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Preface

The present volume contains the proceedings of the 7th IPM International Conference
on Fundamentals of Software Engineering (FSEN), held in Tehran, Iran, April 26–28,
2017. This event was organized by the School of Computer Science at the Institute for
Research in Fundamental Sciences (IPM) in Iran. The topics of interest in FSEN span
over all aspects of formal methods, especially those related to advancing the application
of formal methods in software industry and promoting their integration with practical
engineering techniques. The program committee of FSEN 2017 consisted of 41 top
researchers from 17 countries. We received a total of 49 submissions from 27 countries,
out of which we accepted 16 regular papers and two posters. Each submission was
reviewed by at least three independent reviewers, for its quality, originality, contri-
bution, clarity of presentation, and its relevance to the conference topics.

Three distinguished keynote speakers, Thomas Henzinger, Philippa Gardner, and
Leon van der Torre, delivered their lectures at FSEN 2017.

We thank the Institute for Research in Fundamental Sciences (IPM), Tehran, Iran,
for their financial support and local organization of FSEN 2017. We also thank the
members of the Program Committee for their time, effort, and excellent contributions to
making FSEN a quality conference. We thank Hossein Hojjat as our publicity chair,
and Ali Jafari for his help in preparing this volume. Last but not least, our thanks go to
our authors and conference participants, without whose submissions and participation
FSEN would not have been possible.

August 2017 Mehdi Dastani
Marjan Sirjani
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Implementing Open Call-by-Value

Beniamino Accattoli1 and Giulio Guerrieri2(B)

1 INRIA, UMR 7161, LIX, École Polytechnique, Palaiseau, France
beniamino.accattoli@inria.fr

2 Department of Computer Science, University of Oxford, Oxford, UK
giulio.guerrieri@cs.ox.ac.uk

Abstract. The theory of the call-by-value λ-calculus relies on weak
evaluation and closed terms, that are natural hypotheses in the study
of programming languages. To model proof assistants, however, strong
evaluation and open terms are required. Open call-by-value is the inter-
mediate setting of weak evaluation with open terms, on top of which
Grégoire and Leroy designed the abstract machine of Coq. This paper
provides a theory of abstract machines for open call-by-value. The litera-
ture contains machines that are either simple but inefficient, as they have
an exponential overhead, or efficient but heavy, as they rely on a labelling
of environments and a technical optimization. We introduce a machine
that is simple and efficient: it does not use labels and it implements open
call-by-value within a bilinear overhead. Moreover, we provide a new fine
understanding of how different optimizations impact on the complexity
of the overhead.

This work is part of a wider research effort, the COCA HOLA project
https://sites.google.com/site/beniaminoaccattoli/coca-hola.

1 Introduction

The λ-calculus is the computational model behind functional programming lan-
guages and proof assistants. A charming feature is that its definition is based on
just one macro-step computational rule, β-reduction, and does not rest on any
notion of machine or automaton. Compilers and proof assistants however are
concrete tools that have to implement the λ-calculus in some way—a problem
clearly arises. There is a huge gap between the abstract mathematical setting
of the calculus and the technical intricacies of an actual implementation. This
is why the issue is studied via intermediate abstract machines, that are imple-
mentation schemes with micro-step operations and without too many concrete
details.

Closed and Strong λ-Calculus. Functional programming languages are based on
a simplified form of λ-calculus, that we like to call closed λ-calculus, with two
important restrictions. First, evaluation is weak, i.e. it does not evaluate function

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Dastani and M. Sirjani (Eds.): FSEN 2017, LNCS 10522, pp. 1–19, 2017.
DOI: 10.1007/978-3-319-68972-2_1
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2 B. Accattoli and G. Guerrieri

bodies. Second, terms are closed, that is, they have no free variables. The theory
of the closed λ-calculus is much simpler than the general one.

Proof assistants based on the λ-calculus usually require the power of the full
theory. Evaluation is then strong, i.e. unrestricted, and the distinction between
open and closed terms no longer makes sense, because evaluation has to deal
with the issues of open terms even if terms are closed, when it enters function
bodies. We refer to this setting as the strong λ-calculus.

Historically, the study of strong and closed λ-calculi have followed orthogonal
approaches. Theoretical studies rather dealt with the strong λ-calculus, and it is
only since the seminal work of Abramsky and Ong [1] that theoreticians started
to take the closed case seriously. Dually, practical studies mostly ignored strong
evaluation, with the notable exception of Crégut [13] (1990) and some very recent
works [3,6,19]. Strong evaluation is nonetheless essential in the implementation
of proof assistants or higher-order logic programming, typically for type-checking
with dependent types as in the Edinburgh Logical Framework or the Calculus of
Constructions, as well as for unification in simply typed frameworks like λ-prolog.

Open Call-by-Value. In a very recent work [8], we advocated the relevance of the
open λ-calculus, a framework in between the closed and the strong ones, where
evaluation is weak but terms may be open. Its key property is that the strong
case can be described as the iteration of the open one into function bodies. The
same cannot be done with the closed λ-calculus because—as already pointed
out—entering into function bodies requires to deal with (locally) open terms.

The open λ-calculus did not emerge before because most theoretical studies
focus on the call-by-name strong λ-calculus, and in call-by-name the distinction
open/closed does not play an important role. Such a distinction, instead, is
delicate for call-by-value evaluation (function’s arguments are evaluated before
being passed to the function), where Plotkin’s original operational semantics [22]
is not adequate for open terms. This issue is discussed at length in [8], where
four extensions of Plotkin’s semantics to open terms are compared and shown
to be equivalent. That paper then introduces the expression Open Call-by-Value
(shortened Open CbV ) to refer to them as a whole, as well as Closed CbV and
Strong CbV to concisely refer to the closed and strong call-by-value λ-calculus.

The Fireball Calculus. The simplest presentation of Open CbV is the fireball cal-
culus λfire, obtained from the CbV λ-calculus by generalizing values into fireballs.
Dynamically, β-redexes are allowed to fire only when the argument is a fireball
(fireball is a pun on fire-able). The fireball calculus was introduced without a
name by Paolini and Ronchi Della Rocca [21,23], then rediscovered indepen-
dently first by Leroy and Grégoire [20], and then by Accattoli and Sacerdoti
Coen [2]. Notably, on closed terms, λfire coincides with Plotkin’s (Closed) CbV
λ-calculus.

Coq by Levels. In [20] (2002) Leroy and Grégoire used the fireball calculus λfire

to improve the implementation of the Coq proof assistant. In fact, Coq rests on
Strong CbV, but Leroy and Grégoire design an abstract machine for the fireball
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calculus (i.e. Open CbV) and then use it to evaluate Strong CbV by levels: the
machine is first executed at top level (that is, out of all abstractions), and then
re-launched recursively under abstractions. Their study is itself formalized in
Coq, but it lacks an estimation of the efficiency of the machine.

In order to continue our story some basic facts about cost models and abstract
machines have to be recalled (see [4] for a gentle tutorial).

Interlude 1: Size Explosion. It is well-known that λ-calculi suffer from a degener-
acy called size explosion: there are families of terms whose size is linear in n, that
evaluate in n β-steps, and whose result has size exponential in n. The problem
is that the number of β-steps, the natural candidate as a time cost model, then
seems not to be a reasonable cost model, because it does not even account for
the time to write down the result of a computation—the macro-step character
of β-reduction seems to forbid to count 1 for each step. This is a problem that
affects all λ-calculi and all evaluation strategies.

Interlude 2: Reasonable Cost Models and Abstract Machines. Despite size explo-
sion, surprisingly, the number of β-steps often is a reasonable cost model—so
one can indeed count 1 for each β-step. There are no paradoxes: λ-calculi can
be simulated in alternative formalisms employing some form of sharing, such as
abstract machines. These settings manage compact representations of terms via
micro-step operations and produce compact representations of the result, avoid-
ing size explosion. Showing that a certain λ-calculus is reasonable usually is
done by simulating it with a reasonable abstract machine, i.e. a machine imple-
mentable with overhead polynomial in the number of β-steps in the calculus.
The design of a reasonable abstract machine depends very much on the kind of
λ-calculus to be implemented, as different calculi admit different forms of size
explosion and/or require more sophisticated forms of sharing. For strategies in
the closed λ-calculus it is enough to use the ordinary technology for abstract
machines, as first shown by Blelloch and Greiner [12], and then by Sands,
Gustavsson, and Moran [24], and, with other techniques, by combining the
results in Dal Lago and Martini’s [15] and [14]. The case of the strong λ-calculus
is subtler, and a more sophisticated form of sharing is necessary, as first shown
by Accattoli and Dal Lago [7]. The topic of this paper is the study of reasonable
machines for the intermediate case of Open CbV.

Fireballs are Reasonable. In [2] Accattoli and Sacerdoti Coen study Open CbV
from the point of view of cost models. Their work provides 3 contributions:

1. Open Size Explosion: they show that Open CbV is subtler than Closed CbV
by exhibiting a form of size explosions that is not possible in Closed CbV,
making Open CbV closer to Strong CbV rather than to Closed CbV;

2. Fireballs are Reasonable: they show that the number of β-steps in the fire-
ball calculus is nonetheless a reasonable cost model by exhibiting a reason-
able abstract machine, called GLAMOUr, improving on Leroy and Grégoire’s
machine in [20] (see the conclusions in Sect. 7 for more on their machine);
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3. And Even Efficient : they optimize the GLAMOUr into the Unchaining GLA-
MOUr, whose overhead is bilinear (i.e. linear in the number of β-steps and
the size of the initial term), that is the best possible overhead.

This Paper. Here we present two machines, the Easy GLAMOUr and Fast GLA-
MOUr, that are proved to be correct implementations of Open CbV (precisely, of
the right-to-left evaluation strategy in λfire) and to have a polynomial and bilinear
overhead, respectively. Their study refines the results of [2] along three axes:

1. Simpler Machines: both the GLAMOUr and the Unchaining GLAMOUr of
[2] are sophisticated machines resting on a labeling of terms. The unchaining
optimizations of the second machine is also quite heavy. Both the Easy GLA-
MOUr and the Fast GLAMOUr, instead, do not need labels and the Fast
GLAMOUr is bilinear with no need of the unchaining optimization.

2. Simpler Analyses: the correctness and complexity analyses of the (Unchain-
ing) GLAMOUr are developed in [2] via an informative but complex decom-
position via explicit substitutions, by means of the distillation methodology
[5]. Here, instead, we decode the Easy and Fast GLAMOUr directly to the
fireball calculus, that turns out to be much simpler. Moreover, the complexity
analysis of the Fast GLAMOUr, surprisingly, turns out to be straightforward.

3. Modular Decomposition of the Overhead : we provide a fine analysis of how
different optimizations impact on the complexity of the overhead of abstract
machines for Open CbV. In particular, it turns out that one of the optimiza-
tions considered essential in [2], namely substituting abstractions on-demand,
is not mandatory for reasonable machines—the Easy GLAMOUr does not
implement it and yet it is reasonable. We show, however, that this is true only
as long as one stays inside Open CbV because the optimization is instead
mandatory for Strong CbV (seen by Grégoire and Leroy as Open CbV by
levels). To our knowledge substituting abstractions on-demand is an opti-
mization introduced in [7] and currently no proof assistant implements it.
Said differently, our work shows that the technology currently in use in proof
assistants is, at least theoretically, unreasonable.

Summing up, this paper does not improve the known bound on the overhead
of abstract machines for Open CbV, as the one obtained in [2] is already optimal.
Its contributions instead are a simplification and a finer understanding of the
subtleties of implementing Open CbV: we introduce simpler abstract machines
whose complexity analyses are elementary and carry a new modular view of how
different optimizations impact on the complexity of the overhead.

In particular, while [2] shows that Open CbV is subtler than Closed CbV,
here we show that Open CbV is simpler than Strong CbV, and that defining
Strong CbV as iterated Open CbV, as done by Grégoire and Leroy in [20], may
introduce an explosion of the overhead, if done naively.

A longer version of this paper is available on Arxiv [9]. It contains two Appen-
dices, one with a glossary of rewriting theory and one with omitted proofs.
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2 The Fireball Calculus λfire and Open Size Explosion

In this section we introduce the fireball calculus, the presentation of Open CbV
we work with in this paper, and show the example of size explosion peculiar to
the open setting. Alternative presentations of Open CbV can be found in [8].

Terms t, u, s, r ::= x | λx.t | tu
Fireballs f, f ′, f ′′ ::= λx.t | i

Inert Terms i, i′, i′′ ::= xf1 . . . fn n ≥ 0
Evaluation Contexts E ::= 〈·〉 | tE | Et

Rule at Top Level Contextual closure
(λx.t)(λy.u) �→βλ t{x λy.u} E〈t〉 →βλ E〈u〉 if t �→βλ u

(λx.t)i �→βi t{x i} E〈t〉 →βi E〈u〉 if t �→βi u

Reduction →βf
:= →βλ ∪ →βi

Fig. 1. The Fireball Calculus λfire

The Fireball Calculus. The fireball calculus λfire is defined in Fig. 1. The idea is
that the values of the call-by-value λ-calculus, given by abstractions and vari-
ables, are generalized to fireballs, by extending variables to more general inert
terms. Actually fireballs (noted f, f ′, . . . ) and inert terms (noted i, i′, . . . ) are
defined by mutual induction (in Fig. 1). For instance, λx.y is a fireball as an
abstraction, while x, y(λx.x), xy, and (z(λx.x))(zz)(λy.(zy)) are fireballs as
inert terms.

The main feature of inert terms is that they are open, normal, and when
plugged in a context they cannot create a redex, whence the name (they are not
so-called neutral terms because they might have β-redexes under abstractions).
In Grégoire and Leroy’s presentation [20], inert terms are called accumulators
and fireballs are simply called values.

Terms are always identified up to α-equivalence and the set of free variables
of a term t is denoted by fv(t). We use t{x�u} for the term obtained by the
capture-avoiding substitution of u for each free occurrence of x in t.

Evaluation is given by call-by-fireball β-reduction →βf
: the β-rule can fire,

lighting up the argument, only if the argument is a fireball (fireball is a catchier
version of fire-able term). We actually distinguish two sub-rules: one that lights
up abstractions, noted →βλ

, and one that lights up inert terms, noted →βi
(see

Fig. 1). Note that evaluation is weak (i.e. it does not reduce under abstractions).

Properties of the Calculus. A famous key property of Closed CbV (whose eval-
uation is exactly →βλ

) is harmony : given a closed term t, either it diverges or
it evaluates to an abstraction, i.e. t is βλ-normal iff t is an abstraction. The
fireball calculus satisfies an analogous property in the open setting by replacing
abstractions with fireballs (Proposition 1.1). Moreover, the fireball calculus is
a conservative extension of Closed CbV: on closed terms it collapses on Closed
CbV (Proposition 1.2). No other presentation of Open CbV has these properties.
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Proposition 1 (Distinctive Properties of λfire). Let t be a term.

1. Open Harmony: t is βf -normal iff t is a fireball.
2. Conservative Open Extension: t →βf

u iff t →βλ
u whenever t is closed.

The rewriting rules of λfire have also many good operational properties, stud-
ied in [8] and summarized in the following proposition.

Proposition 2 (Operational Properties of λfire, [8]). The reduction →βf

is strongly confluent, and all βf -normalizing derivations d (if any) from a term
t have the same length |d|βf

, the same number |d|βλ
of βλ-steps, and the same

number |d|βi
of βi-steps.

Right-to-Left Evaluation. As expected from a calculus, the evaluation rule →βf

of λfire is non-deterministic, because in the case of an application there is no fixed
order in the evaluation of the left and right subterms. Abstract machines however
implement deterministic strategies. We then fix a deterministic strategy (which
fires βf -redexes from right to left and is the one implemented by the machines of
the next sections). By Proposition 2, the choice of the strategy does not impact
on existence of a result, nor on the result itself or on the number of steps to reach
it. It does impact however on the design of the machine, which selects βf -redexes
from right to left.

The right-to-left evaluation strategy →rβf
is defined by closing the root rules

�→βλ
and �→βi

in Fig. 1 by right contexts, a special kind of evaluation contexts
defined by R ::= 〈·〉 | tR | Rf . The next lemma ensures our definition is correct.

Lemma 3 (Properties of →rβf
). Let t be a term.

1. Completeness: t has →βf
-redex iff t has a →rβf

-redex.
2. Determinism: t has at most one →rβf

-redex.

Example 4. Let t := (λz.z(yz))λx.x. Then, t →rβf
(λx.x)(y λx.x) →rβf

y λx.x,
where the final term y λx.x is a fireball (and βf -normal).

Open Size Explosion. Fireballs are delicate, they easily explode. The simplest
instance of open size explosion (not existing in Closed CbV) is a variation over
the famous looping term ω := (λx.xx)(λx.xx) →βλ

ω →βλ
. . . . In ω there is an

infinite sequence of duplications. In the size exploding family there is a sequence
of n nested duplications. We define two families, the family {tn}n∈N of size
exploding terms and the family {in}n∈N of results of evaluating {tn}n∈N:

t0 := y tn+1 := (λx.xx)tn i0 := y in+1 := inin

We use |t| for the size of a term t, i.e. the number of symbols to write it.

Proposition 5 (Open Size Explosion, [2]). Let n ∈ N. Then tn →n
βi

in,
moreover |tn| = O(n), |in| = Ω(2n), and in is an inert term.



Implementing Open Call-by-Value 7

Circumventing Open Size Explosion. Abstract machines implementing the sub-
stitution of inert terms, such as the one described by Grégoire and Leroy in
[20] are unreasonable because for the term tn of the size exploding family they
compute the full result in. The machines of the next sections are reasonable
because they avoid the substitution of inert terms, that is justified by the
following lemma.

Lemma 6 (Inert Substitutions Can Be Avoided). Let t, u be terms and
i be an inert term. Then, t →βf

u iff t{x�i} →βf
u{x�i}.

Lemma 6 states that substitution of inerts terms for variables cannot create
redexes, which is why it can be avoided. With general terms, instead, only direc-
tion ⇒ holds, because substitution can create redexes, as in (xy){x�λz.z} =
(λz.z)y. Direction ⇐ is distinctive of inert terms, of which it justifies the name.

3 Preliminaries on Abstract Machines, Implementations,
and Complexity Analyses

– An abstract machine M is given by states, noted s, and transitions between
them, noted �M; as usual, the reflexive-transitive closure of �M is noted �∗

M ;
– A state is given by the code under evaluation plus some data-structures;
– The code under evaluation, as well as the other pieces of code scattered in

the data-structures, are λ-terms not considered modulo α-equivalence;
– Codes are overlined, to stress the different treatment of α-equivalence;
– A code t is well-named if x may occur only in u (if at all) for every sub-code

λx.u of t;
– A state s is initial if its code is well-named and its data-structures are empty;
– Therefore, there is a bijection ·◦ (up to α) between terms and initial states,

called compilation, sending a term t to the initial state t◦ on a well-named
code α-equivalent to t;

– An execution is a finite (possibly empty) sequence of transitions t◦0 �∗
M s from

an initial state t◦0 obtained by compiling an (initial) term t0;
– A state s is reachable if it can be obtained as the end state of an execution;
– A state s is final if it is reachable and no transitions apply to s;
– A machine comes with a map · from states to terms, called decoding, that on

initial states is the inverse (up to α) of compilation, i.e. t◦ = t for any term t;
– Transitions of a machine M are divided into β-transitions, denoted by �β ,

which are meant to be mapped to β-reduction steps by the decoding, while
the remaining overhead transitions, denoted by �o, are mapped to equalities;

– We use |ρ| for the length of an execution ρ, and |ρ|β for the number of β-
transitions in ρ.

Implementations. For every machine one has to prove that it correctly imple-
ments the strategy in the λ-calculus it was conceived for. Our notion, tuned
towards complexity analyses, requires a perfect match between the number of
β-steps of the strategy and the number of β-transitions of the machine execution.
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Definition 7 (Machine Implementation). A machine M implements a strat-
egy → on λ-terms via a decoding · when given a λ-term t the following holds:

1. Executions to Derivations: for any M-execution ρ : t◦ �∗
M s there exists a →-

derivation d : t →∗ s.
2. Derivations to Executions: for every →-derivation d : t →∗ u there exists a

M-execution ρ : t◦ �∗
M s such that s = u.

3. β-Matching: in both previous points the number |ρ|β of β-transitions in ρ is
exactly the length |d| of the derivation d, i.e. |d| = |ρ|β.

Sufficient Condition for Implementations. The proofs of implementation theo-
rems tend to follow always the same structure, based on a few abstract properties
collected here into the notion of implementation system.

Definition 8 (Implementation System). A machine M, a strategy →, and
a decoding · form an implementation system if the following conditions hold:

1. β-Projection: s �β s′ implies s → s′;
2. Overhead Transparency: s �o s′ implies s = s′;
3. Overhead Transitions Terminate: �o terminates;
4. Determinism: both M and → are deterministic;
5. Progress: M final states decode to →-normal terms.

Theorem 9 (Sufficient Condition for Implementations). Let (M,→, ·) be
an implementation system. Then, M implements → via ·.
The proof of Theorem 9 is a clean and abstract generalization of the concrete
reasoning already at work in [2–5] for specific abstract machines and strategies.

Parameters for Complexity Analyses. By the derivations-to-executions part of
the implementation (Point 2 in Definition 7), given a derivation d : t0 →n u there
is a shortest execution ρ : t◦0 �∗

M s such that s = u. Determining the complexity
of a machine M amounts to bound the complexity of a concrete implementation
of ρ on a RAM model, as a function of two fundamental parameters:

1. Input : the size |t0| of the initial term t0 of the derivation d;
2. β-Steps/Transitions: the length n = |d| of the derivation d, that coincides

with the number |ρ|β of β-transitions in ρ by the β-matching requirement for
implementations (Point 3 in Definition 7).

A machine is reasonable if its complexity is polynomial in |t0| and |ρ|β , and
it is efficient if it is linear in both parameters. So, a strategy is reasonable
(resp. efficient) if there is a reasonable (resp. efficient) machine implementing it.
In Sects. 4–5 we study a reasonable machine implementing right-to-left evalua-
tion →rβf

in λfire, thus showing that it is a reasonable strategy. In Sect. 6 we
optimize the machine to make it efficient. By Proposition 2, this implies that
every strategy in λfire is efficient.



Implementing Open Call-by-Value 9

Recipe for Complexity Analyses. For the complexity analysis on a machine M,
overhead transitions �o are further separated into two classes:

1. Substitution Transitions �s: they are in charge of the substitution process;
2. Commutative Transitions �c: they are in charge of searching for the next β

or substitution redex to reduce.

Then, the estimation of the complexity of a machine is done in three steps:

1. Number of Transitions: bounding the length of the execution ρ, by bounding
the number of overhead transitions. This part splits into two subparts:
i. Substitution vs. β: bounding the number |ρ|s of substitution transitions

in ρ using the number of β-transitions;
ii. Commutative vs. Substitution: bounding the number |ρ|c of commutative

transitions in ρ using the size of the input and |ρ|s; the latter—by the
previous point—induces a bound with respect to β-transitions.

2. Cost of Single Transitions: bounding the cost of concretely implementing a
single transition of M. Here it is usually necessary to go beyond the abstract
level, making some (high-level) assumption on how codes and data-structure
are concretely represented. Commutative transitions are designed on purpose
to have constant cost. Each substitution transition has a cost linear in the
size of the initial term thanks to an invariant (to be proved) ensuring that
only subterms of the initial term are duplicated and substituted along an
execution. Each β-transition has a cost either constant or linear in the input.

3. Complexity of the Overhead : obtaining the total bound by composing the first
two points, that is, by taking the number of each kind of transition times the
cost of implementing it, and summing over all kinds of transitions.

(Linear) Logical Reading. Let us mention that our partitioning of transitions
into β, substitution, and commutative ones admits a proof-theoretical view, as
machine transitions can be seen as cut-elimination steps [5,11]. Commutative
transitions correspond to commutative cases, while β and substitution are prin-
cipal cases. Moreover, in linear logic the β transition corresponds to the mul-
tiplicative case while the substitution transition to the exponential one. See [5]
for more details.

4 Easy GLAMOUr

In this section we introduce the Easy GLAMOUr, a simplified version of the
GLAMOUr machine from [2]: unlike the latter, the Easy GLAMOUr does not
need any labeling of codes to provide a reasonable implementation.

With respect to the literature on abstract machines for CbV, our machines
are unusual in two respects. First, and more importantly, they use a single global
environment instead of closures and local environments. Global environments are
used in a minority of works [2,3,5,6,16,17,24] and induce simpler, more abstract
machines where α-equivalence is pushed to the meta-level (in the operation t

α
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φ ::= λx.u@ε | x@π
π ::= ε | φ : π E ::= ε | [x φ] :E
D ::= ε | D : t♦π s := (D, t, π, E)

ε := 〈·〉 t

→

ε := t t

→

[x φ]E := t{x φ}→
E

φ : π := 〈〈·〉φ〉π Cs := D〈π〉→ E

t@π := 〈t〉π s := D〈〈t〉π〉→ E = Cs〈t → E〉
D : t♦π := D〈〈t〈·〉〉π〉 where s = (D, t, π, E)

Dump Code Stack Global Env Dump Code Stack Global Env

D tu π E �c1 D : t♦π u ε E
D : t♦π λx.u ε E �c2 D t λx.u@ε : π E
D : t♦π x π′ E �c3 D t x@π′ : π E

if E(x) = ⊥ or E(x) = y@π′′

D λx.t φ :π E �β D t π [x φ]E
D x π E1[x λy.u@ε]E2 �s D (λy.u)α π E1[x λy.u@ε]E2

where (λy.u)α is any well-named code α-equivalent to λy.u such that its
bound names are fresh with respect to those in D, π and E1[x λy.u@ε]E2.

Fig. 2. Easy GLAMOUr machine: data-structures (stacks π, dumps D, global env. E,
states s), unfolding t↓E , decoding · (stacks are decoded to contexts in postfix notation
for plugging, i.e. we write 〈t〉π rather than π〈t〉), and transitions.

in �s in Figs. 2 and 3). This on-the-fly α-renaming is harmless with respect
to complexity analyses, see also discussions in [4,5]. Second, argument stacks
contain pairs of a code and a stack, to implement some of the machine transitions
in constant time.

Background. GLAMOUr stands for Useful (i.e. optimized to be reasonable)
Open (reducing open terms) Global (using a single global environment) LAM,
and LAM stands for Leroy Abstract Machine, an ordinary machine implementing
right-to-left Closed CbV, defined in [5]. In [2] the study of the GLAMOUr was
done according to the distillation approach of [5], i.e. by decoding the machine
towards a λ-calculus with explicit substitutions. Here we do not follow the dis-
tillation approach, we decode directly to λfire, which is simpler.

Machine Components. The Easy GLAMOUr is defined in Fig. 2. A machine
state s is a quadruple (D, t, π,E) given by:

– Code t: a term not considered up to α-equivalence, which is why it is overlined.
– Argument Stack π: it contains the arguments of the current code. Note that

stacks items φ are pairs x@π and λx.u@ε. These pairs allow to implement
some of the transitions in constant time. The pair x@π codes the term 〈x〉π
(defined in Fig. 2—the decoding is explained below) that would be obtained
by putting x in the context obtained by decoding the argument stack π. The
pair λx.u@ε is used to inject abstractions into pairs, so that items φ can be
uniformly seen as pairs t@π of a code t and a stack π.

– Dump D: a second stack, that together with the argument stack π is used to
walk through the code and search for the next redex to reduce. The dump is
extended with an entry t♦π every time evaluation enters in the right subterm
u of an application tu. The entry saves the left part t of the application and



Implementing Open Call-by-Value 11

the current stack π, to restore them when the evaluation of the right subterm
u is over. The dump D and the stack π decode to an evaluation context.

– Global Environment E: a list of explicit (i.e. delayed) substitutions storing the
β-redexes encountered so far. It is used to implement micro-step evaluation
(i.e. the substitution for one variable occurrence at a time). We write E(x) =
⊥ if in E there is no entry of the form [x�φ]. Often [x�φ]E stands for
[x�φ] :E.

Transitions. In the Easy GLAMOUr there is one β-transition whereas overhead
transitions are divided up into substitution and commutative transitions.

– β-Transition �β : it morally fires a →rβf
-redex, the one corresponding to

(λx.t)φ, except that it puts a new delayed substitution [x�φ] in the environ-
ment instead of doing the meta-level substitution t{x�φ} of the argument φ
for the (free) occurrences of the variable x in the body t of the abstraction;

– Substitution Transition �s: it substitutes the variable occurrence under
evaluation with a (properly α-renamed copy of a) code from the environ-
ment. It is a micro-step variant of meta-level substitution. It is invisible on
λfire because the decoding produces the term obtained by meta-level sub-
stitution, and so the micro work done by �s cannot be observed at the
coarser granularity of λfire.

– Commutative Transitions �c: they locate and expose the next redex accord-
ing to the right-to-left strategy, by rearranging the data-structures. They are
invisible on the calculus. The commutative rule �c1 forces evaluation to be
right-to-left on applications: the machine processes first the right subterm u,
saving the left sub-term t on the dump together with its current stack π. The
role of �c2 and �c3 is to backtrack to the entry on top of the dump. When
the right subterm, i.e. the pair t@π of current code and stack, is finally in
normal form, it is pushed on the stack and the machine backtracks.

O for Open: note condition E(x) = ⊥ in �c3—that is how the Easy GLA-
MOUr handles open terms. U for Useful : note condition E(x) = y@π′′ in �c3—
inert terms are never substituted, according to Lemma 6. Removing the useful
side-condition one recovers Grégoire and Leroy’s machine [20]. Note that terms
substituted by �s are always abstractions and never variables—this fact will
play a role in Sect. 6. Garbage Collection: it is here simply ignored, or, more
precisely, it is encapsulated at the meta-level, in the decoding function. It is
well-known that this is harmless for the study of time complexity.

Compiling, Decoding and Invariants. A term t is compiled to the machine initial
state t◦ = (ε, t, ε, ε), where t is a well-named term α-equivalent to t. Conversely,
every machine state s decodes to a term s (see the top right part of Fig. 2),
having the shape Cs〈t → E〉, where t

→

E is a λ-term, obtained by applying to the
code the meta-level substitution

→

E induced by the global environment E, and
Cs is an evaluation context, obtained by decoding the stack π and the dump
D and then applying

→

E . Note that, to improve readability, stacks are decoded
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to contexts in postfix notation for plugging, i.e. we write 〈t〉π rather than π〈t〉
because π is a context that puts arguments in front of t.

Example 10. To have a glimpse of how the Easy GLAMOUr works, let us show
how it implements the derivation t := (λz.z(yz))λx.x →2

rβf
y λx.x of Example 4:

Dump Code Stack Global Environment
ε (λz.z(yz))λx.x ε ε �c1

λz.z(yz)♦ε λx.x ε ε �c2

ε λz.z(yz) λx.x@ε ε �β

ε z(yz) ε [z�λx.x@ε] �c1

z♦ε yz ε [z�λx.x@ε] �c1

z♦ε : y♦ε z ε [z�λx.x@ε] �s

z♦ε : y♦ε λx′.x′ ε [z�λx.x@ε] �c2

z♦ε y λx′.x′@ε [z�λx.x@ε] �c3

ε z y@(λx′.x′@ε) [z�λx.x@ε] �s

ε λx′′.x′′ y@(λx′.x′@ε) [z�λx.x@ε] �β

ε x′′ ε [x′′
�y@(λx′.x′@ε)] : [z�λx.x@ε]

Note that the initial state is the compilation of the term t, the final state decodes
to the term y λx.x, and the two β-transitions in the execution correspond to the
two →rβf

-steps in the derivation considered in Example 4.

The study of the Easy GLAMOUr machine relies on the following invariants.

Lemma 11 (Easy GLAMOUr Qualitative Invariants).Let s= (D, t, π,E)
be a reachable state of an Easy GLAMOUr execution. Then:

1. Name:
i. Explicit Substitution: if E = E′[x�u]E′′ then x is fresh wrt u and E′′;
ii. Abstraction: if λx.u is a subterm of D, t, π or E, x may occur only in u;

2. Fireball Item: φ and φ

→

E are inert terms if φ = x@π′, and abstractions
otherwise, for every item φ in π, in E, and in every stack in D;

3. Contextual Decoding: Cs = D〈π〉→ E is a right context.

Implementation Theorem. The invariants are used to prove the implementation
theorem by proving that the hypotheses of Theorem 9 hold, that is, that the
Easy GLAMOUr, →rβf

and · form an implementation system.

Theorem 12 (Easy GLAMOUr Implementation). The Easy GLAMOUr
implements right-to-left evaluation →rβf

in λfire (via the decoding ·).

5 Complexity Analysis of the Easy GLAMOUr

The analysis of the Easy GLAMOUr is done according to the recipe given at the
end of Sect. 3. The result (see Theorem 17 below) is that the Easy GLAMOUr
is linear in the number |ρ|β of β-steps/transitions and quadratic in the size |t0|
of the initial term t0, i.e. its overhead has complexity O((1 + |ρ|β) · |t0|2).

The analysis relies on a quantitative invariant, the crucial subterm invariant,
ensuring that �s duplicates only subterms of the initial term, so that the cost of
duplications is connected to one of the two parameters for complexity analyses.
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Lemma 13 (Subterm Invariant). Let ρ : t◦0 �∗ (D, t, π,E) be an Easy GLA-
MOUr execution. Every subterm λx.u of D, t, π, or E is a subterm of t0.

Intuition About Complexity Bounds. The number |ρ|s of substitution transitions
�s depends on both parameters for complexity analyses, the number |ρ|β of β-
transitions and the size |t0| of the initial term. Dependence on |ρ|β is standard,
and appears in every machine [2,3,5,6,12,24]—sometimes it is quadratic, here
it is linear, in Sect. 6 we come back to this point. Dependence on |t0| is also
always present, but usually only for the cost of a single �s transition, since only
subterms of t0 are duplicated, as ensured by the subterm invariant. For the Easy
GLAMOUr, instead, also the number of �s transitions depends on |t0|: this is
a side-effect of dealing with open terms. Since both the cost and the number of
�s transitions depend linearly on |t0|, the overall contribution of �s transitions
to the overhead in a implementation of ρ on RAM depends quadratically on |t0|.

The following family of terms shows the dependence on |t0| in isolation (i.e.,
with no dependence on |ρ|β). Let rn := λx.(. . . ((y x)x) . . .)x

︸ ︷︷ ︸

n

and consider:

un := rnrn = (λx.(. . . ((y

n
︷ ︸︸ ︷

x)x) . . .)x)rn →βλ
(. . . ((y

n
︷ ︸︸ ︷

rn)rn) . . .)rn . (1)

Forgetting about commutative transitions, the Easy GLAMOUr would evaluate
un with one β-transition �β and n substitution transitions �s, each one dupli-
cating rn, whose size (as well as the size of the initial term un) is linear in n.

The number |ρ|c of commutative transitions �c, roughly, is linear in the
amount of code involved in the evaluation process. This amount is given by the
initial code plus the code produced by duplications, which is bounded by the
number of substitution transitions times the size of the initial term. The num-
ber of commutative transitions is then O((1 + |ρ|β) · |t0|2). Since each one has
constant cost, this is also a bound to their overall cost in a implementation of ρ
on RAM.

Number of Transitions 1: Substitution vs. β Transitions. The number |ρ|s of
substitution transitions is proven (see Corollary 15 below) to be bilinear, i.e.
linear in |t0| and |ρ|β , by means of a measure | · |free such that |t|free ≤ |t| for any
term t.

The free size | · |free of a code counts the number of free variable occurrences
that are not under abstractions. It is defined and extended to states as follows:

|x|free := 1 |ε|free := 0
|λy.u|free := 0 |φ : π|free := |φ|free + |π|free

|tu|free := |t|free + |u|free |D : (t, π)|free := |t|free + |π|free + |D|free
|(D, t, π,E)|free := |D|free + |t|free + |π|free.
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Lemma 14 (Free Occurrences Invariant). Let ρ : t◦0 �∗ s be an Easy GLA-
MOUr execution. Then, |s|free ≤ |t0|free + |t0| · |ρ|β − |ρ|s.
Corollary 15 (Bilinear Number of Substitution Transitions). Let ρ :
t◦0 �∗ s be an Easy GLAMOUr execution. Then, |ρ|s ≤ (1 + |ρ|β) · |t0|.
Number of Transitions 2: Commutative vs. Substitution Transitions. The bound
on the number |ρ|c of commutative transitions is found by means of a (different)
measure |s|c on states. The bound is linear in |t0| and in |ρ|s, which means—by
applying the result just obtained in Corollary 15—quadratic in |t0| and linear in
|ρ|β .

The commutative size of a state is defined as |(D, t, π,E)|c := |t|+Σu♦π′∈D|u|,
where |t| is the usual size of codes (and terms).

Lemma 16 (Number of Commutative Transitions). Let ρ : t◦0 �∗ s be
an Easy GLAMOUr execution. Then, |ρ|c ≤ |ρ|c + |s|c ≤ (1 + |ρ|s) · |t0| ∈
O((1 + |ρ|β) · |t0|2).

Cost of Single Transitions. We need to make some hypotheses on how the Easy
GLAMOUr is going to be itself implemented on RAM:

1. Variable (Occurrences) and Environment Entries: a variable is a memory
location, a variable occurrence is a reference to it, and an environment entry
[x�φ] is the fact that the location associated to x contains φ.

2. Random Access to Global Environments: the environment E can be accessed
in O(1) (in �s) by just following the reference given by the variable occur-
rence under evaluation, with no need to access E sequentially, thus ignoring
its list structure (used only to ease the definition of the decoding).

With these hypotheses it is clear that β and commutative transitions can be
implemented in O(1). The substitution transition �s needs to copy a code from
the environment (the renaming t

α) and can be implemented in O(|t0|), since the
subterm to copy is a subterm of t0 by the subterm invariant (Lemma 13) and
the environment can be accessed in O(1).

Summing Up. By putting together the bounds on the number of transitions with
the cost of single transitions we obtain the overhead of the machine.

Theorem 17 (Easy GLAMOUr Overhead Bound). Let ρ : t◦0 �∗ s be an
Easy GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) ·
|t0|2), i.e. linear in the number of β-transitions (aka the length of the derivation
d : t0 →∗

rβf
s implemented by ρ) and quadratic in the size of the initial term t0.

6 Fast GLAMOUr

In this section we optimize the Easy GLAMOUr, obtaining a machine, the Fast
GLAMOUr, whose dependence on the size of the initial term is linear, instead of
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quadratic, providing a bilinear—thus optimal—overhead (see Theorem 21 below
and compare it with Theorem 17 on the Easy GLAMOUr). We invite the reader
to go back to Eq. (1), where the quadratic dependence was explained. Note that
in that example the substitutions of rn do not create βf -redexes, and so they are
useless. The Fast GLAMOUr avoids these useless substitutions and it implements
the example with no substitutions at all.

Optimization: Abstractions On-Demand. The difference between the Easy GLA-
MOUr and the machines in [2] is that, whenever the former encounters a variable
occurrence x bound to an abstraction λy.t in the environment, it replaces x with
λy.t, while the latter are more parsimonious. They implement an optimization
that we call substituting abstractions on-demand : x is replaced by λy.t only if
this is useful to obtain a β-redex, that is, only if the argument stack is non-
empty. The Fast GLAMOUr, defined in Fig. 3, upgrades the Easy GLAMOUr
with substitutions of abstractions on-demand—note the new side-condition for
�c3 and the non-empty stack in �s.

Dump Code Stack Global Env Dump Code Stack Global Env

D tu π E �c1 D : t♦π u ε E
D : t♦π λx.u ε E �c2 D t λx.u@ε : π E
D : t♦π x π′ E �c3 D t x@π′ : π E

if E(x) = ⊥ or E(x) = y@π′′ or (E(x) = λy.u@ε and π′ = ε)
D λx.t y@ε :π E �β1 D t{x y} π E
D λx.t φ : π E �β2 D t π [x φ]E

if φ 
= y@ε
D x φ : π E1[x λy.u@ε]E2 �s D (λy.u)α φ : π E1[x λy.u@ε]E2

Fig. 3. Fast GLAMOUr (data-structures, decoding, and (λy.u)α defined as in Fig. 2).

Abstractions On-Demand and the Substitution of Variables. The new optimiza-
tion however has a consequence. To explain it, let us recall the role of another
optimization, no substitution of variables. In the Easy GLAMOUr, abstractions
are at depth 1 in the environment: there cannot be chains of renamings, i.e.
of substitutions of variables for variable, ending in abstractions (so, there can-
not be chains like [x�y@ε][y�z@ε][z�λz′.t@ε]). This property implies that the
overhead is linear in |ρ|β and it is induced by the fact that variables cannot be
substituted. If variables can be substituted then the overhead becomes quadratic
in |ρ|β—this is what happens in the GLAMOUr machine in [2]. The relation-
ship between substituting variables and a linear/quadratic overhead is studied
in-depth in [10].

Now, because the Fast GLAMOUr substitutes abstractions on-demand, vari-
able occurrences that are not applied are not substituted by abstractions. The
question becomes what to do when the code is an abstraction λx.t and the top of
the stack argument φ is a simple variable occurrence φ = y@ε (potentially bound
to an abstraction in the environment E) because if one admits that [x�y@ε] is
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added to E then the depth of abstractions in the environment may be arbitrary
and so the dependence on |ρ|β may be quadratic, as in the GLAMOUr. There are
two possible solutions to this issue. The complex one, given by the Unchaining
GLAMOUr in [2], is to add labels and a further unchaining optimization. The
simple one is to split the β-transition in two, handling this situation with a new
rule that renames x as y in the code t without touching the environment—this
exactly what the Fast GLAMOUr does with �β1 and �β2 . The consequence is
that abstractions stay at depth 1 in E, and so the overhead is indeed bilinear.

The simple solution is taken from Sands, Gustavsson, and Moran’s [24], where
they use it on a call-by-name machine. Actually, it repeatedly appears in the
literature on abstract machines often with reference to space consumption and
space leaks, for instance in Wand’s [26], Friedman et al.’s [18], and Sestoft’s [25].

Fast GLAMOUr. The machine is in Fig. 3 (note the two kinds of β-
transitions). Its data-structures, compiling and decoding are exactly as for the
Easy GLAMOUr.

Example 18. Let us now show how the derivation t := (λz.z(yz))λx.x →2
rβf

y λx.x of Example 4 is implemented by the Fast GLAMOUr. The execution is
similar to that of the Easy GLAMOUr in Example 10, since they implement the
same derivation and hence have the same initial state. In particular, the first
five transitions in the Fast GLAMOUr (omitted here) are the same as in the
Easy GLAMOUr (see Example 10 and replace �β with �β2). Then, the Fast
GLAMOUr executes:

Dump Code Stack Global Environment
z♦ε : y♦ε z ε [z�λx.x@ε] �c3

z♦ε y z@ε [z�λx.x@ε] �c3

ε z y@(z@ε) [z�λx.x@ε] �s

ε λx′′.x′′ y@(z@ε) [z�λx.x@ε] �β2

ε x′′ ε [x′′
�y@(z@ε)] : [z�λx.x@ε]

The Fast GLAMOUr executes only one substitution transition (the Easy GLA-
MOUr takes two) since the replacement of z with λx.x from the environment is
on-demand (i.e. useful to obtain a β-redex) only for the first occurrence of z in
z(yz).

The Fast GLAMOUr satisfies the same invariants (the qualitative ones—the
fireball item is slightly different—as well as the subterm one, see [9]) and also
forms an implementation system with respect to →rβf

and · . Therefore,

Theorem 19 (Fast GLAMOUr Implementation). The Fast GLAMOUr
implements right-to-left evaluation →rβf

in λfire (via the decoding ·).

Complexity Analysis. What changes is the complexity analysis, that, surpris-
ingly, is simpler. First, we focus on the number of overhead transitions. The
substitution vs β transitions part is simply trivial. Note that a substitution
transition �s is always immediately followed by a β-transition, because sub-
stitutions are done only on-demand—therefore, |ρ|s ≤ |ρ|β + 1. It is easy to



Implementing Open Call-by-Value 17

remove the +1: executions must have a �β2 transition before any substitution
one, otherwise the environment is empty and no substitutions are possible—thus
|ρ|s ≤ |ρ|β .

For the commutative vs substitution transitions the exact same measure and
the same reasoning of the Easy GLAMOUr provide the same bound, namely
|ρ|c ≤ (1+|ρ|s)·|t0|. What improves is the dependence of commutative transitions
on β ones (obtained by substituting the bound for substitution transitions), that
is now linear because so is that of substitutions—so, |ρ|c ≤ (1 + |ρ|β) · |t0|.
Lemma 20 (Number of Overhead Transitions). Let ρ : t◦0 �∗ s be a Fast
GLAMOUr execution. Then,

1. Substitution vs β Transitions: |ρ|s ≤ |ρ|β.
2. Commutative vsSubstitutionTransitions: |ρ|c ≤ (1+|ρ|s)·|t0| ≤ (1+|ρ|β)·|t0|.

Cost of Single Transitions and Global Overhead. For the cost of single transi-
tions, note that �c1 ,�c2 ,�c3 and �β2 have (evidently) cost O(1) while �s

and �β1 have cost O(|t0|) by the subterm invariant. Then we can conclude with

Theorem 21 (Fast GLAMOUr Bilinear Overhead). Let ρ : t◦0 �∗ s be a
Fast GLAMOUr execution. Then ρ is implementable on RAM in O((1 + |ρ|β) ·
|t0|), i.e. linear in the number of β-transitions (aka the length of the derivation
d : t0 →∗

rβf
s implemented by ρ) and the size of the initial term.

7 Conclusions

Modular Overhead. The overhead of implementing Open CbV is measured with
respect to the size |t0| of the initial term and the number n of β-steps. We showed
that its complexity depends crucially on three choices about substitution.

The first is whether to substitute inert terms that are not variables. If they
are substituted, as in Grégoire and Leroy’s machine [20], then the overhead is
exponential in |t0| because of open size explosion (Proposition 5) and the imple-
mentation is then unreasonable. If they are not substituted, as in the machines
studied here and in [2], then the overhead is polynomial.

The other two parameters are whether to substitute variables, and whether
abstractions are substituted whenever or only on-demand, and they give rise to
the following table of machines and reasonable overheads:

Sub of Abs Whenever Sub of Abs On-Demand
Sub of Variables Slow GLAMOUr GLAMOUr

O((1 + n2) · |t0|2) O((1 + n2) · |t0|)
No Sub of Variables Easy GLAMOUr Fast / Unchaining GLAMOUr

O((1 + n) · |t0|2) O((1 + n) · |t0|)

The Slow GLAMOUr has been omitted for lack of space, because it is slow and
involved, as it requires the labeling mechanism of the (Unchaining) GLAMOUr
developed in [2]. It is somewhat surprising that the Fast GLAMOUr presented
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here has the best overhead and it is also the easiest to analyze.

Abstractions On-Demand: Open CbV is simpler than Strong CbV. We explained
that Grégoire and Leroy’s machine for Coq as described in [20] is unreasonable.
Its actual implementation, on the contrary, does not substitute non-variable inert
terms, so it is reasonable for Open CbV. None of the versions, however, substi-
tutes abstractions on-demand (nor, to our knowledge, does any other implemen-
tation), despite the fact that it is a necessary optimization in order to have a
reasonable implementation of Strong CbV, as we now show. Consider the follow-
ing size exploding family (obtained by applying sn to the identity I := λx.x),
from [4]:

s1 := λx.λy.(yxx) sn+1 := λx.(sn(λy.(yxx))) r0 := I rn+1 := λy.(yrnrn)

Proposition 22 (Abstraction Size Explosion). Let n > 0. Then snI →n
βλ

rn. Moreover, |snI| = O(n), |rn| = Ω(2n), snI is closed, and rn is normal.

The evaluation of snI produces 2n non-applied copies of I (in rn), so a strong
evaluator not substituting abstractions on-demand must have an exponential
overhead. Note that evaluation is weak but the 2n copies of I are substituted
under abstraction: this is why machines for Closed and Open CbV can be rea-
sonable without substituting abstractions on-demand.

The Danger of Iterating Open CbV Naively. The size exploding example in
Proposition 22 also shows that iterating reasonable machines for Open CbV is
subtle, as it may induce unreasonable machines for Strong CbV, if done naively.
Evaluating Strong CbV by iterating the Easy GLAMOUr (that does not substi-
tute abstractions on-demand), indeed, induces an exponential overhead, while
iterating the Fast GLAMOUr provides an efficient implementation.

Acknowledgements. This work has been partially funded by the ANR JCJC grant
COCA HOLA (ANR-16-CE40-004-01).
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Abstract. Model checking is an established technique for automatically
verifying that a model satisfies a given temporal property. When the
model violates the property, the model checker returns a counterexam-
ple, which is a sequence of actions leading to a state where the property
is not satisfied. Understanding this counterexample for debugging the
specification is a complicated task for several reasons: (i) the counterex-
ample can contain hundreds of actions, (ii) the debugging task is mostly
achieved manually, and (iii) the counterexample does not give any clue
on the state of the system (e.g., parallelism or data expressions) when
the error occurs. This paper presents a new approach that improves the
usability of model checking by simplifying the comprehension of coun-
terexamples. Our solution aims at keeping only actions in counterexam-
ples that are relevant for debugging purposes. To do so, we first extract
in the model all the counterexamples. Second, we define an analysis algo-
rithm that identifies actions that make the behaviour skip from incorrect
to correct behaviours, making these actions relevant from a debugging
perspective. Our approach is fully automated by a tool that we imple-
mented and applied on real-world case studies from various application
areas for evaluation purposes.

1 Introduction

Concurrent and distributed applications are used in various domains, such as
cyber-physical systems, software and middleware technologies, Service Oriented
Computing, cloud computing, or the Internet of Things. The design and devel-
opment of these applications is complex and cannot be achieved without intro-
ducing subtle bugs, which are defects of the software that prevent the correct
behaviour of the system. The process of finding and resolving bugs is commonly
called debugging. This process is a challenging task for a developer, since it is
difficult for a human being to understand the behaviour of all the possible execu-
tions of this kind of systems, and bugs can be hidden inside parallel behaviours.
There is a need for automatic techniques that can help the developer in detecting
and understanding those bugs.
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Model checking [8] is an established technique for verifying concurrent sys-
tems. It takes as input a model and a property. A model describes all the possible
behaviours of a concurrent program and is produced from a specification of the
system. In this paper, we adopt Labelled Transition Systems (LTS) as model
description language. A property represents the requirements of the system and
is usually expressed with a temporal logic. Given a model and a property, a
model checker verifies whether the model satisfies the property. When the model
violates the property, the model checker returns a counterexample, which is a
sequence of actions leading to a state where the property is not satisfied.

Although model checking techniques automatically find bugs in concurrent
systems, it is still difficult to interpret the returned counterexamples for sev-
eral reasons: (i) the counterexample can contain hundreds (even thousands) of
actions, (ii) the debugging task is mostly achieved manually (satisfactory auto-
matic debugging techniques do not yet exist), and (iii) the counterexample does
not give any clue on the state of the system (e.g., parallelism or data expressions)
when the error occurs.

This work aims at developing a new approach for simplifying the compre-
hension of counterexamples and thus favouring usability of model checking tech-
niques. In order to do this, we propose a method to produce all the counterexam-
ples from a given model and to compare them with the correct behaviours of the
model to better identify actions that caused the bug. The goal of our approach is
to return as result an abstraction of counterexamples, which contains only those
actions.

More precisely, we define a method that first extracts all the counterexamples
from the original model containing all the executions. This procedure is able to
collect all the counterexamples in a new LTS, maintaining a correspondence with
the original model. Second, we define an analysis algorithm that identifies actions
at the frontier between the new LTS and the original one. The frontier represents
the area where counterexamples and correct behaviours, that share a common
prefix, split in different paths. Actions at the frontier are relevant since they are
responsible for the choice between a correct behaviour and a counterexample.
We have implemented our approach in a tool and validated it on a set of real-
world case studies from various application areas. Our experiments show that our
approach is able to reduce the size of counterexamples by keeping only relevant
actions at the frontier, and thus making the debugging process easier.

The rest of this paper is organized as follows. Section 2 introduces LTS models
and model checking notions. Section 3 presents our counterexample abstraction
techniques, including the generation of the LTS containing all the counterex-
amples and the process for identifying relevant actions in counterexamples. In
Sect. 4, we describe our implementation and we apply it on real-word examples.
Section 5 presents related work while Sect. 6 concludes this paper.

2 Preliminaries

In this work, we adopt Labelled Transition Systems (LTS) as behavioural mod-
els of concurrent programs. An LTS consists of states and labelled transitions
connecting these states.



22 G. Barbon et al.

Definition 1 (LTS). An LTS is a tuple M = (S, s0, Σ, T ) where S is a finite
set of states; s0 ∈ S is the initial state; Σ is a finite set of labels; T ⊆ S ×Σ ×S
is a finite set of transitions.

A transition is represented as s
l−→ s′ ∈ T , where l ∈ Σ. An LTS is produced

from a higher-level specification of the system described with a process algebra
for instance. Specifications can be compiled into an LTS using specific compilers.
In this work, we use LNT as specification language [7] and compilers from the
CADP toolbox [11] for obtaining LTSs from LNT specifications (see Sect. 4 for
more details). However, our approach is generic in the sense that it applies on
LTSs produced from any specification language and any compiler/verification
tool. An LTS can be viewed as all possible executions of a system. One specific
execution is called a trace.

Definition 2 (Trace). Given an LTS M = (S, s0, Σ, T ), a trace of size n ∈ N is
a sequence of labels l1, l2, . . . , ln ∈ Σ such that s0

l1−→ s1 ∈ T, s1
l2−→

s2 ∈ T, . . . , sn−1
ln−→ sn ∈ T . The set of all traces of M is written as t(M).

Note that t(M) is prefix closed. One may not be interested in all traces of an
LTS, but only in a subset of them. To this aim, we introduce a particular label
δ, called final label, which marks the end of a trace, similarly to the notion of
accepting state in language automata. This leads to the concept of final trace.

Definition 3 (Final Trace). Given an LTS M = (S, s0, Σ, T ), and a label δ,
called final label, a final trace is a trace l1, l2, . . . , ln ∈ Σ such that s0

l1−→ s1 ∈
T, s1

l2−→ s2 ∈ T, . . . , sn−1
ln−→ sn ∈ T , l1, l2, . . . , ln �= δ and there exists a final

transition sn
δ−→ sn+1. The set of final traces of M is written as tδ(M).

Note that the final transition characterized by δ does not occur in the final
traces and that tδ(M) ⊆ t(M). Moreover, if M has no final label then tδ(M) = ∅.

Model checking consists in verifying that an LTS model satisfies a given tem-
poral property ϕ, which specifies some expected requirement of the system. Tem-
poral properties are usually divided into two main families: safety and liveness
properties [2]. In this work, we focus on safety properties, which are widely used
in the verification of real-world systems. Safety properties state that “something
bad never happens”. A safety property is usually formalised using a temporal
logic (we use MCL [16] in Sect. 4). It can be semantically characterized by an
infinite set of traces tϕ, corresponding to the traces that violate the property ϕ
in an LTS. If the LTS model does not satisfy the property, the model checker
returns a counterexample, which is one of the traces characterised by tϕ.

Definition 4 (Counterexample). Given an LTS M = (S, s0, Σ, T ) and a prop-
erty ϕ, a counterexample is any trace which belongs to t(M) ∩ tϕ.

Our solution for counterexample analysis presented in the next section relies
on a state matching algorithm, which takes its foundation into the notion of
preorder simulation between two LTSs [19].
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Definition 5 (Simulation Relation). Given two LTSs M1 = (S1, s
0
1, Σ1, T1) and

M2 = (S2, s
0
2, Σ2, T2), the simulation relation � between M1 and M2 is the largest

relation in S1 ×S2 such that s1 � s2 iff ∀s1
l−→ s′

1 ∈ T1 there exists s2
l−→ s′

2 ∈ T2

such that s′
1 � s′

2. M1 is simulated by M2 iff s01 � s02.

3 Counterexample Analysis

In this section, we describe our approach to simplify counterexamples. We first
introduce the procedure to build an LTS containing all counterexamples (coun-
terexample LTS ), given a model of the system (full LTS ) and a temporal prop-
erty. We then present a technique to match all states of the counterexample
LTS with states of the full LTS. This step allows us to identify transitions at
the frontier between the counterexample and the full LTS. The frontier is the
area where traces, that share a common prefix in the two LTSs, split in different
paths. We define a notion of neighbourhood to extract sets of relevant transi-
tions at the frontier and a procedure to collect the set of all neighbourhoods.
Finally, by keeping transitions in these neighbourhoods, we are able to provide
an abstraction of a given counterexample. To sum up, our approach consists of
the four following steps, that we detail in the rest of this section:

1. Counterexample LTS generation
2. States matching
3. States comparison
4. Counterexample abstraction

3.1 Counterexample LTS Generation

The full LTS (MF ) is given as input in our approach and is a model representing
all possible executions of a system. Given such an LTS and a safety property,
our goal in this subsection is to generate the LTS containing all counterexamples
(MC).

Definition 6 (Counterexample LTS). Given a full LTS MF = (SF , s0F , ΣF , TF ),
where δ /∈ ΣF , and a safety property ϕ, a counterexample LTS MC is an LTS
such that tδ(MC) = t(MF ) ∩ tϕ, i.e., a counterexample LTS is a finite represen-
tation of the set of all traces of the full LTS that violate the property ϕ.

We use the set of final traces tδ(MC) instead of t(MC) since t(MC) is prefix
closed, but prefixes of counterexamples that belongs to t(MC) are not counterex-
amples. Moreover, traces in the counterexample LTS share prefixes with correct
traces in the full LTS. Given a full LTS MF and a safety property ϕ, the pro-
cedure for the generation of the counterexample LTS consists of the following
steps:

1. Conversion of the ϕ formula describing the property into an LTS called
Mϕ, using the technique that allows the encoding of a formula into a graph
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Fig. 1. Full LTS and counterexample LTS

described in [12]. Mϕ is a finite representation of tϕ, using final transitions,
such that tδ(Mϕ) = tϕ ∩ Σ∗

F , where ΣF is the set of labels occurring in MF .
In this step, we also apply the subset construction algorithm defined in [1] in
order to determinise Mϕ. We finally reduce the size of Mϕ without changing
its behaviour, performing a minimisation based on strong bisimulation [17].
Those two transformations keep the set of final traces of Mϕ unchanged. The
LTS Mϕ obtained in this way is the minimal one that is deterministic and
accepts all the execution sequences that violates ϕ.

2. Synchronous product between MF and Mϕ with synchronisation on all the
labels of ΣF (thus excluding the final label δ). The result of this product is
an LTS whose final traces belong to t(MF ) ∩ tδ(Mϕ), thus it contains all the
traces of the LTS MF that violate the formula ϕ. Note that t(MF )∩tδ(Mϕ) =
t(MF ) ∩ tϕ, because t(MF ) ⊆ Σ∗

F and tδ(Mϕ) = tϕ ∩ Σ∗
F .

3. Pruning of the useless transitions generated during the previous step. In par-
ticular, we use the pruning algorithm proposed in [15] to remove the traces
produced by the synchronous product that are not the prefix of any final
trace.

Proposition: The LTS MC obtained by this procedure is a counterexample LTS
for MF and ϕ.

Let us illustrate this algorithm on the example given in Fig. 1. The full LTS
on the left hand side represents a model of a simple protocol that performs send
and receive actions in a loop. The counterexample LTS on the right hand side
is generated with a property ϕ stating that no more than one send action is
allowed. Note that final transitions characterised by the δ label are not made
explicit in the examples.

3.2 States Matching

We now need to match each state belonging to the counterexample LTS with
the states from the full LTS. To do this, we define a matching relation between
each state of the two LTSs, by relying on the simulation relation introduced in
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Fig. 2. States matching

Sect. 2. In our context, we want to build such a relation between MC and MF ,
where a state x ∈ SC matches a state y ∈ SF when the first is simulated by the
latter, that is, when x � y. Since the LTS that contains the incorrect behaviours
is extracted from the full LTS, the full LTS always simulates the counterexample
LTS. The algorithm that we have implemented to build the simulation between
MC and MF relies on well-known graph traversal algorithms. More precisely,
it relies on Breadth-First Search (BFS) to explore the graph. The algorithm is
capable of performing backtracking steps in case it cannot match some states
(this may happen due to nondeterministic behaviours present in both LTSs).

Let us consider again the example described in Fig. 1. Each state of the
counterexample LTS on the right hand side of the picture matches a state of the
full LTS on the left hand side as shown in Fig. 2. Note that multiple states of
the counterexample LTS may correspond to a single state of the full LTS. In the
example of Fig. 2, the property ϕ has become unsatisfied after several iterations
of the loop composed of Send and Recv actions, so that loop has been partially
rolled out in the counterexample LTS, resulting in a correspondence of several
states of the counterexample LTS to a single state of the full LTS.

It may also occur that a single state of the counterexample LTS may cor-
respond to multiple states of the full LTS. For instance, the example given in
Fig. 3 shows a full LTS and a counterexample LTS produced with a property that
avoids Recv actions after a Send action. Thus, there exists a correspondence of
more than one state of the full LTS with a single state of the counterexample
LTS. In this specific case, the counterexample LTS can be described using a
single trace, since the two states with an exiting Send transition after the Init
transition simulate only one state in the counterexample LTS.

3.3 States Comparison

The result of the matching algorithm is then analysed in order to compare tran-
sitions outgoing from similar states in both LTSs. This comparison aims at iden-
tifying transitions that originate from matched states, and that appear in the
full LTS but not in the counterexample LTS. We call this kind of transition a
correct transition.
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Fig. 3. Multiple matching

Definition 7 (Correct Transition). Given an LTS MF = (SF , s0F , ΣF , TF ), a
property ϕ, the counterexample LTS MC = (SC , s0C , ΣC , TC) obtained from MF

and ϕ, and given two states s ∈ SF and s′ ∈ SC , such that s′ � s, we call a
transition s

l−→ s′′ ∈ TF a correct transition if there is no transition s′ l−→ s′′′ ∈ TC

such that s′′′ � s′′.

A correct transition is preceded by incoming transitions that are common to
the correct and incorrect behaviours. We call these transitions relevant predeces-
sors. Correct transitions allow us to introduce the notion of frontier. The frontier
is a set of states at the border between the counterexample LTS and the rest of
the full LTS, where for two matched states, there exists a correct transition in
the full LTS.

Definition 8 (Frontier). Given an LTS MF = (SF , s0F , ΣF , TF ), a property ϕ,
the counterexample LTS MC = (SC , s0C , ΣC , TC) obtained from MF and ϕ, the
frontier is the set of states Sfr ⊆ SF such that for each s ∈ Sfr , there exists

s′ ∈ SC , such that s′ � s and there exists a correct transition s
l−→ s′′ ∈ TF .

A given state in the frontier allows us in a second step to identify a neighbour-
hood in the corresponding counterexample LTS, which consists of all incoming
and outgoing transitions of that state.

Definition 9 (Neighbourhood). Given an LTS MF = (SF , s0F , ΣF , TF ), a prop-
erty ϕ, the counterexample LTS MC = (SC , s0C , ΣC , TC), two states s ∈ Sfr

and s′ ∈ SC such that s′ � s, the neighbourhood of state s′ is the set of tran-
sitions Tnb ⊆ TC such that for each t ∈ Tnb, either t = s′′ l−→ s′ ∈ TC or
t = s′ l−→ s′′ ∈ TC .

Let us illustrate these notions on an example. Figure 4 shows a piece of a
full LTS and the corresponding counterexample LTS. The full LTS on the left
hand side of the figure represents a state that is at the frontier, thus it has been
matched by a state of the counterexample LTS on the right hand side and it has
correct transitions outgoing from it. The incoming and outgoing transitions for
this state in the counterexample LTS correspond to the neighbourhood.
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Fig. 4. Example of neighbourhood

3.4 Counterexample Abstraction

The final goal is to abstract a counterexample of the model in order to highlight
the source of the bug and thus favour the comprehension of its cause. Given the
counterexample LTS MC , produced from a model MF and a property ϕ, where
neighbourhoods have been identified in the previous subsection, and a coun-
terexample ce, produced from MF and ϕ, the procedure for the counterexample
abstraction consists of the following steps:

1. Matching between states of ce with states of MC .
2. Identification of states in ce that are matched to states in MC , which belong

to a neighbourhood.
3. Suppression of actions in ce, which do not represent incoming or outgoing

transitions of a neighbourhood.

For illustration purposes, let us consider the counterexample, produced by
a model checker from a model M and a property ϕ, given on the top side of
Fig. 5. Once the set of neighbourhoods in the counterexample LTS is computed
using M and ϕ, we are able to locate sub-sequences of actions corresponding to
transitions in the neighbourhoods. We finally remove all the remaining actions
to obtain the simplified counterexample shown on the bottom side of the figure.
We will comment on the relevance and benefit of these results on real-world
examples in the next section.

Fig. 5. Counterexample abstraction
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4 Tool Support

In this section, we successively present the implementation of our approach,
illustrate it on a case study, and present experimental results on examples found
in the literature.

4.1 Implementation

Our tool is depicted in Fig. 6 and consists of two main parts. The first one imple-
ments the counterexample LTS generation step described in Sect. 3.1. It relies
on the CADP toolbox [11], which enables one to specify and analyse concurrent
systems using model and equivalence checking techniques. We particularly make
use of the LNT value passing process algebra [7] for specifying systems, of the
BCG binary format for representing LTSs, and of the MCL mu-calculus logic [16]
for describing safety temporal properties. The LNT specification is automatically
transformed into an LTS model in BCG format (the full LTS in Sect. 3) using
CADP compilers. The CADP model checker (Evaluator [16]) takes as input an
MCL property and an input specification/model (LNT or LTS), and returns
a verdict (true or false + a counterexample if the property is violated). The
computation of the counterexample LTS is achieved by a script we wrote using
SVL [10], a scripting language that allows one to interface with tools provided in
the CADP toolbox. This script calls several tools: a specific option of Evaluator
for building an LTS from a formula following the algorithm in [12]; EXP.OPEN
for building LTS products; Reductor for minimizing LTSs; Scrutator [15] for
removing spurious traces in LTSs.

The second part of our tool implements the algorithms for state match-
ing (2), state comparison (3) and counterexample abstraction (4), described
from Sects. 3.2 to 3.4. This part of the tool has been implemented in Java and

Fig. 6. Overview of the tool support
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consists of about 2,500 lines of code. The tool takes as input the files contain-
ing the full and the counterexample LTS, converted into an intermediate ASCII
format called AUT (provided by CADP), and stores them in memory using a
Java graph modelling library. The matching step (2) is based on a BFS graph
search algorithm in order to build the simulation relation between the two LTSs.
The state matching is then stored into a map, used by the state comparison
step (3) to analyse outgoing transitions for each association of states between
the two LTSs. This allows us to retrieve the set of neighbourhoods. Finally, the
counterexample abstraction step (4) first produces the shortest counterexample
from the full LTS and the property by using the Evaluator model checker, and
second performs the counterexample reduction by locating and keeping actions
that correspond to neighbourhoods. The result retrieved by our tool consists of
the shortest counterexample abstracted in the form of a list of sub-sequences of
actions, accompanied by the list of all neighbourhoods.

4.2 Case Study

We now describe an example taken from a real-world case study [20]. The exam-
ple models a sanitary agency that aims at supporting elderly citizens in receiving
sanitary agency assistance from the public administration. The model involves
four different participants: (i) a citizen who requests services such as transporta-
tion or meal; the request can be accepted or refused by the agency; (ii) a sanitary
agency that manages citizens’ requests and provides public fee payment; (iii) a
bank that manages fees and performs payments; (iv) a cooperative that receives
requests from the sanitary agency, receives payments from the bank, and pro-
vides transportations and meal services. Figure 7 gives the LTS model for each
participant. We assume in this example that the participants interact together
asynchronously by exchanging messages via FIFO buffers.

For illustration purposes, we use an MCL safety property, which indicates
that the payment of a transportation service to the transportation cooperative
cannot occur after submission of a request by a citizen to the sanitary agency:

[ true* . ’REQUEST EM’ . true* . ’PAYMENTT EM’ . true* ] false

We applied our tool to the sanitary agency model with the aforementioned
property. Our tool was able to identify seven neighbourhoods in the couterex-
ample LTS. The shortest counterexample involves three neighbourhoods, and
this allows us to reduce its size from 19 actions to only 6 actions. Figure 8 shows
(from left to right) the full LTS of the sanitary agency model, the shortest
counterexample, and the three neighbourhoods (+ correct transitions) for this
counterexample. The neighbourhoods and corresponding extracted actions are
relevant in the sense that they precisely identify choices that lead to the incorrect
behaviour. In particular, they identify the two causes of the property violation
and those causes can be observed on the shortest counterexample. The first cause
of violation is emphasized by the first neighbourhood and occurs when the citizen
request is accepted. In that case, the refusal of the request is a correct transi-
tion and leads to a part of the LTS where the property is not violated. Indeed,
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Fig. 7. LTS models for the sanitary agency

Fig. 8. Sanitary agency: full LTS and shortest counterexample

when a citizen request is refused by the sanitary agency, the execution skips
the part of the system behaviour where the transportation service and payment
appear. The two next neighbourhoods pinpoint the second reason of property
violation. They show that actions RECMONEYPOST EM and PROVT EM have
been performed, which correspond to triggering the request for payment of the
transportation service, that is not permitted by the property.
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Our solution thus allows the developer to identify the cause of the property
violation by identifying specific actions in counterexamples via the notion of
neighbourhood. It is worth stressing that, since our approach applies on the
counterexample LTS and computes all the neighbourhoods, the returned solution
is able to pinpoint all the causes of the property violation, as we have shown
with the example above.

4.3 Experimental Results

We carried out experiments on about 20 real-world examples found in the litera-
ture. For each example, we use as input an LNT specification or an LTS model as
well as a safety property. Table 1 summarizes the results for some of these experi-
ments. The first two columns contain the name of the model, the reference to the
corresponding article, and the property. The third and fourth columns show the
size of the full and the counterexample LTSs, respectively, in terms of number of
states, transitions and labels. The following columns give the number of identi-
fied neighbourhoods, the size of the shortest (retrieved with breadth first search
techniques) and of the abstracted counterexample, respectively. Finally, the last
two columns detail the execution time for the counterexample LTS production,
and for the matching and comparison algorithms (in seconds).

Table 1. Experimental results

Example ϕ LF (s/t/l) LC (s/t/l) |N | |Ce| |Cer| tLC
tN

sanitary agency [20] ϕsa1 227/492/31 226/485/31 6 17 2 6.3 s 0.3 s

sanitary agency [20] ϕsa2 142/291/31 492/943/31 18 64 6 5.7 s 0.2 s

ssh protocol [14] ϕsp1 23/25/23 20/20/19 2 14 3 4.9 s 0.2 s

ssh protocol [14] ϕsp2 23/25/23 35/35/19 4 29 7 4.8 s 0.1 s

client supplier [6] ϕcs1 35/45/26 29/33/24 3 18 5 4.6 s 0.1s

client supplier [6] ϕcs2 35/45/26 25/25/24 4 19 6 4.9 s 0.1s

client supplier [6] ϕcs3 35/46/26 33/41/24 2 15 2 4.8 s 0.2s

train station [21] ϕts 39/66/18 26/34/18 1 6 2 5.2 s 0.2 s

selfconfig [22] ϕac 314/810/27 159/355/27 30 14 5 5.6 s 0.3 s

online stock broker [9] ϕosb 1331/2770/13 2653/5562/13 61 23 23 4.9 s 0.7 s

First of all, we can see a clear gain in length between the original coun-
terexample and the abstracted one, which keeps only relevant actions using our
approach. There is one case (online stock broker, last row) in which our solu-
tion was not able to reduce the counterexample. This may occur in specific
cases when the counterexample (the shortest here) does not exhibit any actions
corresponding to transitions in a neighbourhood. In that particular situation,
our abstraction techniques cannot help the developer in the identification of the
cause of the property violation.
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As far as computation time is concerned, the table shows that, for these
examples, the time for producing counterexample LTSs is slightly longer than
the time for computing the matching/comparison algorithms, which is very low
(less than a second). The script for counterexample LTS computation is longer
because it calls several CADP tools in sequence, which takes time.

5 Related Work

In this section, we survey related papers providing techniques for supporting
the debugging of specifications and programs. LocFaults [5] is a flow-driven and
constraint-based approach for error localization. It takes as input a faulty pro-
gram for which a counterexample and a postcondition are provided. This app-
roach makes use of constraint based bounded model checking combined with
a minimal correction set notion to locate errors in the faulty program. This
work focuses on programs with numerical statements and relies on a constraint
programming framework allowing the combination of Boolean and numerical
constraints. In addition, the authors do not explicitly describe the capacity of
their solution for analysing concurrent programs.

Concurrency is explicitly taken into account in [3,4]. In [3], the authors
choose the Halpern and Pearl model to define causality checking. In particular,
they analyse traces of counterexamples generated by bounded model checking to
localise errors in hardware systems. In [4], sequential pattern mining is applied
to execution traces for revealing unforeseen interleavings that may be a source
of error, through the adoption of the well-known mining algorithm CloSpan [24].
This work deals with various typical issues in the analysis of concurrent models,
for instance the problem of increasing length of traces and the introduction of
spurious patterns when abstraction methods are used. CloSpan is also adopted
in [13], where the authors applied sequential pattern mining to traces of coun-
terexamples generated from a model using the SPIN model checker. By doing so,
they are able to reveal unforeseen interleavings that may be a source of error.
The approach presented in [13] is able to analyse concurrent systems and to
extract sequences of events for identifying bugs, thus representing one of the
closest results to our work. Reasoning on traces as achieved in [3,4,13] induces
several issues. The handling of looping behaviours is non-trivial and may result
in the generation of infinite traces or of an infinite number of traces. Coverage is
another problem, since a high number of traces does not guarantee to produce all
the relevant behaviours for analysis purposes. As a result, we decided to work
on the debugging of LTS models, which represent in a finite way all possible
behaviours of the system.

Another solution for localization of faults in failing programs consists in using
testing techniques. As an example, [18] presents a mutation-based fault localiza-
tion approach and suggests the use of a sufficient mutant set to locate effectively
the faulty statements. This mutation analysis approach applies on C programs
under validation using testing techniques whereas we focus on formal specifica-
tions and models being analysed using model checking techniques. In [23], the
authors propose a new approach for debugging value-passing process algebra
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through coverage analysis. The authors define several coverage notions before
showing how to instrument the specification without affecting original behav-
iours. This approach helps one to find errors such as ill-formed decisions or dead
code, but does not help to understand why a property is violated during analysis
using model checking techniques.

6 Conclusion

In this paper, we have proposed a new method for debugging concurrent sys-
tems based on the analysis of counterexamples produced by model checking
techniques. First, we have defined a procedure to obtain an LTS containing all
the counterexamples given a full LTS and a safety property. Second, we have
introduced the notion of neighbourhoods corresponding to the junction of cor-
rect and erroneous transitions in the LTS, as well as an algorithm for computing
them by comparing the full LTS and the LTS consisting of all counterexamples.
Finally, we have implemented our approach as a tool and evaluated it on real-
world case studies, showing the advantage of the counterexample abstraction in
practice when adopting the neighbourhood approach.

As far as future improvements are concerned, a first perspective of this work
is to extend our approach to focus on probabilistic specifications and models, and
refine our LTS analysis techniques for handling those models. Another perspec-
tive is to increase the scope of system requirements that we can take into account.
Indeed, although safety properties already allow us to define most requirements
for real-world systems, we would like to consider liveness properties as well.
Finally, we plan to investigate the introduction of code colouring in the specifi-
cation by highlighting code portions that correspond to the source of the problem
according to our approach.

Acknowledgements. We would like to thank Frédéric Lang and Radu Mateescu for
their valuable suggestions to improve the paper.
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Abstract. Stream GSOS is a specification format for operations and
calculi on infinite sequences. The notion of bisimilarity provides a canoni-
cal proof technique for equivalence of closed terms in such specifications.
In this paper, we focus on open terms, which may contain variables,
and which are equivalent whenever they denote the same stream for
every possible instantiation of the variables. Our main contribution is
to capture equivalence of open terms as bisimilarity on certain Mealy
machines, providing a concrete proof technique. Moreover, we introduce
an enhancement of this technique, called bisimulation up-to substitu-
tions, and show how to combine it with other up-to techniques to obtain
a powerful method for proving equivalence of open terms.

1 Introduction

Structural operational semantics (SOS) can be considered the de facto standard
to define programming languages and process calculi. The SOS framework relies
on defining a specification consisting of a set of operation symbols, a set of labels
or actions and a set of inference rules. The inference rules describe the behaviour
of each operation, typically depending on the behaviour of the parameters. The
semantics is then defined in terms of a labelled transition system over (closed)
terms constructed from the operation symbols. Bisimilarity of closed terms (∼)
provides a canonical notion of behavioural equivalence.

It is also interesting to study equivalence of open terms, for instance to express
properties of program constructors, like the commutativity of a non-deterministic
choice operator. The latter can be formalised as the equation X + Y = Y + X ,
where the left and right hand sides are terms with variables X ,Y. Equivalence
of open terms (∼o) is usually based on ∼: for all open terms t1, t2

t1 ∼o t2 iff for all closed substitutions φ, φ(t1) ∼ φ(t2). (1)
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The main problem of such a definition is the quantification over all substitutions:
one would like to have an alternative characterisation, possibly amenable to the
coinduction proof principle. This issue has been investigated in several works,
like [1,3,7,11,13,15,20].
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b|n+m−−−−−→x′⊕y′

x
b|n−−→x′ y

b|m−−−→y′

x⊗y
b|n×m−−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
b|m−−−→x′

n.x
b|n−−→m.x′

(d)
X

ς|ς(X)−−−−→X n
ς|n−−→0

. . . x
ς|n−−→x′ y

ς|m−−−→y′

x⊗y
ς|n×m−−−−−→(n⊗y′)⊕(x′⊗m.y′)

x
ς|m−−−→x′

n.x
ς|n−−→m.x′

Fig. 1. A stream GSOS specification (a) is transformed first into a monadic specifica-
tion (b), then in a Mealy specification (c) and finally in a specification for open terms
(d). In these rules, n and m range over real numbers, b over an arbitrary set B, X over
variables and ς over substitutions of variables into reals.

In this paper, we continue this line of research, focusing on the simpler setting
of streams, which are infinite sequences over a fixed data type. More precisely, we
consider stream languages specified in the stream GSOS format [10], a syntactic
rule format enforcing several interesting properties. We show how to transform
a stream specification into a Mealy machine specification that defines the oper-
ational semantics of open terms. Moreover, a notion of bisimulation – arising in
a canonical way from the theory of coalgebras [16] – exactly characterises ∼o as
defined in (1).

Our approach can be illustrated by taking as running example the fragment
of the stream calculus [18] presented in Fig. 1(a). The first step is to transform a
stream GSOS specification (Sect. 2) into a monadic one (Sect. 3). In this variant
of GSOS specifications, no variable in the source of the conclusion appears in the
target of the conclusion. For example, in the stream specification in Fig. 1(a), the
rule associated to ⊗ is not monadic. The corresponding monadic specification is
illustrated in Fig. 1(b). Notice this process requires the inclusion of a family of
prefix operators (on the right of Fig. 1(b)) that satisfy the imposed restriction.

The second step – based on [8] – is to compute the pointwise extension of
the obtained specification (Sect. 4). Intuitively, we transform a specification of
streams with outputs in a set A into a specification of Mealy machines with
inputs in an arbitrary set B and outputs in A, by replacing each transition a−→
(for a ∈ A) with a transition

b|a−−→ for each input b ∈ B. See Fig. 1(c).
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In the last step (Sect. 5), we fix B = V → A, the set of functions assigning
outputs values in A to variables in V. To get the semantics of open terms, it
only remains to specify the behaviours of variables in V. This is done with the
leftmost rule in Fig. 1(d).

As a result of this process, we obtain a notion of bisimilarity over open
terms, which coincides with behavioural equivalence of all closed instances, and
provides a concrete proof technique for equivalence of open terms. By relating
open terms rather than all its possible instances, this novel technique often
enables to use finite relations, while standard bisimulation techniques usually
require relations of infinite size on closed terms. In Sect. 6 we further enhance this
novel proof technique by studying bisimulation up-to [14]. We combine known
up-to techniques with a novel one which we call bisimulation up-to substitutions.

2 Preliminaries

We define the two basic models that form the focus of this paper: stream systems,
that generate infinite sequences (streams), and Mealy machines, that generate
output streams given input streams.

Definition 2.1. A stream system with outputs in a set A is a pair (X, 〈o, d〉)
where X is a set of states and 〈o, d〉 : X → A × X is a function, which maps a
state x ∈ X to both an output value o(x) ∈ A and to a next state d(x) ∈ X.
We write x

a−→ y whenever o(x) = a and d(x) = y.

Definition 2.2. A Mealy machine with inputs in a set B and outputs in a set A
is a pair (X,m) where X is a set of states and m : X → (A × X)B is a function
assigning to each x ∈ X a map m(x) = 〈ox, dx〉 : B → A × X. For all inputs
b ∈ B, ox(b) ∈ A represents an output and dx(b) ∈ X a next state. We write

x
b|a−−→ y whenever ox(b) = a and dx(b) = y.

We recall the notion of bisimulation for both models.

Definition 2.3. Let (X, 〈o, d〉) be a stream system. A relation R ⊆ X × X is a
bisimulation if for all (x, y) ∈ R, o(x) = o(y) and (d(x), d(y)) ∈ R.

Definition 2.4. Let (X,m) be a Mealy machine. A relation R ⊆ X × X is a
bisimulation if for all (x, y) ∈ R and b ∈ B, ox(b) = oy(b) and (dx(b), dy(b)) ∈ R.

For both kind of systems, we say that x and y are bisimilar, notation x ∼ y,
if there is a bisimulation R s.t. x R y.

Stream systems and Mealy machines, as well as the associated notions of
bisimulation, are instances of the theory of coalgebras [16]. Coalgebras provide a
suitable mathematical framework to study state-based systems and their seman-
tics at a high level of generality. In the current paper, the theory of coalgebras
underlies and enables our main results.
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Definition 2.5. Given a functor F : Set → Set, an F -coalgebra is a pair (X, d),
where X is a set (called the carrier) and d : X → FX is a function (called the
structure). An F -coalgebra morphism from d : X → FX to d′ : Y → FY is a
map h : X → Y such that Fh ◦ d = d′ ◦ h.

Stream systems and Mealy machines are F -coalgebras for the functors FX =
A × X and FX = (A × X)B , respectively.

The semantics of systems modelled as coalgebras for a functor F is provided
by the notion of final coalgebra. A coalgebra ζ : Z → FZ is called final if for
every F -coalgebra d : X → FX there is a unique morphism |[−]| : X → Z such
that |[−]| is a morphism from d to ζ. We call |[−]| the coinductive extension of d.

Intuitively, a final coalgebra ζ : Z → FZ defines all possible behaviours of
F -coalgebras, and |[−]| assigns behaviour to all states x, y ∈ X. This motivates
to define x and y to be behaviourally equivalent iff |[x]| = |[y]|. Under the con-
dition that F preserves weak pullbacks, behavioural equivalence coincides with
bisimilarity, i.e., x ∼ y iff |[x]| = |[y]| (see [16]). This condition is satisfied by (the
functors for) stream systems and Mealy machines. In the sequel, by ∼ we hence
refer both to bisimilarity and behavioural equivalence.

Final coalgebras for stream systems and Mealy machines will be pivotal for
our exposition. We briefly recall them, following [9,16]. The set Aω of streams
over A carries a final coalgebra for the functor FX = A × X. For every stream
system 〈o, d〉 : X → A × X, the coinductive extension |[−]| : X → Aω assigns to
a state x ∈ X the stream a0a1a2 . . . whenever x

a0−−→ x1
a1−−→ x2

a2−−→ . . .
Recalling a final coalgebra for Mealy machines requires some more care. Given

a stream β ∈ Bω, we write β�n for the prefix of β of length n. A function
c : Bω → Aω is causal if for all n ∈ N and all β, β′ ∈ Bω: β�n = β′�n entails
c(β)�n = c(β′)�n. The set Γ (Bω, Aω) = {c : Bω → Aω | c is causal} carries
a final coalgebra for the functor FX = (A × X)B . For every Mealy machine
m : X → (A × X)B , the coinductive extension |[−]| : X → Γ (Bω, Aω) assigns
to each state x ∈ X and each input stream b0b1b2 · · · ∈ Bω the output stream

a0a1a2 · · · ∈ Aω whenever x
b0|a0−−−−→ x1

b1|a1−−−−→ x2
b2|a2−−−−→ . . .

2.1 System Specifications

Different kinds of transition systems, like stream systems or Mealy machines, can
be specified by means of algebraic specification languages. The syntax is given by
an algebraic signature Σ, namely a collection of operation symbols {fi | i ∈ I}
where each operator fi has a (finite) arity ni ∈ N. For a set X, TΣX denotes
the set of Σ-terms with variables over X. The set of closed Σ-terms is denoted
by TΣ∅. We omit the subscript when Σ is clear from the context.

A standard way to define the operational semantics of these languages is
by means of structural operational semantics (SOS) [12]. In this approach, the
semantics of each of the operators is described by syntactic rules, and the behav-
iour of a composite system is given in terms of the behaviour of its components.
We recall stream GSOS [10], a specification format for stream systems.
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Definition 2.6. A stream GSOS rule r for a signature Σ and a set A is a rule

x1
a1−−→ x′

1 · · · xn
an−−→ x′

n

f(x1, . . . , xn) a−→ t
(2)

where f ∈ Σ with arity n, x1, . . . , xn, x′
1, . . . , x

′
n are pairwise distinct variables, t

is a term built over variables {x1, . . . , xn, x′
1, . . . , x

′
n} and a, a1, . . . , an ∈ A. We

say that r is triggered by (a1, . . . , an) ∈ An.
A stream GSOS specification is a tuple (Σ,A,R) where Σ is a signature, A

is a set of actions and R is a set of stream GSOS rules for Σ and A s.t. for each
f ∈ Σ of arity n and each tuple (a1, . . . , an) ∈ An, there is only one rule r ∈ R
for f that is triggered by (a1, . . . , an).

A stream GSOS specification allows us to extend any given stream system
〈o, d〉 : X → A × X to a stream system 〈o, d〉 : TX → A × TX, by induction: the
base case is given by 〈o, d〉, and the inductive cases by the specification. This
construction can be defined formally in terms of proof trees, or by coalgebraic
means; we adopt the latter approach, which is recalled later in this section.

There are two important uses of the above construction: (A) applying it to
the (unique) stream system carried by the empty set ∅ yields a stream system
over closed terms, i.e., of the form T∅ → A × T∅; (B) applying the construction
to the final coalgebra yields a stream system of the form TAω → A × TAω. The
coinductive extension |[−]| : TAω → Aω of this stream system is, intuitively, the
interpretation of the operations in Σ on streams in Aω.

a a−→ a
∀a ∈ A

x
a−→ x′ y

b−→ y′

alt(x, y) a−→ alt(y′, x′)
∀a, b ∈ A

Fig. 2. The GSOS-rules of our running example

alt(a, alt(b, c))

alt(alt(c, b), a)

a c

Fig. 3. A stream system

Example 2.1. Let (Σ,A,R) be a stream GSOS specification where the signature
Σ consists of constants {a | a ∈ A} and a binary operation alt. The set R
contains the rules in Fig. 2. For an instance of (A), the term alt(a, alt(b, c)) ∈ T∅
defines the stream system depicted in Fig. 3. For an instance of (B), the operation
alt : Aω × Aω → Aω maps streams a0a1a2 . . . , b0b1b2 . . . to a0b1a2b2 . . . .

Example 2.2. We now consider the specification (Σ,R, R) which is the fragment
of the stream calculus [17,18] consisting of the constants n ∈ R and the binary
operators sum ⊕ and (convolution) product ⊗. The set R is defined in Fig. 1(a).
For an example of (A), consider n ⊕ m

n+m−−−−→ 0 ⊕ 0 0−→ 0 ⊕ 0 0−→ . . . . For (B),
the induced operation ⊕ : Rω × R

ω → R
ω is the pointwise sum of streams, i.e.,

it maps any two streams n0n1 . . . , m0m1 . . . to (n0 + m0)(n1 + m1) . . . .
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Definition 2.7. We say that a stream GSOS rule r as in (2) is monadic if t is a
term built over variables {x′

1, . . . , x
′
n}. A stream GSOS specification is monadic

if all its rules are monadic.

The specification of Example 2.1 satisfies the monadic stream GSOS format,
while the one of Example 2.2 does not since, in the rules for ⊗, the variable y
occurs in the arriving state of the conclusion.

The notions introduced above for stream GSOS, as well as the analogous
ones for standard (labeled transition systems) GSOS [5], can be reformulated
in an abstract framework – the so-called abstract GSOS [10,19] – that will be
pivotal for the proof of our main result.

In this setting, signatures are represented by polynomial functors: a signature
Σ corresponds to the polynomial functor ΣX =

∐
i∈I Xni . For instance, the

signature Σ in Example 2.1 corresponds to the functor ΣX = A + (X × X),
while the signature of Example 2.2 corresponds to the functor ΣX = R + (X ×
X) + (X × X). Models of a signature are seen as algebras for the corresponding
functor.

Definition 2.8. Given a functor F : Set → Set, an F -algebra is a pair (X, d),
where X is the carrier set and d : FX → X is a function. An algebra homo-
morphism from an F -algebra (X, d) to an F -algebra (Y, d′) is a map h : X → Y
such that h ◦ d = d′ ◦ Fh.

Particularly interesting are initial algebras: an F -algebra is called initial if there
exists a unique algebra homomorphism from it to every F -algebra. For a functor
corresponding to a signature Σ, the initial algebra is (T∅, κ) where κ : ΣT∅ → T∅
maps, for each i ∈ I, the tuple of closed terms t1, . . . tni

to the closed term
fi(t1, . . . tni

). For every set X, we can define in a similar way κX : ΣTX → TX.
The free monad over Σ consists of the endofunctor T : Set → Set, mapping every
set X to TX, together with the natural transformations η : Id =⇒ T (interpre-
tation of variables as terms) and μ : TT =⇒ T (glueing terms built of terms).
Given an algebra σ : ΣY → Y , for any function f : X → Y there is a unique
algebra homomorphism f† : TX → Y from (TX, κX) to (Y, σ). In particular, the
identity function id : X → X induces a unique algebra homomorphism from TX
to X, which we denote by σ� : TX → X; this is the interpretation of terms in σ.

Definition 2.9. An abstract GSOS specification (of Σ over F ) is a natural
transformation λ : Σ(Id × F ) =⇒ FT . A monadic abstract GSOS specification
(in short, monadic specification) is a natural transformation λ : ΣF =⇒ FT .

By instantiating the functor F in the above definition to the functor for streams
(FX = A×X) one obtains all and only the stream GSOS specifications. Instead,
by taking the functor for Mealy machines (FX = (A × X)B) one obtains the
Mealy GSOS format [10]: for the sake of brevity, we do not report the concrete
definition here but this notion will be important in Sect. 5 where, to deal with
open terms, we transform stream specifications into Mealy GSOS specifications.
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Example 2.3. For every set X, the rules in Example 2.1 define a function λX :
A + (A × X) × (A × X) → (A × TΣX) as follows: each a ∈ A is mapped to (a, a)
and each pair (a, x′), (b, y′) ∈ (A×X)× (A×X) is mapped to (a, alt(y′, x′)) [10].

We focus on monadic distributive laws for most of the paper, and since they
are slightly simpler than abstract GSOS specifications, we only recall the relevant
concepts for monadic distributive laws. However, we note that the concepts below
can be extended to abstract GSOS specifications; see, e.g., [4,10] for details.

A monadic abstract GSOS specification induces a distributive law ρ : TF =⇒
FT . This distributive law allows us to extend any F -coalgebra d : X → FX to
an F -coalgebra on terms:

TX
Td �� TFX

ρX �� FTX

This construction generalises and formalises the aforementioned extension of
stream systems to terms by means of a stream GSOS specification. In particular,
(A) the unique coalgebra on the empty set ! : ∅ → F∅ yields an F -coalgebra on
closed terms T∅ → FT∅. If F has a final coalgebra (Z, ζ), the unique morphism
|[−]|c : T∅ → Z defines the semantics of closed terms.

T∅ TF∅ FT∅
(A)

Z FZ

|[−]|c

T ! ρ∅

ζ

F |[−]|c

TZ TFZ FTZ

(B)

Z FZ

|[−]|a

Tζ ρZ

ζ

F |[−]|a

Further (B), the final coalgebra (Z, ζ) yields a coalgebra on TZ. By finality,
we then obtain a T -algebra over the final F -coalgebra, which we denote by
|[−]|a : TZ → Z and we call it the abstract semantics. We define the algebra
induced by λ as the Σ-algebra σ : ΣZ → Z given by

ΣZ
ΣηZ �� ΣTZ

κZ �� TZ
|[−]|a �� Z . (3)

3 Making Arbitrary Stream GSOS Specifications
Monadic

The results presented in the next section are restricted to monadic specifica-
tions, but one can prove them for arbitrary GSOS specifications by exploiting
some auxiliary operators, introduced in [8] with the name of buffer. Theorem 6.1
in Sect. 6 only holds for monadic GSOS specifications. This does not restrict
the applicability of our approach: as we show below, arbitrary stream GSOS
specifications can be turned into monadic ones.

Let (Σ,A,R) be a stream GSOS specification. The extended signature Σ̃ is
given by {f̃ | f ∈ Σ} ∪ {a. | a ∈ A}. The set of rules R̃ is defined as follows:
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– For all a, b ∈ A, R̃ contains the following rule

x
b−→ x′

a.x
a−→ b.x′ (4)

– For each rule r = x1
a1−−→x′

1 ··· xn

an−−→x′
n

f(x1,...,xn)
a−→t(x1,...,xn,x′

1,...,x′
n)

∈ R, the set R̃ contains

r̃ =
x1

a1−−→ x′
1 · · · xn

an−−→ x′
n

f̃(x1, . . . , xn) a−→ t̃(a1.x′
1, . . . , a

′
n.x′

n, x′
1, . . . , x

′
n)

(5)

where t̃ is the term obtained from t by replacing each g ∈ Σ by g̃ ∈ Σ̃.

The specification (Σ̃, A, R̃) is now monadic and preserves the original semantics
as stated by the following result.

Theorem 3.1. Let (Σ,A,R) be a stream GSOS specification and (Σ̃, A, R̃) be
the corresponding monadic one. Then, for all t ∈ TΣ∅, t ∼ t̃.

Example 3.1. Consider the non-monadic specification in Example 2.2. The cor-
responding monadic specification consists of the rules in Fig. 1(b) where, to keep
the notation light, we used operation symbols f rather than f̃ .

4 Pointwise Extensions of Monadic GSOS Specifications

The first step to deal with the semantics of open terms induced by a stream GSOS
specification is to transform the latter into a Mealy GSOS specification. We
follow the approach in [8] which is defined for arbitrary GSOS but, as motivated
in Sect. 3, we restrict our attention to monadic specifications.

Let (Σ,A,R) be a monadic stream GSOS specification and B some input
alphabet. The corresponding monadic Mealy GSOS specification is a tuple
(Σ,A,B,R), where R is the least set of Mealy rules which contains, for each

stream GSOS rule r = x1
a1−−→x′

1 ··· xn

an−−→x′
n

f(x1,...,xn)
a−→t(x′

1,...,x′
n)

∈ R and b ∈ B, the Mealy rule

rb defined by

rb =
x1

b|a1−−−→ x′
1 · · · xn

b|an−−−→ x′
n

f(x1, . . . , xn)
b|a−−→ t(x′

1, . . . , x
′
n)

(6)

An example of this construction is shown in Fig. 1(c).
Recall from Sect. 2 that any abstract GSOS specification induces a Σ-algebra

on the final F -coalgebra. Let σ : ΣAω → Aω be the algebra induced by the
stream specification and σ : ΣΓ (Bω, Aω) → Γ (Bω, Aω) the one induced by
the corresponding Mealy specification. Theorem 4.1, at the end of this section,
informs us that σ is the pointwise extension of σ.
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Definition 4.1. Let g : (Aω)n → Aω and ḡ : (Γ (Bω, Aω))n → Γ (Bω, Aω) be two
functions. We say that ḡ is the pointwise extension of g iff for all c1, . . . , cn ∈
Γ (Bω, Aω) and β ∈ Bω, ḡ(c1, . . . , cn)(β) = g(c1(β), . . . , cn(β)). This notion is
lifted in the obvious way to Σ-algebras for an arbitrary signature Σ.

Example 4.1. Recall the operation ⊕ : Aω × Aω → Aω from Example 2.2 that
arises from the specification in Fig. 1(a) (it is easy to see that the same operation
also arises from the monadic specification in Fig. 1(b)). Its pointwise extension
⊕̄ : Γ (Bω,Rω) × Γ (Bω,Rω) → Γ (Bω,Rω) is defined for all c1, c2 ∈ Γ (Bω,Rω)
and β ∈ Bω as (c1⊕̄c2)(β) = c1(β) ⊕ c2(β). Theorem 4.1 tells us that ⊕̄ arises
from the corresponding Mealy GSOS specification (Fig. 1(c)).

In [8], the construction in (6) is generalised from stream specifications to
arbitrary abstract GSOS. The key categorical tool is the notion of costrength
for an endofunctor F : Set → Set. Given two sets B and X, we first define
εb : XB → X as εb(f) = f(b) for all b ∈ B. Then, csF

B,X : F (XB) → (FX)B is a
natural map in B and X, given by csF

B,X(t)(b) = (Fεb)(t).
Now, given a monadic specification λ : ΣF =⇒ FT , we define λ̄ : Σ(FB) =⇒

(FT )B as the natural transformation that is defined for all sets X by

Σ(FX)B
csΣ

B,F X �� (ΣFX)B
λB

X �� (FTX)B . (7)

Observe that λ̄ is also a monadic specification, but for the functor FB rather than
the functor F . The reader can easily check that for F being the stream functor
FX = A×X, the resulting λ̄ is indeed the Mealy specification corresponding to
λ as defined in (6).

It is worth to note that the construction of λ̄ for an arbitrary abstract GSOS
λ : Σ(Id×F ) =⇒ FT , rather than a monadic one, would not work as in (7). The
solution devised in [8] consists of introducing some auxiliary operators as already
discussed in Sect. 3. The following result has been proved in [8] for arbitrary
abstract GSOS, with these auxiliary operators. Our formulation is restricted to
monadic specifications.

Theorem 4.1. Let F be a functor with a final coalgebra (Z, ζ), and let (Z̄, ζ̄)
be a final FB-coalgebra. Let λ : ΣF =⇒ FT be a monadic distributive law, and
σ : ΣZ → Z the algebra induced by it. The algebra σ̄ : ΣZ̄ → Z̄ induced by λ̄ is
a pointwise extension of σ.

In the theorem above, the notion of pointwise extension should be understood
as a generalisation of Definition 4.1 to arbitrary final F and FB-coalgebras. This
generalised notion, that has been introduced in [8], will not play a role for our
paper where F is fixed to be the stream functor FX = A × X.

5 Mealy Machines over Open Terms

We now consider the problem of defining a semantics for the set of open terms
TV for a fixed set of variables V. Our approach is based on the results in the
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previous sections: we transform a monadic GSOS specification for streams with
outputs in A into a Mealy machine with inputs in AV and outputs in A, i.e., a
coalgebra for the functor FX = (A × X)AV

. The coinductive extension of this
Mealy machine provides the open semantics: for each open term t ∈ TV and
variable assignment ψ : V → Aω, it gives an appropriate output stream in Aω.
This is computed in a stepwise manner: for an input ς : V → A, representing
“one step” of a variable assignment ψ, we obtain one step of the output stream.

We start by defining a Mealy machine c : V → (A × V)AV
on the set of

variables V as on the left below, for all X ∈ V and ς ∈ AV :

c(X )(ς) = (ς(X ),X ) X ς|ς(X )�� (8)

Concretely, this machine has variables as states and for each ς : V → A a self-
loop, as depicted on the right. Now, let λ : Σ(A × −) ⇒ A × T be a monadic
stream specification and λ̄ : Σ((A×−)AV

) ⇒ (A×T (−))AV
be the induced Mealy

specification, as defined in (7). As mentioned in Sect. 2, λ̄ defines a distributive
law ρ : T ((A × −)AV

) ⇒ (A × T (−))AV
, which allows to extend c (see (8)) to a

coalgebra mλ : TV → (A × TV)AV
, given by

TV Tc �� T (A × V)AV ρV �� (A × TV)AV
. (9)

This is the Mealy machine of interest.

Example 5.1. Consider the stream specification λ of the operation alt, given in
Example 2.1. The states of the Mealy machine mλ are the open terms TV. The
transitions of terms are defined by the set of rules

a
ς|a−−→ a

x
ς|a−−→ x′ y

ς|b−−→ y′

alt(x, y)
ς|a−−→ alt(y′, x′)

for all ς : V → A and a, b ∈ A

together with the transitions for the variables as in (8). For instance, for each
X ,Y,Z ∈ V and all ς, ς ′ : V → A, we have the following transitions in mλ:

alt(X , alt(Y,Z))

alt(alt(Z,Y),X )
ς|ς(X ) ς ′|ς ′(Z)

Example 5.2. For the fragment of the stream calculus introduced in Example 2.2,
the Mealy machine over open terms is defined by the rules in Fig. 1(d). Below
we draw the Mealy machines of some open terms that will be useful later.

X ⊕ Y

ς|ς(X )+ς(Y)

��
Y ⊕ X

ς|ς(Y)+ς(X )

��
(X ⊕ Y) ⊕ Z

ς|(ς(X )+ς(Y))+ς(Z)

��
X ⊕ (Y ⊕ Z)

ς|ς(X )+(ς(Y)+ς(Z))

��
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We define the open semantics below by the coinductive extension of mλ.
Let Γ̃ = Γ ((AV)ω, Aω) be the set of causal functions c : (AV)ω → Aω, which
is the carrier of the final coalgebra for the functor FX = (A × X)AV

. Notice
that a function c : (AV)ω → Aω can equivalently be presented as a function
c̃ : (Aω)V → Aω (swapping the arguments in the domain). Given such a function
c : (AV)ω → Aω and a function ψ : V → Aω, in the sequel, we sometimes abuse
of notation by writing c(ψ) where we formally mean c̃(ψ).

Definition 5.1. Let λ : Σ(A × −) ⇒ A × T be a monadic stream GSOS specifi-
cation. The open semantics of λ is the coinductive extension |[−]|o : TV → Γ̃ of
the Mealy machine mλ : TV → (A × TV)AV

defined in (9).

Behavioural equivalence of open terms can now be checked by means of
bisimulations on Mealy machines (Definition 2.4). We define open bisimilarity,
denoted by ∼o, as the greatest bisimulation on mλ. Obviously, for all open terms
t1, t2 ∈ TV it holds that t1 ∼o t2 iff |[t1]|o = |[t2]|o. The following result provides
another useful characterisation of |[−]|o.
Lemma 5.1. Let λ be a monadic stream GSOS specification, with induced alge-
bra σ : ΣAω → Aω. Let λ̄ be the corresponding Mealy specification, with induced
algebra σ̄ : ΣΓ̃ → Γ̃ . Then the open semantics |[−]|o is the unique homomorphism
making the diagram below commute:

ΣTV ΣΓ̃

TV Γ̃

V

Σ|[ ]|o

κV σ̄
|[ ]|o

ηV
proj

(10)

where η and κ are defined by initiality (Sect. 2), and for each X ∈ V and ψ : V →
Aω, proj(X )(ψ) = ψ(X ).

Observe that, by virtue of Theorem 4.1, the algebra σ̄ is the pointwise extension
of σ. This fact will be useful in the next section to relate ∼o with bisimilarity
on the original stream system.

5.1 Abstract, Open and Closed Semantics

Recall from Sect. 2 the abstract semantics |[−]|a : TAω → Aω arising as in (B)
from a monadic stream specification λ. The following proposition is the key to
prove Theorem 5.1 relating open bisimilarity and abstract semantics.

Proposition 5.1. Let |[−]|a and |[−]|o be the abstract and open semantics respec-
tively of a monadic stream GSOS specification λ. For any t ∈ TV, ψ : V → Aω:

|[t]|o(ψ) = |[(Tψ)(t)]|a .

As a simple consequence, we obtain the following characterization of ∼o.
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Theorem 5.1. For all t1, t2 ∈ TV, |[t1]|o = |[t2]|o iff for all ψ : V → Aω:
|[Tψ(t1)]|a = |[Tψ(t2)]|a.

This is one of the main results of this paper: Tψ(t1) and Tψ(t2) are expres-
sions in TAω built from symbols of the signature Σ and streams α1, . . . αn ∈ Aω.
By checking t1 ∼o t2 one can prove that the two expressions are equivalent for
all possible streams α1, . . . αn ∈ Aω.

Example 5.3. By using the Mealy machine mλ in Example 5.1, the relation

R ={(alt(X , alt(Y,Z)), alt(X , alt(W,Z))), (alt(alt(Z,Y),X ), alt(alt(Z,W),X ))}

is easily verified to be a bisimulation (Definition 2.4). In particular this shows
that |[alt(X , alt(Y,Z))]|o = |[alt(X , alt(W,Z))]|o. By Theorem 5.1, we have that
|[Tψ(alt(X , alt(Y,Z)))]|a = |[Tψ(alt(X , alt(W,Z)))]|a for all ψ : V → Aω, i.e.,

alt(α1, alt(α2, α3)) ∼ alt(α1, alt(α4, α3)) for all α1, α2, α3, α4 ∈ Aω.

The above law can be understood as an equivalence of program schemes stating
that one can always replace the stream α2 by an arbitrary stream α4, without
changing the result.

Example 5.4. By using the Mealy machines in Example 5.2, it is easy to check
that both {((X ⊕Y)⊕Z,X ⊕ (Y ⊕Z))} and {(X ⊕Y,Y ⊕X )} are bisimulations.
This means that |[(X ⊕ Y) ⊕ Z]|o = |[X ⊕ (Y ⊕ Z)]|o and |[X ⊕ Y]|o = |[Y ⊕ X ]|o.
By Theorem 5.1 we obtain associativity and commutativity of ⊕:

(α1 ⊕ α2) ⊕ α3 ∼ α1 ⊕ (α2 ⊕ α3) and α1 ⊕ α2 ∼ α2 ⊕ α1 for all α1, α2, α3 ∈ Aω.

Example 5.5. In a similar way, one can check that {((a+b).(X ⊕Y), a.X ⊕b.Y) |
a, b ∈ R} is a bisimulation. This means that |[(a + b).(X ⊕ Y)]|o = |[a.X ⊕ b.Y]|o
for all a, b ∈ R and, using again Theorem 5.1, we conclude that (a+b).(α1⊕α2) ∼
a.α1 ⊕ b.α2 for all α1, α2 ∈ Aω.

Often, equivalence of open terms is defined by relying on the equivalence of
closed terms: two open terms are equivalent iff under all possible closed sub-
stitutions, the resulting closed terms are equivalent. For ∼o, this property does
not follow immediately by Theorem 5.1, where variables range over streams, i.e.,
elements of the final coalgebra. One could assume that all the behaviours of the
final coalgebra are denoted by some term, however this restriction would rule
out most of the languages we are aware of: in particular, the stream calculus
that can express only the so-called rational streams [18].

The following theorem, that is the second main result of this paper, only
requires that the stream GSOS specification is sufficiently expressive to describe
arbitrary finite prefixes. We use that any closed substitution φ : V → T∅ defines
φ† : TV → T∅ (see Sect. 2.1).
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Theorem 5.2. Suppose λ : Σ(A × −) ⇒ A × TΣ is a monadic stream GSOS
specification which contains, for each a ∈ A, the prefix operator a.− as specified
in (4) in Sect. 3. Further, assume T∅ is non-empty.

Let |[−]|c and |[−]|o be the closed and open semantics respectively of λ. Then
for all t1, t2 ∈ TV: |[t1]|o = |[t2]|o iff |[φ†(t1)]|c = |[φ†(t2)]|c for all φ : V → T∅.
Example 5.6. The specification in Fig. 2 does not include the prefix operator,
therefore it does not meet the assumptions of Theorem 5.2. Instead, the monadic
GSOS specification in Fig. 1(b) contains the prefix. Recall from Example 5.5
that (a + b).(X ⊕ Y) ∼o a.X ⊕ b.Y. Using Theorem 5.2, we can conclude that
(a + b).(t1 ⊕ t2) ∼ a.t1 ⊕ b.t2 for all t1, t2 ∈ T∅.

6 Bisimulation Up-To Substitutions

In the previous section, we have shown that bisimulations on Mealy machines
can be used to prove equivalences of open terms specified in the stream GSOS
format. In this section we introduce up-to substitutions, an enhancement of the
bisimulation proof method that allows to deal with smaller, often finite, relations.
We also show that up-to substitutions can be effectively combined with other
well-known up-to techniques such as up-to bisimilarity and up-to context.

Intuitively, in a bisimulation up-to substitutions R, the states reached by a
pair of states do not need to be related by R, but rather by θ(R), for some
substitution θ : V → TV. We give a concrete example. Suppose we extend the
stream calculus of Example 2.2 with the operators f and g defined by the rules
in Fig. 4. In Fig. 5, we have the pointwise extensions of these new operators.
It should be clear that f(X ) ∼ g(X ). To try to formally prove f(X ) ∼ g(X ),
consider the relation R = {(f(X ), g(X ))}. For all ς : V → A, there are tran-

sitions f(X )
ς|ς(X )−−−−→ f(X ⊕ X ) and g(X )

ς|ς(X )−−−−→ g(X ⊕ X ). The outputs of
both transitions coincide but the reached states are not in R, hence R is not a
bisimulation. However it is a bisimulation up-to substitutions, since the arriving
states are related by θ(R), for some substitution θ mapping X to X ⊕X . In fact,
without this technique, any bisimulation relating f(X ) and g(X ) should contain
infinitely many pairs.

x
a−→ x′

f(x)
a−→ f(x′ ⊕ x′)

x
a−→ x′

g(x)
a−→ g(x′ ⊕ x′)

Fig. 4. f and g, operators over streams

x
ς|a−−→ x′

f(x)
ς|a−−→ f(x′ ⊕ x′)

x
ς|a−−→ x′

g(x)
ς|a−−→ g(x′ ⊕ x′)

Fig. 5. Pointwise extensions of f and g.

In order to prove the soundness of this technique, as well as the fact that it
can be safely combined with other known up-to techniques, we need to recall
some notions of the theory of up-to techniques in lattices from [14]. Given a
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Mealy machine (X,m), we consider the lattice (P(X × X),⊆) of relations over
X, ordered by inclusion, and the monotone map b : P(X × X) → P(X × X)
defined for all R ⊆ X × X as

b(R) = {(s, t) ∈ X × X | ∀b ∈ B, os(b) = ot(b) and ds(b) R dt(b)}. (11)

It is easy to see that post fixed points of b, i.e., relations R such that R ⊆
b(R), are exactly bisimulations for Mealy machines (Definition 2.4) and that its
greatest fixed point is ∼.

For a monotone map f : P(X × X) → P(X × X), a bisimulation up-to f is a
relation R such that R ⊆ bf(R). We say that f is compatible with b if fb(R) ⊆
bf(R) for all relations R. Two results in [14] are pivotal for us: first, if f is
compatible and R ⊆ bf(R) then R ⊆ ∼; second if f1 and f2 are compatible with
b then f1 ◦ f2 is compatible with b. The first result informs us that bisimilarity
can be proved by means of bisimulations up-to f , whenever f is compatible. The
second result states that compatible up-to techniques can be composed.

We now consider up-to techniques for the Mealy machine over open terms
(TV,mλ) as defined in Sect. 5. Recall that bisimilarity over this machine is called
open bisimilarity, denoted by ∼o. Up-to substitutions is the monotone function
(−)∀θ : P(TV × TV) → P(TV × TV) mapping every R ⊆ TV × TV to

(R)∀θ = {(θ(t1), θ(t2)) | θ : V → TV and t1 R t2}.

Similarly, we define up-to context as the monotone function mapping every rela-
tion R ⊆ TV×TV to its contextual closure C(R) and up-to (open) bisimilarity as
the function mapping R to ∼o R ∼o = {(t1, t2) | ∃t′1, t

′
2 s.t. t1 ∼o t′1 R t′2 ∼o t2}.

Compatibility with b of up-to context and up-to bisimilarity hold immedi-
ately by the results in [6]. For the novel technique, up-to substitutions, we have:

Theorem 6.1. The function (−)∀θ is compatible with b.

As a consequence of the above theorem and the results in [14], up-to substi-
tutions can be used in combination with up-to bisimilarity and up-to context (as
well as any another compatible up-to technique) to prove open bisimilarity. We
will show this in the next, concluding example, for which a last remark is useful:
the theory in [14] also ensures that if f is compatible with b, then f(∼) ⊆ ∼. By
Theorem 6.1, this means that (∼o)∀θ ⊆ ∼o. The same obviously holds for the
contextual closure: C(∼o) ⊆ ∼o.

Example 6.1. We prove that the convolution product ⊗ distributes over the sum
⊕, i.e., α1 ⊗ (α2 ⊕ α3) ∼ (α1 ⊗ α2) ⊕ (α1 ⊗ α3) for all streams α1, α2, α3 ∈ R

ω.
By Theorems 5.1 and 6.1, to prove our statement it is enough to show that R =
{(X ⊗(Y⊕Z), (X ⊗Y)⊕(X ⊗Z))} is a bisimulation up-to ∼o C(∼o (−)∀θ ∼o) ∼o.

By rules in Fig. 1(d), for all ς : V → R, the transitions of the open terms are

– X ⊗(Y⊕Z)
ς|ς(X )×(ς(Y)+ς(Z))−−−−−−−−−−−−−−→ (ς(X )⊗(Y⊕Z))⊕(X ⊗(ς(Y)+ς(Z)).(Y⊕Z))

– (X ⊗ Y) ⊕ (X ⊗ Z)
ς|ς(X )×ς(Y)+ς(X )×ς(Z)−−−−−−−−−−−−−−−−−→

((ς(X ) ⊗ Y) ⊕ (X ⊗ ς(Y).Y)) ⊕ ((ς(X ) ⊗ Z) ⊕ (X ⊗ ς(Z).Z))
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For the outputs, it is evident that ς(X ) × (ς(Y) + ς(Z)) = ς(X ) × ς(Y) +
ς(X )× ς(Z). For the arriving states we need a few steps, where for all ς : V → R

and X ∈ V, ς(X ) denotes either a real number (used as a prefix) or a constant
of the syntax (Example 2.2).

(a) X ⊗ (ς(Y).Y ⊕ ς(Z).Z) R∀θ (X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z).Z).
(b) By Example 5.5 and C(∼o) ⊆∼o, we have that:

X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼o X ⊗ (ς(Y).Y ⊕ ς(Z).Z).
(c) By (b) and (a):

X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z) ∼oR∀θ∼o (X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z).Z).
(d) ς(X ) ⊗ (Y ⊕ Z) R∀θ (ς(X ) ⊗ Y) ⊕ (ς(X ) ⊗ Z).
(e) Using (d) and (c) with context C = ⊕ :

(ς(X ) ⊗ (Y ⊕ Z)) ⊕ (X ⊗ (ς(Y) + ς(Z)).(Y ⊕ Z))
C(∼oR∀θ∼o) ((ς(X ) ⊗ Y) ⊕ (ς(X ) ⊕ Z)) ⊕ ((X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z).Z)).

(f) By Example 5.4 (associativity and commutativity of ⊕) and (∼o)∀ρ ⊆ ∼o:
((ς(X ) ⊗ Y) ⊕ (ς(X ) ⊕ Z)) ⊕ ((X ⊗ ς(Y).Y) ⊕ (X ⊗ ς(Z)).Z))
∼o ((ς(X ) ⊗ Y) ⊕ (X ⊗ ς(Y).Y)) ⊕ ((ς(X ) ⊗ Z) ⊕ (X ⊗ ς(Z).Z)).

(g) By (e) and (f):
(ς(X ) ⊗ (Y ⊕ Z)) ⊕ (X × (ς(Y) + ς(Z)).(Y ⊕ Z))
∼oC(∼oR∀θ∼o)∼o ((ς(X )⊗Y)⊕(X ⊗ς(Y).Y))⊕((ς(X )⊗Z)⊕(X ⊗ς(Z).Z)).

7 Final Remarks

In this paper we have studied the semantics of open terms specified in the stream
GSOS format. Our recipe consists in translating the stream specification into a
Mealy specification giving semantics to all open terms. Remarkably, this seman-
tics equates two open terms if and only if they are equivalent under all possible
interpretations of variables as streams (Theorem 5.1) or under the interpretation
of variables as closed terms (Theorem 5.2). Furthermore, semantic equivalence
can be checked by means of the bisimulation proof method enhanced with a
technique called up-to substitutions (Theorem 6.1).

Our work can be considered as a first step toward a (co)algebraic under-
standing of the semantics of open terms in the general setting of abstract GSOS
[10,19]. While our approach exploits several peculiarities of the final coalgebra
for stream systems, several intermediate results hold in the general setting: for
instance, the construction in Sect. 3 transforming arbitrary stream GSOS speci-
fications into monadic ones, seems to hold for arbitrary abstract GSOS. Another
promising clue in this direction comes from the way we specified the semantics
of variables in Sect. 5: it is reminiscent of the technique adopted in [2] for dealing
with open terms of process calculi denoting labeled transition systems.
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Abstract. Featured Timed Automata (FTA) is a formalism that
enables the verification of an entire Software Product Line (SPL), by
capturing its behavior in a single model instead of product-by-product.
However, it disregards compositional aspects inherent to SPL develop-
ment. This paper introduces Interface FTA (IFTA), which extends FTA
with variable interfaces that restrict the way automata can be composed,
and with support for transitions with atomic multiple actions, simplify-
ing the design. To support modular composition, a set of Reo connectors
are modelled as IFTA. This separation of concerns increases reusability of
functionality across products, and simplifies modelling, maintainability,
and extension of SPLs. We show how IFTA can be easily translated into
FTA and into networks of Timed Automata supported by UPPAAL. We
illustrate this with a case study from the electronic government domain.
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Software product lines (SPLs) enable the definition of families of systems where
all members share a high percentage of common features while they differ in
others. Among several formalisms developed to support SPLs, Featured Timed
Automata (FTA) [5] model families of real-time systems in a single model.
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However, FTA still need more modular and compositional techniques well suited
to SPL-based development.

To address this issue, this paper proposes Interface FTA (IFTA), a mecha-
nism enriching FTA with (1) interfaces that restrict the way multiple automata
interact, and (2) transitions labelled with multiple actions that simplify the
design. Interfaces are synchronisation actions that can be linked with interfaces
from other automata when composing automata in parallel. IFTA can be com-
posed by combining their feature models and linking interfaces, imposing new
restrictions over them. The resulting IFTA can be exported to the UPPAAL
real-time model checker to verify temporal properties, using either a network of
parallel automata in UPPAAL, or by flattening the composed automata into a
single one. The latter is better suited for IFTA with many multiple actions.

We illustrate the applicability of IFTA with a case study from the electronic
government (e-government) domain, in particular, a family of licensing services.
This services are present in most local governments, who are responsible for
assessing requests and issuing licenses of various types. E.g., for providing public
transport services, driving, construction, etc. Such services comprise a number
of common functionality while they differ in a number of features, mostly due
to specific local regulations.

The rest of this paper is structured as follows. Section 2 presents some back-
ground on FTA. Section 3 introduces IFTA. Section 4 presents a set of Reo con-
nectors modeled as IFTA. Section 5 discusses a prototype tool to specify and
manipulate IFTA. Section 6 presents the case study. Section 7 discusses related
work, and Sect. 8 concludes.

2 Featured Timed Automata

This work builds on top of Featured Timed Automata (FTA) an extension to
Timed Automata, introduced by Cordy et al. [5] to verify real-time systems para-
meterised by a variability model. This section provides an overview of FTA and
their semantics, based on Cordy et al.

Informally, a Featured Timed Automaton is an automaton whose edges are
enriched with clocks, clock constraints (CC), synchronisation actions, and feature
expressions (FE). A clock c ∈ C is a logical entity that captures the (continuous
and dense) time that has passed since it was last reset. When a timed automaton
evolves over time, all clocks are incremented simultaneously. A clock constraint
is a logic condition over the value of a clock. A synchronisation action a ∈ A is
used to coordinate automata in parallel; an edge with an action a can only be
taken when its dual action in a neighbor automaton is also on an edge that can be
taken simultaneously. Finally, a feature expression (FE) is a logical constraint
over a set of features. Each of these features denotes a unit of variability; by
selecting a desired combination of features one can map an FTA into a Timed
Automaton.

Figure 1 exemplifies a simple FTA with two locations, �0 and �1, with a clock
c and two features cf and mk , standing for the support for brewing coffee and for
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�0 �1 c ≤ 5

cappuccino
cf ∧ mk , c := 0

coffee
cf , c := 0

brew
c ≥ 2

[ fm = mk cf ]

Fig. 1. Example of a Featured Timed Automata over the features cf and mk .

including milk in the coffee. Initially the automaton is in location �0, and it can
evolve either by waiting for time to pass (incrementing the clock c) or by taking
one of its two transitions to �1. The top transition, for example, is labelled by
the action coffee and is only active when the feature cf is present. Taking this
transition triggers the reset of the clock c back to 0, evolving to the state �1. Here
it can again wait for the time to pass, but for at most 5 time units, determined
by the invariant c ≤ 5 in �1. The transition labelled with brew has a different
guard: a clock constraint c ≥ 2 that allows this transition to be taken only when
the clock c is greater than 2. Finally, the lower expression [ fm = mk → cf ]
defines the feature model. I.e., how the features relate to each other. In this case
the mk feature can only be selected when the cf feature is also selected.

We now formalize clock constraints, feature expressions, and the definition
of FTA and its semantics.

Definition 1 (Clock Constraints (CC), valuation, and satisfaction). A
clock constraint over a set of clocks C, written g ∈ CC(C) is defined by

g ::= c < n | c ≤ n | c = n | c > n | c ≥ n | g ∧ g | � (clock constraint)

where c ∈ C, and n ∈ N.
A clock valuation η for a set of clocks C is a function η : C → R≥0 that

assigns each clock c ∈ C to its current value ηc. We use R
C to refer to the set

of all clock valuations over a set of clocks C. Let η0(c) = 0 for all c ∈ C be the
initial clock valuation that sets to 0 all clocks in C. We use η + d, d ∈ R≥0, to
denote the clock assignment that maps all c ∈ C to η(c) + d, and let [r �→ 0]η,
r ⊆ C, be the clock assignment that maps all clocks in r to 0 and agrees with η
for all other clocks in C \ r.

The satisfaction of a clock constraint g by a clock valuation η, written η |= g,
is defined as follows

η |= � always
η |= c � n if η(c) � n
η |= g1 ∧ g2 if η |= g1 ∧ η |= g2

(clock satisfaction)

where � ∈ {<,≤,=, >,≥}.
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Definition 2 (Feature Expressions (FE) and satisfaction). A feature
expression ϕ over a set of features F , written ϕ ∈ FE(F ), is defined by

ϕ ::= f | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | � (feature expression)

where f ∈ F is a feature. The other logical connectives can be encoded as usual:
⊥ = ¬�; ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2; and ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

Given a feature selection FS ⊆ F over a set of features F , and a feature
expression ϕ ∈ FE(F ), FS satisfies ϕ, noted FS |= ϕ, if

FS |= � always
FS |= f ⇔ f ∈ FS
FS |= ϕ1 ♦ ϕ2 ⇔ FS |= ϕ1 ♦ FS |= ϕ2

FS |= ¬ϕ ⇔ FS �|= ϕ

(FE satisfaction)

where ♦ ∈ {∧,∨}.
Definition 3 (Featured Timed Automata (FTA) [5]). An FTA is a tuple
A = (L,L0, A,C, F,E, Inv, fm, γ) where L is a finite set of locations, L0 ⊆ L
is the set of initial locations, A is a finite set of synchronisation actions, C is
a finite set of clocks, F is a finite set of features, E is a finite set of edges,
E ⊆ L × CC(C) × A × 2C × L, Inv : L → CC(C) is the invariant, a partial
function that assigns CCs to locations, fm ∈ FE (F ) is a feature model defined
as a Boolean formula over features in F , and γ : E → FE (F ) is a total function
that assigns feature expressions to edges.

The semantics of FTA is given in terms of Featured Transition Systems
(FTSs) [4]. An FTS extends Labelled Transition Systems with a set of features
F , a feature model fm, and a total function γ that assigns FE to transitions.

Definition 4 (Semantics of FTA). Let A = (L,L0, A,C, F,E, Inv , fm, γ) be
an FTA. The semantics of A is defined as an FTS 〈S, S0, A, T, F, fm, γ′〉, where
S ⊆ L × R

C is the set of states, S0 = {〈�0, η0〉 | �0 ∈ L0} is the set of initial
states, T ⊆ S × (A∪R≥0)×S is the transition relation, with (s1, α, s2) ∈ T , and
γ′ : T → FE(F ) is a total function that assigns feature expressions to transitions.
The transition relation and γ are defined as follows.

〈�, η〉 d−→
�

〈�, η + d〉 if η |= Inv(�) and (η + d) |= Inv(�), for d ∈ R≥0 (1)

〈�, η〉 a−→
ϕ

〈�′, η′〉 if ∃ �
g,a,r−−−→

ϕ
�′ ∈ E s.t. η |= g, η |= Inv(l),

η′ = [r �→ 0]η, and η′ |= Inv(�′) (2)

where s1
α−→
ϕ

s2 means that (s1, α, s2) ∈ T and γ(s1, α, s2) = ϕ, for any s1, s2 ∈ S.
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Notation: We write LA, L0A, AA, etc., to denote the locations, initial locations,
actions, etc., of an FTA A, respectively. We write �1

cc,a,c−−−−→A �2 to denote that
(�1, cc, a, c, �2) ∈ EA, and use �1

cc,a,c−−−→
ϕ

A �2 to express that γA(�1, cc, a, c, �2) = ϕ.

We omit the subscript whenever automaton A is clear from the context. We use
an analogous notation for elements of an FTS.

3 Interface Featured Timed Automata

Multiple FTAs can be composed and executed in parallel, using synchronising
actions to synchronise edges from different parallel automata. This section intro-
duces interfaces to FTA that: (1) makes this implicit notion of communication
more explicit, and (2) allows multiple actions to be executed atomically in a tran-
sition. Synchronisation actions are lifted to so-called ports, which correspond to
actions that can be linked with actions from other automata. Hence composition
of IFTA is made by linking ports and by combining their variability models.

Definition 5 (Interface Featured Timed Automata). An IFTA is a tuple
A = (L, l0, A,C, F,E, Inv , fm, γ) where L,C, F, Inv , fm, γ are defined as in Fea-
tured Timed Automata, there exists only one initial location l0, A = I � O � H
is a finite set of actions, where I is a set of input ports, O is a set of output
ports, and H is a set of hidden (internal) actions, and edges in E contain sets
of actions instead of single actions (E ⊆ L × CC(C) × 2A × 2C × L).

We call interface of an IFTA A the set PA = IA � OA of all input and
output ports of an automaton. Given a port p ∈ P we write p? and p! to denote
that p is an input or output port, respectively, following the same conventions
as UPPAAL for actions, and write p instead of {p} when clear from context.
The lifting of actions into sets of actions will be relevant for the composition of
automata. Notation: we use i, i1, etc., and o, o1, etc. to refer specifically to input
and output ports of an IFTA, respectively. For any IFTA A it is possible to infer
a feature expression for each action a ∈ AA based on the feature expressions of
the edges in which a appears. Intuitively, this feature expression determines the
set of products requiring a.

Definition 6 (Feature Expression of an Action). Given an IFTA A, the
feature expression of any action a is the disjunction of the feature expressions of
all of its associated edges, defined as

̂ΓA(a) =
∨

{γA(�
g,ω,r−−−−→A �′) | a ∈ ω} (FE of an action)

We say an IFTA A is grounded, if it has a total function associating a
feature expression to each action a ∈ AA that indicates the set of prod-
ucts where a was originally designed to be present in. Given an IFTA A
we can construct a grounded A by incorporating a function Γ such that,
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CM
(Figure 1)

RouterPaymentcoin?
pay

payed!
pay

coffee?
cf

cappuccino?
cf mk

brew!i?
ϕi

o1!
ϕo1

o2!
ϕo2

Fig. 2. Representation of 3 IFTA, depicting their interfaces (blue) and associated fea-
ture expressions. (Color figure online)

A = (LA, l0A , AA, CA, InvA, FA, fmA, γA, Γ ), where Γ : AA → FE (FA) assigns
a feature expression to each action of A, and is constructed based on ̂ΓA. From
now on when referring to an IFTA we assume it is a grounded IFTA.

Figure 2 depicts the interfaces of 3 different IFTA. The leftmost is a payment
machine that receives actions representing coins and publishes actions confirming
the payment, whose actions are dependent on a feature called pay . The rightmost
is the coffee machine from Fig. 1. Finally, the middle one depicts a connector
Router that could be used to combine the payment and the coffee machines.
This notion of combining IFTA is the core contribution of this work: how to
reason about the modular composition of timed systems with variable interfaces.
For example, let us assume the previous IFTA are connected by linking actions
as follows: (payed,i), (o1, coffee), and (o2, cappuccino). In a real coffee machine,
after a payment, the machine should allow to select only beverages supported,
i.e., if the machine does not support cappuccino the user should not be able to
select it and be charged. Similarly, the composed system here should not allow to
derive a product with o2 if cappuccino is not present. To achieve this, we need to
impose additional restriction on the variability model of the composed system,
since as it will be shown later in this section, combining the feature models of
the composed IFTA through logical conjunction is not enough.

The semantics of IFTA is given in terms of FTSs, similarly to the semantics
of FTA with the difference that transitions are now labelled with sets of actions.
We formalize this as follows.

Definition 7 (Semantics of IFTA). Let A be an IFTA, its semantics is
an FTS F = (S, s0, A, T, F, fm, γ), where S, A, F , fm, and γ are defined as in
Definition 4, s0 = 〈�0, η0〉 is now the only initial state, and T ⊆ S×(2A∪R≥0)×S
now supports transitions labelled with sets of actions.

We now introduce two operations: product and synchronisation, which are
used to define the composition of IFTA. The product operation for IFTA, unlike
the classical product of timed automata, is defined over IFTA with disjoint sets
of actions, clocks and features, performing their transitions in an interleaving
fashion.

Definition 8 (Product of IFTA). Given two IFTA A1 and A2, with disjoint
actions, clocks and features, the product of A1 and A2, denoted A1 × A2, is

A = (L1 × L2, �01 × �02 , A,C1 ∪ C2, F1 ∪ F2, E, Inv , fm1 ∧ fm2, γ, Γ )
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where A, E, Inv, γ and Γ are defined as follows

– A = I � O � H, where I = I1 ∪ I2, O = O1 ∪ O2, and H = H1 ∪ H2.
– E and γ are defined by the rules below, for any ω1 ⊆ A1, ω2 ⊆ A2.

�1
g1,ω1,r1−−−−−→

ϕ1
1 �′

1

〈�1, �2〉 g1,ω1,r1−−−−−→
ϕ1

〈�′
1, �2〉

�2
g2,ω2,r2−−−−−→

ϕ2
2 �2

′

〈�1, �2〉 g2,ω2,r2−−−−−→
ϕ2

〈�1, �′
2〉

�1
g1,ω1,r1−−−−−→

ϕ1
1 �′

1 �2
g2,ω2,r2−−−−−→

ϕ2
2 �′

2

〈�1, �2〉 g1∧g2,ω1∪ω2,r1∪r2−−−−−−−−−−−−→
ϕ1∧ϕ2

〈�′
1, �

′
2〉

– Inv(�1, �2) = Inv1(�1) ∧ Inv2(�2).
– ∀ a∈PA · Γ (a) = Γi(a) if a ∈ Ai, for i = 1, 2.

The synchronisation operation over an IFTA A connects and synchronises two
actions a and b from AA. The resulting automaton has transitions without nei-
ther a and b, nor both a and b. The latter become internal transitions.

Definition 9 (Synchronisation). Given an IFTA A = (L, �0, A,C, F,E, Inv ,
fm, γ, Γ ) and two actions a, b ∈ A, the synchronisation of a and b is given by
Δa,b(A) = (L, �0, A

′, C, F,E′, Inv , fm ′, γ, Γ ) where A′, E′ and fm ′ are defined as
follows

– A = I ′ � O′ � H ′, where I ′ = I \ {a.b}, O′ = O \ {a.b}, and H ′ = H ∪ {a.b}.
– E′ = {�

g,ω,r−−−−→ �′ ∈ E | a /∈ ω and b /∈ ω} ∪
{�

g,ω\{a,b},r−−−−−−−−→ �′ | �
g,ω,r−−−−→ �′ ∈ E and a ∈ ω and b ∈ ω}

– fm ′ = fm ∧ (ΓA(a) ↔ ΓA(b)).

Together, the product and the synchronisation can be used to obtain in a
compositional way, a complex IFTA modelling SPLs built out of primitive IFTA.

Definition 10 (Composition of IFTA). Given two disjoint IFTA, A1 and
A2, and a set of bindings {(a1, b1), . . . , (an, bn)}, where ak ∈ P1, bk ∈ P2, and
such that (ak, bk) ∈ I1 ×O2 or (ak, bk) ∈ I2 ×O1, for 1 ≤ k ≤ n, the composition
of A1 and A2 is defined as A1 �(a1,b1),...,(an,bn) A2 = Δa1,b1 . . . Δan,bn(A1×A2).

Figure 3 exemplifies the composition of the coffee machine (CM) and Router
IFTA from Fig. 2. The resulting IFTA combines the feature models of the CM
and Router, imposing additional restrictions given by the binded ports, E.g.,
the binding (o1, coffee) imposes that o1 will be present, if and only if, coffee is
present, which depends on the feature expressions of each port, I.e., (fi ∧ fo1 ) ↔
cf . In the composed IFTA, transitions with binded actions transition together,
while transitions labelled with non-binded actions can transition independently
or together. Combining their feature models only through logical conjunction
allows {cf , fo2

, fi , fo1
} as a valid feature selection. In such scenario, we could

derive a product that can issue o2 but that can not be captured by cappuccino.
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�0 �1

c ≤ 5

cappuccino
cf ∧ mk , c := 0

coffee
cf , c := 0

brew
c ≥ 2

�2
{i, o1}
fi ∧ fo1

{i}
fi ∧ ¬(fo1 ∨ fo2 )

{i, o2}
fi ∧ fo2

i?
f i

o1
!
f i

∧ f o 1

o2
!
f i

∧ f o 2
co

ffe
e?
cf

ca
pp

uc
cin

o?

cf
∧m

k

br
ew

!

��
o1 ↔ coffee
o2 ↔ cappuccino

fm = (fo1 ∨ fo2 ) → fi
fm = mk → cf

l2, l0 l2, l1

c ≤ 5

brew
c ≥ 2

{i}
fi ∧ fo1 ∧ cf , c := 0

{i}
fi ∧ fo2 ∧ cf ∧ mk , c := 0

{i,brew }
c ≥ 2, fi ∧ ¬(fo1 ∨ fo2 )

i
fi ∧ ¬(fo1 ∨ fo2 )

i
fi ∧ ¬(fo1 ∨ fo2 )

fm = mk cf (fo1 fo2 ) fi (fi fo1 ) cf (fi fo2 ) (cf mk)

i?
fi

brew!=

Fig. 3. Composition of a Router IFTA (top left) with the CM IFTA (top right) by
binding ports (o1,coffee) and (o2,cappuccino), yielding the IFTA below.

In terms of methods calls in a programming language, the derive product will
have a call to a method that does not exists, leading to an error.

To study properties of IFTA operations, we define the notion of IFTA equiva-
lence in terms of bisimulation over their underlying FTSs. We formally introduce
the notion of timed bisimulation adapted to FTSs.

Definition 11 (Timed Bisimulation). Given two FTSs F1 and F2, we say
R ⊆ S1 × S2 is a bisimulation, if and only if, for all possible feature selections
FS ∈ 2F1∪F2 , FS |= fm1 ⇔ FS |= fm2 and for all (s1, s2) ∈ R we have:

– ∀ t = s1
α−−→1 s′

1, α ∈ 2A ∪ R≥0, ∃ t′ = s2
α−−→2 s′

2 s.t. (s′
1, s

′
2) ∈ R and

FS |= γ1(t) ⇔ FS |= γ2(t′),
– ∀ t′ = s2

α−−→2 s′
2, α ∈ 2A ∪ R≥0, ∃ t = s1

α−−→1 s′
1 s.t. (s′

1, s
′
2) ∈ R and

FS |= γ1(t) ⇔ FS |= γ2(t′)

where A = A1 ∪ A2.

Two states s1 ∈ S1 and s2 ∈ S2 are bisimilar, written s1 ∼ s2, if there exists
a bisimulation relation containing the pair (s1, s2). Given two IFTA A1 and A2,
we say they are bisimilar, written A1 ∼ A2, if there exists a bisimulation relation
containing the initial states of their corresponding FTSs.

Proposition 1 (Product is commutative and associative). Given two
IFTA A1 and A2 with disjoint set of actions and clocks, A1 × A2 ∼ A2 × A1,
and A1 × (A2 × A3) ∼ (A1 × A2) × A3.
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The proof follows trivially by definition of product and FTSs, and because ∪
and ∧ are associative and commutative.

The synchronisation operation is commutative, and it interacts well with
product. The following proposition captures these properties.

Proposition 2 (Synchronisation commutativity). Given two IFTA A1

and A2, the following properties hold:

1. Δa,bΔc,dA1 ∼ Δc,dΔa,bA1, if a, b, c, d ∈ A1, a, b, c, d different actions.
2. (Δa,bA1) × A2 ∼ Δa,b(A1 × A2), if a, b ∈ A1 and A1 ∩ A2 = ∅.
Both proof follow trivially by definition of product, synchronization and FTSs.

4 Reo Connectors as IFTA

Reo is a channel-based exogenous coordination language where complex coordi-
nators, called connectors, are compositionally built out of simpler ones, called
channels [2]. Exogenous coordination facilitates anonymous communication of
components. Each connector has a set of input and output ports, and a formal
semantics of how data flows from the inputs to the outputs. We abstract from
the notion of data and rather concentrate on how execution of actions associated
to input ports enables execution of actions associated to output ports.

Table 1 shows examples of basic Reo connectors and their corresponding
IFTA. For example, Merger(i1, i2, o) synchronises each input port, separately,
with the output port, i.e. each ik executes simultaneously with o for k = 1, 2;
and FIFO1 (i, o) introduces the notion of delay by executing its input while
transitions to a state where time can pass, enabling the execution of its output
without time restrictions.

Modelling Reo connectors as IFTA enables them with variable behavior based
on the presence of ports connected through synchronisation to their ports. Thus,
we can use them to coordinate components with variable interfaces. We associate
a feature fa to each port a of a connector and define its behavior in terms of these
features. Table 1 shows Reo basic connectors as IFTA with variable behavior.
Bold edges represent the standard behavior of the corresponding Reo connector,
and thinner edges model variable behavior. For example, the Merger connector

supports the standard behavior, indicated by the transitions k =
1, 2 and the corresponding feature expression fk ∧ fo ; and a variable behavior,
in which both inputs can execute independently at any time if o is not present,

indicated by transitions k = 1, 2 and the corresponding feature
expression fk ∧ ¬fo .

The Sync connector behaves as the identity when composed with other
automata. The following proposition captures this property.

Proposition 3 (Sync behaves as identity). Given an IFTA A and a Sync
connector, Δi,a(A × Sync(i, o)) ∼ A[o/a] with the following updates
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Table 1. Examples of basic Reo connectors and their corresponding IFTA.

– fmA[o/a] = fmA ∧ (fio ↔ ΓA(a))

– γA[o/a](�
g,ω,r−−−−→A[o/a] �′) = γA(�

g,ω[a/o],r−−−−−−−→A �′) ∧ fio, if o ∈ ω
– FA[o/a] = FA ∪ {fio}
– ΓA[o/a](o) = ΓSync(o)

if {i, o} �⊆ AA, and a ∈ AA. A[o/a] is A with all occurrences of a replaced by o.

Proof. First for simplicity, let AS = (A × Sync(i, o)), and A′ = Δi,a(AS). Lets
note that the set of edges in A′ is defined as follows

EA′ ={(�1, �0)
g,ω,r−−−−→AS

(�′
1, �0) | i /∈ ω and a /∈ ω} ∪ (1)

{(�1, �0)
g,ω\{i,a},r−−−−−−−−→ (�′

1, �0) | (�1, �0)
g,ω,r−−−−→AS

(�′
1, �0)

and i ∈ ω and a ∈ ω} (2)

where �0 is the initial and only location of Sync. Let F1 and F2 be the underlying
FTS of A′ and A[o/a], and note that R = {(〈(�1, �0), η〉, 〈�1, η〉) | �1 ∈ SA[o/a]}
is a bisimulation between states of F1 and F2. Let (〈(�1, �0), η〉, 〈�1, η〉) ∈ R.
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The proof for delay transitions follows trivially from the fact that Inv(�1, �0) =
Inv(�1) for all �1 ∈ SA[o/a].

Lets consider any action transition 〈(�1, �0), η〉 ω−−→ 〈(�′
1, �0), η

′〉 ∈ TF1 . If it
comes from an edge in (1), then ∃ �1

g,ω,r−−−−→ �′
1 ∈ EA s.t . a �∈ ω, thus ∃ 〈�1, η〉 ω−−→

〈�′
1, η

′〉 ∈ TF2 ; if it comes from (2), then ∃ �1
g,ω1,r−−−−−→ �′

1 ∈ EA s.t . a ∈ ω1,

thus ∃ 〈�1, η〉 ω1[o/a]−−−−−→ 〈�′
1, η

′〉 ∈ TF2 , where ω = ω1 ∪ {i, o} \ {i, a} = ω[o/a].
Conversely, if ∃ 〈�1, η〉 ω−−→ 〈�′

1, η
′〉 ∈ TF2 and o �∈ ω, then ∃ (�1, �0)

g,ω,r−−−−→
(�′

1, �0) ∈ EAS
s.t . i /∈ ω ∧ a /∈ ω, thus ∃ 〈(�1, �0), η〉 ω−−→ 〈(�′

1, �0), η
′〉 ∈ TF1 ; if

o ∈ ω, then ∃ (�1, �0)
g,ω1∪{o}\{a},r−−−−−−−−−−−→ (�′

1, �0) ∈ EA′ , such that ω = ω1[o/a] =
ω1 ∪ {o} \ {a}, thus ∃ 〈(�1, �0), η ω−−→ 〈(�′

1, �0), η
′〉〉 ∈ TF1 .

In both cases, we have γF1(〈(�1, �0), η〉 ω−−→ 〈(�′
1, �0), η

′〉) = γF2(〈�1, η〉 ω−−→
〈�′

1, η
′〉). Furthermore, fm ′

A = fmA[o/a]. ��

5 Implementation

We developed a prototype tool in Scala1 consisting of a small Domain Spe-
cific Language (DSL) to specify (networks of) (N)IFTA and manipulate them.
Although we do not provide the formal definitions and semantics due to space
constraints, informally, a network of any kind of automata is a set of automata
parallel composed (||) and synchronised over a set of shared actions.

Main features supported by the DSL include: (1) specification of (N)IFTA, (2)
composition, product and synchronisation over IFTA, (3) conversion of NIFTA
to networks of FTA (NFTA) with committed states (CS), and (4) conversion of
NFTA to UPPAAL networks of TA (NTA) with features. Listing 1.1 shows how
the router connector from Table 1 can be specified using the DSL. A compre-
hensive list of functionality and more examples, including the case study from
Sect. 6 can be found in the tool’s repository (see footnote 1).
val router = newifta ++ (

0 --> 0 by "i,o1" when "vi" && "vo1",
0 --> 0 by "i,o2" when "vi" && "vo2",
0 --> 0 by "i" when "vi" && not("vo1" || "vo2")

) get "i" pub "o1,o2" when ("vo1" || "vo2") --> "vi"

Listing 1.1. Example specification of a router connector using the Scala DSL.

A NIFTA can be converted into a NFTA with committed states, which in turn
can be converted into a network of UPPAAL TA, through a stepwise conversion,
as follows. NIFTA to NFTA. Informally, this is achieved by converting each
transition with set of actions into to a set of transitions with single actions. All
transitions in this set must execute atomically (committed states between them)
and support all combinations of execution of the actions. NFTA to UPPAAL
NTA. First, the NFTA obtained in the previous step is translated into a network
of UPPAAL TA, where features are encoded as Boolean variables, and transi-
tion’s feature expressions as logical guards over Boolean variables. Second, the

1 https://github.com/haslab/ifta.

https://github.com/haslab/ifta
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feature model of the network is solved using a SAT solver to find the set of valid
feature selections. This set is encoded as a TA with an initial committed loca-
tion and outgoing transitions to new locations for each element in the set. Each
transition initializes the set of variables of a valid feature selection. The initial
committed state ensures a feature selection is made before any other transition
is taken.

When translating IFTA to FTA with committed states, the complexity of
the model grows quickly. For example, the IFTA of a simple replicator with 3
output ports consists of a location and 8 transitions, while its corresponding FTA
consists of 23 locations and 38 transitions. Without any support for composing
variable connectors, modelling all possible cases is error prone and it quickly
becomes unmanageable. This simplicity in design achieved through multi-action
transitions leads to a more efficient approach to translate IFTA to UPPAAL
TA, in particular by using the composition of IFTA. The IFTA resulting from
composing a network of IFTA, can be simply converted to an FTA by flattening
the set of actions in to a single action, and later into an UPPAAL TA.

6 Case Study: Licensing Services in E-Government

This section presents a case study of using IFTA to model a family of public
licensing services. All services in the family support submissions and assessment
of licensing requests. Some services, in addition, require a fee before submitting
(pa), others allow appeals on rejected requests (apl), or both. Furthermore, ser-
vices that require a fee can support credit card (cc) or PayPal payments (pp),
or both. Functionality is divided in components and provided as follows. Each
component can be visualized in Fig. 4. We omit the explicit illustration of inter-
faces and rather use the notation ?,! to indicate whether an action corresponds
to an input or output, respectively. In addition, we use the same action name
in two different automata to indicate pairs of actions to be linked. The feature
model, also omitted, is initially � for each of these IFTA.

App - Models licenses requests. An applicant must submit the required
documents (subdocs), and pay a fee (payapp) if pa is present, before sub-
mitting (submit). If the request is accepted (accept) or considered incomplete
(incomplete), the request is closed. If it is rejected (reject) and it is not possible
to appeal (¬apl), the request is closed, otherwise a clock (tapl) is reseted to track
the appeal window time. The applicant has 31 days to appeal (InvApp(�5 )), oth-
erwise the request is canceled (cancelapp) and closed. If an appeal is submitted
(appeal), it can be rejected or accepted, and the request is closed.

CC and PP - Handle payments through credit cards and PayPal, respectively.
If a user requests to pay by credit card (paycc) or PayPal (paypp), a clock is reset
to track payment elapsed time (tocc and topp). The user has 1 day (InvCC (�1 )
and InvPP (�1 )) to proceed with the payment which can result in success (paidcc
and paidpp) or cancellation (cancelcc and cancelpp).

Appeal - Handles appeal requests. When an appeal is received (appeal), a
clock is reseted to track the appeal submission elapsed time (tas). Authorities
have 20 days (InvAppeal (�1 )) to start assessing the request (assessapl).
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Fig. 4. IFTA modelling domain functionality.

Preassess

Appeal

Assess
App

PP

CC

pay
pp

paycc

payapp
assessapp

asse
ssap

l

assess

incomplete

submit

appeal

accept

reject

paidpp

paidc
c

paidapp

cancelpp

cance
lcc

cancelpay

Fig. 5. IFTA for a family of Licensing Services

Preassess - Checks if a request contains all required documents. When a
request is received (submit), a clock is reseted to track the submission elapsed
time (ts). Authorities have 20 days (InvPreasses(�1 )) to check the completeness
of the documents and notify whether it is incomplete (incomplete) or ready to
assessed (assessapp).

Assess - Analyzes requests. When a request is ready to be assessed (assess),
a clock is reseted to track the processing elapsed time (tp). Authorities have 90
days to make a decision of weather accept it (accept) or reject it (reject).

We use a set of Reo connectors to integrate these IFTA. The final integrated
model can be seen in Fig. 5. For simplicity, we omit the feature expressions asso-
ciated to ports and the resulting feature model. Broadly, we can identify two
new components in this figure: Payment - (right of App) Orchestrates payment
requests based on the presence of payment methods. It is composed by compo-
nents CC, PP, and a set of connectors. A router synchronises payment requests
(payapp) with payment by CC or PayPal (paypp or paycc). A merger synchro-
nises the successful response (paidpp or paidcc), while other merger synchronises
the cancellation response (cancelpp or cancelcc) from either CC or PP. On top
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of the composed feature model, we add the restriction pa ↔ cc ∨ pp to ensure
payment is supported, if and only if, Credit card or PayPal are supported; and
Processing - (left of App) Orchestrates the processing of licenses requests and
appeals (if apl is present). It is composed by Appeal, Preassess, Assess, a set of
trivial sync connectors and a merger that synchronises assessment requests from
either Appeal or Preassess (assessapl or assessapp) with Assess (assess).

By using IFTA, connectors are reused and it is simple to create complex con-
nectors out of simple ones. If in the future a new payment methods is supported,
the model can be updated by simple using a three output replicator and two three
inputs mergers. By composing the future model and inferring new restrictions
based on how interfaces are connected, it is possible to reason about the vari-
ability of the entire network, E.g., we can check if the resulting feature model
satisfies variability requirements or if the interaction of automata is consistent
with the presence of features. In addition, by using the DSL we can translate
this components to UPPAAL to verify properties such as: Deadlock free – A[]
not deadlock; Liveness – a submission and an appeal will eventually result in
an answer (App.�4 --> App.�0 and App.�6 --> App.�0, respectively); Safety –
a submission must be processed within 110 days (A[] App.�4 imply App.tsub
<=110).

7 Related Work

Related work is discussed following two lines: (1) compositionality and modu-
larity of SPLs, and (2) compositionality and interfaces for automata.

Compositionality and modularity of SPLs. An extension to Petri Nets, Fea-
ture Nets (FNs) [11] enables specifying the behavior of an SPL in a single model,
and supports composition of FNs by applying deltas FNs to core FNs. An exten-
sion to CCS process calculus consisting on a modular approach to modelling and
verifying variability of SPLs based on DeltaCCS [9]. A compositional approach
for verification of software product lines [10] where new features and variability
may be added incrementally, specified as finite state machines with variability
information.

Interfaces and compositionality of automata. Interface automata [1] use input
interfaces to support incremental design and independent implementability of
components, allowing compatibility checking of interfaces for partial system
descriptions, without knowing the interfaces of all components, and separate
refinement of compatible interfaces, respectively. [6] presents a specification the-
ory for I/O TA supporting refinement, consistency checking, logical and struc-
tural composition, and quotient of specifications. In [8] Modal I/O automata
are used to construct a behavioral variability theory for SPL development and
can serve to verify if certain requirements can be satisfied from a set of existing
assets. [7] proposes a formal integration model based on Hierarchical TA for real
time systems, with different component composition techniques. [3] presents a
compositional specification theory to reason about components that interact by
synchronisation of I/O actions.
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8 Conclusions

This paper introduced IFTA, a formalism for modelling SPL in a modular and
compositional manner, which extends FTA with variable interfaces to restrict
the way automata can be composed, and with multi-action transitions that sim-
plify the design. A set of Reo connectors were modeled as IFTA and used to
orchestrate the way various automata connect. We discussed a prototype tool to
specify and manipulate IFTA, which takes advantage of IFTA composition to
translate them into TA that can be verified using the UPPAAL model checker.

Delegating coordination aspects to connectors enables separation of concerns.
Each automata can be designed to be modular and cohesive, facilitating the
maintenance, adaptability, and extension of an SPL. In particular, by facilitat-
ing compositional reasoning when replacing components, E.g., when checking
for a refinement relation, as well as enabling changes in the coordination mecha-
nisms without affecting core domain functionality. Using bare FTA for designing
variable connectors, can be error prone and it quickly becomes unmanageable.
IFTA simplifies this design by enabling the modeling of automata in isolation
and composing them by explicitly linking interfaces and combining their feature
models.

Future work includes studying an implementation relation, I.e, refinement,
to reason about how to safely replace an IFTA with a more detailed one in a
compose environment.
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Abstract. A Software Product Line (SPL) is a family of similar pro-
grams generated from a common artifact base. A Multi SPL (MPL)
is a set of interdependent SPLs that are typically managed and devel-
oped in a decentralized fashion. Delta-Oriented Programming (DOP) is
a flexible and modular approach to implement SPLs. This paper presents
new concepts that extend DOP to support the implementation of MPLs.
These extensions aim to accommodate compositional analyses. They are
presented by means of a core calculus for delta-oriented MPLs of Java
programs. Suitability for MPL compositional analyses is demonstrated
by compositional reuse of existing SPL analysis techniques.

1 Introduction

Highly-configurable software systems can be described as Software Product Lines
(SPLs). An SPL is a family of similar programs, called variants, that have a well-
documented variability and are generated from a common artifact base [2,7,19].
An SPL consists of: (i) a feature model defining the set of variants in terms of
features (each feature represents an abstract description of functionality and each
variant is identified by a set of features, called a product); (ii) an artifact base
providing language dependent reusable code artifacts that are used to build the
variants; and (iii) configuration knowledge which connects feature model and
artifact base by defining how to derive variants from the code artifacts given
the products (thus inducing a mapping from products to variants, called the
generator of the SPL).

Delta-Oriented Programming (DOP) [2, Sect. 6.6.1], [21] is a flexible and mod-
ular approach to implement SPLs. The artifact base of a delta-oriented SPL con-
sists of a base program (that might be empty) and of a set of delta modules (deltas
for short), which are containers of modifications to a program (e.g., for Java pro-
grams, a delta can add, remove or modify classes and interfaces). The configu-
ration knowledge of a delta-oriented SPL defines the generator by associating to
each delta an activation condition over the features (i.e., a set of products) and
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specifying an application ordering between deltas. DOP supports the automatic
generation of variants based on a selection of features: once a user selects a prod-
uct, the corresponding variant is derived by applying the deltas with a satisfied
activation condition to the base program according to the application ordering.
Moreover, DOP is a generalization of Feature-Oriented Programming (FOP) [2,
Sect. 6.1], [4] a previously proposed approach to implement SPLs where deltas cor-
respond one-to-one to features and do not contain remove operations.

Modern software systems often out-grow the scale of SPLs by involving the
notion of Multi SPLs (MPLs), i.e., sets of interdependent SPLs that need to
be managed in a decentralized fashion by multiple teams and stakeholders [13].
There are two main motivations to build such MPLs: either to structure a com-
plex SPL into more manageable modules, or to reuse existing SPLs into a bigger
project. In this paper we give, to the best of our knowledge, the first formal
model of MPLs that spans feature model, artifact base and configuration knowl-
edge. Our model is constructed around the concepts of SPL signature, Dependent
SPL and SPL composition. It builds on recent work done by Schröter et al. [24]
on compositional analysis of feature models, and on the delta-oriented program-
ming core calculus IFΔJ by Bettini et al. [5], which is extended here to enable
the construction of MPLs. The main achievement of our model is the ability to
modularly compose and analyze SPLs by means of Dependent SPLs, which are
SPLs with explicit dependencies, modeled by SPL signatures, that can be filled
by SPLs (or Dependent SPLs) satisfying the given signatures.

Section 2 provides some background. Section 3 formalizes the main concepts
proposed in the paper by introducing the Imperative Featherweight Multi
Delta Java (IFMΔJ) calculus, which extends IFΔJ to implement MPLs.
Section 4 illustrates how the concepts of SPL signature, dependent SPL, and
SPL composition support compositionality of existing SPL analysis, like feature
model analysis or type checking. Section 5 discusses related work.

2 Background and Running Example

2.1 IFΔJ: A Formal Foundation for Delta-Oriented SPLs

IFΔJ [5] is a core calculus for delta-oriented SPLs where variants are written in
IFJ (an imperative version of FJ [14]). The abstract syntax of IFJ is given in
Fig. 1 (explanations are given in the caption)—following [14], we use the overline
notation for (possibly empty) sequences of elements: for instance e stands for
a sequence of expressions. The empty sequence is denoted by ∅. Type system,
operational semantics, and type soundness for IFJ are given in [5].

The abstract syntax of IFΔJ SPLs is given in Fig. 2 (explanations are given
in the caption). The deltas in the artifact base must have distinct names, the
class operations in a delta must act on distinct classes, and the attribute oper-
ations in a class operation must act on distinct attributes. In IFΔJ there is
no concrete syntax for the feature model and the configuration knowledge. As
usual, to simplify the formalization, we represent feature models M as pairs (set
of features, set of products) and configuration knowledges K as pairs (mapping
from deltas to activation conditions, delta application ordering).
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P ::= CD Program

CD ::= class C extends C { AD } Class Declaration
AD ::= FD | MD Attribute (Field or Method) Declaration
FD ::= C f Field Declaration
MH ::= C m(C x) Method Header
MD ::= MH {return e; } Method Declaration
e ::= x e.f e.m(e) new C() (C)e e.f = e null Expression

Fig. 1. Syntax of IFJ. A program P is a sequence of class declarations CD. A class
declaration comprises the name C of the class, the name of the superclass (which must
always be specified, even if it is the built-in class Object), and a list of attribute (field or
method) declarations AD. Variables x include the special variable this (implicitly bound
in any method declaration MD), which may not be used as the name of a method’s
formal parameter. All fields and methods are public, there is no field shadowing, there is
no method overloading, and each class is assumed to have an implicit constructor that
initialized all fields to null. The subtyping relation <: on classes, which is the reflexive
and transitive closure of the immediate subclass relation (given by the extends clauses
in class declarations), is supposed to be acyclic.

LD ::= line L {M K AB} SPL Delaration

AB ::= P DD Artifact Base

DD ::= delta d { CO } Delta Declaration

CO ::= adds CD | removes C | modifies C [extends C′] { AO } Class Operation
AO ::= adds AD removes a modifies MD Attribute Operation

Fig. 2. Syntax of IFΔJ SPLs. An SPL declaration comprises the name L of the
product line, a feature model M, configuration knowledge K, and an artifact base AB.
The artifact base comprises a (possibly empty) IFJ program P , and a set of deltas
DD. A delta declaration DD comprises the name d of the delta and class operations
CO representing the transformations performed when the delta is applied to an IFJ
program. A class operation can add, remove, or modify a class. A class can be modified
by (possibly) changing its super class and performing attribute operations AO on its
body. An attribute name a is either a field name f or a method name m. An attribute
operation can add or remove fields and methods, and modify the implementation of a
method by replacing its body. The new body may call the special method original,
which is implicitly bound to the previous implementation of the method and may not
be used as the name of a method.

Definition 1 (Feature model). A feature model Mx is a pair (Fx,Px) where
Fx is a set of features and Px ⊆ 2Fx is a set of products. M∅ = (∅, ∅) is the
empty feature model.

Definition 2 (Configuration knowledge). A configuration knowledge Kx is
a pair (αx, <x) where αx is a map that associates to each delta declaration the
set of products that activate it (the activation condition), and <x is an ordering
between deltas (the application ordering).

These representations simplify stating and proving results independently from
implementation details. However, they do not scale well in actual implementations.
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In the examples, we represent feature models also as feature diagrams (which are
diagrams that illustrate feature dependencies by organizing features in a tree struc-
ture with cross tree-constraints) or as propositional formulas Φ where variables are
feature names f (see, e.g., [3] for a discussion on other possible representations):

Φ ::= true | f | Φ ⇒ Φ | ¬Φ | Φ ∧ Φ | Φ ∨ Φ

To avoid over-specification, the ordering <x may be partial. We assume
unambiguity of the SPL, i.e., for each product, any total ordering of the acti-
vated deltas that respects <x generates the same variant (see [5,18] for effective
means to ensure unambiguity). In examples, we represent activation conditions
as propositional formulas (see above) and application orderings as total orderings
on a partition of the set of delta names.

Feature model, configuration knowledge and artifact base of an SPL named
L are denoted by ML = (FL,PL), KL = (αL, <L) and ABL, respectively. In order
to define the generator GL of an SPL L, we first introduce the auxiliary notions of
delta applicability and delta application. A delta d is applicable to a program P iff
each class to be added does not exist; each class to be removed or modified exists;
and (for every class-modify operation): each method or field to be added does
not exist; each method or field to be removed exists; each method to be modified
exists and has the same header specified in the method-modify operation. If d
is applicable to P , then the application of d to P is the program, denoted by
d(P ), obtained from P by applying all the operations in d—otherwise d(P ) is
undefined.

Definition 3 (Generator of an SPL [5]). The generator of L, denoted by
GL, is the mapping that associates each product p of L to the IFJ program dn(· · ·
d1(P ) · · · ), where P is the base program of L and d1 . . . , dn (n ≥ 0) are the deltas
of L activated by p, listed according to the application order.

The generator GL may be partial since, for some product of L, a delta DDi (1 ≤
i ≤ n) may not be applicable to the intermediate variant DDi−1(· · · DD1(P ) · · · )
thus making GL undefined for that product.

The running example of this paper is based on bank accounts. Figure 3 illus-
trates an SPL of capital accounts (CapitalAccount, on the left) and an SPL of
financial accounts (FinancialAccount, on the right)—explanations are given in
the caption. To make the example more readable, in the artifact bases we use
Java syntax for field initialization, primitive data types, strings and sequential
composition—encoding in IFΔJ syntax is straightforward (see [5]).

Remark 1 (Base program and empty product). In order to simplify the presen-
tation, the formal definitions in the rest of this document assume that: (i) the
base program is always the empty program; (ii) no delta d is activated by the
empty product (i.e., ∅ 	∈ αL(d) for all d); and (iii) GL(∅) = ∅, even when ∅ is not
a product. Note that these assumptions are not restrictive. In particular, the
base program of any SPL L can be always encoded as an extra delta (the base
delta) with distinguished name dL such that αL(dL) = PL and dL is the minimum
according to <L.
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FCapitalAccount = { C B I Y O }
PCapitalAccount = { { C B I },

{ C B Y },
{ C B I O } }

CapitalAccount

BalanceInfo InterestRate YearlyFees Overdraft

implies

FFinancialAccount = { F A P W }
PFinancialAccount = { { F A P },

{ F A W },
{ F A P W } }

FinancialAccount

AmountInfo Portfolio Welfare
Mandatory Alternative

Optional Or

<CapitalAccount : {dInterest, dFixFees} < {dOverdraft}
αCapitalAccount : dInterest �→ I, dFixFees �→ Y, dOverdraft �→ O

<FinancialAccount : {dPortfolio, dWelfare}
αFinancialAccount : dPortfolio �→ P, dWelfare �→ W

class CapAccount extends Object { // Base Program
String identity; double balance=0.0;
MyDate lastUpdate=MyDate.today();
void withdraw(double x){if(x>0) balance−=x;}

} // Deltas
delta dInterest {
modifies class CapAccount{
adds double yearRate=0.05; adds double opFees=1;
adds void interestUpdate(double rate){
double range=lastUpdate.daysSince()/365;
lastUpdate=MyDate.today();
balance+= balance∗rate∗range;}

modifies void withdraw(double x){
interestUpdate(yearRate); original(x+opFees); }}}

delta dFixFees {
modifies class CapAccount {
adds double yearFees=10.0;
adds MyDate yearPaid=MyDate.currentYear();
adds void withdraw(double x){
balance−=yearFees∗(yearPaid.yearsSince());
yearPaid=MyDate.currentYear(); original(x);}}}

class FinAccount extends Object { // Base program
String identity; double liquidity=0.0;

} // Deltas
delta dPortfolio {
adds class RiskProd extends Object {
String info; int quantity;
RiskProd init(String i, int q)

{info=i; quantity=q; return this;}}
modifies class FinAccount {
adds LinkedList portfolio=new LinkedList();
adds void addToPortfolio(String i, int q){

portfolio.add(new RiskProd().init(i,q));}}}
delta dWelfare {
adds class LifeProd extends Object {
String info; String beneficiary;
LifeProd init(String i, String b)

{info=i; beneficiary=b; return this;}}
modifies class FinAccount {
adds ArrayList welfare=new ArrayList();
adds void addToWelfare(String i, String b){

welfare.add(new LifeProd().init(i,b));}}}
delta dOverdraft{
modifies class CapAccount { adds double maxOver=100.0, negativeRate=0.10;
adds void negUpdate(){ if(balance<0){interestUpdate(−negativeRate);}}
modifies void withdraw(double x) negUpdate(); if(x<balance+maxOver opFees) original(x);

Fig. 3. Left: CapitalAccount SPL: feature model MCapitalAccount (top), configuration
knowledge KCapitalAccount (middle), and artifact base ABCapitalAccount (bottom). This SPL
provides a class CapAccount for money managing bank accounts. The mandatory fea-
ture BalanceInfo provides some basic fields (identity, balance and lastUpdate) and
a method withdraw (method deposit, which is similar, is omitted). InterestRate and
YearlyFees provide two alternative bank-policies: one and only one of them, must be
selected. The former manages accrued interests and operation-fees (applied to each
withdraw), the second manages fixed fees per year (and no bank interests). The optional
feaure Overdraft, which allows to withdraw more money than that available, requires
feaure InterestRate in order to apply a negative interest. Right: FinancialAccount SPL:
MFinancialAccount (top), KFinancialAccount (middle), and ABFinancialAccount (bottom). This SPL
provides a class FinAccount for investment product managing bank accounts. The
mandatory feature AmountInfo provides basic fields (identity, liquidity). It must
be flanked by at least one feature between Portfolio and Welfare. The latter provides a
list of welfare products. The former provides a list of financial products.

2.2 Feature Model Composition and Feature Model Interfaces

Recently, Schröter et al. [24] considered a notion of feature model composition
through aggregation (i.e., by inclusion of one feature model into another feature
model [20]) and proposed to use it in combination with a notion of feature model
interface in order to support compositional analyses of feature models.

Definition 4 (Feature model composition [24]). Let Mx = (Fx,Px),
My = (Fy,Py), and MGlue = (FGlue,PGlue) be feature models that satisfy the
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glue-proviso FGlue ⊆ Fx ∪ Fy. The composition of Mx and My is the feature
model, denoted as Mx/y, defined as follows by using composition operation ◦,
the auxiliary join operation •, and the auxiliary operation R:

Mx/y = ◦(Mx,My,MGlue) = Mx ◦MGlue
My = (Mx • R(My)) • MGlue

R(My) = (Fy,Py ∪ {∅})
Mx • My = (Fx ∪ Fy, {p ∪ q | p ∈ Px, q ∈ Py, p ∩ Fy = q ∩ Fx})

Operation R takes one feature model My as input and converts it to a new
feature model in which the empty product is a valid product (thus Py core
features are not necessarily core in the composed feature model). Operation • is
similar to a cross product from relational algebra and creates all combinations
between both product sets.

The feature model MGlue describes a parent-child relationship and other
constraints between Mx and My in order to connect them.

Definition 5 (Feature model interface [24]). A feature model MInt = (FInt,
PInt) is an interface of feature model Mx = (Fx,Px), denoted as MInt � Mx,
iff FInt ⊆ Fx and PInt = {p ∩ FInt|p ∈ Px}.
Remark 2 (Feature disjointness). As pointed out in [24, Sect. 4.1, second to last
paragraph] the compositional results about ◦ “are based on the assumption that
Fx and Fy do not share features (i.e. Fx∩Fy = ∅)”. In the rest of this document,
the use of ◦ always relies on this feature disjointedness assumption.

3 IFMΔJ: A Core Calculus for MPLs

The example presented in Fig. 3 introduces two SPLs, CapitalAccount and Finan-
cialAccount, describing two kinds of bank accounts: it would make perfect sense
to combine these two SPLs in order to obtain an SPL describing a bank account
with functionalities described in both SPLs.

In a first approach, one could define a new SPL DualAccount that uses (i.e.,
depends on) the two bank account SPLs presented in Fig. 3 to define a new
class that implements the different features defined in the two SPLs. We call an
SPL with such dependencies a Dependent SPL. However, such an approach is
not satisfactory as it couples too strongly DualAccount to its SPLs: DualAccount
is set to use the CapitalAccount and FinancialAccount SPLs and cannot change
even if a more efficient implementation of these SPLs comes up. To deal with
this issue, we introduce the notion of SPL signature which is used to specify the
APIs on which a Dependent SPL depends; then any SPL that implements such
signature can fulfill the dependencies of a Dependent SPL.

DualAccount

CapAccInt

CapitalAccount ...

FinAccInt

FinancialAccount ...

Hence, our approach to
define the DualAccount Depen-
dent SPL follows the struc-
ture presented on the right:
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DualAccount depends on two SPL signatures: CapAccInt specifies the API
requested by DualAccount for the capital account backend implementation, while
FinAccInt specifies the API requested by DualAccount for the financial account
implementation. Then these two signatures are implemented by CapitalAccount
and FinancialAccount respectively, and possibly other SPLs.

We structure the presentation of our model as follows: first we introduce the
concept of SPL signature (SPLS) and formally define when an SPL implements
an SPL signature; second we define the notion of Dependent SPL (DPL) as we
just presented; and finally, we demonstrate how to generate the variants of a
DPL.

3.1 SPL Signatures

An SPL signature (SPLS) describes the API of an SPL and is structured like
an SPL with a feature model, configuration knowledge, and an artifact base. Its
difference with an SPL lies in the fact that its artifact base does not include
the implementation of methods. Figure 4 (middle) gives the abstract syntax of
SPLSs which uses program signatures, presented in Fig. 4 (top), to construct their
artifact bases. A program signature is a program deprived of method bodies. An
SPLS declaration LS comprises the name Z of the SPLS, a feature model M,
configuration knowledge K and an artifact base signature ABS which, in turn,
comprises a program signature PS and a set of delta signatures DS—a delta
signature DS is a delta deprived of method-modifies operations and method
bodies.

An SPL L implements an SPLS Z when all the declarations in Z are imple-
mented in L. I.e., when all the products of Z can be extended in a product of
L and for each variant of Z, all of its declared elements are implemented in the
corresponding variant of L. We first define the generator of an SPLS (in order

PS ::= CS Program Signature

CS ::= class C extends C { AS } Class Signature
AS ::= FD | MH Attribute (Field or Method) Signature

LS ::= sig Z {M K ABS} SPL Signature Declaration

ABS ::= PS DS AB Signature

DS ::= delta d { COS } Delta Signature

COS ::= adds CS | removes C | modifies C [extends C′] { AOS } CO Signature
AOS ::= adds AS | removes a AO Signature

LD ::= line L (Z) {M
Main

MGlue K AB} Dependent SPL Delaration

Fig. 4. Syntax of IFMΔJ. Program signatures (top). SPL signature declarations
(middle). Dependent SPL declarations (bottom)—the extensions with respect to IFΔJ
SPLs (given in Fig. 2, with the syntax of artifact bases AB) are highlighted in grey.
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to define what are its variants and their declaration), and then present the defi-
nition of the interface relation, defining when an SPL implements an SPLS.

Definition 6 (Generator of an SPLS). The generator of an SPLS Z, denoted
by GZ, is a mapping from products to program signatures defined similarly to the
generator of an SPL (see Definition 3).

Definition 7 (Program interface). A program signature PSInt is an inter-
face of program P , denoted as PSInt � P , iff PSInt is obtained from P by
dropping some class or attributes, the body of the remaining methods and by
replacing some extends C clause by extends C′ where C′ is a superclass of C.

Definition 8 (SPL interface). An SPLS ZInt is an interface of an SPL L,
denoted as ZInt � L, iff: (i) MZInt � ML; and (ii) the generators GZInt and GL

are total and for each p ∈ PL, GZInt(p ∩ FZInt) � GL(p).

We say that an SPL L implements an SPLS Z when Z is an interface of L.
Figure 5 represents an interface of SPL CapitalAccount (CapAccInt, on the left)

and an interface of SPL FinancialAccount (FinAccInt, on the right), explanations
are given in the caption.

3.2 Dependent SPLs

A Dependent SPL (DPL) is an SPL extended with dependencies modeled by
SPLSs. The abstract syntax of IFMΔJ DPLs is given in Fig. 4 (bottom). A

FCapAccInt = { C I O }
PCapAccInt = { { C I },

{ C }, }
{ C I O } }

CapitalAccount

InterestRate Overdraftimplies

FFinAccInt = { F P W }
PFinAccInt = { { F P },

{ F W },
{ F P W } }

FinancialAccount

Portfolio Welfare

<CapAccInt : {dSigInterest, dSigOverdraft}
αCapAccInt : dSigInterest �→ I, dSigOverdraft �→ O

<FinAccInt : {dSigPortfolio, dSigWelfare}
αFinAccInt : dSigPortfolio �→ P, dSigWelfare �→ W

class CapAccount extends Object { // Base Program
String identity;
double balance;
Date lastUpdate;
void withdraw(double x);

} // Deltas
delta dSigInterest{
modifies class CapAccount {
adds double yearRate;
adds double opFees;
adds void interestUpdate(double rate);}}

delta dSigOverdraft{
modifies class CapAccount {
adds double maxOver, negativeRate;
adds void negUpdate(); }}

class FinAccount extends Object { // Base program
String identity; double liquidity;

} // Deltas
delta dSigPortfolio{
adds class RiskProd extends Object {
String info; int quantity; }

modifies class FinAccount {
adds LinkedList portfolio;
adds void addToPortfolio(String i, int q);}}

delta dSigWelfare {
adds class LifeProd extends Object {
String info; String beneficiary; }

modifies class FinAccount {
adds ArrayList welfare;
adds void addToWelfare(String i, String b); }}

Fig. 5. Left: CapAccInt SPLS: MCapAccInt (top), KCapAccInt (middle), and ABCapAccInt

(bottom). This SPLS is an interface of the CapitalAccount SPL if Fig. 3 (left). It hides
features BalanceInfo and YearlyFees. Right: FinAccInt SPLS: MFinAccInt (top), KFinAccInt

(middle), and ABFinAccInt (bottom). This SPLS is an interface of the FinancialAccount
SPL of Fig. 3 (right). It hides feature AmountInfo.
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DPL declaration comprises the name L of the DPL, a sequence of SPLS names
Z = Z1, . . . , Zn specifying its dependencies, a pair of feature models MMain and
MGlue, configuration knowledge K and an artifact base AB. The two feature
models MMain and MGlue structure the actual feature model ML of L in two
parts: MMain describes the part of ML that is local to L, while MGlue states how
the features of ML are related with the features of L’s dependencies. Formally, the
feature model of L is defined as a composition of MMain and the feature models
MZ1 , . . . ,MZn , glued together with MGlue: ML = MMain/Z = MMain◦MGlue

MZ

where MZ = R(MZ1) • · · · • R(MZn). Lemma 1 below guarantees that the order
of Z1,. . . ,Zn is immaterial.

Lemma 1 (Join operation). The join operation • is associative and commu-
tative, with MId = R(M∅) = R((∅, ∅)) = (∅, {∅}) as identity.

Figure 6 presents the DPL DualAccount with dependencies CapAccInt and
FinAccInt —explanations are given in the caption.

Remark 3 (DPL conservatively extends SPL). In order to ensure that the con-
cept of DPL is a conservative extension of the concept of SPL (cf. Sect. 2.1), we
assume that if a DPL L has no dependencies (i.e., Z = ∅) then MGlue = MId

(cf. Lemma 1). Therefore: (i) any DPL L without dependencies can be seen as
an SPL with feature model ML = MMain; and (ii) any SPL L can be seen as a
DPL with MMain = ML and MGlue = MId .

Definition 9 (Multi Software Product Lines). A Multi Software Product
Line (MPL) is a set of SPL Signatures and Dependent SPLs.

Sanity Conditions. To simplify the manipulation of our model in the rest of
the document, we give here a set of standard sanity conditions that are supposed
to be satisfied by the MPLs that we consider in this paper. First, we suppose
that all the DPL and SPLS names used in an MPL are declared exactly once
in the MPL. Second, we suppose that a DPL depends only once on an SPLS,
i.e., the list of dependencies (Z) in the DPL syntax does not contain duplicates.
Finally, we suppose that a class can only be declared and modified by at most
one DPL in an MPL. Note that class disjointness enforces a boundary between
different DPLs and rules out class name clashes between variants of different
DPLs. Moreover, without loss of generality, we assume that the scope of the
name of a delta is limited to the DPL or SPLS that contain its declaration (i.e.,
each delta name may belong to a unique DPL or SPLS).

3.3 DPLs Composition

The concept of DPL-SPLs composition formalizes composition of software prod-
uct lines through aggregation by means of the concepts of DPL and SPL interface
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CapAccount dependency FinAccount dependency

FMainDualAccount = { D L }
PMainDualAccount = { { D },

{ D L } }

FGlueDualAccount = { D C I F P L }
PGlueDualAccount = { { D C I },

{ D C I L },
{ D F P },
{ D F P L },
{ D C I F P L } }

FDualAccount = { D C I O F P W L }
PDualAccount = { { D C I },

{ D C I O },
{ D C I L },
{ D C I O L },
{ D F P },
{ D F P W },
{ D F P L },
{ D F P W L },
{ D C I F P L },
{ D C I O F P L },
{ D C I F P W L },
{ D C I O F P W L } }

Cross-tree constraints:

CapitalAccount ∧ FinancialAccount → LogBook

DualAccount

CapitalAccount FinancialAccount LogBook

InterestRate Overdraft Portfolio Welfare

<DualAccount : {dDualC, dDualF, dDualP, dDualW, dLog} < {dLogC, dLogP, dLogW}
αDualAccount : dDualC �→C, dDualF �→F, dDualP �→P, dDualW �→W, dLog �→L, dLogC �→ (C∧L), dLogP �→ (P∧L), dLogW �→ (W∧L)

class DualAccount extends Object {String identity; void setId(String id){identity=id};} // Base program
delta dDualC { modifies class DualAccount extends Object { // Deltas

adds CapAccount cap=new CapAccount(); adds void withdraw(double x){cap.withdraw(x);}
modifies void setId(String id){cap.identity=id; original(id);}}}

delta dDualF { modifies class DualAccount extends Object { adds FinAccount fin=new FinAccount();
modifies void setId(String id){fin.identity=id; original(id);}}}

delta dDualP { modifies class DualAccount extends Object {
adds void add2P(String i, Date e){fin.portfolio.addToPortfolio(i,e);}}}

delta dDualW { modifies class DualAccount extends Object {
adds void add2W(String i, String b){fin.welfare.addToWelfare(i,b);}}}

delta dLog { modifies class DualAccount extends Object { adds String journalLog; } }
delta dLogC { modifies class DualAccount extends Object {

modifies void withdraw(double x){ journalLog+= ”::withdraw(”+x+”)”; original(x);}}}
delta dLogP { modifies class DualAccount extends Object {

modifies void add2P(String i, Date e){ journalLog+= ”::add2P(”+i+”,”+e+”)”; original(i, e);}}}
delta dLogW { modifies class DualAccount extends Object {

modifies void add2W(String i, String b) journalLog+= ”::add2W(”+i+”,”+b+”)”; original(i, b);

Fig. 6. DualAccount DPL is declared as:
line DualAccount(CapAccInt,FinAccInt) {MMainDualAccount

MGlueDualAccount
KDualAccountABDualAccount}.

It has feature model MDualAccount = MMainDualAccount/CapAccInt,FinAccInt =
MMainDualAccount ◦MGlueDualAccount

MCapAccInt,FinAccInt (depicted as a feature diagram at
the top of the figure); configuration knowledge KDualAccount (middle); and artifact
base ABDualAccount (bottom). It provides a class DualAccount that combines two
bank accounts that satisfy the dependencies CapAccInt and FinAccInt (given in
Fig. 5), respectively. The feature model MDualAccount is the composition of four feature
models. (i) The feature model MMainDualAccount , which comprises the mandatory feature
DualAccount and the optional feature LogBook (that ensures that transactions are
traced). (ii)-(iii) The feature models of the dependencies CapAccInt and FinAccInt
(given in Fig. 5). (iv) The feature model MGlueDualAccount , which has features DualAc-
count, LogBook, CapitalAccount,FinancialAccount, InterestRate, Portfolio and expresses
the constraints FinancialAccount ∨ CapitalAccount, CapitalAccount → InterestRate
FinancialAccount → Portfolio (represented by the parts colored in red of the feature
diagram) and CapitalAccount ∧ FinancialAccount → LogBook (represented by the
cross-tree constraint, also colored in red). The dashed rectangles depict the feature
diagrams representing the feature model obtained from MCapAccInt and MFinAccInt by
adding the constraints provided by the feature model MGlueDualAccount , respectively.
(color figure online)

(i.e., by inclusion of some SPLs into a DPL to fulfill its dependencies)—thus
extending the concept of feature model composition to encompass the configu-
ration knowledge and the artifact base.
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Definition 10 (DPL-SPLs composition). Let L be a DPL with dependencies
Z = Z1, ..., Zn (n ≥ 0) and L = L1, ..., Ln be SPLs such that Zi � Li (1 ≤ i ≤ n).
The composition of L with L is the SPL (cf. Remark 3) L0 = L(L) such that:1

– MMainL0
= MMainL/L

= MMainL
◦MGlueL

ML ;
– KL0 = (αL0 , <L0) = (α′

L ∪ ( ⋃
i∈{1,...,n} α′

Li

)
, <L ∪( ⋃

i∈{1,...,n} <Li

)
) where

– α′
L(d) = {p ∈ PL0 | p ∩ FL ∈ αL(d)} for all deltas d of L;

– α′
Li

(d) = {p ∈ PL0 | p ∩ FLi ∈ αLi(d)} for all deltas d of Li;
– ABL0 = ABL ∪ ( ⋃

i∈{1,...,n} ABLi

)
; and

– MGlueL0
= MId .

Note that, if L has no dependencies (i.e., n = 0), then GL(L) = GL(∅) = GL (so,
L(L) and L have the same variants). For example, the DPL DualAccount can be
composed with the SPLs CapitalAccount and FinancialAccount to obtain the SPL
DualAccount(CapitalAccount,FinancialAccount).

The following theorems shed light on DPL-SPLs composition. Theorem 1
states that the variants of the composed SPL L(L) can be generated by building
the composed feature model ML(L) and then using the generators of the DPL
L and of the SPLs L—thus, there is no need to actually build the whole L(L).
Theorem 2 states that fulfilling the dependencies of a DPL preserves the set of
implemented interfaces.

Theorem 1 (Generator of the composed product line). Let L0 = L(L).
For each product p ∈ PL0 , GL0(p) = GL(p ∩ FL) ∪ ( ⋃

Li∈L GLi(p ∩ FLi)
)
.

Theorem 2 (DPL-SPLs composition preserves interfacing). Let Z be an
SPLS, L be a DPL with dependencies Z = Z1, ..., Zn (n ≥ 0), and L = L1, ..., Ln

be SPLs. If Z � L and Zi � Li (1 ≤ i ≤ n), then Z � L(L).

In the following, we show that composition can also be done between DPLs:
we just need to define the interface relation on DPLs and then extend the DPL-
SPLs composition to DPL-DPL as well.

Definition 11 (DPL interface). An SPLS ZInt is an interface of an DPL
L with dependencies Z, denoted as ZInt � L, iff (i) MZInt � ML; and (ii) the
generators GZInt , GL and GZ are total and for each p ∈ PL, GZInt(p ∩ FZInt) �⋃ G�

Z (p ∩ FZ) ∪ GL(p), where G�
Z (p ∩ FZ) is equal to GZ(p ∩ FZ) with all method

declarations extended with the body {return null;}.
The following definition extends the concept of DPL-SPLs composition (Def-

inition 10) by accepting DPLs as arguments and yielding a DPL as result.

Definition 12 (DPL-DPLs composition). Let L be a DPL with dependencies
Z = Z1, ..., Zn (n ≥ 0) and L = L1, ..., Ln be DPLs such that Zi � Li (1 ≤ i ≤ n).

1 Because of the delta scope assumption, in the definition of KL0 the union of the
application ordering relations (which denotes the relation obtained by union of their
graphs) is well defined.
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Let Z
(i) = Zi,1, ..., Zi,ni

(ni ≥ 0) be the dependencies of Li (1 ≤ i ≤ n). The
composition of L with L is the DPL L0 = L(L), with dependencies Z

(1)
, ..., Z

(n),
such that MMainL0

, KL0 and ABL0 are defined as in Definition 10, and MGlueL0

is defined by MGlueL0
= MGlueL1

• · · · • MGlueLn
.

Note that, if the DPLs Li (1 ≤ i ≤ n) have no dependencies (i.e., Z(i) = ∅ and
MGlueLi

= MId), then MGlueL0
= MId (like in Definition 10). Thus Defini-

tion 12 conservatively extends Definition 10. Moreover, Theorem 1 also holds
when L and L0 = L(L) are DPLs, and Theorem 2 can be extended as follows:

Theorem 3 (DPL-DPLs composition preserves interfacing). Let Z be an
SPLS, L be a DPL with dependencies Z = Z1, ..., Zn (n ≥ 0), and L = L1, ..., Ln

be DPLs. If Z � L and Zi � Li (1 ≤ i ≤ n), then Z � L(L).

4 Compositionality of Existing SPL Analyses

In this section, we give two initial results illustrating the fact that our MPL
model is well-suited for compositional analysis. First, we show that the results
about the compositionality of existing analyses of feature models (void feature
model, core features, dead features, void partial configuration, and atomic sets)
given in [24, Sect. 5] can be used as-is in our model. Second, we show how to
extend existing type systems for SPLs to ensure well-typedness in our model.

Compositional Analysis of Feature Models. The following theorem shows
that the construction of the feature model of a DPL can be expressed as a
sequence of ◦ operations. This, plus the fact that an SPLS Z is an interface
of a DPL L only when MZ � ML ensures that the results presented in [24,
Sect. 5] can be used as-is to analyse the feature models constructed in DPL-DPL
compositions by analysing each feature model independently.

Theorem 4. Let Mx = (Fx,Px), My1 = (Fy1 ,Py1),. . . ,Myn
= (Fyn

,Pyn
),

with n ≥ 1, be feature models with pairwise feature disjointness (cf. Remark 2)
and My = R(My1) • · · · • R(Myn

). Then (for every permutation w1, ..., wn of
y1, ..., yn): Mx/y = Mx ◦MGlue

My = ((Mx ◦MId
Mw1) · · · ◦MId

Mwn−1) ◦MGlue

Mwn
.

Compositional Type System for MPLs. Type checking an SPL means
to check that all its variants can be generated and are well-typed programs.
Performing this check by generating each variant and type checking it does not
scale (a product line with n features can have up to 2n products). Therefore,
several SPL type checking approaches have been proposed in the literature [27].
Three type checking approaches for delta-oriented SPLs have been proposed and
formalized [5,8,9] by means of the IFΔJ calculus.

In our MPL model, we add two structures that can be type-checked: DPLs
and DPL-DPL compositions. However, due to the fact that the artifact base of a
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DPL depends on code defined in other DPLs, it is too restrictive to require that
its variants are well-typed programs: they can indeed contain missing dependen-
cies. The following definition extends the notion of well-typedness to DPL to
deal with the missing dependency problem:

Definition 13 (Well-typed DPL). The stub-completion of an SPLS Z, writ-
ten Z�, is the SPL obtained by adding the body {return null;} to all the
method declarations in Z. The stub-completion of a DPL L with dependencies
Z = Z1, ..., Zn (n ≥ 0) is the SPL L� = L(Z�

1, ..., Z
�
n) obtained by composing L with

the stub-completion of its dependencies. We say that a DPL is well-typed iff its
stub-completion is well-typed.

Note that this definition generalizes the notion of well-typedness for SPLs: when
the set of dependencies of the DPL L is empty (n = 0), L is well-typed iff
it is well-typed in the SPL-sense of the term. Moreover, with this definition,
extending the exisiting type-checking algorithms for SPL to manage DPL simply
requires a pre-processing of the DPL to transform it in an SPL as described in
the definition. An additional important property of this definition is that it is
enough to type-check in isolation the DPLs in a DPL-DPL composition to ensure
that the resulting DPL is well-typed:

Theorem 5 (Compositionality of DPL-DPLs composition type
checking). Let L be a DPL with dependencies Z = Z1, ..., Zn (n ≥ 0) and
L = L1, ..., Ln be DPLs such that Zi � Li (1 ≤ i ≤ n). If each of the DPLs
L, L1, ..., Ln type checks, then L(L1, ..., Ln) type checks.

Note that the SPLs CapitalAccount and FinancialAccount (in Fig. 3), and the
DPL DualAccount (in Fig. 6) type check: we can then conclude that the SPL
DualAccount(CapAccount,FinAccount) type checks as well.

Checking the Interface Relation. The compositional analysis of feature
models and the well-typedness of a DPL-DPL composition L(L) presented pre-
viously heavily rely on the interface relation being satisfied between the depen-
dencies of L and the DPLs L. It is possible to automatically check this rela-
tion between any SPLS Z and any DPL L using a predicate formula written
match(Z, L). Due to lack of space, we cannot give the definition of this formula,
we simply state the following theorem:

Theorem 6 (DPL interface checking). If the SPLS Z and DPLL type check
and MZ � ML holds, then match(Z, L) is valid if and only if Z � L holds.

5 Related Work and Conclusions

An extension of DOP to implement MPLs has been outlined in [10] by proposing
linguistic constructs for defining an MPL as an SPL that imports other SPLs.
The feature model and the artifact base of the importing SPL is deeply integrated
with the feature models and the artifact bases of the imported SPLs, respectively.
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This extension is very flexible, but it does not enforce any boundary between
different SPLs—thus providing no support for compositional analyses.

Schröter et al. [25] advocated investigating suitable interfaces in order to
support compositional analyses of MPLs for different stages of the development
process. In particular, syntactical interfaces, which build on feature model inter-
faces to provide a view of reusable programming artifacts, and behavioral inter-
faces, which in turn build on syntactical interfaces to support formal verification.
More recently, Schröter et al. [24] proposed a concept of feature model interface
that consists of a subset of features (thus it hides all other features and depen-
dencies) and used it in combination with a concept of feature model composition
through aggregation to support compositional analyses of feature models—see
Sect. 2.2. In this paper we build on [24] and propose the concepts of SPLS, DPL,
and DPL-DPLs composition and show how to use them to support compositional
type checking of delta-oriented MPL. An SPL signature is a syntactical inter-
face that provides a variability-aware API, expressed in the flexible and modular
DOP approach, specifying which classes and members of the variants of a DPL
are intended to be accessible by variants of other DPLs.

Feature-context interfaces [26] are aimed at supporting type checking SPLs
developed according to the FOP approach which, as pointed out in Sect. 1, is
encompassed by DOP (see [22] for a detailed comparison between FOP and
DOP). A feature-context interface supports type checking a feature module in
the context of a set of features FC. It provides an invariable API specifying
classes and members of the feature modules corresponding to the features in FC
that are intended to be accessible. In contrast, our concept of SPLS represents
a variability-aware API that supports compositional type checking of MPLs.
Notably, since DOP is an extension of FOP, our results apply also to FOP
SPLs.

Kästner et al. [16] proposed a variability-aware module system, where each
module represents an SPL, that allows for type checking modules in isolation.
Variability inside each module and its interface is expressed by means of #ifdef
preprocessor directives and variable linking, respectively. In contrast to our
SPLSs, module interfaces do not support hiding features and dependencies. A
major difference with respect to our proposal is in the approach used to imple-
ment variability (i.e., to build variants): [16] considers an annotative approach
(#ifdef preprocessor directives), while we consider a transformational approach
(DOP)—we refer to [23,27] for classification and survey of different approaches
for implementing variability.

Schröter et al. [24] defined a slice function for feature models (similar to the
operator proposed by Acher et al. [1]) that generates a feature-model interface by
removing a given set of features. In future work we would like to generalize the
slice function for feature models to DPLs, thus providing an automatic means
for generating an interface for a given DPL.

Recently,Thüm et al. [28] proposed a notion of behavioral interface for support-
ing compositional verification of FOP SPLs via variability encoding [29]. In future
work we would like to enrich SPLSs with method contracts (thus promoting them
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to behavioral interfaces) in order to support compositional verification of delta-
oriented DPLs by building on recently proposed proof systems and techniques for
the verification of delta-oriented SPLs [6,11,12].

We plan to implement our approach for both DeltaJ 1.5 [17] (a prototyp-
ical implementation of DOP that supports full Java 1.5) and the Abstract
Behavioral Specification modeling language [15].

Acknowledgments. We thank the anonymous reviewers for comments and sugges-
tions for improving the presentation. We also thank Lorenzo Testa for comments and
suggestions during the preparation of the post-proceedings version.
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25. Schröter, R., Siegmund, N., Thüm, T.: Towards modular analysis of multi product
lines. In: Proceedings of the 17th International Software Product Line Conference
Co-located Workshops SPLC 2013, pp 96–99. ACM (2013). doi:10.1145/2499777.
2500719
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Abstract. Actor-based languages attract attention for their ability to
scale to highly parallel architectures. Active objects combine the asyn-
chronous communication of actors with object-oriented programming by
means of asynchronous method calls and synchronization on futures.
However, the combination of asynchronous calls and synchronization
introduces communication cycles which lead to a form of communica-
tion deadlock. This paper addresses such communication deadlocks for
ABS, a formally defined active object language which additionally sup-
ports cooperative scheduling to express complex distributed control flow,
using first-class futures and explicit process release points. Our approach
is based on a translation of the semantics of ABS into colored Petri nets,
such that a particular program corresponds to a marking of this net.
We prove the soundness of this translation and demonstrate by example
how the implementation of this net can be used to analyze ABS programs
with respect to communication deadlock.

1 Introduction

The Actor model [1,2] of concurrency is attracting increasing attention for their
decoupling of control flow and communication. This decoupling enables both
scalability (as argued with the Erlang programming language [3] and Scala’s
actor model [14]) and compositional reasoning [11]. Actors are independent units
of computation which exchange messages and execute local code sequentially.
Instead of pushing the current procedure (or method activation) on the control
stack when sending a message as in thread-based concurrency models, messages
are sent asynchronously, without any transfer of control between the actors.
In the actor model, a message triggers the execution of a method body in the
target actor, but a reply to the message is not directly supported. Extending the
basic actor model, active object languages (e.g., [8,18]), which combine actor-
like communication with object orientation, use so-called futures to reintroduce
synchronization by combining asynchronous message sending with the call and
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reply structure of method calls. A future can be seen as a mailbox from which a
reply may be retrieved, such that the synchronization is decoupled from message
sending and associated with fetching the reply from a method call. The caller
synchronizes with the existence of a reply from a method call by performing
a blocking get-operation on the future associated with the call. However, this
synchronization may lead to complex dependency cycles in the communication
chain of a program, and gives rise to a form of deadlock with a set of mutually
blocked objects. This situation is often called a communication deadlock [9].

This paper addresses the problem of communication deadlock for the active
object language ABS [18,19]. ABS is characteristic in that it supports cooperative
concurrency in the active objects. Cooperative concurrency allows the execution
of a method body to be suspended at explicit points in the code, for example by
testing whether a future has received a value. Cooperative concurrency leads to
a form of local race-free interleaving for concurrently executing active objects,
which allows more execution traces than in standard active objects. Our app-
roach to tackle the callback problem for ABS is based on a translation of the
formal semantics of ABS into colored Petri nets (CPN) [17]. Petri nets pro-
vide a basic model of concurrency, causality, and synchronization [22,25], which
has previously been used to analyze communication patterns and deadlock, e.g.,
[10,15]. CPNs extend the basic Petri net model with support for modeling data.
In contrast to previous work, we do not produce a particular Petri net for each
program to be analyzed. Instead, we provide an encoding and implementation
of the formal semantics of ABS itself as a net, and use colored tokens in this
net to encode the program. Consequently, the number of places in the net is
independent of the size of a program, and different programs are captured by
different markings of the net. For example, this approach allows us to capture
dynamic object creation by firing transitions in the net.

The main contributions of this paper are:

– a deep encoding of the formal semantics of ABS in CPNs;
– a translation of concrete ABS programs into markings of this net;
– a soundness proof for the translation from ABS to CPN; and
– an example demonstrating how to analyze communication deadlocks for active

objects in ABS using the implementation of this net in CPN Tools [24].

The paper is organized as follows: Sect. 2 introduces the syntax and semantics
of the ABS language, focusing on the language features for communication and
synchronization. Section 3 briefly introduces colored Petri nets. Section 4 explains
the translation from ABS semantics to colored Petri nets and the soundness proof
for this translation. Section 5 presents a concrete ABS example and shows how
the CPN Tools detects communication deadlock. Section 6 discusses related work
and Sect. 7 concludes the paper.

2 The ABS Concurrency Model

The Abstract Behavioral Specification language (ABS) [18,19] is an object-
oriented language for modeling concurrent and distributed systems. ABS
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Fig. 1. Abstract syntax of ABS, where overline notation such as e and x denotes
(possibly empty) lists over the corresponding syntactic categories.

combines asynchronous communication from the Actor model [1,2] with object
orientation, and supports cooperative scheduling such that process release points
are explicit in the program code. For the purposes of this paper, we focus on
the communication and synchronization aspects of ABS. Also we ignore other
aspects such as concurrent object groups, i.e., we consider one object per group,
the functional sublanguage, and deployment aspects such as deployment compo-
nents and resource annotations [19]. ABS is statically typed, based on interfaces
as object types [18]. Ignoring the details of the type system, we let primitive
types such as Int and Bool and class names constitute the types of a program,
and ignore subtyping issues.

2.1 The Syntax

Figure 1 presents the syntax of ABS [18], focusing on communication and syn-
chronization. Programs P consist of class definitions CL and a main block repre-
senting the program’s initial activity. Statements s include standard control-flow
constructs such as sequential composition, assignment statement, conditionals,
and while-loops. ABS supports asynchronous method calls f = e!m(e) where
the caller and callee proceed concurrently and f is a so-called future. A future
is a “mailbox” where the return value from the method call may eventually be
returned to by the callee. A future that contains return value is resolved. The
result of the asynchronous call can then be obtained by f .get. Note that we
may alternatively write asynchronous method call statement as e!m(e), if the
return value is not required. ABS also supports local synchronous calls which
are more standard. For brevity, we elide discussion of synchronous method calls
here (the CPN realization in Sect. 4 also covers synchronous, reentrant self-calls).

The (active) objects of ABS act like monitors, allowing at most one method
activation, or process, to be executed at a time. The local execution in an object
is based on cooperative scheduling by introducing a guard statement await g:
If g evaluates to true, execution may proceed; if the guard g evaluates to false,
execution is suspended and another process may execute. For a future f , the
guard f? evaluates true if f contains the return value from the associated method
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call and otherwise it evaluates to false. The suspend-statement always suspends
the executing process. The typical usage of asynchronous calls follow the pattern
f = e!m(e); . . . ;await f?; . . . ; x = f .get.

2.2 The Operational Semantics

The operational semantics of ABS specifies transitions between configurations. A
run-time configuration contains objects o(|a, p, q|), messages 〈o′.m(v)〉f , resolved
futures 〈v〉f , and unresolved futures 〈⊥〉f . We use ‖ to denote the (associative
and commutative) parallel composition of such entities in a run-time configu-
ration. Class definitions, which do not change during execution, are assumed
to be implicitly available in the operational rules. The semantics maintains as
invariant that object identities o and future identities f are unique. Objects
o(|a, p, q|) are instances of classes with an identifier o, an object state a which
maps instance variables to values, an active process p, and an unordered queue q
of suspended processes. A process p is a triple 〈l | s〉f with a local state l (map-
ping method-local variables to values), a statement s, and a future reference f .
We omit the future reference in the rules if it is unnecessary. The special process
idle is used to represent that there is no active process. A message 〈o′.m(v)〉f
represents a method call before it starts to execute and the resolved future 〈v〉f
the corresponding return value after method execution.

Figure 2 gives the rules of the operational semantics, concentrating on the
behavior of a single active object. A skip-statement has no effect (cf. rule Skip).
In an idle object, the scheduler selects (and removes) a process p from the queue,
and starts executing it (cf. rule Activate). Executing suspend moves the
active process to the queue, resulting in an idle object (cf. rule Suspend). Assign-
ments are either to instance variables or local variables (cf. rules Assign1 and
Assign2, where σ is used to abbreviate the pair of local states l and object states
a. We assume that these are disjoint, so the two cases are mutually exclusive.)
We omit the standard rules for conditionals and while-loops. Object creation is
captured by rule New-Object, where a′ is the initial state of the new object
(determined by an auxiliary function atts) and p′ is the object’s initial activ-
ity. An asynchronous method call creates a fresh future reference f and adds
a message and unresolved future corresponding to the call to the configuration
(cf. rule Async-Call). Binding a method name to the corresponding method
body is done in rule Bind-Mtd. The binding operation, locating the code of the
method body and instantiating the formal parameters, works in the standard
way via late-binding, consulting the class hierarchy.

The return statement stores the return value in the corresponding future,
resolving the future (cf. rule Return). The get-command allows the result value
to be obtained from the corresponding future reference if the future’s value has
been produced, in which case the future has been resolved (cf. rule Get). Oth-
erwise, the get-command blocks. An attempt to fetch a future value via a get
statement does not introduce a scheduling point. Should the value never be
produced, e.g., because the corresponding method activation does not return,
the client object of the future, executing the get-command, will be blocked. A
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Fig. 2. Operational semantics

common pattern for obtaining a future value therefore makes use of await: exe-
cuting await x?;x. get checks whether or not the future reference for variable
x has been produced. If not, the semantics of the await statement introduces a
scheduling point. Once x? evaluates to true, the future’s value remains available
so x. get will not block. (see again rule Read-Fut).

Executing an await with a guard expression which evaluates to the identifier
of a resolved future, behaves like a skip (cf. rule Await1). An await on a list of
futures are equivalent to a list of awaits for individual futures. If the future cor-
responding to the guard expression has not been resolved, a suspend-statement
is introduced to enable scheduling another process (cf. rule Await2).

3 Colored Petri Nets

Places and transitions in Petri nets capture true concurrency in terms of causality
and synchronization [22,25]. Colored Petri nets (CPNs) extend the basic Petri
net formalism to additionally model, e.g., data [16,17]. A CPN has color sets
(=types). The set of types determines the data values and the operations that
can be used in the net expressions. A type can be arbitrarily complex, defined
by many sorted algebra in the same way as abstract data types. Each place in a
CPN has an associated color set, restricting the kind of data a place can contain.
Tokens in a typed place represent individual values of that type. CPNs in their
basic form (ignoring hierarchical definitions) are defined as follows:

Definition 1 (Colored Petri net). A colored Petri net (CPN) is a tuple
(P, T,A,Σ, V,C,G,E, I) where
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– places P and transitions T are disjoint finite sets;
– arcs A form a bipartite, directed graph over P and T , i.e., A ⊆ P ×T ∪̇T ×P ;
– types Σ form a finite set (each type seen as a non-empty “color set”);
– typed variables V form a finite set, i.e., type(v) ∈ Σ for all v ∈ V ;
– a coloring C : P → Σ associates a type to each place.
– labeling functions G : T → ExprV (guards) and E : A → ExprV associate

expressions to transitions and arcs; and the
– initialization function I : P → Expr∅ associates expressions to places.

in which expressions are appropriately typed; i.e., type(G(t)) = Bool, type(E(a)) =
C(p) → N, where p is the place connected to a, and type(I(p)) = C(p) → N for all
places.

Transitions and their guards express synchronization conditions which,
together with the labels on the arcs, express the transition semantics of Petri
nets. Since tokens are individual typed values and expressions contain variables,
the enabledness of transitions depends on the choice of values for the free vari-
ables.

Bindings (or variable assignments) b are mappings from variables to values;
we assume bindings to respect the types of the variables. The variables of a
transition t, written Var(t) ⊆ V , consist of the free variables in the guard of t
and in the arc expressions of the arcs connected to t. The binding of a transition
covers (at least) all variables from Var(t). Let [[E]]b denote the value of expression
E under variable binding b. Given a CPN, a marking M is a function P → (Σ →
N) (the initial marking M0(p) is defined by I(p)) and a step is a selection of the
net’s transitions together with appropriate bindings for the variables of each
transition such that the selected transitions are enabled, defined as follows:

Definition 2 (Enabledness). A transition t is enabled in a marking M for
binding b, if,

1. [[G(t)]]b = true, and
2. M(p) ≥m [[E(p, t)]]b, for all places p ∈ P ,

where ≥m is the usual ordering between multisets.
A step Y is enabled in a marking M , if for all places p, (t, b) from Y , t is

enabled for b in M , M(p) ≥m [[E(p, t)]]Y . The semantics [[E(p, t)]]Y represents the
multi-set

∑
(t,b)∈Y [[E(p, t)]]b.

When t is enabled for b, in M , it may occur or “fire”, leading to the marking
M ′ where M ′(p) = (M(p) − [[E(p, t)]]b) + [[E(t, p)]]b, for all places p. Similarly

for enabled steps Y , M1
Y� M2 denotes that a marking M1 evolves into M2 by

“firing” step Y . A (finite) occurrence sequence is a sequence of markings and
steps of the form

M1

Y1� M2

Y2� M3 . . . Mn

Yn� Mn+1. (1)

Note that “true concurrency” semantics, typical for Petri nets, allows the simul-
taneous, firing of transitions in a step. Whereas steps are required to be non-
empty, a step which only fires one transition t and binding b, is denoted

t,b→. A
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reduction semantics restricted to such single transition steps is equivalent to the
unrestricted semantics, but corresponds to “interleaving concurrency”.

4 Translating ABS Semantics to Colored Petri Nets

In this section, we define the translation from ABS to CPNs. After a short intro-
duction covering the core ideas of the translation, in Sect. 4.2 we highlight crucial
parts of how the ABS semantics are represented on the Petri net level, focusing
on parts of the communication mechanism, in particular dealing with asynchro-
nous method calls and the resolution of futures via get. In Sect. 4.3, we define
an abstraction function relating program configurations and the corresponding
Petri net markings. Afterwards, Sect. 4.4 establishes the soundness of the Petri
net semantics, defining a simulation relation between the steps of the operational
semantics and the transitions of the resulting Petri net.

4.1 Overview over the Petri Net Semantics for ABS

The starting point of the translation are abstract ABS programs, i.e. programs
where data values have been abstracted already. Still, there are two remain-
ing sources of infinity in the state space: creation of (active) objects and cre-
ation of processes and accompanying future references via asynchronous method
calls. Note in passing that in absence of synchronous, reentrant method calls,
unboundedly growing stacks do not contribute to the potential unboundedness
of the state space. In the translation, one can conceptually distinguish between
language-specific aspects and program-specific aspects: the ABS language and
its semantics is represented by one CPN, common for all programs. This CPN
therefore can be seen as a translation of the ABS-language as such. Roughly, each
semantic rule from the operational semantics of Fig. 2 is represented by transi-
tions and places, with appropriate types and guards. Figure 3 shows a birds eye
view of the overall Petri net as represented in the CPN Tools.

In contrast, one particular program, respectively, one particular run-time
configuration of a program, is represented by a marking of the Petri net. The
expressive power of colored Petri nets is crucial to achieve such a conceptually
clear and structural translation: since tokens are distinguishable, the transitions
and places operated on type values allow to represent the components of a con-
figuration in a clean manner. For instance, object, process, and future identities
are all naturally represented in the tool by integers.

4.2 CPN-ABS Communication Mechanism

Figure 3 shows the implementation of this translation with the CPN Tools. From
now on, we will refer to it as CPN-ABS. In CPN-ABS, communication takes place
between objects represented as tokens which carry information about their iden-
tity, their class, and their process pool, therefore triples of the form (id, class, q).
CPN-ABS supports not only object communication, but also the construction
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Fig. 3. ABS semantics implemented with the CPN Tools

of the information each object carries. This allows dynamic creation of objects.
CPN-ABS can be structurally divided into two parts: the first part, where all
this information can be dynamically created through transition firing, and the
second part which can simulate the possible communications of the objects. As
shown in Fig. 3, CPN-ABS contains a lot of details in order to faithfully simu-
late ABS. In the following, we concentrate on an extract of the implementation
(cf. Fig. 4), which focuses on the asynchronous communication mechanism. The
implementation covers all ABS rules from Sect. 2, as well as synchronous reen-
trant self calls. For simplicity, in Fig. 4, we omit details like places which have
an indirect relation with the semantics, and furthermore arcs and inscriptions
where obvious.

As we can see in Fig. 4, there are three disjoint places where the object tokens
can be located: “Active Objects”, “Idle Objects”, and “Blocked Objects”. When
a method of an (active) object returns (here by firing the transition “Return”),
it resolves a future and it moves the object to the “Idle Objects” place, as one
can observe from the Return rule of the semantics. The inverse can be achieved
through the Activate rule, where a process from the pool is activated. This is
simulated by the “Activate” transition with the corresponding token moving.

Transition “Caller” selects the calling object from the “Active Objects” place
(here we omit how the object selection is being done). We have two cases of
communication through asynchronous method calls: immediately followed by a
get statement or not. Both are simulated in the yellow region of the picture: It
contains one place, “Is synchronous”, which has a token of type Bool . Its value
corresponds to the presence of a get statement in the obvious way. By firing the
transition “Get”, we alternate the value of the token. So, from this yellow region,
transition “Caller” takes the information on whether the asynchronous call is
followed by a get statement or not. In the latter case, the value of b is false and
transition “Caller” maintains the object in the “Active Objects” place (which has
the corresponding meaning for the status of the object – see rule Async-Call
of the semantics), otherwise it sends the caller object to the “Blocked Objects”
place until the waiting future can be retrieved from the “Future” place (see rule
Read-Fut in the ABS semantics).
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Fig. 4. Extract of the communication mechanism of CPN-ABS

As the places related to the status of an object are disjoint, the callee object
can reside only in one among the three corresponding places. Therefore, one
among the transitions “Active callee”, “Blocked callee”, and “Idle callee” can
fire each time for the selected object (here, again, we omit details about how
the object selection is done). In CPN-ABS, the process pool is implemented as a
FIFO queue. So, the transitions that refer to the callee update its process queue
by adding at the end a new process related to this particular method call. They
also create a communication pair token at the “Communication pairs” place by
matching the token of the “Caller” place (created by the “Caller” transition)
with the callee object and the process created for this method execution.

4.3 The Abstraction Function

In this section, we define a translation from ABS configurations to Petri net
markings. The translation is given in the form of an abstraction function α. In
it’s core, it’s a structural translation of ABS-configurations, ignoring the data
parts of the program, i.e., the value of variables in the instance states and local
states. Hence the translation yields an abstraction at the same time, and the
resulting Petri nets marking over-approximate the original behavior, due to this
form of data abstraction. Let Obj be the set of objects in an ABS program,
Class the set of its classes and Proc the set of the processes. We define the
following injections from those sets to the set of positive integers: h : Obj → Z

+,
d : Class → Z

+, and g : Proc → Z
+. Let C be the set of the configurations

of an ABS program and Msg the set of the invocation messages. We define the
projection functions from the ABS configurations as follows:
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– cl : C → Class which projects the object class in an ABS configuration,
– ob : C → Obj which projects the objects in ABS configurations,
– pr : C → P(Proc) which projects the process pools of the objects of ABS

configurations,
– msg : C → Msg which projects the messages Msg of ABS configurations and
– fut : C → F which projects the set of resolved futures that are related to get

statements for each configuration.

Then, let m :Msg → Proc be the injection which maps each invocation mes-
sage to the process that will be created for the execution of the called method.
Let furthermore fr :F → Proc be the injection from the set of resolved futures
F related to get statements to the set of processes Proc, since they are related
to the change of the blocked status of the objects which wait to read those
futures. Finally, let pq : P(Proc) → P(Z+) be the mapping from the process
pools to sets of (unique) positive integers such that for every process pool S,
pq(S) = {g(s) ∈ Z

+ | s ∈ S}. In CPN-ABS, we model objects as tokens which
carry information about their identity, their class and their process pool. As a
consequence, each object is represented as a triple (id, class, q), where id is the
object identifier of type Int , class is the corresponding class of the object i.e.
the class identifier of type Int and q is the process pool of the object of type list
of integers.

Now, we can define the abstraction function α. In the following, P is the set
of the places and M(p) the marking of a place p in CPN-ABS. Then, for all
configurations c ∈ C:

α(c) =
⋂ {M | ∃p, p′, p′′ ∈ P s.t. p �= p′ �= p′′

∧((h ◦ ob)(c), (d ◦ cl)(c), (pq ◦ pr)(c)) ∈ M(p)
∧ (m ◦ msg)(c) ∈ M(p′)
∧ (g ◦ fr ◦ fut)(c) ∈ M(p′′)} ,

(2)

where,
⋂

denotes intersection over sets of multisets. Observe that, for every
ABS configuration, the above intersection is nonempty, i.e. there is a marking
such that all the objects of the configuration are represented as tokens in specific
places of the model.

4.4 Soundness Proof of the Translation

In this section we sketch the soundness proof of the translation, establishing a
simulation relation between the small step operational semantics of ABS and
the transitions of CPN-ABS. In particular, we need to prove that, for any ABS
configuration c, if c �r c′ for some semantic rule r, then there exists a mark-
ing M ′ and a sequence of CPN-ABS transitions u, such that α(c) u→ M ′ and
α(c′) ⊆m M ′ (where, with ⊆m we denote the subset relation between sets of
multisets as an extension of ≤m). To establish the above relation, we need to
prove that u has a corresponding CPN-ABS occurrence sequence, i.e. that all
the transitions of u can fire in the same order as they appear in u.
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Consequently, we try to construct each transitions sequence u in such a way
that there exists the corresponding occurrence sequence. We use a finite alphabet
B which consists of the names of the transitions that appear in CPN-ABS and
construct words over this alphabet that correspond to occurrence sequences, with
ε to be the empty word. We should mention here, that, for all b ∈ B, b0 = ε. We
call these words occurrence words. The set that contains those occurrence words
can be given from the image of a translation function Tr :Sem → B∗, where
Sem is the set of the ABS semantic rules of Sect. 2. In the following, we provide
some definitions and lemmas in order to achieve modularity for the construction
of occurrence words. We will denote as En(M) the set of enabled transitions for
a marking M and Mreach the set of reachable markings of the Petri net.

Definition 3 (Independent transition). A transition t ∈ T is called inde-
pendent if, for any marking M ∈ Mreach , t ∈ En(M) and M

t→ M ′ implies
En(M) ⊆ En(M ′).

Definition 4 (Post-transition). The post-transitions of a transition t ∈ T are
given by the function PostTrans : T ×Mreach → P(T ) where PostTrans(t,M) =
{t′ ∈ En(M ′) | M

t→ M ′}.

Lemma 1 (Composition). The composition of an occurrence sequence M1
t1→

M2
t2→ . . .

tn→ Mn+1 with another occurrence sequence M ′
1

t′
1→ M ′

2

t′
2→ . . .

t′
m→ M ′

m+1

is the occurrence sequence M1
t1→ M2

t2→ . . .
tn→ Mn+1

t′
1→ M ′′

2

t′
2→ . . .

t′
m→ M ′′

m+1,
whenever M ′

1 ⊆m Mn+1 and [[G(t′1)]]bn+1 = true and furthermore
∧

2≤i≤m[[G(t′i)]]bi
= true and M ′

j ⊆m M ′′
j , for all 1 ≤ j ≤ m + 1.

Proof. For the prefix of the sequence which is identical to the first composed
sequence, the result is trivial. Then, since M ′

1 ⊆m Mn+1, after t′1, obviously, if
[[G(t′2)]]b′′

2
= true, then M ′

2 ⊆m M ′′
2 , and so on. ��

In the sequel, we accordingly use the term composition of occurrence words.

Lemma 2. For all ABS semantic rules r, Tr(r) is an occurrence word.

Proof. The idea is to assign to Tr a concrete value for each possible argument
(i.e. for each rule of the operational semantics, and then, for each value, to prove
that it is an occurrence word). As in Sect. 4.2 we presented just an extract of
the real implementation, we will present one representative case, namely rule
Read-Fut rule based on the Petri net extract of Fig. 4.

In this case, Tr(Read-Fut) = “Get”i−1 “Caller” “ReadFuture”, where
i = 1 if the marking of the place “Is synchronous” is true before firing “Get”,
0 otherwise. We need to prove that it is an occurrence word. Indeed, let c be the
configuration before the application of the rule Read-Fut and c′ the one after
it. Let, ob1 be the object abstracted from c. Then ob1 ∈ M(“ActiveObjects”).
“Get” is an independent transition. If i = 0, then M

Get→ M (1) is an occur-
rence sequence. Otherwise, M (1) = M . Obviously, M (1) (“Is synchronous”)=
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{true}. Transition “Caller” ∈ En(M (1)), since “Caller” ∈ En(M) and also
“Caller” is a post-transition of “Get”, so we can take M (1) Caller→ M (2) where
ob1 ∈ M (2) (“BlockedObjects”). So, “Get” “Caller” is an occurrence word.
From the hypothesis of Read-Fut we know that there exists a marking M (3)

s.t. f ∈ M (3) (“Future”) and from Lemma 1, we obtain that “Get”i−1 “Caller”
“ReadFuture” is an occurrence word. ��
Theorem 1 (Simulation). CPN-ABS is a (weak) simulation of ABS.

Proof. We need to prove that, for any ABS configuration c, if c �r c′ for some
semantic rule r ∈ Sem, then there exists a marking M ′ and an occurrence

word given by Tr(r), such that α(c)
Tr(r)→ M ′ and α(c′) ⊆m M ′. This follows

straightforwardly from the definition of the abstraction function α, the image of
Tr , and from Lemma 2. ��

5 Deadlock Detection

The translation CPN-ABS and the underlying Petri net tool can be used for the
detection of possible communication deadlocks of ABS programs. CPN-ABS con-
tains three disjoint places, where, depending on the status of objects (i.e. active,
idle or blocked), objects can be located. The place “Blocked Objects” which hosts
the blocked objects has a color set of pair (ob, p), where ob is object invoking
an asynchronous call with a get-statement, i.e. an asynchronous blocking call,
and p is the process that has been added to the process queue of the callee
for the execution of the called method. Recall that ob is of color (id, class, q),
where id is object identity, class is the class that the object belongs to, and q
is the process queue of the object. Given this particular structure of CPN-ABS,
there is a deadlock cycle [21] if and only if there exists a marking of the place
“Blocked Objects”, in which there exists n tokens (ob1, p1) to (obn, pn) that form
a cycle, i.e. for 1 ≤ i < n, pi ∈ qi+1 and pn ∈ q1 (where qi is the process queue
of the ith object). This deadlock situation can be detected by the state space
report of the model checker of the CPN Tool used to implement CPN-ABS.

5.1 Example

We now use the publisher-subscriber example of Fig. 5 to illustrate how
CPN-ABS detects communication deadlocks. Service objects publish news
updates to subscribing clients through a chain of Proxy objects. Each
proxy object handles a bounded number of clients. Service objects han-
dle a subscribe request efficiently by delegating its time-consuming parts
to Proxy objects, and the proxies publish news to clients using asynchro-
nous calls (without futures) to make the cooperation efficient. As asyn-
chronous method calls without get-statements do not cause deadlocks, we
omit them from our analysis and only consider asynchronous blocking
calls of the form f = e!m(e); . . . ;x = f.get, where there are no suspension
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Fig. 5. Implementation of the publisher-subscriber example.

points in between. There are two asynchronous blocking calls in lines 6
and 15 in the example, namely f = lastProxy !add(cl); lastProxy = f.get and
f ′ = nextProxy !add(cl); lastProxy = f ′.get. The former one expresses that a
Service object invokes method add on a Proxy object through method
subscribe. Similarly, the later one expresses that a Proxy object invokes
method add on the next Proxy object through method add. By applying the
model checker on an Intel i7 3.4 GHz, in less than 1 s we get the full state space
report in which tokens of color ((o1,Service, q), p) and ((o3,Proxy , q′), p′) can be
found in the place “Blocked Objects”, and for all p, p′, q, q′ we have p /∈ q′ and
p′ /∈ q. This shows that the implementation of the publisher-subscriber protocol
is deadlock free.

Now, we slightly modify the protocol, where get-statements are added to
the method calls in lines 7 and 21 and the await statement in line 17 is
removed. In this case, CPN-ABS detects a communication deadlock cycle shown
in Fig. 6, where p ∈ q′ and p′ ∈ q and both objects are trapped in the place
“Blocked Objects” and cannot exit from there; in Fig. 6, the third and the fifth
argument in the color tuples are outside of the scope of this work, so we ignore
them, while, the existence of the two zero value tokens is for initialization rea-
sons and they do not affect the deadlock analysis. Based on the information we
obtained from this reachable marking, we can trace back to the program code
and determine the deadlock represented by the call chain.

Remark that the translation supports scalability: the size of the net is inde-
pendent from the program and represents the ABS semantics as such. I.e., by
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increasing the number of Proxy objects or clients, only the number of tokens is
affected and the analysis is highly automated.

Fig. 6. Deadlock detection by CPN-ABS.

6 Related Work

Deadlock detection is traditionally concerned with the usage of locks for thread-
based concurrency. This line of work is surveyed in [23], which develops a type
and effect system to capture lock manipulation for such a language. However,
in active objects communication deadlocks are caused by call-cycles with syn-
chronization, and the cooperative scheduling of ABS makes the analysis more
complex. The problem has been studied using different approaches, including
behavioral types [13], cost analysis [12], protocol specifications [21], and Petri
nets [10] (discussed below). As the problem is undecidable and the approaches
differ substantially, it is difficult to say exactly how they relate to each other
in terms of strength of the proposed analyses. Petri nets and its extensions are
popular formalisms to model and analyze systems with concurrency, communi-
cation and synchronization [22,25]. Petri nets have in particular been applied
to protocol and work flow analysis, but have also been used to study process
algebra (e.g., [5,7]), more recently including asynchronous communication [4].
Approaches which encode programming language features into Petri nets have
been developed for Ada [15] and more recently for, e.g., Java [20], and for chore-
ography languages like Orc [6]. In general, these approaches translate programs
into nets such that the size of the program determines the size of the net and
dynamic invocations or object creation cause difficulties. Previous work on dead-
lock analysis for active objects using Petri nets [10] follows a similar approach
such that places represent locks on objects, futures, and processes. Transitions
are introduced for each possible caller and callee to a method. To obtain a finite
net, the approach abstracts from the actual number of futures such that the
wrong future may be accessed in the Petri net. But if the net is deadlock free, so
is the original active object program. In contrast to these approaches encoding a
specific program as a net, our approach directly encodes the language semantics
as a CPN and uses markings to define the concrete program; the colors of CPN
are used to distinguish different method invocations and to create new objects
and the size of the net itself is independent of the specific program.
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7 Conclusion

This paper proposes an encoding of the formal semantics of ABS as a net, such
that a program is given as a marking for this net. Exploiting the colored tokens,
our net can support dynamic program behavior. We provide a soundness proof
for our encoding and show how a model checker for colored Petri nets can be
used to analyze communication deadlock for active objects in ABS. Whereas this
paper has focused on communication and synchronization for ABS programs,
ABS supports the specification of real-time behavior, deployment architectures,
and resource-aware systems [19]. Our next step is to extend the model to support
these features, and explore the usage of colored Petri nets for resource analysis
and to compare resource-management strategies for distributed ABS programs.
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Abstract. This paper investigates the problem of synthesizing parame-
terized rings that are “self-stabilizing by construction”. While it is known
that the verification of self-stabilization for parameterized unidirectional
rings is undecidable, we present a counterintuitive result that synthe-
sizing such systems is decidable! This is surprising because it is known
that, in general, the synthesis of distributed systems is harder than their
verification. We also show that synthesizing self-stabilizing bidirectional
rings is an undecidable problem. To prove the decidability of synthesis
for unidirectional rings, we propose a sound and complete algorithm that
performs the synthesis in the local state space of processes. We also gen-
erate strongly stabilizing rings where no fairness assumption is made.
This is particularly noteworthy because most existing verification and
synthesis methods for parameterized systems assume a fair scheduler.

1 Introduction

Developing parameterized Self-Stabilizing (SS) distributed systems is an impor-
tant and challenging problem since a parameterized SS system must be self-
stabilizing regardless of the number of processes. An SS system (i) recovers from
any configuration/state to a set of legitimate states – that captures the normal
behaviors of a system, and (ii) guarantees global recovery to legitimate states
solely based on the local actions of its processes (without any central point of
coordination). Designing self-stabilization becomes even more challenging for
parameterized systems that include families of symmetric processes, where the
code of each process is obtained from a template process in a symmetric network.
Since the general case synthesis problem is undecidable, several researchers have
recently proposed methods where they generate specific parameterized systems
from their temporal logic specifications, mainly by exploiting verification tech-
niques (e.g., cutoff theorems [13]) and boundedness assumptions [16]. As the
verification of SS parameterized unidirectional rings is known to be undecid-
able [22], the common understanding has been that synthesizing such systems
should also be undecidable. In this paper, we prove otherwise! We show that
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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synthesizing self-stabilization is actually decidable for parameterized unidirec-
tional rings where all processes follow the same synthesized rules.

Numerous approaches exist for the synthesis of parameterized systems, most
of which focus on synthesis from temporal logic specifications while assuming
some sort of fairness. For example, Finkbeiner and Schewe [16] present a method
where they solve the synthesis problem in a scope-based fashion similar to the
scope-based verification methods [19]. They formulate the synthesis problem
as a set of constraints that are fed to a Satisfiability Modulo Theory (SMT)
solver [9]. Jacobs and Bloem [20] reduce the problem of synthesizing parame-
terized systems to synthesizing a small network of symmetric processes under
the assumption of fair token passing. They exploit bounded synthesis and cutoff
theorems to enable a semi-decision procedure that will eventually find a solu-
tion if one exists. Additionally, some researchers have investigated the synthe-
sis of parameterized self-stabilizing systems in a problem-specific context. For
instance, Bloem et al. [6] provide a method for the synthesis of synchronous
systems that are SS and tolerate Byzantine failures and their underlying com-
munication topology is a clique. Dolev et al. [11] present a verification-based
method to generate synchronous and constant-space counting algorithms that
are self-stabilizing under Byzantine faults. Lenzen and Rybicki [25] provide an
SS and Byzantine-tolerant solution for the counting problem with near-optimal
stabilization time and message sizes. What the aforementioned methods have in
common is that they synthesize from temporal logic specifications and/or make
assumptions about synchrony, fairness and complete knowledge of the network
for each process. Moreover, some of them investigate specific problems.

In addition to proving some undecidability results for bidirectional rings, this
paper presents an algorithmic method for the synthesis of symmetric unidirec-
tional rings that are self-stabilizing by construction. The proposed algorithm
works in a graph-theoretic context rather than synthesis from temporal logic
specifications. In our work, we consider processes that are deterministic, self-
disabling and constant-space, where a self-disabling process stops executing once
it executes an action until it is enabled again by an action of its predecessor.1

Moreover, we investigate this problem for sets of legitimate states that can be
specified as the conjunction of local legitimate states. While our assumptions
may seem restrictive, there are important applications for such systems [18,28].
The decidability result of this paper is counterintuitive as in our previous work
[22] we have shown that verifying self-stabilization for unidirectional rings is
undecidable. This is surprising because it is known [26] that, in general, the syn-
thesis of distributed systems is harder than their verification. We first present a
necessary and sufficient condition for the existence of a symmetric SS unidirec-
tional ring. Our necessary and sufficient condition states that an SS symmetric
unidirectional ring exists if and only if (iff) there is a value in the state space of
the template process that can make the locality of each process true. We then
use this result and design a sound and complete algorithm. The input to our
algorithm includes a set of legitimate states and the size of the state space of the

1 We have shown [23] that these assumptions uphold the completeness of synthesis.
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template process. The output of the proposed algorithm is the symmetric code
of the template process so that the entire ring becomes self-stabilizing for any
arbitrary (but finite) number of processes. Our approach is easier than synthesis
from temporal logic specifications in that we perform the synthesis in a bottom-
up fashion by intelligently searching the state space of the template process.
Subsequently, we investigate the synthesis of bidirectional symmetric rings that
are self-stabilizing, and show that this problem is undecidable. Our proof of
undecidability is a reduction from the problem of verifying self-stabilization for
unidirectional rings [22]. While we have used our algorithm to synthesize a few
example systems in this paper, we are currently investigating the generalization
of our algorithm for other topologies and more interesting case studies.

Contributions. This paper makes the following contributions. We

– present a surprising result that synthesizing parameterized SS unidirec-
tional rings under the interleaving semantics and no fairness assumption is
decidable;

– provide an algorithm that takes a set of legitimate states and the size of the
state space of the template process, and automatically generates the code of
the template process, and

– prove that synthesizing SS bidirectional rings is undecidable.

Organization. Section 2 presents some basic concepts. Section 3 shows that syn-
thesizing SS unidirectional rings is decidable. Section 4 investigates the synthesis
of SS bidirectional rings and proves that this problem is undecidable. Section 5
examines related work. Finally, Sect. 6 makes concluding remarks and discusses
future extensions of this work.

2 Basic Concepts

This section presents the definition of parameterized rings, their representation
as action graphs, and self-stabilization. Wlog, we use the term protocol to refer
to parameterized rings as we conduct our investigation in the context of network
protocols. A protocol p for a computer network includes N > 1 processes (finite-
state machines), where each process Pi has a finite set of readable and writeable
variables. Any local state of a process (a.k.a. locality/neighborhood) is determined
by a unique valuation of its readable variables. We assume that any writeable
variable is also readable. The global state of the protocol is defined by a snapshot
of the local states of all processes. The state space of a protocol, denoted by Σ,
is the universal set of all global states. A state predicate is a subset of Σ. A
process acts (i.e., transitions) when it atomically updates its state based on
its locality. The locality of a process is defined by the network topology. In
this paper, our focus is on the ring topology. For example, in a unidirectional
ring consisting of N processes, each process Pi (where i ∈ ZN , i.e., 0 ≤ i ≤
N − 1) has a neighbor Pi−1, where subtraction and addition are in modulo
N . We assume that processes act one at a time (i.e., interleaving semantics).
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Thus, each global transition corresponds to the action of a single process from
some global state. An execution/computation of a protocol is a sequence of states
C0, C1, . . . , Ck where there is a transition from Ci to Ci+1 for every i ∈ Zk. We
consider symmetric protocols, where processes have identical rules for changing
their state and the rules are parameterized. That is, the code of each process
can be instantiated from a template process. We use triples of the form (a, b, c)
to denote actions (xi−1 = a ∧ xi = b −→ xi := c; ) of the template process
Pi in a unidirectional ring protocol. An action has two components; a guard,
which is a Boolean expression in terms of readable variables and a statement
that atomically updates the state of the process once the guard evaluates to
true; i.e., the action is enabled.

Definition 1 (Transition Function). Let Pi be any process with a state vari-
able xi in a unidirectional ring protocol p. We define its transition function
ξ : Σ × Σ → Σ as a partial function such that ξ(a, b) = c if and only if Pi has
an action (xi−1 = a ∧ xi = b −→ xi := c; ). In other words, ξ can be used to
define all actions of Pi in the form of a single parametric action:

((xi−1, xi) ∈ Pre(ξ)) −→ xi := ξ(xi−1, xi);

where (xi−1, xi) ∈ Pre(ξ) checks to see if the current xi−1 and xi values are in
the preimage of ξ.

Visually, we depict the actions of a process (hence a protocol) by a labeled
directed multigraph, called the action graph, where each action (a, b, c) in the
protocol appears as an arc from node a to node c labeled b in the graph. For
example, consider the self-stabilizing Sum-Not-2 protocol given in [15]. Each
process Pi has a variable xi ∈ Z3 and actions (xi−1 = 0 ∧ xi = 2 −→ xi := 1),
(xi−1 = 1 ∧ xi = 1 −→ xi := 2), and (xi−1 = 2 ∧ xi = 0 −→ xi := 1). This
protocol converges to a state where the sum of each two consecutive x values
does not equal 2. The set of such states is formally specified as the state predicate
∀i : (xi−1 + xi �= 2). We represent this protocol with a graph containing arcs
(0, 2, 1), (1, 1, 2), and (2, 0, 1) as shown in Fig. 1.

0 1 2
2

1

0

Fig. 1. Graph representing Sum-
Not-2 protocol.

Since protocols consist of self-disabling
processes, an action (a, b, c) cannot coexist
with action (a, c, d) for any d. Moreover, when
the protocol is deterministic, a process can-
not have two actions enabled at the same
time; i.e., an action (a, b, c) cannot coexist
with an action (a, b, d) where d �= c.

Livelock, deadlock, and closure. A legitimate state captures a state to which
a protocol is required to recover. Let I be a predicate representing the legitimate
states for some protocol p. A livelock of p is an infinite execution that never
reaches I. When legitimate states are not specified, we assume a livelock is any
infinite execution. A deadlock of p is a state in ¬I that has no outgoing transition;
i.e., no process is enabled to act. The state predicate I is closed under p when
no transition exists that brings the protocol from a state in I to a state in ¬I.
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Definition 2 (Self-stabilization). A protocol p is self-stabilizing [10] with
respect to its legitimate state predicate I iff from each illegitimate state in ¬I, all
executions reach a state in I (i.e., convergence) and remain in I (i.e., closure).
That is, p is livelock-free and deadlock-free in ¬I, and I is closed under p.

Definition 3 (Weak Stabilization). A weakly stabilizing protocol ensures
that from each illegitimate state in ¬I, there is some execution that reaches a
state in I (i.e., reachability) and remains in I.

Next, we represent some of our previous result that we shall use in this paper.

Propagations and Collisions. When a process acts and enables its suc-
cessor in a unidirectional ring, it propagates its ability to act. The successor
may enable its own successor by acting, and the pattern may continue indef-
initely. Such behaviors can be represented as sequences of actions that are
propagated in a ring, called propagations. A propagation is a walk through
the action graph. For example, the Sum-Not-2 protocol has a propagation
〈(0, 2, 1), (1, 1, 2), (2, 0, 1), (1, 1, 2)〉 whose actions can be executed in order by
processes Pi, Pi+1, Pi+2, and Pi+3 from a state (xi−1, xi, xi+1, xi+2, xi+3) =
(0, 2, 1, 0, 1). A propagation is periodic with period n iff its j-th action and (j+n)-
th action are the same for every index j. A periodic propagation corresponds
to a closed walk of length n in the graph. The Sum-Not-2 protocol has such a
propagation of period 2: 〈(1, 1, 2), (2, 0, 1)〉. A collision occurs when two consec-
utive processes, say Pi and Pi+1, have enabled actions; e.g., (a, b, c) and (b, e, f),
where b �= c. In such a scenario, xi−1 = a, xi = b, xi+1 = e. A collision occurs
when Pi executes and assigns c to xi. If that occurs, Pi will be disabled (because
processes are self-disabling), and Pi+1 becomes disabled too because xi is no
longer equal to b. As a result, two enabled processes become disabled by one
action.

“Leads” Relation. Consider two actions A1 and A2 in a process Pi. We say the
action A1 leads A2 iff the value of the variable xi after executing A1 is the same
as the value required for Pi to execute A2. Formally, this means an action (a, b, c)
leads (d, e, f) iff e = c. Similarly, a propagation leads another iff for every index
j, its j-th action leads the j-th action of the other propagation. In the action
graph, this corresponds to two walks where the label of the destination node of
the j-th arc in the first walk matches the arc label of the j-th arc in the second
walk (for each index j). In [22], we prove the following theorem:

Theorem 1. A unidirectional ring protocol of symmetric, self-disabling
processes has a livelock for some ring size iff there exist some m propagations
with some period n, where the (i − 1)-th propagation leads the i-th propagation
for each index i modulo m; i.e., the propagations successively lead each other
modulo m.

Undecidability of Verification. We have shown [15] that verifying deadlock-
freedom in unidirectional rings is decidable. However, checking livelock-freedom
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is an undecidable problem (specifically Π0
1 -complete) for unidirectional ring pro-

tocols (with self-disabling and deterministic processes) [22]. The following results
hold for cases where the set of legitimate states I is a conjunctive predicate; i.e.,
I = ∀i : L(xi−1, xi), where L(xi−1, xi) captures the locality of process Pi, which
depends on its own state and that of its predecessor. Varghese [28,29] presents
methods for specifying some global state predicates as conjunctive predicates.

Theorem 2. Verifying livelock-freedom in a parameterized unidirectional ring
protocol (with self-disabling and deterministic processes) is undecidable [22].

We have also shown that verifying livelock-freedom remains undecidable even
for a special type of livelocks, where exactly one process is enabled to execute
in every state of the livelocked computation; i.e., deterministic livelocks [22].

Theorem 3. Verifying livelock-freedom in a parameterized unidirectional ring
protocol (with self-disabling and deterministic processes) remains undecidable
even for deterministic livelocks [22].

The above results imply the undecidability of verifying self-stabilization for
parameterized unidirectional rings.

Theorem 4. Verifying self-stabilization for a parameterized unidirectional ring
protocol (with self-disabling and deterministic processes) is undecidable [22].

3 Decidability of Synthesizing Unidirectional Rings

In this section, we show that synthesizing SS unidirectional rings is decidable.

Theorem 5. Given a predicate I
def= (∀i : L(xi−1, xi)) and variable domain M

for a unidirectional ring, L(γ, γ) is true for some γ if and only if there exists a
protocol that stabilizes to I.

Proof. ⇒: Assume that no γ exists such that L(γ, γ) is true. This implies that
∀i : xi−1 �= xi in I. In this case, a stabilizing protocol would be a coloring
protocol, which Bernard et al. [5] have shown is impossible for a unidirectional
ring of size greater than M . (If the ring has at most M processes, then assigning
unique values modulo M will provide a coloring.) This means if we check the
entire domain ZM and find no value that makes L true, then using Bernard et
al.’s result we can decide that no solution exists. That is, the problem is decidable
when L(γ, γ) is false for all γ ∈ ZM . We are left to show how to construct a
stabilizing protocol p when some γ can make L(γ, γ) true. One could argue that
a stabilizing protocol could contain just an action ¬L(xi−1, xi) → xi := γ, but
this protocol is just weakly stabilizing.

Find a γ such that L(γ, γ) is true. Assuming such a γ exists, it is trivial to find
it by trying each value in ZM . Intuitively, we will make the stabilizing protocol
p converge to (∀i : xi = γ) unless it reaches some other state that satisfies I.
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Fig. 2. Synthesis of stabilization to ∀i : L(xi−1, xi), where L(xi−1, xi)
def
=
(
(x2

i−1 + x3
i )

mod 7 = 3) and xi ∈ Z7.

Figure 2 provides a running example where L(xi−1, xi)
def= ((x2

i−1 + x3
i ) mod 7 =

3) and variables have domain size M = 7. We arbitrarily choose γ = 5 (instead
of γ = 4) to satisfy L(γ, γ); i.e., the solution is not unique.

Construct relation L′ from arcs that form cycles in the digraph of
L. The relation L can be represented as a digraph such that each arc (a, b) is
in the graph iff L(a, b) is true. Let G be this digraph (e.g., formed by both
solid and dashed lines in Fig. 2a). Closed walks in G characterize all states in
(∀i : L(xi−1, xi)) [15]. Derive a digraph G′ (and corresponding relation L′) from
G by removing all arcs that are not part of a cycle (e.g., arcs (4, 1), (3, 1), (2, 6),
and (5, 6) in Fig. 2a). Since closed walks of G characterize states in I, we know
that for every arc (a, b) in G that is not part of a cycle, no legitimate state
contains xi−1 = a ∧ xi = b at any index i. All closed walks of G are retained by
G′, which means I

def= (∀i : L′(xi−1, xi)).

Construct a bottom-up spanning tree τ with γ at the root. Let τ be a
function that returns the parent of a node in a tree; i.e., τ(a) = c means that
c is the parent of a. First, let τ(γ) def= γ represent the root of the tree. Next,
create a tree by backward reachability from γ in G′, and assign τ(a) def= c for
each a that has a path a, c, . . . , γ in G′. Finally, let τ(a) def= γ for each node a
that has no path to γ in G′. These extra arcs of τ create no cycles. Since all arcs
of G′ are involved in cycles, any walk in G′ can find its way back to a previously
visited node. Therefore, if a node cannot reach γ in G′, then γ cannot reach that
node. Since the extra arcs of τ would not introduce cycles in G′, we know that
(∀i : (L′(xi−1, xi) ∨ τ(xi−1) = xi)) is yet another equivalent way to write I.

Construct each action (a, b, c) of p by labeling each arc (a, c) of τ with all
b values such that (¬L′(a, b) ∧ τ(a) �= b). In this way, τ defines how a process
Pi in p will assign xi when it detects an illegitimate state. Figure 2b illustrates
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the solution protocol for our example, as well as τ if we ignore the arc labels.
The protocol p is written succinctly by the following action for each process Pi.

¬L′(xi−1, xi) ∧ τ(xi−1) �= xi −→ xi := τ(xi−1);

This protocol p stabilizes to I. Deadlock-freedom in ¬I and closure of I
hold because each process Pi is enabled to act iff (¬L′(xi−1, xi) ∧ τ(xi−1) �= xi)
holds. Livelock-freedom holds because all periodic propagations of p consist of
actions of the form (γ, b, γ) where L(γ, b) is false (e.g., the self-loops of Node 5
in Fig. 2b). Obviously none of these (γ, b, γ) actions lead each other since b �= γ;
i.e., no periodic propagations exist. Thus, based on Theorem 1, no livelocks exist
in ¬I for any ring size greater than M . Therefore, the protocol p stabilizes to I
for any number of processes.

Proof ⇐: Let p be a protocol p that stabilizes to I for all ring sizes. Thus, closure
of I in p, deadlock-freedom and livelock-freedom of p in ¬I must hold. Since
processes are deterministic and self-disabling, each process Pi contains some
actions that are enabled in ¬L(xi−1, xi). After the execution of such actions
L(xi−1, xi) holds by setting xi to some value λ ∈ M , and Pi becomes disabled.
Due to livelock-freedom of p and Theorem 1, no periodic propagations should
exists in p. That is, there are no closed walks in the action graph of p other than
self-loops over λ. The existence of such self-loops means L(λ, λ) holds. �

Using the proof of Theorem 5, we present Algorithm 1. Since this algorithm
is self-explanatory, we just prove its soundness and completeness.

Theorem 6 (Soundness). Algorithm 1 is sound.

Proof. The proof of soundness includes two parts, namely proof of closure of I
and convergence to I, where I = ∀i : L(xi−1, xi). Step 7 of the algorithm guar-
antees closure. Steps 4 to 7 ensure that starting from any state where L(xi−1, xi)
does not hold, process Pi will eventually set the value of xi to γ, hence evalu-
ating L(xi−1, xi) to true. Likewise, every process would perform local recovery,
thereby eventually ensuring that ∀i : L(xi−1, xi) holds. �
Theorem 7 (Completeness). Algorithm 1 is complete.

Proof. This algorithm declares failure only in Step 2, where no value γ exists
that can satisfy L(xi−1, xi). The non-existence of some value that can make
L(xi−1, xi) true implies that no process can recover to its local invariant; hence
self-stabilization to I is impossible. �

We now present some case studies for the synthesis of parameterized unidi-
rectional symmetric rings using Algorithm 1.

Sum-Not-2 protocol. The Sum-Not-2 protocol is a simple but interesting
protocol that illustrates the complexities of designing self-stabilizing systems.
This is again a protocol on unidirectional parameterized rings with a domain of
M = 3 values; i.e., {0, 1, 2}. The invariant of the protocol specifies the legitimate
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Algorithm 1. Synthesizing parameterized self-stabilizing unidirectional rings.
SynUniRing(L(xi−1, xi): state predicate, M : domain size)

1: Check if a value γ ∈ ZM exists such that L(γ, γ) = true.
2: If no such γ exists, then return ∅ since no solution exists for systems with more

than M processes due to [5].
3: Construct relation L as a graph G = (V, E), where each vertex v ∈ V represents a

value in ZM and each e ∈ E captures an arc (v, v′) from value v to v′ if and only
if L(v, v′) = true.

4: Induce a subgraph G′ = (V ′, E′) that contains all nodes of G that participate in
cycles involving γ.

5: Compute a spanning tree of G′ rooted at γ.
6: For each node v ∈ G that is absent from G′, include an arc from v to the root of

the spanning tree of G′. The resulting graph would still be a tree, denoted T .
7: Include a self-loop (γ, γ) at the root of T .
8: Transform T into an action graph of a protocol by the following step:

For each arc (a, c) in T , where a, c ∈ ZM , label (a, c) with every value b
for which L(a, b) = false and b �= c.

9: Return the actions represented by the arcs of T .

states where ∀i : (xi−1 + xi) �= 2 holds, where addition and subtraction are in
modulo 3. As such, for each process Pi, we have L(xi−1, xi)

def=(xi−1 + xi) �= 2.
Figure 3a illustrates the directed graph representing L in the locality of a process.
(Notice that processes are symmetric.) In this case, there are two candidate val-
ues for γ, where L(γ, γ) holds; i.e., values of 0 and 2. Wlog, we choose γ = 0 and
form the spanning tree of the graph G with the root of 0. Stripping the graph
in Fig. 3b from the labels on its arcs would give us the spanning tree of G, and
the graph with the labels is the action graph of the synthesized self-stabilizing
protocol (in Fig. 3c).

Even Difference. The Even Difference protocol specifies the local invariant of
each process Pi as L(xi−1, xi)

def=((xi−1 −xi) mod 2) = 0, where M = 4. Thus, the
set of legitimate states is ∀i : ((xi−1 − xi) mod 2) = 0. Notice that if there is an
even (respectively, odd) value in the ring, then all values will be even (respec-
tively, odd) in a legitimate state. As such, from any state, Even Difference will
converge to either an all-odd or an all-even state. This protocol has applications
in choosing a common parity policy in a distributed system, where from an arbi-
trary state all nodes will agree on a common parity policy. Figure 4a represents
the graph corresponding to the predicate L. All four values in the domain M
are candidate values for γ. We choose γ = 1, and generate the action graph of
Fig. 4b. Figure 4c illustrates the actions of the self-stabilizing protocol. Please
notice that this protocol would recover to global states where all values are odd.
Symmetrically, one could generate a protocol that would stabilize to states where
all values are even. This could be achieved by strengthening L(xi−1, xi) by an
additional constraint (xi mod 2 = 0) (respectively, (xi mod 2 �= 0)).
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(a) Graph representing predicate
L(xi−1, xi) = ((xi−1 + xi) �= 2) where
each xj ∈ Z3
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(b) Action graph of the self-stabilizing
protocol.

xi−1=0 ∧ xi=2 −→ xi := 0;

xi−1=1 ∧ xi=1 −→ xi := 0;

xi−1=2 ∧ xi=0 −→ xi := 1;

(c) Actions of each process Pi.

Fig. 3. Synthesis of parameterized Sum-Not-2.
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(a) Graph representing predicate
L(xi−1, xi) = ((xi−1−xi) mod 2 = 0)
where each xj ∈ Z4.
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(b) Action graph of the self-stabilizing
protocol.

(xi−1=1 ∨ xi−1=3) ∧ (xi=0 ∨ xi=2) −→ xi := 1;

(xi−1=0 ∨ xi−1=2) ∧ xi=3 −→ xi := 1;

(c) Actions of each process Pi.

Fig. 4. Synthesis of parameterized Even Difference.

4 Undecidability of Synthesizing Bidirectional Rings

While synthesizing parameterized self-stabilizing protocols is decidable for uni-
directional rings, we show that synthesis is undecidable for bidirectional rings.

Theorem 8. Given a predicate I
def= (∀i : L(xi−1, xi, xi+1)) and variable domain

M (such that each xi ∈ ZM ) for a bidirectional ring, it is undecidable (Π0
1 -

complete) whether a protocol can stabilize to I for all ring sizes.

Proof. To show undecidability, we reduce the problem of verifying livelock free-
dom of a unidirectional ring protocol p to the problem of synthesizing a bidirec-
tional ring protocol p′ that stabilizes to I ′, where I ′ has some form determined
by p. We construct I ′ such that exactly one bidirectional ring protocol p′ resolves
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all deadlocks without breaking closure, but it only stabilizes to I ′ if p is livelock-
free. Thus, p′ is the only candidate solution for the synthesis procedure, and
the synthesis succeeds iff p is livelock-free. Our reduction is broken into two
parts: (1) showing that exactly one particular p′ resolves all deadlocks without
breaking closure, and (2) showing that p′ is livelock-free iff p is livelock-free.

Silent stabilization. Wlog, we present our proof for silent stabilizing protocols
where the protocol p′ does not take any actions in I ′.

Assumptions about p. We assume that p (1) has a deterministic livelock that
(2) involves all actions and (3) includes all values. These assumptions do not
affect the undecidability of verifying livelock freedom in p. First, by Theorem
3, deterministic livelock detection is undecidable in unidirectional rings. Second,
deterministic livelock detection remains undecidable when the livelock involves
all actions; otherwise, we could detect deterministic livelocks by checking each
subset of actions. Third, deterministic livelock detection is undecidable even
when the livelock involves all values; otherwise, we could detect determinis-
tic livelocks by checking each subset of values. Thus, verifying livelock-freedom
under our assumptions for p remains undecidable.

Forming I′ from p. To form I ′, we augment each process Pi with a new variable
x′
i−1 ∈ ZM , which is a local copy of xi−1, along with its xi ∈ ZM , making its

effective domain size M ′ def= M2. Since p′ is a bidirectional ring, Pi can read
xi−1 and x′

i−2 from Pi−1 and can read xi+1 and x′
i from Pi+1. For each action

(a, b, c) ∈ ξ, we use xi−1 = a and x′
i = b to encode the precondition of a Pi

action (a, b, c), and xi = c to encode its assignment. Notice that x′
i is from Pi+1

as depicted in Fig. 5. Thus, we must ensure that x′
i eventually obtains a copy

of xi. The resulting I ′ def= (∀i : L′(xi−1, xi)) is as follows with instances of xi

replaced with x′
i and a condition that x′

i−1 is a copy of xi−1.

L′(xi−1, xi)
def=

(
(xi−1, x

′
i) ∈ Pre(ξ)

=⇒ x′
i−1 = xi−1 ∧ xi = ξ(xi−1, x

′
i)

)

Forming p′ from I′. We want to show that a particular p′ stabilizes to I ′

when p is livelock-free, and it is the only bidirectional ring protocol that resolves
deadlocks without breaking closure. This p′ has the following action for each Pi.

(xi−1, x
′
i) ∈ Pre(ξ) ∧ (

x′
i−1 �= xi−1 ∨ xi �= ξ(xi−1, x

′
i)

)

−→ x′
i−1 := xi−1; xi := ξ(xi−1, x

′
i);

Notice that p′ is deadlock-free and preserves closure since a process Pi can
act iff its L′(xi−1, xi) is unsatisfied. We now show that this p′ is the only such
protocol. Consider a ring of 5 processes executing p′ where a process P2 and its
readable variables from P1 and P3 have arbitrary values. By our earlier assump-
tions about p, it has an action (a, b, c) for any given a or c (not both), and
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Fig. 5. Topology for bidirectional ring protocol p′ in Theorem 8. Each process Pi owns
x′
i−1 and xi.

(a, c) �∈ Pre(ξ) because processes of p are self-disabling. Thus, we can choose x0

of P0 to make (x0, x
′
1) �∈ Pre(ξ) for P1, and we can choose x′

3 of P4 to make
(x2, x

′
3) �∈ Pre(ξ) for P3. We have satisfied L′

1 and L′
3, and we can likewise satisfy

L′
0 and L′

4 by choosing values of x4 and x′
4 respectively. Thus, p′ is in a legitimate

state iff L′
2 is satisfied. Therefore, if L′

2 is satisfied, then P2 cannot act without
adding a transition within I ′ (i.e., breaking closure). As a consequence, no other
process but P2 can act if L′

2 is not satisfied. Since processes are symmetric, each
Pi of p′ must have the above action to ensure x′

i−1 = xi−1 and xi = ξ(xi−1, x
′
i)

when (xi−1, x
′
i) �∈ Pre(ξ).

If p has a livelock, then p′ has a livelock. Assume p has a livelock. We
show that p′ has a livelock too. We prove this by showing that p′ can simulate
the livelock of p. By assumption, p has a deterministic livelock from some state
C = (c0, . . . , cN−1) on a ring of size N where only the first process is enabled;
i.e., (ci−1, ci) ∈ Pre(ξ) only for i = 0. Let C ′ = (c′

0, . . . , c
′
N−1) be the state of this

system after all processes act once. That is, c′
0 = ξ(cN−1, c0) and c′

i = ξ(c′
i−1, ci)

for all other i > 0. We can construct a livelock state of p′ from the same xi = ci
values for all i and x′

i = ci for all i < N − 1. The value of x′
N−1 can be cN−1,

but can be anything else such that (xN−2, x
′
N−1) �∈ Pre(ξ). In this state of p′,

only P0 is enabled since we assumed that (ci−1, ci) ∈ Pre(ξ) only holds for i = 0.
P0 then performs x0 := c′

0 and x′
N−1 := cN−1. This does not enable PN−1, but

does enable P1 to perform x1 := c′
1 and x′

0 := c′
0. The execution continues for

P2, . . . , PN−1 to assign xi := c′
i and x′

i−1 := c′
i−1 for all i > 1. At this point the

system is in a state where xi = c′
i for all i and x′

i = c′
i for all i < N − 1. The

value of x′
N−1 is cN−1, which leaves it disabled. This state of p′ matches the

state C ′ of p using the same constraints as we used to match the initial state C.
Therefore, p′ can continue to simulate p, showing that it has a livelock.

If p is livelock-free, then p′ is livelock-free. Assume p is livelock-free. We
show that p′ is livelock-free too. First, notice that if Pi+1 acts immediately after
Pi in p′, then Pi will not become enabled because xi = x′

i and self-disabling
processes of p ensure that (a, c) �∈ Pre(ξ) for every action (a, b, c). This means
that in a livelock, if an action of Pi+1 enables Pi, then Pi−1 must have acted since
the last action of Pi. As such, an action of Pi−1 must occur between every two
actions of Pi in a livelock of p′. The number of such propagations clearly cannot
increase, and thus must remain constant in a livelock. In order to avoid collisions,
an action of Pi+1 must occur between every two actions of Pi. Since Pi+1 always
acts before Pi in a livelock of p′, it ensures that x′

i = xi when Pi acts. By making
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this substitution, we see that Pi is only enabled when (xi−1, xi) ∈ Pre(ξ), and
assigns xi := ξ(xi−1, xi), which is equivalent to the behavior of protocol p. Since p
is livelock-free, p′ must also be livelock-free, hence self-stabilizing iff p is livelock-
free. Therefore, synthesizing stabilization on bidirectional rings is undecidable.

5 Related Work

This section discusses existing work related to verification and synthesis of para-
meterized systems.

Verification. The literature for the verification of parameterized systems can
broadly be classified into undecidability results and verification methods for
decidable cases. In their seminal work, Apt and Kozen [2] prove that verify-
ing an Linear Temporal Logic (LTL) formula for a parameterized system is in
general undecidable. Suzuki [27] extends their results by showing that the verifi-
cation problem remains undecidable for unidirectional ring protocols of symmet-
ric processes. While Farahat and Ebnenasir [15] show that verifying deadlock-
freedom of parameterized rings is decidable, Fabret and Petit [14] prove that
if the underlying communication graph is a planar grid, then deadlock-freedom
becomes undecidable. In our previous work [22], we show that verifying livelock-
freedom is undecidable even on a symmetric ring of self-disabling and determin-
istic processes. Our results imply the undecidability of verifying self-stabilization
on unidirectional rings. Several researchers present cutoff theorems that reduce
the verification of parameterized systems to the verification of a small-scale
instantiation (i.e., cutoff) thereof such that the parameterized system meets
a specific property iff its cutoff instantiation satisfies the desired property. For
example, Emerson and Namjoshi [13] provide a cutoff theorem for the verifica-
tion of LTL without the next-state operator in token passing rings. Several other
researchers [3,12,17,24] extend Emerson and Namjoshi’s results for other topolo-
gies and for different properties/systems. Methods based on regular model check-
ing [1,7] represent states of parameterized rings as strings of arbitrary length,
and a protocol is represented by a finite state transducer. The properties such as
deadlock and livelock-freedom are formulated in an automata-theoretic context.
The aforementioned approaches are mostly used to verify local properties that
are specified in terms of the locality of a process or a proper subset of processes,
whereas self-stabilization includes a global liveness property that must be met
by local actions of all processes.

Synthesis. Existing synthesis methods can be classified into problem-specific
and general approaches. The problem-specific methods focus on generating a
parameterized solution for a specific problem (e.g., counting [11,25], consen-
sus [4], sorting [8], etc.). General methods [16,20] for the synthesis of parameter-
ized systems are mainly specification-based in that they provide a decision proce-
dure for extracting the skeleton of symmetric processes from their temporal logic
specifications. Some existing methods [6] exploit cutoff theorems to generate the
template code of parameterized systems. Moreover, several researchers [6,11,21]
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utilize SMT/SAT solvers for synthesis where they either directly encode the
synthesis problem as a set of constraints fed into the solver, or exploit counter-
example guided search [11] to find solutions in a bounded scope.

While existing methods are effective in their stated objectives, they often
make restrictive assumptions (e.g., synchrony, fairness) to mitigate the complex-
ity of synthesis. We believe that part of this complexity is because of the way
synthesis is conceived; that is, generate code skeleton from temporal logic spec-
ifications. By contrast, we think that synthesis of parameterized systems must
be done on a property-based fashion where we devise methods for the synthe-
sis of systems that meet a specific property (e.g., self-stabilization). Such an
investigation can be extended to different network topologies (e.g., tree, mesh).

6 Conclusions and Future Work

In this paper, we investigated the problem of synthesizing parameterized rings
that have the property of self-stabilization. The ring processes are deterministic
and have constant state space. Moreover, we consider self-disabling processes,
where a process disables itself after executing an action until it is enabled
again by the actions of other processes. While it is known that verifying self-
stabilization of unidirectional rings is undecidable [22], in this paper, we present
a surprising result that synthesizing self-stabilizing unidirectional rings is actu-
ally decidable. We present a sound and complete algorithm for the synthesis of
self-stabilizing unidirectional rings, and apply our algorithms to a few case stud-
ies. We also show that the synthesis problem becomes undecidable if we assume
bidirectional rings. As an extension to this work, we are investigating the applica-
tion of our approach to other topologies such as trees and meshes. Furthermore,
we are integrating our algorithms in Protocon (http://asd.cs.mtu.edu/projects/
protocon/), which is a framework for the synthesis of self-stabilizing systems.
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Abstract. The Peer Model is a model for the specification of coordi-
nation aspects found in concurrent and distributed systems. It provides
modeling constructs for flows, time, remoting and exception handling.
The main concepts of the ground model are peers, wirings, containers,
entries and services. Its intent is to introduce specific modeling abstrac-
tions of concurrency and distribution to make designs more readable
and suitable for larger problems. However, there still exist coordination
aspects that are not straight forward to model with it. In this paper,
therefore the Peer Model is extended by modeling constructs for nested,
distributed transactions based on the Flex transaction model. This app-
roach eases the advanced control of structured and distributed coordi-
nation scenarios that have to cope with complex, dependent and con-
current flows. The evaluation introduces a coordination challenge that
requires adaptive and transactional distribution of resources, dependen-
cies between concurrent activities, error handling and compensation. It
demonstrates the improvements that can be achieved with the new mod-
eling concepts.

Keywords: Coordination model · Flexible transactions · Concurrent
and distributed systems

1 Introduction

Cooperative information systems involve demanding coordination aspects. Sep-
arating coordination from application logic and providing precise models of the
coordination is crucial in order to gain robust, distributed software systems [1].
The coordination pattern approach [2] suggests generalizing the aspects of how
the participating and distributed processes interact. This enables coordination
generics to become reusable among different applications and domains. A major
benefit is that these complex parts of a distributed application need not be
re-invented for each new application, thus contributing to more reliable systems.

Coordination requirements [3] extend far beyond routing information
between processes: They comprise management of complex dependencies among
many concurrent and distributed processes in real-time. Therefore, traditional
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coordination models quite often reach their limitations with regard to expressive
power and usability of resulting models. Well known examples are Petri Nets [4],
Actor Model [5] and Reo [6]. All are general and powerful and have mathemat-
ical foundations. The Actor Model abstracts asynchronous communication, but
the behavior of an actor intertwines application logic with communication and
synchronization logic. In contrast to Petri Nets and Actor Model, Reo provides
clear separation of coordination from application logic; however, the abstraction
level is similar to Petri Nets, where larger models tend to become unreadable
[7,8]. An advantage of Petri Nets is that with the concept of transitions they
provide a powerful modeling construct for atomic transactions.

The Peer Model is a coordination model that introduces specific assumptions
for distributed and concurrent systems in order to make models less complex
and easier to understand. The main abstractions comprise modeling concepts for
local transactions, remoting, flow correlation, exceptions and timing. It separates
coordination from application data and logic. Application data is represented as
a “black box” and application logic is encapsulated into services that manipulate
the application data and are called by the coordination layer.

All mentioned coordination models are able to model any scenario. However,
if the complexity of a use case increases, the strict separation of application and
coordination layer might not be maintained (as coordination logic slips into the
application logic) or the model requires a lot of cumbersome work to specify
details that are not directly related with the problem at hand.

A challenging coordination scenario is defined in Sect. 3 that lets also the
original Peer Model reach its limitations with regard to modeling expressive-
ness. It comprises a factory, distributed and concurrent workers, and shops where
resources can be ordered. The workers continuously execute tasks and compete
for shared resources. Possible concurrency shall be exploited. A further compli-
cating aspect is the distribution of processes. The specific challenges comprise:
complex dependencies between activities, automatic compensation, error and
timeout handling, and distributed transaction management.

This paper presents an extension of the Peer Model by a flexible, distrib-
uted, nested transaction approach termed flexible wiring transactions (FWTX)
in order to ease the design of such advanced coordination scenarios. Also other
coordination models can benefit from this concept. As proof-of-concept for the
new modeling constructs the mentioned factory example is used.

The structure of the paper is as follows: Sect. 2 explains the original Peer
Model. Section 3 introduces a coordination challenge and discusses a solution for
it with the original Peer Model. Section 4 presents the new flexible wiring trans-
action concept (FWTX), inspired by Flex transactions [9]. Section 5 evaluates it
with the coordination challenge, demonstrates that designs become leaner, and
gives a comparison with related coordination models. Section 6 concludes the
paper and gives an outlook for future work.

2 Peer Model

The Peer Model [2,8] is a coordination model with high-level modeling abstrac-
tions for concurrent and distributed systems: A peer relates to an actor in the
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Actor Model [5]. It is an autonomous worker with ingoing and outgoing mail-
boxes, termed input and output containers (PIC and POC). The foundation of
containers is tuple-space-based communication [10,11]. A container relates to
a sub-space that maintains tuples (called entries) and supports transactional
queries on them. The coordination behavior of the peer is explicitly modeled
by wirings that are similar to Petri Net transitions [4]. It is triggered by events
represented as entries written into containers. A wiring possesses links for the
transport of entries between containers. Incoming links are termed guards and
outgoing ones actions. A wiring stands for concurrent instances that actively and
repeatedly execute the wiring specification. A wiring instance is one atomic local
space transaction, termed wiring transaction (WTX) on the peer’s space con-
tainers. As transaction mechanism we assume pessimistic locking and repeatable
read isolation level. The operational behavior of a WTX is to execute in the spec-
ified sequential order first guard, then service, and finally action links. The WTX
collects all entries retrieved by guards in an internal and non-transactional con-
tainer that serves as a temporary, local entry collection for this wiring instance.
Service links transport entries between the internal wiring container and the ser-
vice and call the application method. Note that guard and action links set locks
within the WTX on the space containers. All artifacts have properties. System
properties have a pre-defined semantics, e.g. if a time-to-live (ttl) property on
a WTX or on a link expires, this causes the current WTX to rollback and start
a new instance.

2.1 Artifacts of the Ground Model

Property prop = (label, val). label is a name, and val denotes a value. A label
that defines a system property is written in typewriter style, otherwise it is an
application property. The property is named after its label.

Entry e = Eprop. Eprop is a set of properties {prop1, prop2, . . . , propn}. Entry
system properties are e.g., type (obligatory coordination type of the entry), ttl
(time-to-live: if it expires the entry is wrapped into an exception entry1; default
is infinite), fid (flow identifier), and data (application-specific data).

Container c = (cid,E,Coord,Cprop). A container stores entries. cid is a unique
name, E a set of entries, Coord a set of coordinators (see Query below), and
Cprop a set of system properties. A container relates to an XVSM container [11].
We differentiate between space containers and internal containers. The former
ones support transactions and blocking behavior. Entries are retrieved by a query
that necessarily requires the coordination type of the entry.

Query q = (type, cnt,Sel). type is an entry coordination type. cnt is a number,
a range, or the keyword ALL or NONE, determining the amount of entries to
be selected; default is 1. Sel is a sequence of AND/OR connected selectors. A
selector is lent from the XVSM query mechanism [12]. It refers to a container

1 In the assumed configuration exception entries are written into the peer’s POC.
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coordinator (e.g. fifo, key, label, any) or is a selection expression involving
entry properties, variables and system functions.

Link l = (c1, c2, op, q,Expr,Lprop). c1 refers to a source and c2 to a target
container. op ∈ {create, copy, move, delete, test, noop, call}. create creates
new entries and writes them to c2. copy reads entries from c1 and writes them
to c2. move reads and deletes entries from c1 and writes them to c2. delete
reads and deletes entries from c1. test checks entries in c1. noop only executes
q which must not refer to entries. call calls a service. All operations must fulfill
the query q, if it is not empty, on c1. Expr is a sequence of expressions that set or
get properties of selected entries and/or of variables 2. Lprop is a set of system
properties, e.g.: tts (time-to-start: how long the link execution must wait to
start; default is 0), ttl (time-to-live: how long the link execution may be retried
until it succeeds; if it expires, a system entry of type exception is created that
wraps the original entry and provides the type of the original entry in a property
termed ettl; default is infinite), dest (specifies the id of a destination peer to
which all selected entries on an action link are automatically transported via
intermediary I/O peers [2]), flow (if true (default), the link transports only
“flow-compatible” [2] entries – this means that the fid of all entries transported
by links of this WTX must be the same or not set), and mandatory (if true
(default), the fulfillment of the link is obligatory).

Wiring w = (wid,G,S,A, wic,Wprop). wid is a unique name, G is a sequence
of guard links, S is a sequence of service links, A is a sequence of action links,
wic is the id of an internal container, and Wprop is a set of system properties,
e.g., tts (time-to-start; time that the next instance of this wiring waits until
its start; default is 0), and ttl (time-to-live; maximal execution time of one
instance of this wiring; default is infinite). All links are numbered, specifying
an execution order which has impact on concurrency and performance. Entries
selected by guards are written into wic. Then w calls the service links in the
specified sequence. Finally, the wiring executes the action links. c2 of a guard
and c1 of an action link is wic. There is one dedicated wiring in a peer termed
init wiring with its first guard having the identifier “*”; it is fulfilled exactly
once, namely when the peer is activated.

Service s = (sid, app). sid is the name of the service and app a reference to
the implementation of its application logic (method). A service gets entries from
its wiring’s wic as input and emits result entries there (via service links). It has
access to all entry properties including data.

Peer p = (pid, pic, poc,Wid,Spid,Pprop). pid is a unique name, pic and poc are
the ids of incoming and outgoing space containers where p receives and delivers
2 Application variables have the scope of the current wiring instance and start with
a “$”. They are set by Expr. Expr may involve system functions like “fid()” which
generates a new unique flow identifier, as well as system variables (starting with
“$$”) that are set by the system, e.g., $$PID (name of the current peer), $$FID
(actual flow id within the current wiring instance), and $$CNT (number of entries
selected by the current link).
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entries, Wid is a set of wiring ids, Spid is a set of ids of sub-peers, and Pprop is
a set of system properties.

Peer Model PM = (P,W,C). P is the set of all peers including sub-peers, W
is the set of all wirings, and C is the set of all containers in the system.

2.2 Graphical Notation

The graphical representation of the Peer Model is shown in Fig. 1, outlining one
peer with one wiring that has two links and calls one service (the depiction of
service links is skipped). The guard link connects the peer’s pic with the wirings’s
wic, and the action link connects the wiring’s wic with the peer’s poc. Note that
the source space container of a guard can also be the peer’s poc or the poc of a
sub-peer. Analogously the target space container of an action link can also be
the peer’s pic or the pic of a sub-peer. A wiring can have many links that are
numbered with G1, . . ., Gk, S1, . . ., Sm, A1, . . ., An (the link ids are not depicted
in Fig. 1). A peer can have many wirings.

Fig. 1. Example peer.

3 Coordination Challenge

The contrived coordination example is a bakery with autonomous bakers who
are specialized in producing certain products like bread, pizza, cake etc. Each
product requires a defined amount of ingredients (eggs, flour, sugar etc.). The
bakery operator provides the ingredients for the bakers which compete for them.
If an ingredient runs short, the concerned bakers cannot proceed. The bakery
tries to procure all missing ingredients at respective shops.

A baker’s job is to produce doughs for the respective product as fast as
possible and to send each dough immediately to the bakery. For this, he/she
must first get hold of the needed ingredients. Another critical time is the stirring
of the dough. If 5 pieces of dough are ready they form a “charge” that is baked
in the oven. The baker informs the bakery when a charge must be sent to the
oven. Only doughs of the same charge of a baker are baked together. However,
the baker has a timeout for producing one dough. If it exceeds, the current
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charge – although incomplete – shall nevertheless be baked to avoid the risk
of already produced dough to go off, provided the charge contains at least one
dough.

The example is complicated to model, because of challenging dependencies
between the concurrent coordination steps: The occurrence of failures
(the lack of an ingredient) and timeouts (the obtaining of the ingredients or
the dough stirring service takes too long) influence the completion of a charge.
The baker must recognize in real-time whether a charge is complete or whether
the production is stuck (due to errors or timeouts) and inform the bakery to
start the delivery of the current charge to the oven at the right moment. The
bakery is responsible to fill up its stock if resources run low. Let us assume a
simple policy whereby in a defined time interval the bakery checks its stock to be
below a certain boundary and tries to completely fill it up. It orders each kind
of ingredient at a different shop. The distributed procurement transaction
shall succeed only if all ingredients can be purchased; otherwise nothing is bought
and the bakery retries the procurement process later on. Shops are autonomous
and not willing to hold locks on items: They immediately remove the ordered
ingredients from their stock and put them in a temporary container for the
client. If the global transaction succeeds, they deliver the ingredients to the
client; otherwise a compensation must take place that moves the reserved
ingredients back to the shop’s stock. This means that other clients might think
that the shop has no items any more, albeit later on they are put back to the
stock because the client has aborted the global transaction.

3.1 Bakery Without FWTX

Figures 2 and 3 model the use case with the original Peer Model, i.e. without
FWTX. The three main peers types are shown: Baker, Bakery and Shop. Their
behavior is represented by wirings as detailed below for each peer. The dough
production must be split into two wirings to model the acquisition of ingredients
before the dough stirring can start. All phases of the distributed procurement
transaction between bakery and shops and the cleaning up of outdated entries
used by the distributed transaction management must be modeled explicitly.

Baker Peer:

– Init: Create an entry for the next charge with a new fid, a ttl, and 0 doughs
(property k), and set current phase to 1 (A1).

– ProduceDough1: If there is a charge with less than 5 doughs in phase 1 (G1),
then set its phase to 2 (A1) and create a request in the current flow with a
ttl and the baker’s pid, and send it to the bakery, asking to send ingredients
for the next dough (A2).

– ProduceDough2: If there is a charge with less than 5 doughs in phase 2 (G1),
and if the needed ingredients are there (G2–G3), then call the dough stirring
service, increment the dough count of the charge, and set its phase to 1 (A1),
and send the dough, that was produced by the service, within the current
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Fig. 2. Baker and Bakery (without FWTX).
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Fig. 3. Shop (without FWTX).

charge’s flow to the bakery (A2). The WTX is bounded by a timeout (ttl).
If it expires, it performs a rollback, releases all locks on entries, and retries.

– ChargeIncomplete: If the charge has expired and turned into an exception
(G1), then create a new charge with a new flow id (A1), and tell the bakery
to deliver the incomplete charge, referred to by its flow id, to the oven (A2).

– ChargeComplete: If the current charge is complete with 5 doughs (G1), then
start a new charge within a new flow id (A1), and tell the bakery to deliver
the complete charge, referred to by its flow id, to the oven (A2).

Bakery Peer:

– DeliverCharge: Upon receipt of a deliver request (G1), take all doughs of the
same charge (correlated by their flow id) and remember in the local variable
$n how many were taken (G2), and send them to the oven (A1) if there exists
at least one dough.

– SendIngredients: If a sendIngredients request is received (G1) and if the
requested ingredients (G2–G3) are there, then send them to the requesting
baker (A1–A2).

– ProcureStart: In a defined interval (modeled as tts of the wiring) check how
many ingredients are still there (G1–G2). If one of them has fallen below
a defined threshold create a new fid (G3). If ingredients are missing, then
create a ctrl entry within this flow and store it in the PIC in order to control
the distributed procurement transaction (A1), and send an order request for
each ingredient to the corresponding shops (A2–A3).

– ProcureCommit: The information that all shops are in prepared state has
received (G1), and the corresponding ctrl entry (G2) for this flow exists:
Create commit entries within this flow carrying the id of this peer and send
them to all shops with information about the confirmed order (A1–A2).
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– ProcureAbort: A shop has sent an aborted entry (G1), and the corresponding
ctrl entry (G2) is found: Create abort entries within this flow and send them
to all shops (A1–A2).

– CleanUp1: Remove an outdated prepared entry (G1) for which no ctrl entry
exists any more (G2).

– CleanUp2: Remove an outdated aborted entry (G1) for which no ctrl entry
exists any more (G2).

– CleanUp3: Remove an sendIngredient exception (G1).

Shop Peer:

– OrderOk: If an order request arrived (G1), and the required amount of the
ingredient can be taken from the shop’s stock (represented by its PIC) (G2),
then temporarily move these ingredients to the POC with the same fid as
the order (A1), and send a prepared entry to the requesting client within this
flow indicating what has been reserved for it and by which shop (A2).

– OrderNotOk: If an order request is received (G1), but the required amount
of this ingredient is not in stock (G2), then send aborted to the client in this
flow (A1). Note the counter expression “[$n; NONE]” on G2: It models a
range with the meaning “not at least $n entries”.

– Cancel: A client has aborted the distributed transaction (G1), and the
reserved amount of ingredients is therefore withdrawn from the intermedi-
ate storage (G2): Write these ingredients back to the shop’s stock (A1).

– DeliverItems: The client has issued a commit for the distributed transaction
(G1), and the ingredients are therefore removed from the intermediate storage
(G2): Send them to the respective client (A1).

4 Flexible Wiring Transactions (FWTX)

The Flex transaction model [9,13,14] defines nested transactions that allow the
early commit of sub-transactions, thus relaxing the isolation property of transac-
tions. The tradeoff is that so-called compensate actions must be supported. Com-
pensate actions are motivated by Sagas [15]. They are application defined logic
that carries out a compensation of the effects of committed sub-transactions,
however they cannot really “undo” in the strict sense an effect that was already
seen by others, but only perform a “semantic” compensation. They are acti-
vated by the transaction manager if a sub-transaction has committed and then
one of its parent transactions fails. No cascading compensation is done, i.e. if
a sub-transaction commits, it is responsible for the compensation of its sub-
transactions. The Flex transaction model supports compensatable as well as
non-compensatable sub-transactions. The former perform an early commit, the
latter delegate their commit to the caller (cf. nested transactions [16]).

The idea to use a flexible transaction model to coordinate distributed
processes in heterogeneous systems was firstly used by the coordination kernel
[14], implementing a distributed virtually shared object space. The coordination
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kernel extends the Flex transaction model by on-commit and on-abort actions
that are called if a transaction commits respectively aborts. It was the basis for
the later CORSO (coordinated shared objects) coordination system [17] that
demonstrates that the Flex transaction model can be implemented efficiently.

We adapt here this concept for the Peer Model. The local transaction of
a wiring (WTX) is extended towards flexible wiring transactions (FWTX). A
WTX locally executes all links in one atomic step (see Sect. 2.1). A FWTX in
addition supports nested flexible transactions, as well as compensate actions
(optionally cascading or not), on-commit actions, on-top-commit actions, and
on-abort actions. The definition of a wiring is enhanced by introducing passive
wirings which are not actively executing instances, but must be activated by
other FWTXs. Passive wirings therefore may take input parameters so that the
calling FTWX can pass local variables values (by value). Note: the communica-
tion between peers must be carried out by exchanging entries.

An instance of a passive wiring is activated by a parent FWTX either
(i) via a guard link, or (ii) as a compensate, on-commit, on-top-commit or
on-abort action (which in turn are FWTXs). For (i) the link definition (see
Sect. 2.1) is extended in that op can also be wiring, denoting the sub-wiring to
be called in a new sub-FWTX. For (ii) new wiring system properties (Wprop) are
introduced: on-top-commit, on-commit, on-abort, and compensate to specify
a passive local or remote wiring; and a boolean property termed cascading
to define whether a compensation action is cascading or not. Parameters to be
passed to the sub-wiring activation are modeled as part of Expr as variables,
where the i-th parameter is referred to by $i. A sub-FWTX is activated exactly
once. It inherits the flow id of the parent-FWTX, and vice versa, if at the time
of its activation the flow id of the parent-FWTX is not yet determined, it can
set it.

A parent FWTX is only dependent on synchronous sub-FWTXs that are
called via guard links, provided that the property mandatory of this link is not
turned off. The link execution must wait until the sub-FWTX – which can be
a remote one – has finished. This concept extends the expressiveness of guards
in that it becomes possible to send a request to a remote peer and wait in a
subsequent guard for entries that the peer sends back. Otherwise this would
require two or more wirings – implying that the flow of control becomes more
complicated – as well as the explicit treatment of possible errors.

Let a FWTX X have an on-commit (OC), an on-top-commit (OTC), an on-
abort (OA), and a compensate (COMP) action. OC is called immediately after X
has committed. OTC is called immediately after the top-level-FWTX of X has
committed. If X is the top-level-FWTX then OTC is called immediately after
OC. OA is called immediately after X has aborted. COMP is called if X has com-
mitted and later on a parent-FWTX of it aborts. It runs asynchronously to X.
If cascading is true, then the compensation is recursively propagated to all sub-
FWTXs of X that were called via guard links. X waits with the execution of its next
wiring instance (X’) until all OC, OTC or OA executions have completed. The
time how long it waits can optionally be configured by respective ttl wiring sys-
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tem properties for on-(top-)commit and on-abort actions. X is neither dependent
on OC, OTC, COMP nor OA. On-commit, on-top-commit, on-abort and compen-
sate actions are automatically committed.

The distributed transaction managers jointly control the execution of
FWTXs: A FWTX must persist the information about each called sub-FWTX.
If FWTX itself is nested, it must store its parent-FWTX and top-level-FWTX.
It passes the id of its own FWTX and the top-level FWTX to each called sub-
FWTX. If a sub-FWTX commits or aborts, it reliably sends this decision to its
parent-FWTX, i.e. it repeats the sending until an acknowledgment is received.
If it commits, it stores its compensate action until it receives the final decision
of the top-level-FWTX. The necessary assumptions are that a crashed site even-
tually will recover and that eventually each pair of sub-FWTX and its direct
parent-FWTX is available at the same time.

The model avoids that resources are locked for a long period of time or
forever. The interesting error cases are caused by dependent sub-FWTX acti-
vations via guards. Breaking it down to the pair of a parent-FWTX and its
sub-FWTX these situations comprise: *) A committed sub-FWTX must wait
for its parent-FWTX’s decision whether to compensate or not. During this time,
because the relaxation of the isolation property allowed the early commitment
of the sub-FWTX, no data need to be locked. The compensation is a semantic
one; it is standalone and may run even a long time after the commitment of the
sub-FWTX. *) A parent-FWTX cannot commit because its sub-FWTX did not
answer yet. In this case it is recommended that the parent-FWTX uses a ttl.
If the ttl fires then eventually the sub-FWTX will be aborted, too or needs to
compensate. *) A sub-FWTX has committed, but the commit did not reach its
parent-FWTX. Either the parent-FWTX waits until it can communicate again
with sub-FWTX, or it aborts meanwhile. In the former case parent-FWTX can
proceed, in the latter case eventually sub-FWTX learns about parent-FWTX’s
abort and will compensate.

In the graphical notation, the declaration of a passive wiring has a box with
a dotted line and a parameter list enclosed by “()” brackets. The activation of
a sub-FWTX via a guard uses the wiring operation.

5 Proof-of-Concept

As a proof-of-concept for the new FWTX concepts of the Peer Model, we present
a solution with it for the bakery example. The number of wirings could be
reduced from 17 to 10 (i.e. by ca. 41%) and the total number of links from 66
to 28 (i.e. by ca. 58%).

5.1 Bakery with FWTX

The baker uses a sub-FWTX to get ingredients from the bakery. If it fails,
an on-abort action sends the incomplete charge immediately to the oven and
starts a new charge. The distributed procurement transaction of the bakery uses
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sub-FWTXs with compensation to order ingredients at shops. If one shop fails,
the other one is automatically aborted or compensated. If both succeed, their
commit is implicitly triggered by the commit of the Procure FWTX; on-top-
commit-actions at the shops start the goods delivery to the client.

The improvements of the version with FWTX (see Sect. 3.1) over the one
without FWTX are summarized in the following.

Baker Peer (with FWTX):

– Init: No difference.
– ProduceDough: Consolidates ProduceDough1 and ProduceDough2 in one

wiring where G2 calls a sub-wiring at the bakery termed SendIngredients.
The definition of an on-abort action is added to the wiring to call a local
sub-wiring termed StartNewCharge.

– ChargeComplete: Has only one guard (G1) that tests if the charge is complete
and if so, calls the sub-wiring StartNewCharge as on-commit action.

– StartNewCharge: Is a new passive wiring. It takes the current charge entry
(G1), resets both its fid and k and writes it back to the PIC (A1). It calls
the DeliverCharge sub-wiring of the bakery as on-commit action and passes
it the number of doughs in this charge as parameter.

Bakery Peer (with FWTX):

– DeliverCharge: Is a passive wiring called by the baker every time it starts a
new charge via StartNewCharge. Therefore the original G1 is not needed.

– SendIngredients: Is a passive wiring called by the baker’s wiring Produce-
Dough in G2. On start it calls Procur. The original G1 is not needed.

– Procure: Consolidates ProcureStart, ProcureCommit, ProcureAbort, Clean-
Up1, CleanUp2 and CleanUp3 in one wiring. G1–G3 correspond to G1–G3 of
the original ProcureStart wiring. Instead of sending order entries to the shops
it calls the passive Order wiring of each shop as a sub-FWTX (G4–G5). This
models the distributed transaction with compensation.

Shop Peer (with FWTX):

– Order: Consolidates OrderOk and OrderNotOk. It is a passive wiring that
is called by the Procure wiring of the bakery (G4–G5). It has a compensate
action that cancels the reservation and an on-top-commit action that delivers
the reserved ingredients if the top-level-FWTX commits.

– Cancel: Passive wiring called as compensate action of the Order wiring.
– DeliverItems: Passive wiring called by Order upon top-level commit.
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Fig. 4. Baker, Bakery and Shop (with FWTX).
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5.2 Related Coordination Models

A realization of the bakery example with the Actor Model is quite straight for-
ward, but mixes application and coordination logic. On the other side, models
like Petri Nets and Reo [18] are very general and therefore powerful enough to
also model complex coordination scenarios, however, such designs will become
complex and exhibit deficiencies and/or become verbose and unreadable (com-
pare with [7,8] who demonstrated this fact with even less demanding coordina-
tion and collaboration problems like split/join and leader election without the
assumption of failures etc.). The problem is that “lack of appropriate modeling
primitives has often resulted in descriptions with either reduced concurrency or
increased complexity of the net structure and/or the net inscriptions” [19].

The Transactor Model [20] follows a similar goal like our approach, i.e. to
provide language constructs that ease the management of distributed states.
It introduces the following concepts: stabilize, checkpoint, dependent test, and
rollback. With stabilize an actor guarantees that its state will not change any
more (it refers to the prepared phase in a two-phase-commit protocol). A check-
point is successful if the transactor is not dependent on any other actor that is
in a volatile state. Otherwise it will either perform a rollback or is equivalent
to a noop (if there have not yet been enough messages received to determine
the dependency). A successful checkpoint stores the state of the actor so that a
rollback to this state is possible. The dependent test checks whether the actor
is dependent on another one. As the entire protocol is asynchronous, this test
does not block and therefore the user must take care of this situation explicitly.

A major difference of FWTX is that they support multiple concurrently run-
ning flows and automatic execution of user defined actions at certain points in
time, namely on-top-commit, on-commit and on-abort of transactions. In addi-
tion, the isolation property is relaxed and sub-transactions may early commit.
Semantic compensation is used in contrast to the Transactor Model that carries
out a rollback. The advantage of compensation is that distributed processes stay
autonomous and need not hold locked states over a long period of time.

6 Conclusion

Coordination requirements are challenging and lack of adequate modeling prim-
itives leads to unusable models. We presented an extension of the Peer Model
by distributed “flexible wiring transactions (FWTX)” to make wirings more
powerful. FWTX enable the control of complex distributed interactions in a
very flexible way. The new modeling concepts are on-commit, on-top-commit,
on-abort and compensation actions that are designed as passive wirings. With
help of FWTX also coordination situations where complex dependencies between
concurrent distributed interactions take place or where multi-direction interac-
tions are demanded, can be modeled straight ahead. The treatment of failure
situations is easy because the distributed transaction management automati-
cally coordinates the activation of the on-commit, on-top-commit, on-abort and
compensation actions. As evaluation, a proof-of-concept is given that shows the
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design of the selected coordination scenario whereby the separation of application
and coordination data and logic could be preserved. The model with FWTX is
significantly leaner: the total number of wirings could be reduced by 41% and the
number of links by 58%. We believe that also other coordination models can ben-
efit from the introduction of a Flex transaction based coordination mechanism.
In future work we will use FWTX to bootstrap other distributed transaction
models and implement a simulation tool for automatic analysis.
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9. Bukhres, O., Elmagarmid, A.K., Kühn, E.: Implementation of the flex transaction
model. IEEE Data Eng. Bull. 16(2), 28–32 (1993)

10. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. (TOPLAS) 7(1), 80–112 (1985)
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Abstract. Search-based test data generation methods mostly consider the
branch coverage criterion. To the best of our knowledge, only two works exist
which propose a fitness function that can support the prime path coverage
criterion, while this criterion subsumes the branch coverage criterion. These
works are based on the Genetic Algorithm (GA) while scalability of the evo-
lutionary algorithms like GA is questionable. Since there is a general agreement
that evolutionary algorithms are inferior to swarm intelligence algorithms, we
propose a new approach based on swarm intelligence for covering prime paths.
We utilize two prominent swarm intelligence algorithms, i.e., ACO and PSO,
along with a new normalized fitness function to provide a better approach for
covering prime paths. To make ACO applicable for the test data generation
problem, we provide a customization of this algorithm. The experimental results
show that PSO and the proposed customization of ACO are both more efficient
and more effective than GA when generating test data to cover prime paths.
Also, the customized ACO, in comparison to PSO, has better effectiveness while
has a worse efficiency.

Keywords: Search based test data generation � Prime paths � Swarm
intelligence algorithms � Ant colony optimization � Particle swarm optimization

1 Introduction

Software testing is an important activity of the software development life cycle that
aims at revealing failures in a Software Under Test (SUT). Among many activities that
help improving software quality, testing is still the most popular method, even though
being expensive. Although testing is usually done manually in industrial applications,
its automation has been a burgeoning interest of many researchers [1, 2]. Automation
reduces cost and time and improves the quality degree of the testing activity.

Test data generation is the activity of finding a set of input values with the aim of
detecting more failures of software systems. In the graph-based, structural approach to
test data generation, the given software artifact (e.g., the source code concerned in this
paper) is modeled as a graph. Control Flow Graph (CFG) is a graph that is obtained
from source code for this purpose. According to the graph based criteria, some parts of
the resulting graph should be covered by the test data. The simplest criteria are node
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coverage, edge coverage, and edge-pair coverage. The edge-pair criterion can be
logically extended to the Complete Path Coverage (CPC) criterion. Because of the
possibility of infinite number of test requirements, CPC is not practical for programs
with loops. To resolve this issue, some solutions have been proposed by researchers,
including a coverage criterion based on the prime path notion [4]. Unlike CPC, which
is not practical, Prime Path Coverage (PPC) is a practical criterion that subsumes all
other graph-based, structural coverage criteria. Thus, in this paper, we consider PPC as
the coverage criterion.

The emphasis on the prime path coverage is due to the fact that covering prime
paths may reveal failures that cannot be detected using other criteria. For instance,
Fig. 1 shows a sample program along with its CFG. It contains a fault in line 11 (i.e.,
c = 0) which causes an exception (division by zero) in the second iteration of the
existing loop. Based on the test requirements represented in Table 1, we can reveal the
failure if we traverse path 7 which results when using the prime path coverage as the
test criterion. Other coverage criteria may never find this fault.

Test data generation is an expensive and time consuming activity. Therefore,
development of methods to automate this activity is necessary. One approach for
automatic test data generation is symbolic execution [6] that assigns symbolic values to
program parameters in order to formulate program paths in terms of logical constraints.
These constraints should be solved to find values which cause the program to follow
specific paths. The main issue with this approach is that it is dependent on the

Fig. 1. (a) The sample program (b) The corresponding CFG
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capabilities of constraint solvers. Constraint solvers either are unable to resolve com-
plex constraints or resolve such constraints in a computationally expensive way.
Loop-dependent or array-dependent variables, pointer references and calls to external
libraries whose implementations are unknown also introduce issues for this approach.

Dynamic methods are another automatic approach which generate test data through
executing the SUT and determining the visited program locations via some form of
program instrumentation. Program instrumentation is done to trace run-time informa-
tion such as branch distance (detailed in Sect. 2). To do this, some extra statements will
be added inside the original program before every predicate. These statements should
not alter the behavior of the original program.

Using meta-heuristic algorithms is a category of dynamic methods called Search
Based Software Testing (SBST). To apply this approach, the input domain of the SUT
forms the search space, and a fitness function is defined which evaluates and scores
different inputs to the SUT according to the given test criteria and test requirements. All
the information needed by a meta-heuristic algorithm (e.g., if the given test data lead to
traversing a specific location of the program) can be extracted from the execution of the
instrumented SUT, accordingly.

The fitness function plays an important role in successful and efficient searches in
meta-heuristic algorithms. A well-defined fitness function improves the likelihood of
finding a proper solution. It also can result in consuming fewer system resources [7].
The fitness functions that have already been proposed for search based test data gen-
eration methods are divided into two categories: Branch Predicate Distance Function
(BPDF) and Approximation level, which are described in Sect. 2.

As shown in Fig. 1, in order to cover prime paths, the test data generation method
should be capable to cover those test paths that pass through loops one or more times.
Therefore, a search-based test data generation method which regards the prime path
coverage criterion needs an appropriate fitness function. To the best of our knowledge,
only two works [8, 21] exist proposing fitness functions that can support the prime path
coverage criterion. We refer to these fitness functions as NEHD [8] and BP1 [21].
However, the mentioned works are based on GA, while swarm intelligence algorithms
have shown considerable results in the optimization problems [19].

NEHD has been designed to measure the Hamming distance from the first order to
the nth order between two paths to consider the notion of sequences of branches. It

Table 1. Test paths according to node, edge and prime path coverage for the given example

Node coverage Edge coverage Prime path

1 [1,2,3,5,6,11] [1,2,3,5,6,11] [1,2,3,5,6,7,9,10,6,11]
2 [1,2,4,5,6,7,9,10,6,11] [1,2,4,5,6,7,9,10,6,11] [1,2,3,5,6,7,8,10,6,11]
3 [1,2,4,5,6,7,8,10,6,11] [1,2,3,5,6,7,8,10,6,11] [1,2,4,5,6,11]
4 [1,2,3,5,6,11]
5 [1,2,4,5,6,7,9,10,6,7,8,10,6,11]
6 [1,2,4,5,6,7,8,10,6,7,9,10,6,11]
7 [1,2,4,5,6,7,9,10,6,7,9,10,6,11]
8 [1,2,4,5,6,7,8,10,6,7,8,10,6,11]
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results in time intensive calculations for long paths because the fitness function must
continuously search for the number of combinations of branches from 1 to n order at
each stage. Therefore, according to [20] the method of [8] has a poor efficiency.

BP1 is the linear combination of two measures, BPDF and Approximation level.
BDPF is normalized in the range [0,1] but the Approximation level is not normalized
despites the importance of normalization [18]. In this situation, normalization is
essential to consider equal weights for the two measures of the fitness function (BPDF
and Approximation level) for guiding individuals in the search process (Sect. 4).

We propose a new search-based approach for test data generation which aims at
covering prime paths more effectively and more efficiently through two contributions:
(1) we apply Ant Colony Optimization (ACO) and Particle Swarm Optimization
(PSO) as two prominent swarm intelligence algorithms for test data generation, and
(2) we propose a new normalized fitness function. ACO is a powerful method for
finding shortest paths in dynamic networks. But, it is not always straightforward to
apply it to other problems such as function optimization or searching n-dimensional
spaces [10]. Thus, we should adapt ACO for the test generation problem in this paper.

The results of our experiments show that the customized ACO and PSO have better
average coverage and better average time in comparison to GA. Also, ACO leads to a
better average coverage comparing with PSO while, it has a worse average time.

The rest of the paper is structured as follows. In the next section, we review the
basic ACO, PSO, and the current fitness functions for test data generation. The third
section provides a brief overview of some related works. In Sect. 4, the customized
ACO algorithm and the new fitness function are addressed. Then, the experimental
analysis and results are presented and discussed in Sect. 5, followed by the conclusion
and outline of the future works in Sect. 6.

2 Background

2.1 Basic ACO

ACO is one of the swarm intelligence algorithms [19, 28] whose application in various
problems is known. Like many other meta-heuristic algorithms, the main idea of ACO
is inspired by observing the natural behavior of living organisms. In ACO, different
behaviors of ants in their community have been the source of inspiration.

ACO algorithms were originally conceived to find the shortest route in traveling
salesman problems. In ACO, several ants travel across the edges that connect the nodes
of a graph while depositing virtual pheromones. Ants that travel the shortest path will
be able to make more return trips and deposit more pheromones in a given amount of
time. Consequently, that path will attract more ants in a positive feedback
loop. However, in nature, if more ants choose a longer path during the initial search,
that path will become reinforced even if it is not the shortest. To overcome this
problem, ACO assumes that virtual pheromones evaporate, thus reducing the proba-
bility that long paths are selected.

Several types of ACO algorithms have been developed with variations to address
the specificities of the problems to be solved. Here, we briefly describe the basic ACO
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algorithm, known as the ant system [9]. Initially, ants are randomly distributed on the
nodes of the graph. Each artificial ant chooses an edge from its location with a
probabilistic rule that takes into account the length of the edge and the value of
pheromones on that edge, as shown in Fig. 2 a virtual ant arriving from node A
considers which edge to choose next on the basis of pheromone levels sij and visi-
bilities gij (inverse of distance). The edge to node A is not considered because that node
has already been visited. Once all ants have completed a full tour of the graph, each of
them retraces its own route while depositing on the traveled edges a value of pher-
omones inversely proportional to the length of the route. Before restarting the ants from
random locations for another search, the pheromones on all edges evaporate by a small
quantity. The pheromone evaporation, combined with the probable choice of the edge,
ensures that ants eventually converge on one of the shortest paths, but some ants
continue to travel also on slightly longer paths.

Because the basic ACO is suitable for search space with graph structure, a cus-
tomization of the ACO is required to make this algorithm applicable for the test data
generation problem with an n-dimensional search space.

2.2 PSO

In PSO [3], each particle keeps track of a position which is the best solution it has
achieved so far as pbx; and the globally optimal solution is stored as gbest. The basic
steps of PSO are as follow.

1. Initialize N particles with random positions pxi and velocities vi on the search space.
Evaluate every particle’s current fitness f ðpxiÞ. Initialize pbxi ¼ pxi and gbest ¼ i,
f ðpxiÞ ¼ minðf ðpbx0Þ; f ðpbx2Þ; . . .; f ðpbxnÞÞ;

2. Check whether the criterion (i.e. desired fitness function) is met. If the criterion is
met, loop ends; else continue;

3. Change velocities according to formula (1):

vi ¼ viþ c1 pbxi � pxið Þþ c2ðpbxgbest � pxiÞ ð1Þ

where x is an intra weight c1, c2 are learning factors.

Fig. 2. Choosing an edge with a probabilistic rule
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4. Change positions according to formula (2):

pxi ¼ pxiþ vi ð2Þ

5. Evaluate every particle’s fitness f ðpxiÞ; if f ðpxiÞ\ f ðpbxiÞ then pbxi ¼ pxi;
6. Update gbest and loop to step 2.

2.3 Fitness Functions for Test Data Generation

In this section, an overview of the two general categories of fitness functions [5], BPDF
and Approximation level, is given. After that, BP1 and NEHD which support the
coverage of prime paths are explained.

In a CFG, each decision node is associated with a branch predicate. The outgoing
edges from decision nodes are labeled with true or false values of the corresponding
predicate. To traverse a path during execution, it is necessary to find appropriate values
for the input variables such that they satisfy all of the related branch predicates. One
way to define a proper fitness function to guide such a search is using BPDF [5] that
examines the branching node at which the actual path deviated from the intended path.
Its objective is to measure how close this test data is to fulfill the branch predicate
condition that would have sent it down the intended path. For instance, suppose that
branch predicate C is (a = b) and f is the BPDF-based fitness function. When |a −
b| = 0, then f = 0; otherwise, f = |a − b| + k where factor k is a positive constant
which is always added if the predicate is not true. In this way, the fitness function
returns a non-negative value if the predicate is false, and zero when it is true.
A complete list of branch distance formulas for different relational predicate types is
presented in [1].

The other way to define fitness functions is using Approximation level [5]. The
Approximation level indicates how close the actual path taken was to reaching the
partial aim (for example, the number of correct nodes the test data encountered or how
often that path was generated). In the case of correct nodes, test data with higher
Approximation levels are judged to be more fit than those with low values.

The Normalized Extended Hamming Distance (NEHD) is designed to measure the
Hamming distance from the first order to the nth order between two paths. But,
according to [20] the method proposed in [8] has a poor efficiency.

The fitness function BP1 is a linear combination of BDPF and Approximation level
that has the form shown in formula 3.

BP1 ¼ NC � EP
MEP

ð3Þ

– NC is the value of the path similarity metric computed based on the number of
coincident nodes between the executed path and the target one, starting from the
entry node up to the node where the executed path is different from the target one.
This value can vary from 1 to the number of nodes in the target path. In the case
similarity = 1, only the entry node is common to both paths.

Using Swarm Intelligence to Generate Test Data for Covering Prime Paths 137



– EP is the absolute value of the BDPF associated with the branch which is deviated
from the target path.

– MEP is the BDPF maximum value among the candidate solutions that executed the
same nodes of the intended path.

EP
MEP is a measure of the candidate solution error with respect to all the solutions that
executed the right path up to the same deviation predicate. This value is used as a
solution penalty. Thus, the search dynamics is characterized by the co-existence of two
objectives: maximize the number of nodes correctly executed with respect to the
intended path and minimize the predicate function of the reached predicates. It should
be noted that the range of BP1 is between 0 and the length of the target path (because of
NC) so when the target path is long, the significance of the BPDF parameter is
deceased. The reason is that BPDF is in the range [0,1] and it is linearly combined with
the Approximation level part.

Experimental results [5] show that BP1 has a better performance than NEHD
[5, 20]. BP1 has two parts where the first part is normalized between [0,1] but the
second part is not normalized. The importance of normalization is shown in [7, 18]. In
this paper, we use a normalized fitness function based on BP1.

3 Related Work

In this section, we review the related work for test data generation based on various
meta-heuristic algorithms. In the literature, there are many works addressing search
based test data generation [1, 2]. In this section, we review the prominent methods that
center around different meta-heuristic algorithms.

Jones [22] and Pargas [16] investigated the usage of GA for automated test data
generation regarding branch coverage. Their experiments on several small programs
showed that in general, GA significantly outperforms the random method. Harman and
McMinn [24] performed an empirical study on GA-based test data generation for
large-scale programs and validated its effectiveness over other search algorithms such
as hill climbing. Fraser et al. [25] have implemented a tool named EvoSuite to generate
a whole test suite for satisfying the given coverage goals. The default coverage criterion
used by EvoSuite is branch coverage, but there is also rudimentary support for some
coverage criteria in the context of mutation and data flow testing. In their tool, GA and
Memetic are used to generate JUnit test suites for classes in Java.

Simulated Annealing (SA) is a well-known search algorithm which solves complex
optimization problems using the idea of neighborhood search. Tracey et al. proposed a
framework to generate test data based on SA [26] with the aim of overcoming some of
the problems associated with the application of local search. In this method, test data
can be generated for specific paths without loops, or for specific statements or branches.
Also, Cohen et al. adopted SA to generate test data for combinatorial testing [27].

Windisch et al. applied PSO to generate test data [29]. They compared their method
with a GA-based technique in terms of the convergence characteristic. Mao et al. have
built a new method, called TDGen-PSO [17] which has exhibited better performance
comparing with GA and SA.
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ACO has shown a comparable effect on solving optimization problems in com-
parison to other meta-heuristic search algorithms like GA [32–34]. Applying ACO for
solving the problems in software testing have been investigated in [35]. ACO was
adopted in [36, 37] to produce test sequences (not test data) for state-based software
testing.

Li et al. [31] used ACO to generate test data in accordance with the branch cov-
erage criterion. Unlike our approach, this work transforms the search space (to a graph
form) instead of adapting the ACO algorithm. In addition, [31] has not provided any
implementation and evaluation for its idea. Mao et al. [30] used ACO to generate test
data for the branch coverage criterion. They set the pheromone to each ant in the
colony; thus, pheromone is not distributed in the search space. By defining pheromone
in each ant, a memory is dedicated to each ant so ACO has in fact converted to a
memory-based algorithm [10] like PSO. Their findings show that ACO is better than
GA and SA in this regard. Ayari et al. proposed an ACO-based method for mutation
testing [23]. Their measure for test data adequacy is the mutation score. Meanwhile,
their experimental analysis is based on just two benchmark programs. Bauersfeld et al.
used ACO to find input sequences for testing applications with Graphical User Inter-
face (GUI) [19].

As two approaches capable of covering prime paths, Lin et al. [8] and Bueno et al.
[21] introduced methods for test data generation based on the GA algorithm. They
proposed NEHD and BP1 as their fitness function, respectively. These works are based
on GA while scalability and performance of evolutionary algorithms are questionable
[13, 14]. In addition, as reported in [19], swarm intelligence algorithms have shown
considerable results in the optimization problems.

In this paper, we propose a new search based approach for test data generation
which aims at covering prime paths more effectively and more efficiently through a
new normalized fitness function and using ACO and PSO as two prominent swarm
intelligence algorithms. A customization of the ACO is required to make this algorithm
applicable for the test data generation problem.

4 Test Data Generation

The aim of this work is to produce a set of test data to satisfy the given test paths. There
is no restriction on test paths and they can involve prime paths as well. For this
purpose, our method considers every test path as a target, separately, and repeats the
data generation process until the target path is covered or the maximum number of
iterations is exceeded. For PSO, we use its basic algorithm, explained in Sect. 2, so in
this section, we only explain our customization on ACO. A top-level view of the
algorithm is shown in Fig. 3. For each test path of the program, ants are randomly
scattered in the search space. The instrumented program is executed by a test data td
which is determined by the location of a specific ant in the search space. According to
the covered path, the fitness value is computed. Then, for each ant of the population,
local search, global search, and pheromone updating are performed iteratively.
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4.1 The Customized ACO

The basic ACO algorithm is mainly used in discrete optimization problems which are
formulated on the graph structure. We customize the basic ACO to generate test data in
an n-dimensional space. The test data generation can be formally described as follows:
Given a program under test P, suppose it has d input variables represented by vector
Xk ¼ ðxk; xk; . . .; xkÞ can be treated as the position vector of an ant in ACO. For each
input variable xið1 � i � dÞ, assume it takes its values from domain Di. Thus, the
corresponding input domain of the whole program is D ¼ D1 � D2 � . . .� Dd .

In the basic ACO, the search space has a graph structure. Thus, the neighbor area of
an ant is the set of the adjacent nodes of its corresponding position in the graph. Since
the structure of the test data generation problem does not form a graph, the basic ACO
algorithm must be modified such that it can be applied on the non-graph structure of the
problem. For the test data generation problem, each ant’s position can be viewed as a
test data and represented as a vector in input domain D. For any ant k ð1 � k � nÞ, its
position can be denoted as Xk ¼ ðxk; xk; . . .; xkÞ is the number of input variables and
therefore the number of dimensions).

A major challenge for applying ACO to test data generation is the form of pher-
omone because the search space is continuing and it does not have either node or edge
for defining pheromone on it. To tackle this problem, we partition the search space by
partitioning every domain of each input variable to b equivalent parts that can be any
number dividable by the range of input domain. The best value for b is obtained from
sensitivity analysis which is explained more in Sect. 5.

The number of partitions for each input variable is determined separately. To
illustrate partitioning, consider a program with two inputs x and y. If we partition the
input domain of x to b1 parts and the input domain of y to b2 parts, there are totally
u = b1 � b2 partitions on the 2-dimensional space (Fig. 4). Each partition has a
special pheromone value. Therefore, the number of pheromones in the search space is
equal to the number of partitions in this space.

Fig. 3. Algorithm for test data generation
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Local Search. During the local search, each ant looks for a better solution in its own
neighborhood area. To compute the neighbors of ant k, we must consider it in the
n-dimensional space D. The neighbors of ant with position vector Xk ¼
ðxk1; xk2; . . .; xkdÞ have the position vector Xk0 ¼ ðx0k1; x0k2; . . .x0kdÞ where x0ki ¼
xkiþ s; �1 � s � 1 and X 0k 6¼ X. If an input has integer domain, s is 0 or 1 or −1.
For a continues variable, three random numbers are selected for s. In a 2-dimensional
search space, the location of an ant can be (1, 1). Thus, the positions of the neighbors
are: (0, 1), (1, 0), (0, 0), (2, 1), (1, 2), (2, 2), (2, 0), (0, 2). The number of neighbors for
an ant in a d-dimensional space is 3d − 1 as it is shown in Fig. 5.

The rule for local search or local transfer of ant’s position can be represented as
follows: ant k transfers from Xk to a new position Xk0 if the fitness of Xk0 is better than
that of Xk ði:e:; Fitness Xk0ð Þ\FitnessðXkÞÞ, and Xk0 has the best fitness value among
Xk0 neighbors. Otherwise, the ant must stay at its current position (i.e., Xk). It should be
mentioned that according to our implementation, the best fitness value is 0. Thus, a
lower value is considered as a better fitness.

Global Search. The previous step is an activity of local optimization for each ant in
the colony. But, this is not sufficient to find a high-quality solution because, at the local
transfer stage, there might be an ant with no movement since it could not find a
neighboring position with better fitness value. This situation is known as local optima
trap [10] which could be resolved by an action called global transfer.

For any ant k in the colony ð1 � k � nÞ; if its fitness is lower than the average
level, i.e., FitnessðXkÞ [ Fitnessavg, a random number q is selected. Fitnessavg is the
average fitness of whole ant colony and q is a random number from 0 to 1. When
FitnessðXkÞ [ Fitnessavg and q\ q0, the position of ant k is randomly set in the whole
search space (q0 is a preset parameter). When FitnessðXkÞ [ Fitnessavg and q � q0,
the position of ant k is randomly set to a position in a partition which has a maximum
value of pheromone. With doing global search any ant that has in the local optima
situation is transferred with probability q0 to a random position in the whole search
space and with a probability 1 � q0 to a position which has a maximum value of
pheromone.

Update Pheromone. After doing global and local search for all ants in each run, the
pheromone is updated (Fig. 3). To update pheromone value in every partition, the
following rule is used:

Fig. 4. A sample partitioned search space Fig. 5. The number of neighbors in local
search based on the number of domains
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s jð Þ  1� að Þ � s jð Þþ a � number of ants in partition j: ð4Þ

Where a 2 (0, 1) is a pheromone evaporation rate, s jð Þ represents the value of
pheromone in the jth partition; j stands for the partition index.

4.2 Fitness Function

We represent a test path by sequences of characters which are the labels of edges in the
CFG of the SUT. Therefore, for test data generation, the fitness function is calculated
for the target path and the path traversed by any test data. To formulate the fitness
function considering the order of the branches, both branch distance and Approxi-
mation level are used. The fitness function FT that is used to evaluate each candidate
solution has the form shown in formula 5 and has two separately normalized parts. One
part relates to the branch distance and the other relates to the Approximation level.
Each part has the value between 0 and 1. Thus, FT is ranged from 0 to 2.

FT ¼ 1� NC
TP

� �
þ EP

EPþ b
ð5Þ

– NC is the value of the path similarity metric. (described in Sect. 2.3)
– TP is the length of the target path, thus (1 − NC/TP) has a normalized value

between 0 and 1. The value zero is the optimal value for this part of FT.
– EP is the value of branch distance. (described in Subsect. 2.3)
– b is a parameter for the normalization proposed in [18]; based on the experiment

done in [18], we set it to 1.

It should be mentioned that the normalization function that we used (i.e. EP
Epþb) is

the same as what proposed in [18]. By using this function instead of EP
MEP (in BP1), there

is no need to calculate MEP which leads to more efficiency.
In contrast to BP1, the values of fitness are normalized between 0 and 2, and

fitness = 0 means the target path is fully met. Normalization is separately done for two
parts of FT because the two parts of the fitness function would have the same share to
conduct the individuals.

5 Experiments

In this section, we assess our proposed approach, which uses two prominent swarm
intelligence algorithms PSO and ACO, against the GA-based method proposed in [21].
As mentioned before, it is shown by experiment in [20] that the method proposed in [8]
has low efficiency. Thus, we do not compare our approach with [8]. To perform the
experiment, all the three algorithms have been implemented with the same fitness
function, proposed in Subsect. 4.2. We define the following two criteria as evaluation
metrics:
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• Average Coverage (AC), i.e., the average percentage of covered test paths in
repeated runs.

• Average Time (AT), i.e., the average execution time (in milliseconds) of realizing
test path coverage.

5.1 Experimental Setup

We selected a set of benchmark programs from the literature. Most of these programs,
including “Triangle Type” (1), “Power xy” (2), “Remainder” (3), “GCD” (4), “LCM”
(5) and “ComputeTax” (6), are commonly used in software testing research. Table 2
shows the number of lines of code (LoC) and the number of prime paths (No. PP) of
each program.

We manually instrumented each original program without changing its semantics.
Then, we constructed the corresponding CFG by using Control flow graph factory tool
[12] and extracted a list of prime paths using the tool available in [11].

Table 2. Programs selected for the experiment

#P Program name LoC No. PP Description

1 Triangle Type 43 4 Find the type of triangle [17, 23]
2 Power xy 27 3 Determine the value of xy

3 Remainder 30 3 Determine remainder of x/y [17, 23]
4 GCD 24 2 Find greatest common divisor
5 LCM 38 7 Find least common multiplier
6 Compute Tax 164 24 Compute tax amount [17, 23]
7 Synthetic 45 8 Synthetic of while, for and if [15]

Table 3. Parameter setup

Algorithm Parameter Value

GA Selection method Roulette wheel
Crossover method Single point
Crossover probability 80%
Mutation probability 0.05%
Chromosome-type Binary string

PSO x 1
c1 2.05
c2 2.05

ACO a 0.3
q0 0.5
b Varies based on program

All Algorithms Population size 50
No of iteration 100
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Before using GA, ACO, and PSO, their parameters must be initialized. The chosen
values are shown in Table 3.

5.2 Experimental Results

The experimental results are presented in Table 4. The results show that our cus-
tomized ACO is better than GA in terms of both criteria. Furthermore, our customized
ACO has equal or better average coverage comparing with the PSO algorithm.
However, PSO reaches the solution in less time in comparison to ACO because this
algorithm is basically less complex.

In the customized ACO, selecting the best value for parameter “b” (i.e. the number
of parts) is important, therefore, the sensitivity analysis is done for this parameter. To
do this, we calculate the values of the two evaluation criteria with different number of
parts. As can be seen in Figs. 6 and 7, the average coverage and average time are
increased with increasing the number of parts, but when we reach to the maximum
coverage, we do not have any change in the average coverage with increasing the
number of the parts. Also, the best value of parameter b for programs “Triangle Type”
and “Synthetic” is 5000, for “compute tax” is 50000, for “Remainder” and “LCM” is
1000 and for “Pow xy” and “GCD” is 500. In each program, when parameter b is set to
this value, the least average time and the most average coverage are gained.

Table 4. Comparison between the customized ACO, PSO, and GA

#P Average coverage (%) Average time (milliseconds)
GA PSO Customized ACO GA PSO Customized ACO

1 74.5 96.5 100 103.7241 18.18289 31.2224
2 95.66667 100 100 223.9718 22.72688 138.9988
3 94.33332 100 100 209.9785 1.981523 27.81944
4 100 100 100 49.63726 1.92135 20.21426
5 51.4285 71.4285 71.4285 475.3366 32.66283 236.5719
6 98.29 100 100 440.2108 10.53734 286.0023
7 58 80.75 87.5 209.352 155.7802 182.85854

Fig. 6. Average coverage against the number
of partitions

Fig. 7. Average time against the number of
partitions
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6 Conclusions and Future Works

In this paper, we have presented a search-based test data generation approach to cover
prime paths of the program under test. The proposed approach uses ACO and PSO as
two prominent swarm intelligence algorithms and a new normalized fitness function.
We customized the ACO algorithm by combining it with the idea of input space
partitioning. Also, the proposed fitness function is a normalization of the fitness
function BP1 proposed in the [2]. We compared the customized ACO, PSO, and GA
when all of these three algorithms are applied with the proposed fitness function. The
results have shown that our method is stronger than GA in terms of both evaluation
criteria. In addition, the results manifest that in comparing with PSO, the customized
ACO results in a better coverage, but has worse efficiency. As future work, we will
consider the following research areas:

• The main reason that causes the swarm intelligence algorithms do not widely apply
in the test data generation problem is the search space of the string type. Most
swarm intelligence based algorithms work on the structural search space, while the
input domain of the string variables does not have a defined neighborhood concept.

• Using the static structure of the program in the partitioning of the search space (i.e.
defining parameter “b” in the customized ACO).

• Multiple path test data generation (i.e. in each run, we consider multiple paths as
target instead of one path) by swarm intelligence algorithms is another issue that
could be considered in the future. There are approaches for multiple test path
generation by evolutionary algorithms, but they cannot be applied directly using the
swarm intelligence (i.e., population-based) algorithms.
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Abstract. Mutation testing is a well-studied method for increasing the
quality of a test suite. We designed LittleDarwin as a mutation testing
framework able to cope with large and complex Java software systems,
while still being easily extensible with new experimental components.
LittleDarwin addresses two existing problems in the domain of mutation
testing: having a tool able to work within an industrial setting, and yet,
be open to extension for cutting edge techniques provided by academia.
LittleDarwin already offers higher-order mutation, null type mutants,
mutant sampling, manual mutation, and mutant subsumption analysis.
There is no tool today available with all these features that is able to
work with typical industrial software systems.

Keywords: Software testing · Mutation testing · Mutation testing tool ·
Complex Java systems

1 Introduction

Along with the popularity of agile methods in recent times came an empha-
sis on test-driven development and continuous integration [5,10]. This implies
that developers are interested in testing their software components early and
often [28]. Therefore, the quality of the test suite is an important factor during
the evolution of the software. One of the extensively studied methods to improve
the quality of a test suite is mutation testing [8].

Mutation testing was first proposed by DeMillo, Lipton, and Sayward to
measure the quality of a test suite by assessing its fault detection capabilities [8].
Mutation testing has been shown to simulate faults realistically [4,17]. This
is because the faults introduced by each mutant are modeled after common
mistakes developers make [16]. Mutation testing is demonstrated to be a more
powerful coverage criteria in comparison with data-flow, statement, and branch
coverage [11,43].

Recent trends in scientific literature indicate a surge in popularity of this
technique, along with an increased usage of real projects as the subjects of scien-
tific experiments [16]. In literature, topics such as creating more robust mutants
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using higher-order mutation [15,20,32,35], reducing redundancy among mutants
using mutant subsumption [3,24,34], and reducing the number of mutants using
mutant selection [12,13,44] are gaining popularity. Despite its benefits, the idea
of mutation testing is not widely used in industry. Consequently, mutation test-
ing research stays behind since it lacks fundamental experiments on industrial
software systems. We believe that, beyond the computationally expensive nature
of mutation testing [31], the reluctance of industry can stem from the shortage of
mutation testing tools that can both (i) work on large and complex systems, and
(ii) incorporate new and upcoming techniques as an experimental framework.

In this paper, we try to fill this gap by introducing LittleDarwin. LittleDar-
win is designed as a mutation testing framework aiming to target large and
complex systems. The design decisions are geared towards a simple architecture
that allows the addition of new experimental components, and fast prototyping.
In its current version, LittleDarwin facilitates experimentation on higher-order
mutation, null type mutants, mutant sampling, manual mutation, and mutant
subsumption analysis. LittleDarwin has been used for experimentation on several
large and complex open source and industrial projects [36–38].

The rest of the paper is structured as follows. We provide background infor-
mation about mutation testing in Sect. 2. We explain the design and the imple-
mentation of our tool in Sect. 3, and summarize the experiments that have been
performed using our tool in Sect. 4. We conclude the paper in Sect. 5.

2 Mutation Testing

Mutation testing1 is the process of injecting faults into a software system to verify
whether the test suite detects the injected fault. Mutation testing starts with a
green test suite — a test suite in which all the tests pass. First, a faulty version
of the software is created by introducing faults into the system (Mutation). This
is done by applying a known transformation (Mutation Operator) on a certain
part of the code. After generating the faulty version of the software (Mutant), it
is passed onto the test suite. If there is an error or failure during the execution of
the test suite, the mutant is marked as killed (Killed Mutant). If all tests pass, it
means that the test suite could not catch the fault, and the mutant has survived
(Survived Mutant) [16].

Mutation Operators. A mutation operator is a transformation which intro-
duces a single syntactic change into its input. The first set of mutation operators
were reported in King et al. [19]. These mutation operators work on essential syn-
tactic entities of the programming language such as arithmetic, logical, and rela-
tional operators. They were introduced in the tool Mothra which was designed
to mutate the programming language FORTRAN77. In 1996, Offutt et al. deter-
mined that a selection of few mutation operators is enough to produce similarly

1 The idea of mutation testing was first mentioned by Lipton, and later developed by
DeMillo, Lipton and Sayward [8]. The first implementation of a mutation testing
tool was done by Timothy Budd in 1980 [6].
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capable test suites with a four-fold reduction of the number of mutants [29]. This
reduced-set of operators remained more or less intact in all subsequent research
papers. With the advent of object-oriented programming languages, new muta-
tion operators were proposed to cope with the specifics of this programming
paradigm [18,25].

Equivalent Mutants. If the output of a mutant for all possible input values
is the same as the original program, it is called an equivalent mutant. It is not
possible to create a test case that passes for the original program and fails for
an equivalent mutant, because the equivalent mutant is indistinguishable from
the original program. This makes the creation of equivalent mutants undesir-
able, and leads to false positives during mutation testing. In general, detection
of equivalent mutants is undecidable due to the halting problem [30]. Manual
inspection of all mutants is the only way of filtering all equivalent mutants, which
is impractical in real projects due to the amount of work it requires. Therefore,
the common practice within today’s state-of-the-art is to take precautions to
generate as few equivalent mutants as possible, and accept equivalent mutants
as a threat to validity (accepting a false positive is less costly than removing a
true positive by mistake [9]).

Mutation Coverage. Mutation testing allows software engineers to monitor
the fault detection capability of a test suite by means of mutation coverage (see
Eq. 1) [16]. A test suite is said to achieve full mutation test adequacy whenever
it can kill all the non-equivalent mutants, thus reaching a mutation coverage of
100%. Such test suite is called a mutation-adequate test suite.

MutationCoverage =
Number of killedmutants

Number of all non-equivalentmutants
(1)

Higher-Order Mutants. First-order mutants are the mutants generated by
applying a mutation operator on the source code only once. By applying muta-
tion operators more than once we obtain higher-order mutants. Higher-order
mutants can also be described as a combination of several first-order mutants.
Jia et al. introduced the concept of higher-order mutation testing and discussed
the relation between higher-order mutants and first-order mutants [14].

Mutant Subsumption. Mutant subsumption is defined as the relationship
between two mutants A and B in which A subsumes B if and only if the set of inputs
that kill A is guaranteed to kill B [23]. The subsumption relationship for faults
has been defined by Kuhn in 1999 [21], but its use for mutation testing has been
popularized by Jia et al. for creating hard to kill higher-order mutants [14]. Later
on, Ammann et al. tackled the theoretical side of mutant subsumption [3]. In
their paper, Ammann et al. define dynamic mutant subsumption, which redefines
the relationship using test cases. Mutant A dynamically subsumes Mutant B if
and only if (i) A is killed, and (ii) every test that kills A also kills B. The main
purpose behind the use of mutant subsumption is to reliably detect redundant
mutants, which create multiple threats to the validity of mutation testing [34].
This is often done by determining the dynamic subsumption relationship among
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a set of mutants, and keeping only those that are not subsumed by any other
mutant.

Mutant Sampling. To make mutation testing practical, it is important to
reduce its execution time. One way to achieve this is to reduce the number of
mutants. A simple approach to mutant reduction is to randomly select a set of
mutants. This idea was first proposed by Acree [2] and Budd [6] in their PhD
theses. To perform random mutant sampling, no extra information regarding the
context of the mutants is needed. This makes the implementation of this tech-
nique in mutation testing tools easier. Because of this, and the simplicity of ran-
dom mutant sampling, its performance overhead is negligible. Random mutant
sampling can be performed uniformly, meaning that each mutant has the same
chance of being selected. Otherwise, random mutant sampling can be enhanced
by using heuristics based on the source code. The percentage of mutants that
are selected determines the sampling rate for random mutant sampling.

3 Design and Implementation

In this section, we discuss the implementation details of LittleDarwin, and pro-
vide information on our design decisions.

3.1 Algorithm

LittleDarwin is designed with simplicity in mind, in order to increase the flex-
ibility of the tool. To this effect, it mutates the Java source code rather than
the byte code in order to defer the responsibility of compiling and executing
the code to the build system. This allows LittleDarwin to remain as flexible as
possible regarding the complexities stemming from the build and test structures
of the target software. The procedure is divided into two phases: Mutation Phase
(Algorithm 1), and Test Execution Phase (Algorithm 2).

Mutation Phase. In this phase, the tool creates the mutants for each source
file. LittleDarwin first searches for all source files contained in the path given as
input, and adds them to the processing queue. Then, it selects an unprocessed
source file from the queue, parses it, applies all the mutation operators, and
saves all the generated mutants.

Input : Java source files
Output: Mutated Java source files

queue ← all Java source files;
while queue �= ∅ do

srcFile ← queue.pop();
mutants[srcFile] ← mutate(srcFile);

end
return mutants ;

Algorithm 1. Mutation Phase
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Test Execution Phase. In this phase, the tool executes the test suite for each
mutant. First the build system is executed without any change to ensure that the
test suite runs “green”. Then, a source file along with its mutants are read from
the database, and the output of the build system is recorded for each mutant.
If the build system fails (exits with non-zero status) or times out, the mutant is
categorized as killed. If the build system is successful (exits with zero status),
the mutant is categorized as survived. Finally, a report is generated for each
source file, and an overall report is generated for the project (see Fig. 3 for an
example of this).

Input : Mutated Java source files
Output: Mutation Testing Report

if executeTestSuite() is successful then
foreach srcFile do

queue ← mutants[srcFile];
backup(srcFile);
while queue �= ∅ do

mutantFile ← queue.pop();
replace(srcFile,mutantFile);
result[mutantFile] ← executeTestSuite();

end
restore(srcFile);
Generate report for srcFile ;

end
Generate overall report;

end
return reports;

Algorithm 2. Test Execution Phase

3.2 Components

The data flow diagram of the main internal components of LittleDarwin is shown
in Fig. 1. The following is an explanation of each main component:

JavaRead. This component provides methods to perform input/output oper-
ations on Java files. LittleDarwin uses this component to read the source files,
and write the mutants back to disk.

JavaParse. This component parses Java files into an abstract syntax tree. This
is necessary to produce valid and compilable mutants. To implement this func-
tionality, an Antlr42 Java 8 grammar is used along with a customized version of
Antlr4 runtime. Beside providing the parser, this component also provides the
functionality to pretty print the modified tree back to a Java file.

2 http://www.antlr.org/.

http://www.antlr.org/
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Fig. 1. Data flow diagram for LittleDarwin components

JavaMutate. This component manipulates the abstract syntax tree (AST) cre-
ated by the parser. Subsection 3.3 explains the mutation operators of LittleDar-
win in detail. The currently implemented mutation operators search the provided
AST for mutable nodes matching the predefined patterns (for example, AOR-B
looks for all binary arithmetic operator nodes that do not contain a string as
an operand), and they perform the mutation on the tree itself. This gives the
developer flexibility in creating new complicated mutation operators. Even if a
mutation operator introduces a fault that needs to change several statements at
once, and depends on the context of the statements, it can be implemented using
a complicated search pattern on the AST. The mutation operators are designed
to exclude mutations that would lead to compilation errors. However, not all of
these cases can be detected using an AST (e.g. AOR-B on two variables that
contain strings). Handling of such cases are therefore left for the post-processing
unit that filters such mutants based on the output of the Java compiler. In order
to preserve the maximum amount of information for post-processing purposes,
for each mutant a commented header is created. This header contains the fol-
lowing information: (i) the mutation operator that created the mutant, (ii) the
mutated statement before and after the mutation, (iii) the line number of the
mutated statement in the original source file, and (iv) the id number of the
mutated node(s). An example is shown in Fig. 2.

Fig. 2. The header of a LittleDarwin mutant
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Fig. 3. LittleDarwin project report (Color figure online)

Report Generator. This component generates HTML reports for each file.
These reports contain all the generated mutants and the output of the build sys-
tem after the execution of each mutant. In the end, an overall report is generated
for the whole project (Fig. 3).

3.3 Mutation Operators of LittleDarwin

There are 9 default mutation operators implemented in LittleDarwin listed in
Table 1. These operators are based on the reduced-set of mutation operators that

Table 1. LittleDarwin mutation operators

Operator Description Example

Before After

AOR-B Replaces a binary arithmetic operator a + b a – b

AOR-S Replaces a shortcut arithmetic operator ++a – –a

AOR-U Replaces a unary arithmetic operator –a +a

LOR Replaces a logical operator a & b a | b
SOR Replaces a shift operator a >> b a << b

ROR Replaces a relational operator a >= b a < b

COR Replaces a binary conditional operator a && b a ‖ b

COD Removes a unary conditional operator !a a

SAOR Replaces a shortcut assignment operator a ∗ = b a / = b
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were demonstrated by Offutt et al. to be capable of creating similar-strength test
suites as the full set of mutation operators [29]. Since the number of mutation
operators of LittleDarwin is limited, it is possible that no mutants are gener-
ated for a class that lacks mutable statements. In practice, we observed that
usually only very small compilation units (e.g. interfaces, and abstract classes)
are subject to this condition.

In addition to these mutation operators, there are four experimental muta-
tion operators in LittleDarwin that are designed to simulate null type faults.
These mutation operators along with the faults they simulate are provided in
Table 2. We included these mutation operators based on the conclusions offered
by Osman et al. [33]. In their study, they discover that the null object is a major
source of software faults. The null type mutation operators are able to simulate
such faults, and consequently assess the quality of the test suite with respect
to them. These mutation operators cover fault-prone aspects of a method: Nul-
lifyInputVariable mutates the method input, NullifyReturnValue mutates the
method output, and NullifyObjectInitialization and RemoveNullCheck mutate
the statements in method body.

Table 2. Null type faults and their corresponding mutation operators

Fault Mutation operator Description

Null is returned by a
method

NullifyReturnValue If a method returns an object, it is
replaced by null

Null is provided as input
to a method

NullifyInputVariable If a method receives an object
reference, it is replaced by null

Null is used to initialize a
variable

NullifyObjectInitialization Wherever there is a new statement, it
is replaced with null

A null check is missing RemoveNullCheck Any binary relational statement
containing null at one side is negated

3.4 Design Characteristics

To foster mutation testing in industrial setting it is important to have a tool
able to work on large and complex systems. Moreover, to allow researchers to
use real-life projects as the subjects of their studies, it is also important to
provide a framework that is easy to extend. In this section, we show to what
extent LittleDarwin, and its main alternatives, can satisfy these requirements. As
alternatives, we use PITest [7], Javalanche [41], and MuJava [27], since they are
popular tools used in literature. In Table 3, we summarize the design highlights.

Compatibility with Major Build Systems. To make the initial setup of a
mutation testing tool easier, it needs to work with popular build systems for
Java programs. LittleDarwin executes the build system rather than integrate
into it, and therefore, can readily support various build systems. In fact, the
only restrictions imposed by LittleDarwin are: (i) the build system must be able
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Table 3. Comparison of features in mutation testing tools

Features LittleDarwin PITest [1] Javalanche [41] MuJava [26]

Compatibility with Maven � � × ×
Ant � � × ×
Gradle � � × ×
Others � × × ×

Support for complex test structures � × × ×
Optimized for performance × � � �
Optimized for experimentation � × × ×
Tested on large systems � � � ×
Ability to retain detailed results � × × �
Open source � � � �

to run the test suite, and (ii) the build system must return non-zero if any tests
fail, and zero if it succeeds. PITest address the challenge via integration into the
popular build systems by means of plugins. At the time of writing it supports
Maven3, Ant4, and Gradle5. Javalanche and MuJava do not integrate in the
build system.

Support for Complex Test Structures. One of the difficulties of performing
mutation testing on complex Java systems is to find and execute the test suite
correctly. The great variety of testing strategies and unit test designs generally
causes problems in executing the test suite correctly. LittleDarwin overcomes
this problem thanks to a loose coupling with the test infrastructure, instead
relying on the build system to execute the test suite. Other mutation testing
tools reported in Table 3 have problems in this regard.

Optimized for Performance. LittleDarwin mutates the source code and per-
forms the execution of the test suite using the build system. This introduces a
performance overhead for the analysis. For each mutant injected, LittleDarwin
demands a rebuild and test cycle on the build system. The rest of the mutation
tools use byte code mutation, which leads to better performance.

Optimized for Experimentation. LittleDarwin is written in Python to allow
fast prototyping [40]. To parse the Java language, LittleDarwin uses an Antlr4
parser. This allows us to rapidly adapt to the syntactical changes in newer ver-
sions of Java (such as Java 8). This parser produces a complete abstract syntax
tree that makes the implementation of experimental features easier. In addition,
the modular and multi-phase design of the tool allows reuse of each module
independently. Therefore, it becomes easier to customize the tool according to
the requirements of a new experiment. The other mutation tools work on byte
code, and therefore do not offer such facilities.
3 https://maven.apache.org/.
4 https://ant.apache.org/.
5 https://gradle.org/.

https://maven.apache.org/
https://ant.apache.org/
https://gradle.org/
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Tested on Large Systems. LittleDarwin has been used in the past on software
systems with more than 82 KLOC [37,38]. PITest and Javalanche have been
used in experiments with softwares of comparable size [39,41]. We did not find
evidence that MuJava has been tested on large systems.

Ability to Retain Detailed Results. PITest and Javalanche only output a
report on the killed and survived mutants. However, in many cases this is not
enough. For example, subsumption analysis requires the name of all the tests
that kill a certain mutant. To address this problem, LittleDarwin retains all
the output provided by the build system for each mutant, and allows for post-
processing of the results. This also allows the researchers to manually verify
the correctness of the results. MuJava provides an analysis framework as well,
allowing for further experimentation [27].

Open Source. LittleDarwin is a free and open source software system. The code
of LittleDarwin and its components are provided6 for public use under the terms
of GNU General Public License version 2. PITest and MuJava are released under
Apache License version 2. Javalanche is released into public domain without an
accompanying license.

3.5 Experimental Features

In order to facilitate the means for research in mutation testing, LittleDarwin
supports several features up to date with the state of the art. A summary of these
features and their availability in the alternative tools is provided in Table 4. An
explanation of each feature follows.

Table 4. Comparison of experimental features in mutation testing tools

Experimental features LittleDarwin PITest Javalanche MuJava

Higher-order mutation � × × ×
Mutant sampling � × × �
Subsumption analysis � × × ×
Manual mutation � × × ×

Higher-Order Mutation. This feature is designed to combine two first-order
mutants into a higher-order mutant. It is possible to link the higher-order
mutants to their first-order counterparts after acquiring the results.

Mutant Sampling. This feature is designed to use the results for sampling
experiments. LittleDarwin by default implements two sampling strategies: uni-
form, and weighted. The uniform approach selects the mutants randomly with
the same chance of selection for all mutants. In the weighted approach, a weight
is assigned to each mutant that is proportional to the size of the class containing
the mutant. The given infrastructure also allows for the development of other
techniques.
6 https://github.com/aliparsai/LittleDarwin.

https://github.com/aliparsai/LittleDarwin
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Subsumption Analysis. This feature is designed to determine the subsump-
tion relationship between mutants. For each mutant, this feature can determine
whether the mutant is subsuming or not, which tests kill the mutant, which
mutants are subsuming the mutant, and which mutants are subsumed by the
mutant. It is also capable of exporting the mutant subsumption graph proposed
by Kurtz et al. for each project [22,23].

Manual Mutation. This feature allows the researcher to use their manually cre-
ated mutants with LittleDarwin. LittleDarwin is capable of automatically match-
ing the mutants with the corresponding source files, and creating the required
structure to perform the analysis. For example, this is useful in case the mutants
are created with a separate tool.

4 Experiments

In this section, we provide a brief summary of the experiments we already per-
formed using the experimental features of LittleDarwin on large and complex
systems.

Mutation Testing of a Large and Complex Software System. We used
LittleDarwin to analyze a large and complex safety critical system for Agfa
HealthCare. Our attempts to use other mutation testing tools failed due to the
complex testing structure of the target system. Due to this complexity, these
tools were not able to detect the test suite. This is because (i) the project used
OSGI7 headers to dynamically load modules, and (ii) the test suite was located
in a different component, and required several frameworks to work. The loose
coupling of LittleDarwin with the testing structure allowed us to use the build
system to execute the test suite, and thus, successfully perform mutation testing
on the project. For more details on this experiment, including the specification
of the target system, and the run time of the experiment, please refer to Parsai’s
master’s thesis [36].

Experimenting Up to Date Techniques on Real-Life Projects. LittleDar-
win was used to perform three separate studies using the up to date techniques
reported in Table 4. We were able to perform these studies on real-life projects.

In our study on random mutant sampling, we noticed that related litera-
ture have two shortcomings [37]. They focus their analysis at project level and
they are mainly based on toy projects with adequate test suites. Therefore, we
evaluated random mutant sampling at class level, and on real-life projects with
non-adequate test suites. We used LittleDarwin to study two sampling strategies:
uniform, and weighted. We highlighted that the weighted approach increases the
chance of inclusion of mutants from classes with a small set of mutants in the
sampled set, and reduces the viable sampling rate from 65% to 47% on average.
This analysis was performed on 12 real-life open source projects.

7 https://www.osgi.org/developer/specifications/.

https://www.osgi.org/developer/specifications/


LittleDarwin: An Extensible Mutation Testing Framework for Java Systems 159

In our study on higher-order mutation testing, we used LittleDarwin to per-
form our experiments [38]. We proposed a model to estimate the first-order
mutation coverage from higher-order mutation coverage. Based on this, we pro-
posed a way to halve the computational cost of acquiring mutation coverage.
In doing so, we achieved a strong correlation between the estimated and actual
values. Since LittleDarwin retains the information necessary for post-processing
the results, we were able to analyze the relationship between each higher-order
mutant and its corresponding first-order mutants.

We performed a study on simulating the null type faults which is currently
under peer-review. In this study, we show that mutation testing tools are not
adequate to strengthen the test suite against null type faults in practice. This is
mainly because the traditional mutation operators of current mutation testing
tools do not model null type faults. We implemented four new mutation operators
in LittleDarwin to model null type faults explicitly, and we show how these
mutation operators can be operatively used to extend the test suite in order to
prevent null type faults. Using LittleDarwin, we were able to analyze the test
suites of 15 real-life open source projects, and describe the trade offs related to
the adoption of these operators to strengthen the test suite. We also used the
mutant subsumption feature of LittleDarwin to perform redundancy analysis on
all 15 projects.

Pilot Experiment. We performed a pilot experiment on a real life project
in order to compare LittleDarwin with two of its alternatives: PITest and
Javalanche. In this experiment, we used Jaxen8 as the subject, since it has been
used before to evaluate Javalanche by its authors [42]. Jaxen has 12,438 lines
of production code, and 7,539 lines of test code. Table 5 shows the results of
our pilot experiment. As we can see, even though LittleDarwin creates the least
number of mutants, it is still slowest per-mutant. This is mainly because PITest
and Javalanche both filter the mutants prior to analysis based on statement cov-
erage. In addition, LittleDarwin relies on the build system to run the test suite,
which introduces per-mutant overhead.

Table 5. Pilot experiment results

Tool Generated mutants Killed mutants Mutation coverage Analysis time Per-mutant time

LittleDarwin 1,390 805 57.9% 2h 23min 45 s 6.21 s

PITest 4,315 2,145 49.8% 1h 13min 13 s 1.02 s

Javalanche 9,285 4,442 47.8% 1h 35min 23 s 0.62 s

5 Conclusion

We presented LittleDarwin, a mutation testing framework for Java. On the
one hand, it can cope with large and complex software systems. This lets

8 http://jaxen.org/.

http://jaxen.org/
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LittleDarwin foster the adoption of mutation testing in industry. On the other
hand, the tool is written in Python and released as an open source framework,
namely it enables fast prototyping, and the addition of new experimental compo-
nents. From this point of view, LittleDarwin shows its keen interest in represent-
ing an easy to extend framework for researchers on mutation testing. Combining
these aspects allows researchers to use real-life projects as the subjects of their
studies.

In the current version, LittleDarwin is compatible with major build systems,
supports complex test structures, can work with large systems, and retains lots
of useful information for further analysis of the results. Moreover, it already
includes the following experimental features: higher-order mutation, mutant
sampling, mutant subsumption analysis, and manual mutation. Using these fea-
tures, we have already performed four studies on real-life projects that would
otherwise not have been feasible.

Acknowledgments. This work is sponsored by the Institute for the Promotion of
Innovation through Science and Technology in Flanders through a project entitled
Change-centric Quality Assurance (CHAQ) with number 120028.
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Abstract. While mutation testing is considered to be an effective technique in
software testing, there are some impediments to its widespread use in industrial
projects. One of these challenges is the equivalent mutant problem, and a line of
research is dedicated to proposing new methods for addressing this problem.
Trivial Compiler Equivalence (TCE) method is recently introduced as a simple
technique that actually relies only on the optimizations made by the compiler. It
is shown by empirical studies that employing TCE with the gcc compiler results
in a fast and effective technique for detecting equivalent mutants in C programs.
However, considering the fact that the Java compilers generally do not perform
noticeable optimizations, the question is how effectively does TCE perform on
Java programs? In this paper, experimental evaluations are discussed which
demonstrate that using TCE technique with javac compiler results in very poor
performance. As a result, this paper proposes to use the Java obfuscators as the
complementary component, because of the optimizations they make. The
experimental evaluations confirm that using TCE with the ProGuard obfusca-
tion tool provides an effective and efficient method for detecting equivalent
mutants in Java programs.

Keywords: Mutation testing � Equivalent mutant � Trivial compiler
equivalence � Java

1 Introduction

Mutation testing is considered to be an effective approach to evaluate and also to
improve an existing test set [1]. It works based on the notion of mutants, where each
mutant is created by making a simple modification on the program under test. The set
of possible modifications are defined by the mutation operators that are defined for the
programming language of the target program. If there is a test set that the program has
successfully executed on, then mutation testing can be applied to provide a measure of
the quality of that test set. This is performed by running each mutant M on the test
cases to investigate whether the test cases are powerful enough to detect the injected
fault, i.e. the mutation. If the result of running the mutant on a test cases is different
from the result of running the original program on that test case, then the test case has
been able to distinguish, or kill, that mutant. The greater ratio of the mutants of the

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Dastani and M. Sirjani (Eds.): FSEN 2017, LNCS 10522, pp. 164–179, 2017.
DOI: 10.1007/978-3-319-68972-2_11



program are killed by the test set, the higher is the score of that test set. Finally, if there
remains any live mutant, i.e. mutants that are not killed by any test case, then there are
two possible cases for each live mutant: (1) whether this is a sign of the weakness of the
test set, or (2) the mutant is an equivalent mutant, i.e. the corresponding mutation has
made a syntax change without changing the semantic, and hence, the mutant cannot be
killed by any test case.

When applying mutation testing, a method is necessary to distinguish which of the
above cases holds for a live mutant. Without differentiating these two cases, it is
possible that the test case designer wastes his time and effort in trying to find a test case
for killing an equivalent mutant, which is actually not killable. Further, an equivalent
mutant may cause the quality of the test set to be underestimated.

While mutation testing has been empirically proven to be able to simulate
real-world programming errors [24], and hence to be an effective method for evaluating
and improving test sets, there some non-negligible impediments towards its application
in industrial software. The first problem is that mutation testing is a costly method,
since the number of possible mutants, even for a relatively small program is usually
high. Creating the mutants, compiling and executing them over the test cases and
comparing the execution result usually requires noticeable time and computation
resources.

Another problem is the equivalent mutants introduced before. Consequently, dif-
ferent approaches have been introduced during the last two decades for addressing this
problem by employing different techniques like machine learning [14], logical con-
straint solving [15], data flow pattern analysis [8], gamification [17], program slicing
[10] and code similarity measures [13]. One of the approached introduced recently, is
the Trivial Compiler Equivalence (TCE) approach [12] which is a simple, fast and
effective technique for detecting equivalent mutants.

The TCE technique actually relies on the optimizations performed by the compiler,
and it tries to determine equivalence of a mutant by comparing it with the original
program, in their binary, i.e. compiled, format. TCE has been evaluated in [12] on C
programs using the gcc compiler that is capable of performing different levels of
optimizations when compiling the program. The evaluations have shown that TCE is
an effective method for equivalent mutant detection in C programs. Considering Java
programs, however, TCE is not expected to perform noticeably, since the Java compiler
performs almost no specific optimization, and it leaves the optimizations to be per-
formed by Java Virtual Machine at runtime (JVM) [26]. We believe there is room for
evaluating the TCE technique on Java programs. Hence, in this paper, we experi-
mentally evaluate performance of TCE on Java programs, and further, we introduce
TCE+ as an extension of TCE which utilizes the ProGuard1 Java obfuscator in addition
to the compiler to address the lack of compiler optimizations.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
works. In Sect. 3, the experimental evaluation of the TCE and TCE+ techniques on
Java programs is discussed. Finally, Sect. 4 concludes the paper.

1 http://proguard.sourceforge.net/.
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2 Related Work

In order to address the equivalent mutant problem in the mutation testing domain,
different approaches have been proposed during the last two decades. This problem, in
its general form is an undecidable problem [2, 3] and therefore it is not expected to be
able to find an automated method that can solve every instance of this problem cor-
rectly and completely. As a result, some of the proposed approaches employ heuristics
or limit the characteristics of the program under study, for instance restricting the
number of iterations of the loops [25]. A literature review on the approaches for
tackling with the equivalent mutant problem is provided in [4], where it is concluded
that the equivalent mutant detection techniques are still “far from perfect”.

Some works attempt to deterministically determine whether a specific mutant is
equivalent or not. For instance, in [8, 18] a set of 9 data flow patterns is introduced that
result in equivalent mutants. In addition, a framework is proposed which uses static
analysis of data flow to check each mutant of a program against these patterns. If a
mutant follows one of the predefined patterns, then it is equivalent, otherwise it is
considered to be non-equivalent. As another example, [15] introduces a technique that
extracts a set of logical constraints from a mutant such that solving those constraints
proves that the mutant is equivalent to the original program. Then, the constraints are
given to a constraint solver tool for the purpose of detecting equivalent mutants. The
method assumes certain characteristics on the mutants which limits applicability of the
method (e.g. recursive functions are not supported). A similar approach based on
constraint solving techniques is also introduced in [16].

Some works implicitly use the idea that for an undecidable problem, it is not
possible to provide a complete automated solution and hence human intervention is
unavoidable. Therefore, they try to help the human experts in analyzing the mutants
and in making decision about their equivalence. This help can be provided in form of
identifying the mutants that are more likely to be equivalent. Therefore, these methods
follow a inexact approach and generate a recommended list of mutants, ordered by their
equivalence probability, that need to be manually analyzed by the human expert to
make the final decision. For instance, in [11], the idea is that the probability that a
mutant is not equivalent is related to how its coverage on a specific test set differs from
the coverage of the original program. In other words, the greater the coverage is
affected, the lower is the probability of the mutant being equivalent. A similar approach
for determining equivalent mutants based on the coverage impact is also proposed in
[5, 6]. Machine learning techniques are also used in some works like [14] to provide a
probabilistic approach to detection of equivalent mutants.

Another example of the works that count on human involvement for detection of
equivalent mutants is [17] that uses gamification technique. It introduces a two-player
game in which one player tries to create mutants that are hard to kill, and the other one
tries to introduce test cases that kill the mutants. The game indirectly can contribute to
detecting mutants that are more likely to be equivalent.

Another group of works try to avoid creation of equivalent mutants by more
advanced mutation generation techniques. For instance, [19] proposes to consider the
fact that different mutation operators perform differently from the point of view of the
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difficulty of killing their resulting mutants. This can be employed to selectively use
mutation operators that less frequently create equivalent mutants. Another group of
works have shown that using higher order mutants instead of first-order mutants can
reduce the number of equivalent mutants generated for a program [9, 20–22].

Other techniques that have been used for exact equivalent mutant detection include
code similarity measures and clone detection techniques [13], program slicing tech-
niques [10], co-evolution algorithms [7].

An interesting approach that is recently proposed for detection of the equivalent
mutants is the TCE approach [12], which uses a very simple and straightforward
technique. TCE works based on the idea that the advanced optimizations performed by
a compiler can remove some type of the mutations that have not affected the semantic
of the program, and hence if the equivalent mutant is compiled, the result of compiling
can be the same as the result of compiling the original program. It is demonstrated
through experimental evaluations that the TCE technique is successful in effectively
detecting equivalent mutants of a C program using the gcc compiler optimizations.
However, since the Java compilers generally do not perform noticeable optimizations,
the performance of TCE on Java programs needs to be investigated. As a result, current
paper proposes TCE+ technique as an extension of TCE that utilizes ProGuard for the
purpose of optimizing Java code. In addition to performing different optimizations, e.g.
dead code removal, unused variable removal and peephole optimizations, ProGuard is
also able to obfuscate, shrink and pre-verify Java byte codes. However, TCE+ uses
ProGuard only for the purpose of optimizations and it does not use obfuscation or
shrinking capabilities of ProGuard. It is beyond the scope of this paper to describe the
optimization techniques employed by ProGuard or gcc, however, Table 1 briefly
mentions some of the main optimizations performed by each of these tools.

In [12], TCE has been shown to be able to find, in addition to equivalent mutants,
the duplicated mutants, i.e. mutants that are equivalent to each other, but not neces-
sarily equivalent to the original program. Since there is no advantage in using two
duplicated mutants, it is interesting to be able to detect duplicated mutants. In this
paper, we evaluate the TCE and TCE+ methods for the purpose of detecting equivalent
and duplicated mutants of Java programs.

Table 1. Some of the optmization techniques employed by the subject tools

Tool Optimization techniques

gcc Compiler Dead Code Elimination, Transforming Conditional Jumps, Constant Folding,
De-Virtualization, Function Inlining, Predictive Commoning, Elimination of
Useless Null Pointer Checks, Peephole Optimization, Global Common
Subexpression Elimination

ProGuard Dead Code Elimination, Peephole Optimization, Marking Classes as Final,
Variable Allocation Optimization, Method Inlining, Return Value
Propagation, Removing Write-only Fields
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3 Experimental Study

In this section, the experimental evaluation of the TCE and TCE+ approaches over Java
programs is discussed. First, the research questions are introduced and then, different ele-
ments of the experiments are described. Finally, the results of the experiments are discussed.

3.1 Research Questions

Since the TCE approach has been shown to be both effective and efficient in detecting
equivalent and duplicated mutants in C programs, the main research question this paper
seeks to answer is:
RQ. How do the TCE and TCE+ approaches perform on Java programs?

To answer this question, two more specific research questions are introduced.
RQ1. How effective are the TCE and TCE+ approaches at detecting equivalent and

duplicated mutants in Java programs?
To answer this question, the number of equivalent and duplicated mutants
detected by the TCE and TCE+ techniques, and also the ratio of the detected
equivalent mutants to the existing equivalent mutants is reported.

RQ2. How efficient is TCE+ for the purpose of equivalent mutant detection?
This question is answered by computing the execution time of the TCE+
approach to see if it is efficient enough to be used in practice. While we have
not evaluated TCE+ on large programs, we believe that the efficiency of the
technique for the large programs can be estimated based on the results
obtained for the small programs.

3.2 Dataset and Golden Standard

For the purpose of the experimental evaluations, first, a dataset is prepared including 5
java programs, and then, for each program, its mutants are created by the MuJava
mutation testing tool [23]. Table 2 shows the name of each program, its size in terms of
physical Source Line of Code (SLOC) and the number of its mutants. The mutation
operators that MuJava has applied on the subject programs are mentioned in Table 3.

In addition, a golden standard is created by manually checking each mutant of the
subject programs to determine whether it is equivalent to the original program. This
manual analysis is performed separately by three experts who have had more than 10
years of experience in object oriented programming in Java. After each expert has

Table 2. Dataset used in the experiments

Program Subject program Physical SLOC Number of mutants

P1 BubbleSort 15 111
P2 Bisect 25 189
P3 Triangle 46 456
P4 QuickSort 50 341
P5 java.util.StringTokenizer 174 772
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finished his job, the results have been compared so that any possible conflict is
resolved. Actually, there were 7 such cases that needed the experts to discuss with each
other to agree on the result.

3.3 Experimental Environment

All the experiments are performed on a PC with Microsoft Windows 7 operating system,
Intel Core i5-4400 processor and 8 GB RAM. Further, we have used the Oracle’s Java
compiler javac version 1.8.0_60 to compile the programs and the mutants, and also
ProGuard 5.3 to optimize the compilation results. Finally, for the purpose of comparing
the binary files, theWindows utility program FC is usedwith the parameters /B and /LB1.

3.4 Experiments

To answer the research questions, four experiments are designed. The first two exper-
iments evaluate the TCE and TCE+ techniques for the purpose of equivalent mutant

Table 3. Mutation operators applied by MuJava on the subject programs

Operator Operator definition

AODS: Short-cut Arithmetic
Operator Deletion

{(x,remove(x)) | x 2 {++, −−}}

AODU: Unary Arithmetic
Operator Deletion

{(−v, v)}

AOIS: Short-cut Arithmetic
Operator Insertion

{(v, −−v), (v, v–), (v, ++v), (v, v++)}

AOIU: Unary Arithmetic
Operator Insertion

{(v, −v)}

AORB: Binary Arithmetic
Operator Replacement

{(x,y) | x,y 2 {+, −, *, /, %} ^ x 6¼ y}

AORS: Shortcut Arithmetic
Operator Replacement

{(x,y) | x,y 2 {++, −−} ^ x 6¼ y}

ASRS: Shortcut Assignment
Operator Replacement

{(x,y) | x,y 2 {+=, −=, *=, /=, %=} ^ x 6¼ y}

CDL: Constant DeLetion {(op c, remove(op c)) | op 2 {+, −, *, /, %, >, >=, <, <=}}
COD: Conditional Operator
Deletion

{(!(e), e) | e 2 {if(e), while(e), for(s; e; s)}}

COI: Conditional Operator
Insertion

{(e, !(e)) | e 2 {if(e), while(e), for(s; e; s)}}

COR: Conditional Operator
Replacement

{(x,y) | x,y 2 {&&, ||, ^} ^ x 6¼ y}

LOI: Logical Operator Insertion {(v, � v)}
ODL: Operator DeLetion {(v op, remove(v op)), (op v, remove(op v)) | op 2 {+, −, *, /, %, <,

<=, >, >=}}, {(v++, v), (v−−, v), (−−v, v), (++v, v) | op 2 {++, –}}
ROR: Relational Operator
Replacement

{(x,y) | x,y 2 {>, >=, <, <=, ==, !=} ^ x 6¼ y}

SDL: Statement DeLetion {(s, remove(s))}
VDL: Variable DeLetion {(v [op], remove(v [op])) | op 2 {+, −−, *, /, %, ++, –, <, <=, >, >=}
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detection and the second two experiments evaluate them for detecting duplicated
mutants. The processes used in these experiments are shown in Figs. 1, 2, 3 and 4.

Input: P (original program) 
Output: EM (list of the equivalent mutants of P) 

//compile step
compile P to Pclass
for each mutant M of P
compile M to Mclass

//comparison step
for each mutant M of P
result = compare Mclass to Pclass
if (result == 'no difference')
add M to EM

return EM

Fig. 1. Process of experiment 1: TCE for equivalent mutant detection

Input: P (original program) 
Output: EM (list of the equivalent mutants of P) 

//compile step
compile P to Pclass
for each mutant M of P
compile M to Mclass

//optimization step
convert Pclass to Pjar
optimize Pjar to Pjar,op
extract Pclass,op from Pjar,op
Pclass = Pclass,op
for each mutant M of P 
convert Mclass to Mjar
optimize Mjar to Mjar,op
extract Mclass,op from Mjar,op
Mclass = Mclass,op

//comparison step
for each mutant M of P
result = compare Mclass to Pclass
if (result == 'no difference')
add M to EM

return EM

Fig. 2. Process of experiment 2: TCE+ for equivalent mutant detection

170 M. Houshmand and S. Paydar



In the first experiment, for each subject program P, P is compiled to Pclass and each
mutant M of P is compiled to Mclass. Then each compiled mutant Mclass is compared to
the Pclass. If no difference is identified in this comparison, it is considered that TCE has
determined the corresponding mutant as an equivalent mutant.

The second experiment evaluates the TCE+ approach by including an optimization
phase before the comparison step. In order to perform the optimization, first a jar file is
created from the compiled file, i.e. Pclass or Mclass. The jar file is then given to ProGuard
to do the optimizations. The resulting jar file is then decompressed to extract the
optimized compiled file which then goes through the binary comparison.

In the third experiment, each compiled mutant of the program is compared to all
other compiled mutants of that program that have the same file size. If there is no
difference between the corresponding binary files, those two mutants are added as a
pair to the list of duplicated mutants. After processing all the mutants, a simple
algorithm shown in Fig. 3 is used to determine the list of mutants that can be removed.

The fourth experiment is very similar to the third experiment and the only differ-
ence is that it compares the optimized version of the compiled mutants which are
created by the process described for the second experiment.

Input: P (original program) 
Output: DM (list of the removable duplicated mutants of 
P) 

//compile step
for each mutant M of P
compile M to Mclass

//comparison step
Pairs: empty list
for each mutant M1 of P
for each mutant M2 of P
if (M1 != M2 and filesize(M1class)==filesize(M2class))

result = compare M1class to M2class
if (result == 'no difference')
add pair(M1, M2) to Pairs

//removal step
sort Pairs based on the first element of the pairs
for each Pair in Pairs

M1 = first element of Pair
M2 = second element of Pair
if not (DM contains M1)

add M2 to DM
return DM

Fig. 3. Process of experiment 3: TCE for duplicated mutant detection
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3.5 Result Analysis

The results of the first two experiments are shown in Table 4. As it is shown in this
table, TCE approach has not detected any equivalent mutant in the subject programs.
Therefore, it can be concluded that since the Java compiler does not perform noticeable
optimizations [26], applying TCE on Java programs is not effective for detecting
equivalent mutants. However, the TCE+ technique, which compensates the limitation
of the Java compiler by utilizing ProGuard’s optimizations, has identified some
equivalent mutants for each of the subject programs. Therefore, TCE+ has been able to
address the shortcomings of the TCE method. However, the number of detected
equivalent mutants is small and at the best case, i.e. the Bisect program, it accounts for

Input: P (original program)
Output: DM (list of the removable duplicated mutants of 
P) 

//compile step
for each mutant M of P
compile M to Mclass

//optimization step
for each mutant M of P
convert Mclass to Mjar
optimize Mjar to Mjar,op
extract Mclass,op from Mjar,op

 Mclass = Mclass,op
//comparison step
Sort mutations based on their file size
for each mutant M1 of P
if (M1 in DM)
continue;

for each mutant M2 of P 
if (M2 in DM)
continue;

if (M1 != M2
and filesize(M1class) == filesize(M2class))
result = compare M1class to M2class
if (result == 'no difference')
add M2 to DM

else
break;

return DM

Fig. 4. Process of experiment 4: TCE+ for duplicated mutant detection
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only 7% of all the mutants. The worst case is also the BubbleSort program that the
detected equivalent mutants are only 2% of all the mutants.

In order to judge the effectiveness of the TCE+ approach, it is required to know the
ratio of the detected equivalent mutants to all the existing equivalent mutants. There-
fore, the results of the first two experiments have been compared with the golden
standard. As shown in the last column of Table 4, TCE+ has been able to detect from
18% to 100% of all the existing equivalent mutants. It has missed 9, 2 and 7 equivalent
mutants respectively for the BubbleSort, QuickSort and StringTokenizer programs. For
the other two programs, i.e. Bisect and Triangle, all the existing equivalent mutants
have been found by TCE+ .

Based on these results, we conclude that TCE+ is generally effective and it is
successful in detecting a good ratio of the existing equivalent mutants. However, it is
interesting to analyze the detected and undetected equivalent mutants based on their
mutation operators.

The distribution of the mutation operators over all the generated mutants is shown
in Table 5. The top-3 mutation operators that have created the greatest proportion of
the mutants are AOIS, ROR and SDL, which have created respectively 33%, 20% and
10% of all the mutants. There are some operators like AOSE and AODU that have
negligible contribution to the number of mutants created.

In Table 6, the distribution of the mutation operators over all the existing equiv-
alent mutants is shown. An interesting point is that the AOIS operator which has
created about 33% of all the mutants is also responsible for creating about 77% of all
the equivalent mutants in the golden standard. Further, the ROR operator has created
about 14% of all the equivalent mutants. From another point of view, about 13% of the
mutants created by the AOIS operator have been equivalent. This value for the ROR
operator has been about 4%. This means that the performance of the TCE+ technique
over these two mutation operators is of greater importance, compared to other mutation
operators.

Table 4. Results of experiments 1 and 2: Detecting equivalent mutants

Program Number of detected
equivalent mutants

Percentage of
detected equivalent
mutants to all
mutants

Percentage of
detected equivalent
mutants to all
existing equivalent
mutants

TCE TCE+ TCE TCE+ TCE TCE+

P1 0 2 0 2 0 18
P2 0 14 0 7 0 100

P3 0 23 0 5 0 100
P4 0 10 0 3 0 83

P5 0 34 0 4 0 83
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The distribution of the mutation operators over all the equivalent mutants that are
found by TCE+ is shown in Table 7. Comparing this table with Table 6 shows that
TCE+ has successfully detected all the equivalent mutants created by the AOIS
operator, which account for about 77% of all the equivalent mutants. Hence, consid-
ering the ratio of AOIS-generated equivalent mutants, it can be concluded that the TCE
+ approach is an effective method for detection of equivalent mutants in Java programs.
However, it is also important to note that TCE+ has not detected any of the 14
equivalent mutants created by the ROR operator (5 for BubbleSort, 2 for QuickSort and
7 for StringTokenizer). It also has missed 4 other equivalent mutants of BubbleSort, 2
created by the AORB operator, 1 by ODL and 1 by the CDL operator.

Regarding detection of the duplicated mutants, the results of the third and the fourth
experiments are presented in Table 8. This table shows that TCE and TCE+ have
identified respectively from 8% to 14% and from 13% to 23% of the mutants of the
subject programs as being duplicated. Since the duplicated mutants do not contribute to
the mutation testing results, they can be removed from the mutants. Considering all the
five subject programs, TCE and TCE+ have identified respectively 9% and 16% of all
the mutants as being duplicated. As a result, we conclude that while TCE+ noticeably
outperforms TCE, both approaches are effective in detecting duplicated mutants.

An interesting point is that while TCE has not detected any equivalent mutant, but
it has detected non-negligible number of duplicated mutants. Further analysis of the

Table 5. Distribution of the mutation operators over all the mutants

Program Mutation operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 30 3 16 2 4 3 11 8 19 10 5

P2 80 13 32 2 3 16 19 14 10

P3 128 11 36 3 24 14 43 32 119 31 15

P4 2 108 18 36 6 8 9 40 20 55 28 11

P5 2 262 33 7 20 6 39 20 80 33 163 100 7

Total 2 2 608 78 120 15 20 17 6 78 34 174 109 375 183 48

Ratio
(%)a

<1 <1 33 4 6 1 1 1 <1 4 2 9 6 20 10 3

a Percentage to all the mutants

Table 6. Distribution of the mutation operators over the existing equivalent mutants

Program Mutation operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 2 2 1 1 5

P2 12 2

P3 20 1 1 1

P4 10 2

P5 34 7

Total 0 0 78 3 2 0 0 1 0 0 0 0 2 14 0 1

Ratio (%)a 0 0 77 3 2 0 0 1 0 0 0 0 2 14 0 1
a Percentage to Existing Equivalent Mutants
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results reveals that the detected duplicated mutants are not a result of the optimizations
made by TCE, but they are resulted from the fact that applying some MuJava mutation
operators on some program statements may create exactly the same syntactic changes.
In other words, for each pair of duplicated mutants detected by TCE, both mutants are
syntactically-equal. An example pair is shown in Table 9. While TCE+ has detected all
the duplicated mutants found by TCE, it has also detected other results which are
syntactically different but semantically duplicated. An example is shown in Table 10.

Another interesting point is that, as shown in Table 11, 44% of all the duplicated
mutants detected by TCE are created by the ROR operator. The other 23% are asso-
ciated with the VDL operator. Only about 1% of the detected duplicated mutants are
results of the AOIS operator. The results for the TCE+ technique are also presented in
Table 12. This table shows that, compared to TCE, the TCE+ technique is able to
detect the duplicated mutants that are created by a wider set of mutation operators.
Actually, TCE+ has detected duplicated mutants of type AOI, AORB, CDL and LOI
operators, of which none is detected by the TCE method.

Finally, to answer RQ1, we conclude that TCE is not effective for detecting
equivalent mutants of Java programs, but it can effectively detect the duplicated
mutants. Further, TCE+ is effective for detecting both equivalent and duplicated
mutants.

Table 7. Distribution of the operators over the equivalent mutants detected by TCE+

Program Mutation operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 2

P2 12 2

P3 20 1 1 1

P4 10

P5 34

Total 0 0 78 3 0 0 0 0 0 0 0 0 1 0 0 1

Ratio (%)a 0 0 94 4 0 0 0 0 0 0 0 0 1 0 0 1
a Percentage to all equivalent mutants detected by TCE+

Table 8. Results of experiments 3 and 4: Detecting duplicated mutants

Program Number of detected
duplicated mutants

Percentage of
detected duplicated
mutants to all mutants

TCE TCE+ TCE TCE+

P1 15 25 14 23
P2 16 31 8 16
P3 52 89 11 20
P4 34 59 10 17
P5 60 99 8 13
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In order to evaluate efficiency of TCE+ for detecting equivalent mutants, its exe-
cution time for different steps, i.e. (1) compiling the mutants, (2) optimization of the
compiled mutants, and (3) comparison of the optimization results, is separately mea-
sured for each subject program. The process of detecting duplicated mutants also
includes the first two steps, but in the third step, it compares the optimization results
differently. Therefore, the execution time of this step is also measured to evaluate
efficiency of TCE+ for detecting duplicated mutants. The results are presented in
Table 13.

Table 9. An example duplicated mutant detected by TCE

Original statement Mutant by ODL operator Mutant by CDL operator

x = (M + x)/2; x = M + x; x = M + x;

Table 10. An example duplicated mutant detected by TCE+ but missed by TCE

Original Statement Mutant by AOIS Operator Mutant by AOIS Operator

public void setEpsilon
(double epsilon) {this.
mEpsilon = epsilon;}

public void setEpsilon
(double epsilon) {this.
mEpsilon = epsilon−−;}

public void setEpsilon
(double epsilon) {this.
mEpsilon = epsilon++;}

Table 11. Distribution of the operators over the duplicated mutants detected by TCE

Program Mutation Operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 4 3 3 5

P2 4 2 10

P3 3 27 7 15

P4 2 10 9 5 8

P5 8 39 11 2

Total 0 0 2 0 0 0 0 0 0 0 0 0 29 78 28 40

Ratio (%)a 0 0 1 0 0 0 0 0 0 0 0 0 16 44 16 23
a Percentage to all duplicated mutants detected by TCE

Table 12. Distribution of the operators over the duplicated mutants detected by TCE+

Program Mutation Operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 1 4 4 4 4 3 5

P2 13 2 4 2 10

P3 19 1 3 1 1 4 38 7 15

P4 14 6 6 10 10 5 8

P5 34 8 43 12 2

Total 0 0 81 3 13 0 0 11 0 0 0 1 30 95 29 40

Ratio (%)a 0 0 27 1 4 0 0 4 0 0 0 0 10 31 10 13
a Percentage to all duplicated mutants detected by TCE+
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As shown in Table 13, the execution times of detecting equivalent mutants and
duplicated mutants do not differ noticeably, and they are about 1s per mutant. Therefore,
to answer RQ2, we conclude that TCE+ can be considered as an efficient method.
Further, the comparison times, both for equivalent and duplicated mutants, are negli-
gible. However, the optimization time is about 2–3 times the compile time. It is worth
noting that the compile time is an inherent overhead of mutation testing, since in
mutation testing, each mutant should be compiled and executed against the test cases.
Therefore, the overhead imposed by TCE+ is the optimization time. Considering the fact
that TCE+ can effectively detect equivalent and duplicate mutants, and these mutants do
not need to be executed over the test cases, it means that TCE+ reduces the cost of
mutation testing by reducing the number of mutants that need to be run and specially by
removing the mutants that due to their equivalence, can waste the time of the test case
designers. Hence, we believe the overhead of optimization time which involves CPU
cycles can be considered as acceptable by the reduction it provides in required human
effort. Consequently, we conclude that TCE+ is cost effective.

4 Conclusion

In this paper, the performance of TCE technique for detecting equivalent mutants in
Java programs is evaluated. As the experimental evaluations have demonstrated, TCE
has not detected any equivalent mutant in the subject programs and hence it cannot be
considered to effective. To address this problem, current paper has proposed the TCE+
technique which extends TCE by utilizing an obfuscator like ProGuard, capable of
performing some optimizations on Java programs.

The experimental evaluations show that while there are mutation operators like
ROR for which TCE+ performance is weak, there are also operators like AOIS that
TCE+ is able to find all of its equivalent mutants. Considering the contribution of each
operator to the number of equivalent mutants of a typical program, TCE+ can be
considered to be an effective and efficient method for detecting both equivalent and
duplicated mutants for Java programs.

Current paper has investigated performance of TCE+ on small programs. Hence, it
is required to perform similar experiments on larger Java programs to see how the
performance of TCE+ changes as the program size increases. A challenge in this regard

Table 13. Execution time of TCE+ for detecting equivalent and duplicated
mutants

Program Execution time (s)

Compile Optimization Comparison for
detecting
equivalent
mutants

Comparison for
detecting
duplicated
mutants

Total for
detecting
equivalent
mutants

Total for
detecting
duplicated
mutants

P1 36 68 1 1 105 105
P2 57 124 3 1 184 182
P3 137 289 6 3 432 429
P4 101 188 5 2 294 291
P5 235 617 12 5 864 857
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is preparation of the golden standard, since for large programs, the number of mutants
is noticeable and it needs considerable effort to build a reliable golden standard. This is
a main direction of our future work. Further, more precise analysis of the behavior of
TCE+ on different mutation operators is an important job that we have scheduled for
our future works. The results of such analysis will provide insights on possible
improvements on ProGuard from the specific point of view of equivalent mutant
detection.
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Abstract. The reactive paradigm recently became very popular in user-
interface development: updates — such as the ones from the mouse, key-
board, or from the network — can trigger a chain of computations organ-
ised in a dependency graph, letting the underlying engine control the
scheduling of these computations. In the context of the Internet of Things
(IoT), typical applications deploy components in distributed nodes and
link their interfaces, employing a publish-subscribe architecture. The par-
adigm for Distributed Reactive Programming marries these two concepts,
treating each distributed component as a reactive computation. However,
existing approaches either require expensive synchronisation mechanisms
or they do not support pipelining, i.e., allowingmultiple “waves” of updates
to be executed in parallel.

We proposeQuarp (Quality-Aware Reactive Programming), a scalable
and light-weight mechanism aimed at the IoT to orchestrate components
triggered by updates of data-producing components or of aggregating com-
ponents. This mechanism appends meta-information to messages between
components capturing the context of the data, used to dynamically mon-
itor and guarantee useful properties of the dynamic applications. These
include the so-called glitch freedom, time synchronisation, and geograph-
ical proximity. We formalise Quarp using a simple operational semantics,
provide concrete examples of useful instances of contexts, and situate our
approach in the realm of distributed reactive programming.

Keywords: Reactive programming · Component-based systems ·
Pervasive systems · Distributed systems · Failure

1 Introduction

Reactive programming is a paradigm that uses functions defined over streams of
data, rather than the more traditional functions over values. Data sources are
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producers of data streams, and functions produce new streams based on their
input streams. Producing a new value triggers a wave of functions that process
the new values. This paradigm became especially popular among developers of
user-interfaces and reactive web pages [1–4], helping to manage the dependencies
between updates (from the mouse, keyboard, network, etc.) and the display.

Recent attempts bring this paradigm to a distributed setting [5–7], carrying
new challenges. Consider, for example, a twitter message (a tweet) being posted,
consequently activating two independent services: one to make the tweet avail-
able, and one to notify all subscribers. Currently it is possible for a twitter client
to be notified without the tweet being made available, leading to a glitch – a
temporarily inconsistent state. In (non-distributed) reactive programming this
is typically solved by scheduling the client execution after the executions of both
the twitter data feeds and the notification engine. However, in a distributed
setting some different, and leaner, coordination approach is required.

Distributed reactive programming [8] can attempt to fix this problem by
adding extra constraints to ensure that all processing occurs on globally coordi-
nated rounds. While this is simple and accurate, strong coordination does not
scale well as more and more components need to agree on an order of execution,
and faster components may have to wait for slower ones to catchup. Distributed
systems are prone to regular failures on message transmission and transient
partitions [9], calling for weaker coordination among components. In networks
of low-resource devices such as the ones used by the LooCI middleware [10],
common in the IoT, computation and communication is kept to a minimum to
preserve energy, and it is often unrealistic to assume reliable communication.

This paper proposes Quarp — quality aware reactive programming — a more
flexible approach to source coordination that rethinks on the amount of out-of-
synchrony that qualifies as a genuine glitch, i.e. one that induces incorrect results.
For instance, when combining slow varying data sources, such as environmental
temperature, sensible outputs can still be derived when measurements are a few
seconds apart. Reducing the synchronization requirements makes the overall
system more resilient and fault tolerant. The key to this is to associate meta-
data to data emitted by a source, and to assume a realistic network infrastructure
where messages are eventually delivered, but can transiently be lost or received
out of order. A tradeoff is to allow data loss, and still be able to progress when
data goes through with sufficient synchronization quality. The alternative, of
trying to act on all data, can easily stall all activity in complex deployments.

The key contributions of this paper are the formalisation of a core reactive
language tailored for the IoT, that: (1) measures the quality of incoming mes-
sages; (2) can guarantee properties such as glitch-freedom; (3) supports more
relaxed notions such as “data sources are located nearby” and “glitch-freedom
with an error margin”; and (4) can be used in lightweight nodes since it does
not rely on heavy computations or complex coordination protocols.
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Organisation of the paper. Section 2 introduces the key challenges addressed by
Quarp via a motivating example. Section 3 formalises the semantics of a simple
pseudo-language for reactive programs: first without quality awareness, and later
extended with quality attributes. Section 4 illustrates the generality of Quarp
by exploring different notions of quality useful in reactive programs. Section 5
discusses the key advantages and disadvantages of our approach with respect to
existing approaches to distributed reactive programming. Finally, Sects. 6 and 7
present related work and main conclusions, respectively.

2 Motivation: Composition of Reactive IoT Components

We use as a running example a simple distributed reactive application in the con-
text of the Internet of Things (IoT), where different sensors produce values that
are aggregated and displayed by different services. This example motivates our
approach and helps explaining the design choices that influenced our framework.

Fig. 1. Application that reacts to sensor values to either notify to close the window or
to produce a feels-like value.

The reactive application in Fig. 1 is composed of: data sources ( ), observers
( ), and mixed components ( ). The data sources t1, t2 represent tempera-
ture sensors, h1, h2 represent humidity sensors, wind represents a wind sensor,
wdw the open/closed status of a window, and w 1,2 produces weights that capture
the relevance of each sensor for averaging. The avgt and avgh services calculate
the weighted averages of temperatures and humidity values, respectively. Finally,
the observers closeWindow and feelsLike are capable of producing side effects,
namely to send a warning to close a window and to display a feels-like temper-
ature value, respectively.

This IoT example illustrates some possible challenges that can occur when
managing dataflows triggered by new values being produced by data sources.

Glitches. A glitch can occur, for example, if w1,2 produces a value, triggering
avgt and avgh to recalculate the averages, and later feelsLike updates its value
after receiving a new value from avgt but before receiving from avgh.
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Timestamps. Alternatively, the feelsLike observer may chose to inspect the
timestamps for when the original data sources produced the readings, and decide
on whether these are within an acceptable time window.

Geo-location. The physical proximity of the sensors could also be consid-
ered when deciding on whether the input values of feelsLike should be taken
together.

Context and Quality. The concept of how good are the input parameters of a
given service call, with respect to the original source of the data, is captured in
Quarp by what we call the context of a message, and the quality of a context.
Furthermore, we do not fix upfront what a context and a quality measurement
are. Instead, we specify simple properties of contexts and operations, and prop-
erties of operations that must be defined over contexts and qualities. We also
provide concrete examples of contexts and qualities that we found useful for
reactive programs.

As a running example we will focus on glitch-freedom. We will use a simple
context that labels every message with pairs of values, each containing a globally
unique ID of a data source and the value of a local grow-only counter of the
same data source. Every data source component starts by labelling its published
values with a pair with its ID and counter value; every service that aggregates
data, such as avgt, labels its published values with the joint labels of its input
arguments. These labels are used to provide glitch-freedom guarantees, which is
a typical concern in reactive programming. More complex labels, described later
in this paper, can also include location information and wall-clock time sources.

More generally, contexts are expected to form a commutative monoid, i.e., to
be able to be composed via an associative and commutative operator, and their
associated qualities are expected to form a bounded semi-lattice, i.e., to have a
partial order over possible qualities and to have a minimal quality.

Observe that, since every context is expected to have an associated quality,
one could merge the concepts of context and quality, and require this merged
qualified context to form both a commutative monoid and a bounded semi-
lattice. We decided to keep this split for readability. Our notion of context and
quality is inspired in constraint semirings [11], which possess two binary opera-
tors. One is similar to our composition of contexts, and the other is an idempotent
operator that induces a partial order similar to our bounded semi-lattice.

3 Quarp: Quality-Aware Reactive Programming

We formalise the Quarp framework, generalising the notions of context and qual-
ity, and providing different examples of concrete instantiations for contexts and
qualities. Components in a reactive system receive data by their source ends and
publish data on their sink ends. A component is called a data source if it has no
source ends, observer if it has no sink ends, and mixed component otherwise.

This section starts by formalising reactive programs, followed by an extension
with quality-aware semantics and examples of useful quality metrics.
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3.1 Basic Reactive Programs

A reactive program p is formally a set of component definitions, each written
as c ← func(arg), where func is a function with a list of arguments arg, and
each argument a ∈ arg can be either a constant or a component. Our example
in Fig. 1 can be written as in Fig. 2, where the interpretation of the functions
is expected to be defined elsewhere. In practice, this abstraction of a reactive
program could be derived from the source code of the individual components.

Fig. 2. Encoding of the program in Fig. 1.

Given a program p we say c2 subscribes to c1, written c1 ≺p c2, if p contains
c2 ← func(...,c1,...). We omit p in ≺ when clear from context. In our example
program we say that the avgt component subscribes to the components t1, t2,
and w12, written t1 ≺ avgt, t2 ≺ avgt, and w12 ≺ avgt. Hence ≺ defines a
dependency graph between components, starting from the source components.

Informal runtime semantics. Components communicate via a publish-
subscribe mechanism, as in our IoT example. A program starts when a source
component produces a value to be published. For example, when t1 decides to
publish the value 17. It places the value in an output buffer linked to avgt, repre-
senting the (non order-preserving) network communication. In turn, components
like avgt have input buffers, one for each input, storing their last received value.

The program proceeds when the network atomically transfers one of its values
to an input buffer. In our example, the networks transfers the output value 17 to
the input buffer of avgt. Previously stored data in this buffer is overwritten, even
if it was not processed yet by avgt, simulating failure in the communication.

Once the avgt service receives a new value, it checks if all its input values are
ready, i.e., if all their associated input buffers are non-empty. This will only be
the case after both t1 and w12 publish values that arrive to avgt. Upon receiving
an update for one of its buffers, avgt calculates an average value based on its
three parameters and places the result in its output buffer, which buffers data
going to two components: closeWindow and feelsLike.

Note that, even though mixed components and observers can only process
parameters when these are updated, these components can decide to ignore
incoming messages, even if all the buffers are non-empty. This effectively mimics
data being lost, since newer messages override previously received ones.

Formal runtime semantics. Let C be the set of all components, D the domain
of data produced by components, PX the set of all sets over X, and MX the set
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of all multisets over X. The runtime semantics of a reactive program is modelled
by the evolution of so-called input and output buffers.

– Every source and mixed component c ∈ C has exactly one output buffer,
written outc : C → MD, responsible for storing event data values published
by c until they are consumed by its subscribers.

– Every observer and mixed component c ∈ C has exactly one input buffer,
written inc : C → (D ∪ {−}), used to store the last value used by each input
of c, whereas “−” represents the absence of a value used by a given input.

For example, outw12 = {avgt �→ {17, 19} , avgh �→ {19}} means that the compo-
nent avgt has pending values 17 and 19 from w12, and avgh has only a pending
value 19 from w12. Regarding input buffers, incloseWindow = {avgt �→ 18, wdw �→
open} means that the component closeWindow has previously used the values 18
and open as input from avgt and wdw, respectively, and incloseWindow = {avgt �→
18, wdw �→ −} means that closeWindow never received a value from wdw before.

The use of multisets in input buffers instead of sequences captures the lack of
order guarantees in the sending of messages. The state of a reactive program p
is therefore captured by the set of all input and output buffers Ip and Op in p,
written 〈Ip, Op〉. We write I and O to represent the set of all possible input and
output buffers, respectively, and drop the program p in subscript when clear.

Finally the semantics of a reactive program is given by the rules in Fig. 3,
labelled by pairs ?c denoting that c is ready to be executed, and !c, d denot-
ing that c published the value d. The rule (src) represents a source component
becoming ready to publish a value, the rule (rcv) represents a data value being
delivered to a given component, and the rule (pub) represents a connector pub-
lishing a given data value. These rules use the auxiliary functions activeI, evalI,
O + (c, d), O − (c, d, c′), and I + (c, d, c′), defined as follows.

Fig. 3. Operational semantics of basic reactive components.

• activeI : P C. Predicate that says whether a given component c is active by
checking if all its input buffers contain a value. Formally, c ∈ activeI , also
written as activeI(c), holds if for all c′ ≺ c, inc(c′) 
= −, where inc ∈ I.
Example: activeI(avgt) means that avgt is ready to be executed, i.e.,
inavgt(t1) 
= −, inavgt(t2) 
= −, and inavgt(w12) 
= −, where inavgt ∈ I.

• evalI : C → D. Function that, given the current buffers I and a connector c
where c ← func(args), (1) calculates args′ by replacing in args all occurrences
of input components c′ by their last received value inc(c′) (where inc ∈ I),
and returns the result of evaluating func(args ′).
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Example: evalI(avgt) = 17.6 means that the result of evaluating
calc-avg(t1,t2,w12), after replacing t1, t2, and w12 by the values in I,
is 17.6.

• O + (c, d) : O and O − (c, d, c′) : O. Functions that add and
remove data to output buffers in O, respectively. Formally, when outc ∈
O then: (1) O + (c, d) = {outc + d} ∪ (O\ {outc}), where outc +
d = {cout �→ (M ∪ d) | (cout �→ M) ∈ outc}; and (2) O − (c, d, c′) =
{outc − (d, c′)} ∪ (O\ {outc}), where (outc − (d, c′))(e) = if (e =
c′) then outc(e) − {d} else outc(e).

• I + (c, d, c′) : I. Function that updates the buffers I by replacing the
previous value of inc′(c) with d. Formally, when inc′ ∈ I then I +
(c, d, c′) = {inc′ + (c, d)} ∪ (I\ {inc′}), where (inc′ + (c, d))(e) = if (e =
c) then d else inc′(e).

Example. Consider our running example from Fig. 1. Initially the input and
output buffers I and O are empty, defined as follows:

I = {inc | c ∈ {avgt,avgh,closeWindow,feelsLike}}
inc = {c′ �→ − | c′ ≺ c}

O = {outc | c ∈ {t1,t2,w12,h1,h2,wdw,wind,avgt,avgh}}
outc = {c′ �→ ∅ | c ≺ c′}

A possible trace that triggers the execution of closeWindow without data losses
or re-orderings is, for some Ik and Ok with k ∈ {1, . . . , 6}:

〈I,O〉 !t1,17−−−→ 〈I1, O1〉 !w12,〈0.6,0.4〉−−−−−−−−→ 〈I2, O2〉 !wdw,open−−−−−→ 〈I3, O3〉
!t2,19−−−→ 〈I4, O4〉 !avgt,17.8−−−−−−→ 〈I5, O5〉 !closeWindow,−−−−−−−−−−→ 〈I6, O6〉

If a label starting with ? appears in a trace, it represents a trigger that was never
used by a publish rule, i.e., data that was received but not used. After this trace,
the input and output buffers in the state 〈I6, O6〉 should have updated into the
following ones:

inavgt = {t1 �→ 17, t2 �→ 19, w12 �→ 〈0.6, 0.4〉}
incloseWindow = {wdw �→ open, avgt �→ 17.8}

outw12 = {avgt �→ ∅, avgh �→ 〈0.6, 0.4〉}
outavgt = {closeWindow �→ ∅, feelsLike �→ 17.8}

In this final state w12 and avgt published values that were not delivered yet,
and avgt and closeWindow updated their input buffers with their last received
values.

3.2 Adding Quality Awareness

We extend sources and mixed components to produce not only streams of data
d1, . . . , dn, but also to: (1) mark each produced data with a context Γ attribute,
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written Γ � d, and (2) to compute a quality value Q = ([Γ ]) of contexts used to
filter low-quality messages.

Context. We write G to denote the set of all contexts, and QD to denote the set
of data extended with a context. A data value Γ � d ∈ QD represents a value d ∈
D that was calculated based on sources with context that were combined into
Γ ∈ G via an associative and commutative operator ⊗. Hence, choosing a monoid
(G,⊗) defines what is a context and how are contexts composed.

Quality. We write Q to denote the set of all quality values, and the function
([·]) assigns quality values to contexts. Quality values form a bounded join semi-
lattice (Q,⊕), where the partial order is defined in the usual way: (Q1 ≤ Q2) ⇔
(Q1 ⊕Q2 = Q2). We write Q ∈ Q to range over quality values, and ∅Q to denote
the minimal quality. Hence, choosing the semi-lattice (Q,⊕) defines what is a
quality value and their order, and ([·]) defines how to qualify contexts.

Summarising, different reactive behaviours can be attained by using differ-
ent definitions of the context monoid (G,⊗), the semi-lattice (Q,⊕), and the
qualification function ([·]).
Example: Glitch-freedom. We instantiate the structures G and Q, and the
operator ([·]) as follows.

– G = P (C × K) are sets of pairs that associate the (globally unique) ID of
source components to the value of a local grow-only counter. Contexts are
combined via set union, i.e., ⊗ = ∪ with identity ∅.

– Q = {⊥,�} are booleans indicating whether data is has glitches (⊥) or not
(�), and ⊕ = ∨ and ∅Q = ⊥. Observe that ⊕ induces the order ⊥ ≤ �.

– ([Γ ]) = ∀(s1, k1), (s2, k2) ∈ Γ · s1 = s2 ⇒ k1 = k2 returns true if the context
is glitch-free, i.e., if the same source is always mapped to the same identifier.

The order of the quality lattice is used by the runtime semantics (below), by
allowing only values with a certain minimal quality Qmin to be published, and
discarding the data value otherwise. In this glitch-freedom example, a sensible
Qmin would be �, meaning that only glitch-free values can be published.

Using the IoT running example with this glitch-freedom context, assume this
program starts by t1, t2, and w12 publishing the values 17, 19, and 〈0.6, 0.4〉,
respectively. Using quality-awareness, each of these values are marked with a con-
text value, e.g., {(t1, 0)} � 17, {(t2, 0)} � 19, and {(w12, 0)} � 〈0.6, 0.4〉. The
service avgt, upon receiving these three values, combines their contexts calcu-
lating {(t1, 0)}⊗{(t2, 0)}⊗{(w12, 0)}, obtaining Γ = {(t1, 0), (t2, 0), (w12, 0)}.
It then calculates the quality of this context ([Γ ]) = �, indicating that the com-
bined context is glitch-free (Qmin ≤ ([Γ ])). This gives green light to proceed, i.e.,
avgt will calculate calc-avg(17,19,(0.6,0.4)) = 17.8 and publish Γ � 17.8
to its buffer linked to closeWindow and feelsLike.

If, at some point in the execution, feelsLike receives Γ � 17.8 from avgt

and some value Γ ′ � v from avgh, it will combine Γ ⊗ Γ ′ and calculate its
quality. This quality will yield � if and only if Γ ′(w12) = 0, i.e., if the only
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shared data source of avgt and avgh (w12) has the same associated counter
value (0). Otherwise ([Γ ⊗ Γ ′]) = ⊥ and feelsLike does not publish a new
value.

Formal runtime semantics. This subsection extends the previous runtime
semantics from Sect. 3, extending the domain from D to QD. The minimum
quality for publishing a value is a globally defined constant Qmin, such that
Qmin ≤ Q means that the quality Q is good enough for publishing.

In this extended semantics the output buffer of each component c is now over
QD, i.e., c : C → PQD. The functions activeI , evalI , O + x, O − x, and I + x
are trivially adapted to data values in QD where necessary, and we replace the
rule (pub) by two new rules that publish only when the minimal quality is met.
For example, d ∈ outc(c′) is now written as Γ � d ∈ outc(c′).

The new quality-aware semantics uses the same rules (src) and (rcv) as before
(replacing d by Γ � d), and the rule (pub) is replaced by the two new rules in
Fig. 4, which describe how (and when) components publish data values with
context information. As before, the auxiliary functions used by these rules cxtB
and Qmin are presented below.

Fig. 4. Publishing rules for the quality-aware extension.

• cxtI : C → G. Function that, given an active component c, collects all con-
texts from its inputs and returns their combination with ⊗. Formally, when
inc ∈ I then cxtI(c) =

⊗
c {Γ | c′ ≺ c,∃d ∈ D · inc(c′) = (Γ � d)}, where⊗

c ∅ = Γc (with Γc being the context of the source component c), and⊗
c {Γ1, . . . , Γn} = Γ1 ⊗ . . . ⊗ Γn (with n > 0).

Example: cxtI(t1) = {(t1, 1)} means that the current context of t1 is
{(t1, 1)}, and cxtI(avgt) returns the combined context Γ1 ⊗ Γ2 ⊗ Γ3, where
inavgt(t1) = Γ1 � d1, inavgt(t2) = Γ2 � d2, and inavgt(w12) = Γ3 � d3, for
some d1, d2, d3 ∈ D.

• Qmin : Q. Globally defined minimum quality required to publish a value.
Example: Following our glitch-freedom example, let Q ∈ {⊥,�} and ⊕ = ∨,
inducing ⊥ ≤ �. Hence, Qmin = � means that, if Qmin ≤ x, then x must
be �.

4 Beyond Glitch-Freedom: Modelling Different Contexts.

Glitch-freedom is one possible distributed property that can be guaranteed
dynamically using contexts in reactive programs. This mechanism to discard
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messages that violate a minimal quality standard can be applied to a variety of
quality notions. This section presents three of these.

Geographical location. The context of a value produced by a data source is
now either (1) a pair of values with the geographical location where the data
value was produced, or (2) the identity context if the notion of location does not
apply. Combining contexts means collecting all possible locations, and they are
ordered by size of the smallest bounding square, i.e., better quality means closer
by locations. More precisely:

– G = P (R×R) – a context is a set of coordinates that influenced the published
value. Here ⊗ = ∪ and ∅ is the identity.

– Q = R≥0∪{∞} – a quality value is a non-negative number measuring the size
of the smallest bounding square that contains all coordinates, ⊕ = min, and
∅Q = ∞. Observe that smaller square means better quality, hence ⊕ induces
a reversed order �, i.e., v1 � v2 iff v2 ≤ v1.

– ([Γ ]) = (max(π1(Γ )) − min(π1(Γ )))2 + (max(π2(Γ )) − min(π2(Γ )))2, where
π1 and π2 return the first and second values of the pairs in a given list,
respectively, returns the (square of) the diagonal of the smallest square that
can contain all coordinates.

– ([∅]) = 0, which captures the ideal quality.

Using these definitions of G and Q one needs only to specify a minimal quality
Qmin defining the maximal accepted distance between input sources so a value
can be published. Furthermore, data sources without an associated location (such
as w12) can simply produce the empty context ∅.

In our example, assume we define Qmin = 10 (for some distance unit) and
t1, t2, w12, h1, h2 publish the values, respectively, {(2, 3)} � 17, {(4, 2)} � 19,
∅ � 〈0.6, 0.4〉, {(16, 18)} � 56, and {(18, 20)} � 58. In this case, both services
avgt and avgh are able to publish a value with an acceptable quality. For exam-
ple, avgt will publish a value with context Γ = {(2, 3), (4, 2)}, which has the
associated quality ([Γ ]) = 22 + 12 = 5 (and 10 � 5, i.e., 5 ≤ 10). However, the
service feelsLike is not able to publish a value with the data from these sen-
sors: the combined context would be {(2, 3), (4, 2), (16, 18), (18, 20)}, which has
a quality of 162 + 182 = 580, wich is worse than the minimal quality 10.

Relaxed glitch-freedom. This example relaxes the notion of glitch freedom, by
introducing tolerance with respect to the counters used for glitch freedom. I.e.,
small glitches are ignored and allowed, whereas a small glitch is found whenever
counters from the same source data are close enough. G and Q are defined as
before, and a fix tolerance value is used to assign a quality to contexts.

– G = P (C ×K) are the same as before: pairs that associate the globally unique
ID of source components to the value of a local grow-only counter, and ⊗ = ∪.
Unlike with strict glitch-freedom, the values in K must have a total order and
there must be a distance dist(k1, k2) defined between counters.

– Q = {⊥,�} are also the same: booleans indicating whether data is (relaxed)
glitch-free (�) or not (⊥).
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– ([Γ ]) = ∀(s1, k1), (s2, k2) ∈ Γ · s1 = s2 ⇒ dist(k1, k2) ≤ tolerance – returns
true if the distance between counters from the same data source do not differ
more than the pre-defined value tolerance.

In our example, start by defining K to be the natural numbers, dist(k1, k2) =
abs(k1 − k2), and tolerance = 1. This choice means that counters for the same
counter in different arguments can differ up to 1. For example, if feelsLike

receives an argument from avgt whose context maps w12 to a counter value
ahead by 1 from the counter of the previously received argument from avgh, the
service will still react to this input.

Wall-clock difference. In some scenarios the hardware platform provides a
highly accurate wall-clock among distributed data sources, guaranteeing that
their internal clock is consistent up to a small error.1 Here one may use a context
with a pair of bounds with the smallest and the largest timestamps, and require
their difference to be smaller than a fixed threshold. More precisely:

– G = PTS sets of relevant timestamps. Unlike in the other cases, there is no
reference to the associated data source. As before, ⊗ = ∪.

– Q = R≥0 ∪ {∞} is a positive number denoting the largest time difference
between timestamps. Similarly to geo-location, smaller values represent higher
qualities: ⊕ = min and ∅Q = ∞.

– ([Γ ]) = max(Γ ) − min(Γ ), where max(∅) = ∞ and min(∅) = 0, returns the
largest difference between timestamps.

In our example, assume that our tolerance is 5 s, i.e., Qmin = 5 s, and that t1, t2,
w12, h1, h2 publish the values, respectively, {13:10:20} � 17, {13:10:21} � 19,
∅ � 〈0.6, 0.4〉, {13:15:00} � 56, and {13:15:03} � 58. This means that tempera-
tures and humidities are published around 5 min apart, the update time of the
stamps is neglectable, and pairs of the same kind of sensors are less than 5 s
apart. Hence, both services avgt and avgh are able to publish a value with an
acceptable quality, but the service feelslike will fail to publish a value because
the combine context will be {13:10:20, 13:10:21, 13:15:00, 13:15:03}, which has an
associated quality of more than 5 s.

Combining dimensions. Given any two different choices for context G1, G2

and for quality Q1, Q2, these can be merged into a new context monoid G12 and
quality metric Q12 as follows.

– G12 = G1×G2 are pairs with an element from the first context and an element
from the second one.

– Q12 = Q1×Q2 are again pairs from both qualities, where (q1, q2)⊕12(q′
1, q

′
2) =

(q1 ⊕1 q′
1, q2 ⊕2 q′

2) and ∅Q = (∅Q1, ∅Q2). Observe that (q1, q2) ≤ (q′
1, q

′
2) when

q1 ≤ q′
1 and q2 ≤ q′

2.
– ([(Γ1, Γ2)])12 = (([Γ1])1, ([Γ2])2) simply applies the encodings of each context.

1 This is true, for example, for modules using SmartMesh IPTM (http://www.linear.
com/products/smartmesh ip).

http://www.linear.com/products/smartmesh_ip
http://www.linear.com/products/smartmesh_ip


Quality-Aware Reactive Programming for the Internet of Things 191

One can easily prove that G12 is indeed a commutative monoid and that Q is a
bounded semi-lattice. This allows the combination of any set of desired contexts;
for example, one may want to have both glitch-freedom and geographical bounds.

5 Discussion

The Quarp approach for distributed reactive programming takes inspiration in
algorithms for distributed systems that manage eventually consistent structures,
such as CRDTs [12]. It does so by appending extra meta-information to messages
that is used to help local nodes to react appropriately to inputs.

Unlike other approaches to distributed reactive programming (DRP) [5,6,13],
we claim to be more scalable, more dynamic, and better suited for non-reliable
communication. The cost for these desired properties is the possible loss of some
values, as explained below. To support these claims we start by introducing some
existing DRP approaches, and discuss each claim individually.

REScala. [5,13] Drechsler et al. present an algorithm to implement distributed
glitch-freedom in reactive programs, called SID-UP, and include a careful com-
parison with other approaches with respect to: (1) the number of steps, each
consisting of a round of messages from a set of components to another set of
components, and (2) the number of messages sent. Their algorithm makes the
strong assumption that rounds are synchronised, i.e., the algorithm does not sup-
port pipelining : a round starts when a set of data sources publish some value,
and it ends when no more messages are pending – a new round can only start
after the previous round finished. The comparison approaches are Scala.React
[14], Scala.Rx,2 and a variation of ELM [2] that supports dynamic updates of the
topology of the reactive program (but does not support pipelining). Their app-
roach and evaluation focuses exclusively on the performance of a single round,
while Quarp focuses on the performance of multiple (concurrent) rounds, where
pipelining is a must. Dynamic updates to the topology are not problematic in
Quarp because of the lack of a clear notion of round, and because the eventual
loss of messages during reconfiguration is already tolerated by Quarp, effectively
allowing for more unrestricted forms of reconfiguration than SID-UP.

DREAM. [6] Is a Java distributed implementation with an acyclic overlay net-
work of brokers that support publish-subscribe communication. The communi-
cation sub-system provides reliable message transmission by buffering and re-
transmission of messages, and in this case the sub-system uses point-to-point
TCP connections to provide basic FIFO properties. Several consistency guar-
anties are provided, ranging from causal consistency to a globally unique order of
delivery by way of a central coordinator. Comparatively to Quarp, the DREAM
approach is more rigid when it comes to dynamic reconfiguration. Reliable mes-
sage delivery can require considerable buffering in the communication subsystem
and can stale system availability when the network is dropping messages. In con-
trast Quarp has much weaker requirements on the communication middleware.
2 https://github.com/lihaoyi/scala.rx.

https://github.com/lihaoyi/scala.rx
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It allows message loss and re-ordering while still enabling the system to progress
when messages get received and the required quality criteria is met.

Scalability in Quarp. Our proposed approach can scale up to a large num-
ber of components under the assumption that the size of the contexts does not
grow too much. For example, our glitch-freedom implementation combines the
local counters of all involved data sources, which behaves well with large chains
of dependent components, but may require some attention when the number
of dependent data sources is large. Observe that the generality of our approach
allows customisation, e.g., defining the combination of contexts to create abstrac-
tions that hide information regarded as unnecessary. When compared with the
above approaches, Quarp brings a large improvement with respect to the size of
supported applications, since there is no need to either lock every round of data
propagation (as in REScala), nor to require certain nodes to have full knowl-
edge of the dependency graphs (as in DREAM). This advantage derives from
the relaxation made that locally found inconsistencies (regarded as low quality
inputs) do not need to be fully solved, but can simply be blocked and ignored.
I.e., when an issue such as a glitch is found, the input is ignored without guar-
antees that future messages will solve this glitch.

Dynamicity in Quarp. Support for dynamic updates of the dependency among
components was regarded as a key requirement from REScala. So much that the
evaluation used a modified version of ELM’s propagation algorithm that adds
support for dynamic updates at the cost of losing support for pipelining, i.e., of
allowing multiple rounds to be executing in parallel. In Quarp dynamic updates
are trivially supported, again due to the fact that it accepts the possible loss of
messages as part of the intended semantics.

Failure handling in Quarp. Unlike other approaches for distributed reac-
tive programming, Quarp uses the basic assumption that messages can be lost
(and re-ordered). Lost messages are not resent – instead Quarp assumes newer
messages will be more relevant, and does not try to recover from failures. This
approach targets systems such as the Internet of Things, where the cost of main-
taining a reliable communication is often too high or infeasible (due to mobility).
Furthermore, orthogonal approaches to support reliable communication, such as
TCP/IP, can be safely used with Quarp.

6 Related Work

Reactive programming is a form of event-driven programming that deals with
propagating change through a program by representing events as time-varying
values. Its most popular versions are not concurrent, focusing on local reactive
programming on a single network node and dealing with functional transforma-
tions of time-varying values [8]. Several approaches exist on top of object-oriented
languages [15,16], functional languages [2,16], and in the context of web-based
applications [1–3]. Most approaches enforce glitch freedom, ensuring that a node
in a dependency graph is updated only after all its antecedents are.
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Distributed Reactive Programming (DRP) deals with time-varying inputs,
distributed over multiple network nodes, and with the management of depen-
dencies between concurrent components. In a distributed setting, the problem of
glitch freedom is of crucial importance, since inconsistencies may endure due to
network partitioning. Carreton et al. [17] integrate DRP with the actor model,
but do not support glitch freedom. Drechsler et al. [5] propose an efficient algo-
rithm that enables glitch free DRP for distributed programs with strong network
guarantees, but not considering highly dynamic networks, network failures and
partitioning. Margara and Salvaneschi [6] propose a Java-based framework that
offers multiple layers of consistency each having their impact on performance. It
supports glitch-freedom, but under a significant performance penalty.

Another body of related work on DRP are reactive frameworks or lan-
guages for web programming, such as Meteor,3 Play,4 Flapjax [1], Elm [2], and
React.JS [3]. These are usually two-tier, client-server applications where change
either originates from user interaction with the DOM (e.g., clicking buttons) or
by server acknowledgements. The server and DOM elements are considered the
time-varying values. Even though events may originate on a remote node (the
server), the reactive program actually resides on the client and the distribution
of logic is therefore much simpler than in truly distributed reactive programs.

Quarp proposes a new approach to distributed reactive programming that
allows individual nodes to locally identify glitches. Glitches are not only identified
but also measured, based on meta-information aggregated to events. By selecting
relevant properties over measurements and over such meta-information, tradeoffs
can be made between performance and quality of the produced values. This
approach suits well cyber-physical systems because it avoids global synchronisers
or schedulers, and supports aspects such as dynamic reconfiguration.

Observe that, in the context of the IoT, other formalisations have been pro-
posed, many as calculus of concurrent nodes [18,19]. These focus on how to
accurately describe existing IoT systems and on how to reason about notions
such as behaviour equivalences. Quarp does not explore properties of the pre-
sented formal semantics; instead it experiments with a new approach to think
and design distributed applications for networks of resource-constrained devices:
by separating the concerns of reactive components with dependencies on other
components, from when to decide when data is good enough to be used.

7 Conclusion and Future Work

This paper proposes Quarp — a quality aware approach for distributed reactive
programming. This approach investigates how reactive languages could be used
to program distributed applications for the Internet of Things (IoT), taking into
account the presence of resource-constrained devices, high mobility, and unre-
liable communication. Furthermore, data from sensors have often some redun-
dancy (older values are less important than new ones), making current reactive
3 www.meteor.com.
4 www.playframework.com.

www.meteor.com
www.playframework.com
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paradigm too synchronization heavy, possibly leading to never-ending waits for a
message that has been lost. Our solution is to locally find unwanted inconsisten-
cies, discarding data when they are found. Quarp is general enough to capture a
range of possible inconsistencies, using attributes that must be “good enough” to
be considered consistent. Hence Quarp, by not requiring messages to be always
delivered, provides better performance (no need to agree with neighbours), scala-
bility (large number of components can be executing in parallel), and availability
(the system does not deadlock upon lost messages), while still guaranteeing that
the messages are consistent, for some relaxed notion of consistency.

Our future work is two fold. On one hand we plan to apply Quarp to a con-
crete domain, exploring instances of quality attributes and performing a com-
prehensive evaluation. On the other hand we expect to use our formalisation to
reason about reactive programs, e.g., defining notions of bisimulation to compare
or minimize programs, to prove properties over reactive programs in Quarp.
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Abstract. Preserving data privacy is a challenging issue in distributed
systems as private data may be propagated as part of the messages trans-
mitted among system components. We study the problem of preserving
data privacy on actor model as a well known reference model for dis-
tributed asynchronous systems. Our approach to prevent private data
disclosure is to enforce purpose-based privacy policies which control the
access and usage of private data. We propose a method to specify pur-
poses based on workflows modeled by Petri nets in which transitions
correspond to message communications. We first use model checking to
verify whether the actor model behaves conforming to the purpose model.
Then, the satisfaction of the policies are checked using data dependence
analysis. We also provide a method to evaluate the effectiveness of poli-
cies through checking of private data disclosure in the presence of privacy
policies. Since these checks are performed statically at design time, no
runtime overhead is imposed on the system.

Keywords: Actor-based systems · Privacy · Purpose · Data disclosure ·
Formal verification · Rebeca

1 Introduction

Actor [1] is a well known model for concurrent and distributed systems, in which
objects (called actors) encapsulate data and communicate via asynchronous mes-
sage passing. In such systems, data of an actor can flow among other actors
through message passing. Since the actors can send private data to each other
as part of the transmitted messages, in systems where privacy is a concern, it
is essential to protect private data from disclosure. Actor model can be used
for modeling real world distributed systems, so disclosure of private data in the
model indicates the privacy violation in the real world. Solove [2] classifies differ-
ent types of privacy violations in four classes: information collection, information
processing, information dissemination, and invasions.

Our concern in this paper, is the third case which is affected by actor commu-
nication model. A special form of information dissemination is disclosure, which,
according to [3], means “making private information known outside the group
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of individuals expected to know it”. In actor-based systems, if there is no suffi-
cient control on the transmitted messages and their included data, disclosure of
private data may happen.

A useful method to prevent private data disclosure would be to enforce
system-wide privacy policies which control the access and usage of these data
in the system. In this way, private data are used only as intended. The purpose
of using a private data is an important aspect of privacy protection. Purpose
refers to the intention behind accessing or using data items. In other words,
as stated in [4], “purposes often refer to an or a set of abstract actions”. For
example, patient’s health record can be accessed for the purpose of treatment,
research, insurance, and so on. To incorporate purpose in privacy policies, privacy
constraints can be explained as access or usage control policies which contain
purpose. This type of privacy policies is called purpose-based policies. Based on
[5,6,12], purpose-based policies can be categorized in two groups: data-centric
and rule-centric policies. Data-centric policies focus on data and specify the pur-
poses for which a data item can be used. A Rule-centric policy specifies that a
subject can perform an action on a private data item with a certain purpose.

How the purpose of using a data item or performing an action is identi-
fied, is an important part of data-centric and rule-centric policy enforcement.
Most existing work on specification and enforcement of purpose, do not consider
semantics for purposes. Some work like [6,11,12] consider that “an action is for
a purpose if and only if the action is part of a plan for achieving that purpose”,
and define the purpose semantics using formalisms based on planning. Neverthe-
less, to the best of our knowledge, there is no work that specifies and enforces
purposes for actor-based systems. We consider the idea of planning for specifica-
tion and enforcement of purpose for actor-based systems and model plans using
workflows (Sect. 4).

In this paper, we focus on avoiding disclosure of private data in the actor-
based systems by enforcing purpose-based policies at system design time. We
assume that the actor-based system is modeled by Rebeca modeling language.
Rebeca [13] (Reactive Objects language) is an actor-based modeling language,
with a formal foundation, that is used to model concurrent and distributed
systems. It is important to note that our method does not depend on the choice
of the language and can be tailored to any kind of actor-based modeling or
programming language with the assumption that the messages are delivered in
the order they are sent.

Having the system model, a set of data-centric policies, a set of rule-centric
policies, and the description of the purposes, we first model the purposes in
a manner suitable for actor systems and then check whether the system satis-
fies the given policies. We use a two-step mechanism for purpose-based policy
enforcement. In the first step (called purpose enforcement), we verify whether
the system works exactly based on the defined purposes (Sect. 5) and in the
second step (called policy enforcement), data-centric and rule-centric policies
are checked (Sect. 6). We use model checking for purpose enforcement and data
dependence analysis for policy enforcement. In addition to purpose and policy
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enforcement, we introduce another method, called data disclosure analysis, which
determines each actor in the system can access which private data of other actors
(Sect. 7). So it can be used as an evaluation of the effect of purpose-based policies
on avoiding data disclosure.

If the purpose enforcement or policy enforcement step determines that the
model does not behave according to the intended purpose model or policies, we
guide the modeler to correct the model by providing counterexamples. But if
data disclosure happens, despite the system satisfies the purpose-based policies,
the purposes and policies must be reviewed.

2 Related Work

The existing methods for specifying and enforcing purpose can be categorized in
three groups: self-declaration, role-based approach, and action-based approach.

In the self-declaration approach (e.g. [8,14]), the subject (i.e. initiator of an
access request) explicitly expresses the purpose of its action. This approach is
based on trusting the requester to honestly declare its purpose of action. But
this approach is unable to detect if a malicious user claims a false purpose.
In role-based approach (e.g. [7,9,10]), the purpose is identified based on the
subject’s role in the system. This approach cannot exactly identify the purpose
of an action, because members of the same role may practice different purposes
in their actions.

The main problem of these two approaches is that they do not consider that
the purpose of an action may be determined by “its relationships with other
interrelated actions” [6]. Action-based approaches consider that “an action is for
a purpose if and only if the action is part of a plan for achieving that purpose”
[6]. Tschants et al. [11] define the purpose semantics using a formalism based on
planning and using a modified version of Markov Decision Processes to model
this planning. With this formal semantics, they automate auditing for purpose
restrictions. Jafari et al. [12] use a modal logic language to define purpose seman-
tics. They present a model-checking algorithm for evaluating purpose constraints
in a workflow-based information system (which is modeled by a workflow formal-
ism based on Petri nets) and use this model checker for enforcing purpose-based
policies using a workflow reference monitor. Masellis et al. [6] define semantics of
purpose-aware policies based on a first-order temporal logic and design a runtime
monitor for enforcing purpose-aware policies. They consider that the semantics
of a purpose is its associated workflow and specify workflows using Linear-Time
Temporal Logic (LTL).

We use the same idea that the semantics of a purpose is its associated work-
flow. [11] uses Markov Decision Processes, [12] a modal logic language, and [6]
Linear-Time Temporal Logic, as the formalism for purpose semantics, but we for-
malize purposes using an interpretation of Petri nets tailored for actor systems
(why we have chosen Petri nets is explained in Sect. 4). Another difference with
previous work is that [6] uses run-time monitoring for enforcing purpose-aware
policies, [11] tries to audit purpose restrictions, and [12] uses a workflow refer-
ence monitor to enforce purpose-based polices. We use model checking and data
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dependence analysis for purpose-based policy enforcement. This is performed
statically at design time, so no runtime overhead is imposed on the system.
This way, we can make sure that all the actors do nothing that violates the
purpose-based policies and there is no disclosure of private data in this system.

3 Preliminaries

3.1 Running Example

In this section we describe an educational institute as the running example which
will be used throughout this paper. We consider students request this institute
for two purposes: educational consulting (called Consulting purpose) and class
registration (called Registration purpose). This system includes five actors: stu-
dent which requests the system for one of the two purposes, and four employees
(Em1, Em2, Em3 and Em4) with different responsibilities. We consider Contact-
Info (including student’s name and phone number), EduRec (including student’s
educational record), and CPersonal (including student’s complete personal infor-
mation) as private data of student. We assume that if an employee knows a
student’s private data item without permission, then she can abuse it.

3.2 System Model in Rebeca

A Rebeca [13] model consists of a set of reactive classes (called rebec) which
are concurrently executed and communicate via asynchronous message passing.
Each rebec has three main parts: known rebecs (rebecs which can be receivers of
this actor sending messages), state variables, and message servers. Each rebec has
a FIFO queue to automatically receive messages. When a message is taken from
the queue, the corresponding message server is executed atomically. We define a
new type of state variables, called private data, and assume that each actor has
its own private data (e.g. postal code, medical records, telephone number, and
so on). Figure 1 shows an incomplete portion of our running example modeled
in Rebeca1.

3.3 Purpose-Based Privacy Policy

The purpose-based policies, including data-centric and rule-centric policies, are
specified in an actor system as below:

1. A data-centric policy is defined as a pair of a data item, which is an actor’s
private data item, and the purpose for which it can be used. For example,
(Student’s ContactInfo, Registration) specifies that the ContactInfo of a stu-
dent can be used for the purpose of Registration.

1 The complete Rebeca code for our running example is accessible from http://
ramtung.ir/privacymodel.zip.

http://ramtung.ir/privacymodel.zip
http://ramtung.ir/privacymodel.zip
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Fig. 1. An incomplete portion of our running example modeled in Rebeca

Table 1. Data-centric policies for the
running example

Actor’s private data Purpose

(Student, EduRec) Consulting

(Student, ContactInfo) Consulting

(Student, ContactInfo) Registration

(Student, CPersonal) Registration

Table 2. Rule-centric policies for the running
example

Sender Actor’s private data Purpose

Em1 (Student, EduRec) Consulting

Em1 (Student, ContactInfo) Registration

Student (Student, EduRec) Consulting

Student (Student, ContactInfo) Consulting

Student (Student, ContactInfo) Registration

Student (Student, CPersonal) Registration

2. A rule-centric policy is defined as a tuple of a subject (one of the actors in
the system), a data item (an actor’s private data item), an action, and the
purpose. For example, (Em1, Student’s EduRec, Send, Consulting) specifies
that Em1 can send the student’s EduRec for the purpose of Consulting.

As we will explain in Sect. 4, it is sufficient for our analysis to only consider
message sending as actions in an actor-based system, since we do not explic-
itly express the action in a rule-centric policy and assume that all the actions
appeared in the rule-centric policies correspond to sending of messages in the
system. The given data-centric and rule-centric policies for the running example
are presented in Tables 1 and 2 respectively.

As mentioned before, we use workflows to describe purposes in the actor
model. Actions in these workflows are messages communicated among actors in
the system. The workflow of Consulting purpose is defined as follow:

1. Student gets her request for educational consulting to Em1. This request
includes ContactInfo and EduRec of student.

2. Em1 forwards this request to Em2. This request includes student’s EduRec.
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3. Em2 queries Em3 for current state of the classes, if needed, and provides the
consulting result.

4. Em1 delivers the consulting result to student.

The workflow of Registration purpose is defined as follow:

1. Student gets her request for registration to Em1. This request includes Con-
tactInfo of student.

2. Em1 forwards this request to Em3 (including student’s ContactInfo).
3. Em3 requests student for complete personal information and queries Em4 for

payment information.
4. When Em3 receives both of the student and Em4 responses, the registration

is done.

4 Purpose Model

As mentioned in Sect. 2, the self-declaration and role-based approaches for spec-
ifying and enforcing purpose, do not assume a semantics for the purpose, so a
major problem is the ambiguity in the interpretation of purposes. Hence, we
use action-based approach and address the mentioned problem by relating the
actions using the workflow-based plan.

Masellis et al. [6] refer to workflow as “collections of activities (called tasks)
together with their causal relationships, so that the successful termination of a
workflow corresponds to achieving the purpose which it is associated to”. There
are various types of workflow definition languages, that can be categorized in
two groups. The first group includes models such as Petri nets [17] and process
algebra [18], which have a proper formal semantics. The second group includes
approaches like Web Services Business Process Execution Language (BPEL)
[19] and the Business Process Modeling Notation (BPMN) [20]. These languages
often have no proper formal semantics [16].

Our goal is to formalize the notion of purpose in a manner suitable for actor
models. According to [15], it is possible to formalize most aspects of privacy poli-
cies by abstracting all activities as communications between actors. Workflows
are normally expressed at the requirements (or business level), which comprise
the tasks and the control flow among the activities in the system. During the
design process, these tasks must be mapped into elements of the system model.
In our case, since the actor model is based on the object-oriented paradigm,
tasks are mapped into methods (message processors) of the actors based on the
principles of data encapsulation. Furthermore, a behavioral model of the purpose
is constructed based on the control flow specified in the workflow, to describe the
order of interactions among the actors. We call this workflow “message flow”.

In the case of sequential models, the behavioral model may be expressed as
UML sequence diagrams. However, since actors communicate asynchronously,
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the underlying behavioral model must be able to clearly express concurrent com-
putation. Hence, we choose Petri nets to describe the global control flow of the
system. Aalst [22] presents several good reasons for using Petri nets to specify
workflows: “formal semantics despite the graphical nature, state-based instead
of event-based, abundance of analysis techniques”.

In addition to the above reasons, there are transformations from workflows
described in modeling languages like BPMN and BPEL to Petri net models ([16]
surveys these transformations). We consider the standard definition of Petri net
[17] that consists of two finite disjoint sets of places and transitions together
with a flow relation. In a Petri net, the places, transitions and flow relations
are graphically represented by circles, squares and directed arcs respectively. We
borrow Definitions 1 and 2 from [21]:

Definition 1 (Petri net). A Petri net is a triple (P, T, F) where:

1. P is a finite set of places.
2. T is a finite set of transitions (P and T are disjoint sets).
3. F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (or flow relations)

In a Petri net, places model intermediate states and transitions model tasks.
In [16], the mapping of some workflow patterns to Petri nets are presented. A
Petri net that models a workflow definition is called a workflow net (WF-net).

Definition 2 (WF-net). A Petri net PN = (P, T, F) is a WF-net (workflow
net) if and only if:

1. PN has two special places source and sink. The source place has no input arc
and the sink place has no output arc (a token in the source place corresponds
to a new instance of workflow, and a token in the sink place corresponds to a
completed instance of workflow).

2. If we add a new transition to PN which connects sink place with source place,
then the resulting Petri net is strongly connected.

We specify purposes using message flows, and model the message flows using
a modified version of WF-net, referred to as message flow net (MF-net), in which
transitions are messages.

Definition 3 (Message flow net (MF-net)). A message flow net MFN =
(P, T, F) is a WF-net in which:

1. Each transition corresponds to a specific message in actor system.
2. Flow relations specify the order in which the actors are allowed to take their

messages.

Each message is modeled as a triple (s,m, r) in which s is the name of the
sender actor, m is the message name, and r is the name of the receiver actor. A
transition (s,m, r) in a MF-net means actor r takes message m from its message
queue (and starts the execution of the corresponding message server) which is
sent by actor s. The MF-net models of Consulting and Registration purposes
specified in running example, are shown in Figs. 2 and 3 respectively.
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Fig. 2. Consulting purpose in educational institute modeled in MF-net

Fig. 3. Registration purpose in educational institute modeled in MF-net

5 Purpose Enforcement

As discussed in the previous section, each purpose is modeled by a MF-net.
We add a new actor to the system for each MF-net, called purpose actor or
p-actor, aiming to verify whether the actor system behaves according to the
corresponding purpose. Each p-actor checks the state of the MF-net and decides
whether an execution of a message server conforms to the corresponding purpose.

5.1 Constructing Purpose Actor

Since p-actors are defined to check the conformance of the transmitted messages
to the purposes of the system, when an actor takes a message from its message
queue, a copy of this message, parameterized with its sender and receiver, is
sent to the corresponding p-actor. Therefore, we define one message server in
the p-actor for each message in the MF-net. For simplicity, we assume that a
message can only be part of one purpose.

The state of a MF-net: A state in a MF-net (as in Petri net) is represented
by the distribution of tokens over the places (also referred to as marking). For
keeping the state of the MF-net in the corresponding p-actor, we define an integer
variable for each place that represents the number of tokens in that place. So,
the state of the MF-net is modeled by the values of this set of integer variables
which are the state variables of the p-actor. The variables p1, ..., pn in Fig. 4, are
the variables corresponding to the places of a Petri net.



204 Sh. Riahi et al.

The behavior of a MF-net: The behavior of a MF-net is modeled with con-
ditional statements in the body of each p-actor’s message server. Figure 4 shows
the description of a simple MF-net behavior. We can model different types of
workflow patterns in this way.

We call the conditional statement inside the p-actors’ message servers the
transition condition. It is noticeable that the execution of M in right side of
Fig. 4 is atomic.

5.2 Purpose Verification

For each transition in a MF-net model, one boolean variable (initially false) is
included as a state variable of the corresponding p-actor, and if the transition
condition does not hold, then this boolean variable (e.g. t M in Fig. 4) is set to

Fig. 4. Modeling a transition in the purpose actor

Fig. 5. Purpose actor for Consulting purpose
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true, representing an error has occurred. So, the property that must be checked
is the invariant property (¬t1) ∧ ... ∧ (¬tn) (t1, ..., tn are the mentioned boolean
variables for the transitions).

We use model checking to verify whether the system satisfies the above invari-
ant property. If it is not satisfied, counterexamples are reported for the correc-
tion of the model. We use RMC (Rebeca Model Checker) [24] to model check
our running example. The p-actor for Consulting purpose, is presented in Fig. 5.

We can define multiple instances of one MF-net in its corresponding p-actor
for different instances of its execution, and distinguish them by a workflow ID.

6 Policy Enforcement

Now that we have a system that works exactly according to the defined purposes,
we aim to check whether the data-centric and rule-centric policies hold in the
system. As data is an important aspect of these policies, we need a mechanism
which can trace the flow of data in both actors’ message servers as well as sending
messages to other actors. To achieve this, we use data dependence graph analysis.

6.1 Data Dependence Graph

In [23], a special dependence graph based on Rebeca [13] semantics is introduced
and used as an intermediate graph representation for slicing a Rebeca model.
We modify this dependence graph and use it for verifying data-centric and rule-
centric policies and analyzing the disclosure of private data in the actor systems.

Rebeca Dependence Graph

Rebeca Dependence Graph (RDG) introduced in [23], has three types of
nodes, including reactive class entry, message server, and statement (for Rebeca
state variables and statements) nodes, and four types of edges, including
data dependence, control dependence, member dependence, and parameter-in
edge/activation edges. Table 3 presents how [23] models Rebeca features by
RDG. Activation, formal-in and actual-in nodes are of statement nodes which
are defined to model message passing.

In addition to the above dependencies, there is one more dependency called
intra-rebec data dependency. According to [23], “this dependency exists between
the last statement of a message server which is assigning value to a variable and
the first use of that variable in another message server”. In RDG, intra-rebec
data dependency is modeled using data dependence edges.

Modified Rebeca Dependence Graph

We introduce a modified version of Rebeca dependence graph which is suitable
for our policy enforcement. The modified Rebeca dependence graph differs from
the original version [23] in the following ways:
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Table 3. Mapping Rebeca features to RDG according to [23]

Rebeca features RDG nodes RDG edges

Reactive class A reactive class entry node The reactive class entry node is connected to

each of its state variables and message servers

by the member dependence edges

Message server An entry node and a set of

nodes representing its

statements

The existing dependencies within the body of

the message server modeled by data

dependence edges and control dependence

edges

Message passing An activation node The activation node is connected to the entry

node of the related message server by an

activation edge

Parameters of the

messages

Formal-in and actual-in

nodes

Parameter-in edges connect the formal-in and

actual-in nodes

Table 4. DDG nodes

Name Description

V-RC Set of reactive class nodes

V-PD Set of private data nodes

V-MS Set of message server nodes

V-ST Set of statement nodes

V-AC Set of activation nodes

Table 5. DDG edges

Name Description

E-CD Set of control dependence edges

E-DD Set of data dependence edges

E-MD Set of member dependence edges

E-PI Set of parameter-in edges

1. For modeling the actors’ private data, we add a new type of node, called
private data node.

2. According to [23], a data dependence edge exists “between two statement
nodes if assigning value to a variable at one statement might reach the usage
of the same variable at another statement”. We categorize assignment of value
to a variable in two cases: reversible and irreversible. In reversible assignment
the operands can be extracted from the result. For example in a = b × 10
we can extract value of b from the value of a. In irreversible assignment, the
operands cannot be conducted from the result. For example in a = b mod 3,
the exact value of b cannot be conducted from the value of a. We only use
data dependence edges for reversible assignments.

3. We consider the activation nodes, which correspond to send statements, as a
separate type of nodes.

So, in a modified Rebeca dependence graph DDG = {V,E}, V (DDG) =
V-RC ∪ V-MS ∪ V-PD ∪ V-ST ∪ V-AC, and E(DDG) = E-CD ∪ E-DD ∪
E-MD ∪ E-PI. The description of these sets are given in Tables 4 and 5.

An incomplete portion of the data dependence graph for our running example
is shown in Fig. 6 (due to space restriction, we eliminate some parts of this
graph).
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Fig. 6. Applying Algorithm 1 to DDG of running example for the sets of policies shown
in Tables 1 and 2, and student’s CPersonal private data item. The gray nodes are nodes
which have access to CPersonal private data item.

6.2 Data-Centric and Rule-Centric Policy Enforcement

For policy enforcement, we first construct the data dependence graph (DDG)
for Rebeca model, and then apply Algorithm1 to determine whether the system
satisfies the data-centric and rule-centric policies. This algorithm, gets a data
dependence graph, an actor’s private data item (pv), the sets of data-centric
and rule-centric policies as the inputs. First, the set of all nodes which can affect
the given private data is computed (lines 1–5). To check data-centric policies,
all message servers that have access to pv (possibly passed through a series of
messages or assignments) are selected (lines 6–7). Then, the corresponding pur-
pose of each such message server (determined by FindPurpose(v)), is checked
against the data-centric policies (lines 8–10). To check rule-centric policies, all
send statements that potentially send pv as a parameter (again, possibly indi-
rectly) are selected (lines 11–12). Then, the permission of such communication is
checked against the rule-centric policies (lines 13–15). For complete data-centric
and rule-centric policy enforcement, this algorithm must be run for all private
data in the system.

Figure 6 shows an example execution of Algorithm 1. The inputs of this exam-
ple are the data dependence graph of our running example, the sets of policies
shown in Tables 1 and 2, and student’s CPersonal private data item. As shown
in Fig. 6, CPersonal can be used in Query message server with the purpose
of Consulting. As the pair (student’s CPersonal, Consulting) is not a member
of Table 1, the algorithm indicates a violation of the data-centric policy. This



208 Sh. Riahi et al.

Algorithm 1. Purpose-based policy enforcement algorithm
Input: A dependence graph DDG = {V-RC ∪V-MS ∪V-PD ∪V-ST ∪V-AC , E-CD ∪

E-DD ∪E-MD ∪E-PI}, one actor’s private data item in form of (owner , pv), the
set of data-centric policies DCPolicy and the set of rule-centric policies RCPolicy

Output: Does DDG satisfy DCPolicy and RCPolicy for (owner , pv)?
1: S ← ReachableFrom(DDG, pv) // Using Depth First Search
2: For each v ∈ S
3: For each u ∈ V (DDG)
4: If ((u, v) ∈ E-CD ∧ u /∈ S)
5: S ← S ∪ {u}
6: For each v ∈ S
7: If (v ∈ V-MS) // If v is a message server node
8: If ((pv, F indPurpose(v)) /∈ DCPolicy){
9: DCPCounterExample ← (pv ,FindPurpose(v))

10: Return False }
11: For each v ∈ S
12: If (v ∈ V-AC) // If v is an activation node
13: If ((FindActor(v), pv ,FindPurpose(v)) /∈ RCPolicy){
14: RCPCounterExample ← (FindActor(v), pv ,FindPurpose(v))
15: Return False }
16: Return True

violation occurs because SetMoreInfo message server (with Registration pur-
pose) assigns CPersonal to a state variable while Query message server (with
Consulting purpose) uses this state variable and sends its value to another actor.
Although the actor is eligible to access its own state variable, its access should
be controlled when it contains private data.

7 Data Disclosure Analysis

In addition to policy enforcement, we can analyze the disclosure of private data
in an actor system. This analysis needs to determine each actor in the system
can access which private data of other actors. This access can be done in one of
the following forms:

1. Direct receive: the owner of private data directly sends its private data to
another actor.

2. Indirect receive: an actor sends private data of another actor to a third actor.
3. Receive by inferring: the actors can infer other actors’ private data based on

some inference rules (these rules are defined based on data model or message
model of the system).

In this paper we only consider the first two forms, and receive by inferring is
remained as our future work.

For data disclosure analysis, we introduce Algorithm2 based on data depen-
dence graph analysis. In this algorithm, first the set of all nodes which can affect
the given private data item, is computed (lines 2–6), and then the parent of
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each message server node in this set, is added to the output set (lines 7–9). The
function Parent(v) returns an actor node which v is a member of it. The output
of this algorithm is the set of actors which can know the input private data item.

Algorithm 2. Data disclosure analysis algorithm
Input: A dependence graph DDG = {V-RC ∪V-MS ∪V-PD ∪V-ST ∪V-AC , E-CD ∪

E-DD ∪ E-MD ∪ E-PI}, one actor’s private data item in form of (owner , pv)
Output: ActorsKnownpv (the set of actors which can know pv)
1: ActorsKnownpv ← ∅
2: S ← ReachableFrom(DDG, pv) // Using Depth First Search
3: For each v ∈ S
4: For each u ∈ V (DDG)
5: If ((u, v) ∈ E-CD ∧ u /∈ S)
6: S ← S ∪ {u}
7: For each v ∈ S
8: If (v ∈ V-MS) // If v is a message server node
9: ActorsKnownpv ← ActorsKnownpv ∪ {Parent(v)}

10: Return ActorsKnownpv

If the result of this algorithm indicates the existence of data disclosure,
despite the system satisfies the purpose-based policies, the purposes and policies
must be reviewed.

8 Conclusion and Future Work

In this paper, we provided a way for purpose-based policies enforcement in actor-
based systems with the aim of avoiding disclosure of private data in such systems.
We modeled purposes using Petri nets, and make sure that the system works
exactly according to them by model checking and if needed, correction of the
system model. Then the data-centric and rule-centric policies are checked by
analysis of the data dependence graph of the system. Data disclosure analysis
algorithm has also been introduced, which can be used for evaluating of the
effect of purpose-based policies on disclosure of data. However, this analysis can
be used for each actor model to specify the distribution of data among actors.

Using our method, we can statically check that in a distributed asynchronous
system there is no privacy violation. Since we model purposes using workflows,
our method is usable for practitioners. All of our analysis are performed statically
at system design time so, no runtime overhead is imposed on the system.

In future work, we intend to consider receive by inferring, as well as direct
and indirect receive, for data disclosure analysis, which needs to apply required
inference rules in our analysis. We also interest to provide a runtime monitoring
mechanism for purpose-based policy enforcement in actor systems. This extends
the scope of our method to the systems in which policies may change during
time.
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Abstract. A wide range of network management tasks such as balanc-
ing bandwidth usage, firewalling, anomaly detection and differentiating
traffic pricing, depend on accurate traffic classification. Due to the diver-
sity and variability of network applications, port-based and statistical
signature detection approaches become inefficient and hence, behavioral
classification approaches have been considered recently. However, so far,
there is no automated general method to obtain the behavioral mod-
els of applications. In this research, we propose an automatic procedure
to infer a transition system model from generated traffic of an applica-
tion. Our approach is based on passive automata learning theory and
evidence driven state merging technique using the rules of the network
domain. We consider the behavior of well-known network protocols to
generate the model which includes unobserved behaviors and excludes
invalid ones as much as possible. To this aim, we present a new equiv-
alence relation regarding the given protocol behaviors to induce proper
state merging conditions. This idea has led the time complexity order of
the algorithm to be linear rather than exponential. Finally, we apply the
model of some real applications to evaluate the precision and execution
time of our approach.

1 Introduction

The importance of traffic classification for network administration tasks such as
ensuring the security and quality of service of applications in computer networks
has long been acknowledged. The growing number of network applications and
protocols has limited the efficiency of classical methods. In the past, packets
were easily classified by their transport layer ports. As the use of random or non-
standard ports is dramatically increasing, payload inspection [1,2] and statistical
methods [3,4] are proposed. However, drawbacks of these techniques such as
insufficiency in encrypted traffic and their high computation cost lead to the
emergence of behavioral classifiers. The merit of the behavioral classification is
to use the behavioral pattern of an application instead of the content of packets
or flow statistics. This point makes these classifiers useful for encrypted traffic or
unknown protocols. But, so far, no automated method to obtain the behavioral
model of applications is provided which currently requires human inspection.
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There are a few studies for automating inference of the behavioral patterns
which are application specific and cannot be widely used, for instance [5] has
been presented for P2P-TV traffic.

To overcome the challenges of traffic classification and behavioral pattern
detection approaches, we aim at providing an automatic approach to derive
formal behavioral models, i.e., transition systems, for applications in the domain
of the network. Our focus is mainly on programs at the application layer of the
TCP/IP model [6]. We reduce our problem to the automata learning problem [7]
which aims at inferring an automaton which accepts the set of given words. If the
input traffic is considered as the given words of the language, then the desired
model will be the identified automaton. However, the classical approaches in the
literature of automata learning are not efficient to derive the most general model
such that not only it subsumes valid unobserved traces as much as possible, but
also disallows invalid traces. This is not achievable unless concepts of the domain
are utilized to tailor the basic algorithm.

Intuitively, we assume that the behavior of an application can be identified
in terms of how it executes well-known network protocols (below the application
layer) Therefore, given the formal specification of well-known network protocols
and execution traces of a program, we automatically generate a transition sys-
tem. Hence, we customize the automata learning algorithm of [8] using rules in
the network context to derive the most general model. Noting to the fact that
each trace of a program is an interleaving of network protocol execution traces,
the inferred model must preserve the behavior of each network protocol. In other
words, the model of various applications differ in how they interleave the traces
of well-known network protocols. Therefore, we take advantage of a behavioral
pre-order relation in the theory of transition systems to conduct the process of
model generation such that invalid traces are prohibited. Due to our abstraction
(of application variables), the states of the inferred model which identify the
same state with the same number of the flows for each network protocol, can be
aggregated together using the counter abstraction technique [9] to include not
observed behaviors.

To illustrate the applicability of our approach, we have implemented our
algorithm in a tool and applied it on two version control system applications
and two remote desktop sharing programs. Our results indicate that the tech-
niques that are used to generalize the model, are sufficiently conservative. and
unobserved behaviors are covered with a high precision. Furthermore, the worst
case time complexity order of our algorithm is linear rather than exponential in
contrast to the related automata learning techniques.

2 Preliminaries

In this section, we describe the necessary network background, an overview of
automata learning, the definitions of the main concepts related to transition
systems and the counter abstraction technique used to find the equivalent states.
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2.1 Network Background

Each packet transferred across a network is composed of two parts: the header
and the content. The header includes the control information needed by the
corresponded protocol and is appended to the beginning of the content. Protocols
defined over the Internet follow the TCP/IP layered architecture [6]. This model
consists of four layers: Application, Transport, Internet, and Link. The layered
architecture means that the packet content of each layer is the built packet of
its upper layer.

To send a message over the network, at first, the Application layer receives the
user message from the software which is running (e.g., email client, web browser,
instant messaging software, etc.), and passes it to the lower layer. The Transport
layer segments data from the upper levels, then establishes a connection between
the packet’s point of origin and where it has to be received, and ensures that the
packets are reassembled in the correct order [10]. The Network layer is responsi-
ble for the packet’s addressing and routing. Finally, the Link layer manages the
formats of packets based on the mediums being used in transmitting the pack-
ets. For each layer, a number of different protocols is standardized. Protocols
are divided into connection-less and connection-oriented categories. Connection-
oriented are those that need to establish a connection before data transmission.
Thus there are handshake (initialization) and finalization phases in these proto-
cols. These phases are not required in connection-less protocols. They just send
a request packet for each desired data. A sequence of packets which have the
same value for the parameters source IP, source port, destination IP, destination
port, and the protocol name is called flow. An execution of an application gives
rise to initiating a number of flows. These flows are the connections which are
established between the initiator system and the other end systems.

2.2 Automata Learning

There are equivalent keywords in the literature to automata learning such as
grammar inference or regular inference, language or automata identification. The
goal of automata learning is to find a (non-unique) smallest automaton which is
consistent with the set of given examples [11]. Gold has proved that this problem
when the alphabet is finite, the two input sets of positive and negative samples
are given, and the number of the states of the output automaton is determined,
is a NP-complete problem [7]. If all of the words with the size equal and less
than n are given, then it is possible to solve the problem in the polynomial time.
The algorithms of this problem can be divided into the two categories: active
and passive.

The active techniques are based on Angluin L∗ algorithm which solves the
problem in polynomial time by asking some membership or equivalence queries
[12]. It is assumed that there is an oracle than answer the required queries. Pas-
sive techniques tend to build tree-like automata, called prefix tree automata,
from input examples and then by merging their states according to some heuris-
tics evidence, achieve the smallest deterministic finite automata (this technique
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is called Evidence Driven State Merging (EDSM)[8]). In this category, there is
no oracle and the algorithm should find the solution only from the positive and
negative words of the language.

Since we aim to infer the behavioral model only from the input traces when
there is no oracle system, our solution in this paper is based on the passive
techniques. The most important challenge of these techniques is how to find the
candidate states which should be merged to include unobserved traces. KTail
algorithm merges states which have K common future (i.e., states that accept
the same set of strings of length K) [13]. Several research has been conducted to
decrease the O(n2) search space of the states which should be merged. Red-Blue
is one of them and becomes a popular framework which limits the number of
pairs of states by determining sufficient conditions on their colors.

2.3 Transition Systems

In this section we define the concepts used in the proposed methodology which
are related to transition systems. These definitions have been adapted from [14].

Definition 1 (Transition System). A transition system is a tuple TS =
(S,Act ,→, s0, ↓) where S is a set of states, Act is a set of actions, →⊆
S × Act × S is a transition relation, s0 is the initial state, and ↓⊆ S is a
set of final states. We use s

α−→ t to denote (s, α, t) ∈→.
TS is called action-deterministic if for all s ∈ S, there are not (s, α, t) ∈→

and (s, α, v) ∈→, where α ∈ Act and t, v ∈ S, such that t �= v.

From this definition, the transition system in the left side of Fig. 1 is action-
deterministic. A finite execution fragment η = s0α0s1α1 . . . αnsn+1 of TS is an
alternating sequence of states and actions starting with the initial state and
ending with a final state such that (si, αi, si+1) ∈→ where 0 ≤ i ≤ n. A finite
sequence of actions � = α0α1 . . . αn of TS is an execution trace if ∃s0, . . . , sn+1 ∈
S such that η = s0α0s1α1 . . . αnsn+1 is an execution fragment. For instance,
s0 x s1 a s2 x s3 a s4 y s5 b s6 y s7 and s0 a s8 a s9 x s10 b s11 y s12
are the execution fragments of the transition system in the left side of Fig. 1.
By eliminating states from these sequences, the execution traces are generated
(x a x a y b y and a a x b y respectively).

There is an abstraction operator which has the responsibility to hide some
actions of a transition system to make them internal and thus unobservable to
external entities. We formally define the abstraction operator in the following
definition:

Definition 2 (Abstraction Operator). Let TS = (S,Act ,→, s0, ↓) be a tran-
sition system. The abstraction of TS via a set of actions L ⊆ Act, denoted by
τL(TS ), is (S,Act \ L,→′, s0, ↓) such that: →′= {(s, α, t) | (s, α, t) ∈→, α /∈
L} ∪ {(s, τ, t) | (s, α, t) ∈→, α ∈ L}

To compare the behavior of transition systems, several behavioral pre-order
and equivalence relations have been proposed ranging from strict to liberal ones.
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Fig. 1. Left: The initial transition system and the specification of protocols. Right:
Applying the steps of proposed method on an example.

The Simulation relation is a finest pre-order relation which requires a transition
system to precisely mimic transitions of another one [15]. In the case of existing
internal actions in the system, the Weak Simulation relation is defined to relax
the conditions only for the observable actions.

Let τ−→∗
be reflexive and transitive closure of τ -transitions:

– t
τ−→∗

t;
– t

τ−→∗
s and s

τ−→ r, then t
τ−→∗

r.

Definition 3 (Weak Simulation Relation). A binary relation R on the set
of states S is a weak simulation relation if for any s1, s′

1, and t1 ∈ S and
α ∈ Act, s1 R t1 implies:

– s1
α−→ s′

1 ⇒ (α = τ ∧ s′
1 R t1) ∨ (∃ t′1, t

′′
1 , t′′′1 ∈ S : t1

τ−→∗
t′′′1

α−→ t′′1
τ−→∗

t′1 ∧ s′
1 R t′1);

– s1 ∈↓⇒ (∃ t′1 ∈↓: t
τ−→∗

t′).

For the given transition systems TS i = (Si,Act i,→i, s0i, ↓i), where i ∈ {1, 2},
TS1 is weakly simulated by TS2 or TS2 simulates TS1, denoted by TS 1 w TS 2,
if s01 R s02 for some weak simulation relation R.

A weak simulation relation R is minimal, if for all simulation relation R′

witnessing TS 1 w TS 2, R ⊆ R′. Hence, a minimal weak simulation relation R
is not necessarily unique.
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2.4 Counter Abstraction

The Counter Abstraction is a technique to abstract states of a system. The idea
is to represent each state as a vector of counters one per each value instead of a
vector of state variables. For instance, consider there are three integer variables
x, y and z. The states {x = 1, y = 2, z = 1}, {x = 2, y = 1, z = 1} and
{x = 1, y = 1, z = 2} are equivalent because they have the identical counter
abstracted state {count(1) : 2, count(2) : 1}. This technique has been used in
various applications. In symmetry reduction which is a technique to avoid state
space explosion problem, the counter abstraction has the role of finding identical
clusters of states space so as to reduce the symmetry states and decrease the
cost of model checking [16]. This concept is also used in [9] in order to abstract
a parameterized system of an unbounded size into a finite-state system to be
verifiable.

3 Methodology

In this section, our proposed methodology for learning the network behavioral
model of an application is discussed.

3.1 Problem Statement

The captured traffic is the sequence of packets sent or received as the result of the
execution of an application during a specified time. Each packet contains data
and headers of layers as the result of encapsulation. We only consider information
of the upper layer instead of the whole headers and data (for instance, we only
take into account information of the application layer of HTTP packets while
they subsume information of the TCP layer).

To facilitate the processing of each packet content and close up the concept
to the automata theory, a function is exploited which corresponds each packet
to its equivalent action-like abstract representation. This function is defined as
PM apper : Packets → Act where Packets is the set of possible packets captured
through the pre-processing step. For example, a received TCP packet in the
handshake phase is mapped to TCPInitI which is a member of the model actions
set. In Sect. 4 we explain how the action set is defined in terms of the packet
information. Therefore, by applying the PMapper function to each captured
packet, we obtain a trace of actions. Hence, one input of our problem is N
executions of an application which are transformed by the PMapper into the N
action traces (packet trace) denoted by PT , ranged over by π. Let πi indicate the
ith action of the trace π, and len(π) show the length of the trace. We remark that
the length of each input execution is arbitrary, and in potentially independent
of the length of other traces.

Besides the packet traces, another important input of our problem is the spec-
ifications of K network protocols. We assume that the specifications are provided
in the form of action-deterministic transition systems Pi = (Si,Act i,→i, s0i, ↓i)
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where 1 ≤ i ≤ K, τ �∈ Act i , and ∀i, j ≤ K : (Act i ∩ Actj = ∅). We remark that
each action trace π is the interleaving of a set of flows f1, f2, . . . where fi is an
execution trace of Pj (j ≤ K).

The goal of our problem is to derive a model in the form of transition system,
i.e., M = (SM ,ActM ,→M , s0M , ↓M ) such that ActM =

⋃
π∈PT{πi | 1 ≤ i ≤

len(π)}, and π ∈ Traces(M ), where Traces(M ) is the set of the execution traces
of M . In fact, each of the input traces is an execution trace of the desired
transition system.

3.2 Projection Relation

Initially, a tree-like automaton which consists of all action traces is generated.
Intuitively, each application needs to establish a number of connections with
other systems in order to perform each of its functionality. Each connection
follows a protocol specification. For instance, an execution of the Map application
of Windows 8 contains four flows where two are for the DNS protocol, one
for the TCP and one for the TLS protocols. Hence, each state of the initial
transition system can be considered as a vector of states, each of which identifies
a state of the corresponding protocol. Note that the size of the vector is equal
to the number of flows. To generalize the initial transition system to cover more
behavior, some states are selected to merge together. Hence, the new model
accepts extra not observed valid behavior. Merged states are those called project
equivalent. Two states are project equivalent if their vectors (of flow states)
are identical with respect to the counter abstraction technique. For the sake of
efficiency, the resulting transition system is determined.

Before describing the method, we mention some definitions and theorems.
As we explained, each packet from the application execution belongs to a flow.
We assume the total number of the flows of the all input traces is denoted by F .
Furthermore, the auxiliary function Flow : S ×Act ×S → Nat, defined over the
initial transition system, maps each packet, specified by the transition with the
corresponding action of the packet, to its flow number such that Flow(s, α, t) ≤
F , where s, t ∈ S and α ∈ Act . From the flow definition each flow has a protocol
attribute. Let function Protocol identify the protocol name of a flow, denoted by
Protocol : Nat → Nat, such that ∀ f ≤ F : Protocol(f) ≤ K.

Definition 4 (Projection Relation). Let TS i = (Si,Act i,→i, s0i, ↓i), for i =
1, 2, be transition systems such that TS1 w TS 2 witnessed by a minimal weak
simulation relation R. Two states s1 and s2 of S1 have projection relation under
TS 2 if ∃ t ∈ S2 : s1 R t ∧ s2 R t. Then, we say that s1 and s2 are the same
projection of t under the transition system TS2, denoted by s1 ∼�TS2 s2.

To define states that are project equivalent, the following lemma identifies
the conditions under which the project relation can act as an equivalence rela-
tion, and consequently can partition states. If a transition system has a tree-like
structure, any of its two states can be connected by a unique simple path.
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Lemma 1. Let TS i = (Si,Act i,→i, s0i, ↓i), for i = 1, 2, be transition systems
such that TS 1 is a tree-like transition system and TS2 is an action-deterministic
transition system without any τ -transition (i.e., τ �∈ Act2). If TS1 is weakly
simulated by TS2, witnessed by a minimal weak simulation R, then each state
of S1 relates to only one state of S2 under R:

∀ s ∈ S1,∀ t1, t2 ∈ S2 : s R t1 ∧ s R t2 ⇒ t1 = t2

Theorem 1. Let TS i = (Si,Act i,→i, s0i, ↓i), for i = 1, 2, be transition systems
such that TS 1 is a tree-like transition system and TS2 is an action-deterministic
transition system without any τ -transition (i.e., τ �∈ Act2). The projection rela-
tion under the transition system TS2 over the states of TS 1 is an equivalence
relation.

See [17] for the proof of Lemma 1 and Theorem 1. As a consequence of
Theorem 1, the states of a transition system can be partitioned into equivalance
classes by a projection relation. The equivalence class for projection relation is
defined in the following definition.

Definition 5 (Projection Relation Partitioning). Let TS i = (Si,Act i,→i

, s0i, ↓i), for i = 1, 2, be transition systems such that TS1 is a tree-like transi-
tion system and TS 2 is an action-deterministic transition system without any
τ -transition (i.e., τ �∈ Act2). States of TS 1 are partitioned under the projection
relation under TS2 into the equivalence classes each of which is identified by
the unique state t ∈ S2 such that:[t]TS1∼�TS2

= {s ∈ S1 | s R t} where R is a
minimal weak simulation relation.

Running Example. Consider the specifications of two sample protocols in the
right side of Fig. 1, we assume that two input traces x a x a y b y and a a x b y
are given. In the first trace, there are three flows, two are of the protocol P2 and
one of the protocol P1. They are given such that the first x and the last y belongs
to a flow and the second x and the first y are related together. In the second
trace, there are two flows each of which is instantiated from each protocol. It is
assumed that the flows are enumerated by the order of their first packets. We
use this example in the rest of this section.

3.3 Step 1: Building the Initial Transition System

From Sect. 2, there is an execution fragment for each execution trace. We
generate for each input trace π, its corresponding execution fragment ηπ =
s0π1s

π
1π2 . . . πlen(π)s

π
len(π). Note that the initial state in the fragments of the all

traces are intentionally identical. In the first step, the tree-like transition sys-
tem M0 is built from aggregating the execution fragments of the input traces.
Therefore, the initial transition system M0 = (S,Act ,→, s0, ↓) is obtained as
follows:

– S = {sπ
i | 1 ≤ i ≤ len(π), π ∈ PT} ∪ {s0},
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– Act = {πi | 1 ≤ i ≤ len(π), π ∈ PT},
– →=

⋃
π∈PT ({(sπ

k , πk+1, s
π
k+1) | 1 ≤ k ≤ len(π)} ∪ {(s0, π1, s

π
1 )}),

– ↓= {sπ
len(π) | π ∈ PT}.

The transition system in the left side of Fig. 1 is the result of performing
this step. This initial transition system does not cover new execution traces of
the application which are not given in the input. Therefore, some operations
are needed to generalize the initial transition system and cover more execution
traces. Next steps (step 2 and 3) are the efforts to reach this goal.

3.4 Step 2: Generalizing by Counter Abstraction

The generalization method in this step is addressed in two sub-steps.

1. Finding Equivalent States. Intuitively, two states are equivalent under the
flow f , if they belong to the same equivalence class based on the projection rela-
tion under the transition system of the attributed protocol of f , i.e., Protocol(f).
To this aim, we introduce the flow-based abstraction operator, which renames
actions not included in the flow f to τ . By generalizing this intuition, two states
s1 and s2 of transition system M0 are equivalent if and only if they are equivalent
under all flows of the initial transition system M0.

Definition 6 (Flow-based Abstraction Operator). Let TS = (S,Act,
→, s0, ↓) be a transition system. Then τf̄ (TS ) = (S,Act ′,→′, s0, ↓) such
that: →′= {(s, α, t) ∈→| Flow(s, α, t) = f} ∪ {(s, τ, t) | ∃(s, α, t) ∈→
(Flow(s, α, t) �= f)} and Act ′ = Act i where Protocol(f) = i and Pi =
(Si,Act i,→i, s0i, ↓i).

We remark that if the abstraction operator is defined under protocol actions
instead of a flow, then the resulting abstracted transition system may not pre-
serve the protocol behavior due to interleaving of flows. For instance, the abstrac-
tion of the transition system in Fig. 1 under the protocol P2 contains the sequence
of x τ x τ y τ y at its left branch which does not have any weak simulation rela-
tion with P2.

Let count(s, t) denote the number of flows like fi that the state t of the
protocol Pj weakly simulates s in the abstraction of M0 under fi:

count(s, t) = |{fi ≤ F | s ∈ [t]τf̄i (TS(M0))∼�Pj
}| .

We remark that each state s is uniquely simulated by a state t as the result of our
projection relation. The two states s1 and s2 can be aggregated together under
the counter abstraction technique if and only if ∀ j ≤ K, t ∈ Sj : count(s1, t) =
count(s2, t).

The results of applying the counter abstraction on the states of the initial
transition system of the running example are presented in [17]. For each state
of obtained model, a vector of count values for all states of the transition sys-
tems of protocols is calculated. To obtain each vector, at first, the projection
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relation under abstraction of each flow is computed. After that, the number of
flows in each state of protocols is counted. For example, for s0, the vector is
< 5, 0, 0, 5, 0 > which is the value of < c(s, t1), c(s, t2), c(s, t3), c(s, v1), c(s, v2) >
where c is the abbreviation of count. It shows that all the flows are related to
the initial states of the protocols. Because of the transition (s0, x, s1) of flow
f1, the state of s1 is simulated by the state v2 of the protocol P2, and hence,
the counter of flows in the state v1 decreases by one and the counter of flows in
the state v2 increases by one. Hence, the projection relation partitioning for s1
produces < 5, 0, 0, 4, 1 >. After calculating the counters for each state, the set of
equivalent states are achieved: {(s2, s5, s10), (s3, s4), (s6, s11), (s7, s12), (s8, s9)}.

2. Merging Equivalent States. After finding the set of equivalent states of
M0, merging process should be done. Let [s] donote the equivalence class of the
state s, i.e., ∀ s′ ∈ S : s′ ∈ [s] ⇔ s′ ≡ s. A merged state inherits the union of
the incoming and outgoing transitions of its origin states. By applying all merge
candidates, the final transition system M1 = (S′,Act ,→′, s′

0, ↓′) is obtained,
where S′ = {[s] | ∀ s ∈ S}, →′= {([s], α, [t]) | ∃ s, t ∈ S : (s, α, t) ∈→},
s′
0 = [s0], and ↓′= {[s] | ∀ s ∈↓}. Figure 1 (without the tick transition a on the

state s3) is the final result of performing this step. After this step, the resulting
transition system is action-deterministic. We have proved this fact in the [17].

3.5 Step 3: Generalizing by Completing Transitions

The next generalization idea is completing the transitions set according to the
transition systems of the network protocols. We add self-loops of each protocol
state t ∈ Pi, for some i ≤ K, to the state [s] if count(s, t) > 0. Adding such
transitions does not affect the equivalent classes of M1. Then, after applying this
step, the resulting generalized transition system is Mg = (S′,Act ,→g, s

′
0, ↓′) such

that:

→g=→′ ∪ {([s], α, [s]) | ∀j ≤ K, t ∈ Sj , ∀ s ∈ S : count(s, t) > 0 ∧ (t, α, t) ∈→j}.

After applying this step, the tick transition a on state s3 is added to the Fig. 1.
The time complexity of the algorithm is linear in the size of the input. See [17]
for the psuedocode of the algorithm and a discussion of the time complexity.

4 Evaluation

To evaluate the proposed method, we have implemented our algorithm in Java
and applied it to some applications. Two categories of applications,version con-
trol system and remote desktop sharing, are selected for testing our methodology.
For the first category, two applications TortoiseSVN client of SVN1 and Source
Tree Client of GIT2 are selected. The traffic of the update command of these
1 https://tortoisesvn.net/.
2 https://www.atlassian.com/software/sourcetree.

https://tortoisesvn.net/.
https://www.atlassian.com/software/sourcetree.
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applications are gathered as their captured packet traces. Also, we have selected
two remote desktop sharing applications, namely TeamViewer3 and JoinMe4

for which their traffic is encrypted. Hence, they cannot be easily identified by
signature based approaches on the content of packets. Each one has run for 100
times and their network traces are captured via the Wireshark5 tool. Packets
of the application layer protocols (used by these programs), namely TCP, SSL,
SSLv2, TLSv1, TLSv1.2, HTTP and UDP have been considered and the oth-
ers are filtered. The more protocols are considered, the more precision will be
achieved. Some preprocessing operations have been performed to eliminate the
repetitive and truncated packets. Also, we have reassembled segments of frag-
mented packets. The mapper function which is responsible for translating the
packets to their corresponding actions is defined such that it assigns the con-
catenation of the packet protocol name, the control phase and the direction to
each packets. We divide the operation of each protocol into a set of phases to
abstractly consider its progress. The control phases are assumed to be Init, Data,
and Fin for connection-oriented protocols and Init and Data for connection-less
ones. Intuitively, Init indicates to the establishment of the connection, Data to
the transmission of data, and Fin to the termination of the connection. The
direction is a binary tag which can be either I or O to indicate that the packet
is sent or received, respectively. The amount of detail about packets embedded
in their corresponded actions, shows how much the final generated model is sen-
sitive to packet variations. By this mapper function, different manners of each
control phase (initialization/ transferring data/ finalization) are considered to
be the same.

We assume that the specifications of protocols are given in the form of tran-
sition systems and defined according to the mapper function abstraction level.
By applying the mapper function on the packet traces, 100 action traces have
been obtained for each application. These traces are divided into the train and
test sets. The train traces are the input of our proposed method to infer the
behavioral model which should accept the test traces. The overall scheme of
an obtained model is shown in [17]. We use the cross validation technique for
100 times to calculate the average value of precision with a reasonable confi-
dence interval. Table 1 shows the final result of our experiments. Regarding to
impossibility of measuring the real value of false positive rate (because it is not
possible to gather all negative traces), researchers tend to consider the traces of
the other applications which have the same functionality. Thus, we use traces of
applications in the same category crossly to calculate the false positive rates.

The major point is that by applying our proposed generalization steps, the
false positive rate does not grow. This means that our conservative approach
prevents over-generalization from occurring. Each generalization step improves
the completeness of the model. Note that since the update command of SVN
and GIT generates a short packet trace, their captured traffic are similar and

3 https://www.teamviewer.com/en/.
4 https://www.join.me/.
5 https://www.wireshark.org/.

https://www.teamviewer.com/en/.
https://www.join.me/.
https://www.wireshark.org/.
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Table 1. The average result of applying the proposed approach step by step, run on
system with CPU Corei7 and 2G RAM. TPR stands for true positive rate.

Step App States FP TPR TPR Train Test

Num (observed) (unobserved) time time

Initial SVN 3982 100% 100% 2% <5 s <1 s

Transition GIT 4115 100% 100% 1%

System TeamViewer 8637 0 100% 0%

JoinMe 34484 0 100% 0%

Applying SVN 78 100% 100% 55% <2 min <1 s

Counter GIT 45 100% 100% 100%

Abstraction TeamViewer 407 0 100% 36%

JoinMe 5458 0 100% 25%

Completing SVN 78 100% 100% 100% <5 min <1 s

Self-Loop GIT 45 100% 100% 100%

Transitions TeamViewer 407 0 100% 98%

JoinMe 5458 0 100% 56%

Relaxing SVN ∗ 100% 100% 100% * *

Unnecessary GIT ∗ 100% 100% 100%

Orders* TeamViewer ∗ 0 100% 100%

JoinMe ∗ 0 100% 91%

misclassified. As a future work, we plan to map packets to parametric actions in
order to enhance the precision of the classifier. Adding (self-loop) transitions has
increased our precision by 31 percent in the worst case. In the next step, we aim
to relax unnecessary interleaving which stems from the concurrent development
of applications or parallel network connections. Such a step which is our future
work increases our precision to 100 or 91 percent. Now, we have applied the
step manually, by examining the counter examples of the previous step. Those
traces which can be covered by the generated model via modifying the orders of
packets, is counted as the successful result for this step. We plan to automate this
idea so as to automatically induce strict orders among transitions and relax the
unnecessary ones in our future work. Our approach fails to recognize 9 percent
of test traces (the last row of the Table 1) which are mainly those that include
new unpredictable subsequences based on the train set.

4.1 Comparison with Other Packet Classification Methods

To clarify the applicability of our methods, it should be compared with other
packet classification techniques which we have described in Sect. 1. Port-based
detection method does not have the ability of detecting most of the current
applications because that they tend to use random or non-standard ports. Due
to growing usage of encrypted traffic payload inspection methods become use-
less and it can not be used in our dataset. Furthermore, the proposed behavioral
classification methods are application specific (e.x. for P2P applications) and
they are not enough general to apply to our selected applications. Finally statis-
tical classification methods are the only related work which we can compare
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Table 2. The result of statistical classification

Method FP TPR Train Time Test Time

TeamViewer 0.12% 83% 3 s <1 s

JoinMe 0.10% 87% 5 s <1 s

our work with. To this aim, Netmate6 is used to obtain the feature vectors of
flows of captured traffic. Then, using Weka tool-set7, the average precision of
classification and false positive metrics among three algorithms SVM, Native
Bayes and C4.5 were measured. The final result of these metrics are reported in
Table 2.

5 Related Work

Two research areas are related to our problem. In the following we explore related
work in each area.

Automata Learning. Some research has been conducted to extend the expres-
siveness of inferred models. The KTail algorithm is extended in [18] with the aim
to generate models from methods invocation traces. This approach is conducted
in four steps. At first, the traces with the identical sequence of methods (those
differ in the values of parameters) are merged together. Next, constraints on
parameters are obtained via Daikon invariant detector [19]. At the third step, a
prefix tree automaton is built. Finally, the states are merged according to a cri-
terion which can be equivalence of method and parameters, weak subsumption
or strong subsumption for their next k actions. In [20], the authors extends the
Angluin L∗ algorithm to infer relationships between input and output parame-
ters in the form of the Mealy machines. In [21], the automate learning problem
is extended to infer deterministic timed automata.

Some studies address the application of automata learning problem. Among
them, [22] is the most related work to ours which elaborates on inferring mealy
machine models of communication protocols. The authors indicate that the para-
meters in the message format of protocols such as sequence number, configura-
tion parameter and session id, result in infinite-states model. To minimize the
state space, the abstract representation of protocol states are derived automati-
cally in terms of operations that a requester and responder may perform. Hence,
they have a similar assumption to ours which is the existence of protocol speci-
fications. Their algorithm is based on query evaluation (active automata learn-
ing), while, we have extended the passive automata learning. Also, there are
other applications of automata learning in different areas, especially in software
specification mining [23,24] which are not directly related to our work and we
do not elaborate on.

6 https://dan.arndt.ca/projects/netmate-flowcalc/.
7 http://www.cs.waikato.ac.nz/ml/weka/.

https://dan.arndt.ca/projects/netmate-flowcalc/.
http://www.cs.waikato.ac.nz/ml/weka/.
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Reverse Engineering of Protocol Specification. In this part we enumerate
the works that focus on inferring protocol specifications from traffic. These works
are related to ours because of their restriction on inferring a model by observ-
ing the behavior of the application in a black-box style. In [25], a probabilistic
method was investigated to obtain a finite state machine of a protocol. It was
assumed that the format of protocol messages is not determined. At the first
step, messages are segmented into l-length bytes and clustered with the aim of
recognizing their control parts. Next, the most frequent patterns are selected as
message units by statistical analysis. Then, the main messages of the protocols
are defined by computing the centers of the clusters. Finally, the finite state
machine is constructed whose states are the main messages and probabilistic
transitions are the frequencies of each pairs of messages.

In ReverX algorithm [26], a prefix tree automaton is built from traces and
then the states which are the destination of identical transitions, are merged.
Therefore, transitions with the same source and destination are created. They
claim that if these transitions are merged the parameters of message headers are
induced. Actually, despite their work is similar to us in using passive automata
learning, we differ in the conditions for state merging. If the states are just
similar in their 1-future action, they merge them, while we have investigated a
domain specific condition based on well-known protocol.

6 Conclusion

The classical methods which identify the traffic based on packet header informa-
tion or statistical metrics, are not effective anymore. Classification approaches
based on the behavioral patterns of applications are of a new trend to this
problem. No general and automated method to derive behavioral models has
been provided. We proposed a method to reach this goal based on the automata
identification problem and evidence driven state merging technique combined by
transition system theories. Intuitively, we assumed that the behavior of an appli-
cation can be identified in terms of how it executes well-known network protocols,
abstracting the state variables of the application. Hence, we have introduced our
merging conditions to identify the equivalent states based on the specification of
a set of well-known network protocols such as TCP, TLS, SSL, etc. To this aim,
we have provided the projection relation to identify the states with the same
number of the flows for each network protocol which can be counted together
using the counter abstraction technique.

We have presented two extra steps to complete the inferred model to cover
unobserved behaviors At first, the model is completed by including the self-loop
behaviors of the network protocols. After that, the possible valid interleaving of
the packets based on the repetition of their orders is predicted. The model is
extended to subsume such predicted orders. We also implemented and evaluated
our procedure which does not require human inspection. The experiments show
very encouraging results that the generalization steps significantly increase the
accuracy from 0% to 91% in the worst case. The future work is to mechanize
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the last step which induces the essential orders with the aim of relaxing the
unnecessary ones. We plan to extend our case study and compare the result of
our method with the real traffic classification tools.
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Abstract. Model-based testing (MBT) is typically a black-box testing
technique. Therefore, generated test suites may leave some untested gaps
in a given implementation under test (IUT). We propose an approach
to use the structural and behavioural information exploited from the
implementation domain to generate effective and efficient test suites.
Our approach considers both specification models and implementation
models, and generates an enriched test model which is used to automat-
ically generate test suites. We show that the proposed approach is sound
and exhaustive and cover both the specification and the implementation.
We examine the applicability and the effectiveness of our approach by
applying it to a well-known example from the railway domain.

1 Introduction

Model-based testing (MBT) has received significant attention in testing complex
software systems. The benefit of model-based testing is primarily in automated
test case generation and automated analysis of the test results. In an MBT
process, test cases are automatically derived from a (preferably formal) model of
the specification and are executed on the implementation under test (IUT). MBT
is typically a black-box testing technique, in which the implementation is only
accessible through its interfaces and thus, test data is generally selected based on
the specification. Therefore, generated test suites may leave some untested gaps
in a given IUT and/or redundantly cover the same logical path several times.

To address this issue test models and test case generation processes can be
enriched with structural or behavioural information extracted from the imple-
mentation. This is a promising approach considering the existing techniques for
extracting models from implementations, in particular, recent learning-based
approaches inferring models from software (e.g., [1,2]). Such models provide an
abstraction of the implementation based on its observable behaviour. Using these
models in testing improves the coverage of the IUT, up to the accuracy of the
extracted model.

This paper proposes a gray-box testing strategy in that test suites are gen-
erated considering both the specification and an abstraction of the IUT. With
such a test suite the coverage of the specification model and the implementa-
tion would be complementary to each other and hence, more faults could be
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uncovered. Moreover, such test suites are tailored to a given IUT and thus, a
fewer number of test cases are generated –to satisfy a certain testing goal– in
comparison to universal test suites that are supposed to detect faults in any
possible implementation. The main contribution of this work is considering the
partitioning of the input domain which can be obtained from (black-box) imple-
mentations (e.g., by model learning techniques) in generating test suites. We
show that although such information may be generated for different purposes, it
can be used in test generation and does improve the coverage of the generated
test cases.

In this work, specifications and implementations are modelled with a specific
type of transition systems, called Symbolic Reactive State Machines (SRSMs).
Given the SRSMs of the specification and the IUT, a complete test suite is gen-
erated based on the, so-called, transition composition of these models. In gener-
ating test cases, the justification of the proposed data selection is demonstrated
by a special case of the uniformity hypothesis [3] –the theoretical foundation for
testing with a finite subset of values.

The rest of the paper is structured as follows: Sect. 2 provides an overview
of the related work. Section 3 introduces the formalism used in this paper and
Sect. 4 defines our notion of conformance. The proposed testing strategy is out-
lined in Sect. 5. In Sect. 6, we provide the experimental results of examining the
effectiveness of our approach. Section 7 discusses the future work and concludes
the paper.

2 Background and Related Work

Several black-box test case generation methods are proposed in the literature
for various formalisms (e.g., finite state machines [4,5] and labeled transition
systems [6]). The completeness of these methods (i.e., specifying all possible
behaviour of a system) is typically explained with respect to a specified subset
of possible implementations which is referred to as a fault model [7]. This is
because in many practical cases, it is not possible to have a complete test suite
as such a test suite would be infinitely large.

Gray-box model-based testing strategies provide a combination of black-box
model-based testing with white-box testing to tune fault detection with respect
to a given implementation. For example, in [8], the structure of the tests is gen-
erated using MBT (from the specification model) and then a white-box testing
technique is used to find a set of concrete values for parameters that maximise
code coverage. The approach presented in this paper, in a similar way, considers
the IUT in generating test cases. However, it differs from [8] in that both the
structure and the parameters of test cases are influenced by a combination of a
test model and information from the implementation.

Our proposed approach has been largely established considering the promis-
ing results from existing learning-based techniques for inferring and extracting
models from implementations. Some of the techniques have focused on sequential
models typically in the form of FSMs (e.g., [9,10]) and some on data-dependant
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behaviour in the form of pre- and post-conditions (e.g., [11]). More recently,
EFSMs are considered to infer more complete models (combining control and
data). For example, Cassel et al. [2] introduce an active learning algorithm to
infer a class of EFSMs. Walkinshaw et al. [1] provide a model inference technique
(called MINT) which infers EFSMs from software executions. We believe that
the model inference techniques which, in particular, infer EFSMs can provide
the required abstract model of implementations in the context of our work (i.e.,
an inferred model can be translated into our formalism).

There are also a number of similar models, to our formalism, in the litera-
ture of MBT such as action machines (AM) [12], symbolic transition systems
(STS) [13], FSMs with symbolic inputs [14], and symbolic input output FSMs
(SIOFSM) [15]. SIOFSMs particularly support inputs with infinite domain. We
expect that each of these underlying models (and their associated test case gen-
eration algorithms) can be adopted in our approach.

Another closely related line of work is equivalence-class-based testing. The
theoretical foundation for this approach has been presented in [3] by the uni-
formity hypothesis, which states that it suffices to check the representatives of
sub-domains in which the behaviour is the same among all elements. We dis-
cuss the justification of our strategy based on this hypothesis. Huang et al. [16]
propose a complete model-based equivalence testing strategy applicable to reac-
tive systems with large, possibly infinite input data types but finite internal and
output data. Our approach is inspired by [16] and extends it by replacing the
heuristics for refinement with the information extracted from the IUT. It also
differs from [16] in that it allows for infinite output domains.

2.1 Motivating Example

To motivate this work, we use one of the benchmarks provided in [2], namely the
prepaid card, in which the card’s balance is limited to 500 SEK, and no more
than 300 SEK can be topped up in a single transaction. Figure 1a illustrates
the behaviour of this card for the update balance operation. Variable a is the
amount to update the balance of the card, and variable b is the current balance
of the card. Labels of the form ‘C/O’ on transitions state that the transition is
triggered by inputs satisfying C and the outputs are updated according to O.

Assume that there is an implementation of this card and we have an abstract
model of it which is generated by RaLib [2], depicted in Fig. 1b. As it is observed
in Fig. 1b, the learned model introduces a different partitioning of the inputs
comparing to the specification’s. This difference is typically observable between
a learned model and the already existing (reference) models. In this work, we sug-
gest to consider such information and we show that it will improve the coverage
of the specification and the IUT in a testing experiment. Note that the abstract
models extracted from implementations may not contain the exact input-output
relation. They largely provide useful information about the partitioning of the
input domain. Accordingly, we mainly consider and use the complementary infor-
mation about the partitioning of inputs in generating tests.
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(a) Specification (S∗
PPC) (b) Learned model (T ∗

PPC)

Fig. 1. The behaviour of the example prepaid card.

3 Preliminaries

For formal reasoning, we need a model of a specification, and also assume that
the behaviour of the IUT can be captured by some (unknown) formal model in a
given formalism. In the following, we introduce the formalism used in this work
to model specifications and abstractions of implementations, and then define
conformance in its context.

3.1 Symbolic Reactive State Machines

A Symbolic Reactive State Machine (SRSM) is a symbolic representation of
the state-based behaviour of a system, with a set of input/output variables. It
is symbolic as it explicitly uses the notion of variables, rather than concrete
values, in specifying transitions (e.g., data-dependent transitions) and outputs
(e.g., output as a function of input variables).

Definition 1 (Symbolic Reactive State Machine (SRSM)). An SRSM
S∗ is a 6-tuple (S̄, s̄0, δ̄, λ̄, V,D), where

– S̄ is the non-empty and finite set of symbolic states,
– s̄0 ∈ S̄ is the initial symbolic state,
– V is the set of variables such that V = I ∪ O, i.e., V is partitioned into

disjoint sets I and O of input and output variables, respectively,
– D is the range of all variable valuations,

• DI : domain of input variables
• DO: domain of output variables

– δ̄: S̄ × P(DI) → S̄ is the transition function, and
– λ̄: S̄ × P(DI) → Ē(I) is the output function.

• E(I) is the set of expressions over input variables (I).
• Ē(I) ∈ E(I) × . . . × E(I)

︸ ︷︷ ︸

|O|

, i.e., each expression gives the value of one out-

put variable.
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Notations. Input variables are enumerated as I = {x1, . . . , xk} and DI =
Dx1 ×. . .×Dxk

is the domain of inputs. P(DI) is the powerset (the set of all sub-
sets) of DI , and x = (x1, . . . , xk) is the input variable vector. We use small letters
(e.g., c) to represent a single valuation of the input vector (x = c ∈ DI) and cap-
ital letters (e.g., C) to show a set of valuations of the input vector (C ∈ P(DI)).
Symbolic states are labelled with overscored letters (e.g., s̄, S̄). The Greek letter
ϕ is used to represent output functions and it is a vector of expressions (i.e.,
ϕ ∈ Ē(I)). Given a vector of expressions ϕ and an input c ∈ DI , ϕ[c] denotes the
output vector with the valuation of each expression for input c: ϕ[c] = o ∈ DO.

Example. Figure 1a shows the behaviour of our example prepaid card as SRSM
S∗

PPC = (S̄, s̄0, δ̄s, λ̄s, I ∪ O,DI ∪ DO), where S̄ = {s̄0, s̄1, s̄2}, s̄0 is the initial
state, I = {a}, DI = Da = N , O = {b}, DO = Db = [0, 500], δ̄s, and λ̄s are
defined based on the given transitions. (Note that the machine remains in a
same state and the outputs will remain unchanged for any input not satisfying
the conditions in the labels.)

3.2 Concrete and Symbolic Paths

The behaviour of an SRSM is described in terms of the outputs produced for
given inputs, which is formally represented by a set of paths (i.e., sequences
of transitions) in the model. In an SRSM model, there are two types of paths,
namely concrete paths and symbolic paths, which are defined below.

Definition 2 (Concrete Path). In an SRSM S∗ = (S̄, s̄0, δ̄, λ̄, V,D), a con-
crete path cp is a finite sequence s̄0(c1, s̄1)(c2, s̄2) . . . (ck, s̄k) such that ∃C ∈
P(DI) • δ̄(s̄i, C) = s̄i+1 ∧ ci+1 ∈ C, for 1 ≤ i ≤ k. State(cp) = s̄0 . . . s̄k,
In(cp) = c1c2 . . . ck, and Out(cp) = o1o2 . . . ok where ∃C ∈ P(DI) • λ̄(s̄i, C) =
ϕi+1 ∧ ci+1 ∈ C ∧ oi+1 = ϕi+1[ci+1], for 0 ≤ i < k. The set of all con-
crete paths in S∗ is denoted by Path(S∗) and for a set of concrete paths CP ,
In(CP ) = {In(cp) | cp ∈ CP}.

Definition 3 (Symbolic Path). In an SRSM S∗ = (S̄, s̄0, δ̄, λ̄, V,D), a
symbolic path sp is a finite sequence s̄0(C1, s̄1)(C2, s̄2) . . . (Ck, s̄k) such that
δ̄(s̄i, Ci+1) = s̄i+1, for 1 ≤ i ≤ k. State(sp) = s̄0 . . . s̄k, In(sp) = C1C2 . . . Ck,
and Out(sp) = ϕ1ϕ2 . . . ϕk is the associated sequence of (output) expressions
where λ̄(s̄i, Ci+1) = ϕi+1, for 0 ≤ i < k. Also, a subpath of sp is a finite
sequence s̄0(C ′

1, s̄1)(C
′
2, s̄2) . . . (C ′

k, s̄k) such that C ′
i ⊆ Ci, for 1 ≤ i ≤ k. The set

of all symbolic paths in S∗ is denoted by SymPath(S∗) and for a set of symbolic
paths SP , In(SP ) is defined as {In(sp) | sp ∈ SP}.

Each transition represents a set of concrete transitions and thus, a symbolic
path sp specifies a set of concrete paths, called its interpretation.

Definition 4 (Symbolic Path Interpretation). In an SRSM S∗, the inter-
pretation of a symbolic path sp = s̄0(C1, s̄1) . . . (Cn, s̄n), denoted by �sp�, is the
set of concrete paths defined as {cp1, cp2, . . .} such that for each cpi (i = 1, 2, . . .)
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– State(cpi) = State(sp),
– In(cpi) = ci,1ci,2 . . . ci,n such that ci,j ∈ Cj, for j = 1, 2, . . . , n
– Out(cpi) = ϕ1[ci,1]ϕ2[ci,2] . . . ϕn[ci,n], where Out(sp) = ϕ1ϕ2 . . . ϕn

A symbolic path can be partitioned into a set of subpaths such that these
paths do not have any concrete path in common and altogether, they cover all
the concrete paths in the main symbolic path.

Definition 5 (Symbolic Path Partitioning). In an SRSM S∗, a partition-
ing of a symbolic path sp = s̄0(C1, s̄1) . . . (Cn, s̄n), denoted by Part(sp), is a set
of subpaths defined as Part(sp) = {sp1, sp2, . . . , spk} such that

1. ∀spi, spj ∈ Part(sp) • i 
= j =⇒ ∃0 < m ≤ n • Ci,m∩Cj,m = ∅ (In(spl) =
Cl,1 . . . Cl,n), and

2. �sp� =
⋃

p∈Part(sp)

�p�.

3.3 SRSM Models and Conformance

This section defines our notion of behavioural conformance between two SRSMs.

Definition 6 (Conformance). Assume that S∗ and T ∗ are two SRSMs defined
over the same I/O variables. Then, T ∗ conforms to S∗, denoted by T ∗ conf S∗, if
and only if the following two statements hold.

1. ∀seqin ∈ In(Path(S∗)) ∃cp ∈ Path(T ∗) • In(cp) = seqin, and
2. ∀cp ∈ Path(T ∗) (∃cp′ ∈ Path(S∗) • In(cp) = In(cp′)) =⇒ ∃cp′′ ∈

Path(S∗) • In(cp) = In(cp′′) ∧ Out(cp) = Out(cp′′).

The first statement indicates that all the input sequences defined in the
specification should be defined in the IUT. In particular, for non-deterministic
behaviour, it indicates that the IUT should at least have one concrete path with
the same inputs. Then, the second statement says that for those concrete paths
whose inputs are defined in the specification, the IUT should satisfy the specifi-
cation. The statement also implies that the IUT may have additional behaviour
(i.e., sequences of inputs which are not defined in the specification).

The above definition of conformance implies that we need to examine each
and every path in Path(S∗) with all paths in Path(T ∗) and vice versa in order
to detect a non-conformant IUT. However, this is not feasible in most practical
contexts (e.g., infinite input domain or a large number of concrete paths). We
address this problem by defining conformance in terms of symbolic paths. To
do so, we first define two relationships, namely compatibility and containment,
for comparing two symbolic paths with each other. These relations allow deter-
mining conformance by comparing symbolic paths rather than concrete paths.
Subsequently, we show how checking conformance at the symbolic level can be
reduced to checking conformance of a finite number of concrete paths in their
interpretation.
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Definition 7 (Symbolic Path Compatibility). A symbolic path sp is com-
patible with a symbolic path sp′, denoted by sp ≺ sp′, if and only if
In(sp) � In(sp′), where for In(sp) = C1C2 . . . Cn and In(sp′) = C ′

1C
′
2 . . . C ′

n,
In(sp) � In(sp′) holds if and only if Ci ⊆ C ′

i for 1 ≤ i ≤ n.

Definition 8. Two expressions ϕ and ϕ′ are equivalent over a set of inputs

X ∈ P(DI), denoted by ϕ
X≡ ϕ′, if and only if ∀x ∈ X •ϕ[x] = ϕ′[x]. If X = DI ,

then ϕ and ϕ′ are equivalent which is denoted by ϕ ≡ ϕ′.

Example. Consider symbolic paths sp1 ∈ SymPath(S∗
PPC) and sp′

1 ∈
SymPath(T ∗

PPC), defined as follows. sp′
1 is not compatible with sp1 as In(sp′

1) 
�
In(sp1) and therefore sp′

1 
≺ sp1.
sp1 = s̄0 ({a ≤ 300}, s̄1)({a ≤ 300}, s̄1); In(sp1) = ({a ≤ 300})({a ≤ 300})
sp′

1 = t̄0 ({a ≤ 200}, t̄0)({200 < a ∧ a − b < 300}, t̄1); In(sp′
1) = ({a ≤

200})({200 < a ∧ a − b < 300}) �

Definition 9 (Symbolic Path Containment). A symbolic path sp is con-
tained in a symbolic path sp′, denoted by sp � sp′, if and only if sp ≺ sp′ ∧
Out(sp) ≡ Out(sp′), where for Out(sp) = ϕ1ϕ2 . . . ϕn and Out(sp′) =

ϕ′
1ϕ

′
2 . . . ϕ′

n, Out(sp) ≡ Out(sp) holds if and only if ϕi
Ci≡ ϕ′

i for 1 ≤ i ≤ n,
where In(sp) = C1C2 . . . Cn.

Herein, the main issue is to find out whether two expressions are equivalent.
It is not always possible to evaluate and compare two expressions for all the
input values, for example when inputs are infinite. To overcome this issue, we
introduce and define n-uniformity between two functions (expressions), which is
defined w.r.t. the set of inputs on which they are both defined.

Definition 10 (n-Uniformity). Let f : Df → DO and g : Dg → DO be two
functions where Df ,Dg ∈ P(DI). Then, f and g are n-uniform over Df ∩ Dg,
denoted by f ≈n g, if and only if n is the smallest number for which the following
statement holds.

(∀0 ≤ i ≤ n ∃xi ∈ Df ∩ Dg • (∀0 ≤ j ≤ n • i 
= j =⇒ xi 
= xj) ∧ f(xi) =

g(xi)) =⇒ f
Df∩Dg≡ g.

The degree of uniformity between f and g is n, if f ≈n g.

Corollary 1. Let f : Df → DO and g : Dg → DO be two functions where
Df ,Dg ∈ P(DI) and f ≈n g. Then n < |Df ∩ Dg|.

Accordingly, if the degree of uniformity between output functions in two sym-
bolic paths is determined, it is possible to find out if those paths are compatible
or not and this could be done with a finite number of values. This is explained
by the following lemma.

Lemma 1. Let S∗ = (S̄, s̄0, δ̄s, λ̄s, V,D), T ∗ = (T̄ , t̄0, δ̄t, λ̄t, V,D), sp ∈
SymPath(S∗), sp′ ∈ SymPath(T ∗). Then, sp � sp′ if and only if
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1. sp ≺ sp′

2. ϕi and ϕ′
i, 1 ≤ i ≤ n, produce the same output for di+1 distinct input values,

where Out(sp) = ϕ1ϕ2 . . . ϕn and Out(sp′) = ϕ′
1ϕ

′
2 . . . ϕ′

n and ϕi ≈di
ϕ′
i.

Using the above lemma, for any pair of symbolic paths sp and sp′, we can
find the minimum number of distinct sequences of inputs required to determine
if sp � sp′ or not. This number, denoted by DistDeg(sp, sp′), can be calculated
regarding the n-uniformity between the output functions associated to these
paths.

Example. Consider symbolic paths sp ∈ SymPath(S∗
PPC) and sp′ ∈

SymPath(T ∗
PPC). In(sp′) � In(sp) and hence sp′ ≺ sp. The output functions

in these models (ϕ and ϕ′) are polynomials of degree one, therefore ϕ ≈1 ϕ′

and DistDeg(sp, sp′) = 2: we can determine if sp′ � sp with two sequences of
inputs.

sp = s̄0 ({a ≤ 300}, s̄1)({a ≤ 300}, s̄1); In(sp) = ({a ≤ 300})({a ≤
300}), Out(sp) = ϕ = (b = a)(b = a)

sp′ = t̄0 ({a ≤ 200}, t̄0)({a ≤ 200}, t̄0); In(sp′) = ({a ≤ 200})({a ≤
200}), Out(sp′) = ϕ′ = (b = a)(b = a) �

Although n-uniformity is an abstract concept, as the above example sug-
gests, in many practical cases, it can be determined by statically analysing the
model/program expressions.

4 Conformance Testing for SRSMs

This section formalises conformance testing in the context of this work and the
introduced formal model.

4.1 Test Case and Test Suite

A test case, defined below, specifies a sequence of inputs and their corresponding
expected set of outputs according to the specification.

Definition 11 (Test Case and Test Suite).

1. A test case tc is a tuple (inseq, outseq), where
– inseq is a finite sequence of inputs c1c2 . . . ck such that ci ∈ DI for 1 ≤

i ≤ k, and
– outseq is a set of finite sequences of outputs {O1, O2, . . . , On} where

Oi = oi,1 . . . oi,k such that oi,j ∈ DO, for 1 ≤ i ≤ n and 1 ≤ j ≤ k.
By definition, In(tc) = c1c2 . . . ck and Out(tc) = {O1, O2, . . . , On}.

2. A test suite is a finite set of test cases.

In the context of this work, test cases are executed to a system, one by one: the
inputs are given to the system and the outputs are observed. The comparison of
the observed behaviour with the expected behaviour determines the test verdict
(pass/fail).
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Definition 12 (Test Case Execution). Execution of a test case tc on an
SRSM S∗, denoted by Exec(tc, S∗), gives the sequence of outputs specified
by the concrete path cp ∈ Path(S∗) such that In(cp) = In(tc) and then,
Exec(tc, S∗) = Out(cp). If there is no such concrete path the test case is not
applicable on the model which is denoted by Exec(tc, S∗) = ⊥.

Definition 13 (Test Verdict).

1. An SRSM S∗ passes a test case tc, denoted by Pass(S∗, tc), if and only if it
is applicable on S∗ and Exec(tc, S∗) ∈ Out(tc).
If S∗ does not pass a test case tc, it fails, denoted by Fail(S∗, tc).

2. An SRSM S∗ passes a test suite TS, denoted by Pass(S∗, TS), if and only if
∀tc ∈ TS • Pass(S∗, tc).
If S∗ does not pass a test suite TS, it fails, denoted by Fail(S∗, TS).

4.2 Complete Test Suite

An ideal test suite should specify all possible behaviours of a system and its
specification. Such a test suite is called complete. However, this is not possible in
most practical cases. A common and typical approach to address this issue is to
restrict the power of a test suite to only detecting conformance or only detecting
non-conformance (i.e., soundness and exhaustiveness in [6]).

We define completeness in the context of our proposal in that we generate a
test suite specifically enriched for testing a particular implementation such that

1. there would be no uncovered symbolic behaviour in any of the models (cov-
erage),

2. none of the test cases fails, if the implementation conforms to the specification
(soundness), and

3. for any non-conformant behaviour in the implementation, there is a specific
test case which discovers that behaviour (relative exhaustiveness).

Accordingly, a complete test suite is the one that satisfies test coverage,
soundness, and relative exhaustiveness.

Definition 14 (Test Coverage). A test suite TS covers an SRSM S∗ if and
only if ∀sp ∈ SymPath(S∗) ∃tc ∈ TS • In(tc) ∈ In(�sp�).

Definition 15 (Soundness). A test suite TS is sound w.r.t. an SRSM S∗ if
and only if ∀T ∗ • T ∗ conf S∗ =⇒ ∀tc ∈ TS • Pass(T ∗, tc).

Definition 16 (Relative Exhaustiveness). A test suite TS is exhaustive
relative to SRSMs S∗, the reference model, and T ∗, the model to be tested, if
and only if the following statements hold.

1. ∀sp ∈ SymPath(S∗) ∀sp′ ∈ SymPath(T ∗) • In(�sp�) ∩ In(�sp′�) 
= ∅ =⇒
∃tc ∈ TS • In(tc) ∈ In(�sp�) ∩ In(�sp′�).

2. ∀sp ∈ SymPath(S∗) ∃Part(sp) • ∃p ∈Part(sp) • In(�p�) ∩ In(Path(T ∗)) =
∅ =⇒ ∃tc ∈ TS • In(tc) ∈ In(�p�) ∧ Fail(T ∗, tc).
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3. ∀sp ∈ SymPath(T ∗) ∃Part(sp) • ∃p ∈Part(sp) • In(�p�) ∩ In(Path(S∗)) =
∅ =⇒ ∃tc ∈ TS • In(tc) ∈ In(�p�).

In the next section, our proposed testing strategy to generate a complete test
suite is presented.

5 Gray-Box Conformance Testing

In this section, we define the transition composition of two SRSM models which
provides an integrated view of the transitions of both models in one model,
regardless of their outputs. We then use this model to generate the target test
suite.

5.1 Transition Composition

Intuitively, the transition composition is a (sub-)product of the models in that
the transition function is defined based on the intersection of transitions.

Definition 17 (Transition Composition). Let S∗ = (S̄, s̄0, δ̄s, λ̄s, V,D)
and T ∗ = (T̄ , t̄0, δ̄t, λ̄t, V,D) be two SRSMs with the same I/O variables.
M∗ = (M̄, m̄0, δ̄, ∅, V,D) is the transition composition of S∗ and T ∗, denoted
by M∗ = trComp(S∗, T ∗), where

– M̄ ⊆ (S̄ ∪ {errs}) × (T̄ ∪ {errt}),
– m̄0 = (s̄0, t̄0),
– ∀m̄ = (s̄, t̄) ∈ M̄, C ∈ P(DI) • s̄ ∈ S̄ ∧ t̄ ∈ T̄ =⇒

δ̄(m̄, C) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

(s̄′, t̄′) : s̄′ ∈ S̄ ∧ t̄′ ∈ T̄ ∧ ∃C ′, C ′′ ∈ P(DI) • δ̄s(s̄, C ′) = s̄′

∧ δ̄t(t̄, C ′′) = t̄′ ∧ C ′ ∩ C ′′ 
= ∅ ∧ C = C ′ ∩ C ′′

(s̄′, errt) : s̄′ ∈ S̄ ∧ ∃C ′ ∈ P(DI) • δ̄s(s̄, C ′) = s̄′

∧(∃Ce ⊆ C ′ • ∀t̄′ ∈ T̄ , C ′′ ∈ P(DI) •
δ̄t(t̄, C ′′) = t̄′ ∧ Ce ∩ C ′′ = ∅) ∧ C = Ce

(errs, t̄′) : t̄′ ∈ T̄ ∧ ∃C ′ ∈ P(DI) • δ̄t(t̄, C ′) = t̄′

∧(∃Ce ⊆ C ′ • ∀s̄′ ∈ S̄, C ′′ ∈ P(DI) •
δ̄s(s̄, C ′′) = s̄′ ∧ Ce ∩ C ′′ = ∅) ∧ C = Ce

– ∀m̄ = (s̄, errt) ∈ M̄, C ∈ P(DI) • s̄ ∈ S̄ =⇒
δ̄(m̄, C) = (s̄′, errt) if s̄′ ∈ S̄ ∧ ∃C ′ ∈ P(DI) • δ̄s(s̄, C ′) = s̄′ ∧ C = C ′, and

– ∀m̄ = (errs, t̄) ∈ M̄, C ∈ P(DI) • t̄ ∈ T̄ =⇒
δ̄(m̄, C) = (errs, t̄′) if t̄′ ∈ T̄ ∧ ∃C ′ ∈ P(DI) • δ̄t(t̄, C ′) = t̄′ ∧ C = C ′.

In a transition composition, the outgoing transitions on each state are defined
based on the intersection of the valid input domains of the transitions of the
components. The specific symbols errs and errt identify situations in which
there is a set of inputs defined in one model but not in the other. Note that
we keep tracking states involving errs and errt as we do not want to lose any
possible transition in any of the models.
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Corollary 2. Let S∗ = (S̄, s̄0, δ̄s, λ̄s, V,D), T ∗ = (T̄ , t̄0, δ̄t, λ̄t, V,D), M∗ =
(M̄, m̄0, δ̄, ∅, V,D), and M∗ = crComp(S∗, T ∗). Then for all m̄, m̄′ ∈ M̄ and
C ∈ P(DI) such that δ̄(m̄, C) = m̄′ the following two statements hold

– ∃s̄, s̄′ ∈ S̄, C ′ ∈ P(DI) • m̄ ∈ {s̄}× (T̄ ∪{errt})∧ m̄′ ∈ {s̄′}× (T̄ ∪{errt})∧
δ̄s(s̄, C ′) = s̄′ =⇒ C ⊆ C ′

– ∃t̄, t̄′ ∈ T̄ , C ′ ∈ P(DI) • m̄ ∈ (S̄ ∪ {errs}) × {t̄} ∧ m̄′ ∈ (S̄ ∪ {errs}) × {t̄′} ∧
δ̄t(t̄, C ′) = t̄′ =⇒ C ⊆ C ′

Example. Figure 2 shows a part of the transition composition of the models in
Fig. 1a and b.

The transition composition of two SRSM models has two main properties
which allow generating a complete test suite. First, according to Definition 18,
it covers both of its underlying models (Theorem 1). Second, all the symbolic
paths in the transition composition is at least compatible with a symbolic path
in one of the underlying models indicating that the transition composition does
not have any extra behaviour (Theorem 2).

Definition 18 (Model Coverage). An SRSM S∗ covers an SRSM T ∗ if and
only if ∀sp ∈ SymPath(T ∗) ∃sp′ ∈ SymPath(S∗) • sp′ ≺ sp.

Theorem 1. Let S∗ and T ∗ be two SRSMs and M∗ = trComp(S∗, T ∗). Then
M∗ covers S∗ and T ∗.

Theorem 2. Let S∗ and T ∗ be two SRSMs and M∗ = trComp(S∗, T ∗). Then

– ∀sp ∈ SymPath(M∗) • (∀m̄ ∈ State(sp) • m̄ ∈ S̄ × (T̄ ∪ {errt})) =⇒
∃sp′ ∈ SymPath(S∗) • sp ≺ sp′.

– ∀sp ∈ SymPath(M∗) • (∀m̄ ∈ State(sp) • m̄ ∈ (S̄ ∪ {errs}) × T̄ ) =⇒
∃sp′ ∈ SymPath(T ∗) • sp ≺ sp′.

Fig. 2. An excerpt of the transition composition of S∗
PPC and T ∗

PPC .
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5.2 Test Suite Generation

Having defined the transition composition of two SRSMs, we next generate a
complete test suite. First, we define the test cases for each symbolic path in the
transition composition, which are then accumulated in the final and complete
test suite.

Definition 19. Let S∗ be the specification model, T ∗ be the implementation
model, and M∗ = trComp(S∗, T ∗) be the transition composition. For each
sp ∈ SymPath(M∗), TC(sp) is a set of test cases to examine the compatibility
between the two symbolic paths in T ∗ and S∗ in which sp is contained, and
defined as follows.

1. If there exists sp′ ∈ SymPath(S∗) and sp′′ ∈ SymPath(T ∗) such that
sp ≺ sp′ and sp ≺ sp′′, then TC(sp) is a set of test cases {tc1, . . . , tck},
where k = DistDeg(sp′, sp′′), such that In(tci) ⊆ In(�sp�) and Out(tci) is
determined the output(s) produced by S∗ for In(tci), 1 ≤ i ≤ k.

2. If there exists sp′ ∈ SymPath(S∗) such that sp ≺ sp′ and there is no
sp′′ ∈ SymPath(T ∗) such that sp ≺ sp′′, then TC(sp) contains only one
test case tc such that In(tc) ⊆ In(�sp�) and Out(tc) is the output(s) produced
by S∗ for In(tc).

3. If there exists sp′ ∈ SymPath(T ∗) such that sp ≺ sp′ and there is no
sp′′ ∈ SymPath(S∗) such that sp ≺ sp′′, then TC(sp) contains only one test
case tc such that In(tc) ⊆ In(�sp�) and Out(tc) = ⊥ (i.e., undefined). Note
that such a test case observes the behaviours not specified in the specification.

Definition 20 (Composition-based Test Suite). Given the specification
model S∗, the implementation model T ∗, and their transition composition M∗, a
composition-based test suite, denoted by CompTS(S∗, T ∗), is defined as follows.

CompTS(S∗, T ∗) =
⋃

sp∈SymPath(M∗)

TC(sp)

The following theorem demonstrates that a composition-based test suite sat-
isfies test coverage, soundness and exhaustiveness properties.

Theorem 3. Let S∗ be the specification model, T ∗ be the implementation model,
and M∗ = trComp(S∗, T ∗). Then, CompTS(S∗, T ∗) is a sound and exhaustive
test suite and covers S∗ and T ∗.

6 Experimental Results

In order to check the effectiveness of our approach, we use our method in the con-
text of a well-known example from the European Train Control System (ETCS),
namely the Ceiling Speed Monitor (CSM) module which monitors the speed of a
train and triggers the required actions if the maximal speed is exceeded. A com-
plete description of the system can be found in [17]. We applied our method in
testing six different (faulty) implementations of the CSM module and compared
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the outcomes with random testing and the equivalence class testing introduced
in [16]. Implementations are mutants of a correct implementation of the CSM
module. In the first implementation (IUT1) the faults are related to boundary
values (e.g., < replaced by ≤). In the next four implementations (IUT2, IUT3,
IUT4, and IUT5), the faults are in the guard condition, but they are not related
to boundary values. Moreover, in IUT4 and IUT5, the difference between the sets
of inputs defined by the correct condition and the wrong condition is too narrow
(i.e., for limited number of input values the difference could be discovered). The
last implementation (IUT6) contains a fault in an output function associated to
one of the transitions.

In the experiment, we mainly investigated the question whether our method
observed the faults or not. We also considered the number of test cases gener-
ated by each method. Additionally, in order to have an approximation of the
overhead associated with our method, we considered the time required to gener-
ate the transition composition. This time is computed based on the number of
basic computation steps in generating the composition (assuming that all steps
consume a constant amount of time, this time is proportional to the number of
steps).

In random testing, test cases are created by generating random values in the
appropriate data ranges. For equivalence class testing, we considered a refine-
ment of the initial coarsest input equivalence class partitioning (IECP) that
reflects all case distinctions visible in guard conditions of the CSM model, which
implies the fault model for this testing method. Note that the number of test
cases generated by IECP is the same for all the six cases. We used the test data
provided in [18], for the number of generated test cases by IECP. For random
testing, in each case, a random test suite of the same length as our method’s,
was selected and used for comparison.

Table 1 summarises the results of this experiment. Basically, the results show
that our method performs better than random testing with the same number of
test cases. They also show that in cases the behaviour of the IUT lies outside
the fault domain of the IECP testing, in particular when the input equivalence
classes are narrow, our approach performs better than IECP. This is because,
in such cases, the desired input values have very low probabilities to be chosen.
Therefore, in both random testing and IECP, an increase in the number of test
cases has limited effect on their testing strength. The IECP testing could not kill
IUT4 and IUT5 which are outside its fault domain and have narrow equivalence
classes. IUT2 and IUT3 are both out of the fault domain and the set of inputs
to discover their faults is not narrow (i.e., a proper input values could be chosen
by random input selection). However, only IUT3 was killed by IECP. Finally,
the time required to generate the transition composition and the number of test
cases could be an indication of the efficiency of our method.

Nevertheless, this experiment provides a preliminary result. In particular,
having treated only one type of case study is a threat to the validity of our
results. To remedy this, we plan to carry out more testing experiments consid-
ering different kinds of cases. To address the efficiency and scalability question



Gray-Box Conformance Testing for Symbolic Reactive State Machines 241

Table 1. Experimental results

IUT Random Testing IECP Our Method

Killed No. TCs Killed No. TCs Killed No. TCs No. steps

1 ✕ 24 ✓ 186 ✓ 24 18

2 ✕ 30 ✕ 186 ✓ 30 19

3 ✕ 25 ✓ 186 ✓ 25 19

4 ✕ 37 ✕ 186 ✓ 37 22

5 ✕ 24 ✕ 186 ✓ 24 21

6 ✓ 21 ✓ 186 ✓ 21 16

more thoroughly, in addition to more case studies, we need to collect additional
information from other methods to have a valid comparison between methods,
such as the time required to transform the original test model into the desired
formalism.

7 Conclusions and Future Work

In this paper, we presented a gray-box model-based testing strategy in that test
suites are generated considering both the specification and an abstraction of the
IUT. Specifications and implementations abstraction are modelled as Symbolic
Reactive State Machines (SRSMs), which are finite state machines with sym-
bolic input and output. Given the SRSMs of a specification and an IUT, test
cases are generated based on the transition composition of these models. We
considered models with infinite input domain and then introduced the notion of
n-uniformity which allows us confining the number of test cases for each symbolic
path. We studied and proved coverage, soundness, and relative exhaustiveness
of the proposed approach.

As for future work, we plan to roll out more testing experiments to inves-
tigate the applicability of the proposed strategy (in particular, the notion of
n-uniformity) in different situations and discover its limitations. Moreover, we
plan to study models with infinite set of symbolic paths and, then, how to select
a finite subset of paths sufficient to generate a complete test suite, according
to the regularity hypothesis [3]. Finally, we would like to work on efficient algo-
rithms for generating the transition composition (e.g., adapting bi-simulation
algorithms) and also for determining n-uniformity.
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Abstract. An established approach to software verification is SAT-
based bounded model checking where a state space model is encoded
as a Boolean formula and the exploration is performed via SAT solv-
ing. Most existing approaches in SAT-based model checking rely on
general-purpose solvers that do not exploit the structural features of the
encoding. Aiming at a significantly better runtime performance in such
settings, we show in this paper that SAT algorithms can be specifically
tailored w.r.t. the structure of the Boolean encoding of the model check-
ing problem to be solved. We define a state space encoding of concurrent
software systems that preserves control flow information. This allows
to modify the solver such that the number of SAT decision levels can
be significantly reduced by assigning a set of atoms at each level. Such
set assignment always characterises a location in the control flow of the
encoded system. Moreover, we introduce heuristics that guide the SAT
search into directions where a violation of the property of interest may be
most likely detected. The heuristic approach enables to quickly discover
errors while keeping the actually explored part of the state space small.

1 Introduction: Motivation and Related Work

In SAT-based bounded model checking (BMC) [1] the state space of a system
to be verified is encoded as a propositional logic formula, and the state space
exploration happens via satisfiability (SAT) solving. Thereby, each satisfying
assignment of the formula characterises an error path, whereas an unsatisfiability
result implies the correctness of the system under consideration. The advantage
of BMC in comparison to explicit-state approaches is that the encoding yields
a more compact symbolic state space representation, and that the capability of
efficient solvers can be exploited to solve the encoded verification tasks. In BMC
most existing approaches rely on general-purpose solvers that do not exploit
the specific structure of the propositional logic encoding or any other available
knowledge about the underlying verification task. In this paper we show that
SAT algorithms can be specifically tailored towards solving encodings of ver-
ification tasks, which enables a significantly better solving performance. Here
we focus on the verification of reachability properties (e.g. deadlocks, mutual
exclusion violation) of concurrent software systems. We define a propositional
logic state space encoding that can be directly constructed for a given input

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
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system. The encoding preserves control flow information that can be utilised
to accelerate the SAT solving procedure. SAT solving algorithms are typically
based on a systematic search for a satisfying assignment of the input formula by
incrementally selecting an unassigned atom, assigning it by either 1 or 0, and
propagating the resulting constraints to all clauses of the formula. In case the
solver’s decisions lead to an unsatisfied sub formula, the solver tracks back to
a previous decision level and continues its search from that point in a different
branch of the search tree until a satisfying assignment is found or until the search
tree is exhaustively explored [2]. We introduce an enhanced SAT algorithm that
exploits the structure of our encodings in order to reduce the computational
effort for solving the encoded verification task. In our approach the number
of decision levels can be significantly narrowed down by instantiating a set of
atoms at each level. Such a set instantiation always characterises a location in
the control flow of the encoded system. Based on a simple query on whether such
location is an admissible successor location of the current location, the number
of branches that actually have to be explored can considerably reduced. More-
over, we show that the additional employment of heuristic guidance allows for a
further enhancement of the solving performance. For this, we adapt the concept
of directed model checking [5] which had been introduced for the exploration of
explicit-state models, but was not yet considered for SAT-based model checking.
We demonstrate that heuristics based on the property to be verified allow to
guide the SAT search into directions where a property violation may be most
likely detected. We prototypically implemented our encoding and our enhanced
SAT approach with set assignments and heuristic guidance on top of the solver
Sat4J [6]. Preliminary experiments show promising performance results.

Our technique is related to a number of existing approaches. In [8] we find
an overview of principles of using SAT solvers as model checkers, including atom
ordering strategies. It is assumed that the encoding is constructed based on an
already given state space model – not based directly on the system to be verified.
In [9] an algorithm is given to predict a beneficial ordering of the atoms before
the SAT search descends into the tree. Performance improvement is achieved by
knowing the unsatisfiable core of the (b − 1)-bounded encoding which the solver
explored in a previous iteration of incremental BMC [9]. A survey of directed
model checking can be found in [5]. The focus in [5] is on the algorithmic tech-
niques directed model checking approaches, including a classification of such
techniques into categories like guided search, explicit-state directed model check-
ing, and directed model checking based on binary decision diagrams. However, no
approach for a directed search in SAT-based BMC is proposed. In [4] a heuristic-
guided tool based on the model checker Spin is described. The used heuristics
are tuned w.r.t specific characteristics of Spin’s input language Promela. Thus,
the directed state space exploration algorithm assumes an explicit state space
model rather than a symbolic encoding. SAT-based model checking of concurrent
systems is also the topic of [10] which is based on the insight that concurrent
executions cannot drive arbitrary values through the system, and thus it is not
necessary to encode how the computation operates on all values, but rather just
on the values that actually arise in such executions. On the basis of an event
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graph representation of the systems behaviour a SAT problem is constructed and
solved in an iterative process of modelling, solving, and re-modelling. The idea
of this approach is to use the solver to encode the execution, not the system.
Conflict-directed clause learning (CDCL) is the topic of [11] which deals with
the question of how to design a predictive measure of learnt clauses pertinence.
The authors were able to show the relationship between the overall decreasing
of decision levels and the performance of the solver. Thereby, a good learning
schema should add explicit links between independent blocks of propagated lit-
erals, which should be beneficial for reducing the number of decision levels in
the remaining computation. In our work we reduce the number of decision lev-
els based on semantic dependencies of the literals (control flow information). In
[13] a heuristic improvement of the Java PathFinder is described: To find errors
faster, it is important to explore parts of the state space whose possibility of
containing errors is higher than others, whereby heuristic techniques prioritise
potential solution candidates according to particular efficiency considerations.
The authors propose a depth-first search which can be applied to verification of
LTL properties of Java bytecode. With regard to heuristic model checking, the
authors of [12] evaluated the resulting search behaviour on a number of models
from the BEEM database within the HSF-SPIN explicit-state model checker.
The technique of [12] applies a distance function to estimate the distance from
a given state to an error state, and explores states with the shortest estimated
distance first. Guided by the distance function, error paths can often be found
after exploring only a small part of the overall state space.

2 Concurrent Software Systems

We start with an introduction to the systems we consider. A concurrent soft-
ware system Sys consists of a fixed number of possibly non-uniform processes
P1 ‖ . . . ‖ Pn, in parallel composition. Inter-process communication is assumed
to happen via global variables in shared memory. In V ar = V ars ∪ ⋃n

i=1 V ari

the set V ars contains the shared variables whereas V ar1 . . . V arn are sets of
local variables associated exclusively with the processes P1 . . . Pn. Moreover, we
assume that Boolean predicate abstraction [3] has been applied, which results in
a system where all variables are Boolean variables, or more specifically, replaced
by Boolean predicates over the original variables. Hence, in our approach vari-
ables and predicates are synonymous. Predicate abstraction is a well-established
technique in software model checking to reduce the state space complexity of
a verification task. In our approach we use the tool 3Spot [14] to transfer a
concrete input system into an abstract system defined over predicates. 3Spot
formally represents (abstracted) processes Pi as control flow graphs (CFGs)
Gi = (Loci, δi, τi) where Loci = {0, . . . , |Loci|} is a finite set of control locations
given as binary numbers, δi ⊆ Loci × Loci is a location transition relation, and
τi : Loci ×Loci → Op is a function labelling location transitions with operations
from a set Op. The set of operations Op on the variables form V ar = {v1, . . . , vm}
consists of all statements of the form assume(e) : v1 :=e1, . . . , vm :=em in which
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e, e1, . . . , em are Boolean expressions over V ar. Thus every operation consists of
a guard and a list of assignments. For convenience we sometimes just write e
instead of assume(e). Moreover, we omit the guard if it is just true.

A concurrent software system given by n single control flow graphs
G1, . . . , Gn can be modelled by one compound control flow graph G = (Loc, δ, τ)
where Loc = Loc1 × · · · × Locn, δ ⊆ Loc × Loc and τ : Loc × Loc → Op. G is
the product graph of all single CFGs. We assume that initially all processes of
a system at location 0. Moreover, we assume that a deterministic initialisation
of the variables is given by an assertion over V ar. Now, a computation of a con-
current system corresponds to a sequence where in each step one process is non-
deterministically selected and the operation at its current location is attempted
to be executed. In case the execution is not blocked by the guard, the variables
are updated according to the assignment part, and the process advances to the
consequent control location. Note that a CFG is a formal representation of a sys-
tem but not a state space model. The state space over V ar corresponds to the
set SVar of all type-correct valuations of the variables. Given a state s ∈ SVar

and an expression e over V ar, then s(e) denotes the valuation of e in s. The
overall state space S of a concurrent system corresponds to the set of states over
V ar combined with the possible locations, i.e.: S = Loc×SVar . Thus each state
in S is a tuple 〈l, s〉 with l = (l1, . . . , ln) ∈ Loc and s ∈ SVar . An example for
a system where each process is represented by a control flow graph is shown in
Fig. 1. We represent the truth value t by 1, and f by 0. In the example we have
two uniform processes operating on the shared Boolean variables p and q. The
initial state of the system is 〈(00, 00), p = 1, q = 1〉. The system implements
a solution to the dining philosophers problem where each philosopher process
continuously attempts to acquire the two exclusive resources p and q. Once a
process has acquired both resources it releases them in a single step and attempts
to acquire them again. The order in which the resources are requested is non-
deterministically determined, which makes as deadlock possible: G1 has acquired
p and is waiting for q while G2 has acquired q and is waiting for p.

CFGs allow us to model the control flow of a concurrent system. Checking
properties of a system requires to explore a corresponding state space model.
Typically, Kripke structures are used as state space models. A Kripke structure
(KS) over a set of atomic predicates AP is a tuple M = (S, s0, R, L) where

– S is a finite set of states and s0 ∈ S is the initial state,
– R ⊆ S × S is a state transition relation with ∀s ∈ S : ∃s′ ∈ S : R(s, s′),
– L : S ×AP → {1,0} is a labelling function that associates a truth value with

each predicate in each state.

A path π of a KS M is a sequence of states s0s1s2 . . . with R(si, si+1). πi denotes
the i-th state of π, whereas πi denotes the i-th suffix πiπi+1 . . . of π. By ΠM

we denote the set of all paths of M starting in the initial state. All paths of a
KS have to be explored in order to determine whether certain error states are
reachable. Let p ∈ AP be a predicate that characterises error states. Then an
error state is reachable in M if and only if

∨
π∈ΠM

∨
i∈N

L(πi, p) holds.
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Fig. 1. Concurrent system over the Boolean variables V ar = {p, q} given by the single
control flow graphs G1 and G2, whereby initially p = 1 and q = 1.

Verifying such conditions for a given KS is known as model checking. As defined
in [14] a concurrent system Sys = ‖n

i=1 Pi given by a set of CFGs G1 to Gn can be
translated into a KS M over AP = V ar ∪ {(li = j) | i ∈ [1..n], j ∈ Loci} where
the predicate (li = j) denotes that the process Pi is currently at control location
j. The number of states of a KS corresponding to a given system is exponential in
the number of its locations and variables. For instance, a KS corresponding to our
simple example system has already 64 states. State space explosion is the major
challenge in model checking. Beside the aforementioned predicate abstraction,
a common approach to cope with state space explosion is to use a symbolic
and therefore more compact representation of the KS. In SAT-based bounded
model checking [1] all possible path prefixes up to a bound b ∈ N are encoded
in a propositional logic formula Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b. The formula is then
conjuncted with an encoding Errorb of the error property to be checked. In case
the overall formula is satisfiable, the satisfying assignment characterises an error
path of length b in the state space of the encoded system. Next, we define such
a propositional logic encoding for concurrent systems given by abstract control
flow graphs and for errors that can be expressed as reachability properties.

3 Propositional Logic Encoding

We now describe how a propositional logic encoding Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b ∧
Errorb can be directly constructed for a concurrent system given by control flow
graphs Gi = (Loci, δi, τi), 1 ≤ i ≤ n and for a given error property with b ∈ IN
being the bound of the encoding. This saves us the expensive construction of an
explicit state space model. The encoding is defined over Boolean atoms. Since a
state of a system is a tuple 〈l, s〉 where l ∈ Loc is a compound location and s is
a valuation of all Boolean variables in V ar, we encode l and s separately.

A composite location (l1, . . . , ln) ∈ Loc is a list of single locations li ∈ Loci

where Loci = {0, . . . , |Loci|} and i is the identifier of the associated process Pi.
Each li is a binary number from {[0]2, . . . , [|Loci|]2}. We assume that all these
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numbers have di digits where di is the number required to binary represent the
max. value |Loci|. Then, for each Pi, we introduce di Boolean atoms, each of
which refers to a distinct digit along the binary representation of its locations:
LocAtoms := {li[j] | i ∈ [1..n], j ∈ [1..di]}. Then li can be encoded as:

enc(li) :=
di∧

j=1

((li[j] ∧ li(j)) ∨ (¬li[j] ∧ ¬li(j)))

where li(j) is a function evaluating to 1 if the j-th digit of li is 1, and to 0
otherwise. A composite location l = (l1, . . . , ln) can subsequently be encoded as:

enc(l) :=
n∧

i=1

enc(li)

Because the function li(j) evaluates to 1 or 0, a location encoding enc(li) can
be always simplified to a conjunction of literals over LocAtoms. In our example
the initial location (00, 00) will be encoded to ¬l1[1] ∧ ¬l1[2] ∧ ¬l2[1] ∧ ¬l2[2].

Next we encode the variable (resp. predicate) part of states. For s ∈ SVar ,
where V ar = {v1, . . . , vm} is the set of Boolean variables over which the con-
current system is defined, we introduce V arAtoms := {v[j] | vj ∈ V ar}.
Hence, each variable vi is encoded by an atom v[i], which allows a straight-
forward encoding of arbitrary logical expressions e over V ar. For instance,
enc(v1∧¬v2) := v[1]∧¬v[2]. The initial state 〈(00, 00), p = 1, q = 1〉 of our exam-
ple system can now be encoded as Init = ¬l1[1] ∧ ¬l1[2] ∧ ¬l2[1] ∧ ¬l2[2] ∧ p ∧ q.
Since in our simple example the variables p and q are not subscripted, we also
omit the index values for the identically named atoms p and q.

For encoding the transition relation of a concurrent system we construct a
formula Init0∧T0,1∧. . .∧Tb−1,b that exactly characterises path prefixes of length
b ∈ IN in the systems state space. Because we consider states as parts of such
prefixes, we have to extend the encoding by index values k ∈ {0, . . . , b} where
k denotes the position along a path prefix. For this we introduce the notion
of indexed encodings. Let F be a propositional logic formula over Atoms =
LocAtoms ∪ PredAtoms and the constants 1 and 0. Then Fk abbreviates the
substitution F [a/ak | a ∈ Atoms]. Our overall encoding will be thus defined
over Atoms[0,b] = {ak | a ∈ Atoms, 0 ≤ k ≤ b}. Since all execution paths start
in the system’s initial state, we extend the initial state encoding by the index
0: Init0 = ¬l1[1]0 ∧ ¬l1[2]0 ∧ ¬l2[1]0 ∧ ¬l2[2]0 ∧ p0 ∧ q0. The encoding of all
possible state space transitions from position k to k + 1 is defined as follows.
Let Sys = ‖n

i=1 Pi over V ar be a concurrent system given by the single control
flow graphs Gi = (Loci, δi, τi) with 1 ≤ i ≤ n. Then all possible transitions for
position k to k + 1 can be encoded in propositional logic as follows:

Tk,k+1 :=∨n
i=1

∨
(li,l′i)∈δi

(enc(li)k ∧ enc(l′i)k+1 ∧∧i′ �=i idle(i′)k,k+1 ∧ enc(τi(li, l
′
i))k,k+1)

where idle(i′)k,k+1 :=
∧di′

j=1 (li′ [j]k ↔ li′ [j]k+1)
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and enc(τi(li, l′i))k,k+1 := enc(e)k ∧ ∧m
j=1

(
(enc(ej)k ↔ enc(vj)k+1

)

assuming that τi(li, l′i) = assume(e) : v1 :=e1, . . . , vm :=em.

Thus, we iterate over the system’s processes Pi and over the processes’ control
flow transitions δi(li, l′i). Now we construct the k-indexed encoding of a source
location li and conjunct it with the (k + 1)-indexed encoding of a destination
location l′i. This gets conjuncted with the sub formula

∧
i′ �=i idle(i′)k,k+1 which

encodes that all processes different to Pi are idle, i.e. do not change their control
flow location, while Pi proceeds. The last part of the transition encoding con-
cerns the operation associated with δi(li, l′i): The sub formula enc(τi(li, l′i))k,k+1

evaluates to 1 for assignments to the atoms in Atoms[k,k+1] that characterise
pairs of states s and s′ over V ar where the guard of the operation τi(li, l′i) is 1
in s and the execution of the operation in s results in the state s′. Otherwise
enc(τi(li, l′i))k,k+1 evaluates to 0. Our transition encoding requires that an oper-
ation τi(li, l′i) assigns to all Boolean variables. Thus, if a v ∈ V ar is not modified
by the operation we implicitly assume that v := v is part of the assignment
list. The encoding of the control flow transition δ1(00, 01) of our example system
with τ1(00, 01) = (assume(p) : p := 0) yields the following:

enc(00)k = ¬l1[1]k ∧ ¬l1[2]k
∧ ∧
enc(01)k+1 = l1[1]k+1 ∧ l1[2]k+1

∧ ∧
idle(2)k,k+1 = (l2[1]k ↔ l2[1]k+1) ∧ (l2[2]k ↔ l2[2]k+1)
∧ ∧
enc(τ1(0, 1))k,k+1 = pk ∧ (

(0 ↔ pk+1) ∧ (qk ↔ qk+1)
)

The encoding of the operation only evaluates to 1 for assignments to the atoms
in Atoms[k,k+1] that characterise the control flow transition δ1(00, 01) with idling
G2, the variable state s at position k with s(p) = 1 and a state s′ at k + 1 with
s′(p) = 0, and moreover, s(q) = s′(q). All other assignments yield false indicating
that corresponding pairs of states do not characterise valid transitions.

The previous definitions now allow us to construct a formula Init0 ∧ T0,1 ∧
. . . ∧ Tb−1,b that characterises all possible path prefixes of length b ∈ IN in the
state space of the encoded system. Each assignment α : Atoms[0,b] → {1,0}
that satisfies the formula characterises such a prefix. Next, we introduce the
encoding of the property to be checked for the concurrent system. In general,
want to verify whether a state is reachable that satisfies a particular predicate.
Such a predicate can be an arbitrary Boolean expression over Loc and V ar. For
our example system, a deadlock circular-wait situation can be described by

((l1 = 01) ∧ ¬q ∧ (l2 = 10) ∧ ¬p) ∨ ((l1 = 10) ∧ ¬p ∧ (l2 = 01) ∧ ¬q)

which can be straightforwardly encoded into a propositional logic formula

Error := (¬l1[1] ∧ l1[2] ∧ ¬q ∧ l2[1] ∧ ¬l2[2] ∧ ¬p)
∨ (l1[1] ∧ ¬l1[2] ∧ ¬p ∧ ¬l2[1] ∧ l2[2] ∧ ¬q)
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over Boolean atoms. Finally we index such an Error formula with a search-
bound b ∈ IN and conjunct it with our system’s state space encoding, yielding
F[0,b] := Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b ∧ Errorb, such that each assignment sat-
isfying this formula witnesses a path prefix of length b ending in an error state
in the state space of the encoded system. Hence the propositional logic encod-
ing allows us to model check a system of interest via SAT solving, without the
intermediate construction of an explicit Kripke structure. SAT-based BMC is
typically performed incrementally by increasing the bound b until an error state
or a threshold is reached. State-of-the-art SAT solvers e.g. [6] can be used for the
satisfiability checks. In the remainder of this paper we introduce our enhanced
SAT solving concepts that are tailored towards solving our propositional logic
encodings of verification tasks for concurrent systems. For the sake of illustra-
tion, we present our approach based on a simple SAT solving algorithm that
implements our enhanced concepts but not all features of modern solvers like
conflict-driven clause learning [2], conflict clause minimisation [16] etc. Neverthe-
less, our concepts can be straightforwardly integrated into any state-of-the-art
solver and combined with the advancements used in such solvers. For instance,
our tool that we later present is implemented on top of the solver Sat4J [6].

4 Enhanced SAT Solving for Encoded Verification Tasks

Modern SAT solvers are based on a systematic search for a satisfying assign-
ment of the input formula in conjunctive normal form (CNF) by incrementally
selecting unassigned atoms, assigning them by either 1 or 0, and propagating
the resulting constraints to the clauses of the formula. In case the solver deci-
sions lead to an unsatisfied clause, the solver tracks back by revising a former
assignment decision and continuing the search from this point until a satisfying
assignment is found or the search space is entirely explored [2]. While general-
purpose solvers do not make any assumption about the structure of the input
formula, our enhanced SAT solving approach exploits the structure of our encod-
ing F[0,b] and control flow information about the considered concurrent system.
We will see that this enables us to reduce the number of recursive calls of the SAT
algorithm. We reduce both the number of decision levels as well as the number of
branches to be explored which enables to significantly improve the efficiency of
SAT-based BMC in our chosen area of application. First, the structure of F[0,b]

allows us to transform the conjuncted parts of the formula separately into CNF:

cnf(Init0) ∧ cnf(T0,1) ∧ ... ∧ cnf(Tb−1,b) ∧ cnf(Errorb)

which can be done via the Tseytin transformation [15]. From now on we just
write F[0,b] when we refer to the CNF-equivalent of the formula. The atoms
of the encoding F[0,b] can be divided into disjoint sets: Atoms(F[0,b]) =

⋃b
k=0

LocAtomsk∪V arAtomsk where LocAtomsk resp. V arAtomsk refers to the set of
location resp. variable atoms with position index k. Our encoding has the useful
property that the application of an assignment α : LocAtomsk → {0,1} results
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in a formula α(F[0,b]) where all a ∈ V arAtomsk (i.e. all k-indexed variable atoms)
occur in unit clauses. Hence, the subsequent application of unit propagation [17]
will immediately assign truth values to all atoms in V arAtomsk. This allows us
to solely consider location atoms as branching atoms, since all variable atoms
will be automatically assigned under unit propagation.1

General-purpose SAT algorithms choose a single atom a as the branching
atom at each decision level and then branch for (a,0) (a is assigned by 0)
and (a,1) (a is assigned by 1). In our enhanced algorithm we choose the set
LocAtomsk+1 at each decision level k. (The use of unit propagation [17] will
ensure that all atoms with index k′ ≤ k will be already assigned at level k.) Now
instead of branching for each possible assignment to the atoms in LocAtomsk+1,
the structure of our encoding together with knowledge about the control flow
allows us to reduce the number of assignments (i.e. branches) to admissible ones.
Note that an assignment α : LocAtomsk+1 → {0,1} characterises a location
l′ ∈ Loc in the overall control flow graph G = (Loc, δ, τ) representing the system
under consideration. An assignment α is only admissible if it characterises a
location l′ such that δ(l, l′) holds, where l is the location characterised by the
assignment decision at the previous decision level k. Hence, the consideration of
the control flow of the encoded system allows us to narrow down the number of
branches at each level. Moreover, the number of levels gets reduced to b – the
bound of the encoding. Our new algorithm BMCSAT that implements such a
decision level reduction and branch reduction is depicted below.

Beside the formula F and a decision level k ∈ N the recursive algorithm
takes a location l ∈ Loc of the encoded system as input. and eventually returns
an assignment α : Atoms(F ) → {0,1} satisfying F or an unsatisfiability result.
The assignment α is constructed incrementally. Hence, until the algorithm has
terminated α may be a partial assignment for F , i.e. its domain may not nec-
essarily contain all atoms of the input formula. The incremental construction
of the overall assignment happens via the concatenation of partial assignments
with disjoint domains: α◦α′. We write α(F ) to refer to the formula F under the
assignment α. For instance, the partial assignment α = {(a1,1)} for the formula
¬a1 ∨ a2 yields α(¬a1 ∨ a2) = 0 ∨ a2, which gets simplified to a2.

In Line 2 of the algorithm, unit propagation [17] is applied to the input
formula: If a clause of F is a unit (single-literal) clause it can only be satisfied by
assigning the underlying atom such that the literal is 1. This assignment will be
then propagated to the remaining clauses, the formula will be simplified, and unit
propagation will be repetitively applied as long as there exist further unit clauses
with unassigned atoms. The application of unit propagation yields a (possibly
partial) assignment α. In case α already satisfies F , BMCSAT returns α as a
satisfying assignment and terminates (Line 3). In case α makes the formula 0 the
algorithm terminates with an unsatisfiability result (Line 4). In every other case,

1 The Tseytin CNF transformation introduces a number of auxiliary atoms for each
sub formulae Tk−1,k. The assignment to all k-indexed location atoms by our enhanced
algorithm and the subsequent application of unit propagation will also immediately
assign truth values to the auxiliary atoms. Hence, the presence of auxiliary atoms
does not affect our approach.
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Algorithm 1. BMCSAT(F, k, l)
Data: CNF formula F , decision level k ∈ N, control flow location l ∈ Loc
Result: assignment α : Atoms(F ) → {0,1} satisfying F , or UNSAT

1 begin
2 α := unit-propagate(F )
3 if α(F ) = 1 then
4 return α
5 else if α(F ) = 0 then
6 return UNSAT
7 else
8 A := {α′ : LocAtomsk+1 → {0,1} | δ(l, α′)}
9 while A �= ∅ do

10 choose α′ ∈ A
11 A := A\{α′}
12 if α′′ := BMCSAT((α ◦ α′)(F ), k + 1, α′) �= UNSAT then
13 return α ◦ α′ ◦ α′′

14 return UNSAT

LocAtomsk+1 is identified as the set of atoms that will be assigned at the next
decision level (Line 8). Moreover, the set of possible assignments to LocAtomsk+1

is computed and then restricted to admissible ones by the condition δ(l, α′).
Note that since such assignments α′ always characterise control flow locations
l ∈ Loc, we can also use them as arguments of the transition relation δ of the
underlying control flow graph. In the Lines 9 to 13, BMCSAT is recursively
called resulting in a branch for each admissible assignment. The result of the
calls is then concatenated with the so far partial assignment. SAT solvers do
not generally explore all possible branches. Commonly, one branch is explored
at a time until a satisfiability result can be obtained or until the branch turns
out to be inexpedient. In the latter case conflict-driven clause learning with non-
chronological backtracking [2] is performed and an alternative branch is explored.
An excerpt of the branching tree for BMCSAT (F[0,2], 0, (00, 00)) where F[0,2] is
the 2-bounded encoding of our example verification task is depicted below.

LocAtoms0

LocAtoms1

LocAtoms2

. . .

LocAtoms2

SAT XX

LocAtoms2LocAtoms2

. . .. . .

(00, 00)

(01, 00) (10, 00)(00, 01) (00, 10)

(01, 10) (00, 11)
(10, 10)
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The sub formula Init0 of F[0,2] is a conjunction of unit clauses over
LocAtoms0 and V arAtoms0. Hence, the first application of unit propagation
will yield an assignment α : LocAtoms0 ∪ V arAtoms0 → {0,1} that char-
acterises the initial system state encoded in Init0. The control flow location
l = (00, 00) is part of this initial state. Subsequently, BMCSAT will iden-
tify LocAtoms1 as the set of location atoms that are assigned next. Based
on the transition relation δ of the control flow graph G = (Loc, δ, τ) the set
of admissible assignments (i.e. direct successor locations of (00, 00) in G) is
determined: {(00, 01), (00, 10), (01, 00), (10, 00)}. For each admissible assignment
BMCSAT is recursively called. The branch corresponding to the assignment
(00, 10) has three further branches at decision level 1. The corresponding assign-
ments are (01, 10), (10, 10) and (00, 11). Choosing the assignment (01, 10) for
LocAtoms2 and the subsequent application of unit propagation immediately
yields a satisfying assignment for F[0,2] and therefore proves that within two
steps an error state is reachable in the encoded system. Thus, our BMCSAT
only requires two decision levels in order to accomplish this SAT-based verifi-
cation task, whereas a general-purpose SAT solving algorithm would require at
least |LocAtoms1| + |LocAtoms2| decision levels. The reduction of decision lev-
els in our branching tree comes at the cost of an increase of branches at each
level. However, our concept of admissible assignments (i.e. branches) allows us
to reduce the number of branches that actually have to be explored – based on
the exploitation of control flow information. In our example at decision level 0
the admissible assignment concept allows us to reduce the number of branches
to be explored from 16 to only 4, and at level 1 each node of the search tree
now only has 3 instead of 16 branches. The extent to which branch reduction is
generally possible depends on the number of transitions in the CFG G. In case
G is a complete digraph with |Loc|2 transitions (i.e. all pairs of locations are
bi-directionally connected via direct transitions), then our branch reduction will
not have any effect and at each decision level we have to consider |Loc| branches.
However, for most realistic software systems represented as CFGs the number
of transitions is substantially smaller than |Loc|2. For the verification of such
systems the application of branch reduction can enable computational savings
of orders of magnitude, which we just exemplified based on our example. We
implemented our enhanced concepts, that we illustrated here based on BMC-
SAT, on top of the solver Sat4j. Moreover, we integrated a concept for heuristic
guided error detection into the solver which we introduce next.

5 Directed Model Checking via Heuristic SAT Solving

Directed model checking (DMC) [5] is a concept for guiding the state space explo-
ration via heuristics in order to accelerate the detection of errors. Such heuristics
are typically based on the structure of the system to be checked and the property
of interest. While DMC has been successfully used to improve automata- and
BDD-based model checking [5,7], this concept has not been transferred yet to
SAT-based bounded model checking. Here we show how the DMC concept can
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be integrated into our SAT-based bounded model checking approach such that
the performance of SAT solving algorithm profits from heuristic guidance.

Heuristic model checking algorithms exploit useful information to guide the
search. This information is given as an evaluation function h : S → N∞ that
estimates the distance from the current state 〈l, s〉 ∈ S to an error state where
S is the overall set of states. This is known as best-first search. The heuristic
function h is precomputed before the search starts. In [4] a concept for computing
such a h based on the system and the property to be checked is introduced and
it is shown that based on h the exploration of an explicit state space model can
be guided. Here we show that h can be also straightforwardly computed based
on our verification tasks and then used in order to guide the SAT solver.

The evaluation function of [4] combines distances in the control flow and
property-based heuristics. Our system under consideration is given as a compos-
ite CFG G composed of single CFGs Gi = (Loci, δi, τi) for each process. Thus,
we can easily compute a local distance function di : Loci × Loci → N∞ for each
process that returns the shortest directed path in Gi for a pair of its control flow
locations. Now the global distance function is defined as d(l, l′) :=

∑n
i=1 di(li, l′i)

where l, l′ ∈ Loc and l = (l1, . . . , ln). Remember that in our encoding-based app-
roach each l can be expressed by an assignment α : LocAtoms → {0,1}. Hence,
we can also use assignments α as arguments of the distance functions, as long
as the assignments characterise actual locations. Since the control flow distance
does not incorporate constraints induced by variable values, the function d gives
us an under-approximation of the length of a shortest path in the actual state
space. From [4] we also get a property-based evaluation function that extends
the distance-based one. Our property is the characterisation of an error state
given as an arbitrary propositional logic expression Errorb over the b-indexed
atoms. For the computation of the evaluation function it is sufficient to consider
the non-indexed equivalent Error. In our running example we had Error :=

(¬l1[1] ∧ l1[2] ∧ ¬q ∧ l2[1] ∧ ¬l2[2] ∧ ¬p) ∨ (l1[1] ∧ ¬l1[2] ∧ ¬p ∧ ¬l2[1] ∧ l2[2] ∧ ¬q)

We now can adapt the property-based evaluation function for our SAT-based
approach as follows. Let Error over Atoms = LocAtoms ∪ V arAtoms be a
formula characterising an error state. Let F and G be arbitrary sub formulae of
Error and a ∈ V arAtoms. Let enc(li) be a sub formula of Error characterising
a location li ∈ Loci. Then hError : A → NI∞ (where A is a set of assignments
characterising states of the encoded system) is inductively defined as follows:

htrue(α) := 0
hfalse(α) := ∞
ha(α) := if α(a) = 0 then 1 else 0
h¬a(α) := if α(a) = 1 then 1 else 0
hF∨G(α) := min{hF (α), hG(α)}
hF∧G(α) := hF (α) + hG(α)
henc(li)(α) := di(α, li)

With our running example we illustrate how h can guide the search of
the SAT solving algorithm BMCSAT in the right direction: We assume that
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at decision level 0 the atoms of LocAtoms1 have been assigned by (00, 10)
and we are currently at decision level 1. Hence, the atoms of LocAtoms2 will
be assigned next. The execution of Line 8 of our algorithm will yield the set
A = {(01, 10), (10, 10), (00, 11)} of admissible assignments. For our heuristically
enhanced approach, we replace Line 10 of BMCSAT by the following statement:

α′ := select-min(A, hError)

such that the branch resp. assignment α′ ∈ A with the heuristically estimated
shortest distance to an error state is selected for further expansion. For our three
candidates from A we thus get:

hError((01, 10)) := min{0 + 0, 3 + 3} = 0
hError((10, 10)) := min{3 + 0, 0 + 3} = 3
hError((00, 11)) := min{1 + 2, 1 + 2} = 3

Consequently (01, 10) is heuristically chosen as the assignment for
LocAtoms2. At the next level the application of unit propagation will immedi-
ately return a satisfying assignment for the encoding F[0,2] and thus prove that
an error state is reachable within two steps. Our heuristic guidance has thus
avoided the exploration of fruitless branches associated with the other admissi-
ble assignments. Thus we now have two new concepts for tuning SAT solving
for model checking:

– the introduction of set assignments and admissible assignments in BMCSAT
shrinks the total number of branches to be explored, and

– the heuristic function h additionally guides the search into fruitful branches

Our heuristic function does not yet incorporate the variable atoms, since
all α′ ∈ A only assign values to location atoms. For each a ∈ V arAtoms,
α′(a) is undefined, and consequently ha(α′) yields 0. Thus, in our current
approach any costs associated with variable atoms are ignored. A straight-
forward way to incorporate those atoms would be to compute the assignment
αVar := unit-propagate((α ◦ α′)(Tk,k+1)) for each α′ ∈ A, such that αVar would
extend α′ to all variable atoms with index k + 1. In such a manner the costs
associated with an a ∈ V arAtoms would then be estimated by ha(α′ ◦ αVar ).

6 Implementation and Experiments

We have prototypically implemented our SAT-based bounded model checker with
heuristic guidance on top of the solver Sat4j [6]. Our tool builds abstract CFGs
for a given concurrent system Sys and a set of predicates Pred. It supports
almost all control structures of the C language as well as int, bool, semaphore
as data types. Based on the CFGs and an input Error property (e.g. mutual
exclusion violation, deadlock) defined over locations and predicates, our tool
automatically constructs an encoding F of the corresponding verification task.
The checker now iterates over the bound b starting with b = 0, until a the
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reachability of an Error state can be proven or a predefined threshold for b is
reached. In each iteration the encoding is processed by an solver instance of Sat4j.
We have modified the solver such that it implements our proposed concepts of
set assignments, admissible assignments and property-based heuristic guidance
of the SAT search. For this, the heuristic function that estimates the distance
from the current state to an Error state is precomputed based on the abstract
CFGs and the Error property. In experiments we compared the performance
of our heuristic-guided solver with the performance under the general-purpose
solving of Sat4j. As input systems we used the concurrent Boolean program
benchmark collection of the CProver project2. The programs of the collection
implement device drivers with multiple threads i.e. processes. We checked for the
reachability of states with particular combinations of program locations which
we henceforth denote as error states. The experimental results are summarised
below.

Benchmark General-purpose Heuristic-guided

ib700wdt Reachable 11.3 s 2.7 s

Unreachable 27.6 s 39.2 s

sc1200wdt Reachable 306 s 35.7 s

Unreachable 124 s 143 s

i8xx tco Reachable 807 s 122 s

Unreachable 201 s 163 s

Machzwd reachable 97.0 s 31.6 s

Unreachable 11.3 s 10.7 s

The experiments were conducted on a 2.6 GHz Intel Core i5 with 8 GB. All
benchmark items consist of a set of concurrent programs. We checked all pro-
grams individually. For some programs of each item the outcome of verification
was the reachability of the error state, whereas for other programs an unreacha-
bility result was obtained. In the table we consider verification tasks with a reach-
ability result and those with an unreachability result separately. The displayed
times denote the average runtime of all reachability resp. all unreachability cases
of each benchmark item. Our experiments revealed that our heuristic approach
significantly enhances the solving performance of verification tasks where the
reachability of an error state can be finally proven, whereas verification tasks
with an unreachability outcome can be typically solved equally efficient with the
general-purpose and the heuristic approach. Hence, our new approach is particu-
larly useful for detecting errors in concurrent systems, while it does not introduce
any drawbacks in case no error can be detected. Our enhanced concepts allow us
to guide the SAT search into directions where errors will be most likely detected.

2 www.cprover.org/boolean-programs.

www.cprover.org/boolean-programs
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7 Conclusion

We presented a new approach for accelerating SAT-based model checking. We
defined a propositional logic state space encoding of concurrent systems that
preserves control flow information. Moreover, we designed an enhanced SAT
algorithm that exploits the structure of our encodings in order to reduce the
computational effort for solving the encoded verification task. The concepts set
assignments and admissible assignments allow to narrow down the number of
decision levels and branches to be explored. Furthermore, we introduced a heuris-
tic based on the property to be verified, which enables to guide the SAT search
into directions where a property violation will be most likely detected. The
heuristic approach facilitates further computational savings. We implemented
our state space encoding and integrated our enhanced SAT concepts into the
solver Sat4j. Our tool allows to perform guided SAT-based BMC with a consid-
erably faster error detection compared to BMC via general-purpose SAT solving.
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