at AAMAS 2015)
(2015)

22. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud.
In: Proceedings of the 5th IEEE International Conference on Cloud Computing
(CLOUD 2012), pp. 423–430. IEEE (2012)

23. Mera-Gómez, C., Bahsoon, R., Buyya, R.: Elasticity debt: a debt-aware approach
to reason about elasticity decisions in the cloud. In: Proceedings of the 9th IEEE
International Conference on Utility and Cloud Computing (UCC 2016). IEEE
(2016)

24. Pandey, A., Moreno, G.A., Cámara, J., Garlan, D.: Hybrid planning for decision
making in self-adaptive systems. In: Proceedings of the 10th IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2016). IEEE
(2016)

25. RightScale. Understanding the voting process (2016). goo.gl/HahnWB. Accessed
20 July 2016

26. Schulz, F.: Elasticity in service level agreements. In: Proceedings of the 2013 IEEE
International Conference on Systems, Man, and Cybernetics, pp. 4092–4097. IEEE
(2013)

27. Sharma, U., Shenoy, P., Sahu, S., Shaikh, A.: A cost-aware elasticity provision-
ing system for the cloud. In: Proceedings of the 31st International Conference on
Distributed Computing Systems (ICDCS 2011), pp. 559–570. IEEE (2011)

https://goo.gl/oi39
https://goo.gl/ePrWFA
http://docs.rightscale.com/cm/rs101/understanding_the_voting_process.html

382 C. Mera-Gómez et al.

28. Suleiman, B., Sakr, S., Jeffery, R., Liu, A.: On understanding the economics and
elasticity challenges of deploying business applications on public cloud infrastruc-
ture. J. Internet Serv. Appl. 3(2), 173–193 (2012)

29. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
Press, Cambridge (1998)

30. Wikimedia (2016). https://goo.gl/yDhTRN. Accessed 1 Feb 2017

https://goo.gl/yDhTRN

Large-Scale and Adaptive Service Composition
Using Deep Reinforcement Learning

Hongbing Wang1(B), Mingzhu Gu1, Qi Yu2, Huanhuan Fei1, Jiajie Li1,
and Yong Tao1

1 Key Laboratory of Computer Network and Information Integration
and School of Computer Science and Engineering, Southeast University,

Nanjing, China
hbw@seu.edu.cn

2 College of Computing and Information Sciences,
Rochester Institute of Technology, Rochester, USA

qi.yu@rit.edu

Abstract. Service composition provides an effective way to implement a
Service-Oriented Architecture (SOA) by combining existing multiple ser-
vices to meet user requirements. The increasingly complex user require-
ments and large amount of services pose a significant challenge to service
selection and composition. Furthermore, web services are network based,
which are inherently dynamic. The environment of service composition
may also be complex and unstable. These demand a service composition
solution to adapt to the change of environment. In this paper, we pro-
pose a new service composition solution based on Deep Reinforcement
Learning (DRL) for adaptive and large-scale service composition prob-
lems. The experimental results demonstrate the effectiveness, scalability
and self-adaptivity of our approach.

1 Introduction

In service computing, web service composition is the most effective technology
to implement a Service-Oriented Architecture (SOA) [10]. In recent years a large
number of enterprises distribute and release their products through web services
that can be accessed by others. This leads to rapid growth of the number of
web services. One service usually does not meet complex user requirements,
so it’s necessary to combine multiple services to form a service composition.
Given that the number of services with same functional attributes may be quite
large, Quality of Service (QoS) has become an important factor to differentiate
competing services. QoS-aware service composition has become a key research
direction in the service computing community [1,6].

In practical applications, under the condition of meeting user’s requirements,
the criteria for evaluating whether a service composition solution has applied
values are the quality, adaptability and efficiency of composition [11]. Web ser-
vices rely on the network environment inherently, so the network fluctuation will
lead to changes in QoS performance, such as long delay. Therefore, due to the
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 383–391, 2017.
https://doi.org/10.1007/978-3-319-69035-3_27

384 H. Wang et al.

dynamic network environment, a good web service composition solution needs
to adapt to the dynamic environment. In addition, the growth of the number
of services with similar functionality but different QoS significantly expands the
candidate service space. More specifically, if the number of abstract services in
composition workflow is m and the candidate service number is n, there exist nm

possible composition solutions, which leads to a “combinatorial explosion prob-
lem” [2,9]. Existing works mainly focus on using reinforcement learning (RL) to
adapt to the dynamic environment. However, the existing RL methods show a
poor efficiency for large-scale problems [11].

In this paper, we develop an adaptive service composition method based on
deep reinforcement learning (DRL), which integrates reinforcement learning and
deep learning. RL helps achieve adaptivity in service composition, deep learning
is to enhance the ability of expression and generalization.

2 Related Work

In this section, we review some related works that deal with large-scale and
adaptive problems in service composition, including the planing solution, rein-
forcement learning (RL), and deep reinforcement learning (DRL).

In recent years, there are many studies to address the adaptability issue,
such as integer programming technology, graph planning, artificial intelligence.
In [13], the authors develop a method using AI planning to build the service
composition workflow. A repairing approach is used to deal with the changes in
process of composition. However, building a service composition workflow needs
some priori knowledge about the environment. Reinforcement learning provides
an effective method to achieve adaptive service composition. RL is more suited to
resolve the incomplete scenario using the trial and error exploration to discover
the optimal policy [4]. Wang et al. [12] propose a service composition method
based on Markov Decision Process (MDP). This method only utilizes RL, so it
cannot deal with lager-scale service composition problems.

To address the high-dimensional inputs in RL, the deep learning which can
extract features from raw data can be employed. In [5], a multi-layer perceptron
is adopted to approximate the Q-value, leading to a Neural Fitted Q Iteration
(NFQ) algorithm. Mnih et al. [7] apply the DRL with the Atari 2600 game,
which successful learns control policies from the high dimension sensation input
and with expert level performance.

3 Preliminaries

3.1 Reinforcement Learning

In a standard RL framework, the agent interacts with environment by executing
certain actions, and gets a feedback, and adjusts its behaviors. Q-learning [3] is

Large-Scale and Adaptive Service Composition 385

an widely used RL method. Q-learning approximates value function of the state-
action pair by reducing the difference between neighboring condition estimated
Q-value at every step of learning. The update rule of Q-function is defined as.

Q (s, a) ← (1 − α)Q (s, a) + α
[
r + γmaxa′Q (s′, a′)

]
(1)

where α is learning rate, γ is the discount factor, and Q(s, a) is the state-action
value under state s executing action a. And in RL, the discounted cumulative
reward is used to evaluate the result which is defined as:

V =
∞∑

i=0

γiri (2)

where ri is the i − th step immediate reward.

Fig. 1. A simple LSTM block

3.2 Deep Learning

LSTM is a recurrent neural network (RNN) extended with memory. Three other
layers are added as hidden memory units compared with the original RNN,
including the input gate, output gate, and forget gate. As shown in Fig. 1: The
LSTM can be divided into three parts: (1) Forget gate is used to decide what
information will be discarded, and the output value will be delivered to cell state
Ct−1. (2) Determine what information can be put into the cell, which consists
of two parts. One part will be updated by the input gate and another part is a
new candidate vector created by Tanh layer. (3) Update the old information.

3.3 Deep Reinforcement Learning

Google DeepMind Team combines perception of Deep Learning and decision-
making ability of RL to develop Deep Reinforcement Learning (DRL). The
learning process is divided into three steps: (1) Through interacting with the
environment (achieved by RL), an agent obtains observation and delivers the

386 H. Wang et al.

high dimension results to a neural network, to learn abstract representations;
(2) The agent evaluates the action based on repayment value, and maps the
current condition to a corresponding action by two kinds of strategy; (3) The
environment responds to the action and gets the next observation.

This paper adopts the structure of RNN to remember the continuous state
information in a history timeline and uses a Adaptive Deep Q-learning and RNN
Composition Network (ADQRCN), which are suitable for service composition.

4 Problem Formulation

Consider someone who wants to arrange his trip schedule after determining
departure and return back time. He may consume services, such as weather
forecast, flight information search, and hotel reservation. The process of whole
trip can be modelled as a transition graph in Fig. 2. It consists of two kinds of
nodes. The hollow node represents state node (i.e., abstract service), such as S0.
Another type is a solid node, namely the concrete service. Abstract service refers
to a class of services with the same function attributes and different QoS. Every
abstract service has multiple concrete services.

Fig. 2. The MDP-WSC model for vocation planning

Based on the flow chart of vocation planning, we need to construct the model
to solve the problem. We model service composition using a Markov Decision
Process (MDP) and further exploit how to generate an effective policy.

Definition 1 (MDP-based web service composition (MDP-WSC)). A
MDP-WSC is a 6-tuple MDP-WSC=< S, S0, Sτ , A(.), P,R >, where

– S is a finite set of the world states;
– S0 ∈ S is the initial state from which an execution of the service composition

starts;
– Sτ ⊂ S is the set of terminal states, indicating an end of composition execu-

tion when reaching one state Si
τ ∈ Sτ ;

– A(s) represents the set of services that can be executed in state s ∈ S;
– P is a probability distribution function. When a web service α is invoked, the

world makes a transition from its current state s to a succeeding state s′. The
probability for this transition is labeled as P (s′ |s, α);

Large-Scale and Adaptive Service Composition 387

– R is the immediate reward function. When the current state is s and a service
α is selected, we get an immediate reward r = R(s, a) from the environment
after executing the action.

The immediate reward from environment can be calculated by the aggregated
QoS value [12]. Att represents the attribute of a service, and w is the weighting
factor of Att.

R(s) =
∑

wi × Attsi − Attmin
i

Attmax
i − Attmin

i

(3)

5 Service Composition Based on DRL

5.1 RNN in Deep Reinforcement Learning

The purpose of the neural network is mainly to generalize state-action pairs
and the corresponding Q-value. Figure 3 depicts the basic RNN structure in
ADQRCN, where the input layer consists of state and action information col-
lection. The input is passed through a hidden layer composed of 30 Long Short-
Term Memory (LSTM) units and a full connection layer. Finally, the Q value is
generated by the output layer.

Fig. 3. The structure of ADQRCN

5.2 Learning Strategies

With regard the training of ADQRCN, we adopt a similar method as in [7,8].
The neural network of ADQRCN simulates the Q function, given by formula (4)
which means the neural network f(s, a; θ) is used to predict the Q-value and
θ are the parameters of neural network. Bellman Equation (5) is used to cal-
culate variance (6). Then, gradient descent (7) is used to update the network
parameters.

f(s, a; θ) ≈ Q(s, a; θ) (4)

Q(s, a) = r + γmaxa′ Q(s
′
, a

′
; θ) (5)

L = E[(r + γmaxa′Q(s′, a′; θ) − Q(s, a; θ))2] (6)
∂L(θ)

∂θ
= E[(r + γmaxa′Q(s′, a′; θ) − Q(s, a; θ))

∂Q(s, a; θ)
∂θ

] (7)

388 H. Wang et al.

Initialize replay memory D and its capacity N
Initialize action-value function Q with weights θ
Initialize target action-value function Q̂ with random weights θ− = θ
repeat

for t = 1,T do
with probability ε select a random action at

otherwise select at = arg maxaQ(st, a; θ)
Execute action at, observe reward rt and next state st+1

st+1 = st
Store transition (st, at, rt, st+1) in D
Sample random minibatch of transitions (sj , aj , rj , sj+1) from D
if episode terminates at step j + 1 then

set yj = rj
else

yj = rj + γmaxa′Q̂(sj+1, a
′; θ−)

end if
Perform a gradient descent step on (yj − Q(st, at; θ))

2 w.r.t. θ
Every C steps reset Q̂ = Q

end for
until convergence condition is satisfied, algorithm converges

Algorithm 1. ADQRCN Algorithm

5.3 Algorithm

Algorithm 1 describes the detailed process of training of ADQRCN. At first,
the empty dataset of the recurrent neural network is initialized with capacity
N . The action-value function Q and the target action-value function Q̂ are both
implemented by the recurrent neural network with random weights. In the train-
ing process, an agent selects an action according to the Q value function and
executes the action. After obtaining the reward rt and next state st+1, the tran-
sition (st, at, rt, st+1) will be stored in the replay memory D. Then, the adjust-
ing process will begin, according to the method in Sect. 5.2, which can improve
prediction accuracy of Q value function. The algorithm will repeat the above
process until convergence (the service composition result remains the same over
two iterations) and output the final service composition result.

6 Experiments and Analysis

We conduct the experiments to assess the proposed Adaptive Deep Reinforce-
ment Learning algorithm (ADQRCN) on three aspects: effectiveness, adaptabil-
ity and scalability. And the traditional Q-Learning Service Composition Network
(QCN) [12] which use the Q-learning and MDP to obtain the optimal service
composition is implemented to be compared with our method.

Large-Scale and Adaptive Service Composition 389

6.1 Experiment Setting

In the experiment, we mainly consider four QoS attributes, including
ResponseT ime, Throughput, Availability, and Reliability. The experimental
data comes from QWS Dataset1. Considering that the scale of QWS Dataset is
small, we randomly expand the dataset to simulate a large-scale scenario, which
will allow us to verify the advantage of our methods. In the evaluation of result,
we use the discounted cumulative reward mentioned in formula (2) to represent
the performance of composition scheme.

The experiment environment is based on a Window7 (64bit) system, running
on an Intel i7-6700K 4.00GHz CPU with 16GB RAM.

6.2 Result Analysis

6.2.1 Validation of Effectiveness
The experiments are conducted with 100 state nodes (abstract services) and each
state node corresponding to 500 candidate services. Therefore, the total number
of possible service composition schema is 500100, which qualifies for a large-scale
scenario.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1000 2000 3000 4000 5000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 QCN
ADQRCN

 0

 10

 20

 30

 40

 50

 60

 70

 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 QCN
ADQRCN

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1000 2000 3000 4000 5000 6000 7000 8000

di
sc

ou
nt

ed
 c

um
ul

at
iv

e
re

w
ar

d

Episodes

 change 1%
change 5%

change 10%

Fig. 4. (a) Validation of effectiveness (b) Validation of Scalability (c)Validation of
adaptability

As shown in Fig. 4(a), the ADQRCN is better than the QCN and the
ADQRCN converges more rapidly than the QCN. Thus, this experiment also
demonstrates the efficiency of ADQRCN. Due to the QCN is based on the table
storage with random exploration, its performance is worse than ADQRCN on
basis of generalization expression.

6.2.2 Validation of Scalability
In this series of experiments, the number of state nodes are fixed at 100, and
candidate services is set as 700 in Fig. 4(b) to compare with the experiment
with 500 candidate services in Fig. 4(a). From the figure the convergence rate of
ADQRCN significantly outperforms QCN. Because ADQRCN adopts the neural
network as the generalization value function, the method maintains strong ability
of generalization and the ability to quickly achieve convergence.
1 http://www.uoguelph.ca/∼qmahmoud/qws/.

http://www.uoguelph.ca/~qmahmoud/qws/

390 H. Wang et al.

6.2.3 Validation of Adaptability
In the experiment, to simulate a changeable environment, we change 1%, 5%
and 10% QoS values of services in period of fixed time (between 2000th episode-
2500th episode). The result of three groups of experiments are shown in Fig. 4(c).
The fluctuation of services has certain influence on the learning performance, but
these effects are temporary. From an overall perspective ADQRCN has stronger
adaptability when facing the fluctuations, which may be related to the forecast
model.

7 Conclusion

The paper proposes an adaptive deep reinforcement learning framework to ensure
the adaptability and efficiency in large-scale service composition. The adaptive
deep reinforcement learning framework uses recurrent neural network simulation
of reinforcement learning function and effective information storage to improve
the ability to scale to a large and dynamic service environment. The main inno-
vation of this paper include the following:

– We propose the MDP-WSC model, which is closer to the real service compo-
sition problem and suitable for the large-scale scenario.

– In view of the limitation of reinforcement learning, we integrate the percep-
tion of deep learning with reinforcement learning to solve large-scale service
composition problem.

Acknowledgments. This work was partially supported by NSFC Projects(Nos.
61672152, 61232007, 61532013), Collaborative Innovation Centers of Novel Software
Technology and Industrialization and Wireless Communications Technology.

References

1. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QOS-
aware binding and re-binding of composite web services. J. Syst. Softw. 81(10),
1754–1769 (2008)

2. Constantinescu, I., Faltings, B., Binder, W.: Large scale, type-compatible service
composition. In: Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS), pp. 506–513. IEEE (2004)

3. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach.
Learn. 3(2), 95–99 (1988)

4. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.
Artif. Intell. Res. 4, 237–285 (1996)

5. Lange, S., Riedmiller, M.: Deep auto-encoder neural networks in reinforce-
ment learning. In: The 2010 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE (2010)

6. Li, W., Badr, Y., Biennier, F.: Service farming: an ad-hoc and QOS-aware web ser-
vice composition approach. In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing, pp. 750–756. ACM (2013)

Large-Scale and Adaptive Service Composition 391

7. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing Atari with deep reinforcement learning. arXiv preprint
(2013). arXiv:1312.5602

8. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

9. Oh, S.C., Lee, D., Kumara, S.R.: Effective web service composition in diverse and
large-scale service networks. IEEE Trans. Serv. Comput. (TSC) 1(1), 15–32 (2008)

10. Trummer, I., Faltings, B.: Optimizing the tradeoff between discovery, composition,
and execution cost in service composition. In: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS), pp. 476–483. IEEE (2011)

11. Wang, H., Chen, X., Wu, Q., Yu, Q., Zheng, Z., Bouguettaya, A.: Integrating
on-policy reinforcement learning with multi-agent techniques for adaptive service
composition. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC
2014. LNCS, vol. 8831, pp. 154–168. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45391-9 11

12. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive ser-
vice composition based on reinforcement learning. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17358-5 7

13. Yan, Y., Poizat, P., Zhao, L.: Repairing service compositions in a changing world.
In: Lee, R., Ormandjieva, O., Abran, A., Constantinides, C. (eds.) Software Engi-
neering Research, Management and Applications 2010. SCI, vol. 296, pp. 17–36.
Springer, Heidelberg (2010)

http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1007/978-3-662-45391-9_11
http://dx.doi.org/10.1007/978-3-662-45391-9_11
http://dx.doi.org/10.1007/978-3-642-17358-5_7

Service Engineering

ECHO: An Adaptive Orchestration Platform
for Hybrid Dataflows across Cloud and Edge

Pushkara Ravindra(B), Aakash Khochare, Siva Prakash Reddy,
Sarthak Sharma, Prateeksha Varshney, and Yogesh Simmhan

Indian Institute of Science, Bangalore 560012, India
pushkar1593@gmail.com,

{aakhochare,kommareddy,prateeksha}@grads.cds.iisc.ac.in,
sarthakaqua96@gmail.com, simmhan@cds.iisc.ac.in

Abstract. The Internet of Things (IoT) is offering unprecedented obser-
vational data that are used for managing Smart City utilities. Edge and
Fog gateway devices are an integral part of IoT deployments to acquire
real-time data and enact controls. Recently, Edge-computing is emerg-
ing as first-class paradigm to complement Cloud-centric analytics. But a
key limitation is the lack of a platform-as-a-service for applications span-
ning Edge and Cloud. Here, we propose ECHO, an orchestration platform
for dataflows across distributed resources. ECHO’s hybrid dataflow com-
position can operate on diverse data models – streams, micro-batches
and files, and interface with native runtime engines like TensorFlow and
Storm to execute them. It manages the application’s lifecycle, including
container-based deployment and a registry for state management. ECHO
can schedule the dataflow on different Edge, Fog and Cloud resources,
and also perform dynamic task migration between resources. We validate
the ECHO platform for executing video analytics and sensor streams for
Smart Traffic and Smart Utility applications on Raspberry Pi, NVidia
TX1, ARM64 and Azure Cloud VM resources, and present our results.

1 Introduction

The growth of Internet of Things (IoT) is leading to an unprecedented access to
observational data about physical infrastructure such as traffic/surveillance cam-
eras and smart power meters in Smart Cities, as well as social life-style through
fitness bands like FitBit and automation assistants like Google Home. Such data
streams are integrated with historic data and analytics models to make intelli-
gent decisions, such as managing traffic signaling or power grid optimization in
cities [1,2], or controlling devices in your home.

Traditionally, all this decision making and analytics have taken place in the
Cloud due to their easy service-oriented access to seemingly infinite resources.
Data is streamed from the edge devices and sensors to the data center, and
control decisions communicated back from the Cloud analytics to the edge for
enactment. This, however, has several down-sides. The bandwidth to send high-
fidelity video streams to the Cloud can be punitive, and the round-trip latency to
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 395–410, 2017.
https://doi.org/10.1007/978-3-319-69035-3_28

396 P. Ravindra et al.

move data from edge to Cloud, and control signals back can be high. Clouds’ pay
as you-go-model also bills users for data transfers, compute, and storage [3,4].

An integral part of IoT deployments are Edge and Fog devices that serve as
gateways to interface with sensors and actuators on the field. These are typi-
cally collocated or within few network hops of the sensors, and have non-trivial
compute capacity. E.g., a Raspberry Pi 2B device, popular on the Edge, has 4
power-efficient ARM cores, each performing at about 1

3

rd an Intel Xeon E5 core
on the Cloud [5]. Devices like the NVIDIA TX1 and Softiron ARM64 servers
offer accelerators and energy-efficiency that can be ruggedized for deployment as
a Fog layer. Rather than just have them move data and control signals between
the field devices and the Cloud, these Edge and Fog resources should be actively
considered as first-class computing platforms to complement the Cloud-centric
model to reduce the network transfer time and costs [4,6]. There is also the lost
opportunity cost of not using their captive computational capability.

There have been ad hoc or custom applications that indeed leverage Edge,
Fog and Cloud resources together. However, a key hurdle to adoption of this
distributed paradigm is the lack of a platform ecosystem that simplifies the com-
position, deployment, and management of applications, micro-services and data
seamlessly across these computing layers. In this regard, we are in a situation
similar to feature phones before smart phones came along, where middleware
has not kept up with hardware and communication advances [3]. In this article,
we highlight key requirements for such a distributed orchestration platform to
support the novel requirements of IoT applications on diverse resources, reaffirm-
ing earlier works [7]. We further propose ECHO, an architecture and platform
implementation that addresses these needs, along with a preliminary validation.

Existing commercial and open source solutions partially address this gap.
Amazon’s Greengrass1, Microsoft’s Azure IoT Edge2 and IBM Watson IoT pro-
vide gateway management SDKs that tightly integrate with their Cloud services.
Eclipse Kura and Liota [8,9] are gateway management services which support
local applications, while platforms like Edgent, Node.RED, and NiFi support
basic dataflow capabilities that are limited to stream or micro-batch data. Our
work goes beyond these offerings and examines hybrid data models (stream,
micro-batch, batch), generic dataflow composition, pluggability with external
platforms (TensorFlow, Storm, Spark), and dynamic migration.

Specifically, we make the following contributions in this paper:

– We highlight the key features and desiderata for a platform to support dis-
tributed application composition and execution across Edge, Fog and Cloud
devices (Sect. 2).

– We propose ECHO, an architecture and open source platform for computing
across Edge and Cloud that meets these requirements, while also leveraging
existing open source tools (Sect. 3).

– We validate ECHO for several representative Smart City applications, includ-
ing video, stream and event analytics (Sect. 4).

1 Amazon AWS Greengrass, https://aws.amazon.com/greengrass/.
2 Microsoft Azure IoT Edge, http://azure.github.io/iot-edge/.

https://aws.amazon.com/greengrass/
http://azure.github.io/iot-edge/

ECHO: An Adaptive Orchestration Platform 397

Besides these contributions, we also review related literature in Sect. 5, and
present our conclusions and future work in Sect. 6.

I

A
C

FD

G

N7 T1 E2

N8

N4N1
H

SSS1

B E1 N3

N2

Street Camera

Water Sensors &
Pump Control
(Wireless)

Raspberry Pi

TX1 Fog Server

E

ARM64 Fog Server

T2

N9

PUBLIC INTERNET

PRIVATE NETWORK

CLOUD DATA CENTER

N5

DMZ
GPU VM

VMs

N6

μ

S

μ

F S

μ
F

S

μ

F

μ

Sμ

Lightpole Sensors
& Display

Fig. 1. Motivating Usecase from a Smart Community in a City

2 Requirements and Motivation

Figure 1 illustrates scenarios for a Smart Community, where sensors and actua-
tors like water level and quality sensors and pump controls for smart water ma-
nagement, environment sensors and digital displays fixed on street light poles for
ambient urban sensing and public notification, and PTZ cameras for surveillance
and traffic are present [2]. Edge devices like Raspberry Pi and smart phones,
NVidia TX1 and ARM64 Fog servers, along with Cloud VMs, are present in the
private (community and Cloud) networks, and the public Internet, for execut-
ing analytics and storage. This motivates several key and distinct requirements
for an IoT platform that allows composition and execution of decision making
applications across Edge, Fog and Cloud resources, as we discuss below.
Dataflow Composition Model. Data-driven IoT applications are well-suited
for a dataflow programming model, where user tasks are vertices in a directed
acyclic graph (DAG) that execute upon data arrival, and edges are channels
that route the data between tasks. Many Big Data platforms like Apache Spark,
Storm and Google’s TensorFlow, and edge-centric platforms like Edgent and
MiNiFi use a dataflow model. It also allows a library of tasks to be developed
and reused by diverse domains, and these tasks form the unit of scheduling on
compute resources. E.g., Fig. 1 shows tasks N1, N2, E1 and N3 tasks operating
as a linear dataflow on water events that are processed and stored to a database.

Hybrid Data Sources. IoT applications often operate over thousands of obser-
vation streams, performing low-latency event pattern detection, e.g., on water
event streams at E1 in Fig. 1. We also require batch processing on accumu-
lated data for high throughput, say for traffic mining over video segments by
T1. Micro-batches, like from N1 to N2, offer a stream of batched tuples, balanc-
ing latency and throughput. Hence, seamlessly allowing hybrid datasets to pass
between tasks in the dataflow is essential, allowing the application composer
to select the appropriate data model. Lambda Architecture and platforms like
Flink and Spark Streaming affirm the need for such hybrid models. This also
affects the QoS for the dataflows (e.g., latency, throughput, reliability, price).

398 P. Ravindra et al.

Diverse Resource Capabilities. Edge, Fog and Cloud resources have hetero-
geneous capabilities. Platforms like Pi and Arduino are popular as edge devices
(e.g., a Pi 2B with 1 GHz CPU/1 GB RAM running Linux, costing US$ 35).
IoT Fog servers from vendors like Dell and NVIDIA offer energy efficient multi-
core ARM64 processors and GPGPUs (e.g., NVidia TX1 with a GPU, Softiron
ARM64 server). On-demand Cloud VMs at different globally spread-out data
centers are also accessible. The software platform must be able to leverage such
Edge, Fog and elastic Cloud VMs to meet the application QoS, while also being
aware of constraints like energy (e.g., if powered by battery or solar) and pricing.

Network Connectivity. IoT compute resources are distributed. So the network
connectivity between them is crucial. The resources may be within local networks
(e.g., Cloud data center, private campus) and wide-area networks (e.g., devices
across a city), with variability in bandwidth and latency ranging from 10–1000 ms
and Kbps-Gbps, depending on the medium (3G/WiFi/LoRa). Communication
within a private network, a public network, or between the two with firewalls also
impacts the visibility and accessibility of service endpoints. The platform should
transparently resolve this (e.g., push vs. pull) during dataflow orchestration.

Native Runtime Engines. Numerous Big Data and emerging edge platforms
exist for data processing. Some like Spark and Storm are general purpose, allow-
ing custom logic, while others like Edgent and TensorFlow are specialized for
event analytics and deep learning, which are popular in IoT. Packages like R
may also require command-line execution. These are also optimized for differ-
ent resources (e.g., VMs, edge, GPU). The execution platform should leverage
the strengths of native runtime engines while coordinating between them like a
“meta-engine” (e.g., data model mapping, public/private networks, scheduling),
and also offering basic dataflow orchestration. E.g., in Fig. 1 shows the use of
Edgent (E1, E2) for complex event processing (CEP) on Pis, TensorFlow for
classifying image batches using deep neural networks on GPUs (T1, T2), Storm
for scalable streaming analysis on Cloud VMs over ambient observations (S2),
with NiFi as the baseline dataflow orchestrator (N1 − N9).

Service-Oriented Architecture. Cloud owes its success to its Service-
Oriented Architecture (SOA), at the infrastructure (IaaS), platform (PaaS) and
software (SaaS) levels. Edge and Fog platforms can similarly benefit. Infrastruc-
ture services at these resource layers can use containers like LXC and Dockers for
resource sand-boxing. They are more light-weight than hypervisors and offer fast
startup, but trade-off strict security with multi-tenancy. Platform micro-services
are viable on constrained edge and Fog layers for rapid dataflow deployment. A
platform service on the edge or Fog resource can perform local task coordination
and data transfers across resources, and manage the application lifecycle.

Discovery and Adaptivity. Decentralized IoT resources operate in a dynamic
environment where the availability and capacity of edge and Fog resources can
vary over time (e.g., network link, mobility, battery level). This is unlike public
Clouds that have on-demand and reliable availability. This requires a scalable
registry service to publish the health metrics of edge and Fog devices, and to

ECHO: An Adaptive Orchestration Platform 399

track their applications. Maintaining the available data sources, and dataflows is
useful when making scheduling decisions, and for provenance and billing. Lastly,
the inherent dynamism of the resources, data sources, and applications along
with the need to meet QoS for dataflows makes it necessary to support dynamic
migration of dataflows between different resources as a first class capability.

3 The ECHO Architecture

Here, we propose ECHO, an adaptive orchestration platform for hybrid dataflows
across Cloud, Fog and Edge resources3. ECHO’s design addresses the require-
ments we identify. Next, we discuss the infrastructure and platform abstractions
that ECHO supports, and then delve into its architecture design (Fig. 3).

3.1 Resource Infrastructure

ECHO is designed for resources with diverse capabilities, with a baseline being
a Linux device with ≈ 1 GHz CPU/1 GB RAM, and able to run cgroups con-
tainers and a Java Runtime. Resources themselves may be devices or servers
that are internally managed by ECHO (like edge and Fog devices), or externally
managed IaaS resources, like on-demand VMs from (public/private) Cloud ser-
vice providers. We have a Device Service that acts as an infrastructure fabric
to bootstrap and control internally managed resources. It registers the compute,
accelerator, memory, disk and network capacity, IP address, visibility of the
device from public or private networks, etc. of the device with a Registry Service
(discussed later) to make it available. It also periodically reports performance
statistics of the device (e.g., CPU%, Memory%) for health monitoring.

Internally managed resources use containers for application deployment,
light-weight resource allocation, sand-boxing applications (and the base device)
for limited security, and for billing. We skip this for external resources since
the IaaS provider takes these responsibilities. We use LXC containers based on
cgroups capability of the Linux kernel, though Docker is also viable but more
resource intensive for low-end edge devices. The Device Service starts, stops and
manages containers on internal resources, and can deploy the appropriate con-
tainer image requested for application initiation. The container’s lifecycle is also
registered with the Registry, along with its periodic performance metrics.

3.2 Programming Model

ECHO adopts a dataflow programming model composed as a directed graph allow-
ing cycles, which is similar to but more flexible than DAGs that are widely used
in business processes and Big Data applications. Vertices represent tasks (or
processors) with custom user logic that are executed when an input data item is
available, and can generate zero or more output data items. The edges represent
the data dependencies and data movement between the tasks.
3 ECHO is available for download at https://github.com/dream-lab/echo.

https://github.com/dream-lab/echo

400 P. Ravindra et al.

Edgent Processor
Data

Wrapper

μ

Data
Wrapper

μ

Run me
Wrapper

Edgent

TensorFlow Processor
Data

Wrapper

μ

F

Data
Wrapper

μ

F

Run me
Wrapper

TensorFlow

Run me.exec

User Processor
User
Java
Logic

μ μ

Local Device

Storm
Worker

Storm Processor
Run me
Wrapper

μ
RPG

Storm
Worker

RPG
SinkRPG

Spout

Storm
WorkerStorm

WorkerStorm
Worker

μ

μ

μ

Remote VMs

Fig. 2. Wrappers in ECHO for hybrid data models & external engines

Data items consumed and produced by tasks can be of three forms: streams,
files, or micro-batches. Streams have an unbounded sequence of tuples available
in-memory, files are a collection of bytes on disk, while micro-batches are a
set of tuples or bytes in-memory. User processors are annotated with the data
model that they use on their input and output. While we use micro-batch as the
default model between processors, ECHO can also map between the stream or
files to/from micro-batch. This is done by data wrappers around the task logic
that accumulate event streams from tasks into windows to form a micro-batch,
and similarly replay events from the micro-batch to the task as a stream (Fig. 2).
Likewise, micro-batches can be written to and read from the device’s file system
as files to pass to the task. This eases the development process for the users.

Lastly, the ECHO programming model provides native support for interfac-
ing with external runtime engines using specialized runtime wrappers (Fig. 2).
These processors take the native dataflow for an external runtime engine, ini-
tialize that engine, pass input data to it, and receive the results back, using data
wrappers if needed. Such engines may be in-memory Java libraries, command-
line executables, or a remote Big Data platform. Specifically, we support Apache
Edgent [10], an in-memory Java CEP engine for edge devices that consumes and
produces event streams, and executes online pattern queries on them. A proces-
sor for Google’s TensorFlow [11] executes classification models as a local Python
process, with access to CPU and GPGPU, using file-based input and output. We
also support Apache Storm and Spark platforms on clusters/VMs, using data
transfer bindings between a local processor and the remote application.

3.3 Platform Design and Implementation

Figure 3 shows the high level Platform architecture of ECHO. Internally managed
devices have the Device Service running on them as part of the infrastructure
fabric. A Platform Service runs on each container or VM and interfaces with
a local Apache NiFi instance which we use as our default dataflow engine. A
Resource Directory and Platform Master form the core platform services, typi-
cally hosted on a public Cloud VM. The devices, their containers and externally
managed Cloud VMs available for running user dataflows are registered with
the Resource Directory. The master is responsible for managing the lifecycle of
a dataflow on behalf of the user by coordinating with the other services. Next,
we discuss individual components of ECHO and their interaction pattern.

ECHO: An Adaptive Orchestration Platform 401

Pla orm Master Service

Scheduler

REST Pla orm
Endpoint Cloud VMs (Pla orm Services)

Resource
Directory

Pla orm
Service

Device Service

NiFi Engine

Pla orm
Service

NiFi Engine

Pla orm
Service

Device Service

NiFi Engine

Edgent
N1

E1

Pla orm
Service

Device Service

NiFi Engine

T1

TensorFlow

NiFi Engine

N3

N2

App Manager

Deployer S1
Storm Worker

Storm

Storm

N4

F

μ

Pla orm Service

μ
μ

TX1 Fog Server

Cloud VMs (App Services)

1

0, …

2

3,7

4

5

8

Raspberry Pi

8

8

6
6

8
9 10

0

Fig. 3. ECHO Platform Architecture

Resource Directory. The resource directory is a registry of all state in the
system. We use it to register resources and dataflows but it is naturally suited
for data items as well. We use the Hypercat 3.0 BSI standard [12] that has
been developed as a light-weight JSON-based registry for IoT and Smart City
assets. Each registered item is identified using a unique href URI and associ-
ated item-metadata which is a list of relationship and value pairs. Besides
relationships like description, geolocation, last updated timestamp and event
streams, it also allows user-defined relationships. Hypercat exposes REST-based
registration (POST) and query (GET) of this JSON including geographical and lex-
icographic search, subscription to event stream updates, and web-based security.
We extend an existing Hypercat implementation for our needs4.

We define a logical hierarchy based on the href’s path with the first level
having the type of resource, such as device or dataflow, the next level having the
unique ID for the item, and subsequently, sub-categories within that item. E.g.,
for an edge device, we may have href=http://tempuri.org/device/e97e0195acf4,
while its CPU usage may be at href=http://tempuri.org/device/e97e0195acf4/
CPUUtil. Since the entire JSON entry for an item is updated when even one
relationship changes, having such href-based logical grouping allows fine-grained
updates and queries. For devices and containers, we capture information such
as the capacity (core, memory, disk, NIC, accelerators), IP address, and the
current utilization. For dataflows, we capture the JSON of the actual directed
graph of processors, their mapping to specific resources, and their state. This can
be further extended to record the data items generated, sensor events streams
available, etc. based on user needs for dynamic binding of dataflows to sources.

The entries in the catalog are populated by the Device Service and the Plat-
form Service when resources come online, with a monitoring thread updating the
resource usage. The App Manager inserts and updates the state of the dataflow
when it is started, updated, rebalanced or stopped. Besides external services

4 https://github.com/HyperCatIoT/node-hypercat.

https://github.com/HyperCatIoT/node-hypercat

402 P. Ravindra et al.

that can use the catalog, the scheduler queries for information on the available
resource capacities to match the dataflow processor requirements using prefix
and exact search capabilities of Hypercat.

Device Service. The Device Service is an infrastructure service running on
internally managed devices that monitors the device and the containers it
spawns. It registers the device on bootup, and each container it spins up or
shuts down, with the Resource Directory (step 0 in Fig. 3). The service exposes
a REST API that can be used to launch new containers using LXC with specific
application images, and turn down unused containers. It also logs the CPU and
Memory utilization for each device its containers with the registry. This gives
the capacity of the device and also the performance of applications within its
containers.

Platform Master and Dataflow Lifecycle. The Platform Master is a REST
service responsible for managing a dataflow’s lifecycle for the user using other
ECHO components. The master itself is registered with the registry for boot-
strap. The service exposes three main actions: starting a dataflow, stopping it,
and dynamically rebalancing it. These can be easily extended to other variants
such as pausing, changing input parameters, or even modifying the structure
of the dataflow. Figure 3 illustrates a dataflow starting. Users POST a composed
dataflow JSON to the master service, which spawns an App Manager thread to
handle the request for this dataflow. The master is designed to be stateless, with
all state managed in the registry. The manager queries the registry for the avail-
able resources – registered containers or VMs and their current capacity, which
it passes to the Scheduler along with the dataflow. The scheduler is a modular
plugin with different possible allocation algorithms that find a suitable mapping
from processors in the dataflow to resources, based on the capacity and QoS.

The manager then contacts a deployer module that enacts the mapping of
processors to resources, connecting them across different resources, and start-
ing the dataflow execution. For this, it invokes a Platform Service running on
each resource that in turn interfaces with the local dataflow engine for proces-
sor deployment. Once successfully started, the manager assigns a UUID to the
dataflow, registers the dataflow JSON and its resource mapping with the registry,
and returns the UUID to the user. This UUID can be used to later manage the
dataflow, say, to stop it. In this case, the user again contacts the master which
spawns a manager that then retrieves the dataflow’s state from the Resource
Directory. It then works with the deployer to contact the platform services on
the resources in which this dataflow’s processors are running, stops and unde-
ploys them, and updates the dataflow’s state in the registry.

Platform Service and Distributed Orchestration. The container or VM
that will host the application runs a platform service for managing the dataflow
orchestration on it. Depending on the resource availability and sharing allowed
between dataflows of the same or different tenants, each container can run
all or parts of one or more dataflows. We use Apache NiFi, a light-weight
engine designed for interactively composing modular processors and executing a

ECHO: An Adaptive Orchestration Platform 403

dataflow on a single machine, as our base dataflow orchestration engine. NiFi’s
native data model is a FlowFile, which is an in-memory reference to a collec-
tion of bytes, which may be persisted to disk as one or more files, along with
attributes describing it. We treat a FlowFile as a micro-batch, and provide data
model wrappers to/from streams and files from FlowFiles.

Processors are user-defined Java logic that can access the attributes of a
FlowFile, and its contents as a byte stream, and likewise generate new FlowFiles
that are passed to downstream processors in the dataflow by the engine. NiFi
offers limited support for distributed devices. Instances on different machines
can pass FlowFiles between their processors by manually defining and wiring a
remote process group (RPG). RPGs can use HTTP or a binary protocol to push
FlowFiles downstream or pull FlowFiles from upstream processors.

We extend NiFi in several ways to meet the listed desiderata. Our platform
service uses the NiFi APIs to programmatically deploy and execute fragments
of one or more dataflows in a single engine. Since the resource scheduler may
map different processors in the dataflow to different resources, each NiFi engine
may have only a subset of it. E.g., in Fig. 3, N1, T1 and S1 are part of the same
dataflow but placed in a Pi, a TX1 and a VM. We treat NiFi as a local orches-
tration container for multiple fragments. The deployer coordinates among dif-
ferent NiFi instances by automatically introducing RPGs at the edge-cut of the
dataflow graph that span resources. While RPGs currently push FlowFiles down-
stream, knowledge of network restrictions can be used to decide if an upstream
RPG is a client (push) or a server (pull) to the downstream RPG. This ambi-
directionality allows the platform to even execute dataflows on resources behind
firewalls.

We further introduce specialized runtime wrapper processors, as discussed
in Sect. 3.2, for native support for external runtime engines. Specifically, we
support Edgent for in-memory CEP, TensorFlow for deep learning models using
CPU and GPGPU, and Spark and Storm for stream and batch processing of Big
Data. While the Edgent processor operates within NiFi, TensorFlow is forked
as a process on the local device from the processor. Both these also use data
model wrappers, as shown in Fig. 2. The Storm and Spark processors also require
support within the native dataflow. Specifically, we have source and sink tasks
of the Storm or Spark dataflow interface with the RPGs of NiFi to transfer the
FlowFiles between the different engines, with an optional data model wrapper.
Users just provide the external engine’s dataflow logic to our runtime wrapper
processors, which then launches and interacts with it transparently.

Lastly, we provide first-class support for dynamic migration of the dataflows
at execution time to adapt to external conditions. Dataflow rebalancing refers to
the process of migrating running processors from the resources they are present
in to different ones. While rebalance is explicitly triggered by the user now, it is
possible to have the app manager periodically check the QoS of the application
and pro-actively initiate this rebalancing. A user’s call to the master to rebalance
spawns a manager thread to query the current dataflow and mapping from the
registry, and pass it to the scheduler to get an updated resource allocation. The

404 P. Ravindra et al.

manager then contacts the deployer with the old and the new mappings, which
performs a graph “diff” to identify processors that need to be migrated. It then
pauses the processors that are being migrated and their adjacent ones, migrates
the relevant processors, introduces/removes RPGs at the new/old boundaries,
and rewires the processors before resuming them. During this time, unpaused
processors continue to execute, though inputs to paused processors will queue.

While rebalancing is an enabling feature, its effective use for meeting the
performance requirements of IoT applications requires an intelligent scheduler,
which is yet to be integrated [5]. Such a scheduling algorithm can make use of the
current resource statistics in the registry and the application QoS to determine
the new mapping that is required, while ECHO can transparently enact it.

4 Evaluation and Results

We evaluate the ECHO architecture and implementation for real-world IoT data-
flows that support the Smart Community use-case we motivated earlier. We
deploy ECHO on an IoT testbed at our Indian Institute of Science (IISc) campus
in Bangalore with the following setup of local Edge and Fog devices within 2
network hops on the private network, complemented by Microsoft Azure VMs at
2 data centers. The Platform Master and Resource Directory services run on an
exclusive DS1 VM each, while the rest are available for deploying applications.

Resource Count CPU/GPU RAM NIC Location

Pi 3B Edge 10 900MHz ARM A53 64 bit, 4 cores 1 GB 100 Mbps IISc

Pi 2B Edge 2 900MHz ARM A7 32 bit, 4 cores 1 GB 100 Mbps IISc

TX1 Fog 1 1.75 GHz ARM A57 64 bit,
4 cores; Nvidia Maxwell, 256
CUDA cores

4 GB 1Gbps IISc

Softiron Fog 1 2GHz AMD A1100 (ARM A57)
64 bit, 8 cores

16 GB 2×10Gbps IISc

DS1 v2 VM 4 2.4 GHz Intel Xeon E5 v3, 1 core 3.5 GB 2×1 Gbps South India

NC6 VM 1 2.6 GHz Intel Xeon E5 v3, 6 cores;
Nvidia K80, 4992 CUDA cores

56 GB 1Gbps US East

The three IoT application dataflows used in the validation are shown in
Fig. 4 and summarized in the table below. These are based on real-world data
processing and analytics for smart utility and traffic surveillance scenarios.

Dataflow Input Platforms Data Model Resources

ETL NYC Taxi NiFi, Edgent µ-batch, Stream Pi, VMDS1, S’iron
YOLO Pedestrian

Video [13]
NiFi, T’Flow, Edgent µ-batch, Stream, File Pi, TX1, VMNC6

STATS NYC Taxi NiFi, Storm µ-batch, Stream Pi, VMDS1

The Extract Transform Load (ETL) dataflow performs data pre-processing
and cleaning of sensor observation streams, such as smart grids and environ-
mental sensing, before archiving then to Cloud storage [14]. It parses the input

ECHO: An Adaptive Orchestration Platform 405

Fig. 4. Smart City dataflows used in evaluation

SenML micro-batch in NiFi, streams each observation to Edgent for filtering,
outliers detection, and interpolation using its built-in CEP tasks, annotates it as
micro-batches back in a NiFi processor before publishing to an MQTT pub-sub
broker and to an Azure NoSQL table concurrently We run it on NY Taxi event
streams [14]. The tasks initially run on 4 Pi devices, but are rebalanced and
migrated mid-way to also use 2 Cloud VMs.

YOLO [15] is a deep convolutional neural network (CNN) for TensorFlow to
classify pedestrians in frames of traffic videos. We use it for both pre and post
processing, on edge with low latency and on Cloud with high accuracy. In our
dataflow, video segments are in parallel archived on a Pi, and also downsampled
to 416 × 416 px for efficient detection using a YOLO Tiny model on the TX1.
YOLO returns a text label and bounding box, which are streamed as tuples
to an Edgent processor to detect patterns of interest, say more than 5 people
in a frame. Upon a match, we push the corresponding video frames at original
resolution (2.1 × larger) to a Cloud GPU VM for accurate classification by a
YOLO Full TensorFlow model. A match triggers an alert for further action.

Lastly, a statistical analytics dataflow (STATS) is an IoT application [14]
that performs streaming analysis over events with high velocity. It concurrently
does a Kalman filter smoothing and linear regression, windowed aggregation,
and distinct count of sensors, which are then plotted and the images zipped
for publishing online. These tasks are designed as a Storm topology that run
on Cloud VMs, with a NiFi processor passing it event batches from the edge,
and receiving the response. As we can see, these three dataflows capture real

406 P. Ravindra et al.

scenarios that cannot be adequately met by a single dataflow platform, a single
data model or a single type of device, highlighting the value of ECHO.

(a)

Fig. 5. Results for ETL, YOLO and STATS dataflows

Results. We deploy the dataflows on the IoT testbed devices and the VMs
using a custom scheduler, and offer representative samples of the performance
results upon running them continuously. Figure 5a shows the output event rate,
and CPU% on each active device for ETL across time. In the first half, we
schedule the processors only on Pi’s but initiate a dynamic rebalance at the
mid-point to additionally use 2 VMs. As we see, the supported event rate jumps
from 15 events/sec to 80 events/sec, with a brief dip while the migration occurs.
We see a corresponding change in the CPU% as well, with the usage on Pi1
increasing as it is retained after rebalance while other Pi’s dropping low, and
the VM usage marginally increasing. Despite having more cores, the Pi’s have
3x slower clockspeeds, and hence offer limited throughput.

The batch behavior of YOLO clearly shows in its CPU% and Memory%
plots over time in Fig. 5c, with the spikes coinciding with a micro-batch or file
being processed by NiFi or TensorFlow. This happens across CPU, GPU, Pi,
TX1 and VM, but is more prominent on TX1 since it is the most stressed
resource when running the YOLO Tiny model. The frame-rate supported by
YOLO Tiny on TX1 is 1

3

rd that of Yolo Full on NC6, despite having 1
2 the

image size. The NC6 VM has a much faster GPU and spare capacity, indicating
that a single GPU VM can service multiple video streams to complement the
Fog servers.

ECHO: An Adaptive Orchestration Platform 407

We report the throughput at each NiFi or Storm task in the STATS dataflow
in Fig. 5b. We can see that the use of Storm helps support high input rates of
over 1000 events/sec. The variation in rates is due to the selectivity of different
tasks, that can produce more or fewer events than what they consume. The rates
are also smoother than YOLO, reflecting the streaming data model used.

5 Related Work

The lack of middleware for IoT and edge-computing is well recognized [3,4,6,16],
even as the growing deployment of such devices and applications use bespoke
solutions. [7] offers a gap analysis of IoT platforms, several of which ECHO
addresses including the use of Edge, Fog and Cloud resources, easing devel-
opment of distributed dataflow applications, and automating the environment
setup.

Open source projects like Eclipse Kura [8] offer a Java-based gateway man-
agement project for Linux edge devices that allows application deployment using
OSGi containers. But it does not support dataflow composability within or across
devices. VMWare’s Liota [9] is a similar Python-based management stack with
sensor, pub-sub and Cloud service bindings that can run local applications on a
device. These complement ECHO’s PaaS layer and can form the IaaS layer.

Cloud providers like Amazon AWS and Microsoft Azure have extended some
of their Cloud features to tightly integrate with edge devices as well. Amazon’s
GreenGrass is an IoT SDK that allows users to deploy AWS Lambda functions
on edge devices, and use MQTT for coordination. They also offer bindings with
AWS Cloud services like S3 and DynamoDB. Azure IoT Edge has a similar goal.
In both cases, the SDK offer some programming and management capabilities
on the edge but push analytics to their Cloud services. Composability, support
for external Edge runtimes, hybrid data model, etc. are non-goals.

Apache Edgent as we saw offers a CEP platform for Edge devices. This
is designed as a stand-alone embedded library rather than for composable
dataflows. Node.RED is similar to NiFi in providing interactive dataflow com-
position across devices using a Node.js server. But its features are restricted,
supporting only JavaScript tasks, although it is more light-weight. MiNiFi is
a light flavor of NiFi that supports C++ and embedded platforms, but trims
many of NiFi’s features like online deployment and dynamic migration ability.

IoT Middleware is an active research area as well. The MiMove project [16]
has proposed an SOA architecture for mobile IoT, with a focus on the functional
scalability. A novel probablistic registry allow low-latency approximate queries
for registered sensing and actuation services. It does static scheduling of stream-
ing service dataflows using the Dioptase middleware [17], and interfacing across
heterogeneous IoT protocols using an Enterprise Service Bus (ESB). ECHO in
contrast supports hybrid data models – a higher level abstraction than protocols,
richer composition including delegating to external engines, and point-to-point
push/pull task communication rather than a central ESB. Advanced scheduling
algorithms [5] or device mobility is not a focus in our paper, but future work.

408 P. Ravindra et al.

[18] has proposed a programming model for composing IoT applications
across mobile, Fog and Cloud layers. They consider a multi-way 3-level dataflow
model with computation starting in the Cloud, elastic resources acquired in the
Cloud and Fog, and communication possible between all 3 layers. Each edge has
one Fog parent based on spatial proximity, that may be reassigned. While a use-
ful abstraction, their strictly hierarchical resource and dataflow model are much
more restrictive that our use of any network topology and a directed graph as
dataflow. Theirs effectively degenerates to a client-server model.

Mobile Clouds are precursors to IoT where mobile phones off-load applica-
tions to Cloud resources. In [19], mobile data stream applications are dynami-
cally partitioned for computation across mobile devices and Cloud. They pro-
pose a genetic algorithm for the partitioning to maximize throughput and adapt
to changing devices load. They are limited to mobile data stream applications
rather than dataflow or hybrid data models We also support Fog resources,
native runtime engines and dynamic migration of tasks among the resources.
The Hybrid Mobile Edge Computing (HMEC) architecture [20] uses edge devices
for mobile applications. They use a peer-to-peer (P2P) approach of both proxi-
mate and distant edge devices, and perform method-based offloading to improve
performance and reduce energy usage. Similarly, [21] offloads tasks to the Cloud
using RPC with static analysis and dynamic profiling of mobile applications. It
maintains a complete device clone in the Cloud, which can be costly. These are
designed for monolithic existing mobile applications rather than ad hoc dataflow
composition, and neither consider a service paradigm or Fog servers.

P2P frameworks like Seti@home [22] have targeted the use of idle compute
capacity in desktops. However, some of the inherent P2P characteristics are
missing in an IoT scenario. Device churn is a major factor in P2P but less
so for infrastructure IoT, or even mobile devices that are typically within cell
communication. This, coupled with the growth of global Cloud data centers,
make it feasible for centralized services for coordination.

6 Conclusions

In this paper, we motivate the gaps and propose the requirements for a middle-
ware platform to compose and orchestrate dataflows across Edge, Fog and Cloud
resources for IoT applications. Our ECHO platform addresses these design
requirements, including novel features such as dataflow composition; use of hybrid
data models like streams, micro-batch and files; inherent support for external
runtime engines like Edgent, Tensorflow, Storm and Spark; and dynamic migra-
tion of tasks across distributed resources for adaptivity. ECHO also offers native
dataflow orchestration using NiFi, a standards-compliant registry, and container-
ization for light-weight resource sharing.

We map three real-world IoT applications to ECHO to exercise these features,
and ease the composition of distributed dataflows across Edge, Fog and Cloud.
Besides meeting the qualitative requirements we identified, the performance

ECHO: An Adaptive Orchestration Platform 409

results also illustrate the potential benefits of interfacing with external plat-
forms, and smart rebalancing to adapt to dynamism to meet the application
QoS.

This paper addresses the highlighted gaps, but much more remains in this
emerging area. Using a more decentralized decision making for deployment and
scheduling rather than in a single Master may help scale to millions of devices,
and the Fog can play a role here. Scalable federated catalogs will be essential
to include dynamic data sources and device state updates in the registry. NiFi’s
inherent support for provenance collection can also be leveraged for auditing,
billing and tracking of data. Adaptive scheduling algorithms, migration of state-
ful tasks, consistently guarantees and fault tolerance also need careful study.

Acknowledgments. The authors would like to thank Microsoft Azure and NVIDIA
for resource access, and VMWare for their technical feedback. We would also like to
thank Venkatesh Babu and Avishek from the VAL lab at IISc for their inputs on
YOLO.

References

1. Simmhan, Y., Aman, S., Kumbhare, A., Liu, R., Stevens, S., Zhou, Q., Prasanna,
V.: Cloud-based software platform for big data analytics in smart grids. IEEE/AIP
Comput. Sci. Eng. (2013)

2. Amrutur, B., Rajaraman, V., Acharya, S., Ramesh, R., Joglekar, A., Sharma, A.,
Simmhan, Y., Lele, A., Mahesh, A., Sankaran, S.: An open smart city IoT test bed:
street light poles as smart city spines. In: ACM/IEEE International Conference on
Internet of Things Design and Implementation (2017)

3. Simmhan, Y.: IoT analytics across edge and cloud platforms. IEEE IoT Newsl.,
May 2017

4. Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi,
A., Barcellos, M., Felber, P., Riviere, E.: Edge-centric computing: vision and chal-
lenges. ACM Comput. Comm. Rev. (2015)

5. Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across edge and
cloud, CoRR, no. 1608.01537 (2016)

6. Varshney, P., Simmhan, Y.: Demystifying fog computing: Characterizing architec-
tures, applications and abstractions. In: IEEE International Conference on Fog and
Edge Computing (2017)

7. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of internet-of-
things platforms. Comput. Commun. 89, 5–16 (2016)

8. Eclipse Kura, http://www.eclipse.org/kura/. Accessed 21 June 2017
9. VMware Liota, https://github.com/vmware/liota. Accessed 21 June 2017

10. Apache Edgent, v1.1.0, http://edgent.apache.org/. Accessed 21 June 2017
11. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distrib-

uted systems. In: USENIX Symposium on Operating Systems Design and Imple-
mentation (2016)

12. Beart, P.: Automatic resource discovery for the internet of things - specification,
The British Standards Institution. Tech. Rep. PAS 212:2016 (2016)

13. Ess, A., Leibe, B., Schindler, K., van Gool, L.: A mobile vision system for robust
multi-person tracking. In: IEEE Conference on Computer Vision and Pattern
Recognition (2008)

http://www.eclipse.org/kura/
https://github.com/vmware/liota
http://edgent.apache.org/

410 P. Ravindra et al.

14. Shukla, A., Chaturvedi, S., Simmhan, Y.: RIoTBench: a real-time IoT benchmark
for distributed stream processing platforms, CoRR, no. 1701.08530 (2017)

15. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger, CoRR, no.
1612.08242 (2016)

16. Georgantas, N., Billet, B.: Revisiting service-oriented architecture for the IoT: a
middleware perspective. In: International Conference on Service Oriented Com-
puting (2016)

17. Billet, B., Issarny, V.: From task graphs to concrete actions: a new task mapping
algorithm for the future internet of things. In: IEEE International Conference on
Mobile Ad Hoc Sensor Systems (2014)

18. Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile
fog: a programming model for large-scale applications on the internet of things. In:
ACM SIGCOMM Workshop on Mobile Cloud Computing (2013)

19. Yang, L., Cao, J., Yuan, Y., Li, T., Han, A., Chan, A.: A framework for partition-
ing and execution of data stream applications in mobile cloud computing. ACM
SIGMETRICS Performance Eval. Rev. 40(4) (2013)

20. Reiter, A., Prünster, B., Zefferer, T.: Hybrid mobile edge computing: Unleashing
the full potential of edge computing in mobile device use cases. In: IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (2017)

21. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: elastic exe-
cution between mobile device and cloud. In: Conference on Computer Systems
(2011)

22. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@ home:
an experiment in public-resource computing. CACM 45(11) (2002)

Ensuring and Assessing Architecture
Conformance to Microservice Decomposition

Patterns

Uwe Zdun1(B), Elena Navarro2, and Frank Leymann3

1 Faculty of Computer Science, Research Group Software Architecture,
University of Vienna, Vienna, Austria

uwe.zdun@univie.ac.at
2 Computing Systems Department, Laboratory of User Interaction and Software

Engineering, University of Castilla-La Mancha, Albacete, Spain
elena.navarro@uclm.es

3 Institute of Architecture of Application Systems, University of Stuttgart,
Stuttgart, Germany

frank.leymann@iaas.uni-stuttgart.de

Abstract. Microservice-based software architecture design has been
widely discussed, and best practices have been published as architec-
ture design patterns. However, conformance to those patterns is hard to
ensure and assess automatically, leading to problems such as architec-
tural drift and erosion, especially in the context of continued software
evolution or large-scale microservice systems. In addition, not much in
the component and connector architecture models is specific (only) to
the microservices approach, whereas other aspects really specific to that
approach, such as independent deployment of microservices, are usually
modeled in other views or not at all. We suggest a set of constraints
to check and metrics to assess architecture conformance to microservice
patterns. In comparison to expert judgment derived from the patterns,
a subset of these constraints and metrics shows a good relative perfor-
mance and potential for automation.

1 Introduction

Many approaches have been proposed for service-based architecture decomposi-
tion (see e.g. [16,19,21,28]). An approach which evolved from established best
practices are microservices, as Newman [15] points out: “The microservices app-
roach has emerged from real-world use, taking our better understanding of sys-
tems and architecture to do SOA well.” Lewis and Fowler [14] describe microser-
vices as “an approach to developing a single application as a suite of small
services, each running in its own process and communicating with lightweight
mechanisms, often an HTTP resource API. These services are built around busi-
ness capabilities and independently deployable by fully automated deployment
machinery.” More detailed discussions can be found in [18,27].

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 411–429, 2017.
https://doi.org/10.1007/978-3-319-69035-3_29

412 U. Zdun et al.

This paper focuses on architecture decomposition based on the microservices
approach. Many required decisions about how to perform the major architecture
decomposition into microservices have already been described in form of architec-
tural design patterns [21]. However, those and related patterns can lead to archi-
tecture designs in many different variants and combinations of pattern-based
design options, making it hard to automatically or semi-automatically judge
questions such as: When designing a microservice architecture, how much did a
project deviate from the established best practices? After evolving a microservice
architecture, are we still in conformance with the chosen microservice patterns?
When moving from a monolithic architecture to a microservice architecture, how
big is the gap to a microservice-based design?

For checking or assessing such questions related to pattern conformance of
the microservice architecture, a high level of automation would be very useful.
While it is possible to judge these questions for a small scale architecture man-
ually, in practice it is rarely done in each architecture evolution step, leading
to architectural drift and erosion [20]. For larger scale projects, manual assess-
ment is more difficult. For instance, consider the work of an integration architect
judging pattern conformance in hundreds of microservices. Here, manual assess-
ment can only work in a cost-effective way, if every team is very disciplined
and assesses their own conformance in each evolution step. Further, without
automation, at a larger scale with many different stakeholders, judging pattern
conformance objectively and uniformly across teams and stakeholders is difficult.
These points have led us to address the following research questions:

RQ1: Which measures can be defined to automatically check or assess pattern
conformance in microservice decomposition architectures?
RQ2: How well do such measures perform in relation to expert judgment?
RQ3: Given that many defining aspects of microservices (like independent
deployment) are modeled outside of a microservice decomposition architec-
tures, what is a set of minimal elements needed in a microservice decomposi-
tion architecture to compute meaningful measures?

Our major contributions are the following. Based on existing microservice
patterns [21] we have hypothesized a number of constraints and metrics to make
an automated judgment on microservice architecture decomposition. To evalu-
ate those constraints and metrics, we have modeled 13 architecture models taken
from the practitioner literature and assessed each of them manually regarding its
quality and violations of microservice patterns (following as closely as possible
the expert judgment of the pattern authors). We have then compared the results
in depth and statistically over the whole evaluation model set. Our results are: A
subset of the constraints and metrics are quite close to the pattern-based assess-
ment based on the expert judgment taken from the patterns. We identified only
a few necessary modeling elements in microservice decomposition architectures,
meaning that they are rather easy to create semi-automatically (e.g. using the
approach from [6]). Moreover, in those models not much is (only) specific to

Ensuring and Assessing Architecture Conformance 413

microservices so that there is still room for improvement. Such further improve-
ment would require detailed modeling of the microservices and thus more manual
effort.

This paper is organized as follows. Section 2 compares to related work. Next,
we discuss a minimal formal model for microservice-based architecture decom-
position in Sect. 3. Section 4 introduces our suggested microservice design con-
straints and metrics, and Sect. 5 evaluates them for 13 models from practice.
Section 6 discusses the RQs regarding the evaluation results, analyses the threats
to validity, and concludes.

2 Related Work

Many studies currently study microservice-based architectures in the context of
DevOps or container-technologies like Docker (see e.g. [3,8,9]). In addition, quite
a number of studies analyse the application of microservices in various applica-
tion domains such as data centers [12], digital archives [10], or Web apps [25], to
name but a few. A recent mapping study [1] confirms that the major interests
in these and other studies are mostly the concrete system architectures often in
relation to deployment, cloud, monitoring, performance, APIs, scalability, and
container-technologies. That is, these studies are related to ours, so far, as their
architectures are potential targets for our approach. The additional aspects that
are studied in those approaches (like performance, scalability, or deployment
aspects) are potential extensions of our approach, as possible future work.

First engineering approaches, specific to microservices are emerging. We have
based our work on the microservice patterns by Richardson [21]. For instance,
the API Gateway pattern is beneficial in a Microservice Architecture, but not
a must. This pattern proposes “a single entry point for all clients.” A variant
of API Gateway is the Backend for Frontend pattern that “defines a separate
API Gateway for each kind of client.” With regard to data stores, the rec-
ommended pattern is Database per Service, i.e., “an architecture which keeps
each microservice’s persistent data private to that service and accessible only
via its API.” Loosely coupled interaction is usually the only intended way how
microservices should communicate with each other. This is typically achieved
using event-driven communication or messaging [7], in both cases with focus on
an eventually consistent approach for communication of data-related operations.

Another set of microservice patterns has been published by Gupta [5], general
best practices are discussed in [14], and other similar approaches are summarized
in another recent mapping study [16]. So far, however, no automated software
engineering tools have been proposed for microservice decomposition in the liter-
ature. Engineering approaches rather focus on aspects like support for modeling
and composition [11] or migration from monolithic architectures [13]. Related
general service design methods focus e.g. on QoS-aware service composition [22]
or the involved architecture decisions [28]. While much of the work on service
metrics is focused on runtime properties like QoS, some specific design met-
rics for Web services have been proposed, e.g. focusing on loose coupling [19].

414 U. Zdun et al.

To the best of our knowledge, no general conformance approach for architecture
decomposition of microservices – or services in general – exists so far.

Software architecture conformance checking is often based on automated
extraction techniques, which could be used as a basis for our approach as well
(here following [6]), e.g. using architecture reconstruction approaches [4,24]. Such
approaches often can check conformance to architecture patterns [4,6] or other
kinds of architectural rules [24]. Other static architecture conformance check-
ing techniques are: dependency-structure matrices, source code query languages,
and reflexion models [17]. In such approaches often general software engineer-
ing metrics like complexity metrics play a role [17]. Our approach follows the
same general strategy like those approaches, but in contrast we focus on spe-
cific constraints (or more generally, architecture rules) and metrics derived from
microservices best practices – not applicable in a general context, but at the
same time more powerful in our specific microservice (or service) context.

3 Modeling Microservice-Based Architecture
Decomposition

Figure 1 shows a simple sample microservice decomposition model, as they are
modeled in practice (see e.g. [21]). It uses UML2 component model notation with
one extension: a Directed Connector is modeled using a directed arrow (not part
of UML2). Not much in such a model is (only) specific to microservices, but at the
same time many aspects may be modeled in a way which is violating some parts
of the microservice patterns. This might lead to severe problems in other views of
the architecture or system, such as logical, detailed design or deployment views.
For instance, a decomposition that would hinder independent deployment, uses
many shared dependencies and is mainly based on strongly coupled connectors,
so that it would not be following the microservice best practices well.

From an abstract point of view, a microservice-based architecture decom-
position is a decomposition into a directed components and connectors graph
with a set of component types for each component and a set of connec-
tor types for each connector, formally: An architecture decomposition model
M is a tuple (CP,CN,CPT,CNT, cp directtype, cn directtype, cp supertype,
cn supertype, cp type, cn type) where:

– CP is a finite set of component nodes.
– CN ⊆ CP × CP is an ordered finite set of connector edges.
– CPT is a set of component types.
– CNT is a set of connector types.
– cp directtype : CP → P(CPT) is a function that maps each component node

cp to its set of direct component types,

Ensuring and Assessing Architecture Conformance 415

– cp supertype : CPT → P(CPT) is a function called component type
hierarchy. cp supertype(cpt) is the set of direct supertypes of cpt; cpt is
called the subtype of those supertypes. The transitive closure1 cp supertype∗

defines the inheritance in the hierarchy such that cp supertype∗(cpt) contains
the direct and indirect (aka transitive) supertypes of cpt. The inheri-
tance hierarchy is cycle free, i.e. ∀cpt ∈ CPT : cp supertype∗(cpt)∩{cpt} = ∅.

– cp type : CP → P(CPT) is a function that maps each component to its set of
direct and transitive component types, i.e., ∀cp ∈ CP, dt ∈ CPT : dt =
cp directtype(cp) ⇒ cp type(cp) = dt ∪ cp supertype∗(dt).

– cn directtype : CN → P(CNT) is a function that maps each connector cn to
its set of direct connector types.

– cn supertype : CNT → P(CNT) is a function called connector type
hierarchy. cn supertype(cnt) is the set of direct supertypes of cnt; cnt is
called the subtype of those supertypes. The transitive closure cn supertype∗

defines the inheritance in the hierarchy such that cn supertype∗(cnt) contains
the direct and indirect (aka transitive) supertypes of cnt. The inheri-
tance hierarchy is cycle free, i.e. ∀cnt ∈ CNT : cn supertype∗(cnt)∩{cnt} = ∅.

– cn type : CN → P(CNT) is a function that maps each connector to its set of
direct and transitive connector types, i.e., ∀cn ∈ CN, dt ∈ CNT : dt =
cn directtype(cn) ⇒ cn type(cn) = dt ∪ cn supertype∗(dt).

With this definition, we can rephrase RQ3 to the question: Which elements
of CPT and CNT and which type hierarchy dependencies of those are actually
needed in order to compute meaningful constraints and metrics?

«ClientComponent»
MobileApp

«ClientComponent»
Browser

«ServiceFacadeComponent»
APIGateway

«ServiceComponent»
AccountService

«ServiceComponent»
InventoryService

«ServiceComponent»
ShippingService

«WebUIComponent»
Storefront

«MongoDBComponent»
AccountDB

«MongoDBComponent»
InventoryDB

«MySQLDBComponent»
ShippingDB

«RESTfulConnector»

«RESTfulConnector»

«RESTfulConnector»

«RESTfulConnector»«RESTfulConnector»

«RESTfulConnector» «RESTfulConnector»

«JDBCConnector»«MongoWireConnector»«MongoWireConnector»

«HTTPConnector, HTTPSConnector»

Fig. 1. Sample microservice architecture decomposition model (adapted from [21])

1 All transitive closures in this article are assumed to be calculated with a standard
algorithm for transitive closures like Warshall’s algorithm.

416 U. Zdun et al.

4 Microservice Design Constraints and Metrics

4.1 Constraints and Metrics Based on Independent Deployment

As microservices are emphasized to be independent units of deployment, one
hypothesis we have developed was that a good indicator for microservice-based
decomposition could be to check whether all components are independently
deployable or to what degree they are independently deployable. From the view-
point of an architecture decomposition model, independently deployable means
that no components that are part of a microservice have in-memory connec-
tors (or subclasses thereof or similar strongly coupled connectors) to other
components that are part of that microservice. In particular, we do not con-
sider external components, as they are not part of a microservice. Finally,
microservice should contain components at the same level of abstraction con-
nected only via loosely coupled interfaces. More formally, we assume there is
a supertype of all in-memory connectors (and similar strongly coupled con-
nectors) InMemoryConnector ∈ CNT and a supertype of all external com-
ponents ExternalComponent ∈ CPT (with a subtype ClientComponent, i.e.
ExternalComponent ∈ cp supertype∗(ClientComponent)).

– The function imc : CP → P(CP) maps a component to the set of compo-
nents that are directly connected to the component via connectors typed as
InMemoryConnector. We call imc(cp) the direct in-memory cluster of
a component cp with ∀cp ∈ CP : imc(cp) = {co ∈ CP | ∃cn ∈ CN : cn =
(cp, co) ∧ InMemoryConnector ∈ cn type(cn)}.

– The transitive closure imc∗ : CP → P(CP) defines the set of components
directly and indirectly connected to a component cp via InMemoryConnector
edges. We call imc∗(cp) the in-memory cluster of a component cp.

– The function idcc : CP → P(CP) maps a component to its independently
deployable component cluster such that ∀cp ∈ CP : idcc(cp) = {co ∈
({cp} ∪ imc∗(cp)) |ExternalComponent /∈ cp type(co)}.

– The function idccs : M → P(P(CPm)) maps a model to the set of its indepen-
dently deployable component clusters (i.e., a set of component clusters
(CPS) computed with the function idcc): ∀m ∈ M : idccs(m) = {CPS ∈
P(CPm) | ∀cp ∈ CPm : idcc(cp) ∈ CPS}2.

Based on these definitions we can define the constraint all components
are independently deployable (CAID), CAID : M → Boolean, using the
formula below, which computes all independently deployable component clusters
CPS in a model m and checks for all CPS that their size is less or equal to 1 using
the aggregate function Fcount. Here, we use the standard aggregate function
from relational algebra which counts the number of elements in the collection to
compute the size, i.e., it has the same semantics as in SQL. Regarding CAID,

2 We use the notation ‘CPm’, ’CNm’ etc. in formulas taking models as input to denote
the tuple of elements of the model m; in formulas considering any model, like the
previous ones, we omit notation for brevity.

Ensuring and Assessing Architecture Conformance 417

the boolean value 0 means false, i.e. a constraint violation, and 1 means true,
i.e. that the constraint is not violated:

∀m ∈ M : CAID(m) =

{
1 if: ∀CPS ∈ idccs(m) : Fcount(CPS) ≤ 1
0 if: ∀CPS ∈ idccs(m) : Fcount(CPS) > 1

Our implementation of the constraint additionally computes the clusters that
have failed to provide precise failure information to the user. Additionally, there
is a function for computing the components violating independent deploy-
ability, cvid : M → P(CP), which simply executes the CAID constraint, and
returns an empty set if it is not violated, otherwise all components in the vio-
lating clusters. We suggest two metrics that can be derived from this constraint
and its underlying functions:

– Ratio of components violating independent deployability to non-
external components (RVID) is based on the constraint CAID. It uses the
function cvid to execute the constraint, and returns the number of violating
components or an empty set in case of no violation. Then RVID sets their
number in ratio to the total number of non-external components. nec : M →
P(CP) is a helper function returning all components in a model that are not
of type ExternalComponent (non-external components). Here, and in a
number of the following metrics counting unique non-external components,
we set the component counts in ratio to the model size in terms non-external
components, which – compared to the component counts themselves – scales
the metric to the interval [0, 1]. This, thus, makes metric results for different
models more comparable. RV ID : M → R is defined as follows:

∀m ∈ M : RV ID(m) =
Fcount(cvid(m))
Fcount(nec(m))

– Ratio of independently deployable component clusters to non-
external components (RIDC), RIDC : M → R, sets the number of inde-
pendently deployable component clusters in ratio to the size of the model (in
terms of non-external components):

∀m ∈ M : RIDC(m) =
Fcount(idccs(m))
Fcount(nec(m))

4.2 Constraints and Metrics Based on Shared Dependencies

Many of the microservice patterns [21] (for a short summary see Sect. 2) focus
on decompositions which avoid sharing other components or sharing them in a
strongly coupled fashion. Hence, another major idea for constraints and metrics
was to base them on the notion of shared components, sharing components,
and shared dependencies in the architecture decomposition. With regard to con-
straints we have envisioned three basic types of constraints: no shared compo-
nents which checks whether there is no shared component; no sharing compo-
nents which checks whether there is no sharing component; no shared dependen-
cies which checks whether there is no shared dependency of two components.

418 U. Zdun et al.

As typically different clients can share a microservice, and microservices can
themselves share third-party microservices, all external components need to be
excluded from these constraints (and metrics). All three constraints are based on
the same algorithm for finding the set of shared dependencies of each component
in the model, requiring the following functions for this:

– acd : CP → P(CP) is a function which calculates all direct compo-
nent dependencies of a component. That is, acd(cp) is defined formally as:
∀cp ∈ CP : acd(cp) = {cd ∈ CP | ∃cn ∈ CN : cn = (cp, cd)}. The transitive
closure acd∗ defines all direct and indirect component dependencies of
a component cp.

– ascd : M → P(CPm × (CPm × CPm)) is a function which maps a model
m ∈ M to a set of tuples containing a component cp ∈ CPm and the set
of all shared component dependencies of that component cp (excluding
external components). Each of these shared component dependencies is itself
a tuple (oc, sd) being oc ∈ CPm the other component with which cp shares
a dependency and sd ∈ CPm the component which is shared both by oc
and cp, expressed formally: ∀m ∈ M : ascd(m) = {(cp, (oc, sd)) | cp, oc, sd ∈
CPm ∧ sd ∈ acd(cp) ∧ sd ∈ acd(oc) ∧ ExternalComponent /∈ cp type(cp) ∧
ExternalComponent /∈ cp type(oc) ∧ ExternalComponent /∈ cp type(sd)}.

– sic : M → P(CPm) is a function that provides the set of all sharing non-
external components, formally defined as: ∀m ∈ M : sic(m) = {cp ∈
CPm | ∃oc, sdCPm : (cp, (oc, sd)) ∈ ascd(m)}.

– sdc : M → P(CPm) is a function that provides the set of all shared non-
external components, formally defined as: ∀m ∈ M : sdc(m) = {sd ∈
CPm | ∃oc, cpCPm : (cp, (oc, sd)) ∈ ascd(m)}.

The closer study of the three types of constraints revealed that they lead
to exactly the same violations: as a shared dependency leads to a sharing and
a shared component, either all these constraints are violated or none of them.
For this reason, it is enough for us to formally define and study one of those
constraints. Here, we define the constraint no shared non-external compo-
nent dependencies (NSCD), NSCD : M → Boolean, as (0 = false, i.e. a
constraint violation, and 1 = true, i.e. no constraint violation):

∀m ∈ M : NSCD(m) =

{
1 if: ∀SD ∈ ascd(m) : Fcount(SD) = 0
0 if: ∀SD ∈ ascd(m) : Fcount(SD) > 0

Further for this constraint (and all related metrics) below, we suggest – in
addition to the basic constraint – three variants.

– NSCD-F excludes Facade components from the constraint. Many microservice
models (as well as monolithic models) contain Facades, such as an APIGateway
in Fig. 1, as an acceptable way to share microservice components [2]. We thus
assume a class Facade ∈ CPT with classes like APIGateway as its subclasses
(thus also ∈ CPT through e.g. Facade ∈ cp supertype∗(APIGateway) and
so on). At first we envisioned to automatically compute which components
are Facades, but unfortunately this design intent is impossible to compute

Ensuring and Assessing Architecture Conformance 419

in an unambiguous way. For instance, our evaluation model RB (see Table 1)
contains microservices that are directly connected to clients, and, without fur-
ther information, there is no way to automatically distinguish those from a
model in which only Facades are modeled. For this reason, all *-F variants of
constraints and metrics require Facades to be explicitly modeled. The ratio-
nale behind the *-F variants is: If Facades are modeled, we hypothesize that
excluding them from the constraints and metrics could lead to a better identifi-
cation of real issues with regard to shared dependencies. For space reasons, we
omit the formal definition here, as it is analogous to the functions/constraints
defined above, just excluding Facades in the functions.

– NSCD-C excludes loosely coupled connectors (event-driven, publish/subscribe
style interaction, and message queuing) from further investigation. We assume
a class LooselyCoupledConnector ∈ CNT with subclasses such as EventBased-
Connector, PubSubConnector, MessagingConnector (all also ∈ CNT , using
cn supertype∗ relations). That is, only strongly coupled connectors can lead
in *-C variants of constraints and metrics to constraint violations or lower
metrics values. As the patterns suggest to use only loosely coupled interaction
in event-driven, publish/subscribe style between microservices, we hypothe-
size that excluding them from the constraints and metrics could lead to a
better identification of a real issue with regard to shared dependencies. We
expect that the exclusion of loosely coupled connectors makes the results more
comparable for different models in the sense that in this way the same model,
modeled at different levels of detail, leads to the same metric values and con-
straint violations. For space reasons, we omit the formal definition here, as it
is analogous to the functions/constraints defined above, just excluding Loose-
lyCoupledConnectors in the functions.

– NSCD-FC is the combination of NSCD-F and NSCD-C.

All metrics below are defined analogously in a basic version plus three vari-
ants. Here, however, the differences between shared components, sharing com-
ponents, and shared dependencies play a major role, and it is interesting to
study which of those basic counts is better suited as a foundation for a shared
dependency metric. Firstly, we define the ratio of sharing non-external com-
ponents to non-external components (RSIC), RSIC : M → R, based on
the count of components returned by the functions sic (defined above) set in
relation to the non-external components count (based on nec) as:

∀m ∈ M : RSIC(m) =
Fcount(sic(m))
Fcount(nec(m))

Secondly, we define the ratio of shared non-external components to
non-external components (RSCC), RSCC : M → R, based on functions
sdc and nec:

∀m ∈ M : RSCC(m) =
Fcount(sdc(m))
Fcount(nec(m))

420 U. Zdun et al.

Finally, we suggest a metric ratio of shared dependencies of non-
external components to possible dependencies (RSDP), RSDP : M →
R based directly on the number of shared dependencies returned by the function
ascd. Here we scale the metric using the number of all possible dependencies
(i.e., the number of counted components squared). As this value has no spe-
cific meaning in the context of our model, we have also compared other scalings
in our evaluation like no scaling, the model size in terms components, and all
component dependencies. We have chosen only the scaling based on all possible
dependencies here, as all other metrics perform weaker in our evaluation, and at
the same time none of the other options scales the metric to the normed interval
[0, 1]. As a result, we suggest the metric:

∀m ∈ M : RSDP (m) =
Fcount(ascd(m))

(Fcount(nec(m)))2

All metrics, defined in this section, also have *-F, *-C, and *-FC variants,
with analogous reasoning to the discussion for NSCD. The differences in formal
definition to the base variants are the following: The metrics must use adapted
versions of the functions, analogously to the NSCD variants, and the function
nec in the divisor of the metrics should be adapted to not consider Facades
for the two *-F and *-FC variants, as scaling should be done according to the
considered components.

5 Evaluation

For performing our evaluation, we have fully implemented our formal model,
constraints, metrics, and related algorithms using the Frag Modeling Framework
(FMF), a runtime modeling, domain-specific language and generator framework
implemented on top of Java/Eclipse which enables us to easier change design
decisions made and perform experimentation than in comparable frameworks
like the Eclipse Modeling Framework (EMF) (see [26] for more details). Besides
extensive test cases, a code generator to generate R scripts has been imple-
mented, used to perform statistical comparison of achieved and expected results
for the different constraints and metrics. In addition, we have fully modeled
and implemented 13 models in an evaluation model set, summarized in Table 1.
Each of the models is either taken directly from a model published by practition-
ers or adapted according to discussions on the respective referenced Web sites.
While the models taken from 4 independent sources3 are still examples, they all

3 We have adapted Models EC1-8 from [21]. Model RB is adapted from:
http://eventuate.io/exampleapps.html. The Models TH1-TH3 are adapted from:
https://www.nginx.com/blog/introduction-to-microservices/. Model SA is adapted
from: https://www.slideshare.net/smancke/fros-con2014-microservicesarchitecture.
For all models, we aimed to stay close to the original model; adaptation mainly
means modeling them using our approach to architecture decomposition modeling
and in the model variants introducing the described variations.

http://eventuate.io/exampleapps.html
https://www.nginx.com/blog/introduction-to-microservices/
https://www.slideshare.net/smancke/fros-con2014-microservicesarchitecture

Ensuring and Assessing Architecture Conformance 421

Table 1. Summary of models used for evaluation and manual assessment of pattern
compliance

ID Size Short description Major violations of patterns VMP MQ

EC1 10 comp., 11 conn. E-Commerce model with 3

independent microservices,

an API gateway, a Web UI,

databases per service,

inter-service communication

not modeled

None 0 1.0

EC2 13 comp., 19 conn. Similar to EC1; additionally

1 service consists of 4

components which are

realizing different business

capabilities

A service contains different

subdomains/capabilities or is

not modeled at the same

abstraction level

1 0.6

EC3 11 comp., 17 conn. Similar to EC1; additionally

models inter-service

communication using the

Event Sourcing pattern

None 0 1.0

EC4 11 comp., 17 conn. Similar to EC1; additionally

models inter-service

communication using the

Transaction Log Trailing (or

Database Trigger) pattern

None 0 1.0

EC5 8 comp., 11 conn. Similar to EC1; with only

one database, which is shared

among the microservices

Shared database 1 0.6

EC6 8 comp., 11 conn. Same components as in EC1

but all in one shared address

space, shared database, API

gateway, Web UI

No decomposition into

multiple services (all other

violations are secondary)

1 0.0

EC7 8 comp., 14 conn. Similar to EC6; with all

in-memory component

dependencies explicitly

modeled

No decomposition into

multiple services (all other

violations are secondary)

1 0.0

EC8 11 comp., 19 conn. Similar to EC2; with only

one database, which is shared

among the microservices

A service contains different

subdomains/capabilities or is

not modeled at the same

abstraction level; shared

database

1 0.4

RB 4 comp., 3 conn. Single service for restaurant

booking, no clients modeled,

follows CQRS pattern, uses

REDIS for fast denormalized

querying

None 0 1.0

TH1 18 comp., 17 conn. Taxi hailing application: 3

microservices with a layer of

3 backend services in addition

to 3 databases per service,

shared payment component

Shared, strongly coupled

component

1 0.6

TH2 18 comp., 17 conn. Same as TH1, avoids shared

component using loosely

coupled connectors

None 0 1.0

TH3 15 comp., 19 conn. Same components as in TH1

but all in one shared address

space, 1 shared database, 1

API gateway, 1 Web UI

No decomposition into

multiple services (all other

violations are secondary)

1 0.0

SA 15 comp., 19 conn. Web shop app with 7

services, 5 different data

stores, 2 modular Web UIs

None 0 1.0

422 U. Zdun et al.

originate from models developed by practitioners with microservice and mono-
lith implementation experience. Hence, we assume that our evaluation models
are close to models used in practice and real practical needs for microservice
decomposition (compared e.g. to models created solely by ourselves).

The table also shows our manual, pattern-based assessment of the architec-
ture conformance of each of the models. There are two assessments: Does the
model violate at least one of the microservice patterns (from [21])? We carefully
assessed each model for major violations of the patterns. If at least one occurs,
we marked it in column Violations of Microservice Patterns (VMP) of Table 1
as true = 1, otherwise as false = 0. In addition, we tried to objectively measure
the quality of the model with regard to conformance to the microservice patterns
[21]. For this, we use the following rules to compute the Microservice Architec-
ture Quality (Column MQ in Table 1) based on a detailed manual inspection of
the compliance of the models to the architecture patterns:

– If the Microservice Architecture pattern cannot be found at all, that is, the
architecture clearly follows a Monolithic Architecture, we set MQ=0.

– Otherwise we set MQ=1, and then if one of the violations listed below (each
one can occur multiple times) is found, we reduce MQ by 0.4 on the first
occurrence, by another 0.2 on the second occurrence (of the same or another
pattern), another 0.1 on the third occurrence, and so on. Thus, the violation
penalty is divided by factor 2 from one violation occurrence to the next because
if such a minor violation occurs, the model should not be better rated than 0.6.
But even if multiple minor violations happen, the rating should still stay bet-
ter than the monolithic score of 0. The violations analyzed are the following:
(1) A minor violation of the Microservice Architecture pattern occurs, such
as some microservices contain components corresponding to multiple different
capabilities or subdomains, or not all microservices are modeled at the same
abstraction level. (2) Internal components share other internal components
not using loosely coupled connectors, e.g. realized using Event-driven Archi-
tecture (or the realization of an Event-driven Architecture violates established
patterns for event-based communication among microservices such as Event
Sourcing, Transaction Log Tailing, Database Triggers, Application Publishes
Events, Command Query Responsibility Segregation, see [21]). (3) The Data-
base per Service pattern is not used, but a Shared Database.

– The use of the two API Gateway patterns is beneficial, but does not change
the quality assessment. The reason is that API Gateways are also commonly
used in monolithic architectures, and a microservice architecture that does not
use them is not less well decomposed w.r.t. the microservice patterns. Note
that although the API Gateway patterns are still important for our approach,
their use is important for calculating some of our constraints and metrics (see
discussion on Facades below).

We have chosen this scoring scheme because it is close to the suggestions in
the patterns and introduces no major subjective bias. In the course of our eval-
uations, we have compared it to other reasonable scorings, including subjective
expert judgment by the authors, and a number of similar mechanical scorings.

Ensuring and Assessing Architecture Conformance 423

The sensitivity to those scorings was generally low, as long as we followed the
suggestions from the patterns closely. The evaluation of the constraints leads to
binary vectors indicating for each model whether the constraint is violated or
not. Below we discuss the results of each of these vectors in detail. In addition,
we calculated the Jaccard similarity [23] to the vector built from VMP values in
Table 1 (JS VMP in Table 2) to get a quick estimate of how well the respective
constraint performs in relation to the manual, pattern-based assessment for our
evaluation model set. The Jaccard similarity is a common index for binary sam-
ples, which is defined as the quotient between the intersection and the union of
the pairwise compared variables among two vectors.

Metrics evaluation leads to vectors with positive values which should indicate
the quality of the microservice decomposition. Again, we discuss them in detail
below. In addition, we compute the Cosine similarity with the vector MQ from
Table 1 (CS MQ in Table 3) to get a quick estimate of how well the respective
metric performs in relation to the pattern-based assessment for our evaluation
model set. Cosine similarity is a common measure of similarity between two
vectors based on the cosine of the angle between them [23]. Some of the met-
rics below are reversed compared to MQ in the sense that their best value is
0.0, with higher values indicating better quality. Consequently, we compared
those metrics to the reversed MQ, which is defined as MQR = 1 – MQ (below

Table 2. Evaluation results: constraints (1 - constraint is violated, and 0 - it is not
violated)

Constraint EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 RB TH1 TH2 TH3 RSA JS VMP

CAID 0 1 0 0 0 1 1 1 0 0 0 1 0 0.71

NSCD 1 1 1 1 1 1 1 1 1 1 1 1 1 0.54

NSCD-F 0 1 1 1 1 1 1 1 1 1 1 1 1 0.58

NSCD-C 1 1 1 1 1 1 1 1 0 1 1 1 0 0.64

NSCD-FC 0 1 0 0 1 1 1 1 0 1 0 1 0 1.0

Table 3. Evaluation results: metrics

Metric EC1 EC2 EC3 EC4 EC5 EC6 EC7 EC8 RB TH1 TH2 TH3 SA CS MQ CS MQR

RVID 0.0 0.36 0.0 0.0 0.0 0.83 0.83 0.44 0.0 0.0 0.0 0.89 0.0 0.96

RIDC 1.0 0.73 1.0 1.0 1.0 0.33 0.33 0.67 1.0 1.0 1.0 0.22 1.0 0.97

RSIC 0.63 0.73 0.56 0.89 0.83 0.83 0.83 0.89 0.5 0.33 0.33 0.56 0.64 0.73

RSIC-F 0.0 0.44 0.43 0.86 0.75 0.75 0.75 0.86 0.5 0.22 0.22 0.43 0.5 0.74

RSIC-C 0.63 0.73 0.56 0.56 0.83 0.83 0.83 0.89 0.0 0.33 0.33 0.56 0.0 0.81

RSIC-FC 0.0 0.44 0.0 0.0 0.75 0.75 0.75 0.86 0.0 0.22 0.0 0.43 0.0 0.91

RSCC 0.75 0.82 0.78 0.78 0.67 0.67 0.67 0.78 0.25 0.5 0.5 0.78 0.64 0.70

RSCC-F 0.0 0.44 0.14 0.14 0.25 0.25 1.0 0.57 0.25 0.11 0.11 0.29 0.33 0.80

RSCC-C 0.75 0.82 0.67 0.67 0.67 0.67 0.67 0.78 0.0 0.5 0.42 0.78 0.0 0.76

RSCC-FC 0.0 0.44 0.0 0.0 0.25 0.25 1.0 0.57 0.0 0.11 0.0 0.29 0.0 0.85

RSDP 0.38 0.89 0.54 0.99 0.72 0.72 1.56 1.51 0.13 0.11 0.11 0.62 0.35 0.79

RSDP-F 0.0 0.37 0.12 0.61 0.38 0.38 0.75 0.98 0.13 0.02 0.02 0.16 0.08 0.72

RSDP-C 0.38 0.89 0.3 0.3 0.72 0.72 1.56 1.51 0.0 0.11 0.07 0.62 0.0 0.85

RSDP-FC 0.0 0.37 0.0 0.0 0.38 0.38 0.75 0.98 0.0 0.02 0.0 0.16 0.0 0.79

424 U. Zdun et al.

indicated as CS MQR). Alternatively, we could calculate the associated distance
metrics, where the distance d is also defined in relation to its associated similarity
metric as d = 1 – s.

5.1 Evaluation for Constraints and Metrics Based on Independent
Deployment

Table 2 shows the results for the constraint all components are indepen-
dently deployable (CAID)4. We can see an acceptable Jaccard similarity
(0.71) of the constraint violation vector to the pattern-based assessment VMP.
Inspecting the violations closer, we can see that two violations are not found
(false negatives): the violations in Models EC5 and TH1. That is, the constraint
does not work well for non-monolithic structures that share a database as in
EC5 or a component as in TH1. The constraint works, however, if this issue is
combined with other violations as in Model EC8.

We have suggested two metrics based on independent deployment: Ratio
of components violating independent deployability to non-external
components (RVID) and ratio of independently deployable component
clusters to non-external components (RIDC). RVID sets the unique com-
ponents in the violations in ratio; that is, 0 indicates the highest possible quality,
and higher values indicate lesser quality. Thus, the metric must be compared to
the reversed microservice quality vector MQR. The cosine similarity CS MQR
shows a very high similarity of 0.96. RIDC, in contrast, has values ranging from 0
to 1, with 1 indicating the best possible quality, meaning it must be compared to
the microservice quality vector MQ. Here, we see an even slightly higher cosine
similarity CS MQ of 0.97. As both metrics are based on the functions used in
CAID, they also have the same weakness of not identifying the shared data-
base/component issues in Models EC5/TH1, but the high similarity measures
show that the indication of quality with regard to the other microservice pat-
terns is rather good for both metrics, with RIDC performing slightly better for
our evaluation model set.

5.2 Evaluation for Constraints and Metrics Based on Shared
Dependencies

No shared non-external component dependencies (NSCD) is violated by
all models (6 false positives) and has only a Jaccard similarity of 0.54; it is not a
good match. Its variant NSCD-F, which excludes sharing by Facade components,
is slightly better suited, but still has 5 false positives and a Jaccard similarity
of only 0.58; the variant NSCD-C, which considers only strongly coupled con-
nectors as leading to shared components, is slightly better with 4 false positives
and a Jaccard similarity of 0.64. The combination NSCD-FC considering no
Facades and no loosely coupled connectors produces exactly the same vector
as the pattern-based assessment VMP (and thus the Jaccard similarity is 1.0).

4 In Table 2, 1 means that the constraint is violated, and 0 that it is not violated.

Ensuring and Assessing Architecture Conformance 425

This very good result might be surprising, as the uncombined constraints NSCD-
F and NSCD-C produce rather weak results alone. A closer inspection revealed
that in our models there was indeed in each false positive in NSCD-F a loosely
coupled connector and NSCD-C a sharing Facade that caused the violation.

For all shared dependencies metrics, the value 0.0 is the best possible value,
and higher values indicate lower quality. Thus, the metrics must be compared
to the reversed microservice quality vector MQR. The ratio of sharing non-
external components to non-external components (RSIC) shows a mod-
erate cosine similarity CS MQR of 0.73, which is gradually improved by its two
variants RSIC-F and RSIC-C with cosine similarities 0.74 and 0.81, respec-
tively. The combined variant RSIC-FC shows the best results with a high cosine
similarities of 0.91.

For ratio of shared non-external components to non-external com-
ponents (RSCC) the cosine similarity CS MQR has a moderate value of 0.70.
Its variants RSCC-F and RSCC-C perform better with cosine similarities of
0.80 and 0.76, respectively. Again, the combined variant RSCC-FC shows the
best results with a high cosine similarities of 0.85, but it is less similar for our
evaluation model set than RSIC-FC.

Finally, ratio of shared dependencies of non-external components to
possible dependencies (RSDP) has a good cosine similarity of 0.79 already
in its basic variant, but interestingly RSDP-F performs weaker with a cosine
similarity of only 0.72. Close inspection of the dependencies revealed that this
effect is due to the fact that, on the one hand, the Facade dependencies make
the values for high quality microservice architectures worse, but, on the other
hand, they make them much more worse for monolithic architecture, as for them
Facades have many more dependencies. Thus, monolithic architectures gain in
the variant RSDP-F comparatively too much. This can, in our numbers for
instance, be easily retraced using the values for Models EC1 and EC6. While
RSDP-F leads to a comparatively better result for EC1 (0.0 instead of 0.38 for
RSDP), the monolith EC6 improves from 0.72 (which was close to the expected
reversed quality of 1.0) to 0.38 (which is much more distant from 1.0). RSDP-
C leads to the expected improvement with a cosine similarity of 0.85. RSDP-
FC suffers from the same effect for Facade dependencies, and thus has only a
moderate cosine similarity of 0.79.

6 Discussion, Threats to Validity and Future Work

Discussion of RQs. With regard to RQ1 and RQ2, we have suggested a
number of constraints for checking the quality of microservice decomposition in
software architecture models. The variant NSCD-FC of the shared dependency
based constraints performs best, correctly identifying all constraint violations.
The constraint CAID based on independent deployment performs worse than
NSCD-FC (but better than all other NSCD variants), as it has issues with cor-
rectly identifying violations related to shared databases or components. Nonethe-
less, both constraints are useful and should be combined in their use. As both

426 U. Zdun et al.

identify different lists of violations, inspecting the results of both constraints can
help developers to more easily find the root cause of a violation. In addition, our
evaluation revealed that CAID has only false negatives; that is, in our evalua-
tion model set, all violations identified are actually violations. Hence, it can be
used in addition to NSCD-FC with no danger of suggesting non-issues to be
fixed. This is not the case for any of the other NSCD variants, which yield false
positives.

We have also suggested a number of metrics for measuring the quality of
microservice decomposition in software architecture models. For both of the
metrics based on independent deployment, RDIC and RVID, we can assess a
very high similarity to our pattern-based assessments, and hence they seem to
be both good candidates for measuring the quality of microservice decomposi-
tion. RDIC performs slightly better than RVID, but given that the values and
interpretations used in the pattern-based quality assessment contain a certain
level of subjectivity, our empirical evaluation does not really identify a clear
favorite. As they are based on CAID, we should be aware that the base function
suffers from some false negatives which are part of the metrics’ values. Further
research would be needed to improve the metrics in this regard.

For the metrics related to shared dependencies, we can assess that none
of the metrics is a perfect match for our pattern-based quality assessment, but
considering that the values and interpretations used in the pattern-based quality
assessment contain a certain level of subjectivity, the achieved similarities of the
two metric RSIC-FC and RSCC-FC, with values of 0.91 and 0.85 are actually
quite good matches, with RSIC-FC performing a bit better for our evaluation
model set. It is interesting that all three *-FC metrics yield the correct value of
0.0 for well-designed microservice models, and never assign the perfect value for
a model with a violation. Unfortunately, the strength of the effect of violations
on metrics values is not optimal yet in any of the metrics. For instance, in
the best matching metric RSIC-FC, EC8 is the worst model; however, in our
pattern-based assessment we see its violations as less severe than those e.g. in
EC6. RSSC-FC is more correct in this regard, but assigns a very strong effect to
the violation in EC7, which is actually the same model as EC6, but just models
the violation in more detail. It is unfortunate that the metric RSDP suffers
from the issues related to the strong effect on removing Facade dependencies,
but its variant RSDP-C performs for our evaluation model set just as well as
RSCC-FC. Therefore, an interesting direction of further research could be to
investigate other ways to mitigate the effects of the shared dependencies of the
Facades instead of excluding them.

Overall, based on our empirical results using one of the metrics RDIC or
RVID seems advisable. The results show that the shared dependency metrics
in their current form are inferior. However, our results also indicate that shared
dependency constraints and metrics can be improved by modeling more details.
Here, we have studied Facades and loosely coupled connectors, as they are impor-
tant structures in the microservice patterns and rather easy to model. Please note
that modeling additional details is less needed for constraints and metrics based
on independent deployment.

Ensuring and Assessing Architecture Conformance 427

In the context of RQ3, we can assess that our decomposition model needs
rather minimal extensions (the few component and connector types named
above) and is easy to map to existing modeling practices. In particular, in order
to fully model our evaluation model set, we needed to introduce 20 component
types and 42 connector types, ranging from general notions like ExternalCompo-
nent and its sub-class ClientComponent, to very technology-specific classes like
MongoWireConnector (a subclass of DatabaseConnector connecting to a Mon-
goDBComponent, a subclass of DatabaseComponent). These would not always
be easy to map automatically, but our study has shown that for the suggested
constraints and metrics, only a small subset is needed: The constraints on inde-
pendent deployment require at least that ExternalComponents (and its subclass
ClientComponent) and the connector type InMemoryConnectors are modeled.
The shared dependencies based constraints require two additional abstractions to
be modeled: loosely coupled connectors (as subclasses of LooselyCoupledConnec-
tor) and Facade components. All except Facade components are relatively easy
to compute automatically, e.g. by inspecting the used technology for a connec-
tion. We can claim that our approach can easily be mapped using an automated
mapping from the source code to an architecture model, assuming standard com-
ponent model abstractions, such as those in UML2, e.g. with approaches like our
architecture abstraction approach [6].

Future Work. In our approach, we have focused only on modeling additionally
details with no to low effort, to enable a high potential for automation and less
extra effort compared to existing modeling practices. An interesting direction
for future research could be to study how modeling more details could lead to
better results in the metrics. For instance, modeling capabilities or subdomains
of the microservices, or the detailed domain model, are promising directions to
further improve the metrics.

Major Threats to Validity. A threat to validity is that potentially the pat-
terns or our models are not well chosen as study objects and do not represent the
domain of microservices well. However, as related practices and similar models
have been proposed by many other authors, we judge this threat to be rather
low. However, many authors also model other architectural views, and they might
have an influence on architecture decomposition – which we want to study as
future work. Potentially the authors could have been biased in their judgment,
but as we have followed a quite mechanical scoring scheme (based on the pat-
terns, not our own judgment), this threat is mostly limited to our evaluations
based on the pattern-based quality assessments (see Sect. 5). Even though we
have aimed to follow the argumentations in the microservice patterns [21] as
closely as possible, a major threat remains that at least the evaluation scores
introduced are subjective to a certain degree. Note that we have tested in the
course of our evaluations some other kinds of reasonable scoring scheme, leading
to comparable but slightly different results. The sensitivity to those scores was
generally low, as long as we followed the suggestions from the patterns closely.
In addition, this potential threat to validity is not necessarily a problem, in the
sense that a project aiming to apply the constraints and metrics could easily

428 U. Zdun et al.

re-run our evaluations with different values that introduce scores according to
the project’s needs. As we have used pretty basic and standard statistics, we see
no major threats to statistical conclusion validity.

Concluding Remarks. In summary, our results show that a subset of the con-
straints or metrics are quite close to the pattern-based assessment based on the
expert judgment taken from the patterns, and we have also shown where the
metrics and constraints could be substantially improved. Our results indicate
that the best way to reach this goal seems to be more detailed modeling of the
microservices (e.g. based on capabilities, subdomains, domain-specific models,
and/or modeling at different abstraction levels). However, each of these pos-
sible future works would also mean more manual effort, and less potential for
automation, but this might not be an issue in all those application cases where
designing a well-defined architecture is the goal. With modest effort our results
are applicable to other service decomposition schemes than microservices as well.

Acknowledgment. This work was partially supported by Austrian Science Fund
(FWF) project ADDCompliance: I 2885-N33; DFG ADDCompliance project: LE
2275/13-1; Spanish Ministry of Economy, Industry and Competitiveness, State
Research Agency/European Regional Development Fund, grant Vi-SMARt (TIN2016-
79100-R).

References

1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice
architecture. In: IEEE 9th International Conference on Service-Oriented Comput-
ing and Applications (SOCA), pp. 44–51. IEEE (2016)

2. De, B.: API patterns. In: API Management, pp. 81–104. Apress, Berkeley, CA
(2017). doi:10.1007/978-1-4842-1305-6 5

3. Guo, D., Wang, W., Zeng, G., Wei, Z.: Microservices architecture based cloudware
deployment platform for service computing. In: 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), pp. 358–363. IEEE (2016)

4. Guo, G.Y., Atlee, J.M., Kazman, R.: A software architecture reconstruction
method. In: Donohoe, P. (ed.) Software Architecture. ITIFIP, vol. 12, pp. 15–33.
Springer, Boston, MA (1999). doi:10.1007/978-0-387-35563-4 2

5. Gupta, A.: Microservice design patterns (2017). http://blog.arungupta.me/
microservice-design-patterns/

6. Haitzer, T., Zdun, U.: Semi-automated architectural abstraction specifications for
supporting software evolution. Sci. Comput. Program. 90, 135–160 (2014)

7. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley, Boston
(2003)

8. Kang, H., Le, M., Tao, S.: Container and microservice driven design for cloud
infrastructure DevOps. In: 2016 IEEE International Conference on Cloud Engi-
neering (IC2E), pp. 202–211. IEEE (2016)

9. Kratzke, N.: About microservices, containers and their underestimated impact on
network performance. In: Proceedings of Cloud Computing, pp. 165–169 (2015)

10. Kurhinen, H., Lampi, M.: Micro-services based distributable workflow for digital
archives. In: Archiving Conference, vol. 1, pp. 47–51. Society for Imaging Science
and Tech. (2014)

http://dx.doi.org/10.1007/978-1-4842-1305-6_5
http://dx.doi.org/10.1007/978-0-387-35563-4_2
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/

Ensuring and Assessing Architecture Conformance 429

11. de Lange, P., Nicolaescu, P., Derntl, M., Jarke, M., Klamma, R.: Community
application editor: collaborative near real-time modeling and composition of
microservice-based web applications. In: Modellierung (Workshops), pp. 123–128
(2016)

12. Le, V.D., Neff, M.M., Stewart, R.V., Kelley, R., Fritzinger, E., Dascalu, S.M.,
Harris, F.C.: Microservice-based architecture for the NRDC. In: 2015 IEEE 13th
International Conference on Industrial Informatics (INDIN), pp. 1659–1664. IEEE
(2015)

13. Levcovitz, A., Terra, R., Valente, M.T.: Towards a technique for extracting
microservices from monolithic enterprise systems. arXiv preprint arXiv:1605.03175
(2016)

14. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term,
March 2004. http://martinfowler.com/articles/microservices.html

15. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
New York (2015)

16. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: 6th Interna-
tional Conference on Cloud Computing and Services Science, pp. 137–146 (2016)

17. Passos, L., Terra, R., Valente, M.T., Diniz, R., das ChagasMendonca, N.: Static
architecture-conformance checking: an illustrative overview. IEEE Softw. 27(5),
82–89 (2010)

18. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 1: reality check and service design. IEEE Softw. 34(1), 91–98
(2017)

19. Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric for
service design. In: 18th International Conference on World wide web, pp. 911–920.
ACM (2009)

20. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Softw. Eng. Notes 17(4), 40–52 (1992)

21. Richardson, C.: A pattern language for microservices (2017). http://microservices.
io/patterns/index.html

22. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-end
approach for QoS-aware service composition. In: IEEE International Conference on
Enterprise Distributed Object Computing Conference (EDOC 2009), pp. 151–160.
IEEE (2009)

23. Bramer, M.: Introduction to data mining. Principles of Data Mining. UTCS, pp.
1–8. Springer, London (2016). doi:10.1007/978-1-4471-7307-6 1

24. Van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony:
view-driven software architecture reconstruction. In: 4th Working IEEE/IFIP Con-
ference on Software Architecturen (WICSA 2004), pp. 122–132. IEEE (2004)

25. Viennot, N., Lécuyer, M., Bell, J., Geambasu, R., Nieh, J.: Synapse: a microser-
vices architecture for heterogeneous-database web applications. In: 10th European
Conference on Computer Systems, p. 21. ACM (2015)

26. Zdun, U.: A DSL toolkit for deferring architectural decisions in DSL-based software
design. Inf. Softw. Technol. 52(7), 733–748 (2010)

27. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 32(3), 301–310
(2017)

28. Zimmermann, O., Gschwind, T., Küster, J., Leymann, F., Schuster, N.: Reusable
architectural decision models for enterprise application development. In: Overhage,
S., Szyperski, C.A., Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880,
pp. 15–32. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77619-2 2

http://arxiv.org/abs/1605.03175
http://martinfowler.com/articles/microservices.html
http://microservices.io/patterns/index.html
http://microservices.io/patterns/index.html
http://dx.doi.org/10.1007/978-1-4471-7307-6_1
http://dx.doi.org/10.1007/978-3-540-77619-2_2

Polly: A Language-Based Approach for Custom
Change Detection of Web Service Data

Elyas Ben Hadj Yahia1,3(B), Jean-Rémy Falleri2, and Laurent Réveillère2

1 University Bordeaux - LaBRI - UMR CNRS 5800, Talence, France
elyas.bhy@labri.fr

2 University Bordeaux - ENSEIRB-MATMECA Bordeaux INP - LaBRI - UMR
CNRS 5800, Talence, France

3 CProDirect, 33700 Mérignac, France

Abstract. An ever-growing number of web service providers expose
data that is continuously changing. Use cases arise where being notified
about changes made to the data is essential to the client, for instance to
know when a user has a new follower on Twitter. Monitoring changes on
web services data consists in polling services for the required data, detect-
ing any changes in the targeted data subset, and notifying the user only
about the relevant changes. However, each step of this process can be rel-
atively complex, leading to a tedious and challenging implementation for
developers. In this paper we introduce Polly, a domain-specific language
for describing change detection strategies in JSON data fetched from
REST web APIs. By leveraging the domain knowledge of the user, our
domain-specific language offers declarative, concise yet highly-expressive
constructs for specifying change detection strategies. We validate our
approach using several user-driven scenarios provided by our industrial
partner and show that it outperforms the state-of-the-art solutions.

Keywords: DSL · Change detection · API · REST · JSON

1 Introduction

Integration platforms such as IFTTT1 and Zapier2 have recently emerged with
the aim of orchestrating interactions between a multitude of web services such as
Facebook and Twitter [11,13]. They enable end users to describe which actions
to trigger when a custom event occurs [16]. For instance, one may want to auto-
matically tweet a message when a specific subway line becomes unavailable.
However, most of existing web services do not provide a way to specify custom
event notifications. To overcome this limitation, platform owners have developed
their own notification system by performing a recurrent polling of monitored
services. For each service, the current state is periodically fetched and com-
pared against the previous one to identify specific values that vary over time.
1 https://ifttt.com.
2 https://zapier.com.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 430–444, 2017.
https://doi.org/10.1007/978-3-319-69035-3_30

https://ifttt.com
https://zapier.com

Polly: A Language-Based Approach 431

When a change is detected, the corresponding event is raised. Because specific
code needs to be developed for each event of a service, the set of supported
services and events is limited and does not necessarily meet user expectations.

Each step of the monitoring process can be relatively complex. As an exam-
ple, consider the use of the Facebook service to detect new photos with a given
tagged user in a given album. To implement this scenario, one needs first to
periodically poll several Facebook API endpoints (the one for the photos and
the one for the tags) and navigate through the paginated responses. The result-
ing aggregated state is then compared against the previous one. However, this
comparison requires focusing only on new photos (identified by their unique IDs)
while ignoring other irrelevant changes such as the last update time. Even such
a simple use case underlines the complexities of this process, which are declined
in two different challenges: state computation and change detection.

Although the computation of a state sometimes requires fetching a unique
resource from a single API endpoint, it is often necessary to implement more
complicated policies. For instance, the construction of a state may require navi-
gating through a set of API endpoints, where several requests must be chained
in a particular order to correctly fetch the relevant data. In addition, responses
returned by a service can be paginated and thus necessitate several subsequent
requests to accumulate all the data. Thus, constructing a state can quickly
become laborious.

Once a state has been computed, it is necessary to detect changes with the
previous one. However, off-the-shelf techniques can produce unexpected or irrel-
evant results as in the previous Facebook example in which photos with only
a modified last update time should not be reported as different. Developing a
generic differencing tool is a well-known complex problem, and can be NP-hard
depending both on the change operations that are considered, and on the guar-
antees about the output size [6].

Our industrial partner, CProDirect, wishes to compete with traditional
platforms by enabling fast integration of new service providers and events in
its own platform [2]. To reduce time to market, we investigate the challenges of
detecting changes in web service data. We focus on modern web services that
follow the REST architectural style and exchange data with their consumers in
JSON. We introduce a generative language-based approach, Polly, to simplify
change detector construction.

Our contributions are the following:

– We introduce a new approach to change detector construction. Our approach
relies on the use of a domain-specific language, Polly, for describing change
detection strategies in JSON data fetched from REST web APIs.

– Our language provides declarative, simple yet highly-expressive constructs for
describing how to construct a state from one or multiple API endpoints, how
to identify changes in states, and how to produce a custom output.

– We have implemented a compiler that automatically produces an efficient
JavaScript implementation which runs on top of a runtime system and hides
low-level requirements such as HTTP authentication and pagination.

432 E. Ben Hadj Yahia et al.

Fig. 1. Excerpt of photos and tags from the Facebook service.

– We show the applicability of Polly by using it to automatically generate
a number of change detectors for widely used web services such as Twitter,
Facebook, and GitHub. We demonstrate that Polly’s code is more concise
that a manual implementation, and that it outperforms a state-of-the-art,
off-the-shelf differencing technique.

The rest of this paper is organized as follows. Section 2 presents the range
of issues that arise in detecting changes in web service data, as illustrated by
a use case based on Facebook. Section 3 describes the Polly architecture and
introduces a DSL for describing state construction, change detection and cus-
tom output construction. Section 4 demonstrates the efficiency and scalability
of the Polly change detector. Section 5 discusses related work. Finally, Sect. 6
concludes and presents future work.

2 Challenges in Service Data Change Detection

To outline the multiple challenges involved when trying to detect changes in
service data, we explain in details the scenario described in the introduction:
detecting new photos of a given Facebook album where Alice is tagged.

In order to detect the new photos, one first needs to gather the complete
list of photos of the Facebook album. This can be done by issuing a request on
the https://graph.facebook.com/v2.9/:albumId/photos URL, where :albumId
is the identifier of the photo album of interest. The Facebook service returns
a response as a JSON document as illustrated in Fig. 1a. However, additional
processing is needed to bridge the gap between the expected information and
what is available in the returned document.

Firstly, the whole list of photos is not received at once, because the response
is paginated (i.e. split in several lists of a fixed size). The paging.next attribute
gives the URL to query to receive the next batch of photos. Additionally, the
tags present on the photos are not part of this response. An additional request
per photo is required to gather this information. This request can be made on

https://graph.facebook.com/v2.9/:albumId/photos

Polly: A Language-Based Approach 433

Fig. 2. Initial and updated version.

the endpoint https://graph.facebook.com/v2.9/:photoId/tags where :photoId
is the identifier of the photo of interest (received in response of the previous
request). A request on the tags endpoint yields the result shown in Fig. 1b.

As we can see, this response is paginated as well. One can notice that the
requests to gather the tags of each photo can be performed in an asynchronous
manner, to improve performance. Finally, the tagged person names are available
in these responses. To gather all the required information, the developer has
then to manually construct a list that combines the photos and the tags data,
as shown in Fig. 2a.

Performing a new polling operation using the same process would produce
a new list of photos, as shown in Fig. 2b. By using an off-the-shelf differencing
tool, the developer can compute the patch shown in Fig. 3. As it can be noticed,
this patch contains two irrelevant changes: the x coordinate of the tag of the first
photo and the last update time of the first photo. The only relevant change is
the third one, where we can see a newly created photo containing a tag referring
to user Alice. Therefore, the developer needs to post-process the patch produced
by the differencing tool in order to construct the notification relevant to the
scenario.

In this example we clearly show that detecting changes in service data is
a tedious operation. It requires navigating across several endpoints, possibly

https://graph.facebook.com/v2.9/:photoId/tags

434 E. Ben Hadj Yahia et al.

Fig. 3. JSON diff between the two versions of Fig. 2.

chaining response elements into query parameters, and handling the problem of
pagination at each step. When the data is gathered, an off-the-shelf differencing
tool may produce irrelevant changes thus requiring either post-processing of the
output or developing an ad-hoc differencing algorithm.

3 Approach

As illustrated in Sect. 2, implementing custom change detectors of service data
can be challenging for many developers. In this section, we introduce Polly,
a declarative language-based approach that raises the level of abstraction by
providing dedicated operators to express state construction, change detection,
and output construction within a pipeline of operations. In the remainder of
this section, we describe how our approach enables one to simply design efficient
custom change detectors.

3.1 Overview of the Polly Language

The Polly language is based on the YAML [18] syntax and is implemented as
a Node.js module. Inspired by dataflow architectures, it is based on processing
pipelines for defining custom change detectors. A pipeline is expressed as a series
of transformation operations on successive sets of data, where data and opera-
tions on it are independent from each other. Each operation performs a specific
task, and produces a JSON document that is passed as input for the following
operation. Polly allows the user to specify how to compute a state by fetching
a set of API resources, how to detect custom changes that are relevant to his
requirements, and how to build a custom output to match the expected outcome.
The provided language operators and constructs are described at greater length
in the remainder of this section.

Language constructs. By design, each operation processes an input value (rep-
resented by the “ ” symbol), and produces an output value (represented by the
“&” symbol). These default values can be overridden using the input and output

Polly: A Language-Based Approach 435

Fig. 4. A minimal example showcasing how to retrieve all photo tags of a Facebook
album using Polly.

keywords at the operation level. Furthermore, Polly introduces two additional
notations. The “~” symbol refers to the response body of a request (Fig. 4a, lines
11 and 13), while the “%” symbol refers to the response headers. The “^” symbol
represents the loop iteration cursor (Fig. 4b, lines 6 and 16). This cursor repre-
sents the current element being iterated on. All five notations presented in this
paragraph support the dot notation for accessing child properties. For example,
~.data references the data attribute at the root of the response document.

Evaluating JSONPath expressions. Polly relies on the JSONPath [10]
specification to describe the selection of a sub-document, as illustrated in line
15 of Fig. 4a. This enables users to easily extract the sub-documents of interest.
Thus, a JSONPath expression3 can be applied on any of the previous sym-
bols, using the following notation: [symbol]:[jsonpath expr]. For instance,
the evaluation of the expression &:$..id is equivalent to evaluating $..id on
the output document (&), thus producing all the id fields present in the output
document.

3.2 State Construction

The fetch operator enables the user to specify how to collect data from a set
of API endpoints. These details are specified within the request block (Fig. 4a,
line 3). Here, the user defines the resource URL using the url keyword (line
4). The URL can have parameter placeholders (prefixed by a colon), which are
substituted with the matching key from the params block (line 5). Furthermore,
the DSL offers the ability to specify query parameters (query, line 7) as well as
HTTP headers (headers, line 9) as key-value pairs.

3 The $ symbol represents the root of the current document in JSONPath.

436 E. Ben Hadj Yahia et al.

Templating. In the majority of use cases, the user only requires gathering a
subset of the collected data. Furthermore, he might also need to include extra
information along with the response. The template keyword allows specifying a
transformation template. This can be expressed directly as an expression, or as
a new set of keys where each corresponding value is an expression. For example,
line 11 of Fig. 4a shows how to extract the data object from the API response
(Fig. 1a, line 2). Another example occurs in line 15 of Fig. 4b where we fetch
photo tags. Here, we define a new template containing the original photo ID and
its tags. This transformation is necessary in order to manually include the photo
ID (which is not part of the API response) in the final state.

Pagination. The pagination keyword enables the user to indicate how to fetch
subsequent pages when the response is paginated (Fig. 4a, line 12). Information
about pagination is typically present in an HTTP header or in the body of the
response. For example, GitHub returns the full URL of the next page in the Link
header, while Twitter provides just a cursor for the next page in the body of
the response. Other APIs such as Stack Exchange require the user to manually
specify the page number as a query parameter when requesting a resource, but do
not provide any information about the current or next page number in the body
of the response. Instead, they just indicate if there are subsequent pages using
a boolean value in the body of the response. To support all these pagination
methods, Polly enables the user to specify how to navigate to the following
page using the next keyword (line 13). This keyword accepts either an expression
containing the full URL of the next page, or key-value pairs specifying the name
and value of the query parameter used for pagination (queryParam, defaults to
the value page and auto-incremented by default). After collecting all subsequent
pages, the results are flattened in a single array and returned as the output of
the operation.

Parallel fetch. In the Facebook example presented in Sect. 2, the user has to
first retrieve a list of photo IDs for a given album, then retrieve the tags for each
photo. To enable this scenario, Polly provides the repeat keyword (Fig. 4b, line
3). This keyword allows specifying an iteration set from the output of the previ-
ous operation (forEach, line 4), and corresponding placeholder labels (placehold-
ers, line 5). These placeholders are substituted in the URL by their value, thus
executing a request for each constructed URL. In the Facebook example, this
corresponds to fetching the tags for each album photo. By default, all requests
are asynchronous and performed in parallel. The output of this operation con-
tains a list of templated objects (line 15), where each object includes the current
photo ID and the list of tags for a given photo (e.g. Fig. 1b).

3.3 Change Detection

After computing the state in the previous step, the user can now proceed to
specifying a change detection strategy. Our preliminary case studies showed that
changes to a JSON document can occur on objects or arrays, and range from
additions and suppressions, to value modifications and order changes. In light

Polly: A Language-Based Approach 437

Fig. 5. Detecting new photos where Alice is tagged using Polly.

of these results, the Polly DSL provides several filtering operators for change
detection: filterObject, filterArray and filterCustom. The filterObject (resp. filter-
Array) operator accepts an expression of object (resp. array) type as an input.
The filterCustom operator enables the user to define custom filtering logic.

Change types. The find keyword enables defining a list of change types to
detect in the input of the operation (Fig. 5a, line 6). The list of supported change
types is presented in Table 1. For each change type listed in the find block, a
matching object is included in the output of the operation, containing the cor-
responding data. For instance, listing addedItems and removedItems in the find
block would produce as output an array of two objects, each having addedItems
(resp. removedItems) as types, and each having a list of the items that have been
detected as recently-added (resp. recently-removed).

Per-change type templating. Although the template keyword presented in
Sect. 3.2 is also supported in this operation, one might need to specify different
templates for different change types. To meet this requirement, Polly sup-
ports an additional keyword templates (mutually exclusive with template). This
keyword allows specifying the change type (e.g. addedItems) as key, and the
associated template as value.

Targeted monitoring. By default, all keys of the input document are watched
for modifications, and any change would mark the document as modified. The
optional keyword watch can be used to restrict the set of keys to watch for
modifications. This enables the user to define what actually constitutes a relevant
change. Note that for objects, a key is marked as modified (resp. unmodified)
if the value corresponding to the key specified in the watch block is modified
(resp. unmodified). For arrays, an item is marked as modified (resp. unmodified)
if any (resp. all) of the values corresponding to the keys specified in the watch
block are modified (resp. unmodified).

Custom item identification. Additionally, when dealing with array items, it is
necessary to uniquely identify the items throughout subsequent polls. This allows
us to know for example if a given item has been added or removed during the
polling interval. However, not all APIs provide unique identifiers on all of their

438 E. Ben Hadj Yahia et al.

Table 1. List of supported change types.

filterObject filterArray

Change types addedKeys addedItems

removedKeys removedItems

modifiedKeys modifiedItems

unmodifiedKeys unmodifiedItems

movedItems

resources. Moreover, these identifiers can be present under different key labels.
For this reason, we provide an additional keyword called identifiers, which allows
the user to specify how to uniquely identify an item within a collection (line 4).
This can be as simple as providing the path to the id field of an item, a list of
fields (e.g. first and last names of a user), or a wildcard to hash the entire item
and use it as its own identifier.

Custom filtering. When none of the previous operators are adequate, the
filterCustom operator can be used to implement one’s own custom filtering logic.
Figure 5b shows an example of how to filter a list of photos by only selecting
those where Alice is tagged. This operator provides a hook function with the
previous and current states as parameters (line 4). The user can implement this
hook in JavaScript, returning a custom output. In this example, the user iterates
on the input array of photos (line 6) and checks whether if Alice is tagged on
the current photo (lines 7–9), in which case he retrieves the photo ID (line 10).
To avoid any security issues when running user-provided code, this function is
executed within an isolated sandbox at runtime.

4 Evaluation

We evaluate our approach using six scenarios provided by our industrial partner
CProDirect. We first compare the level of abstractions provided by Polly
(in terms of verbosity) compared to its handwritten counterpart. We then assess
the differencing time and the output size of our solution compared to a state-of-
the-art differencing tool.

4.1 Scenarios

Our industrial partner CProDirect has defined the six following scenarios to
be used in our evaluation. They illustrate the diversity of possible use cases
ranging from being notified about new objects to changes of attributes values or
order in a ranking.

– ElasticSearch (ES): Developer Alice uses an instance of ElasticSearch as a
search engine for her e-commerce platform, and wants to be notified when the
top 5 best-selling products change in ranking order.

Polly: A Language-Based Approach 439

– Facebook (FB): Developer Alice wants to monitor a Facebook album where
her friends Dan and Dave are participating. Alice would like to be notified
only about pictures where Dan and Dave are tagged together.

– GitHub (GH): Developer Alice is interested in monitoring GitHub for new
projects written in the Go language with over 2,000 stars.

– Stack Overflow (SO): Developer Alice wants to monitor StackOverflow for
new JavaScript questions where there is an active bounty of over 100 reputa-
tion points.

– Transport for London (TL): Developer Alice wants to be notified whenever
the status of the Victoria subway line changes (e.g. from healthy to faulty).

– Twitter (TW): Developer Alice wants to be notified whenever the official
Bordeaux account has new followers on Twitter.

4.2 Language Verbosity Evaluation

All scenarios described in Sect. 4.1 have been implemented twice by the first
author of the paper: once using the JavaScript language on top of the Node.js
platform, and once using our domain-specific language Polly. Note that the
JavaScript version was implemented before any research work was done on
Polly, in order to avoid any bias, and to serve as a reference point.

Figure 6 shows the number of lexical tokens used in the Node.js version ver-
sus the Polly version. One can notice that Polly results in a much smaller
program, ranging from 5.5 to 8 times smaller. Furthermore, the figure shows the
distribution of tokens across different categories (fetch, diff and output). Other
tokens that are not directly related to these (such as module imports and con-
figuration) are assigned to the other category. First, we notice that the Node.js
implementation requires a lot more boilerplate code than Polly, with around

ES FB GH SO TL TW

Node Polly Node Polly Node Polly Node Polly Node Polly Node Polly

0

200

400

600

Scenarios

Le
xi

ca
l t

ok
en

s
us

ed

Output

Diff

Fetch

Other

Fig. 6. Lexical tokens used to specify each scenario, using Node.js code vs. Polly.

440 E. Ben Hadj Yahia et al.

●

●●

●

●

●
●
●
●

●

●

●

●●●●
●●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●
●

●

●

●●

●
●
●
●
●●
●

●●●
●

●
●●
●

●
●●
●
●●

●

●●●
●
●

●

●

●●
●

●

●
●●

●

●

●

●●
●

●
●

●

●●

●

●

●

●●●●
●

●

●●

●
●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●●

●
●●●●●●●●●●●●●●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●

●
●

●

●

●●
●

●●●●
●●●●●●●●●●

●●

●

●
●

●

●

●

●●●●●
●
●●

●●

●
●●
●

●

●

●●

●

●

●
●●
●
●●●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●●
●

●

●

●

●
●
●

●

●

●

●

●

●●●●●●●●●●●●●●●

ES FB GH SO TL TW

JDR Polly JDR Polly JDR Polly JDR Polly JDR Polly JDR Polly

0

1

2

3

0.1

0.2

0.3

0.4

0.0

0.5

1.0

1.5

2.0

0

2

4

0

5

10

15

20

0.0

0.2

0.4

0.6

0.8

Scenarios

C
ha

ng
e

de
te

ct
io

n
tim

e
(in

 m
ill

is
ec

on
ds

)

Fig. 7. Change detection time.

200 tokens in the other category, compared to 5 for Polly. Second, we notice
that the output construction requires more or less the same number of tokens
for both approaches, while it requires significantly less tokens for the fetch and
diff categories using the Polly approach.

4.3 Diff Performance Experiment

Since one of the main benefits of using our approach is to be able to perform a
custom differencing based upon domain knowledge of the data returned by the
REST APIs, we wanted to evaluate in greater details the advantages of using such
a strategy. We compare in this experiment the performance of Polly against a
state-of-the-art generic differencing technique for JSON documents (JDR). We
selected JDR as a candidate since prior benchmarks show it outperforms all
other JavaScript differencing libraries [7].

Experimental setup. Since we are only focusing on the performance of the
differencing and output construction stages for this benchmark, we can prefetch
all required resources for better reproducibility. We thus proceeded to collect
real data from the six service providers presented above. This is achieved by
polling the services for the required resources over a period of 48 hours with an
interval of 5 min, yielding 576 snapshots per service. We then serve this collected
data through a mock server in the following experiments. All experiments were
performed on a single machine powered by 8 GB RAM, and an Intel Core i7-
6500U CPU @ 2.50GHz x 4.

Experimental protocol. We designed an experiment consisting in running each
scenario 576 times (once for each snapshot) using JDR and Polly as change
detection methods. At each step, we measure the differencing time as well as the
output size. This process is repeated for 10 iterations for better precision. The
results of this experiment are shown in Figs. 7 and 8. One can notice that the
Polly approach produces lower differencing times and output sizes compared to
the JDR approach, apart from the output size for the Facebook (FB) scenario,

Polly: A Language-Based Approach 441

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●

●
●
●●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●●

●●

●

●●

●

ES FB GH SO TL TW

JDR Polly JDR Polly JDR Polly JDR Polly JDR Polly JDR Polly

0

2500

5000

7500

10000

0

20

40

0

500

1000

1500

2000

0

1000

2000

3000

4000

−0.50

−0.25

0.00

0.25

0.50

0

500

1000

1500

Scenarios

O
ut

pu
t s

iz
e

(in
 b

yt
es

)

Fig. 8. Output sizes using JDR vs. Polly.

where the output size is equal to 0 for every polling step for both approaches.
This is because no modifications occurred during the monitoring period. The
difference in output sizes is explained by the fact that JDR produces a JSON
Patch [5] (an intermediary document expressing a sequence of operations to
apply to a JSON document in order to obtain the final outcome), whereas Polly
directly produces the minimal set of required data as specified in the DSL, which
generally tends to be much smaller in size.

Statistical testing. To have a finer-grained analysis of these results, we subject
our results to a statistical testing. Our two null hypotheses are that H1

0 output
size is the same for Polly and JDR and H2

0 differencing time is the same for
Polly and JDR. Our two alternative hypotheses are H1

a output size is lesser
for Polly than JDR and H2

a differencing time is lesser for Polly than JDR.
To test these two hypotheses, we used a one-tailed paired Wilcoxon rank test,
since it bears no assumptions on the underlying distribution of the differencing
time or output size values. To assess the magnitude of the difference between
differencing time and output size between the two approaches, we use Cohen’s
d and report its corresponding level on Cohen’s standard scale. The results of
this statistical testing are shown in Table 2.

One can notice that most tests are significant under the 0.05 threshold,
meaning that Polly produces significantly smaller outputs in a significantly
reduced time compared to the JDR generic differencing approach. The only non-
significant test is for the output size of the FB scenario. This is because in this
scenario the output size is equal to 0 for every polling step for both approaches.

For the magnitude of the difference, the values range from medium to large,
large being by far the most common value (9 times out of 11 values), followed by
medium (2 times). This means that Polly results in a highly improved outcome
in terms of output size and differencing time compared to the JDR approach.

442 E. Ben Hadj Yahia et al.

Table 2. P-values of our statistical testing and size effect. Significant p-values (under
the 0.05 threshold) are highlighted in bold.

Detection time Output size

Scenario P-value Effect size (level) P-value Effect size (level)

ES 5.240281e-96 2.090851 (large) 4.447673e-42 0.685358 (medium)

FB 5.254766e-96 3.770390 (large) 1.000000e+00 NaN (NA)

GH 5.254964e-96 2.989436 (large) 1.362006e-84 1.186302 (large)

SO 5.254264e-96 6.150168 (large) 1.048446e-74 0.770466 (medium)

TL 1.000000e+00 -4.885277 (large) 6.361893e-99 88.626161 (large)

TW 5.254659e-96 2.846963 (large) 2.465265e-72 0.808057 (large)

5 Related Work

Following the expansion of service-oriented computing, most service providers
use the flexible REST architectural style to expose their data [8]. With web
applications getting more and more complex, developers often need to nav-
igate through multiple endpoints to retrieve the required resources. Existing
efforts focused on a hypermedia-centric approach for describing REST services,
using the Resource Linking Language (ReLL) and Petri Nets [1]. However, very
few REST APIs provide hyperlinks along their responses in practice, making it
harder for developers to gather all resources to compute a given state. To enable
this case, our domain-specific language provides the necessary constructs to eas-
ily express sequential and parallel request chains of API endpoints, while also
supporting pagination.

Due to the rapid growth of the number of web services in the recent decade,
composition platforms are gaining more and more traction [12]. These platforms
typically allow users to monitor third-party services in order to trigger a com-
position when a particular event occurs [16]. Thus, it is important to support a
wide range of trigger events in order to meet the client’s needs, scaling accord-
ingly for all the services supported by the platform. Although previous works
focused on providing a framework for automatic detection of relevant changes
on websites [4], these do not directly address change detection in REST APIs
data, nor do they allow clients to specify what constitutes a relevant change. In
contrast, Polly offers a simple and concise language to rapidly specify custom
change detectors, tailored to the user’s expectations.

In today’s fast-paced web, data is continuously churning to reflect the latest
state. Change detection consists in computing a diff between two documents,
and identifying any relevant changes. Several existing contributions focus on
improving the differencing process. They represent documents as ordered or
unordered labeled trees, and aim for optimizing the tree edit distance [3,6,19].
Nonetheless, the problem of finding a minimal patch is O(n3) to NP-hard for
ordered trees (depending on the set of operations considered), and NP-hard for
unordered trees [9,14,20]. This leads to the use of practical heuristics that rely

Polly: A Language-Based Approach 443

on the syntactical properties of the documents in order to provide reasonably
good results. As such, additional algorithms have been designed specifically for
detecting changes in XML documents [17]. More recently, other algorithms have
been designed for JSON documents, which are a combination of unordered and
ordered labeled trees [7]. However, Polly relies on the client’s business domain
knowledge to finely tune the change detector. This improves the change detection
process by enabling the selection of the most adequate strategy, thus discarding
any irrelevant data.

With today’s growing use of mobile devices, a particular focus is given to
energy efficiency. Producing minimal diffs becomes particularly important when
dealing with mobile clients, as it helps reducing the bandwidth usage [15]. Our
approach addresses this concern by enabling the developer to specify the output
resulting from the change detection process. This enables sending only the useful
bits of information to the client, discarding all other irrelevant changes, thus
reducing the payload size to the bare minimum.

6 Conclusion

Detecting custom changes in service data is a repetitive and tedious task. In this
paper, we have presented Polly, a declarative domain-specific language for this
task. Polly raises the level of abstraction by leveraging the business domain
knowledge of users. It enables users to design custom change detectors by pro-
viding the necessary constructs to express state computation, change detection
and output construction. We have used Polly to automatically generate custom
change detectors for six use cases provided by our industrial partner CProDi-
rect. Our evaluation shows that Polly outperforms a handwritten implemen-
tation in terms of code verbosity, and that Polly outperforms a state-of-the-art
off-the-shelf differencing tool in terms of running time and output size. To show-
case our solution, an online demonstration of Polly is freely available at the
following address4. As future work, we plan on performing a large-scale devel-
oper study, where we assess the benefits of using Polly in terms of productivity,
code quality and maintenance cost.

Acknowledgment. This work was partially supported by CProDirect and the
French funding agency ANRT under contract CIFRE-2013/0891.

References

1. Alarcon, R., Wilde, E., Bellido, J.: Hypermedia-Driven RESTful Service Compo-
sition. In: Maximilien, E.M., Rossi, G., Yuan, S.-T., Ludwig, H., Fantinato, M.
(eds.) ICSOC 2010. LNCS, vol. 6568, pp. 111–120. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19394-1 12

4 https://demo.pollyapp.ml.

http://dx.doi.org/10.1007/978-3-642-19394-1_12
https://demo.pollyapp.ml

444 E. Ben Hadj Yahia et al.

2. Ben Hadj Yahia, E., Réveillère, L., Bromberg, Y.-D., Chevalier, R., Cadot, A.:
Medley: An Event-Driven Lightweight Platform for Service Composition. In:
Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671,
pp. 3–20. Springer, Cham (2016). doi:10.1007/978-3-319-38791-8 1

3. Bille, P.: A survey on tree edit distance and related problems. Theoret. Comput.
Sci. 337(1), 217–239 (2005)

4. Borgolte, K., Kruegel, C., Vigna, G.: Relevant change detection: a framework for
the precise extraction of modified and novel web-based content as a filtering tech-
nique for analysis engines. In: 23rd International Conference on World Wide Web
(2014)

5. Bryan, P., Nottingham, M.: JavaScript Object Notation (JSON) Patch. Technical
report (2013). http://www.rfc-editor.org/info/rfc6902

6. Buttler, D.: A short survey of document structure similarity algorithms. In: Inter-
national Conference on Internet Computing (2004)

7. Cao, H., Falleri, J.-R., Blanc, X., Zhang, L.: JSON Patch for Turning a Pull
REST API into a Push. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.)
ICSOC 2016. LNCS, vol. 9936, pp. 435–449. Springer, Cham (2016). doi:10.1007/
978-3-319-46295-0 27

8. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Ph.D. thesis, University of California, Irvine (2000)

9. Higuchi, S., Kan, T., Yamamoto, Y., Hirata, K.: An A* algorithm for comput-
ing edit distance between rooted labeled unordered trees. In: JSAI International
Symposium on Artificial Intelligence (2011)

10. JSONPath: http://goessner.net/articles/JsonPath. Accessed: 02 June 2017
11. Liu, L., Pu, C., Tang, W.: WebCQ-detecting and delivering information changes

on the web. In: 9th International Conference on Information and Knowledge Man-
agement (2000)

12. Ovadia, S.: Automate the internet with “if this then that” (IFTTT). Behav. Soc.
Sci. Librarian 33(4), 208–211 (2014)

13. Pandey, S., Dhamdhere, K., Olston, C.: WIC: A general-purpose algorithm for
monitoring web information sources. In: 30th International Conference on Very
Large Data Bases (2004)

14. Pawlik, M., Augsten, N.: RTED: a robust algorithm for the tree edit distance.
VLDB Endow. 5(4), 334–345 (2011)

15. Simon, J., Schmidt, P., Pammer, V.: An energy efficient implementation of dif-
ferential synchronization on mobile devices. In: 11th International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services (2014)

16. Ur, B., Pak Yong Ho, M., Brawner, S., Lee, J., Mennicken, S., Picard, N., Schulze,
D., Littman, M.L.: Trigger-action programming in the wild: an analysis of 200,000
IFTTT recipes. In: CHI Conference on Human Factors in Computing Systems
(2016)

17. Wang, Y., DeWitt, D.J., Cai, J.Y.: X-Diff: An effective change detection algorithm
for xml documents. In: 19th International Conference on Data Engineering (2003)

18. YAML: http://www.yaml.org/spec/1.2/spec.html. Accessed: 02 June 2017
19. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between

trees and related problems. SIAM J. Comput. 18(6), 1245–1262 (1989)
20. Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered

labeled trees. Inf. Process. Lett. 42(3), 133–139 (1992)

http://dx.doi.org/10.1007/978-3-319-38791-8_1
http://www.rfc-editor.org/info/rfc6902
http://dx.doi.org/10.1007/978-3-319-46295-0_27
http://dx.doi.org/10.1007/978-3-319-46295-0_27
http://goessner.net/articles/JsonPath
http://www.yaml.org/spec/1.2/spec.html

Design and Evaluation of a Self-Service Delivery
Framework

Constantin Adam(B), Nikos Anerousis, Muhammed Fatih Bulut,
Robert Filepp, Anup Kalia, Brian Peterson, John Rofrano,

Maja Vukovic, and Jin Xiao

IBM T.J. Watson Research Center, Yorktown Heights, USA
{cmadam,nikos,mfbulut,filepp,anup.kalia,blpeters,rofrano,

maja,jinoaix}@us.ibm.com

Abstract. We present a framework for automating change and service
request management, a process that has remained almost entirely human-
centric, despite the fact that it involves complex workflows, takes a signif-
icant amount of time, and is prone to errors. We extend previous work on
modeling process complexity to evaluate the impact of automating busi-
ness constraints (such as policy approvals and entitlements). Our results
indicate that automation eliminates a significant amount of operational
complexity, reducing it by 68% compared to the Information Technology
Infrastructure Library (ITIL) guidelines, and by 80% compared to actual
client processes. Automation also reduces, between 55% and 82% for dif-
ferent client accounts, the average time that elapses from the moment
that a change request is received until it starts executing.

1 Introduction

IT management has evolved from a human-centric and labor-intensive activity
to a process driven by automation with a few notable exceptions, such as change
and service request management. Traditionally performed via ticketing systems,
the current process involves several humans coordinating its execution: forming,
submitting and analyzing requests, obtaining approvals where needed, assigning
work to a subject matter expert, performing the work, updating records, and
notifying the original requester upon completion. Although an underlying service
management platform enables it, the process is merely facilitating the exchange
of messages between human performers. As a result, it still takes a lot of time
and involves many people, each with their own and distinct role in the process.

In this article, we present our work on automating change management in a
large managed service provider environment. Our work was motivated by the dif-
ficulties inherent to the largely manual change management workflow described
in the Information Technology Infrastructure Library (ITIL) - a set of detailed
best practices for IT Service Management. Not only a multitude of human errors
are possible because of the manual nature of the process (choosing the wrong
endpoint, misinterpreting the request, getting the wrong approval, miscommu-
nicating), but change requests wait for a long time in a queue to be analyzed,
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 445–452, 2017.
https://doi.org/10.1007/978-3-319-69035-3_31

446 C. Adam et al.

approved, or reviewed by a subject matter expert. So, aside from process automa-
tion, we have also aimed to automate various business functions, like approvals,
or determining entitlements. We have found out that automation benefits change
management in several ways: not only the process is faster, as it bypasses sev-
eral manual steps and the need for coordination, but it also reduces process
complexity (and implicitly risk), and offers predictable outcomes.

2 System Architecture

We have built an automated change management workflow starting from the
ITIL specification, aiming to keep ITIL functionality intact, while automating
as much of the process as possible. This workflow has a reduced number of
personas, and an automation role does all the work in most cases. Humans
are only needed to initiate changes, approve changes that are not pre-approved
automatically, or perform manual pre- and post-execution where needed. Below,
in Sect. 2.1 we describe the building blocks of our automated implementation,
and in Sect. 2.2 we illustrate the automated functionality using the AIX memory
management use case.

2.1 Automated Functionality

We have identified a set of key components that must be automated to stream-
line the ITIL change management workflow. These building blocks, and the
mapping graph between the ITIL and our Self-Service Delivery (SSD) workflows
are presented in Fig. 1, and described in more detail below.

1. Defining User Entitlements - users are added to groups that give them spe-
cific rights to initiate or approve different types of change requests, perform
capacity approvals, or manually execute specific operations on the endpoints.

2. Providing an Interface that Validates User Requests - users specify change
requests through interfaces, or chat bots that provide structure to the received
requests and eliminate ambiguity or request misinterpretation.

3. Retrieving Up-to-date Server State - real-time access to endpoint state pro-
vides accurate input for building change requests, and allows to automatically
validate the change request outcomes. Scripts discover on each managed node
the state of its resources (file systems, memory, CPU, cron jobs, etc.), and
store it in a repository. Discovery runs before (to check the current state) and
after (to validate the execution result) a change is made to an endpoint.

4. Developing Resource Models and Validators - each managed resource is asso-
ciated with a software model and a set of validators that check the correctness
and the technical feasibility of the change requests for that resource.

5. Defining Business Policies for Pre-approved Requests - business policies allow
pre-approving change requests with parameters within acceptable ranges, and
limit manual approvals to a handful of special cases. They also eliminate the
need to monitor a system after a pre-approved change was made, as the
successful execution of such a change guarantees its correctness.

Design and Evaluation of a Self-Service Delivery Framework 447

Assign Change

Prepare Change

Perform Technical
Assessment

Perform Business
Assessment

Approve Change

Add to Consolidated
Change Schedule

Implement
Change

Close Change Record Review Change

Approved?

No
Yes

Yes

No

No

No

Yes

Yes

Resubmit?

Success?

Raise Problem?

Notification Handle
Problems

Handle
Incidents

No
Yes

Backout? Perform
backout

No Yes

Raise
Incident?

Change
Requester

Owner
Group
Leader

Change
Owner

Change
Approver

Account
Team

Change
Coordinator

Change
Implementer

Approve
Change

Yes

Change
Approver

Cobalt
Automation

Change
Implementer

Change
Requester

Free-text
description of

the Request for
Change

Complete spec
of requested

change chosen
from catalog

Technically
valid?

YesPolicy
compliant?

(Pre-)
Approved?

No

No

Yes
Add to Change

Schedule

No

Manual
Pre-execution

Notification/
Raise

Incident

Manual? Yes

Execute

No
Not OK

OK

Success?

Backout

Not OK

Success?

Manual
Post-execution

Manual? Yes
No

Not OK

OK

Success?

OK

Success

1. User Entitlements

3. Up-to-date
server state

5. Business
Policies for pre-

approved requests

4. Resource Models
and Validators

2. Interface that
validates user

requests

7. Generic Business
Process Diagram for

Change Requests

6. Change Window
Schedules and Rules

Fig. 1. ITIL (left) vs. SSD (right) automated change management process.

6. Providing Change Window Schedules and Rules - each request type has (in
the business policies) a flag that specifies whether it needs a change window,
or can be executed immediately. If a change window is needed, the requester
can choose one from a list computed using change window schedules and rules,
or let the change execute during the next available change window.

7. Generic Business Process Diagram for Change Requests - all change requests,
regardless of their type, follow the same business cycle illustrated in Fig. 2.
After initiation, requests undergo syntactic, technical feasibility and business
policy compliance checks. Requests that pass all the checks are automatically
approved. Requests that fail the business policy checks are approved man-
ually. Approved requests are checked for any pre-requisites, and scheduled
for execution immediately, or in a change window. After execution, the sys-
tem takes any post-execution steps, discovers the new endpoint state, and
determines whether the change was successful, or needs to be backed out.

2.2 Case Study: Memory Allocation for AIX LPARs

To illustrate how the building blocks described above automate change manage-
ment, consider memory allocation on AIX Logical Partitions (LPARs) managed
by Hardware Management Consoles (HMC). The LPARs and HMCs are the
equivalents of Virtual Machines and Hypervisors. LPAR memory specification
includes: minimum memory - the smallest amount acceptable to boot and oper-

448 C. Adam et al.

ate with, desired memory - the amount of memory used under normal conditions,
and maximum memory - the high watermark that will never be exceeded.

The entitlements ensure that logged in users only see the machines on which
they are authorized to manage the memory. A user interface retrieves the min-
imum, desired, and maximum memory for the selected LPAR, as well as the
total and free memory on the HMC from an server state repository. The soft-
ware model and the validators for the AIX memory resource check whether the
request is technically feasible, i.e. that the amount of memory requested for the
LPAR is less than the free memory available on the HMC. Next, requests are
checked for compliance with business policies that govern memory management.
These policies specify that requests are pre-approved, with the exception of the
cases when an LPAR is allocated less than 1 GB of memory, more than 12
GB of memory, or when allocating memory to the LPAR drops the amount of
free memory available on the HMC below 10% of the total memory. If the new
requested desired memory does not fall between the current values of the mini-
mum and maximum memory, the change will require a server reboot and it will
run during a change window ; otherwise, it can proceed immediately. Finally, the
process described above follows the business process diagram described in Fig. 2.

3 System Analysis

We enhance a prior model ([1,2]) to analyze and quantify the complexity of the
change management process. We keep the construction of the overall complexity
metric based on execution, coordination, and business object complexity, and
retain the coordination complexity model. We refine the base model to better
reflect three key factors of complexity in IT change management: execution,
coordination (link) and business object outcome. Figure 2 shows the T tasks
evaluated for complexity. Complexity analysis is performed on a per task basis
(C exe, C link and C bo are respectively the execution, coordination, and busi-
ness object complexity of a task), and it also includes inter-task (between tasks i
and i+1) coordination (C linki,i+1) and business object complexity (C boi,i+1):

Ctotal =
T∑

i=1

(C exei + C linki + C boi) +
T−1∑

i=1

(C linki,i+1 + C boi,i+1) (1)

Each task t consists of a set of execution blocks Tt, and a set of decision
blocks Dt, and its execution complexity is the sum of the complexities of each
component in sets Tt and Dt. The complexity of an execution block is the product
of its baseline execution complexity C basei and the number of roles involved
in the execution Ri. C basei takes the values 0 for automated, {1, 2} for tool
assisted, and {2, 3} for manual execution. The complexity of a decision block is
the product of three factors: gi = {1, 2}, which accounts for how well the decision
is guided, ci = {1, 2, 3}, which factors the risk/impact if wrong decision is made,
and Ri, the number of roles participating in the decision block:

C exet =
Tt∑

i=1

(C baseiRi) +
Dt∑

i=1

giciRi (2)

Design and Evaluation of a Self-Service Delivery Framework 449

Assign Change

Prepare Change

Perform Technical
Assessment

Perform Business
Assessment

Approve Change

Add to Consolidated
Change Schedule

Implement
Change

Close Change Record Review Change

Approved?

No
Yes

Yes

No

No

No

Yes

Yes

Resubmit?

Success?

Raise Problem?

Notification Handle
Problems

Handle
Incidents

No
Yes

Backout? Perform
backout

No Yes

Raise
Incident?

Change
Requester

Owner
Group
Leader

Change
Owner

Change
Approver

Account
Team

Change
Coordinator

Change
Implementer

Approve
Change

Yes

Change
Approver

Cobalt
Automation

Change
Implementer

Change
Requester

Free-text
description of

the Request for
Change

Complete spec
of requested

change chosen
from catalog

Technically
valid?

YesPolicy
compliant?

(Pre-)
Approved?

No

No

Yes
Add to Change

Schedule

No

Manual
Pre-execution

Notification/
Raise

Incident

Manual? Yes

Execute

No
Not OK

OK

Success?

Backout

Not OK

Success?

Manual
Post-execution

Manual? Yes
No

Not OK

OK

Success?

OK

Success

1. Process Request

3. Review and
Schedule

5. Review and
Close

4. Implement

2. Assess and Plan

Tasks

Fig. 2. Task breakdown of ITIL reference model and SSD process

The coordination complexity of a task t is the sum of the complexities of the
links that connect its execution blocks. We define the complexity of a link l as
the product between its coordination complexity LinkTypel, and the number of
roles involved in that link (Rl) minus one. LinkTypel takes integer values that
account for the communication complexity between two execution blocks: 1 for
a straight pass, 2 when one back-forth communication is needed, and 3 when
multiple back-forth communication is needed.

C linkt =
Lt∑

l=1

LinkTypel(Rl − 1) (3)

The business object complexity captures the difficulty of sending, acquiring,
and understanding the information communicated between two execution blocks.
We denote by BOt the set of all the business objects that are passed between
the execution blocks of a task t. The complexity of a business object o is the
product between its ambiguity factor ambio, and the number of roles involved in
the object exchange Ro. The ambiguity factor ambio takes the following values:
1 when data can be readily looked up (e.g., ID, Category, etc.); {2, 3}: when
data represents system or state information that needs to be discovered (e.g.,
filesystem path, runstate of a server, etc.); {4, 5} when data is complex and may
need further user input and entitlement verification (e.g., sudo right for a user,
system fold access permissions, etc.).

C bot =
BOt∑

o=1

ambioRo (4)

450 C. Adam et al.

Note that we can use Eqs. 3 and 4 to compute the inter-task coordination
and business object complexities, by looking at the links and business objects
exchanged between tasks, instead of execution blocks. By plugging in Eqs. 2,
3, and 4 into Eq. 1, we compute the total complexity of the change process to
account for all the execution blocks, coordination efforts and business objects
produced.

We carried out the computation for the ITIL reference change management
process, the change management process implemented by a client, and the SSD
change process for DB, Hardware and Network change categories. Figure 3 shows
the results. We can observe that for each category, the client’s process tends to
be more complex than ITIL reference model. This is expected as ITIL is a
reference and additional process and coordination are typically needed when a
client implements the change process according to the ITIL reference. Overall,
we see SSD significantly reduces the complexity across all the change categories
evaluated, showing a reducing of 66% − 70% compared to the ITIL reference
process and a reduction of 79% − 80% compared to the client change process.

Fig. 3. ITIL, Client and SSD complexity scores for DB, Hardware and Network
changes.

4 System Evaluation

To provide a quantitative estimate of the time savings introduced by our automa-
tion process, we have analyzed data from the ticketing system repository for
three accounts (A for an IT services, B for a logistics, and C for a financial
services customer) served by IBM. The change request records contain a text
description of the change, the date and time when the request was received
(treceived), when its execution started (texec−start), and ended (texec−end),

Design and Evaluation of a Self-Service Delivery Framework 451

and when it was closed (tclosed). We analyze change requests in the database,
hardware, networking and OS management categories. The total time taken
by a change request is the sum of pre-execution, execution and post-execution
times, calculated using these formulas: tpre−execution = texec−start − treceived,
texecution = texec−end − texec−start, and tpost−execution = tclosed − texec−end

Table 1. Pre-execution times (automated and current) and post-execution times
(current)

Account A Account B Account C

Pre-execution time for automation (days) 1.30 1.92 1.85

Current pre-execution time (days) 7.48 4.19 5.60

Current post-execution time (days) 7.61 0.88 0.37

Number of change requests 12385 2357 11050

Table 1 shows the pre- and post-execution times for the three accounts. The
pre-execution time for the automation represents a conservative upper-bound,
where we assumed that each automated change request will wait for the next
available change window, calculated using the schedule for each account (account
A has three change windows a week, while accounts B and C have two change
windows a week). We calculated this upper bound, as we could not determine
from the available data whether a given request would execute immediately, or
in a change window. Even under these conservative assumptions, the automation
reduces significantly the pre-execution time, between 55% and 82% for different
client accounts. The pre-execution times vary between accounts, depending on
the complexity of the implementation of the ITIL processes currently in place.
We did not see significant improvements in the change execution time; this is
not surprising, as considerable research and effort has been put in the execution
of the changes. The post-execution time is larger for the accounts where it is
customary to monitor the systems where a change took place for several days
prior to closing that change. As the monitoring becomes unnecessary for the
automated pre-approved changes, we expect our system to considerably cut down
the post-execution time, by a percentage proportional to the percentage of pre-
approved requests.

5 Related Work

ServiceNow [3], is a commercially available IT Service Management framework
that includes both service catalog creation and self-service capabilities, but
requires a high degree of customization ([4]). Configuration management software
(like Chef [5], or Ansible [6]) allows discovering state and making changes to the
endpoints, but does not support the business aspects of the change management
process, including entitlements, validation, change windows, compliance with

452 C. Adam et al.

business policies. From the analysis of the complexity of IT service management
perspective, [7] analyzes key performance indicators and their inter-relationships,
to reason and schedule the transformation of the service delivery systems, while
[8] proposes a framework for minimizing human errors in change management
from the point of view of change preparation and execution. An infrastructure
for evaluating change risk is proposed in [9], by looking at the history of similar
changes, performed on endpoints with similar configuration. A model to quantify
the complexity of the IT service management process, and the business value of
introducing new IT processes is introduced in [1] and [2].

6 Conclusion and Future Work

We have presented a change management system that automates the ITIL work-
flow, while preserving its functionality, and a model to measure the reduction in
complexity brought by the automation. Going forward, we are going to investi-
gate using Terraform [10] for orchestration, and OpenWhisk [11] for implement-
ing the actions in the workflows. By gathering data as our solution is deployed
in new accounts, we will prove there is a correlation between the complexity
analysis model and the time it takes to process various change requests.

References

1. Diao, Y., Keller, A.: Quantifying the complexity of IT service management
processes. In: State, R., Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006.
LNCS, vol. 4269, pp. 61–73. Springer, Heidelberg (2006). doi:10.1007/11907466 6

2. Diao, Y., Bhattacharya, K.: Estimating business value of IT services through
process complexity analysis. In: Proceedings of IEEE/IFIP NOMS, pp. 208–215.
IEEE, Salvador (2008)

3. Servicenow product documentation. https://docs.servicenow.com/. Accessed 04
Jun 2017

4. Toteva, Z., Alonso, R.A., Granda, E.A., Cheimariou, M.-E., Fedorko, I., Hefferman,
J., Lemaitre, S., Clavo, D.M., Pedreira, P.M., Mira, O.P.: Service management at
CERN with service-now. J. Phys. 396, 1–7 (2012)

5. Chef: Deploy new code faster and more frequently. automate infrastructure and
applications — chef. https://www.chef.io/. Accessed 04 Jun 2017

6. Ansible is simple it automation. https://www.ansible.com/. Accessed 04 Jun 2017
7. Dasgupta, G.B., Shrinivasan, Y., Nayak, T.K., Nallacherry, J.: Optimal strategy

for proactive service delivery management using inter-KPI influence relationships.
In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274,
pp. 131–145. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1 10

8. Madduri, V.R., Gupta, M., De, P., Anand, V.: Towards mitigating human errors in
IT change management process. In: Maglio, P.P., Weske, M., Yang, J., Fantinato,
M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 657–662. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17358-5 52

9. Güven, S., Murthy, K.: Understanding the role of change in incident prevention.
In: Proceedings of CNSM, pp. 268–271. IEEE (2016)

10. Terraform by HashiCorp. https://www.terraform.io/. Accessed 04 Jun 2017
11. Apache openwhisk - serverless, open source cloud platform. https://openwhisk.

org/. Accessed 04 Jun 2017

http://dx.doi.org/10.1007/11907466_6
https://docs.servicenow.com/
https://www.chef.io/
https://www.ansible.com/
http://dx.doi.org/10.1007/978-3-642-45005-1_10
http://dx.doi.org/10.1007/978-3-642-17358-5_52
https://www.terraform.io/
https://openwhisk.org/
https://openwhisk.org/

Automated Generation of REST API
Specification from Plain HTML Documentation

Hanyang Cao(B), Jean-Rémy Falleri, and Xavier Blanc

University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
{cao.hanyang,falleri,xblanc}@labri.fr

Abstract. REST is nowadays highly popular and widely adopted by
Web services providers. However, most of the Web services providers
only provide the documentation of their REST API in plain HTML
pages, even if many specification formats exist such as WADL or Ope-
nAPI for example. This prevents the Web Services users to benefit from
all the advantages of having a machine-readable specification, such as
generating client or server code, generating web services composition,
checking formal properties, testing, etc. To face this issue, we provide a
fully automated approach that builds a REST API specification from its
corresponding plain HTML documentation. By given the root URL of the
plain HTML API documentation, our approach automatically extracts
the four mandatory parts that compose a specification: the base URL,
the path templates, the HTTP verbs and the associated formal parame-
ters. Our approach has been validated with topmost commercial REST
based Web Services, and the validation shows that our approach achieves
good precision and recall for popular Web Services.

Keywords: REST · APIs · Service description · Specification · Ope-
nAPI

1 Introduction

REST, the architecture style defined by Fielding [5], is nowadays highly popular
and widely adopted by most of the Web services providers. All the studies done
by researchers [4] or by commercial sites such as ProgrammableWeb1 state that
more than 75% of Web services are now REST oriented.

However, Renzal et al. pinpoint that building REST services is still highly
challenging [12]. They further highlight that the first REST best practice is to
provide a rigorous specification of the REST API. Such a specification accelerates
the development process by automatically generating client-side or server-side
stubs [6], or even service composition [14]. Additionally, a rigorous specifica-
tion can be used to reach a better quality by inferring parameters dependency
constraints [16] or performing automating tests production [10] for example.

1 https://www.programmableweb.com/api-research.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 453–461, 2017.
https://doi.org/10.1007/978-3-319-69035-3_32

https://www.programmableweb.com/api-research

454 H. Cao et al.

Several formats have been introduced for defining REST API specifications.
One of them is the XML-based language WADL (Web Application Description
Language), which is a de jure W3C standard [7]. Others, such as OpenAPI
specification2, RAML3, and Blueprint4 are JSON-based formats, and are de
facto standards provided by the industry. However, even if many formats exist
and if ones are more popular than the other (OpenAPI turns out to be the
most popular one, with over 350,000 downloads per month), no format is widely
adopted [11].

More precisely, as identified by Danielsen et al., most of the REST APIs
providers only provide their documentation in plain HTML pages [4]. Further,
according to an in-depth analysis of the most 20 popular REST Services [12], only
20% of them provide WSDL [2] specifications whereas 75% provide no rigorous
specification and only plain HTML pages!

Such a situation then calls for an automatic transformation of plain HTML
documentations into rigorous specifications. This will drastically help developers
and make them benefit from all the advantages of having a rigorous specification:
code and composition generation, test, type checking, etc.

In this paper, we face this problem and provide a fully automated approach
that builds an OpenAPI specification from a corresponding plain HTML docu-
mentation. We choose OpenAPI because it is currently the most popular. Fur-
thermore, once an OpenAPI specification exists, translating it into another for-
mat such as WADL for instance is very easy.

Our approach comes with a prototype implementation that inputs the root
URL of the plain HTML API documentation, and that extracts the four manda-
tory parts that compose an OpenAPI specification: the base URL, the path tem-
plates, the HTTP verbs and the associated formal parameters. Our prototype
has been validated with topmost commercial REST based Web Services as well
as with Web Services selected at random into ProgrammableWeb. The valida-
tion shows that our approach achieves good precision and recall especially for
popular Web Services.

As a main result, we provide:

– An automated approach that automatically generates an OpenAPI specifica-
tion from the plain HTML documentation of an existing REST Web Service.

– A validation of our prototype and the OpenAPI specifications it yielded from
topmost popular Web Services.

2 AutoREST: An Automatic Generator of REST API
Specifications

This section first provides basic and simple definitions for the main concepts of
REST API documentation and specification. It then presents an overview of our
generator, called AutoREST, and finally presents its three main components.
2 https://www.openapis.org/.
3 http://raml.org/.
4 https://apiblueprint.org/.

https://www.openapis.org/
http://raml.org/
https://apiblueprint.org/

Automated Generation of REST API Specification 455

Definition 1 (REST API HTML Documentation). A REST API HTML
Documentation describes the resources provided by a REST service in plain
HTML. It is composed of a set of web pages. Among the set of pages, one page
is called the Root Page, and is linked directly or indirectly to all the pages of the
set. Finally, all the pages belong to a same domain (the one of the Root Page)
and each page may or may not contain useful information to access the service.

As an example, the Root Page of the Instagram API HTML Documentation
is https://www.instagram.com/developer/. From this Root Page, a set of 24
pages that belong to the same “www.instagram.com/developer” domain can be
visited following the links between them. Finally some of these pages can be
considered to be useful as they describe how to access the service. Other ones
can be considered to be useless regarding this purpose as they don’t describe
how to access the service (e.g., service changelog information).

Definition 2 (REST API Specification). A REST API Specification rig-
orously defines how to access the resources provided by a REST service. It is
written in a de jure or de facto standard format such as WADL or OpenAPI.
At least, it has to describe the following information:

– Base URL: The Base URL is the common prefix of all URLs that give access
to the resources.

– Path Templates: The templates describes how the Base URL must be completed
to make an URL that does give access to a resource. A template can include
variables that are used to identify different but similar resources.

– Verbs: The verbs list, for each Path Template, the HTTP verbs that are sup-
ported by the Web service (GET, PUT, POST, etc.).

– Parameters: The parameters, for each couple of Path Template and Verb,
define the list of formal parameters that are supported by the request.

The objective of our approach (named AutoREST) is to automatically gen-
erate a REST API Specification from a REST API HTML Documentation. The
Fig. 1 presents the global architecture of our approach. It shows that AutoREST
inputs the Root Page of the REST API Documentation of a given Web service
and then returns a generated OpenAPI Specification. More precisely, AutoREST
performs the following three steps:

Step 1: Identifying all the HTML documentation pages. It gathers all the
pages that are directly or indirectly linked by the Root Page and that belong
to its domain. The purpose of this step is to identify all the web pages that
may describe the REST API. We built a simple crawler that identifies all the
web pages that are directly or indirectly linked by the Root Page of the REST
API HTML Documentation. Furthermore, our crawler never goes outside of the
domain of the Root Page.

Step 2: Classify useful or useless documentation pages. The goal of this
step is to select only web pages that do contain useful information for building
a REST API specification. As this step preforms a classification, we decided to
use machine learning techniques [9].

https://www.instagram.com/developer/

456 H. Cao et al.

Fig. 1. Global process of our AutoREST

We therefore built a so-called training set that contains HTML pages that
have been manually classified as being useful (Yes) or useless (No) regarding the
purpose of generating a REST API specification. A page was said to be useful
if it contains at least one information that can be used to generate a part of a
REST API specification. We built that set by getting all the pages of the 15
topmost popular Web Services listed in ProgrammableWeb where popularity is
expressed by the number of followers (see full list5). We chose to consider 15
Web Services because they gather 90% of all the followers.

Once the training set was built, we then extracted the features it contains.
To that extent, each file of the training set has been treated as a plain text
(one string) and transformed into a numerical feature vector by tokenizing it,
counting tokens occurrences and normalizing tokens. For instance, the string
“Get a list of users who have liked this media ...” is tokenized by using white
spaces as token separators. Then, each token is assigned an integer id, such as
{Get: 1, a: 2, list: 3}. Then the tokens are counted ad normalized by using the
TF-IDF weighting to build the feature vector [15].

Finally, we computed and evaluated the classifier. We choose Random For-
est [8] as the Machine-learning algorithm since it outperforms others on the
supervised classification problem [9]. Regarding the size of the training set we
tried various sets of different sizes. Result shows performance tends to be stable
(96%) when size exceeds 200. Hence we chose to build a training set containing
200 HTML files. Our Classifier thus can select web pages that do contain useful
information with a high precision (96%) and recall (96%).

Step 3: Extract Information and Generate REST API Specification.
Since each Web service provider might have its own different patterns for dis-
playing API documentation within HTML page, we made a simple comparative
study on the same topmost 15 popular Web Services to better understand such
patterns. The Table 1 lists the different patterns used by Web service providers

5 https://github.com/caohanyang/REST OPENAPI/blob/master/APIList.

https://github.com/caohanyang/REST_OPENAPI/blob/master/APIList

Automated Generation of REST API Specification 457

Table 1. Patterns used by Web server providers to display REST API Specification
in HTML pages.

Specification part Patterns

Base URL either in a dedicated part of the page or with each Path Template

Path Template either with a partial URL starting with ‘/’ or with a full URL
including the Base URL

Verbs Just before or after the path template

Parameters In a list or in a array, just after the template

to display in an HTML page the four mandatory parts that compose a REST
API specification.

Our component embeds different strategies (Regular Expressions, GATE con-
figurations [3], etc.) that corresponds to the different patterns of displaying the
informations within the HTML pages. As it cannot have any prior knowledge on
how the information is displayed when it analyses a page, it then loop the analy-
sis for each possible configuration and returns the Specification that contains
the more Path Templates, Verbs and Parameters.

3 Evaluation

The objective of our evaluation is to measure the quality of the specifications
generated by AutoREST. This quality can be measured according to the four
mandatory parts of the specification (Base URL, Path Templates, Verbs and
Parameters). Furthermore, it has to reflect what the documentation describes.
More precisely, we measure the quality of a generated specification according
to the following criteria. All criteria are measured manually by comparing the
generated specification with its corresponding documentation:

– The quality of the Base URL is measured by a boolean. True means that the
specification exactly reflects what is written in the documentation.

– The quality of the Path Templates is measured by counting the number of
Paths templates in the specification and in the documentation, and by check-
ing how much of them match. The quality is then expressed with precision
(No. Match/No. in Spec.) and recall (No. Match/No. in Doc.).

– The quality of the Verbs is measured by counting the number of Verbs in the
specification and in the documentation, and by checking how much of them
match. Two verbs match if they have the same Path Template and if they are
the same.

– The quality of the Parameters is measured by counting the number of Parame-
ters in the specification and in the documentation, and by checking how much
of them match. Two parameters match if they have the same Path Template,
the same verb, the same name and the same type.

458 H. Cao et al.

●
●
●

●

●

●

●

●

●

●

●
●●●
●

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Path templates

●
●

●●●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

0.4

0.6

0.8

1.0

Precision Recall

Verbs
●●

●

●

●

●
●

● ●

● ●●

●

●

●

●

●

●●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Parameters

Fig. 2. Results of the topmost popular Web Services

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Path templates

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Precision Recall

Verbs

●

●

●●

●
●

●● ●

●

●●

● ●

●●0.00

0.25

0.50

0.75

1.00

Precision Recall

Parameters

Fig. 3. Results of the random Web Services

Our AutoREST has been developed in Python and Java, and is available
on-line as an Open Source Project6. We evaluate AutoREST on two sets of Web
Services. The first set is composed of the 15 topmost popular Web Services. The
second set is composed of 15 Web Services selected at random from Program-
mableWeb. The evaluation done with the first set expresses how AutoREST
performs on popular Web Service knowing that it has been trained with a small
subset of them for selecting interesting pages, and that its information retrieval
rules have been defined by analyzing them (see Sect. 2). The evaluation done
with the second set expresses the capacity of AutoREST to generated OpenAPI
specifications without any prior knowledge.

As a main result, AutoREST has quite good results for finding the Base URL:
11/15 for the topmost popular Web Services, and 10/15 for random Web services.
The Figs. 2 and 3 then present the precision and recall for the Path Templates,
Verbs and Parameters. It should be noted that when AutoREST fails in finding
the Base URL, it also fails for all of the other parts. As a consequence, we choose
not to show these cases in the Figures.

As we just presented it, AutoREST is quite good for generating a Base
URL. It fails when the Base URL is not documented neither in a dedi-
cated place nor with the Path Templates. For example, it fails with Twilio
that contains a variable in the base URL. More precisely the Base URL

6 https://github.com/caohanyang/REST OPENAPI.

https://github.com/caohanyang/REST_OPENAPI

Automated Generation of REST API Specification 459

of Twilio is “https://api.twilio.com/2010-04-01/Accounts/{AccountSid}” where
AccountSid is used to authenticate the user.

For Path templates the results are good but more debatable. First of all,
it is clear that AutoREST performs better for popular Web Services, as it has
been trained on it. After the manually investigation, we found AutoREST fails
mainly for two reasons. First it uses regular expression to detect URLs but
as there are many URLs in web pages it sometimes fails to distinguish the
ones that correspond to REST services. Second, it sometimes fails to infer the
Path templates which contains path templating. Indeed, some API providers
present the Path templates by providing examples. AutoREST then fails in
extracting these generic cases. For instance, Twitter lists an example request
https://api.twitter.com/1.1/geo/id/df51dec6f4ee2b2c.json in its documentation
page. AutoREST then considers it as a Template Path!

For verbs the results are quite similar than Path Templates. AutoREST per-
forms a little bit better for popular Web Service.

Finally, AutoREST is good to extract the Parameters for popular Web Ser-
vices but not for the ones that have been randomly selected. The main reason is
because the documentation provided by the latter is not structured with tables
or lists, as it is expected by our information retrieval component.

4 Related Work

Only three existing works are related to the generation of REST API specifica-
tions.

In [13], Sohan et al. provide SpyREST, an approach for generating RESTful
API documentation by using an HTTP proxy server. In contrast to our approach
that is static, SpyREST is dynamic as it listens to the communications that
are performed with the REST Services to generate the documentation. It then
requires a client that knows how to call the REST Services and also requires the
client to perform all the possible calls.

In [1], Alarcón et al. provides RESTler that crawls a RESTful Service and
aims to generate a map that presents all the provided resources and their links.
This approach then does not generate a rigorous specification.

5 Conclusion

In this paper we then present AutoREST, an approach for automatically trans-
form an HTML documentation into an OpenAPI specification. It can then be
used as a black box tool that only inputs one root URL and that generates an
OpenAPI specification. The validation we done shows that AutoREST has quite
good results especially with popular Web Services. For randomly selected Web
Services it is less successful mainly because the provided HTML documentation
is not structured as the one of the topmost popular Web Services.

As a further work, we plan to work on a component that validates the
returned OpenAPI specification after its generation by generating and testing

https://api.twitter.com/1.1/geo/id/df51dec6f4ee2b2c.json

460 H. Cao et al.

calls. Thanks to this component, we then aim at returning an OpenAPI specifi-
cation that does not contain any faults (100% precision). We also plan to extend
machine learning component. Our goal is to strengthen our approach to better
identify weak HTML documentation, with the intent to provide error messages
indicating that the OpenAPI generation cannot be performed.

References

1. Alarcón, R., Wilde, E.: Restler: crawling restful services. In: Proceedings of the
19th International Conference on World Wide Web, pp. 1051–1052. ACM (2010)

2. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description
language (WSDL) version 2.0 part 1: Core language. W3C recommendation 26, 19
(2007)

3. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., Roberts,
I., Gorrell, G., Funk, A., Roberts, A., Damljanovic, D., et al.: Developing language
processing components with gate version 6 (a user guide). University of Sheffield,
UK (2013). http://gate.ac.uk/sale/tao/index.html

4. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web API documentation.
In: 2013 IEEE 20th International Conference on Web Services (ICWS), pp. 523–
530. IEEE (2013)

5. Fielding, R.T., Taylor, R.N.: Principled design of the modern web archi-
tecture. ACM Trans. Internet Technol. (TOIT) 2(2), 115–150 (2002).
http://dl.acm.org/citation.cfm?id=514185

6. Fokaefs, M., Stroulia, E.: Using WADL specifications to develop and maintain
rest client applications. In: 2015 IEEE International Conference on Web Services
(ICWS), pp. 81–88. IEEE (2015)

7. Hadley, M.J.: Web application description language (WADL) (2006)
8. Ho, T.K.: Random decision forests. In: Proceedings of the Third International

Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE
(1995)

9. Koprinska, I., Poon, J., Clark, J., Chan, J.: Learning to classify e-mail. Inf. Sci.
177(10), 2167–2187 (2007)

10. López, M., Ferreiro, H., Francisco, M.A., Castro, L.M.: Automatic generation of
test models for web services using WSDL and OCL. In: Basu, S., Pautasso, C.,
Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 483–490. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-45005-1 37

11. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., De Paoli, F.: Enrich-
ing API descriptions by adding API profiles through semantic annotation. In:
Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936,
pp. 780–794. Springer, Cham (2016). doi:10.1007/978-3-319-46295-0 55

12. Renzel, D., Schlebusch, P., Klamma, R.: Todays top restful services and why they
are not restful. In: Web Information Systems Engineering, WISE 2012, pp. 354–367
(2012)

13. Sohan, S., Anslow, C., Maurer, F.: Spyrest: automated restful API documenta-
tion using an HTTP proxy server (n). In: 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 271–276. IEEE (2015)

http://gate.ac.uk/sale/tao/index.html
http://dl.acm.org/citation.cfm?id=514185
http://dx.doi.org/10.1007/978-3-642-45005-1_37
http://dx.doi.org/10.1007/978-3-319-46295-0_55

Automated Generation of REST API Specification 461

14. Wagner, F., Klöpper, B., Ishikawa, F., Honiden, S.: Towards robust service com-
positions in the context of functionally diverse services. In: Proceedings of the 21st
International Conference on World Wide Web, pp. 969–978. ACM (2012)

15. Wu, H.C., Luk, R.W.P., Wong, K.F., Kwok, K.L.: Interpreting TF-IDF term
weights as making relevance decisions. ACM Trans. Inf. Syst. 26(3), 13:1–13:37
(2008). http://doi.acm.org/10.1145/1361684.1361686

16. Wu, Q., Wu, L., Liang, G., Wang, Q., Xie, T., Mei, H.: Inferring dependency con-
straints on parameters for web services. In: Proceedings of the 22nd International
Conference on World Wide Web, pp. 1421–1432. ACM (2013)

http://doi.acm.org/10.1145/1361684.1361686

Efficient Keyword Search for Building
Service-Based Systems Based on Dynamic

Programming

Qiang He1,2(&), Rui Zhou2, Xuyun Zhang3, Yanchun Wang2,
Dayong Ye2, Feifei Chen4, Shiping Chen5, John Grundy6,

and Yun Yang2

1 State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China

2 Swinburne University of Technology, Hawthorn, Australia
{qhe,rzhou,yanchunwang,dye,yyang}@swin.edu.au

3 University of Auckland, Auckland, New Zealand
xuyun.zhang@auckland.ac.nz

4 Federation University, Melbourne, Australia
feifei.chen@federation.edu.au

5 Data61, CSIRO, Canberra, Australia
shiping.chen@data61.csiro.au
6 Deakin University, Burwood, Australia

j.grundy@deakin.edu.au

Abstract. The advances in service-oriented architecture (SOA) have fueled the
demand for building service-based systems (SBSs) by composing existing ser-
vices. Finding appropriate component services is a key step during the process
for building SBSs. However, existing approaches require that system engineers
have detailed knowledge of SOA techniques, which is often too demanding.
A recent approach has been proposed to address this issue. However, it suffers
from poor efficiency, which is increasingly critical as the service repository
continues to grow. To address this issue, this paper proposes KS3+, a new,
highly efficient approach that allows a system engineer to query for a system
solution with a few keywords that represent the required system tasks. Modeling
the problem of answering such a keyword query as a dynamic programming
problem, KS3+ can quickly find a system solution composed of services that
perform the required system tasks. It offers an efficient paradigm that signifi-
cantly reduces the time and effort during the process for building SBSs. The
results of extensive experiments on a real-world web service dataset demonstrate
the high efficiency and effectiveness of KS3+.

Keywords: Service oriented architecture � Service-based systems � Keyword
search � Web services

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 462–470, 2017.
https://doi.org/10.1007/978-3-319-69035-3_33

1 Introduction

The service-oriented architecture (SOA) has been widely employed by many enter-
prises to build service-based systems (SBSs) [1, 2]. The component services of an SBS
collectively realize the functionality of the SBS, which are often offered as SaaS
(Software-as-a-Service) to internal and external users in the cloud environment. The
development and popularity of e-business, ecommerce, especially the pay-as-you-go
business model promoted by cloud computing, have fueled the rapid growth of services
and SBSs, shown by statistics published by programmableweb.com, a web service
directory. The process for building an SBS consists of three phases: (1) System
Planning: the system engineer empirically identifies and determines the system tasks,
e.g., flight ticket booking, hotel booking, as well as the execution order of the tasks.
(2) Service Discovery: the system engineer, through querying service repositories or
service search engines, discovers multiple sets of composable services, each offering
one of the required system tasks. (3) Service Selection: the system engineer selects one
service from each set of candidate services to compose the target system that fulfills the
multi-dimensional constraints and the optimization goal for the system quality, e.g.,
reliability, response time and cost.

The process above is complicated and requires detailed knowledge of sophisticated
SOA techniques in different phases. It has become a major obstacle to broader appli-
cations of SOA. There has been a rapid increase in the need for an approach that assists
system engineers in quickly finding system solutions for their SBSs, including which
services to use and in what order they are composed, without going through the above
complicated process [3].

We previously presented KS3 to tackle this challenge [4]. KS3 allows system
engineers to query for system solutions by entering only a few keywords that represent
the required system tasks. Such a keyword query, i.e., a query containing keywords that
represent the required system tasks, is modeled as a constraint optimization problem
and employs the integer programming technique to find system solutions. However,
KS3 suffers from extremely poor efficiency in processing queries on large web
service repositories. According to [4], it takes up to 100 s to answer queries on a
repository with 20,000 web services. To address this issue, this paper proposes KS3+, a
new, highly efficient approach for building SBSs also based on keyword search
techniques.

2 Keyword Search Method

We discuss how KS3+ models keyword queries for system solutions and finds group
Steiner trees [4] as answer trees to these keyword queries. We denote the set of
keywords in a query Q as K = {k1, k2, …, kl} and use k, kx, and ky to denote a
non-empty set of K where k; kx; ky � K. To represent a group Steiner tree that is rooted
at node v and covers a set of keywords k, we use T(v, k). Thus, the group Steiner tree
we look for in data graph G(V, E) as answer to Q is T(v, K) where v 2 V represents a
web service and e 2 E represents the composability of two web services. For more
details about G, see [4].

Efficient Keyword Search for Building Service-Based Systems 463

2.1 Dynamic Programming Model

In this research, a group Steiner tree T(v, K) of height h (the length of the longest
downward path from the root of the group Steiner tree to any leaf) can be found by
expanding the group Steiner trees of heights h = 0, 1, …, that cover k � k. Let T(v,
k) be a state in the dynamic programming model, and w(T(v, k)) be the weight of T(v,
k), i.e., the total weight of the nodes in T(v, k), the state-transition equation in the
dynamic programming model is:

w T v; kð Þð Þ ¼ min w Tg v; kð Þ� �
;w Tm v; kð Þð Þ� � ð1Þ

w Tg v; kð Þ� � ¼ min
u2NðvÞ

wðTðu; kÞþ uÞf g ð2Þ

w Tm v; kð Þð Þ ¼ min
k¼k1 [k2
^k1 \k2¼;

wðTðv; k1Þþ Tðv; k2ÞÞf g ð3Þ

where “+” is an operation to merge a node into a tree or to merge two trees to a new
tree, N(v) is the set of node v’s neighbors in G, i.e., v 2 G(V, E) and e(u, v) 2
E. Equation (1) indicates that the weight of the a group Steiner tree T(v, k) can be
obtained by either of two cases, namely tree growth, i.e. Eq. (2), and tree merging, i.e.
Eq. (3). As indicated by Eq. (2), the tree growth case is that Tg(v, k) can be obtained by
growing a node u from the minimum-weight subtree of T(v, k) that is rooted at u (one
of v’s neighbors) and covers all keywords in k. Equation (3) shows that, in the tree
merging case, Tm(v, k) can be obtained by merging two minimum-weight subtrees,
both rooted at v, one covering k1 and the other covering k2 such that k ¼ k1 [k2 and
k1 \ k2 ¼ ;.

2.2 Answering Keyword Queries

A keyword query Q contains a set of keywords,K = {k1,…, kl}. Based on Eqs. (1)–(3),
KS3+ employs Algorithm 1 to find the minimum group Steiner tree as the answer to
query Qn. In line 1, Algorithm 1 initializes a priority queue of trees QT to be empty. The
trees inQT are always sorted in ascending order by the total number of nodes in the trees,
denoted by |T|. In lines 2–6, the algorithm locates nodes that contain individual key-
words in K. For each node v in G, v 2 V, if v contains any keywords k in K, k � k, the
algorithm enqueues tree T(v, k) into QT. At this stage, for each such tree inQT, there is |T
(v, k)| = 1 because there is only one node in each of the trees in QT. In lines 7–33, the
algorithm iterates to dequeue trees from and enqueue trees into QT, and in the meantime
grow them with Eq. (2) (lines 12–21) or merge them with Eq. (3) (lines 23–32) to find
the minimum group Steiner tree T(v, k), where v 2 V and k = K (lines 9–11).
Equation (2) is implemented by lines 12–21. Given a tree T(v, k) just dequeued from QT

(line 8), the algorithm considers all v’s neighbors, denoted by u, and checks whether
there is a tree T(u, k) in QT that can be replaced with T(v, k) + u, which contains the
same set of keywords k but with fewer nodes (lines 12–17). If such a T(u, k) does not
exist in QT, T(v, k) + u is enqueued into QT (lines 18–19). Equation (3) is implemented

464 Q. He et al.

by lines 23–32. Given a
tree T(v, kx) (line 22), the
algorithm attempts to
find any existing trees, T
(v, ky), that are also roo-
ted at v and contain key-
words kx [ky with
more nodes than T(v,
kx) + T(v, ky), where
kx 6¼ ky. Any such trees
will be replaced with T(v,
kx) + T(v, ky) in QT (li-
nes 24–28). If there are
no such trees, T(v, kx) +
T(v, ky) will be enqueued
into QT (lines 29–30).

We now analyze the
worst-case scenario
complexity of Algorithm
1 when answering a
query Q with a set of
keywords K = {k1, …,
kl} on a data graph
G = (V, E), where |
V| = n and |E| = m. Let
T(v, k) be the tree with
the minimum number of
nodes of all trees rooted
at v containing a subset
of keywords k � k.
There are 3 major com-
ponents in complexity of
Algorithm 1: queue
maintenance, tree
growth and tree merging.

Queue maintenance. In total, there are 2l subsets of K. Thus, the maximum length of
QT is 2

ln, i.e., every tree rooted at any v 2 V containing any k � k is enqueued into QT.
The complexity of enqueue/update operations and dequeue operations is dependent on
the type of the queue. Here, we employ Fibonacci Heap, which has the complexity of O
(1) for the enquene/update operations and O(log2ln) for dequeue operations. Because
Algorithm 1 will enqueue or dequeue any T(v, k) into/from QT at most once, the
complexity of enqueuing and dequeuing all 2ln trees in QT is O(2ln(l + logn)).

Tree growth. Lines 12–21 handle the tree growth operations implementing Eq. (2).
The for loop iterates for |N(v)| times, trying to find the T(u, k) grown from

Efficient Keyword Search for Building Service-Based Systems 465

T(v, k) + u with the minimum number of nodes. Here, |N(v)| is the total number of
neighbors of v. Thus, the total time for Algorithm 1 to execute the comparison oper-
ations in lines 12–21 is O 2l

P
v2V jNðvÞj

� � ¼ O 2lm
� �

.

Tree merging. Lines 23–32 handle the tree merging operations implementing Eq. (3).
For each T(v, kx) dequeued in line 8, the for loop in lines 23–32 enumerates every ky
that fulfils kx \ ky = Ø, where kx; ky � k. Given |K| = l, the total number of possible
ky is 2

l−|kx|. Thus, the total time for Algorithm 1 to execute the comparison operations
in lines 23–32 is n

Pl�1
i¼1 Cl;i � 2l�i ¼ O 3ln

� �
.

Overall, the complexity of Algorithm 1 is O(2ln(l + logn) + 2lm + 3ln). This
indicates that the efficiency of Algorithm 1 relies exponentially on the number of query
keywords. In real world problems where l is a small constant, the complexity of
Algorithm 1 becomes O(nlogn + m).

3 Experimental Evaluation

We conducted a series of experiments with a prototype of KS3+ implemented using
JDK1.6.0 to compare the efficiency (computational overhead) and effectiveness (suc-
cess rate) of KS3+ with KS3.

3.1 Experimental Setup

The data graphs and queries used in the experiments are randomly generated using a
publicly available and widely used dataset named QWS, which contains the functional
information about over 2,500 real-world web services [5]. All experiments were
conducted on a machine with Intel i5-4570 CPU 3.20 GHz and 8 GB RAM, running
Windows 7 �64 Enterprise. In the experiments, random data graphs are generated
based on the Erdős–Rényi model [6]. The relevance between the query keywords
determines whether bridging nodes are needed to identify a system solution. In the data
graph, directly relevant keywords are composable and hence belong to adjacent nodes.
Bridging services are needed when two keywords are not directly relevant. In the
experiments, we used the keyword distance to represent the relevance between two
query keywords, reflected by the number of hops they are away from each other in the
data graph. In the experiments, we fixed the keyword distances at 2 for all queries,
which were also randomly generated. To avoid very large solutions, we limited the
maximum number of nodes to be included in a solution to twice the number of query
keywords.

To comprehensively study the impacts of different parameters on the efficiency and
effectiveness of KS3+, we vary four parameters in the experiments, as presented in
Table 1. Note that in experiment set #3, the number of edges increases with the number
of nodes to maintain the graph density while changing the graph size. For each set of
experiments, we average the results obtained from 100 runs.

466 Q. He et al.

3.2 Evaluation Results

Efficiency. Figure 1 shows the computation times taken by KS3+ and KS3 to answer
keyword queries for systems solutions under different parameter settings. Overall, KS3
+ demonstrates a multiple orders of magnitude advantage in efficiency over KS3 under
different parameter settings. While KS3 often takes seconds to minutes to answer
queries under different parameter settings, KS3+ takes less than 1 ms in most cases.
This demonstrates its significant advantage in efficiency over KS3.

Figure 1(a) shows the efficiency of KS3+ in identifying the bridging nodes when
the keywords in a query are not directly relevant. When the keyword distance increases
from 1 to 10, the average computation time of KS3 increases from 16 ms to 2,899 ms.
In the meantime, the average computation time of KS3+ increases from 0.08 ms to
0.40 ms. KS3+ outperforms KS3 significantly, and demonstrates much higher toler-
ance to the increase in keyword distance. The results shown in Fig. 1(a) demonstrate
that KS3+ can efficiently find a system solution even if the keywords entered are only
remotely relevant, thanks to its excellent ability to identify bridging nodes.

Figure 1(b) demonstrates the outstanding ability of KS3+ to find a system solution
when multiple bridging nodes are needed to connect many keyword nodes. KS3+
demonstrates great performance with an increase from 0.42 ms to 319.69 ms in
computation time in response to the increase in the number of query keywords
(referred to as l hereafter) from 2 to 5. The corresponding increase in the computation
time of KS3 is from 1,645 ms to 12,574 ms. Again, KS3+ outperforms KS3 signifi-
cantly. In particular, when l reaches 6, it takes KS3+ 2,777.92 ms on average to find a
system solution, while KS3 cannot even answer the query within a reasonable amount
of time. That is why the corresponding data is missing for KS3 in Fig. 1(b). Figure 1(b)
shows that KS3+ has a considerably better ability to find bridging nodes than KS3.

Figure 1(c) shows that the increase in the computation time of KS3 increases
rapidly with the graph size, while the increase in the computation time KS3+ is almost
negligible. On a very large data graph with 20,000 nodes, KS3 takes a significant
amount of time (up to 75,000 ms) to answer a query. In the meantime, KS3+ takes only
1.35 ms on average to answer the same query. In a large data graph, the number of
group Steiner trees that cover all the keyword nodes is extremely large even when the
number of keywords to cover is small. KS3 needs to identify and inspect all those trees.
The extremely large search space inevitably leads to long computation time of KS3.
KS3+, on the other hand, does not have to inspect all those trees. It prunes invalid trees
and grows or merges only the trees that are likely to be part of the final answer tree.
Thus, KS3+ can handle queries over large data graphs much more efficiently than KS3.

Table 1. Experiment configuration

Parameter Set #1 Set #2 Set #3 Set #4

Keyword distance 1 to 10 2 2 2
Number of query keywords (l) 2 2 to 6 2 2
Graph size (number of nodes) 2,000 2,000 2,000 to 20,000 2,000
Graph density (number of edges) 2,000 2,000 2,000 to 20,000 2,000 to 8,000

Efficient Keyword Search for Building Service-Based Systems 467

Figure 1(d) shows that in a dense data graph, where each service has many
neighbors, it takes KS3+ much less time than KS3 to find a system solution. The
advantage of KS3+ over KS3 is by multiple orders of magnitudes, similar to the results
shown in Fig. 1(a) and (c). As the number of edges increases from 2,000 to 8,000, the
average computation time of KS3+ increases accordingly from 0.27 ms to 0.64 ms,
versus the increase from 2,256 ms to 20,331 ms for KS3. A higher graph density
means more neighbors for each node, leading to more group Steiner trees for KS3 to
identify and inspect to answer a query. However, given a tree T(v, k) dequeued in line 8
of Algorithm 1, out of all the neighbors of v, Algorithm 1 would only grow T(v, k) to
include those that result in trees containing the same keywords as T(v, k) but with fewer
nodes. This prunes most invalid trees and ensures the high efficiency of KS3+.

Effectiveness. We compared the effectiveness of KS3+ and KS3, measured by success
rate, i.e., the percentage of cases where an answer to the keyword query can be found.
Overall, KS3+ is as effective as KS3, with a consistent success rate of 100% in all
experiments under different parameter settings. This indicates that KS3+ can always
find a system solution, like KS3. The experimental results demonstrate that KS3+ does
not compromise the success rate in finding a solution.

4 Related Work

The process for building an SBS consists of three phases: system planning, service
discovery and service selection.

System planning. The system engineer identifies the system tasks required for the target
SBS, as well as their execution order. Most system planning techniques are based on
artificial intelligence techniques [7]. The general idea is to model the task identification

Fig. 1. Computation time under different parameter settings (keyword distance = 2)

468 Q. He et al.

problem as a planning problem. For example, in [7], the authors model the task iden-
tification problem as a CSTE planning problem to be solved with an SCP solver.

Service discovery. Through service registries or service portals, the system engineer
identifies a set of candidate services for each of the identified system tasks based on the
functional and semantic information of candidate services. To improve the accuracy of
service matching, several semantic web service languages have been proposed based
on ontology techniques, e.g., OWLS-MX [8]. It automates the service matching
operation that identifies the services that can perform the required system tasks. Many
approaches have been proposed to automate the service discovery process, based on
ontology techniques such as logical reasoning and temporal planning [9].

Service selection. The system engineer selects one service from the candidate services
for each system task to compose the target SBS. The selected services must collectively
fulfil the multi-dimensional quality constraints for the SBS [4], e.g., reliability,
response time, cost, etc., which is an NP-complete problem. Integer Programming
(IP) is the main technique adopted in this phase. AgFlow [2] is one of the most
representative approaches. Following the idea of AgFlow, many researchers have been
trying to reduce the computation time for quality-aware service selection [10] or to
solve the problem in more complex environments [1, 11].

A planning technique was proposed that explores system solutions by looking up
services whose tags match the tags describing the SBS [3]. For each query, the engineer
needs to enter a source tag and a destination tag. The proposed technique heuristically
identifies the possible service compositions with an entry service according to the
source tag and an exit service according to the destination tag. A similar approach is
proposed in [12]. A major limitation to these approaches is that each query allows only
two tags, i.e., a source tag and a destination tag. Multiple tags can only be entered one
by one in different queries that are processed individually until a final solution is found.
An error made in an early query can easily make it impossible to find the final solution.

KS3 was proposed in [4]. It overcomes the limitations of the approaches proposed
in [3, 12]. However, it suffers from extremely poor efficiency in large-scale scenarios.
By modelling keyword queries as dynamic programming problems, KS3+ achieves
significantly higher efficiency without sacrificing effectiveness.

5 Conclusions and Future Work

In this paper, we propose KS3+, a novel approach that integrates and automates the
system planning, service discovery and service selection operations for building
service-based systems (SBSs). It assists system engineers without detailed knowledge
of SOA techniques in finding system solutions with only a few keywords that describe
the required system tasks. KS3+ offers a new paradigm for building SBSs and can
significantly save the time and effort during the process for building SBSs. Making no
compromise in effectiveness, KS3+ significantly outperforms KS3 in efficiency.

In our future work, we will enhance KS3+ to answer queries with quality con-
straints and quality optimization goals.

Efficient Keyword Search for Building Service-Based Systems 469

Acknowledgment. This work is partly supported by Australian Research Council Projects
DP170101932, DP150101775 and LP130100324.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans.
Softw. Eng. 33(6), 369–384 (2007)

2. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

3. Liu, X., Ma, Y., Huang, G., Zhao, J., Mei, H., Liu, Y.: Data-driven composition for
service-oriented situational web applications. IEEE Trans. Serv. Comput. 8(1), 2–16 (2015)

4. He, Q., Zhou, R., Zhang, X., Wang, Y., Ye, D., Chen, F., Grundy, J., Yang, Y.: Keyword
search for building service-based systems. IEEE Trans. Softw. Eng. 437(7), 658–674 (2016)

5. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: 17th
International Conference on World Wide Web (WWW 2008), pp. 795–804 (2008)

6. Durrett, R.: Random Graph Dynamics. Cambridge University Press, Cambridge (2007)
7. Zou, G., Lu, Q., Chen, Y., Huang, R., Xu, Y., Xiang, Y.: QoS-aware dynamic composition

of web services using numerical temporal planning. IEEE Trans. Serv. Comput. 7(1), 18–31
(2014)

8. Klusch, M., Fries, B., Sycara, K.P.: OWLS-MX: a hybrid semantic web service matchmaker
for OWL-S services. J. Web Semant. 7(2), 915–922 (2009)

9. Cassar, G., Barnaghi, P., Moessner, K.: Probabilistic matchmaking methods for automated
service discovery. IEEE Trans. Serv. Comput. 7(4), 654–666 (2014)

10. Trummer, I., Faltings, B., Binder, W.: Multi-objective quality-driven service selection - a
fully polynomial time approximation scheme. IEEE Trans. Softw. Eng. 40(2), 167–191
(2014)

11. He, Q., Yan, J., Jin, H., Yang, Y.: Quality-aware service selection for service-based systems
based on iterative multi-attribute combinatorial auction. IEEE Trans. Softw. Eng. 40(2),
192–215 (2014)

12. Huang, G., Ma, Y., Liu, X., Luo, Y., Lu, X., Blake, M.B.: Model-based automated
navigation and composition of complex service mashups. IEEE Trans. Serv. Comput. 8(3),
494–506 (2015)

470 Q. He et al.

Supporting the Decision of Migrating
to Microservices Through Multi-layer Fuzzy

Cognitive Maps

Andreas Christoforou1, Martin Garriga2(B), Andreas S. Andreou1,
and Luciano Baresi2

1 Department of Electrical Engineering, Computer Engineering and Informatics,
Cyprus University of Technology, Limassol, Cyprus

2 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

martin.garriga@polimi.it

Abstract. Microservices architectures are gaining momentum for the
development of applications as suites of small, autonomous, and conver-
sational services, which are then easy to understand, deploy and scale.
However, one of today’s problems is that microservices introduce new
complexities to the system and, despite the hype, many factors should
be considered when deciding to adopt a microservices architecture. This
paper proposes the first Decision Support System (DSS) to migrate
to microservices, by identifying the key concepts and drivers regard-
ing through a literature review and feedback from a group of experts
from industry and academia. Then, these concepts are organized as a
Multi-Layer Fuzzy Cognitive Map (ML-FCM), a graph-based computa-
tional intelligence model that captures the behavior of a given problem
in nodes that represent knowledge in the domain, and offers the means to
study their influence and interrelation. Static and dynamic analysis over
the resulting ML-FCM helped us identify the prevailing drivers towards
the migration to a microservices architecture.

Keywords: Microservices architectures · Monolith migration · Multi-
layer Fuzzy Cognitive Maps

1 Introduction

Microservices architectures are the new weapon-of-choice for the development
of cloud-native applications as suites of small, autonomous, and conversational
services, which are then easy to understand, deploy, and scale [1]. Migrating
to microservices enables optimizing the autonomy, replaceability, and decentral-
ized governance of software architectures [2]. Despite the hype for microservices,
both industry and academia still lack consensus on the adequate conditions to
embrace and benefit from this new paradigm [3]. Microservices architectures are

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 471–480, 2017.
https://doi.org/10.1007/978-3-319-69035-3_34

472 A. Christoforou et al.

highly complex, comprising multiple, often conflicting factors. From the indus-
trial perspective, Netflix1 and SoundCloud2 are the early adopters of microser-
vices, transitioning from a traditional development model with hundreds of engi-
neers maintaining a monolithic application, to many small teams responsible for
the end-to-end development of hundreds of microservices to serve millions of
users on a daily basis. The organizational culture shifted from traditional siloed
teams to product-oriented teams following a DevOps methodology. The acad-
emia is still in an early stage of documenting and analyzing the migration to
microservices that is taking place in industry [4], mainly by distilling the key
drivers for migrating to microservices (e.g., reusability, decentralized data gover-
nance, and scalability) and migration patterns that help structure and generalize
the process [5].

Therefore any approach that aims to assist the decision making process must
be flexible and dynamically adaptable. In this context, the paper develops a
Multi-Layer Fuzzy Cognitive Map (ML-FCM) [6] as the first DSS that captures
those key factors towards the migration to a microservices architecture, and
offers the means to study their influence and interrelation [7]. Fuzzy Cognitive
Maps (FCMs) are computational intelligence, soft computing tools that combine
elements of fuzzy logic and neural networks [8]. FCMs capture the behavior of a
given problem in nodes that represent knowledge in the application domain [9].
ML-FCMs extend FCMs by the concept of sub-FCMs, that is, smaller structures
(maps) of related nodes organized in layers. This grouping offers a way for ana-
lyzing parameters at finer levels of granularity [6,10]. This enables tracking the
causes for the decision outcome, and offers the ability to study the dependencies
between the leading determinants of the decision.

The construction and analysis of the model starts with a literature review to
identify an initial set of factors that potentially influence the decision of migrat-
ing to microservices. The next step engages a group of experts from industry and
academia with related background to the subject. They evaluated and refined the
identified factors through questionnaires and interviews. Finally, we performed
both static and dynamic analysis [9] over the resulting ML-FCM through graph-
analysis and simulation, respectively, which helped us identify the influence that
different nodes (concepts) exercise on the decision of migrating to microservices.

To the best of our knowledge, this is the first decision support system (DSS)
for migrating to microservices. The suitability of a DSS in this context is sug-
gested in [11], based on reference models for enterprise architectures. Regarding
ML-FCMs, they have been used as DSS in the context of novel architectures
such as Cloud Adoption [9,12], and extensively applied in sensitive, real-world
domains [7].

The rest of the paper is organized as follows. Section 2 details the concepts
identification and subsequent construction of the ML-FCM for supporting the

1 https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/.
2 https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-

dealing-with-the-monolith.

https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith
https://developers.soundcloud.com/blog/building-products-at-soundcloud-part-1-dealing-with-the-monolith

Supporting the Decision of Migrating to Microservices 473

decision of migrating to a microservices architecture. Section 3 discusses the sta-
tic and dynamic analysis of our model. Finally, Sect. 4 concludes the paper.

2 Decision Support Models

A FCM is a directed graph with nodes representing concepts in a domain and
weighted edges describing the various causal relationships that exist among these
concepts. A numeric activation level per concept denotes the strength of its
presence in the problem domain. The map is initialized with a set of activation
levels (that represent a particular scenario in the problem domain), and then
executed on a series of discrete steps in which the activation levels of the nodes
are iteratively updated based on the causation relationship between them, until
the map: (1) reaches an equilibrium state, (2) exhibits cyclic behavior, or (3)
exhibits chaotic behavior. The former two cases allow one to develop simula-
tion scenarios and perform inferences. The main outcome of the execution is
the final activation value of the concept of interest (central node) for that par-
ticular scenario. Details about the updating functions for activation levels are
given in [9].

The first step to develop a FCM is a Literature Review (LR), for which
we followed the key guidelines proposed in [13]. Although a systematic LR is
outside the scope of this work, this helped us organize the process of finding and
classifying relevant works. We searched for microservices-related articles indexed
in different online databases, considered both journal and conference articles, and
suppressed duplicated papers, given the overlapping among the search engines
and databases.

From this analysis we refined the initial collection up to 46 relevant works3

to perform concept extraction, that is, identifying and then disambiguating the
concepts that are potentially relevant for the decision of migrating to microser-
vices, and are crosscutting through the literature. This process was supported
by leveraging our previous experience in analysis frameworks in the context of
SOA [14,15].

The initial list of concepts extracted from the literature was delivered to
a group of seven experts (researchers and industry practitioners) with a back-
ground related to the subject, who evaluated the list and suggested to add,
remove, group, or decompose concepts based on their experience. The final list
of concepts (summarized in Table 1) is then hierarchically organized, in our case
featuring two different layers that focus on specific aspects of the problem, with
a total of six sub-FCMs (Table 1).

Based on the identified concepts, the experts completed a questionnaire con-
cerning the causal relationships between nodes (concepts) and their weights,
i.e., the degree to which concepts influence each other, fuzzified using seven lin-
guistic values (from negatively high to positively high) according to a triangular
membership function. The activation levels (used to represent different scenarios
3 Due to the space limit, the full list of related work, concept definitions, questionnaires

and simulations can be found at: https://goo.gl/JLZPsA.

https://goo.gl/JLZPsA

474 A. Christoforou et al.

Table 1. Sub-FCM concept grouping

FCM Concepts Central concept Layer

FCM1 C1 (Governance), C4 (Infrastructure & Management Support),

C8 (Maintainability & Evolvability), C9 (Operational Com-

plexity),

C10 (Business Complexity), C11 (Reliability), C12 (Security),

C13 (Cost),

C16 (Design), C22 (DevOps), C28 (Microservices Migration)

C28 1

FCM2 C1 (Governance), C2 (Decentralized Governance), C3 (Data

Governance)

C1 2

FCM3 C4 (Infrastructure & Management Support), C5 (Container-

ization),

C6 (Scalability/Elasticity), C7 (Monitoring)

C4 2

FCM4 C13 (Cost), C14 (Migration Cost), C15 (Operations Cost) C13 2

FCM5 C16 (Design), C17 (Design For Failure), C18 (Granularity and

Bounded Context), C19 (Service Contracts), C20 (Communi-

cation Model),

C21 (Decentralization)

C16 2

FCM6 C22 (DevOps), C23 (Organization Culture), C24 (Infrastruc-

ture Automation),

C25 (Continuous Deployment and Integration), C26 (Skilled

and educated DevOps Teams), C27 (Tool Support)

C22 2

in the problem domain) for the different concepts also consist of five linguistic
values, from very low to very high.

Once all experts defined their causal relationships between concepts as
described above, the linguistic values were aggregated and defuzzified, producing
a weight matrix (representing the weight of each edge) with numerical values in
the interval [−1, 1]. The final structure of the model, which consists of the main
FCM on the top layer and 5 sub-FCMs on the lower layer, is depicted in Fig. 1.

3 Static and Dynamic Model Analyses

The static and dynamic analyses of the map can help understand and assess
the shape and behavior of the model [9]. This will ultimately highlight “hid-
den” properties and features, as well as points that require particular attention.
Static analysis examines the properties of a model prior to its execution, and
irrespectively of its behavior over time, by applying notions of Graph Theory.
The major categories covered by static analysis are complexity of the graph (in
terms of density, depth and breadth); strength of each node (weight and num-
ber of its incoming and outgoing edges); and tendency of cycles in the graph
(positive cycles amplify any initial activation value and vice-versa). By the end
of the static analysis, modelers shall be able to identify the stronger concepts
(i.e., those that strongly influence the central concept), reap an indication of how
each sub-FCM influences the FCM in the upper layer, and use this information
towards setting simulations (i.e., dynamic analysis). Interested readers can refer
to [9] for further details on the analysis framework.

Supporting the Decision of Migrating to Microservices 475

Dynamic analysis allows one to assess the behavior of the model in execution
through simulations under manually configured scenarios (described through
activation values). The main goal is to study the activation levels of the concepts
(nodes) and how these levels change over time. The first step is to execute
two “extreme” positive and negative scenarios, which should drive the model to
the extreme positive/negative outcome (the central concept should get a level
close to 1 or 0 respectively). If the model performs as expected, then additional
simulations can be run with different configurations and initial activation levels
(representing what-if scenarios), followed by a study of the correlation of these
levels and the final outcome. This should support the significance ranking of the
different concepts obtained from the static analysis.

Results of Static Analysis. Table 2 shows that FCM1 (Fig. 1) has high density
(number of edges and nodes) and it is above the threshold for medium magni-
tude (density ≥ 0.6). All the second layer sub-FCMs are complete graphs, with
density values equal to 1 and high complexity, but mitigated by their fairly small
size, between 3 and 6 nodes (6 and 30 edges respectively). Thus, the model can

Fig. 1. ML-FCM for the microservices migration problem.

476 A. Christoforou et al.

be characterized as a complex two-layer structure [9]. The number of positive
feedback cycles is higher than the negative ones for all nodes. This indicates how
the model tends to behave: given a slightly positive modification in any activa-
tion level, the corresponding level of the central node of interest (Microservices
Migration) is promoted, and vice-versa.

Results also suggest that the top three concepts of the main FCM (FCM1) are
Infrastructure and Management Services (its activation level is calculated using
the concepts in its sub-FCM), Maintainability & Evolvability, and Reliability.
This finding calls for further investigation of the behavior of these concepts both
individually and as a group, and whether Maintainability& Evolvability and
Reliability could be also decomposed so as to understand which factors influence
them at a finer granularity. Interestingly, Business Complexity and Cost are the
weakest concepts in the ML-FCM. This means that, in the following dynamic
analysis, we can simulate whether the model behaves the same when removing
these concepts.
Results of Dynamic Analysis. Figure 2 depicts the results for the extreme sce-
narios (positive and negative) after 100 iterations of the model execution. As we
can see, the FCM reached an equilibrium state, clearly leading the concept of
interest (black line) to a positive/negative value for the positive/negative sce-
nario, with values 0.89 (“very high”) and 0.11 (“very low”) respectively. These
results show not only that the model behaves as expected for the extreme sce-
narios, matching the desired outcome, but also it converges to stable values after
a certain number of iterations, without behaving randomly, or exhibiting cycles
that hinder the applicability of the model.

Then, we posed what-if scenarios based on the findings of the preceding static
analysis. Scenario 1 investigates the possibility of simplifying the model without
affecting the outcome, by removing the weakest concepts (Cost and Business
Complexity, according to the static analysis), with the goal of making the model
easier to execute and understand, as fewer concepts have to be defined and
analyzed. Thus, we setup and run 20 simulations before and after removing these
two concepts (and subsequently sub-FCM4), with a set of randomized initial
activation levels. The final activation values (in linguistic and numerical form)
of the central concept for the 20 executions are summarized in Table 3. Note
that the final outcome of the model across the simulations is almost identical
between the simplified and the full model for the first scenario. Additionally,
a Root Mean Square Error (RMSE) of 0.016 indicates that the values show
low deviation. Conclusively, the first what-if scenario suggests that a simplified
model can deliver the same decision outcome without the weakest nodes. This
result asks for further discussion about the significance of these two concepts.

Analogously, what-if Scenario 2 defines an overly simplified model that only
comprises the three strongest nodes, and the same set of initial activation levels
as the previous one. This scenario investigates whether the strongest concepts
by themselves can deliver identical results to the original model. As we can see
in Table 3, the results show that the simplified model is not able to substitute
the original model as it leads to different outcomes, thus fails to capture the

Supporting the Decision of Migrating to Microservices 477

Table 2. Strength and tendency indicators for every sub-FCM.

Sub FCM Concept Deg In Deg Out Deg Tot Val Tot Cycles (+) Cycles (−)

FCM1 (root) Governance 8 10 18 6.25 202064 200980

Infrastructure and
management

9 10 19 4.57 207666 206077

Maintainability and
evolvability

9 10 19 7.54 207656 206087

Operational
complexity

8 10 18 5.93 202603 200441

Business complexity 7 10 17 4.11 198572 196774

Reliability 9 10 19 5.35 207729 206014

Security 8 9 17 4.22 202242 199954

Cost 9 5 14 4.10 180637 178502

Design 8 10 18 6.24 202590 200454

DevOps 8 9 17 5.91 199392 197911

FCM2 Governance 2 2 4 1.33 4 0

Decentralized
Governance

2 2 4 1.99 4 0

Data Governance 2 2 4 2 1.39 0

FCM3 Infrastructure and
management services

3 3 6 3 15 0

Containerization 3 3 6 2.15 15 0

Scalability/
Elasticity

3 3 6 2.67 15 0

Monitoring 3 3 6 1.72 15 0

FCM4 Cost 2 2 4 1.63 4 0

Migration cost 2 2 4 1.14 4 0

Operations cost 2 2 4 1.08 4 0

FCM5 Design 5 5 10 4.2 325 0

Design for failure 5 5 10 3.17 325 0

Granularity and
bounded context

5 5 10 4.35 325 0

Service contracts 5 5 10 3.49 325 0

Communication
model

5 5 10 2.45 325 0

Decentralization 5 5 10 4.17 325 0

FCM6 DevOps 5 5 10 5.17 325 0

Organization culture 5 5 10 3.62 325 0

Infrastructure
automation

5 5 10 4.33 325 0

Continuous Deliv-
ery/Deployment

5 5 10 4.85 325 0

Skilled and educated
DevOps teams

5 5 10 3.54 325 0

Tool support 5 5 10 3.33 325 0

478 A. Christoforou et al.

(a) Positive scenario (main concept in black) (b) Negative scenario (main concept in black)

Fig. 2. Activation values (y-axis) for the concepts in FCM1 throughout 100 iterations
(x-axis).

dynamics of the domain under study. Based on this result, one can iteratively
add strong nodes to come up with an “optimal” FCM configuration, which only
comprises the concepts that truly affect the final outcome.

Table 3. Outcome of what-if scenarios (20 executions, random activation levels).

Run
no.

Original
model

Sim.
Scenario 1

Sim.
Scenario 2

Run
no.

Original
model

Sim.
Scenario 1

Sim.
Scenario 2

1 0.48 Med 0.45 Med 0.46 Med 11 0.11 Low 0.13 Low 0.47 Med

2 0.45 Med 0.45 Med 0.46 Med 12 0.51 Med 0.51 Med 0.50 Med

3 0.11 Low 0.13 Low 0.48 Med 13 0.12 Low 0.14 Low 0.51 Med

4 0.12 Low 0.13 Low 0.49 Med 14 0.11 Low 0.13 Low 0.47 Med

5 0.11 Low 0.13 Low 0.46 Med 15 0.48 Med 0.46 Med 0.46 Med

6 0.46 Med 0.46 Med 0.46 Med 16 0.88 High 0.86 High 0.47 Med

7 0.48 Med 0.46 Med 0.46 Med 17 0.54 Med 0.54 Med 0.53 Med

8 0.48 Med 0.49 Med 0.49 Med 18 0.48 Med 0.46 Med 0.46 Med

9 0.48 Med 0.46 Med 0.46 Med 19 0.47 Med 0.47 Med 0.48 Med

10 0.48 Med 0.46 Med 0.46 Med 20 0.51 Med 0.51 Med 0.50 Med

RMSE (20 runs) 0.016 0.22 0.016 0.22

Finally, a threat to validity regarding model construction, refers to domain
experts, who may introduce a degree of subjectivity and bias. This is a common
weakness in expert-based models, mitigated by the assessment with different
scenarios, which show whether the model behaves correctly or not, and allows
us to calibrate it accordingly. Furthermore, the group of experts did not include
any project manager or executive, whom may lean towards concepts such as Cost

Supporting the Decision of Migrating to Microservices 479

and Business Complexity, at the expense of more “technical” concepts. Besides,
more experiments are needed, specially by applying the model to real-world
scenarios.

4 Conclusions and Future Work

This paper identifies the key concepts and drivers related to the decision of
migrating to microservices, by means of a literature review and experts’ feedback
through questionnaires and interviews. Then, we developed a DSS by organizing
these concepts as a ML-FCM, a graph-shaped computational intelligence model
that allows one to support decision-makers through automated reasoning.

Our future work comprises fine-tunning the model by considering other con-
cepts, performing simulations with new scenarios, and engaging experts with
different background. After that, our goal is to apply the model on real-world
cases, and to support the decision-making process of an on-going project.

Acknowledgments. We would like to thank the experts for their valuable feedback.
The project leading to this research has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 692251.

References

1. Lewis, J., Fowler, M.: Microservices: a definition of this new architectural term
(2014). http://martinfowler.com/articles/microservices.html

2. Hassan, S., Bahsoon, R.: Microservices and their design trade-offs: a self-adaptive
roadmap. In: IEEE International Conference on Services Computing (SCC), pp.
813–818. IEEE (2016)

3. Wootton, B.: Microservices: a definition of this new architectural term (2014).
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html

4. Richardson, C.: Microservices architectures: who is using microservices? (2014).
http://microservices.io/articles/whoisusingmicroservices.html

5. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Migrating to cloud-native architectures
using microservices: an experience report. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 201–215. Springer, Cham (2016). doi:10.1007/
978-3-319-33313-7 15

6. Mateou, N.H., Andreou, A.S.: Tree-structured multi-layer fuzzy cognitive maps for
modelling large scale, complex problems. In: International Conference on Intelli-
gent Agents, Web Technologies and Internet Commerce, vol. 2, pp. 131–139. IEEE
(2005)

7. Papageorgiou, E.I., Salmeron, J.L.: A review of fuzzy cognitive maps research dur-
ing the last decade. IEEE Trans. Fuzzy Syst. 21(1), 66–79 (2013)

8. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and soft computing: a compu-
tational approach to learning and machine intelligence (1997)

9. Christoforou, A., Andreou, A.S.: A framework for static and dynamic analysis of
multi-layer fuzzy cognitive maps. Neurocomputing 232, 133–145 (2017)

10. Mateou, N.H., Andreou, A.S.: A framework for developing intelligent decision sup-
port systems using evolutionary fuzzy cognitive maps. J. Intell. Fuzzy Syst. 19(2),
151–170 (2008)

http://martinfowler.com/articles/microservices.html
http://highscalability.com/blog/2014/4/8/microservices-not-a-free-lunch.html
http://microservices.io/articles/whoisusingmicroservices.html
http://dx.doi.org/10.1007/978-3-319-33313-7_15
http://dx.doi.org/10.1007/978-3-319-33313-7_15

480 A. Christoforou et al.

11. Zimmermann, A., Schmidt, R., Sandkuhl, K., Jugel, D., Bogner, J., Möhring, M.:
Decision-controlled digitization architecture for internet of things and microser-
vices. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 73,
pp. 82–92. Springer, Cham (2018). doi:10.1007/978-3-319-59424-8 8

12. Christoforou, A., Andreou, A.S.: A multilayer fuzzy cognitive maps approach to the
cloud adoption decision support problem. In: 2015 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pp. 1–8. IEEE (2015)

13. Kitchenham, B.: Guidelines for performing systematic literature reviews in software
engineering. Technical report, Version 2.3 EBSE Technical report. EBSE. sn (2007)

14. Garriga, M., Flores, A., Cechich, A., Zunino, A.: Web services composition mech-
anisms: a review. IETE Techn. Rev. 32(5), 376–383 (2015)

15. Garriga, M., Mateos, C., Flores, A., Cechich, A., Zunino, A.: Restful service com-
position at a glance: a survey. J. Netw. Comput. Appl. 60, 32–53 (2016)

http://dx.doi.org/10.1007/978-3-319-59424-8_8

A Tree-Based Reliability Analysis
for Fault-Tolerant Web Services Composition

Yanjun Shu1(B), Decheng Zuo1, Hongwei Liu1, Quan Z. Sheng2,
Wei Emma Zhang2, and Jian Yang2

1 School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

{yjshu,zuodc,liuhw}@hit.edu.cn
2 Department of Computing, Macquarie University, Sydney, Australia

{michael.sheng,w.zhang,jian.yang}@mq.edu.au

Abstract. Reliability is critical for choosing, ranking and composing
Web services. However, some common situations, such as fault-tolerant
strategies and the dynamic operational profile, are not considered in
existing reliability analysis. To solve these problems, a tree-based com-
position structure model is proposed, which is called the Fault-tolerant
Composite Web Services Tree (FCWS-T). We separate the nodes in
FCWS-T into two types, namely the control nodes and the service nodes,
leading to the representation of various composition structures can be
explicitly performed. Then, a reliability simulation method is proposed
based on FCWS-T and it can effectively analyze the reliability of a com-
plex Web service. Experiments on a financial management service show
the effectiveness of our approach for fault-tolerant Web service composi-
tions.

Keywords: Reliability · Services composition · Fault-tolerant ·
Simulation

1 Introduction

Nowadays, Service-Oriented Computing (SOC) has emerged as a new way to
develop extensible computing systems that evolve from the component-based
software engineering. In SOC, the service is a black box to users and it is either
an atomic Web service or a complex Web service that is constituted by several
smaller, loosely coupled, reusable Web services via the Business Process Execu-
tion Language (BPEL) [5]. Reliability is a key issue of Quality of Service (QoS)
for choosing and compositing Web services [9], especially for the mission-critical
domains such as military or finance. In these domains, systems are complex
and built by many component services with different reliabilities, leading to the
analysis a very challenging yet crucial task. To perform the reliability analysis
of composite Web services, there are two main issues to be resolved:

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 481–489, 2017.
https://doi.org/10.1007/978-3-319-69035-3_35

482 Y. Shu et al.

Modeling the composition structure. An appropriate representation of the
composition structure is the foundation for reliability analysis. Most existing
reliability analysis methods assume that the composite Web service is well-
structured by some methodologies such as Service graph [7] and Semi Markov
Process (SMP) [9]. However, clear explanation on how the structure model is
built from the service composition is either missing or insufficient. In practice,
the composition structure is varied in the integration stage and some composite
Web services may be black boxes to users. Thus the transition from a composite
Web service to the composition structure model requires explicit discussion. As
the BPEL process describes the service composition, the problem of modeling
the composition structure can be turned into the transition from BPEL to a
composition structure model [4]. Moreover, Web services operate in an unstable
Internet. Fault tolerance is an effective way to achieve high reliability. Although
some existing reliability analysis methods consider the fault-tolerant mechanism
in reliability calculation, they do not represent the fault-tolerant strategies in
their composition structure models [4,9].

Calculating the composite reliability. Composite reliability is the integra-
tion of component reliabilities with the transition probabilities between every
component service. The transition probability can be obtained by statistical
analysis of service invocations or empirical study of similar service compositions.
All transition probabilities in a composition constitute the service operation pro-
file which is a description of the generated pattern of external service requests
expressed in a probabilistic form. Many composite reliability calculation methods
use various mathematical equations to integrate the component reliabilities with
the high level composition structure model [1,7,9]. These methods can obtain the
composite reliability directly and they are applied widely in QoS-based service
compositions. However, there are many restrictions on mathematical equations,
such as the calculation equations may be very cumbersome and the sensitiveness
of components cannot be obtained easily. Moreover, the composite reliability is
dependent on the operation profile [2]. For a composite Web service, the opera-
tion profile may be varied in different time intervals according to users’ requests.
Although the dynamic operation profile is very important in reliability analysis,
it is considered by few composite reliability calculation methods.

Based on above discussions, a tree-based reliability analysis approach is pro-
posed in this paper. We represent the composition structure in a Fault-tolerant
Composite Web Services Tree (FCWS-T). There are two types of nodes in
FCWS-T: the control node and the service node. The service node is a leaf of
FCWS-T which represents a component service. The control node is the internal
node which is used to represent the composition activity of children. By separat-
ing the node types of FCWS-T, various structures of the composite Web service
can be represented explicitly. Moreover, the FCWS-T can be transformed from
the BPEL process or the composition designer’s description directly. Consid-
ering the limitations of mathematical equations, the discrete-event simulation
method [3] is used here for its flexibility in describing the component reliability
functions. By integrating multiple operation profiles in simulation, the varying
operation profile can also be considered in the composite reliability analysis.

A TB Reliability Analysis for FT Web Services Composition 483

The remaining paper is organized as follows: Sect. 2 presents the FCWS-
T model and the methodology to transform the BPEL to a FCWS-T; Sect. 3
describes the reliability analysis simulation algorithms; Sect. 4 reports the exper-
iments on a finance management service; Sect. 5 provides some conclusions.

2 The FCWS-T Model

2.1 The Definition of a FCWS-T Model

The FCWS-T is defined as a tree in this work. There are two main types of
elements in the composition structure: component services and composition
activities. Correspondingly, we define two types of nodes, namely ServiceNodes
and ControlNodes, to represent them respectively. The ControlNodes represent
four basic composition activities which include Sequence, If, While/Repeat and
Flow [5]. The ServiceNode describes a component service’s reliability and exe-
cution time. In reality, the round trip of invoking a component service is more
vulnerable than the service execution. In FCWS-T, the link reliability and link
time of a component service are considered in the ServiceNode. Moreover, only
several key component services in a whole composite Web service will be fault-
tolerant due to the fault-tolerant strategies application costs significantly in time
or resources. Thus in FCWS-T, fault-tolerant strategies are only defined for the
ServiceNodes. According to the classification in [8], there are three main fault-
tolerant strategies: Retry, Active replication, Passive replication.

According to the iteration feature of a tree, the following is the definition of
FCWS-T model. Every tree node is: TreeNode = 〈type, parent, childList,weight〉.

(1) type: The ServiceNode and ControlNode. The ServiceNode is
{ServiceReli(),ServiceTime(),LinkReli(),LinkTime(),FT}, and FT ∈
{None,Retry,Passive,Active}. The ControlNode is {Sequence, If,Flow,
While/Repeat}.

(2) parent : FCWS-T TreeNode, the father of the tree node.
(3) childList : {child1, child2, · · · , childn: FCWS − TTreeNode}.
(4) weight : The execution probability pi relative to the parent node. In the

If activity, {pi} is the branch execution probability. In the While/Repeat
activity, pi represents the probability of executing i times. In both of these
two activities, the sum of all branch execution probabilities is 1. In the
Sequence or Flow activity, all children execute in sequence or in parallel and
pi is 1 for the children.

2.2 The Transition from BPEL to FCWS-T

The BPEL process of a composite Web service elucidates the structure activities
(i.e., a series of basic composition activities) by nesting and iterations [5]. Here,
we build the FCWS-T model directly by parsing BPEL process in two steps.

484 Y. Shu et al.

(1) Extracting the WS-token String from BPEL

We define the WS-token string to represent the lexical analysis results of BPEL.
A WS-token string is a set of tuples. Each tuple represents a service sub-
composition and it is consisted by four elements: the left bracket “(”, the basic
composition activity, the Web service number, and the right bracket “)”. The
left bracket “(” and the right bracket “)” denote the start and the end of a
sub-composition activity. The basic composition activity can be Sequence, Flow,
While/Repeat, If and they are denoted as S, F, W, I. The Web service numbers
are the identifiers of component services invoked in the sub-composition of a
tuple.

The extraction process includes three parts. First, the BPEL source file is
split into strings by lexical analysis. Then, the strings are read in sequence and
the corresponding element of a tuple is generated. For example, in a sequence
sub-composition, there are two component services which are Service 1 and Ser-
vice 2. The tuple of this sub-composition is denoted as (S12). Finally, by parsing
all BPEL strings, a WS-token string is created by constituting the tuples nested.

(2) Mapping the WS-token String to FCWS-T

As an intermediate representation, the WS-token string can be used for trans-
forming BPEL to FCWS-T. Every tuple of the WS-token string represents a
Web services sub-composition. Algorithm 1 shows the mapping algorithm from
the WS-token string to FCWS-T. The WS-token string is scanned from left to
right. A sub-composition starts with the left bracket “(” and ends with the right
bracket “)”. The new tree nodes of the ControlNode and ServiceNode will be
created according to the basic composition activity and Web services number of
a tuple. When a sub-composition activity finishes, the corresponding subtree is
generated and inserted to FCWS-T as a component service.

Algorithm 1. MapFCWS-T

Input: a WS-token string;
Output: the FCWS-T;
1. current=0;
2. while (current <WS-token.length)
3. { current++;
4. if(WS-token[current]== Composition)
5. S1.push(WS-token[current]); //S1 is a composition activity stack.
6. elsif(WS-token[current]== “(”)
7. S2.push(WS-token[current]); //S2 is a service stack.
8. elsif (WS-token[current]== Number)
9. S2.push(WS-token[current]);
10. elsif (WS-token[current]== “)”) // A sub-composition activity is ended.
11. {Con node=S1.pop(); New tree=Create tree(Con node); //The ControlNode is generated.
12. Ser node=S2.pop();
13. while(Ser node != “(”)
14. {Insert Node(New tree, Ser node); Ser node=S2.pop(); } // ServiceNodes are inserted.
15. S2.push(New tree); } // The subtree is pushed in the service stack as a component service.
16. end if ; }

A TB Reliability Analysis for FT Web Services Composition 485

3 The Reliability Analysis Simulation Methodology

To calculate the reliability of a service composition, we need a mechanism which
can integrate the composition structure model and component reliabilities. The
simulation method is an effective way to address these two issues. Moreover,
it can explore the “what-if” questions and get more reliability details at the
design stage [3]. Here, the discrete-event simulation is adopted to study the
failure behavior of each component service in the composition. Then, a simula-
tion algorithm for the whole composite Web service is proposed based on the
FCWS-T.

3.1 The Discrete-Event Simulation of Component Reliability

The discrete-event simulation technique [3] has been used to study the failure
behavior of Web services which are described by a non-homogeneous continuous
time Markov chain (NHCTMC) process. The failures of a Web service are treated
as the discrete-events in simulation. The main idea of this technique is to compare
a random number x with the probability of a failure occurred (i.e., a event
happens) in the infinitesimal interval (t, t + dt). The failure probability is given
by lambda() × dt and lambda() is the failure rate function, which can be provided
by service developers or the evaluating third party. If x>lambda() × dt, it means
a failure happened in (t, t + dt) and returns 1, otherwise the service executes
successfully and returns 0. The Web service reliability can be obtained by the
number of failures is divided by the entire simulation times in the period (0,t).

It is costly and not feasible to explore every fault tolerant strategy via testing.
The simulation technique can help developers in determining how fault-tolerant
Web services will perform when they are employed. In our previous work [6], we
have applied the discrete-event simulation method to investigate the reliability
problem of fault-tolerant Web services. The reliability simulation algorithms of
retry, active replication and passive replication strategies are proposed. Due to
space constraints, the details of these simulation algorithms are not discussed.

3.2 The Simulation Algorithm of the Composite Reliability

As the composition structure and component services are distinguished by Con-
trolNodes and ServiceNodes, the composite reliability simulation just needs to
travel FCWS-T according to the type of tree nodes. Algorithm 2 shows the sim-
ulation process of composite services. The basic idea of our algorithm is to travel
all sub-trees in a preorder. Each sub-tree from the root node is iteratively sim-
ulated according to the composition structure of their father node. When the
tree node is a ServiceNode, the component reliability simulation is executed. The
link reliability and service reliability are simulated sequentially for a ServiceN-
ode. If a service or link is failed, the simulation stops. The failure times and the
execution time are recorded. Otherwise, the simulation will traverse all nodes in
FCWS-T and return the execution time.

486 Y. Shu et al.

Algorithm 2. SimulateReli

Input: The FCWS-T, n;
Output: linkfails[], servicefails[], exetimes[], globatime;
1. SimCounting=0; globatime=0;
2. while (SimCounting <n)
3. {SimuCounting++;
4. TreeNode=FCWS-T.root; localtime=globaltime;
5. while(TreeNode !=NULL || failureTag==FALSE)
6. { if (Treenode.type is ControlNode)
7. switch(TreeNode)
8. case “S”: foreach Subtreei do SimulateReli (Subtreei) in sequence; break;
9. case “I”: foreach Subtreei do SimulateReli(Subtreei) in branch; break;
10. case “W”: foreach Subtreei do SimulateReli(Subtreei) in loop; break;
11. case “F”: foreach Subtreei do SimulateReli(Subtreei) in parallel; break;
12. elsif (TreeNode.type is ServiceNode)
13. failureTag=Link Service Sim(TreeNode,localtime);
14. Update linkfails[], servicefails[], exetimes[], localtime;
15. return failureTag;
16. end if ; }
17. globaltime+=localtime; }

Table 1. The reliability of component Web services

No. Service Name Exeution Time avg (ms) Reliability

1 Deposit and withdraw 104.4 0.782

2 Intermediate approval 103.17 0.863

3 Primary approval 95.02 0.983

4 Risk assessment 91.47 0.792

5 Loanversion1 88.28 0.804

5 Loanversion2 97.56 0.793

5 Loanversion3 90.46 0.788

6 Advanced approval 127.3 0.887

S

loan1

loan2

loan3

1

4

2

3

6

E

p1=0.63
p2=0.31
p3=0.06

0.276/0.673

0.269/0 1/0

0.474/0.327

1/1

1/1

1/1

1/1

1/1

1/1

1/1

5

(a) Operation profiles

I

W

1

I

F

SS

4

63 2

5
loan2loan1

loan3

(b) FCWS-T

Fig. 1. The operation profiles and the FCWS-T model of the financial management
composite service

A TB Reliability Analysis for FT Web Services Composition 487

4 Experimental Studies

4.1 The Experiment Setup

A financial management composite service is used to demonstrate the effective-
ness of our reliability analysis approach. This composite service provides the
deposit and withdrawal service, the investment service and the loan service.
The investment service is composed by four component services which are the
risk assessment service, the primary approval service, the intermediate approval
service and the advanced approval service. Moreover, the passive fault-tolerant
strategy is applied for the loan service to ensure its reliability. There are three
loan services which are named loanversion1, loanversion2, loanversion3.
The reliability of each component service is shown in Table 1. As the loan service
is not available in the non-working hours, the working hours operation profile is
quite different from the non-working hours. 14,925 test cases are executed during
the period of one month. The numbers of test cases in the working hours and
non-working hours are 10,031 and 4,894. These two groups of test cases con-
stitute the working hours and non-working hours operation profiles which are
shown in Fig. 1(a).

4.2 The Simulation Reliability Analysis Results

This section reports the results of the simulation approach and it is twofold. First,
we exhibit the usability of simulation results with multiple operation profiles.
Second, we demonstrate how the simulation approach determines the reliability
bottleneck and explore the effectiveness of different fault-tolerant strategies.

(1) The Reliability Simulation Results

The FCWS-T model is generated by transforming the BPEL of the financial
management service. First, the WS-token string is extracted from the BPEL and
it is (I (W 1)(I (S1)(S4(F326)))). Then, the FCWS-T is generated. Figure 1(b)
shows the FCWS-T of the financial management service. Based on Table 1 and
Fig. 1(a), the parameters can be specified for the ServiceNodes and ControlNodes
respectively. In our examples, the LinkTime() of services is a random value which
ranges from 0ms to 200ms and the LinkReli() of services is set as 0.99 since the
financial management service is operating in a small local area network.

As the test cases of working hours and non-working hours are 10,031 and
4,894, the proportion of two operation profiles execution can be assumed as 2:1.
We define that every 1,000 simulations of the working hours will follow 500 sim-
ulations of the non-working hours. The two operation profiles are alternatively
simulated. With 100,000 simulation times, the average reliability and execution
time are 0.7383 and 254.84 ms. The simulation reliability results of working hours
and non-working hours are 0.7541 and 0.6762. As the executions of the working
hours profile are twice of the executions of the non-working hours profile, the
whole time result is more close to the working hours. Moreover, the reliability of

488 Y. Shu et al.

the non-working hours is much lower than the reliability of the working hours.
The simulation results suggest that developers need to pay more attention on
the reliability of the financial management service in non-working hours.

(2) The Fault-tolerant Strategy of Web Services

Finding the most reliability sensitive component service is essential in apply-
ing fault-tolerant strategies. The sensitiveness of every component service can be
investigated by changing component reliabilities. When every component relia-
bility is increased by 10% in each composite reliability simulation, Service 1 is
found to be the most sensitive component service which has the greatest improve-
ment of the composite reliability. Thus it is an effective way to improve the whole
composition reliability by applying fault-tolerant strategies on Service 1.

With the simulation approach, we can further explore the effectiveness of
fault-tolerant strategies in improving the reliability of Service 1 and the whole
composition. For Retry strategy, Service 1 will repeat three times until it suc-
ceeds. For Passive strategy, three replicas of Service 1 will be executed in order
if the prior one is failed. For Active strategy, three replicas of Service 1 are exe-
cuted in parallel. The execution result is the first return of three versions. Each
replica is configured with different reliability and execution time. Table 2 shows
the simulation results of Service 1 and the whole composition with different fault-
tolerant strategies. It can be seen that the reliability of Service 1 is significantly
improved by applying fault-tolerant strategies. However, the resources and exe-
cution time are also increased. The whole composite reliability can be improved
by 14.7%, 16.3% and 16.1%, comparing with no fault-tolerant strategy of Ser-
vice 1. The composition designer can choose a suitable strategy to improve the
reliability of the whole composite Web service based on the simulation results.

Table 2. The Reliability Results of Service 1 with Different Fault-Tolerant Strategies

Attributes The fault tolerant strategy of Service 1

Non FT Retry Passive Active

Service 1 Resources 1 1 3 3

Execution Time avg (ms) 104.4 235.09 233.88 206.23

Reliability 0.782 0.9906 0.9927 0.9924

Whole Execution Time avg (ms) 254.84 290.66 287.98 277.43

composition Reliability 0.7383 0.8464 0.8586 0.8578

Reliability improved 0% 14.7% 16.3% 16.1%

5 Conclusion

This paper proposes a tree-based reliability analysis approach for fault-tolerant
Web services composition. The composition structure is represented by the

A TB Reliability Analysis for FT Web Services Composition 489

FCWS-T model which is a tree. Based on the FCWS-T model and the discrete-
event simulation method, the composition structure, the component reliabilities
and fault-tolerant strategies can be integrated in the composite reliability analy-
sis. Developers can not only obtain the reliability of the whole composite Web
service with multiple operation profiles, but also the sensitiveness of each com-
ponent Web service and the effectiveness of different fault-tolerant strategies.

Acknowledgement. This work is partially supported by China NSF (No. 6120209
1), the Fundamental Research Funds for Central Universities (No. NSRIF. 2016050)
and the State Scholarship Fund of China Scholarship Council (No. 201606125073).

References

1. Ding, Z., Jiang, M., Kandel, A.: Port-based reliability computing for service com-
position. IEEE Trans. Serv. Comput. 5(3), 422–436 (2012)

2. Grassi, V., Patella, S.: Reliability prediction for service-oriented computing envi-
ronments. IEEE Internet Comput. 10(3), 43–49 (2006)

3. Lin, C.: Analyzing the effect of imperfect debugging on software fault detection and
correction processes via a simulation framework. Math. Comput. Model. 54(11),
3046–3064 (2011)

4. Mukherjee, D., Jalote, P., Gowri Nanda, M.: Determining QoS of WS-BPEL
compositions. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC
2008. LNCS, vol. 5364, pp. 378–393. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-89652-4 29

5. OASIS: Web Services Business Process Execution Language (WS-BPEL) v2.0.
(2007), http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

6. Shu, Y., Wu, Z., Liu, H., Gao, Y.: A simulation-based reliability analysis approach
of the fault-tolerant web services. In: Proceedings of ISMS 2016 (2016)

7. Zheng, H., Yang, J., Zhao, W.: Probabilistic QoS aggregations for service composi-
tions. ACM Trans. Web 10(2), 1–36 (2016)

8. Zheng, Z., Lyu, M.: A distributed replication strategy evaluation and selection
framework for fault tolerant web services. In: Proceedings of ICWS 2008 (2008)

9. Zheng, Z., Trivedi, K., Qiu, K., Xia, R.: Semi-markov models of composite web ser-
vices for their performance, reliability and bottlenecks. IEEE Trans. Serv. Comput.
6(1), 1–14 (2015)

http://dx.doi.org/10.1007/978-3-540-89652-4_29
http://dx.doi.org/10.1007/978-3-540-89652-4_29
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Modernization of Information Systems
at Red.es: An Approach Based on Gap

Analysis and ADM

Marcos López-Sanz1(&), Valeria de Castro1, Esperanza Marcos1,
and Jorge Moratalla2

1 Kybele Research Group, Rey Juan Carlos University, C/Tulipan s/n,
Móstoles, 28933 Madrid, Spain

{marcos.lopez,valeria.decastro,

esperanza.marcos}@urjc.es
2 Red.es. Ministry of Industry, Energy and Tourism, Edificio Bronce,

Plaza Manuel Gómez Moreno, s/n, 28020 Madrid, Spain
jorge.moratalla@red.es

Abstract. This paper presents a method for the modernization of information
systems that allow organizations to maintain the capabilities of existing infor-
mation systems. This method defines a horseshoe-like process based on ADM
(Architecture-Driven Modernization), and applies gap-analysis techniques to
detect the possible reuse of current functionalities to build modernized systems.
The proposal has been developed, refined and validated at Red.es, one of the
Spanish Government’s Public Entities. Our proposal includes the definition of a
process, the models used in each step, and sets of rules that can be used to
progress in this process. The proposed method thus permits systematic progress
to be made in a system modernization process: obtaining the business models of
the legacy system, comparing them with redefined business models incorpo-
rating new business rules, and finally, implementing them by adapting and
reusing the existing code.

Keywords: Information system modernization � Domain name management
systems � Architecture driven modernization � Gap analysis

1 Introduction

When modernizing public organizations’ business processes, the optimization of the
services provided, and particularly the Information Systems (IS) supporting them,
becomes a key factor [1–3]. The goal is to make them more competitive and efficient in
resource use and service delivery, thus improving the State’s relationship with its
citizens. This is the case of Red.es, a Public Entity linked to the Spanish Ministry of
Industry, Energy and Tourism. One of its main duties is to act as the Spanish Authority
for the ‘.es’ domain name management. Its current strategy for the promotion of the
information society emphasizes the need to adapt its applications IS to aspects of the
new legislative framework on interoperability [4] and eGovernment [5].

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 490–498, 2017.
https://doi.org/10.1007/978-3-319-69035-3_36

This scenario, in which a legacy IS must be upgraded to support new conditions
depending on changing business rules [6], represents the main motivation for the
proposal presented herein. We have followed the principles of the Architecture-Driven
Modernization (ADM) initiative issued by the OMG [7] to define a ‘horseshoe-like’
process based on business analysis [8, 9]. We also propose using gap analysis tech-
niques [10] to handle the differences between the current business features and those
expected. Gap analysis provides a means to identify how available business services
(known as as-is) may be assembled within the newly conceived ones (to-be) to better
meet the organizations’ goals [11, 12]. As the paper shows, the synergies of using
ADM and gap analysis together can be employed in the definition of a modernization
process for legacy IS with changes in the business to support.

The remainder of this article is structured as follows. Section 2 describes the
foundations of our proposal. Section 3 presents the IS of Red.es and offers an expla-
nation of our proposal applied to a concrete scenario. Section 4 analyses some related
works and, finally Sect. 5 presents some conclusions and future works.

2 Modernization Foundations and Working Scenario

This section briefly shows the two approaches used as foundations for the proposed
modernization process: ADM and gap analysis techniques, and introduces the working
scenario at Red.es.

2.1 ADM-Based Modernization

ADM [7] defines a set of metamodels at different abstraction levels (mainly positioned
in the IT domain) and a series of transformations between them:

• Abstract Syntax Tree Metamodel (ASTM): which represents a low-level view of the
system, close to the source code.

• Knowledge Discovery Metamodel (KDM): that collects aspects from both the
technological solution and the logical structure of the system. The KDM metamodel
is composed of four layers that represent a conceptual view of the system at different
levels: infrastructure, program elements, runtime resources and abstraction. KDM
has been published independently as ISO/IEC 19506:2012 [13].
We add a third level to these two, corresponding to the business domain, also issued
by the OMG for modernization purposes but not as part of ADM:

• Semantics for Business Vocabulary and Rules (SBVR): aims to provide a vocab-
ulary for the semantics and business rules associated with the company strategy
[14].

2.2 Gap Analysis

Gap analysis is a technique that provides a means to determine how available software
assets may be assembled within the newly conceived and redefined business activities
that best meet an organization’s goals [11, 15]. The inputs of a gap-analysis process are

Modernization of Information Systems at Red.es 491

the as-is and to-be artefacts, while the output includes a set of specifications indicating
changes that can be made by incrementally adding more details to existing IS.

In [10], the authors of the current paper presented a framework for gap analysis
named GAMBUSE. This proposal adopts a model-engineering approach which
includes the identification and manipulation of mappings between as-is and to-be
business models. GAMBUSE compares these two models by using a set of formal
definitions of the model elements based on [16].

2.3 Domain Name Management at Red.es

The Public Entity Red.es is an organization linked to the Spanish Government’s
Ministry of Industry, Energy and Tourism which aims to promote the Information
Society in our country. Red.es is in charge of performing all the tasks related to
managing domain names for the geographical top-level domain for Spain’s indicative
(‘.es’). The number of stakeholders involved in this management and the capabilities
demanded have evolved during the last decade [17]. The entity has confronted this
situation by changing the IS on demand and applying successive patches to suit the
operations required at each moment. This evolution has not been as optimal as
expected, resulting in a legacy IS that is hard to evolve and has high maintenance costs.

The increasing need to adapt the system to the new legislation concerning citizens’
electronic access to public services [5] and the incorporation of the National Inter-
operability Framework Law [4] to the domain name management system led Red.es to
consider modernizing the system via structural and functional changes.

Since the system is too complex for the length of this paper, we shall focus on one
of its subsets: ‘.es ownership transmission’. Domain name transmission is a func-
tionality provided by Red.es consisting of the possibility of changing the ownership of
a ‘.es’ domain name from one citizen or company to another using the current IS.

3 Modernization of the ‘.es Ownership Transmission’
Scenario

Our proposal for system modernization at Red.es comprises a ‘horseshoe’ process [8]
based on the ADM approach together with gap analysis (see Fig. 1).

The method proposed starts by defining the IT level models (KDM) and then
applies several sets of transformation rules [18] to reach the business level, represented
using an SBVR model. This model is used by business analysts who can complete and
adapt it with/to new business rules. The gap-analysis technique is then applied in order
to obtain the changes that must be made to attain the target (to-be) solution.

Step 1: Obtaining the initial KDM logical model. The first step is to obtain a
representation of the code of the current system using the concepts defined in the KDM
metamodel [13]. In this step, we take advantage of the MoDISCO tool [1] to obtain
automatically the KDM model from J2EE implementations. Figure 2 shows an excerpt
of the KDM model obtained with MoDISCO. The result is a tree-like representation of
the code but using the concepts of the KDM metamodel.

492 M. López-Sanz et al.

Step 2. Refining the KDM logical model. The second step consists of manually
manipulating the results obtained with MoDISCO. For example, in Fig. 3 it is possible
to observe the creation of an if statement but adding the elements representing the
corresponding ‘true’/‘false’ branches.

Step 4. Obtaining the as-is business model. The fourth step consists of obtaining the
business model corresponding to the current system, i.e. the as-is model. ADM already
indicates the existence of transformation rules to obtain the SBVR model from the
abstraction layer of the KDM model but does not specify them [7]. One example of
these rules is that stating: “each RuleUnit the abstraction layer becomes a Rule element
in the SBVR model”.

Step 5. Obtaining the to-be business model. After performing a SWOT analysis [20]
commissioned by senior managers and conducted by business analysts, Red.es studied
various systems in European Registries, which allowed us to obtain the target (to-be)
business model. [17]. For instance, the main weakness (which is in turn understood as

Fig. 1. Steps in our proposal for system modernization.

Fig. 2. KDM (XML) model obtained with MoDISCO from original code

Modernization of Information Systems at Red.es 493

an opportunity) identified by this analysis was the need to adapt the system to the laws
for interoperability [5] and electronic access to Public Administration services [4] in
order to achieve an interoperable platform.

Step 6. Mapping as-is and to-be business models. The sixth step consists of applying
gap-analysis techniques to the SBVR (as-is, output of the fourth step) and SBVR’ (to-
be, output of the fifth step) models to obtain a formal representation of the differences
between these models. This step comprises three consecutive phases:

• Step 6.1: Representing the business models using formal definitions. The current
modernization proposal defines an extension to the original operators to represent
relationships between classifiers (see Table 1).

• Step 6.2: Applying the operators to analyse both business models. The next substep
consists of identifying the similarities and differences between the elements of both
business models. By applying the operators defined by GAMBUSE plus the
operators we have added, it is possible to discover which parts of the business are
subject to change, and therefore the parts of the system code that will require
modification.

Fig. 3. Refined KDM model (infrastructure layer) for the running scenario.

Table 1. New operators added to GAMBUSE notation for classifier relationships.

Item Description

Contains (C1 � C2) Association relationship between 2 classifiers C1 and C2
Inherits (C1 # C2) ‘Inherits’ relationship between 2 classifiers. C2 inherits from C1
Compose (C1 2 C2) ‘Composition’ relationship between 2 classifiers. C1 is a part of C2

494 M. López-Sanz et al.

• Step 6.3: Obtaining processing operations. The output of the previous substep is a
set of predicates containing the result of applying the Intersection and Disparity
operators (in both directions). This information is used in the next phase to deter-
mine the modifications that should be made to the as-is model to attain the to-be
model.

Step 7. Obtaining the target logical model. The output operations obtained in the
previous step are used to define and apply the necessary transformation rules [18] to the
as-is KDM logical model (abstraction layer), obtained in the third step. A to-be KDM’
model is then obtained in accordance with the new business rules and the
insert/subtract operations.

Step 8. Obtaining the target implementation. The final step consists of applying the
transformation rules defined in the second step in reverse order. This KDM’ will be the
source used by developers to modify the code that the modernized information system
will implement. The transformation rules used for this last step make it possible to code
partially the modernized information system [18]. Figure 4 shows an overview of this
step in which the source code obtained with the rules and applied to the case scenario
are depicted.

Fig. 4. Overview of the final step of the proposal applied to a fragment of the running scenario.

Modernization of Information Systems at Red.es 495

4 Related Works

In Model-Driven Engineering (MDE) the term modernization has led to the concept of
Model-Driven Reengineering (MRE) [21] which has been discussed in several works,
some of which are analysed as follows.

Pu et al. [22] propose a set of rules to semi-automatically obtain and update
business rules within the scope of Web Engineering using UML diagrams to describe
domain-specific operations. This work is one of the earliest proposals to deal with
modernizing a legacy system by considering the influence of business rules applied to a
concrete domain. However, they restrict their scope of influence to the presentation
layer of a Web-based system. Other works [23, 24] similarly propose specific frame-
works focused on modelling system behaviour. These works understand the business
level from a more flow-oriented viewpoint (business process) rather than focusing on
the analysis and modelling of the static business rules governing the application to be
modernized.

Ulrich [9] goes one step further by defining a series of case studies based on
different types of ADM-based modernization alternatives, and analysing several
real-world case studies. However, although a model-driven approach is used, this work
lacks a precise methodology (steps or stages) that could be followed to guide this
process. Van den Heuvel [26] solves this drawback by providing a set of steps that
allow progress in the modernization of a system. This approach is purely theoretical
with no details on how to implement the proposal. Other earlier works, such as that by
Baxter and Hendryx [20], use different tools and formal mechanisms to extract both
the functionality and business rules used in a system, either directly from existing
source code or from the actors involved in the organization and in the modernization
tasks. Their strategy is quite useful when performing the initial steps in a reengineering
process, but they do not, unfortunately propose a model-based modernization approach.

The work of Ilk et al. [12] presents an approach to modernize enterprise systems
that also focuses on the idea of performing a gap analysis. The authors propose
enriching the source code components with business semantics in order to use them for
service-oriented development during the system modernization process.

5 Conclusions and Future Works

In this paper we have presented a proposal that aims to overcome the challenge of
modernizing the current IS at Red.es. To that end, our proposal offers not only a
model-driven method based on business rules, but also a practical approach that has
been successfully applied at Red.es, covering all the steps of a modernization process.
It also defines both a specific business model (not explicitly included as part of the
original ADM approach) and transformation rules with which to semi-automatically
obtain the business model from the source logical model. Finally, our proposal also
updates a set of mapping operations with which to obtain a logical to-be model (KDM’
to-be) from both the business to-be model (SBVR’ to-be) and the logical as-is model
(KDM as-is), using gap analysis techniques.

496 M. López-Sanz et al.

This paper has used the case of the ownership transmission of ‘.es’ domain names
at Red.es as running scenario to illustrate the proposal. This was chosen since it
comprised a representative and complete information flow involving different roles and
processes, and also corresponded to a relatively isolated module of the ‘.es’ domain
name management IS. Very few of the other proposals studied are able to demonstrate
the feasibility and practical application of their proposal, and are in many cases formal
and theoretical works that are hard to apply in an actual enterprise environment or even
at the Public Administration.

One of the main drawbacks of the proposal, at its current state, relies on the fact
that, although model transformation rules have been defined [18], they still need a
transformation engine to execute them in order to automate the method as much as
possible. In addition, some of the steps still require the designer to manipulate the
models manually which is a fact that requires proper training and a precise knowledge
of the system under modernization. To that extend, as future work we shall develop a
toolkit to permit not only the visual editing and simple validation of models, but also a
user-friendly environment for the definition of model transformations and their sub-
sequent execution.

Acknowledgements. This research has been partially funded by the Regional Government of
Madrid under the SICOMORo-CM (S2013/ICE-3006) project, by the MASAI
(TIN-2011-22617) and ELASTIC (TIN2014-52938-C2-1-R) projects, financed by the Spanish
Ministry of Science and Innovation, and by the Service Science, Management and
Engineering-GES2ME Research Excellence Group (Ref. 30VCPIGI15) co-funded by Rey Juan
Carlos University and Banco Santander.

References

1. Bianchi, A., Caivano, D., Marengo, V., Visaggio, G.: Iterative reengineering of legacy
systems. IEEE Trans. Softw. Eng. 29(3), 225–241 (2003)

2. Comella-Dorda, S., Wallnau, K., Seacord, R., Robert, J.: A Survey of Legacy System
Modernization Approaches, Carnegie Mellon University, Tech. Note Cmu/Sei-2000-Tn-003

3. Dedeke, A.: Improving legacy-system sustainability: a systematic approach. IEEE IT Prof.
14(1), 38–43 (2012)

4. Royal Decree 4/2010 (8 January 2010). Regulates the National Interoperability Framework
in the Field of eGovernment

5. Ley 11/2007, de 22 de Junio, de Acceso Electrónico de los Ciudadanos a los Servicios
Públicos. BOE 150 (23 de Junio de 2007): 27150–27166 (2007)

6. Seacord, R.C., Plakosh, D., Lewis, G.A.: Modernizing Legacy Systems: Software
Technologies, Engineering Processes, and Business Practices. Addison-Wesley, Reading
(2003)

7. OMG. Architecture Driven Modernization (ADM) Task Force (2007). http://adm.omg.org/
8. Carnegie Mellon University/SEI. Reengineering: The Horseshoe Model (1999). http://www.

sei.cmu.edu/reengineering/horseshoe_model.html
9. Ulrich, W.M., Newcomb, P.H.: Information Systems Transformation: Architecture-Driven

Modernization Case Studies. The Morgan Kaufmann/OMG Press (2010)

Modernization of Information Systems at Red.es 497

http://adm.omg.org/
http://www.sei.cmu.edu/reengineering/horseshoe_model.html
http://www.sei.cmu.edu/reengineering/horseshoe_model.html

10. De Castro, V., Marcos, E., Vara, J.M., Van Den Heuvel, W.J., Papazoglou, M.: Applying a
Model-Driven Framework for Gap Analysis: Towards Business Service Eng. Uncovering
Essential Software Artifacts through Business Process Archeology. IGI Global, Hershey
(2013)

11. Bolstorff, P., Rosenbaum, R.: Supply Chain Excellence: A Handbook for Dramatic
Improvement Using the SCOR Model, 2nd edn. Amacom, New York (2007)

12. Ilk, N., Zhao, J.L., Goes, P., Hofmann, P.: Semantic enrichment process: an approach to
software component reuse in modernizing enterprise systems. Inf. Syst. Front. 13, 359–370
(2011)

13. OMG. ISO/IEC19506:2012. Architecture Driven Modernization (ADM): Knowledge
Discovery Meta Model (KDM), v1.3 (2012). http://www.omg.org/spec/KDM/ISO/19506/
pdf

14. OMG. Semantics of Business Vocabulary and Rules (SBVR), OMG Standard, v1.0 (2008)
15. Juan, Y.C., Ou-Yang, C.: Systematic approach for the gap analysis of business processes.

Int. J. Prod. Res. 42, 1325–1364 (2004)
16. Van Den Heuvel, W.J.: Aligning Modern Business Processes and Legacy Systems: A

Component-Based Perspective (Cooperative Information Systems). The MIT Press
17. Red.es. Statement of the General Director of Red.es (2 Jan 2010). Procedures for the

Assignment Associated with the Registration of Domain Names under “.es” (2010)
18. Moratalla, J.: PREMISA: Un PRoceso para la Evolución y ModernIzación de SistemAs. Rey

Juan Carlos University. Ph.D. thesis (2012)
19. Barbier, G., Bruneliere, H., Jouault, F., Lennon, Y., Madiot, F.: MODISCO, a model-driven

platform to support real legacy modernization use cases. In: Information Systems
Transformation: Architecture-Driven Modernization Case Studies, pp. 365–400 (2010)

20. Humphrey, A.: SWOT Analysis for Management Consulting. Sri Alumni Newsletter (2005)
21. Favre, J.-M.: Foundations of model (Driven) (Reverse) engineering: models - episode I,

stories of the Fidus Papyrus and of the Solarus. In: Proceedings of the Dagstuhl Seminar
(2004)

22. Pu, J., Yang, H., Xu, B., Xu, L., Cheng-Chung, W.: Combining MDE and UML to reverse
engineer web-based legacy systems. In: Proceedings of COMSAC 2008, pp. 718–725.
IEEE CS (2008)

23. Pérez-Castillo, R., De Guzmán, I.-R., Piattini, M.: Business process archaeology using
marble. Inf. Softw. Technol. 53, 1023–1044 (2011)

24. Cánovas, J., Garcia-Molina, J.: Extracting models from source code in software modern-
ization. Softw. Syst. Model. 13(2), 21 (2014). Springer-Verlag

25. Baxter, I., Hendryx, S.: A standards-based approach to extracting business rules. In:
Architecture Driven Modernization Workshop, Alexandria, October 2005

26. Van Den Heuvel, W.J., Elgammal, A., Türetken, O., Papazoglou, M.P.: Formalizing and
appling compliance patterns for business process compliance. Softw. Syst. Model. 15(1),
119–146 (2016)

498 M. López-Sanz et al.

http://www.omg.org/spec/KDM/ISO/19506/pdf
http://www.omg.org/spec/KDM/ISO/19506/pdf

Improving Web Services Design Quality Using
Dimensionality Reduction Techniques

Hanzhang Wang and Marouane Kessentini(B)

Computer and Information Science Department, University of Michigan,
Dearborn, MI, USA

{wanghanz,marouane}@umich.edu

Abstract. In this paper, we propose a dimensionality reduction app-
roach based on PCA-NSGAII to address the Web services modularization
problem. Our approach aims at finding the best reduced set of objectives
(e.g. quality metrics) that can generate near optimal modularization solu-
tions to fix quality issues in Web services interface. The algorithm starts
with a large number of Web service quality metrics as objectives that are
reduced based on the correlation between them. This correlation is iden-
tified during the execution of the multi-objective algorithm by mining
the execution traces of the generated solutions and their evaluations. We
evaluated our approach on a set of 22 real world Web services, provided
by Amazon and Yahoo. Statistical analysis of our experiments shows
that our dimensionality reduction Web services interface modularization
approach performed significantly better than the state-of-the-art modu-
larization techniques in terms of generating well-designed Web services
interface for users.

1 Introduction

The evolution of Web services may have a negative impact on the design quality
of the interface by concatenating many non-cohesive operations that are semanti-
cally unrelated, and thus make it unnecessarily complex for users to find relevant
operations to be used in their services-based systems. An example of well-known
interface design defect is the God object Web service (GOWS) [11] which imple-
ments many operations related to different business and technical abstractions
in a single service interface leading to low cohesion of its operations and high
unavailability to end users because it is over-loaded. Indeed, the choice of how
operations should be exposed through a service interface can have an impact
on the performance, popularity and reusability of the service and it is not a
trivial task [8–10]. On one hand, Web services interface exposing a high num-
ber of operations allow their clients to invoke their interfaces many times which
significantly deteriorate the service performance. On the other hand, aggregat-
ing several operations of an interface into one large operation will reduce the
reusability of the service.

In this work, we start from the hypothesis that there may be correlations
among any two or more objectives (e.g. quality metrics) that are used to evaluate
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 499–507, 2017.
https://doi.org/10.1007/978-3-319-69035-3_37

500 H. Wang and M. Kessentini

Web service modularization solutions. Our approach, based on the PCA-NSGA-
II methodology [3,13], aims at finding the best and reduced set of objective
that represents the quality metrics of interest to the domain expert. A regular
multi-objective NSGA-II algorithm [2,4,7] with an initial set of exhaustive met-
rics is executed for a number of iterations then a PCA component analyzes the
correlation between the different objectives using the execution traces. The num-
ber of objectives maybe reduced during the next iterations based on the PCA
results. The process is repeated several times until a maximum number of itera-
tions is reached to generate a set of non-dominated Web services modularization
solutions.

We evaluated our approach on a set of 22 real-world Web services, provided
by Amazon and Yahoo. Statistical analysis of our experiments shows that our
dimensionality reduction reduced significantly the number of objectives on sev-
eral case studies to a minimum of 4 objectives. It also generates a smaller number
of non-dominated solutions and lower execution time comparing to the use of
a regular multi-objective algorithm based on NSGA-II [4]. The obtained results
provide also evidence to support the claim that our proposal is more efficient,
on average, than existing Web services modularization techniques, not based on
heuristic search [1,12]. The paper also evaluates the relevance and usefulness of
the suggested interface design improvements for web services user.

2 A Dimensionality Reduction Approach for Web
Services Remodularization

The general structure of the proposed approach is described in Fig. 1. The app-
roach takes as inputs a set of quality metrics, several Web services refactoring
types, and a Web service to refactor. The first component consists of a reg-
ular execution of NSGA-II during a number of iterations. During this phase,
NSGA-II [4] will try to find the non-dominated solutions balancing the initial
set containing all the objectives such as improving the quality metrics of the
service (Table 1) and minimizing the number of refactorings in the proposed
solutions.

After a number of iterations, the second component of the algorithm is exe-
cuted to analyze the execution traces of the first component (solutions and their
evaluations), using PCA [6], to check the correlation between the different objec-
tives. When a correlation between two or more objectives is detected, only one
of them is selected for future iterations of the first component. Then, the first
component is executed again with the new objective set.

The whole process of these two components continue until a maximum num-
ber of iterations is reached. A set of non-dominated refacotoring solutions are
proposed to the users with the reduced objectives set to select the best Web
service refactorings sequence based on his or her preferences.

Improving Web Services Design Quality 501

Fig. 1. The proposed approach.

3 Experiments

3.1 Research Questions

We designed our experiments to address the following research questions:

– RQ1: To what extent can the proposed dimensionality reduction approach
recommends useful Web service refactorings?

– RQ2: To what extent does the proposed dimensionality reduction approach
reduce the number of objectives while recommending useful refactorings?

– RQ3: How does the proposed dimensionality reduction approach perform
compared to other existing Web services modularization techniques not based
on computational search [1,12]?

To answer RQ1, we considered both automatic and manual validations to
evaluate the usefulness of the proposed Web service refactorings. For the auto-
matic validation we compared the proposed Web service refactorings with the
expected ones. The expected refactorings are suggested by users (e.g. subjects
of our study) to fix existing Web service design defects as detailed later.

RErecall =
| suggested Web service refactorings ∩ expected Web service refactorings |

| expected Web service refactorings | ∈ [0, 1]

(1)

REprecision =
| suggested Web service refactorings ∩ expected Web service refactorings |

| suggested refactorings | ∈ [0, 1]

(2)

For the manual validation, we asked groups of potential users of our tool to
manually evaluate whether the suggested refactorings are feasible and efficient
at improving the services quality and achieving their maintainability objectives.
We define the metric Manual Correctness (MC) that corresponds to the number
of meaningful refactorings divided by the total number of suggested refactorings.
MC is given by the following equation:

MCmanualcorrectness =
| relevant Web service refactorings |
| suggested Web service refactorings | ∈ [0, 1] (3)

502 H. Wang and M. Kessentini

We have also evaluated the ability of our approach to fix design defects, detailed
in Sect. 2, using the measure NF that corresponds to the number of fixed defects
divided by the total number of defects. The defects are detected using a set of
rules defined in our previous work [11].

To answer RQ2, we compared the number of objectives (NOB), precision,
recall and manual correctness of our approach to a regular multi-objective algo-
rithm (NSGAII) using the same fitness functions adaptation.

To answer RQ3, We compared our results with a recent state-of-the art
approaches by [1,12]. Athanasopoulos et al. proposed a Web service refactoring
approach based on a greedy algorithm to refactor and split Web service interfaces
based on different cohesion measures. Ouni et al. proposed a graph decomposition
approach for Web services remodularization using coupling and cohesion metrics.

3.2 Experimental Setup

To answer all the above research questions, we conducted our experiment on
a benchmark of 22 real-world services provided by Amazon1 and Yahoo2. We
selected services with interfaces exposing at least 10 operations. We chose these
Web services because their WSDL interfaces are publicly available, and they were
previously studied in the literature [1,5]. Table 1 presents our used benchmark.

Our evaluation involved 14 independent volunteer participants including 6
industrial developers and 8 graduate students. In particular, 3 senior developers
from Browser Kings3, 3 developers from Accunet Web Services4, 3 MSc and 5
PhD candidates in Software Engineering. We first gathered information about
the participant’s background. All participants are familiar with service-oriented
development and SOAP Web services with an experience ranging from 4 to
9 years. The participants were unaware of the techniques to be evaluated neither
the particular research questions, in order to guarantee that there will be no bias
in their judgment (Figs. 2 and 3).

3.3 Results

We reported the results of our empirical qualitative evaluation in Fig. 4 (MC).
As reported in Fig. 4, most of the Web services modularization solutions recom-
mended by our approach were correct and approved by developers. On average,
for the different Web services, 78% of the created port types and applied changes
to the initial design are considered as correct, improve the quality, and are found
to be useful by the software developers of our experiments. The highest MC score
is 84% and was achieved for the Web service GeographicalDictionary, while the
lowest score was 67% for AmazonVPCPortType. Thus, this finding indicates

1 http://aws.amazon.com/.
2 developer.searchmarketing.yahoo.com/docs/V6/reference/.
3 http://www.browserkings.com.
4 http://www.accunet.us.

http://aws.amazon.com/
http://developer.searchmarketing.yahoo.com/docs/V6/reference/
http://www.browserkings.com
http://www.accunet.us

Improving Web Services Design Quality 503

Fig. 2. Median manual correctness value over 30 runs on all the Web services using
the different techniques with a 95% confidence level (α < 5%).

Table 1. Amazon and Yahoo benchmark overview.

Service interface Provider

AutoScalingPortType Amazon

MechanicalTurkRequesterPortType Amazon

AmazonFPSPorttype Amazon

AmazonRDSv2PortType Amazon

AmazonVPCPortType Amazon

AmazonFWSInboundPortType Amazon

AmazonS3 Amazon

AmazonSNSPortType Amazon

ElasticLoadBalancingPortType Amazon

MessageQueue Amazon

AmazonEC2PortType Amazon

KeywordService Yahoo

AdGroupService Yahoo

UserManagementService Yahoo

TargetingService Yahoo

AccountService Yahoo

AdService Yahoo

CompaignService Yahoo

BasicReportService Yahoo

TargetingConverterService Yahoo

ExcludedWordsService Yahoo

GeographicalDictionaryService Yahoo

504 H. Wang and M. Kessentini

Fig. 3. Median precision value over 30 runs on all the Web services using the different
techniques with a 95% confidence level (α < 5%).

Fig. 4. Median recall value over 30 runs on all the Web services using the different
techniques with a 95% confidence level (α < 5%).

Fig. 5. Median number of fixed design defects value over 30 runs on all the Web services
using the different techniques with a 95% confidence level (α < 5%).

Improving Web Services Design Quality 505

Fig. 6. Median number of objectives value over 30 runs on all the Web services using
NSGAII-PCA.

that the results are independent of the size of the Web services and the number
of recommended changes to the initial design.

Since the manual correctness MC metric just evaluates the correctness and
not the relevance of the recommended solutions, we also compared the proposed
modularization changes with some expected ones defined manually by the differ-
ent groups for the different Web services. Figures 5 and 6 summarize our findings.
We found that a considerable number of proposed port types, with an average
of more than 76% in terms of precision and recall, were already created by the
users manually (expected port types). The recall scores are higher than precision
ones since we found that the port types suggested manually by developers could
be further decomposed, if necessary. This was confirmed by the qualitative eval-
uation (MC). In addition, we found that the slight deviation with the expected
design is not related to incorrect changes but to the fact that the developers
have different scenarios/contexts in using the different operations.

We evaluated also the ability of our approach to fix several types of design
defects and to improve the service interface design quality as described in Fig. 7
that depicts the percentage of fixed defects (NF). It is higher than 77% on all
the 22 Web services, which is an acceptable score since developers may reject or
modify some design changes that fix some defects because they do not consider
some of them as very important (their goal is not to fix all design defects in
the Web service interface) or because they wanted to focus on improving the
cohesion and minimize coupling. Some Web service interfaces, such as Amazon-
FWSInboundPortType, have a higher percentage of fixed code smells with an
average of more than 83%.

To summarize and answer RQ1, the experimentation results confirm that our
approach helps the participants to restructure their Web service interface design
efficiently by finding the relevant portTypes and improve the quality of all the
22 Web services.

Results for RQ2. Figure 8 shows that our approach significantly reduced the
number of objectives when executed on all the systems. The number of objec-
tives were reduced to only four in several services. The reduced objectives may

506 H. Wang and M. Kessentini

show the importance of coupling and cohesion when identifying refactoring rec-
ommendations since they were identified in all the 22 services after the reduction
of objectives. The number of changes was also selected for all the services after
the reduction step. Combined with the results of RQ1, it is clear that the pro-
posed NSGAII-PCA formulation successfully reduced the number of objectives
while generating useful Web services refactoring recommendations.

Results for RQ3. Figures 4, 5, 6 and 7 confirm the average superior perfor-
mance of our approach compared to the two existing fully automated Web service
modularization techniques [1,12] and also the multi-objective approach combin-
ing all the metrics together without the use of the PCA component. Figure 4
shows that our approach provides significantly higher manual correctness results
(MC) than all other approaches having MC scores respectively between 48%
and 64%, on average as MC scores on the different Web services. The same
observation is valid for the precision and recall as described in Figs. 5 and 6.
The outperformance of our technique in terms of percentage of fixed defects, as
described in Fig. 7, can be explained by the fact that the main goal of existing
studies is not to mainly fix these defects. Existing work are mainly limited to
the coupling and cohesion metrisc which may not be sufficient to guide the mod-
ularization of Web services. In conclusion, our approach provides better results,
on average, than all existing fully-automated Web services modularization tech-
niques (answer to RQ3).

4 Conclusion

In this paper, we proposed a dimensionality reduction approach for multi-
objective Web services remodularization that adjusts the number of considered
objectives during the search for near optimal solutions. The execution traces
of the multi-objective algorithm are analyzed using a PCA component to find
potential correlation between the objectives (e.g. quality metrics). To evalu-
ate the effectiveness of our tool, we conducted a human study on a set of
users who evaluated the tool and compared it with the state-of-the-art Web
services modularization techniques. Our evaluation results provide strong evi-
dence that our technique successfully reduced the initial set of large number
of objectives/quality metrics. The results also show that our approach outper-
forms several of existing Web services modularization techniques, not based on
heuristic search [1,12].

References

1. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V.: Cohesion-driven decom-
position of service interfaces without access to source code. IEEE Trans. Serv.
Comput. 8, 1–18 (2015)

2. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four-preference incor-
poration in evolutionary multiobjective optimization: a survey of the state-of-the-
art. Adv. Comput. 98, 141–207 (2015)

Improving Web Services Design Quality 507

3. Deb, K., Saxena, D.: Searching for Pareto-optimal solutions through dimensionality
reduction for certain large-dimensional multi-objective optimization problems. In:
2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp. 3353–3360.
IEEE, July 2006

4. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

5. Fokaefs, M., Mikhaiel, R., Tsantalis, N., Stroulia, E., Lau, A.: An empirical study
on web service evolution. In: IEEE International Conference on Web Services
(ICWS), pp. 49–56, July 2011

6. Jackson, J.: A Users Guide to Principal Components. Wiley, New York (1991)
7. Kalboussi, S., Bechikh, S., Kessentini, M., Ben Said, L.: Preference-based many-

objective evolutionary testing generates harder test cases for autonomous agents.
In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 245–250. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39742-4 19

8. Kessentini, M., Bouchoucha, A., Sahraoui, H., Boukadoum, M.: Example-based
sequence diagrams to colored petri nets transformation using heuristic search. In:
Kühne, T., Selic, B., Gervais, M.-P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol.
6138, pp. 156–172. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13595-8 14

9. Kessentini, M., Langer, P., Wimmer, M.: Searching models, modeling search: On
the synergies of SBSE and MDE. In: Proceedings of the 1st International Workshop
on Combining Modelling and Search-Based Software Engineering, pp. 51–54. IEEE
Press (2013)

10. Král, J., Zemlicka, M.: Popular SOA antipatterns. In: Computation World: Future
Computing, Service Computation, Cognitive, Adaptive, Content, Patterns, pp.
271–276 (2009)

11. Ouni, A., Kessentini, M., Inoue, K., Ó Cinnéide, M.: Search-based web service
antipatterns detection. IEEE Trans. Serv. Comput. 10, 603–617 (2015)

12. Ouni, A., Salem, Z., Inoue, K., Soui, M.: SIM: an automated approach to improve
web service interface modularization. In: 2016 IEEE International Conference on
Web Services (ICWS), pp. 91–98. IEEE (2016)

13. Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in
many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol.
Comput. 17(1), 77–99 (2013)

http://dx.doi.org/10.1007/978-3-642-39742-4_19
http://dx.doi.org/10.1007/978-3-642-13595-8_14

Service Recommendation

ARA-Assessor: Application-Aware Runtime
Risk Assessment for Cloud-Based Business

Continuity

Min Fu1,2(&), Shiping Chen2,3, Jian Yang1, Surya Nepal2,3,
and Liming Zhu2,3

1 Department of Computing, Macquarie University, Sydney, Australia
{min.fu,jian.yang}@mq.edu.au

2 Data61, CSIRO, Sydney, Australia
{Shiping.Chen,Surya.Nepal,Liming.Zhu}@data61.csiro.au
3 School of Computer Science and Engineering, UNSW, Sydney, Australia

Abstract. Cloud-based systems are prone to be attacked because they share the
same cloud infrastructure, where there may exist hackers and malicious users.
As a result, cloud system owners need an on-going security risk assessment
mechanism to monitor the risk of their systems so that they can be mitigated in a
timely manner to ensure the business continuity. Existing methods of cloud
system risk assessment usually do not fully consider the dependencies of the
system’s cloud resources or the conflictions of the threats on the system. In this
paper we propose an application-aware cloud system risk assessment method,
called ARA-Assessor, for performing security risk assessment for cloud sys-
tems. ARA-Assessor includes a cloud system model used to specify the sig-
nificance value of each system component and their dependencies. With this
application-aware model, the cloud system owners are able to continuously
assess the risk of their systems. We evaluate ARA-Assessor with three typical
cloud systems on AWS. The experimental results show that our method is
capable of continuously assessing the runtime risk for multiple types of cloud
systems.

Keywords: Cloud security � Cloud risk � Risk management � Risk assessment

1 Introduction

Cloud computing is widely adopted by businesses and governments, and a large
number of them prefer to deploy and run their software applications and enterprise
systems on the cloud platform [1, 2]. Since the cloud is a multi-tenancy environment
shared by multiple users, a significant concern about cloud systems is their security [2,
3]. A survey from the research firm Gartner in 2015 found that around 95% of the
consumers of cloud computing reported cloud security issues [4]. A survey conducted

The acronym “ARA” is short for “Application-Aware Risk Assessment”.

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 511–527, 2017.
https://doi.org/10.1007/978-3-319-69035-3_38

by the Cloud Security Alliance (CSA) in 2016 indicated that at least 35% of the
business owners did not trust the security of cloud as much as internal IT systems [5].
Cloud security has become a significant concern for ensuring business continuity [3].

In order to address the security issues of cloud systems and ensure the business
continuity despite potential attacks, a useful procedure is to perform security risk
assessment for cloud systems at runtime [6, 7]. Existing methods of cloud risk
assessment [6, 8–10] largely focus on individual system components. They are con-
cerned with either the application-level attacks that have an impact on service avail-
ability [10] or the intrinsic vendor-level risks of the cloud providers themselves [6, 8],
and some of them do not fully leverage the risks that result from the on-demand nature
of cloud [6, 8, 10]. Another problem with existing cloud risk assessment mechanisms is
that they do not consider the complete dependencies of the cloud resources of the cloud
system or the full conflictions of the cloud system’s threats [9, 10].

As such, in this paper we propose a novel cloud risk assessment framework, called
ARA-Assessor, for determining the runtime risk value of the cloud system provided by
the system owner. ARA-Assessor is application-aware, which means that the risk
assessment leverages the system specification model provided by the system owner.
ARA-Assessor relies on the infrastructure-level threats of the cloud system to calculate
the risk. We implement ARA-Assessor and evaluate it with three representative types
of cloud systems on AWS cloud. The experimental results show that our proposed
method is able to continuously and quantitatively assess the runtime risk of cloud
systems in an automated way and it is generalizable for multiple cloud systems.

The research contributions of this paper are: (1) we propose a generalizable cloud
runtime risk assessment method; (2) we propose a generic cloud system modelling
approach and a generic cloud system threats modelling approach; (3) we propose a
cloud resource dependencies propagation mechanism and a recursive mechanism for
resolving the threats conflictions issue for analyzing cloud system risk.

The remainder of this paper is organized as follows: Sect. 2 describes a motivating
example; Sect. 3 discusses cloud system modelling; Sect. 4 discusses cloud system
threats modelling; Sect. 5 illustrates our risk assessment method; Sect. 6 presents our
experimental evaluation; Sect. 7 discusses the validity and general applicability of our
model; Sect. 8 discusses the related work; Sect. 9 provides the conclusion and our
future work.

2 A Motivating Example

We use a sample cloud system, as shown in Fig. 1, to discuss the risk management.
This cloud system follows the typical 2-tier architecture [11]. The E-Business service
and the report generation service run in the web instances. These two services are
auto-scaled by the auto-scaling service provided by the Auto Scaling Group (ASG),
and the workload requests on these two services are dispatched by the load balancing
service provided by the Elastic Load Balancer (ELB). The E-Business service triggers
the production database service running inside the production database instance, and
the report generation service triggers the report database service running inside the
reporting database instance. There is periodical synchronization from the production

512 M. Fu et al.

database store to the reporting database store. A number of potential cloud
infrastructure-level threats could occur to this sample cloud system. We categorize
these threats into the following categories: (1) threats on the cloud login credentials;
(2) threats on the ASG; (3) threats on the LC; (4) threats on web instances; (5) threats
on database instances; (6) threats on the ELB; (7) threats on each instance’s Amazon
Machine Image (AMI); (8) threats on the security group. To study the occurrence
frequency of the threats on the cloud system, we analyzed the cloud security report
from Alert Logic [12], and obtained the month-to-month attack spread for real-world
cloud systems in 2014, as shown in Fig. 2. How to accurately determine the system’s
risk is a question.

3 Generic Modelling of Cloud Systems

A cloud system is deployed on a set of allocated cloud resources. Each cloud resource
has a resource id, belongs to a cloud resource type (e.g. ELB), and has a significance
value which reflects the importance of the resource. Some cloud resources in the
system have dependencies, i.e. the attacks on such a resource can affect its dependent
cloud resources. Hence, we can use DAG (Directed Acyclic Graph) to model the cloud
system resources. The cloud system model, denoted as S, is represented as:

S ¼ R;Eð Þ ð1Þ
where R refers to the set of cloud resources, and E refers to the set of cloud resource
dependencies. Each element of R, denoted as Ri (1 � i � |R|), is represented as:

Ri ¼ N;V ;Wð Þ ð2Þ
where N denotes resource id, V denotes resource type, and W denotes resource sig-
nificance value. Each element of E, denoted as Ei (1 � i � |E|), is denoted as:

Ei ¼ Rk;Rmð Þ;Rk 2 R;Rm 2 R ð3Þ

Fig. 1. 2-tier cloud system. Fig. 2. Attacks for real cloud systems in 2014 [12].

ARA-Assessor: Application-Aware Runtime Risk Assessment 513

where Rk refers to any cloud resource that can affect another cloud resource, and Rm

refers to Rk’s affected cloud resource. Taking the cloud system mentioned in Sect. 2 as
an example, its system model is shown in Fig. 3. The resources are represented as R1 to
R10. The id, type and significance value of each cloud resource are presented. The cloud
resource dependencies are represented by the directed arrows.

4 Generic Modelling of Cloud System’s Threats

A cloud system’s threats refer to all the potential infrastructure-level cloud threats that
can occur to the system. Each cloud threat consists of the following information:
(1) threat name; (2) threat feature which specifies the types of cloud resources that can
be directly affected by the threat; (3) threat’s directly attacked cloud resources;
(4) threat’s overall affected cloud resources propagated from the dependencies of the
directly attacked resources; (5) threat impact value; (6) threat occurrence probability.
Some threats have conflictions with each other, i.e., they are unable to occur at the
same time. For example, terminating the database instance and changing database
instance type cannot occur simultaneously. Hence, we can model the cloud system’s
threats as a graph. The cloud system threats model, denoted as TS, is represented as:

TS ¼ T;Eð Þ ð4Þ
where T refers to the set of cloud system threats, and E refers to the set of cloud system
threats conflictions. Each element of T, denoted as Ti (1 � i � |T|), is represented as:

Ti ¼ N;F;RD;RA; I;Pð Þ ð5Þ
where N denotes each threat’s name, F denotes threat’s feature, RD denotes each
threat’s directly attacked cloud resources set and each element in RD follows the model
defined in Formula (2) in Sect. 3, RA denotes each threat’s overall affected cloud
resources set and each element in RA follows the model defined in Formula (2) in
Sect. 3, I denotes each threat’s impact value, and P denotes each threat’s occurrence
probability. Each element of E, denoted as Ei (1 � i � |E|), is denoted as:

Fig. 3. DAG graph for the sample cloud system.

514 M. Fu et al.

Ei ¼ Tk; Tmð Þ; Tk 2 T; Tm 2 T ð6Þ

where Tk refers to any threat that conflicts with another threat, and Tm refers to Tk’s
conflicted threat. Taking the sample cloud system mentioned in Sect. 2 as an example,
the threats graph of the system is shown in Fig. 4. The threats are T1 to Tn. The threats
conflictions are represented by the undirected edges. T1 and T2 cannot occur simulta-
neously (T1 conflicts with T2); T3 and T4 cannot occur simultaneously (T3 conflicts with
T4); T5 and T6 cannot occur simultaneously (T5 conflicts with T6).

5 Our Risk Assessment Method

In order for ARA-Assessor to assess the runtime risk for a cloud system, it requires two
inputs: (1) the cloud systemmodel S and (2) the cloud full threats model TF (TF = (T,E)).
S is manually provided by the cloud system owner who has enough system domain
knowledge. The significance value of each cloud resource ranges from 1 to 5. It is
determined according to the importance of the internal service. Resource dependencies
are determined according to the interactions of the services inside the resources and the
dependencies specified in cloud resources documentations [17]. For example, a web
instance interacts with a database instance because the web service inside the web
instance triggers the database service inside the database instance. For another example,
an elastic load balancer (ELB) or an auto-scaling group (ASG) contains multiple web
instances. TF resembles the threats model defined in Sect. 4. We assume TF is manually
prepared by the system owner. The threats set and threats conflictions set of it can be
determined by analyzing and understanding the domain knowledge on cloud threats and
published dataset [1, 18–21]. The threats in TF include the threats related to all types of
cloud resources, e.g. cloud web instance related threats, cloud database instance related
threats, ASG/ELB related threats, etc.

Since attacks on a cloud system are usually unpredictable and can occur at any
time, ARA-Assessor periodically assesses the cloud system’s risk. We implement
ARA-Assessor as a dedicated service, which embodies the concept of “Security as a
Service” [16]. Prior to performing a periodical risk assessment, ARA-Assessor first
conducts the one-off procedure, which consists of five activities: (1) ARA-Assessor
automatically determines the system’s threats subset model TS using the inputs of cloud

Fig. 4. Threats graph for the sample cloud system.

ARA-Assessor: Application-Aware Runtime Risk Assessment 515

system model S and full cloud threats model TF; (2) ARA-Assessor obtains the initial
occurrence probability of each threat TS ! Ti (1 � i � |TS ! T|); (3) ARA-
Assessor automatically determines the affected cloud resources for each threat
TS ! Ti; (4) the impact value of each threat TS ! Ti is calculated; (5) the cloud
consumer specifies the frequency of performing risk assessment, e.g. every minute.
Then four activities are conducted upon each time tick: (1) ARA-Assessor relies on
external attack detection services [13–15] to detect the runtime threats and events that
occur to the system, denoted as TRT; (2) we derive a threats sub-model from TS, denoted
as T 0

S (T 0
S ¼ T0; E0ð Þ, where Tʹ removes all the conflicted threats of each runtime

threat in TRT from TS ! T, and Eʹ removes all the conflictions with regard to each
runtime threat in TRT from TS ! E); (3) the occurrence probability of each threat in T 0

S
is updated based on TRT; (4) ARA-Assessor uses the threats sub-model T 0

S to calculate
the system’s risk value for the time tick, denoted as RIS, as below:

RIS ¼ Max
X MðT 0

SÞ i½ �!Tj j
j¼1

MðT 0
SÞ i½ � ! T j½ � ! I

� �� MðT 0
SÞ i½ � ! T j½ � ! P

� �� �
ð7Þ

where M(T 0
S) refers to an array of threats sub-models derived from T 0

S, each threats
sub-model M(T 0

S)[i] (i ranges from 1 to |M(T 0
S)|) represents a case of threats model that

contains all the threats from T 0
S which are independent of each other and do not conflict

with each other, and this array enumerates complete cases of such threats models for
T 0
S. For each case, the risk value is calculated, and the maximum of the calculated risk

values is the quantified risk of the cloud system for that time tick.

5.1 Determination of Cloud System’s Threats Subset Model

The cloud infrastructure-level threats that can occur to the cloud system are a subset of
all cloud infrastructure-level threats that can occur to all cloud resources. When we rely
on external attack detection tools to detect threats, we should only subscribe the sys-
tem’s threats subset in order to save cost. Hence, we need to determine the cloud
system’s threats subset. Using the two inputs of cloud system model S and full cloud
threats model TF, the cloud system’s threats subset model TS is determined as below:

TS ¼ T;Eð Þ ð8Þ

where T is a subset of TF ! T, and E is a subset of TF ! E. Each threat in TS, denoted
as TS ! Ti, satisfies such a condition: (TS ! Ti ! F) \ V(S ! R) 6¼ Ø, where V
(S ! R) represents the cloud system’s overall resources types set.

Taking the sample cloud system mentioned in Sect. 2 as an illustrating example,
the determined threats subset model is the one represented in Fig. 4 in Sect. 4.

5.2 Determination of Threats Initial Occurrence Probabilities

The initial occurrence probabilities of the cloud system’s threats can be determined by
analyzing cloud attacks historical data such as the security reports from Symantec

516 M. Fu et al.

Corporation [22]. Based on the research on cloud security threats analysis done by the
University of Tunis [23], we are able to obtain the threats probabilities as shown in
Fig. 5. According to the research, the probability of no cloud threats occurring is 0.97,
so the upper bound probability for each cloud threat is 0.03. For simplicity, we assume
that the occurrence probabilities of all the threats for the cloud system are 0.03.

5.3 Determination of Cloud Resources Affected by System Threats

The affected cloud resources for a threat refer to the system cloud resources that are
affected either directly or indirectly by the threat. The indirectly affected resources are
propagated from the directly attacked resources. A challenge with the resource prop-
agation is that the resource dependencies can be multi-layer, which means that a cloud
resource’s dependent resources can further have dependent resources, and so on. We
address this challenge and design the affected resources determination mechanism, as
illustrated in Algorithm 1. For each threat, we first determine its directly attacked cloud
resources by mapping the feature of the threat with the cloud resources in the system
model (DetermineDirectlyAffectedResources(T ! F, S ! R)); second, for each
directly attacked resource of the threat R, we add it into the threat’s affected resources
set, and then we use a recursive function to add its overall propagated dependent
affected resources into the threat’s affected resources set (RecursivelyDeter-
mineAffectedResources(R, T ! RA)). Inside the recursive function, we first get R’s
dependent affected cloud resources set (GetAffectedResources(R, S ! E)). If this set is
empty, we exit the recursion; otherwise, for each of R’s dependent affected resources,
Rʹ, we add it into the threat’s affected resources set, and then we further add its overall
propagated dependent resources into the threat’s affected resources set.

Fig. 5. Threats probabilities for cloud [23].

ARA-Assessor: Application-Aware Runtime Risk Assessment 517

Taking the sample cloud system mentioned in Sect. 2 as an illustrating example, its
system model is represented by Fig. 3 in Sect. 3. One of its threats is “Attack the web
instance AMI”. This threat’s attacking point is R4. R4 affects R3, R3 further affects R1,
and R1 further affects R5 and R6, and hence the overall affected cloud resources of this
threat are R1, R3, R4, R5 and R6.

5.4 Calculation of Threats Impact Values

For each threat in the cloud system’s infrastructure-level threats set, with its affected
cloud resources determined, we are able to compute its impact value based on the
significance value of each affected cloud resource. The impact value of each threat in
the cloud system’s threats subset, denoted as TS ! Ti ! I (1 � i � |TS ! T|), is
calculated as below:

TS ! Ti ! I ¼
X TS!Ti!RAj j

j¼1
TS ! Ti ! RA j½ � ! Wð Þ ð9Þ

where TS ! Ti ! RA denotes the overall affected cloud resources set of each threat,
and TS ! Ti ! RA[j] ! W denotes the significance value of each affected cloud
resource of each threat.

518 M. Fu et al.

Taking the sample cloud system mentioned in Sect. 2 as an illustrating example,
according to Sect. 5.4, the threat of “Attack the web instance AMI” affects the cloud
resources of R1, R3, R4, R5, and R6, and hence the impact value of this threat is
calculated to be 19 (3 + 2 + 4 + 5 + 5).

5.5 Threats Sub-model Derivation

Upon a time tick, the detected the runtime threats and events are denoted as TRT; and
the threats sub-model derived from the system’s threats set TS is denoted as T 0

S, which
removes all the threats in TRT from TS. If TRT is empty, T 0

S is equal to TS. We define
GetConflictedThreats(T, E) as the function to get the conflicted threats set of threat T,
and define GetConflictions(T, E) as the function to get the set of conflictions with
regard to threat T. Then, T 0

S is determined as below:

T 0
S ¼ T0;E0ð Þ ð10Þ

T0 ¼ TS ! T �
X TRT!Tj j

i¼1
GetConflictedThreats TRT ! Ti; TS ! Eð Þ ð11Þ

E0 ¼ TS ! E�
X TRT!Tj j

i¼1
GetConflictions TRT ! Ti; TS ! Eð Þ ð12Þ

5.6 Updating of Latest Occurrence Probabilities of Threats

Now, ARA-Assessor needs to perform probability updating for each threat in T 0
S based

on the detected runtime threats and events, denoted as TRT. The runtime threats detected
are those threats that are factually occurring to the cloud system. The runtime events
consist of two attacks: (1) CPU-intensive user requests explosion, which means that the
attackers send excessive workload requests that significantly affect the CPU utilization
of cloud instances to the cloud system; (2) data-intensive user requests explosion,
which means that the attackers send excessive workload requests that significantly
affect the database to the cloud system. Cloud systems are not necessarily faced with
both of the two runtime events. If the cloud system only contains web servers (e.g. web
instances running Tomcat service), then it can only have the runtime event of
“CPU-intensive user requests explosion”; if the cloud system contains both web servers
and database servers, then it can have both runtime events.

For the runtime threats detected upon a time tick, the updated occurrence proba-
bility of each detected runtime threat is set to be 1 because it has factually occurred to
the cloud system and is causing certain negative consequence on the cloud system.

When either of the two runtime events happens upon a time tick, the probability of
the correspondent threat must be updated, and we argue that the updated probability

ARA-Assessor: Application-Aware Runtime Risk Assessment 519

(denoted as Pʹ) is relevant to the number of CPU-intensive user requests or
data-intensive user requests at that time tick (denoted as W), the threshold number of
CPU-intensive user requests or data-intensive user requests for the cloud system (de-
noted as Wthreshold), and the initial occurrence probability of the correspondent threat
(denoted as P). Pʹ must satisfy three requirements: (1) Pʹ is greater than P; (2) Pʹ
increases with W; (3) Pʹ converges to 1. Hence, we calculate Pʹ as below:

P0 ¼ 1� 1� p
a W�Wthresholdð Þ ð13Þ

where a is a constant greater than 1, in order to make Pʹ an increasing function (i.e. Pʹ
increases with W). The value of the constant a (a > 1) is determined as below:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p

1� 1þ p
2

10000þWthreshold
2 �Wthresholdð Þ

s

¼
ffiffiffi
2

10000�Wthreshold
2

p
ð14Þ

5.7 The System Risk Determination Mechanism

The mechanism of calculating the risk based on T 0
S is shown in Algorithm 2. We first

derive a list of threats models each of which only contains the threats that do not
conflict with each other (GetValidThreatsModelsList(T 0

S)), then we calculate the risk
value for each threats model in the list, and we return the maximum risk value as the
final risk for the system. The function of GetValidThreatsModelsList(T 0

S) utilizes the
recursive mechanism in order to enumerate all the cases where the threats in the threat
model of the system are able to occur simultaneously. Inside this function, we first
obtain all the threats that do not conflict with any other threats (GetThreatswith-
outConflictions(T 0

S)). If the number of such threats is equal to the overall threats
number, we return such threats as the output of the function; otherwise, if the number
of such threats is greater than 0, we first divide the threats model into threats with
conflictions (TSubModel) and threats without conflictions (TW), and then we
recursively call the same function (GetValidThreatsModelsList(TSubModel)) using
TSubModel as the input; otherwise, if the number of threats without conflictions is 0,
we loop through each threat and divide the threats model into each threat and the
threats that do not conflict with it, and then we recursively call the same function to
obtain the output (GetValidThreatsModelsList(TC)) and merge it into the final output
(TMList).

520 M. Fu et al.

6 Experimental Evaluation

We implemented the prototype of ARA-Assessor and evaluated it with three typical
cloud systems deployed on AWS EC2 [21]. They are: (1) the “all services in one
instance” cloud system; (2) the 2-tier cloud system with a production database; (3) the
2-tier cloud system with a production database and a reporting database. Each of them
is a simplified version of the real-world cloud system. These three cloud systems are a

ARA-Assessor: Application-Aware Runtime Risk Assessment 521

good representation of all types of cloud systems because they consider a variety of
cloud resources composition scenarios of different cloud systems, so they are complete
enough to verify the feasibility and generalizability of ARA-Assessor. The experi-
mental environment is shown in Fig. 6. Since we assume we rely on external attack
detection services to detect threats and events, we simulate the detection of runtime
threats and events. ARA-Assessor triggers the attack detection services by simulation
to obtain the simulated detection results, using the generated cloud system model as the
input. The output is the cloud system’s quantified ongoing runtime risk.

6.1 Experimental Procedure

For each of the three cloud systems, the frequency of performing risk assessment is set
to be 1 min. This is in accordance with the monitoring frequency of the CloudWatch
function provided by AWS [24]. We simulate the running of each system for 60 min
and dynamically inject one or more infrastructure-level threats and events at random
time points during each system’s running by simulation. The infrastructure-level threats
randomly injected are able to occur simultaneously. The events can be injected by
using an open source tool named Httperf [25], which is used for generating user
workload requests from the client side. Since we use the free-tier cloud resources in our
experiments, the allowed maximum number of CPU-intensive workload requests and
the allowed maximum number of data-intensive workload requests should follow the
requests number threshold of a free-tier instance. Based on our previous empirical
study [26], we know that the requests threshold for a free-tier instance is 360 simul-
taneous requests per machine, including both CPU-intensive requests and
data-intensive requests. As such, for the first cloud system, we determine that the
CPU-intensive requests threshold is 180 and the data-intensive requests threshold is
180. For the second cloud system, there are initially eight free-tier web instances
attached to an ASG and registered with an ELB, and one free-tier database instance
shared by the web instances. So, the overall requests number threshold for the system is
2880, so the CPU-intensive requests threshold is 1440 and the data-intensive requests
threshold is 1440. For the third cloud system, there are initially six free-tier web
instances attached to an ASG and registered with an ELB, six free-tier reporting

Fig. 6. Experimental environment.

522 M. Fu et al.

instances attached to another ASG and registered with another ELB, one free-tier
production database instance shared by the web instances, and one free-tier reporting
database instance shared by the reporting instances. So, the overall requests number
threshold for the system is 4320, and hence the CPU-intensive requests threshold is
2160 and the data-intensive requests threshold is 2160. In the real-world case, the
values of the two thresholds of a real industry system should be determined by the
system owner. Since we rely on external attack detection tools, we simulate the
detection results of threats and events and perform risk assessment. For each of the
three cloud systems we run the experiment 50 times and obtain the ongoing risk values
and the average execution time of performing risk assessment. The hardware config-
uration of the ARA-Assessor server is: CPU-Dual Core 2.6 GHz and RAM-8 GB.

6.2 Experimental Results

The assessed risk values and the average execution time for the three cloud systems are
shown in Figs. 7, 8 and 9. The results are based on 50 runs.

The risk threshold for each cloud system is determined to be 10.7, 20.5 and 36.3,
respectively. Where the risk value is greater than the threshold, it is considered to be

Fig. 7. Risk assessment results for the first cloud system.

Fig. 8. Risk assessment results for the second cloud system.

ARA-Assessor: Application-Aware Runtime Risk Assessment 523

high risk and appropriate responses such as performing system recovery should be
considered. The average execution time of performing risk assessment for each time
point for each cloud system is less than 1300 ms, which is well below the risk
assessment time frequency set by the system owner (60000 ms). This also buffers
enough time to perform threats and events detection for the systems. The maximum
relative standard deviation for the execution time of performing risk assessment for
each time point for each cloud system is 1.9%.

7 Validity and Applicability of the Model

First, while the cloud threats concerned by ARA-Assessor are only cloud
infrastructure-level, we assume that the business stakeholders and the system owners
are capable of figuring out the full set of all infrastructure-level cloud threats. In the
implementation of our proposed method, we only consider certain types of
infrastructure-level cloud threats when constructing the full cloud threats set, and we
argue that by doing this it does not influence our method’s validity.

Second, the determination of the initial occurrence probabilities of a cloud system’s
threats is only based on a limited study of existing research work, and hence the
determined probabilities might not be comprehensive enough. We expect the busi-
nesses to figure out the probabilities in a more sophisticated manner.

Third, for evaluating the generalizability of ARA-Assessor, we only used three
types of cloud systems. Although we argue that these three systems are a good rep-
resentation of all cloud systems, it is still worthwhile to evaluate our method against
more types of cloud systems. Moreover, it would be even better if we could evaluate
our method with systems deployed on other cloud platforms.

8 Related Work

8.1 Risks and Threat Models in Cloud Computing

The European Network & Information Systems Agency (ENISA) [18] classifies cloud
computing risks into three categories: Organizational, Technical and Legal [1]. The

Fig. 9. Risk assessment results for the third cloud system.

524 M. Fu et al.

organizational risks refer to “all the risks that may impact the structure of the orga-
nization or the business as an entity”, e.g. “loss of business reputation due to the tenants
sharing the same resources” [1]. The technical risks refer to “problems or failures
associated with the provided services or technologies contacted from the cloud service
provider” [1], e.g. “malicious insiders/outsiders attacks on cloud” [1]. The legal risks
refer to “issues that surround data being exchanged across multiple countries that have
different laws and regulations concerning data traversal, protection requirements and
privacy laws” [1]. The Cloud Security Alliance (CSA) [19] lists the following threats as
the top cloud computing risks: malicious insiders, data loss/leakage, abuse and
nefarious use of cloud computing and shared technology vulnerabilities. From the
perspective of cloud infrastructure, the cloud threats include attacks on cloud instances
(virtual machines), attacks on cloud data storage and attacks on cloud networking
facilities such as elastic load balancers or auto scaling groups [20, 27]. From the
perspective of SaaS providers or cloud consumers, cloud threats include attacks on
different application functions, attacks on the business workflows of cloud systems, and
attacks on the service modules of cloud systems [28].

8.2 Existing Risk Assessment Methods for Cloud Computing

Risk is measured in terms of the consequence (or impact) and the likelihood of the
attacking event or threat [29]. Researchers from the University of Leeds proposed a
cloud risk assessment framework used by cloud service providers and service con-
sumers to assess risk during service deployment and operation [8]. This framework
quantitatively assesses the risks in various stages of the service lifecycle, and it con-
siders the risks of both cloud service providers (the cloud consumers) and infrastructure
providers (cloud vendors) [8]. The threat impacts are mainly determined by looking at
the seven security criteria (e.g. past SLA performance) of cloud providers and the three
performance criteria (e.g. past SLA performance) of cloud consumers [8]. This
framework calculates risk by computing the cross-product of the threat impacts vector
and the threat probabilities vector [8]. However, the main drawback of this risk
assessment framework is that it does not consider the threats resulting from the
on-demand nature of cloud since it largely focuses on the seven typical security
evaluation criteria of various cloud infrastructure providers and the three performance
criteria of the cloud consumers. Researchers from Lincoln Laboratory of MIT proposed
another risk assessment tool for cloud services, which can be used for evaluating the
runtime risk of particular cloud services [9]. This tool assesses system runtime risk
based on analyzing a list of possible runtime threats on cloud services. The impact of
each threat is determined by investigating how many virtual machines can be affected
by the threat, and the probability of each threat is derived from external historical data
[9]. However, the major problem with this tool is that its way of calculating threat
impacts does not well capture the real natures of the consequences of security failures
on cloud, and it does not fully consider the dependencies of cloud resources of the
cloud system or the conflictions of cloud system threats. In comparison, our proposed
method addresses all of these drawbacks. To the best of our knowledge, it is the first
time that such a cloud risk assessment framework is ever proposed.

ARA-Assessor: Application-Aware Runtime Risk Assessment 525

9 Conclusion and Future Work

Systems deployed on the cloud are prone to security attacks, which is one of the
greatest issues with cloud computing. Cloud system risk assessment is helpful for
managing and analyzing the security of cloud systems. Since existing methods of cloud
system risk assessment usually do not fully consider cloud resources dependencies or
cloud system threats conflictions, we proposed ARA-Assessor to continuously perform
risk assessment for cloud systems. ARA-Assessor is application-aware and leverages
cloud infrastructure-level threats. We implemented the prototype of ARA-Assessor and
evaluated it using three typical cloud systems. Based on the experimental results, we
can see that our method is able to automatically assess the runtime risk of cloud
systems in a continuous manner, and it is generalizable for multiple types of cloud
systems. Our future work includes: (1) include the application-level and service-level
threats into our risk assessment method; (2) evaluate the feasibility of our method with
more types of cloud systems and more cloud platforms.

Acknowledgement. This work is supported by Macquarie University and Data61, CSIRO. The
work is partially funded by ARC DP150102966.

References

1. Dahbur, K., et al.: A survey of risks, threats and vulnerabilities in cloud computing. In:
Proceedings of the 2011 International Conference on Intelligent Semantic Web-Services and
Applications (ISWSA 2011), vol. 12, April 2011

2. NIST: Resource Security. http://csrc.nist.gov/groups/SNS/cloud-computing/
3. Mather, T., et al.: Cloud Security and Privacy: An Enterprise Perspective on Risks and

Compliance. O’Reilly Media, Sebastopol (2009). copyright 2009, ISBN: 0596802765,
9780596802769

4. Gartner: Why private clouds fail. Network world official website. http://www.networkworld.
com/article/2881794/cloud-computing/gartner-why-private-clouds-fail.html

5. Cloud Security Alliance (CSA): State of Security 2016. CSA Global Enterprise Advisory
Board. https://downloads.cloudsecurityalliance.org/assets/board/CSA-GEAB-State-of-
Cloud-Security-2016.pdf

6. Saripalli, P., Walters, B.: QUIRC: a quantitative impact and risk assessment framework for
cloud security. In: 3rd IEEE International Conference on Cloud Computing (CLOUD 2010),
July 2010

7. Heiser, J., Nicolett, M.: Assessing the security risks of cloud computing. Gartner Research
Report 2008, ID no. G00157782, June 2008

8. Djemame, K., et al.: A risk assessment framework for cloud computing. IEEE Trans. Cloud
Comput. 4(3), 265–278 (2016). ISSN: 2168-7161

9. Lippmann, R.P., Riordan, J.F.: Threat-based risk assessment for enterprise networks.
Lincoln Lab. J. 22(1), 33–45 (2016)

10. Kholidy, H.A., et al.: Online risk assessment and prediction models for autonomic cloud
intrusion prevention systems. In: AICCSA 2014, November 2014

11. Rahimi, M.R., et al.: MAPCloud: mobile applications on an elastic and scalable 2-tier cloud
architecture. In: 5th IEEE International Conference on Utility and Cloud Computing (2012)

12. Alert Logic: The Changing State of Cloud Security. Cloud Security Report 2015 (2015)

526 M. Fu et al.

http://csrc.nist.gov/groups/SNS/cloud-computing/
http://www.networkworld.com/article/2881794/cloud-computing/gartner-why-private-clouds-fail.html
http://www.networkworld.com/article/2881794/cloud-computing/gartner-why-private-clouds-fail.html
https://downloads.cloudsecurityalliance.org/assets/board/CSA-GEAB-State-of-Cloud-Security-2016.pdf
https://downloads.cloudsecurityalliance.org/assets/board/CSA-GEAB-State-of-Cloud-Security-2016.pdf

13. Nenvani, G., Gupta, H.: A survey on attack detection on cloud using supervised learning
techniques. In: IEEE Symposium on Colossal Data Analysis and Networking (CDAN 2016),
March 2016

14. Lo, C., Huang, C., Ku, J.: A cooperative intrusion detection system framework for cloud
computing networks. In: 39th International Conference on Parallel Processing Workshops
(ICPPW 2010), September 2010

15. Zhang, T., et al.: CloudRadar: A Real-time Side-channel Attack Detection System in Clouds.
Princeton University publications, Department of Electrical Engineering (2016)

16. Krutz, R.L., Vines, R.D.: Cloud security: a comprehensive guide to secure cloud computing.
In: Cloud Security: A Comprehensive Guide to Secure Cloud Computing. Wiley Publishing
(2010). ISBN: 0470589876, 9780470589878

17. AWS Cloud Documentation Official Website. http://aws.amazon.com/documentation/. Last
access time: 6 Aug 2017, 17:50

18. ENISA: Cloud Computing: Benefits, risks and recommendations for information security
(2010)

19. CSA: Top Threats to cloud computing. v1.0 (2010)
20. Chou, T.: Security threats on cloud computing vulnerabilities. Int. J. Comput. Sci. Inf.

Technol. (IJCSIT) 5, 79–88 (2013)
21. AWS official Website. http://aws.amazon.com/. Last access time: 6 Aug 2017, 17:55
22. Symantec ISTR: Internet Security Threat Report 2016. Symantec Website, vol. 21, April

2016. https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
23. Jouini, M., Rabai, L.B.A.: Mean failure cost extension model towards security threats

assessment: a cloud computing case study. J. Comput. 10, 184–194 (2015). doi:10.17706/
jcp.10.3.184-194

24. CloudWatch Website. https://aws.amazon.com/cloudwatch/. Last access time: 6 Aug 2017,
18:40

25. Httpref Website. https://linux.die.net/man/1/httperf. Last access time: 6 Aug 2017, 18:50
26. Fu, M., et al.: Runtime recovery actions selection for sporadic operations on cloud. In:

ASWEC 2015, Adelaide, Australia, pp. 185–194, September 2015
27. Sabahi, F.: Cloud computing security threats and responses. In: 3rd IEEE International

Conference on Communication Software and Networks (ICCSN 2011), May 2011
28. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud

computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)
29. Misra, K.: Risk analysis and management: an introduction. In: Misra, K. (ed.) Handbook of

Performability Engineering, pp. 667–681. Springer, London (2008)

ARA-Assessor: Application-Aware Runtime Risk Assessment 527

http://aws.amazon.com/documentation/
http://aws.amazon.com/
https://www.symantec.com/content/dam/symantec/docs/reports/istr-21-2016-en.pdf
http://dx.doi.org/10.17706/jcp.10.3.184-194
http://dx.doi.org/10.17706/jcp.10.3.184-194
https://aws.amazon.com/cloudwatch/
https://linux.die.net/man/1/httperf

Personalized Quality Centric Service
Recommendation

Yiwen Zhang1, Xiaofei Ai1, Qiang He2(&), Xuyun Zhang3,
Wanchun Dou4, Feifei Chen5, Liang Chen6, and Yun Yang2

1 Anhui University, Hefei, China
zhangyiwen@ahu.edu.cn, aixiaofeiliujiajia@outlook.com

2 Swiburne University of Technology, Melbourne, Australia
{qhe,yyang}@swin.edu.au

3 University of Auckland, Auckland, New Zealand
xuyun.zhang@auckland.ac.nz
4 Nanjing University, Nanjing, China

douwc@nju.edu.cn
5 Federation University Australia, Ballarat, Australia

feifei.chen@federation.edu.au
6 Sun Yat-Sen University, Guangzhou, China

chenliang6@mail.sysu.edu.cn

Abstract. The broad application of service-oriented architecture (SOA) has
fueled the rapid growth of web and cloud services and service-based systems
(SBSs). Tremendous web and cloud services have been deployed all over the
world. Finding the right services becomes difficult and critical. Thus, service
recommendation has become of paramount research and practical importance.
Existing web service recommendation approaches employ utility functions or
skyline techniques. However, those approaches have not addressed a critical and
fundamental problem: how to recommend services according to a system engi-
neer’s quality constraints, e.g., response time, failure rate, etc. To address this
issue, we first propose two basic personalized quality centric approaches for
service recommendation, which employ the k-nearest neighbors and the dynamic
skyline techniques respectively. To overcome the respective limitations of the
two basic approaches, we propose two hybrid approaches, namely KNN-DSL
and DSL-KNN. Extensive experiments are conducted on a real-world dataset to
demonstrate the effectiveness and efficiency of our approaches.

Keywords: Service recommendation � QoS � Dynamic skyline � KNN

1 Introduction

The service-oriented architecture (SOA) allows complex software systems to be built
by composing loosely coupled web services [1, 2]. The component services of such a
service-based system (SBS) collectively realize the system functionality which is often
offered as SaaS (Software-as-a-Service) in the cloud environment.

Figure 1 shows the process for building an example travel booking SBS that
requires four services to perform four system tasks. As depicted, the process consists of

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 528–544, 2017.
https://doi.org/10.1007/978-3-319-69035-3_39

two phases. The first phase is service
recommendation where representative
services are identified from the can-
didate services and recommended to
the system engineer [3, 4]. The second
phase is service selection where the
system engineer selects one service
from each set of recommended ser-
vices to build the target SBS that ful-
fils the multi-dimensional constraints
for the system quality, e.g., response
time, failure rate, etc., and in the
meantime achieves the optimization
goal for the system quality. This is an
NP-complete problem often referred to as quality-aware service selection [1, 2, 5, 6].

The development and popularity of e-business, e-commerce, especially the
pay-as-you-go business model promoted by cloud computing have fueled the rapid
growth of services, indicated by the statistics published by programmableweb.com, an
online web service repository. This makes the quality-aware service selection problem
intractable. In recent years, a lot of efforts have been devoted to reducing the com-
plexity of the problem of quality-aware service selection through service recommen-
dation [3, 4, 7–9]. Recommending appropriate services reduces the search space of the
NP-complete service selection problem. In this way, a system engineer does not have to
enumerate all candidate services and their possible combinations. The key issue here is
to identify appropriate candidate services that are most likely to fulfil the system
engineer’s quality constraints. Unfortunately, none of the existing web service rec-
ommendation approaches has properly addressed this issue. There are three major
categories of service recommendation approaches, utility-based, skyline-based [3, 4]
and collaborative filtering (CF) based [10, 11]. Utility-based and skyline-based
approaches do not properly take into account system engineers’ personalized quality
constraints. CF-based service recommendation aims to predict the quality of web
services. Thus, although labeled as a recommendation approach [10–14], CF-based
service recommendation is in fact a prediction approach, not a recommendation
approach.

In this paper, we first propose two basic approaches for personalized quality
centric service recommendation, one based on the KNN (k-nearest neighbors)
technique and the other based on the DSL (dynamic skyline) technique. The KNN
approach models the service recommendation problem as a nearest neighbor search
problem. Given a system engineer’s quality constraints, it finds a set of k suitable
services whose quality values are most similar to the quality constraints. The
DSL-based approach models the service recommendation problem as a dynamic sky-
line query problem. It attempts to find representative services that are not dominated by
any other services with respect to system engineer’s quality constraints.

The main contributions of this research are:

Business Process

v3,1

v4,1

t1:
flight ticket

booking

t2:
car hire

t3:
hotel booking

t4:
insurance

quote

v1,1

Candidate
Services

{s1,1, s1,2, ...}
Candidate
Services

{s4,1, s4,2, ...}

v2,1

2. Service Selection

SBS

Quality
Constraints

for SBS

1. Service Recommendation

Fig. 1. Process for building an SBS

Personalized Quality Centric Service Recommendation 529

1. It is the first attempt to model and solve the critical problem of personalized quality
centric service recommendation. The resolution of this problem naturally comple-
ments the existing quality-aware service selection approaches by recommending
appropriate and representative services to system engineers.

2. Two basic approaches are proposed for personalized quality centric service rec-
ommendation, one finding suitable services while the other finding representative
services.

3. Two hybrid approaches, KNN-DSL and DSL-KNN, are proposed to overcome the
limitations of the two basic approaches.

4. Extensive experiments are conducted to evaluate the effectiveness and efficiency of
the proposed approaches using a dataset that contains the quality information about
2,507 real-world web services.

The rest of this paper is organized as follows. Section 2 analyzes the research
problem. Section 3 describes the basic and the hybrid approaches. Section 4 evaluates
the proposed approaches. Section 5 reviews the related work. Section 6 concludes the
paper and points out future work.

2 Problem Analysis

This section analyzes the research problem with the travel booking SBS presented in
Fig. 1. For each of the four system tasks, i.e., t1, t2, t3 and t4, there is a set of candidate
services that can perform the system task but with potentially different quality values,
e.g., response time and failure rate. The system engineer needs to select one service
from each set of candidate services for building the SBS, i.e., Phase 2. The selected
services must collectively fulfil the quality constraints for the system. This problem is
commonly known as NP-complete. As the scenario scales up, it becomes intractable.
A promising approach for simplifying this problem is, from each set of candidate
services, to identify services that are more likely to fulfil the quality constraints for the
system, to recommend to the system engineer for selection, i.e., Phase 1. The search
space for the problem can be significantly reduced.

To facilitate service recommendation, the global quality constraints for the system
must be decomposed into local quality references for individual system tasks. Alrifai
et al. proposed an approach in [15] that is widely employed to decompose global
quality constraints for a system into local quality references. Given a set of quality
constraints for the system, e.g., 800 ms for response time and 1% for failure rate (at
least 99 out of 100 service requests must be handled properly), Alrifai et al.’s approach
can decompose it into four sets of local quality constraints, one for each of the four
tasks, e.g., 120 ms for the response time of performing t1 and 0.9% for its failure rate.

According to the local quality references for each system task, appropriate services
can be identified and recommended to the system engineer. A straightforward approach
is to model this problem as a nearest neighbors search problem, as presented in Fig. 2.
In Fig. 2, points s1, …, s8 represent the eight candidate services for t1 and point sr
represents the dummy reference service with quality references for the response time
and failure rate of this task. As indicated in Fig. 2(a), those services that are close

530 Y. Zhang et al.

(similar) to sr in both dimensions, e.g., s3, s6 and s8, are more suitable than those far
away from sr, e.g., s1, s2, s4, s5 and s7. Service s1, in particular, has lower response time
and failure rate than most services. Services with such outstanding quality advantages
are usually very expensive. The selection of s1 will most likely violate the cost con-
straint for the system. In a 3-dimensional space with cost as the third dimension, s1
might be one of the services most similar to sr. However, in Fig. 2(a), s1 is not
considered suitable with respect to sr.

Therefore, we can identify a set of k nearest neighbor services that are most similar
to sr in all quality dimensions. However, there is an inherent limitation to this approach
in certain scenarios – the services identified by this approach might not be represen-
tative in all quality dimensions. Take Fig. 2(a) for example. Suppose that s3, s6 and s8
are identified as the services most similar to sr. Services s6 has the lowest response time
and is thus considered the most representative service in terms of low response time
among s3, s6 and s8. Service s3 has the lowest failure rate and is thus considered the
most representative in terms of low failure rate among s3, s6 and s8. Now we take a look
at s8. It is not representative in either low response time or low failure rate. Therefore,
considering only response time and failure rate, s3 and s6, are more appropriate than s8.
According to the definition of skyline [3], s8 is dominated by s3 and s6 because s8 is no
better than s3 and s6 in any quality dimensions.

An approach for solving the above non-representativeness problem is to calculate
the skyline [3], as presented in Fig. 2(b). Given a set of services, the skyline calculation
identifies the set of services that are not dominated by any other services. In the case of
Fig. 2(b), the skyline services include s1, s5 and s7, which are superior to the other
services in terms of both low response time and low failure rate. They are represented
by light grey circles. Hence, they are considered more representative than the other
services. However, s1, s5 and s7 are not close to sr at all. In fact, they are further away
from sr compared to the other services. This is because the skyline calculation uses the
origin O as the reference point. As a result, the skyline services are not suitable with
respect to sr. To address this issue, we need to identify the dynamic skyline services
[16], as presented in Fig. 2(c). The dynamic skyline service calculation uses a given
point rather than the origin as the reference point and identifies the dynamic skyline
services with respect to the distances to the reference point. In Fig. 2(c), given sr as the
reference point, the dynamic skyline services include s3, s4, s6 and s7, represented by

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8

sr

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8
sr

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8
sr

(a) KNN based (b) SL based (c) DSL based

Fig. 2. Approaches for service recommendation

Personalized Quality Centric Service Recommendation 531

heavy dark circles. Among s3, s4, s6 and s7, s4 is the most representative in terms of
response time with respective to sr because its response time is the most similar to sr’s.
Similarly, s7 is the most representative in terms of failure rate. Services s3 and s6 are
two tradeoff services between s4 and s7 because they have a response time more similar
to sr than s4 and failure rate more similar to sr than s7.

The KNN-based approach (referred to as KNN in short hereafter) and the
DSL-based approach (referred to as DSL in short hereafter) attempt to identify services
with respect to sr from two different perspectives. The former identifies suitable ser-
vices that are most similar to sr and the latter finds the representative services that are
not dominated by any other services with respect to sr.

In this paper, we use response time and failure rate in the discussion. More quality
constraints can be taken into account in a similar manner, which will transform the
two-dimensional space into a multi-dimensional one.

3 Recommendation Approaches

3.1 Basic Approaches

In this section, we present the basic KNN and DSL approaches.

KNN Approach. Given a set of candidate services S ¼ s1; . . .; snf g, each with p-
dimensional quality values, and a reference service sr with p-dimensional quality ref-
erences, the candidate services and sr are first mapped to a p-dimensional space, one
dimension for each of the p quality dimensions. For numerical quality dimensions, such
as response time, failure rate, reliability, etc., the mapping process is straightforward.
To accommodate non-numerical quality dimensions, such as reputation that are
expressed by a rating selected from {high, medium, low}, the method discussed in [17]
is adopted in this research. Based on a pre-defined hierarchical structure of all possible
values, each level of the hierarchy is associated with a numerical value, for example, 3
for high, 2 for medium and 1 for low.

Given a k value, KNN identifies the top k services from S that are most similar to sr,
based on a measure of similarity in the p-dimensional space. To evaluate the similarity
between each of the candidate services, si 2 S; 1� i� n; and sr, we first normalize the
quality values of si, 1� i� n, as well as sr, with the min-max normalization technique,
which has also been employed by many other researchers [17, 18]:

~qp sið Þ¼
qmax
p Sð Þ�qp sið Þ

qmax
p Sð Þ�qmin

p Sið Þ if qmax
p Sð Þ 6¼ qmin

p Sð Þ
1 if qmax

p Sð Þ¼qmin
p Sð Þ

(
ð1Þ

where qp(si) is the pth dimensional quality value of si, qmax
p Sð Þ and qmin

p Sð Þ are the
maximum and minimum values, respectively, for the pth quality dimension among all
services in S.

After the normalization, the similarity between a candidate service si 2 S and the
reference service sr can be evaluated by the Euclidean distance between si and sr:

532 Y. Zhang et al.

d si; srð Þ ¼
ffiXp

j¼1
qj sið Þ � qj srð Þ� �2r

ð2Þ

Based on Eq. (2), KNN employs Algorithm 1 to identify k services that are most
similar to sr. Algorithm 1 first calculates the Euclidean distance between each service in
S and sr (lines 3–5). It then sorts the services by their distances to sr in a descending
order (line 6). Finally, the algorithm returns the top k services from S as the recom-
mendation results.

KNN requires the k value to be pre-specified, which is a domain-specific parameter.
Different applications usually have their own characteristics, and hence inherit different
optimal k values. On one hand, an overly small k value cannot ensure that adequate
similar services be identified for recommendation. On the other hand, an overly large
k value will include dissimilar services in the final recommendation results and will
consequently decrease the recommendation accuracy. Therefore, the k value should be
set domain-specifically based on experiences and/or experiments. In Sect. 4, we
experimentally study the impact of k on recommendation accuracy.

The complexity of Algorithm 1 relies on the employed sorting algorithm. Here, we
use the complexity of comparison sort algorithms in the worst-case scenario, i.e.,
O nlognð Þ. Thus, Algorithm 1 runs in O npþ nlognð Þ.
DSL Approach. Given a set of points in a p-dimensional space, the skyline calcu-
lation is to find the points that are not dominated by any other points. A point si
dominates another point sj, if si is better than or equal to sj in all dimensions and strictly
better in at least one dimension. In the context of this research, the dominance relations
between two services is defined based on their p-dimensional quality values:

Definition 1. Dominance: Given two services, si; sj 2 S, characterized by p-dimen-
sional quality values, si dominates sj, denoted by si . sj, iff si is as good as or better than
sj in all quality dimensions and better in least one quality dimension, i.e., 8p 2 1; n½ � :
qp sið Þ� qp sj

� �
and 9p 2 1; n½ � : qp sið Þ\qp sj

� �
.

Based on Definition 1, we formally define
the concept of skyline services:

Definition 2. Skyline services: The skyline of
S, denoted by SSL, consists of the set of services
in S that are not dominated by any other ser-
vices in S, i.e., SSL ¼ si 2 S j :9sj : si . sj

� �
.

The services in SSL are referred to as skyline
services.

Generally, the skyline services have the best
quality according to their absolute quality val-
ues in each quality dimension. However, as
discussed in Sect. 2, given a reference service
sr, DSL needs to identify the dynamic skyline
services in S. This can be achieved in a new p-
dimensional space based on the original space.

Personalized Quality Centric Service Recommendation 533

First, each service s 2 S is mapped to a service s0 ¼ f1 sð Þ; . . .; fp sð Þ� �
, where

fj sð Þ ¼ qj srð Þ� qj sð Þ�� ��; 1� i� n. Then, the dynamic skyline of S with respect to
functions f1; . . .; fp, is obtained by calculating the ordinary skyline in the transformed
p-dimensional space with sr as the origin. Accordingly, dynamic dominance is defined
as:

Definition 3. Dynamic dominance: Given two services, si; sj 2 S, characterized by p-
dimensional quality values, and a reference service sr, si dynamically dominates sj with
respect to sr, denoted by si � sj, iff 8p 2 1; n½ � : qp srð Þ�qp sið Þ�� ��� qp srð Þ�qp sj

� ��� �� and
9p 2 1; n½ � : qp srð Þ�qp sið Þ�� ��\ qp srð Þ�qp sj

� ��� ��.
Based on Definition 3, we formally define the concept of dynamic skyline services:

Definition 4. Dynamic skyline services: The dynamic skyline of S, denoted by SDSL,
consists the services that are not dynamically dominated by any other services, with
respect to a given reference service sr, i.e., SDSL ¼ si 2 S j :9sj : sj . si

� �
. The services

in SDSL are referred to as dynamic skyline services.
Figure 3 illustrates the calculation of the dynamic skyline based on Fig. 2(c). First,

the original space is transformed into a new one with sr as the new origin and the
absolute distances to sr as the mapping functions. Then, s1; s2; s3; s4; s5; s6; s7 are
mapped into the new space where they are denoted by s01; s

0
2; s

0
3; s

0
4; s

0
5; s

0
6 and s

0
7.

Service s8 is already in the first quadrant of the new space. After the mapping, the
location of s

0
8 is exactly the same as s8 and thus is omitted in Fig. 3. Having mapped all

the services into the new space, where they are collectively referred to as S’, the
calculation of SDSL is equivalent to the calculation of S

0
SL in the new space. DSL

employs Algorithm 2 to calculate the service skyline SSL of a set of candidate services
S. It iterates through all services in S (line 4). In each iteration, it selects one service
s from S and checks if any other services in S dominate s (lines 5–11). If none, the
algorithm includes s in the service skyline SSL (lines 12–14). After processing all the
services in S, it returns SSL, i.e., the service skyline that consists of all the skyline
services. As presented in Fig. 3, the algorithm returns S0SL ¼ s03; s

0
4; s

0
6; s

0
7

� �
as the

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8
sr

4
's

3
's

6
's

O'

5
's

7
's

2
's

1
's

Fig. 3. Identification of dynamic skyline
services.

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8

sr

3
's

6
's

O'

Fig. 4. Recommendation with KNN-DSL

534 Y. Zhang et al.

skyline services in the new space. Accordingly, we can determine that
SDSL ¼ s3; s4; s6; s7f g. As discussed in Sect. 2, s3 and s7 are closest to sr in terms of
response time and failure rate respectively. In the meantime, s4 and s6 are considered
tradeoffs between s3 and s7.

Algorithm 2 contains two loops, one nested in the other. Let n be the number of
nodes in S. The time complexity of Algorithm 2 is O(n2).

3.2 Hybrid Approaches

KNN and DSL have respective limitations. This section presents two hybrid approa-
ches, KNN-DSL and DSL-KNN, that overcome those limitations.

KNN-DSL. Given a reference service sr, DSL identifies representative services.
However, it sacrifices the similarity between the identified services and sr. Take Fig. 3
for example, where SDSL ¼ s3;f s4; s6; s7g. In terms of standardized Euclidean distance,
s3 and s6 are the closest to sr. In addition, they both belong to the results returned by
KNN when k � 2, as shown in Fig. 2(a). Services
s4 and s7, on the other hand, are not the next services
that are closest to sr. Compared with s4 and s7, s8 is
closer to sr. In addition, s2 is closer to sr than s4.
Thus, some dynamic skyline services should not be
recommended as they are dissimilar to sr.

To address this issue, we propose KNN-DSL, an
approach that combines the advantages of KNN and
DSL. Given a set of candidate services S and a
reference service sr, it first employs KNN to identify
k services most similar to sr, denoted by SKNN. Then,
it calculates the dynamic skyline of SKNN, denoted
by SKNN-DSL, using DSL. In this way, KNN-DSL
identifies those services that are similar to sr and, in
the meantime, representative with respect to sr.
Figure 4 shows an example based on Fig. 2(a).
Suppose k = 3 for KNN. First, s3, s6 and s8 are
identified as the three services that are most similar
to sr. Then, from s3, s6 and s8, s3 and s6 are iden-
tified as the dynamic skyline services. The limita-
tion to this approach is that the number of services
eventually identified is lower than or equals to k,
i.e., |SKNN-DSL| � k. Thus, KNN-DSL does not
ensure a specific number of services in its recom-
mendation results.

DSL-KNN Approach. To tackle the limitation of KNN-DSL, we propose DSL-KNN,
which combines DSL and KNN to recommend services. Given S and sr, it first iden-
tifies the dynamic skyline services, denoted by SDSL. Then, from SDSL, it identifies
k services that are the closest to sr, denoted by SDSL–KNN. If |SDSL-KNN| < k, DSL-KNN
continues to find k - |SDSL-KNN| more services that are closest to sr to ensure a total of

Personalized Quality Centric Service Recommendation 535

k services in its recommendation results. In this way, the dynamic skylines services are
always selected first to ensure the representativeness of some of the recommended
services. Figure 5(a) and (b) demonstrate this approach based on Fig. 3 with k = 3 and
k = 5 for KNN respectively. In Fig. 5, DSL-KNN first identifies the dynamic skyline
services with respect to sr, i.e., SDSL ¼ s3; s4; s6; s7f g. Then, given k = 3, it identifies s3,
s4 and s6 from SDSL as the services that are the most similar to sr. Given k = 5, the
approach will first select all the services in SDSL, and then select s8 as the fifth service in
addition to SDSL because it is the service that is the closest to sr among the rest of the
services, i.e., s1, s2, s5 and s8.

Both KNN-DSL and DSL-KNN employ KNN and DSL. Thus, their complexity are
both Oðn2 þ npþ nlognÞ ¼ Oðn2 þ npÞ.

4 Experimental Evaluation

This section evaluates the proposed approaches through comparison with three existing
representative approaches in their effectiveness (measured by recommendation accu-
racy) and efficiency (measured by computation time).

4.1 Experiment Setup

The experiments were conducted on a publicly available real-world dataset named
QWS [19], which has been widely used [6, 9, 17, 20]. We have implemented the four
personalized quality centric approaches for service recommendation proposed in
Sects. 3. For comparison, we have implemented three existing representative
non-personalized quality centric approaches for service recommendation:

• RS: This approach randomly selects k services from the candidate services.
• UF: This approach selects k services with the highest utility values, calculated with

the widely used utility function [1, 6, 15, 17].
• SL: This approach identify skyline services [3, 7, 8].

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8

sr

4's

3's
6's

O'

5's

7's

2's
1's

Response Time

Fa
ilu

re
 R

at
e

O

s1

s2 s3

s4

s5

s6
s7

s8

srO'

1's
4's

3's

6's
2's

7's

5's

(a) k)b(3= k = 5

Fig. 5. Recommendation with DSL-KNN

536 Y. Zhang et al.

Metrics for effectiveness. Given a system engineer’s quality preferences represented
by sr, personalized quality centric service recommendation aims to find services whose
quality is (1) similar to sr; and (2) representative with respect to sr. Accordingly, we
evaluate the recommendation accuracies of the comparing approaches, which are
measured by three metrics, Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Non-Dominance Rate (NDR).

MAE is defined as:

MAE ¼
XjRj

i¼1

ffiXp

j¼1
qj sið Þ � qj srð Þ� �2r

=jRj ð3Þ

where R is the set of services returned by the recommendation approach, qj(si) and
qj(sr) are the j

th dimensional quality value of si2R and sr. An MAE value indicates the
average difference between the recommended services and sr in their p-dimensional
quality. A low MAE value indicates high recommendation accuracy.

RMSE is defined as:

RMSE ¼
ffiXjRj

i¼1

Xp

j¼1
qj sið Þ � qj srð Þ� �2

=jRj
r

ð4Þ

During the calculation of RMSE, the individual differences between the recom-
mended services and sr are each squared and then averaged over R. Similar to MAE, a
low RMSE indicates high recommendation accuracy.

NDR is defined as:

NDR ¼ RDSLj j= Rj j ð5Þ

where RDSL is the set of dynamic skyline services in R. NDR measures the represen-
tativeness of the results. A high NDR indicates high recommendation accuracy.

Metric for efficiency. In order to evaluate the efficiency of the proposed approaches,
we measure their computational overheads.

To simulate different recommendation scenarios, we have conducted three series of
experiments, namely series A, B and C. Table 1 presents the parameter settings. In each
experiment, we randomly select n services from the QWS dataset as the candidate
services, and another one as sr. Then, we run the comparing approaches to identify the
services to recommend. All approaches are implemented in Java using JDK 1.8. All

Table 1. Experiment parameter settings.

Parameter Experiment series
A B C

Number of candidate services (n) 500 to 1000 1000 1000
Number of services to recommend (k) 5 5 to 12 5
Number of quality dimensions (q) 4 4 2 to 9

Personalized Quality Centric Service Recommendation 537

experiments are conducted on a machine with Intel i7-4790 CPU 3.60 GHz and 16 GB
RAM, running Windows 10 x64 Professional.

4.2 Experimental Results

Effectiveness. Figure 6 shows the impact of the number of services in S (denoted
by n) on the recommendation accuracies obtained by the approaches. Figure 6(a) and
(b) show that KNN-DSL, KNN and DSL-KNN obtain the best recommendation
accuracies, measured by their MAE and RMSE values which are much lower than the
other four approaches. DSL obtains the fourth best recommendation accuracy overall.
This indicates the importance of considering sr during service recommendation.
Interestingly, we observe that UF achieves the worst recommendation accuracy. It finds
the services with the best overall quality, which however, are not necessarily preferable
to the system engineer, indicated by its extremely high MAE values. Figure 6(a) and
(b) also show that the increase in n increases the recommendation accuracies of our
approaches, i.e., DSL-KNN, KNN-DSL, KNN and DSL. As n increases, there are more
candidate services for the approaches to choose from, increasing the possibility of
finding suitable services. Figure 6(c) shows that the services recommended by
KNN-DSL and DSL are the most representative, with slight advantages over
DSL-KNN. The services recommended by the other four approaches, including KNN,
are significantly less representative. It clearly shows the effectiveness of the DSL
operator in finding representative services.

Figure 7 demonstrates the impact of the number of services to recommend (denoted
by k). Figure 7(a) and (b) show that KNN-DSL, again, achieves the best recommen-
dation results overall in experiment series B, KNN the second, DSL-KNN the third and
DSL the fourth. KNN-DSL is the winner because its KNN operator ensures the sim-
ilarity between the selected k services and sr with its KNN operator, and then further
prunes some of the k services whose quality are relatively dissimilar to sr with its DSL
operator. KNN seconds to KNN-DSL because the non-dynamic-skyline services in its
recommendation results lower its recommendation accuracy. Similar to KNN-DSL,
DSL-KNN also employs two operators, DSL then KNN. Its DSL operator selects the
dynamic skyline services, which are representative however not necessarily very
similar to sr. Thus, its MAE values are not as low as KNN and DSL-KNN. RS, UF and

500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Candidate Service (n)

M
A

E

DSL−KNN KNN−DSL DSL KNN RS UF SL

500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Candidate Service (n)

R
M

S
E

DSL−KNN KNN−DSL DSL KNN RS UF SL

(a) MAE (b) RMSE (c) NDR

Fig. 6. Impact of parameter n on accuracy (experiment series A)

538 Y. Zhang et al.

SL are again no match for our approaches, demonstrated by their significantly higher
MAE and RMSE values. Figure 7(a) and (b) also show that the increase in the k value
leads to slight increases in the MAE and RMSE values obtained by KNN-DSL,
DSL-KNN and SL. As k increases, services that are not quite similar to sr are also
included in the recommendation results, which lowers the recommendation accuracy.
The increase in k has no impact on DSL because DSL recommends only the dynamic
skyline services which are irrelevant to the k value. Figure 7(c) shows that the rec-
ommendation results of KNN-DSL and DSL are all representative. This is because they
both employ the DSL operator to ensure the representativeness of the recommendation
results. DSL-KNN achieves the third highest representativeness in the recommendation
results. Its DSL operator selects only the representative services, i.e., the dynamic
skyline services. However, as k increases and exceeds the number of dynamic skyline
services identified by its DSL operator, its KNN operator has to include some
non-dynamic-skyline services in the recommendation results. These services reduce the
overall representativeness of its recommendation results.

Figure 8 shows the impact of the number of quality dimensions (denoted by q).
Figure 8(a) and (b) show that KNN-DSL, for the third time, achieves the best rec-
ommendation accuracy, outperforming KNN and DSL-KNN, which achieve the sec-
ond best and third best recommendation accuracy respectively. DSL achieves the fourth
highest - however significantly lower - recommendation accuracy. We can also observe
that the increase in q decreases the recommendation accuracies achieved by our
approaches, indicated by their increasing MAE and RMSE values. The increase in

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Services to Recommend (k)

M
A

E
DSL−KNN KNN−DSL DSL KNN RS UF SL

5 6 7 8 9 10 11 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Services to Recommend (k)

R
M

S
E

DSL−KNN KNN−DSL DSL KNN RS UF SL

(a) MAE (b) RMSE (c) NDR

Fig. 7. Impact of parameter k on accuracy (experiment series B)

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Number of Quality Dimensions (q)

M
A

E

DSL−KNN KNN−DSL DSL KNN RS UF SL

2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Number of Quality Dimensions (q)

R
M

S
E

DSL−KNN KNN−DSL DSL KNN RS UF SL

(a) MAE (b) RMSE (c) NDR

Fig. 8. Impact of number of quality constraints (q) on accuracy (experiment series C)

Personalized Quality Centric Service Recommendation 539

q mainly impacts the skyline calculation and dynamic skyline calculation. A large
q makes it harder for one service to dominate or dynamically dominate the other,
resulting in a large number of skyline services and dynamic skyline services. As
q increases, KNN-DSL manages to maintain its slight advantage over KNN and
DSL-KNN in most cases. Its KNN operator ensures that the quality of the selected
k services are the closest to sr. KNN achieves the second best recommendation accu-
racy because it also ensures the similarity between the recommendation results and sr.
DSL-KNN loses to KNN-DSL and KNN on average because some services that are
similar to sr are pruned by its DSL operator for being dominated by other services.
Figure 8(c) shows that KNN-DSL and DSL consistently obtain highly representative
recommendation results. DSL-KNN also obtains representative recommendation
results except when q = 2. We investigated this interesting phenomenon and found out
that when q = 2, its DSL identified only a few dynamic skyline services, requiring its
KNN operator to find some services that are similar to sr but are not representative.
This lowers the overall representativeness of its recommendation results.

Efficiency. Figure 9 shows the computation times taken by the approaches in exper-
iment series A. As demonstrated, the seven
approaches can be categorized into two groups
according to their scalability to n, the slow
approaches, including SL, DSL and DSL-KNN, and
the fast approaches, including RS, KNN, KNN-DSL
and UF. The slow approaches share one thing in
common - they have to identify the skyline services
or the dynamic skyline services from a large number
of candidate services, which is not required for the
fast approaches. KNN-DSL, which also employs a
DSL operator like DSL and DSL-KNN, takes much
less time to complete. It is because its KNN operator
selects only k services for its DSL operator to
process further. Given that k is usually a small
number, its DSL operator does not need take long
to finish. The slow approaches take significantly
more time than the fast approaches. However, they
are in fact not quite slow - they require slightly
more than 70 ms to process 1,000 candidate ser-
vices. In addition, their computation times are
roughly linear to n, which indicates high scalability.
We believe their efficiency are acceptable in most,
if not all, real-world applications.

Figure 10 shows the computation times taken
by different recommendation approaches in exper-
iment series C. We observe differences in their
computation times similar to Fig. 9 between the slow and fast approaches. The fast
approaches take less than 10 ms on average to complete. Their computation times are
not significantly impacted by the increase in q, which demonstrates their high

500 600 700 800 900 1000
0

20

40

60

80

Number of Candidate Service (n)

T
im

e(
m

s)

DSL−KNN KNN−DSL DSL KNN RS UF SL

Fig. 9. Impact of parameter n on
efficiency (experiment series A)

2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

Number of Quality Dimensions (q)

T
im

e(
m

s)

DSL−KNN KNN−DSL DSL KNN RS UF SL

Fig. 10. Impact of parameter q on
efficiency (experiment series C)

540 Y. Zhang et al.

scalability to q. On the other hand, the slow approaches taking 60 ms to 100 ms to
complete, much longer than fast approaches, are still fast enough for most, if not all,
real-world applications.

Please note that the computation times of the recommendation approaches in
experiment series B, where k varies, are not presented. The k value means to select
k services from the processed candidate services. For example, the KNN operator,
which employs Algorithm 1 introduced in Sect. 3.1, simply picks the top k services
from a set of services sorted by their distance to sr. UF selects k services in a similar
way. Such operations have a complexity of O(1) and do not impact the computation
times of the approaches.

4.3 Discussion

Table 2 presents the average MAE, RMSE and NDR values obtained by the recom-
mendation approaches in each experiment series. The lowest and second lowest MAE,
RMSE, as well as the highest and the second highest DNR, achieved in each experi-
ment series are highlighted by dark grey and light grey respectively. We can see that on
average, KNN-DSL outperforms the other approaches. This indicates that KNN-DSL
obtains the most suitable and most representative recommendation results with respect
to sr. In the meantime, KNN-DSL is also highly efficient, as illustrated by Figs. 9 and
10. Thus, KNN-DSL is the best approach for service recommendation in most
real-world applications. However, KNN-DSL has a limitation - it does not ensure a
certain number of services in its recommendation results. It might eventually finds
fewer than k services. Thus, if a number of k services in the recommendation results is
mandatory, KNN-DSL is not a proper choice. In those cases, DSL-KNN and KNN are
preferable. Table 2 shows that KNN achieves the second lowest MAE and RMSE
values, indicating that its recommendation results are close to sr. However, its
advantage over DSL-KNN is only marginal. In addition, its NDR values are much
lower than those of DSL-KNN, meaning that its recommendation results are not as
representative. Therefore, in most cases, DSL-KNN is a better choice than KNN
k services are mandatory. DSL achieves the highest NDR in all three experiment series.
However, its MAE and RMSE values are much higher than KNN-DSL, DSL-KNN and
KNN. In addition, it does not guarantee the number of services in its recommendation
results. As a result, DSL is not the first choice in any envisaged real-world applications.

Table 2. Average performance (MAE/RMSE/NDR)

Experiment series A B C

KNN-DSL 0.03 0.03 1.00 0.03 0.03 1.00 0.061 0.06 1.00
DSL-KNN 0.05 0.06 0.99 0.07 0.08 0.97 0.08 0.08 0.94
KNN 0.04 0.04 0.06 0.04 0.04 0.50 0.064 0.07 0.65
DSL 0.16 0.21 1.00 0.15 0.20 1.00 0.28 0.33 1.00
RS 0.41 0.46 0.65 0.41 0.47 0.54 0.48 0.52 0.76
UF 0.68 0.69 0.68 0.66 0.67 0.55 0.69 0.69 0.81
SL 0.54 0.58 0.75 0.55 0.59 0.76 0.56 0.58 0.71

Personalized Quality Centric Service Recommendation 541

5 Related Work

Quality-aware service recommendation is a critical issue in service-oriented computing.
Utility-based recommendation [1, 3, 6, 15, 17] and skyline-based recommendation
[3] are currently the two most popular approaches for quality-aware service
recommendation.

Utility-based recommendation is very straightforward. The utility value of a service
indicates how good its overall p-dimensional quality is in comparison with the other
candidate services in S - the higher, the better. The utility calculation for a service si
goes through two phases. First, a utility value is calculated for each of its quality
dimensions. Then, the utility of service si is calculated by summing its utility values in
all p quality dimensions. Given a set of candidate services, utility-based recommen-
dation selects the services with the highest utility values. This approach has been
widely employed [1, 3, 6, 15, 17].

The other popular approach for service recommendation is the skyline-based ser-
vice recommendation. Its process can be found in Sect. 2. It was first employed by
Alrifai et al. to select representative services that are not dominated by any other
candidate services [3]. Since then, many researchers have attempted to improve the
skyline-based service recommendation approach to accommodate more sophisticated
environments. To name few, Benouaret et al. propose a concept named alpha-dominant
service skyline to address two issues in the approach proposed by Alrifai et al. [7].
First, it treats services with a bad compromise between different quality dimensions in a
fairer manner. Second, it improves the efficiency of skyline calculation. Benouaret et al.
have also proposed an improved skyline-based approach for service recommendation
that handles services’ probabilistic quality values [8].

The common and critical limitation of the utility-based and the skyline-based service
recommendation is the lack of consideration for system engineers’ quality constraints,
which have always been a fundamental and critical issue in quality-aware service
selection [1, 2, 6, 9, 17, 20], as well as skyline-based service composition [21–23]. This
renders the utility-based and skyline-based service recommendation obsolete. As
demonstrated in Sect. 4, their recommendation results are neither suitable nor
representative.

There is a large body of approaches labeled service recommendation approaches
[10–14]. However, aiming to predict the quality values of services, those approaches
are not designed for service recommendation.

Our approaches address the limitation of existing recommendation approaches by
centering system engineers’ quality constraints in the recommendation. By combining
the KNN and DSL techniques, our approaches can efficiently recommend suitable and
representative services with respect to system engineers’ quality preferences.

6 Conclusion and Future Work

In this paper, we first proposed two basic approaches, named KNN and DSL, for
personalized quality centric service recommendation, based on k-nearest neighbors and
dynamic skyline techniques, respectively. Then, to overcome their limitations, we

542 Y. Zhang et al.

proposed two hybrid approaches, named KNN-DSL and DSL-KNN. Finally, we pre-
sented extensive experiment results to demonstrate their effectiveness and efficiency.

In the future, we will combine the proposed approaches with approaches for service
compositions to facilitate an effective and efficient personalized quality centric process
for building service-based systems.

Acknowledgment. This work is supported by the National Key Technology R&D Program
(No. 2015BAK24B01), the General Research for Humanities and Social Sciences Project of
Chinese Ministry of Education (No. 15YJAZH112), the Educational Commission of Anhui
Province of China (No. KJ2016A038), and the Australian Research Council Projects
DP150101775 and LP130100324. Qiang He is the corresponding author of this paper.

References

1. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE Trans.
Softw. Eng. 33(6), 369–384 (2007)

2. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-Aware
middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

3. Alrifai, M., Skoutas, D., Risse, T.: Selecting skyline services for QoS-based web service
composition. In: 19th International Conference on World Wide Web, pp. 11–20 (2010)

4. Yu, Q., Bouguettaya, A.: Efficient service skyline computation for composite service
selection. IEEE Trans. Knowl. Data Eng. 25(4), 776–789 (2013)

5. He, Q., Yan, J., Jin, H., Yang, Y.: Quality-aware service selection for service-based systems
based on iterative multi-attribute combinatorial auction. IEEE Trans. Softw. Eng. 40(2),
192–215 (2014)

6. Trummer, I., Faltings, B., Binder, W.: Multi-objective quality-driven service selection - a
fully polynomial time approximation scheme. IEEE Trans. Softw. Eng. 40(2), 167–191
(2014)

7. Benouaret, K., Benslimane, D., Hadjali, A.: On the use of fuzzy dominance for computing
service skyline based on QoS. In: 9th IEEE International Conference on Web Services,
pp. 540–547 (2011)

8. Benouaret, K., Benslimane, D., Hadjali, A.: Selecting skyline web services from uncertain
QoS. In: 9th IEEE International Conference on Services Computing, pp. 523–530 (2012)

9. Tan, T.H., Chen, M., Sun, J., Liu, Y., André, É., Xue, Y., Dong, J.S.: Optimizing selection
of competing services with probabilistic hierarchical refinement. In: 38th International
Conference on Software Engineering, pp. 85–95 (2016)

10. Zheng, Z., Lyu, M.R.: Collaborative reliability prediction of service-oriented systems. In:
32nd ACM/IEEE International Conference on Software Engineering, pp. 35–44 (2010)

11. Zheng, Z., Lyu, M.R.: Personalized reliability prediction of web services. ACM Trans.
Softw. Eng. Methodol. 22(2), 12 (2013)

12. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Qos-aware web service recommendation by
collaborative filtering. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

13. Chen, X., Zheng, Z., Yu, Q., Lyu, M.R.: Web service recommendation via exploiting
location and QoS information. IEEE Trans. Parallel Distrib. Syst. 25(7), 1913–1924 (2014)

14. Yao, L., Sheng, Q.Z., Ngu, A.H., Yu, J., Segev, A.: Unified collaborative and content-based
web service recommendation. IEEE Trans. Serv. Comput. 8(3), 453–466 (2015)

Personalized Quality Centric Service Recommendation 543

15. Alrifai, M., Risse, T.: Combining global optimization with local selection for efficient
QoS-aware service composition. In: 18th International Conference on World Wide Web,
pp. 881–890 (2009)

16. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: ACM SIGMOD International Conference on Management of Data, pp. 467–478
(2003)

17. He, Q., Yan, J., Jin, H., Yang, Y.: Quality-aware service selection for service-based systems
based on iterative multi-attribute combinatorial auction. IEEE Trans. Softw. Eng. 40(2),
192–215 (2014)

18. Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: QoS ranking prediction for cloud
services. IEEE Trans. Parallel Distrib. Syst. 24(6), 1213–1222 (2013)

19. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web. In: 17th
International Conference on World Wide Web, pp. 795–804 (2008)

20. He, Q., Zhou, R., Zhang, X., Wang, Y., Ye, D., Chen, F., Grundy, J., Yang, Y.: Keyword
search for building service-based systems. IEEE Trans. Softw. Eng. 43(7), 658–674 (2017)

21. Zhao, X., Shen, L.W., Peng, X., Zhao, W.: Finding preferred skyline solutions for
SLA-constrained service composition. In: 20th IEEE International Conference on Web
Services, pp. 195–202 (2013)

22. Zhang, S., Dou, W., Chen, J.: Selecting Top-k composite web services using
preference-aware dominance relationship. In: 20th IEEE International Conference on Web
Services, pp. 75–82 (2013)

23. Zhang, F., Hwang, K., Khan, S.U., Malluhi, Q.M.: Skyline discovery and composition of
multi-cloud mashup services. IEEE Trans. Serv. Comput. 9(1), 72–83 (2016)

544 Y. Zhang et al.

Cataloger: Catalog Recommendation Service
for IT Change Requests

Anup K. Kalia(B), Jin Xiao, Muhammed F. Bulut, Maja Vukovic,
and Nikos Anerousis

IBM T.J. Watson, Yorktown Heights, NY, USA
anup.kalia@ibm.com, {jinoaix,mfbulut,maja,nikos}@us.ibm.com

Abstract. Service automation improves the efficiency of IT service
management processes. Traditionally, IT change management relies on
humans to submit a change request ticket or navigate a cumbersome
catalog. Today, new systems are created to execute changes based on
a service catalog that is linked to back-end application programming
interfaces (APIs). Consequently, a user would need to identify the right
API among thousands or more items, and fill in all the required parame-
ters. This interaction is fully self-served with little assistance. We present
Cataloger a novel recommendation system that enables humans to spec-
ify their change requests in natural language sentences and recommends
the most appropriate APIs. Cataloger incorporates multi-step process
where IT change requests are first classified into categories, tasks and
actions (APIs), and then parameters are extracted from the requests.
We evaluate a well-known set of machine learning techniques for clas-
sification and parameters extraction for Cataloger, and propose a novel
feedback method for improved accuracy. We evaluate Cataloger on real-
world data from four different clients of IBM. Our evaluation shows that
the feedback approach significantly improves the accuracy of identifying
categories, tasks, and actions for change requests, thereby, improving the
API recommendation to users.

1 Introduction

To improve the efficiency of IT service management processes, a lot of focus
has been placed on automation [1] to reduce human error and streamline the
operations. Consider IT service change management process that is designed to
ensure that codified procedures are followed to handle all changes to control IT
infrastructure such as, adding filesystems, recycling database instances, upgrad-
ing the memory, and so on. Traditionally, a human expert would submit a ticket
to initiate a change request type. These requests would be assigned to another
human expert (typically in delivery), who would be executing them. Without
standardizations and automation this has often resulted in inconsistent execu-
tion (e.g., each administrator executing their own scripts to process the requests)
and incomplete and inaccurate requests (e.g., missing parameters, unknown sys-
tem state, etc.). Compared to earlier days, current user interface based tools have
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 545–560, 2017.
https://doi.org/10.1007/978-3-319-69035-3_40

546 A.K. Kalia et al.

significantly reduced the burden of accessing a specific IT system, checking the
availability of IT components and packages on the system, and executing appro-
priate commands with required parameters. To illustrate it further we show an
example of a sample user interface in Fig. 1. The user interface shows a couple
of drop-down menus to execute a database specific change requests such as table
restore, table backup, Oracle reporting, and so on. IT Change service catalogs
are then created to present a common front-end UI for all available IT change
service requests. A user is to expected browse and navigate through a catalog
service in largely self-service fashion.

Fig. 1. Catalog service for executing database specific change requests.

Through our experience in designing, developing and delivering self-service
based change management services for various clients, we have stumbled upon
two interesting problems. Firstly, as the number of supported change request
types, systems, middlewares, and applications grow, the number of service APIs
also grows rapidly. Although a hierarchical organization can be created to assist
the user in navigating through the service catalog, the organization may not
always conform with a client’s IT change organization or fits with its user’s IT
expertise level. Keyword based search is another popular method of navigating
the service catalogs. Unfortunately, it works very poorly on IT service changes
due to the large variance in utterances and terminologies used to describe a
specific change task and assumes the user know what terminology they should
use to search. Secondly, a service API requires a specific set of parameters to be
filled, typically presented as a set of list and/or text boxes to a user, who may
not perfectly understand what values are expected in what system context, as

Cataloger: Catalog Recommendation Service for IT Change Requests 547

the API developers intend. To overcome these challenges in an efficient, flexible
and user-friendly way, we propose a catalog recommendation service (Cataloger)
that takes a natural language based change request as its input and identifies
the right service API. It also extracts any parameters as required by the API,
from the change request.

Contribution. Cataloger provides the following capabilities: (1) a classification
approach to categorize IT change requests into categories, tasks, and actions. The
actions can be mapped to APIs, (2) a sequential classification approach to iden-
tify parameters in IT change requests that can be mapped to specific parameters
in APIs, (3) a feedback based approach that utilizes our parameter classifica-
tion process to improve the classification of categories, tasks, and action, also to
train the change request classifiers for new client data sets. For the evaluation,
we consider IT change request types such as database and hardware from mul-
tiple clients. We consider that our approach can be generalized to other change
categories such as operating system (OS) management, middleware, networking,
application, and so on.

Organization. First, we describe the related work. Then, we describe the over-
all process of associating change requests to a specific catalog service. In the
process, we describe the classification techniques to identify categories, tasks,
and actions and extract parameters from change requests. Further, we propose
a feedback mechanism that improves the classification of categories, tasks, and
actions. We provide evaluation for classification and parameter extraction tech-
niques on multi-client change requests using traditional approaches. Further, we
provide evaluation of the proposed feedback mechanism. Finally, we summarize
our findings and discuss the future work.

2 Related Work

In our contribution, we emphasize on matching the intent of users’ change
requests to APIs. In terms of identifying intents from change requests, Lucca
et al. [13], Kadar et al. [10], Bogojeska et al. [5] propose supervised approaches
based on support vector machine, logistic regression and random forests, respec-
tively. The limitations with supervised approach such as support vectors is that
they do not consider multi-label or hierarchical multi-label aspect in the intents.
There have been several works on minimizing the labeling effort using active
learning [21] and hierarchical clustering techniques [14], however, they do not
emphasize on matching the intent of users’ change requests to the intent of an
API or it’s parameters. Again, none of the approach emphasize on extracting
parameters from change requests that can be mapped to the parameters of an
API. Le et al. [12] consider text descriptions to map it to corresponding APIs,
however, they do not focus on discovering the intents of text descriptions.

Given the existing approaches, we find the following limitations with the
approaches: (1) the approaches to classify change requests are independent

548 A.K. Kalia et al.

of hierarchical intents of APIs. To map change requests to APIs, we need
approaches that can extract hierarchical or at least multiple intents from change
requests. For example, consider a change request restore a database xyz that
has labels such as a category: database, a task: database backup, and an action:
restore database, (2) existing approaches ignore the parameters of APIs that can
be extracted from the change requests using sequential classification techniques.
The parameters extracted can be reasoned about for improving the classification
of change requests.

3 The Cataloger Approach

We label a IT change requests as a hierarchy of categories, tasks and actions
(CTAs): (1) a category describes a IT change task based on its broad-stroke
technology service areas. For examples, database, hardware, and os management
are some of the categories. Categories are long standing and generally technology
neutral, (2) a task refers to a group of similar change activities under a category.
For example, the database category has tasks such as backup, management,
user administration, etc. Tasks are technology dependent and distinct from each
other, (3) an action maps to specific automation APIs which are technology
and service provider dependent. For example, the database management task
has actions such as create and drop a database (DB), increase and reduce a
tablespace size as provided by a service catalog.

CTAs provide us with multiple scopes of increasingly refined coverage of
matching APIs to a user’s intent. In Table 1, we show examples of change requests
and hierarchical labels. Based on CTA, we represent a change request (CR) as
the tuple of category (C), task (T), and action (A), and parameters (PR) i.e.,
CR = 〈C, T, A, PR〉. To map a CR to a catalog service, first, we identify 〈C, T,
A〉 associated to a CR. We adopt different classification techniques to obtain the
labels. Second, based on the obtained label A, we extract parameters PR for a
user to execute the catalog service. Third, based on parameters PR we evaluate
whether a CR has been classified correctly into C, T, and A.

Table 1. Change requests and the hierarchical labels for each request.

Change Requests Category Task Actions

Create new X database on instance Y database management create DB

Enable user X on Y database database user admin grant user

Stop DB2 database on X PROD
server: Y

database run operations stop DB

Increase CPU for X to 8vcpu hardware cpu increase cpu

Consider the example of a CR i.e., increase CPU for X to 8vcpu from Table 1.
Based on the classification technique, we first identify C, T, and A as hardware,

Cataloger: Catalog Recommendation Service for IT Change Requests 549

cpu, and increase cpu, respectively. Then, we extract parameters such as the
server name X and the number of cpu i.e., 8vcpu. Then, we use the parameters
to verify if the C, T, and A identified are valid or not. If not we iterate through
other values for C, T, and A to match with the appropriate PR. We further
describe the feedback approach in Sect. 3.3. Accordingly, our process involves
the following four subprocess (Fig. 2): (1) preprocess CR: we preprocess users’
change requests by removing stop words and stemming them. This helps to
reduce the feature space, thereby, reducing the chances of over-fitting, (2) iden-
tify CTA: we investigate several classification techniques such as the single-label
classification (SLC), the multi-label classification (MLC), and the hierarchical
multi-label classification (HMLC) to determine which specific technique is most
effective in predicting CTAs, (3) extract Parameters: We adopt sequential clas-
sification techniques such as the conditional random fields (CRF) and the long
short-term memory (LSTM) for extracting API-specific parameters from change
requests.

In the following subsections, we first present details on the main subprocess:
identify CTA and extract parameters. Then, we describe the feedback mecha-
nism.

Fig. 2. The process illustrating the identification of a catalog service.

3.1 Classification of Change Requests

As a first step, we extract n-grams from the change requests CR. We preprocess
the n-grams to remove stop words and stemmed them using the Porter stemmer.
We remove punctuation such as {@, &, -, , #, <, >, (,), [,], {, }, *, +, =, :}.
To vectorize the words, we build a tf -idf vectorizer tf -idf(tr, d) where tr rep-
resents the words in the change request d. To normalize tf -idf(tr, d), we use
L2-normalization where we convert each tf -idf vector to its normal form. We
consider a change request CR to have multiple labels in terms of a category C,
task T, and an action A, organized into a hierarchy based on a specific catalog
service, where C is the parent of T which is the parent of A. For classifying the

550 A.K. Kalia et al.

labels, we evaluate a set of well-known techniques. To the best of our knowledge,
these techniques have not been applied and evaluated in the context of IT change
requests.

Single-Label Classification (SLC) For the single-label classification, we tried
two approaches SLC-A and SLC-B. In the first approach SLC-A, we append the
labels C, T, and A to create new labels C:T:A. The number of classes generated
in this approach is same as number of action labels present in A. To predict
the classes, we build a classifier that uses the linear Support Vector Machines
(SVM) [7]. For training the model we consider the input data as a set of change
requests CR and classes in C:T:A. Figure 3(a) captures the approach at the level
of tasks T. For brevity, we omit the action level nodes.

Fig. 3. Two approaches for single-label classification.

In the second approach SLC-B, we create individual classifiers for C, T, and
A. For example, in Fig. 3(b), we first create a classifier to identify if a CR belongs
to a label in C, i.e., hardware or database. Then, for each label in C, we create
classifiers to predict their corresponding tasks in T. For example, for database
and hardware labels, we create separate classifiers to predict their respective
tasks. We repeat the process for A where we create classifiers with respect to
labels in T. For example, we create separate classifiers for database management
and user admin. For hardware, we create a classifier for cpu. To create classifiers
for C, T, and A, we used the linear SVM [7]. For prediction, we start with
prediction of labels in C. Based on the predicted label and the confidence score,
we determine the classifier to invoke for labels in T. Figure 3(b) captures the
approach as SLC-B at the level of T. The approach is similar to the approach
provided by Barutcuoglu et al. [2].

Multi-label Classification (MLC) For multi-label classification, we adopt
two approaches. One, RAKEL (RAndom K-labELsets) [19] that considers ensem-
ble of labeled powerset (LP) classifiers [6]. Two, the classifier chain (CC) app-
roach [17] that model correlations between labels while maintaining the accept-
able computational complexity.

Cataloger: Catalog Recommendation Service for IT Change Requests 551

The RAKEL approach [19] uses the concept of k-labelsets. Consider we have
labels L = 1, . . . , |L| from C, T, and A. A k-labelset refers to a set Y ⊆ L with
k = |Y |. For simplicity, we use Lk to denote the set of all distinct k-labelsets.
The RAKEL approach creates an ensemble of m LP classifiers. For each i in
1, . . ., m, RAKEL selects a k-labelset Yi from Lk without replacement. Then, it
learns an LP classifier hi: X → P (Yi). For classifying a new instance or a change
request, each model hi provides a binary decision hi(x, λj) in the corresponding
k-labelsets Yi. For each label λj ∈ L RAKEL computes the average. If the average
is greater than 0.5 RAKEL provides a positive result.

The CC approach [17] involves |L| binary classifiers. The classifiers are linked
as a chain where each classifier is trained to predict lj ∈ L. Consider an input
domain x = [x1, . . ., xd] with d attributes extracted from CRs and a set of labels
L = [1, . . ., L] that corresponds to labels in C, T, and A. Each instance of x
is mapped with a subset of labels [y1, . . ., yL] represented as an L-vector. In
the vector, y1 is 1 if the label j is associated with an instance x. For training,
the approach considers a training data D = {xi, yi} with N samples. A label
is represented as yi

j where j represents a label in the ith example. During the
training phase, the approach forms a classifier chain h = (h1, . . ., hL) where hj in
the chain represents a classifier and is responsible for learning and predicting the
binary associations of jth label given the attribute space augmented with prior
binary relevance predictions in the chain. The classification approach begins at
h1 and propagates along the chain. For prediction, jth binary classifier predicts
the relevance of the jth label.

Hierarchical Multi-label Classification (HMC) Hierarchical label classi-
fication considers both labels and the hierarchy constraint among the labels to
create a classifier. We examined two approaches. One, the CLUS-HMC approach
provided by Vens et al. [20] that learns one tree to predict all the classes. Two,
the CSSAG provided by Bi and Kwok [3] that uses the Condensing Sort and
Select algorithm (CSSA) to find an optimal approximation of a subtree in a
tree.

CLUS-HMC [20] is a decision tree based learner and it considers the following:
one, all the labels present in C, T, and A as its classes CL with a partial ordering
≤h among the classes, i.e., c1≤hc2; two, it considers a set of T examples (xi, Si)
where xi are the features extracted from a change request CRi and Si ∈ CL;
three, a quality criterion q that rewards models with high predictive accuracy
and low complexity. The goal of the approach is to find f : CR → 2CL such
that f maximizes q and c ∈ f(x) =⇒ ∀c’≤h c : c’ ∈ f(x). The approach
uses predictive clustering tree (PCT) framework [4] to view a decision tree as
a hierarchy of clusters. In the framework, the top node corresponds to a single
cluster that is recursively partitioned into smaller clusters.

CSSAG [3] uses kernel dependency estimation (KDE) to reduce large number
of labels to manageable single-label learning problems. To preserve the hierar-
chy information among the labels, CSSAG uses Condensing Short and Select
Algorithm that finds an optimal approximation subtree in a tree. The subtree

552 A.K. Kalia et al.

is used to construct a multi-label that is consistent with respect to the tree.
For CSSAG, the training data is represented as {(xi, yi} where xi represents
features extracted from a change request CRi and belongs to an input space X ,
yi ∈ {0,1}d is an output vector, and d is the number of labels in C, T, and A.
Each yi can have more than one nonzero entries based on d.

Comparing the Classification Approaches SLC approaches have some lim-
itations. For the SLC-A approach, the classes at the lower levels have less fre-
quencies in the data. In the SLC-B approach, number of classifiers increase based
on the number of labels in C, T, and A. The multi-label approach does not suffer
from the limitations of SLC, however, it does not consider hierarchy organiza-
tion of the labels. We evaluated the classifiers on different change requests. The
details of our data set and the evaluation methodology is described in Sect. 4.
Figure 4 shows the results for the classification of C, T, and A using SLC-A, SLC-
B, CC, LP, CLUS-HMC, and CSSAG, respectively. Our evaluations show CC has
the best performance. We assume there are multiple reasons contributed to this
outcome: one, CTA favors multi-label approaches over single-label; two, CTA
has only three hops between the root (C) and leaf (A) and is a complete tree,
therefore the organization is too simple for HMLC to be advantageous. However,
we are able to leverage the hierarchy of CTA when using the CC approach in
our feedback mechanism, as we will describe in Sect. 3.3.

3.2 Extracting Parameters from Change Requests

The classification subprocess associates a change request to a service API. Now,
we extract parameters, if present, from the change request. Two methods are
considered: Conditional Random Fields (CRF) [8,15] and long short term mem-
ory networks (LSTMs) [9]. Some approaches use Hidden Markov Model (HMM)
[22] to extract method specification. However, HMM based models consider con-
ditional independence among the observations. Compared to HMM, CRF are
agnostic to dependencies between the observations. Apart from CRF and HMM,
there are ontology and rule based approaches [12,16,18], however, with the inclu-
sion of data from different clients, they are susceptible to failure.

Conditional Random Fields (CRF) We adopt the named entity recognition
technique based on CRF to extract parameters PR from changed requests CR. A
change request contains a set of words that can be represented as observations x.
Each word can be associated with a label y that represents a state. PR contains
a set of parameters that is subset of the labels y. Given x and y, CRF cap-
tures the relationship between (x, y) as feature functions. For the classification,
CRF employs discriminative modeling where the distribution of p(y|x) is learned
directly from the data. A feature function in CRF are of two types: one is based
on the state-state pair (yt, yt−1) and another is based on the state-observation
pair (xt, yt).

Cataloger: Catalog Recommendation Service for IT Change Requests 553

Long Short-Term Memory Network (LSTM) Apart from CRF, we con-
sider LSTM for extracting parameters from change requests. We consider LSTM
since it has been recently used for named entity recognition [11]. LSTM is
based on recurrent neural networks (RNN) that takes a sequence of inputs
(x1, x2, . . . , xn) as its input and outputs another sequence (h1, h2, . . . , hn). LSTM
captures long range dependencies by incorporating a memory cell. The LSTM
using several gates controls the proportion of input to give to the memory cell
and the proportion from the previous state to forget. The gates are composed
out of a sigmoid neural network layer and a pointwise multiplication operation.

Comparing CRF and LSTM We evaluated the performance of CRF and
LSTM against our change requests data set in Sect. 4. Figure 5 shows the per-
formance of the two. We find that LSTM performs much worse than CRF. We
believe it is because we do not have sufficient training data. On the contrary,
CRF requires the feature set to be specified as input while LSTM does not.

3.3 Feedback Approach

In our automated process, we first classify the change request and then extract
parameters from said request. Through our experiments, we came upon the
following two observations: one, with CTA, the classification of a CR is more
accurate at C and T levels than A. This is not surprising as due to CTA’s hier-
archical nature, we expect a loss of accuracy further down the hierarchy (hier-
archical loss); two, if the classification was wrong, there is no chance parameter
extraction would produce a set of valid parameter match (parameter confusion).
Hence, it’s intuitive to use a failed parameter extraction (for a CR) as a negative
API feedback to the classifier, and have a good probability of finding a positive
API match by performing parameter extractions on the immediate sibling APIs
of the negative one. Our feedback mechanism has the following advantages:

– improved accuracy of classification: classification approaches rely on specific
words that helps in identifying a relevant C, T, and A. Since change requests
have similar words such as action verbs and nouns, confusion increases while
narrowing down from categories to actions.

– a method for onboarding new client CR with unsupervised learning : feedback
from parameter extractor on new client’s CR with correct labels.

– decoupled training of catalog classifiers and parameter extractors: onboarding
of new CTA types only requires training of catalog classifiers; onboarding
of catalog APIs (to existing CT) only requires training of new parameter
extractor of the API.

In Table 2, consider the first two change requests that has been identified with
the labels C = database, T = dbbackup, and A = backupdb. Clearly, the first
change request does not fall into the database category, however, the keyword
such as backup lead to the false classification. Similarly, key words such as add
and server lead to the false classification of the fourth change request in Table 2.

554 A.K. Kalia et al.

Table 2. Examples of change requests with confusion.

Change Request Category Task Action

Backup X database from Y and restore to Z database dbbackup backupdb

Configure LAN backups to LAN-Free backups database dbbackup backupdb

Add 2vCPU to server X hardware cpu increasecpu

Add outbound servers to X for RDP access hardware cpu increasecpu

To avoid the misclassification, we rely on parameters extracted from a change
request to identify C, T, and A. Each action A can be associated with some special
parameters PR that is relevant to A. For example, backup database has a special
parameter such as the backup mode (online, offline), increase tablespace has a
special parameter such as the buffer size, increase cpu, or memory has special
parameters such as the amount of cpu or memory to be increased, and so on.
In our approach, first, based on default parameters for each action, we assign
weights to the parameters that indicate the specificity of the action. Based on the
weights of parameters in an action we compute expected weight. Table 3 shows
the example of parameters of actions and their weights.

Table 3. Examples of parameters of actions and their weights.

Action Parameter Weights Expected Weight

Backup database action:1, database name:1, destination:1,
mode:2, source:1

6

Restore database action:1, database name:1, destination:1,
source:1

6

Increase cpu action:1, amount:2, server:1, 4

Increase tablespace action:1, buffer:2, database name:1,
server:1, table:2

7

Start db action:1, database name:1, server:1 3

For any parameter that occurs in more than one action, we consider the
weight of the parameter as 1. For example, for parameters such as database and
server names, we consider their weight as 1. For parameters, specific to a change
request, we consider their weight as 2. For example, we assign the weights for
mode for database backup and buffer for tablespace as 2. Based on an incom-
ing change request, we extract their parameters as described in Sect. 3.2. From
the parameters, we determine the actual weight. We consider param confusion
= actual weight

expected weight to reason about C, T, and A. Consider the examples of cpu
change requests from Table 2. For the change request Add 2vCPU to server X,
the extracted parameters are the action (add), amount (2vCPU), and the server
(X). We compute the actual weight by combining the weights of the action,

Cataloger: Catalog Recommendation Service for IT Change Requests 555

amount, and the server from Table 3. The param confusion comes to be 1 since
we could identify all the parameters from the change request. For the change
request add outbound servers to X for RDP access, we could identify the action
(add) and the server (X). Thus, the param confusion is computed as 0.5. Set-
ting up a high threshold for the param confusion above 0.8 will put the change
request to others category.

4 Evaluation Methods

We evaluate our approach shown in Fig. 2 using the real-world data. For the
evaluation, we create datasets with change requests from collected from differ-
ent clients of IBM. Table 4 shows the details of datasets in terms of categories
database and hardware. We chose database and hardware categories since they
are considered as the most common categories for clients.

Table 4. Datasets prepared from various clients.

Datasets #Change Requests Database Hardware

Client B 498 296 201

Client A 5429 3568 1861

Client M 7213 4254 2959

Client I 10692 7720 2971

For the database changes, the tasks we consider are (1) backup, management,
(2) run operations, and (3) user admin. For the hardware changes, the tasks we
consider are (1) cpu and (2) memory. For the database management task, we
consider (1) create database, (2) drop database, (3) increase tablespace, and (3)
reduce tablespace. For the database backup task, we consider (1) backup and
(2) restore actions. For the database run operations task, we consider (1) run
sql script, (2) start database, and (3) stop database actions. For the database
user admin, we consider (1) grant user and (2) revoke user actions. For the
hardware cpu task, we consider (1) increase cpu and (2) reduce cpu actions. For
the hardware memory task, we consider the (1) increase memory and (2) reduce
memory actions.

4.1 Evaluation of CTA Classification Approaches

In the first step of the classification, we label the data with respect to C, T, and A.
For the labels, we collect the annotations from two annotators and compute their
inter-rater agreement score. Then, we resolve the ambiguities to achieve a satis-
factory agreement score (> 80%). For the evaluation, we consider six approaches
(1) SLC-A, (2) SLC-B, (3) CC, (4) LP, (5) CLUS-HMC, and (5) CSSAG describe
in Sect. 3.1. For each approach, we perform the three-fold cross-validation. For

556 A.K. Kalia et al.

each fold, we collect results in terms of macro precision, recall, and f-measure.
We provide the results by averaging the results over each fold. Figure 4 shows
the results for the classification of C, T, and A using SLC-A, SLC-B, CC, LP,
CLUS-HMC, and CSSAG.

From the results, we observe that CC and LP perform better than other
approaches across all the datasets. CC and LP perform better than hierarchical
approaches such as CLUS-HMC and CSSAG may be due to the following reasons:

SLC-A SLC-B CC LP CLUS-HMC CSSAG
0

0.2

0.4

0.6

(a) Client B dataset.

Precision Recall F-Measure

SLC-A SLC-B CC LP CLUS-HMC CSSAG
0

0.2

0.4

0.6

(b) Cient A dataset.

SLC-A SLC-B CC LP CLUS-HMC CSSAG
0

0.2

0.4

0.6

(c) Client M dataset.

SLC-A SLC-B CC LP CLUS-HMC CSSAG
0

0.2

0.4

0.6

(d) Client I dataset.

Fig. 4. The results for classification of change requests for different clients in terms
macro precision, recall, and f-measure.

Cataloger: Catalog Recommendation Service for IT Change Requests 557

one, the depth of the hierarchy we consider is short (i.e., 3) and two, for the
classification we consider the abstract for the change requests rather than their
descriptions since for most cases descriptions were missing.

4.2 Evaluation of Parameter Extraction Approaches

To evaluate the extraction of parameters we employ CRF and LSTM. For the
evaluation, we create separate datasets for each action. Then, we annotate words
for each change request. For example, we annotate the change requests [add,
2GB, RAM, to, server, abc01] as [action, amount, , ,server name]. For empty
slots, we extract the postag for each word and replace the empty slots with
postags. Thus, for the change request the final set of labels are [action, amount,
ADP, NOUN,server name].

Since, CRF needs features to train a model, we extract the following features
from a change request: (1) word is numeric, (2) alphanumeric, (3) is in the lower
case, (4) is in the upper case, (5) the first letter in the word is upper case, (6)
the word is a verb, (7) is a digit, (8) the postag of a word, (9) features related to
the previous and (10) the next word in the change request. Compared to CRF,
LSTM is agnostic of input features as it learns them directly from the data.
Figure 5 shows the results for few actions for CRF and LSTM evaluated across
four datasets. For brevity, we omitted results for other actions. The result shows
that CRF performs significantly better than LSTM. The result is not surprising
considering that LSTM needs a lot more data to train than CRF.

4.3 Evaluation of Feedback Approach

In this approach, we evaluate if the extracted parameters from a change request
can be used to improve the classification of the change request. Before we evalu-
ate we create a balanced dataset for each action by oversampling the underrep-
resented actions. For the evaluation, we consider CC as the baseline approach
to identify categories and CRF to extract parameters.

In case of CC, the predicted labels for a database change request can be
either [database], [database, management, increase tablespace], or [database, run
operations, management, start database, increase tablespace]. Thus, based on
the labels, first, we determine the actions to consider. For example, if the label
is [database] we consider all the actions under the database category. Then, for
each action, we extract parameters from the change request using CRF and
compute param confusion. Based on param confusion values for each action,
we determine the final label for the change request by choosing the action with
maximum value. We compare the label obtained from the feedback approach
with the labels obtained from CC. Figure 6 shows the results. Results indicate
the feedback approach obtains higher accuracy results than the CC approach.

558 A.K. Kalia et al.

CRF LSTM
0

0.2

0.4

0.6

0.8

1

(a) Action: backup db.

Precision Recall F-Measure

CRF LSTM
0

0.2

0.4

0.6

0.8

1

(b) Action: restore db.
CRF LSTM

0

0.2

0.4

0.6

0.8

1

(c) Action: increase cpu.

CRF LSTM
0

0.2

0.4

0.6

0.8

1

(d) Action: reduce cpu.
CRF LSTM

0

0.2

0.4

0.6

0.8

1

(e) Action: increase tblspace.
CRF LSTM

0

0.2

0.4

0.6

0.8

1

(f) Action: reduce tblspace.

Fig. 5. The results for parameter extraction in terms precision, recall, and f-measure
in terms of macro average.

CC CC-Feed
0.6

0.7

0.8

0.9

1

(a) Client B dataset.

Precision Recall F-Measure

CC CC-Feed

0.7

(b) Client A dataset.

CC CC-Feed
0.6

0.7

0.8

0.9

1

(c) Client M dataset.
CC CC-Feed

0.6

0.7

0.8

0.9

1

(d) Client I dataset.

Fig. 6. The results for classification in terms precision, recall, and f-measure in terms
of macro average.

Cataloger: Catalog Recommendation Service for IT Change Requests 559

5 Conclusion and Discussion

We provide Cataloger that classifies IT change requests into categories, tasks,
and actions. For the classification, we employ six approaches: SLC-A, SLC-B,
CC, LP, CLUS-HMC, and CSSAG. From the evaluation, we find CC and LP
performs better than the other approaches. To extract parameters, we employ
sequential classification techniques such as CRF and LSTM. Based on our eval-
uation, we observe that CRF performs better than LSTM. For the feedback
approach, we consider CC and CRF. The feedback based approach based on the
parameters improved over CC approach.

Our approach has several limitations. One, the dataset we use is not balanced
across all the actions. Thus, we plan to use clustering based approaches [21] to
minimize the labeling effort and get more labels. Two, the datasets we create
for specific actions to identify parameters are not large. Thus, LSTM performed
worse than CRF. We can increase the number of samples for each action to
remove the dependency of extracting features using CRF. Third, in the feedback
approach, we propose the heuristic approach based on param confusion to make
decisions. In future, we plan to improve the heuristic approach to improve the
accuracy results.

References

1. Ayachitula, N., Buco, M.J., Diao, Y., Surendra, M., Pavuluri, R., Shwartz, L.,
Ward, C.: IT service management automation - a hybrid methodology to integrate
and orchestrate collaborative human centric and automation centric workflows.
In: Proceedings of the 4th International Conference on Services Computing, pp.
574–581. IEEE, Salt Lake City (2007)

2. Barutcuoglu, Z., Schapire, R.E., Troyanskaya, O.G.: Hierarchical multi-label pre-
diction of gene function. Bioinformatics 22(7), 830–836 (2006)

3. Bi, W., Kwok, J.T.: Multi-label classification on tree- and dag-structured hierar-
chies. In: Proceedings of the 28th International Conference on Machine Learning,
pp. 17–24. PMLR, Bellevue (2011)

4. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In:
Proceedings of the 15th International Conference on Machine Learning, pp. 55–63.
Morgan Kaufmann Publishers Inc, Madison (1998)

5. Bogojeska, J., Lanyi, D., Giurgiu, I., Stark, G., Wiesmann, D.: Classifying server
behavior and predicting impact of modernization actions. In: Proceedings of the
9th International Conference on Network and Service Management, pp. 59–66.
IEEE/ACM, Zurich, October 2013

6. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recogn. 37, 1757–1771 (2004)

7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

8. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pp. 363–370. Asso-
ciation for Computational Linguistics, Ann Arbor (2005)

560 A.K. Kalia et al.

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Kadar, C., Wiesmann, D., Iria, J., Husemann, D., Lucic, M.: Automatic classifica-
tion of change requests for improved it service quality. In: Proceedings of Annual
SRII Global Conference, pp. 430–439. IEEE, San Jose, March 2011

11. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: Proceedings of Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 260–270. ACL, San Diego (2016)

12. Le, V., Gulwani, S., Smartsynth, Z.: Synthesizing smartphone automation scripts
from natural language. In: Proceedings of the 11th Annual International Confer-
ence on Mobile Systems, Applications, and Services, pp. 193–206. ACM, Taipei
(2013)

13. Lucca, G.D.: An approach to classify software maintenance requests. In: Proceed-
ings of the International Conference on Software Maintenance, pp. 93–102. IEEE,
Montreal (2002)

14. Maksai, A., Bogojeska, J., Wiesmann, D.: Hierarchical incident ticket classification
with minimal supervision. In: Proceedings of IEEE International Conference on
Data Mining, pp. 923–928. IEEE, Shenzhen, December 2014

15. McCallum, A., Li, W.: Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In: Proceedings of the
Seventh Conference on Natural Language Learning, pp. 188–191. Association for
Computational Linguistics, Edmonton (2003)

16. Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A.: Inferring method
specifications from natural language api descriptions. In: Proceedings of the 34th
International Conference on Software Engineering, pp. 815–825. IEEE, Zurich
(2012)

17. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333–359 (2011)

18. Saggion, H., Funk, A., Maynard, D., Bontcheva, K.: Ontology-Based Information
Extraction for Business Intelligence. In: Aberer, K., Choi, K.-S., Noy, N., Alle-
mang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825,
pp. 843–856. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 61

19. Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classi-
fication. IEEE Trans. Knowl. Data Eng. 23(7), 1079–1089 (2011)

20. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Mach. Learn. 73(2), 185–214 (2008)

21. Wang, F., Sun, J., Li, T., Anerousis, N.: Two heads better than one: Metric+Active
learning and its applications for IT service classification. In: Proceedings of 9th
International Conference on Data Mining, pp. 1022–1027. IEEE, Miami Beach,
December 2009

22. Zhong, H., Zhang, L., Xie, T., Mei, H.: Inferring specifications for resources from
natural language api documentation. Autom. Softw. Eng. 18(3), 227–261 (2011)

http://dx.doi.org/10.1007/978-3-540-76298-0_61

ATLAS: A World-Wide Travel Assistant
Exploiting Service-Based Adaptive Technologies

Antonio Bucchiarone(B), Martina De Sanctis, and Annapaola Marconi

Fondazione Bruno Kessler, Via Sommarive, 18, Trento, Italy
{bucchiarone,msanctis,marconi}@fbk.eu

Abstract. Nowadays, users can count on a large amount of mobility
services offering disparate functionalities and providing all needed infor-
mation. Yet, from a user perspective, properly exploiting the available
mobility services to organize journeys meeting personal expectations, is
becoming a complex task. Indeed, discover and select the appropriate
services in an open and constantly expanding domain, is a challeng-
ing and time-consuming task. We claim that a uniform and easy way
for exploiting these services while moving around, getting accurate and
personalized information is still missing. In this paper we propose a plat-
form for the definition of value-added mobility services by (i) enhancing
interoperability among the existing services, (ii) supporting their execu-
tion via run-time adaptation, (iii) through the definition of multi-channel
front-end applications. On top of the platform, we have implemented and
evaluated a world-wide travel assistant.

1 Introduction

Today, a multitude of applications offering flexible, dynamic and personalized
mobility services to users are available in the mobility domain. These services
are designed independently from each other and made available through a large
variety of different technologies (e.g., web pages, mobile apps). They provide
solutions that are fragmented, limited, and that have a partial coverage (e.g.,
only planning, only booking) of the overall journey. For instance, Rome2Rio1 is a
world-wide multi-modal journey planner, that offers traveling solutions between
two given locations, but it is not consistently integrated in the (local) mobility
offer of a city (i.e., local bus schedules). Viaggia Trento2, instead, is an accurate
local multi-modal planner for the city of Trento. In this context, often the users
must interact with different applications to accomplish a journey. This makes the
benefits of having multiple and accurate mobility services a drawback instead of
an added value for the users. To overcome these limits and to leverage on the
potentialities of the available services, we need a systemic and general approach
dealing in a uniform way with services of an open and heterogeneous context. In
this way, we can facilitate services integration and interoperability.

1 https://www.rome2rio.com/.
2 http://www.smartcommunitylab.it/apps/viaggia-trento/.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 561–570, 2017.
https://doi.org/10.1007/978-3-319-69035-3_41

https://www.rome2rio.com/
http://www.smartcommunitylab.it/apps/viaggia-trento/

562 A. Bucchiarone et al.

In this paper, we present a service delivery platform providing methods and
techniques to design and release adaptive service-based applications. The plat-
form capitalizes on the achievements and findings of our research in the last
years. In particular, this work represents the combination of the following results:
(1) a design for adaptation approach supporting the development, deployment
and execution of service-based systems operating in dynamic environments [5,6];
(2) a comprehensive framework for automated service composition [4] that allows
for context-aware service adaptation, and (3) a set of implemented software com-
ponents and prototypes [1,9]. To show the potentiality offered by the platform,
we implemented a world-wide travel assistant (ATLAS) able to provide accurate
and context-aware traveling solutions.

In the rest of the paper we discuss the challenges behind this work, we
presents all the details of our service delivery platform and its usage, and we
report the experimental validation of the platform.

2 Challenges and Application Scenario

Nowadays, users can count on a large amount of mobility services. They may dif-
fer depending on the offered functionalities, the targeted users, or the provider.
In particular, there are journey planners (e.g., Rome2Rio, Google Transit3) for
finding traveling solutions between two or more given locations. Then, specific
mobility services are those referring to specific transport modes (e.g., CityBikes4

focuses exclusively on bike sharing data) or provided by transport companies
(e.g., Flixbus5, Trenitalia6). Moreover, an emerging trend is that of shared mobil-
ity services that are based on the shared use of vehicles, bicycles, or other means
(e.g., Bla Bla Car7). Mobility services also differ in their geographic coverage.
For instance, while Google Transit is a global planner, since it can be used for
planning all around the world, ViaggiaTrento is a local planner for the city of
Trento. The transport modes coverage, instead, measures the number of differ-
ent transport means handled by mobility services (i.e., single mode and multiple
mode). For instance, Flixbus and Trenitalia refer to a single transport mode,
namely bus and train. To the contrary, journey planners usually consider dif-
ferent transport modes. Furthermore, both services dealing with one or a few
transport modes and services having a local coverage are characterized by a high
accuracy of the provided data. To the contrary, the more global are the services,
the more they tend renounce accuracy. Focusing on cities, we can observe that
there is a lot of disparate local services, which are specific for a few transport
means and very accurate. However, this implies that, while moving around and
changing their context, users need to discover and exploit the respective services

3 https://maps.google.com/landing/transit/index.html.
4 https://www.citybik.es/.
5 https://www.flixbus.com/.
6 http://www.trenitalia.com/.
7 https://www.blablacar.com.

https://maps.google.com/landing/transit/index.html
https://www.citybik.es/
https://www.flixbus.com/
http://www.trenitalia.com/
https://www.blablacar.com

ATLAS: A World-Wide Travel Assistant 563

(and applications) in each city. To sum up, besides the huge amount of mobil-
ity services available up today, it is still missing for the users the possibility
of getting context-aware, accurate and personalized travel solutions while
moving around, without using different applications. In this context, there is
no need for yet-another-mobility-app. Our goal, instead, is to provide a solu-
tion for enhancing mobility services interoperability through their runtime and
context-aware discovery and composition, to exploit their potentialities and fill
their gaps.

Application Scenario. Sara is living in Trento. She wants to visit Vienna,
in Austria. ViaggiaTrento does not give her any results, being Vienna out of
region, so she opens the Trenitalia mobile app and she starts planning. Unlikely,
the founded solutions implies at least two changes, and she does not like the idea.
Sara thinks that a rideshare or a bus solution would be also less expensive, if
available. So she checks for both a BlaBlaCar ride and a Flixbus travel. Finally,
she founds a cheap and direct solution among the ones given by Flixbus, and she
books it. For organizing her travel, Sara has used four different mobility apps,
by relying on her knowledge of services, without any support.

3 System Implementation

In this Section, we present our service delivery platform and a world-wide per-
sonAlized TraveL AssiStant – ATLAS developed on top of it. ATLAS consists in
(i) a demonstrator showing the system’s models and its execution and evolution
through automatic runtime adaptation, and (ii) a Telegram8 chat-bot, for the
interaction with the users. We remark that ATLAS exploits real-world mobil-
ity services exposed as open APIs, which are wrapped as domain objects to be
effectively part of the system.

3.1 Adaptive Service-Based Systems Through Domain Objects

The Domain Object Model [5,6] has been built to satisfy the need for service-
based applications adaptable by-design. A domain object represents a uniform
way to model independent, heterogeneous, and open services such that they can
be easily interconnected thus enhancing services interoperability. Each domain
object defines the behavior of the service it models–core process (e.g., BlaBlaCar
ride-sharing), and the functionalities it provides–fragments (e.g., offer/require a
car ride). Unlike traditional services, domain objects allow the partial specifica-
tion of the expected behavior of a service by defining abstract activities. These
activities are defined in terms of the goal they need to achieve (e.g., organize a
journey). When, at runtime, abstract activities need to be executed, they can be
refined according to the fragments offered by other domain objects, thus allow-
ing the goal to be reached. Indeed, fragments represent executable processes that
can be dynamically discovered, received and executed by a domain object.

8 https://telegram.org/.

https://telegram.org/

564 A. Bucchiarone et al.

While abstract activities goals are defined at design time at a conceptual
level, the need for refining them arises at runtime, triggering real services inter-
operability. Indeed, only during the execution the system can discover and select
the services effectively implementing the functionalities it needs, in the cur-
rent context (i.e., a specific city). For example, only for users planning journeys
starting from Trento, it makes sense to provide them the functionalities of the
ViaggiaTrento app. Also fragments can be partially specified. In this way, their
execution relies also on fragments provided by other domain objects, thus
enabling a chain of refinements (as in Fig. 2). The refinement is performed
through the application of advanced techniques for dynamic and incremental
service composition [3] based on AI planning. We refer to [6] for details on the
execution of adaptive systems via dynamic interactions among domain objects.

3.2 Domain Object-Based Platform

The platform is organized in three main layers, as shown in Fig. 1. The Enablers
leverage on our previous results on the adaptive by-design wrapping of (mobil-
ity) services [5,6]. Developers can exploit and wrap up as domain objects the
available services in the mobility domain. Besides the design of mobility services,
enablers allow also for their runtime operation, as we will see further on. The
Mobility Services layer exposes the functionalities implemented or facilitated
by the Enablers. These services can exploit and/or combine into value-added ser-
vices the functionalities of the services previously wrapped up and made available
by the Enablers (i.e., services for user profiling, planning, booking, monitoring
of journeys, etc.). The key idea is that the platform is open to continuous exten-
sions with new services as domain objects. Their functionalities can thus be
exploited in a transparent way to provide value-added services. All the plat-
form mobility services can be eventually provided to final users through a range
of multi-channels front-end applications that constitute the Front-end layer.
These can be mobile or desktop applications, and they can be independent or
rely on existing services (e.g., chat bots). The runtime operation of the services
relies on different enablers.

Domain objects processes are executed by the Process Engine. It manages
service requests among communicating processes and, when needed, it sends
requests for domain objects instantiation to the Domain Objects Manager. In
this way, correlations among processes are defined. During the normal execution,
abstract activities can be met. They need to be refined with one or a composition
of fragments modeling services functionalities. To this aim, the process engine
sends a request for abstract activity refinement to the Refinement Handler com-
ponent that is in charge of defining the corresponding adaptation problem. It
defines the problem domain by selecting the proper fragments driven by the
abstract activity’s goal. The adaptation problem is submitted to the Adaptation
Manager that translates it into a planning problem for the AI Planner compo-
nent, which will send back a plan that can be injected into the abstract activity
being refined.

ATLAS: A World-Wide Travel Assistant 565

P
L
A
T
F
O
R
M

E
N
A
B
L
E
R
S

P
L
A
T
F
O
R
M

M
O
B
IL

IT
Y

S
E
R
V
IC

E
S

P
L
A
T
F
O
R
M

F
R
O
N
T

E
N
D

SHARING MOBILITY SERVICES

D
E
V
E
L
O
P
E
R
S

ADAPTIVE BY DESIGN (MOBILITY) SERVICE WRAPPING
Domain
Objects
Models

EXECUTION

Domain Objects
Manager

Process
Engine

Process
Instances

ADAPTATION

AI
Planner

Domain
Objects

Instances

Refinement
Handler

Adaptation
Manager

synch/instan ate

submit adapt.
problem

inject adapted solu on

OTHER SERVICESPUBLIC MOBILITY SERVICES

END
USERS

TOURISTS CITIZENS

send adapt.
request

JOURNEY PLANNERS

submit planning
problem

deploy return
plan

PLAN
JOURNEY

JOURNEY
NOTIFICATION

BOOK
JOURNEY

SAVE
JOURNEY

EXECUTE
JOURNEY

MONITOR
JOURNEY

USER
PROFILE

TRAVEL
ASSISTANT

Fig. 1. Domain object-based platform.

3.3 Travel Assistant Implementation

In this Section, with the platform in mind, we detail ATLAS travel assistant9,
and how applications can be realized on top of our platform. To realize a world-
wide travel assistant able to provide to the users the proper mobility services in
the specific context(s) of their journeys, we selected real-world mobility services
exposed as open APIs. We identified their behavior and functionalities and their
input and output data. Finally, we wrapped them up as domain objects to be
stored in the platform knowledge base. For instance, we wrapped Rome2Rio and
Google Transit as global journey planners and ViaggiaTrento as local planner, for
the city of Trento. Combining the geographical coverage of global planners with
the accuracy of local planners is a concrete example of services interoperability
promoted by our platform. Other examples are Travel for London10 as local
planner, BlaBlaCar as ridesharing service, CityBikes as bike sharing services
applying to about 400 cities, Trentino Trasporti11 for the public transportation
in the Trentino region. Being defined as domain objects, all these services can
now be executed, automatically composed and adapted by the Enablers of the
platform.

At the Mobility Services platform level, instead, we can find the Travel Assis-
tant defined as a value-added service leveraging on the services available in the
system. Its main features are the following: (i) given a user planning request,
it is able to decide between a local or a global planning solution; (ii) given the
planners responses, it defines the better way to show this responses to the user

9 ATLAS is available here: https://github.com/das-fbk/ATLAS-Personalized-Travel-
Assistant.

10 https://api.tfl.gov.uk/.
11 http://www.ttesercizio.it/.

https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant
https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant
https://api.tfl.gov.uk/
http://www.ttesercizio.it/

566 A. Bucchiarone et al.

(e.g., a list of travel alternatives, a message); (iii) given the user selection, the
travel assistant is able to identify the transport means in the legs making the
entire solution. In this way, it can incrementally provide to the user specific func-
tionalities and context-aware information for her journey. We emphasize here
that the more (mobility) services are wrapped up and stored in the system’s
knowledge base, the more responsive and accurate the travel assistant will be.
Finally, among the multi-channel front-ends that can be defined on top of the
platform, we realized ATLAS as a Telegram chat-bot, exploiting the Telegram’s
open API.

Executing ATLAS. In Fig. 2, we report examples of chains of incremental
refinements, from the execution of the scenario in Sect. 2. The execution starts
from the core process of ATLAS, modeling the chat-bot started by Sara. We focus
on the refinement of the Plan Journey abstract activity, whose goal consists in
finding a travel plan. The refinement generates the following steps.

Step 1. The fragment PlanJourney of the Travel Assistant is selected and injected
in the process of ATLAS. It allows Sara to insert the source and destination
locations and to send a journey plan request. The activities Plan Request and
Plan Response of this fragment model the communication between it and its core
process, where the request is handled. In our scenario, being the destination
Vienna, the Travel Assistant will go for a global plan, by executing a fragment
from the Rome2Rio domain object.

Step 2. To properly show the travel alternatives to the user, an appropriate
data visualization pattern must be selected, based on the data format (e.g., a
list, a message). This is defined at runtime, by the Data Viewer domain object
providing the DefineDataViewerPattern fragment for this purpose. Thus, Sara
receives the list of the found travel alternatives satisfying her requirements.

Step 3. Sara selects her preferred alternative (suppose the first one, a multi-
modal solution made by a train and a bus travels). Based on her choice, the
Define Journey Legs abstract activity is refined with the HandleJourneyLegs frag-
ment, which defines the goal for the Specialize Journey abstract activity, whose
refinement allows the Travel Assistant to find the proper fragments for each
journey leg.

Step 4. The last step shows a composition of fragments provided by the trans-
port companies involved in the legs of the user selection (e.g., Sudtirol Alto
Adige and Hello). Their execution provides to Sara the proper solutions, from
the two companies.

In conclusion, this execution example exhibits the bottom-up nature of the
approach, from grounding services till the user process. This happens in a com-
pletely transparent way for the user that interacts with only one application,
ATLAS.

ATLAS: A World-Wide Travel Assistant 567

STEP 1: PLAN FOR G1

STEP 2: PLAN FOR G4 STEP 3: PLAN FOR G5

STEP 4: PLAN FOR G

Fig. 2. ATLAS: an example of the system execution via incremental and dynamic
refinements. For each fragment, we specify its name and the domain object which it
belongs to.

4 Evaluation

To evaluate the effectiveness and efficiency of our platform, we have run a set of
experiments based on real-world problems12. We ran ATLAS using a dual-core
CPU running at 2.7 GHz, with 8 Gb memory. To show its feasibility, we evaluate:
(1) How long it takes to wrap up real services as domain objects; (2) How much
automatic refinement (service selection and composition) affects the execution
of ATLAS. Based on our experience, we can argue that to wrap a real service as
a domain object, the developer needs (i) to master the domain objects

modeling notation and (ii) to understand the service behavior, its function-
alities, its input/output data format and how to query it. Wrapping time clearly
changes between experienced and non-expert developers. From our analysis, it
ranges from 4 to 6 h, considering average complex services. Moreover, it is also
relevant to claim that this activity is done una tantum: after wrapping, the ser-
vice is seamlessly part of the platform. To evaluate the automatic refinement,
we collected both the adaptation and mobility services execution statistics, to
understand how long they take, on average, to be executed. We carried out an

12 The specification of ATLAS used for the evaluation contains 14 domain object mod-
els, 17 fragment models and 12 types of domain properties Domain properties are
high-level representations of the domain concepts, and they are used to evaluate the
conditions under which each fragment can be exploited (for details refer to [5,6]).

568 A. Bucchiarone et al.

experiment considering 10 runs of ATLAS handling various end-users’ requests.
For each run, more than 150 refinement cases were generated. As shown in Fig. 3,
the majority of the problems have a complexity in-between 0 and 19 transitions,
while the most complex problems range from 80 to 100 transitions. Notice that
the occurrence of complex problems is relatively rare. For all the runs, only
3% of the problems require more than 0.5 s to be solved, and the worst case
is anyhow below 1.5 s. To measure how much automatic refinement influences
the execution of ATLAS, we compared the data about the time required for
adaptation with the response time of real-world services wrapped in ATLAS. As
expected, Fig. 4 shows that problems with the most complex planning domain
take more planning time than problem with less complexity. In the worst case,
the adaptation requires a time close to 1.5 s, while the services response time

0−19 20−39 40−59 60−79 80−100

Problem complexity (total transitions number).

N
um

be
r o

f p
ro

bl
em

s

0
20

40
60

80

0.2 0.5 0.9 1.2 1.5

Refinement time t (seconds)

Pe
rc

en
ta

ge

90
92

94
96

98
10

0
10

2

93 %

97 %

99 % 99 %

100 %

Fig. 3. (Left) Distribution of Problems Complexity: it shows the distribution of
problem complexity of adaptation problems calculated as the total amount of tran-
sitions in the state transition systems representations of the domain properties and
fragments present in each problem. (Right) Percentage of refinement problems
solved within time t.

20 40 60 80

0.
0

0.
5

1.
0

1.
5

Problem Complexity (total transitions number)

Ti
m

e
in

 s
ec

on
ds

Services Response Time
Service Name Avg. Response Time

Bla Bla Car 0.78 secs
City Bikes 0.23 secs
Google Transit 0.65 secs
Rome 2Rio 1.20 secs
Travel for London 3.20 secs
Viaggia Trento 0.77 secs

Fig. 4. (Left) Trend of the Adaptation Time: it relates the (average) time required
to solve a composition problem to the problem complexity. It is computed considering in
the 10 runs all the refinement problems having the same complexity. (Right) Services
Response Time: it refers to (a subset of) ATLAS real mobility services.

ATLAS: A World-Wide Travel Assistant 569

ranges from 0.23 to 3.20 s. Moreover, the adaptation takes more time for the
most complex problems that are the less frequent to occur. We argue that the
automatic refinement responsiveness is equivalent to that of mobility services.

5 Related Work and Conclusion

Open services are easy to understand and to access services and can be exploited
to develop applications or new value-added services. Web APIs are the most
common way to specify them. To overcome the limitations of semantic web
services (i.e., the use of non-standard languages for description) a model for
Linked Open Services has been introduced in [7] in which services are viewed as
RDF “prosumers”. With the rise in popularity of web APIs, platforms for their
management and customization, called API management platform, have been
provided. However, while advances in web services and their composition enable
automation and reuse, new challenges have emerged in the case of APIs. The
service developer requires sound understanding of the different service types,
access-methods, and input/output data formats [8] (e.g., XML, JSON, SOAP,
HTTP). ServiceBase [2] proposes a Unified Services Representation Model where
common service-related low-level logic can be abstracted and reused by other
applications developer. With it a set of APIs have been implemented that expose
a common and high-level interface for integrating heterogeneous services in a
simplified manner. Organizations like Mashery13 and Apigee14 are building on
these trends to provide platforms for the management of APIs. For instance,
ProgrammableWeb15 now has more than 10,000 API in its directory. However,
despite advances in SOA, complete solutions for open services management are
yet required. There is still a need to make services easy to understand and
to access. Our service delivery platform is an attempt to solve the previous
open issues and to provide a complete solution for open services management
and exploitation. The core idea is to factorize the capabilities offered by service
providers as a set of building blocks (i.e., domain-objects), which can be easily
combined to give place to composite services that can be published and exploited.

In conclusion, we have presented a service delivery platform providing engi-
neering methods and techniques to design and release adaptive service-based
applications. We have shown how applications can be realized on top of it exploit-
ing the functionalities provided by real-world services. As stated, our platform
requires that services are previously wrapped as domain-objects to be used.
Although this may seem a limitation, we can argue that the service wrapping
activity can be performed as a collective co-development process, in a crowd-
sourcing style. Furthermore, open data can help to overcome the limitations
imposed by services that are not open. Extensions of our platform refers to the
inclusion of functionalities provided by smart things, in the IoT sense, and the
support for other forms of run-time adaptation.
13 http://www.mashery.com.
14 http://apigee.com.
15 http://www.programmableweb.com.

http://www.mashery.com
http://apigee.com
http://www.programmableweb.com

570 A. Bucchiarone et al.

References

1. DeMOCAS: Domain objects for service-based collective adaptive systems. https://
github.com/das-fbk/DeMOCAS/

2. Chai Barukh, M., Benatallah, B.: ServiceBase: a programming knowledge-base for
service oriented development. In: Proceedings of 18th International Conference on
Database Systems for Advanced Applications, DASFAA 2013, Part II, pp. 123–138
(2013)

3. Bucchiarone, A., Marconi, A., Mezzina, C.A., Pistore, M., Raik, H.: On-the-fly adap-
tation of dynamic service-based systems: incrementality, reduction and reuse. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
146–161. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1 11

4. Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: A context-aware framework for
dynamic composition of process fragments in the Internet of Services. J. Internet
Serv. Appl. 8(1), 6 (2017)

5. Bucchiarone, A., Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design
for adaptation of distributed service-based systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48616-0 27

6. Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Incremental
composition for adaptive by-design service based systems. In: IEEE 23rd Interna-
tional Conference on Web Services (2016)

7. Krummenacher, R., Norton, B., Marte, A.: Towards linked open services and
processes. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.)
FIS 2010. LNCS, vol. 6369, pp. 68–77. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15877-3 8

8. Lucky, M.N., Cremaschi, M., Lodigiani, B., Menolascina, A., Paoli, F.: Enriching
API descriptions by adding API profiles through semantic annotation. In: Sheng,
Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp.
780–794. Springer, Cham (2016). doi:10.1007/978-3-319-46295-0 55

9. Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: Astro-Captevo:
dynamic context-aware adaptation for service-based systems. In: Eighth IEEE
World Congress on Services, SERVICES, pp. 385–392 (2012)

https://github.com/das-fbk/DeMOCAS/
https://github.com/das-fbk/DeMOCAS/
http://dx.doi.org/10.1007/978-3-642-45005-1_11
http://dx.doi.org/10.1007/978-3-662-48616-0_27
http://dx.doi.org/10.1007/978-3-642-15877-3_8
http://dx.doi.org/10.1007/978-3-642-15877-3_8
http://dx.doi.org/10.1007/978-3-319-46295-0_55

Services in Organizations, Business and
Society

A Variability Model for Store-Oriented Software
Ecosystems: An Enterprise Perspective

Bahar Jazayeri1(B), Olaf Zimmermann2, Gregor Engels1,
and Dennis Kundisch1

1 Paderborn University, Paderborn, Germany
{bahar.jazayeri,gregor.engels,dennis.kundisch}@upb.de

2 University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch

Abstract. Pioneers of today’s software industry like Salesforce and
Apple have established successful ecosystems around their software plat-
forms. Architectural knowledge of the existing ecosystems is implicit
and fragmented among online documentation. In protection of intel-
lectual property, existing documentation hardly reveals influential busi-
ness strategies that affect the ecosystem structure. Thus, other platform
providers can hardly learn from the existing ecosystems in order to sys-
tematically make reasonable design decisions with respect to their busi-
ness strategies to create their own ecosystems. In this paper, we identify
a variability model for architectural design decisions of a store-oriented
software ecosystem product line from an enterprise perspective, com-
prising business, application, and infrastructure views. We derive the
variability model from fragmentary material of existing ecosystems and
a rigorous literature review using a research method based on the design
science paradigm. To show its validity, we describe real-world ecosystems
from diverse domains using the variability model. This knowledge helps
platform providers to develop customized ecosystems or to recreate exist-
ing designs in a systematic way. This, in turn, contributes to an increase
in designer and developer productivity.

Keywords: Software ecosystems · Variabilities · Architectural decisions

1 Introduction

Pioneers of today’s software industry like Salesforce and Apple have established
successful ecosystems around their software platforms. In literature, software
ecosystem is defined as “a software platform, a set of internal and external
developers and a community of domain experts in service to a community of
users that compose relevant solution elements to satisfy their needs” [1]. Using
online stores is known to be a novel way to improve value creation in the market

This work was supported by the German Research Foundation (DFG) within the
Collaborative Research Center “On-The-Fly Computing” (CRC 901).

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 573–588, 2017.
https://doi.org/10.1007/978-3-319-69035-3_42

574 B. Jazayeri et al.

by facilitating a fast adoption of request and provision [2,3]. There is a group of
ecosystems that use online stores to distribute native and third-party applica-
tions. We refer to this group of ecosystems as store-oriented software ecosystems.
In recent years, this kind of software ecosystems have diversified in many dif-
ferent ways, e.g., in software type and target group of users [4]. For instance,
independent developers of open source communities develop software plug-ins on
the basis of development platforms like Eclipse integrated development environ-
ment (IDE) and publish them on Eclipse Marketplace1. On the contrary, mobile
App ecosystems target a completely different user group, i.e., mobile users, by
growing around mobile operating systems such as iOS and Android. Whereas,
a third group of ecosystems flourishes around cloud computing platforms like
Salesforce and Amazon Web Services (AWS).

The architectural knowledge of the existing ecosystems is implicit and avail-
able in a fragmentary way among online documentation in form of manuals and
“how to” guides as well as entries in questions-and-answers forums. In protec-
tion of intellectual property, existing documentation hardly reveals influential
business strategies of platform providers that affect the ecosystem structure.
Thus, other platform providers can hardly learn from the existing ecosystems to
systematically make reasonable design decisions with respect to their business
strategies in order to build their own ecosystems. This lack of knowledge hin-
ders novel designs of ecosystems in a variety of domains. For instance, existing
Internet-of-Things online stores are still far less mature than their mobile App
counterparts [5]. Hence, this question remains open how to enable systematic
development of store-oriented software ecosystems.

A product line for store-oriented software ecosystems enables the systematic
development of these systems and provides a structured knowledge base in this
field. According to software product line engineering objectives, such a product
line should identify the commonalities and “systematically handles the variation
(i.e., the differences)” of the ecosystems that belong to the product line [6].
Some works in literature [7,8] reveal the importance of variability management
for various activities of software development, e.g., requirements engineering,
design, and testing. Whereas Metzger and Pohl [6] clearly distinguish between
variability of a software product line and application variability.

In this paper, we identify variabilities of architectural design decisions for a
store-oriented software ecosystem product line. The contribution of this paper
is twofold: (a) We derive a variability model from fragmentary material of exist-
ing ecosystems and by conducting a rigorous literature review using a research
method based on the design science paradigm proposed by Nickerson et al. [9].
The variability model adheres to the well-known enterprise architectural views
to support the inclusion of architectural decisions from both business and IT
perspectives. (b) We provide insight into a diverse range of real-world software
ecosystems in enterprise application, mobile App, cloud computing, open source
development, and Internet-of-Things (IoT) by analyzing them based on the vari-
ability model. Our in-depth analysis shows that the variability model provides

1 marketplace.eclipse.org, Last Access: May 2017.

https://www.marketplace.eclipse.org

A Variability Model for Store-Oriented Software Ecosystems 575

a suitable abstraction to describe important technical and business decisions of
a diverse range of store-oriented software ecosystems in different domains. This
knowledge helps platform providers to create customized ecosystems or to recre-
ate the existing designs in a systematic way. This, in turn, contributes to an
increase in designer and developer productivity.

In the following, Sect. 2 describes the research method, which is used to
develop the variability model. Section 3 presents the variability model, followed
by Sect. 4 that analyzes the existing ecosystems based on the variability model.
Section 5 discusses the relation of the variabilities to design artifacts of store-
oriented software ecosystems. Section 6 considers related work. Finally, the paper
concludes in Sect. 7.

2 Research Method

This section presents a research method that we use to develop a variability
model for a store-oriented software ecosystem product line. Nickerson et al. [9]
propose a taxonomy development method based on the design science research
paradigm [10] to classify objects of study based on their common characteristics.
The result is a set of dimensions, while each dimension consists of mutually exclu-
sive and collectively exhaustive characteristics. Initially, meta-characteristics are
defined. They are the most comprehensive characteristics that serve as a basis
to identify further characteristics for each dimension. The method includes two
types of iterations, i.e., empirical-to-conceptual and conceptual-to-empirical iter-
ations. At the end of each iteration, the taxonomy is checked against ending
conditions [9].

To derive our variability model, first, we need to identify meta-characteristics.
In our case, the meta-characteristics should assist with identifying differentiation
points, i.e., initial sources of architectural variabilities, among software ecosys-
tems. We identify three meta-characteristics by referring to the definition of
software ecosystem presented in Sect. 1: (a) What a platform consist of, (b) Col-
laborations upon which a platform supports service provision, and (c) What a
platform offers as products/services. Furthermore, we set the ending conditions
as follows: The development of variability model is terminated when the last
iterations do not result in identification of any new variability or when currently
identified variabilities are not further enriched.

In the empirical-to-conceptual iteration, we analyze existing ecosystems with
respect to their architectural design decisions and the meta-characteristics, then,
we draw the first dimensions of variability model. In our previous work [11], we
develop a list of store-oriented software ecosystems in different domains including
18 ecosystems in total (Mobile Apps: Apple App Store, Google Play, Microsoft
Store, BlackBerry World, Amazon.com: Apps & Games. Web browser plug-
ins: Mozilla Firefox Marketplace, Google Chrome Store. In-house software: SAP
Store. Cloud services: StrikeIron, SalesForce AppExchange, AWS Marketplace,
Oracle Cloud Marketplace. Open source software: Eclipse Marketplace, Binpress
Marketplace, and Cytoscape App Store. Web services: Mashape. Others: Envato

576 B. Jazayeri et al.

Market, CTAN: Packages). We take this list as an initial point to examine the
existing ecosystems. The ecosystems are chosen from different domains. After-
wards, we analyze the ecosystems by inspecting technical documentation that
are available on the Internet. Such documentation usually comes in the form of
online manuals in developer portals, “how to” guides and official documenta-
tion provided by platform providers as well as samples and demos. In addition,
if enrollment in the ecosystems is made possible, we register as developer and
experiment the way that the ecosystems work. However, the mentioned activ-
ities do not provide us a deep understanding of platform providers’ business
strategies. Therefore, we additionally explore their annual reports e.g., using
AnnualReports.com, and well-reputed business magazines as well as entries in
questions-and-answers forums.

In the conceptual-to-empirical iteration, we supplement the variability model
with our implication from the literature regarding the meta-characteristics and
the differences between the real-world ecosystems and the concepts addressed in
the literature. We consider the most influential journal, conference, and workshop
publications relevant to software ecosystems (e.g., [1,12–14]) as well as the pub-
lications from the International Workshop on Software Ecosystems (IWSECO).
The step-wise development of the variabilities is validated by examining ecosys-
tems that are randomly chosen and are not in our initial list. More details on
the examination of existing ecosystems, a complete list of sources of the litera-
ture review, and the iterations performed during the development of variability
model can be found in our technical report [15].

3 Variability Model for Store-Oriented Software
Ecosystem Product Line

In this section, first, we present the variabilities of architectural design decisions
of a store-oriented software ecosystem product line, i.e., variation points and
variants, followed by introducing their dependencies. Then, we discuss the role
of business and technical context in realization of variabilities in practice.

3.1 Variation Points and Variants

A variability model that captures alternative design decisions includes variation
points and variants. While a variation point refers to the subject of a variability, a
variant represents the object of variability [16, p. 62]. Figure 1 shows the variabil-
ity model. We use the orthogonal variability model (OVM) notation [17] to rep-
resent the variabilities as first class architectural knowledge entities. We consider
this explicit representation as an advantage for actors of software ecosystems,
which usually collaborate from independent development teams and different
backgrounds [1]. In Fig. 1, a triangle with solid border line is a mandatory varia-
tion point. A triangle with dashed border line is an optional variation point. Each
rectangle presents a variant. A variant with solid line variability dependency is

https://www.AnnualReports.com

A Variability Model for Store-Oriented Software Ecosystems 577

VP1

Complem-
entary Partnership

VP2

Fee

VP3

Openness

VP4

Licensing

VP5

Deliverable

V5.1 Software
Product

V5.2 Software
Service

V5.3 Source
Code

V6.5

Testing

VP10
Service

Execution

Business
View

Application
View

Infrastructure
View

Legend VP Mandatory
Variation Point

VP Optional
Variation Point

V

Variant
Mandatory Variability Dependency
Optional Variability Dependency

[min..max]

Alternative Choice

1..3

V6.3 Programming
Language

V6.1 Platform
SDK

V7.2 Platform
Features

V7.1 User
Interface

VP7

Platform
Interfaces

VP8

Security
Check

V8.1 Leaks &
Bugs

V1.2
Supplier

V1.3 Independent
Developer

V1.1 Strategic
Partner

1..3

V2.1 Platform
Fee

V2.2 Entrance
Fee

V11.2 Content
Delivery Network

V11.1 Telecom-
munication

V10.2 Compute
Centre

V10.3 Data
Center

V10.1 Operating
System

VP9
Delivery
Mode

V9.2 Remote
Delivery

V9.1 Local
Installation

VP12

Asset

V6.4 Communication
Protocol

1..2

1..3 1..2

1..2 1..3 1..3

V11.3 Exclusively
WWW

V3.1
Open

1..2

V3.2
Closed

V8.2 Policy
Violation

VP6

Extension
Development

V4.2 Ecosystem-

1..2

V4.1 Public
Licensing

V6.2

IDE

V7.3 System
Libraries

VP11
Service
Delivery

VP Artifact Dependency

Fig. 1. Excerpt from the variability model for store-oriented software ecosystems [15]

a mandatory design choice whereas a variant with dashed line variability depen-
dency is an optional choice. There can be alternative choices among variants
with optional variability dependencies.

The variation points and their variants are organized into three main groups,
i.e., business, application, and infrastructure. This clustering is based on well-
known architectural views to enterprise architecture [18]. Different enterprise
architecture frameworks identify slightly different views. In this paper, we con-
form to the architectural views provided by TOGAF, which is an enterprise
architecture framework standardized by The Open Group2.

3.1.1 Business view. This view encompasses influential variabilities of business
strategies to create an ecosystem environment.

2 www.opengroup.org/subjectareas/enterprise/togaf, Last Access: May 2017.

www.opengroup.org/subjectareas/enterprise/togaf

578 B. Jazayeri et al.

Complementary partnership defines the strategic decisions that platform
providers make to choose ecosystem partners. Platform providers choose such
partners in a way that each partner contributes to final service provisioning to
ecosystem users. To this end, the partners support the ecosystem by providing
value-adding solutions. A platform provider may choose a partner as a strategic
partner, supplier, or independent developer. A strategic partner is a long-term
partner with deep access to the platform. A supplier is responsible for providing a
specific software or hardware resource. An independent developer develops third-
party applications on top of the platform despite having an indirect partnership
with the platform provider [19].

Fee is a medium for platform providers to protect intellectual property by
introducing different degree of payments for platform users and complementary
partners. This has a direct relation to different degree of access to the platform
that is granted to an actor. Moreover, external developers, who wish to publish
their application on the store, may need to pay certain amount of periodic or
one-time entrance fee [20].

Openness, as a distinctive business strategy, determines whether content
and methods of ecosystems are subject to access or change by complementary
partners. Openness has two variants, i.e., open and closed. However, ecosystems
can hardly be judged as completely open or closed. The degree of openness in
ecosystems depends on the realization of this variation point at management
and strategic levels [21].

Licensing is legal rules governing usage and redistribution of software. There
are public software licensings such as GNU General Public License (GPL). GPL
allows free usage, execute, and altering source code. In general, ecosystems may
use such public licenses or may introduce their own licensing system. On one
hand, choice of licensing usually conforms to end-user license of agreement. On
the other hand, ecosystems may allow external developers to freely decide to
make their source code available under a different license [22].

3.1.2 Application view. This view presents architectural decisions concerning
the way that software platforms are made extendable. This includes techniques
that enable independent developers to develop applications on top of the plat-
forms and security constraints to avoid violating regulation.

Deliverable is the type of software artifact that is delivered to users. This
can be software products, software services as well as source code. We distinguish
between software products like mobile Apps that are installed on local devices
and software services like cloud services that are executed on a remote server.
Deliverables accordingly address different target groups of users, e.g., software
developers, users of mobile devices, and enterprises.

Extension Development includes techniques that enable independent
developers to develop their applications on top of platforms. Integrated devel-
opment environment (IDE), programming language, communication protocol,
and testing functions are the various architectural components that a platform
provider may include in the design of an ecosystem. In addition, it is interesting
that all ecosystems, which we examined during the development of the vari-

A Variability Model for Store-Oriented Software Ecosystems 579

ability model, include Software development kits (SDKs) in their architecture.
Therefore, we define SDK as a mandatory variant that enable external devel-
opers to extend the platforms. Moreover, including Wikis and forums support
social communication among developers, who usually work independently [23].
In addition, an ecosystem may enable the composition of external applications.
For instance, Intents3 allows developers to compose Android Apps.

Platform Interfaces are gateways to external developers. The architecture
of software platform needs to provide the right modularity and granularity so
that the external developers become able to correspond to relevant software
components [24]. The variability model recognizes different groups of components
as follows: System libraries, graphical user interface components, and platform
features. System libraries provide access to core functionalities of platforms, e.g.,
access to OS kernel, memory management, and resource sharing. Furthermore,
there are direct interfaces to built-in capabilities of software platforms. We call
such built-in capabilities platform features. Platform features are specific to a
certain platform or domain that developers often require to work with them, e.g.,
GPS, camera, and audio control in mobile OS platforms. Essentially, platform
providers need to keep the interfaces consistent during ecosystem evolution. This
includes suitable change propagation and update management among platform
components and third-party applications [25].

Security check includes a wide range of security and policy checking func-
tions to protect ecosystems from malware, unwanted actions, and misuse. A typ-
ical way to realize such security checks is to apply a review process when external
developers would like to enter the ecosystem. The review process mainly consid-
ers security leaks, bugs, and policy violations of externally developed applications
before being published on stores.

3.1.3 Infrastructure view. This view comprises the variability of hardware
and software infrastructure to realize functions of the application view. This
includes deployment and operation of software solutions at the user side.

Delivery mode determines how deliverables are delivered to the users. This
can be using local installation of executable files or remote execution of software
services. Examples of remote delivery of services are using cloud computing and
remote procedure call to web services. A hybrid approach is applied when both
variants are chosen.

Service execution implies suitable infrastructure for the execution of deliv-
erables. It is an optional variation point, i.e., in some ecosystems, e.g., where
deliverable is source code, no execution of deliverables is needed. While in other
ecosystems, e.g., mobile ecosystems, applications require an operating system to
be executed. Furthermore, service provision using cloud and web services requires
support of distributed compute and data centers.

Service delivery includes the technologies that facilitate delivery of deliv-
erables to the users. This can be exclusively performed on the basis of World

3 developer.android.com/reference/android/content/Intent.html, Last Access: May
2017.

https://www.developer.android.com/reference/android/content/Intent.html

580 B. Jazayeri et al.

Wide Web or by support of infrastructure suppliers, i.e., providers of telecom-
munications and content delivery network services. External suppliers may be
employed to handle the high performance service delivery in different networks
like Intranet, Extranet, and Internet.

Asset is a device or a set of devices provided by platform providers to realize
ecosystem deliverable on the user’s side. Asset provision is an optional variation
point, which can be delegated to complementary partnerships too.

3.2 Variability Constraint Dependencies

The variability model reveals dependencies between the variation points and vari-
ants. For readability reasons, the most important dependencies are illustrated
in Table 1. Here, a variation point or a variant may require another variation
point or variant in order to be realized. Service execution (VP10), telecommu-
nication (V11.1), content delivery network (V11.2) and asset (VP12) require
support of suppliers (VP1.2) in order to be realized. This is due to the fact
that platform providers are normally software providers, who wish to build an
ecosystem around their platforms. Providing all resources, which are required
for manufacturing assets and infrastructure to deliver and execute services, if
possible for such providers, is very costly.

If a platform provider decides to (partially) close an ecosystem (V3.2), secu-
rity check at the application view need to be applied (VP8) and source code in
SDK needs to be suitably closed (V6.1). Moreover, delivery of software products
(V5.1) requires local installation on users’ devices (V9.1) whereas delivery of
software services (V5.2) requires support of remote servers (V9.2).

Table 1. Variability constraint dependencies

Variation point/Variant Variation point/Variant Requires

VP10: Service Execution, V11.1:
Telecommunication, V11.2.: Content
delivery network, VP12: Asset

V1.2: Supplier �

V3.2: Closed VP8: Security check, V6.1:
SDK

�

V5.1: Software Product V9.1: Local installation �
V5.2: Software Service V9.2: Cloud delivery �

3.3 Business and Technical Context

Business strategy and technical context are the main drivers of architectural deci-
sions in an IT enterprise. This implies the variabilities are subject to different
realizations by different platform providers. These differences refer to contextual
information, which comes from the context and domain of an enterprise or soft-
ware project. The contextual information determines why and how a variability

A Variability Model for Store-Oriented Software Ecosystems 581

is realized in real-world [16, p. 62]. Aggregation of different realizations of the
variabilities in Fig. 1 can result in very different ecosystems. For instance, due to
certain business strategies, developers in an ecosystem are expected to extend
a platform strictly whereas in another ecosystem, developers are free to develop
standalone applications for a platform. To consider the role of context, we refer
to Kruchten [26] that identifies the most important dimensions of context in
software development projects as follows: Size, criticality, age, rate of system
change, team distribution, governance model, business model, and presence of
a stable architecture. These dimensions are relevant to domain and industry,
degree of innovation, corporate and culture, and organizational maturity.

4 Describing Existing Ecosystems by Using the
Variability Model

We analyze a diverse range of real-world software ecosystems using the variabil-
ity model to ensure that the model provides a suitable abstraction to describe
ecosystems from different domains. This analysis provides concrete instances for
the variations points and variants of Fig. 1. Accordingly we choose five ecosys-
tems from enterprise application, mobile App, cloud computing, open source
development, and IoT. The ecosystems are grown on top of different kinds of
software platforms and provide different types of software services.

Salesforce.com is a provider of customer relationship management and enter-
prise services. Salesforce and force.com are its main software platforms. On top
of these platforms, a working environment including Salesforce proprietary ser-
vices and third-party Apps is built. Independent developers publish third-party
Apps on the Salesforce’s store, namely, AppExchange4.

Apple Inc. is the provider of mobile and desktop hardware assets (iPhone,
MacBook, etc.) and operating systems (iOS and MacOS). iOS acts as a platform
for independent developers to develop mobile Apps on top of it. Such Apps can
be made available for mobile users on Apple App Store.

Amazon.com is an e-commerce company and the provider of Amazon Web
Services (AWS). AWS refer to a wide range of SaaS, PaaS, and IaaS services.
Other service providers can customize instances of AWS and trade them on
AWS marketplace5. AWS marketplace offers such providers licensing and billing
services. In addition, Amazon.com is the provider of a smart voice assistant
platform, namely Alexa. Alexa is designed to handle tasks like home automation
and controlling connected smart devices. Independent developers develop third-
party applications, namely Alexa skills, for the Alexa platform. These skills are
published on Alexa Skill Store6.

Eclipse Foundation consists of a hierarchy of leading and contributing
projects, which govern the Eclipse ecosystem. Eclipse IDE is the software plat-
form for open source software communities. An organization may officially
4 appexchange.salesforce.com, Last Access: May 2017.
5 aws.amazon.com/marketplace, Last Access: May 2017.
6 www.amazon.com/b?node=13727921011, Last Access: May 2017.

https://www.Salesforce.com
https://www.Amazon.com
https://www.appexchange.salesforce.com
https://www.aws.amazon.com/marketplace
www.amazon.com/b?node=13727921011

582 B. Jazayeri et al.

Table 2. Describing the ecosystems based on the variabilities of business view

Variation
Point Variant

Provider:
salesforce.com

Platform:
Salesforce and

force.com
Store:

AppExchange

Provider:
Apple Inc.

Platform: iOS
Store:
Apple

App Store

Provider:
Amazon.com

Platform: AWS
Store:
AWS

Marketplace

Provider:
Eclipse

Foundation
Platform:

Eclipse IDE
Store: Eclipse
Marketplace

Provider:
Amazon.com

Platform:
Alexa
Store:

Alexa Skills
Store

VP1:
Complem-

entary
Partnership

V1.1:
Strategic
Partner

- Deloitte Digital
Hub: A customer
relationship
management
web-based App
(Deloitte Digital)

- Telco Sales-360:

telecommunicati
on solution (Tech
Mahindra)

- Business and
enterprise Apps
supported by
cloud services
optimised for
iOS (IBM)

- Enterprise Next:
A set of
consulting
services on
Apple devices
(Deloitte)

- Commercial
vendors
including
IBM,
Microsoft,
SAP, 10gen,
CA,
Couchbase,
Canonical

- Open-source
provision
from Nginx,
Drupal, etc.

- Eclipse
Foundation:
The core
member-
based
decision
makers

- Several
projects with
different
degrees of
contribution

- Build-in
services for
several
partners,
e.g.,
Spotify,
WeMo,
Nest, Uber,
etc.

V1.2:
Supplier

- Databases,
Exadata, and
Java platform
(Oracle)

- Servers with
AMD processors
(Dell)

- Emailing system
(MessageSyste
ms).

- Security
assessment
(Symantec)
(KPMG)

- CDN by a
partner

- CDN to deliver
App Store
contents (Level
3)

- Processors
(Intel, historically
from Samsung
and TSMC)

- Modems (Intel
and Qualcomm
depending on
local telco
provider)

- Networking
services (AT&T
and Verizon)

- AWS Test
Drive
(Orbitera)

- SaaS-based
migration
and Disaster
Recovery
solutions
(CloudEndur
e)

- Many telco
partnerships

Not realized - Chips
(Intel,
Conexant)

- Voice
processing
hardware
(Conexant)

V1.3:
Independent
Developer

- Developers of
Apps on
Salesforce
AppExchange

- Developers of
Apps on Apple App
Store

- ISVs
- Cloud

service
providers

- Consulting
partners

- Eclipse
committers

- Individual
projects (e.g.,
TopCased)

- Developers
of Alexa Skills

VP2:
Fee

V2.1:
Platform

Fee

- The platform fee
varies with
platform licenses

- No fee - Cost of using
AWS (e.g., pay
per hour or per
day)

- Open-source,

free

- No fee for
AWS
Lambda

- Fee for
other AWS

V2.2:
Entrance

Fee

- Annual fee to list
Apps on the
store

- Different fees for
different
partnership tiers

- Annual fee to list
Apps on the
store

- Different fees for
independent
developers and
enterprises

- One time fee
to list
commercial
services on
the store

- No fee for
free services

- No fee to list
plug-ins on the
store

- No fee to
list skills on
the store

- No
registration
cost

VP3:
Openness

V3.1:
Open

- force.com IDE
- SDKs for iOS

and Android
- Aura UI

Framework

- A few libraries
like Open
Source
Reference
Library

- AWS SDKs
- Open Source

Software
projects for
AWS

- Eclipse IDE
- Eclipse

projects
(decided by
developer)

- Skills Kit
SDK for
Node.js &
Java

V3.2:
Closed

- Most of the
platform
frameworks

- Most of the
platform
frameworks

- The platform
is mainly closed

- Based on

decision

- The
platform is
mainly closed

VP4:
Licensing

V4.1:
Public

Licensing

- Developers are
free to use public
licenses for their
source code

- Developers are
free to use public
licenses for their
source code

- Externally
licensed
services
(BYOL)

- Developers
are free to use
other public
licenses

Not realized

V4.2:
Ecosystem-

Licensing

- License
Management
App (LMA): a
tool to enable
developers to

for their Apps

- Apple performs
the licensing
tasks

- Developers
provide
metadata for
their App

- Categories of
licenses:
Commercial
software,
free, and
open Source

- Eclipse Public
License
(EPL)

- Eclipse
Distribution
License
(EDL)

General
Amazon
Program
Materials
License
Agreement

A Variability Model for Store-Oriented Software Ecosystems 583

Table 3. Describing the ecosystems based on the variabilities of application view

Variation
Point Variant

Provider:
salesforce.com

Platform:
Salesforce and

force.com
Store:

AppExchange

Provider:
Apple Inc.

Platform: iOS
Store:
Apple

App Store

Provider:
Amazon.com

Platform: AWS
Store:
AWS

Marketplace

Provider:
Eclipse

Foundation
Platform:

Eclipse IDE
Store: Eclipse
Marketplace

Provider:
Amazon.com

Platform:
Alexa
Store:

Alexa Skills
Store

VP5:
Deliverable

V5.1:
Software
Product

- CRM Apps - Mobile Apps Not realized - Eclipse plug-
ins

Not realized

V5.2:
Software
Service

- Cloud
services, e.g.,
work.com

- iCloud services - AWS-based
SaaS, PaaS, and
IaaS

- Eclipse Cloud
Development

- Eclipse Che

- Alexa Skills

V5.3:
Source Code

- Some Apps on
AppExchange

- Some Apps
(e.g., on GitHub)

- Open source
services

- Most of
plug.ins &
projects

Not realized

VP6:
Extension

Development

V6.1:
Platform SDK

- Force.com
SDK

- Aura UI
framework

- iOS SDK: to
develop native
iOS Apps

- AWS SDKs,
e.g., AWS
Lambda

- Command line
and Powershell

- Eclipse SDK:
to develop Java
applications

- Alexa Skills
Kit

- Amazon Lex

V6.2:
IDE

- force.com
IDE: eclipse
plug-in

- Point-and-
Click App
Building

- Xcode IDE - AWS Tool Kits:
Eclipse and
Visual Studio
plug-ins

- AWS web
console

- Eclipse IDE
(platform)

- Skill Builder
to design
voice
interaction
models

V6.3:
Programming

Language

- Apex
(proprietary)

- Visualforce
(proprietary)

- Swift (general-
purpose
programming
language)

- General-
purpose
programming
languages

- Amazon
Simple Queue
Service

- Java: The
main
development
language

- Any
programming
language

- JSON to link
skills to

V6.4:
Communic-

ation
Protocol

- SOAP API
and REST
API

- Rest API
- XMPP, SIP, etc.

- REST API
- SOAP over

HTTP

- Internet
protocols, e.g.,
HTTP, TCP

- HTTP(S)

V6.5:
Testing

- Apex testing
framework:
Basically to
create unit tests

- Xcode testing
- TestFlight:

testing by
external testers

- Unit Testing in
Eclipse and
Visual Studio

- AWS Device
Farm

- JUnit testing
framework

- Service
Simulator

- Echosim.io

VP7:
Platform

Interfaces

V7.1:
User

Interface

- VisualEditor
Namespace,
Canvas
Namespace,
etc.

- Cocoa Touch
Frameworks

- Partly Media
Frameworks

Not realized - org.eclipse.ui.
perspectives

- org.eclipse.s
wt

- org.eclipse.ui

- Alexa video
features

V7.2:
Platform
Features

- Search
Namespace

- ChatterAnswe
r Namespace

- Datacloud
Namespace

- Media
Frameworks
(e.g., audio)

- Core Services
Frameworks
(e.g., iCloud)

- Amazon
Simple Email
Service

- Amazon Elastic
MapReduce

- Amazon
CloudSearch

- Docker APIs
- EMF (e.g.,

org.eclipse.lin
uxtools.docke
r.feature.*)

- Alexa Voice
Service
libraries

V7.3:
System

Libraries

- System,
Messaging,
and Database
Namespaces

- Core OS
Frameworks,

system access
& memory
allocation

- Amazon Elastic
Load Balancing

- CloudWatch:
monitoring of
AWS in real-
time

- I/O Streams
(java.io
package)

- Memory
management
(java.nio.Buffer
)

- Core voice-
enabling
technologies

VP8:
Security
Check

V8.1:
Leaks &

Bugs

- AppExchange - Store review
process:
checking
broken links,
performance,
etc.

- Store review
process:
checking
services and
their metadata

- Intensive
review of
Eclipse
projects

- No checking
for plug-ins

- Store

process

V8.2:
Policy

Violation

- Store review
process: Apps
and their
listing data

- Store review
process:
software &
hardware
compatibility

- Self-service
AMI scanning
tool: Checking
by providers

- Moderation
process:
checking
plug-ins
relevance

- Store
submission
checklist

584 B. Jazayeri et al.

Table 4. Describing the ecosystems based on the variabilities of infrastructure view

Variation
Point Variant

Provider:
salesforce.com

Platform:
Salesforce and

force.com
Store:

AppExchange

Provider:
Apple Inc.

Platform: iOS
Store:
Apple

App Store

Provider:
Amazon.com
Platform: AWS

Store:
AWS

Marketplace

Provider:
Eclipse

Foundation
Platform:

Eclipse IDE
Store: Eclipse
Marketplace

Provider:
Amazon.com

Platform:
Alexa
Store:

Alexa Skills
Store

VP9:
Delivery

Mode

V9.1:
Local

Installation

- Yes (Required
by V5.1)

- Yes (Required
by V5.1)

Not realized - Yes (Required
by V5.1)

Not realized

V9.2:
Cloud

Delivery

- Yes (Required
by V5.2)

- Yes (Required
by V5.2)

- Yes (Required
by V5.2)

- Yes (Required
by V5.2)

- Yes (Required
by V5.2)

VP10:
Service

Execution

V10.1:
Operating
System

- The
Salesforce
Operating
System (SOS)

- iOS (platform) - Amazon Linux:
a Linux-based
OS for AWS
usage

Not realized - Amazon Alexa
(platform)

V10.2.:
Compute
Center

- Requires V1.2
(external
supplier)

- Virtual
compute
centres

- AWS servers
- Requires V1.2
(external
supplier of
TestDrive)

Not realized - AWS
- Third-party

web servers

V10.3:
Data Centre

- Requires V1.2
(external
supplier)

- Apple data
center

- Amazon
DynamoDB:
NoSQL
database

Not realized - Amazon data
centers

VP11:
Service
Delivery

V11.1:
Telecommun

-ication

Not realized - Requires
V1.2 (external
supplier)

- Requires V1.2
(external
supplier)

Not realized Not realized

V11.2:
Content
Delivery
Network

- Requires V1.2
(external
supplier)

- Requires
V1.2 (external
supplier)

- Amazon
ElastiCache:
in-memory
caching

- Amazon
CloudFront

Not realized Not realized

V11.3:
Exclusively

WWW

- Access to the
ecosystem, e.g.,
AppExchange

- iOS Apps
providing
services over
Internet

- Purchase on
Marketplace

- Service and
product
delivery over
Internet

- Service
delivery over
Internet

VP12:
Asset

Not realized - iPhone,
iPad
(Requires
V1.2)

Not realized Not realized - Amazon Echo
and related
assets, e.g.,
Dot

become a member in the ecosystem. Members have influence on strategic deci-
sions. The degree of influence depends on the level of contribution. Entering the
ecosystem as an independent developer is characterized by providing Eclipse-
relevant plug-ins. Eclipse marketplace is the online store, where projects and
plug-ins are published. In the following, Tables 2, 3 and 4 present the result of
analysis of the ecosystems from business, application, and infrastructure views.
A cell in the tables presents the way that each ecosystem realizes a variant. We
use “Not realized” when an ecosystem does not realize a variant.

5 Relation of Variabilities to Design Artifacts of
Store-Oriented Software Ecosystems

An important factor in applicability of variabilities is to understand their relation
to design artifacts [16, Chap. 6]. Figure 2 presents the relation of the variation

A Variability Model for Store-Oriented Software Ecosystems 585

points to design artifacts of store-oriented software ecosystems. In the middle,
high-level components and roles are portrayed. Upon two main components, i.e.,
software platform and store, a trading market between providers and users of
software is created. We call these components as a whole an ecosystem platform.
Moreover, the roles, i.e., platform provider, user, independent developer, strate-
gic partner, and supplier, interact with the ecosystem platform using suitable
interfaces. As presented in Sect. 4, the existing ecosystems associate different
terminologies to these roles. These differences refer to their different business
and technical contexts (cf. Sect. 3.3). For instance, Eclipse Committer and AWS
Independent Software Vendors (ISVs) are the terms used for independent devel-
opers. While Eclipse Committers are programmers with no revenue expectation,
AWS ISVs are the financially motivated providers of AWS-based services.

The complementary partnership variation point is related to the roles in
Fig. 2. For readability, the figure excludes these relations. The variation points
on the left are applicable to the user side interfaces, which define what to deliver
as product/service of an ecosystem and how to deliver it. They include deliv-
erable, delivery model, service execution, and service delivery. Furthermore, the
variation points on the right are applicable to the developer side interfaces.
Using these variation points, a platform provider decides about platform open-
ness and degree of protecting intellectual property. Such strategies are realized
using extension development and platform interfaces. This includes the arrange-
ment of interfaces, code openness, and the features of an extension kit.

Moreover, the licensing, fee, and asset variation points are applicable to both
user and developer interfaces. Choices regarding fee defines whether and how
users are charged for platform usage, third-party applications, or for publishing
on the store. Moreover, introducing ecosystem-specific assets affects platform
usage and third-party applications. This highly influences developers work with
respect to choices of the extension development. In addition, the security check
is related to the store and platform interfaces, which appears in form of a review
process to ensure certain quality of third-party applications.

VP

Openness,
Extension

Development,
Platform Interfaces,
Licensing, Fee, Asset

Store-oriented Software Ecosystem

Supplier

Ecosystem Platform

Independent
Developer

extend

publish

use

User
search,

pay,rate

use

provide
_resource

Platform
Provider

provide

VP

Deliverable,
Delivery
Model,

Service Execution,
Service Delivery,

Licensing, Fee, Asset

Software Platform

Store

Strategic
Partner

promote_
ecosystem

VP

Security
Check

Fig. 2. The OVM artifact dependencies show to which interfaces the VPs apply.

586 B. Jazayeri et al.

6 Related Work

Until now, little attention is given to architectural variabilities of software ecosys-
tems whereas a large body of literature considers variability mechanisms in the
context of software product lines. Berger et al. [27] propose a conceptual frame-
work for variability mechanisms in software ecosystems by analyzing existing
ecosystems. The framework is entirely derived from open source projects and
provides insights to technical aspects. Our work, however, covers crucial busi-
ness and technical variabilities by considering both commercial and open source
ecosystems. Some other works [20,28] focus on business aspects. Gawer and
Cusumano [28] derive practices associated with effective platform leadership. The
practices cover strategic decisions regarding platform modularity. Van Angeren
et al. [20] draw a conceptual outline for associate models of participation in soft-
ware ecosystems. The outline covers orchestration aspects including roles, entry
barriers, and governance.

On opening software platforms, Jansen et al. [21] consider the spectrum of
business model openness from software producers’ perspective. The degree of
openness is considered from strategic, tactical and operational views, which is
completely derived from the business models. Costa et al. [29] consider growth of
software ecosystems from single applications, where a group of actors contributes
for niche markets. While the authors assume platform providers lose control over
the ecosystem growth, our work aims at identifying platform provider’s business
and technical decisions to create software ecosystems.

7 Conclusion

Software ecosystems have enabled pioneer software providers to develop a suc-
cessful market on top of their platforms. However, there is still a lack of knowl-
edge for other platform providers to make reasonable design decisions with
regards to their own business goals. In this paper, we identify architectural varia-
tion points and their variants for store-oriented software ecosystems by conduct-
ing a literature review and an exhaustive inspection of fragmentary information
on existing ecosystems. We provide instances for the variability model from the
real-world software ecosystems in diverse domains.

Our study shows that the variability model provides suitable abstraction to
describe store-oriented software ecosystems in a wide range of domains. This
knowledge helps platform providers to create novel ecosystems or to re-create
the existing designs in a systematic way. In the future, an interesting research
direction is to investigate the relation between the variabilities in this work and
common features identified in our previous work [11]. Furthermore, traceabil-
ity and a closer integration between the variabilities and architectural decision
modeling will help to close the gap between requirements and architecture of
software ecosystems.

A Variability Model for Store-Oriented Software Ecosystems 587

References

1. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of
software product lines, global development and ecosystems. J. Syst. Softw. 83(1),
67–76 (2010)

2. Jansen, S., Bloemendal, E.: Defining app stores: the role of curated market-
places in software ecosystems. In: Herzwurm, G., Margaria, T. (eds.) ICSOB
2013. LNBIP, vol. 150, pp. 195–206. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39336-5 19

3. West, J., Mace, M.: Browsing as the killer app: explaining the rapid success of
Apple’s iPhone. Telecommun. Policy 34(5), 270–286 (2010)

4. Manikas, K., Hansen, K.M.: Software ecosystems-A systematic literature review.
J. Syst. Softw. 86(5), 1294–1306 (2013)

5. Jazayeri, B., Schwichtenberg, S.: On-the-fly computing meets IoT markets—
towards a reference architecture. In: International Conference on Software Archi-
tecture Workshops, pp. 120–127. IEEE (2017)

6. Metzger, A., Pohl, K.: Software product line engineering and variability manage-
ment: achievements and challenges. In: Proceedings of the on Future of Software
Engineering, pp. 70–84. ACM (2014)

7. Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P.: Variability in soft-
ware systems-A systematic literature review. IEEE Trans. Softw. Eng. 40(3), 282–
306 (2014)

8. Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czarnecki, K., Wasowski,
A.: A survey of variability modeling in industrial practice. In: International Work-
shop on Variability Modelling of Software-Intensive Systems, p. 7. ACM (2013)

9. Nickerson, R.C., Varshney, U., Muntermann, J.: A method for taxonomy develop-
ment and its application in information systems. Eur. J. Inf. Syst. 22(3), 336–359
(2013)

10. Von Alan, R.H., March, S.T., Park, J., Ram, S.: Design science in information
systems research. MIS Q. 28(1), 75–105 (2004)

11. Jazayeri, B., Platenius, M.C., Engels, G., Kundisch, D.: Features of IT service
markets: a systematic literature review. In: Sheng, Q.Z., Stroulia, E., Tata, S.,
Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 301–316. Springer, Cham (2016).
doi:10.1007/978-3-319-46295-0 19

12. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. J. Syst. Softw. 117, 84–103 (2016)

13. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: a research
agenda for software ecosystems. In: International Conference on Software Engi-
neering Companion Volume, pp. 187–190. IEEE (2009)

14. Bosch, J.: From software product lines to software ecosystems. In: Proceedings of
the 13th International Software Product Line Conference, pp. 111–119. Carnegie
Mellon University (2009)

15. Jazayeri, B., Zimmermann, O., Engels, G., Kundisch, D.: A variability model
for store-oriented software ecosystems: an enterprise perspective - supplementary
material, Technical report (2017). https://sfb901.upb.de/uploads/tx sibibtex/
JZEK17.pdf

16. Pohl, K., Böckle, G., van Der Linden, F.J.: Engineering, Software Product Line:
Foundations Principles and Techniques. Springer, Heidelberg (2005)

http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-642-39336-5_19
http://dx.doi.org/10.1007/978-3-319-46295-0_19
https://sfb901.upb.de/uploads/tx_sibibtex/JZEK17.pdf
https://sfb901.upb.de/uploads/tx_sibibtex/JZEK17.pdf

588 B. Jazayeri et al.

17. Metzger, A., Pohl, K., Heymans, P. Schobbens, P.-Y., Saval, G.: Disambiguating
the documentation of variability in software product lines: a separation of con-
cerns, formalization and automated analysis. In: Proceedings of the International
Requirements Engineering Conference, pp. 243–253. IEEE (2007)

18. Dietz, J., Proper, E., Tribolet, J., Halpin, T., Hoogervorst, J., Op’t Land, M., Ross,
R.G., Winter, R.: The Enterprise Engineering Series. Springer, Heidelberg (2009)

19. Eklund, U., Bosch, J.: Using architecture for multiple levels of access to an ecosys-
tem platform. In: Proceedings of the International ACM SIGSOFT Conference on
Quality of Software Architectures, pp. 143–148. ACM (2012)

20. Van Angeren, J., Kabbedijk, J., Jansen, S., Popp, K. M.: A survey of associate
models used within large software ecosystems. In: Proceedings of the International
Workshop on Software Ecosystems, Citeseer, pp. 27–39 (2011)

21. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: opening
up a software producing organization with the open software enterprise model. J.
Syst. Softw. 85(7), 1495–1510 (2012)

22. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: The role of software licenses in open
architecture ecosystems. In: Proceedings of the International Workshop on Software
Ecosystems. CEUR-WS (2009)

23. Schultis, K.-B., Elsner, C., Lohmann, D.: Architecture challenges for internal soft-
ware ecosystems: a large-scale industry case study. In: Proceedings of the Inter-
national Symposium on Foundations of Software Engineering, pp. 542–552. ACM
(2014)

24. Bosch, J.: Architecture challenges for software ecosystems. In: European Confer-
ence on Software Architecture Companion Volume, pp. 93–95. ACM (2010)

25. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translu-
cence as an enabler for scalable collaboration. In: Proceedings of the European
Conference on Software Architecture Companion Volume, pp. 65–72. ACM (2010)

26. Kruchten, P.: Contextualizing agile software development. J. Soft. Evol. Process
25(4), 351–361 (2013)

27. Berger, T., Pfeiffer, R.-H., Tartler, R., Dienst, S., Czarnecki, K., Wasowski, A.,
She, S.: Variability mechanisms in software ecosystems. Inf. Soft. Technol. 56(11),
1520–1535 (2014)

28. Gawer, A., Cusumano, M.A.: Industry platforms and ecosystem innovation. J.
Prod. Innov. Manag. 31(3), 417–433 (2014)

29. Costa, G., Silva, F., Santos, R., Werner, C., Oliveira, T.: From applications to a
software ecosystem platform: an exploratory study. In: International Conference
on Management of Emergent Digital EcoSystems, pp. 9–16. ACM (2013)

An Analysis of RESTful APIs Offerings
in the Industry

Antonio Gamez-Diaz(B), Pablo Fernandez, and Antonio Ruiz-Cortes

Universidad de Sevilla, Seville, Spain
{agamez2,pablofm,aruiz}@us.es

Abstract. As distribution models of information systems are moving to
XaaS paradigms, microservices architectures are rapidly emerging, hav-
ing the RESTful principles as the API model of choice. In this context,
the term of API Economy is being used to describe the increasing move-
ment of the industries in order to take advantage of exposing their APIs
as part of their service offering and expand its business model.

Currently, the industry is adopting standard specifications such as
OpenAPI to model the APIs in a standard way following the RESTful
principles; this shift has supported the proliferation of API execution
platforms (API Gateways) that allow the XaaS to optimize their costs.
However, from a business point of view, modeling offering plans of those
APIs is mainly done ad-hoc (or in a platform-dependent way) since no
standard model has been proposed. This lack of standardization hinders
the creation of API governance tools in order to provide and automate
the management of business models in the XaaS industry.

This work presents a systematic analysis of 69 XaaS in the industry
that offer RESTful APIs as part of their business model. Specifically, we
review in detail the plans that are part of the XaaS offerings that could
be used as a first step to identify the requirements for the creation of
an expressive governance model of realistic RESTful APIs. Additionally,
we provide an open dataset in order to enable further analysis in this
research line.

1 Introduction

In the last decade, distribution models of information systems are evolving into
XaaS [10] paradigms where customers no longer need to buy a perpetual license,
host the software or maintain the infrastructure [5]. As part of this trend, the
microservices architectures are rapidly emerging as they provide a flexible evo-
lution model [7]. In particular, this architectural model proposes a division of the
information system into a set of small services deployed independently which com-
municate each other using Web APIs that adhere typically to REST principles [6].

This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programs (grants TIN2015-70560-R (BELI) and
P12–TIC-1867 (COPAS)) and the FPU scholarship program, granted by the Spanish
Ministry of Education, Culture and Sports (FPU15/02980).

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 589–604, 2017.
https://doi.org/10.1007/978-3-319-69035-3_43

590 A. Gamez-Diaz et al.

In this context, the term of API Economy is being increasingly used to
describe the movement of the industries to share their internal business assets
as APIs [21] not only across internal organizational units but also to external
third parties; in doing so, this trend has the potential of unlocking additional
business value through the creation of new assets [3]. In fact, we can find a num-
ber of XaaS examples in the industry that are deployed solely as APIs (such as
Meaningcloud1, Flightstats2 or Twilio3).

In order to be competitive in this such a growing market of APIs, at least
two key aspects can be identified: (i) ease of use for its potential developers; (ii)
a flexible usage plan that fits their customer’s demands.

Regarding the ease of use perspective, third party developers need to under-
stand how to use the exposed APIs so it becomes necessary to provide a good
training material but, unfortunately, several API providers do not often write
a good documentation of their products [8]. Alternatively, in the last year, we
found the promising proposal of the Open API Initiative4 (OAI) whose aim is
to support the creation, evolution and promotion of a vendor neutral descrip-
tion format for RESTful APIs and that is currently being backed by a growing
number of leading industrial stakeholders.

Conversely, from the usage plans perspective, to the best of our knowledge,
do not exists a widely accepted model to describe usage plans including elements
such as cost, functionality restrictions or limits. In this context, we can find some
example of API management platforms in the industry (commonly known as API
Gateways), which have tried to address the problem of usage plans modeling but
they are typically constrained by their platform architecture and no interoperable
usage plan specification is provided. For instance, Mashape presents a limited
governance ecosystem, since it only allows users to define quotas and not rates.

Figure 1 illustrates a real plan extracted from FullContact5, a real-world SaaS
offering which includes an API that manages and organizes contacts in a collabo-
rative way, it also matches emails addresses and tries to find as much information
as available on the Internet to complete the profiles. Note that in this work, we
focus on XaaS offering a RESTful API in order to access either fully or partially
to the functionality they offer. In traditional XaaS, these actions are accessed
using the graphic user interface.

This example is composed of three plans, one of them is free whereas the
remaining are paid. Focusing on paid ones, they have a fixed price that is
monthly billed. Regarding the limits, for each resource, a quota is being applied;
for instance, in the starter plan, only 6000 matches over Person are available.
Nevertheless, an overage is defined, that is, it is possible to overcome the limit
by paying a certain amount of money; in this case, $0.006 per each request.
Regardless of the accessed resources, a common rate of 300 queries per minute is

1 https://www.meaningcloud.com/products/pricing.
2 https://developer.flightstats.com/getting-started/pricing.
3 https://www.twilio.com/sms/pricing.
4 https://www.openapis.org/.
5 https://www.fullcontact.com/developer/.

https://www.meaningcloud.com/products/pricing
https://developer.flightstats.com/getting-started/pricing
https://www.twilio.com/sms/pricing
https://www.openapis.org/
https://www.fullcontact.com/developer/

An Analysis of RESTful APIs Offerings in the Industry 591

Fig. 1. Example of an API plan.

being applied. In this plan, there are not any functionality limitation, even the
free plan has the same functionality that paid ones have. In this case, the free
tier is regulated by limits such as quotas and rates.

The main aim of this paper is to develop the first step towards an expres-
sive, platform neutral, usage plan model that could be used to create open API
governance tools. Specifically, this work presents a systematic analysis of the
usage plans identified in a wide spectrum of real-world APIs; in doing so, the
main contributions of this paper are: (i) present a systematic method to ana-
lyze XaaS offerings in the industry including RESTful APIs; (ii) undertake a
comparative analysis of 69 industrial APIs selected from two widely used API
directories, identifying the common trends related to the modeling of usage plans;
(iii) provide an open dataset that can be used to replicate our analysis and to
be extended in further researches.

This paper is organized as follows: Sect. 2 shows the methodology that we
use in our study as well as the characteristics we analyze. Next, in Sect. 3, we
discuss the results of the analysis. In addition, Sect. 4 shows the existing work
related to this paper. Finally, Sect. 5 shows some remarks and conclusions.

2 Research Method and Conduct

The study6 presented herein was entirely conducted during the 2017 first quarter
and it is a primary study in which we analyze real-world APIs. Whereas primary
research data are collected from, for instance, research subjects or experiments,
secondary studies involve the synthesis of existing research. Specifically, our work

6 Data used in this study is publicly available at https://goo.gl/gQPDxz.

https://goo.gl/gQPDxz

592 A. Gamez-Diaz et al.

is based on the guidelines provided by Kitchenham and Charters in [12], adapting
these guides about how to carry out secondary studies to a primary study. We
consider that using these guidelines helps to systematize the research we are
doing since they define a workflow directly applicable to primary research and
give recommendations with the aim of avoiding undesired bias.

In our work, we systematically analyze a set of characteristics in real-world
APIs following the steps depicted in Fig. 2.

Fig. 2. BPMN representation of the research process.

– SP01-Research questions definition. We start our systematic analysis
with a series of motivating questions which will drive the investigation. We
consider that these questions can pave the way for future research activities.
Specifically, we define the following questions:
• RQ01. What are the most common business models in the context of

XaaS that offer a RESTful API?
• RQ02. How are the plans, in terms of the characteristics that they have,

used in XaaS that provide a RESTful API?
• RQ03. Which regulations do XaaS offerings state over the RESTful APIs?

– SP02-Sources identification. Based on the literature and the analysis of
the industry that we have conducted, 10 API repositories were collected. Nev-
ertheless, we have considered those ones which included more than 5000 APIs
and whose last update date was in the year 2017, remaining 2 valid sources:
S01-ProgrammableWeb7: with 17511 APIs distributed in 478 categories

7 https://www.programmableweb.com.

https://www.programmableweb.com

An Analysis of RESTful APIs Offerings in the Industry 593

and S02-Mashape8 with 7500 APIs distributed in 28 categories. Note that
Mashape directory has been recently moved to RapidAPI9 catalog, so subse-
quent analysis should be made over RapidAPI rather than Mashape.

– SP03-Preliminary study. After a preliminary examination of API directo-
ries S01 and S02, the more popular categories in each one were identified. We
did a percentile study over the categories and the number of users in each one.
Particularly, we fixed P97 for S01 and P50 for S02. Additionally, we included
some handpicked APIs, looking for these ones with complex plans.

– SP04-Data extraction. We designed two different forms since the quality
criteria have to be used to identify inclusion/exclusion criteria, according to
the Kitchenham guidelines [12]. The first one10 tried to identify basic infor-
mation about the analyzed API as well as information regarding the plans.
The second one11 went in depth into the overage and both functionality and
quota/rate limitations, including the API characteristics showed in Sect. 2.1.
30 students were given S01 and S02 API directories so that they chose two
XaaS offerings following the eligibility criteria. They collected manually the
required information in a session guided by the authors and they filled out the
forms. In order to have a broader vision of the APIs offered in the industry,
we defined an incremental process composed of three rounds. We started from
defining strict eligibility criteria and the number of developers that the API
has. Then we relaxed some criterion so that a new set of APIs was included.
In the first round (R01) we limited the APIs selected from S01, consid-

ering only a certain set of categories12, according to its popularity (see
SP03). In addition, we set a threshold of 50 registered developers in S01
and limited the APIs selected from S02 having, at least, 100 users and
being in categories either paid or premium.

In the second round (R02) we were informed by some students about they
did not found any API according to the established search restrictions.
At this moment, we determined to relax the criteria in S01, removing the
50 developers’ threshold. After finishing this round, we have collected 62
APIs.

In the third round (R03) we started the guided session in class to fill
out the form. Nevertheless, we noticed that there was a number of APIs
without a clear plan, and students found quite difficult to find all the
information that we asked for. At this point, we decided to start a new
API gathering session with the help of the instructors. After finishing this
round, we harvested extra 28 APIs.

8 https://www.mashape.com.
9 https://rapidapi.com.

10 Available at https://goo.gl/rqwvH7.
11 Available at https://goo.gl/sbzXEh.
12 Mapping, social, e-commerce, mobile, search, tools, messaging, API, video, financial,

cloud, payments, enterprise, analytics, data.

https://www.mashape.com
https://rapidapi.com
https://goo.gl/rqwvH7
https://goo.gl/sbzXEh

594 A. Gamez-Diaz et al.

– SP05-Subsequent analysis. We did a subsequent analysis in two different
steps: (i) manual data validation and classification: giving a result a set of 69
analyzed XaaS offerings with more than one plan. We detected some inconsis-
tencies in some points that were manually reviewed and corrected; (ii) ulterior
results classification: in which we separated the data gathered regarding the
source, obtaining 42 APIs from S01 and 27 from S02.

2.1 Analyzed Attributes

We developed a comparative framework based on 60 attributes grouped in 7 areas
illustrating the traceability between the research questions and the gathered
characteristics. Following, we describe each group of attributes.

General information (see Table 1). We collected information about the
API itself, including the name (GI01) and the source (GI02) where these
APIs was selected from (i.e. Mashape or ProgrammableWeb); and the plans URL
(GI03).

API characterization (see Table 1). We distinguished two attributes, API
type (AC01) and API maturity level (AC02), in terms of giving a more precise
classification of APIs. Specifically, we propose a classification of four types for the
API type: T01 if the XaaS offering does not provide any API at all; T02 when
the XaaS offering does provide a non-RESTful API; T03 if the XaaS offering
does provide as part of its offer a RESTful API, (e.g., a SaaS which allows
customers to access their data in a RESTful way, but the primary access way is
a GUI); and T04 if the XaaS offering is, actually, a RESTful API (e.g., an API
to send emails or SMS). For API type T03 or T04, we identify a set of three API
maturity levels: ML01 if the API does not define any limitations nor explicit
Service Level Agreement (SLA); ML02 when the API defines limitations and/or
explicit SLAs but they are not in the plans (i.e., the limitations are applied
regardless of the selected plan); and ML03 if the API defines limitations and/or
explicit SLAs depending on the selected plan.

Pricing (see Table 1). We identify economic information of the API pricing
including the currency (P01) in which clients are billed, the billing cycle (P02)
and a set of statistics of the plan cost (P03, P04, P05).

Business model (see Table 1). We consider the main primary business model
(BM05) in the API, inspired by a number of works in the literature, as shown
in Sect. 4. Namely: free (FR), when no payment is needed; pay-as-you-go simple
(PG-S), when you pay just for the usage you do (e.g., you pay per each request
made); pay-as-you-go with intervals (PG-I), when the payment for each unit
depends on the usage volume (e.g., the first 1 K request cost $0.1 each, but the
subsequent $0.05 each); tiered with fixed prices (TO1), when each plan has a
non-variable price; tiered with overage (TO2), when existing plans with a certain
price and limitations you can overcome the limits by paying an extra amount.
We also gathered the number of plans (BM06) and discover the existence of
discounts per annual upfronts (BM01), the existence of customs plans (BM03),
the main limitation of the free plan (BM04); or the existence of a free plan
(BM02).

An Analysis of RESTful APIs Offerings in the Industry 595

Table 1. First set of API analyzed attributes.

General information RQ01 RQ02 RQ03

GI01-Name of the API

GI02-Source � � �
GI03-Plans URL

API characterization

AC01-API type � �
AC02-API maturity � �
Pricing

P01-Currency used � �
P02-Billing cycle � �
P03/P04/P05-Plan cost(max/min/avg) � �
Business model

BM01-Existence of discounts per annual upfront � �
BM02-Existence of a free plan � �
BM03-Existence of custom plans � �
BM04-Main limitation of the free plan � �
BM05-Main business model � �
BM06-Number of plans � �

Overage (see Table 2). We define overage as the extra cost in which a cus-
tomer incurs when a certain limitation or set of limitations is exceeded (O01).
The overage scope (O02) depends over what item the limitation is made (e.g.,
requests, the number of resources, etc.). Moreover, we collected data about the
overage cost (maximum -O09-, minimum -O10- and average -O11- across the
different plans) and the overage limit (maximum -O03-, minimum -O07- and
average -O08- across the different plans), i.e., the amount of scoped data allowed
per each overage payment. Furthermore, we consider the existence of an overage
in every paid plan (O04) and we analyze whether in the same paid plan all the
resources have an overage (O05) and all the resources have the same overage
value (O06).

Functionality limitations (see Table 2). We identify the limitations over
the API functionality (FL01) and study the granularity: resource access gran-
ularity (FL02), if the limitation is applied to the resource endpoint (e.g. it is
not possible to access some parts of the resource in some plans); HTTP method
granularity (FL03), if the limitation is applied to a certain HTTP verb (e.g., it
is not possible to make a POST in some plans) request body granularity (FL04),
when the limitation is based on the specific payload sent to an endpoint. Further-
more, we identify the existence of a functionality limitation in every paid plan
(FL05) and we analyze whether in the same paid plan all the resources have a

596 A. Gamez-Diaz et al.

Table 2. Second set of API analyzed attributes.

Overage RQ01 RQ02 RQ03

O01-Existence of an overage � � �
O02-Overage scope � �
O04-Existence of an overage in every paid plan � �
O05-In the same paid plan all the res. have an overage � �
O06-In the same paid plan all the res. have the same overage
value

� �

O03/O07/O08-Overage limit value(max/min/avg) � �
O09/O10/O11-Overage cost (max/min/avg) � �
Functionality limitations

FL01-Existence of functionality limitations � � �
FL02-Limitation granularity: resource access �
FL03-Limitation granularity: HTTP methods �
FL04-Limitation granularity: request body �
FL05-Existence of functionality limitations in every paid plan �
FL06-In different paid plans each one has the same func. lim. �
FL07-In the same paid plan all the resources have a func. lim. �

functionality limitation (FL06) and all the resources have the same functionality
limitations (FL07).

Quotas/Rates (see Table 3). We analyze two time-based limitations in the
API, commonly known as quotas and rates. The main difference is the sliding
window that rates have: whereas with quotas it is possible to define limits such as
up to 1000 requests per day, with rates it is possible to express limits with a rel-
ative period of time, such as up to 100 requests in the last minute. Specifically,
we identify the scope of these limitations: (i) requests scope (Q02/R02), (ii)
storage scope (Q03/R03); (iii) resource scope (Q04/R04); (iv) transaction size
scope (Q05/R05) and other scopes not explicitly mentioned (Q06/R06). More-
over, we collected the value of the limitation (maximum -Q12/R12-, minimum
-Q13/R13- and average -Q14/R14- across the plans) and periodicity. Further-
more, we consider the existence of a functionality limitation in every paid plan
(Q07/R07), we analyze if in different plans each one has the same quotas/rates.
(Q08/R08), whether in the same paid plan all the resources have a quotas/rates
(Q09/R09) and, finally, if all the resources have the same quota/rate value.
(Q10/R10).

An Analysis of RESTful APIs Offerings in the Industry 597

Table 3. Third set of API analyzed attributes.

Quotas and rates RQ01 RQ02 RQ03

Q01/R01-Existence of quotas/rates � � �
Q02/R02-Quotas/Rates over requests �
Q03/R03-Quotas/Rates over storage �
Q04/R04-Quotas/Rates over resources �
Q05/R05-Quotas/Rates over transaction size �
Q06/R06-Quotas/Rates over another scope �
Q07/R07-Quotas/Rates in every paid plan �
Q08/R08-Quota/Rates in all resources of different plans �
Q09/R09-Quota/Rates in all resources of the same plan �
Q10/R10-Same quota/rate value for a given plan & resource �
Q11/R11-Quota/rate periodicity �
Q12/R12/Q13/R13/Q14/R14-Quota/Rate value
(max/min/avg)

�

3 SP06-Results

In this section, we present the results of the study grouped in three differ-
ent blocks: (i) attributes regarding the business model and pricing; (ii) aspects
related to limitations and overage application; (iii) quotas and rates limitations.
Due to the fact that there exist notable differences between the APIs and their
governance models, we decided to perform a separate analysis regarding the
source of the API: Mashape and ProgrammableWeb.

In Fig. 3 we observe that most of the APIs analyzed are, indeed, the XaaS
offering (AC01). In the case of Mashape, all the APIs are T04. Regarding the
maturity (AC02), in both cases, we observe that the defined limitations depend
on the plan that the client selects. Note we have established a search protocol
that picked primarily popular APIs from popular categories, a fact that explains
this polarization in AC01 and AC02. A small number of APIs offer a discount per
an anticipated payment or upfront (BM01), but the vast majority define a free
tier with some specific limitations (B02). In addition, it is frequent to have a way
to define custom plans by talking directly to the company (BM03). Regarding
the business models (BM05), it is very likely for APIs from Mashape to have
a tiered plan with an overage, in contrast to the ones from ProgrammableWeb,
in which is common to have a tiered plan with fixed prices. It is remarkable
that the more common billing cycle (P02) is monthly and the number of plans
(BM06) oscillates between two and four.

Figure 4 depicts the most interesting attribute analysis about how limitations
are being applied in APIs. First, we observe that a high number limits the oper-
ations, rather than functionality or time (BM04). Secondly, from the providers

598 A. Gamez-Diaz et al.

Fig. 3. Business model and pricing analysis.

Fig. 4. Limitations and overage analysis.

An Analysis of RESTful APIs Offerings in the Industry 599

that apply an overage if a certain limit is reached (O01), it is frequent that all
the resources have an overage (O05), but it has not to be the same (O06). The
most common scope (O02) is requests. On the other hand, some APIs apply
limitations over the functionality (FL01), being more frequent in the APIs cho-
sen from ProgrammableWeb. Most of the limitations are applied to the resource
itself (FL2). Furthermore, functionality limitations use to be present in every
plan (FL05), but they neither are the same across the plans (FL06) nor have the
same values (FL07).

Fig. 5. Quotas and Rates analysis.

In Fig. 5 we observe some charts regarding the limitations using quotas
and rates. Whereas both quotas and rates are very frequent (Q01/R01), we
have noticed that Mashape does not allow users to define rates. Quotas are
usually defined using monthly periods, whereas rates are more common to be
secondly or minutely (Q11/R11). Furthermore, most of quotas and rates are
defined over requests (Q02/R02), rather than over resources (Q04/R04) or stor-
age (Q03/R03). It is also remarkable that most of quotas and rates have the
same values within a plan (Q10/R10), but in different plans they usually have
different values (Q08/R08).

Each of these attributes paves the way to give an answer to the stated research
questions. Specifically, (i) regarding the most common business models (RQ01),
as depicted in Fig. 3, BM05 attribute points out that the more common business
models are the tiered ones with or without overage; (ii) regarding the plans
(RQ02), as shown in Fig. 3, most APIs define between two or four plans, with
a monthly billing cycle; (iii) regarding the regulations (RQ03), as illustrated in
Figs. 4 and 5 most XaaS providers apply limitations in somehow. They limit the

600 A. Gamez-Diaz et al.

free tier by restricting the operations allowed and, for paid plans, they define
both quotas and rates. These limitations unusually are scoped over the number
of requests, and the periodicity intervals range from minutely for quotas, to
secondly for rates. This situation may be caused by the lack of versatility and
expressivity existent in current modeling tools.

In our analysis, we identify two different threats to the validity of the results
herein presented: (i) the size of the sample may not be statistically representative
regarding the total population of APIs in the real world. Nevertheless, we have
tried to prioritize the more popular categories in each repository so that we can
maximize the API usage; (ii) despite the fact that we have tried to do our best
when validating data, there may be some errors since the process is manual.
Apart from offering the open dataset we plan, as future work, to revisit it and
undertake a comprehensive examination.

4 Related Work

A number of analyses of web services in the industry and, especially, of RESTful
APIs, have been presented. They usually focus on characteristics inherent to the
API design. This work presents a new research direction by developing a system-
atic study of RESTful APIs focusing on how providers deal with non-functional
properties in plans by establishing limitations, such as rates and quotas. We
emphasize our work in providing an open and machine-readable dataset to other
researchers.

The more relevant literature we have revised is summarized in the following:
A first set of studies is focused on traditional web services (WSDL/

XML/SOAP). On the one hand, Li et al. show a study on Web services [13]
in order to get the diversity of the specification of key elements in the industry.
Specifically, they focus on statistics based on the number of defined operations,
WSDL document size, average words used in the description fields and func-
tion diversity. They crawled some web services catalogs and collected informa-
tion about 570 WSDL documents from active services, nevertheless, they focus
only on a single search engine. On the other hand, Al-Masri et al. present a
broader study [1] in which the authors have developed a crawler for collecting
information about 5077 WSDL references available in different sources, such as
Google, Yahoo, Alltheweb and Baidu. They determine statistics about object
sizes, technology and function among others. They also point out the discon-
nection between UDDI registries and the current web, since these registries are
incapable of providing Quality of Service (QoS) measurements for registered
Web services and they do not clearly define how service providers can advertise
business models.

Coinciding with the progressive increase of RESTful APIs, a second set of
works are focused on these services. In [14], Maleshkova et al. analyze a set of ran-
domly chosen 222 APIs of ProgrammableWeb, not just RESTful APIs but RPC
and hybrid style also. They analyze six API characteristics: general information,
types, input parameters, output formats, invocation details and complementary

An Analysis of RESTful APIs Offerings in the Industry 601

documentation. They found that a lack of a standard format to document APIs.
In particular, it shows that APIs suffer from under-specification because some
important information (e.g., data type and HTTP methods) are missing. Fur-
thermore, in [18], Renzel et al. show a study over the 20 most popular RESTful
Web Services from ProgrammableWeb against 17 RESTful design criteria found
in the literature. The point out that hardly any of the services claiming to be
RESTful is truly RESTful. This study also offers the full dataset showing the
values for each analyzed characteristic. Finally, in [4], Bülthoff et al. analyze a
dataset which comprises 45 Web APIs in total, primarily chosen from Program-
mableWeb directory, and provide conclusions about common description forms,
output types, usage of API parameters, invocation support, the level of reusabil-
ity, API granularity and authentication details. In this study, the authors show
that an 89% of APIs state and implement rate limitations, either written down
as part of the documentation or included with the general terms and conditions.

In a third set of studies in the last years, authors are moving to conducting
other analysis to determine how the APIs are evolving and whether best prac-
tices are being followed. For instance, in [20], Sohan et al. conduct a case study of
9 evolving APIs to investigate what changes are made between versions and how
the changes are documented and communicated to the API users. Furthermore,
they extract some recommendations, such as the use of semantic versioning, sep-
arate releases for bug fixes and new features, auto-generated API documentation
cross-linked with changelogs and providing live API explorers. Next, Palma et
al. in [15,16], present a framework to undertake API analysis, specifically, in the
first work, they analyze 12 APIs in order to recognize some patterns and anti-
patterns for RESTful APIs; in the second work, analogously, they study 15 APIs
to detect some linguistic patterns and anti-patterns in URL paths. Furthermore,
in [17], Petrillo et al. present a study evaluating and comparing the design of the
RESTful APIs of 3 cloud providers in terms of the fulfillment of a catalog of 73
best practices. They show that APIs reach an acceptable level of maturity when
they consider best practices related to understandability and reusability. More-
over, in [19], Rodriguez et al. evaluate some good and bad practices in RESTful
APIs. In particular, they analyze data logs of HTTP calls collected from the
Internet traffic, identify usage patterns from logs and compare these patterns
with design best practices.

Furthermore, from an industrial perspective some studies have been carried
out; Musser, VP of ProgrammableWeb, highlights in a conference13 what are
the more common business models nowadays. In this sense, Yu et al. carried
out a study [25] that analyzes structure and dynamics of ProgrammableWeb,
determining that cumulative API use follows a power law distribution: a large
number of APIs is used in a few mashups and a small number of APIs is used
by many mashups. Furthermore, Haupt et al. present a study [11] of some API
properties over 286 Swagger descriptions using a custom framework to analyze
these Swagger documents.

13 Available at https://goo.gl/8eZwwv.

https://goo.gl/8eZwwv

602 A. Gamez-Diaz et al.

In a pricing model perspective, we found initial works such as [2] in which
Andrikopoulos et al. present a cost calculator for cloud ecosystems. More specifi-
cally, Vukovic et al. have presented some relevant works in the sense API ecosys-
tems analysis and formal representations of service licenses. In [24] they pre-
sented a graph-based data model for API ecosystem built on an RDF data store.
It stores temporal information about when entities and relationships were cre-
ated and possibly deleted, allowing insights into the evolution of API ecosystems.
On the other hand, in [22] they present a data model for API terms of service
that captures a set of non-functional properties of APIs and allows for terms and
conditions to be automatically assessed and composed. Later, in [23] they define
a formal representation of service license description that facilitates automated
license generation and composition. They also care about some QoS parameters
and its relationship between the agreed SLA. Nevertheless, they do not identify
any limitation that actually exists in real API plans, such as quotas and rates.
Moreover, they restrict the concept of Service Level Agreements (SLAs) to two
components: condition and action, whereas our approach pretends to go further.

To the best of our knowledge, our work differs from the one presented herein
in three specific points: (i) Any of the analyzed works present a study over a
number of RESTful APIs in terms of non-functional aspects and limitations
(e.g., quotas and rates), plans and business models. (ii) We have carried out our
analysis systematically, defining a specific set of objectives and research ques-
tions, rules to select the APIs and a specific methodology to analyze the gathered
data. (iii) None of the works provides an open dataset in a machine-readable for-
mat so that researchers could improve and use the data gathered by authors in
further studies. The only one that presents a dataset is [18], nevertheless, they
do not offer it in a machine-readable way.

5 Conclusions and Future Work

In this paper, we have systematically studied 69 RESTful APIs of XaaS offer-
ings; after identifying the research questions, we selected two valid sources to
extract APIs from: Mashape and ProgrammableWeb. Next, we analyzed a set of
characteristics regarding the type of the API, pricing, business models used in
the XaaS offering, functionality limitations, overage and quotas and rates. We
found that there exists a wider expressibility in terms of API limitations when
the API is not explicitly regulated by an API Gateway, such as Mashape.

As an additional value, we believe the results of this study can also be useful
for practitioners who plan to design a new plan for an API. Finally, as a future
work, we plan to identify: (i) a correlation between the price plan offered and
the types of limits; (ii) a specific set of requirements to define a formal gover-
nance model that supports a realistic usage plan specification for RESTful APIs,
including temporality elements such as scheduling restrictions as defined in [9].

An Analysis of RESTful APIs Offerings in the Industry 603

References

1. Al-Masri, E., Mahmoud, Q.H.: Investigating web services on the world wide web.
In: WWW 2008, vol. 32(3), pp. 795–804 (2008)

2. Andrikopoulos, V., Song, Z., Leymann, F.: Supporting the migration of applica-
tions to the cloud through a decision support system. In: ICSOC 2013, pp. 565–572.
IEEE, June 2013

3. Bonardi, M., Brioschi, M., Fuggetta, A.: Fostering collaboration through API econ-
omy. In: SER&IP 2016, pp. 32–38 (2016)

4. Bülthoff, F., Maleshkova, M.: RESTful or RESTless – current state of today’s
top web APIs. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I.,
Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 64–74. Springer, Cham (2014).
doi:10.1007/978-3-319-11955-7 6

5. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns. Springer, Heidelberg (2014)

6. Fielding, R.T.: Architectural styles and the design of network-based software archi-
tectures. Building 54, 162 (2000)

7. Fowler, M.: Microservices, pp. 1–14 (2014)
8. Forrester. API Management Solutions, Q3 2014. Technical report (2015)
9. Garćıa, J.M., Mart́ın-Dı́az, O., Fernandez, P., Ruiz-Cortés, A., Toro, M.: Auto-

mated analysis of cloud offerings for optimal service provisioning. In: Maximilien,
M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp.
331–339. Springer, Cham (2017)

10. Geelan, J.: Twenty-one experts define cloud computing. Cloud Comput. J. 4, 5
(2009)

11. Haupt, F., Leymann, F., Scherer, A., Vukojevic-Haupt, K.: A framework for the
structural analysis of REST APIs. In: ICSA 2017, p. 4 (2017)

12. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering Version 2.3. Engineering 45(4ve), 1051 (2007)

13. Li, Y., Liu, Y., Zhang, L., Li, G., Xie, B., Sun, J.: An exploratory study of web
services on the internet. In: ICWS 2007, pp. 380–387. IEEE (2007)

14. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web APIs on the World
Wide Web. In: ECOWS 2010, pp. 107–114. IEEE, December 2010

15. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G.: Detection of REST patterns
and antipatterns: a heuristics-based approach. In: Franch, X., Ghose, A.K., Lewis,
G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 230–244. Springer, Hei-
delberg (2014). doi:10.1007/978-3-662-45391-9 16

16. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G., Tremblay, G.: Are
RESTful APIs well-designed? Detection of their linguistic (anti)patterns. In: Bar-
ros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol.
9435, pp. 171–187. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48616-0 11

17. Petrillo, F., Merle, P., Moha, N., Guéhéneuc, Y.-G.: Are REST APIs for cloud
computing well-designed? An exploratory study. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 157–170. Springer, Cham
(2016). doi:10.1007/978-3-319-46295-0 10

18. Renzel, D., Schlebusch, P., Klamma, R.: Today’s top “RESTful” services and why
they are not RESTful. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 354–367. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35063-4 26

http://dx.doi.org/10.1007/978-3-319-11955-7_6
http://dx.doi.org/10.1007/978-3-662-45391-9_16
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-319-46295-0_10
http://dx.doi.org/10.1007/978-3-642-35063-4_26
http://dx.doi.org/10.1007/978-3-642-35063-4_26

604 A. Gamez-Diaz et al.

19. Rodŕıguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L.,
Percannella, G.: REST APIs: a large-scale analysis of compliance with princi-
ples and best practices. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.)
ICWE 2016. LNCS, vol. 9671, pp. 21–39. Springer, Cham (2016). doi:10.1007/
978-3-319-38791-8 2

20. Sohan, S.M., Anslow, C., Maurer, F.: A case study of web API evolution. In:
SERVICES 2015, pp. 245–252. IEEE, June 2015

21. Tan, W., Fan, Y., Ghoneim, A., Hossain, M.A., Dustdar, S.: From the service-
oriented architecture to the web API economy. IEEE Internet Comput. 20(4),
64–68 (2016)

22. Vukovic, M., Laredo, J., Rajagopal, S.: API terms and conditions as a service. In:
ISCC 2014, pp. 386–393. IEEE, June 2014

23. Vukovic, M., Zeng, L.Z., Rajagopal, S.: Model for service license in API ecosystems.
In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol.
8831, pp. 590–597. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45391-9 51

24. Wittern, E., Laredo, J., Vukovic, M., Muthusamy, V., Slominski, A.: A graph-
based data model for API ecosystem insights. In: ICWS 2014, pp. 41–48. IEEE,
June 2014

25. Yu, S., Woodard, C.J.: Innovation in the programmable web: characteriz-
ing the mashup ecosystem. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC
2008. LNCS, vol. 5472, pp. 136–147. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01247-1 13

http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1007/978-3-662-45391-9_51
http://dx.doi.org/10.1007/978-3-642-01247-1_13
http://dx.doi.org/10.1007/978-3-642-01247-1_13

Efficient Influential Individuals Discovery
on Service-Oriented Social Networks:

A Community-Based Approach

Fanghua Ye1,3, Jiahao Liu1,3, Chuan Chen1,3, Guohui Ling2, Zibin Zheng1,3(B),
and Yuren Zhou1

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
{yefh5,liujiah9}@mail2.sysu.edu.cn,

{chenchuan,zhzibin,zhouyuren}@mail.sysu.edu.cn
2 Data Center of WeChat Group, Tencent Technology, Shenzhen, China

randyling@tencent.com
3 Key Laboratory of Machine Intelligence and Advanced Computing
(Sun Yat-sen University), Ministry of Education, Guangzhou, China

Abstract. With the rapid development of Internet and mobile Internet,
service-oriented social networks gain increasing popularity. Discovering
a small subset of influential individuals on service-oriented social net-
works is beneficial for both users and service providers. This issue is
formally referred to the influence maximization problem. In this paper,
through exploiting the community structures of social networks, we pro-
pose two novel community-based approximation algorithms BCAA and
ICAA, which have high performance guarantee as well as high efficiency,
to address the influence maximization problem. Both BCAA and ICAA
discover influential individuals within each individual community rather
than the entire network. We further provide performance guarantee
analysis of BCAA and ICAA. Finally, extensive experiments are con-
ducted to demonstrate the efficiency and effectiveness of the proposed
algorithms.

1 Introduction

With the rapid development of Internet and mobile Internet, social network has
become an important platform for people’s online life. For example, as one of the
most prevalent social network platforms in China, WeChat has more than 800
million monthly active users [1]. Social networks are not only effective tools in
connecting individuals, but also powerful platforms for delivering services, which
leads to the transformation from traditional social networks to service-oriented
social networks. In the service-oriented social networks, to discover a small subset
of influential individuals is particularly important. From service providers’ per-
spective, it is cost-effective to target these influential individuals only when they
want to promote some services, because these influential individuals are more
conductive to propagate services in the form of “word-of-mouth” [2]. From users’

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 605–613, 2017.
https://doi.org/10.1007/978-3-319-69035-3_44

606 F. Ye et al.

perspective, it is trustworthy to follow the recommendations from these influ-
ential individuals when they expect to obtain high-quality services. Formally,
discovering influential individuals is referred to as influence maximization.

During the past few decades, extensive approaches [3–5,7–11] have been pro-
posed to solve the influence maximization problem. These approaches mainly
fall into two categories: (1) greedy algorithms [3,5,8,11], which possess high
performance guarantee but are time-consuming; and (2) heuristic algorithms
[4,7,9,10], which are time-efficient but lack performance guarantee. Therefore,
it is essential to devise new algorithms that have both high efficiency and high
performance guarantee.

In this paper, we propose a novel approach with both efficiency and perfor-
mance guarantee to improve Kempe’s greedy algorithm [8]. The basic idea of
this approach is to discover influential individuals within communities rather
than the entire network, as community structure is a basic and important prop-
erty of social networks [14] and has prominent effect on the influence spreading
process [6,15]. Intuitively, a community is a set of nodes with dense internal con-
nections and sparse external connections. Individuals within a community tend
to have more communications and thus are more likely to influence each other,
while individuals across communities tend to have less contacts and thus are less
likely to influence each other. Therefore, it is a good approximation to discover
influential individuals within communities rather than the entire network. The
proposed approach contains two phases: community detection in the first phase
and influential individuals discovery in the second phase.

To detect high-quality communities, we first exploit LINE [16], one of the
most popular network embedding methods, to extract a d-dimensional vector
representation for each node in this network, which preserves the network neigh-
bourhood relationships well. Then the network is partitioned into c communities
by utilizing classic k-means algorithm [13] on the basis of the obtained vector rep-
resentations. After obtaining the communities, we propose two community-based
approximation algorithms to discover influential individuals. We first propose the
basic community-based approximation algorithm BCAA, which is c times faster
than Kempe’s greedy algorithm, where c denotes the number of communities.
BCAA is a simple improved version of Kempe’s greedy algorithm, and the only
difference between them is that BCAA estimates the influence spread of a sub-
set of nodes within each individual community instead of the whole network. To
further speed up BCAA, we propose the improved community-based approxima-
tion algorithm ICAA, which can avoid many wasteful computations by taking
advantage of the submodularity property of influence spread (see more details in
Sect. 2). We further analyze the performance guarantee of the proposed approach
and show that both BCAA and ICAA can obtain a (1 − e− 1

1+(c−1)ΔIc) approxi-
mation to the optimal solution, where ΔIc is the maximal influence spread of a
node in the communities that do not contain this node.

In all, our contribution is three-fold: (1) A new community detection method
based on network embedding is proposed to detect high-quality communities; (2)
Two novel algorithms with high performance guarantee are proposed to discover

Efficient Influential Individuals Discovery: A Community-Based Approach 607

influential individuals by exploiting the community structures of social networks;
(3) Extensive experiments are conducted to demonstrate the effectiveness and
efficiency of the proposed algorithms.

2 Problem Statement

A social network can be modeled as a weighted graph G = (V,E, P) with n = |V |
nodes and m = |E| edges. Each directed edge e = (u, v) between nodes u and
v is associated with a weight puv ∈ [0, 1] in P , which represents the probability
that node u influences node v.

Let S ⊆ V be the subset of nodes selected as the initial target nodes for
influence spreading. We define the influence spread of S, denoted by I(S), as
the expected number of nodes that are eventually influenced by S under certain
spreading model. It is worth noting that I(S) is a submodular function, i.e.,
I(S ∪ {v}) − I(S) ≥ I(T ∪ {v}) − I(T), for all v ∈ V and S ⊆ T ⊆ V .

To estimate the influence spread I(S), the spreading model should be deter-
mined at first. Here, we adopt the independent cascade (IC) model [8]. In IC
model, each individual node has two states: active and inactive, and the influ-
ence spreading process unfolds in discrete timestamps according to the following
rules. When node u becomes active at timestamp t, it can make an attempt
to activate each inactive neighbour node v with probability puv at timestamp
t + 1. However, u cannot make any further activation attempts at subsequent
timestamps. The spreading process runs until no more activations are possible.

Definition 1 (Influence Maximization Problem). Given a weighted graph
G = (V,E, P) and a parameter k, the influence maximization problem aims at
discovering a size-k subset of nodes S ⊆ V such that I(S) is maximal.

3 Proposed Solutions

3.1 Network Embedding Based Community Detection

Network embedding aims at extracting low-dimensional high-quality features for
each node in the networks. Definition 2 presents its formal definition.

Definition 2 (Network Embedding). Given a network G = (V,E), the goal
of network embedding is to embed each node v ∈ V into a low-dimensional space
Rd, that is, to learn a mapping function fG : V → Rd, where d � |V |. In space
Rd, the network neighbourhood of each node is well preserved.

In this paper, we employ the network embedding model LINE [16], which aims
to preserve both the first-order proximity and the second-order proximity of a
network. The first-order proximity refers to the local pairwise proximity, while
the second-order proximity refers to the similarity of two nodes’ neighbourhood
network structures. We choose LINE because it preserves the community struc-
tures well. Intuitively, two nodes that are directly linked or share many common

608 F. Ye et al.

Algorithm 1. The Basic Community-Based Approximation Algorithm
Input: Graph G = (V,E, P), parameter k
Output: Seed nodes Sk

1 Partition G into c communities through the NECD procedure;
2 S0 ← ∅;
3 for i = 1 to k do
4 for each node v ∈ V \ Si−1 do
5 Let Cv be the community that contains v;
6 H ← Cv ∩ Si−1;
7 MC(v) ← IC(H ∪ {v}) − IC(H);

8 Si ← Si−1 ∪ {argmaxv∈V \Si−1
MC(v)};

9 return Sk;

neighbours are more inclined to be included in a same community. After obtain-
ing the low-dimensional vector representation of all the nodes, we exploit the
classic k-means algorithm [13] to partition the network into c communities. This
network embedding based community detection (NECD) procedure can detect
high-quality communities with c properly set, and flexibly control the number
of communities with reasonable quality guaranteed.

3.2 Basic Community-Based Approximation Algorithm BCAA

In this part, we devise BCAA to improve Kempe’s greedy algorithm [8] by taking
advantage of network communities. BCAA is outlined in Algorithm 1. Building
on the NECD procedure, BCAA first partitions network G into c communities.
Then, on the basis of these c communities and under the IC model, BCAA
discovers seed nodes one by one iteratively. In each iteration, BCAA selects
the node with maximal marginal influence spread as the next seed node (Steps
4-8). However, BCAA computes each node’s marginal influence spread within
each individual community instead of the entire network, i.e., MC(v) ← IC(H ∪
{v})− IC(H), where IC(·) and MC(·) denote community-based influence spread
and community-based marginal influence spread respectively, and H denotes the
seed nodes contained in the community that contains v (Steps 5-7).

3.3 Improved Community-Based Approximation Algorithm ICAA

In this part, we devise ICAA to improve BCAA by taking advantage of the sub-
modularity of I(·). The key idea of ICAA is that there is no need to immediately
recompute the community-based marginal influence spread for all the nodes in
V \ Si−1 in each iteration i. This is because the community-based marginal
influence spread of node v computed before is an upper bound of v’s current
community-based marginal influence spread. What’s more, the seed nodes con-
tained in one community cannot affect the community-based marginal influence
spread of nodes contained in any other community. Thus, when we are going to

Efficient Influential Individuals Discovery: A Community-Based Approach 609

Algorithm 2. The Improved Community-Based Approximation Algorithm
Input: Graph G = (V,E, P), parameter k
Output: Seed nodes Sk

1 Partition G into c communities through the NECD procedure;
2 S0 ← ∅; Priority Queue Q ← ∅;
3 for each node v ∈ V do
4 MC(v) ← IC({v});
5 Q.Push((v, 0,MC(v)));

6 (u, f,MC(u)) ← Q.Pop();
7 S1 ← S0 ∪ {u}; i ← 1;
8 while i < k do
9 (u, f,MC(u)) ← Q.Pop();

10 Let Cu be the community that contains u;
11 H ← Cu ∩ Si;
12 nu ← |H|;
13 if f < nu then
14 Recompute u’s community-based marginal influence spread, i.e.,

˜MC(u) ← IC(H ∪ {u}) − IC(H);
15 f ← nu;

16 Q.Push((u, f,˜MC(u)));

17 else
18 Si+1 ← Si ∪ {u};
19 i ← i + 1;

20 return Sk;

find a new seed node, we first choose the node with the maximal community-
based marginal influence spread as a candidate, then we check if the marginal
influence spread of this node should be recomputed. If not, this node is chosen
as the next seed node, otherwise we recompute the community-based marginal
influence spread of this node. ICAA is outlined in Algorithm 2.

ICAA initially partitions network G into c communities via the NECD pro-
cedure. Then, ICAA calculates the community-based influence spread for each
node v ∈ V , and pushes a corresponding 3-tuple (v, 0,MC({v})) into a prior-
ity queue Q (Steps 3-5). Here, the second element f of the 3-tuple represents
the number of seed nodes that are contained in the community that contains v.
Obviously, f should be 0 for each node before the first seed node is determined.
Besides, each 3-tuple has a priority associated with the third element, and the
3-tuple whose third element is larger has higher priority. Hence, the node u cor-
responding to the first 3-tuple in Q has the largest community-based marginal
influence spread. Then, ICAA takes u as the first seed node (Steps 6-7). Since
u has been selected as a seed node, the community-based marginal influence
spread of each node contained in the community that contains u (denoted as Cu)
should be recomputed. By the submodularity property of I(·), one can see that
the community-based marginal influence spread of each node is non-increasing

610 F. Ye et al.

as more and more seed nodes are determined. That is, the third element of the
3-tuple corresponding to each node is an upper bound of its current community-
based marginal influence spread. Building on this observation, the update of the
community-based marginal influence spread of each node contained in Cu can be
delayed, which will reduce many wasteful computations. Thus, in the while loop,
ICAA chooses the node u corresponding to the first 3-tuple in Q as a candidate
seed node rather than a new one (Step 9). Assume that the current number of
seed nodes contained in Cu is nu. If f < nu, the community-based marginal
influence spread of u is recomputed and f is updated to nu, then the updated
3-tuple is pushed into Q again (Steps 14-16). If f = nu, node u is selected as the
next seed node directly (Steps 18-19). According to this strategy, ICAA discovers
the k most influential nodes iteratively.

Let ΔIc denote the maximal influence spread of a node in the communities
that do not contain this node. Now, we analyze the performance guarantee of
BCAA and ICAA in Theorem 1.

Theorem 1. Both BCAA and ICAA obtain a (1− e− 1
1+(c−1)ΔIc) approximation

to the optimal solution.

4 Experiments

4.1 Experimental Settings

In the experiments, we evaluate our proposed approaches on three real-life social
networks: WeChat [1] (1 K nodes, 7 K edges and 10 communities), Facebook [12]
(4 K nodes, 88 K edges and 10 communities), and Epinions [12] (76 K nodes,
406 K edges and 20 communities). Since the original networks are unweighted,
we use the number of common neighbours between two individuals u and v to
denote the weight of edge e = (u, v), i.e., wuv = |nb(u) ∩ nb(v)|, which is used
in the NECD procedure. Here we use nb(u) to denote the union of u and its
neighbours. The propagation probability of edge e = (u, v) is defined as follows.

puv = 2
|nb(u)| − 1
|nb(v)| − 1

· |nb(u) ∩ nb(v)|
|nb(u) ∪ nb(v)| p̄ (1)

where p̄ is the average propagation probability of the whole network. In our
experiments, p̄ is set to be 0.05.

We employ conventional running time and approximation ratio as evaluation
metrics. Running time is used to measure the time efficiency of the proposed
algorithms. Approximation ratio is used to measure the approximation degree
to the optimal solution I(S∗), which is defined as I(S)/I(S∗).

To evaluate the performance of our proposed algorithms, we select four repre-
sentative approaches for comparison, which includes two greedy algorithms: GA
[8] and CELF++ [5], and two heuristic algorithms: IMRank [4] and Random [3].

Efficient Influential Individuals Discovery: A Community-Based Approach 611

4.2 Experimental Results

In the experiments, we fix the dimension number d used in the NECD procedure
at 60, and set the number of Monte Carlo simulations t in the IC model as 100.

Exp-1: Running time testing via varying k. In this experiment, we vary
the size of seed node set k from 1 to 30 to evaluate the efficiency of different
algorithms. Figure 1 depicts the results. Note that we use logarithmic scale for y-
axis in this figure. From Fig. 1, we can see that the heuristic algorithms IMRank
and Random run very fast, while the greedy algorithms GA and CELF++ run
much slower. For our proposed algorithms BCAA and ICAA, we see that both
BCAA and ICAA are several orders of magnitude faster than GA and ICAA
runs much faster than CELF++ as well. From Fig. 1, we can also see that the
running time of ICAA almost does not change when k increases. This is due to
the fact that the main time cost of ICAA is to compute the community-based
marginal influence spread for every node in the first iteration, and it takes a little
time to find the other (k−1) influential individuals in the subsequent iterations.

Exp-2: Approximation ratio testing via varying k. The objective of this
experiment is to evaluate the degree of approximation of different algorithms
by taking the results of GA as the ground truth. As shown in Fig. 2, CELF++
has the highest approximation ratio, while Random has the lowest one. The
approximation ratio of IMRank is unstable and it mainly falls in the range
[0.5, 0.8]. However, BCAA and ICAA have much more stable and much higher

0 5 10 15 20 25 30
k

10-3
10-2
10-1
100
101
102
103
104
105
106

Ti
m

e
(S

ec
)

GA
CELF++
BCAA
ICAA
IMRank
Random

(a) WeChat

0 5 10 15 20 25 30
k

10-3
10-2
10-1
100
101
102
103
104
105
106

Ti
m

e
(S

ec
)

GA
CELF++
BCAA
ICAA
IMRank
Random

(b) Facebook

0 5 10 15 20 25 30
k

10-3
10-2
10-1
100
101
102
103
104
105
106

Ti
m

e
(S

ec
)

GA
CELF++
BCAA
ICAA
IMRank
Random

(c) Epinions

Fig. 1. Running time testing via varying k

0 5 10 15 20 25 30
k

0

0.2

0.4

0.6

0.8

1

1.2

A
pp

ro
xi

m
at

io
n

R
at

io

GA
CELF++
BCAA
ICAA
IMRank
Random

(a) WeChat

0 5 10 15 20 25 30
k

0

0.2

0.4

0.6

0.8

1

1.2

A
pp

ro
xi

m
at

io
n

R
at

io

GA
CELF++
BCAA
ICAA
IMRank
Random

(b) Facebook

0 5 10 15 20 25 30
k

0

0.2

0.4

0.6

0.8

1

1.2

A
pp

ro
xi

m
at

io
n

R
at

io

GA
CELF++
BCAA
ICAA
IMRank
Random

(c) Epinions

Fig. 2. Approximation ratio testing via varying k

612 F. Ye et al.

approximation ratio. In particular, as k grows larger, the approximation ratio
of BCAA and ICAA becomes as close as possible to 1. This result verifies our
previous performance guarantee analysis.

5 Conclusion

In this paper, we study the influence maximization problem on service-oriented
social networks via taking into account community structures. First, we exploit
the classic k-means algorithm based on network embedding to detect commu-
nities. Next, we propose the basic community-based approximation algorithm
BCAA, which discovers influential individuals within communities instead of
the entire network, and then propose the improved community-based approxi-
mation algorithm ICAA to further speed up BCAA. We further provide perfor-
mance guarantee analysis of the proposed algorithms. Finally, we validate our
proposed algorithms through experiments.

Acknowledgement. The work described in this paper was supported by the National
Key Research and Development Program (2016YFB1000101), the National Natural
Science Foundation of China (61472338), and the Pearl River S&T Nova Program of
Guangzhou (201710010046). Zibin Zheng is the corresponding author.

References

1. Wechat, http://www.wechat.com/
2. Brown, J.J., Reingen, P.H.: Social ties and word-of-mouth referral behavior. J.

Consum. Res. 14(3), 350–362 (1987)
3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.

In: KDD, pp. 199–208. ACM (2009)
4. Cheng, S., Shen, H., Huang, J., Chen, W., Cheng, X.: Imrank: influence maximiza-

tion via finding self-consistent ranking. In: SIGIR, pp. 475–484. ACM (2014)
5. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm

for influence maximization in social networks. In: WWW, pp. 47–48. ACM (2011)
6. Halappanavar, M., Sathanur, A.V., Nandi, A.K.: Accelerating the mining of influ-

ential nodes in complex networks through community detection. In: Proceedings
of the ACM International Conference on Computing Frontiers, pp. 64–71. ACM
(2016)

7. Jung, K., Heo, W., Chen, W.: Irie: Scalable and robust influence maximization in
social networks. In: ICDM, pp. 918–923. IEEE (2012)

8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146. ACM (2003)

9. Kim, J., Kim, S.K., Yu, H.: Scalable and parallelizable processing of influence
maximization for large-scale social networks? In: ICDE, pp. 266–277. IEEE (2013)

10. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on
a social network for information diffusion. Data Min. Knowl. Disc. 20(1), 70–97
(2010)

11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: KDD, pp. 420–429. ACM (2007)

http://www.wechat.com/

Efficient Influential Individuals Discovery: A Community-Based Approach 613

12. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection,
http://snap.stanford.edu/data

13. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Oakland, CA, USA, pp. 281–297 (1967)

14. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2),
167–256 (2003)

15. Salathé, M., Jones, J.H.: Dynamics and control of diseases in networks with com-
munity structure. PLoS Comput. Biol. 6(4), e1000736 (2010)

16. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: WWW, pp. 1067–1077. ACM (2015)

http://snap.stanford.edu/data

Empirical Study on REST APIs Usage
in Android Mobile Applications

Mohamed A. Oumaziz1(B), Abdelkarim Belkhir2, Tristan Vacher2,
Eric Beaudry2, Xavier Blanc1, Jean-Rémy Falleri1, and Naouel Moha2

1 Univ. Bordeaux - LaBRI - UMR CNRS 5800, Talence, France
{moumaziz,xblanc,falleri}@labri.fr

2 LATECE, Département d’informatique, Université du Québec à Montréal,
Montreal, Canada

{belkhir.abdelkarim,vacher.tristan}@courrier.uqam.ca,
{beaudry.eric,moha.naouel}@uqam.ca

Abstract. A large set of mobile applications (apps) heavily rely on ser-
vices accessible through the Web via REST APIs. However, the way
mobile apps use services in practice has never been studied. In this paper,
we perform an empirical study in the Android ecosystem in which we
analyze 500 popular apps and 15 popular services. We also conducted
an online survey to identify best practices for Android developers. Our
results show that they generally favor invoking services by using official
service libraries instead of invoking services with a generic HTTP client.
We also present which good practices service libraries should implement.

Keywords: Empirical study · Mobile applications · REST API · Rest
services · Android

1 Introduction

Following the REST principles [6], server side applications are nowadays com-
posed of several stateless independent micro-services [11]. They therefore make
client side applications consuming more and more REST services [5]. Such evo-
lution brings new challenges especially for the design of Android applications
that now have to handle lots of calls to REST services.

However, little is known on how Android apps use REST services in practice.
Such knowledge is of high importance for the service providers since it would help
them provide facilities to Android developers and hence improve the usability
of their REST services. For instance, do the developers prefer to handle JSON
documents or Java objects? Do they want dedicated service libraries or do they
want to perform the calls by using a HTTP client library?

In this article, we provide answers to these questions by performing an
empirical study in the famous Android ecosystem. Our study focuses on two
research questions. Our first research question: “As service users, how

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 614–622, 2017.
https://doi.org/10.1007/978-3-319-69035-3_45

Empirical Study on REST APIs Usage in Android Mobile Applications 615

Android developers access popular REST services/APIs in their appli-
cations?”, aims at identifying the developers’ habits for accessing REST ser-
vices. Our study shows that Android developers prefer to use a dedicated service
library developed by the service provider if it exists.

Our second question: “As service providers, how to design client
helper libraries to be popular among mobile applications?”, aims at
identifying which features of service libraries are considered important by devel-
opers. For instance, our study shows that the essential features for developers are
the existence of a complete documentation, the library’s vocabulary consistency
with the service’s one, the use of raw JSON to exchange data, the handling of
authentication, and the ability to fine-tune the HTTP requests issued by the
library.

This paper is structured as follows. Sections 2 and 3 respectively describe
the study setup and results for the research questions RQ1 and RQ2. Section 4
presents the related work. Section 5 concludes and presents future works.

2 RQ1: As service users, how Android developers access popular
REST services/APIs in their applications?

In this section, we investigate our first research question. We noticed that there
are two main ways to access services from Android apps: directly, by using an
HTTP client, or by using a library developed by the provider (official) or by
its users (third-party). To assess which method is the most popular, we analyze
how 15 popular services are used in a corpus of 500 popular apps. Section 2.1
explains how we build the corpus of services and apps. Section 2.2 explains how
apps invoke services. Results and observations are then presented in Sect. 2.3.

2.1 Corpus

Our corpus consists of two sets: a set of popular apps and a set of popular
services that are called by the popular apps. Additionally, we also gather the list
of libraries that allow Android apps to interact with the services of our corpus.

We started by gathering a set of popular apps. To that extent, we crawled
the top 500 most popular apps provided by the Google Play store1. We then
downloaded the application packages of each app using the AndroZoo dataset
maintained by our colleagues from the University of Luxembourg [1]. During
this step, we were only able to download 487 app files.

To build the set of popular services, we analyzed the 487 APK files to identify
which popular services are called. We then used the AndroGuard tool2 to extract
all the strings contained in the DEX bytecode files of each of our apps. From
these strings, we extracted the URLs (i.e. starting with http[s]://). We then
ranked these URLs by their number of occurrences and filtered out the ones

1 https://play.google.com/store/apps/collection/topselling free.
2 https://github.com/androguard/androguard.

https://play.google.com/store/apps/collection/topselling_free
https://github.com/androguard/androguard

616 M.A. Oumaziz et al.

that do not correspond to a service (e.g. manual URL browsing). Finally, we
manually selected 15 services among the 50 most popular ones.

To identify all the libraries for each service in our corpus, we use Google
search with the following query “[service name] android library”; where “[service
name]” corresponds to the service’s root URL. Then, we manually look at the
results to assess whether it describes an official library or a third-party one.

2.2 Experimental Setup

To answer our first research question, we check how apps call services, and in
particular if they directly use services by making HTTP requests or if they use a
dedicated library. To that extent, we first identify the services used by each app
in our corpus. Secondly, we analyze if each app uses a library or not to access
the services. Using this data, for each service, we classify the apps into three
categories: apps using the service without library, apps using the service with an
official library, and apps using a third-party library.

To find out which apps are using a given service we followed these steps.
First we manually read the documentation of each service to find their API
URL. Secondly, we manually browsed the code of all libraries to find out the
list of all the Java packages they contain. Finally, we used the AndroGuard tool
again to extract all the strings contained in all apps from our corpus. When
we were able to find a service’s API URL, we considered that the application
used the service. In this case, we also looked for the Java package names of this
service’s libraries in the strings of the app. When we were able to find a package
name in the string list, we assumed that the app is using its corresponding
library.

Finally, to analyze how developers access services in practice, we perform the
following process. For each service provider, we compute the set of all Android
apps from our corpus that use it. Then, we partition this set into three subsets:
the set of apps that use the official library, the set of apps that use a third-party
library or both the official library and a third-party library, and the set of apps
that do not use any library. To discuss the favourite way of developers to access
the service, we then compare the size of these subsets, normalized by the size of
all apps that use the services. Results are discussed in Sect. 2.3.

2.3 Results

In our results (accessible on our website3), we notice that only 5 out of 15 services
are accessed with a HTTP client rather than a library. Moreover, 2 out of the 5
services provide no official library (Instagram and OpenStreetMap). Therefore,
libraries are favoured to access services. Additionally, for the 10 services where a
library is preferred, it is always the official library that is preferred, even if there
are only 3 cases where no third-party library is available. In conclusion, official
libraries are the favourite way of developers to access services.

3 http://se.labri.fr/a/ICSOC17-oumaziz/.

http://se.labri.fr/a/ICSOC17-oumaziz/

Empirical Study on REST APIs Usage in Android Mobile Applications 617

However, although there are many HTTP clients, developers still prefer stan-
dard ones that are embedded in the Android Framework. The top four being in
order: HttpUrlConnection, HttpsUrlConnection, DefaultHttpClient and Android-
HttpClient. We also notice that developers tend to use more than just one HTTP
client, this can be related to the features that each client offers depending on
developer’s needs. For instance, HttpsUrlConnection is able to handle HTTPS
requests while HttpUrlConnection only handles HTTP requests.

2.4 Threats to Validity

We discuss here the threats to validity of our study. The techniques used to
detect client libraries and API URLs are not infallible. For instance, if an app
is obfuscated, our techniques probably fail to identify URLs and used libraries.
Also, there is the construction of URLs by string concatenations. Since we made a
static analysis, we cannot catch all possible strings that could be built at runtime.
Finally, we had to manually look at all available libraries for each service in our
dataset. We may have missed few of them. Our corpus only contains 15 services
and about 500 apps. Therefore, our results might not be generalizable to all
Android apps. We attempt to provide all the necessary details to replicate our
study and analysis, Scripts and datasets are also available online.

3 RQ2: As service providers, how to design client helper libraries
to be popular among mobile applications?

To answer the second research question, we first studied the steps that apps
follow to call a service, and the different kinds of libraries used under the hood.
Then, from this process we identified the good and bad practices that should
be followed when designing a service library. In the third step, we conducted an
online survey to validate these good and bad practices by experts. As a final
step, we analyzed official service libraries provided by popular services to verify
if the latter are conform to these practices. We now detail each step.

Step 1. Process to consume a service. We study the general process fol-
lowed by any app to call a service. The process is divided in two sub-processes:
Authentication which is optional (where the client asks for access right), and
service consumption (where the client interacts with the service). During this
process the app uses different libraries for: parsing, OAuth (to ask for permis-
sion), and HTTP Clients (to deal with the HTTP protocol).

Step 2. List of good/bad practices when developing a service library.
We identify here the good/bad practices that must be followed when designing
a service library.

Step 3. Online survey to validate the good and bad practices. The goal
of the survey is to confirm the best practices that must be followed by service
providers in their libraries to ease consumption by developers. The survey is

618 M.A. Oumaziz et al.

available online4. Based on the good and bad practices identified in Step 2, we
build a survey on Google Forms and emailed it to 2000 Android developers
randomly selected from the top 500 Android apps developers for each Google
Play’s category. We also submitted the survey as a Reddit Thread on the very
active subreddit Androiddev, and advertised the survey through social networks.
51 Android developers responded to our survey and 83% of them are familiar with
Android development. The survey and its results are available on our website.

Step 4. Analysis of the official REST libraries. Finally, we manually ana-
lyzed 11 libraries and 14 services from our corpus. We did not analyze the Open-
StreetMap and Instagram services because no libraries are available for these ser-
vices, and the Google API Client library groups GoogleMaps, GoogleSignIn and
YouTube services. All have been analyzed by three experienced Android devel-
opers to verify their conformance with the practices identified and validated in
the two previous steps. We performed this analysis using their documentation,
source code and provided examples.

3.1 Results of Research Question 2

For each identified good/bad practice, we first give a description as follow:

① JSON vs. XML. Always choose JSON over XML when both are proposed by
the API provider.

② Typed Response vs. Non-typed Response. The response returned from the
library for a given query should be a Java Object. In contrast, a Non-typed
Response is a response returned as a JSON or XML format.

③ Encapsulated HTTP Queries vs. Non-encapsulated HTTP Queries. The
HTTP query should be encapsulated in a method proposed by the interface
of your library. A Non-encapsulated HTTP Query has to be manually built by
the developer with all the needed parameters.

④ Full vs. Non-exhaustive API support. The Service Library should cover all the
services proposed by the REST API.

⑤ Consistent vs. Inconsistent vocabulary with documentation. The vocabulary
used in the code when naming classes, methods and attributes should correspond
to the one used in the documentation of the REST API.

⑥ Documented vs. Non-documented Library. The library should be well docu-
mented, the user should be able to understand how to access the REST API
endpoints preferably with code samples.

⑦ Allowing Authentication vs. Third-party Authentication. When an authentica-
tion is required to consume the offered services by the REST API. It is preferable
that your Service Library allows authentication.

4 http://bit.ly/clientpractices.

http://bit.ly/clientpractices

Empirical Study on REST APIs Usage in Android Mobile Applications 619

⑧ Android Specific Functionalities vs. Only General Functionalities. A good
practice is to provide some Android specific functionalities such as widgets, views
and fragments instead of providing only general functionalities.

We then chose to further discuss only 5 out of our 8 identified good/bad
practices. The survey results are highlighted in bold.

① From our corpus, it seems that APIs favour the JSON format over others.
Every library allows to return at least a response in the JSON format and pro-
vides sometimes other formats (XML, CSV, etc.). Although JSON is the most
popular, it is not by default for all libraries. In our survey, 92.2% of the
developers stated that JSON was preferred. This could be due to the fact
that the JSON format is easier to handle, while also faster to load and to parse
compared to XML files [2].

② Over the 11 libraries we studied, 6 return a domain-specific object representing
an entity of the API (e.g. a File in the DropBox Library). So users don’t need to
parse the response. However, some libraries return an object containing data. For
example, Facebook returns a GraphResponse object that contains the response,
which is either a JSONObject, a JSONArray or a Java String. In contrast, in
our survey more than 70.6% of developers prefer to have responses as
Java Strings.

③ Almost all (10 out of 11) libraries except LinkedIn encapsulate HTTP queries.
Users do not have to build their own requests, they can use predefined meth-
ods. However, libraries such as Facebook allow to build custom requests while
providing encapsulated queries. In the survey, 37.3% of developers think
that modifying encapuslated queries is mandatory, and 47.1% of them
think that it is appreciated. Therefore, although the majority of
libraries encapsulate queries, developers still prefer to have access
and control the queries.

⑦ All analyzed services require authentication to be used. Authentication is a
means to secure which data are reachable to someone, but also to control the
request flow for avoiding overloading servers. All libraries implemented the entire
service authentication protocol, namely OAuth2. In the survey, developers
confirm the necessity to implement the whole service authentication
protocol with 58.8% who appreciate it and 29.4% who request it to
be mandatory.

⑧ Almost half of the libraries (5 out of 11) provide at least one Android specific
functionality such as Widgets, Activities, or Views. Providing such functionali-
ties can help developers focus on their own apps instead of trying to integrate
logic from a third-party environment. However, 86.3% of developers con-
sider that providing such functionalities is not important.

3.2 Threats to Validity

We discuss here the threats to validity of this section. The terminology used in
the survey might have been misunderstood by the responders. However we wrote

620 M.A. Oumaziz et al.

definitions and examples to mitigate these threats. Our survey was answered by
only 51 Android developers. Therefore, our findings might not be generalizable.

4 Related Work

In the following, we discuss some relevant research done on assessing bad and
good practices in REST APIs as well as research on libraries identification.

Bad and good REST practices. In [12–14], we evaluated the design of sev-
eral REST APIs based on good and bad REST practices, also called REST
patterns and antipatterns. We proposed automatic approaches to detect them.
However, we evaluated APIs without considering any interaction with clients,
and in particular mobile clients, as we do here. Other works proposed similar
(anti-)patterns detection approaches in service applications, but implementing
other techniques such as bi-level optimisation problems [17] or ontologies [4].

In [15], Rodriguez et al. evaluated the conformance of design best practices in
REST APIs from the perspective of mobile apps. They analyzed these practices
on a large dataset of HTTP requests collected from a Mobile Internet traffic.
This work is the first that has studied the traffic of HTTP requests from the
mobile perspective. However, the best practices analyzed are rather common to
any kinds of REST APIs, and they focused on HTTP requests.

In contrast, in this paper, we consider practices that may apply on mobile
apps. We take also into account the interaction between clients and REST APIs
by analyzing all the process from the authentication to the service consumption,
and thus while considering all kinds of message exchanges (requests, responses).
We study also how REST APIs are implemented and documented.

Libraries identification. There are several works that have been done for
identifying advertisement libraries in Android apps. Book et al. [3] and Grace
et al. [7] used a whitelists based method for identification. There are also tools
such as AdDetect [10] and PEDAL [9] that applied machine learning techniques
(SVM classification) to identify advertising libraries even if apps are obfuscated.

Teyton et al. [16] applied static analysis on the source code on a group of
libraries to automatically extract Java package names. They identified 1185 dif-
ferent libraries which they then used to automatically identify Java libraries
dependencies. Wang et al. [18] proposed a novel clustering-based technique to
automatically identify Android third-party libraries. Their technique identified
more than 600 different Android libraries in a corpus of 100,000 apps. Li et al. [8]
proposed a novel approach for identifying third-party libraries from Android
apps. Rather than using code similarity, they used code dependencies.

In this paper, we used the Java package names as a way to identify libraries.
However, we had to identify service libraries, to do so, we used API URLs to
determine if an app was using a service and then we applied this library identi-
fication technique to look if it was through a service library.

Empirical Study on REST APIs Usage in Android Mobile Applications 621

5 Conclusion and Future Work

While nowadays Android apps rely more than ever on REST services, no study
has been performed on how Android apps invoke services. We alleviated this sit-
uation by performing an empirical study of 15 popular web services on a dataset
of almost 500 popular Android apps. We show that developers prefer to use offi-
cial libraries. We also show that developers prefer to use HTTP clients rather
than libraries and prefer default clients provided in the Android Framework.

Second, we propose a list of good/bad practices, identified through an analy-
sis of the practices of popular services and an online survey involving 51 develop-
ers. We show that the important features for libraries are: the use of raw JSON,
authentication handling and the possibility to fine-tune HTTP requests.

As a future work, we plan to extend our practices’ list and to extend the size
of our dataset of services and apps in order to have more generalizable results.

Acknowledgement. The authors thank the Android developers for answering the
survey. This study is supported by NSERC and FRQNT, Canada and Quebec research
grants.

References

1. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: AndroZoo: collecting millions
of android apps for the research community. In: 13th MSR, pp. 468–471 (2016)

2. Betts, T.: Mobile performance testing - JSON vs XML. Blog. https://
www.infragistics.com/community/blogs/torrey-betts/archive/2016/04/19/
mobile-performance-testing-json-vs-xml.aspx. Accessed 20 June 2017

3. Book, T., Pridgen, A., Wallach, D.S.: Longitudinal analysis of android ad library
permissions. arXiv preprint arXiv:1303.0857 (2013)

4. Brabra, H., Mtibaa, A., Sliman, L., Gaaloul, W., Benatallah, B., Gargouri, F.:
Detecting cloud (Anti)Patterns: OCCI perspective. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 202–218. Springer,
Cham (2016). doi:10.1007/978-3-319-46295-0 13

5. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web API documentation.
In: 20th ICWS, pp. 523–530 (2013)

6. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

7. Grace, M.C., Zhou, W., Jiang, X., Sadeghi, A.R.: Unsafe exposure analysis of
mobile in-app. advertisements. In: 5th ACM WiSec, pp. 101–112. ACM (2012)

8. Li, M., Wang, W., Wang, P., Wang, S., Wu, D., Liu, J., Xue, R., Huo, W.: LibD:
scalable and precise third-party library detection in android markets. In: 39th
ICSE, pp. 335–346. IEEE Press (2017)

9. Liu, B., Liu, B., Jin, H., Govindan, R.: Efficient privilege de-escalation for AD
libraries in mobile apps. In: 13th MobiSys, pp. 89–103. ACM (2015)

10. Narayanan, A., Chen, L., Chan, C.K.: Addetect: automated detection of android
ad libraries using semantic analysis. In: IEEE ISSNIP 2014, pp. 1–6. IEEE (2014)

11. Newman, S.: Building Microservices - Designing Fine-grained Systems, 1st edn.
O’Reilly, New York (2015)

https://www.infragistics.com/community/blogs/torrey-betts/archive/2016/04/19/mobile-performance-testing-json-vs-xml.aspx
https://www.infragistics.com/community/blogs/torrey-betts/archive/2016/04/19/mobile-performance-testing-json-vs-xml.aspx
https://www.infragistics.com/community/blogs/torrey-betts/archive/2016/04/19/mobile-performance-testing-json-vs-xml.aspx
http://arxiv.org/abs/1303.0857
http://dx.doi.org/10.1007/978-3-319-46295-0_13

622 M.A. Oumaziz et al.

12. Palma, F., Dubois, J., Moha, N., Guéhéneuc, Y.-G.: Detection of REST pat-
terns and antipatterns: a heuristics-based approach. In: Franch, X., Ghose, A.K.,
Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 230–244. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45391-9 16

13. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G., Tremblay, G.:
Are RESTful APIs well-designed? detection of their linguistic (Anti)Patterns. In:
Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol.
9435, pp. 171–187. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48616-0 11

14. Petrillo, F., Merle, P., Moha, N., Guéhéneuc, Y.-G.: Are REST APIs for cloud
computing well-designed? an exploratory study. In: Sheng, Q.Z., Stroulia, E., Tata,
S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 157–170. Springer, Cham
(2016). doi:10.1007/978-3-319-46295-0 10

15. Rodŕıguez, C., Baez, M., Daniel, F., Casati, F., Trabucco, J.C., Canali, L.,
Percannella, G.: REST APIs: a large-scale analysis of compliance with princi-
ples and best practices. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.)
ICWE 2016. LNCS, vol. 9671, pp. 21–39. Springer, Cham (2016). doi:10.1007/
978-3-319-38791-8 2

16. Teyton, C., Falleri, J.R., Palyart, M., Blanc, X.: A study of library migrations in
java. J. Softw. Evol. Process 26(11), 1030–1052 (2014)

17. Wang, H., Kessentini, M., Ouni, A.: Bi-level identification of web service defects.
In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol.
9936, pp. 352–368. Springer, Cham (2016). doi:10.1007/978-3-319-46295-0 22

18. Wang, H., Guo, Y., Ma, Z., Chen, X.: Wukong: a scalable and accurate two-phase
approach to android app. clone detection. In: ISSTA 2015, pp. 71–82. ACM (2015)

http://dx.doi.org/10.1007/978-3-662-45391-9_16
http://dx.doi.org/10.1007/978-3-662-48616-0_11
http://dx.doi.org/10.1007/978-3-319-46295-0_10
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1007/978-3-319-38791-8_2
http://dx.doi.org/10.1007/978-3-319-46295-0_22

Services in the Cloud

Revenue-Driven Service Provisioning
for Resource Sharing in Mobile Cloud

Computing

Hongyue Wu1,2, Shuiguang Deng1(&), Wei Li2, Jianwei Yin1(&),
Qiang Yang3, Zhaohui Wu1, and Albert Y. Zomaya2

1 College of Computer Science and Technology, Zhejiang University,
Hangzhou, China

{hongyue_wu,dengsg,zjuyjw,wzh}@zju.edu.cn
2 School of Information Technologies, The University of Sydney,

Sydney, Australia
liwei@it.usyd.edu.au, albert.zomaya@sydney.edu.au

3 College of Electrical Engineering, Zhejiang University, Hangzhou, China
qyang@zju.edu.cn

Abstract. A new mobile cloud architecture has recently been proposed, where
neighbouring mobile devices are brought together as a cohort for resource
sharing. Thus, a mobile application can be partitioned into multiple tasks and be
performed on different mobile devices, without offloading some tasks to remote
cloud services for their processing. In this work, we consider a broker-based
architecture, where a proper reward mechanism is used to incentivize users to
share their available resources as a service with other mobile devices. Within
such a system, each mobile device is rational and justified in maximizing its
revenue by using its relatively limited resources to complete the requests allo-
cated by the broker. How to select the appropriate service requests from all
incoming requests and complete the selected requests on time so that the rev-
enue can be maximized has become a critical issue for resource sharing. To
address this issue, we propose a joint resource sharing and request scheduling
approach called RESP (REvenue-driven Service Provision for mobile devices)
in a move towards a lightweight one-phase approach for handling request
selection, request scheduling and resource allocation for mobile devices. We
evaluate the performance of our proposed algorithm through a number of
experiments and the experimental results validate the efficacy of our approach.

Keywords: Mobile cloud computing � Scheduling � Service provisioning �
Resource sharing

1 Introduction

Mobile devices have been one of the fastest adopted consumer products of all time and
highly integrated into our daily life. The manufacturers of mobile devices have also
made breakthrough contributions to improve hardware capabilities in terms of com-
putation, communication and storage. The requirements for running applications with

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 625–640, 2017.
https://doi.org/10.1007/978-3-319-69035-3_46

high computation requirements, e.g. multimedia processing, social networking and
natural language processing on mobile devices become more intense. However, in
general, mobile devices are still resource constrained compared to dedicated computers.
To enable such applications to run effectively on mobile devices, a natural solution is
mobile cloud computing (MCC) [10], so that the mobile devices can offload compu-
tationally intensive tasks to the resource-rich cloud service providers, such as Ama-
zon’s EC21, Microsoft Azure2 and Rackspace Cloud3 and complete the applications
collaboratively. In most cases, these cloud services are geographically remote from the
mobile devices, and a reliable Internet connection is required to transmit the data
between the two ends.

By fully utilizing the increasing amount of mobile devices and their ubiquitous
presence, a new architecture for MCC has recently been proposed [9], where the
neighbouring mobile devices are brought together as a cohort for resource sharing.
Using the idle resources of a collection of mobile devices in the vicinity, an application
can thus be partitioned into multiple tasks and be performed on different devices
collaboratively. With such an approach, the unstable and costly Internet connection of
mobile devices is no longer a constraint as it is in the traditional MCC architectures.
Also the data exchange among the mobile devices in the local area can benefit from
different wireless communication technologies, e.g. WiFi and Bluetooth. To better
distinguish the MCC architectures, we refer to the new one that enables device-residing
resource sharing as NMCC for the rest of the paper.

One of the key techniques to realize resource sharing in the NMCC is service
provisioning, so that the available resources of each mobile device can be provided as
on-demand services anytime, anywhere. In contrast to the powerful remote cloud
servers, when accommodating excessive service requests, mobile devices may not be
able to satisfy all the requests since they have limited computing capabilities and
resources. In addition, the remote cloud service providers are equipped with
resource-rich devices to allow them to use sophisticated solutions, e.g. machine
learning methods for processing incoming requests. As these solutions are normally
associated with high computational overhead, they cannot be simply applied to mobile
devices. To ensure the quality of service (QoS) on the resource-constrained mobile
devices, a lightweight QoS-aware service-based framework needs to be provided to
(1) determine whether to accept or reject an incoming service request and (2) perform
resource allocation for the selected service requests according to the available resources
of a mobile device and the requirements of the tasks to be met. For example, if the
remaining energy of a mobile device is high and its available network bandwidth is
low, it would be preferable to accept computation intensive service requests rather than
communication intensive service requests.

Apart from enabling a lightweight QoS-aware service-based framework in NMCC,
it is not hard to see that the service provisioning in such systems strongly depends on
the willingness to participate of the owners of mobile devices. To further ensure the

1 http://aws.amazon.com.
2 http://azure.microsoft.com/en-us/.
3 http://www.rackspace.com.

626 H. Wu et al.

http://aws.amazon.com
http://azure.microsoft.com/en-us/
http://www.rackspace.com

quality of services, such NMCC systems need to employ a proper incentive mechanism
to motivate the resource sharing of mobile devices [21]. Mobile service requesters can
always encourage resource sharing by providing some rewards (e.g. discount, credit
points, etc.), so that the mobile device owners can decide the degree of their partici-
pation to gain the corresponding revenue. We also assume that all the mobile devices
have the same objective to maximize the revenue of their providing services.

In this paper, we study the issue of how to incentivize user participation for
addressing the resource sharing in NMCC systems. To tackle the issue, we model it as a
service provisioning and resource allocation problem of mobile devices, which is
generally a constrained optimization problem. Using the task scheduling technique, we
designed a lightweight approach called RESP (REvenue-driven Service Provision for
mobile devices) for handling all the incoming requests with the objective of maxi-
mizing the revenue of the mobile devices. The approach can achieve efficient service
request selection, request scheduling and resource allocation simultaneously. The
performed experiments demonstrate that our proposed algorithm outperforms the
selected benchmarks and provides the best overall performance for the users.

The rest of the paper is organized as follows. In Sect. 2, we review related works.
In Sect. 3, we introduce the models used in this paper and formally define the problem.
Then the details of our proposed algorithm are presented and discussed in Sect. 4. In
Sect. 5, we show the conducted experiments and analyse the results. Finally, we
conclude the paper and outline our future work in Sect. 6.

2 Related Work

The problem of service provision in MCC has been studied extensively, and various
approaches have been proposed from different perspectives. Most of them focus on
using remote resource-rich cloud services to enhance the capabilities of mobile devices.
Liu et al. proposed a novel approach to predict the total workload for facilitating auto
scaling resource management [14]. Lee et al. proposed a heuristic algorithm-based
auction system to determine when and how the providers should allocate their
resources and to which users [13]. Albagli-Kim et al. presented a comparative study of
approximation algorithms and heuristics for scheduling jobs with dwindling resource
requirements [1]. Maguluri et al. focused on scheduling jobs with unknown duration in
clouds, and presented a load balancing and scheduling algorithm [17]. However, these
works assume that the services are provided by the remote large-scale cloud servers and
stable Internet connections are available, which may not be always true for some
mobile users. These approaches cannot be simply applied to the MCC platforms that
are formed by a cohort of mobile devices and the required services are provided from
these mobile devices.

In recent years, with the rapid development of mobile devices and wireless com-
munication techniques, some works have proposed forming a mobile cloud that avoids a
connection being made to a remote cloud by using nearby mobile devices while
maintaining the main benefits of resource sharing [7, 8]. Fernando et al. analysed the
need for a mobile cloud and highlighted the direction of future work [10]. In [19], the
authors discussed the feasibility of mobile service provision on smartphones and

Revenue-Driven Service Provisioning for Resource Sharing 627

presented a performance analysis of mobile devices. Liyanage et al. proposed a light-
weight mobile Web service provisioning framework, designed for resource-constrained
Internet of Things applications to achieve lightweight mobile Web service provisioning
[16]. Moreover, Arslan et al. aimed to develop a distributed computing infrastructure
using smartphones, and they implemented a prototype, which employs a novel
scheduling algorithm to minimize the makespan of computation tasks [3].

The aforementioned framework for a mobile cloud is promising, and a proper
incentive mechanism is the key to motivate users to share their resources within such a
system. The incentive mechanisms can generally be divided into two categories, double-
sided bidding and single-sided bidding. The Vickrey-Clarke-Groves (VCG) mechanism
is a well-known double-sided bidding, however, it induces intensive computational cost
[4] in real-world implementations and thus they are difficult to adopt widely in the
NMCC systems. For addressing such issues, few researchers have designed several
single-side bidding incentive mechanisms for NMCC. In [18], the authors introduced the
prototype of mClouds and analysed some incentive strategies that may help mClouds
become a viable and effective alternative to the traditional MCC model. In [2], the
authors developed the mobile device based cloud system CellCloud and proposed a
reputation-based economic incentive model to reward phone owners for sharing the
resources of their devices. Besides, an optimal incentive mechanism was developed in
[12] to minimize the total payment to all the smartphones.

3 System Models and Problem Formulation

3.1 Mobile Cloud Architecture

Our proposed framework is designed for NMCC systems, which are composed of
multiple mobile devices and a trusted broker, as shown in Fig. 1. The broker serves as
an intermediary responsible for discovery and communication among the neighbouring
mobile devices. The mobile devices are within the coverage of the broker and each one
of them could act as two roles within the system simultaneously. One role is service
requester who needs to offload tasks to other nearby mobile devices. The other role is
service provider who has idle resources and is willing to participate in resource sharing.
All mobile devices directly send their service requests and/or service provisioning
information to the broker. After receiving such information, the broker performs the
matching between service requesters and providers by jointly considering the
requirements of the requests and the functionality and QoS of services. Once a service
request is received by a mobile device, the device can choose to accept or decline it
according to its current status in terms of resource utilization. If a mobile device accepts
a service request, it will obtain the corresponding revenue by successfully completing
the request. The result of the task will be sent back to the service requester through the
broker. If a service request is declined, it will be returned to the broker for reallocation.
Eventually, the service requester combines all the received results to obtain the final
result.

628 H. Wu et al.

3.2 Mobile Services and Requests

Definition 1 (Mobile Device). In NMCC systems, a mobile device is represented as a
3-tuple (S, A, I), where:

– S ¼ s1; s2; . . .f g, describing the set of services that a mobile device is able to
provide;

– A is the function used to describe all the available resources a mobile device can
share with other devices. At a given time t, the available resources are denoted as a
set of 2-tuples At ¼ ri; nið Þf gmi¼1, where m is the total number of the types of the
available resources that a mobile device can provide, and ri and ni denote the type
and the amount of the i-th kind of resource, respectively.

– I is a function used to describe the current idle resources of a mobile device. Idle
resources refer to the resources that are available and not yet occupied by the
service requests. At a given time t, it can be represented by It ¼ ri; nið Þf gmi¼1.

In our study, we assume that time is slotted and the minimum time slot is a time
unit. Similar to a number of existing works in MCC [5, 6, 15, 20] and mobile com-
puting [11], we consider a quasi-static scenario where the mobile devices remain
unchanged for a period of time, which may change over consecutive periods in our
work. Since most mobile devices are personal devices, the resource sharing should not
disturb the predominant usage of the device owners. This hard requirement also means
the available resources of mobile devices are varied over time. For example, if the
owner of a mobile device wants to download some files, the available bandwidth used
to share should be reduced. The amount of idle resources of a mobile device is an
important factor for our proposed framework to perform service request selection and
scheduling, which will be elaborated later. It can be calculated by

I t; rð Þ ¼ A t; rð Þ �
X

q2Et
Rr qð Þ ð1Þ

where I t; rð Þ denotes the amount of resource r that is idle at time t,A t; rð Þ denotes the
amount of resource r that is available at time t, q 2 Et denotes the request executing on

Fig. 1. Mobile cloud architecture

Revenue-Driven Service Provisioning for Resource Sharing 629

the mobile device at time t, and Rr qð Þ denotes the amount of resource r that is occupied
by the request q.

As mentioned before, mobile devices share their resources with others in the form
of services. Mobile services can be the computing capabilities, resources, applications,
data, sensors, etc. of mobile devices.

Definition 2 (Mobile Service). A mobile service is represented as a 5-tuple (d, R, v, F,
QoS), where:

– d is the index of the mobile device in the NMCC systems;
– R describes the resources needed for the mobile device to execute the service, which

can be denoted as a set of 2-tuples R ¼ ri; nið Þf gmi¼1, where m is the number of types
of required resources, and ri and ni denote the type and number of the i-th kind of
resource, respectively;

– v is the revenue the mobile device can obtain by successfully completing the service;
– F is the functional description of the service;
– QoS is a set of attributes of the requested services, including execution time te,

which is the makespan needed for a mobile device to execute the service.

Functional description and QoS parameters are key criteria for the broker to select
services for requests in the matching process. In this paper, we mainly consider the
execution time of a requested service, since it plays an important role in the scheduling
and resource allocation of mobile devices.

Definition 3 (Service Request). A service request is represented as a 4-tuple
s; d; ta; td
� �

, where:

– s is the service that is requested;
– d is the index of the mobile device, to which the request is delivered;
– ta is the arrival time of the request;
– td is the deadline for the request to be completed.

As introduced in Definition 3, a service request consists of information on a
required service, service host and time. In the dynamic and versatile mobile environ-
ment, service requests are highly likely to express real-time requirements, so we
introduce td to guarantee that services are completed in time. It is obvious that one
request corresponds to one service. In the remaining parts of the paper, we will use the
terms request and service interchangeably.

3.3 Problem Statement

Each mobile device manages an execution sequence, by which it conducts service
execution, requests insertion, deletion, scheduling, and resource allocation.

Definition 4 (Execution Sequence). For a mobile device d, its execution sequence
describes the services that will be performed on each time unit. It can be formulated as
a time function Et ¼ qif gni¼1, expressing that during time unit t, a mobile device d will
process n service requests including q1, q2,…, qn, simultaneously.

630 H. Wu et al.

In an execution sequence, each time unit corresponds to a set of service requests
that will be processed during that time unit. For example, Fig. 2 shows an example of
an execution sequence, which describes the service execution of a mobile device within
the time period of 5 time units.

To describe the execution time of a service request, we let �q denote the time when
request q starts to be processed and q� denotes the time when q is completed. Corre-
sponding to a given execution sequence, there is a request sequence where the requests
involved are sorted by the time when they begin to be executed. We let E �q

� �
and

E q�ð Þ denote the request that is right ahead of and right behind q respectively.
Specifically, El denotes the last request of the execution sequence. For example,
according to Fig. 2, we have E q�1

� �
¼ q2, E �q3

� �
¼ q2 and El ¼ q3.

Definition 5 (Revenue-Driven Service Provision). Given a mobile device d, with its
available resources At ¼ ri; nið Þf gmi¼1 and idle resources It ¼ rj; nj

� �� �m
j¼1, and the

incoming service requests q1, q2,… qn, the revenue-driven service provision is to select
a set of service requests S from the request sequence and schedule them in the exe-
cution sequence E to

Maximize
X
q2S

vq;

s:t: q� � �q ¼ teq; for each q 2 S ð2Þ

q� � tdq ; for each q 2 S ð3Þ

8t;
X

q2Et \ S
Rq rð Þ�At rð Þ; for each r 2 At ð4Þ

It is reasonable to regard maximizing overall revenue of a mobile device as the
optimization objective for its service provisioning. Equation 2 implies that the
arrangement of each request is in accordance with its execution time. Equation 3
illustrates that each request should be completed before its deadline. Moreover, the
allocated resources should not exceed the available resources of the mobile device at
any time, as specified in Eq. 4. Therefore, revenue-driven service provision is to select
service requests to maximize the revenue of mobile devices, with given dynamic
resource constraints and diverse time constraints of requests.

q1 q1 q3 q3 q3
q2 q2

t0 1 2 3 4 5

Fig. 2. Execution sequence example

Revenue-Driven Service Provisioning for Resource Sharing 631

4 RESP Approach

In this section, we present the RESP algorithm. It is a one-phase algorithm, which
means that the service request selection, scheduling and resource allocation of a mobile
device are made in an integrated manner. The symbols used in this paper are sum-
marized in Table 1.

4.1 RESP Algorithm

Service requests are sent to mobile devices via the broker, so that mobile devices are
required to deal with these requests sequentially. For each incoming request, a mobile
device needs to make a decision on the following three criteria:

(1) The request can be completed before its deadline;
(2) The request can be allocated with sufficient resources;
(3) The total revenue is increased.

A service request can be accepted by a mobile device for its execution if and only if
the above three criteria are all met. We first provide the definition of latest start time,
which is a core element of our approach.

Definition 6 (Latest Start Time). For a given request q, its latest start time is the
latest time for a mobile device to start performing it, so that it can be completed before
its deadline. The latest start time can be calculated by

Table 1. Mathematical Notations

Symbol Description Symbol Description

taq The arrival time of request q E �q
� �

The request ahead of request q in E

teq The execution time of request
q

E q�ð Þ The request behind request q in E

tdq The deadline of request q E t�ð Þ The request behind the time point
t in E

tsq The latest start time of
request q

El The last request in the execution
sequence E

tc The current time At The available resource set at time t
vq The reward for completing

request q
At rð Þ The amount of the available resource

r at time t
•q The time slot request q starts

to process
It rð Þ The amount of the idle resource r at

time t
q• The time slot request q is

completed
Rq The total required resources of

request q
Et The requests in E with the

same time t
Rq rð Þ The amount of a required resource

r of request q

632 H. Wu et al.

tsq ¼ tdq � teq ð5Þ

where tdq is the deadline of the request q, and teq is the execution time of the
request q.

Figure 3 shows the flowchart of the RESP algorithm. For a given request qi, we first
calculate its latest start time and use it to evaluate whether the request can be completed
before its deadline on the device. If the latest start time of the service request is before
the current time tc, the request will not be able to complete in time and it is thus rejected.
Otherwise, we schedule it with the accepted but not yet started requests located in the
execution sequence E. All the requests are sorted in non-decreasing order according to
their deadlines. A reference start time T will be generated for the request qi. Next, by
considering the available resource of a mobile device, we look for the actual start time
of qi. The actual start time can be before, equal to or after the reference start time T .

The pseudo code of the RESP algorithm is shown in Algorithm 1. For an incoming
service request qi, we first calculate its latest start time (line 1) and check whether it can be
completed before its deadline (lines 2-3) compared with the current time tc. If the request
is schedulable, we determine its reference start time in the execution sequence according
to its deadline (lines 5-7). To do so, we put qi to the rear of the execution sequence
(line 5). If there exists a scheduled request in the execution sequence and its deadline is
behind qi, then the reference start time of qi should be moved forward (lines 6-7).

Once the reference start time T is determined, we will use the start time mini-
mization technique to check whether qi can be performed before T (lines 9-12). If there
is a time interval where the mobile device has more idle resources than those required
(line 10), then qi can be safely placed into that time interval (line 11) without affecting
the execution of the scheduled requests. If no such time interval exists and the latest
start time of qi is not before T (line 13), then we check whether qi can be started at T .
If the mobile device has enough available resources for qi during its execution period

Start

Calculate the latest start
time of request qi

The latest start time of qi is
later than current time

Decline request qi

Find the reference start
time of qi

Y

Y

Insert qi to that
time interval

There is a time interval
before , during which idle resources

are sufficient for qi

N

N During the time interval
starting at , available resources are

sufficient for qi

N

There is a time interval
before the deadline of qi, during
which available resources are

sufficient for qi

Invoke timeouts
processing for qi

End

Y

Y

N

Fig. 3. Flowchart of the RESP algorithm

Revenue-Driven Service Provisioning for Resource Sharing 633

(line 14), then qi should be started from T (line 15). If the idle resources during that
interval are not enough for qi, qi can occupy the resources that have been allocated to
other requests with later deadlines (line 15). When this step still does not provide
enough resources to perform qi, the algorithm will continue checking whether there is
any time interval between T and the latest start time of qi that has sufficient resources
(lines 17-21). If one exists, qi should be inserted to that interval (line 19).

After the above search process, if qi cannot be inserted into the execution sequence,
then the Timeouts algorithm will be invoked (lines 22-23), implying that the mobile
device cannot accept all requests. This will lead to either qi or some other scheduled
requests being declined. For the cases that qi is inserted to the execution sequence and
thus causes one or more scheduled requests cannot being started on schedule, the
timeouts algorithm needs to be used for these requests.

4.2 Timeouts Processing Algorithm

In this subsection, we present the timeouts processing algorithm, which is invoked
when timeouts occurs. To better describe the algorithm, we first introduce the definition
of dominance.

634 H. Wu et al.

Definition 7 (Dominance). Given a service request qi, an execution sequence E and a
set of scheduled service requests S in E, qi dominates S if and only if

9t s:t: 8t0 2 t; tþ teqi

� �
and 8r 2 Rqi ;

Rqi rð Þ\It0 rð Þþ
X

q2S\Et0

Rq rð Þ and vqi [
X

q2S vq ð6Þ

In Definition 7, constraint (6) illustrates that there is a time interval, during which
the sum of the idle resources and the resources allocated to the requests in S exceeds the
required resources of qi. Meanwhile, the revenue for executing qi is more than exe-
cuting all requests in S. Obviously, if qi dominates S, the requests in S can be safely
replaced by qi, with the revenue for the mobile device increased.

The timeouts process algorithm is shown in Algorithm 2. It is realized by searching
for the dominated request set with the minimum price. For each time slot before the
reference start time point of an incoming request qi, the algorithm tries to find a dom-
inated request set with less revenue (lines 2-20). The search is started from the current
time to the earlier one of the reference time point and the latest start time (line 2).

For each time point, the request starting at it is set as the first request to check (lines 1).
If a request is found to be dominated by qi and with less revenue than the previous
minimum revenue, which is represented by M in the algorithm (line 4), then it will be
assigned to the replaced request set, its revenue will be assigned to the minimum revenue,
and the time point will be marked (line 5). Otherwise, the algorithm will check whether
the following request set can be dominated by qi and with less revenue (lines 8-13).

Revenue-Driven Service Provisioning for Resource Sharing 635

If it is, the algorithm will reallocate the minimum revenue, request set and time (line 10).
Otherwise, the algorithm will continue expanding the set until we can determine that it is
not qualified (line 13).

After the searching process, if the algorithm finds a dominated request with less
revenue (line 14), it will replace these requests with qi and move the subsequent
requests accordingly (line 15), otherwise, it means that no request set dominated by qi
is found and qi should be rejected (line 17).

4.3 Algorithm Analysis

In the following, we prove the effectiveness of the proposed RESP algorithm, by
verifying the three conditions mentioned at the beginning of this subsection.

Theorem 1 (Effectiveness of the RESP algorithm). If service request qi is inserted to
an execution sequence by the RESP algorithm, conditions (1), (2) and (3) hold.

Proof. If qi is inserted to the execution sequence by Algorithm 1, we can see the
algorithm confirms that qi can be completed in time before inserting it to any part of the
execution sequence (lines 9, 13 and 17), so condition (1) holds. Similarly, the algorithm
confirms that the resources are sufficient before inserting qi (lines 10, 14 and 18), so
condition (2) holds. As for condition (3), if the insertion of qi does not cause timeout of
any request, it is obvious that the revenue of the mobile device has increased by vqi . If
the insertion of qi causes timeout of a request whose revenue is larger than qi, then the
request will be reinserted by Algorithm 2, which also increases the revenue. Therefore,
condition (3) holds.

If qi is inserted to an execution sequence by Algorithm 2, there must be a request
set dominated by qi. Algorithm 2 confirms that the insert time is before tsqi (line 2), so if
qi replaces the dominated request set, it can be completed in time, i.e. condition
(1) holds. According to Algorithm 2 and Eq. (6), for each time point, the resources
allocated to the dominated request set and the idle resources of the mobile device add
up to exceed the required resources of qi, and the revenue of the requests in the
dominated request set adds up to exceed the revenue of qi, therefore conditions (2) and
(3) hold. □

The time complexity of both the RESP Algorithm and Timeouts Algorithm are O
(lten), where l denotes the length of the execution sequence, te denotes the length of the
execution time of the request (the number of time units) and n denotes the number of
types of available resources. It implies that the execution time of both algorithms is
feasibly low and it would not cause high overhead to mobile devices.

5 Experiments

We have implemented the algorithms in Python and our experiments are conducted on
a MacBook Pro (macOS Sierra Version 10.12.5). Since no standard platforms and
dataset are available, we generated our experimental data in a synthetic way. Each
mobile device is equipped with three kinds of resource. Service requests are randomly
generated with the revenue ranging from 1 to 10, execution time is from 1 to 6 and the

636 H. Wu et al.

required number of each resource is from 0 to 5. For each request, the time difference
between its deadline and its arrival is from 1 to 10. The number of incoming requests
per time unit obeys normal distribution N(15, 5) and is greater than 0. All the following
experiments are repeated 200 times and we adopt the average values.

5.1 Effectiveness Evaluation

To evaluate the effectiveness of RESP, we compare it with three well-known
scheduling algorithms, namely, First Come First Serve (FCFS), Priority Scheduling
(PS), and Genetic Algorithm (GA). FCFS performs service requests according to their
arrival time. PS assigns higher priorities to the requests with higher revenue and
performs them in a non-increasing order. Both FCFS and PS reject a request if no
sufficient resources or time to execute it. GA is a widely used heuristic method in
scheduling, and it is realised by successively iterating to generate better solutions. In
the following, we vary the mean of the number of incoming requests per time unit from
5 to 40 to compare the effectiveness of the four methods. The result is shown in Fig. 4.

From Fig. 4(a), the RESP approach outperforms FCFS, PS and GA in terms of
revenue at all times. FCFS performs worst due to that fact it does not consider the
revenue of the requests and only processes them according to their arrival sequence. PS
prioritizes the requests by their revenue. To do so, it will cause all the resources to be
used to perform the requests with high priorities and the requests with low priorities are
ignored. As a result, the total amount of service requests drops and leads to the revenue
dropping as well. GA considers both resource and revenue, so its performance is better
than FCFS and PS. However, due to its algorithmic complexity, it is hard to generate
the optimal solution in an online manner. With the significant performance improve-
ment, our proposed approach does not cause the overuse of mobile devices. As shown
in Fig. 4(b), there is no obvious difference in the resource utilization rate of the four
methods, which suggests that, by using the RESP approach, mobile devices can create
more revenue with same amount of resources.

Fig. 4. Experimental results of effectiveness evaluation

Revenue-Driven Service Provisioning for Resource Sharing 637

5.2 Efficiency Evaluation

To evaluate the efficiency of RESP, we compared the execution time of the four
methods. For the GA approach, we set the number of iterations from 20 to 100 with the
increment interval of 20. The result is shown in Table 2, from which we can see that
the execution time of GA is several orders of magnitude higher than the other three
methods. The revenue of GA becomes stable from GA-60, but the overall revenue is
still worse than our RESP method.

We further vary the length of the execution sequence, mean requests number, mean
execution time and the number of the type of resources respectively to evaluate the
scalability of the RESP algorithm. As shown in Fig. 5(a)-(c), with the increasing of the
length of execution sequence, mean requests number, mean execution time, the exe-
cution time of RESP increases almost linearly, which is in accordance with the analysis
given in Subsect. 4.3. Besides, as shown in Fig. 5(d), with the increasing number of the
type of resources, the execution time of RESP decreases. This is because the increased
resource number makes requests more difficult to be executed and thus decreases the
length of the request sequence. Overall, the execution time of RESP is feasibly low and
it has good scalability, which demonstrates the applicability of RESP to mobile devices.

6 Conclusion

In this paper, we study the problem of revenue-driven service provision for mobile
devices. A lightweight service-based approach called RESP (revenue-driven service
provision for mobile devices) is proposed to perform service request selection, request
scheduling and resource allocation simultaneously, with the objective to maximizing
the revenue of the mobile devices. To evaluate the performance of the approach, we
have conducted a set of experiments, which demonstrated the efficacy of RESP.

Table 2. Execution time comparison

FCFS PS RESP GA-20 GA-40 GA-60 GA-80 GA-100

Revenue 58.4 61.9 76.7 60.6 65.6 69.5 70.0 70.2
Execution time (ms) 0.59 0.62 3.06 386.82 818.80 1145.57 1487.51 1851.06

(a) (b) (c) (d)

Fig. 5. Experimental results of efficiency evaluation

638 H. Wu et al.

In future, we will focus on elaborating RESP in detail and fine tuning its parameters
to improve its performance. Furthermore, we will implement RESP on a real scenario
and adjust the algorithm by analysing the feedback.

Acknowledgement. This research was partially supported by Key Research and Development
Project of Zhejiang Province (No. 2015C01027, No. 2015C01034, No. 2015C01029, and
No. 2017C01013), Natural Science Foundation of Zhejiang Province (No. LY17F020014) and
Major Science and Technology Innovation Project of Hangzhou (No. 20152011A03).

References

1. Albagli-Kim, S., Shachnai, H., Tamir, T.: Scheduling jobs with dwindling resource
requirements in clouds. In: 2014 International Conference on Computer Communications
(INFOCOM), pp. 601–609. IEEE (2014)

2. Al Noor, S., Hasan, R., Haque, M.: Cellcloud: a novel cost effective formation of mobile
cloud based on bidding incentives. In: 2014 International Conference on Cloud Computing
(CLOUD), pp. 200–207. IEEE (2014)

3. Arslan, M.Y., Singh, I., Singh, S., Madhyastha, H.V., Sundaresan, K., Krishnamurthy, S.V.:
CWC: a distributed computing infrastructure using smartphones. IEEE T. Mobile Comput.
14(8), 1587–1600 (2015)

4. Ausubel, L.M., Milgrom, P.: The lovely but lonely Vickrey auction. Comb. Auct. 17, 22–26
(2006)

5. Chen, X.: Decentralized computation offloading game for mobile cloud computing. IEEE
Trans. Parallel Distrib. Syst. 26(4), 974–983 (2015)

6. Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for
mobile-edge cloud computing. IEEE/ACM Trans. Netw. 24(5), 2795–2808 (2016)

7. Deng, S., Huang, L., Wu, H., Wu, Z., Zomaya, A.Y.: Constraints-driven service composition
in mobile cloud computing. In: 2016 International Conference on Web Services (ICWS),
pp. 228–235. IEEE (2016)

8. Deng, S., Huang, L., Wu, H., Tan, W., Taheri, J., Zomaya, A.Y., Wu, Z.: Toward mobile
service computing: opportunities and challenges. IEEE Cloud Comput. 3(4), 32–41 (2016)

9. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing:
architecture, applications, and approaches. Wirel. Commun. Mob. Com. 13(18), 1587–1611
(2013)

10. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gener.
Comput. Syst. 29(1), 84–106 (2013)

11. Iosifidis, G., Gao, L., Huang, J., Tassiulas, L.: An iterative double auction for mobile data
offloading. In: 2013 International Symposium on Modeling & Optimization in Mobile, Ad
Hoc & Wireless Networks (WiOpt), pp. 154–161. IEEE (2013)

12. Koutsopoulos, I.: Optimal incentive-driven design of participatory sensing systems. In: 2013
International Conference on Computer Communications (INFOCOM), pp. 1402–1410.
IEEE (2013)

13. Lee, C., Wang, P., Niyato, D.: A real-time group auction system for efficient allocation of
cloud internet applications. IEEE T. Serv. Comput. 8(2), 251–268 (2015)

14. Liu, C., Shang, Y., Duan, L., Chen, S., Liu, C., Chen, J.: Optimizing workload category for
adaptive workload prediction in service clouds. In: Barros, A., Grigori, D., Narendra,
Nanjangud C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 87–104. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48616-0_6

Revenue-Driven Service Provisioning for Resource Sharing 639

http://dx.doi.org/10.1007/978-3-662-48616-0_6

15. Liu, K., Peng, J., Li, H., Zhang, X., Liu, W.: Multi-device task offloading with
time-constraints for energy efficiency in mobile cloud computing. Future Gener. Comput.
Syst. 64, 1–14 (2016)

16. Liyanage, M., Chang, C., Srirama, S. N.: Lightweight mobile web service provisioning for
sensor mediation. In: 2015 International Conferences on Mobile Services, pp. 57–64. IEEE
(2015)

17. Maguluri, S.T., Srikant, R.: Scheduling jobs with unknown duration in clouds. IEEE ACM
T. Netw. 22(6), 1938–1951 (2014)

18. Miluzzo, E., Cáceres, R. and Chen, Y.F.: Vision: mClouds-computing on clouds of mobile
devices. In: 2012 Workshop on Mobile cloud computing and services, pp. 9–14. ACM
(2012)

19. Srirama, S.N., Jarke, M., Prinz, W.: Mobile host: a feasibility analysis of mobile web service
provisioning. In: UMICS (2006)

20. Wang, C., Yu, F.R., Liang, C., Chen, Q., Tang, L.: Joint computation offloading and
interference management in wireless cellular networks with mobile edge computing. IEEE T.
Veh. Technol. (2017)

21. Yousafzai, A., Chang, V., Gani, A., Noor, R.M.: Directory-based incentive management
services for ad-hoc mobile clouds. Int. J. Inform. Manage. 36(6), 900–906 (2016)

640 H. Wu et al.

Continuous Learning as a Service
for Conversational Virtual Agents

Shivali Agarwal(B), Shubham Atreja, and Gargi Dasgupta

IBM Research, Bengaluru, India
{shivaaga,shubham.atreja,gaargidasgupta}@in.ibm.com

Abstract. IT support services are moving towards self assist mode by
means of cognitive agents. Such cognitive agents are typically being
designed as conversational system. It is important that as the agent
interacts with users, it should continuously observe, infer and learn as to
what is it that it is doing well, what topics is it not able to handle well
and what topics it does not seem to know about at all. In this paper, we
have proposed a service that enables feedback based learning in cogni-
tive agents. Conversation systems typically support feedback mechanism
for example, some of them may ask the users to vote for the answers,
or rate the experience/response that they got for their query. We pro-
pose a reinforcement learning based model for the agent to continuously
learn and improve. To the best of our knowledge, this is a first attempt
in modeling the continuous learning problem in conversational systems
as a reinforcement learning problem. We also provide the service design
for continuous learning as a service in context of conversational agents.
We have evaluated the model against real data to show how the learn-
ing is helpful in improving agent’s performance. The model can also be
generalized for any supervised classification problem.

1 Introduction

Cognitive agent can be thought of as a virtual agent which can observe, learn
and infer and interact. It has such capabilities as a result of massive training
in relevant domains using technologies like machine learning, natural language
processing, dialog decision tree flows etc. IT support services are increasingly
moving towards self assist mode by means of such cognitive agents. Such an agent
is able to act as the first line of contact for customers who would have typically
called a human helpdesk. One of the more common manifestation of such agents
is in the form of chatbots e.g. ‘Spoke’ [1]. Many such conversational cognitive
agents e.g. ‘WSS’ [11], have already started making inroads as a frontend for
customer support. With the score of services available now [18] for building chat
bots/conversational cognitive agent, it has become very easy to design one. The
challenge lies in building something which is intelligent and quick learner. Too
many of ‘I don’t know’ or wrong answers can make the agents useless. Currently,
this problem is handled by designing domain specific agents which hand off to
a human agent when it cannot reply satisfactorily [3]. It should be noted that
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 641–656, 2017.
https://doi.org/10.1007/978-3-319-69035-3_47

642 S. Agarwal et al.

conversational cognitive agents are supposed to understand context and have
notions of intents.

Conversation systems(service) in cognitive agents are bootstrapped with
basic knowledge through initial training. In order for a conversational agent
to be intelligent to identify intents, huge amount of training is needed. There is
some work happening around area of active learning [12], semi-supervised [20]
learning in order to reduce dependence on labeled data for training. However,
none of these techniques leverage feedback from users. The conversational cog-
nitive agents typically support feedback mechanism, for example, some of them
may ask the users to vote for the answers, or rate the experience/response that
they got for their query. In addition to this, there is a scope of capturing usage
logs and gauge implicitly the engagement of users with the system and consider
this as a feedback. Such feedback is an extremely important source of self learn-
ing and improvement for the cognitive agents. As the agent interacts with users,
it should continuously observe, infer and learn from feedback as to what is it
that it is doing well, what topics is it not able to handle well and what top-
ics it does not seem to know about at all. These topics are usually the intents
of the utterance/query of the user, and a good training data is key to identify
intents and have good quality conversations. However, continuous learning to
improve training and thereby conversations is a challenging problem and needs
utmost care so as to not degrade the existing accuracy. In this paper, we have
proposed a service that enables feedback based learning in cognitive agents to
continuously improve training data for intent classification in conversation ser-
vices. More specifically, we propose a reinforcement learning [14] based method
to come up with a learning policy for improving the training data for the agent.

The main contributions of this paper are: (i) Modeling the learning problem
as a feedback based reinforcement learning one by appropriately defining rewards
and state value functions (ii) Deriving the action policies, using this model, that
provide improvement suggestions automatically in the form of actionable utter-
ances for continuous learning (iii) Designing automated and manual workflows
to act upon the actionable set of utterances and update the training data (iv)
Designing the continuous learning framework as a service that uses feedback
from user interactions to improve training data by incorporating the policies
based workflows mentioned above (v) Implementing the service workflows and
evaluate against real data. One of the decisions that was crucial in designing the
services was: Should there be a human intervention who vets the automatically
generated suggestions before modifying the training data. If there is no human
intervention, then it is difficult to address the cases where the feedback adds
to the confusion instead of firming up the training data, so we decided to have
automated and manual workflows.

To the best of our knowledge, this is a first attempt in modeling the con-
tinuous learning problem for intents in conversational systems as a reinforce-
ment learning problem and designing the learning problem as a service. Rest
of the paper is outlined as follows. The problem is described in more detail in
Sect. 2. Section 3 describes the model, action policies and the workflow algorithm.

Continuous Learning as a Service for Conversational Virtual Agents 643

Fig. 1. Overview of Interactions for feedback driven learning

Service components of the continuous learning service are explained in detail in
Sect. 4. Section 5 discusses the experiment results, Sect. 6 covers the related work
and we conclude with Sect. 7.

2 Problem Overview

Starting with an initial training dataset consisting of utterance and intent pairs
used for training conversation service to predict intent from user utterance, the
problem objective is to augment it over time using implicit and explicit feed-
back, and improve the intent classification performance. The problem overview
is provided in Fig. 1. The utterance data is a stream of data consisting of user
queries/utterances and agent answer/response. The utterances are either the
main query or can be supportive dialog to understand the main question. The
utterances which capture the main question have to be identified from the dia-
log flow; we assume that the main utterance identification has been done on the
conversation data before passing to learning service. The implicit and explicit
feedback associated with the responses are also captured as part of conversa-
tion. For example, if the response is in the form of a solution document, then
the clicks on the page and time spent in reading the document is an implicit
indicator of usefulness while a vote is an explicit feedback. User feedback is an
important piece of information to leverage for improvement of a system. Observ-
ing and incorporating feedback is however, one of the most challenging aspects of
the problem because the feedback interpretation is not always straightforward.
For example, we have situations where explicit and implicit feedback convey the
opposite sentiment. It can be attributed to an imperfect implicit feedback model,
unfriendly user interface even though the content was fine or unmatched user
expectations. We do not dwell upon the subjectivity of feedback and model it
as per standard notions of implicit feedback in literature [5].

As shown in Fig. 1, the learning cycle needs to be continuous, possibly start-
ing with small training data set. The training data consists of rows of 2-tuples
denoted by <utterance(U), intent(I)> pairs such that each intent has at least
few training utterances. For example, an intent can be ‘CreateSpaceInMailbox’
and one of the corresponding utterances can be ‘How do I clean my inbox?’.

644 S. Agarwal et al.

Learning manifests as making modifications to training data to improve pre-
diction model. Modifications are actions like: adding utterances to an intent
as examples to boost confidence, identifying utterances that are candidates for
new intents, adding new intent labels and more. Feedback is the driving force
of continuous learning for the cognitive agent. We propose to use reinforcement
learning (RL) to learn action policies, that is, rules to modify the training data.
Once the action policies are learned, then the modification logic can be inte-
grated algorithmically in the learning service. One of the biggest challenges in
using RL method for learning in a conversation system is to model states, value
functions and rewards using logs and feedback from conversations.

The advantage of taking feedback based approach to continuously learn is
that the intents that are more commonly used improve a lot over time and this
information cannot be obtained in a more better way than user interactions.
Thus, feedback based learning gives a direction. In many cases, the feedback
helps in firming up the confidence automatically as utterances become training
examples. The variety in training examples can be obtained with very diverse lin-
guistics. The dependence on manual curator reduces a lot. The other advantage
of feedback based approach is that the training data can be initialized with a
small set of intent and utterance pairs and augmented based on user interactions.

3 Modeling the Continuous Learning Problem Using
Reinforcement Learning (RL)

In the following, we give an overview of reinforcement learning and then provide
the details of modeling the feedback based learning problem in cognitive agents
as an instance of SARSA algorithm [14] for reinforcement learning. The output
of reinforcement learning algorithm is optimal action policies for training data
improvement which are then modeled as algorithmic workflows. These workflows
are used by the continuous learning service as shown in next section.

In reinforcement learning [14], there is an agent, called RL agent, which
observes an input state and takes an action determined by a decision policy. Once
the action is performed, the agent receives a reward that acts as a reinforcement
for the goodness of the action. The information of reward for state/action pair is
recorded. By performing actions, and observing the resulting reward, the policy
used to determine the best action for a state can be fine-tuned. Eventually, if
enough states are observed, an optimal decision policy (referred to as action
policy henceforth) will be generated and we will have an agent that performs
perfectly in that particular environment. The algorithm used for reinforcement
learning here is on-policy algorithm called SARSA [14] which is an iterative one
which can be represented as:
Q(st, at) ← Q(st, at) + α(rt + γQ(st+1, at+1) − Q(st, at))
where,
α is the learning rate,
γ is the discount factor, a factor of 0 will make the agent “opportunistic” by
only considering current rewards,

Continuous Learning as a Service for Conversational Virtual Agents 645

Q(st, at) : the value of taking action at in state st under a policy at step t,
rt the reward observed associated with action at.

Having provided the background of reinforcement learning, we now explain
the setting of SARSA algorithm for reinforcement learning in conversational
cognitive agents. The setting is shown in Fig. 2. The conversation system is
initialized with a model trained on initial training dataset denoted by Train-
ing Data 1. Based on this model, the utterances from the users are analyzed
for intents and feedback is collected. To make this system learn and improve
over time, we define epochs of learning. The RL agent acts at every epoch and
Fig. 2 illustrates the flow for the one complete cycle that happens from epoch to
epoch. At each epoch, the agent collects data in terms of conversations that is,
user utterances, the output from the model and the user feedback, explicit and
implicit. This is shown by the edge labeled 1. Let A denote the possible action
atoms responsible for updating the training data that can be taken by RL agent.
These different action atoms are explained below.
- Add training example: There are situations where the correct intent is pre-
dicted with a low confidence. In such cases, the suggestion provided is to add
the utterance as a training data to the low confidence intent.
- Find correct/alternate intent: If there is confusion between intents for an
utterance, then the correct one should be chosen and the utterance should be
added as training example for the correct intent.
- Add new intent: This action is suggested when no existing intent in the
corpus matches with the intent of the utterance. This is an action type which
augments the training data so that the agents knowledge increases.
- Generate more training data: The utterances for which more training data
is required are taken and then similar utterances from the conversation corpus
is found. We use cosine and Jaccard similarity to obtain similar utterances. In
addition, paraphrasing is performed using LSTM [9] (out of scope of this paper).
We also maintain a dictionary of acronyms in order to find similar utterances.
For example, ooo for out of office.
- Report problem with Solution Quality: This actionable deals with the
cases where intent has been identified correctly, however, the user is not satisfied

Fig. 2. Reinforcement Learning Model for Intents in Conversation

646 S. Agarwal et al.

with the solution provided. In such situations, this is flagged as a potential case
of solution quality not being upto the mark.
Let there be U utterances in an epoch. For each u ∈ U , it can potentially
trigger actions which are of a type in A. The actions taken in an epoch are the
augmented set of actions over the utterance set U . Let this action set be denote
by At. RL agent then takes actions on this data, updates the training data to
become Training Data 2 and moves to next epoch of conversations as shown by
edge labeled 2. The improvement in intent classification of the utterances in the
passed epoch using updated training data is the reward of taking the actions.
This is illustrated by edges 3 and 4 in the Fig. 2. The edge 3 shows that newly
trained model is used to predict intents for utterances seen in epoch 1 and edge
4 shows the improvement in the prediction accuracy as a result that goes back
into the state as a reward for taking the actions. The cycle now repeats for next
epoch with the model based on Training Data 2.

We now define the state, Q-function and rewards at epoch t for our learning
problem to model SARSA algorithm in order to learn the optimal action policy.

– State, st: A state at epoch t is defined as- (Training Data t,
{<Utterance(Ut), Intent(It):Confidence(Ct), Feedback(Ft)>})

– Value Q(st, At) : Let At denote set of actions constituting of atoms from
A taken in state st. Then, Q value of taking those actions in the state st is
defined as the cross-validation accuracy of resultant training data.

– Reward, rt : The improvement in label prediction accuracy for the current
epoch t using the updated training data.

– α and γ are fixed at 1.

A state consists of (training model, conversation history) where conversation
history is a collection of tuples s.t. a tuple contains <utterances asked, the corre-
sponding predicted intent and the confidence value and the feedback received>.
The RL model is now used to learn the action policy. The aim of the policy
being learned is: how to combine feedback from users with the model confidence
in order to improve overall accuracy and user satisfaction. We now describe the
action policy learned using SARSA algorithm for reinforcement learning.

3.1 SARSA Algorithm for Learning Action Policies

The SARSA algorithm was implemented as follows in our setup. The goal of the
algorithm is to learn the best action policies, that is, in a state which actions
lead to best results. To come up with the state-action combinations, we started
with following basic guideline policy for actions: (i) for all negative feedback
intent-utterance pair, check if finding correct intent is suitable action or solution
quality is an issue. (ii) for all negative feedback intent-utterance pair, check if
assigning new intent is most appropriate action. Generate more training data in
case of new intent are suggested. (iii) for positive feedback with low confidence
threshold, the action is to add the utterance as a training example. The algorithm
steps are listed below:

Continuous Learning as a Service for Conversational Virtual Agents 647

Fig. 3. Action Policy Flow Learned by RL agent

1. Compute training data accuracy in state st, denote it by training acct. Ini-
tially t = 1.

2. Run the system for a duration and collect feedback for epoch t. In house
teams were used to carry out this step.

3. Manually analyze the utterances that got negative feedback. Take the best
possible action for each utterance and note down the details of the tuple
<Utterance, Intent 1, Confidence, Feedback, Action, Intent 2, {Training
Examples}>. Intent 2 is populated in case of find correct intent or new intent
actions. Training Examples are also populated in case the actions are to gen-
erate more training examples.

4. Analysis of the utterances that got positive feedback is done automatically
as there is only one action possible. Update the same tuple structure as in 3.

5. Finalize the updates to training data for next epoch. Determine the training
data accuracy with updates denoted training acct+1.

6. Now, run the training model obtained from training acct+1 on the utterances
of epoch t as test data and get accuracy. Check how many of the utterances
that had been taken action on have been predicted correctly as per manual
expert judgment. This step is done to compute the rewards for the learnings
made in this epoch.

7. Repeat 2 to 6 for each epoch t+1, epoch t+2 and so on till we gain confidence
on state-actions combinations.

The action policies are learned manually by mapping the majority times
a type of action was taken for a particular combination of confidence and
feedback values across utterance, intent pairs. The action policies, which are
effectively state-action possibilities, thus learned are illustrated in the Fig. 3.
This figure shows that only a subset of U is selected as actionable utterances

648 S. Agarwal et al.

based on negative/positive feedback and high/low confidence. Thresholds are
used to decide what is high/low and positive/negative. The actionable utter-
ances are either subjected to direct action e.g. in case of positive feedback but
low confidence or they are subjected to analyses namely, confusion analysis and
new intent possibilities analysis to take the decision for type of action. We would
like to note here that these decision making analyses are partially automated.
Same is true for actions also. This is marked in the Fig. 3 with green color show-
ing fully automated process while grey color shows manual intervention is needed
at some point to complete the analysis/action. A mix of the two colors indicates
partial automation. For e.g. finding correct intent is partially automated. The
analysis for deciding actions is explained below.

Intent confusion analysis: When an intent is predicted by a model with high
confidence but users end up giving a negative feedback, it becomes actionable.
This is either a case where the model got confused and made wrong prediction
for the utterance or the solution quality is bad. This is disambiguated as follows:
(i) If the explicit feedback is negative while the intent was predicted with high
confidence and the user spent some time going through the corresponding solu-
tion, then it is considered as a case of bad solution document.
(ii) If above condition does not hold, then the intents getting confused are derived
using the automated procedure as: (a) find the similar utterances in the data to
the one identified for intent confusion analysis; (b) the intents corresponding to
the similar ones form a probable set of confusing intent. Then the action for find-
ing correct intent is triggered explained as follows. If the size of confusing intents
set is two, then the other intent is chosen as the correct intent and utterance
added as training example automatically. If the size is more or less than two,
then the decision of correct intent is made manually. Note: Confusion can arise
due to similarity in training utterances for different intents. For manual decision,
it is good to check the probable sources of confusion as follows: (a) intents with a
very fine level of distinction which is coming out through few keywords in utter-
ances (b) very similar structured utterances have been constructed for different
intents for e.g. ‘how to set up my printer’ and’how to set up my account’.

New Intent analysis:If there is a negative feedback for an utterance and the
existing model is also not able to predict an intent with high confidence for
any similar utterances, then the utterance becomes an actionable candidate for
new intent. When there is a candidate for new intent found, then the analysis
for possibility of matching intent from the existing set of intent corpus is done
manually. Depending on the findings, there are two possible actions. Either a
matching intent is selected by the expert, in which case training example is
added or there is no appropriate intent found in the corpus, then a fresh intent
is curated by the expert. Note that the manual selection from existing intent
corpus is needed to ensure no similar intents get added.

Continuous Learning as a Service for Conversational Virtual Agents 649

3.2 Implementing the Action Policy

Having learned the policy, we now present the algorithm for implementing
the action policies in the conversational agent as follows. This is shown in
Algorithm 1.

The algorithm clearly distinguishes the manual and automated workflows.
The automated actions are denoted with auto action and manual actions with
manual action. This is run in each epoch to get the actionable utterances, the
ones for which the actions got executed and result of actions on training data.
F (u) is the feedback function which is a weighted combination of explicit and
implicit feedback normalized to give value in [-1,1]. C(u) is the confidence value
of the intent prediction for the utterance u. There are two thresholds defined
th1 and th2. The threshold th1 is for confidence value, so any value above this
threshold is considered high confidence. We took value of 0.85 for this. The sec-
ond threshold th2 is for implicit feedback in terms of timespent. We used 10 sec
for this value. The method findSimilarUtterances(u) finds the utterances that

Algorithm 1. Algorithm for Applying Actions as per Policy
INPUT: U = unique utterances for epoch n
OUTPUT: updated Training data
1: compute feedback value F (u) ∀u ∈ U
2: for each u ∈ U do
3: if F (u) > 0 then
4: if C(u) < th1 then
5: auto action(u)=add as training example for predicted intent
6: end if
7: end if
8: if F (u) < 0 s.t. explicit vote is negative and timespent(u) < th2 then
9: S ←findSimilarUtterances(u)

10: if C(u) > th1 then
11: I ← intentSet(S)
12: if size(I) == 2 then
13: auto action(u)=assign alternate intent if no explicit negative vote
14: auto action(u)=add u to alternate intent in training data
15: else
16: manual action(u)=choose correct intent(u, I) and add pair training
17: end if
18: else if ∀v ∈ S : C(v) < th1 then
19: auto action(u)= actionable for new intent;
20: manual action(u)=find matching intent or curate new intent;
21: generate/collect more training examples in case new intent;
22: add pairs to training data
23: end if
24: else if F (u) < 0 s.t. explicit vote is negative and timespent(u) > th2 then
25: auto action(u)=mark solution document improvement.
26: end if
27: end for

650 S. Agarwal et al.

are textually similar to u based on Jaccard and cosine similarity. The function
intentSet(S) outputs the set of intents that have been predicted for the utter-
ances in the set S. The rest of the action statements follow the logic as explained
in the ‘intent confusion analysis’ and ‘new intent analysis’ in Sect. 3.1.

4 Service Design for Continuous Learning

The user interacts with Cognitive agent by asking a query. The Conversation
Service used by the agent is designed as a classifier that classifies the intent
corresponding to the user query, from the existing set of intents. The classi-
fier is trained by providing a few manually annotated example queries for each
intent in the system. As the user queries the system, its interactions are stored
in a feedback database. The information for similar queries is grouped together.
Similar queries are identified based on jaccard similarity index. At each epoch,
the learning service reads from the feedback database and generates a set of
suggestions based on the encoded action policy by taking into account the user
feedback that is captured. The policy module has 3 components: New Intent
Candidates, Confusion Analysis and New Intent Analysis. Based on these com-
ponents, policy based actions are decided and passed on to the action module.
The action module then updates the training data using both automated and
manual actions. The details of how the learning policy recommendations are used
to modify the training data are explained in Algorithm 1. The service can be
configured to bypass the manual (Subject Matter Expert (SME)) route. Accu-
racy analysis is performed on the new training set to ensure that the system has
not degraded. Once it is ensured, the training data is updated and the classifier
is retrained based on that. There is scope for the training data to be vetted by
a human expert (SME) before the classifier is retrained. This functionality may

Fig. 4. Continuous Learning Service Design

Continuous Learning as a Service for Conversational Virtual Agents 651

Table 1. Utterance Analysis

Epoch Unique
Utterances

Actionable Actioned
a:m

0 137 36 3:12

1 137 8 1:3

2 137 29 1:7

3 117 15 3:3

Table 2. Evaluation of Action Policies

Epoch Intent Training
Size

Acc (%) Reward

0 127 1417 76.7 8%

1 127 1432 76.6 5. 8%

2 127 1436 75.6 11%

3 128 1444 76.7 5.2%

4 128 1451 76.9

be required as the user feedback can be non conclusive, and thus it may add
confusion to the system. It is possible to use the proposed continuous learning
service with any conversation service. We use Watson’s Conversation Service [18]
as a proof of concept. The service is independent of different notions of feedback
as long as the feedback can be cast as explicit and implicit values normalized
for a range of [-1,1]. The service should be able to handle different notions of
feedback. We have adhered to the standard notions of feedback [5] commonly
used for implicit feedback in the design of service and additionally made the
implicit feedback value as an input to the system to handle special cases.

5 Experiment Results

Having learned the policy, we implemented the service. We now evaluate the
continuous learning that we get with the implementation of the action policies
in the conversational agent. While certain policy flows could be automated, oth-
ers require a manual intervention for which a domain expert was instituted. The
data used for the experiments to determine the policy are real user conversa-
tions over two months. The service portal that has been trained on initial set
of questions and intents was deployed and the conversation logs were collected.
The training data had about 127 intents and 1417 utterances. The portal had
up/down vote provision which was exercised optionally by users. The implicit
feedback was captured through the links clicked on the solutions and the time
spent in going through the solution documents. The user logs were sampled
after two weeks. The Table 1 shows the number of main utterances asked in
each epoch, how many of them were identified as actionable ones by Algorithm
1 and subjected to manual and auto actions. The final column shows the how
many were finally acted upon. The ratio a:m shows that ‘a’ were automated
actions and ‘m’ were analyzed manually. It can be seen from the table that some
epochs have higher instances of utterances identified for analysis. This is pri-
marily due to two reasons: users asked questions that could not be predicted
with high confidence or were predicted wrong in that epoch. Such epochs pro-
vide better opportunity for learning than the ones where the utterances could be
answered well by the training data of which epoch 2 is an example. It can also
be seen that the actions taken are on a subset of utterances that were analyzed.

652 S. Agarwal et al.

This is attributed to manual selection that is a part of the action policy. We
had many instances of revise solution quality case and these result in actual
actionable utterances being less than the candidate actionable ones. Some of the
recommendations do not make it to the training data as the negative feedback
was just noise and not the wrong prediction. Then some of the utterances were
out of scope or nonsensical (e.g. “What time did you wake up”) and hence are
rejected for example, if the agent is supposed to answer questions on Websphere
issues but some utterances actually ask questions on Oracle DB issues, then
these are rejected. There was no pattern observed in terms of ratio of each of
these causes for rejected actionable utterances.

We updated the training data, used cross validation to find training data
accuracy, then took the next two weeks user utterances as a test data against
that and then manually rated it. The accuracy of test data predictions is captured
as reward. The Table 2 shows the value of rewards and training data accuracy
at each epoch. The last epoch, 4, does not have rewards computed since that
is considered as terminal state for the learning agent. The Table 2 shows that
the rewards vary from 5% to 11%. An interesting observation was that not all
the times adding a training example pushed the confidence of similar utterances
above the threshold value of 0.85. This was attributed to structural similarity
of the utterance with utterances of other intents. For example, ‘how do I setup
an X’ and ‘how do I setup Y’ were sometimes confused resulting either low
confidence or incorrect prediction. Hence, the percentage improvement is not
a numeric function of number of actions taken. The table also shows how the
training data got modified with each epoch. It can be seen that there was a new
intent added in epoch 3. It can also be observed that the number of utterances
is increasing in each epoch in different quantities. The accuracy of training data
varies a little in acceptable range. It can be seen that the last epoch ended with
an overall improvement in the accuracy. Note that the value of 76.7% in epoch 0
is the cross validation accuracy with initial training data. The accuracy of 76.6%
at epoch 1 is the accuracy once the training data got modified based on actions
taken after analyzing the utterances in epoch 0. The column called reward on
actions captures the improvement in intent predictions as a result of actions
taken on the training data. We observe that the rewards are higher when the
number of actions taken are higher which is a validation of our action policy.
The interesting observation is that training accuracy can decline even with fewer
actions taken as observed in epoch 3. The utterances of epoch 2 resulted in very
few actionables and yet the impact on resultant training data that was used in
epoch 3 was negative. However, this is contrasted in epoch 4 which had minor
increase in accuracy inspite of small actionables in epoch 3. Overall, the fact
that the accuracy did not drop more than 1% is a validation of robustness of
the action policies. This is largely attributed to quality of recommendations and
manual decisions. We plan to completely automate the action policy as part of
future work.

There is another analysis that was done to see how much of potential improve-
ment is being captured using the feedback based action policies that we have

Continuous Learning as a Service for Conversational Virtual Agents 653

proposed here. It is possible that users do not provide enough feedback due to
which the policies are not able to identify the actionable utterances even though
there are utterances which could have been worked upon. In this analysis, we
had more than 75% cases getting captured across epochs. Thus, we can see that
the feedback was very good and we covered most of the important cases for
improvement in the training data. There were few cases of new intent possibility
that were not captured because there was no feedback provided even though the
predictions were with low confidence. To handle such cases, we plan to augment
the approach with unsupervised learning in future where the remainder utter-
ances after the ones that have been actioned upon using the policies shall be
checked for prediction confidence and then the ones with low confidence will be
subjected to clustering. The cluster output will besubjected to manual scrutiny
to decide if there is a case for new intent.

Observations: Feedback based reinforcement learning for continuous learning
comes with its own challenges in performance. The quality of feedback plays a
crucial rule in our model. If the users give random feedback, then the performance
of training can deteriorate as we observed in Table 1. In absence of feedback,
there will not be much training that can be performed. We observed that the
confidence of intent predictions for utterances that were asked repeatedly in
more than an epoch and were actioned upon eventually got the intent prediction
correct with high confidence. On a positive note, the manual effort in improving
training data went down considerably by use of our approach, in some cases from
20 hours to 4 hrs as reported by the experts. This is primarily due to the effort
being reduced to just decision making as opposed to first analyzing, evaluating
and then deciding.

6 Related Work

We now present the various learning techniques from literature that are relevant
to our work. Self training [20] is one such technique. In self training a classifier
is first trained with the small amount of labeled data. The classifier is then used
to classify the unlabeled data. Typically the most confident unlabeled points,
together with their predicted labels, are added to the training set. The classifier is
re-trained and the procedure repeated. Note the classifier uses its own predictions
to teach itself. The procedure is also called self-teaching or bootstrapping (not
to be confused with the statistical procedure with the same name). One can
imagine that a classification mistake can reinforce itself. Some algorithms try
to avoid this by unlearning unlabeled points if the prediction confidence drops
below a threshold. Our approach is more robust and functionally rich compared
to this.

Active learning [12] is being increasingly explored and used to come up with
training dataset efficiently. Active learning algorithms select examples for label-
ing in a sequential, data- adaptive fashion, as opposed to passive learning algo-
rithms based on preselected training data. The key to active learning is adaptive
data collection. Most experimental work in active learning with real-world data

654 S. Agarwal et al.

is simulated by letting the algorithm adaptively select a small number of labeled
examples from a large labeled dataset. This requires a large, labeled data set
to begin with, which limits the scope and scale of such experimental work. The
current relabeling based active learning approaches [8] try to relabel based on
impact and may end up altering the existing training data a lot more than
desired.

Particularly for dialog systems and conversation agents, [16,19] exploited a
combination of active and semi-supervised learning approach for better training.
As the classifier labels the unlabeled utterances, the ones with high confidence
are automatically added to the existing training data and the ones with low
confidence are selected for active learning, to be labeled manually and then
added to the training data. Understanding the importance of learning from the
unlabeled user queries that are logged, [2,4,6,7] exploit them by employing a
semi-supervised learning approach to increase their training data. They model
click-graphs to infer the labels for the unlabeled user query, using some proximity
measures. Our paper differs in two aspects. Firstly, previous works do not take
into account the user feedback that is recorded on these queries. Also, the focus
is mainly on identifying more examples to expand the training data and improve
the classification. We extend our work beyond this through two measures. We
perform a confusion analysis to identify misclassified utterances based on the user
feedback. We also include a new intent analysis that identifies if a new intent
has to be added into the system to address some of the user queries. [13] talks
about using reinforced learning for an intent classification task by incorporating
user feedback. The task is limited to identifying the correct intent from the set of
existing intents and doesn’t consider the possibility of adding new intents to the
system. For the sake of completeness, we also mention other works [10,17] that
talk about using reinforcement learning in a dialog system. Their main aim is to
improve the system by identifying the optimal dialog sequence that engages the
user and the focus is not on the intent classification task. [15] is another similar
work in this domain.

7 Conclusions

As cognitive systems are going to mature in basic functionality, the need for
continuous learning service proposed in this work is inevitable. In this paper, we
have focused on modeling and implementation of continuous learning for intent
classification in conversational agents and showed promising results. Our exper-
iment results for service performance, detailed in Sect. 5 show that (i) training
data updates can be made very efficiently (ii) the impact of updates on cross-
validation accuracy of training data is gradual which is good (iii) the training
data expands with new intents and utterances with time leading to remarkable
improvement in intent prediction accuracy (iv) interestingly, accuracy need not
be directly proportional to the acted upon utterances (v) noise in feedback or no
feedback is a challenge and we shall show in the evaluations how it can impact
the actionable vs acted upon ratio. As part of future work, we plan to extend

Continuous Learning as a Service for Conversational Virtual Agents 655

continuous learning (fully/semi automated) to other aspects of conversation sys-
tems like dialog flows also and make continuous learning services an integral
component of any conversation service.

References

1. AskSpoke. https://doesthathelp.askspoke.com/redefining-the-service-desk-
7df61db617c5

2. Celikyilmaz, A., Hakkani-Tür, D., Tur, G.: Leveraging Web Query Logs to Learn
User Intent Via Bayesian Latent Variable Model (2011)

3. Dhoolia, P., et al.: A cognitive system for business and technical support: a case
study. IBM J. Res. Dev. 61(1), 7 (2017)

4. Hakkani-Tür, D., Heck, L., Tur, G.: Exploiting query click logs for utterance
domain detection in spoken language understanding. In: IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 5636–
5639. IEEE (2011)

5. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting
clickthrough data as implicit feedback. In: Proceedings of the 28th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 2005, pp. 154–161 (2005)

6. Li, X., Wang, Y.Y., Acero, A.: Learning query intent from regularized click graphs.
In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 339–346. ACM (2008)

7. Li, X., Wang, Y.Y., Shen, D., Acero, A.: Learning with click graph for query intent
classification. ACM Trans. Inf. Syst. (TOIS) 28(3), 12 (2010)

8. Lin, C.H., Mausam., Weld, D.S.: Re-active learning: active learning with relabeling.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI
2016, pp. 1845–1852. AAAI Press (2016)

9. A Beginner’s Guide to Recurrent Networks and LSTMs. https://deeplearning4j.
org/lstm.html

10. Scheffler, K., Young, S.: Automatic learning of dialogue strategy using dialogue sim-
ulation and reinforcement learning. In: Proceedings of the second international con-
ference on Human Language Technology Research, pp. 12–19. Morgan Kaufmann
Publishers Inc. (2002)

11. IBM Workplace Support Services with Watson. https://www.ibm.com/in-en/
marketplace/end-user-support-services

12. Settles, B.: Active learning literature survey. Technical report (2010)
13. Shibata, T., Egashira, Y., Kurohashi, S.: Chat-Like conversational system based

on selection of reply generating module with reinforcement learning. In: Rudnicky,
A., Raux, A., Lane, I., Misu, T. (eds.) Situated Dialog in Speech-Based Human-
Computer Interaction. SCT, pp. 63–69. Springer, Cham (2016). doi:10.1007/
978-3-319-21834-2 6

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (1998)
15. Thomson, B., Young, S.: Bayesian update of dialogue state: a pomdp framework

for spoken dialogue systems. Comput. Speech Lang. 24(4), 562–588 (2010)
16. Tur, G., Hakkani-Tür, D., Schapire, R.E.: Combining active and semi-supervised

learning for spoken language understanding. Speech Commun. 45(2), 171–186
(2005)

https://doesthathelp.askspoke.com/redefining-the-service-desk-7df61db617c5
https://doesthathelp.askspoke.com/redefining-the-service-desk-7df61db617c5
https://deeplearning4j.org/lstm.html
https://deeplearning4j.org/lstm.html
https://www.ibm.com/in-en/marketplace/end-user-support-services
https://www.ibm.com/in-en/marketplace/end-user-support-services
http://dx.doi.org/10.1007/978-3-319-21834-2_6
http://dx.doi.org/10.1007/978-3-319-21834-2_6

656 S. Agarwal et al.

17. Walker, M.A.: An application of reinforcement learning to dialogue strategy selec-
tion in a spoken dialogue system for email. J. Artif. Intell. Res. 12, 387–416 (2000)

18. Watson Developer Cloud-IBM. https://www.ibm.com/watson/developercloud/
19. Wu, W.L., Lu, R.Z., Duan, J.Y., Liu, H., Gao, F., Chen, Y.Q.: Spoken language

understanding using weakly supervised learning. Comput. Speech Lang. 24(2),
358–382 (2010)

20. Zhu, X.: Semi-supervised learning literature survey. Technical report 1530, Com-
puter Sciences, University of Wisconsin-Madison (2005)

https://www.ibm.com/watson/developercloud/

Costradamus: A Cost-Tracing System
for Cloud-Based Software Services

Jörn Kuhlenkamp1,2 and Markus Klems1,2(B)

1 Technische Universität Berlin, Berlin, Germany
jk@ise.tu-berlin.de

2 Information Systems Engineering Research Group, Berlin, Germany
mk@ise.tu-berlin.de

Abstract. Cloud providers offer a range of fully managed infrastructure
services that enable a “serverless” architecture and development para-
digm. Following this paradigm, software services can be built on composi-
tions of cloud infrastructure services that offer fine-granular pay-per-use
pricing models. While this development and deployment approach sim-
plifies service development and management, it remains an open chal-
lenge to make use of fine-granular pricing models for improving cost
transparency and reducing cost of service operations. As a solution, we
present Costradamus, a cost-tracing system that implements a generic
cost model and three different tracing approaches. With Costradamus,
we can derive cost and performance information per API operation. We
evaluate our approach and system in a smart grid context and discuss
unexpected performance and deployment cost tradeoffs.

Keywords: Tracing · Cloud computing · Deployment costs · Perfor-
mance

1 Introduction

Serverless computing [14] is an emerging architecture and development paradigm
for building cloud-based software services that promises to reduce cost of service
development and operations. A serverless service relies entirely on fully managed
cloud infrastructure services that offer fine-granular pay-per-use pricing models.

Despite these detailed usage and pricing models, actual capacity usage and
billing information is usually presented to users as aggregates, in terms of time
(e.g., monthly bills) and resource usage (e.g., per infrastructure service category).
This makes it difficult for software service developers to determine the actual
capacity usage and associated cost of a single software service and to obtain a
cost breakdown per API operation of a single service.

In this paper, we propose an approach and system prototype that solves this
problem by enabling per-request cost-tracing. Potential applications of our
approach are:

1. Cost-debugging tools [7] for developers who thereby gain insight into cost
changes that are caused by small source code or deployment changes.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 657–672, 2017.
https://doi.org/10.1007/978-3-319-69035-3_48

658 J. Kuhlenkamp and M. Klems

2. Systems for improving cost awareness across different teams, in particular, if
cross-functional teams work independently on their own microservices. With
a cost-tracing system, teams could communicate their service cost to other
teams more easily.

3. Software-as-a-Service providers could calculate marginal cost of operations
and, based on detailed cost information, design pay-per-use pricing models
for their software services that guarantee a stable profit margin.

Our approach enables per-request cost-tracing by using a mix of analytic
and experiment-based techniques. We use an analytic cost modeling approach
and supply the cost model with input data that is derived through a tracing
system which augments each request trace with resource capacity consumption
data along its invocation path.

In the following Sect. 2, we give a short overview of serverless computing
and distributed tracing. Then, in Sect. 3, we introduce the scenario of a smart
grid metering application that is realized with serverless infrastructure. Section 4
shows our first contribution, a generic cost model for serverless infrastructure. In
Sect. 5, we present our second contribution, Costradamus, a cost-tracing system
that can determine the per-request capacity usage and cost of infrastructure
service compositions. In Sect. 6, we present results of our cost measurements
and discuss interesting effects that we observed when applying our cost-tracing
approach to the smart grid metering application.

2 Background

Serverless computing is a paradigm that introduces a new system architecture
approach as well as a new programming, runtime, and deployment model. Server-
less architecture is characterized by the extensive use of fully managed cloud
services and the absence of self-managed system components, in particular the
absence of self-managed servers. Serverless computing is characterized by the
use of Serverless Functions (SF), also known as Function-as-a-Service, Cloud
Functions, or Serverless Microservices. Examples of SF services include AWS
Lambda, Google Cloud Functions, and Azure Functions.

An SF encapsulates business logic and exposes an RPC handler interface for
remote procedure calls. Typically, an SF is stateless and can be invoked through
events, such as HTTP request events or events by other cloud infrastructure
services. The SF lifecycle typically looks like this: a developer bundles the SF
business logic source code and uploads it to a storage service. When the SF is
invoked, the source code is loaded and executed in a managed, container-based
runtime environment. The lifespan of an SF is relatively short, often below one
second. For performance-optimization, SF containers are typically re-used for
subsequent invocations and only destroyed if no new events have arrived for a
prolonged period of time (several minutes), thereby saving infrastructure cost
on the provider side.

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 659

Although SF deliver on the promise of low operational effort (NoOps), a
service that is composed of many small functions creates new management chal-
lenges. For this purpose, distributed tracing and debugging solutions are needed,
such as Google’s Dapper [17]. AWS X-Ray is a similar tracing service that can
be used to debug and analyze service compositions that comprise AWS Lambda
functions and other AWS infrastructure services. For a sample of requests that
clients send to an API Gateway, load balancer, or Lambda function, X-Ray adds
a trace id to the request context and then passes the request to the destined
service. A trace segment (also known as trace record or span) for the traced
service is sent to an X-Ray daemon which buffers segments and uploads batches
of segments to the X-Ray API. Downstream service incovactions, such as AWS
DynamoDB or AWS Kinesis, can be traced by instrumenting the AWS SDK
client that makes the request, e.g., from an EC2 instance or a Lambda function.

3 Application Scenario: Smart Grid Metering

We consider an application scenario in the context of smart grid management.
The application scenario is inspired by the PolyEnergyNet project1. Continu-
ously, the power grid becomes increasingly dynamic and decentralized in nature.
To make timely and knowledgeable decisions for strategic grid expansion and
day-to-day grid operation, it becomes increasingly important to meter the state
of smart grids with fine granularity. This includes meters in the infrastructure of
distributed network operators (DNO) and meters at individual consumers and
prosumers.

Fig. 1. Application scenario: smart grid metering application.

1 http://www.polyenergynet.de.

http://www.polyenergynet.de

660 J. Kuhlenkamp and M. Klems

A software service provider within the organization of a DNO offers the
Smart Grid Metering application (SGMApp) (see Fig. 1). The SGMApp exposes
an API comprising four operations that are each backed by cloud services. A
request to an API operation triggers a cascade of invocations to downstream
services in the back-end. Meters use the IngestValue operation to periodically
push new metered values. The ingestValue service checks parameters and for-
wards values to persistValue and predictValue. The persistValue service
stores values in a database for later analysis. The predictValue service uses
historical data of the corresponding time series to calculate predictions. Histor-
ical data is retrieved from a local cache or from the values database service.
Predictions are stored in a dedicated database service. If a predicted value sig-
nificantly deviates from a current value, a notification is sent to a streaming
service. Grid operators use the ReadValues operation to display the current
state of the smart grid. The readValues service checks query parameters and
retrieves values from values. Similarly, automated grid controllers use in addi-
tion the ReadPredictions operation. The ReadNotifications operation allows
to consume critical notifications.

4 Software Service Cost Model

In this section, we present a generic cost model for cloud-based software services,
and propose metrics to quantify cost and capacity waste per API request.

4.1 Service Model

An API request R cascades through a set of downstream services. Therefore, we
model R as a set of invocations I ∈ R of downstream services. Each invocation
consumes capacity of the corresponding downstream service. Precisely, a single
invocation I consumes capacity of a set of capacity types t ∈ I. We denote the
measured consumption of a capacity type t ∈ I by ut. Capacity for each capacity
type is provisioned in provisioning units with a provisioning unit size ct, and
billed with a provisioning unit price pt, respectively. However, a cloud provider
meters consumption for each capacity type in full coarse-grained metering units
with a metering unit size mt, mt ≤ ct. Provisioning units, metering units, and
measured consumption are each specified as a tuple of amount and duration. We
refer to the amount by the superscript 0 and to the duration by the superscript 1.
Figure 2a illustrates different parameters used to model consumption of a single
capacity type of an downstream service.

As an example, we model an invocation of a service function implemented
on top of AWS Lambda. The service function uses a single capacity type mem
denoting memory time. At the creation time of the service function, a service
provider configures the service function to use provisioning units of cmem =
(128MB, 100ms). The provisioning unit price of a single provisioning unit is
pt = 208 n$. Provisioning units equal metering units cmem = mmem. An example
invocation utilizes a constant amount of 60 MB memory over a total runtime of

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 661

elapsed time

am
ou

nt

duration
metering

unit

duration
provisioning

unit

amount
metering

unit

amount
provisioning

unit

Capacity Unit

Metering Unit

Usage

Parameter

Legend:

used
amount

used
duration

u1
t

u0
t

c0t

c1tm1
t

m0
t

(a) Parameters

elapsed time

am
ou

nt

Provisioning
Amount
Waste

Metering
Amount
Waste

Metering
Duration
Waste

Provisioning
Duration
Waste

Capacity Unit

Metering Unit

Metered
Usage

Metric

Legend:

Usage

(b) Metrics

Fig. 2. Cost model parameters and metrics for a single capacity type.

600 ms umem = (60MB, 150ms). Optionally, an invocation that includes data
transfer to or from a data center requires modelling of a second capacity type
bw denoting network bandwidth.

4.2 Metrics

Based on the service model in Sect. 4.1, we define metrics to quantify per-request
cost. On a more fine granular level, waste metrics characterize individual invoca-
tions of downstream services. Precisely, waste metrics characterize provisioned
and not utilized capacity for invocations. Waste metrics serve the main purpose
of supporting a service provider in cost debugging and optimization of software
services. Figure 2 illustrates different metrics.

Marginal Request Cost. One of the main motivations behind Costradamus is
the quantification of per-request cost. The Marginal Request Cost (MRC) metric
(Eq. 1) does exactly that. For a request R, we add costs over all invocations
I ∈ R. For each invocation, we add costs over all capacity types t ∈ I. To derive
cost per capacity type t, we calculate metered amount and metered duration
based on measured amount u0

t and measured duration u1
t per capacity type.

Finally, we obtain MRC by calculating the relative share of provisioning units
multiplied by the provisioning unit price pt.

MRC(R) =
∑

I∈R

∑

t∈I

⌈
u0
t

m0
t

⌉
∗ m0

t

c0t
∗

⌈
u1
t

m1
t

⌉
∗ m1

t

c1t
∗ pt (1)

Metering Duration Waste. Cloud providers typically measure how much and
for how long a certain capacity is used by an invocation. However, for metering
purposes, measured usage is usually rounded up to coarse-grained units. Meter-
ing Duration Waste (MDW) (Eq. 2) describes the difference between metered

662 J. Kuhlenkamp and M. Klems

and measured duration for the consumption of a capacity type. In our example,
MDW quantifies the 50 ms of runtime that is metered for the invocation.

MDW (t) = m0
t − (u0

t mod m0
t) (2)

Metering Amount Waste. Similar to MDW, Metering Amount Waste
(MAW) (Eq. 3) describes the difference between metered and measured con-
sumed amount of a capacity type. In our example, MAW quantifies the 68MB
memory that is metered and never used by the invocation.

MAW (t) = m1
t − (u1

t mod m1
t) (3)

Provisioning Duration Waste. A downstream service can provision per-
invocation capacity or shared capacity for multiple invocations. Provisioning
waste metrics characterize provisioned and unused capacity for an invocation
in the absence of other invocations. Therefore, Provisioning Duration Waste
(PDW) (Eq. 4) describes the difference between provisioned and metered usage
duration for a capacity type. In our example, PDW equals 0 ms.

PDW (t) = c0t − (u0
t mod c0t) (4)

Provisioning Amount Waste. Similar to PDW, Metering Amount Waste
(PAW) (Eq. 5) describes the difference between provisioned and metered con-
sumed amount of a capacity type.

PAW (t) = c1t − (u1
t mod c1t) (5)

5 Cost-Tracing System

In this section, we present Costradamus, our end-to-end cost-tracing system for
software services. In analogy to performance-tracing [15], we define cost-tracing
as the activity of collecting detailed cost information of causally-related events
in a distributed service-oriented system.

An application consists of multiple services that expose operations through
an API. A tracing system collects data that relates to operation calls, including
all downstream service invocations. In the next section, we identify design goals
for a cost-tracing system.

5.1 Design Goals

Costradamus enables users to retrieve performance and cost information. In more
detail, we propose and motivate the following design goals for our cost-tracing
system.

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 663

(D1) Per-request tracing. The tracing system should provide fine-granular
cost information for individual API operations, such as a single HTTP
request.

(D2) Cost composition. Operations might invoke complex compositions of
services with heterogeneous pricing models. A cost trace should cover the
entire service composition and provide measurements in a normalized cost
metric.

(D3) Non-intrusiveness. Making an application traceable should not have
negative side-effects on other non-functional properties, such as availabil-
ity, reliability, performance, and security.

Our first design goal (D1) is motivated by agile software development
methodologies and DevOps best practices which advocate short and continu-
ous cycles in which small software changes are pushed from development to
production. With per-request cost traces, small software changes can be evalu-
ated in isolation. Thereby, a developer can inspect performance and cost of a
new feature or compare the performance and cost change that accompanies a
feature change.

Non-trivial applications consist of many services with heterogeneous pricing
models which can be invoked through non-deterministic events, motivating our
second design goal (D2). Each trace should contain performance and cost infor-
mation that allow users to drill down into the cost of all service invocations that
are causally related to an API operation.

Our third design goal (D3) relates to general design goals of low performance
overhead and application-level transparency [18]. Trace records can either be
explicitly or implicitly related to a specific request. An explicit approach adds a
reference to a specific entry event, e.g., the entry event id, to each trace record at
runtime. An implicit approach assigns trace records to an operation offline and
based on statistical correlation. The explicit approach simplifies (D2), however,
applications must be instrumented to obtain a trace id reference, with potential
negative effects on (D3). We favor (D2) over (D3) and use instrumentation points
that can be disabled for production workloads.

5.2 Capacity Usage Tracing Approaches

Costradamus supports three tracing approaches for collecting capacity usage
data (T1–T3). We discuss each tracing approach in the context of an example
application as illustrated in Fig. 3. The example shows a software service that
is composed of four infrastructure services: two function services, a messaging
service and a database service. Each function service integrates an instrumenta-
tion point for capturing performance and cost data of each infrastructure service
invocation. Part of the tracing system is a trace record store (which is a special-
ized Message Store [8]) that persistently stores trace records for later analysis.
Whenever an infrastructure service is invoked, an instrumentation point pro-
duces a trace record and sends it to the trace record store. In the following, we
describe three tracing approaches that take into consideration different types of
infrastructure services.

664 J. Kuhlenkamp and M. Klems

Infrastructure Service Composition

Function
Service F1

Msg.
Instr.-P.

Trace Record
Store

Messaging
Service

Software
Service

model
params capacity

usage

Database
Service

Function
Service F2

DB
Instr.-P.

Log data
importerLog

store

function
trace

record

Log
Record

T1

T3

T2

Legend

System part related to tracing approach

Tracing system component (e.g., instr. points)

F1
Instr.-P.

request
id

Trace record

Fig. 3. Example setup of Costradamus showing tracing approaches T1–T3.

T1: Log Import. Tracing approach T1 constructs a capacity usage trace record
from data in a (distributed) log store by sending a reference to a log entry to
the trace store and later use the reference to query the log store. The example in
Fig. 3 shows a function service F1 that writes logs to a log store. A log contains
capacity usage and performance information, such as the start and end time
of the function invocation, used memory, and billed duration. The log entry
for each request in the log store can be identified by a unique request id. The
instrumentation point of F1 extracts the request id from the function invocation
context and adds it to the meta-data of F1’s trace record. Thereby, a log data
importer can be used for augmenting function service trace records during the
trace collection phase. First, the trace record for F1 is retrieved and the request
id is extracted from the trace record. Then, the log store is queried using the
request id, and capacity usage information, such as memory and billed duration,
are retrieved.

T2: Response Recording. Tracing approach T2 requires capacity usage infor-
mation from a service invocation response message to construct a trace record.
In the example shown in Fig. 3, function service F2 invokes another infrastruc-
ture service via a remote procedure call or API request. In the example, F2
invokes a database service. Approach T2 relies on information delivered in the
response message of the invoked infrastructure service. For example, the data-
base service AWS DynamoDB returns capacity usage information in provider-
and service-specific capacity units. The capacity usage information is extracted
from the response and added as meta-data to the trace record that is associated
with the database service invocation. For simplifying Fig. 3, we do not show the

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 665

instrumentation point for tracing function service invoications of F2, which is
performed as shown for F1 using the tracing approach T1.

T3: Modeling. Tracing approach T3 creates trace records at runtime with
estimated capacity usage values that are modeled by Costradamus based on
runtime measurements. This approach can be used if T1 is infeasible because
there are no logs or if T2 is infeasible because the service does not send usage
data in a response message. Similar to T2, T3 augments a trace record with
meta-data. However, instead of capacity usage data from the service response,
the trace record meta-data contains service request parameters that can be used
for offline capacity usage estimation.

5.3 Prototype

We have implemented Costradamus, a cost-tracing system for AWS cloud
infrastructure with Node.js based Lambda functions. The project is available as
open source software [1]. For using Costradamus, instrumentation points must
be added to the Lambda functions of the software service that should be traced.
Furthermore, Amazon’s distributed tracing service X-Ray must be activated for
these Lambda functions.

Instrumentation Points. Costradamus uses special-purpose instrumentation
points to add capacity consumption meta-data to trace records in X-Ray. For
adding these instrumentation points, the developer needs to add the costradamus
software library as a dependency to the Lambda function source code.

During the execution of a Lambda function and invocation of downstream
Lambda, DynamoDB, and Kinesis services from within the function’s business
logic, we need to capture capacity consumption information that is not included
in the plain X-Ray trace records. This is realized by adding a Costradamus
subsegment to each parent segment (Lambda, DynamoDB, or Kinesis service
invocation). Each Costradamus subsegment contains meta-data that is needed
according to the respective tracing approach (T1, T2, or T3).

The instrumentation points require between 1–3 additional lines of code
in the Lambda function source code, for each downstream service invocation,
and 2 lines for making the Lambda function itself cost-traceable. The code for
implementing an instrumentation point is between ca. 10–60 lines of code and
should not be much larger for other infrastructure services, besides Lambda,
DynamoDB, and Kinesis.

Cost-Tracing Process. After a client invokes a Lambda function that is acti-
vated for tracing with X-Ray, the client receives the trace id in the HTTP
response header. This trace id is used in a next step to retrieve the corresponding
trace record, consisting of segments and subsegments with performance data and
some meta-data, from X-Ray (our trace record store). As described in the pre-
vious section, for tracing approach T1, in addition to the trace records stored in
X-Ray, we retrieve Lambda function logs from CloudWatch. Each Lambda func-
tion segment contains a Costradamus meta-data field with the Lambda request

666 J. Kuhlenkamp and M. Klems

id which we extract and use to query the CloudWatch logs within a specific time
window, between the start and end times of the Lambda function invocation.
Since the logs in CloudWatch materialize with a longer delay than the X-Ray
trace records, according to our observations, this operation might need to be
repeated several times. The other trace records of DynamoDB and Kinesis invo-
cations already contain all required capacity usage information as Costradamus
meta-data.

In the next step, the X-Ray traces are augmented with cost meta-data which
is generated on the client by using capacity meta-data as input for the cost mod-
eler. In a further step, the Costradamus consumption subsegments are removed
(pruned) from the trace record as they are not needed any more. Each of the
three processing steps results in a new file that contains the trace record, so
that, after processing, one trace record maps to three trace record files: plain,
augmented, and pruned. We use a batch script to process multiple traces with a
single command. The pruned files from the last processing step are used as input
by a helper tool that creates a CSV file for performance and cost data analysis.

6 Evaluation

We investigate performance/cost tradeoffs of the SGMApp in four experiments.

6.1 Experiment Setup

Implementation. We implement the SGMApp (Sect. 3) with AWS. We use
DynamoDB tables for the values and predictions services and Kinesis streams
for the notifications service. All other downstream services are implemented
as AWS Lambda functions. Operations are published via the Amazon API Gate-
way service. Invocations of service functions for the IngestValue operation are
event-based, other invocations are request-response-based. All service functions
parallelize invocations of tables and streams. We use a 10 s timeout for all service
functions, and exponential backoff as retry strategy.

Workload and Measurements. For each experiment, we run a Load phase
followed by a Run phase. The Load phase writes 600 historical values per
meter to the ValuesTable. The Run phase issues 100 requests to each of the
four API operations with a 1 s wait time between subsequent requests. For
brevity, we refer to the operations by O1 (IngestValue), O2 (ReadValues),
O3 (ReadPredictions), and O4 (ReadNotifications).

Metrics. For each request, we record a trace with segments and subsegments.
Figure 4 shows an excerpt of a trace for the IngestValue operation. We mea-
sure all metrics presented in Sect. 4. In addition, we measure request-execution
latency (REL) and invocation-execution latency (IEL) for each invocation of
a downstream service. A relation exists between REL and IEL. For a single
request, the REL is equal or larger than the sum of all corresponding IELs. We
plot traces sorted by MC in ascending order.

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 667

3.0s 6.0s 9.0s 12.0s

A ingestValueFunction (5001 n$)

A.1 Initialization

A.2 Invoke persistValueFunction

A.3 Invoke predictValueFunction

B persistValueFunction

B.1 Dwell Time

B.2 Attempt #1

C predictValueFunction

C.1 Dwell Time

C.2 Attempt #1

D persistValueFunction (1667 n$)

D.1 DynamoDB PutItem: ValuesTable

E predictValueFunction (8335 n$)

E.1 DynamoDB Query: ValuesTable (18 n$)

E.2 DynamoDB PutItem: PredictionsTable (181 n$)

E.3 Kinesis PutRecord (118 n$)

Fig. 4. Excerpt of an ingestValue operation trace with trace segments (for readability
named A–E) and subsegments (A.1, A.2, etc.).

Case Study and Experiment Setups. We conduct experiments with four dif-
ferent experiment setups E1–E4 (see Table 1) to quantify performance and costs
per API request. E1 serves as a baseline scenario. We compare the other experi-
ments with E1 to investigate the impact of changes to the provisioned infrastruc-
ture (E2), business logic (E3), and target data center (E4). Precisely, we use three
parameters: provisioned lambda memory in MB [128, 1024], the number of his-
torical meter values and prediction horizon used by the predictValues function
[3, 60] and the AWS region [us-east-1, eu-west-1].

6.2 Results and Discussion

E1. Figure 5 illustrates the results for E1. For O2, most traces are subject to a
constant cost of 1.8 µ$, this is due to a IEL < 100 ms for readValues and a con-
stant number of meter values that are queried from values. The measurements
show increased costs for trace ids >#87 due to an increased 100 < IEL < 400 ms
of readValues resulting in a stepwise increase of MRC up to 6.8 µ$. However,
the increased IEL should result in a steeper cost increase. Detailed analysis of

Table 1. Summary of parameters for experiment setups E1–E4.

Experiment Region Memory [MB] Interval [s] Scenario

E1 us-east-1 1024 3 Baseline

E2 us-east-1 128 3 Infrastructure sizing

E3 us-east-1 1024 60 Business logic refinement

E4 eu-west-1 1024 3 Multi-region role-out

668 J. Kuhlenkamp and M. Klems

0 2 4 6 8 10 12 14
0

5

10

15

20

REL [s]

M
R

C
 [

µ
$]

28 Traces

25 Traces

16 Traces

14 Traces

(a) O1 (ingestValues)

0 1 2 3 4
0

1

2

3

4

5

6

7

REL [s]

M
R

C
 [

µ
$]

87 Traces

(b) O2 (readValues)

Fig. 5. Cost and performance comparison of O1 and O2 for E1 (Baseline).

the corresponding traces reveals that this behavior is caused by failed executions
of readValues that are not charged by the cloud provider but increase REL.
For O1, we observe a higher variation of costs compared to O2. This behavior is
caused by a variable runtime of service functions and variable size of data that
is queried from values and written to notifications.

For O1 and O2, around 10% of the traces show a REL > 600 ms and, there-
fore, can be considered performance outliers. However, compared to O2, we
observe that O1 performance outliers show an up to three times higher REL.
Detailed analysis shows that the increased REL is caused by failed executions
of multiple service functions for the same request. Furthermore, all performance
outliers are scheduled in the beginning of a workload. A consistent explanation
is a startup time for new containers that back a service function [7].

E2. In comparison to E1, E2 provisions only 128MB memory for containers
that back service functions. Therefore, we expect REL to increase and MRC to
decrease. We exclude performance outliers and summarize our results in Table 2.
For O1, we observe a 200% increase in 95th-percentile REL and a 58% decrease in
median MRC. Thus, the results indicate that the REL is bound to the IEL of the
three service functions and, therefore, reducing provisioned memory results in a
significantly lower performance. For O3, results indicate that REL is not bound
to the readPredictions and reduced memory does not result in lower perfor-
mance. Therefore, our experiment suggests that informed decisions on infrastruc-
ture sizing can help to identify new deployments that are strictly dominating in
terms of performance and deployment costs.

E3. For E3, we change the implementation of predictValues. Precisely, the
data resolution for the prediction is increased from 3 to 60 m values. Therefore,
we expect additional (i) reads on values and (ii) writes on predictions and
notifications. Figure 6 compares results for O1. We observe an unexpected

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 669

0 2 4 6 8 10 12 14
0

5

10

15

20

REL [s]

M
R

C
 [

µ
$]

28 Traces

25 Traces

16 Traces

14 Traces

(a) E1 (Baseline)

0 50 100 150 200

0.1

0.2

0.3

0.4

0.5

0.6

REL [s]

M
R

C
 [

m
$]

55 Traces

3 Traces

16 Traces

20 Traces

(b) E3 (Business Logic Refinement)

Fig. 6. Cost and Performance Comparison of O1 (ingestValue) for E1 and E3.

significant increase in the 95th-percentile REL by ∼466 times and median MRC
by ∼7 times, respectively. We further investigate this behavior, and find that
invocations of predictValues’ require up to three attempts to succeed due to
a timeout of 10s. While failed attempts do not increase usage of Lambda, usage
increases for invocations of values, predictions and notifications during
failed attempts. Therefore, failed executions of service functions can significantly
increase MRC. We refer to this effect as retry cost effect. Besides the retry
cost effect, we observe that predictValues’ issues more invocations of values
and predictions. Therefore, predictValues’ results in increases consumption
of other downstream services. We refer to this effect as ripple cost effect. One
implication of the ripple cost effect is that cost testing in an iterative development
process should not only rely on isolated tests of single downstream services but
also incorporate end-to-end cost testing.

E4. We compare the us-east-1 and eu-west-1 regions. Increased prices apply
to the eu-west-1 region for DynamoDB and Kinesis. Thus, we expect an increase
MRC under similar REL in comparison to E1. Counterintuitively, we observe
lower MRC and REL for the eu-west-1 region (Table 2). Higher region prices
are accompanied by better performance. Therefore, shorter runtimes and lower
usage of service functions compensate for higher region prices. One implication of
our findings is that cost calculations should not exclusively be based on analytical
models but include real measurements.

Design Goals. Costradamus enables us to perform fine-granular per-request
tracing (D1), as demonstrated with the experiment results above. We can also
measure the cost of complex service compositions (D2), however, each down-
stream service must be instrumented, requiring the implementation of service-
specific instrumentation points. The third design goal of non-intrusiveness (D3) is
less prioritized and therefore also not evaluated comprehensively, as we propose

670 J. Kuhlenkamp and M. Klems

Table 2. Comparison of experiment setups E1/E2 and E1/E4.

Experiment Metric O1 O2 O3 O4

E1 95th-prec REL [ms] 452 84 231 303

Median MC [n$] 8063 1775 1685 5103

E2 95th-prec REL [ms] 1358 424 157 589

Median MC [n$] 3384 732 226 936

Δ E2, E1 95th-prec REL [ms] +906(200%) +340(403%) −74(32%) +285(94%)

Median MC [n$] −4679(58%) −1043(59%) −1459(87%) −4167(82%)

E4 95th-prec REL [ms] 250 101 78 271

Median MC [n$] 6242 1790 1687 5110

Δ E4, E1 95th-prec REL [ms] −202(45%) +17(21%) −153(66%) −33(11%)

Median MC [n$] −1821(23%) +15(1%) 2(0%) 7(0%)

to apply our tracing approach only during development and disable it during
production. However, we observed low performance overhead when comparing
client-side latency of requests with tracing toggled on/off. This can be explained
by the fact that the Costradamus prototype builds on AWS X-Ray which runs
as a separate daemon that sends data batches over UDP. A more comprehen-
sive evaluation, in particular of security and availability implications, would be
needed to use Costradamus in a production environment, and is a task for future
work.

7 Related Work

A large number of tracing frameworks exist to model performance of distrib-
uted, server-based applications [3,5,11,18]. We extend this work by providing a
cost-tracing system that addresses two unique challenges. First, tracing of con-
sumptions for heterogeneous infrastructure services and capacity types. Second,
tracing under highly restricted options to add instrumentation points due to the
high abstraction of serverless infrastructure.

Per-request cost is determined by consumed resources in downstream ser-
vices. Therefore, our work is related to existing research in the area of cloud
resource management [9] from the perspective of a cloud user with a focus
on application resource demand profiling and application pricing [16]. Exist-
ing approaches for resource demand profiling model resource consumption for
a given workload to model performance [2,6,12,20], cost [19] or energy con-
sumption [10] as a function of resource consumption. The work by [4] evaluates
the tradeoff between profit and customer satisfaction for a traditional virtual
machine based infrastructure setup in a compute cloud. In contrast, we do not
assume traditional infrastructure services, e.g., virtual machines, but serverless
infrastructure services that expose resources on a higher abstraction level, e.g.,
function, messaging, and database services.

Costradamus: A Cost-Tracing System for Cloud-Based Software Services 671

Leitner et al. [13] provide closely related work by modeling overall costs of
microservice-based cloud applications. In contrast, our work models marginal
per-request costs and provides a cost-tracing system. Thereby, we can iden-
tify and study performance and cost effects in isolation and greater detail than
related experiments on serverless microservice-based applications [7,21].

8 Conclusions

We present Costradamus, a cost-tracing system that enables per-request cost-
tracing for cloud-based software services. Costradamus includes a generic cost
model and three tracing approaches: log import, response recording, and model-
based tracing. We use Costradamus to investigate performance and deployment
cost tradeoffs in a smart grid application context. In our experiments, we observe
unexpected effects. First, the retry cost effect: In the case of function service
invocations that call downstream services, failed attempts to invoke the upstream
function, e.g., due to a timeout, can lead to increased cost, even if the failed
upstream function invocation itself is not charged. Second, the cost ripple effect:
more invocations of an upstream function service can lead to a multiplication of
downstream service invocations. These effects illustrate that cost testing should
not only rely on isolated tests of single services but consider comprehensive end-
to-end cost traces.

Acknowledgement. The work in this paper was performed in the context of the
PolyEnergyNet project and partially funded by the Germany Federal Ministry for Eco-
nomic Affairs and Energy (BMWi) under grant no.“0325737C”. The authors assume
responsibility for the content.

References

1. Costradamus. https://github.com/markusklems/costradamus. Accessed 15 Jun
2017

2. Björkqvist, M.: Resource management of replicated service systems provisioned in
the cloud. Ph.D. thesis, Universita della Svizzera Italiana (2015)

3. Braun, B., Qin, H.: ddtrace: Rich performance monitoring in distributed systems.
Technical report, Stanford University (2015)

4. Chen, J., Wang, C., Zhou, B.B., Sun, L., Lee, Y.C., Zomaya, A.Y.: Tradeoffs
between profit and customer satisfaction for service provisioning in the cloud. In:
Proceedings of the 20th International Symposium on High Performance Distrib-
uted Computing, pp. 229–238. ACM (2011)

5. Chen, M., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.: Pinpoint: problem determi-
nation in large, dynamic Internet services. In: Proceedings of International Confer-
ence on Dependable Systems and Networks, pp. 595–604. IEEE Computer Society
(2002)

6. Gandhi, A., Harchol-Balter, M., Raghunathan, R., Kozuch, M.A.: AutoScale:
dynamic, robust capacity management for multi-tier data centers. ACM Trans.
Comput. Syst. 30(4), 1–26 (2012)

https://github.com/markusklems/costradamus

672 J. Kuhlenkamp and M. Klems

7. Hendrickson, S., Sturdevant, S., Harter, T., Venkataramani, V., Arpaci-dusseau,
A.C., Arpaci-dusseau, R.H.: Serverless computation with OpenLambda. In:
USENIX Workshop on Hot Topics in Cloud Computing (2016)

8. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Longman Publishing Co. Inc.,
Boston (2004)

9. Jennings, B., Stadler, R.: Resource management in clouds: survey and research
challenges. J. Netw. Syst. Manag. 23(3), 567–619 (2015)

10. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.A.: Virtual machine
power metering and provisioning. In Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC 2010, p. 39. ACM Press, New York (2010)

11. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: MAGPIE.
In: ACM SIGPLAN Notices, number 8, pp. 131–140. ACM, August 1999

12. Kuhlenkamp, J., Rudolph, K., Bermbach, D.: AISLE: assessment of provisioned
service levels in public IaaS-based database systems. In: Barros, A., Grigori, D.,
Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 154–168.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48616-0 10

13. Leitner, P., Cito, J., Stöckli, E.: Modelling and managing deployment costs of
microservice-based cloud applications. In: Proceedings of of the 9th International
Conference on Utility and Cloud Computing, pp. 165–174. ACM Press, New York
(2016)

14. Roberts, M.: Serverless Architectures (2016)
15. Sambasivan, R.R., Fonseca, R., Shafer, I., Ganger, G.R.: So, you want to trace your

distributed system? Key design insights from years of practical experience. Techni-
cal report, Parallel Data Laboratory, Carnegie Mellon University, Pittsburgh, PA
15213–3890 (2014)

16. Sharma, B., Thulasiram, R.K., Thulasiraman, P., Garg, S.K., Buyya, R.: Com-
modities, pricing cloud compute: a novel financial economic model. In: 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID 2012), pp. 451–457. IEEE, May 2012

17. Sigelman, B.H., Andr, L., Burrows, M., Stephenson, P., Plakal, M., Beaver, D.,
Jaspan, S., Shanbhag, C.: Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Google Research, 14 April 2010

18. Sigelman, B.H., Barroso, L.A., Burrows, M., Stephenson, P., Plakal, M., Beaver,
D., Jaspan, S., Shanbhag, C.: Dapper, a large-scale distributed systems tracing
infrastructure. Technical report, Google (2010)

19. Smith, J.W., Khajeh-Hosseini, A., Ward, J.S., Sommerville, I.: CloudMonitor: pro-
filing power usage. In: 2012 IEEE Fifth International Conference on Cloud Com-
puting, pp. 947–948. IEEE, June 2012

20. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P., Wood, T.: Agile dynamic pro-
visioning of multi-tier Internet applications. ACM Trans. Autonom. Adapt. Syst.
3(1), 1–39 (2008)

21. Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca, L., et al.: Infrastruc-
ture cost comparison of running web applications in the cloud using AWS lambda
and monolithic and microservice architectures. In: 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 179–182. IEEE (2016)

http://dx.doi.org/10.1007/978-3-662-48616-0_10

An Automatic Approach for Transforming IoT
Applications to RESTful Services on the Cloud

Yu Zhao1(B), Ying Zou1, Joanna Ng2, and Daniel Alencar da Costa1

1 Queen’s University, Kingston, Canada
{yu.zhao,ying.zou,daniel.alencar}@queensu.ca

2 CAS Research, IBM Canada Software Laboratory, Markham, Canada
jwng@ca.ibm.com

Abstract. Internet of Things (IoT) devices are prevalent in all aspects
of our lives, e.g., thermostat and smart lights. Nowadays, IoT devices are
controlled by various end-user applications. There is a lack of a standard
interface that allows the communication among various IoT devices. In
this context, the functionalities of IoT devices may be published as IoT
services. IoT services are RESTful services that connect to IoT devices.
The uniform interface of IoT services allows them to be integrated with
existing applications. We propose an approach that automatically trans-
forms functionalities of IoT devices to IoT services hosted on the cloud.
Our approach identifies the code methods from IoT applications that
have to be transformed and also extracts service specifications (e.g.,
input/output parameters) from these methods. Our case study result
shows that our approach obtains a precision and a recall above 70%.
The identified methods and service specifications are converted to IoT
services. Our approach generates IoT services with an accuracy of 96%.

Keywords: IoT · RESTful services · Cloud platform · Code analysis

1 Introduction

The inter-connected physical devices, i.e., the Internet of Things (IoT) devices,
are prevalent in several aspects of our lives. For example, IoT devices may sense
nearby environments (e.g., obtain the temperature) and react upon an end-
user’s request to change the physical environment (e.g., turn on the light). IoT
applications are designed by application developers to provide functionalities
in IoT devices, e.g., to sense the temperature. In the meanwhile, the Internet
has turned into a global infrastructure to host heterogeneous web services. End-
users may use web services to perform various on-line activities, such as on-
line shopping and banking. With web services and IoT devices combined, the
possibilities to ease our daily lives increase in magnitude. For instance, an on-line
grocery order can be made based on a food consumption alert that is triggered
by analyzing the data read from a fridge sensor. However, this combination is
not without its limitations. For example, end-users must install a large number

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 673–689, 2017.
https://doi.org/10.1007/978-3-319-69035-3_49

674 Y. Zhao et al.

of proprietary end-user applications (e.g., mobile applications) on smart phones
or computers to access the information of IoT applications in IoT devices. In
addition, the diverse end-user applications lack a standard interface to allow the
communication among various IoT devices and web services. Therefore, it is not
trivial to integrate IoT devices with existing applications [15].

To ease the integration of IoT applications, we are interested in transforming
IoT applications to IoT services, using the service-oriented architecture (SOA)
to provide the functionalities offered by IoT devices. In particular, SOA based
IoT services have two main advantages: (1) interoperability, which allows IoT
services to exchange information with web services using a structured data for-
mat; (2) easy integration with existing applications due to the uniform interface
of IoT services. Research effort has been invested on approaches to provide IoT
services for end-users [4,9,15]. Nonetheless, most of these approaches run the IoT
services on the IoT devices [4,9,15], which are not optimal, since IoT devices are
typically designed with limited resources, e.g., low battery capacity and process-
ing power [15]. In addition, the complexity of SOA standards (e.g., the verbose
data format) generates energy and latency overheads in IoT devices that lead
developers to spend extra effort when designing IoT services.

To overcome these practical limitations, we focus on automatically transform-
ing the functionalities of IoT devices to IoT services. IoT services are designed
using the RESTful paradigm. We use the cloud platform to host IoT services.
In contrast to the resource limited IoT devices, the cloud platform has mas-
sive storage, high speed network and huge computing power. Furthermore, the
cloud platform has the potential to host numerous IoT services and connect IoT
devices as well as processing IoT data [16]. Additionally, the functionalities of
IoT devices may be managed by standard APIs over the cloud, which may be
accessed by end-users from any place.

More specifically, we analyze the source code of IoT applications to identify
methods that can be controlled or accessed by end-users. Our approach further
extracts the service specifications of the corresponding IoT services. A service
specification describes the interface of an IoT service and is composed of three
parts: service name, HTTP function and input (or output) parameters. To allow
developers to modify the generated service specifications, we also propose a ser-
vice schema that describes the service specifications of IoT services. The service
schema identifies which data of IoT devices that should be stored in the cloud.
Moreover, we use the service schema to instantiate IoT services with friendly
user interfaces.

We evaluate the effectiveness of our approach through two case studies. Our
results reveal that we can identify code methods that should be transformed with
a precision of 75% and a recall of 72%. We can also extract service specifications
from the source code of IoT applications with a precision of 82% and a recall
of 81%. Our approach generates IoT services from IoT applications with an
accuracy of 96%. These results show that our approach can accurately transform
IoT device functionalities to IoT services.

An Automatic Approach for Migrating IoT Applications 675

Paper Organization. In Sect. 2, we present the background of the paper. In
Sect. 3, we give an overview of our approach to generate IoT services. In Sect. 4,
we describe our case studies. We summarize the related research in Sect. 5.
Finally, we conclude our work in Sect. 6.

2 Background

In this section, we provide background material about IoT devices, web ser-
vices, the programming structure of the source code of IoT applications and IoT
services.

2.1 IoT Devices

An IoT device is a physical item that is embedded with a computing system and
can be controlled remotely through Bluetooth or Wi-Fi. In our approach, we con-
sider three classes of IoT devices: sensors, actuators and composite devices [11].
A sensor can measure the physical properties of a physical environment at a
constant frequency, while an actuator is an IoT device that is controlled by end-
users who may change some of its physical properties. For example, a sensor can
sense the temperature, while an actuator can receive a command to turn on the
light. Finally, a composite device is composed of both sensors and actuators. For
example, a thermostat is an IoT device which senses the temperature and may
be requested to change the temperature.

2.2 Web Services

A web service is a software component that allows machine-to-machine commu-
nication through the world wide web. This communication may be implemented
using the Representational State Transfer (REST) [17] architecture style. REST-
ful services typically use HTTP as the underlying protocol to transfer resources.
A resource is located by a Universal Resource Locator (URL). Resources may
have various representations, e.g., JSON and XML. To use the resources that
are available in the web, clients (i.e., applications) send requests using HTTP
functions. The available HTTP functions are GET, POST, PUT and DELETE.
The GET function requests a read only access to a resource, while the POST
function is used to create a new resource. The PUT function is used to update
an existing resource, while the DELETE function is used to remove a resource.

2.3 Programming Structure of the Source Code of IoT Applications

The methods in the source code of IoT applications can be classified into two
types: internal methods and external methods. An internal method is related
to the set up of an IoT device and is only consumed by methods within the
IoT device (e.g., an init method to set up an IoT device). An external method
works as an IoT device interface that can communicate with the cloud. The

676 Y. Zhao et al.

input variables of an external method may represent the input commands of an
actuator (e.g., to turn on the light), while the returned variables may represent
the sensed data of a sensor (e.g., the sensed temperature). Since an external
method allows end-users to control an IoT device or obtain information from an
IoT device, it is possible to transform such a method to an IoT service.

def led_control(status):

if status == "ON":

turn_led_on ()

elif status == "OFF":

turn_led_off ()

(a) External method 1

def getTemperature ():

temp ← methods to get

temperature

return temp

(b) External method 2

Fig. 1. Examples of external methods

Figure 1 shows examples of external methods that are extracted from the
hackster.io website.1 Hackster.io is a website that shares projects on embed-
ded devices (e.g., Raspberry Pi). In Fig. 1, the names of the methods describe
the methods’ intent (i.e., led control and getTemperature). The led control
method2 (Fig. 1a) can receive commands from the cloud (i.e., by using the
status variable). This method uses an if-else statement to identify whether
the led has to be turned on or off depending on the status variable. The
getTemperature method3 (Fig. 1b) retrieves the temperature from a sensor.
A developer can define methods within the external method to send the sensed
temperature values to the cloud, e.g., send(temperature, url). Table 1 shows
the service specification that may be extracted from the two example methods.

Table 1. Service specification that is extracted from the external methods in Fig. 1

Method name Service name HTTP
function

Input
parameters

Output
parameters

led control led control POST status

getTemperature getTemperature GET temp

2.4 IoT Services

An IoT device may have multiple functionalities. For instance, an indoor sensor
may sense both temperature and humidity. A functionality may be implemented
1 https://www.hackster.io/.
2 https://www.hackster.io/user3424878278/pool-fill-control-119ab7.
3 https://www.hackster.io/dexterindustries/add-a-15-display-to-the-raspberry-
pi-b8b501.

https://www.hackster.io/
https://www.hackster.io/user3424878278/pool-fill-control-119ab7
https://www.hackster.io/dexterindustries/add-a-15-display-to-the-raspberry-pi-b8b501
https://www.hackster.io/dexterindustries/add-a-15-display-to-the-raspberry-pi-b8b501

An Automatic Approach for Migrating IoT Applications 677

by one or more external methods. In our approach, each functionality of an IoT
device is transformed to an IoT service, which is hosted on the cloud platform.
The cloud platform may use various networking protocols to exchange data with
IoT devices, such as MQTT [12]. MQTT is a lightweight publish-subscribe mes-
saging protocol designed for exchanging real-time IoT data.

3 Overview of Our Approach

In this section, we present our approach to automatically generate IoT services
from IoT applications. Figure 2 shows an overview of our approach. Our approach
has four activities. Each activity is explained in a subsection below.

IoT Source Code Identify External
Methods

Extract Service
Specifications

External
Methods

Represent External
Methods in a

Service Schema

Code and Form
Templates

Transform
External Methods

to IoT Services

IoT Services

Service
Specifications

Service Schema

Fig. 2. An overview of our approach

3.1 Identifying External Methods

To save developers’ effort on manually finding code methods that should be
transformed, we analyze the source code of IoT applications written in Python to
investigate whether external methods can be automatically identified. We choose
the Python language, since it is suitable for developing IoT applications due to
its portability and easy-to-learn syntax [21]. Although our approach is language-
independent, we use Python examples to explain our approach implementation.
We explain the steps that are involved in this code analysis below.

STEP 1: Parsing Source Code of Methods. To identify external methods,
we first analyze the Abstract Syntax Tree (AST) of the source code. An AST
is a tree structure that represents the syntax of the source code. Each node in
the tree describes a construct (e.g., method name) that is present in the source
code. We traverse the tree to identify the following constructs in a method:

– method name, e.g., getTemperature shown in Fig. 1b.
– input variables, e.g., status shown in Fig. 1a.
– returned variables, e.g., temp shown in Fig. 1b.
– method calls in a method body, e.g., turn led on() shown in Fig. 1a.
– if-else statements, e.g., if status == "ON" shown in Fig. 1a.

678 Y. Zhao et al.

STEP 2: Filtering Internal Methods. An internal method can be identified
based on its extracted constructs. Methods with the following internal features
(IF) are considered as internal methods. Internal methods are filtered out and
are not investigated further.

– IF1: method name containing the keywords “init, setup, debug, test”. Method
names containing the keywords “init” and “setup” are initialization methods
and are used to configure the initial settings, e.g., setting the voltage level of
GPIO pins. Method names containing the keywords “debug” and “test” are
testing methods, which are used to test the different functionalities of an IoT
device. Such testing methods are internal methods in an IoT device.

– IF2: method name starting with “ ”. The leading underscore in a method
name denotes that the method is for internal use or reserved for the program-
ming language (e.g., an init method) [1].

– IF3: methods that are called within internal methods or defined in internal
files. File names containing the keywords “init, setup, debug, test” or starting
with “ ” are internal files. Methods that are called within internal methods or
defined in internal files are used for initialization and testing.

STEP 3: Processing Method Names. A method name may convey the
intent of the method, which can be used to distinguish external methods from
internal methods. To identify the semantics of method names, we use the follow-
ing steps to normalize these names. We split CamelCase words (e.g., getTem-
perature is split into get and temperature). We remove the punctuation, e.g., “ ”
and “-”. We also remove the suffixes that contain numbers (e.g., led1 is nor-
malized into led). Finally, we remove stop words (e.g., “a”, “the” and “is”). We
use natural language processing (NLP) techniques to identify the part-of-speech
(POS) tag of each word. For example, “get” is tagged as a verb and “tempera-
ture” is tagged as a noun. Finally, we perform word stemming to find the root
words (e.g., “reduced”, “reducing” and “reduces” are normalized to “reduce”).
These words are used to extract features for identifying external methods.

STEP 4: Extracting Features for External Methods. We extract the
following external features (EF) based on the constructs of the methods that are
identified in STEP 1.

– EF1: method calls. If the methods that are called within a method body
contain send related keywords in their names, i.e., “push, post, publish, send,
notify”, these methods likely send data to the cloud, e.g., send(temperature,
url) and are considered as external methods.

– EF2: if-else statements. In case a method contains if-else statements that
react to the input variables of the method when receiving commands from the
cloud, such a method has a high probability of being an external method. For
example, the led control method in Fig. 1a contains if-else statements that
react to changes in the status variable.

An Automatic Approach for Migrating IoT Applications 679

– EF3: semantic of verbs. Verbs in method names may represent the action
that is performed in a method. For instance, control and get are the verbs
in the examples of Fig. 1. We identify the semantic of verbs to infer external
methods. For example, if a verb has keywords that are related to sending
and receiving messages (i.e., “push, post, publish, send, notify, subscribe, get,
sense, set, receive, control”), we infer that its respective method transmits
data to the cloud. These methods are likely external methods.

– EF4: semantic of nouns. Nouns in method names denote the objects of inter-
est of these methods, e.g., led and temperature are nouns in the examples of
Fig. 1. If these nouns match with IoT service names, their respective method
is likely an external method. We identify IoT services by using the iotlist.co4

website. This website lists various IoT devices, e.g., security cameras and smart
lights. For an IoT device, we manually extract their functionalities, each one
corresponding to an IoT service name. For example, the Elgato Eve Room
Wireless Indoor Sensor5 will have the sense air quality, sense temperature
and sense humidity IoT service names. In total, we extracted 190 IoT service
names. Next, we use the approach described in STEP 3 to extract nouns from
the extracted IoT service names. We form a bag of words containing the nouns
and match them with the nouns that we find in method names (see STEP 3).
For instance, the Wireless Indoor Sensor has a bag containing the air, quality,
temperature and humidity words that we match with the temperature word in
the getTemperature method (see Fig. 1b).

In our approach, we assume that a method is an external method if it has at
least two of the features that we identify in STEP 4. For example, the method
in Fig. 1a is an external method, since it has the if-else statements (i.e., EF2)
and semantic of nouns (i.e., EF4) features.

3.2 Extracting Service Specifications

Based on the analyzed external methods, we extract the service specifications
for their respective IoT services (see Table 1), i.e., service name, HTTP function
and input (or output) parameters.

We use the method name as the service name. For instance, led control is
the service name for the method in Fig. 1a. Then, we use the external features
described in STEP 4 to distinguish HTTP GET and POST functions. Each
HTTP function is associated with two external features. Among these external
features, we split the semantic of verbs into semantic of send and semantic of
receive for GET and POST functions, respectively. We explain the details below.

– HTTP GET: is associated with the semantic of send and method calls fea-
tures. The semantic of send denotes that a verb in a method name contains
send related keywords, i.e., “push, post, publish, send, notify, get, sense”.
Such methods send data to the cloud, so that GET-based IoT services can
identify and retrieve this data.

4 http://iotlist.co/.
5 https://www.elgato.com/en/eve/eve-room.

http://iotlist.co/
https://www.elgato.com/en/eve/eve-room

680 Y. Zhao et al.

– HTTP POST: is associated with the semantic of receive and if-else statements
features. The semantic of receive denotes that a verb in a method name con-
tains receive related keywords, i.e., “set, receive, control, subscribe”. An IoT
device receives commands from POST-based IoT services.

To determine which HTTP function should be associated with an external
method, we count the number of features that belong to an external method. If
an external method has a given feature, that feature has a counter of 1 (one).
We derive a score for the HTTP GET function (i.e., Sget) using Eq. 1 and a
score for the HTTP POST function (i.e., Spost) using Eq. 2.

Sget = Csemantic of send + Cmethod calls (1)

Spost = Csemantic of receive + Cif−else statements (2)

where Csemantic of send, Cmethod calls, Csemantic of receive and Cif−else statements

denote the counters for the respective features.
We use the Sget and Spost scores to determine whether the HTTP function

should be GET or POST, i.e., whichever has the highest value. In case Sget is
equal to Spost, we calculate the fan-in and fan-out of an external method [22].
Fan-in represents the number of input variables of an external method, while
fan-out denotes the number of returned variables of an external method. When
a fan-in to fan-out ratio is larger than one, the POST function is chosen, since
such a ratio indicates that an external method is written to receive data (see
led control in Fig. 1a). The GET function is chosen otherwise.

Finally, the parameters of IoT services are extracted based on the identified
HTTP functions. For example, the returned variables of a GET-based exter-
nal method are extracted as the output parameters of the corresponding IoT
service. Comparatively, the input variables of a POST-based external method
are extracted as the input parameters of the corresponding IoT service. As an
example, the status variable of the POST-based led control method (shown
in Fig. 1a) is extracted as a service input parameter.

3.3 Representing External Methods in a Service Schema

To transform external methods to IoT services, we need a structured data format
that describes the extracted service specifications of IoT services. We design a
service schema using the Web Ontology Language (OWL) [2]. In the service
schema, the identified service name, HTTP function and parameters of a service
specification are prefilled. A developer may validate, modify and complete the
service schema. Figure 3 shows how we use OWL to define our service schema.

The service schema is composed of four main components: classes, individu-
als, relations and attributes. A class represents a group of objects with similar
properties. For example, an IoT device is a class. A relation is used to connect
the components of our service schema (e.g., an IoT service hasOperations). A
class can be inherited by sub-classes. For instance, a reading operation, which is
used to get the latest value of a sensor, is a sub-class of operation. An individual

An Automatic Approach for Migrating IoT Applications 681

hasOperations

IoT Device

Device Type
Device ID

IoT Service

Service Name
Service Description

Status

Response

Media type

Parameter

Parameter Value

Parameter Name

Parameter Type

Label
Default Value

CSS Style

Parameter Description

Required

Unit

Unit Value

CSS Style

Default Unit Value

FormattingProfile ContextSampling
Parameter

Reading

hasReqeuest

hasResponsehasServices

Request

HTTP Function
Media Type

Operation
hasUnit

Input Type

Input Type

hasParameters

Fig. 3. The service schema

is an instance of a class. Finally, attributes declare the properties of a class. For
instance, the IoT device class has the device type and device id attributes. The
device type groups a number of IoT devices that provide similar functionalities.
For example, temperature sensor may be a device type. The device id attribute
is unique for each IoT device and is used to distinguish one IoT device from
another. The MAC address of an IoT device can be used as a device id.

A functionality of an IoT device publishes a single stream of scalar values
(e.g., temperature values) to a channel on the cloud [4]. The stream of scalar
values is considered as a resource of an IoT service. This resource is stored in
a resource database on the cloud. An IoT service identifies its resources using
the service name, device type and device id attributes. An IoT service provides
multiple operations to perform different actions onto a resource. For instance, the
IoT service “sense temperature” can obtain the latest reading of the temperature
and modify the frequency at which the temperature should be sensed. We identify
six operations of IoT services based on the approach proposed by Haggerty et
al. [4], i.e., reading, profile, sampling parameter, formatting, status and context.
Each external method falls in one of the operations specified in Table 2. The
reading operation is used to get the latest value of a resource. This operation
listens to an IoT service’s resource until a new value of that resource is received.
Then, the listened value and a timestamp of the value update are returned to
end-users. The status operation returns the state of a given IoT service (e.g.,
whether it’s on or off). For actuators, an end-user may send a POST request to
the status operation, which changes the physical state of an IoT device (e.g., to
turn on the light). An operation is identified by the URL pattern (see Fig. 4).

IoT devices with the same device type value correspond to one unique service
schema that is used to describe their respective IoT services. We use the service
schema to instantiate IoT services as we describe in Sect. 3.4.

<Device Type>/<Device ID>/<Service Name>/<Operation Name>

Fig. 4. The URL schema for accessing an operation.

682 Y. Zhao et al.

Table 2. A summary of available operations for an IoT service

Operation
name

HTTP
function

Device class Description Example

Reading GET sensor the latest reading temperature

Profile GET sensor a number of recent
history readings

history temperature
readings

Sampling
Parameter

GET/POST sensor the sampling
frequency of sensing

100 Hz

Formatting GET/POST sensor the unit of the sensed
value

◦C, ◦F

Status GET/POST sensor/actuator the state of the IoT
service

turn light on/off

Context GET/POST sensor/actuator the location of the
measurement

the location that the
temperature is being
sensed

3.4 Transforming External Methods to IoT Services

In this section, we describe how our approach automatically transforms external
methods to IoT services.

STEP 1: Generating Web Forms. Since end-users may not be familiar with
SOA, it is important to provide friendly user interfaces for accessing and con-
trolling IoT services. In this regard, our approach automatically generates web
forms by using our proposed service schema and form templates. A template
uses the data of a service schema to generate text output, e.g., source code or
HTML forms. These generated forms are used to send POST requests to IoT
services.

We design our form templates using the FreeMarker template engine.6 The
essential components of a web form are the HTTP function, the operation URL
and the parameters to be filled by end-users. We traverse the parameters in our
service schema to identify which ones have an input type attribute. The input
type attribute can assume one of the HTML input elements, i.e., text, radio and
select. The parameter value attribute (see Fig. 3) defines the available options
of a parameter, which end-users can choose, e.g., ON or OFF. A developer may
define a CSS style for an input parameter using the CSS style attribute. Figure 5
shows an HTML form example for controlling a led. Once an end-user clicks on
the “Submit” button, a POST request is submitted to the operation URL.

STEP 2: Instantiating IoT Services. Our approach automatically generates
source code to instantiate IoT services using the proposed service schema and
code templates. The instantiated IoT services follow the Jersey7 syntax standard.
6 http://freemarker.org/.
7 https://jersey.java.net/.

http://freemarker.org/
https://jersey.java.net/

An Automatic Approach for Migrating IoT Applications 683

<form action="raspberrypi/b827ebf8f190/led_control/
status" method=POST>

<label for="Control LED">Control LED</label>
<input type=radio name=status value=ON>ON
<input type=radio name=status value=OFF>OFF

<input type="submit" value="Submit"/>

</form>

Operation URL: <Device Type>/<Device ID>/<Service Name>/<Operation Name>

HTTP Method

Input Type Parameter Name Parameter Value

Label

a) An annotated screenshot of the generated HTML code b) The web form

Fig. 5. An annotated screenshot of a web form that is used to control a led. The blue
text highlights the data that is extracted from our service schema. (Color figure online)

To instantiate an IoT service, a code template needs to be filled with the
information from a service schema. The required information are the HTTP
function, an operation URL, a request media type, a response media type and
the filled parameters from a web form. We provide code templates for each kind
of operation. In a reading template, a function is provided to listen to a resource
of an IoT service, which then responds end-users with the real-time value. The
resources of a given IoT service are located by the service name, device type and
device id that are extracted from the URL of the respective service request (see
Fig. 4). Once the profile operation is requested, the IoT service fetches the last
N values of a resource from the database. The N value is specified by end-users
as a URL parameter. We also build databases on the cloud for each of the other
four operations, i.e., sampling parameter, formatting, status and context. A GET
request of an operation locates the respective database and retrieves the data
value. Figure 6 shows an example of an instantiated profile operation.

@Path("/raspberrypi/b827ebf8f190")
public class SensingActuatorService{
@GET
@Path("temperature/profile")
@Produces("application/json")
public Response get_temperature_profile(@DefaultValue(“0”) @QueryParam(“number”) int

number){
JsonArray response = GetEvent.getEventFromDatabase("temperature",
"raspberrypi", "b827ebf8f190", number);
return Response.ok(response.toString()).build();}}

Root URL: <Device Type>/<Device ID>

HTTP method
Operation URL: <Service Name>/<Operation Name>

The function to access database

Service Name, Device Type and Device ID

Response Media Type

Fig. 6. An annotated screenshot of the profile operation, which obtains the temper-
ature. The blue text highlights the data that is extracted from our service schema.
(Color figure online)

For POST-based operations (e.g., POST status of light), the filled parame-
ters (e.g., ON) must be sent to the respective IoT device. We traverse the para-
meters of a service schema to identify which parameters end-users should fill.
Instantiated POST-based operations use their parameter names (e.g., status) as
variables that will retrieve the values that are filled in web forms.

Once end-users invoke an instantiated operation, the generated source code
of that operation is accessed by the operation URL and the HTTP function. The

684 Y. Zhao et al.

data that is transmitted between an IoT device and the cloud follows the JSON
standard (i.e., JavaScript Object Notation), a lightweight data-interchange for-
mat [3].

4 Case Study

We conduct a case study to evaluate our approach. In this section, we introduce
the setup of our case study and we present the obtained results.

4.1 Case Study Setup

To test the effectiveness of our approach on identifying external methods, we
analyze IoT applications written in Python. We collect the source code of IoT
projects in the “Raspberry Pi” category on the hackster.io website (See Foot-
note 1). The Raspberry Pi is a credit-card-sized embedded device, which is widely
used to develop IoT solutions for home and industrial automation.

Table 3. The distribution of projects and python methods in each domain. Avg LOC
denotes the average lines of code for each project.

Domain # Projects # Methods Avg LOC Domain # Projects # Methods Avg LOC

Living 41 7,035 6,349 Environmental

sensing

24 763 553

Transportation 10 387 756 Health 21 599 728

Entertainment 41 4,660 1,781 Security 22 1,122 870

Communication 18 2,612 3,891 Total 177 17,178 2,520

Fig. 7. A screenshot of our tool that shows
the available operations of IoT services to
end-users

In total, we collect 1,039 projects,
of which 177 contain python meth-
ods. We collect a total of 17,178
python methods from these projects.
The collected IoT projects have dif-
ferent domains, e.g., living (e.g., light
control), communication (e.g., radio
receiver) and transportation (e.g.,
parking system). Table 3 summarizes
our collected data. We built a proto-
type tool as a proof of concept for our
approach. Our tool automatically ana-
lyzes IoT applications and generates the corresponding IoT services based on
the identified external methods. We use the Raspberry Pi 3 Model B as our
IoT device (denoted as RPi). The IoT device has a quad-core processor running
at 1.2 GHz. We use the IBM cloud platform, which uses the MQTT protocol to
communicate with IoT devices. Since we are not allowed to build customized IoT
services in such a commercial cloud platform, we use our approach to generate

An Automatic Approach for Migrating IoT Applications 685

IoT services in our local server (see Sect. 3.4). Our server transmits data of IoT
devices with the IBM cloud platform using the MQTT protocol. Figure 7 shows
a screenshot of our prototype tool. An end-user may click on an operation to
send a GET request or retrieve a web form to submit a POST request. Our case
study answers the following research questions:

RQ1. How effective is our approach to identify external methods and extract
service specifications?

RQ2. How accurate is our approach to generate IoT services?
The first author manually evaluates all the results in our case study. Our eval-

uator has three years’ experience on building RESTful services for the service-
oriented architecture.

4.2 RQ1: How Effective Is Our Approach to Identify External
Methods and Extract Service Specifications?

To measure the effectiveness of our approach, we randomly sample 376 methods
from the extracted 17,178 python methods with a 95% confidence level and a
5% confidence interval [25]. We apply our approach (as described in Sect. 3.1)
to identify external methods and extract service specifications from the sampled
376 methods. We use precision and recall as shown in Eqs. 3 and 4 to evaluate
our approach. Precision measures the ratio of correctly retrieved external meth-
ods (or service specification parts) from the set of external methods (or service
specification parts) that are retrieved by our approach [24]. On the other hand,
recall measures the ratio of external methods (or service specification parts) from
the dataset that our approach could retrieve [24].

Precision =
{relevant items} ∩ {retrieved items}

{retrieved items} (3)

Recall =
{relevant items} ∩ {retrieved items}

{relevant items} (4)

Our results reveal that our approach has an average precision of 75% and
a recall of 72% for identifying external methods. As for service specifications,
our approach has an average precision of 82% and a recall of 81%. The main
reasons for the misidentified external methods and service specifications are the
following: (1) We are not able to extract semantic meanings from method names.
For instance, the method getdoorstatus is an external method to get the door
status. However, we could not find the semantic of nouns and semantic of verbs
because this name does not follow the CamelCase pattern. (2) Internal methods
that transmit messages within an IoT device may have external features. For
example, the method SendParameter is an internal method that sends parame-
ters using the I2C (Inter-Integrated Circuit) protocol. However, we identify such
a method as an external method, since it contains the semantic of verbs and
if-else statements features. (3) The input (or output) parameters are defined in
the code method body. For instance, the method get ph reading has a service
parameter ph value. However, the method uses a print function to display the
parameter, rather than returning it.

686 Y. Zhao et al.

4.3 RQ2. How Accurate Is Our Approach to Generate IoT
Services?

Our approach uses a service schema to generate IoT services on the cloud plat-
form. The accuracy of transforming external methods to IoT services is what
represents the practical usefulness of our approach. To evaluate the accuracy
of generating IoT services, we use the 190 extracted IoT services described in
Sect. 3.1. We design external methods on RPi depending on the type of an IoT
service. For example, we design four possible external methods for an IoT ser-
vice that is generated for a sensor. These methods are: reading, sampling para-
meter, formatting and context. As for IoT services generated for actuators, we
design two external methods: status and context. We do not design an external
method for the profile operation, since a profile operation is instantiated to fetch
a resource from a resource database. We use the approach described in Sect. 3.3
to generate service schemas for the designed external methods. We automatically
generate IoT services using our approach (see Sect. 3.4). Equation 5 shows how
we measure the accuracy of our approach.

Accuracy =
{#correctly generated IoT services}

{#IoT services} (5)

The accuracy is the ratio of the number of correctly generated IoT services to the
total number of IoT services. Since an IoT service is composed of several opera-
tions, we evaluate whether an operation is correctly instantiated. A GET-based
operation is correctly instantiated if, for example, a GET request for the tem-
perature reading operation returns the values that match the temperature values
sent from RPi. A POST-based operation is correctly instantiated if, for example,
the external method on RPi that is used for receiving light status receives the
commands from the light status operation. An IoT service is correctly gener-
ated when all the operations of such an IoT service are correctly instantiated.
Our approach achieves an accuracy of 96% (182 out of 190 IoT services) when
generating IoT services. Nonetheless, our approach fails to generate IoT services
regarding streaming media. A streaming media IoT service constantly delivers
and presents multimedia, e.g., video and audio, to end-users. We do not find
support in the IBM cloud platform for streaming media of IoT devices.

5 Related Work

We summarize the related work on the service-oriented architecture for IoT
devices and code analysis.

5.1 Service-Oriented Architecture for IoT Devices

Service-oriented architecture (SOA) [22] is widely used to represent functional-
ities of IoT devices [13]. Haggerty et al. [4] and Guinard et al. [10] design IoT
services using the RESTful paradigm. Priyantha et al. [15] propose an approach

An Automatic Approach for Migrating IoT Applications 687

to reduce the resource consumption when running IoT services on IoT devices.
The aforementioned approaches build IoT services directly on the resource con-
strained IoT devices. In contrast to these approaches, we use the cloud plat-
form to run the IoT services. SOCRADES [9,20] describe IoT services using
the Device Profile for Web Services (DPWS), a service description language.
Other approaches [7,8,27] model IoT services using ontology languages, such as
OWL-S. These service models are used to aid the service discovery and selection.
Different from the existing approaches, our approach designs the service schema
for the automatic service generation to relieve extra effort to build SOA.

5.2 Code Analysis

Code analysis is widely used to aid software understanding and maintenance. For
example, Eaddy et al. [5] and Robillard et al. [18] analyze the dependency and
relationship of program elements (e.g., class and method) to identify the source
code that is related to a maintenance task. Eisenbarth et al. [6] conduct static
and dynamic code analysis to focus on the source code that is related to system
features. Zhou et al. [26] and Wong et al. [23] locate source code files that are
related to faults in bug reports. Pollock et al. [14] use natural language process-
ing techniques to understand the semantic meanings of literals, identifiers and
comments to aid the source code searching. Shabtai et al. [19] extract features
from the source code to classify Android applications. Unlike these approaches,
our approach conducts a static code analysis on the method level to identify
external methods and extract service specifications for IoT services.

6 Conclusion

To enable the integration of multiple IoT devices in a uniform environment,
we provide an approach that automatically transforms functionalities from IoT
devices to SOA based IoT services. We also automatically generate web forms for
end-users to have a friendly experience when interacting with IoT services. We
use the designed service schema and templates to generate IoT services. Our case
studies show that we can identify external methods from IoT applications with
a precision of 75% and a recall of 72%. We can also extract service specifications
from these external methods with a precision of 82% and a recall of 81%. Our
approach can generate IoT services with an accuracy of 96%.

In future work, we plan to extend the implementation of our approach to
other popular programming languages, such as Java and JavaScript. We also
plan to ask developers to use and verify our prototype tool.

References

1. Style guide for python code. https://www.python.org/dev/peps/pep-0008/
2. Bechhofer, S.: Owl: web ontology language. In: Liu, L., Tamer Özsu, M. (eds.)

Encyclopedia of Database Systems, pp. 2008–2009. Springer, US (2009)

https://www.python.org/dev/peps/pep-0008/

688 Y. Zhao et al.

3. Crockford, D.: The application/json media type for javascript object notation
(JSON) (2006)

4. Dawson-Haggerty, S., Jiang, X., Tolle, G., Ortiz, J., Culler, D.: sMAP: a simple
measurement and actuation profile for physical information. In: Sensys (2010)

5. Eaddy, M., Aho, A.V., Antoniol, G., Guéhéneuc, Y.G.: Cerberus: tracing require-
ments to source code using information retrieval, dynamic analysis, and program
analysis. In: ICPC, pp. 53–62. IEEE (2008)

6. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. TSE
29(3), 210–224 (2003)

7. Eisenhauer, M., Rosengren, P., Antolin, P.: Hydra: a development platform for inte-
grating wireless devices and sensors into ambient intelligence systems. In: Giusto,
D., Iera, A., Morabito, G., Atzori, L. (eds.) The Internet of Things, pp. 367–373.
Springer, New York (2010). doi:10.1007/978-1-4419-1674-7 36

8. Escobedo, E.P., Prazeres, C.V., Kofuji, S.T., Teixeira, C.A., da Graça Pimentel,
M.: Secoas: an approach to develop semantic and context-aware available services.
In: WebMedia, vol. 7, pp. 1–8 (2007)

9. Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., Savio, D.: Interacting with the
soa-based internet of things: discovery, query, selection, and on-demand provision-
ing of web services. TSC 3(3), 223–235 (2010)

10. Guinard, D., Trifa, V., Pham, T., Liechti, O.: Towards physical mashups in the
web of things. In: INSS, pp. 1–4. IEEE (2009)

11. Hachem, S., Teixeira, T., Issarny, V.: Ontologies for the internet of things. In:
Proceedings of the 8th Middleware Doctoral Symposium, p. 3. ACM (2011)

12. Hunkeler, U., Truong, H.L., Stanford-Clark, A.: Mqtt-s–a publish/subscribe pro-
tocol for wireless sensor networks. In: Comsware, pp. 791–798. IEEE (2008)

13. Issarny, V., Bouloukakis, G., Georgantas, N., Billet, B.: Revisiting service-oriented
architecture for the IoT: a middleware perspective. In: Sheng, Q.Z., Stroulia, E.,
Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 3–17. Springer, Cham
(2016). doi:10.1007/978-3-319-46295-0 1

14. Pollock, L., Vijay-Shanker, K., Hill, E., Sridhara, G., Shepherd, D.: Natural
language-based software analyses and tools for software maintenance. In: De Lucia,
A., Ferrucci, F. (eds.) ISSSE 2009-2011. LNCS, vol. 7171, pp. 94–125. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36054-1 4

15. Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F.: Tiny web services: design
and implementation of interoperable and evolvable sensor networks (2008)

16. Rao, B.P., Saluia, P., Sharma, N., Mittal, A., Sharma, S.V.: Cloud computing for
internet of things & sensing based applications. In: ICST, pp. 374–380 (2012)

17. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly Media, Inc., Sebastopol
(2008)

18. Robillard, M., Murphy, G.C.: Concern graphs: finding and describing concerns
using structural program dependencies. In: ICSE, pp. 406–416. IEEE (2002)

19. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis for classifying
android applications using machine learning. In: CIS, pp. 329–333 (2010)

20. de Souza, L.M.S., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S., Savio,
D.: SOCRADES: a web service based shop floor integration infrastructure. In:
Floerkemeier, C., Langheinrich, M., Fleisch, E., Mattern, F., Sarma, S.E. (eds.)
IOT 2008. LNCS, vol. 4952, pp. 50–67. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78731-0 4

21. Tanganelli, G., Vallati, C., Mingozzi, E.: Coapthon: easy development of coap-
based IoT applications with python. In: WF-IoT, pp. 63–68. IEEE (2015)

http://dx.doi.org/10.1007/978-1-4419-1674-7_36
http://dx.doi.org/10.1007/978-3-319-46295-0_1
http://dx.doi.org/10.1007/978-3-642-36054-1_4
http://dx.doi.org/10.1007/978-3-540-78731-0_4
http://dx.doi.org/10.1007/978-3-540-78731-0_4

An Automatic Approach for Migrating IoT Applications 689

22. Upadhyaya, B., Zou, Y., Xiao, H., Ng, J., Lau, A.: Migration of soap-based services
to restful services. In: WSE, pp. 105–114. IEEE (2011)

23. Wong, C.P., Xiong, Y., Zhang, H., Hao, D., Zhang, L., Mei, H.: Boosting bug-
report-oriented fault localization with segmentation and stack-trace analysis. In:
ICSME, pp. 181–190. IEEE (2014)

24. Zhao, Y., Wang, S., Zou, Y., Ng, J., Ng, T.: Mining user intents to compose services
for end-users. In: ICWS, pp. 348–355. IEEE (2016)

25. Zhao, Y., Zhang, F., Shihab, E., Zou, Y., Hassan, A.E.: How are discussions associ-
ated with bug reworking?: An empirical study on open source projects. In: ESEM,
p. 21. ACM (2016)

26. Zhou, J., Zhang, H., Lo, D.: Where should the bugs be fixed?-more accurate infor-
mation retrieval-based bug localization based on bug reports. In: ICSE (2012)

27. Zhu, W., Zhou, G., Yen, I.L., Bastani, F.: A PT-SOA model for CPS/IoT services.
In: ICWS, pp. 647–654. IEEE (2015)

RobOps: Robust Control for Cloud-Based
Services

Cheng Chen1, Jordi Arjona Aroca2, and Diego Lugones2(B)

1 Department of Mechanical Science and Engineering,
University of Illinois at Urbana-Champaign, Champaign, USA

cchen130@illinois.edu
2 Nokia Bell Labs, Dublin, Ireland

{jordi.arjona aroca,diego.lugones}@nokia-bell-labs.com

Abstract. Online resource provisioning of applications in cloud is chal-
lenging due to the variable nature of workloads and the interference
caused by sharing resources. Current on-demand scaling is based on man-
ually configured thresholds that cannot capture the dynamics of applica-
tions and virtual infrastructure. This results in slow responses or inaccu-
rate provisioning that lead to unfulfilled service level objectives (SLOs).
More automated approaches, in turn, use fixed model structures and
feedback loops to control key performance indicators (KPIs). However,
workload surges and the non-linear behavior of software (e.g. overload
control) make the control mechanisms vulnerable to rapid variations,
eventually leading to oscillatory or unstable elasticity. In this paper we
introduce RobOps, a robust control system for automated resource provi-
sioning in cloud. RobOps incorporates online system identification (SID)
to dynamically model the application and detect variations in the under-
lying hardware/software. Our framework combines feedforward/feedback
control with prompt response to achieve reference performance. The feed-
forward control allows to compensate for delays in the scaling mechanism
and provides robustness to workload surges. We validate RobOps perfor-
mance using an enterprise communication service. Compared to baseline
approaches, RobOps achieves 2X less SLO violations in case of traffic
surges, and reduces the impact of interferences at least by 20%.

1 Introduction

Incorporating elasticity to resource management in cloud allows for maximiz-
ing the benefits of service providers. Although attractive, provisioning resources
on-demand is challenging for applications running in a shared environment and
serving varying workloads – particularly for over-the-top applications with strin-
gent service level objectives (SLOs), e.g. video and real-time messaging where
over-provisioning is the common practice for resource management [22].

Elasticity in commercial clouds is currently enabled by threshold-based poli-
cies that keep track of key performance indicators (KPIs) to instantiate or ter-
minate resources [1,2]. Configuring these thresholds is time consuming, as it

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 690–705, 2017.
https://doi.org/10.1007/978-3-319-69035-3_50

RobOps: Robust Control for Cloud-Based Services 691

involves user expertise and iterative testing. Moreover, thresholds are insuffi-
cient to model system dynamics and dependencies. This leads to performance
degradation, as variations in traffic rate and elasticity delays across service chains
cannot be captured properly [20].

To account for such delays and to better control service dynamics, several
proposals combine theoretical models and control theory [19]. In general, these
models have static structures (e.g. fix order), with adjustable parameters cal-
ibrated using fitting techniques over the available data [6,13]. However, static
model structures can fail to represent the cloud stack and the complex charac-
teristics of production software [9]. That is, hardware upgrades and interference
of collocated applications can modify model structures significantly. From a soft-
ware perspective, applications and services can also vary their behavior according
to certain system states and workload events, e.g. overload control and traffic pri-
oritization. This variability makes static models inaccurate, causing overshooting
in the response of feedback controllers and even instability [21].

We argue that control-based solutions should dynamically update the appli-
cation model using arbitrary structures that better fit to the current behavior
of the cloud environment. Given the constantly changing and shared nature of
cloud resources, model updates must be done automatically and performed at
runtime. To this end, we extend System IDentification (SID) [16] techniques
with modifications to allow for detecting model variations online.

In this paper we introduce RobOps, a system that combines online SID with
dual feedforward (FF) and feedback (FB) control to operate services in the
cloud with robustness to workload surges and infrastructure or software changes.
SID enables a data-driven modeling of dynamic systems by leveraging various
statistical methods and accuracy criteria. The control mechanism receives model
updates at runtime, and adapts the control actions accordingly. The reasons for
using a FF compensator are: (1) reducing propagation delays in the FB controller
and the impact of scaling latency; (2) changing the elasticity dynamics, i.e.
prompt scale-out and conservative scale-in. The FF compensator allows for a fast
reaction to traffic changes while the FB controller adapts resource provisioning
to track reference KPIs – usually derived from SLOs. This allows RobOps to
serve workloads by shifting the control effort between FF and FB controllers
according to the workload demand and application state. More specifically, our
contributions are the following:

– Online and data-driven system identification that concurrently computes var-
ious multiple input multiple output (MIMO) models to control elasticity of
applications in cloud. Models are calculated automatically and ranked using
likelihood criteria which relieves application owners of modeling and profiling
tasks, or threshold setting.

– A feedback controller able to adapt the control matrices according to updated
models received on the fly. The feedback loop provides stability and ensures
that KPIs are close to the desired references.

692 C. Chen et al.

Fig. 1. (a) Overview of RobOps framework for a Linux container (LxC) based service.
(b) Online system identification (SID) computes a set of MIMO linear models taking
the values of d, u and y as inputs, and returns the model with the minimum Akaike
information criteria (AIC) score. (c) Such model, jointly with the variation in d and the
error e = y − ref will condition the control input uc and the final number of instances
u in each elastic component of the service.

– A feedforward compensator to drastically reduce the oscillations caused by
varying and bursty workload rates that can make the applications to trigger
overload control or other similar mechanisms. This compensator performs a
switching control that uses short-term predictions to accelerate scale-out in
presence of increasing workloads, or scale-in conservatively otherwise.

The paper is organized as follows. An overview of RobOps is given in Sect. 2,
while Sects. 3 and 4 describe in detail the online SID modeling and the con-
trollers, respectively. In Sect. 5 we evaluate RobOps against thresholds and other
control-based solutions using commercial applications. Section 6 elaborates on
related work, while Sect. 7 describes our future work. Finally, we conclude in
Sect. 8.

2 RobOps Design

Figure 1a depicts the main components of RobOps. The application or service
can run on one or many virtual machines (VM) or Linux containers (LXC)
depending on the underlying cloud infrastructure. VMs, as well as LXC, are
elastic and can be scaled out. We denote as u the number of instances of each
elastic component. The service key performance indicators (KPIs) are the control
outputs, denoted as y. KPIs are affected by the execution of workloads, which
are denoted as d for consistence with control theory notation. All u, y and d are
monitored and sampled at discrete intervals or control periods. Throughout the

RobOps: Robust Control for Cloud-Based Services 693

paper we focus on services that scale horizontally. However, RobOps can also
control services that scale vertically using a different set of control inputs u.

The SID module consumes u, y and d to select and configure a model of the
service, the selection is based on a best-fit ranking among several models. This
model is used to configure the controllers gain, while d and the error e = ref − y
are inputs of the controller module. The reference (ref) or setpoint is a set of
target values for the control outputs y. We select these values according to the
service SLOs. The controller generates a control signal (uc) that modifies the
amount u of instances to maintain the outputs close to their reference values.

Figure 1b gives a closer view of the online SID module. We evaluate several
MIMO linear models such as ARX, ARMAX1 and other finite impulse response
(FIR) models [16]. We compute the Akaike Information Criterion (AIC) [4] for
each model. The model with lowest AIC score has higher likelihood to more
accurately represent the service. We describe the online SID in detail in Sect. 3.

Figure 1c illustrates the controller module with a dual FF/FB control. The
FB loop aims at reducing the error between references and control outputs,
increasing the number of instances when the error is negative and reducing it
otherwise. Note that the FB control does not depend directly on the workload.
Workload variations affect the control outputs with a certain time lag, which can
cause oscillations or overshooting. This can lead to a slow convergence to the
desired reference values. To deal with these workload changes we include a FF
compensator that varies the provisioned resources to compensate for workload
variations. We give a last twist to the FF compensator by switching the control
to use either a forecast of the workload or its current value. The forecast is used
to act proactively to increasing workloads. Both FB and FF use proportional
control and the overall control action is the sum of the FB and FF outputs. We
provide details of the controller in Sect. 4.

The robustness of the controller is achieved with both adaptive modeling
and disturbance rejection. That is, the online SID module adaptively identifies
unseen system dynamics and models the time-varying characteristics of the cloud
stack. The FF controller, in turn, compensates for the effect of bursty workloads
on the control outputs, rejecting the disturbances to the control system.

RobOps is implemented in Python. We have created a monitoring API to
aggregate application and system KPIs such as throughput, latency, CPU usage,
etc. Similarly, we have developed a control API which provides plugin function-
ality to VM/LXC-based orchestration mechanisms, allowing us to connect to
different platforms, currently we support Rancher and OpenStack.

3 Online System Identification

We extend the system identification (SID) framework to enable dynamic and
automated modeling. The SID module performs four tasks: (1) analysis of
candidate models, (2) model identification, (3) parameters computation and
1 AR stands for AutoRegressive, MA for Moving Average, and X implies the presence

of eXogenous inputs.

694 C. Chen et al.

(4) likelihood evaluation and selection. Differently to other solutions in the field,
our framework does not assume a concrete model to represent the service but
a pool of model structures. We perform model identification using online mon-
itored data from inputs and outputs (u, y, d) to compute the coefficients of
models in the pool. During this fitting, models are classified following the AIC
criterion to find the most accurate one and forward it to the controller.

3.1 Selecting the Candidate Models

Considering multiple models helps in capturing the dynamics of heterogeneous
clouds, and reduce the limitations of individual models to adapt to hardware
changes or interference. We base the RobOps online SID component on the
general family of linear models [16], extending it to represent a MIMO system:

A(q)y(k) =
B(q)

J(q)
u(k) +

C(q)

L(q)
ε(k), (1)

where A, B, C, J and L are matrices of rational polynomials with operator q, and
ε(k) is noise at the kth control period. As defined in [16], different combinations
of these polynomials lead to different model structures. We focus our experi-
ments in the ARX, MAX and ARMAX structures. Each one of these models
can have different polynomial order. These structures consider exogenous inputs
that capture the effect of the number of instances on the service KPIs. Finally,
we select the control period based on the time required to create a new instance.
This time depends on the application and virtualization technique (e.g. virtual
machines or containers), in this paper we consider values between 20–60 s.

3.2 Model Identification

We now describe how we construct the models. Using control theory notation,
we define u = [u1, u2, ..., unu

]T to denote the number of instances of each ser-
vice component, while the control outputs y = [y1, y2, ..., yny

]T represent the
KPIs collected from these instances. We denote the incoming workload as d, the
disturbance of the service. Service KPIs and workload are measured as discrete
time series, i.e. y(k) is the value of y measured at control period k.

In general, cloud services exhibit a near-linear behavior and we can linearize
the models in the neighborhood of operating points. If services behave non-
linearly, we can apply linear difference equations with the deviations from an
operating point to locally approximate the dynamics of the service. An operating
point is defined as a steady state of the service, such that state u, y, and d are
stable at this point. At each time k, the parameters u(k), y(k), and d(k) are
measured as the deviations from such operating point. Then, the correlation
between the deviations of parameters can be approximated linearly, as long as
these deviations are small when compared to the operating points.

For generality, we describe the model construction process for ARMAX. We
create a set of n×n′ ARMAX models, where n and n′ denote the highest order of
the AR and MA components, respectively. One of these models will be selected

RobOps: Robust Control for Cloud-Based Services 695

and used as input to our controller. The eXogenous inputs capture the effect of
u and d on the control outputs for the FB loop, and the relationship between u
and d needed for the FF compensators. Formally, each model is expressed as

y(k + 1) =A1(k)y(k) + ... + An(k)y(k − n + 1) + B(k)u(k)

+ C1(k)ε(k) + ... + Cn′(k)ε(k − n′ + 1) + D(k)d(k).
(2)

Here, Ai(k) i = 1, 2, ..., n is an ny × ny matrix which captures the correlation
among the output time series, being ny the number of control outputs. B(k)
is an ny × nu matrix and captures the correlation between service inputs and
control outputs, being nu the number of service inputs. Ci(k) is an ny × ny

matrix capturing the moving average of the control output. Finally, D(k) is an
ny × 1 matrix which captures the correlation between workload and output.

3.3 Model Parameters Computation

After constructing the models we now identify their parameters. Computing
static models after a profiling phase has several limitations. First, services run-
ning in the cloud usually exhibit a nonlinear behavior when the entire operating
range is considered. Second, external interference may alter the model at any
time. For these reasons, RobOps computes and updates the model parameters
online. Moreover, by updating the model online we avoid a exhaustive profiling
phase, also leveraging low order models when few data is available and shifting
to higher order models (if more accurate) as the observed data increases.

We use Kalman filters to identify the parameters of the models as proposed
in [24]. We rewrite the model (2) in the state space defining the state as x(k) =
[yT (k), ...,yT (k − n + 1)]T , and the state space model becomes:

x(k + 1) = F (k)x(k) + B(k)u(k) + D(k)d(k) + G(k)ε(k)

y(k) = H(k)x(k) + w(k).
(3)

Here F (k) is the transition matrix which contains the parameters from A1 to
An. H(k) represents the map between x(k) and y(k) and it is known for each
order of the model, and w(k) is zero-mean Gaussian noise.

At each control period, we measure the control outputs y(k), and observe
the number of instance per component u(k) and workload d(k). The state of the
system is recursively updated by a Kalman filter. The parameters of the models
are identified by maximizing the likelihood function.

3.4 Model Evaluation and Selection

Once we compute the parameters of the models we need to choose the one that
better represents the service. Two of the most used criteria for model selection are
the Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC). Both criteria provide a score for each model that allows to compare their
likelihood: AIC = 2k − 2 · L, and BIC = k · ln(s) − 2 · L, where L is the log-
likelihood function, s the number of samples used for the fitting, and k is the

696 C. Chen et al.

number of parameters to be estimated. Both criteria penalize high order models,
reducing the risk of overfitting. We use AIC because it usually provides better
fits to smaller data windows, while BIC aims at a general model and gets better
results as the pool of data increases [4]. Hence, we select the model that results
in the lowest AIC score and utilize it for designing the controller. Finally, we
define a minimal switching time in order to avoid switching models too often.

Computational complexity. The SID module complexity depends on the com-
putation of model parameters and model selection. Model parameters are recur-
sively computed with Kalman filters. Its complexity NKL depends on the size
of the data measured in a control period and is bounded by c1 · ((nu + uy) ×
(n + n′))3 + Nl where Nl is the complexity of maximizing the likelihood func-
tion, and c1 is a constant. On the other hand, the complexity of evaluating
a model is bounded by w · c2 · n2

y, where w is the size of the data to com-
pute the AIC score, and c2 is a constant. The total complexity is bounded by
|M |(w · c2 · n2

y + maxNKL), where M is the set of candidate models.

4 Design of a Feedforward Plus Feedback Controller

This section describes the controller. For a certain workload, the controller
adjusts the number of instances u of each component to maintain the value
of the service KPIs y around the references r. To achieve this goal, we propose a
MIMO adaptive switching control scheme including a FF compensator and a FB
controller. Both the FF compensator and FB controller use the model computed
by the online SID component described in Sect. 3.

We require a MIMO controller because our service has multiple KPIs to con-
trol, and multiple actuators to enforce this control, i.e. the number of instances
of each component. The FB controller monitors the control error e = r − y and
adjusts u accordingly. However, the effect of abrupt workload variations on KPIs
may be inaccurate or delayed, resulting in a slow response of the FB loop. For
this reason, the FF compensator complements the FB controller by monitoring
the workload and actuating on the service when it varies abruptly. Then, the
controller input (or control signal) is the number of instances of each type that
have to be scaled out(in) in the current control period. We denote this control
signal as uc. As shown in Fig. 1c, uc(k) = uFF (k) + uFB(k).

4.1 Design of a Feedforward Controller

The FF compensator is employed to monitor the workload and mitigate the effect
of workload surges. To design the controller, we need to quantify online the effect
of the workload on the target service. To this purpose, we define the following
error function representing the interaction between the FF compensator and the
workload on the service E1(k) = B(k)uFF (k) + D(k)d(k), where matrices B(k)
and D(k) come from the model structure presented in Eq. (2). The term D(k)d(k)
reflects the effect of the workload on the service KPIs. On the other hand, the
term B(k)uFF (k) represents the impact that the FF compensator exerts on the

RobOps: Robust Control for Cloud-Based Services 697

Algorithm 1. Feedforward Controller

1: u(k), d(k), y(k) ← Collect Metrics()
2: B(k), D(k) ← System ID(u(k), d(k), y(k))
3: if B(k) is invertible then

4: uFF (k) = −B−1(k)D(k)d(k)
5: else if dim(y) > dim(u) then
6: solve uFF (k) by minimizing E2

1(k) (#E1(k) is overdetermined)
7: else
8: solve uFF (k) by minimizing E2

2(k) (#E1(k) is underdetermined, E1(k) = 0)

service KPIs. Hence, E1(k) represents the amount of KPI variation caused by
the workload after being compensated by the FF controller uFF (k).

The computation of uFF (k) depends also on u and y dimensions. If they
are equal, and matrix B(k) has full rank, then uFF (k) = −B−1(k)D(k)d(k).
If the dimension of u is smaller than the dimension of y (i.e. there are more
KPIs to control than components), then E1 is over-determined. In this case,
we minimize the square of main error function E1(k). If the dimension of u is
greater than dimension of y (i.e., more components than KPIs), E1 is under-
determined. In this case, E1(k) = 0 and we need to minimize the square of
auxiliary error function E2(k) = ûFF (k) − uFF (k). E2(k) represents the differ-
ence between the actual virtual instances uFF (k) and the estimated number of
virtual instances ûFF (k) computed from the model in Eq. (2). Therefore, the
control action uFF (k) of the FF controller is the result of minimizing the errors
E1(k) and E2(k). Algorithm 1 summarizes the different cases to consider when
computing uFF (k).

Switching controller. We want our controller to scale out the service fast but
scale in more cautiously. For this reason, we propose two different controllers
gσ(u, d) for the FF compensator, selected by a switching signal σ that depends
on the workload variation d(k). To compute σ we model the time series d as
an Auto-Regressive process at each control period k, and use it to predict the
future workload d(k + 1). When the forecasted value yields d(k + 1) > d(k),
we assign σ = 0 and σ = 1 otherwise. The candidate FF controllers are then
uFF (k) = g0(u(k), d(k + 1)) and uFF (k) = g1(u(k), d(k)), where g0, g1 result
from computing uFF (k) as in Algorithm 1 with values d(k + 1) or d(k), respec-
tively. The compensator g0(u(k), d(k+1)) is used with increasing workloads and
proactively compensates the workload ahead of time. On the other hand, we use
g1(u(k), d(k)) for non increasing workloads, compensating the current workload
variation. Finally, to guarantee the stability of the whole control system, the
switching controller is restricted to the case of slow switching. A minimal dwell
time td of 5 to 10 times the control period is used to avoid switching too frequent.

4.2 Design of the Feedback Controller

The FF control by itself is unstable as it calculates the control actions based
only on the parameters estimated by open loop models. As system dynamics
are not modeled and noise may be aggregated, this can result in large errors.

698 C. Chen et al.

The FF compensator does not keep track of service KPIs, jeopardizing SLO
fulfillment. For this reason, we complement it with a FB loop, which provides
stability to the service and ensures that KPIs track the desired references.

The FB loop is based on the model returned by the online SID. This model
can be either ARX, MAX or ARMAX of any order. RobOps computes the para-
meters of a proportional controller adapting to any of these structures. For gener-
ality, we show the design of a proportional controller for an ARMAX closed-loop
system. This design can be generalized for structures of any order following well
establish methods, though. Consider the model from Eq. (2) and substitute the
FF control, we obtain: y(k + 1) = A(k)y(k) + B(k)uFB(k) + E1(k), where the
square of the error function E1(k) is to be minimized by the FF compensator.
Note that ε is zero-mean system noise and the controller is robust to it. Since the
FF controller compensates the majority of the effect of the workload variation
d(k), the FB control action will be moderated. The goal of the FB controller is
to adjust uFB(k) to maintain y(k) at the reference r. Then, the proportional
FB control action is given by: uFB(k) = Kp(k)e(k) = Kp(k)(r − y)(k), where
Kp(k) is the proportional FB control gain. We compute Kp(k) using common
pole placement strategy which places the closed-loop poles by considering a fast
transient response of the system. Since the dynamics of the system is monitored
at each time interval, the FB controller can also adapt to the service variations.

5 Evaluation

In this section we evaluate RobOps performance and compare it to different
baseline solutions in several scenarios using a commercial communication service.
This service runs several containers and supports different types of traffic. We
focus on instant messaging traffic and in two specific containerized functions:
the conversation manager (CM) and user log manager (ULM). These functions
are elastic and need to be scaled as the number of chats and active users vary.
The workload for these functions is measured in number of chats.

Metrics. We assess the performance measuring the time during which SLOs
are violated and in what magnitude (a.k.a severity). The KPI to control is com-
ponent latency, which is the time needed to process a message. According to
developers, latency must be below 3 s. Otherwise, the SLO is violated. Severity
is measured by comparing the magnitude of latency to the SLO.

Baseline comparison. RobOps(RO) is compared to threshold-based policies
(TH) and to a feedback controller (FB) – the same we use in RobOps– with
static gains. RobOps and FB control use a reference value of r = 750 ms (i.e.
SLO/4) for both CM and ULM latencies. For TH we set the upper and lower
thresholds to r and 0.5 · r . When these thresholds are exceeded, the number of
containers is increased or decreased by one. Reference is fixed to SLO/4 to give
room to the solutions to scale out containers upon latency increments.

RobOps: Robust Control for Cloud-Based Services 699

5.1 Evaluating the Dynamic Response

We evaluate the dynamic response of the controllers by injecting workloads with
different increasing rates, including steps to simulate traffic surges.

Traffic surges. We study first the case of traffic surges. To do so, we use steps
transitioning from 20 to 200, 300, 400 and 500 chats, and monitor the service
for 45 control periods, enough for all the controllers to reach a configuration
that can handle the injected traffic. Figure 2a shows the results for the 400 chats
surge. As the latency reflects the variation on the load with delay, neither FB
nor threshold controllers can scale the service in time. RobOps response is faster
as the feedforward compensator (FF) scales the service out when the change in
the workload is observed, not exceeding the SLO. The FB controller response is
faster than thresholds, but still exceeds the SLO. Moreover, the initial provision-
ing is still tight, leading to more oscillations in the provisioning, exceeding the

Fig. 2. (a) RobOps’s (RO) FF compensator scales out as it observes the surge. FB
and TH only react once the latency exceeds the reference, deriving in SLO violations.
(b) RobOps can enforce the SLOs for most surges. It shows a faster response than the
other controllers with lower impact on the SLOs.

Fig. 3. (a) RobOps is more robust to rapid workload variations than the other
approaches, largely reducing or eliminating the impact on performance. (b) This robust-
ness is mostly due to the FF compensator. Its relevance in the aggregated control action
increases with the workload variation rate. (c) RobOps rarely exceed the SLOs, even
for workloads with high variation rate.

700 C. Chen et al.

SLOs during 3 control periods. Due to these oscillations, the accumulated action
of the FB controller ends up creating more containers than RobOps, but still
violating the SLOs. Due to the lack of a model, thresholds increase the number
of containers gradually until the latency falls below the reference. This results
in violating the SLOs during more than 10 control periods. Finally, the high-
est latency measured for RobOps is 0.90 times the SLO, while for the FB and
thresholds controllers the latency is 2.04 and 8.4 times the SLO, respectively.

Figure 2b shows the latency cumulative distribution function (CDF) for
each surge. All three controllers converge to a similar configurations. However,
RobOps has some initial overprovisioning due to the FF compensator that allows
for faster and less oscillatory convergence, and less SLO violations than the FB
controller. Thresholds always have a slower response, more SLO violations and
worse latency peaks (up to 45 times the SLO). The FB controller averages a 10%
of SLO violations and peaks up to 3.5 times the SLO. However, the FB controller
benefits from the characteristics of the service. When the service configuration
is not sufficient to handle the load, the latency increases rapidly, leading to a
large increment of the error (r − y) between samples to be adjusted by the
controller and, therefore, a larger control action, taking less time to bring the
latency back below SLOs. If the service response was slower, the FB controller
would violate SLOs during more control periods. RobOps shows similar results
for all surges, exceeding only the SLO with the largest surge and with a peak
latency of roughly 2.7 times the SLO. Compared to FB, RobOps reacts a 10%
faster and reduces the impact of SLO violations in performance in at least 2X.
These results are mostly thanks to the action of the FF compensator, that in
some cases provisions even some containers in excess allowing RobOps to handle
surges more gracefully than the other controllers.

Traffic varying with different rates. We now inject 4 different sinusoidal
workloads varying between 0 and 560 chats and periods of 15, 20, 30 and 50
control periods. Figure 3a shows the 15 control periods case. Upon workloads
with such high variation, RobOps proactively creates a high number of containers
due to the action of the FF compensator, exceeding SLOs only 4% of the time.
Although the FB controller is the same in RobOps, it exhibits worse results,
violating SLOs up to a 14% of the time. This difference is also due to the FF
compensator. When the latency is below the reference, the FB controller reduces
the number of containers in the service even if the workload is increasing. In these
cases, the FF compensator counteracts the negative action of the FB controller.
Without the FF, the FB controller reduces the number of containers leading
to higher latencies and more SLO violations. Figure 3b shows how FF action is
more relevant for low period workloads, having even more weight in the total
control action than the FB component for the 15 control periods workload.

Figure 3c shows the latency CDFs for workloads with 15, 30 and 50 control
periods. RobOps shows the best results, exceeding SLOs less than 4% of the time,
while FB and threshold controllers reach a 14% and 23%, respectively. Similarly,
the worst RobOps SLO violation was of 2.4 times the SLO per 4 and 5.3 times for
the FB and thresholds. The latency CDFs also show that the results obtained by

RobOps: Robust Control for Cloud-Based Services 701

thresholds and FB get worse as the frequency increases, while RobOps obtains
similar results across all experiments, regardless of the variation rate.

5.2 Robustness to Software Changes

We finally evaluate the robustness of the framework by measuring how RobOps
adapts to changes in the service. To do so, we inject a sinusoidal workload and
then change the number of threads used by the CM and ULM containers. This
emulates hardware changes or interferences that reduce the amount of available
resources. In particular, we start running the containers with 2 threads, reduce
to 1 thread after some time, and finally increase to 4 threads.

Varying container resources leads to changes in the models, and therefore
to changes in the gains of the controller. Figure 4a shows the evolution of the
4 coefficients of the inverse of the gain matrix K−1. Matrix K−1 reflects the
relation between the number of ULMs and CMs and their effect on their latency.
We show the coefficient values for each configuration once the model converged.

Fig. 4. (a) RobOps adapts to changes in the service. Changes in the available resources
are captured by the online SID, adapting the model. This is reflected in the inverse
matrix of the gain (K−1), whose coefficients change for each configuration. (b) RobOps
has some performance degradation while adapts the model. The feedback controller
model is static, failing to provision the service correctly.

Figure 4a shows how the structure and order of the model changed for each
configuration. While for the first configuration the service could be represented
with an ARX (1), for the remaining configurations it moved to an ARMAX (1,1)
and a MAX (3) models. Coefficients k−1

11 and k−1
22 decrease when the number of

threads increases, as the capability of a container to reduce the service latency
is increased. These coefficients are lower for 4 threads than for 2 threads. The
behavior of coefficients k−1

12 and k−1
21 is the opposite, increasing with the number

of threads. Increasing its processing capacity the container is indirectly increasing
the latency on the other component, as more workload will arrive at it.

Variations in K affect the number of containers scaled by the FB con-
troller and the FF compensator and, therefore, the capability of the controller

702 C. Chen et al.

to rapidly provision resources. To evaluate the benefits of adapting the model
to these changes, we repeat the experiment using a FB controller with static
gains. RobOps and the FB controller start knowing the service model for 2
threads. Figure 4b compares their performance for each configuration. RobOps
performance falls to approximately a 10% degradation after every configuration
change, mostly due to the learning period. On the other hand, the performance of
the FB controller degrades severely, increasing from roughly 4% SLO violations
when it uses the correct model to a 33.5% and 21.5% once the service moves
to 2 and 4 threads, respectively. The performance in the last scenario is bet-
ter because, with the 2 thread model, the FB controller instantiates containers
in excess. The situation is the opposite for the 1 thread configuration, leading
to larger SLO violations. Thanks to the online SID module RobOps reduces
the impact of interference by up to a 23.5% when compared to the simple FB
controller.

6 Related Work

Here we present a classification of existing methods according to both: the mod-
eling approach and control strategy.

The most popular approach in industry [1,2] is to use thresholds to repre-
sent high/low utilization values of resources and/or application KPIs [8]. This
approach requires significant upfront effort and expertise to properly calibrate
thresholds that react fast enough to workload variations at reasonable cost (i.e.
avoid idle resources). More elaborated proposals use fuzzy logic [11] to provide a
richer set of rules that better describe application resources. Still, these solutions
do not capture service dynamics and dependencies, as mentioned in Sect. 1.

Other authors propose empirical approaches to model applications using
benchmarks [14]. These approaches deal with complexity and nonlinearities
across infrastructure layers by modeling the full stack. Empirical models also
require substantial knowledge about the service configuration to benchmark the
system properly. Also, benchmarks must be re-executed after hardware upgrades.

Queueing theory has been used as a foundation of several proposals [3,7].
These models have parameters that can be automatically calibrated using
Kalman filters [6]. However, queue models are useful to describe stationary states
rather than transient, not being suitable for dynamic environments such as cloud.

Another possibility is to use time-series analysis to predict incoming work-
loads [19] and make scaling decisions in advance. Some examples of these fore-
casting techniques are exponential smoothing [11], Fourier analysis [10], wavelets
[18] or Bayesian classifiers [5]. These predictions need to be combined with empir-
ical or theoretical models to ultimately scale the system resources.

Control theory based solutions are numerous in the literature for both single
input single output (SISO) and multiple input multiple output (MIMO) services.
For SISO systems we find solutions using standard PID controllers [12] or fixed
gain controllers combined with dynamic thresholding [15]. For MIMO services,
feedback control is usually based on state space models combined with adap-
tive [17,19] or switching control [3]. A limitation of feedback controllers is that

RobOps: Robust Control for Cloud-Based Services 703

delayed responses can lead to oscillatory behaviors or overshooting. Combining
feedback and feedforward control can alleviate this limitation. In [23] authors
used both controllers empirically obtaining (static) models. Using static models,
however, can limit the benefits of the control technique, as shown in Sect. 5.

7 Discussion and Future Work

The evaluation in Sect. 5 shows the applicability and efficiency of RobOps. Still,
there are aspects requiring further research and analysis to generalize our results.
We have shown that RobOps can identify linear models among different options.
When non-linearities are significant we can generalize our method using linear
difference equations on the deviations around the operating points. However, we
still need to extend our approach to different structures (e.g. non-linear) like
Box-Jenkins or NARMAX.

Regarding the control strategy, we tried rather simple proportional con-
trollers as they offer acceptable performance for the service under evaluation.
However, we plan to evaluate more scenarios requiring more sophisticated con-
trollers integrated to our SID module and evaluate their impact on modeling
aspects (such as accuracy and performance) as well as stability and robustness.

We need to extend our baseline evaluation and compare to other solutions
and validate RobOps with more services and applications. One characteristic
of the service we used in Sect. 5 is how rapidly latency increases upon under-
provisioning. We will evaluate whether RobOps can accurately provision any
service with different dynamics and generalize its properties. Finally, we will
quantify the cost reduction derived of causing less SLO violations despite of
using more resources.

8 Conclusion

In this paper we have introduced RobOps, an automated framework to dynam-
ically control resource provisioning in cloud. RobOps implements online SID to
dynamically generate multiple service models eliminating the need for bench-
marks and profiling. As the process is automated, user expertise is not required
as in today’s threshold-based solutions. SID allows to select online the most accu-
rate model from a collection of MIMO models with different structures, enabling
RobOps to handle interfering services collocated in the shared infrastructure.

The framework combines FB and FF control, provisioning resources faster
than other solutions and reducing SLO violations. Combining FF and FB control
with SID results in a framework that adapts to changes in the service and handles
rapid workload variations, reaching stable configurations in an agile way.

We evaluate RobOps performance with an enterprise communication service,
and compared it to baseline solutions such as FB control or thresholds. RobOps
is able to provision resources faster, reducing SLO violations in presence of traffic
surges by a more than a 10% and a 19% when compared to FB and thresholds as

704 C. Chen et al.

well as reducing the performance impact by more than 50%. Similarly, RobOps
can adapt the service model upon hardware changes, reducing the SLO violations
by a 23.5% when compared to FB control.

References

1. Amazon Web Services. https://aws.amazon.com/. Accessed June 2017
2. Google Cloud Platform. https://cloud.google.com/. Accessed June 2017
3. Ali-Eldin, A., Kihl, M., Tordsson, J., Elmroth, E.: Efficient provisioning of bursty

scientific workloads on the cloud using adaptive elasticity control. In: Proceedings
of the 3rd Workshop on Scientific Cloud Computing Date, pp. 31–40. ACM (2012)

4. Burnham, K., Anderson, D.: Multimodel inference understanding AIC and BIC in
model selection. Sociol. Methods Res. 33(2), 261–304 (2004)

5. Di, S., Kondo, D., Cirne, W.: Google hostload prediction based on Bayesian model
with optimized feature combination. J. Parallel Distrib. Comput. 74(1), 1820–1832
(2014)

6. Gandhi, A., Dube, P., Karve, A., Kochut, A., Zhang, L.: Adaptive, Model-driven
Autoscaling for Cloud Applications. In: USENIX 11th International Conference on
Autonomic Computing, pp. 57–64 (2014)

7. Han, R., Ghanem, M., Guo, L., Guo, Y., Osmond, M.: Enabling cost-aware and
adaptive elasticity of multi-tier cloud applications. Future Gener. Comput. Syst.
32, 82–98 (2014)

8. Hasan, M., Magana, E., Clemm, A., Tucker, L., Gudreddi, S.: Integrated and auto-
nomic cloud resource scaling. In: Network Operations and Management Sympo-
sium, pp. 1327–1334. IEEE, April 2012

9. Hellerstein, J., Diao, Y., Parekh, S., Tilbury, D.: Feedback Control of Computing
Systems. Wiley, Hoboken (2004)

10. Jacobson, D., Yuan, D., Scryer, J.N.: Netflix’s Predictive Auto Scaling Engine. The
Netflix Tech Blog. Accessed April 2016

11. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-
based software. In: Proceedings of the 9th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 95–104 (2014)

12. Janert, P.: Feedback Control for Computer Systems. O’Reilly Media Inc.,
Sebastopol (2013)

13. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured
CPU resource provisioning for virtualized servers using Kalman filters. In: Proceed-
ings of the 6th International Conference on Autonomic Computing. ACM (2009)

14. Lange, S., Nguyen-Ngoc, A., Gebert, S., Zinner, T., Jarschel, M., Kopsel, A., Sune,
M., Raumer, D., Gallenmuller, S., Carle, G., Tran-Gia, P.: Performance benchmark-
ing of a software-based LTE SGW. In: Proceedings of the 2015 11th International
Conference on Network and Service Management, pp. 378–383. IEEE Computer
Society (2015)

15. Lim, H., Babu, S., Chase, J.: Automated control for elastic storage. In: Proceedings
of the 7th International Conference on Autonomic Computing. ACM (2010)

16. Ljung, L.: System Identification: Theory for the User. Englewood Cliffs (1987)
17. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance inter-

ference effects for QoS-aware clouds. In: Proceedings of the 5th European Confer-
ence on Computer Systems, pp. 237–250. ACM (2010)

https://aws.amazon.com/
https://cloud.google.com/

RobOps: Robust Control for Cloud-Based Services 705

18. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: AGILE: elastic distributed
resource scaling for infrastructure-as-a-service. In: Proceedings of the 10th Inter-
national Conference on Autonomic Computing, pp. 69–82. USENIX (2013)

19. Padala, P., Hou, K., Shin, K., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant,
A.: Automated control of multiple virtualized resources. In: Proceedings of the 4th
ACM European conference on Computer systems, pp. 13–26. ACM (2009)

20. Ranjan, R., Benatallah, B., Dustdar, S., Papazoglou, M.P.: Cloud resource orches-
tration programming: overview, issues, and directions. IEEE Internet Comput.
19(5), 46–56 (2015)

21. Reiss, C., Tumanov, A., Ganger, G., Katz, R., Kozuch, M.: Heterogeneity and
dynamicity of clouds at scale: Google trace analysis. In: ACM Symposium on Cloud
Computing, pp. 7:1–7:13. ACM (2012)

22. Truong, H., Dustdar, S.: Programming elasticity in the cloud. Computer 48(3),
87–90 (2015)

23. Trushkowsky, B., Bod́ık, P., Fox, A., Franklin, M., Jordan, M., Patterson, D.: The
scads director: scaling a distributed storage system under stringent performance
requirements. In: FAST, pp. 163–176 (2011)

24. Wan, E., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estima-
tion. In: Adaptive Systems for Signal Processing, Communications, and Control
Symposium, pp. 153–158. IEEE (2000)

Serverless Execution of Scientific Workflows

Qingye Jiang1(B), Young Choon Lee2, and Albert Y. Zomaya1

1 The University of Sydney, Sydney, NSW 2008, Australia
qjiang@ieee.org, albert.zomaya@sydney.edu.au

2 Macquarie University, Sydney, NSW 2109, Australia
young.lee@mq.edu.au

Abstract. In this paper, we present a serverless workflow execution sys-
tem (DEWE v31) with Function-as-a-Service (FaaS aka serverless com-
puting) as the target execution environment. DEWE v3 is designed to
address problems of (1) execution of large-scale scientific workflows and
(2) resource underutilization. At its core is our novel hybrid (FaaS and
dedicated/local clusters) job dispatching approach taking into account
resource consumption patterns of different phases of workflow execution.
In particular, the hybrid approach deals with the maximum execution
duration limit, memory limit, and storage space limit. DEWE v3 signif-
icantly reduces the efforts needed to execute large-scale scientific work-
flow applications on public clouds. We have evaluated DEWE v3 on both
AWS Lambda and Google Cloud Functions and demonstrate that FaaS
offers an ideal solution for scientific workflows with complex precedence
constraints. In our large-scale evaluations, the hybrid execution model
surpasses the performance of the traditional cluster execution model with
significantly less execution cost.

Keywords: Scientific workflow · Function-as-a-service · Serverless
computing

1 Introduction

Scientists in different fields such as high energy physics and astronomy are devel-
oping large-scale applications in the form of workflows with many precedence-
constrained jobs, e.g., Montage [10], LIGO [1], and CyberShake [9]. Such sci-
entific workflows often become very complex in terms of the number of jobs,
the number and size of the input and output data, as well as the precedence
constraints between different jobs. Typically, scientists use a workflow manage-
ment system, such as Pegasus [6], Kepler [3] and Polyphony [18] to manage
the execution of their workflows. This requires scientists to setup and configure
clusters as the target execution environment, where the smallest unit of comput-
ing resource is either a physical server or a virtual machine. As the size of the

DEWE v3 is the third generation of our Distributed Elastic Workflow Execution
system for FaaS in public clouds. DEWE v3 only shares the name with the previous
two versions ([11,14]), i.e., it is a complete rewriting.

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 706–721, 2017.
https://doi.org/10.1007/978-3-319-69035-3_51

Serverless Execution of Scientific Workflows 707

workflow grows, setting up and configuring a large-scale cluster often becomes a
challenging task, especially for researchers outside the field of high performance
computing (HPC). Also, it is common to observe serious resource underutiliza-
tion in large-scale clusters, primarily due to the complex precedence constraints
among the various jobs in the workflow. Researchers have always been looking for
new ways to (a) make it easier for researchers to execute large-scale workflows;
and (b) mitigate the resource underutilization issue.

In recent years, Function-as-a-Service (FaaS) such as AWS Lambda [4] and
Google Cloud Functions [8] started to gain attention in public clouds. FaaS offers
compute services that run code in response to events. The computing resource is
automatically managed by the public cloud service provider. The customer pays
for the actual amount of computing resource consumed. The dynamic resource
allocation mechanism and fine-grained pricing model seem to offer a potential
solution for the above-mentioned problems. However, it remains questionable
whether such transient execution environment with stringent resource limits is
capable of executing large-scale workflows with complex precedence constraints.

In this paper, we present DEWE v31, a workflow management and execution
system designed with FaaS as the target execution environment. The specific
contributions of this paper are:

– We demonstrate that FaaS offers an ideal execution environment for scientific
workflows with its dynamic resource allocation mechanism and find-grained
pricing model.

– We propose and validate a hybrid execution model that is effective in dealing
with the maximum execution duration limit, memory limit, and storage space
limit in the FaaS execution environment.

– We demonstrate that DEWE v3 on AWS Lambda is capable of executing large-
scale data-intensive scientific workflows. In our large-scale tests, the hybrid
execution model achieves shorter execution time with only 70% of the execu-
tion cost, as compared with the traditional cluster execution model.

– DEWE v3 significantly simplifies the effort needed to execute large-scale sci-
entific workflows on public clouds.

We evaluate the performance of DEWE v3 on both AWS Lambda and
Google Cloud Functions with Montage scientific workflows2. The hybrid exe-
cution enabled by DEWE v3 takes advantage of fine-grained pricing of FaaS
and efficient resource utilization of local clusters. The performance gain from
the hybrid execution becomes more apparent as workflows become larger scale.

The rest of this paper is organized as follows. Section 2 describes the motiva-
tion of this work. Section 3 describes the design and implementation of DEWE
v3. In Sect. 4, we evaluate the performance of DEWE v3 on both AWS Lambda
and Google Cloud Functions, using a set of Montage workflows as test cases.
Section 5 reviews related work, followed by our conclusions in Sect. 6.
1 The source code is available from https://github.com/qyjohn/DEWE.v3.
2 Montage (http://montage.ipac.caltech.edu/) is an astronomical image mosaic engine

that stitches sky images dealing with hundreds or even thousands of dependent
jobs. [10].

https://github.com/qyjohn/DEWE.v3
http://montage.ipac.caltech.edu/

708 Q. Jiang et al.

(a) Montage workflow. (b) Detailed visualization of a 6.0-degree Montage workflow
running on 4 m1.xlarge EC2 instances using DEWE v1.

Fig. 1. Execution of Montage Workflow.

2 Motivation

A workflow can be represented by a directed acyclic graph (DAG), where the
vertices represent the tasks and the edges represent the precedence constraints.
Figure 1a describes the structure of a Montage workflow. As the size and com-
plexity of a workflow increases, managing its execution on a cluster with multiple
nodes becomes a complex issue.

Most existing workflow management systems use clusters as the target exe-
cution environment. A cluster consists of a set of computing resources called
worker nodes, where a worker node can be either a physical server or a virtual
machine. To execute a workflow, scientists often need to perform a set of admin-
istrative tasks including (a) provisioning the computing resources needed; (b)
setting up a cluster with an appropriate shared file system; (c) deploying the
workflow management system on a master node and the job execution agent on
the worker nodes; (d) monitoring the health status of all worker nodes; and (e)
de-provisioning the computing resources when the work is done. These adminis-
trative tasks can be quite difficult for scientists without dedicated hardware and
support staff. It is common that people with different levels of expertise come
up with clusters with significant performance differences with the same set of
hardware.

Because of the precedence constraints in a workflow, in certain phases during
the execution only a small number of jobs are eligible to run. The traditional
cluster approach presents a classical dilemma in workflow scheduling and execu-
tion – adding more computing resources to the execution environment can speed
up the execution of certain phases of a workflow, but also results in significant
resource underutilization during other phases of the same workflow. In recent
years, researchers have attempted to address the resource underutilization issue
by taking advantage of the elasticity of public clouds. This is achieved by dynam-
ically adding worker nodes to – or removing worker nodes from – the execution
environment base on the actual workload. However, such practice often results in
higher costs because of the one-hour minimum charge pricing model commonly
practiced by most public cloud service providers. Figure 1b visualizes the exe-
cution of a 6.0-degree Montage workflow running on a cluster with 4 m1.xlarge
EC2 instances using the DEWE v1 workflow management system. The progress

Serverless Execution of Scientific Workflows 709

of the Montage workflow has a four-stage pattern. During the second stage only
two single-thread jobs mConcatFit and mBgModel are running one after another.
It took 2025 s to complete the execution of the workflow, with the total cost
being 4 instance-hours. If we remove 3 worker nodes after the first phase, then
add 3 worker nodes back for the third phase, then the total cost would become
7 instance-hours. As such, dynamically changing the number of worker nodes
in the workflow execution environment is not economically feasible without a
finer-grained pricing model.

The scientific computing community has long been searching for a work-
flow management system that is easy to setup and use. Ideally, scientists do
not need to know any details about the underlying computing resource such as
worker node and file system. The amount of computing resource available in the
workflow execution environment can be easily reconfigured. The execution cost
should be the actual amount of computing resource consumed, not including the
amount of computing resource that is wasted. However, this can not be easily
achieved when the smallest unit of computing resource is a physical server or a
virtual machine with an hourly pricing model.

The emergence of FaaS in public clouds provides a potential solution to
the above-mentioned problem. AWS introduced Lambda in 2014 and Google
introduced Cloud Functions in 2016. With FaaS, computing resource is auto-
matically provisioned by the service provider when the function is invoked, and
de-provisioned when the function finishes execution. Since the customer does
not have access to the execution environment running the code, FaaS is often
referred to as “serverless computing”. The customer pays for the actual amount
of computing resource consumed, which is represented by the size of the function
invocation environment times the duration of the invocation.

In light of the recent advancements in FaaS we develop DEWE v3, a workflow
management and execution system with FaaS as the target execution environ-
ment. With DEWE v3, scientists only need to provision a single server to run
the workflow management system. The jobs in the workflow are executed by
the FaaS function, whose computing resource is automatically provisioned and
de-provisioned by the service provider on demand. DEWE v3 uses object stor-
age service for data staging, including workflow definition, binaries, input and
output files. Researchers do not need to setup and configure a shared file system
that can be accessed from all worker nodes.

3 Design and Implementation

The DEWE v3 system (Fig. 2) consists of three major components: the workflow
management system, the FaaS job handler, and the local job handler. The system
utilizes object storage service for binary and data staging. Different components
in the system communicate with each other using a set of queues.

710 Q. Jiang et al.

dag.xml

Object Storage
Workflow
|- dag.xml
|- [bin]
|- [workdir]

Compute
Workflow

Management
System

FaaS
FaaS

Job Handler
(short jobs)

Compute
Local

Job Handler
(long jobs)

Queue

Job Queue
(short/long running)

Queue

Ack Queue

jobs jobs

ACK

ACKACK

binary and input data
output data

jobs

No fica on
Dead Le er

failed jobsfailed jobs

(1)

(2) (3)

(4)
(5)

Fig. 2. The architecture of DEWE v3.

3.1 Workflow Management System

The workflow management system runs on a server, which we call the manage-
ment node. The management node can be an EC2 instance, a GCE instance, or
a traditional server or virtual machine. The workflow management system reads
(1) the workflow definition (dag.xml) from object storage, parses the workflow
definition and stores job dependencies information into a data structure. If a job
has no pending dependency precedence requirements, the job is eligible to run
and is published to a job queue (2), from which it will be picked up by a job
handler for execution (3). When a job is successfully executed by a job handler,
the job handler sends an acknowledgement message to an ACK queue (4), indi-
cating the job is now completed. The workflow management system polls the
ACK queue for completed jobs (5) and updates the status of all pending jobs
that depend on the completed jobs.

The FaaS execution environment usually has a maximum execution dura-
tion limit for each invocation. The maximum execution duration limit for AWS
Lambda is 300 s. The maximum execution duration limit for Google Cloud Func-
tions is 540 s. In DEWE v3, we can define a set of long-running jobs (long.xml)
for the workflow. The execution time of a particular job can be estimated from
module testing or previous experiences, or derived based on the time and space
complexity of the algorithm. If a job is expected to finish execution within the
maximum execution duration limit, it is published into a common job queue,
otherwise it is published into a specific job queue for long-running jobs.

3.2 FaaS Job Handler

The FaaS job handler is a function deployed to the respective FaaS service.
For both AWS Lambda and Google Cloud Functions, the deployment process
includes only three simple steps in the web console: (a) uploading the function

Serverless Execution of Scientific Workflows 711

package to object storage; (b) specifying the name and method to run; and (c)
specifying the memory footprint and default execution timeout for the function.
DEWE v3 automatically creates the other components (such as the queues)
needed at start up, and terminates these components at shut down.

The FaaS job handler is invoked by incoming messages in the common job
queue. Each message represents a job that is eligible to run. By design, an
AWS Lambda invocation can contain one or more jobs, while a Google Cloud
Functions invocation contains only one job. The FaaS job handler parses the
job definitions for the names of the binary and input/output files, as well as
the command line arguments. It downloads the binaries and input files from
object storage into a temporary folder, then executes the jobs in the temporary
folder. When the jobs are successfully executed, the FaaS job handler uploads the
output files back to object storage. For both AWS Lambda and Google Cloud
Functions, the FaaS execution environment has only 500 MB storage space.
Because of this limit, the FaaS job handler deletes all the temporary files when
a batch of jobs are successfully executed. A job might fail to execute in the
FaaS execution environment for various reasons, including out-of-memory error,
out-of-disk-space error, or maximum execution time limit exceeded. The FaaS
job handler has a fail over mechanism. If a particular job fails to execute in the
FaaS execution environment, it is sent to a dead letter queue for the workflow
management system to pick up. The workflow management system resubmits
the job to the long-running job queue, from which it is picked up by the local
job handler for execution.

Because the FaaS job handler deletes all temporary files, duplicated data
transfer between object storage and the FaaS execution environment might occur
during the execution, introducing additional communication cost. For example,
a 2.00-degree Montage workflow contains 300 mProjectPP jobs, 836 mDiffFit
jobs, and 300 mBackground jobs. The sizes of the mProjectPP, mDiffFit and
mBackground binaries are 3.2 MB, 0.4 MB and 3.2 MB respectively. If the
required binaries have to be transferred once for each and every job, then the
binaries alone would create approximately 2 GB inbound data transfer from
object storage to the FaaS execution environment. For bigger workflows with a
larger number of similar jobs, such duplicated data transfer can become a serious
issue.

The FaaS job handler implements two levels of caching for binaries and
input/output data. The first level is ‘transient’ caching, which applies to multi-
ple jobs within the same invocation in AWS Lambda. With transient caching,
the FaaS job handler caches the binaries and input/output data within the same
invocation, but deletes them at the end of the invocation. If in an invocation the
FaaS job handler receives 10 mProjectPP jobs then the mProjectPP binary only
needs to be downloaded once, reducing 90% of the repeated data transfer for
the mProjectPP binary. The second level is ‘persistent’ caching, which applies
to multiple invocations with the same FaaS execution environment. Both AWS
Lambda and Google Cloud Functions reuse the underlying execution environ-
ments for performance considerations. If during an invocation a file is created

712 Q. Jiang et al.

under the /tmp folder, the same file is accessible in other invocations when the
execution environment is reused. However, neither AWS nor GCP (Google Cloud
Platform) discloses how the FaaS execution environment is reused, so the avail-
ability of files created in previous invocations becomes non-deterministic. With
persistent caching, the FaaS job handler only caches the binaries for future invo-
cations, because the accumulated size of the input/output data is usually bigger
than the amount of storage available. When the FaaS job handler is invoked, it
first checks the /tmp folder for previously cached binaries, and transfers only the
missing binaries for the invocation. Such persistent caching approach is inconsis-
tent with the stateless design principle. In DEWE v3 this is an optional feature
that can be turned on or off.

3.3 Local Job Handler

The local job handler is a multi-thread application running on one or more worker
nodes. The level of concurrency equals the number of CPU cores available on
the worker node. The local job handler polls the long-running job queue for
jobs to execute. When a job is received from the queue, the local job handler
parses the job definition for the name of the binary and input/output files,
as well as the command line arguments. It downloads the binary and input
files from object storage into a temporary folder, then executes the job in the
temporary folder. When the job is successfully executed, the job handler uploads
the output files back to object storage. Because the worker node usually has
sufficient storage space, a caching mechanism is implemented to cache all the
binaries and input/output files to avoid duplicated data transfer.

DEWE v3 has an optional switch to enforce local execution. When local
execution is enforced, all the jobs in the workflow are submitted to the long-
running job queue, from which they are picked up by the local job handler for
execution. In this case, DEWE v3 is said to be running in traditional cluster
mode.

3.4 Others

DEWE v3 is capable of running in three different modes: (a) traditional cluster
mode where all jobs are executed by the local job handler running on a cluster;
(b) serverless mode where all jobs are executed by the FaaS job handler running
in the FaaS execution environment; and (c) hybrid mode where the short jobs
are executed by the FaaS job handler, while the long-running jobs are executed
by the local job handler.

On the management node we run an instance of the local job handler by
default. With this hybrid approach, DEWE v3 is capable of handling both
short and long running jobs, regardless of the maximum execution duration
limit imposed by the FaaS execution environment, without the need to provi-
sion additional computing resource. To fully utilize the computing resource on

Serverless Execution of Scientific Workflows 713

Table 1. The small-scale Montage workflows used in the initial evaluation.

0.25 Degree 0.50 Degree 1.00 Degree 2.00 Degree

Jobs: mProjectPP 12 32 84 300

Jobs: mDiffFit 21 73 213 836

Jobs: mConcatFit 1 1 1 1

Jobs: mBgModel 1 1 1 1

Jobs: mBackground 12 32 84 300

Jobs: mImgtbl 1 1 1 1

Jobs: mAdd 1 1 1 1

Jobs: mShrink 1 1 1 1

Jobs: mJPEG 1 1 1 1

Input file count 17 37 89 305

Input file size (MB) 25 65 170 630

Output file count 117 353 981 3, 713

Output file size (MB) 248 632 1, 694 6, 069

the management node, DEWE v3 provides the option to route a certain per-
centage of the short jobs to the long-running job queue, forcing the workflow to
be executed in hybrid mode.

4 Evaluation

In this section, we evaluate the performance of DEWE v3 on both AWS Lambda
and Google Cloud Functions. The evaluation is divided into three parts – initial
evaluation, performance tuning strategy, and large-scale evaluation. For all the
experiments described in this section, we perform the same experiment three
times, and report the average number as the test result.

While DEWE v3 is applicable to other workflow applications, our evaluation
in this study is conducted using Montage workflows due to: (1) the Montage
source code and data is publicly available, (2) the project is well maintained and
documented so that researchers can easily run the Montage workflow with various
tools, and (3) Montage is widely used by the workflow research community as
a benchmark tool to compare the performance of different workflow scheduling
algorithms and workflow management systems [2,12,13,17].

4.1 Initial Evaluation

In this evaluation, we use four small-scale Montage workflows as test cases – a
0.25-degree Montage workflow, a 0.50-degree Montage workflow, a 1.00-degree
Montage workflow, and a 2.00-degree Montage workflow. Table 1 lists the char-
acteristics of these small-scale Montage workflows.

714 Q. Jiang et al.

Fig. 3. Small-scale Montage workflows running on AWS and GCP with respect to
different data sizes, 0.25, 0.50, 1.00 and 2.00, respectively.

With AWS, the management node is a c3.xlarge EC2 instance in the us-
east-1 region. The EC2 instance has 4 vCPU, 7.5 GB memory and 100 GB
general-purpose SSD EBS volume. The common job queue is a Kinesis stream
with 10 shards, and the batch size of the Lambda function trigger is set to
10. The Lambda execution environment has 1536 MB memory. With GCP, the
management node is a customized n1-highcpu-4 GCE instance in the us-central1
region. The GCE instance also has 4 vCPU, 7.5 GB memory and 100 GB SSD
persistent storage. The Google Cloud Functions execution environment has 2048
MB memory.

In this evaluation, we carry out three sets of experiments. The first set of
experiments are run in serverless mode. The only exception is the mImgtbl and
mAdd jobs in the 2.00-degree Montage workflow are executed by the local job han-
dler, because the size of the input/output files exceeds the storage space available
in the FaaS execution environment. For this particular test, the 2.00-degree Mon-
tage workflow is executed in hybrid mode. The second set of experiments are
run in traditional cluster mode, where all jobs are executed by the local job han-
dler running on the management node. The third set of experiments are run in
hybrid mode to evaluate the effect of persistent caching, with the mConcatFit,
mBgModel, mAdd, mShrink and mJPEG jobs being executed by the local job han-
dler running on the management node. In serverless mode, the execution time
is noted as FaaS execution time. In cluster mode, the execution time is noted
as local execution time. In hybrid mode, the execution time is noted as hybrid
execution time. We do not compare the test results obtained from AWS and
GCP. Instead, we focus on comparing the execution time observed on the same
cloud.

The local and FaaS execution time obtained from AWS is presented in Fig. 3a.
In all four test cases, FaaS execution time is slightly longer than local execution
time. For the 0.25-degree workflow, FaaS execution time is 80% greater than
local execution time. For the 0.50-degree workflow, FaaS execution time is 56%
greater than local execution time. For the 1.00-degree workflow, FaaS execution
time is 23% greater than local execution time. For the 2.00-degree workflow,
FaaS execution time is 11% greater than local execution time. The FaaS execu-
tion environment has less vCPU and memory resource than the local execution
environment. The local job handler caches all binaries and input/output files

Serverless Execution of Scientific Workflows 715

throughout the execution, while the FaaS job handler downloads them for each
invocation. It is expected that it takes longer for the same job to run by the FaaS
job handler. When the workflow is small, the concurrent execution of a small
number of jobs by the FaaS job handler is not sufficient to compensate for the
above-mentioned performance lost, resulting in relatively longer FaaS execution
time. As the size of the workflow grows, the concurrent execution of a larger
number of jobs by the FaaS job handler gradually offset the above-mentioned
performance lost, reducing the difference between FaaS execution time and local
execution time. Considering the small difference between FaaS and local execu-
tion times for the 2.00-degree workflow, AWS Lambda seems to be a promising
execution environment for workflows with a high level of concurrency.

The local and FaaS execution time obtained from GCP is presented in Fig. 3b.
For the 0.25-degree workflow, FaaS execution time is 84% greater than local exe-
cution time. For the 0.50-degree workflow, FaaS execution time is 123% greater
than local execution time. For the 1.00-degree workflow, FaaS execution time is
99% greater than local execution time. The 2.00-degree workflow fails to exe-
cute on Google Cloud Functions within a reasonable time frame due to a large
number of “quota exceeded” errors. Google Cloud Functions has a default 1 GB
per 100 s quota for inbound and outbound socket data transfer. Montage is a
data-intensive workflows, the large amount of data transfer quickly consumes
the above-mentioned quota, resulting in the “quota exceeded” errors. When this
occurs, Google Cloud Functions waits for the next quota period to execute the
jobs waiting in the queue, causing the extra increase in FaaS execution time. In
our evaluations we are given a significant quota increase from Google, allowing
us to achieve 10 GB inbound and outbound socket data transfer per 100 s. With
this new limit, we still frequently encounter the same error for the 2.00-degree
Montage workflow. As such, we carry out our subsequent evaluations on AWS
only.

The effect of persistent caching is presented in Fig. 3c. When the batch size
is 1, the effect of caching is not obvious for smaller workflows (0.25-degree and
0.50-degree), but becomes significant for bigger workflows (1.00-degree and 2.00-
degree). This is because the FaaS job handler executes only 1 job during each
invocation. The transient caching mechanism is not in effect, and persistent
caching becomes the only optimization for binary and data staging. When the
batch size is 10, the effect of persistent caching is obvious for smaller workflows
(0.25-degree, 0.50-degree and 1.00-degree), but becomes insignificant for bigger
workflows (2.00-degree). This is because the FaaS job handler now executes 10
jobs during each invocation. The transient caching mechanism already elimi-
nates 90% of the duplicated transfer for the binaries, with very little space left
for further optimization with persistent caching. Therefore, for the subsequent
experiments reported in this paper, we turn off the persistent caching option.

4.2 Performance Tuning

In this evaluation, we use a 4.00-degree Montage workflow as the test case. The
workflow has 802 mProjectPP jobs, 2,316 mDiffFit jobs, and 802 mBackground

716 Q. Jiang et al.

jobs, making it an ideal use case for parallel optimization. The workflow has
817 input files with a total size of 2,291 MB, and 10,172 output files with a
total size of 17,010 MB. We execute the 4.00-degree Montage workflow in hybrid
mode, with the mConcatFit, mBgModel, mAdd, mShrink and mJPEG jobs being
executed by the local job handler running on the management node. These jobs
are not capable of running in the Lambda execution environment because they
run longer than the maximum execution duration limit, or they require more
storage or memory resource than what is available. To establish a baseline for
performance tuning, we execute the workflow in traditional cluster mode on the
management node. The local execution time observed is 950 s.

In hybrid mode, there are three parameters that can affect hybrid execution
time, including (a) the number of shards in the Kinesis stream, (b) the batch
size for each invocation, and (c) the percentage of short jobs that are handled by
the local job handler. In this evaluation, we carry out three sets of experiments,
including (a) a fixed number of shards, all short jobs are executed by the FaaS
job handler, with the variable being the batch sizes; (b) a fixed batch size, all
short jobs are executed by the FaaS job handler, with the variable being the
number of shards; and (c) a fixed number of shards and a fixed batch size, with
the variable being the percentage of short jobs executed by the local job handler.

In test (a), we used a Kinesis stream with 10 shards as the common job
queue, then change the batch size of the Lambda function trigger. As shown in
Fig. 4a, the hybrid execution time decreases when the batch size increases. With
transient caching, the FaaS job handler caches the binaries and input/output files
needed for a particular invocation. Increasing the batch size reduces the number
of invocations and the amount of duplicated data transfer, hence the decrease in
hybrid execution time. However, the batch size can not be increased indefinitely,
because the size of the files to be cached gradually exceeds the storage space
limit. For the Montage workflow, We observe that the maximum batch size we
can achieve is 30. When the batch size is bigger, we frequently observe jobs fail
due to “no space left on device” errors.

In test (b), we set the batch size of the Lambda function trigger to 10, then
use Kinesis streams with different number of shards as the common job queue.
As shown in Fig. 4b, the hybrid execution time decreases when the number of
shards increases. With AWS Lambda, the number of concurrent invocations
equals to the number of shards in the Kinesis stream. Increasing the number
of shards increases the number of concurrent invocations, hence the decrease in
hybrid execution time. As the number of shards continues to increase, the hybrid
execution time gradually converges. This is because the workflow has a set of
mConcatFit, mBgModel, mAdd, mShrink and mJPEG single-thread jobs that run in
a sequential manner. The mBgModel job alone takes approximately 350 s to run,
accounting for approximately 45% of the hybrid execution time. These jobs now
become the dominating factor in the hybrid execution time.

In test (c), we use a Kinesis stream with 10 shards as the common job queue,
the batch size of the Lambda function trigger is set to 30. In addition to the
long-running jobs such as mConcatFit, mBgModel, mAdd, mShrink and mJPEG,

Serverless Execution of Scientific Workflows 717

Fig. 4. Execution time of a 4.00-degree Montage workflow on AWS.

Table 2. Large-scale test environments. Hybrid environments differ by the numbers of
shards, 28 and 56, respectively; hence Hybrid-28 and Hybrid-56.

Cluster-1 Cluster-2 Cluster-3 Hybrid-28 Hybrid-56

Instance type c3.2xlarge c3.2xlarge c3.2xlarge c3.2xlarge c3.2xlarge

Number of nodes 1 2 3 1 1

Total vCPU cores 8 16 24 8 8

Total memory (GB) 15 30 45 15 15

Total storage (GB) 500 1000 1500 500 500

Job stream shards 0 0 0 28 56

Hourly price (USD) 0.42 0.84 1.26 0.84 1.26

Lambda function (USD) - - - 0.06 0.06

Total cost (USD) 0.42 0.84 1.26 0.90 1.32

we schedule a fraction of the short jobs to the local job handler running on the
management node. As shown in Fig. 4c, the hybrid execution model effectively
utilize the idling computing resource on the management node, resulting in the
decrease in hybrid execution time. However, when the amount of jobs routed to
the local job handler exceeds the capacity of the management node, the hybrid
execution time starts to increase again.

4.3 Large-Scale Evaluation

In this evaluation, we use a 8.00-degree Montage workflow with a total of 13,274
jobs as the test case. The workflow has 2,655 mProjectPP jobs, 7,911 mDiffFit
jobs, and 2,655 mBackground jobs. The workflow has 4,348 input files with a
total size of 8,524 MB, and 32,753 output files with a total size of 58,561 MB.

Traditionally, when scientists need to speed up the execution of a workflow,
they add worker nodes to the cluster. With the hybrid execution model, we sim-
ply use a Kinesis stream with more shards to increase the number of concurrent
invocations. To compare the performance between the traditional cluster execu-
tion model and the proposed hybrid execution model, we use the local execution
time of the workflow on the management node as the baseline. The management
node is a c3.2xlarge EC2 instance in the us-east-1 region, with 8 vCPU cores,

718 Q. Jiang et al.

Fig. 5. Execution time of a 8.00-degree Montage workflow on AWS.

15 GB memory and 500 GB general-purpose SSD EBS volume. Then we run two
sets of experiments with the same workflow. In the first set of experiments, we
compare (a) the cluster execution time on a two-node cluster with 2 × c3.2xlarge
EC2 instances with (b) the hybrid execution time on 1 × c3.2xlarge manage-
ment node with 28 shards in the Kinesis stream, where 20% of the short jobs are
executed by the local job handler. In the second set of experiments, we compare
(a) the cluster execution time on a three-node cluster with 3 × c3.2xlarge EC2
instances with (b) the hybrid execution time on 1 × c3.2xlarge management
node with 56 shards in the Kinesis stream, where 15% of the short jobs are exe-
cuted by the local job handler. For both sets of experiments, the hourly cost of
both execution environments is the same. In this test, the execution cost of the
Lambda function falls within the AWS Lambda free-tier offering. We estimate
the execution cost of the Lambda function based on the number and duration
of invocations obtained from CloudWatch and multiply them with the standard
pricing. The details of these test environments are listed in Table 2.

Figure 5 presents the test results. In the first set of experiments, the tradi-
tional cluster execution model (Cluster-2) achieves 18% speed-up while the new
hybrid execution model (Hybrid-28) achieves 22% speed-up, as compared with
the baseline obtained on Cluster-1. In the second set of experiments, the tradi-
tional cluster execution model (Cluster-3) achieves 20% speed-up while the new
hybrid execution model (Hybrid-56) achieves 25% speed-up, as compared with
the baseline obtained on Cluster-1. Note that Hybrid-28 achieves more speed-up
than Cluster-3, while the total cost of Hybrid-28 is only 70% of Cluster-3.

5 Related Work

There have been an abundance of literature on workflow management systems
such as DAGMan [5], Pegasus [6] and Kepler [3]. These frameworks use clusters
with multiple worker nodes for as the execution environment. Such approaches
tend to be heavy-weight and are inaccessible to scientists who lack dedicated
hardware and support staff.

Serverless Execution of Scientific Workflows 719

Polyphony [18] was designed and developed with AWS as the target execu-
tion environment, but the software is not accessible to the workflow researcher
community. The work in [15] deals with scheduling scientific workflows across
multiple geographically distributed resource sites; however, the scale of workflows
is still limited to small, e.g., 255 tasks per workflow. All of the above-mentioned
workflow management systems exhibit inefficiency in scheduling a large number
of short-life jobs across multiple worker nodes.

To execute large scale scientific workflows in a cost effective way, the comput-
ing resources needed must be carefully planned. Such planning usually involves
cost and performance trade-off for scientists. In recent years, researchers spend
a significant amount of effort on scheduling and resource allocation algorithms
to meet certain deadline and cost constraints [7,11–13,15,17,19]. These works
are rather complementary and/or supplementary that can significantly benefit
from using DEWE v3.

AWS introduced Lambda [4] in 2014, while Google introduced Cloud Func-
tions [8] in 2016. Malawski [16] reviewed the various options of executing sci-
entific workflows in serverless infrastructures. The author created a prototype
workflow executor function using Google Cloud Functions, with Google Cloud
Storage for data and binary storage. The author used 0.25-degree and 0.4-degree
Montage workflows to evaluate the prototype and found the approach highly
promising. Unlike the test cases in our study (up to 8.00-degree Montage work-
flow), the evaluation in [16] is limited to small-scale workflows. Also, the work
in [16] failed to notice the impact of the limited inbound and outbound socket
data quota on the execution of data-intensive scientific workflows.

6 Conclusion

In this paper, we present DEWE v3, a workflow management system with FaaS
as the target execution environment. We present the design and implementation
of DEWE v3, as well as its capability in executing large-scale scientific work-
flows. We demonstrate that AWS Lambda offers an ideal execution environment
for scientific workflow applications with complex precedence constraints. Google
Cloud Functions, in its current form, is not suitable for executing scientific work-
flow applications due to its limited inbound and outbound socket data quota.

We propose and validate a hybrid execution model that is effective in dealing
with the various limits imposed by the FaaS execution environment. We take
advantage of the hybrid execution model to speed up the workflow execution
by fully utilizing the computing resource available on the management node.
The largest scale experiment presented in this paper is an 8.00-degree Montage
workflow with over 13,000 jobs and more than 65 GB input/output data. The
hybrid execution mode achieves shorter execution time with only 70% of the
execution cost, as compared to the traditional cluster execution mode. Since
each Lambda function invocation can handle up to 30 jobs in one batch, further
speed-up can be achieved by scheduling jobs with precedence requirements into
a the same invocation. This will be addressed in our future works.

720 Q. Jiang et al.

DEWE v3 reduces the effort needed to execute large-scale scientific work-
flows. It liberates scientist from the tedious administrative tasks involved in the
traditional cluster approach, allowing them to focus on their own research work.

References

1. Abramovici, A., Althouse, W.E., et al.: LIGO: the laser interferometer
gravitational-wave observatory. Science 256(5055), 325–333 (1992)

2. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds. Future Gener. Comput.
Syst. 29(1), 158–169 (2013)

3. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler:
an extensible system for design and execution of scientific workflows. In: Proceed-
ings of 2004 16th International Conference on Scientific and Statistical Database
Management, pp. 423–424 (2004)

4. Amazon Web Services: AWS Lambda (2014), https://aws.amazon.com/lambda/
5. Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow management

in condor. In: Workflows for e-Science, pp. 357–375 (2007)
6. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi,

K., Livny, M.: Pegasus: mapping scientific workflows onto the grid. In: Dikaiakos,
M.D. (ed.) AxGrids 2004. LNCS, vol. 3165, pp. 11–20. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-28642-4 2

7. Duan, R., Prodan, R., Fahringer, T.: Performance and cost optimization for multi-
ple large-scale grid workflow applications. In: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, p. 12. ACM (2007)

8. GCP: Google Cloud Functions (2016), https://cloud.google.com/functions/
9. Graves, R., Jordan, T.H., et al.: Cybershake: a physics-based seismic hazard model

for Southern California. Pure. appl. Geophys. 168(3–4), 367–381 (2010)
10. Jacob, J.C., Katz, D.S., et al.: Montage: a grid portal and software toolkit for

science-grade astronomical image mosaicking. Int. J. Comput. Sci. Eng. 4(2), 73–
87 (2009)

11. Jiang, Q., Lee, Y.C., Zomaya, A.Y.: Executing large scale scientific workflow ensem-
bles in public clouds. In: Proceedings of 2015 44th IEEE International Conference
on Parallel Processing (ICPP), pp. 520–529. IEEE (2015)

12. Juve, G., Deelman, E.: Resource provisioning options for large-scale scientific work-
flows. In: Proceedings of 2008 4th IEEE International Conference on eScience, pp.
608–613. IEEE (2008)

13. Lee, Y.C., Zomaya, A.Y.: Stretch out and compact: Workflow scheduling with
resource abundance. In: Proceedings of 2013 13th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), pp. 219–226. IEEE
(2013)

14. Leslie, L.M., Sato, C., Lee, Y.C., Jiang, Q., Zomaya, A.Y.: DEWE: A framework
for distributed elastic scientific workflow execution. In: Proceedings of 2015 13th
Australasian Symposium on Parallel and Distributed Computing (AusPDC), pp.
3–10 (2015)

15. Maheshwari, K., Jung, E.S., Meng, J., Vishwanath, V., Kettimuthu, R.: Improv-
ing multisite workflow performance using model-based scheduling. In: Proceed-
ings of 2014 43rd IEEE International Conference on Parallel Processing (ICPP),
pp. 131–140. IEEE (2014)

https://aws.amazon.com/lambda/
http://dx.doi.org/10.1007/978-3-540-28642-4_2
https://cloud.google.com/functions/

Serverless Execution of Scientific Workflows 721

16. Malawski, M.: Towards serverless execution of scientific workflows-hyperflow case
study. In: Proceedings of 2016 11th Workshop on Workflows in Support of Large-
Scale Science (WORKS@ SC), pp. 25–33 (2016)

17. Malawski, M., Juve, G., Deelman, E., Nabrzyski, J.: Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds.
Future Gener. Comput. Syst. 48, 1–18 (2015)

18. Shams, K.S., Powell, M.W., et al.: Polyphony: a workflow orchestration frame-
work for cloud computing. In: Proceedings of 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 606–611 (2010)

19. Tanaka, M., Tatebe, O.: Disk cache-aware task scheduling for data-intensive and
many-task workflow. In: Proceedings of 2014 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 167–175. IEEE (2014)

A Market-Based Approach for Detecting
Malware in the Cloud via Introspection

Nada Alruhaily1(B), Carlos Mera-Gómez1,2, Tom Chothia1,
and Rami Bahsoon1

1 School of Computer Science, University of Birmingham, Edgbaston B15 2TT, UK
{N.M.Alruhaily,cxm523,T.P.Chothia,R.Bahsoon}@cs.bham.ac.uk

2 Facultad de Ingenieŕıa en Electricidad y Computación,
Escuela Superior Politécnica del Litoral, ESPOL, ESPOL Polytechnic University,

Campus Gustavo Galindo Km 30.5 Vı́a Perimetral,
P.O. Box 09-01-5863 Guayaquil, Ecuador

cjmera@espol.edu.ec

Abstract. Traditional anti-virus (AV) solutions are known for their con-
siderable consumption of resources, limiting their usefulness on the cloud.
In contrast, cloud-based lightweight malware monitoring approaches con-
sume fewer resources than a full malware scan would normally require,
however, they are often prone to false alarms; limiting their effectiveness.
In this paper, such a trade-off is addressed by proposing a prioritisation
approach, consisting of two protection layers (i.e. lightweight and full
malware scanning) to conduct a scalable and effective malware inspec-
tion of the cloud Virtual Machines (VMs). The novel contribution of this
paper is a market-inspired mechanism that utilises lightweight scanners
to prioritise the AV scanning process, by deciding which VM should be
thoroughly scanned and when; it will trigger then a full malware scan
on a pre-defined percentage of the most critical VMs. The conducted
evaluation shows that the framework provides a cost-effective scanning
method, while being able to confirm the infection status of the most
critical set of VMs; thus maintaining a low rate of false alarms.

1 Introduction

The reliance and popularity of the cloud as an operating and computing envi-
ronment have witnessed an increase in malicious activities. Using traditional
anti-virus (AV) solutions on cloud Virtual Machines (VMs) can lead to a consid-
erable power and memory consumption due to their use of signatures, resulting
in an insufficient use of the cloud and VMs resources. A number of security ven-
dors and researchers have endeavoured to address this by proposing cloud-based
compatible malware scanning and monitoring techniques to detect abnormal
behaviour and malware infections. Garfinkel et al. [6], for example, introduced
a technique that allows one VM to monitor and modify the current state of
another VM from the outside, while remaining hidden. This technique is referred
to as Virtual Machine Introspection (VMI); it helps monitoring targeted VMs

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 722–730, 2017.
https://doi.org/10.1007/978-3-319-69035-3_52

A Market-Based Approach for Detecting Malware in the Cloud 723

by checking their memory pages, Windows registry and disk for symptoms of
malware infections. VMI can detect malicious behaviour (which can be shared
among a number of malware families), as opposed to matching signatures. More-
over, VMI-based malware scanners, that perform external monitoring, are usu-
ally shared between a number of VMs. Therefore, such a technique can offer a
light monitoring option for the cloud’s VMs (e.g. Bitdefender Hypervisor Intro-
spection (HVI) [3], Cloudidea [5], and Forensic Virtual Machines (FVMs) [9]).
FVMs is an architecture for using VMI; it make uses of mini-VMs that perform
external, live and distributed monitoring of the state of other VMs.

Although the use of lightweight monitoring approaches (e.g. FVMs) can help
the cloud provider to reduce the resources consumed [13], and monitor early
signs of infection; this could be at the expense of wrongly flagging more VMs
as infected. This is because such techniques are based on identifying symptoms
that exist in both malicious and normal behaviour, but in different proportions
or combinations; where in some cases a clear-cut distinction between the two
behaviours is not easy to identify. In contrast, signature-based malware detec-
tion systems are known to accurately identify known malware threats with an
extremely low rate of false alarms [8], but with the cost of using a relatively
high percentage of the VM resources during the scan. Accordingly, the objective
of this paper is to provide a way of balancing the trade-off between scanning
performance (in terms of the resources used) and accuracy (in terms of the false
alarms generated), when detecting malware infections on the cloud.

Towards fulfilling this objective, this paper proposes an early prioritisation
system, which consists of two layers of protection (i.e. lightweight and full mal-
ware scanning) for a more in-depth scan of customers’ VMs. The framework
benefits from the fast and light scanning performance of FVMs to identify, at
any given time, a pre-defined percentage of VMs that are most likely to contain
malware. It will then trigger a full malware scan on this set of VMs. The novelty
of this technique is that it utilises a market mechanism to guide the full scan-
ning process based on the criticality of the pieces of information gathered by the
distributed monitoring carried out using VMI-based lightweight scanners.

2 Preliminaries

2.1 Virtualisation and Virtual Machine Introspection

Cloud infrastructure relies on virtualisation technology, which allows dividing
the resources between multiple instances of VMs that, in turn, results in the
efficient use of existing computing resources. Virtual Machine Introspection is a
new technique that uses virtualisation to enable one VM on the cloud to scan,
monitor and modify the memory pages of another VM from the outside, when
granted the required privileges. VMI was first introduced by Garfinkel et al.
[6], who suggested that instead of the Intrusion Detection System (IDS) being
inherent within the customer’s VM, the IDS can be pulled outside the host,

724 N. Alruhaily et al.

which will give it a good overview of the targeted VM. Furthermore, such out-
of-the-guest malware monitoring solution decreases the risk of direct attacks on
the scanner, in contrast with in-VM malware detection solutions [6].

2.2 Forensic Virtual Machines

Based on the VMI approach, Harrison et al. [9] introduced a framework that
makes use of mini-VMs (referred to as Forensic Virtual Machines) to inspect
the internal status of other VMs, in order to identify symptoms arising due
to a malware infection. FVMs identify symptoms, rather than examining the
behaviour itself (similar to diagnosing illness in the human body). Example of
symptoms can be appending unexpected values to registry keys, or disabling
Windows services, especially those related to updates and security. An FVM
is shared among a number of VMs to reduce the creation cost; each FVM is
dedicated to identifying the existence of a single symptom. When a symptom
is inspected by an FVM, this piece of information is stored on a blackboard
component, which is shared among the available FVMs.

2.3 Market Mechanism

In markets, sellers and buyers are examples of agents who carry out their trading,
based on their own valuation of a good. The decentralised characteristic of the
market results from the competitive and self-interested nature of its agents [12].

Auctions constitute one of the most widely studied and applied examples
of price-discovery mechanisms. They can offer a dynamic pricing alternative
to the traditional posted-pricing mechanism, when there are no fixed prices;
or where prices cannot be predetermined for the goods that are offered [4].
Decisions in auctions can be determined based on simultaneous or sequential
bidding. In simultaneous bidding, bids are submitted only once, and the prices
and allocations are determined immediately; an example is sealed bid auctions.
This paper is concerned only with sealed bid auctions because decisions are made
instantaneously; resulting in an efficient allocation of the scanning resources,
without incurring a considerable overhead during the allocation process [7].

3 The Prioritisation System Design

The proposed framework relies on a market-based mechanism to prioritise the
VM scanning process. Such a mechanism promotes both a Pareto-efficient equi-
librium (i.e. optimal resource allocation) [11], and a highly distributed opera-
tion [15], which in our context leads to a scalable prioritisation of limited FVMs
to scan a significantly larger number of VMs. It aims to balance the trade-off
between scanning performance and the accuracy of detection by achieving the
following subgoals: (i) maximising the number of VMs scanned using the light-
weight scanners (i.e. FVMs); (ii) minimising false alarms generated, by identi-
fying those most critical VMs and scan them thoroughly. Figure 1 depicts the

A Market-Based Approach for Detecting Malware in the Cloud 725

Fig. 1. High-level architecture of the market-based prioritisation approach.

high-level architecture of the proposed market-based prioritisation approach; the
framework consists of two protection layers, whereby a bidding process is per-
formed on each.

Consider a set of Virtual Machines V = {v1, v2,, vm} and a set of FVMs,
F = {f1, f2, · · · , fn}, where n < m. At each time step, information gathered
previously by the set of FVMs at the first protection layer will be used to guide
the full malware scan initiated at the second protection layer, whereby each
VM submits a sealed-bid, to be scanned thoroughly by an AV. To minimise the
number of costly scans, only a pre-defined percentage (μ) of the VMs most likely
to be infected will be scan using AV instances. In the meantime, the remaining
set of VMs, which have not been scanned by AV instances, will submit a sealed-
bid, requesting to be inspected further by the FVMs, in order to guide the full
malware scan in the next time step. The remainder of this section describes in
detail the bidding process at the two protection layers.

First Protection Layer: Scanning VMs with FVMs. The malicious symp-
toms are subdivided between FVMs, where each FVM scans for a single symp-
tom. It is thus of the utmost importance to identify which symptom should be
inspected next on each VM. Therefore, before an FVM moves to a new VM
target, it will enter into a deciding state, where every VM submits a sealed bid
for each type of FVMs. Given the set of FVMs, F , where each scans for different
symptoms (i.e. f1 scans for S1, f2 scans for S2 · · · , and fn scans for Sn), the bid
submitted by each v ∈ V to each fj is given as follows:

Bid(fj , v) = E(v) + λ · I(X;Sj |Z = Sv) · t(v), (1)

726 N. Alruhaily et al.

where:

– E(v) refers to the expected impact when the VM becomes infected. This is
estimated based on P (Malware|Sv), the probability of having a malware infec-
tion given the set of identified symptoms Sv, and Im(v), the impact resulting
when the VM is compromised. In this scenario, Im(v) is assumed to take a
value between ‘0’, representing no impact, and ‘5’, representing the maximum
impact. The expected impact E(v) is then given as follows:

E(v) = P (Malware|Sv) · Im(v). (2)

– x ∈ X (i.e. X = {Malware,Benign}).
– Sj is the new symptom inspected by the corresponding fj ; Sj ∈ {True, False}.
– Sv is the set of previously scanned symptoms on each v ∈ V (either found

or not found); one example might be: {S2 = True, S5 = False, S8 = True}.
The sets of the scanned symptoms are retrieved before initiating the bidding
process at each time step.

– I(X;Sj |Z = Sv) is the mutual information of the two random values X and Sj ,
except in this case we are always conditioning on observing the event Z = Sv.
We refer to this mathematical expression as ‘event-specific conditional mutual
information’; it denotes the amount of information obtained between the two
variables X and Sj given the observation of the third random variable Z = Sv.
It can be written mathematically as follows:

I(X;Sj |Z = Sv) =
∑

y∈Sj

∑

x∈X

P (x, y|Sv) · log
P (x, y|Sv)

P (x|Sv)P (y|Sv)
. (3)

– t(v) is the time elapsed since the VM was visited by any FVM.
– λ is a scaling factor where λ > 0; it is used to adjust the importance of the

information gathered (in terms of its relatedness and recentness) with the
impact associated when a VM being compromised.

After the bids are collected at each time step, the price of an FVM type is
determined, based on the highest bid submitted; the VMs with the highest bid
will then be scanned by that type of FVMs. The symptoms scanned on this layer
will help in prioritising the full VM scan initiated at the next step.

Second Protection Layer: Scanning the VMs that Are Most Likely to
Be Infected with an AV Instance. On this layer, VMs will bid for a full
malware scan, which will confirm whether they are infected. To minimise the
costly use of resources, only a predefined percentage μ of the most critical VMs
will be scanned. The percentage, μ can be adjusted by the cloud service provider
to fulfill two primary goals, (i) maximising the scanning coverage of the available
FVMs; and (ii) minimising cases where a costly full malware scan is triggered
on a non-critical VM.

A Market-Based Approach for Detecting Malware in the Cloud 727

At this layer, every v ∈ V will submit a sealed bid requesting a thorough
scan by a signature-based AV instance, as follows:

Bid(AV, v) = P (Malware|Sv); (4)

where, P (Malware|Sv) is the probability of having a malware infection given
the set of identified symptoms, Sv. This probability is calculated according to
Baye’s Theorem, and is based on the probabilities obtained from over 13.000
malware samples. The remaining set of VMs, which have not been scanned using
signature-based AV instances, will then be inspected further by re-entering the
bidding process carried out at the first protection layer.

4 Experimental Setup and Results

The focus here is on evaluating the performance of this approach in isolation
from the cloud’s environmental factors, such as data transfer, spin-up times, or
placement. Thus, a proof of concept is developed, which extends the simulation
tool from our previous work [1] with the proposed mechanism. In addition to the
assumptions made on [1] (e.g. the discrete time steps and unchanging status of
the infection), we are also assuming that the signature-based AV is up-to-date,
and that a signature of the malware exists in the AV database of signatures. This
approach was compared to the use of VMI-based lightweight scanners alone
under the same settings. In particular, the simulator was initialised with 100
VMs, and 8 FVM types, each type composed of 6 FVM instances. The same set
of symptoms were also used, represented on the 8 most informative registry paths
(selected based on the ANOVA F-value), accessed to modify, add, delete or read
a subkey value when infected with a variant of the W32.Sality malware family;
which have long been ranked as one of the top 20 malware families in [14]. The
experiments were also based on a 0.11 probability of malware infection. This was
determined based on the most recent report obtained by [2] when conducting
the experiments. The value of μ was set to 1, meaning, that only 1% of the VMs
most likely to be infected will be scanned by AV instances at each time step1.

The detection performance of the proposed approach was evaluated here
through a comparison of the 95% confidence interval (CI) for the mean of the
True Positive Rate and False Positive Rate derived by simulating the scanning
process of the proposed market-based approach, and the lightweight monitor-
ing approach alone. Figure 2 was obtained by recording the results of 15 trials,
whereby in each trial, the metrics averaged over 25 completed scans. The fact
that there is no overlap in the 95% confidence interval for the mean of both
documented rates, demonstrates that with statistical significance, a lower rate
of false alarm and a higher detection rate could be achieved using the proposed
approach, as shown in Fig. 2(a) and (b), respectively, with as low as 1% usage
of the heavyweight scanning resources at each time step. This indicates that the
proposed approach managed to guide the full scanning process (represented on

1 Ceil function was used to ensure that at least 1 VM is scanned at each time step.

728 N. Alruhaily et al.

(a) False Positive Rate (b) True Positive Rate

Fig. 2. 95% CI for the mean.

the 27 AV instances) to confirm the infection status of those VMs that exhib-
ited suspicious behaviour. Consequently, balancing the trade-off appropriately,
by accurately identifying malware infections on these suspicious VMs, while pro-
moting lower consumption of the cloud’s VMs resources.

5 Related Work

A number of security vendors propose using lightweight in-VM agents to collect
information and facilitate the VM scanning process, while the heavy opera-
tions will be shifted to a scanning engine deployed on a dedicated VM. Such
an approach is susceptible to manipulation by an attacker, due to the lack of
isolation [10]. As a result, researchers propose using out-of-the-guest, VMI-based
lightweight scanners to inspect the cloud’s VMs from the outside [6].

Fischer et al. [5] propose using a system comprising lightweight and heavy-
weight detection engines which detects abnormal activities on the hosted VMs,
using introspection technology and machine learning-based methods. The pro-
posed approach mainly relies on behaviour-based monitoring techniques, which
makes it vulnerable to the high rate of false alarms. Furthermore, our work
goes one step further by providing a way to allocate the heavyweight scanners
efficiently using a market-inspired mechanism.

6 Conclusion and Future Work

This paper has proposed a novel, market-inspired prioritisation approach, which
utilises lightweight cloud-based scanners to guide the full VM malware scanning
process, thus, promoting lower consumption of cloud resources, while accurately
identifying malware infections. As the two layers of protection implement dif-
ferent detection techniques, they are expected to complement each other. The
lightweight scanners which perform external monitoring will identify those VMs

A Market-Based Approach for Detecting Malware in the Cloud 729

that need to be thoroughly scanned, without significantly affecting their perfor-
mance; they will also ensure the integrity of the AV instances installed. Con-
versely, signature-based AV instances are used to confirm the infection status,
due to their ability to accurately identify known malware infections.

The evaluation demonstrates the feasibility of the approach in terms of bal-
ancing the trade-off between scanning performance and the accuracy of the detec-
tion. As for future work, we are currently working on evaluating the decisions
provided by the proposed approach from an economics perspective, and investi-
gating how might such a perspective influence the security decisions.

References

1. Alruhaily, N., Bordbar, B., Chothia, T.: Analysis of mobility algorithms for forensic
virtual machine based malware detection. In: 2015 Trustcom/BigDataSE/ISPA,
vol. 1, pp. 766–773. IEEE (2015)

2. Barnett, J.: worldwide cloud report, June 2016 (2017). https://resources.netskope.
com/h/i/262738806-june-2016-worldwide-cloud-report

3. Bitdefender: Hypervisor introspection, 17 June 2013. https://www.bitdefender.
com/business/hypervisor-introspection.html

4. Cassady, R.: Auctions and Auctioneering. Univ of California Press, Berkeley (1967)
5. Fischer, A., et al.: CloudIDEA: a malware defense architecture for cloud data

centers. In: Debruyne, C., et al. (eds.) On the Move to Meaningful Internet Systems:
OTM 2015 Conferences. LNCS, vol. 9415, pp. 594–611. Springer, Cham (2015).
doi:10.1007/978-3-319-26148-5 40

6. Garfinkel, T., Rosenblum, M., et al.: A virtual machine introspection based archi-
tecture for intrusion detection. In: NDSS (2003)

7. Gibney, M.A., Jennings, N.R., Vriend, N.J., Griffiths, J.M.: Market-based call rout-
ing in telecommunications networks using adaptive pricing and real bidding. In:
Albayrak, S. (ed.) IATA 1999. LNCS, vol. 1699, pp. 46–61. Springer, Heidelberg
(1999). doi:10.1007/3-540-48165-6 4

8. Griffin, K., Schneider, S., Hu, X., Chiueh, T.: Automatic generation of string sig-
natures for Malware detection. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID
2009. LNCS, vol. 5758, pp. 101–120. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04342-0 6

9. Harrison, K., Bordbar, B., Ali, S.T., Dalton, C.I., Norman, A.: A framework for
detecting malware in cloud by identifying symptoms. In: 2012 IEEE 16th Interna-
tional Enterprise Distributed Object Computing Conference (EDOC), pp. 164–172.
IEEE (2012)

10. Hongwei, T., Shengzhong, F., Xiaofang, Z., Yan, J.: Virtav: an agentless antivirus
system based on in-memory signature scanning for virtual machine. In: 2016 18th
International Conference on Advanced Communication Technology (ICACT), pp.
1–2. IEEE (2016)

11. Mas-Colell, A., Whinston, M.D., Green, J.R., et al.: Microeconomic Theory, vol.
1. Oxford University Press, New York (1995)

12. Osborne, M.J., Rubinstein, A.: Bargaining and Markets. Academic press, Cam-
bridge (1990)

13. Shaw, A.L., Bordbar, B., Saxon, J., Harrison, K., Dalton, C., et al.: Forensic virtual
machines: dynamic defence in the cloud via introspection. In: 2014 IEEE Interna-
tional Conference on Cloud Engineering (IC2E), pp. 303–310. IEEE (2014)

https://resources.netskope.com/h/i/262738806-june-2016-worldwide-cloud-report
https://resources.netskope.com/h/i/262738806-june-2016-worldwide-cloud-report
https://www.bitdefender.com/business/hypervisor-introspection.html
https://www.bitdefender.com/business/hypervisor-introspection.html
http://dx.doi.org/10.1007/978-3-319-26148-5_40
http://dx.doi.org/10.1007/3-540-48165-6_4
http://dx.doi.org/10.1007/978-3-642-04342-0_6
http://dx.doi.org/10.1007/978-3-642-04342-0_6

730 N. Alruhaily et al.

14. Symantec: Internet security threat report (2017). http://www.symantec.com/
security response/publications/threatreport.jsp

15. Wang, X., Mart́ınez, J.F.: Xchange: a market-based approach to scalable dynamic
multi-resource allocation in multicore architectures. In: 2015 IEEE 21st Interna-
tional Symposium on High Performance Computer Architecture (HPCA), pp. 113–
125. IEEE (2015)

http://www.symantec.com/security_response/publications/threatreport.jsp
http://www.symantec.com/security_response/publications/threatreport.jsp

Trustless Intermediation in Blockchain-Based
Decentralized Service Marketplaces

Markus Klems(B), Jacob Eberhardt, Stefan Tai, Steffen Härtlein,
Simon Buchholz, and Ahmed Tidjani

Information Systems Engineering (ISE), TU Berlin, Berlin, Germany
{mk,je,st}@ise.tu-berlin.de,

{haertlein,simon.buchholz,a.tidjanig}@campus.tu-berlin.de

Abstract. Service marketplaces promise an open platform for sellers
and buyers of IT services. The marketplace design usually assumes that
market functions, such as match-making, transaction settlement, and dis-
pute resolution are performed by intermediaries in a centralized system.
We propose the concept of trustless intermediation to enable new forms
of decentralized service marketplaces. By leveraging blockchain-enabled
smart contracts we eliminate the need for trust in marketplace inter-
mediaries and reduce barriers of entry, lock-in, and transaction costs,
by removing now obsolete trust-establishing mechanisms. Desema, our
decentralized service marketplace prototype, is a first implementation of
this concept that is based on the Ethereum blockchain in combination
with IPFS, a peer-to-peer distributed file system.

1 Introduction

A service marketplace enables IT service providers to sell software services and
service consumers to discover and use services [15,20]. Despite high hopes, service
marketplaces have, so far, not been successful on a larger scale. Systems like the
Universal Description, Discovery, and Integration (UDDI) registry have never
attracted a critical mass [13]. Deficiencies in current service markets manifest
in market barriers, low competition, insufficient service substitutability, insuf-
ficient service information, and high transaction costs [16]. A substantial body
of work has addressed problems of insufficient service information by offering
techniques to improve service descriptions (including service level agreements)
and service discovery from a service-oriented computing perspective. Problems
related to marketplace pricing strategy and incentive structures for marketplace
participation, however, remain. In this paper, we focus on the role of trusted
intermediaries in service marketplaces. Centralized marketplaces often lead to
deficiencies in the form of lock-in effects and market barriers [8,16]. Dependency
on intermediaries can lead to disadvantages for buyers and sellers if their objec-
tives do not align with those of the intermediaries [4,7,9,11].

We propose a concept for a decentralized and trustless service marketplace
which is not provided and governed by a single trusted party, but instead by a
community of individuals that participate in the marketplace. The design and
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 731–739, 2017.
https://doi.org/10.1007/978-3-319-69035-3_53

732 M. Klems et al.

prototypical implementation of our marketplace system is based on distributed
systems technologies that enable decentralization, in particular on a blockchain
that can execute smart contracts. We introduce the concept of trustless interme-
diation in the context of service marketplaces and describe how service discovery,
transaction settlement, and dispute resolution can be realized without a trusted
third party. This design could potentially overcome fundamental problems, such
as lock-in, of traditional centralized service marketplaces. Our system prototype
contributes to the development of future blockchain-based decentralized (service)
marketplaces and helps to identify technical and non-technical challenges.

2 Background and Related Work

A service marketplace is an online marketplace where suppliers can sell software
services [15]. Service consumers can buy and use these software services for
composing higher-level services and for building applications [20].

Centralized marketplaces provide mechanisms to facilitate efficient spot
trades between large numbers of sellers and buyers by providing match-making
and payment transaction processes that are accompanied by trust-building mech-
anisms, most importantly, reputation and dispute resolution systems. However,
relying on reputation as a trust building factor alone can lead to entry bar-
riers for new sellers from whom buyers are less inclined to purchase [8,16]. A
main problem of current online dispute resolution systems is enforcement, which
is particularly challenging in cross-border e-commerce where no standardized
global legal instruments for enforcing contracts exist [12]. Besides a marketplace
provider, trusted intermediaries might offer additional market functions, in
particular match-making (service and price discovery), transaction settlement,
and legal/regulatory functions [10]. Reliance on trusted intermediaries can be
problematic for buyers and sellers. Trust can be exploited or betrayed, for exam-
ple, if a match-making intermediary can obtain higher revenues by matching
certain buyers with certain sellers [4,9,11], if the marketplace provider forces
sellers to vertically integrate with its technology platform [7], or in extreme cases
if law enforcement take-down or “exit scams” terminate a marketplace [17].

The development of decentralized marketplaces is driven by a desire to
establish systems without a central marketplace provider and without trusted
intermediaries. Motivations include reducing barriers of entry [8,16], reducing
fees [2], increasing resistance to shut-down [14], and improving privacy [18].
There are a few initiatives for building decentralized anonymous marketplaces
based on blockchain technologies, such as OpenBazaar, Beaver, and Ties Net-
work. Blockchains are distributed peer-to-peer systems which implement a trust-
less shared public append-only transaction ledger [19]. Some blockchain systems,
such as Ethereum [6,21], support the deployment and execution of smart con-
tracts. A smart contract is a set of automatically enforced digital rules which can-
not be manipulated or censored in specification or execution. OpenBazaar [2] is
a free and censorship-resistant blockchain-based marketplace for trading goods,
using multiple crypto-currencies for payment and settlements. Transactions are

Trustless Intermediation in Blockchain 733

performed directly between peers without the involvement of a trusted inter-
mediary. Beaver [18] provides a Sybil attack-resistant, anonymous reputation
system without relying on a trusted third party. A different blockchain-based
marketplace design, described in the Ties Network Whitepaper [3], is to desig-
nate special roles to users, e.g., for resolving conflicts, and to make anonymity
optional in favor of more traditional reputation-based trust-building approaches.

3 Trustless Intermediation

As a new idea, we introduce the concept of trustless intermediation which
replaces traditional trusted intermediaries, such as centralized service registries
and payment providers. We define trustlessness as a system property which
guarantees rules of interaction that are known to and agreed upon by all partici-
pants of the system, and which cannot be unilaterally changed. These guarantees
are enforced through, what we call trustless intermediation, a set of mecha-
nisms for decentralizing the enforcement of rules in a system, thereby removing
the need for and existence of trusted intermediaries.

In the following, we propose two main mechanisms for implementing trustless
intermediation in a system: through (1) a set of smart contracts, and (2) sup-
porting actors. By using smart contracts, the rules of interaction between sellers
and buyers are transparent and self-enforced. If any participant deviates from
the rules, the consequential actions, e.g., compensation and punishment, are also
known and automatically enforced through smart contracts. Supporting actors
provide functions that exceed the capabilities of smart contracts, yet, need to
be carefully selected and incentivized, to avoid that they neglect or abuse the
marketplace function that they have been assigned.

Based on this concept, we describe functions of a decentralized service mar-
ketplace from the perspectives of both service providers (sellers) and service
consumers (buyers). We show how service registry, transaction settlement, and
service delivery features can be realized with smart contracts and supporting
actors in lieu of trusted intermediaries. Figure 1 illustrates the roles and functions
in a blockchain-based decentralized service marketplace for a service lifecycle.

Service Registry. A service registry enables basic match-making between ser-
vice providers and consumers. Service providers can publish their service descrip-
tions to a service registry and service consumers can discover services they need.
We realize the service registry with a smart contract that contains references to
service providers and service description documents. For this purpose, the ser-
vice registry contract needs to maintain state of the provider-to-service mapping,
allow providers to publish and update service descriptions, and enable consumers
to find services they need. For decentralized service discovery, service descrip-
tion documents need to be replicated across multiple nodes in the network. To
avoid trust, each consumer should receive and maintain an up-to-date replica
of the entire service catalog. In case of updates or shutdowns of services, the
impact should be as small as possible for the service consumers. Since providers
can remove services from the service catalog and with that prevent purchases, it

734 M. Klems et al.

Fig. 1. Roles and functions in a blockchain-based decentralized service marketplace.

is desirable to support a reasonable phase-out process. One approach to incen-
tivize timely announcements of service interface and usage changes is to collect
a deposit from service providers on service registration. A smart contract serves
as an escrow and only refunds the deposit if a version change was announced by
sending a notification to the smart contract with a certain leadtime before ser-
vice removal. If the announcement has not been made (within the agreed-upon
leadtime), the deposit is paid out to the service consumers. A similar approach
could be applied to breaking changes during updates.

Transaction Settlement. For each service on the marketplace, a service con-
tract is deployed. This contract contains the business logic for payments and
refunds. In order to consume a service, a user invokes the service contract to
make a payment in a virtual currency and in the same transaction adds her
authentication information to the contract, which is later needed for authenti-
cating the consumer’s service requests.

Different payment models can be encoded in a service contract, such as:

• Time slices: Once a consumer has selected a service, she subscribes to the
service by paying a fee to gain access to the service for a certain time.

• Utility computing: A service consumer pays for a certain type of workload,
such as the number of requests, the operation types, the payload size, etc.

• Subscription: A service consumer pays a subscription fee that gives access
to a service up to a certain workload limit.

Service Delivery. The service providers needs to distinguish paid-for service
requests from unpaid service requests. We consider two approaches:

Trustless Intermediation in Blockchain 735

• Proxy Service: Requests are not sent to the target service directly, but to
a proxy verifying the sender’s authority before forwarding the request to
the designated target.

• Signature Library: Sender and receiver both use a library to sign outgoing
messages and validate incoming messages.

The Proxy Service approach simplifies service integration for both consumer
and provider who do not have to take care of message integrity and caller autho-
rization. On the downside, a provider-side Proxy Service would be a single point
of failure for all services using it, and a Proxy Service that is powered by a
supporting actor would require trusting a third party.

Using a Signature Library, consumer and provider can directly integrate func-
tions for signing, and signature verification, respectively. Both parties are thereby
enabled to freely choose which endpoints require authorization and how to handle
errors, such as insufficient funds. On the downside, this solution shifts integration
effort to consumer and provider.

Following our main objective of trustless intermediation, we prefer the Sig-
nature Library approach, which consists of the following three steps:

1. The consumer signs the payload of service requests. Along with the payload,
the signature and public key are sent in the request header.

2. Signature and public key are used by the receiving service to verify that the
message body has not been altered.

3. The service verifies that the address belongs to a paying service consumer,
processes the request, and sends a success or error response back.

This process requires consumer-side and provider-side service integration.
Step 1 requires a signature library that must be used by the consumer to sign
all requests that invoke services which have been purchased on the marketplace.
Furthermore, a consumer might want to automate the process of making service
payments to avoid request errors due to lack of funds. The provider needs to
integrate a signature verification library to perform steps 2 and 3.

Dispute Prevention and Resolution. Disputes between provider and con-
sumer can occur, e.g., if a consumer has paid for a service that is frequently
unavailable. We identified the following approaches to prevent and resolve dis-
putes: micro-payments, escrows, and escrows with supporting actors.

Micro-payments. One approach to dispute prevention is to allow service con-
sumers to frequently buy short time slices or small units of service access. This
limits the consumer’s monetary loss in case of a service unavailability. However,
there is no direct punishment for the provider’s unavailability. As a disadvantage,
a service consumer must continuously add deposits to the service contract.

Escrows. A service contract can contain an escrow mechanism. Service
providers, for example, could be required to make a deposit to their service
contract before offering a service. If a certain share of service consumers report
dissatisfaction, the provider would lose that deposit and the escrow contract

736 M. Klems et al.

would use it to compensate consumers. This approach further eliminates trust
that consumers would otherwise need when purchasing a provider’s service, but
needs careful incentive design as sybil and collusion attacks need to be prevented.

Escrows with supporting actors. A supporting actor could serve as a moni-
toring agent who periodically checks service availability and stores the monitor-
ing results in a smart contract (monitoring contract). These results can then be
used to resolve disputes and compensate consumers, e.g., refund a consumer’s
payment or force the provider to pay a fine in case of service unavailability. Here,
the smart contract acts as an escrow and requires a provider deposit so that the
fine payment is guaranteed. To incentivize participation in the marketplace, sup-
porting actors need to be rewarded, e.g., by paying them a reasonable fee.

4 Decentralized Marketplace System

In the following, we describe Desema, our decentralized service marketplace
prototype, which is available as open source software on Github [1]. Desema is
a peer-to-peer system which connects service providers and consumers through
a shared public blockchain network, Ethereum, and a distributed data storage
system, IPFS. Figure 2 shows the high level system architecture with two Desema
clients. The rich client offers marketplace users a web-based graphical user inter-
face. On the left side is a service provider, Bob, who wants to sell API access to
his service. For this purpose, Bob uses a local Desema client on his computer to
register and publish his service. On the right side of Fig. 2 is a service consumer,
Alice, who accesses Desema through her own local client. Alice finds Bob’s ser-
vice in the service catalog, decides to consume the service, and agrees to deposit
a payment. Her purchase is facilitated through the service contract. After the
purchase, Alice integrates Bob’s service into her application. Her application
invokes Bob’s service with a signed request. For signing a request, the private
key of Alice’s user account is used. Afterwards, the request body is hashed and
the hash is signed. The public key belonging to the private key used is added to
the returned signature object, both of which are added to the request header.
By calculating Alice’s address from her public key and comparing it to his list
of paying consumers, Bob’s service can identify Alice as a paying consumer and
verify request message integrity using a signature library.

Trustless Distributed Data Storage. Business processes in Desema are man-
aged on the blockchain. Storing service metadata and other larger data object
on the blockchain would, however, be inefficient and expensive. As a solution
to this problem, we introduce an approach for trustless distributed data storage
by which only data references are stored on-chain. Instead of using an arbitrary
name as an identifier, the identifier is computed from the off-chain stored data
itself. Off-chain data changes would immediately change the on-chain identifier
and invalidate the reference. Furthermore, data integrity can be checked at any
time by computing the identifier from the original data in a smart contract
and comparing it to the reference. For off-chaining Desema service metadata, we

Trustless Intermediation in Blockchain 737

Fig. 2. Desema system architecture.

use the InterPlanetary File System (IPFS) [5], a public peer-to-peer file system
which addresses files by their hashes. IPFS peers host their own files as well as
copies of other’s files to ensure availability. Service metadata is stored off-chain
in an IPFS directory structure which contains all service versions in separate
sub-folders, and only a file reference address is stored in Ethereum. Using IPNS
(InterPlanetary Name Space), we can also support mutable content at a fixed
address. As IPNS requires cryptographic authorization by the service owner,
trustlessness is not impacted.

Trust-limited Monitoring. Monitoring is performed by supporting actors. We
need to ensure that those actors do not compromise the integrity of the mar-
ketplace by returning inaccurate monitoring results. Trust in monitoring agents
can be limited by randomizing the assignment of monitoring jobs to agents. The
assignment is performed by the monitoring contract because otherwise a trusted
third-party would be needed. Since the Ethereum Virtual Machine (EVM) can-
not generate random numbers, we let the monitoring contract generate pseudo-
random numbers that are difficult to predict. As an extension to random assign-
ment, multiple nodes could be assigned monitoring jobs for the same service,
whereby monitoring results can be determined through a quorum consensus,
thereby further limiting trust in individual monitoring agents.

5 Conclusion

In this paper, we introduce the concept of trustless intermediation in service
marketplaces based on blockchain technology and discuss approaches to over-
come fundamental problems of traditional marketplace systems, such as barriers
of entry, transaction costs and lock-in. We propose a design in which trusted
intermediaries that operate a marketplace can be replaced with a set of rules
encoded in smart contracts and enforced trustlessly in a blockchain network.

738 M. Klems et al.

As a proof-of-concept, we present a prototypical implementation of the aforemen-
tioned concepts. Based on the experience that we gained by building the proto-
type, we identify decentralized application engineering challenges. In particular,
we address limitations of on-chain storage and propose a solution for trustless
and scalable distributed data storage. Open challenges include the design and
development of more advanced and incentive-aligned approaches for trustless
dispute resolution between service providers and consumers.

Acknowledgements. We thank our students Christian Kniep, Nikola Stavrevski,
Ravish Aggarwal, and Xiaonan Qiao who contributed to the prototype development as
part of an ISE student lab project in the winter term of 2016/17.

References

1. Desema. https://github.com/markusklems/desema. Accessed 02 June 2017
2. OpenBazaar. https://www.openbazaar.org/. Accessed 15 May 2017
3. Ties Network. https://ties.network/. Accessed 01 Aug 2017
4. Armstrong, M., Zhou, J.: Paying for prominence. Econ. J. 121, F368–F395 (2011)
5. Benet, J.: IPFS - content addressed, versioned, P2P file system. CoRR

abs/1407.3561 (2014). http://arxiv.org/abs/1407.3561
6. Buterin, V.: Ethereum: a next-generation smart contract and decen-

tralized application platform (2014). https://github.com/ethereum/wiki/wiki/
%5BEnglish%5D-White-Paper

7. Cornière, A., Taylor, G.: Integration and search engine bias. RAND J. Econ. 45(3),
576–597 (2014)

8. Einav, L., Farronato, C., Levin, J.: Peer-to-peer markets. Annu. Rev. Econ. 8,
615–635 (2016)

9. Eliaz, K., Spiegler, R.: A simple model of search engine pricing. Econ. J. 121(556),
F329–F339 (2011)

10. Giaglis, G.M., Klein, S., O’Keefe, R.M.: The role of intermediaries in electronic
marketplaces: developing a contingency model. Inf. Syst. J. 12(3), 231–246 (2002)

11. Hagiu, A., Jullien, B.: Why do intermediaries divert search? Rand J. Econ. 42(2),
337–362 (2011)

12. Koulu, R.: Blockchains and online dispute resolution: smart contracts as an alter-
native to enforcement. SCRIPTed 13, 40 (2016)

13. Legner, C.: Is there a market for web services? In: Di Nitto, E., Ripeanu, M. (eds.)
ICSOC 2007. LNCS, vol. 4907, pp. 29–42. Springer, Heidelberg (2009). doi:10.
1007/978-3-540-93851-4 4

14. Olsthoorn, M., Winter, J.: Decentral market: self-regulating electronic market
(2016)

15. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE), pp. 3–12. IEEE (2003)

16. Schlauderer, S., Overhage, S.: How perfect are markets for software services? An
economic perspective on market deficiencies and desirable market features. In:
ECIS (2011)

17. Soska, K., Christin, N.: Measuring the longitudinal evolution of the online anony-
mous marketplace ecosystem. In: USENIX Security, vol. 15 (2015)

https://github.com/markusklems/desema
https://www.openbazaar.org/
https://ties.network/
http://arxiv.org/abs/1407.3561
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
https://github.com/ethereum/wiki/wiki/%5BEnglish%5D-White-Paper
http://dx.doi.org/10.1007/978-3-540-93851-4_4
http://dx.doi.org/10.1007/978-3-540-93851-4_4

Trustless Intermediation in Blockchain 739

18. Soska, K., Kwon, A., Christin, N., Devadas, S.: Beaver: a decentralized anony-
mous marketplace with secure reputation. IACR Cryptology ePrint Archive, p.
464 (2016)

19. Tai, S., Eberhardt, J., Klems, M.: Not ACID, not BASE, but SALT - a transaction
processing perspective on blockchains. In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science, CLOSER, vol. 1, pp. 755–
764. INSTICC, ScitePress (2017)

20. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer
36(10), 38–44 (2003)

21. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

Author Index

Aamir, Tooba 37
Adam, Constantin 445
Agarwal, Shivali 641
Ahuja, Sarthak 3
Ai, Xiaofei 528
Aklouf, Youcef 287
Alruhaily, Nada 722
Andreou, Andreas S. 471
Anerousis, Nikos 445, 545
Arjona Aroca, Jordi 690
Atreja, Shubham 641

Bahsoon, Rami 367, 722
Baresi, Luciano 471
Barrett, Enda 221
Bauer, Bernhard 175
Beaudry, Eric 614
Belkhir, Abdelkarim 614
Ben Hadj Yahia, Elyas 430
Bermbach, David 314
Blanc, Xavier 453, 614
Bohn, Philipp 351
Boubaker, Souha 96
Bouguettaya, Athman 37, 158, 256
Bucchiarone, Antonio 561
Buchholz, Simon 731
Bulut, Muhammed Fatih 445, 545
Burgueño, Loli 113
Buyya, Rajkumar 206, 367

Cao, Hanyang 453
Chen, Cheng 690
Chen, Chuan 272, 605
Chen, Feifei 462, 528
Chen, Liang 272, 528
Chen, Shiping 142, 462, 511
Chi, Xu 142
Chothia, Tom 722
Christoforou, Andreas 471

da Costa, Daniel Alencar 673
Dasgupta, Gargi 641
de Castro, Valeria 490
De Sanctis, Martina 561

Deng, Shuiguang 625
Devulapalli, Chandra 19
Dey, Akon 314
Di Ciccio, Claudio 297
Dong, Hai 37, 256
Dou, Wanchun 528

Eberhardt, Jacob 731
Engels, Gregor 573
Erradi, Abdelkarim 37, 256
Estañol, Montserrat 80

Falleri, Jean-Rémy 430, 453, 614
Fei, Huanhuan 383
Fekete, Alan 314
Fernandez, Pablo 331, 589
Filepp, Robert 445
Fu, Min 511

Gaaloul, Walid 96
Gamez-Diaz, Antonio 589
García, José María 331
Garriga, Martin 471
George, David Glenn 3
Gey, Fatih 340
Gogolla, Martin 113
Graiet, Mohamed 96
Grundy, John 462
Gu, Mingzhu 383

Han, Yanbo 191
Härtlein, Steffen 731
He, Qiang 462, 528
HoseinyFarahabady, MohammadReza 241
Howley, Enda 221

Jazayeri, Bahar 573
Jiang, Qingye 706
Joosen, Wouter 340

Kalia, Anup K. 53, 545
Kalia, Anup 445
Kannan, Kalapriya 19

Kessentini, Marouane 499
Khochare, Aakash 395
Kitajima, Shinya 229
Klai, Kais 96
Klems, Markus 657, 731
Kloukinas, Christos 65
Krotsiani, Maria 65
Kuhlenkamp, Jörn 314, 657
Kundisch, Dennis 573

Labbaci, Hamza 287
Lee, Young Choon 241, 706
Leymann, Frank 411
Li, Jiajie 383
Li, Wei 625
Ling, Guohui 605
Liu, Chen 191
Liu, Hongwei 481
Liu, Jiahao 605
López-Sanz, Marcos 490
Lugones, Diego 690

Marconi, Annapaola 561
Marcos, Esperanza 80, 490
Martín-Díaz, Octavio 331
Matsuoka, Naoki 229
Medjahed, Brahim 287
Mendling, Jan 297
Mera-Gómez, Carlos 367, 722
Meroni, Giovanni 297
Metzger, Andreas 351
Mistry, Sajib 37, 256
Moha, Naouel 614
Mondal, Abhik 19
Mondal, Joydeep 3, 19
Moratalla, Jorge 490

Navarro, Elena 411
Neiat, Azadeh Ghari 158
Nepal, Surya 511
Ng, Joanna 673

Oriol, Xavier 80
Oumaziz, Mohamed A. 614

Parija, Gyana 19
Pérez, Francisco J. 80
Peterson, Brian 445
Pimplikar, Rakesh Rameshrao 19

Qu, Lie 158

Ramachandran, Arunmoezhi 314
Ramírez, Francisco 367
Ravindra, Pushkara 395
Reddy, Siva Prakash 395
Réveillère, Laurent 430
Rofrano, John 445
Ruiz-Cortés, Antonio 331, 589

Saxena, Sushant 19
Schmitz, Katia 96
Sharma, Sarthak 395
Shaw, Rachael 221
Sheng, Quan Z. 125, 481
Shu, Yanjun 481
Simmhan, Yogesh 395
Singh, Sudhanshu Shekhar 3
Spanoudakis, George 65
Su, Shen 191
Sun, Yaguang 175

Tai, Stefan 314, 731
Tao, Yong 383
Tari, Zahir 241
Telang, Pankaj R. 53
Teniente, Ernest 80
Tidjani, Ahmed 731
Toro, Miguel 331
Truyen, Eddy 340

Vacher, Tristan 614
Van Landuyt, Dimitri 340
Vara, Juan M. 80
Varshney, Prateeksha 395
Vukovic, Maja 53, 445, 545

Wang, Haifang 142
Wang, Hanzhang 499
Wang, Hongbing 383
Wang, Jianwu 191
Wang, Shance 125
Wang, Yanchun 462
Wang, Zhongjie 125, 142
Weidlich, Matthias 175
Wu, Hongyue 625
Wu, Yaoming 272
Wu, Zhaohui 625

Xiao, Jin 53, 445, 545
Xie, Fenfang 272

742 Author Index

Xu, Minxian 206
Xu, Xiaofei 125, 142

Yang, Jian 481, 511
Yang, Qiang 625
Yang, Yun 462, 528
Ye, Dayong 462
Ye, Fanghua 605
Yin, Jianwei 625
Yu, Qi 383

Zdun, Uwe 411
Zhang, Wei Emma 481

Zhang, Xuyun 462, 528
Zhang, Yiwen 528
Zhao, Yu 673
Zheng, Zibin 272, 605
Zhou, Rui 462
Zhou, Yuren 605
Zhu, Liming 511
Zhu, Meiling 191
Zimmermann, Olaf 573
Zomaya, Albert Y. 241, 625, 706
Zou, Ying 673
Zuo, Decheng 481

Author Index 743

	Preface
	Organization
	Keynote Papers
	A Research Agenda for the Programmable World: Software Challenges for IoT Era
	Semantic Search
	“Uber Scale”. Stories and Lessons from the History of Scaling Uber SOA
	Contents
	Applications
	Similarity Computation Exploiting the Semantic and Syntactic Inherent Structure Among Job Titles
	1 Introduction
	2 Literature Survey
	3 Methodology
	3.1 Title Representation
	3.2 Preprocessing
	3.3 Feature Extraction
	3.4 Feature Vector Construction
	3.5 Model Creation
	3.6 Assignment Problem Formulation
	3.7 Final Score Computation

	4 Experimental Setup and Dataset
	5 Evaluation
	6 Conclusion and Future Work
	References

	RISE: Resolution of Identity Through Similarity Establishment on Unstructured Job Descriptions
	1 Introduction
	2 System Overview and Approach
	3 Algorithms
	3.1 Identifying Important Attributes for Job Descriptions
	3.2 Unstructured Text Classification
	3.3 Text Standardization
	3.4 Building Structured JDs Using Keywords Extraction
	3.5 Enriching Dictionaries
	3.6 Similarity of Job Descriptions

	4 Experiments
	4.1 Data Set
	4.2 Classifier Evaluation
	4.3 Keyword Extractor Evaluation
	4.4 Similarity Algorithm Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

	Social-Sensor Cloud Service for Scene Reconstruction
	1 Introduction
	2 Related Work
	3 Motivating Scenario
	4 Model for Social Sensor Cloud Service
	4.1 Model for an Atomic Social Sensor Cloud Service
	4.2 Functional Model of an Atomic Social Sensor Cloud Service
	4.3 Quality Model of an Atomic Social Sensor Cloud Service

	5 QoS-Aware Social Sensor Cloud Service Indexing and Selecting Approach
	5.1 Service Indexing and Spatio-Temporal Filtering
	5.2 Textual Co-relation Between Service and Query
	5.3 Coverage Assessment Using ServC
	5.4 QoS-Aware Service Selection

	6 Experiments and Results
	6.1 Experimental Setup
	6.2 Evaluation

	7 Conclusion
	References

	Quark: A Methodology to Transform People-Driven Processes to Chatbot Services
	1 Introduction
	2 Related Work
	3 Quark Methodology
	3.1 M1: Identify Roles Served by Humans That Can Be Automated
	3.2 M2: Identify Goals of Each Role
	3.3 M3: Identify Commitments Between Roles
	3.4 M4: Produce a Set of Interactions
	3.5 M5: Repeat Steps M2 and M3 to Produce Additional Goals and Commitments
	3.6 M6: Translate the Interactions to IBM Watson Model

	4 Conclusion and Future Work
	References

	Foundations
	Cloud Certification Process Validation Using Formal Methods
	1 Introduction
	2 Framework Overview
	3 Running Example
	4 Certification Process and Prism Model
	4.1 Certification Model

	5 Code and Prism Model Generator
	5.1 Differences Between Prism Model and Code

	6 Experimental Results
	7 Related Work
	8 Conclusion and Future Work
	References

	Validation of Service Blueprint Models by Means of Formal Simulation Techniques
	1 Introduction
	2 Context
	2.1 Service Blueprinting
	2.2 Introducing INNoVaServ

	3 Enabling Formal Verification of Service Blueprint Models in INNoVaServ
	3.1 Functional Architecture and Design
	3.2 Formally Defining Service Blueprint Tasks
	3.3 Executing the Formal Semantics for Validation

	4 Related Works
	5 Conclusion and Further Work
	References

	Deadlock-Freeness Verification of Business Process Configuration Using SOG
	1 Introduction
	2 Preliminaries and Notations
	3 Formal Model for Configurable Business Processes
	3.1 Business Process Petri Nets (BP2PN)
	3.2 Configurable Business Process Petri Nets (CBP2PN)

	4 Symbolic Observation Graph for Process Configuration
	4.1 Symbolic Observation Graph
	4.2 Extracting Correct Configurations Using the SOG

	5 Experiments and Evaluation
	6 Related Work
	7 Conclusion and Further Work
	References

	Formally Modeling, Executing, and Testing Service-Oriented Systems with UML and OCL
	1 Introduction
	2 Service Modeling, Execution and Testing
	2.1 Case Study: Online Test
	2.2 Structural and Behavioral Service Modeling
	2.3 Service Model Execution

	3 Conclusions and Future Work
	References

	Mining and Analytics
	App Update Patterns: How Developers Act on User Reviews in Mobile App Stores
	1 Introduction
	2 Related Work
	3 Data Collection and Preprocessing
	3.1 App Selection
	3.2 Dataset Preparation

	4 Mining App Update Patterns
	4.1 Extracting Features from User Reviews and ``What's New''
	4.2 Intensity Trend Chart of Feature Request/Update
	4.3 Atomic Update Units (AU)
	4.4 Mining Frequent Update Patterns

	5 Empirical Study
	5.1 Update Patterns w.r.t. Different Features in One App
	5.2 Update Patterns w.r.t. Similar Features Across Multiple Apps
	5.3 Update Patterns w.r.t. Timeline

	6 Conclusions
	References

	Predicting the Evolution of Service Value Features from User Reviews for Continuous Service Improvement
	1 Introduction
	2 Service Value Feature and the Mining Algorithm
	2.1 Service Value Feature (VF)
	2.2 VFAMine: Mining Service Value Features from User Reviews
	2.3 Time-Series Service Value Feature Distribution (TSVFD)

	3 Evolution Analysis and Trend Prediction of an VF
	3.1 CSRF: A ML-based Model for VF Evolution and Prediction
	3.2 Predicting a VF's Future Trend for One Service and for One Region or Service Domain

	4 Correlation Analysis for the Evolution of Multiple Service Value Features
	4.1 MIC-based Correlation Analysis on Multiple VFs
	4.2 Experiments

	5 Related Work
	6 Conclusions and Future Work
	References

	Confidence-Aware Reputation Bootstrapping in Composite Service Environments
	1 Introduction
	2 The Layer-Based Framework
	3 The Reputation Bootstrapping Approach
	3.1 Reputation Evaluation
	3.2 Reputation Bootstrapping
	3.3 Confidence of Bootstrapped Reputations

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Results

	5 Related Work
	6 Conclusion
	References

	Compound Trace Clustering to Generate Accurate and Simple Sub-Process Models
	1 Introduction
	2 Issues of Traditional Trace Clustering in BPMD
	3 Preliminaries
	4 Compound Trace Clustering for Process Discovery
	4.1 Stage 1: Trace Clustering
	4.2 Stage 2: Process Model Fitness Improvement
	4.3 The Compound Trace Clustering (CTC) Algorithm

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	An Approach to Modeling and Discovering Event Correlation for Service Collaboration
	Abstract
	1 Introduction
	2 Problem Analysis
	3 Definitions
	4 Discovery of Event Correlation
	4.1 The Rationales
	4.2 The CorFinder Algorithm

	5 Application of Event Correlation for Anomaly Warning
	5.1 The Service Collaboration Framework
	5.2 The Process to Make Anomaly Warnings in a Power Plant

	6 Experiments
	6.1 Experiment Setup
	6.2 Experiment Results

	7 Related Works
	8 Conclusion
	Acknowledgement
	References

	Energy Efficient Scheduling of Application Components via Brownout and Approximate Markov Decision Process
	1 Introduction
	2 Related Work
	3 System Model and Problem Definition
	3.1 System Model
	3.2 Power Model
	3.3 Discount Amount
	3.4 Problem Definition

	4 Proposed Approach
	4.1 Approximate Markov Decision Process Model
	4.2 Brownout Algorithm Based on Markov Decision Process (BMDP)

	5 Performance Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusions and Future Work
	References

	Predicting the Available Bandwidth on Intra Cloud Network Links for Deadline Constrained Workflow Scheduling in Public Clouds
	1 Introduction
	2 Related Research
	3 Problem Formulation
	4 Time Series Forecasting: ARIMA Modelling
	4.1 Model Identification
	4.2 Model Estimation and Diagnostics
	4.3 Forecasting and Validation

	5 Preliminary Results
	6 Conclusion
	References

	Inferring Calling Relationship Based on External Observation for Microservice Architecture
	1 Introduction
	2 Assumptions
	3 Method for Inferring the Parents
	3.1 Enumeration of the Parent Candidate Messages
	3.2 Aggregation of the Parent Candidate Messages
	3.3 Inferring the Parent Message

	4 Evaluation
	4.1 Evaluation Environment
	4.2 Evaluation Result

	5 Conclusion
	References

	Quality of Service
	A QoS-Aware Resource Allocation Controller for Function as a Service (FaaS) Platform
	1 Introduction
	2 Background and Related Work
	3 QoS Detriment Metric
	4 Closed-Loop Resource Allocation Controller
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

	Probabilistic Qualitative Preference Matching in Long-Term IaaS Composition
	1 Introduction
	2 Related Work
	3 Motivation: Probabilistic Qualitative IaaS Composition
	4 Probabilistic Temporal CP-Net
	5 TempCP-Net Matching Using k-d Tree Indexing
	6 Similarity Measure Between PrTempCP-Nets
	6.1 Probabilistic Range Sampling of PrTempCP-Net
	6.2 Reducing Approximation Error in Sim(PA, PB) Using K-S Test

	7 Experiments and Results
	7.1 Data Description
	7.2 Efficiency of the Proposed Probabilistic Range Sampling
	7.3 Time Complexity Analysis

	8 Conclusion
	References

	An Embedding Based Factorization Machine Approach for Web Service QoS Prediction
	1 Introduction
	2 Preliminaries
	2.1 Problem Description
	2.2 Prediction Framework of EFMPred

	3 Approach
	3.1 Extracting Embedding Features from User ID and Service ID
	3.2 Embedding Based Factorization Machine Model
	3.3 Complexity Analysis

	4 Experiment
	4.1 Dataset Description
	4.2 Metrics
	4.3 Performance Comparison
	4.4 Impact of Matrix Density
	4.5 Impact of Dimensionality

	5 Related Work
	6 Conclusion
	References

	A Deep Learning Approach for Long Term QoS-Compliant Service Composition
	1 Introduction
	2 Using Deep Learning for QoS Prediction
	2.1 QoS Composition Requirements
	2.2 Predicting Long-Term QoS Trends

	3 Long-Term QoS Compliance Checking
	3.1 Checking Compliance for Service Composition
	3.2 Checking Compliance for Service Substitution

	4 Experimental Study
	5 Related Work
	6 Conclusion
	References

	Run-time Service Operation and Management
	An Artifact-Driven Approach to Monitor Business Processes Through Real-World Objects
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Enrichment of the BPMN Process Model with Artifacts
	3.2 Generation of the E-GSM Process Model
	3.3 Generation of the Artifact-to-object Mapping Criteria

	4 Architecture and Implementation
	5 Validation
	6 Related Work
	7 Conclusions and Future Work
	References

	BenchFoundry: A Benchmarking Framework for Cloud Storage Services
	1 Introduction
	2 Modern Storage Service Benchmarking
	3 BenchFoundry Design and Architecture
	3.1 Trace-Based Workload Generation
	3.2 Runtime Measurements and Offline Analysis
	3.3 Application-Focused Workload Abstraction
	3.4 Managed Distribution and Benchmark Phases

	4 BenchFoundry Implementation
	4.1 Input Formats
	4.2 Implemented Workloads

	5 Evaluation
	5.1 Discussion of Requirements in BenchFoundry
	5.2 Experiments

	6 Limitations and Effects of Design Choices
	7 Conclusion
	References

	Automated Analysis of Cloud Offerings for Optimal Service Provisioning
	1 Introduction
	2 Motivation
	3 From User Needs to Cloud Services Provisioning Plans
	4 Solution Architecture
	5 Case Study Validation Results
	6 Related Work
	7 Conclusions and Future Work
	References

	Middleware for Dynamic Upgrade Activation and Compensations in Multi-tenant SaaS
	1 Introduction
	2 Motivation and Requirements
	3 Middleware Support
	3.1 Dynamic Multi-tenant Service Composition
	3.2 Activation Support
	3.3 Compensation Support

	4 Related Work
	5 Conclusion
	References

	Service Adaptation
	Risk-Based Proactive Process Adaptation
	1 Introduction
	2 Risk-Based Adaptation
	2.1 Conceptual Overview
	2.2 Implementation

	3 Comparative Evaluation
	3.1 Cost Model
	3.2 Costs Functions
	3.3 Experimental Variables
	3.4 Industry Data Set and Experiment Execution

	4 Experimental Results
	4.1 Results
	4.2 Discussion

	5 Related Work
	6 Conclusion
	References

	A Debt-Aware Learning Approach for Resource Adaptations in Cloud Elasticity Management
	1 Introduction
	2 Problem Statement
	3 Proposed Approach
	3.1 Technical Debt on Elasticity
	3.2 Reinforcement Learning
	3.3 Learning Elasticity Debts

	4 Evaluation
	4.1 Experiment Setup
	4.2 Results
	4.3 Threats to Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Large-Scale and Adaptive Service Composition Using Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Reinforcement Learning
	3.2 Deep Learning
	3.3 Deep Reinforcement Learning

	4 Problem Formulation
	5 Service Composition Based on DRL
	5.1 RNN in Deep Reinforcement Learning
	5.2 Learning Strategies
	5.3 Algorithm

	6 Experiments and Analysis
	6.1 Experiment Setting
	6.2 Result Analysis

	7 Conclusion
	References

	Service Engineering
	ECHO: An Adaptive Orchestration Platform for Hybrid Dataflows across Cloud and Edge
	1 Introduction
	2 Requirements and Motivation
	3 The ECHO Architecture
	3.1 Resource Infrastructure
	3.2 Programming Model
	3.3 Platform Design and Implementation

	4 Evaluation and Results
	5 Related Work
	6 Conclusions
	References

	Ensuring and Assessing Architecture Conformance to Microservice Decomposition Patterns
	1 Introduction
	2 Related Work
	3 Modeling Microservice-Based Architecture Decomposition
	4 Microservice Design Constraints and Metrics
	4.1 Constraints and Metrics Based on Independent Deployment
	4.2 Constraints and Metrics Based on Shared Dependencies

	5 Evaluation
	5.1 Evaluation for Constraints and Metrics Based on Independent Deployment
	5.2 Evaluation for Constraints and Metrics Based on Shared Dependencies

	6 Discussion, Threats to Validity and Future Work
	References

	Polly: A Language-Based Approach for Custom Change Detection of Web Service Data
	1 Introduction
	2 Challenges in Service Data Change Detection
	3 Approach
	3.1 Overview of the Polly Language
	3.2 State Construction
	3.3 Change Detection

	4 Evaluation
	4.1 Scenarios
	4.2 Language Verbosity Evaluation
	4.3 Diff Performance Experiment

	5 Related Work
	6 Conclusion
	References

	Design and Evaluation of a Self-Service Delivery Framework
	1 Introduction
	2 System Architecture
	2.1 Automated Functionality
	2.2 Case Study: Memory Allocation for AIX LPARs

	3 System Analysis
	4 System Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Automated Generation of REST API Specification from Plain HTML Documentation
	1 Introduction
	2 AutoREST: An Automatic Generator of REST API Specifications
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	Efficient Keyword Search for Building Service-Based Systems Based on Dynamic Programming
	Abstract
	1 Introduction
	2 Keyword Search Method
	2.1 Dynamic Programming Model
	2.2 Answering Keyword Queries

	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Evaluation Results

	4 Related Work
	5 Conclusions and Future Work
	Acknowledgment
	References

	Supporting the Decision of Migrating to Microservices Through Multi-layer Fuzzy Cognitive Maps
	1 Introduction
	2 Decision Support Models
	3 Static and Dynamic Model Analyses
	4 Conclusions and Future Work
	References

	A Tree-Based Reliability Analysis for Fault-Tolerant Web Services Composition
	1 Introduction
	2 The FCWS-T Model
	2.1 The Definition of a FCWS-T Model
	2.2 The Transition from BPEL to FCWS-T

	3 The Reliability Analysis Simulation Methodology
	3.1 The Discrete-Event Simulation of Component Reliability
	3.2 The Simulation Algorithm of the Composite Reliability

	4 Experimental Studies
	4.1 The Experiment Setup
	4.2 The Simulation Reliability Analysis Results

	5 Conclusion
	References

	Modernization of Information Systems at Red.es: An Approach Based on Gap Analysis and ADM
	Abstract
	1 Introduction
	2 Modernization Foundations and Working Scenario
	2.1 ADM-Based Modernization
	2.2 Gap Analysis
	2.3 Domain Name Management at Red.es

	3 Modernization of the ‘.es Ownership Transmission’ Scenario
	4 Related Works
	5 Conclusions and Future Works
	Acknowledgements
	References

	Improving Web Services Design Quality Using Dimensionality Reduction Techniques
	1 Introduction
	2 A Dimensionality Reduction Approach for Web Services Remodularization
	3 Experiments
	3.1 Research Questions
	3.2 Experimental Setup
	3.3 Results

	4 Conclusion
	References

	Service Recommendation
	ARA-Assessor: Application-Aware Runtime Risk Assessment for Cloud-Based Business Continuity
	Abstract
	1 Introduction
	2 A Motivating Example
	3 Generic Modelling of Cloud Systems
	4 Generic Modelling of Cloud System’s Threats
	5 Our Risk Assessment Method
	5.1 Determination of Cloud System’s Threats Subset Model
	5.2 Determination of Threats Initial Occurrence Probabilities
	5.3 Determination of Cloud Resources Affected by System Threats
	5.4 Calculation of Threats Impact Values
	5.5 Threats Sub-model Derivation
	5.6 Updating of Latest Occurrence Probabilities of Threats
	5.7 The System Risk Determination Mechanism

	6 Experimental Evaluation
	6.1 Experimental Procedure
	6.2 Experimental Results

	7 Validity and Applicability of the Model
	8 Related Work
	8.1 Risks and Threat Models in Cloud Computing
	8.2 Existing Risk Assessment Methods for Cloud Computing

	9 Conclusion and Future Work
	Acknowledgement
	References

	Personalized Quality Centric Service Recommendation
	Abstract
	1 Introduction
	2 Problem Analysis
	3 Recommendation Approaches
	3.1 Basic Approaches
	3.2 Hybrid Approaches

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Experimental Results
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgment
	References

	Cataloger: Catalog Recommendation Service for IT Change Requests
	1 Introduction
	2 Related Work
	3 The Cataloger Approach
	3.1 Classification of Change Requests
	3.2 Extracting Parameters from Change Requests
	3.3 Feedback Approach

	4 Evaluation Methods
	4.1 Evaluation of CTA Classification Approaches
	4.2 Evaluation of Parameter Extraction Approaches
	4.3 Evaluation of Feedback Approach

	5 Conclusion and Discussion
	References

	ATLAS: A World-Wide Travel Assistant Exploiting Service-Based Adaptive Technologies
	1 Introduction
	2 Challenges and Application Scenario
	3 System Implementation
	3.1 Adaptive Service-Based Systems Through Domain Objects
	3.2 Domain Object-Based Platform
	3.3 Travel Assistant Implementation

	4 Evaluation
	5 Related Work and Conclusion
	References

	Services in Organizations, Business and Society
	A Variability Model for Store-Oriented Software Ecosystems: An Enterprise Perspective
	1 Introduction
	2 Research Method
	3 Variability Model for Store-Oriented Software Ecosystem Product Line
	3.1 Variation Points and Variants
	3.2 Variability Constraint Dependencies
	3.3 Business and Technical Context

	4 Describing Existing Ecosystems by Using the Variability Model
	5 Relation of Variabilities to Design Artifacts of Store-Oriented Software Ecosystems
	6 Related Work
	7 Conclusion
	References

	An Analysis of RESTful APIs Offerings in the Industry
	1 Introduction
	2 Research Method and Conduct
	2.1 Analyzed Attributes

	3 SP06-Results
	4 Related Work
	5 Conclusions and Future Work
	References

	Efficient Influential Individuals Discovery on Service-Oriented Social Networks: A Community-Based Approach
	1 Introduction
	2 Problem Statement
	3 Proposed Solutions
	3.1 Network Embedding Based Community Detection
	3.2 Basic Community-Based Approximation Algorithm BCAA
	3.3 Improved Community-Based Approximation Algorithm ICAA

	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	References

	Empirical Study on REST APIs Usage in Android Mobile Applications
	1 Introduction
	2 RQ1: As service users, how Android developers access popular REST services/APIs in their applications?
	2.1 Corpus
	2.2 Experimental Setup
	2.3 Results
	2.4 Threats to Validity

	3 RQ2: As service providers, how to design client helper libraries to be popular among mobile applications?
	3.1 Results of Research Question 2
	3.2 Threats to Validity

	4 Related Work
	5 Conclusion and Future Work
	References

	Services in the Cloud
	Revenue-Driven Service Provisioning for Resource Sharing in Mobile Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	3 System Models and Problem Formulation
	3.1 Mobile Cloud Architecture
	3.2 Mobile Services and Requests
	3.3 Problem Statement

	4 RESP Approach
	4.1 RESP Algorithm
	4.2 Timeouts Processing Algorithm
	4.3 Algorithm Analysis

	5 Experiments
	5.1 Effectiveness Evaluation
	5.2 Efficiency Evaluation

	6 Conclusion
	Acknowledgement
	References

	Continuous Learning as a Service for Conversational Virtual Agents
	1 Introduction
	2 Problem Overview
	3 Modeling the Continuous Learning Problem Using Reinforcement Learning (RL)
	3.1 SARSA Algorithm for Learning Action Policies
	3.2 Implementing the Action Policy

	4 Service Design for Continuous Learning
	5 Experiment Results
	6 Related Work
	7 Conclusions
	References

	Costradamus: A Cost-Tracing System for Cloud-Based Software Services
	1 Introduction
	2 Background
	3 Application Scenario: Smart Grid Metering
	4 Software Service Cost Model
	4.1 Service Model
	4.2 Metrics

	5 Cost-Tracing System
	5.1 Design Goals
	5.2 Capacity Usage Tracing Approaches
	5.3 Prototype

	6 Evaluation
	6.1 Experiment Setup
	6.2 Results and Discussion

	7 Related Work
	8 Conclusions
	References

	An Automatic Approach for Transforming IoT Applications to RESTful Services on the Cloud
	1 Introduction
	2 Background
	2.1 IoT Devices
	2.2 Web Services
	2.3 Programming Structure of the Source Code of IoT Applications
	2.4 IoT Services

	3 Overview of Our Approach
	3.1 Identifying External Methods
	3.2 Extracting Service Specifications
	3.3 Representing External Methods in a Service Schema
	3.4 Transforming External Methods to IoT Services

	4 Case Study
	4.1 Case Study Setup
	4.2 RQ1: How Effective Is Our Approach to Identify External Methods and Extract Service Specifications?
	4.3 RQ2. How Accurate Is Our Approach to Generate IoT Services?

	5 Related Work
	5.1 Service-Oriented Architecture for IoT Devices
	5.2 Code Analysis

	6 Conclusion
	References

	RobOps: Robust Control for Cloud-Based Services
	1 Introduction
	2 RobOps Design
	3 Online System Identification
	3.1 Selecting the Candidate Models
	3.2 Model Identification
	3.3 Model Parameters Computation
	3.4 Model Evaluation and Selection

	4 Design of a Feedforward Plus Feedback Controller
	4.1 Design of a Feedforward Controller
	4.2 Design of the Feedback Controller

	5 Evaluation
	5.1 Evaluating the Dynamic Response
	5.2 Robustness to Software Changes

	6 Related Work
	7 Discussion and Future Work
	8 Conclusion
	References

	Serverless Execution of Scientific Workflows
	1 Introduction
	2 Motivation
	3 Design and Implementation
	3.1 Workflow Management System
	3.2 FaaS Job Handler
	3.3 Local Job Handler
	3.4 Others

	4 Evaluation
	4.1 Initial Evaluation
	4.2 Performance Tuning
	4.3 Large-Scale Evaluation

	5 Related Work
	6 Conclusion
	References

	A Market-Based Approach for Detecting Malware in the Cloud via Introspection
	1 Introduction
	2 Preliminaries
	2.1 Virtualisation and Virtual Machine Introspection
	2.2 Forensic Virtual Machines
	2.3 Market Mechanism

	3 The Prioritisation System Design
	4 Experimental Setup and Results
	5 Related Work
	6 Conclusion and Future Work
	References

	Trustless Intermediation in Blockchain-Based Decentralized Service Marketplaces
	1 Introduction
	2 Background and Related Work
	3 Trustless Intermediation
	4 Decentralized Marketplace System
	5 Conclusion
	References

	Author Index

