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Abstract. Search-based test data generation methods mostly consider the
branch coverage criterion. To the best of our knowledge, only two works exist
which propose a fitness function that can support the prime path coverage
criterion, while this criterion subsumes the branch coverage criterion. These
works are based on the Genetic Algorithm (GA) while scalability of the evo-
lutionary algorithms like GA is questionable. Since there is a general agreement
that evolutionary algorithms are inferior to swarm intelligence algorithms, we
propose a new approach based on swarm intelligence for covering prime paths.
We utilize two prominent swarm intelligence algorithms, i.e., ACO and PSO,
along with a new normalized fitness function to provide a better approach for
covering prime paths. To make ACO applicable for the test data generation
problem, we provide a customization of this algorithm. The experimental results
show that PSO and the proposed customization of ACO are both more efficient
and more effective than GA when generating test data to cover prime paths.
Also, the customized ACO, in comparison to PSO, has better effectiveness while
has a worse efficiency.

Keywords: Search based test data generation -+ Prime paths - Swarm
intelligence algorithms - Ant colony optimization - Particle swarm optimization

1 Introduction

Software testing is an important activity of the software development life cycle that
aims at revealing failures in a Software Under Test (SUT). Among many activities that
help improving software quality, testing is still the most popular method, even though
being expensive. Although testing is usually done manually in industrial applications,
its automation has been a burgeoning interest of many researchers [1, 2]. Automation
reduces cost and time and improves the quality degree of the testing activity.

Test data generation is the activity of finding a set of input values with the aim of
detecting more failures of software systems. In the graph-based, structural approach to
test data generation, the given software artifact (e.g., the source code concerned in this
paper) is modeled as a graph. Control Flow Graph (CFG) is a graph that is obtained
from source code for this purpose. According to the graph based criteria, some parts of
the resulting graph should be covered by the test data. The simplest criteria are node
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coverage, edge coverage, and edge-pair coverage. The edge-pair criterion can be
logically extended to the Complete Path Coverage (CPC) criterion. Because of the
possibility of infinite number of test requirements, CPC is not practical for programs
with loops. To resolve this issue, some solutions have been proposed by researchers,
including a coverage criterion based on the prime path notion [4]. Unlike CPC, which
is not practical, Prime Path Coverage (PPC) is a practical criterion that subsumes all
other graph-based, structural coverage criteria. Thus, in this paper, we consider PPC as
the coverage criterion.

The emphasis on the prime path coverage is due to the fact that covering prime
paths may reveal failures that cannot be detected using other criteria. For instance,
Fig. 1 shows a sample program along with its CFG. It contains a fault in line 11 (i.e.,
¢ = 0) which causes an exception (division by zero) in the second iteration of the
existing loop. Based on the test requirements represented in Table 1, we can reveal the
failure if we traverse path 7 which results when using the prime path coverage as the
test criterion. Other coverage criteria may never find this fault.

void motivating () {
inta,b,c,d, n;

1 cin>>a>>b;
2 if(a<d){
3 c=a;
}
else {
4 c=b;
}
s n=c;
6 while (n<8) {
7 If (b>o) {
] 2;
H
else {
9 n=m+c+7;
10 a=b/c;
11 c=0;
)
12 o n+l;

13 cout<<a<<b<<n
}

(a)

Fig. 1. (a) The sample program (b) The corresponding CFG

Test data generation is an expensive and time consuming activity. Therefore,
development of methods to automate this activity is necessary. One approach for
automatic test data generation is symbolic execution [6] that assigns symbolic values to
program parameters in order to formulate program paths in terms of logical constraints.
These constraints should be solved to find values which cause the program to follow
specific paths. The main issue with this approach is that it is dependent on the
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Table 1. Test paths according to node, edge and prime path coverage for the given example

Node coverage Edge coverage Prime path

[1,2,3,5,6,11] [1,2,3,5,6,11] [1,2,3,5,6,7,9,10,6,11]
[1,2,4,5,6,7,9,10,6,11] | [1,2,4,5,6,7,9,10,6,11] | [1,2,3,5,6,7,8,10,6,11]
[1,2,4,5,6,7,8,10,6,11][1,2,3,5,6,7,8,10,6,11] | [1,2,4,5,6,11]

[1,2,3,5,6,11]
[1,2,4,5,6,7,9,10,6,7,8,10,6,11]
[1,2,4,5,6,7,8,10,6,7,9,10,6,11]
[1,2,4,5,6,7,9,10,6,7,9,10,6,11]
[1,2,4,5,6,7,8,10,6,7,8,10,6,11]

0 N NN R W =

capabilities of constraint solvers. Constraint solvers either are unable to resolve com-
plex constraints or resolve such constraints in a computationally expensive way.
Loop-dependent or array-dependent variables, pointer references and calls to external
libraries whose implementations are unknown also introduce issues for this approach.

Dynamic methods are another automatic approach which generate test data through
executing the SUT and determining the visited program locations via some form of
program instrumentation. Program instrumentation is done to trace run-time informa-
tion such as branch distance (detailed in Sect. 2). To do this, some extra statements will
be added inside the original program before every predicate. These statements should
not alter the behavior of the original program.

Using meta-heuristic algorithms is a category of dynamic methods called Search
Based Software Testing (SBST). To apply this approach, the input domain of the SUT
forms the search space, and a fitness function is defined which evaluates and scores
different inputs to the SUT according to the given test criteria and test requirements. All
the information needed by a meta-heuristic algorithm (e.g., if the given test data lead to
traversing a specific location of the program) can be extracted from the execution of the
instrumented SUT, accordingly.

The fitness function plays an important role in successful and efficient searches in
meta-heuristic algorithms. A well-defined fitness function improves the likelihood of
finding a proper solution. It also can result in consuming fewer system resources [7].
The fitness functions that have already been proposed for search based test data gen-
eration methods are divided into two categories: Branch Predicate Distance Function
(BPDF) and Approximation level, which are described in Sect. 2.

As shown in Fig. 1, in order to cover prime paths, the test data generation method
should be capable to cover those test paths that pass through loops one or more times.
Therefore, a search-based test data generation method which regards the prime path
coverage criterion needs an appropriate fitness function. To the best of our knowledge,
only two works [8, 21] exist proposing fitness functions that can support the prime path
coverage criterion. We refer to these fitness functions as NEHD [8] and BP1 [21].
However, the mentioned works are based on GA, while swarm intelligence algorithms
have shown considerable results in the optimization problems [19].

NEHD has been designed to measure the Hamming distance from the first order to
the n'™ order between two paths to consider the notion of sequences of branches. It
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results in time intensive calculations for long paths because the fitness function must
continuously search for the number of combinations of branches from 1 to n order at
each stage. Therefore, according to [20] the method of [8] has a poor efficiency.

BP1 is the linear combination of two measures, BPDF and Approximation level.
BDPF is normalized in the range [0,1] but the Approximation level is not normalized
despites the importance of normalization [18]. In this situation, normalization is
essential to consider equal weights for the two measures of the fitness function (BPDF
and Approximation level) for guiding individuals in the search process (Sect. 4).

We propose a new search-based approach for test data generation which aims at
covering prime paths more effectively and more efficiently through two contributions:
(1) we apply Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO) as two prominent swarm intelligence algorithms for test data generation, and
(2) we propose a new normalized fitness function. ACO is a powerful method for
finding shortest paths in dynamic networks. But, it is not always straightforward to
apply it to other problems such as function optimization or searching n-dimensional
spaces [10]. Thus, we should adapt ACO for the test generation problem in this paper.

The results of our experiments show that the customized ACO and PSO have better
average coverage and better average time in comparison to GA. Also, ACO leads to a
better average coverage comparing with PSO while, it has a worse average time.

The rest of the paper is structured as follows. In the next section, we review the
basic ACO, PSO, and the current fitness functions for test data generation. The third
section provides a brief overview of some related works. In Sect. 4, the customized
ACO algorithm and the new fitness function are addressed. Then, the experimental
analysis and results are presented and discussed in Sect. 5, followed by the conclusion
and outline of the future works in Sect. 6.

2 Background

2.1 Basic ACO

ACO is one of the swarm intelligence algorithms [19, 28] whose application in various
problems is known. Like many other meta-heuristic algorithms, the main idea of ACO
is inspired by observing the natural behavior of living organisms. In ACO, different
behaviors of ants in their community have been the source of inspiration.

ACO algorithms were originally conceived to find the shortest route in traveling
salesman problems. In ACO, several ants travel across the edges that connect the nodes
of a graph while depositing virtual pheromones. Ants that travel the shortest path will
be able to make more return trips and deposit more pheromones in a given amount of
time. Consequently, that path will attract more ants in a positive feedback
loop. However, in nature, if more ants choose a longer path during the initial search,
that path will become reinforced even if it is not the shortest. To overcome this
problem, ACO assumes that virtual pheromones evaporate, thus reducing the proba-
bility that long paths are selected.

Several types of ACO algorithms have been developed with variations to address
the specificities of the problems to be solved. Here, we briefly describe the basic ACO
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algorithm, known as the ant system [9]. Initially, ants are randomly distributed on the
nodes of the graph. Each artificial ant chooses an edge from its location with a
probabilistic rule that takes into account the length of the edge and the value of
pheromones on that edge, as shown in Fig. 2 a virtual ant arriving from node A
considers which edge to choose next on the basis of pheromone levels t; and visi-
bilities #7;; (inverse of distance). The edge to node A is not considered because that node
has already been visited. Once all ants have completed a full tour of the graph, each of
them retraces its own route while depositing on the traveled edges a value of pher-
omones inversely proportional to the length of the route. Before restarting the ants from
random locations for another search, the pheromones on all edges evaporate by a small
quantity. The pheromone evaporation, combined with the probable choice of the edge,
ensures that ants eventually converge on one of the shortest paths, but some ants
continue to travel also on slightly longer paths.

Fig. 2. Choosing an edge with a probabilistic rule

Because the basic ACO is suitable for search space with graph structure, a cus-
tomization of the ACO is required to make this algorithm applicable for the test data
generation problem with an n-dimensional search space.

22 PSO

In PSO [3], each particle keeps track of a position which is the best solution it has
achieved so far as pbx; and the globally optimal solution is stored as gbest. The basic
steps of PSO are as follow.

1. Initialize N particles with random positions px; and velocities vi on the search space.
Evaluate every particle’s current fitness f(px;). Initialize pbxi = px; and gbest = i,
f(pxi) = min(f (pbxo), f(pbx2), . . ..f (Pbxy));

2. Check whether the criterion (i.e. desired fitness function) is met. If the criterion is
met, loop ends; else continue;

3. Change velocities according to formula (1):

vi = vi + cl(pbx; — px;) + c2(pbXgpes — PXi) (1)

where o is an intra weight c;, c, are learning factors.
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4. Change positions according to formula (2):
DXi = pX; + Vi (2)

5. Evaluate every particle’s fitness f(px;); if f(px;) < f(pbx;) then pbx; = px;;
6. Update gbest and loop to step 2.

2.3 Fitness Functions for Test Data Generation

In this section, an overview of the two general categories of fitness functions [5], BPDF
and Approximation level, is given. After that, BP1 and NEHD which support the
coverage of prime paths are explained.

In a CFG, each decision node is associated with a branch predicate. The outgoing
edges from decision nodes are labeled with true or false values of the corresponding
predicate. To traverse a path during execution, it is necessary to find appropriate values
for the input variables such that they satisfy all of the related branch predicates. One
way to define a proper fitness function to guide such a search is using BPDF [5] that
examines the branching node at which the actual path deviated from the intended path.
Its objective is to measure how close this test data is to fulfill the branch predicate
condition that would have sent it down the intended path. For instance, suppose that
branch predicate C is (a = b) and f is the BPDF-based fitness function. When |a —
b| = 0, then f = 0; otherwise, f = |a — b| + k where factor k is a positive constant
which is always added if the predicate is not true. In this way, the fitness function
returns a non-negative value if the predicate is false, and zero when it is true.
A complete list of branch distance formulas for different relational predicate types is
presented in [1].

The other way to define fitness functions is using Approximation level [5]. The
Approximation level indicates how close the actual path taken was to reaching the
partial aim (for example, the number of correct nodes the test data encountered or how
often that path was generated). In the case of correct nodes, test data with higher
Approximation levels are judged to be more fit than those with low values.

The Normalized Extended Hamming Distance (NEHD) is designed to measure the
Hamming distance from the first order to the n™ order between two paths. But,
according to [20] the method proposed in [8] has a poor efficiency.

The fitness function BP1 is a linear combination of BDPF and Approximation level
that has the form shown in formula 3.

EP
BP1 = NC — —— (3)
MEP

— NC is the value of the path similarity metric computed based on the number of
coincident nodes between the executed path and the target one, starting from the
entry node up to the node where the executed path is different from the target one.
This value can vary from 1 to the number of nodes in the target path. In the case
similarity = 1, only the entry node is common to both paths.
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— EP is the absolute value of the BDPF associated with the branch which is deviated
from the target path.

— MEP is the BDPF maximum value among the candidate solutions that executed the
same nodes of the intended path.

% is a measure of the candidate solution error with respect to all the solutions that

executed the right path up to the same deviation predicate. This value is used as a
solution penalty. Thus, the search dynamics is characterized by the co-existence of two
objectives: maximize the number of nodes correctly executed with respect to the
intended path and minimize the predicate function of the reached predicates. It should
be noted that the range of BP1 is between 0 and the length of the target path (because of
NC) so when the target path is long, the significance of the BPDF parameter is
deceased. The reason is that BPDF is in the range [0,1] and it is linearly combined with
the Approximation level part.

Experimental results [5] show that BP1 has a better performance than NEHD
[5, 20]. BP1 has two parts where the first part is normalized between [0,1] but the
second part is not normalized. The importance of normalization is shown in [7, 18]. In
this paper, we use a normalized fitness function based on BP1.

3 Related Work

In this section, we review the related work for test data generation based on various
meta-heuristic algorithms. In the literature, there are many works addressing search
based test data generation [1, 2]. In this section, we review the prominent methods that
center around different meta-heuristic algorithms.

Jones [22] and Pargas [16] investigated the usage of GA for automated test data
generation regarding branch coverage. Their experiments on several small programs
showed that in general, GA significantly outperforms the random method. Harman and
McMinn [24] performed an empirical study on GA-based test data generation for
large-scale programs and validated its effectiveness over other search algorithms such
as hill climbing. Fraser et al. [25] have implemented a tool named EvoSuite to generate
a whole test suite for satisfying the given coverage goals. The default coverage criterion
used by EvoSuite is branch coverage, but there is also rudimentary support for some
coverage criteria in the context of mutation and data flow testing. In their tool, GA and
Memetic are used to generate JUnit test suites for classes in Java.

Simulated Annealing (SA) is a well-known search algorithm which solves complex
optimization problems using the idea of neighborhood search. Tracey et al. proposed a
framework to generate test data based on SA [26] with the aim of overcoming some of
the problems associated with the application of local search. In this method, test data
can be generated for specific paths without loops, or for specific statements or branches.
Also, Cohen et al. adopted SA to generate test data for combinatorial testing [27].

Windisch et al. applied PSO to generate test data [29]. They compared their method
with a GA-based technique in terms of the convergence characteristic. Mao et al. have
built a new method, called TDGen-PSO [17] which has exhibited better performance
comparing with GA and SA.
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ACO has shown a comparable effect on solving optimization problems in com-
parison to other meta-heuristic search algorithms like GA [32-34]. Applying ACO for
solving the problems in software testing have been investigated in [35]. ACO was
adopted in [36, 37] to produce test sequences (not test data) for state-based software
testing.

Li et al. [31] used ACO to generate test data in accordance with the branch cov-
erage criterion. Unlike our approach, this work transforms the search space (to a graph
form) instead of adapting the ACO algorithm. In addition, [31] has not provided any
implementation and evaluation for its idea. Mao et al. [30] used ACO to generate test
data for the branch coverage criterion. They set the pheromone to each ant in the
colony; thus, pheromone is not distributed in the search space. By defining pheromone
in each ant, a memory is dedicated to each ant so ACO has in fact converted to a
memory-based algorithm [10] like PSO. Their findings show that ACO is better than
GA and SA in this regard. Ayari et al. proposed an ACO-based method for mutation
testing [23]. Their measure for test data adequacy is the mutation score. Meanwhile,
their experimental analysis is based on just two benchmark programs. Bauersfeld et al.
used ACO to find input sequences for testing applications with Graphical User Inter-
face (GUI) [19].

As two approaches capable of covering prime paths, Lin et al. [8] and Bueno et al.
[21] introduced methods for test data generation based on the GA algorithm. They
proposed NEHD and BP1 as their fitness function, respectively. These works are based
on GA while scalability and performance of evolutionary algorithms are questionable
[13, 14]. In addition, as reported in [19], swarm intelligence algorithms have shown
considerable results in the optimization problems.

In this paper, we propose a new search based approach for test data generation
which aims at covering prime paths more effectively and more efficiently through a
new normalized fitness function and using ACO and PSO as two prominent swarm
intelligence algorithms. A customization of the ACO is required to make this algorithm
applicable for the test data generation problem.

4 Test Data Generation

The aim of this work is to produce a set of test data to satisfy the given test paths. There
is no restriction on test paths and they can involve prime paths as well. For this
purpose, our method considers every test path as a target, separately, and repeats the
data generation process until the target path is covered or the maximum number of
iterations is exceeded. For PSO, we use its basic algorithm, explained in Sect. 2, so in
this section, we only explain our customization on ACO. A top-level view of the
algorithm is shown in Fig. 3. For each test path of the program, ants are randomly
scattered in the search space. The instrumented program is executed by a test data td
which is determined by the location of a specific ant in the search space. According to
the covered path, the fitness value is computed. Then, for each ant of the population,
local search, global search, and pheromone updating are performed iteratively.
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4.1 The Customized ACO

The basic ACO algorithm is mainly used in discrete optimization problems which are
formulated on the graph structure. We customize the basic ACO to generate test data in
an n-dimensional space. The test data generation can be formally described as follows:
Given a program under test P, suppose it has d input variables represented by vector
Xk = (xk, X, - - ., x) can be treated as the position vector of an ant in ACO. For each
input variable x;(1 < i < d), assume it takes its values from domain D;. Thus, the
corresponding input domain of the whole program is D = D; x D, X ... X Dg.

Loop for every test path of the program as the target path
Initialize location of ants from the input domain of the program to be tested at random
Do
Feed the program with the test data (which is the location of ant);
If any of ants has reached to the target path
Output the successful message and the location of this ant as test data;
Exit;
End if
Do local and global search in n-dimensional space for each ant;
Update pheromone
‘While (iteration limit exceeds)

End of loop

Fig. 3. Algorithm for test data generation

In the basic ACO, the search space has a graph structure. Thus, the neighbor area of
an ant is the set of the adjacent nodes of its corresponding position in the graph. Since
the structure of the test data generation problem does not form a graph, the basic ACO
algorithm must be modified such that it can be applied on the non-graph structure of the
problem. For the test data generation problem, each ant’s position can be viewed as a
test data and represented as a vector in input domain D. For any antk (I < k < n), its
position can be denoted as X; = (xg, X, . . ., Xx) is the number of input variables and
therefore the number of dimensions).

A major challenge for applying ACO to test data generation is the form of pher-
omone because the search space is continuing and it does not have either node or edge
for defining pheromone on it. To tackle this problem, we partition the search space by
partitioning every domain of each input variable to b equivalent parts that can be any
number dividable by the range of input domain. The best value for b is obtained from
sensitivity analysis which is explained more in Sect. 5.

The number of partitions for each input variable is determined separately. To
illustrate partitioning, consider a program with two inputs x and y. If we partition the
input domain of x to bl parts and the input domain of y to b2 parts, there are totally
@ = bl x b2 partitions on the 2-dimensional space (Fig.4). Each partition has a
special pheromone value. Therefore, the number of pheromones in the search space is
equal to the number of partitions in this space.
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Local Search. During the local search, each ant looks for a better solution in its own
neighborhood area. To compute the neighbors of ant k, we must consider it in the
n-dimensional space D. The neighbors of ant with position vector X; =
(%K1, Xk2, - - -, xkq) have the position vector Xk' = (X, X}y, .. .X};) Where x}; =
xi+s, —1<s<1andX, #X.If an input has integer domain, s is 0 or 1 or —1.
For a continues variable, three random numbers are selected for s. In a 2-dimensional
search space, the location of an ant can be (1, 1). Thus, the positions of the neighbors
are: (0, 1), (1, 0), (0, 0), (2, 1), (1, 2), (2, 2), (2, 0), (0, 2). The number of neighbors for
an ant in a d-dimensional space is 3% — 1 as it is shown in Fig. 5.

The rule for local search or local transfer of ant’s position can be represented as
follows: ant k transfers from Xk to a new position Xk’ if the fitness of Xk’ is better than
that of Xk (i.e., Fimess(Xk') < Fitness(Xk)), and Xk’ has the best fitness value among
Xk’ neighbors. Otherwise, the ant must stay at its current position (i.e., Xk). It should be
mentioned that according to our implementation, the best fitness value is 0. Thus, a
lower value is considered as a better fitness.

Global Search. The previous step is an activity of local optimization for each ant in
the colony. But, this is not sufficient to find a high-quality solution because, at the local
transfer stage, there might be an ant with no movement since it could not find a
neighboring position with better fitness value. This situation is known as local optima
trap [10] which could be resolved by an action called global transfer.

For any ant k in the colony (1 < k < n), if its fitness is lower than the average
level, i.e., Fitness(Xy) > Fitness,,,, a random number ¢ is selected. Fitness,,, is the
average fitness of whole ant colony and ¢ is a random number from 0 to 1. When
Fitness(X) > Fitness,,, and ¢ < ¢0, the position of ant k is randomly set in the whole
search space (g0 is a preset parameter). When Fitness(Xy) > Fitness,,, and g > q0,
the position of ant k is randomly set to a position in a partition which has a maximum
value of pheromone. With doing global search any ant that has in the local optima
situation is transferred with probability g0 to a random position in the whole search
space and with a probability 1 — g0 to a position which has a maximum value of
pheromone.

Update Pheromone. After doing global and local search for all ants in each run, the
pheromone is updated (Fig. 3). To update pheromone value in every partition, the
following rule is used:
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1(j) « (1 — a) x 1(j) + o X number of ants in partitionj. (4)

Where o € (0, 1) is a pheromone evaporation rate, t(j) represents the value of
pheromone in the jth partition; j stands for the partition index.

4.2 Fitness Function

We represent a test path by sequences of characters which are the labels of edges in the
CFG of the SUT. Therefore, for test data generation, the fitness function is calculated
for the target path and the path traversed by any test data. To formulate the fitness
function considering the order of the branches, both branch distance and Approxi-
mation level are used. The fitness function FT that is used to evaluate each candidate
solution has the form shown in formula 5 and has two separately normalized parts. One
part relates to the branch distance and the other relates to the Approximation level.
Each part has the value between O and 1. Thus, FT is ranged from 0O to 2.

NC EP
FT—(l—ﬁ>+EP+ﬁ (5)

— NC is the value of the path similarity metric. (described in Sect. 2.3)

— TP is the length of the target path, thus (1 — NC/TP) has a normalized value
between O and 1. The value zero is the optimal value for this part of FT.

— EP is the value of branch distance. (described in Subsect. 2.3)

— P is a parameter for the normalization proposed in [18]; based on the experiment
done in [18], we set it to 1.

EP
Ep+f

the same as what proposed in [18]. By using this function instead of ;525 (in BP1), there

It should be mentioned that the normalization function that we used (i.e. ) is
is no need to calculate MEP which leads to more efficiency.

In contrast to BP1, the values of fitness are normalized between O and 2, and
fitness = 0 means the target path is fully met. Normalization is separately done for two
parts of FT because the two parts of the fitness function would have the same share to
conduct the individuals.

5 Experiments

In this section, we assess our proposed approach, which uses two prominent swarm
intelligence algorithms PSO and ACO, against the GA-based method proposed in [21].
As mentioned before, it is shown by experiment in [20] that the method proposed in [8]
has low efficiency. Thus, we do not compare our approach with [8]. To perform the
experiment, all the three algorithms have been implemented with the same fitness
function, proposed in Subsect. 4.2. We define the following two criteria as evaluation
metrics:
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e Average Coverage (AC), i.e., the average percentage of covered test paths in
repeated runs.

e Average Time (AT), i.e., the average execution time (in milliseconds) of realizing
test path coverage.

5.1 Experimental Setup

We selected a set of benchmark programs from the literature. Most of these programs,
including “Triangle Type” (1), “Power x*” (2), “Remainder” (3), “GCD” (4), “LCM”
(5) and “ComputeTax” (6), are commonly used in software testing research. Table 2
shows the number of lines of code (LoC) and the number of prime paths (No. PP) of
each program.

Table 2. Programs selected for the experiment

#P | Program name | LoC | No. PP | Description

1 | Triangle Type | 43 | 4 Find the type of triangle [17, 23]

2 | Power x” 27 | 3 Determine the value of x”

3 | Remainder 30| 3 Determine remainder of x/y [17, 23]
4 | GCD 24 | 2 Find greatest common divisor

5 |LCM 38 7 Find least common multiplier

6 | Compute Tax | 164 |24 Compute tax amount [17, 23]

7 | Synthetic 45 | 8 Synthetic of while, for and if [15]

Table 3. Parameter setup

Algorithm Parameter Value
GA Selection method Roulette wheel
Crossover method Single point

Crossover probability | 80%
Mutation probability |0.05%
Chromosome-type Binary string

PSO ® 1

cy 2.05

Cy 2.05
ACO o 0.3

Jo 0.5

b Varies based on program
All Algorithms | Population size 50

No of iteration 100

We manually instrumented each original program without changing its semantics.
Then, we constructed the corresponding CFG by using Control flow graph factory tool
[12] and extracted a list of prime paths using the tool available in [11].
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Before using GA, ACO, and PSO, their parameters must be initialized. The chosen
values are shown in Table 3.

5.2 Experimental Results

The experimental results are presented in Table 4. The results show that our cus-
tomized ACO is better than GA in terms of both criteria. Furthermore, our customized
ACO has equal or better average coverage comparing with the PSO algorithm.
However, PSO reaches the solution in less time in comparison to ACO because this
algorithm is basically less complex.

Table 4. Comparison between the customized ACO, PSO, and GA

#P | Average coverage (%) Average time (milliseconds)
GA PSO Customized ACO | GA PSO Customized ACO

1 |74.5 96.5 100 103.7241 18.18289 | 31.2224

2 195.66667 | 100 100 2239718 | 22.72688 |138.9988

3 194.33332| 100 100 209.9785 1.981523 | 27.81944

4 100 100 100 49.63726 1.92135 | 20.21426

5 |51.4285 |71.4285|71.4285 475.3366 | 32.66283 |236.5719

6 |98.29 100 100 440.2108 10.53734 | 286.0023

7 |58 80.75 87.5 209.352 155.7802 182.85854

In the customized ACO, selecting the best value for parameter “b” (i.e. the number
of parts) is important, therefore, the sensitivity analysis is done for this parameter. To
do this, we calculate the values of the two evaluation criteria with different number of
parts. As can be seen in Figs. 6 and 7, the average coverage and average time are
increased with increasing the number of parts, but when we reach to the maximum
coverage, we do not have any change in the average coverage with increasing the
number of the parts. Also, the best value of parameter b for programs “Triangle Type”
and “Synthetic” is 5000, for “compute tax” is 50000, for “Remainder” and “LCM” is
1000 and for “Pow x*~ and “GCD” is 500. In each program, when parameter b is set to
this value, the least average time and the most average coverage are gained.

Avarage Coverage

Average Time

Fig. 6. Average coverage against the number  Fig. 7. Average time against the number of
of partitions partitions
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6 Conclusions and Future Works

In this paper, we have presented a search-based test data generation approach to cover
prime paths of the program under test. The proposed approach uses ACO and PSO as
two prominent swarm intelligence algorithms and a new normalized fitness function.
We customized the ACO algorithm by combining it with the idea of input space
partitioning. Also, the proposed fitness function is a normalization of the fitness
function BP1 proposed in the [2]. We compared the customized ACO, PSO, and GA
when all of these three algorithms are applied with the proposed fitness function. The
results have shown that our method is stronger than GA in terms of both evaluation
criteria. In addition, the results manifest that in comparing with PSO, the customized
ACO results in a better coverage, but has worse efficiency. As future work, we will
consider the following research areas:

e The main reason that causes the swarm intelligence algorithms do not widely apply
in the test data generation problem is the search space of the string type. Most
swarm intelligence based algorithms work on the structural search space, while the
input domain of the string variables does not have a defined neighborhood concept.

e Using the static structure of the program in the partitioning of the search space (i.e.
defining parameter “b” in the customized ACO).

e Multiple path test data generation (i.e. in each run, we consider multiple paths as
target instead of one path) by swarm intelligence algorithms is another issue that
could be considered in the future. There are approaches for multiple test path
generation by evolutionary algorithms, but they cannot be applied directly using the
swarm intelligence (i.e., population-based) algorithms.
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