
Design and Validation of Cloud Storage Systems
Using Formal Methods

Peter Csaba Ölveczky(B)

University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. To deal with large amounts of data while offering high avail-
ability and throughput and low latency, cloud computing systems rely
on distributed, partitioned, and replicated data stores. Such cloud stor-
age systems are complex software artifacts that are very hard to design
and analyze. Formal specification and model checking should therefore
be beneficial during their design and validation. In particular, I propose
rewriting logic and its accompanying Maude tools as a suitable frame-
work for formally specifying and analyzing both the correctness and the
performance of cloud storage systems. This abstract of an invited talk
gives a short overview of the use of rewriting logic at the University of
Illinois Assured Cloud Computing center on industrial data stores such
as Google’s Megastore and Facebook/Apache’s Cassandra. I also briefly
summarize the experiences of the use of a different formal method for
similar purposes by engineers at Amazon Web Services.

1 Introduction

Cloud computing relies on dealing with large amounts of data safely and effi-
ciently. To ensure that data are always available—even when parts of the network
are down—data should be replicated across widely distributed data centers. Data
may also have to be partitioned to obtain the elasticity expected from cloud com-
puting. However, given the cost of the communication needed to coordinate the
different replicas in a replicated and possibly partitioned distributed data store,
there is a trade-off between efficiency on the one hand, and maintaining consis-
tency across the different replicas and the transactional guarantees provided on
the other hand. Many data stores therefore provide weaker forms of consistency
and weaker transactional guarantees than the traditional ACID guarantees.

Designing cloud data stores that satisfy certain performance and correct-
ness requirements is a highly nontrivial task, and so is the validation that the
design actually meets its requirements. In addition, although cloud storage sys-
tems are not traditionally considered to be “safety-critical” systems, as more
and more applications migrate to the cloud, it becomes increasingly crucial that
storage systems do not lose potentially critical user data. However, as argued
in, e.g., [4,15], standard system development and validation techniques are not

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M.R. Mousavi and J. Sgall (Eds.): TTCS 2017, LNCS 10608, pp. 3–8, 2017.
DOI: 10.1007/978-3-319-68953-1_1



4 P.C. Ölveczky

well suited for designing data stores with high assurance that they satisfy their
correctness and quality-of-service requirements: Executing and simulating new
designs may require understanding and modifying large code bases; furthermore,
although system executions and simulations can give an idea of the performance
of a design, they cannot give any (quantified) assurance about the system per-
formance, and they cannot be used to verify correctness properties.

In [4], colleagues at the University of Illinois at Urbana-Champaign (UIUC)
and I argue for the use of executable formal methods during the design of cloud
storage system, and to provide high levels of assurance that the designs satisfy
desired correctness and performance requirements. The key thing is that an
executable formal model can be directly simulated; it can be also be subjected
to various model checking analyses that automatically explore all possible system
behaviors from a given initial system configuration. From a system developer’s
perspective, such model checking can be seen as a powerful debugging and testing
method that automatically executes a comprehensive “test suite” for complex
fault-tolerant systems. Having an abstract executable formal system model also
allow us to quickly and easily explore many design options and to validate designs
as early as possible.

However, finding an executable formal method that can handle large and
complex distributed systems and that supports reasoning about both the sys-
tem’s correctness and its performance is not an easy task. Rewriting logic [14]
and its associated Maude tool [5] and their extensions should be a promising
candidate. Rewriting logic is a simple, intuitive, and expressive executable spec-
ification formalism for distributed systems. In rewriting logic, data types are
defined using algebraic equational specifications and the dynamic behavior of
a system is defined by conditional rewrite rules t −→ u if cond , where the
terms t and u denote state fragments. Such a rewriting logic specification can be
directly simulated, from a given initial system state, in Maude. However, such a
simulation only covers one possible system behavior. Reachability analysis and
LTL model checking can then be used to analyze all possible behaviors from a
given initial system state to check, respectively, whether a certain state pattern
is reachable from the initial state and whether all possible behaviors from the
initial state satisfy a linear temporal logic (LTL) property.

Cloud storage systems are often real-time systems; in particular, to ana-
lyze their performance we need timed models. The specification and analysis
of real-time systems in rewriting logic are supported by the Real-Time Maude
tool [17,19]. In particular, randomized Real-Time Maude simulations have been
shown to predict system performance as well as domain-specific simulation
tools [18]. Nevertheless, such ad hoc randomized simulations cannot give a quan-
tified measure of confidence in the accuracy of the performance estimations. To
achieve such guarantees about the performance of a design, we can specify our
design as a probabilistic rewrite theory and subject it to statistical model checking
using the PVeStA tool [1]. Such statistical model checking performs random-
ized simulations to estimate the expected average value of a given expression,
until the desired level of statistical confidence in the outcome has been reached.



Design and Validation of Cloud Storage Systems Using Formal Methods 5

In this way we can obtain statistical guarantees about the expected performance
of a design.

2 Applications

This section gives a brief overview of how Jon Grov, myself, and colleagues at
the Assured Cloud Computing center at the UIUC have applied rewriting logic
and its associated tools to model and analyze cloud storage systems. A more
extensive overview of parts of this research can be found in the report [4].

Google’s Megastore. Megastore [3] is a key component in Google’s celebrated
cloud infrastructure and is used for Gmail, Google+, Android Market, and
Google AppEngine. Megastore is a fault-tolerant replicated data store where
the data are divided into different entity groups (for example, “Peter’s emails”
could be one such entity group). Megastore’s trade-off between consistency and
performance is to provide consistency only for transactions accessing a single
entity group. Jon Grov and I had some ideas on how to extend Megastore to
also provide consistency for transactions accessing multiple entity groups, with-
out sacrificing performance.

Before experimenting with extensions of Megastore, we needed to understand
the Megastore design in significant detail. This was a challenging task, since
Megastore is a complex system whose only publicly available description was
the short overview paper [3]. We used Maude simulation and model checking
extensively throughout the development of a Maude model (with 56 rewrite
rules) of the Megastore design [6]. In particular, model checking from selected
initial states could be seen as our “test suite” that explored all possible behaviors
from those states. Our model also provided the first detailed publicly available
description of the Megastore design.

We could then experiment with our design ideas for extending Megastore,
until we arrived at a design with 72 rewrite rules, called Megastore-CGC, that
also provided consistency for certain sets of transactions that access multiple
entity groups [7]. To analyze our conjecture that the extension should have a
performance similar to that of Megastore, we ran randomized Real-Time Maude
simulations on both models.

An important point is that even if we would have had access to Megastore’s
code base, understanding and extending it would have been much more time-
consuming than developing our own models/executable prototypes.

Apache Cassandra. Apache Cassandra [8] is an open-source key-value data store
originally developed at Facebook that is currently used by, e.g., Amadeus, Apple,
IBM, Netflix, Facebook/Instagram, GitHub, and Twitter. Colleagues at UIUC
wanted to experiment with whether some alternative design choices would lead
to better performance. In contrast to our Megastore efforts, the problem in this
case was that to understand and experiment with different design choices would
require understanding and modifying Cassandra’s 345,000 lines of code. After



6 P.C. Ölveczky

studying this code base, Si Liu and others developed a 1,000-line Maude model
that captured all the main design choices of Cassandra [13]. The authors used
their models and Maude model checking to analyze under what circumstances
Cassandra provides stronger consistency properties than “eventual consistency.”

They then transformed their models into fully probabilistic rewrite theories
and used statistical model checking with PVeStA to evaluate the performance
of the original Cassandra design and their alternative design (where the main
performance measure is how often strong consistency is satisfied in practice) [12].
To investigate whether the performance estimates thus obtained are realistic,
in [12] the authors compare their model-based performance estimates with the
performance obtained by actually executing the Cassandra code itself.

RAMP. RAMP [2] is a partitioned data store, developed by Peter Bailis and
others at UC Berkeley, that provide efficient multi-partition transactions with
a weak transactional guarantee: read atomicity (either all or none of a transac-
tion’s updates are visible to other transactions). The RAMP developers describe
three main RAMP algorithms in [2]; they also sketch a number of other design
alternatives without providing details or proofs about their properties. In [11],
colleagues at UIUC and I develop Maude models of RAMP and its sketched
designs, and use Maude model checking to verify that also the sketched designs
satisfy the properties conjectured by Bailis et al.

But how efficient are the alternative designs? Bailis et al. only provide sim-
ulation results for their main designs, probably because of the effort required to
develop simulation models of a design. Having higher-level smaller formal models
allowed us to explore the design state of RAMP quite extensively. In particular,
in [10] we used statistical model checking to evaluate the performance along a
number of parameters, with many different distributions of transactions. In this
way, we could evaluate the performance of a number RAMP designs not explored
by Bailis et al., and for many more parameters and workloads than evaluated
by the RAMP developers. This allow us to discover the most suitable version of
RAMP for different kinds of applications with different kinds of expected work-
loads. We also experimented with some design ideas of our own, and discovered
that one design, RAMP-Faster, has many attractive performance properties, and
that, while not guaranteeing read atomicity, provides read atomicity for more
than 99% of the transactions for certain workloads.

P-Store. In [16] I analyzed the partially replicated transactional data store
P-Store [20] that provides some fault tolerance, serializability of transactions,
and limited use of atomic multicast. Although this protocol supposedly was ver-
ified by its developers, Maude reachability analysis found a nontrivial bug in the
P-Store algorithm that was confirmed by one of the P-Store developers.



Design and Validation of Cloud Storage Systems Using Formal Methods 7

3 Formal Methods at Amazon

Amazon Web Services (AWS) is the world’s largest provider of cloud comput-
ing services. Key components of its cloud computing infrastructure include the
DynamoDB replicated database and the Simple Storage System (S3).

In their excellent paper “How Amazon Web Services Uses Formal Meth-
ods” [15], engineers at AWS explain how they used the formal specification lan-
guage TLA+ [9] and its associated model checker TLC during the development
of S3, DynamoDB, and other components. Their experiences of using formal
methods in an industrial setting can be briefly summarized as follows:

– Model checking finds subtle “corner case” bugs that are not found by the
standard validation techniques used in industry.

– A formal specification is a valuable short, precise, and testable description of
an algorithm.

– Formal methods are surprisingly feasible for mainstream software develop-
ment and give good returns on investment.

– Executable formal specifications makes it quick and easy to experiment with
different design choices.

The paper [15] concludes that “formal methods are a big success at AWS” and
that management actively encourages engineers to use formal methods during
the development of new features and design changes.

The weakness reported by the AWS engineers was that while TLA+ was
effective at finding bugs, it was not (or could not be) used to analyze perfor-
mance. It seems that TLC does not support well the analysis of real-time system,
and neither does TLA+ come with a probabilistic or statistical model checker.
This seems to be one major difference between the formal methods used at AWS
and the Maude-based formal method that we propose: we have showed that
the Maude tools are useful for analyzing both the correctness and the expected
performance of the design.

Acknowledgments. I am grateful to Jon Grov, José Meseguer, Indranil Gupta, Si
Liu, Muntasir Rahman, and Jatin Ganhotra for the collaboration on the work sum-
marized in this abstract. I would also like to thank the organizers of TTCS 2017 for
giving me the opportunity to present these results as a keynote speaker.

References

1. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22944-2 28

2. Bailis, P., Fekete, A., Hellerstein, J.M., Ghodsi, A., Stoica, I.: Scalable atomic
visibility with RAMP transactions. In: Proceedings SIGMOD 2014. ACM (2014)

3. Baker, J., et al.: Megastore: Providing scalable, highly available storage for inter-
active services. In: CIDR 2011 (2011). www.cidrdb.org

http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://dx.doi.org/10.1007/978-3-642-22944-2_28
http://cidrdb.org/


8 P.C. Ölveczky

4. Bobba, R., Grov, J., Gupta, I., Liu, S., Meseguer, J., Ölveczky, P.C., Skeirik, S.:
Design, formal modeling, and validation of cloud storage systems using Maude.
Technical report, Department of Computer Science, University of Illinois at
Urbana-Champaign (2017). http://hdl.handle.net/2142/96274

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

6. Grov, J., Ölveczky, P.C.: FormaL modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54624-2 25

7. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). doi:10.1007/
978-3-319-10431-7 12

8. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol (2010)
9. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, Boston (2002)
10. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design

alternatives for RAMP transactions through statistical model checking. In: Pro-
ceedings of ICFEM 2017. LNCS, vol. 10610. Springer (2017, to appear)

11. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: Proceedings of
SAC 2016. ACM (2016)

12. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Trans. Embed.
Syst. 4(1), 03:1–03:26 (2017)

13. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 332–347. Springer, Cham (2014). doi:10.1007/978-3-319-11737-9 22

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96, 73–155 (1992)

15. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

16. Ölveczky, P.C.: Formalizing and validating the P-Store replicated data store in
Maude. In: Proceedings of WADT 2016. LNCS. Springer (2017, to appear)

17. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order Symbolic Comput. 20(1–2), 161–196 (2007)

18. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theo-
ret. Comput. Sci. 410(2–3), 254–280 (2009)

19. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.)
WRLA 2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). doi:10.1007/
978-3-319-12904-4 3

20. Schiper, N., Sutra, P., Pedone, F.: P-Store: genuine partial replication in wide area
networks. In: Proceedings of SRDS 2010. IEEE Computer Society (2010)

http://hdl.handle.net/2142/96274
http://dx.doi.org/10.1007/978-3-642-54624-2_25
http://dx.doi.org/10.1007/978-3-319-10431-7_12
http://dx.doi.org/10.1007/978-3-319-10431-7_12
http://dx.doi.org/10.1007/978-3-319-11737-9_22
http://dx.doi.org/10.1007/978-3-319-12904-4_3
http://dx.doi.org/10.1007/978-3-319-12904-4_3

	Design and Validation of Cloud Storage Systems Using Formal Methods
	1 Introduction
	2 Applications
	3 Formal Methods at Amazon
	References




