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Preface

Welcome to the Second IFIP International Conference on Topics in Theoretical
Computer Science (TTCS 2017), held during September 12–14, 2017, at the School of
Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

This volume contains the papers accepted for presentation at TTCS 2017. For this
edition of TTCS, we received 20 submissions from 10 different countries. An inter-
national Program Committee comprising 32 leading scientists from 13 countries
reviewed the papers thoroughly providing on average four review reports for each
paper. We accepted eight submissions, which translates into 40% of all submissions.
This means that the process was selective and only high-quality papers were accepted.
The program also includes four invited talks by the following world-renowned com-
puter scientists:

– Mahdi Cheraghchi, Imperial College, UK
– Łukasz Jeż, University of Wrocław, Poland
– Jaco van de Pol, University of Twente, The Netherlands
– Peter Csaba Ölveczky, University of Oslo, Norway

Additionally, the program features two talks and one tutorial in the PhD Forum,
which are not included in the proceedings.

We thank IPM, and in particular the Organizing Committee, for having provided
various facilities and for their generous support. We are also grateful to our Program
Committee for their professional and hard work in providing expert review reports and
thorough discussions leading to a very interesting and strong program.

We also acknowledge the excellent facilities provided by the EasyChair system,
which were crucial in managing the process of submission, selection, revision, and
publication of the manuscripts included in these proceedings.

September 2017 Mohammad Reza Mousavi
Jiří Sgall



The original version of this book was revised:
The paper starting on p. 41 was moved
from the topical section heading “Logic,
Semantics, and Programming Theory” to
“Algorithms and Complexity”. The
erratum to this book is available at
https://doi.org/10.1007/978-3-319-68953-1_10
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The Coding Lens in Explicit Constructions

Mahdi Cheraghchi

Department of Computing, Imperial College London, UK
m.cheraghchi@imperial.ac.uk

Abstract. The theory of error-correcting codes, originally developed as a fun-
damental technique for a systematic study of communications systems, has
served as a pivotal tool in major areas of mathematics, computer science and
electrical engineering. Understanding problems through a “coding lens” has
consistently led to breakthroughs in a wide spectrum of research areas, often
seemingly foreign from coding theory, including discrete mathematics, geom-
etry, cryptography, signal processing, algorithms and complexity, to name a
few. This talk will focus on the role of coding theory in pseudorandomness, and
particularly, explicit construction problems in sparse recovery and signal
processing.



Online Packet Scheduling

Łukasz Jeż

Institute of Computer Science, University of Wrocław, Poland

Packet Scheduling, also known as Buffer Management with Bounded Delay, is a
problem motivated by managing the buffer of a network switch or router (hence the
latter name), but also an elementary example of a job scheduling problem: a job j has
unit processing time (pj = 1), arbitrary weight wj, as well as arbitrary release time rj 2 Z

and deadline dj 2 Z such that rj < dj. A given set of such jobs is to be scheduled on a
single machine so as to maximize the total weight of jobs completed by their deadlines.

The online variant is of particular interest, given the motivation: Think of an
algorithm that has to schedule jobs on the fly, at time slot t knowing only those (and
their parameters) which were already released. From the algorithm’s perspective, the
computation proceeds in rounds, corresponding to time slots; in round t, the following
happen: first, jobs with deadlines t expire (and are since ignored), then any set of new
jobs with release time t may arrive, and finally the algorithm can choose one pending
job; next, this job is completed, yielding reward equal to its weight, and the compu-
tation proceeds to the next round.

Though an online algorithm knows nothing of the future jobs arrivals, we require
worst-case performance guarantees on the complete instance when it ends. Specifically,
we say an algorithm is R-competitive if on every instance I its gain is at least a 1/
R fraction of the optimum gain on I.

It is easy to give bounds on the competitive ratio: an upper bound of 2 is attained by
a simple greedy algorithm that chooses the heaviest pending job in each slot; for a
lower bound, it suffices to consider an instance merely two slots long. These can of
course be improved: a careful analysis of a natural generalization of the lower bound
instance yields a lower bound of u � 1.618, which is the best known. Better algo-
rithms, with rather involved analyses, are also known: the best, dating back to 2007, is
1.828-competitive.

These bounds do not match, despite simple problem statement and significant effort
since the early 2000s. One consequence is a number of restricted classes of instances
that were considered. I will survey known results, on both deterministic and ran-
domized algorithms, presenting some of them in more detail.

We will start by noting that packet scheduling is a special case of maximum-weight
matching problem, where the jobs and the time slots form the two partitions, and each
job j is connected by an edge of weight wj to each of the time slots in ½rj; djÞ \Z. This
has twofold implications: Firstly, online algorithms designed for the matching problem
apply, one of them (randomized) in fact the best known even for our special case.
Secondly, optimal offline algorithms, though not our primary interest, grant structural
insight into optimal schedules, helping in the online setting too.



Parallel Algorithms for Model Checking

Jaco van de Pol

University of Twente, Formal Methods and Tools, Enschede, The Netherlands
J.C.vandePol@utwente.nl

Model checking [1, 5] is an automated verification procedure, which checks that a
model of a system satisfies certain properties. These properties are typically expressed
in some temporal logic, like LTL and CTL. Algorithms for LTL model checking (linear
time logic) are based on automata theory and graph algorithms, while algorithms for
CTL (computation tree logic) are based on fixed-point computations and set operations.

The basic model checking procedures examine the state space of a system
exhaustively, which grows exponentially in the number of variables or parallel com-
ponents. Scalability of model checking is achieved by clever abstractions (for instance
counter-example guided abstraction refinement), clever algorithms (for instance
partial-order reduction), clever data-structures (for instance binary decision diagrams)
and, finally, clever use of hardware resources, for instance algorithms for distributed
and multi-core computers.

This invited lecture will provide a number of highlights of our research in the last
decade on high-performance model checking, as it is implemented in the open source
LTSmin tool set1 [10], focusing on the algorithms and datastructures in its multi-core
tools.

A lock-free, scalable hash-table maintains a globally shared set of already visited state
vectors. Using this, parallel workers can semi-independently explore different parts
of the state space, still ensuring that every state will be explored exactly once. Our
implementation proved to scale linearly on tens of processors [12].

Parallel algorithms for NDFS. Nested Depth-First Search [6] is a linear-time algorithm
to detect accepting cycles in Büchi automata. LTL model checking can be reduced to
the emptiness problem of Büchi automata, i.e. the absence of accepting cycles. We
introduced a parallel version of this algorithm [9], despite the fact that Depth-First
Search is hard to parallelize. Our multi-core implementation is compatible with
important state space reduction techniques, in particular state compression and
partial-order reduction [11, 15] and generalizes to timed automata [13].

A multi-core library for Decision Diagrams, called Sylvan [7]. Binary Decision Dia-
grams (BDD) have been introduced as concise representations of sets of Boolean
vectors. The CTL model checking operations can be expressed directly on the BDD
representation [4]. Sylvan provides a parallel implementation of BDD operations for
shared-memory, multi-core processors. We also provided successful experiments on

1 http://ltsmin.utwente.nl, https://github.com/utwente-fmt/ltsmin.

http://ltsmin.utwente.nl
https://github.com/utwente-fmt/ltsmin


distributed BDDs over a cluster of multi-core computer servers [14]. Besides BDDs,
Sylvan also supports Multi-way and Multi-terminal Decision Diagrams.

Multi-core algorithms to detect Strongly Connected Components. An alternative
model-checking algorithm is based on the decomposition and analysis of Strongly
Connected Components (SCCs). We have implemented a parallel version of Dijkstra’s
SCC algorithm [2, 8]. It forms the basis of model checking LTL using generalized
Büchi and Rabin automata [3]. SCCs are also useful for model checking with fairness,
probabilistic model checking, and implementing partial-order reduction.
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Design and Validation of Cloud Storage
Systems Using Formal Methods

Peter Csaba Ölveczky

University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. To deal with large amounts of data while offering high availability
and throughput and low latency, cloud computing systems rely on distributed,
partitioned, and replicated data stores. Such cloud storage systems are complex
software artifacts that are very hard to design and analyze. Formal specification
and model checking should therefore be beneficial during their design and
validation. In particular, I propose rewriting logic and its accompanying Maude
tools as a suitable framework for formally specifying and analyzing both the
correctness and the performance of cloud storage systems. This abstract of an
invited talk gives a short overview of the use of rewriting logic at the University
of Illinois’ Assured Cloud Computing center on industrial data stores such as
Google’s Megastore and Facebook/Apache’s Cassandra. I also briefly summa-
rize the experiences of the use of a different formal method for similar purposes
by engineers at Amazon Web Services.
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Design and Validation of Cloud Storage Systems
Using Formal Methods

Peter Csaba Ölveczky(B)

University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. To deal with large amounts of data while offering high avail-
ability and throughput and low latency, cloud computing systems rely
on distributed, partitioned, and replicated data stores. Such cloud stor-
age systems are complex software artifacts that are very hard to design
and analyze. Formal specification and model checking should therefore
be beneficial during their design and validation. In particular, I propose
rewriting logic and its accompanying Maude tools as a suitable frame-
work for formally specifying and analyzing both the correctness and the
performance of cloud storage systems. This abstract of an invited talk
gives a short overview of the use of rewriting logic at the University of
Illinois Assured Cloud Computing center on industrial data stores such
as Google’s Megastore and Facebook/Apache’s Cassandra. I also briefly
summarize the experiences of the use of a different formal method for
similar purposes by engineers at Amazon Web Services.

1 Introduction

Cloud computing relies on dealing with large amounts of data safely and effi-
ciently. To ensure that data are always available—even when parts of the network
are down—data should be replicated across widely distributed data centers. Data
may also have to be partitioned to obtain the elasticity expected from cloud com-
puting. However, given the cost of the communication needed to coordinate the
different replicas in a replicated and possibly partitioned distributed data store,
there is a trade-off between efficiency on the one hand, and maintaining consis-
tency across the different replicas and the transactional guarantees provided on
the other hand. Many data stores therefore provide weaker forms of consistency
and weaker transactional guarantees than the traditional ACID guarantees.

Designing cloud data stores that satisfy certain performance and correct-
ness requirements is a highly nontrivial task, and so is the validation that the
design actually meets its requirements. In addition, although cloud storage sys-
tems are not traditionally considered to be “safety-critical” systems, as more
and more applications migrate to the cloud, it becomes increasingly crucial that
storage systems do not lose potentially critical user data. However, as argued
in, e.g., [4,15], standard system development and validation techniques are not

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M.R. Mousavi and J. Sgall (Eds.): TTCS 2017, LNCS 10608, pp. 3–8, 2017.
DOI: 10.1007/978-3-319-68953-1_1



4 P.C. Ölveczky

well suited for designing data stores with high assurance that they satisfy their
correctness and quality-of-service requirements: Executing and simulating new
designs may require understanding and modifying large code bases; furthermore,
although system executions and simulations can give an idea of the performance
of a design, they cannot give any (quantified) assurance about the system per-
formance, and they cannot be used to verify correctness properties.

In [4], colleagues at the University of Illinois at Urbana-Champaign (UIUC)
and I argue for the use of executable formal methods during the design of cloud
storage system, and to provide high levels of assurance that the designs satisfy
desired correctness and performance requirements. The key thing is that an
executable formal model can be directly simulated; it can be also be subjected
to various model checking analyses that automatically explore all possible system
behaviors from a given initial system configuration. From a system developer’s
perspective, such model checking can be seen as a powerful debugging and testing
method that automatically executes a comprehensive “test suite” for complex
fault-tolerant systems. Having an abstract executable formal system model also
allow us to quickly and easily explore many design options and to validate designs
as early as possible.

However, finding an executable formal method that can handle large and
complex distributed systems and that supports reasoning about both the sys-
tem’s correctness and its performance is not an easy task. Rewriting logic [14]
and its associated Maude tool [5] and their extensions should be a promising
candidate. Rewriting logic is a simple, intuitive, and expressive executable spec-
ification formalism for distributed systems. In rewriting logic, data types are
defined using algebraic equational specifications and the dynamic behavior of
a system is defined by conditional rewrite rules t −→ u if cond , where the
terms t and u denote state fragments. Such a rewriting logic specification can be
directly simulated, from a given initial system state, in Maude. However, such a
simulation only covers one possible system behavior. Reachability analysis and
LTL model checking can then be used to analyze all possible behaviors from a
given initial system state to check, respectively, whether a certain state pattern
is reachable from the initial state and whether all possible behaviors from the
initial state satisfy a linear temporal logic (LTL) property.

Cloud storage systems are often real-time systems; in particular, to ana-
lyze their performance we need timed models. The specification and analysis
of real-time systems in rewriting logic are supported by the Real-Time Maude
tool [17,19]. In particular, randomized Real-Time Maude simulations have been
shown to predict system performance as well as domain-specific simulation
tools [18]. Nevertheless, such ad hoc randomized simulations cannot give a quan-
tified measure of confidence in the accuracy of the performance estimations. To
achieve such guarantees about the performance of a design, we can specify our
design as a probabilistic rewrite theory and subject it to statistical model checking
using the PVeStA tool [1]. Such statistical model checking performs random-
ized simulations to estimate the expected average value of a given expression,
until the desired level of statistical confidence in the outcome has been reached.
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In this way we can obtain statistical guarantees about the expected performance
of a design.

2 Applications

This section gives a brief overview of how Jon Grov, myself, and colleagues at
the Assured Cloud Computing center at the UIUC have applied rewriting logic
and its associated tools to model and analyze cloud storage systems. A more
extensive overview of parts of this research can be found in the report [4].

Google’s Megastore. Megastore [3] is a key component in Google’s celebrated
cloud infrastructure and is used for Gmail, Google+, Android Market, and
Google AppEngine. Megastore is a fault-tolerant replicated data store where
the data are divided into different entity groups (for example, “Peter’s emails”
could be one such entity group). Megastore’s trade-off between consistency and
performance is to provide consistency only for transactions accessing a single
entity group. Jon Grov and I had some ideas on how to extend Megastore to
also provide consistency for transactions accessing multiple entity groups, with-
out sacrificing performance.

Before experimenting with extensions of Megastore, we needed to understand
the Megastore design in significant detail. This was a challenging task, since
Megastore is a complex system whose only publicly available description was
the short overview paper [3]. We used Maude simulation and model checking
extensively throughout the development of a Maude model (with 56 rewrite
rules) of the Megastore design [6]. In particular, model checking from selected
initial states could be seen as our “test suite” that explored all possible behaviors
from those states. Our model also provided the first detailed publicly available
description of the Megastore design.

We could then experiment with our design ideas for extending Megastore,
until we arrived at a design with 72 rewrite rules, called Megastore-CGC, that
also provided consistency for certain sets of transactions that access multiple
entity groups [7]. To analyze our conjecture that the extension should have a
performance similar to that of Megastore, we ran randomized Real-Time Maude
simulations on both models.

An important point is that even if we would have had access to Megastore’s
code base, understanding and extending it would have been much more time-
consuming than developing our own models/executable prototypes.

Apache Cassandra. Apache Cassandra [8] is an open-source key-value data store
originally developed at Facebook that is currently used by, e.g., Amadeus, Apple,
IBM, Netflix, Facebook/Instagram, GitHub, and Twitter. Colleagues at UIUC
wanted to experiment with whether some alternative design choices would lead
to better performance. In contrast to our Megastore efforts, the problem in this
case was that to understand and experiment with different design choices would
require understanding and modifying Cassandra’s 345,000 lines of code. After



6 P.C. Ölveczky

studying this code base, Si Liu and others developed a 1,000-line Maude model
that captured all the main design choices of Cassandra [13]. The authors used
their models and Maude model checking to analyze under what circumstances
Cassandra provides stronger consistency properties than “eventual consistency.”

They then transformed their models into fully probabilistic rewrite theories
and used statistical model checking with PVeStA to evaluate the performance
of the original Cassandra design and their alternative design (where the main
performance measure is how often strong consistency is satisfied in practice) [12].
To investigate whether the performance estimates thus obtained are realistic,
in [12] the authors compare their model-based performance estimates with the
performance obtained by actually executing the Cassandra code itself.

RAMP. RAMP [2] is a partitioned data store, developed by Peter Bailis and
others at UC Berkeley, that provide efficient multi-partition transactions with
a weak transactional guarantee: read atomicity (either all or none of a transac-
tion’s updates are visible to other transactions). The RAMP developers describe
three main RAMP algorithms in [2]; they also sketch a number of other design
alternatives without providing details or proofs about their properties. In [11],
colleagues at UIUC and I develop Maude models of RAMP and its sketched
designs, and use Maude model checking to verify that also the sketched designs
satisfy the properties conjectured by Bailis et al.

But how efficient are the alternative designs? Bailis et al. only provide sim-
ulation results for their main designs, probably because of the effort required to
develop simulation models of a design. Having higher-level smaller formal models
allowed us to explore the design state of RAMP quite extensively. In particular,
in [10] we used statistical model checking to evaluate the performance along a
number of parameters, with many different distributions of transactions. In this
way, we could evaluate the performance of a number RAMP designs not explored
by Bailis et al., and for many more parameters and workloads than evaluated
by the RAMP developers. This allow us to discover the most suitable version of
RAMP for different kinds of applications with different kinds of expected work-
loads. We also experimented with some design ideas of our own, and discovered
that one design, RAMP-Faster, has many attractive performance properties, and
that, while not guaranteeing read atomicity, provides read atomicity for more
than 99% of the transactions for certain workloads.

P-Store. In [16] I analyzed the partially replicated transactional data store
P-Store [20] that provides some fault tolerance, serializability of transactions,
and limited use of atomic multicast. Although this protocol supposedly was ver-
ified by its developers, Maude reachability analysis found a nontrivial bug in the
P-Store algorithm that was confirmed by one of the P-Store developers.
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3 Formal Methods at Amazon

Amazon Web Services (AWS) is the world’s largest provider of cloud comput-
ing services. Key components of its cloud computing infrastructure include the
DynamoDB replicated database and the Simple Storage System (S3).

In their excellent paper “How Amazon Web Services Uses Formal Meth-
ods” [15], engineers at AWS explain how they used the formal specification lan-
guage TLA+ [9] and its associated model checker TLC during the development
of S3, DynamoDB, and other components. Their experiences of using formal
methods in an industrial setting can be briefly summarized as follows:

– Model checking finds subtle “corner case” bugs that are not found by the
standard validation techniques used in industry.

– A formal specification is a valuable short, precise, and testable description of
an algorithm.

– Formal methods are surprisingly feasible for mainstream software develop-
ment and give good returns on investment.

– Executable formal specifications makes it quick and easy to experiment with
different design choices.

The paper [15] concludes that “formal methods are a big success at AWS” and
that management actively encourages engineers to use formal methods during
the development of new features and design changes.

The weakness reported by the AWS engineers was that while TLA+ was
effective at finding bugs, it was not (or could not be) used to analyze perfor-
mance. It seems that TLC does not support well the analysis of real-time system,
and neither does TLA+ come with a probabilistic or statistical model checker.
This seems to be one major difference between the formal methods used at AWS
and the Maude-based formal method that we propose: we have showed that
the Maude tools are useful for analyzing both the correctness and the expected
performance of the design.

Acknowledgments. I am grateful to Jon Grov, José Meseguer, Indranil Gupta, Si
Liu, Muntasir Rahman, and Jatin Ganhotra for the collaboration on the work sum-
marized in this abstract. I would also like to thank the organizers of TTCS 2017 for
giving me the opportunity to present these results as a keynote speaker.
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Abstract. In this paper we investigate the upward embedding problem
on the horizontal torus. The digraphs that admit upward embedding
on this surface are called horoidal digraphs. We shall characterize the
horoidal digraphs, combinatorially. Then, we construct a new digraph
from an arbitrary digraph in such a way that the new digraph has
an upward embedding on sphere if and only if it is horoidal. By using
these constructed digraphs, we show that the decision problem whether
a digraph has an upward embedding on the horizontal torus is NP-
Complete.

Keywords: Upward embedding · Sphericity testing · Horizontal torus ·
Computational complexity · Horoidal st-graphs

1 Introduction

We call a digraph horoidal if it has an upward drawing with no edge crossing on
the horizontal torus; an embedding of its underlying graph so that all directed
edges are monotonic and point to the direction of z-axis. Throughout this paper,
by surfaces we mean two-dimensional compact orientable surfaces such as sphere,
torus and connected sum of tori with a fixed embedding in three-dimensional
space R

3. In this paper we deal with upward drawing with no edge crossing
(hereafter it will be referred as upward embedding) on a special embedding of
the ring torus in R

3 which we call the horizontal torus. This surface is denoted
by Th.

There are major differences between graph embedding and upward embed-
ding of digraphs. Despite the fact that the vertical torus and the horizontal torus
are two special embeddings of the ring torus in three-dimensional space R

3, and
are topologically equivalent, Dolati, Hashemi and Khosravani [11] have shown
that a digraph with the underlying graph with genus one, may have an upward
embedding on the vertical torus, and may fail to have an upward embedding on
the horizontal torus. In addition, while Filotti, Miller and Reif [12] have shown
that the question whether an undirected graph has an embedding on a fixed sur-
face has polynomial time algorithm, the decision problem of upward embedding
testing is NP-complete, even on sphere and plane. In the following we review
the results on upward embedding from the characterization and computational
complexity point of view.
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Published by Springer International Publishing AG 2017. All Rights Reserved
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1.1 Plane

A digraph is called upward planar if it has an upward embedding on the plane.

Characterization. An st-digraph is a single source and single sink digraph in
which there is an arc from the source to the sink. Di Battista and Tamassia [7]
and Kelly [19], independently, characterized the upward planarity of digraphs.

Theorem 1.1 (Di Battista and Tamassia [7], Kelly [19]). A digraph is upward
planar if and only if it is a spanning subgraph of an st-digraph with planar
underlying graph.

Testing. The decision problem associated with plane is stated as follows.

Problem 1 Upward embedding testing on plane (Upward planarity testing)
INSTANCE: Given a digraph D.
QUESTION: Does D have an upward embedding on plane?

This decision problem has polynomial time algorithms for some special cases;
Bertolazzi, Di Battista, Liotta, and Mannino [5] have given a polynomial-
time algorithm for testing the upward planarity of three connected digraphs.
Thomassen [21] has characterized upward planarity of the single source digraphs
in terms of forbidden circuits. By combining Thomassen’s characterization with
a decomposition scheme Hutton and Lubiw [18] have given a polynomial-time
algorithm to test if a single source digraph with n vertices is upward planar
in O(n2). Bertolazzi, Di Battista, Mannino, and Tamassia [6] have presented
an optimal algorithm to test whether a single source digraph is upward planar
in the linear time. Papakostas [20] has given a polynomial-time algorithm for
upward planarity testing of outerplanar digraphs.

The results for the general case is stated in the following theorem.

Theorem 1.2 (Garg, Tamassia [13,14], Hashemi, Rival, Kisielewicz [17])
Upward planarity testing is NP-Complete.

1.2 Round Sphere

A digraph is called spherical if it has an upward embedding on the sphere.

Characterization. The following theorem characterizes the sphericity of
digraphs.

Theorem 1.3 (Hashemi, Rival, Kisielewicz [15,17]). A digraph is spherical if
and only if it is a spanning subgraph of a single source and single sink digraph
with planar underlying graph.
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Testing. The decision problem associated with this surface is as follows.

Problem 2 Upward embedding testing on sphere (Upward sphericity testing)
INSTANCE: Given a digraph D.
QUESTION: Does D have an upward embedding on the round sphere?

Dolati and Hashemi [10] have presented a polynomial-time algorithm for upward
sphericity testing of the embedded single source digraphs. Recently, Dolati [9]
has presented an optimal linear algorithm for upward sphericity testing of this
class of digraphs.

The results of the general case is stated in the following theorem.

Theorem 1.4 (Hashemi, Rival, Kisielewicz [17]) Upward sphericity testing is
NP-Complete.

1.3 Horizontal Torus

Another surface to be mentioned is horizontal torus. Here we recall its definition.
The surface obtained by the revolving of the curve c : (y−2)2+(z−1)2 = 1 round
the line L : y = 0 as its axis of the revolution in the yz-plane. In this case the
part of Th resulting from the revolving of that part of c in which y ≤ 2 is called
inner layer. The other part of Th resulting from the revolving of that part of c
in which y ≥ 2 is called outer layer. The curves generating from revolving points
(0, 2, 0) and (0, 2, 2) round the axis of revolution are minimum and maximum
of the torus and are denoted by cmin and cmax, respectively. According to our
definition, it is clearly seen that cmin and cmax are common between the inner
layer and the outer layer. Our main results bear characterization of the digraphs
that have upward embedding on the horizontal torus; we call them the horoidal
digraphs. Note that, this characterization can not be applied for vertical torus.
Because the set of all digraphs that admit upward embedding on horizontal
torus is a proper subset of the set of all digraphs that have upward embedding
on vertical torus.

Characterization. In the next section we will characterize the horoidal
digraphs. Let D be a horoidal digraph that is not spherical. As we will show, in
the new characterization, a proper partition of the arcs into two parts will be
presented. This partition must be constructed in such a way that the induced
subdigraph on each part is spherical. Moreover, the common sources and the
common sinks of the two induced subdigraphs must be able to be properly
identified. Note that, the arcs set of one of these parts can be considered as ∅.
Therefore, the set of spherical digraphs is a proper subset of the set of horoidal
digraphs.

Testing. It has been shown that the following corresponding decision problem
is not easy [8]. We will investigate its complexity in details in the next sections.
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Problem 3 Upward embedding testing on Th

INSTANCE: Given a digraph D.
QUESTION: Does D have an upward embedding on the horizontal torus Th?

Dolati, Hashemi, and Khosravani [11] have presented a polynomial-time algo-
rithm to decide whether a single source and single sink digraph has an upward
embedding on Th. In this paper, by using a reduction from the sphericity testing
decision problem, we show that this decision problem is NP-Complete.

Recently, Auer et al. in [1–4] consider the problem by using the fundamental
polygon of the surfaces. They use a vector field for defining the direction of the
arcs. By their definition, acyclicity condition is not a necessary condition for a
digraph to have upward embedding.

The rest of this paper is organized as follows. After some preliminaries in
Sect. 2 we present a characterization of a digraph to have an upward embedding
on Th in Sect. 3. Then we show that the decision problem to decide whether
a digraph has an upward embedding on the horizontal torus belongs to NP. In
Sect. 4 we shall present a polynomial reduction from the sphericity decision prob-
lem to the upward embedding testing on Th. In Sect. 5 we present conclusions
and some related open problems.

2 Preliminaries

Here, we introduce some definitions and notations which we use throughout the
paper. By a digraph D we mean a pair D = (V,A) of vertices V , and arcs A. In
this paper all digraphs are finite and simple (without loops and multiple edges).
A necessary condition for a digraph to have an upward embedding on a surface
is that it has no directed cycle, i.e. it is acyclic. For any two vertices u and v of
a digraph D, the symbol (u, v) denotes an arc in D that originates from u and
terminates at v. A source of D is a vertex with no incoming arcs. A sink of D
is a vertex with no outgoing arcs. An internal vertex of D has both incoming
and outgoing arcs. Let x be a vertex of D, by od(x) we mean the number of the
outgoing arcs of x and by id(x) we mean the number of the incoming arcs to x. A
directed path of a digraph D is a list v0, a1, v1, . . . , ak, vk of vertices and arcs such
that, for 1 ≤ i ≤ k; ai = (vi−1, vi). An undirected path of a digraph D is a list
v0, a1, v1, . . . , ak, vk of vertices and arcs such that, for 1 ≤ i ≤ k; ai = (vi−1, vi)
or ai = (vi, vi−1). If D is a digraph, then its underlying graph is the graph
obtained by replacing each arc of D by an (undirected) edge joining the same
pair of vertices. A digraph D is weakly connected or simply connected if, for each
pair of vertices u and v, there is a undirected path in D between u and v. We
use of the following equivalence relation R on the arcs of a digraph, introduced
by Dolati et al. in [11].

Definition 2.5 Given a digraph D = (V,A). We say two arcs a, a′ ∈ A(D) are
in relation R if they belong to a directed path or there is a sequence P1, P2, . . . , Pk,
for some k ≥ 2, of directed paths with the following properties:
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(i) a ∈ P1 and a′ ∈ Pk.
(ii) Every Pi, i = 1, . . . , k − 1, has at least one common vertex with Pi+1 which

is an internal vertex.

This partition is used directly in the following theorem.

Theorem 2.6 (Dolati, Hashemi, Khosravani [11]). Given a digraph D. In every
upward embedding of D on Th, all arcs that belong to the same class R must be
drawn on the same layer.

3 Characterization

In this section we present a characterization of a digraph that has an upward
embedding on the horizontal torus. Then, by using the characterization we show
that the decision problem to decide whether a digraph has an upward embedding
on the horizontal torus belongs to NP. Here, for the sake of the simplicity, by
D = (V,A, S, T ) we mean a digraph D with vertex set V, arc set A, source set
S, and sink set T . For each A1 ⊆ A, by D(A1) we mean the induced subdigraph
on A1. A bipartition A1 and A2 of A is called an ST -bipartition and denoted
by [A1, A2] if the source set and sink set of both D(A1) and D(A2) are S and
T , respectively. Such a bipartition is called a stable ST-bipartition if all arcs of
each equivalence class of R belong to exactly one part. If [A1, A2] is a stable
ST -bipartition for which D(A1) and D(A2) are spherical then we call it a con-
sistent stable ST-bipartition. See Fig. 1. As we will prove, a necessary condition
for a digraph D = (V,A, S, T ) to be horoidal is that D is a spanning subdigraph
of a digraph D′ = (V,A′, S′, T ′) with a consistent stable S′T ′-bipartition.

Fig. 1. (a) A horoidal digraph G = (V,A, {s}, {t}), (b) A non-stable {s}{t}-bipartition
of G, (c) An inconsistent stable {s}{t}-bipartition of G, (d) A consistent stable {s}{t}-
bipartition of G

We need to introduce two more notions. For the sphere S = {(x, y, z) :
x2 + y2 + z2 = 1} by the c-circle we mean one obtained from the intersection of
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S with the plane z = c. For a finite set S, by a permutation πS of S we mean a
linear ordering of S.

Let D = (V,A, S, T ) be a spherical digraph and πS and σT be two permuta-
tions for S and T , respectively. The digraph D is called ordered spherical with
respect to πS and σT if it has an upward embedding in which the vertices in S
and T lie on c1-circle and c2-circle for some −1 < c1 < c2 < 1, and are ordered
(cyclically) by πS and σT , respectively. A digraph D = (V,A, S, T ) is called
bispherical if there is a consistent stable ST -bipartition [A1, A2] of A.

Fig. 2. (a) A super source of type m. (b) A super sink of type n. (c) An upward
embedding of this super source (super sink) on sphere whose sinks (sources) lie on a
c1-circle (c2-circle) for some −1 < c1 < c2 < 1.

Let πS and σT be two permutations for S and T , respectively. A digraph
D = (V,A, S, T ) is called ordered bispherical with respect to πS and σT , if there
is a consistent stable ST -bipartition [A1, A2] of A such that D(A1) and D(A2) are
ordered spherical with respect to πS and σT . A super source of type m is denoted
by Sm and is a single source digraph of order 2m+1 whose vertex set is V (Sm) =
{s, x0, x1, . . . , xm−1, x

′
0x

′
1, . . . , x

′
m−1} and its arc set is A(Sm) = {(s, x′

i) : i =
0, 1, . . . ,m − 1} ∪ {(x′

i, xi), (x′
i, xi−1) : i = 0, 1, . . . ,m − 1}; here the indices are

considered modulo m, see Fig. 2. The vertices {x0, x1, . . . , xm−1} are the sinks
of Sm. A super sink of type n is denoted by Tn and is a single sink digraph of
order 2n + 1 whose vertex set is V (Tn) = {t, y0, y1, . . . , yn−1, y

′
0, y

′
1, . . . , y

′
n−1}

and its arc set is A(Tn) = {(y′
i, t) : i = 0, 1, . . . , n − 1} ∪ {(yi, y

′
i), (yi, y

′
i−1) : i =

0, 1, . . . , n−1}; here the indices are considered modulo n. See Fig. 2. The vertices
{y0, y1, . . . , yn−1} are the sources of Tn. Let D and H be two digraphs such that
V (D) ∩ V (H) = ∅. Also suppose that {u1, . . . , um} ⊆ V (D) and {v1, . . . , vm} ⊆
V (H), by D � {(u1 = v1) . . . (um = vm)} � H we mean the digraph obtained
from D and H by identifying the vertices ui and vi, for i = 1, . . . ,m. Suppose
that D = (V,A, S, T ) is a digraph whose source set is S = {s1, s2, . . . , sm} and
its sink set is T = {t1, t2, . . . , tn}. Assume that πS and σT are permutations



A Characterization of Horoidal Digraphs 17

for S and T , respectively. Suppose that Sm is a super source whose sink set is
{x0, x1, . . . , xm−1} and Tn is a super sink whose source set is {y0, y1, . . . , yn−1}.
Let us denote the single source and single sink digraph obtained as

(Sm�{(x0 = sπ(0)) . . . (xm−1 = sπ(m−1))}�D)�{(tσ(0) = y0) . . . (tσ(n−1) = yn−1)}�Tn

by πSDσT .

Lemma 3.7 Let D = (V,A, S, T ) be a digraph and πS and σT be permutations
for S and T , respectively. The digraph is ordered spherical with respect to the
permutations πS and σT if and only if πSDσT is spherical.

Proof. If πSDσT is spherical, then it is not hard to observe that, we can redraw
the graph, if necessary, to obtain an upward embedding of πSDσT in which the
vertices of S lie on a c1-circle and also the vertices of T lie on a c2-circle preserv-
ing their permutations. The proof of the other side of the lemma is obvious. �

Consider the round sphere S = {(x, y, z)|x2 + y2 + z2 = 1}, by Sε
z we mean

the portion of the sphere between the two level curves obtained by cutting the
sphere with parallel planes Z = z and Z = z + ε, for all −1 < z < 1 and all
0 < ε < 1 − z. Note that, every upward embedding of a digraph D on sphere
S can be redrawn to be an upward embedding on Sε

z, for all −1 < z < 1 and
all 0 < ε < 1 − z. According to this observation, we can show that for upward
embedding of digraphs, each layer of Th is equivalent to the round sphere. It is
summarized in the following proposition.

Proposition 3.8 The digraph D has an upward embedding on a layer of Th if
and only if it has an upward embedding on the round sphere S = {(x, y, z)|x2 +
y2 + z2 = 1}.

By the following theorem we characterize the horoidal digraphs. We assume
w.l.o.g. that the digraphs have no isolated vertex.

Theorem 3.9 The digraph D = (V,A, S, T ) has an upward embedding on the
horizontal torus if and only if there are subsets S′ ⊆ S and T ′ ⊆ T and there are
permutations πS′ and σT ′ such that by adding new arcs, if necessary, the digraph
can be extended to a digraph D′ = (V,A′, S′, T ′) which is ordered spherical or
ordered bispherical with respect to πS′ and σT ′ .

Proof Suppose that D = (V,A, S, T ) has an upward embedding on Th. There
are two cases that can be happen for D.

Case 1. D has an upward embedding on a layer of Th. In this case, according to
Proposition 3.8 it has an upward embedding on sphere. By Theorem1.3 we con-
clude that D is a spanning subdigraph of a single source and single sink digraph
D′ = (V,A′, S′, T ′). That means the assertion for this case follows. Because D′

is an ordered spherical with respect to the unique permutation of S′ and T ′.
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Case 2. D has no upward embedding on a layer of Th. In this case we consider
an upward embedding of D on Th. Suppose that, the subset of sources (sinks)
that must be placed on cmin(cmax) is denoted by S′(T ′). Now, we add a set of
new arcs F to this embedding in such way that all of them point up, they do
not generate crossing and for each source node in S \ S′ (sink node in T \ T ′)
there will be an arc in F incoming to (emanating from) it. By adding this set
of arcs we have an upward embedding of a superdigraph D′ = (V,A′, S′, T ′) of
D = (V,A, S, T ) in which A′ = A∪F . Suppose that we denote by π′

S and σ′
T the

permutations of S′ and T ′ according to their order of their placement on cmin

and cmax, respectively. Let Ain and Aout be the set of arcs drawn on the inner
layer and outer layer of Th, respectively. The digraphs D′(Ain) and D′(Aout) are
order spherical with respect to π′

S and σ′
T . In other words, D′ = (V,A′, S′, T ′)

is a superdigraph of D = (V,A, S, T ) and is ordered bispherical with respect to
π′

S and σ′
T .

Conversely, suppose that, there is a superdigraph D′ = (V,A′, S′, T ′) of D
that is an ordered spherical with respect to some permutations of S′ and T ′, for
some S′ ⊂ S and T ′ ⊂ T . In this case, D′ is a horoidal digraph and therefore its
subdigraph D is also horoidal.

t'

s'
Fig. 3. A digraph D = (V,A, {s′}, {t′}) that is not horoidal

Now, suppose that there are some subsets S′ ⊂ S and T ′ ⊂ T and some
permutations π′

S and σ′
T for them such that a superdigraph D′ = (V,A′, S′, T ′)

of D is ordered bispherical with respect to π′
S and σ′

T . Let [A1, A2] be its cor-
responding consistent stable S′T ′-bipartition. In this case, the digraphs D′(A1)
and D′(A2) are ordered spherical with respect to π′

S and σ′
T . Therefore, the

digraph D′(A1) and D′(A2) can be embedded upwardly on inner layer and outer
layer of Th, respectively such that these upward embeddings imposes an upward
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embedding for D′ on Th. In other words, D′ and therefore D has an upward
embedding on the horizontal torus. �

We characterize the horoidal digraphs by the above theorem. Note that, one
can not apply it for characterization the digraphs that admit upward embedding
on vertical torus. As an example, all arcs in A in every stable {s′}{t′}-bipartition
of every super graph D′ = (V,A′, {s′}, {t′}) of digraph D = (V,A, {s′}, {t′})
depicted in Fig. 3 belong to one part. That means it is inconsistent. Because k3,3

is a subgraph of the underlying graph of indeced subdigraph on the aforemen-
tioned part. Therefore, this digraph is not horoidal. However, one of its upward
embeddings on vertical torus is depicted in [11].

Now, by using the characterization stated in Theorem3.9 we show that Prob-
lem 3 belongs to NP . It is summarized in the following theorem.

Theorem 3.10 The upward embedding testing on Th belongs to NP .

Proof The candidate solution consists of a superdigraph D′ = (V,A′, S′, T ′) of
the instance D whose sources and sinks are subsets of the sources and sinks of D,
two cyclic permutations π′

S and σ′
T for S′ and T ′ and a consistent stable S′T ′-

bipartition [A1, A2], if necessary. For checking the correctness of this solution in
polynomial time, one can check the conditions of Theorem3.9. To this end, the
Step 1 of the following two steps can be considered and if it is not sufficient (i.e.,
if the answer of Step 1 is not true) then another step must be considered, too.

Step 1. Check if the digraph D′ is an ordered spherical with respect to π′
S and

σ′
T .
Step 2. Check if the digraphs D′(A1) and D′(A2) are ordered spherical with

respect to π′
S and σ′

T .
For checking Step 1, it suffices to check if the single source and single sink

digraph π′
SD′σ′

T is spherical. According to Theorem 1.3 it can be done by check-
ing if its underlying graph is planar. Therefore this checking step can be done
in polynomial time. If it is revealed that its underlying graph is not planar then
by using [A1, A2] we have to consider Step 2. For checking Step 2 it is sufficient
to check if the single source and single sink digraphs D′(A1) and D′(A2) are
ordered spherical with respect to π′

S and σ′
T . Similarly, this step can be checked

in polynomial time. Therefore the candidate solution can be checked in polyno-
mial time. That means the assertion follows. �

4 Source-In-Sink-Out Graph of Adigraph

In this section we want to show that the upward embedding testing problem on
Th is an NP-hard problem. We do this by a polynomial time reduction from
the upward sphericity testing decision problem. Let x and y be two vertices of
a digraph D. By y ≺ x we mean the vertex x is reachable from the vertex y.
That means there is a directed path from y to x in D, especially y is reachable
from itself by the trivial path. By N+(y) we mean all the reachable vertices
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from y and by N−(y) we mean all the vertices for which y is a reachable vertex.
A subgraph DO

x = (V (DO
x ), A(DO

x )) is an out-subgraph rooted at vertex x if
V (DO

x ) = N+(x) and A(DO
x ) consists of all the arcs of all the directed paths in

D from x to every other vertex in V (DO
x ). A subgraph DI

x = (V (DI
x), A(DI

x))
is an in-subgraph rooted at vertex x if V (D) = N−(x) and A(DI

x) consists of
all the arcs of all the directed paths in D from every other vertex in V (DO

x ) to
x. In Fig. 4 an out-subgraph rooted at a source vertex is depicted. Now, we are
ready to introduce some useful properties of these defined subgraphs.

s1s2
s3

s4

t1t2

s5

t4 t3

s1s2
s3

s4

t1t2

s5

t4 t3

The arcs of the  out-subgraph O
s1D

Fig. 4. A digraph D and the arcs of DO
s1 .

Lemma 4.11 Let x be an internal vertex of a digraph D, then all the arcs
in A(DO

x ) ∪ A(DI
x) belong to the same equivalence class with respect to the

relation R.

Proof The internal vertex x has both incoming and outgoing arcs. Let a and
a′ be an incoming arc of x and an outgoing arc of x, respectively. For each arc
in A(DO

x ) there is a directed path containing that arc and a, therefore they
belong to the same equivalence class. Similarly, for each arc in A(DI

x) there is
a directed path containing that arc and a′, therefore they belong to the same
equivalence class. On the other hand, there is a directed path containing a and
a′, that means they belong to the same equivalence class too. According to the
transitive property of R the proof is completed. �

The relation between the arcs of the out-subgraph rooted at a source vertex
and the relation between the arcs of the in-subgraph rooted at a sink vertex are
shown in the following lemma.



A Characterization of Horoidal Digraphs 21

Lemma 4.12 Let s and t be a source vertex and a sink vertex of a digraph D,
respectively.

(i) If od(s) = 1 then all the arcs of DO
s belong to the same equivalence class

with respect to the relation R.
(ii) If id(t) = 1 then all the arcs of DI

t belong to the same equivalence class with
respect to the relation R.

Proof Suppose that od(s) = 1 and let a be the outgoing arc of s. Obviously, for
each arc of DO

s there is a directed path containing that arc and a, therefore they
belong to the same equivalence class. That means all the arcs of DO

s belong to
the same equivalence class with respect to the relation R. Similarly, the second
part of the lemma can be proved. �

Now, we define the source-in-sink-out graph of a digraph D = (V,A) that
is denoted by SISO(D). Suppose that D = (V,A) is a digraph with the set of
source vertices S and the set of sink vertices T . Let S = {s ∈ S | od(s) > 1}
and let T = {t ∈ T | id(t) > 1}. In other words, S is the set of sources for which
the number of their outgoing arcs is more than one and T is the set of sinks
for which the number of their incoming arcs is more than one. Construction of
the digraph SISO(D) from the digraph D is done as follows. For each source
vertex s ∈ S, we add a new vertex s′ and a new arc from the new vertex s′ to
the vertex s. Also, for each sink vertex t ∈ T , we add a new vertex t′ and a new
arc from the vertex t to the new vertex t′ (see Fig. 5). Obviously, s′ is a source
vertex, t′ is a sink vertex, and s and t are two internal vertices of SISO(D).
With respect to the construction of SISO(D), we can immediately conclude the
following lemma.

s1s2
s3

s4

s'2

s'4

s'1

t1t2 t3

t'1

s5

t4

t'2

Fig. 5. The source-in-sink-out graph of the depicted graph in Fig. 4
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Lemma 4.13 Let D be a digraph.

(i) If s is a source vertex of SISO(D) then od(s) = 1.
(ii) If t is a sink vertex of SISO(D) then id(t) = 1.

By Definition 2.5 two arcs of a digraph belong to the same equivalence class if
they belong to a directed path. In the following lemma we show that two arcs of
a source-in-sink-out graph belong to the same class if they belong to the same
undirected path (not necessarily directed).

Lemma 4.14 Suppose that D is a digraph. If P is an undirected path in
SISO(D), then all the arcs of P belong to the same equivalence class with respect
to the relation R.

Proof It is sufficient to show that each pair of consecutive arcs in P belong
to the same equivalence class. To this end let a and a′ be an arbitrary pair of
consecutive arcs of P , and let v be their common vertex. Since the number of
the arcs incident with v is at least two, by Lemma 4.13, the vertex v is neither
a source vertex of SISO(D) nor a sink vertex of SISO(D). That means v is an
internal vertex of SISO(D). Therefore by Lemma 4.11, the arcs a and a′ belong
to the same equivalence class. �

The following theorem states a key property of the source-in-sink-out graph
of a digraph.

Proposition 4.15 Let D be a connected digraph, all the arcs of SISO(D)
belong to the same equivalence class with respect to R.

Proof Let a = (x, y) and a′ = (x′, y′) be an arbitrary pair of arcs of D. Because
of the connectivity of D, there is an undirected path P ′ between x to y′. If
P ′ does not contain a, we add it to P ′. In this case the starting point of the
obtained undirected path is the vertex y. Similarly, we can add the arc a′ to
the undirected path, if it does not contain this arc. In other words, there is an
undirected path P in D that contains a and a′. Thus, by Lemma 4.14, a and a′

belong to the same equivalence class. �

In the following theorem we observe that either both digraphs D and
SISO(D) or none of them have upward embeddings on sphere.

Proposition 4.16 The digraph D has an upward embedding on sphere if and
only if SISO(D) has an upward embedding on sphere.

Proof Suppose that we have an upward embedding of D on the round sphere
S = {(x, y, z)|x2 + y2 + z2 = 1}. Let S be the set of sources for which the
number of their outgoing arcs is more than one and let T be the set of sinks
of D for which the number of their incoming arcs is more than one. Without
loss of generality, we can assume that none of the sources (sinks) of S (T ) is
located at south (north) pole. Otherwise, we may modify the upward embedding
to provide an upward embedding on the sphere with this property. Let s ∈ S be
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an arbitrary source in S with z its height (its z-coordinate) and consider Sε
z−ε,

where ε is small enough so that this portion contains no vertices of D in its
interior. This portion may be partitioned into connected regions bounded by the
monotonic curves corresponding to the arcs of D. We consider a point s′ as an
arbitrary point on the circle obtained by cutting the sphere with plane Z = z−ε
so that the point s and s′ are on the boundary of a region. Now, we draw the arc
(s′, s) in the mentioned region by a monotonic curve. Similarly, if we draw an arc
(t, t′) for each sink t ∈ T by a monotonic curve without any crossing with other
arcs. Then we have an upward embedding for SISO(D) on the round sphere.
Conversely, if we have an upward embedding of SISO(D) on the round sphere.
By deleting all added arcs (s′, s) and (t, t′) in construction of SISO(D) from D,
we have an upward embedding of D on sphere. �

Proposition 4.17 Let D be a digraph, SISO(D) has an upward embedding on
sphere if and only if it has an upward embedding on Th.

Proof Suppose that SISO(D) has an upward embedding on sphere. Since, for
upward embedding, sphere and each layer of Th are equivalent we can conclude
that SISO(D) has an upward embedding on a layer of Th and therefore on Th.
Conversely, suppose that SISO(D) has an upward embedding on Th. By Propo-
sition 4.15, all the arcs of each connected component of SISO(D) belong to the
same equivalence class with respect to relation R. Therefore, by Theorem 2.6 in
any upward embedding of SISO(D) on Th all the arcs of each connected com-
ponent of SISO(D) must be drawn on a layer of Th. Suppose that SISO(D)
has k connected components and let H1,H2, . . . , Hk be its connected compo-
nents. Assume that −1 < z < 1 is a real number. We set ε = 1−z

k+1 , and embed
the component Hj on the portion Sε

z+(j−1)ε upwardly, for j = 1, . . . , k. In other
words, we can have an upward embedding of SISO(D) on the round sphere. �

Now, by Propositions 4.16 and 4.17 we have the following theorem:

Proposition 4.18 The digraph D has an upward embedding on sphere if and
only if SISO(D) has an upward embedding on Th.

Obviously, the construction of SISO(D) from D can be done in O(n) time,
where n is the number of vertices of D. By this fact and Proposition 4.18 the
NP-hardness of upward embedding testing on Th is proved, this is summarized
in the following theorem.

Theorem 4.19 The upward embedding testing on Th is an NP-hard problem.

By Theorems 3.10 and 4.19 we have one of the main results of the paper as
follows.

Theorem 4.20 The upward embedding testing on Th is an NP-Complete
problem.
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5 Conclusion and Some Open Problems

In this paper, we have presented a characterization for a digraph to have an
upward embedding on Th. By that characterization we have shown that the
decision problem to decide whether a digraph has an upward embedding on
the horizontal torus belongs NP. We have constructed a digraph from a given
digraph in such a way that it is horoidal if and only if it is spherical. Finally, we
have presented a polynomial time reduction from the sphericity testing decision
problem to the upward embedding testing on Th. That means we have shown
that the upward embedding testing decision problem on Th is NP-Complete.

The following are some open problems:
Dolati et al. in [11] presented a polynomial time algorithm to decide whether a
single source and single sink digraph has an upward embedding on Th.

Problem 1: Is it possible to find polynomial time algorithms for upward embed-
ding testing of some other classes of digraphs on Th?
Problem 2: Characterize those digraphs which they are spherical if and only if
they are horoidal.

Acknowledgements. I am very thankful to Dr. Masoud Khosravani for his helpful
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and comments.
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Abstract. Let S = (V, f), be a symmetric submodular system. For two
distinct elements s and l of V, let Γ (s, l) denote the set of all subsets
of V which separate s from l. By using every Gomory Hu tree of S we
can obtain an element of Γ (s, l) which has minimum value among all the
elements of Γ (s, l). This tree can be constructed iteratively by solving
|V | − 1 minimum sl-separator problem. An ordered pair (s, l) is called a
pendant pair of S if {l} is a minimum sl-separator. Pendant pairs of a
symmetric submodular system play a key role in finding a minimizer of
this system. In this paper, we obtain a Gomory Hu tree of a contraction
of S with respect to some subsets of V only by using contraction in
Gomory Hu tree of S. Furthermore, we obtain some pendant pairs of S
and its contractions by using a Gomory Hu tree of S.

Keywords: Symmetric submodular system · Contraction of a system ·
Pendant pair · Maximum adjacency ordering · Gomory-Hu tree

1 Introduction

Let V be a finite set. A set function f : 2V �→ R is called a submodular function
if and only if for all X,Y ∈ 2V , we have

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). (1)

Submodular functions play a key role in combinatorial optimization, see [3]
for further discussion. Rank functions of matroids, cut capacity functions and
entropy functions are some well known examples of submodular functions. For a
given system S = (V, f), let f : 2V �→ R be a submodular function. The problem
in which we want to find a subset X ⊆ V, for which f(X) ≤ f(Y ) for all Y ⊆ V is
called submodular system minimization problem. Minimizing a submodular sys-
tem is one of the most important problems in combinatorial optimization. Many
problems in combinatorial optimization, such as finding minimum cut and min-
imum st-cut in graphs, or finding the largest common independent set in two
matroids can be modeled as a submodular function minimization. Image seg-
mentation [1,8,9], speech analysis [11,12], wireless and power networks [20] are
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Published by Springer International Publishing AG 2017. All Rights Reserved
M.R. Mousavi and J. Sgall (Eds.): TTCS 2017, LNCS 10608, pp. 26–33, 2017.
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only a small part of applications of minimizing submodular functions. Grotchel,
Lovasz and Scherijver have developed the first weakly and strongly polynomial
time algorithm for minimizing submodular systems in [6] and [13], respectively.
Each of them is designed based on the ellipsoid method. Then, nearly simul-
taneously Scherijver [18] and Iwata, Fleischer, and Fujishige [7] gave a combi-
natorial strongly polynomial time algorithms for this problem. Later, a faster
algorithm for minimizing submodular system was proposed by Orlin [16]. To
the best of our knowledge, the fastest algorithm to find a minimizer of a sub-
modular system S = (V, f) is due to Lee et al. [10]. Their algorithm runs in
O(|V |3log2|V |τ + |V |4logO(1)|V |) time, where τ is the time taken to evaluate the
function.

Stoer and Wagner [19] and Frank [2] independently have presented an algo-
rithm that finds a minimum cut of a graph G = (V,E) in O(|E||V |+|V |2 log |V |)
time. Their algorithms are based on Nagamochi and Ibaraki’s algorithm [15]
which finds a minimum cut of an undirected graph. Queyranne [17] developed a
faster algorithm to find a minimizer in a special case of a submodular system.
This algorithm was proposed to find a minimizer of a symmetric submodular sys-
tem S = (V, f). It is a generalization of Stoer and Wagner’s algorithm [19] and
runs in O(|V |3) time. This algorithm, similar to Stoer and Wagner’s algorithm
uses pendant pairs to obtain a minimizer of a symmetric submodular system.

For a given weighted undirected graph G = (V,E), Gomory and Hu con-
structed a weighted tree, named as Gomory Hu tree [5]. By using a Gomory Hu
tree of the graph G, one can solve the all pairs minimum st-cut problem with
|V |−1 calls to the maximum flow subroutine instead of the (|V |

2 ) calls. Goemans
and Ramakrishnan [4] illustrated that for every symmetric submodular system,
there exists a Gomory-Hu tree. It is worth to mention that, there is neither an
algorithm to construct a Gomory Hu tree of a symmetric submodular system
by using pendant pairs nor any method to obtain pendant pairs of a symmetric
submodular system by using a Gomory Hu tree of it.

In this paper, we obtain a Gomory Hu tree of a contraction of a symmetric
submodular system S = (V, f), under some subsets of V only by using a Gomory
Hu tree of S. In other words, without solving any minimum st-separator problem
of the contracted system, we obtain a Gomory Hu tree of it only by contracting
the Gomory Hu tree of the original system. Furthermore, we obtain some pen-
dant pairs of a symmetric submodular system S and its contractions by using a
Gomory Hu tree of S.

The outline of this paper is as follows. Section 2 provides preliminaries and
basic definitions. In Sect. 3, we obtain some pendant pairs of a symmetric sub-
modular system by using a Gomory Hu tree of the system. In Sect. 4, we con-
struct a Gomory Hu tree of a contracted system by using a Gomory Hu tree of
the original system.
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2 Preliminaries

Let V be a finite nonempty set. A function f : 2V �→ R is called a set function
on V . For every X ⊆ V, x ∈ X and y ∈ V \X, we use X + y and X −x instead of
X ∪{y} and X\{x}, respectively. Also, for x ∈ V we use f(x) instead of f({x}).

A pair S = (V, f), is called a system if f is a set function on V. A system
S = (V, f) is called a submodular system if for all X,Y ⊆ V, we have

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ). (2)

Furthermore, it is called a symmetric system if for every X ⊆ V, we have

f(X) = f(V \X). (3)

Consider a symmetric submodular system S = (V, f). Suppose that A and
B are two disjoint subsets of V. A subset X ⊆ V is called an AB-separator in
S, if X ∩ (A ∪ B) = A or X ∩ (A ∪ B) = B. Let Γ (A,B) denote the set of all
AB-separators in S. A subset X ∈ Γ (A,B) is called a minimum AB-separator
in S if f(X) = minY ∈Γ (A,B)f(Y ). If A and B are singletones {a} and {b}, then
we use ab-separator and Γ (a, b) instead of {a}{b}-separator and Γ ({a}, {b}),
respectively.

Let G = (V,E) be a weighted undirected graph with the weight function
w : E �→ R

+ ∪ {0}. Suppose that X is a nonempty proper subset of V. The set
of all edges connecting X to V \X, is called the cut associated with X and is
denoted by δ(X). The capacity of δ(X) is denoted by C(X) and defined by

C(X) =
∑

e∈δ(X)

w(e). (4)

By setting C(∅) = C(V ) = 0, (V,C) is a symmetric submodular system [14].
For two distinct vertices u and v of G, every minimum uv-separator of (V,C) is
a minimum uv-cut of G.

Let T = (V, F ) be a tree and uv be an arbitrary edge of it. By T −uv, we mean
the forest obtained from T by removing uv. The set of vertices of two components
of T − uv which respectively contain u and v, is denoted by Vu(T − uv) and
Vv(T − uv). Also, for uv ∈ F, define Fu(T − uv) = {X|u ∈ X ⊆ Vu(T − uv)},
Fv(T − uv) = {X|v ∈ X ⊆ Vv(T − uv)}.

Suppose that X is a nonempty subset of vertices of a given graph G = (V,E).
We denote by G>X< the graph obtained from G by contracting all the vertices
in X into a single vertex.

Let S = (V, f) be a symmetric submodular system. Suppose that T = (V, F )
is a weighted tree with the weight function w : E �→ R

+. If for all u, v ∈ V,
the minimum weight of the edges on the path between u and v in T is equal to
minimum uv-separator in S, then T is called a flow equivalent tree of S. Also,
we say that T has the cut property with respect to S if w(e) = f(Vu(T −uv)) =
f(Vv(T − uv)) for every e = uv ∈ F. A flow equivalent tree of S is called a
Gomory Hu tree of S if it has cut property with respect to S.



Gomory Hu Tree and Pendant Pairs of a Symmetric Submodular System 29

Consider a system S = (V, f). A pair of elements (x, y) of V is called a
pendant pair for S, if {y} is a minimum xy-separator in S.

Let S = (V, f) be a symmetric submodular system. Suppose that ρ =
(v1, v2, · · · , v|V |) is an ordering of the elements of V, where v1 can be chosen
arbitrarily. If for all 2 ≤ i ≤ j ≤ |V |, we have

f(Vi−1 + vi) − f(vi) ≤ f(Vi−1 + vj) − f(vj), (5)

where Vi = {v1, v2, · · · , vi}, then ρ is called a maximum adjacency ordering
(MA-ordering) of S.

For a symmetric submodular system S = (V, f), Queyranne [17] showed that
the last two elements (v|V |−1, v|V |) of an MA-ordering of S, is a pendant pair of
this system.

Let S = (V, f) be a system and X be an arbitrary subset of V. By ϕ(X), we
mean a single element obtained by unifying all elements of X. The contraction
of S with respect to a subset A ⊆ V is denoted by SA = (VA, fA) and defined
by VA = (V \A) + ϕ(A) and

fA(X) =

{
f(X) if ϕ(A) /∈ X

f((X − ϕ(A)) ∪ A) if ϕ(A) ∈ X.
(6)

Suppose that A and B are two nonempty disjoint subsets of V. We denote
by (SA)B , the contraction of SA with respect to B.

3 Obtaining Pendant Pairs from a Gomory Hu Tree

Stoer and Wagner [19] obtained a pendant pair of a weighted undirected graph
G = (V,E) by using MA-ordering in O(|E| + |V | log |V |) time. By generalizing
their algorithm to a symmetric submodular system S = (V, f), Queyranne [17]
obtained a pendant pair of this system in O(|V |2) time.

In this section, by using the fact that there exists a Gomory Hu tree for a
symmetric submodular system S = (V, f), we obtain some pendant pairs of it
from a Gomory Hu tree of this system. Also, we show that a Gomory Hu tree of
a symmetric submodular system can be constructed by pendant pairs. Firstly,
we prove the following lemma.

Lemma 1. Let T = (V, F ) be a flow equivalent tree of a symmetric submodular
system S = (V, f) with the weight function w : E �→ R

+. If e = uv is an
arbitrary edge of T, then for every A ∈ Fu(T − uv) and B ∈ Fv(T − uv), we
have w(e) ≤ min{f(X)|X ∈ Γ (A,B)}.

Proof. Since T is a flow equivalent tree of S, then the value of a minimum uv-
separator in S is equal to w(e). In other words w(e) = min{f(X)|X ∈ Γ (u, v)}.
Since Fu(T − uv) and Fv(T − uv) are two subsets of Γ (u, v), then w(e) ≤
min{f(X)|X ∈ Γ (A,B)}.
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Theorem 1. Let T = (V, F ) be a Gomory Hu tree of a symmetric submodular
system S = (V, f) with the weight function w : E �→ R

+. If e = uv is an arbitrary
edge of T, then for every A ∈ Fu(T − uv) and B ∈ Fv(T − uv), Vv(T − uv) is a
minimum AB-separator in S.

Proof. Since T has the cut property, then w(e) = f(Vv(T −uv)). Now, according
to Lemma 1 we have f(Vv(T − uv)) ≤ min{f(X)|X ∈ Γ (A,B)}. On the other
hand, Vv(T − uv) is one of the elements of Γ (A,B) then f(Vv(T − uv)) =
min{f(X)|X ∈ Γ (A,B)}, and the proof is completed.

The following theorem is immediate from Theorem 1.

Theorem 2. Let T = (V, F ) be a Gomory Hu tree of a symmetric submodular
system S = (V, f). If e = uv is an arbitrary edge of T, then (ϕ(A), ϕ(Vv(T −uv))
for every A ∈ Fu(T − uv) is a pendant pair of (SA)Vv(T−uv).

Theorem 2 shows that every Gomory Hu tree of a symmetric submodular
system can be obtained by using pendant pairs. We know that every Gomory
Hu tree of a symmetric submodular system S is a flow equivalent tree having
the cut property. We show by an example that Theorem 2 is not necessarily true
for every flow equivalent tree of S. Let V = {1, 2, 3, 4}. Consider the symmetric
submodular system S = (V, f) presented in Table 1.

Table 1. A symmetric submodular system S = (V, f).

A {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} V

f(A) = f(V \A) 4 6 3 5 4 5 9 0

It can be shown that the tree T = (V, f) depicted in Fig. 1 is a flow equivalent
tree of S. Suppose that w : E �→ R

+ is the weight function of T. By considering
the edge e = 24 of T, we have V4(T − 24) = {4}. Now, choose the element {2}
from F2(T − 24). According to Fig. 1, {4} is a minimum 24-cut and w(24) = 4.
Since T is a flow equivalent tree of S, then the value of minimum 24-separator
in S is equal to 4. However, in the given system we have f({4}) = 5. Therefore,
(2, 4) cannot be a pendant pair of S.

Fig. 1. Flow equivalent tree of S.

Theorem 3. Let T = (V, F ) be a flow equivalent tree of a symmetric submodular
system S = (V, f) with the weight function w : F �→ R

+. If for every edge e = uv
of T, there exists a set A ∈ Fu(T − uv) such that (ϕ(A), ϕ(Vv(T − uv)) is a
pendant pair of (SA)Vv(T−uv), then T is a Gomory Hu tree.
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Proof. Since for every e = uv of T, there exists a subset A in Fu(T − uv), that
(ϕ(A), ϕ(Vv(T − uv)) is a pendant pair of (SA)Vv(T−uv) then w(e) = f(Vv(T −
uv)). Thus, T has the cut property. Therefore, T is a Gomory Hu tree of S.

In the rest of this section, we will prove some properties of pendant pairs of
a system.

Theorem 4. Let (s, l) be a pendant pair of a system S = (V, f). For every
A ⊆ V \{s, l}, (s, l) is a pendant pair of SA.

Proof. Since (s, l) is a pendant pair of S, then f(l) = min{f(X)|X ∈ Γ (s, l)}.
From (6) we have f(l) = fA(l) = min{fA(X)|X ∈ Γ (s, l)}.

Thus, (s, l) is a pendant pair of SA. The proof is completed.

Note that, the converse of Theorem 4 is not generally true. Consider the
given system in Table 1. Table 2 contains MA-orderings of S and S{1,3} and also
pendant pairs, obtained from these MA-orderings.

Table 2. MA-orderings of S and S{1,3}.

System MA-ordering Pendant pair

S 4, 2, 1, 3 (1, 3)

S{1,3} 13, 2, 4 (2, 4)

It can be observed that (2, 4) is a pendant pair of S{1,3}; however, it is not a
pendant pair of S.

Proposition 1. If (s, l) is a pendant pair of a system S = (V, f), then (l, s) is
a pendant pair of S iff f(l) = f(s).

Proof. Let (l, s) be a pendant pair of S. Thus, f(l) = min{f(X)|X ∈ Γ (s, l)}.
Since (s, l) is also a pendant pair of S, then f(s) = f(l). Now, suppose that
f(s) = f(l). Since (s, l) is a pendant pair of S, then (l, s) is also a pendant pair
of S.

4 Gomoru Hu Tree of the Contraction of a System

Let T = (V, F ) be a tree. A subset X ⊆ V is called a T-connected subset of V, if
the graph induced by X in T is a subtree. The following theorem shows that by
having a flow equivalent tree T of a symmetric submodular system S = (V, f),
we can easily obtain a flow equivalent tree of SX for every T-connected subset
of V.

Theorem 5. Let T = (V, F ) be a flow equivalent tree of a symmetric submodular
system S = (V, f). If X is a T-connected subset of V, then T>X< is a flow
equivalent tree of SX = (VX , fX).
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Proof. Let u and v be two distinct elements of VX . Consider the path Puv con-
necting u and v in T. Suppose that T ′ = (V ′, F ′) is the induced subtree by X in
T. Let E′ be the set of edges in Puv with the minimum weight. If E′

� F ′, then
there is nothing to prove. Now, suppose that E′ is a subset of F ′. Assume that
m1 = min{fX(A)|A ∈ Γ (u, ϕ(X))}, m2 = min{fX(A)|A ∈ Γ (ϕ(X), v)} and
m∗ = min{fX(A)|A ∈ Γ (u, v)}. Obviously, the values of the minimum uϕ(X)-
cut, the minimum ϕ(X)v-cut and the minimum uv-cut in tree T>X< are equal
to m1, m2 and min{m1,m2}, respectively. Thus, to show that T>X< is a flow
equivalent tree of SX it suffices to prove that m∗ = min{m1,m2}. Let T ′ be a
flow equivalent tree of SX and P ′

uv be a path connecting u and v in T ′. Now,
we have two cases: case (i), ϕ(X) is appeared in P ′

uv. Therefore, the value of
uv-separator in SX is equal to min{m1,m2} which is equal to the value of min-
imum uv-cut in T>X<. Case (ii), if ϕ(X) is not appeared in P ′

uv, then we can
easily conclude that the value of minimum uv-cut in T ′ and T>X< are equal.
The proof is completed.

Theorem 6. Let T = (V, F ) be a Gomory Hu tree of a symmetric submodular
system S = (V, f). If X is a T-connected subset of V, then T>X< is a Gomory
Hu tree of SX = (VX , fX).

Proof. According to Theorem5, T>X< is a flow equivalent of SX . Furthermore,
from (6), T>X< has the cut property. Then, T>X< is a Gomory Hu tree of SX .

Then, by having a Gomory Hu tree of a symmetric submodular system S =
(V, f), we can find a Gomory Hu tree of the contracted system, with respect to
a connected set X, without finding any minimum st-separators in SX . Also, we
can deduce that T>Vv(T−uv)< is a Gomory Hu tree of SVv(T−uv).

Corollary 1. Let T = (V, f) be a Gomory Hu tree of a symmetric submodular
system S = (V, f) and uv be an arbitrary edge of T. For every A ∈ Fu(T − uv),
for which A is a connecting set in T, the tree T>A∪Vv(T−uv)< is a Gomory Hu
tree of (SA)Vv(T−uv).

5 Conclusion

In this paper, we obtained some pendant pairs of a symmetric submodular system
by using its Gomory Hu tree. Furthermore, for a contraction of S with respect
to a connected set, we constructed a Gomory Hu tree only by contracting the
connected set in Gomory Hu tree of S.
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Abstract. Given a network G(N,A,C) and a directed path P 0 from
the source node s to the sink node t, an inverse multi-objective short-
est path problem is to modify the cost matrix C so that P 0 becomes
an efficient path and the modification is minimized. In this paper, the
modification is measured by the bottleneck type weighted Hamming dis-
tance and is proposed an algorithm to solve the inverse problem. Our
proposed algorithm can be applied for some other inverse multiobjective
problem. As an example, we will mention how the algorithm is used to
solve the inverse multi-objective minimum spanning tree problem under
the bottleneck type weighted Hamming distance.

Keywords: Multi-objective optimization · Shortest path problem ·
Inverse problem · Hamming distance

1 Introduction

The invers shortest path problem(ISPP) is one of the most typical problems of
the inverse optimization, which makes a predetermined solution to become an
optimal solution after modifications. This problem has attracted many attentions
recently due to its broad applications in practice such as the traffic modeling and
the seismic tomography (see, e.g., [5,10]). For example, assume that in a road
network, we would like to modify the costs of the crossing such that a special
path between two given nodes becomes optimum in order that, for some reason,
the users select this path. To do this, we need to solve an ISPP.

In 1992, Burton and Toint [2] first formulated the ISPP using the l2 norm to
measure the modification. Zhang et al. [13] showed that the ISPP is equivalent
to solving a minimum weight circulation problem when the modifications are
measured by the l1 norm. In [12], a column generation scheme is developed
to solve the ISPP under the l1 norm. Ahuja and Orlin [1] showed that the
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ISPP under the l1 norm can be solved by solving a new shortest path problem.
For the l∞ norm, they showed that the problem reduces to a minimum mean
cycle problem. In [11], it is shown that all feasible solutions of the ISPP form
a polyhedral cone and the relationship between this problem and the minimum
cut problem is discussed. Duin and Volgenant [3] proposed an efficient algorithm
based on the binary search technique to solve the ISPP under the bottleneck type
Hamming distance (BWHD). In [9], Tayyebi and Aman extended their method to
solve the inverse minimum cost flow problem and the inverse linear programming
problem.

As with most real-world optimization problems, there is usually more than
one objective that has to be taken into account, thus leading to multi-objective
optimization problems (MOP) and inverse multi-objective optimization prob-
lems (IMOP). IMOP consists of finding a minimal adjustment of the objective
functions coefficients such that a given feasible solution becomes efficient. Ronald
et al. [7] proposed an algorithm to solve the inverse multi-objective combinatorial
optimization problems under the l∞ norm.

In this paper, we propose an algorithm to solve the inverse multi-objective
shortest path problem under the BWHD. Our proposed algorithm can be used
for solving the inverse of the multi-objective version of some problems under the
BWHD. As an example, we apply the algorithm for the inverse multi-objective
minimum spanning tree problem under the BWHD.

2 Preliminaries

The notations and definitions used in this paper are given in this section. Let
x, y ∈ IRq be two vectors. x ≤ y iff xk ≤ yk for every k ∈ {1, . . . , q} and x �= y. Let
G(N,A,C) be a directed network consisting of a set of nodes N = {1, 2, . . . , n},
a set of arcs A ⊆ N × N with |A| = m and a cost matrix C ∈ IRm×q. In the
matrix C, we denote the row corresponding to the arc a ∈ A by the vector C(a).
This vector is called the cost of the arc a. The element k of C(a) is denoted by
Ck(a). For each i1, ir ∈ N a directed path from i1 to ir in G is a sequence of
nodes and arcs i1 − a1 − i2 − a2 − . . .− ir−1 − ar−1 − ir satisfying the properties
that for all 1 ≤ k ≤ r − 1, (ik, ik+1) ∈ A and for all k, l ∈ {1, . . . , r}, ik �= il if
k �= l. For each path P in G, the cost of P is defined as C(P ) =

∑
a∈P C(a). A

path P from i to j is called an efficient path if there is no other path P ′ from i
to j such that C(P ′) ≤ C(P ). Let s, t ∈ N be two given nodes called the source
and sink node, respectively. The multi-objective shortest path problem (MSPP)
is to find all efficient directed paths from s to t.

Theorem 1 [8]. The bicriterion shortest path problem is NP-complete.

In [4] the multi-objective label setting algorithm is presented in the case that
the cost of the arcs is nonnegative. Also the multi-objective label correcting
algorithm is presented in the other case.

For a given path P 0 from s to t in G, The inverse multi-objective shortest
path problem (IMSPP) is to find a matrix D ∈ IRm×q such that
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(a) P 0 is an efficient path in the network G(N,A.D);
(b) For each a ∈ A and k ∈ {1, . . . , q}, −Lk(a) ≤ Dk(a) − Ck(a) ≤ Uk(a),

where Lk(a), Uk(a) ≥ 0 are given bounds for modifying cost Ck(a);
(c) The distance between C and D is minimized.

The distance between C and D can be measured by various matrix norms. Also
these matrices can be converted to two vectors, by a vectorization method, and
a vector norm is used. Let each arc a has an associated penalty w(a) ∈ IRq

�. In
this paper, we use the BWHD defined as follows:

Hw(C,D) = max
a∈A,k∈{1,...,q}

wk(a).H(Ck(a),Dk(a)), (1)

where H(Ck(a),Dk(a)) is the Hamming distance, i.e.

H(Ck(a),Dk(a)) =
{

1 if Ck(a) �= Dk(a),
0 if Ck(a) = Dk(a). (2)

3 The IMSPP Under the BWHD

In this section, the IMSPP under the BWHD is considered and an algorithm is
proposed to solve it. Let G(N,A,C) be a network with a source node s and a
sink node t. Assume that P 0 is a given directed path from s to t in G. We can
write the IMSPP under the BWHD as follows:

min Hw(C,D), (3)

s.t. P 0 is an efficient path from s to t in G(N,A,D),

− Lk(a) ≤ Dk(a) − Ck(a) ≤ Uk(a), ∀a ∈ A, ∀k ∈ {1, . . . , q}
D ∈ IRm×q,

where w : A → IRq is the arc penalties function and for each a ∈ A and k ∈
{1, · · · , q}, Lk(a) and Uk(a) are the bounds for modifying cost Ck(a). Assume
that w1 ≤ w2 ≤ . . . ≤ wqm denote the sorted list of the arc penalties. For each
k ∈ {1, . . . , q} and r ∈ {1, 2, . . . , qm}, we define Ak

r = {a ∈ A : wk(a) ≤ wr} and
the matrix Dr with the following elements is defined:

Dk
r (a) =

⎧
⎨

⎩

Ck(a) if a ∈ A \ Ak
r ,

Ck(a) + Uk(a) if a ∈ Ak
r \ P 0,

Ck(a) − Lk(a) if a ∈ Ak
r ∩ P 0.

(4)

The following theorem provides a helpful result for presenting our algorithm.

Theorem 2. If D is a feasible solution to the problem (3) with the objective
value wr, then Dr defined in (4) is also feasible whose objective value is less
than or equal to wr.
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Proof. It is easily seen that Dr satisfies the bound constraints and its objective
value is not greater than wr. On the contrary, suppose that P 0 is not efficient
in G(N,A,Dr). This means that there exists a path P from s to t such that
Dr(P ) ≤ Dr(P 0). We prove that D(P ) ≤ D(P 0). Hence P 0 is dominated by P
in G(N,A,D) which contradicts the feasibility of D for (3).

The inequality Dr(P ) − Dr(P 0) ≤ 0 implies that

D(P ) − D(P 0) ≤ Dr(P 0) − Dr(P ) + D(P ) − D(P 0)

=
∑

a∈P 0

(Dr(a) − D(a)) +
∑

a∈P

(D(a) − Dr(a))

=
∑

a∈(P 0\P )

(Dr(a) − D(a)) +
∑

a∈(P\P 0)

(D(a) − Dr(a)). (5)

By the definition of Dr and feasibility of D for (3), all the phrases of the right
hand side of (5) are nonpositive. Therefore D(P )−D(P 0) ≤ 0, which completes
the proof.

The following theorem is concluded immediately from Theorem 2.

Corollary 1. If the optimal objective value of (3) is wr, then Dr defined in (4)
is an optimal solution to (3).

The next theorem help us to find the optimal solution by a binary search on the
set of the penalties.

Theorem 3. If Dr is a feasible solution to the problem (3), then Dr+1 is also
feasible.

Proof. On the contrary, suppose that Dr+1 is not feasible to (3). Hence P 0 is
not efficient in G(N,A,Dr+1). Thus there exists a path P from s to t such that
Dr+1(P ) ≤ Dr+1(P 0). Analysis similar to that in the proof of Theorem 2 shows
that Dr(P ) ≤ Dr(P 0) which contradicts the feasibility of Dr for (3).

Based on the previous results, we propose an algorithm to solve the IMSPP
under the BWHD. We find the minimum value of r ∈ {1, . . . , qm} such that P 0

is an efficient path in G(N,A,Dr). For checking this condition, we can use the
proposed algorithm in [4] to find all efficient paths from s to t in G(N,A,Dr).
According to Theorem 3, the minimum value of r can be found by a binary search
on the set of the penalties. We now state our proposed algorithm formally.



38 M. Karimi et al.

Algorithm 1

Step 1. Sort the arc penalties. Suppose w1 ≤ w2 ≤ . . . ≤ wqm is the
sorted list
Step 2. Set i = [ qm2 ] and r = qm
Step 3. construct the matrix Dr defined in (4)
Step 4. If P 0 is an efficient path in G(N,A,Dr), then go to Step 5.
Otherwise, go to Step 6
Step 5. If i > 0, then update r = r − i, i = [ i2 ] and go to Step 3.
Otherwise, go to Step 8
Step 6. If r = qm, then the problem (3) is infeasible and stop. Otherwise
update r = r + i, i = [ i2 ] and go to Step 7
Step 7. If i > 0 go to Step 3. Otherwise, go to Step 8
Step 8. Stop. Dr is an optimal solution to (3).

To analyze the complexity of the algorithm, note that the number of the
iterations is O(log(qm)) = O(log(qn)) and in each iteration an MSPP is solved.
Hence if an MSPP can be solved in T time, then the complexity of the algorithm
is O(T log(qn)).

Theorem 4. Algorithm 1 solves the IMSPP under the BWHD in O(T log(qn))
time.

4 Inverse Multi-objective Minimum Spanning Tree
Problem Under the BWHD

The algorithm proposed in the previous section can be used for the inverse
of the others multi-objective combinatorial optimization problems under the
BWHD. For instance, consider the inverse multi-objective minimum spanning
tree problem (IMMSTP). Let G(V,E,C) be a graph with |V | = n nodes, |E| = m
edges and the cost matrix C ∈ Z

m×q. Assume that T 0 be a given spanning tree
of G. The IMMSTP under the BWHD can be written as follows:

min Hw(C,D), (6)

s.t. T 0 is an efficient spanning tree of G(V,E,D),

− Lk(a) ≤ Dk(a) − Ck(a) ≤ Uk(a), ∀a ∈ E, ∀k ∈ {1, . . . , q}
D ∈ Z

m×q.

For each k ∈ {1, ..., q} and r ∈ {1, ..., qm}, the set Ak
r is exactly the same as the

previous section and The matrix Dr is defined similar to (4) as follows:

Dk
r (a) =

⎧
⎨

⎩

Ck(a) if a ∈ E \ Ak
r ,

Ck(a) + Uk(a) if a ∈ Ak
r \ T 0,

Ck(a) − Lk(a) if a ∈ Ak
r ∩ T 0.

(7)
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Similarly, Theorem 2, Corollary 1 and Theorem 3 can be concluded for the
problem (6). Consequently, Algorithm 1 can be applied for IMMSTP under the
BWHD with this difference that in Step 4 we must investigate the efficiency of
the spanning tree T 0 for G(V,E,Dr). It can be done by solving a multi-objective
minimum spanning tree problem. We can use the Prim’s spanning tree algorithm
presented in [6].

5 Conclusion

In this article, the Inverse multi-objective shortest path problem under the bot-
tleneck type weighted Hamming distance is considered. We proposed an algo-
rithm based on the binary search technique to solve the inverse problem.

This work can be extended in different ways. For instance, other distances
can be use. It is also possible to apply our proposed algorithm to solve the inverse
of other problems.

Acknowledgments. The authors would like to thank the anonymous referees for their
valuable comments to improve the paper.
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Abstract. This paper presents a novel parallel algorithm for solving the
Single-Source Shortest Path (SSSP) problem on GPUs. The proposed
algorithm is based on the idea of locality-based relaxation, where instead
of updating just the distance of a single vertex v, we update the distances
of v’s neighboring vertices up to k steps. The proposed algorithm also
implements a communication-efficient method (in the CUDA program-
ming model) that minimizes the number of kernel launches, the number
of atomic operations and the frequency of CPU-GPU communication
without any need for thread synchronization. This is a significant con-
tribution as most existing methods often minimize one at the expense of
another. Our experimental results demonstrate that our approach out-
performs most existing methods on real-world road networks of up to
6.3 million vertices and 15 million arcs (on weaker GPUs).

1 Introduction

Graph processing algorithms have a significant impact on several domains of
applications as graphs are used to model conceptual networks, systems and nat-
ural phenomena. One of the most important problems in graph processing is the
Single-Source Shortest Path (SSSP) problem that has applications in a variety of
contexts (e.g., traffic routing [27], circuit design [22], formal analysis of comput-
ing systems [23]). Due to the significance of the time/space efficiency of solving
SSSP on large graphs, researchers have proposed [7] parallel/distributed algo-
rithms. Amongst these, the algorithms that harness the computational power of
Graphical Processing Units (GPUs) using NVIDIA’s Compute Unified Device
Architecture (CUDA) have attracted noticeable attention in research commu-
nity [10]. However, efficient utilization of the computational power of GPUs is a
challenging (and problem-dependent) task. This paper presents a highly efficient
method that solves SSSP on GPUs for road networks with large dimensions.

A CUDA program is parameterized in terms of thread IDs and its efficiency
mostly depends on all threads performing useful work on the GPU. GPUs include
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a multi-threaded architecture containing several Multi-Processors (MPs), where
each MP has some Streaming Processors (SPs). A CUDA program has a CPU
part and a GPU part. The CPU part is called the host and the GPU part is
called the kernel, capturing an array of threads. The threads are grouped in
blocks and each block will run in one MP. A few threads (e.g., 32) can logically
be grouped as a warp. The sequence of execution starts by copying data from
host to device (GPU), and then invoking the kernel. Each thread executes the
kernel code in parallel with all other threads. The results of kernel computations
can be copied back from device to host. CUDA’s memory model is hierarchical,
starting from the fastest: registers, in-block shared memory and global mem-
ory. The communication between GPU and CPU can be done through shared
variables allocated in the global memory. CUDA also supports atomic opera-
tions, where some operations (e.g., addition of a value to a memory location)
are performed in a non-interruptible fashion. To optimize the utilization of com-
putational resources of GPUs, a kernel must (i) ensure that all threads perform
useful work and ideally no thread remains idle (i.e., work efficiency); (ii) have
fewer atomic commands; (iii) use thread synchronization rarely (preferably not
at all), and (iv) have little need for communication with the CPU. The divergence
of a computation occurs when the number of idle threads of a warp increases.

Most existing GPU-based algorithms [5,12,13,15,25,26] for solving SSSP rely
on methods that associate a group of vertices/arcs to thread blocks, and opti-
mize a proper subset of the aforementioned factors, but not all. This is because
in general it is hard to determine the workload of each kernel for optimum effi-
ciency a priori. In the context of SSSP, each thread updates the distance of
its associated vertex in a round-based fashion, called relaxation. For example,
Harish et al. [12,13] present a GPU-based implementation of Dijkstra’s shortest
path algorithm [9] where they design two kernels; one for relaxing the recently
updated vertices, called the frontier, and the second one for updating the list
of frontier vertices. Singh et al. [26] improve Harish et al.’s algorithm by using
memory efficiently and using just one kernel. They also present a parallelization
of Bellman-Ford’s algorithm [3,11], but use three atomic operations in the kernel.
Kumar et al. [15] also present a parallelization of Bellman-Ford’s algorithm in
a two-kernel CUDA program. Busato et al. [5] exploit the new features of mod-
ern GPUs along with some algorithmic optimizations in order to enhance work
efficiency. Meyer and Sanders [18] present the delta-stepping method where ver-
tices are classified and relaxed in buckets based on their distance from the source.
Davidson et al. [8] extend the idea of delta-stepping in a queue-based implemen-
tation of Bellman-Ford’s algorithm where the queue contains the vertices whose
outgoing arcs must be relaxed. There are several frameworks [14,28,29] for graph
processing on GPUs whose main objective is to facilitate the formulation of graph
problems on GPUs; nonetheless, the time efficiency of these approaches may not
be competitive with hardcoded GPU programs.

In order to efficiently solve SSSP in large directed graphs, we present a GPU-
based algorithm that minimizes the number of atomic operations, the number of
kernel launches and CPU-GPU communication while increasing work efficiency.
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The proposed algorithm is based on the novel idea of locality-based relaxation,
where we relax the distance of a vertex up to a few steps in its vicinity. Figure 1
illustrates the proposed concept of locality-based relaxation where the thread
associated with v and w not only updates the distance of v’s (respectively, w’s)
immediate neighbors, but propagates the impact of this relaxation on the neigh-
boring vertices that can be reached from v (respectively, w) in k steps. Moreover,
we provide a mechanism for systematic (and dynamic) scheduling of threads
using flag arrays where each bit represents whether a thread should execute in
each kernel launch. The proposed scheduling approach significantly decreases the
frequency of communication between CPU and GPU. We experimentally show
that locality-based relaxation increases time efficiency up to 30% for k < 5. Fur-
thermore, our locality-based relaxation method mitigates the divergence problem
by increasing the workload of each thread systematically, thereby decreasing the
number of kernel launches and the probability of divergence.

Fig. 1. Locality-based relaxation.

Our experimental results demonstrate that the proposed approach outper-
forms most existing methods (using a GeForce GT 630 with 96 cores). We con-
duct our experiments on the road network graphs of New York, Colorado, Penn-
sylvania, Northwest USA, California-Nevada and California with up to 1.9 million
vertices and 5.5 million arcs, and Western USA with up to 6.3 million vertices
and 15.3 million arcs. Our implementation and data sets are available at http://
gpugraphprocessing.github.io/SSSP/. The proposed algorithm enables a compu-
tation and communication-efficient method by using (i) a single kernel launch
per iteration of the host; (ii) only one atomic operation per kernel, and (iii) no
thread synchronization.

Organization. Section 2 defines directed graphs, the shortest path problem and
a classic GPU-based solution thereof. Section 3 introduces the idea of locality-
based relaxation and presents our algorithm (implemented in CUDA) along with
its associated experimental results. Section 4 discusses some important factors

http://gpugraphprocessing.github.io/SSSP/
http://gpugraphprocessing.github.io/SSSP/
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that could impact GPU-based solutions of SSSP. Finally, Sect. 5 makes conclud-
ing remarks and discusses future extensions of this work.

2 Preliminaries

In this section, we present some basic concepts about GPUs and CUDA’s pro-
gramming model. Moreover, we formulate the problem statement.

2.1 Synchronization Mechanisms in CUDA

In CUDA’s programming model, programmers can define thread blocks in one,
two or three dimensions; however, the GPU scheduler decides how to assign
thread blocks to MPs; i.e., programmers have no control over the scheduling
policy. Moreover, inter-block communications must be performed via the global
memory. CUDA supports atomic operations to prevent data races, where a data
race occurs when multiple threads access some shared data simultaneously and
at least one of them performs a write. CUDA also provides a mechanism for
barrier synchronization amongst the threads within a block, but there is no
programming primitive for inter-block synchronization.

2.2 Directed Graphs and SSSP

Let G = (V,A,w) be a weighted directed graph, where V denotes the set of
vertices, A represents the set of arcs and the weight function w : A → Z assigns
a non-negative weight to each arc. A simple path from some vertex s ∈ V to
another vertex t ∈ V is a sequence of vertices v0, · · · , vk, where s = v0 and
t = vk, each arc (vi, vi+1) ∈ A and no vertex is repeated. A shortest path from
s to t is a simple path whose summation of weights is minimum amongst all
simple paths from s to t. The Single-Source Shortest Path (SSSP) problem is
stated as follows:

– INPUT: A directed graph G = (V,A,w) and a source vertex s ∈ V .
– OUTPUT: The weight of the shortest path from s to any vertex v ∈ V , where
v �= s.

2.3 Basic Functions

Two of the most famous algorithms for solving SSSP include Dijkstra’s [9] and
Bellman-Ford’s [3,11] algorithms. These algorithms use a Distance array, denoted
d[]. Initially, the distance of the source vertex is zero and that of other vertices is
set to infinity. After termination, d[v] includes the shortest distance of each vertex
v from the source s. Relaxation is a core function in both algorithms where for each
arc (u, v), if d[v] > d[u]+w(u, v) then d[v] is updated to d[u]+w(u, v). We use the
functions notRelaxed and Relax to respectively represent when an arc should be
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relaxed and performing the actual relaxation (see Algorithms 1 and 2). atomicMin
is a built-in function in CUDA that assigns the minimum of its two parameters to
its first parameter in an atomic step.

Algorithm 1. notRelaxed(u,v)
1: if d[v] > d[u] + w(u, v) then
2: return true;
3: else
4: return false;

Algorithm 2. Relax(u,v)
1: atomicMin(d[v], d[u] + w(u, v));

2.4 Harish et al.’s Algorithm

In this subsection, we represent Harish et al.’s [12,13] GPU-based algorithm
for solving SSSP in CUDA. While their work belongs to almost 10 years ago,
some researchers [26,29] have recently used Harish et al.’s method as a base for
comparison due to its simplicity and efficiency. Moreover, our algorithm in this
paper significantly extends their work. Harish et al. use the Compressed Sparse
Row (CSR) representation of a graph where they store vertices in an array startV
and the end vertices of arcs in an array endV (see Fig. 2). Each entry in startV
points to the starting index of its adjacency list in array endV. Harish et al. use
the following arrays: fa as a boolean array of size |V |, the weight array w of size
|A|, the distance array d of size |V | and the update array up of size |V |. They
assign a thread to each vertex. Their algorithm in [13] invokes two kernels in
each iteration of the host (see Algorithm 3). The first kernel (see Algorithm 4)
relaxes each vertex u whose corresponding bit fa[u] is equal to true indicating
that u needs to be relaxed. Initially, only fa[s] is set to true, where s denotes the
source vertex. The distance of any neighbor of a vertex u that is updated is kept
in the array up, and fa[u] is set to false. After the execution of the first kernel,
the second kernel (see Algorithm 5) assigns the minimum of d[v] and up[v] to
d[v] for each vertex v, and sets fa[v] to true. Harish et al. [12] use two kernels in
order to avoid read-write inconsistencies. Their algorithm terminates if there are
no more distance value changes (indicated by flag variable f remaining false).

3 Locality-Based Relaxation

In this section, we present an efficient GPU-based algorithm centered on the
idea of locality-based relaxation. Subsect. 3.1 discusses the idea behind our algo-
rithm and Subsect. 3.2 presents our algorithm. Subsection 3.3 explains the data
set we use in our experiments. Subsection 3.4 demonstrates our experimental
results and shows how our algorithm outperforms most existing methods on
large graphs representing road networks. Finally, Subsection 3.5 analyzes the
impact of locality-based relaxation on time efficiency.
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Fig. 2. Compressed Sparse Row (CSR) graph representation.

3.1 Basic Idea

Harish et al.’s [12] algorithm can potentially be improved in three directions.
First, the for-loop in Lines 2–5 of the host Algorithm3 requires a data exchange
between the GPU and CPU in each iteration of the host through flag f . Second,
their algorithm launches two kernels in each iteration of the host. Third, the
kernels in Algorithms 4 and 5 contribute to propagating the wave of relaxation
for just one step. We pose the hypothesis that allocating more load to threads
by (1) relaxing a few steps instead of just one, and/or (2) associating a few
vertices to each thread can increase work/time efficiency. Moreover, we claim
that a repetitive launch of kernels for some fixed number of times without any
communication with the CPU can decrease the communication costs.

Algorithm 3. Harish’s algorithm: Host
1: d[s] := 0, d[V − {s}] := ∞,up[s] := 0, up[V − {s}] := ∞, fa[s] := true, fa[V −

{s}] := false, f := true
2: while f = true do
3: f := false
4: CUDA Kernel1
5: CUDA Kernel2

Data structure. We use the CSR data structure (see Fig. 2) to store a directed
graph in the global memory of GPUs, where vertices of the graph get unique
IDs in {0, 1, · · · , |V | − 1}.

Thread-Vertex affinity. In contrast to Harish et al. [12], we assign two vertices
to each thread. (Our experiments show that assigning more than 2 vertices to
each thread does not improve time efficiency significantly.) That is, thread t is
responsible for the vertices whose IDs are stored in startV [2t] and startV [2t+1],
where 0 ≤ t < �|V |/2� (see Fig. 2), and |V | is even. If |V | is odd, then the last
thread will have only one vertex. There are two important rationales behind this
idea. First, we plan to decrease the number of threads by half, but increase their
load and investigate its impact on time efficiency. Second, we wish to ensure
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data locality for threads so that when a thread reads startV [2t] it can read its
neighboring memory cell too, hence potentially decreasing data access time.

Algorithm 4. Device: CUDA Kernel1
1: For each thread assigned to vertices u
2: if fa[u] = true then
3: fa[u] := false
4: for each neighbor vertex v of u do
5: Begin Atomic
6: if up[v] > d[u] + w(u, v) then
7: up[v] := d[u] + w(u, v)

8: End Atomic

Algorithm 5. Device: CUDA Kernel2
1: For each thread assigned to vertices v
2: if d[v] > up[v] then
3: d[v] := up[v]
4: fa[v] := true
5: f := true

6: up[v] := d[v]

3.2 Algorithm

The algorithm proposed in this section includes two kernels (illustrated in
Algorithms 8 and 9), but launches only one kernel per iteration. The host (Algo-
rithm6) initializes the distance array and an array of Boolean flags, called Fla-
gArray, where FlagArray[v] = true indicates that the neighbors of vertex v
can be relaxed (up to k steps). Then, the host launches Kernel 1(i) for a fixed
number of times, denoted N (see the for-loop), where i ∈ {0, 1}. We determine
the value of N experimentally in an offline fashion. That is, before running our
algorithm, we run existing algorithms on the graphs we use and compute the
number of iterations for several runs. For example, we run Harish et al.’s algo-
rithm on New York’s road network for 100 random source vertices and observe
that the minimum number of iterations in which this algorithm terminates is
about 440. Thus, we set the value of N to 440/k, where k is the distance up to
which each thread performs locality-based relaxation. The objective is to reduce
the frequency of CPU-GPU communications because no communication takes
place between CPU and GPU in the for-loop in Lines 4–6 of Algorithm6. While
the repeat-until loop in Algorithm6 might have fewer number of iterations com-
pared with the total number of iterations of the for-loop, the device (i.e., GPU)
communicates with the host by updating the value of Flag in each iteration of
the repeat-until loop.

Algorithm 7 forms the core of the kernel Algorithms 8 and 9. Specifically, it
generates a wave of relaxation from a vertex u that can propagate up to k steps,
where k is a predetermined value (often less than 5 in our experiments). Lines
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4–10 of Algorithm 7 update the distance of each vertex v that is reachable from
u in at most k steps. The relaxation wave propagates in a Depth First Search
(DFS) fashion up to depth k (see Lines 8–10 of Algorithm 7). Upon visiting each
vertex v via its parent w in the DFS tree, we check if the arc (w, v) is already
relaxed. If so, we backtrack to w. Otherwise, we relax (w, v) and check if v is
at depth k. If so, then we set the flag array cell corresponding to v in order
to indicate that relaxation should be picked up from the frontier vertex v in
the next kernel iteration. The impact of a wave of relaxation that starts from
u is multiple waves of relaxation starting from current frontier vertices in the
next iteration of the for-loop (respectively, repeat-until loop) in Algorithm6.
Thus, we conjecture that the total number of iterations of both loops in the host
Algorithm 6 should not go beyond the length of the graph diameter divided by
k, where the diameter is the longest shortest path between any pair of vertices.

Algorithm 6. Host
1: d[s] := 0, d[V − {s}] := ∞,
2: FlagArray[0][s] := true, FlagArray[0][V − {s}] := false, FlagArray[1][V ] :=

false, i ∈ {0, 1}, Flag := false
3: i := 0
4: for j := 1 to N do
5: Launch Kernel 1(i mod 2)
6: i := i + 1;

7: repeat {
8: Flag := false // GPU and CPU communicate through Flag variable.
9: Launch Kernel 2(i mod 2)

10: i := i + 1
11: } until (Flag = false)

Algorithm 7 uses a two-dimensional flag array in order to ensure Lines 2–3
and 9 of Algorithm 7 will not be executed simultaneously on the same array cell;
hence data race-freedom. Consider the case where Algorithm 7 used a single-
dimensional flag array. Let u be a frontier vertex of the previous kernel launch
(i.e., FlagArray[u] is true) and t1 be the thread associated with u. Moreover, let
t2 be another thread whose DFS search reaches u at depth k. As a result, there is
a possibility that thread t2 assigns true to FlagArray[u] in Line 9 of Algorithm 7
exactly at the same time that thread t1 is reading/writing FlagArray[u] at
Line 2 or 3; hence a data race. Since we would like to have no inter-thread
synchronization (for efficiency purposes) and yet ensure data race-freedom, we
propose a scheme with two flag arrays where in each kernel launch one of them
plays the role of the array from which threads read (i.e., FlagArray[i][u]) and the
other one is the array that holds the frontier vertices (i.e., FlagArray[i⊕ 1][u]).
Thus, in each iteration of the host where Algorithm7 is invoked through one of
the kernels, FlagArray[i][u] and FlagArray[i ⊕ 1][v] cannot point to the same
memory cell because i and i ⊕ 1 cannot be equal in modulo 2.
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To increase resource utilization, each thread t, where 0 ≤ t < �|V |/2�, in
the kernel Algorithms 8 and 9 simultaneously performs locality-based relaxation
on two vertices u := startV [2t] and u′ := startV [2t + 1]. If vertex u is flagged
for relaxation (Line 2 in Algorithm7), then thread t resets its flag and starts
relaxing the neighbors of u that are reachable from u by up to k steps. We invoke
Kernel 1(i) repeatedly (in the for-loop in Algorithm6) in order to propagate the
wave of relaxation in the graph for N times without communicating the results
with the CPU. After exiting from the for-loop in the host (Algorithm6), we
expect to have updated the distances of majority of vertices. To finalize the
relaxation, the repeat-until loop in the host repeatedly invokes Kernel 2(i) until
no more updates take place. Kernel 2(i) (Algorithm 9) is similar to Kernel 1(i)
(Algorithm 8) except that it communicates the result of locality-based relaxation
with the CPU in each iteration via the Flag variable.

Algorithm 7. RelaxLocalityAndSetFrontier(u, k, i)
1: localFlag := false
2: if FlagArray[i][u] = true then
3: FlagArray[i][u] := false
4: Launch an iterative DFS traversal starting at u
5: Upon visiting any vertex v via another vertex w, do the following:
6: if (w, v) is already relaxed then backtrack to w.
7: else Relax(w, v)
8: if (v is at depth k from u) then
9: FlagArray[i ⊕ 1][v] := true // ⊕ denotes addition modulo 2

10: localFlag := true

11: return localFlag;

Algorithm 8. Device: Kernel 1(i)
1: For each thread t assigned to vertices u := startV [2t] and u′ := startV [2t + 1]
2: RelaxLocalityAndSetFrontier(u, k, i)
3: RelaxLocalityAndSetFrontier(u′, k, i)

Algorithm 9. Device: Kernel 2(i)
1: For each thread t assigned to vertices u := startV [2t] and u′ := startV [2t + 1]
2: Flag := Flag∨ RelaxLocalityAndSetFrontier(u, k, i)
3: Flag := Flag∨ RelaxLocalityAndSetFrontier(u′, k, i)

Theorem 1. The proposed algorithm terminates and correctly calculates the dis-
tance of each vertex from the source. (Proof omitted due to space constraints.)

3.3 Data Set

In our experiments, we use real-world road network graphs. Table 1 summarizes
these graphs along with the names we use to refer to them throughout the
paper. These graphs represent real-world road networks taken from [1,2], and
they are practical examples of sparse graphs with a low max outdegree, low
median outdegree and low standard deviation of outdegrees.
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3.4 Experimental Results

In this section, we present our experimental results in addition to comparing
them with related work (see Table 2). We conduct our experiments with 100
random sources in each graph and take an average of the time cost over these
100 experiments.

Platform. We use a workstation with 16 GB RAM, Intel Core i7 3.50 GHz
processor running Linux Ubuntu and a single NVIDIA GeForce GT 630 GPU
with 96 cores. The graphics card has a total of 4095 MB RAM, but 2048 MB is
dedicated to video. We implement our algorithm in CUDA version 7.5.

Table 1. Graphs used in our experiments (All graphs have an average outdegree of 2).

Graphs Name � of vertices � of arcs Maximum

outdegree

Standard

deviation

of

outdegree

Median of

outdegree

New York City [1] New York 264,346 733,846 8 1.24 3

Colorado [1] Colorado 435,666 1,057,066 8 1.02 2

roadNet-PA [2] Pennsylvania 1,090,903 3,083,796 20 1.31 3

Northwest USA [1] Northwest 1,207,945 2,840,208 9 1.00 2

California and Nevada [1] CalNev 1,890,815 4,657,742 8 1.05 3

roadNet-CA [2] California 1,971,278 5,533,214 12 1.28 3

Western USA [1] Western 6,262,104 15,248,146 9 1.02 3

Results. Table 2 compares our algorithm with some related work in terms of
space complexity, number of kernel launches, frequency of CPU-GPU commu-
nication, the number of atomic statements and speed up over Harish et al.’s
algorithm. Notice that our approach provides the best speed up while minimiz-
ing other factors. The most recent approaches that outperform Harish et al.’s
algorithm belong to [16,25,26] with a speed up of at most 2.6 (see Table 2).
Figure 3 illustrates our experimental results in comparison with Harish et al.’s.
We have run both algorithms on the same platform and same graphs. Observe
that in all graphs our algorithm outperforms Harish et al.’s algorithm signifi-
cantly. Specifically, we get a speed up from 3.36 for CalNev to 5.77 for California.
Notice that Western (see Fig. 3) is the largest sparse graph in our experiments
with 6.2 million vertices and more than 15 million arcs. Our algorithm solved
SSSP for Western in about 4.9 s, whereas Harish et al.’s algorithm took 24.7 s!
Moreover, for the road networks of California and Nevada, our implementation
solves SSSP in almost 3.5 s on an NVIDIA GeForce GT 630 GPU, whereas (1)
Davidson et al.’s [8] method takes almost 4 s on an NVIDAI GTX 680 GPU; (2)
Boost library [24] takes 588 ms; (3) LoneSatr [4] takes 3.9 s, and (4) H-BF [5]
takes 720 ms on an NVIDIA (Kepler) GeForce GTX 780. Observe that given the
weak GPU available to us, our implementation performs well and outperforms
some of the aforementioned approaches.
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Table 2. Comparison with related work

Summarizing all related works

Methods/criteria Space
com-
plexity

� of
kernel
launches

CPU-GPU
communica-
tion (# per
host iteration)

� of
atomic
stmts

Speed up
over Harish

Harish et al. [12,13] 4V + 2A 2 ≥1 1 –

Chaibou et al. [6] V2 + 3V 2 ≥1 1 –

Singh et al. [26] 3V + 2A 1 ≥1 1 2.5×
Singh et al. [25] 4V + 2A 2 ≥1 2 1.9×–2.6×
Busato et al. [5] 4V + 2A 2 ≥1 2 –

Ortega et al. [20,21] 5V + 2A 3 ≥1 1 –

Proposed algorithm 4V + 2A 1 <1 1 3.36×–5.77×

Number of kernel launches. The number of kernel launches in each iteration
of the host algorithm has a direct impact on time efficiency; the lower the number
of kernel launches, the better. Observe that our algorithm and that of Singh et al.
[26] outperform the rest.

New York ColoradoPennsylvaniaNorthwest CalNev California Western

0

1

2

·104

131 365 98
1565

3572

183

4838

509
1545

565

7348

12028

1057

24796

M
il
li

S
e
c
o
n
d

(m
se

c
)

Proposed approach Harish

Fig. 3. Time efficiency of the proposed approach vs. Harish et al.’s [12,13].

Number of atomic statements. While the use of atomic statements helps
in data race-freedom, they are considered heavy-weight instructions. As such,
we would like to minimize the number of atomic statements. In addition to our
algorithm and Harish et al.’s [12,13], Singh et al. [26], Chaibou et al. [6] and
Ortega et al. [20,21] present algorithms with just one atomic statement. Chaibou
et al. [6] evaluate the cost of memory copy between CPU and GPU. Ortega et al.
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[20,21] propose an algorithm based on Dijkstra’s algorithm to find SSSP. Their
method extends Martin et al.’s [17] and Crauser et al.’s [7]. To increase the degree
of parallelism in Dijkstra’s algorithm, Martin et al. [17] consider all vertices from
frontier with minimum distances to do the relaxation simultaneously. Crauser
et al. [7] improve this method by proposing a threshold. Their idea is based
on maximizing the number of relaxations in each iteration while preserving the
correctness of Dijkstra’s algorithm. Ortega et al. [20,21] implement these two
ideas on GPUs. Nasre et al. [19] claim that atomic-free algorithms perform more
efficiently than the algorithms that use atomic statements. Their results show a
small time improvement for SSSP.

Speed up over Harish’s. We include a column in Table 2 to illustrate how
much speed up our algorithms provide compared with Harish et al.’s work. Notice
that our algorithm improves time efficiency in comparison to other methods.

3.5 Locality-Based Relaxation

This section analyzes the impact of locality-based relaxation on time efficiency.
To validate the proposed hypotheses in Sect. 3.1, we have conducted a few com-
parative experiments on graphs NY, CN and WUS in Table 3. We consider two
criteria: one is the value of k that determines how far relaxations would go when
updating d[v] for some vertex v, and the other one is the impact of thread-vertex
affinity. As such, we replace the original weights in the road network graphs of
New York City, California-Nevada and Western USA with random values in the
interval [1..10]; the actual weights are irrelevant for this experiment. This change
enables faster runs of our algorithm on the aforementioned graphs.

Figure 4 illustrates the results of our experiments. Observe that as the value
of k is increased from k = 1 the time costs decrease until we reach k = 4. From
k = 4 to k = 5 we do not observe a significant decrease in time costs since
the threads get saturated in terms of their workload. Moreover, determining the
best value of k seems to be dependent on a few factors such as (i) the graph
being processed; (ii) the algorithm, and (iii) the platform. In the context of our
setting, k = 4 seems to be the best value. Moreover, we notice that assigning two
vertices to one thread increases the workload of each thread and decreases the
execution time (see Fig. 4), but assigning more than 2 vertices does not result in
a significant performance improvement.

Table 3. Revised graphs used in our experiments.

Graphs Acronym Description

New York City [1] NY Replaced the original arc weights with some
random value between 1 and 10 (inclusive)

California and Nevada [1] CN Same as above

Western USA [1] WUS Same as above
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Fig. 4. Impact of locality-based relaxation and association of threads to vertices on
execution time.

4 Discussion

In this section, we discuss some ideas that can potentially result in a more
efficient GPU implementation that solves SSSP and its variants. In our experi-
ence, there are a few factors that have a direct impact on the time/space/work
efficiency of a GPU implementation for SSSP. First, minimizing CPU-GPU
communication can have a significant impact on time efficiency of CUDA pro-
grams. For this reason, we design our algorithm in a way that for N iterations
of the host there is no communication between the GPU and the CPU. We
experimentally observe that this design decision made a significant difference in
decreasing the overall execution time. Second, the data structure that keeps
the frontier vertices, has a noticeable impact on both space and time efficiency.
Most existing methods use a queue. The operations performed on queues include
enqueue, dequeue and extractMin, which may become costly depending on the
graph being processed. A flag array keeps track of the frontier by a bit pattern,
where each vertex v has a corresponding bit indicating whether v’s distance got
updated in the last round. The use of queues may cause another problem where
two different threads update the same vertex v at different times and enqueue v,
called vertex duplication (addressed by Davidson et al. [8]). Moreover, using flag
arrays allows programmers to devise a well-thought schedule for threads towards
avoiding data races; hence decreasing the number of required atomic statements.
Third, the number of kernel launches and the way we launch them is influ-
ential. We observe that having fewer number of kernel launches in each iteration
of the host is useful, but on-demand kernel launches do not help; rather it is bet-
ter to have a fixed number of threads that are loaded with useful work in each
launch. Thus, it is important to design algorithms in which all threads perform
useful work in each launch (see Sect. 3.5). We also note that, in the context of
our work, replacing atomic operations with busy waiting (as suggested by Nasre
et al. [19]) does not improve the efficiency of our implementation. Finally, the
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scalability of the proposed algorithm is a challenge in that the GPU memory
is limited but there is a constant need for solving SSSP in larger graphs.

5 Conclusions and Future Work

This paper presented an efficient GPU-based algorithm for solving the SSSP
problem based on a novel idea of locality-based relaxation, where we allow a
thread to relax all vertices up to k steps away from the current vertex. We also
devised a mechanism for systematic scheduling of threads using flag arrays where
each bit represents whether a thread should execute in a kernel launch. The pro-
posed scheduling approach enables a communication-efficient method (in the
CUDA programming model) that minimizes the number of kernel launches, the
number of atomic operations and the frequency of CPU-GPU communication
without any need for thread synchronization. The proposed algorithm solves
the SSSP problem on large graphs (representing road networks) with up to
6.2 million vertices and 15 million arcs in a few seconds, outperforming existing
methods. As for the extensions of this work, we would like to leverage our pro-
posed technique in solving search problems (e.g., DFS, BFS) on large graphs.
We also plan to investigate the application of our GPU-based implementation in
devising efficient model checking algorithms. Finally, we will study a multi-GPU
implementation of our algorithm towards processing even larger graphs.
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Abstract. A concurrent application consists of a set of concurrently
executing interacting processes. Although earlier we proposed work
automata to specify both computation and interaction of such a set
of executing processes, a detailed formal semantics for them was left
implicit. In this paper, we provide a formal semantics for work automata,
based on which we introduce equivalences such as weak simulation and
weak language inclusion. Subsequently, we define operations on work
automata that simplify them while preserving these equivalences. Where
applicable, these operations simplify a work automaton by merging its
different states into a state with a ‘more inclusive’ state-invariant. The
resulting state-invariant defines a region in a multidimensional real vector
space that potentially contains holes, which in turn expose mutual exclu-
sion among processes. Such exposed dependencies provide additional
insight in the behavior of an application, which can enhance schedul-
ing. Our operations, therefore, potentially expose implicit dependencies
among processes that otherwise may not be evident to exploit.

1 Introduction

Shared resources in a concurrent application must be protected against concur-
rent access. Mutual exclusion protocols offer such protection by granting access
to a resource only if no other process has access. Moreover, concurrent appli-
cations often require some of their tasks to execute in some specific order. It
is customary to implement both mutual exclusion and execution order among
(sub-)tasks by means of locks. This practice suffers from two main drawbacks:
First, contention on the shared resources results in blocked processes, which may
lead to idle processors. Second, lock implementations introduce overhead that
can become significant when executed repeatedly.

Alternatively, smart scheduling of processes can also offer protection against
concurrent access, without suffering from drawbacks of locks. Suppose we have a
crystal ball that accurately reveals when each process accesses its resources and
their proper order of execution. We can then use this information to synthesize
a scheduler that executes the processes in the correct order and prevents concur-
rent access to shared resources by speeding up or slowing down the execution of
each process. Locks now become redundant, and their overhead can be avoided.
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In practice we have no such crystal ball for such accurate predictions. We
can, however, take a step in the right direction by imagining the picture that we
would see, if we had one. In our previous paper, we formalized such picture by
introducing work automata [4]. A work automaton consists of states and tran-
sitions. Variables, called jobs, measure progress of all processes in a concurrent
application. Each state admits a boolean constraint over jobs, called a state-
invariant, that defines the amount of work that can be done before a process
blocks. Each transition consists of three parts: (1) a set of ports, called a syn-
chronization constraint, that defines access to resources; (2) a boolean constraint
over jobs, called a guard, that defines the amount of work that must be done
before a transition can be fired; and (3) a set of jobs, called a reset, that identifies
the jobs whose progress must be reset to zero.

The original definition of work automata in [4] left state-invariants, resets,
and the formal semantics of work automata implicit, as this simpler model ade-
quately served the purpose of that paper. In the current work (Sect. 2), however,
we extend the generality of the work automata model by introducing state-
invariants and explicit reset of jobs. We define the formal semantics of work
automata by means of labeled transition systems.

Compositionality is one of the most important features of work automata.
Many small work automata compose into a single large automaton that models
the behavior of the complete application. In view of state space explosion, a large
number of states in a work automaton complicates its analysis. In Sect. 3, we
show by means of an example that some large work automata can be simplified to
their respectively “equivalent” single state work automata. The state-invariant
of the single state of such a resulting automaton defines a region in a multidi-
mensional real vector space. Geometric features of this region reveal interesting
behavioral properties of the corresponding concurrent application. For example,
(explicit or implied) mutual exclusion in an application corresponds to a hole in
its respective region, and non-blocking executions correspond to straight lines
through this region. Since straight lines are easier to detect than non-blocking
executions, the geometric perspective provides additional insight into the behav-
ior of an application. We postulate that such information may be used to develop
a smart scheduler that avoids the drawbacks of locks.

Motivated by our example, we define in Sect. 3 two procedures, called trans-
lation and contraction, that simplify a given work automaton by minimizing
its number of states. We define weak simulation of work automata, and provide
conditions (Theorems 1 and 2) under which translation and contraction preserve
weak simulation. In Sect. 4, we discuss related work, and in Sect. 5 we conclude
and point out future work.

2 Work Automata

Work automata, introduced in [4], originate from the need to represent progress-
ing parallel tasks as a single automaton. In this section, we define work automata,
their semantics, and operators such as composition and hiding. Our current def-
inition of work automata differs from the original definition in [4] in two ways.
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First, our current definition of work automata includes explicit resets, while the
original definition left this implicit. In Sect. 3.2, we use explicit resets to define a
shifting operator that simplifies work automata. Second, our current definition of
work automata includes state-invariants, while the original definition left them
implicit. We use our explicit state-invariants to simplify the semantics of work
automata, to simplify the composition of work automata, and, in Sect. 3.1, to
allow for more compact representations of an automaton.

2.1 Syntax

Consider an application A that consists of n ≥ 1 concurrently executing processes
X1, . . . , Xn. We measure the progress of each process Xi in A by a positive real
variable xi ∈ R+, called a job, and represent the current progress of application
A by a map p : J → R+, where J = {x1, . . . , xn} is the set of all jobs in A. We
regulate the progress using boolean constraints φ ∈ B(J) over jobs:

φ ::= � | ⊥ | x ∼ n | φ0 ∧ φ1 | φ0 ∨ φ1, (1)

with ∼ ∈ {≤,≥,=}, x ∈ J a job and n ∈ N0 ∪ {∞}. We define satisfaction
p |= φ of a progress p : J → R+ and a constraint φ ∈ B(J) by the following
rules: p |= x ∼ n, if p(x) ∼ n; p |= φ0∧φ1, if p |= φ0 and p |= φ1; p |= φ0∨φ1,
if p |= φ0 or p |= φ1. The interface of application A consists of a set of ports
through which A interacts with its environment via synchronous operations, each
one involving a subset N ⊆ P of its ports.

We define the exact behavior of a set of processes as a labeled transition
system called a work automaton. The progress value p(x) of job x may increase
in a state q of a work automaton, as long as the state-invariant I(q) ∈ B(J) is
satisfied. A state-invariant I(q) defines the amount of work that each process can
do in state q before it blocks. A transition τ = (q,N,w,R, q′) allows the work
automaton to reset the progress of each job x ∈ R ⊆ J to zero and change to
state q′, provided that the guard, defined as synchronization constraint N ⊆ P
together with the job constraint w ∈ B(J), is satisfied. That is, the transition
can be fired, if the environment is able to synchronize on the ports N and the
current progress p : J → R+ of A satisfies job constraint w.

Definition 1 (Work automata). A work automaton is a tuple (Q,P, J, I,→
, φ0, q0) that consists of a set of states Q, a set of ports P , a set of jobs J , a state
invariant I : Q → B(J), a transition relation → ⊆ Q × 2P × B(J) × 2J × Q, an
initial progress φ0 ∈ B(J), and an initial state q0 ∈ Q.

Example 1 (Mutual exclusion). Figure 1 shows the work automata of two iden-
tical processes A1 and A2 that achieve mutual exclusion by means of a global
lock L. The progress of process Ai is recorded by its associated job xi, and the
interface of each process Ai consists of two ports ai and bi. Suppose we ignore
the overhead of the mutual exclusion protocol. Then, lock L does not need a job
and its interface consists of ports a1, a2, b1, and b2. Each process Ai starts in
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Fig. 1. Mutual exclusion of processes A1 and A2 by means of a lock L.

state 0 with φ0 := xi = 0 and is allowed to execute at most one unit of work,
as witnessed by the state-invariant xi ≤ 1. After finishing one unit of work, Ai

starts to compete for the global lock L by synchronizing on port ai of lock L.
When Ai succeeds in taking the lock, then lock L changes its state from − to +
and process Ai moves to state 1, its critical section, and resets the progress value
of job xi to zero. Next, process Ai executes one unit of work in its critical section.
Finally, Ai releases lock L by synchronizing on port bi, executes asynchronously
its last unit of work in state 2, and resets to state 0. ♣

2.2 Semantics

We define the semantics of a work automaton A = (Q,P, J, I,→, φ0, q0) by means
of a finer grained labeled transition system [[A]] whose states are configurations:

Definition 2 (Configurations). A configuration of a work automaton A is a
pair (p, q) ∈ R

J
+ ×Q, where p : J → R+ is a state of progress, and q ∈ Q a state.

The transitions of [[A]] are labeled by two kinds of labels: one for advancing
progress of A and one for changing the current state of A. To model advance of
progress of A, we use a map d : J → R+ representing that d(x) units of work
has been done on job x. Such a map induces a transition

(p, q) d−→ (p + d, q), (2)

where + is component-wise addition of maps (i.e., (p + d)(x) = p(x) + d(x), for
all x ∈ J). Figure 2(a) shows a graphical representation of transition (2). A state
of progress p of A corresponds to a point in the plane.

In practice, the value of each job x ∈ J continuously evolves from p(x) to
p(x) + d(x). We assume that, during transition (2), each job makes progress
at a constant speed. This allows us to view the actual execution as a path
γ : [0, 1] → R

J
+ defined by γ(c) = p+ c ·d, where R

J
+ is the set of maps from J to

R+ and · is component-wise scalar multiplication (i.e., (p+c·d)(x) = p(x)+c·d(x),
for all x ∈ J). At any instant c ∈ [0, 1], the state of progress p+ c ·d must satisfy
the current state-invariant I(q). Figure 2(a) shows execution γ as the straight
line connecting p and p + d. For every c ∈ [0, 1], state of progress γ(c) = p + c · d
corresponds to a point on the line from p to p + d. Note that, since we have a
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transition from p to p+ c · d in [[A]] for all c ∈ [0, 1], Fig. 2(a) provides essentially
a finite representation of an infinite semantics, i.e., one with an infinite number
of transitions through intermediate configurations between (p, q) and (p + d, q).
In Sect. 3.1, we use this perspective to motivate our gluing procedure.

The transition in (2) is possible only if the execution does not block between
p and p+d, i.e., state of progress p+c ·d satisfies the state-invariant I(q) of q, for
all c ∈ [0, 1]. Since I(q) defines a region {p ∈ R

J
+ | p |= I(q)} of a |J |-dimensional

real vector space, the non-blocking condition just states that the straight line γ
between p and p + d is contained in the region defined by I(q) (see Fig. 2(a)).

x1

x2

I(q)p

p + d
γ

(a) Progress

x1

x2

I(q)

w ∧ I(q)
p p[{x1}]

x1

x2

I(q′)

(b) State transition with reset

Fig. 2. Progress (a) of the application along the path γ in I(q) from p to p + d, and
(b) transition from state q to q′ with reset of job x1.

A transition τ = (q,N,w,R, q′) changes the state of the current configuration
from q to q′, if the environment allows interaction via N and the current state
of progress p satisfies job constraint w. As a side effect, the progress of each job
x ∈ R resets to zero. Such state changes occur on transitions of the form

(p, q) N−→ (p[R], q′), (3)

where p[R](x) = 0, if x ∈ R, and p[R](x) = p(x) otherwise. Figure 2(b) shows a
graphical representation of transition (3). The current state of progress satisfies
both the current state-invariant and the guard of the transition, which allows to
change to state q′ and reset the value of x1 to zero. For convenience, we allow
at every configuration (p, q) an ∅-labeled self loop which models idling.

Definition 3 (Operational semantics). The semantics of a given work
automaton A = (Q,P, J, I,→, φ0, q0) is the labeled transition system [[A]] with
states (p, q) ∈ R

J
+ × Q, labels R

J
+ ∪ 2P , and transitions defined by the rules:

d : J → R+, ∀c ∈ [0, 1] : p + c · d |= I(q)

(p, q) d−→ (p + d, q)
(S1)

τ = (q,N,w,R, q′) ∈ →, p |= w ∧ I(q), p[R] |= I(q′)

(p, q) N−→ (p[R], q′)
(S2)

(p, q) ∅−→ (p, q)
(S3)

where p[R](x) = 0, if x ∈ R, and p[R](x) = p(x) otherwise.
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Based on the operational semantics [[A]] of a work automaton A, we define
the trace semantics of a work automaton. The trace semantics defines all finite
sequences of observable behavior that are accepted by the work automaton.

Definition 4 (Actions, words). Let P be a set of ports and J a set of jobs.
An action is a pair [N, d] that consist of a set of ports N ⊆ P and a progress
d : J → R+. We write ΣP,J for the set of all actions over ports P and jobs J .
We call the action [∅,0], with 0(x) = 0 for all x ∈ J , the silent action. A word
over P and J is a finite sequence u ∈ Σ∗

P,J of actions over P and J .

Definition 5 (Trace semantics). Let A = (Q,P, J, I,→, φ0, q0) be a work
automaton. A run r of A over a word ([Ni, di])n

i=1 ∈ Σ∗
P,J is a path

r : (p0, q0)
N1−−→ d1−→ s1 · · · sn−1

Nn−−→ dn−→ sn

in [[A]], with p0 |= φ0 ∧ I(q0). The language L(A) ⊆ Σ∗
P,J of A is the set of all

words u for which there exists a run of A over u.

Example 2. The language of the process Ai in Fig. 1(a) trivially contains the
empty word, and the word u = [∅,1][{a},1][{b},1], where 1(xi) = 1. Using
Definitions 3 and 5, we conclude that v = [∅,1][{a},1][{b},0.5][∅,0.5], with
0.5(xi) = 0.5, is also accepted by Ai. Note that we can obtain v from u by
splitting [{b},1] into [{b},0.5][∅,0.5]. ♣

2.3 Weak Simulation

Different work automata may have similar observable behavior. In this section,
we define weak simulation as a formal tool to show their similarity. Intuitively,
a weak simulation between two work automata A and B can be seen as a map
that transforms any run of A into a run of B with identical observable behavior.

Following Milner [13], we define a new transition relation, ⇒, on the opera-
tional semantics [[A]] of a work automaton A that ‘skips’ silent steps.

Definition 6 (Weak transition relation). For any two configurations s and
t in [[A]], and any a ∈ R

J
+ ∪ 2P we define s

a=⇒ t if and only if either

1. a = ∅ and s ( ∅−→)∗ t; or

2. a ∈ 2P \ {∅} and s
∅=⇒ s′ a−→ s′′ ∅=⇒ t; or

3. a ∈ R
J
+, s

∅=⇒ s1
c1·a−−→ t1

∅=⇒ s2 · · · tn−1
∅=⇒ sn

cn·a−−−→ tn
∅=⇒ t, and

∑n
i=1 ci = 1,

with n ≥ 1, si, ti configurations in [[A]], ci ∈ [0, 1], (ci · a)(x) = ci · a(x), for all
x ∈ J and all 1 ≤ i ≤ n.

Definition 7 (Weak simulation). Let Ai = (Qi, P, J, Ii,→i, φ0i, q0i), for i ∈
{0, 1} be two work automata, and let � ⊆ (RJ

+ × Q0) × (RJ
+ × Q1) be a binary

relation over configurations of A0 and A1. Then, � is a weak simulation of A0

in A1 (denoted as A0 � A1) if and only if
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1. p00 |= φ00 ∧ I0(q00) implies (p00, q00) � (p01, q01), with p01 |= φ01 ∧ I1(q01);
2. s � t and s

a−→ s′, with a ∈ R
J
+ ∪ 2P , implies t

a=⇒ t′ and s′ � t′, for some t′.

We call � a weak bisimulation if and only if � and its inverse �−1 = {(t, s) |
s � t} are weak simulations. We call A0 and A1 weakly bisimilar (denoted as
A0 ≈ A1) if and only if there exists a weak bisimulation between them.

2.4 Composition

Thus far, our examples used work automata to define the exact behavior of a
single job (or just a protocol L in Fig. 1(b)). We now show that work automata
are expressive enough to define the behavior of multiple jobs simultaneously. To
this end, we define a product operator × on the class of all work automata. Before
we turn to the definition, we first introduce some notation. For i ∈ {0, 1}, let Ai =
(Qi, Pi, Ji, Ii,→i, φ0i, q0i) be a work automaton and let τi = (qi, Ni, wi, Ri, q

′
i) ∈

→i be a transition in Ai. We say that τ0 and τ1 are composable (denoted as
τ0 � τ1) if and only if N0 ∩ P1 = N1 ∩ P0. If τ0 � τ1, then we write τ0 | τ1 =
((q0, q1), N0 ∪ N1, w0 ∧ w1, R0 ∪ R1, (q′

0, q
′
1)) for the composition of τ0 and τ1.

Definition 8 (Composition). Let Ai = (Qi, Pi, Ji, Ii,→i, φ0i, q0i), i ∈ {0, 1},
be two work automata. We define the composition A0 × A1 of A0 and A1 as the
work automaton (Q0 ×Q1, P0 ∪P1, J0 ∪J1, I0 ∧I1,→, φ00 ∧φ01, (q00, q01)), where
→ is the smallest relation that satisfies:

i ∈ {0, 1}, τi ∈ →i, τ1−i ∈ →1−i ∪ {(q, ∅,�, ∅, q) | q ∈ Q1−i}, τ0 � τ1
τ0 | τ1 ∈ →

By means of the composition operator in Definition 8, we can construct large
work automata by composing smaller ones. The following lemma shows that the
composite work automaton does not depend on the order of construction.

Lemma 1. (A0×A1)×A2 ≈ A0×(A1×A2), A0×A1 ≈ A1×A0, and A0×A0 ≈
A0, for any three work automata A0, A1, and A2.

Example 3. Consider the work automata from Example 1. The behavior of the
application is the composition M of the two processes A1 and A2 and the lock
L. Figure 3 shows the work automaton M = L × A1 × A1. Each state-invariant
equals � ∧ x1 ≤ 1 ∧ x2 ≤ 1. The competition for the lock is visualized by the
branching at the initial state 00. ♣

2.5 Hiding

Given a work automaton A and a port a in the interface of A, the hiding operator
A \ {a} removes port a from the interface of A. As a consequence, the hiding
operator removes every occurrence of a from the synchronization constraint N
of every transition (q,N,w,R, q′) ∈ → by transforming N to N \ {a}. In case N
becomes empty, the resulting transition becomes silent. If, moreover, the source
and the target states of a transition are identical, we call the transition idling.
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Fig. 3. The complete application M = L × A1 × A2. In state q1q2, lock L is in state
(−1)q1+q2+1 and process Ai is in state qi.

Definition 9 (Hiding). Let A = (Q,P, J, I,→, φ0, q0) be a work automaton,
and M ⊆ P a set of ports. We define A \ M as the work automaton (Q,P \
M,J,→M , φ0, q0), with →M = {(q,N \ M,w,R, q′) | (q,N,w,R, q′) ∈ →}.
Lemma 2. Hiding partially distributes over composition: M ∩ P0 ∩ P1 = ∅
implies (A0 × A1) \ M ≈ (A0 \ M) × (A1 \ M), for any two work automata
A0 and A1 with interfaces P0 and P1, respectively.

Example 4. Consider the work automaton M in Fig. 3. Work automaton M ′ =
M \ {a, b} is M where every occurrence of {a} or {b} is substituted by ∅. ♣

3 State Space Minimization

The composition operator from Definition 8 may produce a large complex work
automaton with many different states. In this section, we investigate if, and how,
a set of states in a work automaton can be merged into a single state, without
breaking its semantics. In Sect. 3.1, we present by means of an example the
basic idea for our simplification procedures. We define in Sect. 3.2 a translation
operator that removes unnecessary resets from transitions. We define in Sect. 3.3
a contraction operator that identifies different states in a work automaton. We
show that translation and contraction are correct by providing weak simulations
between their pre- and post-operation automata.

3.1 Gluing

The following example illustrates an intuitive gluing procedure that relates the
product work automaton M in Fig. 3 to the punctured square in Fig. 4(b). For-
mally, we define the gluing procedure as the composition of translation (Sect. 3.2)
and contraction (Sect. 3.3).
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Fig. 4. Graphical representation (a) of semantics [[M ′]] of the work automaton M ′ in
Example 4, where white regions represent state-invariants, and (b) result after gluing
the regions in (a). Starting in a configuration below line α and above line β, parallel
execution of x1 and x2 never blocks on lock L.

Example 5 (Gluing). Consider the work automaton M ′ in Example 4 that
describes the mutual exclusion protocol for two processes. Our goal is to sim-
plify M ′ to a work automaton K that simulates M ′. To this end, we introduce
in Fig. 4(a) a finite representation of the infinite semantics [[M ′]] of M ′, based
on the geometric interpretation of progress discussed in Sect. 2.2. For any given
state q of M ′, the state-invariant I(q) = x1 ≤ 1 ∧ x2 ≤ 1 is depicted in Fig. 4(a)
as a region in the first quadrant of the plane. Each configuration (p, q) of M ′

corresponds to a point in one of these regions: q determines its corresponding
region wherein point p resides. Each transition of M ′ is shown in Fig. 4(a) as a
dotted arrow from the border of one region to that of another region. We refer
to these dotted arrows as jumps. A jump λ from a region R of state q to another
region R′ of state q′ represents infinitely many transitions from configurations
(p, q) to configurations (p′, q′), for all p and p′, as permitted by the semantics
[[M ′]]. By the job constraint of the transition corresponding to λ, p and p′ must
lie on the borders of R and R′, respectively, that are connected by λ.

From a topological perspective, a jump from one region to another can be
viewed as ‘gluing’ the source and target configuration of that jump. We can glue
any two regions in Fig. 4(a) together by putting regions (i.e., state-invariants) of
the source and the target states side by side to form a single state with a larger
region. Each jump in Fig. 4(a) from a source to a target state corresponds to
an idling transition (c.f., rule (S3) in Definition 3) within a single state. When
we apply this gluing procedure in a consistent way to every jump in Fig. 4(a),
we obtain a single state work automaton K that is defined by a single large
region, as shown in Fig. 4(b). Figure 5 shows the actual work automaton that
corresponds to this region. Note that the restart transition allows the state of
progress to jump in Fig. 4(a) from configuration ((x, 1), i2) to ((x, 0), i0) and
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Fig. 5. Work automaton K that corresponds to Fig. 4(b).

from configuration ((1, y), 2j) to ((0, y), 0j), for all x, y ∈ [0, 1] and i, j ∈ {0, 1, 2}.
Thus, the restart transition identifies opposite boundaries in Fig. 4(b), turning
the punctured square into a torus. ♣

The next example shows that the geometric view of the semantics of the work
automaton in Example 5 reveals some interesting behavioral properties of M ′.

Example 6. Consider the mutual exclusion protocol in Example 1. Is it possible
to find a configuration such that parallel execution of jobs x1 and x2 (at identical
speeds) never blocks, even temporarily, on lock L? It is not clear from the work
automata in Fig. 1 (or in their product automaton as, e.g., in Fig. 3) whether
such a non-blocking execution exists. Since only one process can acquire lock L,
the execution that starts from the initial configuration blocks after one unit of
work. However, using the geometric perspective offered by Fig. 4(b) and the fact
that a parallel execution of jobs x1 and x2 at identical speeds correspond to a
diagonal line in this representation, it is not hard to see that any execution path
below line α and above line β is non-blocking. ♣

Regions of lock-free execution paths as revealed in Example 6 are interesting:
if some mechanism (e.g., higher-level semantics of the application or tailor-made
scheduling) can guarantee that execution paths of an application remains con-
tained within such lock-free regions, then their respective locks can be safely
removed from the application code. With or without such locks in an applica-
tion code, a scheduler cognizant of such lock-free regions can improve resource
utilization and performance by regulating the execution of the application such
that its execution path remains in a lock-free region.

Example 7 (Correctness). Let M ′ be the work automaton in Example 4, and
K the work automaton in Fig. 5. We denote a configuration of M ′ as a tuple
(p1, p2, q0, q1, q2), where pi ∈ R+ is the state of progress of job xi, for i ∈ {0, 1},
and (q0, q1, q2) ∈ {−,+}×{0, 1, 2}2 is the state of M ′. We denote a configuration
of K as a tuple (p1, p2, 0), where pi ∈ R+ is the state of progress of job xi, for
i ∈ {0, 1}. The binary relation � over configurations of M ′ and K defined by
(p1, p2, q0, q1, q2) � (q1 + p1, q2 + p2, 0), for all 0 ≤ pi ≤ 1 and (q0, q1, q2) ∈
{−,+} × {0, 1, 2}2, is a weak simulation of M ′ in K.

Note that �−1 is not a weak simulation of K in M ′ due to branching. Consider
the configurations s = (1, 1,−, 0, 0) and s′ = (0, 1,+, 1, 0) of M ′, and t = (1, 1, 0)
of K (cf., Figs. 4(a) and (b)). While in configuration t job x2 can make progress,
execution of x2 is blocked at s′ because process A1 has obtained the lock. Since
s′ � t, we conclude that �−1 is not a weak simulation of K in M ′.
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Fortunately, we can still prove that K is a correct simplification of M by
transform �−1 into a weak simulation. Intuitively, such transformation remove
pairs like (t, s′) ∈ �−1. We make this argument formal in Sect. 3.3. ♣

As illustrated in Example 6, gluing can reveal interesting and useful proper-
ties of an application. To formalize the gluing procedure, we define two operators
on work automata. The main idea is to transform a given work automaton A1

into an equivalent automaton A2, such that (almost) any step (p1, q1)
∅−→ (p′

1, q
′
1)

in [[A1]] corresponds with an idling step (p2, q2)
∅−→ (p′

2, q
′
2) in [[A2]], i.e., a step

with p′
2 = p2 and q′

2 = q2. To achieve this correspondence, we define a translation
operator that ensures p′

2 = p2, and a contraction operator that ensures q′
2 = q2.

3.2 Translation

In this section, we define the translation operator that allows us to remove resets
of jobs from transitions. The following example shows that removal of job resets
can be compensated by shifting the state-invariant of the target state.

Example 8 (Shifting). Suppose we remove the reset of job x on the transition
of work automaton A in Fig. 6(a). If we fire the transition at x = a ≤ 1, then
the state of progress of x in state 1 equals a instead of 0. We can correct this
error by shifting the state-invariant of 1 by a, for every a ≤ 1. We, therefore,
transform the state-invariant of 1 into x ≤ 2 (see Fig. 6(b)). ♣

The transformation of work automata in Example 8 suggests a general trans-
lation procedure that, intuitively, (1) shifts each state-invariant I(q), q ∈ Q,
along the solutions of some job constraint θ(q) ∈ B(J), and (2) removes for
every transition τ = (q,N,w,R, q′) some resets ρ(τ) ⊆ J from R.

Definition 10 (Shifts). A shift on a work automaton (Q,P, J, I,−→, φ0, q0)
is a tuple (θ, ρ) consisting of a map θ : Q → B(J) and a map ρ : −→ → 2J .

We define how to shift state-invariants along the solutions of a job constraint.

Definition 11. Let φ, θ ∈ B(J) be two job constraints with free variables among
x = (x1, . . . , xn), n ≥ 0. We define the shift φ ↑ θ of φ along (the solutions of)
θ as any job constraint equivalent to ∃t(φ(x − t) ∧ θ(t)).

Lemma 3. ↑ is well-defined: for all φ, θ ∈ B(J) there exists ψ ∈ B(J) such that
∃t(φ(x − t) ∧ θ(t)) ≡ ψ.

Fig. 6. Shifting state-invariant x ≤ 1 of state 1 in A by one unit.
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We use a shift (θ, ρ) to translate guards and invariants along the solutions of
job constraint θ and to remove resets occurring in ρ:

Definition 12 (Translation). Let σ = (θ, ρ) be a shift on a work automaton
A = (Q,P, J, I,→, φ0, q0). We define the translation A ↑ σ of A along the shift σ
as the work automaton (Q,P, J, Iσ,→σ, φ0 ↑ θ(q0), q0), with Iσ(q) = I(q) ↑ θ(q)
and →σ = {(q,N,w ↑ θ(q), R \ ρ(τ), q′) | τ = (q,N,w,R, q′) ∈ →}.
Lemma 4. If θ ∈ B(J) has a unique solution δ |= θ, then p + δ |= φ ↑ θ
implies p |= φ, for all p ∈ R

J
+ and φ ∈ B(J).

Theorem 1. If p |= w ∧ I(q) and δ |= θ(q) implies (p + δ)[R \ ρ(τ)] − p[R] |=
θ(q′), for every transition τ = (q,N,w,R, q′) and every p, d ∈ R

J
+, then A � A ↑

σ. If, moreover, θ(q) has for every q ∈ Q a unique solution, then A ≈ A ↑ σ.

For at transition τ = (q,N,w,R, q′), suppose θ(q) and θ(q′) define unique
solutions δ and δ′, respectively. If σ eliminates job x ∈ R (i.e., x ∈ ρ(τ)), then
p(x) + δ(x) = δ′(x), for all p |= w ∧ I(q). Thus, w ∧ I(q) must imply x =
δ′(x) − δ(x), which seems a strong assumption. For a deterministic application,
however, it makes sense to have only equalities in transition guards. In this case,
a transition is enabled only when a job finishes some fixed amount of work, which
corresponds to having only equalities in transition guards.

Example 9. Let M ′ be the work automata in Example 4, σ = (δ, ρ) the shift
defined by θ(q) := x1 = q1 ∧ x2 = q2, and ρ(τ) = Rτ . Theorem 1 shows that
M ′ ↑ σ and M ′ are weakly bisimilar. ♣

3.3 Contraction

In this section, we define a contraction operator that merges different states into
a single state. To determine which states merge and which stay separate, we use
an equivalence relation ∼ on the set of states Q.

Definition 13 (Kernel). A kernel of a work automaton A is an equivalence
relation ∼ ⊆ Q × Q on the state space Q of A.

Recall that an equivalence class of a state q ∈ Q is defined as the set [q] =
{q′ ∈ Q | q ∼ q′} of all q′ ∈ Q related to q. The quotient set of Q by ∼ is
defined as the set Q/∼ = {[q] | q ∈ Q} of all equivalence classes of Q by ∼. By
transitivity, distinct equivalence classes are disjoint and Q/∼ partitions Q.

Definition 14 (Contraction). The contraction A/∼ of a work automaton
A = (Q,P, J, I,→, φ0, q0) by a kernel ∼ is defined as (Q/∼, P, J, I ′,→′, φ0, [q0]),
where →′ = {([q], N,w,R, [q′]) | (q,N,w,R, q′) ∈ →} and I ′([q]) =

∨
q̃∈[q] I(q̃).

The following results provides sufficient conditions for preservation of weak
simulation by contraction. The relation � defined by (p, [q]) � (p, q), for all
(p, q) ∈ R

J
+×Q, is not a weak simulation of A/∼ in A. As indicated in Example 7,

we can restrict � and require only (p, [q]) � (p, α(p, [q])), for some section α.
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Definition 15 (Section). A section is a map α : RJ
+ × Q/∼ → Q such that

for all q, q′ ∈ Q and p, d ∈ R
J
+

1. p |= I ′([q]) implies p |= I(α(p, [q]));
2. q ∼ α(p, [q]);
3. p |= φ0 ∧ I(q0) implies α(p, [q0]) = q0;
4. (p, [q]) N−→ (p′, [q′]) implies (p, α(p, [q])) N=⇒ (p′, α(p′, [q′]));
5. (p, q) d−→ (p + d, q) implies (p, α(p, [q])) d=⇒ (p + d, α(p + d, [q])).

In contrast with conditions (1), (2), and (3) in Definition 15, conditions (4)
and (5) impose restrictions on the contraction A/∼. These restrictions allow us
to prove, with the help of the following lemma, weak simulation of A/∼ in A.

Lemma 5. If (p, [q]) d−→ (p+d, [q]), then there exist k ≥ 1, 0 = c0 < · · · < ck = 1
and q1, . . . , qk ∈ [q] such that p+c ·d |= I(qi), for all c ∈ [ci−1, ci] and 1 ≤ i ≤ k.

Theorem 2. A � A/∼; and if there exists a section α, then A/∼ � A.

In our concluding example below, we revisit our intuitive gluing procedure
motivated in Sect. 3.1 to show how the theory developed in Sects. 3.2 and 3.3
formally supports our derivation of the geometric representation of [[K]] from
[[M ′]] and implies the existence of mutual weak simulations between K and M ′.

Example 10. Consider the work automaton M ′ ↑ σ from Example 9, and let ∼ be
the kernel that relates all states of M ′ ↑ σ. The contraction (M ′ ↑ σ)/∼ results in
K, as defined in Example 5 (modulo some irrelevant idling transitions). Define
α(p, [(q1, q2)]) = minH, where H = {(q1, q2) ∈ {0, 1, 2}2 | p |= Iσ(q1, q2)} is
ordered by (q1, q2) ≤ (q′

1, q
′
2) iff q1 ≤ q′

1 and q2 ≤ q′
2. By Theorem 2, we have

M ′ � K and M � M ′. By Example 7, M ′ and K are not weakly bisimilar. ♣
The work automaton in Fig. 3 and the geometric representation of its infinite

semantics in Fig. 4(a), only indirectly define a mutual exclusion protocol in M ′.
By Example 10, we conclude that M ′ is weakly language equivalent to a much
simpler work automaton K that explicitly defines a mutual exclusion protocol
by means of its state-invariant. Having such an explicit dependency visible in a
state-invariant, reveals interesting behavioral properties of M ′, such as existence
of non-blocking paths. These observations may be used to generate schedulers
that force the execution to proceed along these non-blocking paths, which would
enable a lock-free implementation and/or execution.

4 Related Work

Work automata without jobs correspond to port automata [12], which is a data-
agnostic variant of constraint automata [3]. In a constraint automaton, each
synchronization constraint N ⊆ P is accompanied with a data constraint that
interrelates the observed data da, at every port a ∈ N . Although it is straightfor-
ward to extend our work automata with data constraints, we refrain from doing
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so because our work focuses on synchronization rather then data-aware inter-
action. Hiding on constraint automata defined by Baier et al. in [3] essentially
combines our hiding operator in Definition 9 with contraction from Theorem 2.

The syntax of work automata is similar to the syntax of timed automata
[1]. Semantically, however, timed automata are different from work automata
because jobs in a work automaton may progress independently (depending on
whether or not they are scheduled to run on a processor), while clocks in a timed
automaton progress at identical speeds. For the same reason, work automata
differ semantically from timed constraint automata [2], which is introduced by
Arbab et al. for the specification of time-dependent connectors.

This semantic difference suggests that we may specify a concurrent applica-
tion as a hybrid automaton [11], which can be seen as a timed automaton wherein
the speed of each clock, called a variable, is determined by a set of first order
differential equations. Instead of fixing the speed of each process beforehand,
via differential equations in hybrid automata, our scheduling approach aims to
determine the speed of each process only after careful analysis of the application.
Therefore, we do not use hybrid automata to specify a concurrent application.

Weighted automata [5] constitute another popular quantitative model for
concurrent applications. Transitions in a weighted automaton are labeled by a
weight from a given semiring. Although weights can define the workload of tran-
sitions, weighted automata do not show dependencies among different concurrent
transitions, such as mutual exclusion [8]. As a consequence, weighted automata
do not reveal dependencies induced by a protocol like work automata do.

A geometric perspective on concurrency has already been studied in the
context of higher dimensional automata, introduced by Pratt [14] and Van
Glabbeek [6]. This geometric perspective has been successfully applied in [8]
to find and explain an essential counterexample in the study of semantic equiv-
alences [7], which shows the importance of their, and indirectly our, geometric
perspective. A higher dimensional automaton is a geometrical object that is
constructed by gluing hypercubes. Each hypercube represents parallel execution
of tasks associated with each dimension. This geometrical view on concurrency
allows inheritance of standard mathematical techniques, such as homology and
homotopy, which leads to new methods for studying concurrent applications
[9,10].

5 Conclusion

We extended work automata with state-invariants and resets and provided a
formal semantics for these work automata. We defined weak simulation of work
automata and presented translation and contraction operators that can simplify
work automata while preserving their semantics up to weak simulation. Although
translation is defined for any shift (θ, ρ), the conditions in Theorem 1 prove
bisimulation only if θ has a unique solution. In the future, we want to investigate
if this condition can be relaxed—and if so, at what cost—to enlarge the class of
applications whose work automata can be simplified using our transformations.
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Our gluing procedure in Example 5 associates a work automaton with a geo-
metrical object, and Example 6 shows that this geometric view reveals interesting
behavioral properties of the application, such as mutual exclusion and existence
of non-blocking execution paths. This observation suggests our results can lead
to smart scheduling that yields lock-free implementation and/or executions.

State-invariants and guards in work automata model the exact amount of
work that can be performed until a job blocks. In practice, however, these exact
amounts of work are usually not known before-hand. This observation suggests
that the ‘crisp’ subset of the multidimensional real vector space defined by the
state-invariant may be replaced by a density function. We leave the formalization
of such stochastic work automata as future work.
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Abstract. Using Curry-Howard isomorphism, we extend the typed
lambda-calculus with intersection and union types, and its corresponding
proof-functional logic, previously defined by the authors, with subtyping
and explicit coercions.

We show the extension of the lambda-calculus to be isomorphic to the
Barbanera-Dezani-de’Liguoro type assignment system and we provide a
sound interpretation of the proof-functional logic with the NJ(β) logic,
using Mints’ realizers.

We finally present a sound and complete algorithm for subtyping in
presence of intersection and union types. The algorithm is conceived to
work for the (sub)type theory Ξ.

Keywords: Logics and lambda-calculus · Type · Subtype systems

1 Introduction

This paper is a contribution to the study of typed lambda-calculi à la Church
in presence of intersection, union types, and subtyping and their role in logical
investigations; it is a natural follow up of a recent paper by the authors [DdLS16].

Intersection types were first introduced as a form of ad hoc polymorphism in
(pure) lambda-calculi à la Curry. The paper by Barendregt, Coppo, and Dezani
[BCDC83] is a classic reference, while [Bar13] is a definitive reference.

Union types were later introduced as a dual of intersection by MacQueen,
Plotkin, and Sethi [MPS86]: Barbanera, Dezani, and de’Liguoro [BDCd95] is a
definitive reference; Frisch, Castagna, and Benzaken [FCB08] designed a type
system with intersection, union, and negation types whose semantics are loosely
the corresponding set-theoretical constructs.

As intersection and union types had their classical development for (undecid-
able) type assignment systems, many papers moved from intersection and union
type theories to (typed) lambda-calculi à la Church: the programming language
Forsythe, by Reynolds [Rey96], is probably the first reference for intersection
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types, while Pierce’s PhD thesis combines also unions and intersections [Pie91];
a recent implementation of a typed programming language featuring intersection
and union types is [Dun14].

Proof-functional logical connectives allow reasoning about the structure of
logical proofs, in this way giving to the latter the status of first-class objects.
This is in contrast with classical truth-functional connectives where the meaning
of a compound formula is dependent only on the truth value of its subformulas.
Following this approach, the logical relation between type assignment systems
and typed systems featuring intersection and union types were studied in [LR07,
DL10,DdLS16].

Proof-functional connectives represent evidence as a “polymorphic” construc-
tion, that is, the same evidence can be used as a proof for different sentences.
Pottinger [Pot80] first introduced a conjunction, called strong conjunction ∩,
requiring more than the existence of constructions proving the left and the right
hand side of the conjuncts. According to Pottinger: “The intuitive meaning of
∩ can be explained by saying that to assert A∩B is to assert that one has a rea-
son for asserting A which is also a reason for asserting B”. This interpretation
makes inhabitants of A∩B as uniform evidences for both A and B. Later, Lopez-
Escobar [LE85] presented the first proof-functional logic with strong conjunction
as a special case of ordinary conjunction.

Mints [Min89] presented a logical interpretation of strong conjunction using
realizers: the logical predicate rA∩B [M ] is true if the pure lambda-term M is a
realizer (also read as “M is a method to assess A ∩ B”) for both the formula
rA[M ] and rB [M ].

Inspired by this, Barbanera and Martini tried to answer the question of
realizing other “proof-functional” connectives, like strong implication, Lopez-
Escobar’s strong equivalence, or Bruce, Di Cosmo, and Longo provable type
isomorphism [BCL92].

Recently [DdLS16] extended the logical interpretation with union types as
another proof-functional operator, the strong union ∪. Paraphrasing Pottinger’s
point of view, we could say that the intuitive meaning of ∪ is that if we have
a reason to assert A (or B), then the same reason will also assert A ∪ B. This
interpretation makes inhabitants of (A ∪ B) ⊃ C be uniform evidences for both
A ⊃ C and B ⊃ C. Symmetrically to intersection, and extending Mints’ logical
interpretation, the logical predicate rA∪B [M ] succeeds if the pure lambda-term
M is a realizer for either the formula rA[M ] or rB [M ].

1.1 Contributions

This paper focus on the logical and algorithmic aspects of subtyping in pres-
ence of intersection and union types: our interest is not only theoretical but
also pragmatic since, in a dependent-type setting, it opens the door to logical
frameworks and proof-assistants. We also inspect the relationship between pure
and typed lambda-calculi and their corresponding proof-functional logics as dic-
tated by the well-known Curry-Howard [How80] correspondence. We’ll present
and explore the relationships between the following four formal systems:
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– Λ∩∪
u� , the type assignment system with intersection and union types for pure

lambda-calculus with subtyping with the (sub)type theory Ξ, as defined in
[BDCd95]: a type assignment judgment have the shape Γ � M : σ;

– Λ∩∪
t� , an extension of the typed lambda-calculus with strong pairs and strong

sums Λ∩∪
t , as defined in [DL10], with subtyping and explicit coercions: a type

judgment has the shape Γ
@ � M@Δ : σ, where Δ is a typed lambda-term

enriched with strong pairs and strong sums;
– L∩∪

� , an extension of the proof-functional logic L∩∪ of [DdLS16] with ad hoc
formulas and inference rules for subtyping and explicit coercions: sequents
have the shape Γ � Δ : σ;

– NJ(β), a natural deduction system for derivations in first-order intuitionistic
logic with pure lambda-terms [Pra65].

Intuitively, Δ denotes a proof for a type assignment derivation for M ; from an
operational point of view, reductions in pure M and typed Δ must be synchro-
nized by suitable parallel reduction rules in order to preserve parallel reduction
of subjects. From a typing point of view, the type rules of Λ∩∪

t� should encode
the proof-functional nature of strong intersection and strong union, i.e. the fact
that in an intersection (resp. union) the two Δ relate to the same M .

Thanks to an erasing function �−� translating typed Δ to pure M , we could
reason only on a proof-functional logic L∩∪

� assigning types to Δ. Therefore, the
original contribution are as follows:

– to define the typed lambda-calculus Λ∩∪
t� obtained by extending the typed

calculus of [DL10] with a subtyping relation and explicit coercions, keeping
decidability of type checking, and showing the isomorphism with the type
assignment system Λ∩∪

u� of [BDCd95]. Terms of Λ∩∪
t� have the form M@Δ

where M is a pure lambda-term, while Δ is a typed lambda-term enriched
with strong pairs and and strong sums;

– to define L∩∪
� obtained by extending the proof-functional logic L∩∪ of

[DdLS16]: we show that the extended L∩∪
� logic of subtyping is sound with

respect to the realizability logic NJ(β), using Mint’s realizability arguments;
– to present an algorithm for subtyping in presence of intersection and union

types. The algorithm (presented in functional style) is conceived to work for
the (sub)type theory Ξ (i.e. axioms 1 to 14, as presented in [BDCd95]).

For lack of space, the full metatheoretical development can be found in [LS17].

1.2 Related Work

We shortly list the main research lines involving type (assignment) systems with
intersection, union, and subtyping for (un)typed lambda-calculi, proof-functional
logics containing “strong operators”, and realizability.

The formal investigation of soundness and completeness for a notion of realiz-
ability was initiated by Lopez-Escobar [LE85] and subsequently refined by Mints
[Min89].
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Barbanera and Martini [BM94] studied three proof-functional operators,
namely the strong conjunction, the relevant implication (related with Meyer-
Routley’s [MR72] system B+), and the strong equivalence connective for double
implication, relating those connectives with a suitable type assignment system,
a realizability semantics, and a completeness theorem.

Dezani-Ciancaglini, Ghilezan, and Venneri [DCGV97] investigated a Curry-
Howard interpretation of intersection and union types (for Combinatory Logic):
using the well-understood relation between combinatory logic and lambda-
calculus, they encode type-free lambda-terms into suitable combinatory logic
formulas and then type them using intersection and union types. This is a com-
plementary approach to the realizability-based one here and in [DdLS16].

Various authors defined lambda-calculi à la Church for intersection types
with related logics: see [Bar13] (pp. 780–781) for a complete list.

As mentioned before, Barbanera, Dezani-Ciancaglini, and de’Liguoro
[BDCd95] introduced a pure lambda-calculus Λ∩∪

u� with a related type assign-
ment system featuring intersection and union types, and a powerful subtyping
relation.

The previous work [DL10] presented a typed calculus Λ∩∪
t (without subtyp-

ing) that explored the relationship between the proof-functional intersections
and unions and the corresponding type assignment system (without subtyping).

In [DdLS16] we introduced an erasing function, called essence and denoted
by �Δ�, to understand the connection between pure terms and typed terms: we
proved the isomorphism between Λ∩∪

t and Λ∩∪
u , and we showed that L∩∪ can be

thought of as a proof-functional logic. The present paper extends all the systems
and logics of [DdLS16] and presents a comparative analysis of the (sub)type
theories Ξ and Π of [BDCd95]: this motivates the use of the (sub)type theory
Ξ with their natural correspondence with NJ(β).

Hindley gave first a subtyping algorithm for type intersection [Hin82]: there
is a rich literature reducing the subtyping problem in presence of intersection
and union to a set constraint problem: good references are [Dam94,Aik99,DP04,
FCB08]. The closest work to the algorithm presented in this paper has been made
by Aiken and Wimmers [AW93] who designed an algorithm whose input is a
list of set constraints with unification variables, usual arrow types, intersection,
complementation, and constructor types. Their algorithm first rewrites types
in disjunctive normal form, then simplifies the constraints until it shows the
system has no solution, or until it can safely unify the variables. The rewriting
in disjunctive normal form makes this algorithm exponential in time and space
in the worst case.

Pfenning work on Refinement Types [Pfe93] pioneered an extension of Edin-
burgh Logical Framework with subtyping and intersection types: our aim is to
study extensions of LF featuring fully fledged proof-functional logical connec-
tives like strong conjunction, strong disjunction in presence of subtyping and
relevant implication.
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2 System

The pseudo-syntax of σ, M , Δ, and the derived M@Δ are defined using the
following three syntactic categories:

σ ::= ω | φ | σ → σ | σ ∩ σ | σ ∪ σ

M ::= x | λx.M | M M

Δ ::= ∗ | x | λx:σ.Δ | ΔΔ | 〈Δ,Δ〉 | [Δ,Δ] | pr1 Δ | pr2 Δ | in1 Δ | in2 Δ | [σ]Δ

where φ denotes arbitrary constant types and ω denotes a special type that is
inhabited by all terms. The Δ-expression 〈Δ,Δ〉 denotes the strong pair while
[Δ,Δ] denotes the strong sum, with the respective projections and injections,
respectively. Finally [σ]Δ denotes the explicit coercion of Δ with the type σ.

The untyped reduction semantics for the calculus à la Curry Λ∩∪
t is ordinary

β-reduction, even if subject reduction holds only in presence of the “Gross-
Knuth” parallel reduction (Definition 13.2.7 in [Bar84]), where all redexes in M
are contracted simultaneously. Reduction for the calculus à la Church Λ∩∪

t is
delicate because it must keep synchronized the untyped reduction of M with the
typed reduction of Δ: it is defined in Sect. 5 of [DL10]. Reductions in L∩∪ is
ordinary β-reduction plus the following four reduction rules:

pri 〈Δ1 ,Δ2〉 −→pri Δi [λx:σ1.Δ1 , λx:σ2.Δ2] ini Δ3 −→ini Δi{Δ3/ι} i ∈ {1, 2}

Figure 1 presents the main rules of the type assignment system of [BDCd95]:
note that the type inference rules are not syntax-directed. Figure 2 presents the
main rules of the typed calculus Λ∩∪

t of [DL10]1; note that this type system is
completely syntax directed.

Fig. 1. Intersection and Union Type Assignment System Λ∩∪
u [BDCd95] (main rules).

The next definition clarifies what we intend with “correspondence” between
an untyped M and a typed Δ: the essence partial function shows the syntactic
relation between type free and typed lambda-terms. Essence maps typed proof-
terms (Δ’s) into pure λ-terms: intuitively, two typed Δ-terms prove the same
formula if they have the same proof-essence.

1 Contexts Γ
@
contains assumptions of the shape x@ιx:σ: the present paper uses ordi-

nary contexts Γ , since Γ can be easily obtained by erasing all the @ιx in Γ
@
.
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Fig. 2. Typed Calculus Λ∩∪
t [DL10] (main rules).

Definition 1 (Proof Essence). The essence function between pure and typed
lambda-terms is defined as follows:

�x� �
= x �λx:σ.Δ� �

= λx.�Δ�
�Δ1 Δ2� �

= �Δ1� �Δ2� �[σ]Δ� �
= �Δ�

�pri Δ� �
= �Δ� �ini Δ� �

= �Δ�
�〈Δ1 ,Δ2〉� �

= �Δ1� if �Δ1� ≡ �Δ2�
�[λx:σ1.Δ1 , λx:σ2.Δ2)]Δ3� �

= �Δ1�{�Δ3�/x} if �Δ1� ≡ �Δ2�

Fig. 3. Proof-functional logic L∩∪ (main rules).

Figure 3 presents the main rules of the proof-functional logic L∩∪ of
[DdLS16]: that logic is proof-functional, in the sense of Pottinger [Pot80] and
Lopez-Escobar [LE85]: formulas encode, using the Curry-Howard isomorphism,
derivations D : Γ � M : σ in the type assignment system Λ∩∪

u which are, in
turn, isomorphic to typed judgments Γ � M@Δ : σ of Λ∩∪

t . It is worth noticing
that if we drop the restriction concerning the “essence” in rules (∩I) and (∪E)
in the system L∩∪ and replace σ ∩ τ by σ × τ , and σ ∪ τ by σ + τ , we get a
simply typed lambda-calculus with product and sums, namely a truth-functional
intuitionistic propositional logic with implication, conjunction, and disjunction
in disguise: the resulting logic loses its proof-functionality.

The whole picture is now ready to be extended with the subtyping relation,
as introduced in [BCDC83] and extended in [BDCd95] with unions. Subtyping
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is a preorder over types, and it is written as σ � τ ; a (sub)type theory denotes
any collection of inequalities between types satisfying natural closure conditions.
The (sub)type theory, called Ξ (see Definition 3.6 of [BDCd95]), is defined by
the subtyping axioms and inference rules defined as follows:

(1) σ � σ ∩ σ (8) σ1 � σ2, τ1 � τ2 ⇒ σ1 ∪ τ1 � σ2 ∪ τ2
(2) σ ∪ σ � σ (9) σ � τ, τ � ρ ⇒ σ � ρ
(3) σ ∩ τ � σ, σ ∩ τ � τ (10) σ ∩ (τ ∪ ρ) � (σ ∩ τ) ∪ (σ ∩ ρ)
(4) σ � σ ∪ τ, τ � σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) � σ → (τ ∩ ρ)
(5) σ � ω (12) (σ → ρ) ∩ (τ → ρ) � (σ ∪ τ) → ρ
(6) σ � σ (13) ω � ω → ω
(7) σ1 � σ2, τ1 � τ2 ⇒ (14) σ2 � σ1, τ1 � τ2 ⇒

σ1 ∩ τ1 � σ2 ∩ τ2 σ1 → τ1 � σ2 → τ2

The (sub)theory Ξ suggests the interpretation of ω as the set universe, of ∩
as the set intersection, of ∪ as the set union, and of � as a sound (but not
complete) subset relation, respectively, in the spirit of [FCB08]. In the following,
we write σ ∼ τ iff σ � τ and τ � σ. We note that distributivity of union over
intersection and intersection over union, i.e. σ ∪ (τ ∩ ρ) ∼ (σ ∪ τ) ∩ (σ ∪ ρ) and
σ ∩ (τ ∪ ρ) ∼ (σ ∩ τ) ∪ (σ ∩ ρ) are derivable (see, e.g. derivation in [BDCd95], p.
9).

Once the subtyping preorder has been defined, a classical subsumption
(respectively an explicit coercion rule) can be defined as follows:

Γ � M : σ σ � τ

Γ � M : τ
(�)

Γ � M@Δ : σ σ � τ

Γ � M@[τ ]Δ : τ
(�)

Γ � Δ : σ σ � τ

Γ � [τ ]Δ : τ
(�)

This completes the reminder of the type assignment Λ∩∪
u� of [BDCd95], and the

presentation of the typed system Λ∩∪
t� , and of the proof-functional logic L∩∪

� ,
respectively.

The next theorem relates the three systems: the key concept is the essence
partial map �−� that allows to interpret union, intersection, and explicit coercions
as proof-functional connectives.

Theorem 2 (Equivalence). Let M and Δ and Γ
@
, Γ,B such that �Δ� ≡ M .

Then:

1. Γ � M : σ iff Γ
@� M@Δ : σ;

2. Γ
@� M@Δ : σ iff Γ � Δ : σ;

3. Γ � M : σ iff Γ � Δ : σ.

Proof. Point 1 by upgrading Theorem 10 of [DL10]; point 2 by induction on the
structure of derivations, using Definition 1; point 3 by 1, 2. ��

The next theorem states that adding subtyping as explicit coercions does not
break the properties of the extended typed systems.
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Theorem 3 (Conservativity). The typed system Λ∩∪
t� and the proof-functional

logic L∩∪
� , both obtained by extending with the (sub)type theory Ξ and with

explicit coercions type rules (�), preserve subject reduction (parallel-synchronized
β-reduction for Λ∩∪

t� ), Church-Rosser, strong normalization, unicity of typing,
decidability of type reconstruction and of type checking, judgment decidability
and isomorphism of typed-untyped derivations.

Proof. For proving properties of Λ∩∪
t� we proceeds by upgrading results of Theo-

rems 11, 12 and 19 of [DL10] with the subsumption rule (�). Properties of L∩∪
�

are mostly inherited by Λ∩∪
t� using Theorem 2 or, as for case of subject reduc-

tion for β-, pri- and ini-reductions, is proved by induction on the structure of the
derivation. Decidability of subtyping is proved in Theorems 18 and 19. ��

3 Realizers

We start this section by recalling the logic �NJ, as sketched in Fig. 4. By NJ we
mean the natural deduction presentation of the intuitionistic first-order predicate
calculus [Pra65]. Derivations in NJ are trees of judgments G �NJ A, where G is a
set of undischarged assumptions, rather than trees of formulas, as in Gentzen’s
original formulation. Then we extend NJ as follows:

Definition 4 (Logic NJ(β)). Let Pφ(x) be a unary predicate for each atomic
type φ: the natural deduction system for first-order intuitionistic logic NJ(β)
extends NJ with untyped lambda-terms and predicates Pφ(x), the latter being
axiomatized via the two Post rules:

GΓ �NJ(β) Pφ(M) M =βη N

GΓ �NJ(β) Pφ(N)
(β)

GΓ �NJ(β) Pω(M)
(Axω)

For a given context Γ
�
= {x1:σ1, . . . , xn:σn}, we associate a logical context GΓ

�
=

rσ1 [x1], . . . , rσn
[xn]. Note that GΓ,x:σ ≡ GΓ , rσ[x] and x �∈ Fv(GΓ ), since x �∈

Dom(Γ ), by context definition.

In [DdLS16], we provided a foundation for the proof-functional logic L∩∪ by
extending Mints’ provable realizability to cope with intersection and union types,
but without subtyping. What follows scale up Mints’ realizability to L∩∪

� . The
next definition is a reminder of the notion of realizer, as first introduced for
intersection types by Mints [Min89], and extended by the authors in [DdLS16].

Fig. 4. The logic NJ (main rules)
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Definition 5 (Mints’ realizers in NJ(β)). Let Pφ(x) be a unary predicate
for each atomic type φ. Then we define the predicates rσ[x] for each type σ by
induction over σ, as follows:

rφ[x] �
= Pφ(x) rσ1→σ2 [x] �

= ∀y.rσ1 [y] ⊃ rσ2 [x y]
rω[x] �

= � rσ1∪σ2 [x] �
= rσ1 [x] ∨ rσ2 [x]

rσ1∩σ2 [x] �
= rσ1 [x] ∧ rσ2 [x]

where ⊃ denotes implication, ∧ and ∨ are the logical connectives for conjunction
and disjunction respectively, that must be kept distinct from ∩ and ∪. Formulas
have the shape rσ[M ], whose intended meaning is that M is a method for σ in
the intersection-union type discipline with subtyping.

Intuitively, we write rσ[M ] to denote a formula in NJ(β), realized by the pure
lambda-term M of type σ in Λ∩∪

u� . Observe that M is “distilled” by applying the
essence function to the typed proof-term Δ, which faithfully encodes the type
assignment derivation Γ � �Δ� : σ in Λ∩∪

u� . The next theorem states that the
proof-functional logic L∩∪

� is sound w.r.t. Mints’ realizers in NJ(β).

Lemma 6 (Λ∩∪
u� versus NJ(β)). If Γ � M : σ, then GΓ �NJ(β) rσ[M ].

Proof. By structural induction on the derivation tree of B � M : σ:

– rules (Var), (∪I), (∩I), (∩E) correspond trivially to (Hyp), (∨I), (∧I), and
(∧E);

– rule (∪E) is derivable from rule (∨E) and a classical substitution lemma;
– it can be showed that all the subtyping rules are derivable in NJ(β), therefore

(�) is derivable;
– rules (→ I) and (→ E) are derivable:

GΓ , rσ[x] �NJ(β) rτ [M ]

GΓ �NJ(β) rσ[x] ⊃ rτ [M ]
(⊃ I)

GΓ �NJ(β) rσ→τ [λx.M ]
(∀I)

GΓ �NJ(β) rσ→τ [M ]

GΓ �NJ(β) rσ[N ] ⊃ rτ [MN ]
(∀E)

GΓ �NJ(β) rσ[N ]

GΓ �NJ(β) rτ [MN ]
(⊃ E) ��

Informally speaking, rσ[M ] can be interpreted as “M is an element of the
set σ”, and the judgment σ1 � σ2 in the (sub)type theory Ξ can be interpreted
as rσ1 [x] �NJ(β) rσ2 [x]. As a simple consequence of Lemma 6, we can now state
soundness:

Theorem 7 (Soundness of NJ(β) and L∩∪
� ). If Γ � Δ : σ then GΓ �NJ(β)

rσ[�Δ�].
Proof. Trivial by Lemma 6 and Theorem 2 part 3. ��
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The completeness result, i.e. If GΓ �NJ(β) rσ[M ], then there exists Δ such
that Γ � Δ : σ and �Δ� ≡ M is more tricky because of the presence of the union
elimination rule (∨E) in NJ(β). As an example, let φ ≡ (σ∪τ)∩(σ∪ρ) → σ∪(τ ∩
ρ): with a fairly complex derivation in NJ(β) we can realize G∅ �NJ(β) rφ[λx.x],
and then by completeness the type assignment ∅ � λx.x : φ should be derivable
in [BDCd95], which is not the case without subtyping. We left completeness for
a future work.

Remark 8. The type assignment system Λ∩∪
u� of [BDCd95] was based on the

(sub)type theory Ξ (see Definition 3.6 of [BDCd95]): the paper also introduced
a stronger (sub)type theory, called Π, by adding the extra axiom

(15) P(σ) ⇒ σ → τ ∪ ρ � (σ → τ) ∪ (σ → ρ),

where P(σ) is true if σ syntactically corresponds to an Harrop formula. How-
ever, in NJ(β), the judgment rσ→(τ∪ρ)[x] �NJ(β) r(σ→τ)∪(σ→ρ)[x] is not derivable
because the judgment A ⊃ (B ∨ C) �NJ(β) (A ⊃ B) ∨ (A ⊃ C) is not derivable
in NJ. As such, the (sub)type theory Π cannot be overlapped with an interpre-
tation of (sub)types as (sub)sets, as the following example show. The identity
function λx.x inhabits the function set {a, b} → {a}∪{b} but, by axiom (15), it
should also inhabit {a, b} → {a} or {a, b} → {b}, which is clearly not the case.

4 Subtyping Algorithm

The previous section showed that the proof-functional logic L∩∪
� is sound w.r.t.

the logic NJ(β). The truth of the sequent “Γ � Δ : σ” complicates its decidability
because of the presence of the predicate σ � τ as a premise in rule (�): in fact,
the subtype system is not an algorithm because of the presence of reflexivity and
transitivity rules that are not syntax-directed. The same subtyping premise can
affect the decidability of type checking of Λ∩∪

t� . This section presents a sound and
complete algorithm A for subtyping in the (sub)type theory Ξ. In what follows
we use the following useful shorthands:

∩i(∪jσi,j)
�
= ∩1(∪1σ1,1 . . . ∪j σ1,j) . . . ∩i (∪1σi,1 . . . ∪j σi,j), and

∪i(∩jσi,j)
�
= ∪1(∩1σ1,1 . . . ∩j σ1,j) . . . ∪i (∩1σi,1 . . . ∩j σi,j).

Those shorthands can also apply to unions of unions, intersections of intersec-
tions, intersections of arrows, etc.

Algorithm A alone has a polynomial complexity, but it requires the types
to be in some normal form that will be detailed later. We therefore have a
preprocessing phase that is exponential in space. The preprocessing uses the
following four subroutines:

– R1, to simplify the shape of types containing the ω type: its complexity is
linear;



84 L. Liquori and C. Stolze

– R2 (well-known), to transform a type in its conjunctive normal form, denoted
by CNF, i.e. types being, roughly, intersection of unions: its complexity is
exponential in space;

– R3 (well-known), to transform a type in its disjunctive normal form, denoted
by DNF, i.e. types being, roughly, union of intersections: its complexity is
exponential in space;

– R4, to transform a type in its arrow normal form, denoted by ANF, i.e. types
being, roughly, arrow types where all the domains are intersection of ANF
and all the codomains are union of ANF: its complexity is exponential in
space.

Definition 9 (Subroutine R1). The term rewriting system R1 is defined as
follows:

– ω ∩ σ and σ ∩ ω rewrite to σ;
– ω ∪ σ and σ ∪ ω rewrite to ω;
– σ → ω rewrites to ω.

It is easy to verify that R1 terminates and his complexity is linear. The next def-
inition recall the usual conjunctive/disjunctive normal form with corresponding
subroutines R2 and R3, and introduce the arrow normal form with his corre-
sponding subroutine R4.

Definition 10 (Subroutines R2 and R3)

– A type is in CNF if it has the form ∩i(∪jσi,j), and all the σi,j are either
atomic types, arrow types, or ω;

– The term rewriting system R2 rewrites a type in its CNF; it is defined as
follows:
– σ ∪ (τ ∩ ρ) rewrites to (σ ∪ τ) ∩ (σ ∪ ρ);
– (σ ∩ τ) ∪ ρ rewrites to (σ ∪ ρ) ∩ (τ ∪ ρ);

– A type is in DNF if it has the form ∪i(∩jσi,j), and all the σi,j are either
atomic types, arrow types, or ω;

– The term rewriting system R3 rewrites a type in its DNF; it is defined as
follows:
– σ ∩ (τ ∪ ρ) rewrites to (σ ∩ τ) ∪ (σ ∩ ρ);
– (σ ∪ τ) ∩ ρ rewrites to (σ ∩ ρ) ∪ (τ ∩ ρ).

It is well documented in the literature that R2 and R3 terminate, and that the
complexity of those algorithms is exponential.

As you can see in the (sub)type Ξ’s rules (11) and (12), intersection and union
interact with the arrow type; in order to simplify this, we define the following
subroutine:

Definition 11 (Subroutine R4)

– A type is in arrow normal form (ANF) if :
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– it is an atomic type or ω;
– it is an arrow type in the form (∩iσi) → (∪jτj), where the σi and τj are

ANFs;
– The term rewriting system R4 rewrites an arrow type into an intersection of

ANF; it is defined as follows:
– σ → τ rewrites to R3(σ) → R2(τ);
– ∪iσi → ∩jτj rewrites to ∩i(∩j(σi → τj)).

Since R2 and R3 terminate, R4 terminates and its complexity is exponential.
The next lemma ensures we can safely use the R1,2,3,4 subroutines in the pre-
processing, because they preserve type equivalence, denoted by ∼. Let σ ∼ τ iff
σ � τ and τ � σ.

Lemma 12. For all the term rewriting systems R1,2,3,4 we have that R(σ) ∼ σ.

Proof. Each rewriting rule rewrites a term into an equivalent (∼) term. ��
We can now define how the types are being preprocessed before being fed to

the algorithm A.

Definition 13

– A type is in disjunctive arrow normal form (DANF) if it is in DNF and all
the arrow type subterms are in ANF;

– A type is in conjunctive arrow normal form (CANF) if it is in CNF and all
the arrow type subterms are in ANF.

Let σ � τ be an instance of the subtyping problem. The preprocessing algorithm
rewrites σ into a DANF by applying R3◦R4◦R1, and τ into a CANF by applying
R2 ◦ R4 ◦ R1.

4.1 The Algorithm A
Our algorithm A is composed of two mutually inductive functions, called A1 and
A2. It proceeds as follows: σ � τ is preprocessed into ∪i(∩jσi,j) � ∩h(∪kτh,k),
where all the σi,j , τh,k are in ANF; it is then processed by A1, which accepts or
rejects it.

Definition 14 (Main function A1). input: ∪i(∩jσi,j) � ∩h(∪kτh,k) where
all the σi,j , τh,k are ANF; output: boolean.

– if ∩h(∪kτh,k) is ω, then accept, else
if for all i and h, there exists some j and some k, such that A2(σi,j � τh,k)
is true, then accept, else reject.

Definition 15 (Subtyping function A2). input: σ � τ , where σ �≡ ω and
τ �≡ ω are ANFs; output: boolean.
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– Case ω � φ: reject;
– Case ω � σ → τ : reject;
– Case φ � φ′: if φ ≡ φ′ then accept, else reject;
– Case φ � σ → τ : reject;
– Case σ → τ � φ: reject;
– Case σ → τ � σ′ → τ ′: if A1(σ′ � σ) and A1(τ � τ ′), then accept, else

reject.

The following two lemmas will be used to prove soundness and completeness of
the algorithm A1.

Lemma 16

1. σ ∪ τ � ρ iff σ � ρ and τ � ρ;
2. σ � τ ∩ ρ iff σ � τ and σ � ρ.

Proof. The two parts can be proved by examining the subtyping rules of the
(sub)type theory Ξ. ��
Lemma 17. If all the σi and τj are ANFs, then:

1. If ∃j,∩iσi � τj, then ∩iσi � ∪jτj;
2. If ∃i, σi � ∪τj, then ∩iσi � ∪jτj.

Proof. The two parts can be proved by induction on the subtyping rules of the
(sub)type theory Ξ using the ANF definition. ��
The soundness proof is now straightforward.

Theorem 18 (A1,A2’s Soundness)

1. Let σ (resp. τ) be in DANF (resp. CANF). If A1(σ � τ), then σ � τ ;
2. Let σ and τ be in ANF, such that τ �≡ ω. If A2(σ � τ), then σ � τ .

Proof. The proof follows the algorithm, therefore it proceeds by mutual induction.

1. By case analysis on the algorithm A1 using Lemmas 16 and 17, and part 2;
2. By case analysis on the algorithm A2, and by looking at the subtyping rules.

��

Theorem 19 (A1,A2’s Completeness)

1. For any type σ′, τ ′ such that σ′ � τ ′, let ∪i(∩jσi,j) ≡ R3 ◦ R4 ◦ R1(σ′) and
∩h(∪kτh,k) ≡ R2 ◦ R4 ◦ R1(τ ′). We have that A1(∪i(∩jσi,j) � ∩h(∪kτh,k));

2. Let σ and τ be in ANF, such that τ �∼ ω. If σ � τ , then A2(R1(σ) � R1(τ)).

Proof. We know by Lemma 12 that rewriting preserves subtyping, therefore as
σ′ � τ ′, we know that ∪i(∩jσi,j) � ∪j ∩h (∪kτh,k). The proof proceeds by mutual
induction.
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1. The proof of this point relies on Lemmas 16 and 17: it is not shown by lack
of space (see [LS17]) ;

2. – Case ω � τ : by hypothesis, ω �� τ , so this case is absurd;
– Case φ � φ′: we can show that φ ≡ φ′;
– Case σ → τ � φ: it can be proved that this case is absurd;
– Case φ � σ → τ : we can show that φ � σ → τ iff σ → τ ∼ ω, and this

contradicts the hypothesis σ → τ �∼ ω: this is absurd;
– Case σ → τ � σ′ → τ ′: we can show that τ � τ ′, and σ′ � σ. We

conclude by induction hypothesis. ��

5 Conclusions

We mention some future research directions.

Completeness of L∩∪. We have not proven yet completeness for our logic towards
NJ(β), but we conjecture that if GΓ is a logical context and GΓ �NJ(β) rσ[M ],
then Γ � M : σ.

Strong/Relevant Implication is another proof-functional connective: as well
explained in [BM94], it can be viewed as a special case of implication “whose
related function space is the simplest one, namely the one containing only the
identity function”. Relevant implication is well-known in the literature, corre-
sponding to Meyer and Routley’s Minimal Relevant Logic B+ [MR72]. Following
our parallelism between type systems for lambda-calculi à la Curry, à la Church,
and logics, we could conjecture that strong implication, denoted by ⊃r in the
logic, by →r in the type theory, and by λr in the typed lambda-calculus, can
lead to the following type (assignment) rules, proof-functional logical inference,
and Mints’ realizer in NJ(β), respectively:

Γ � I : σ → τ
Γ � I : σ →r τ

(→r I)
Γ, x:σ � x@Δ : τ

Γ � λx.x@λrx:σ.Δ : σ →r τ
(→r I)

Γ, x:σ � Δ : τ �Δ� ≡ x

Γ � λrx:σ.Δ : σ →r τ
(→r I)

GΓ � rσ→τ [I]
GΓ � rσ→rτ [I]

(⊃rI)

As showed in Remark 8, even a stronger (sub)type theory of Ξ (i.e. the
(sub)theory Π of [BDCd95]) cannot be overlapped with a sound and complete
interpretation of (sub)types as (sub)sets. We conjecture that, by extending the
proof-functional logic with relevant implication (L∩∪→r

� ), we could achieve com-
pleteness, by combining explicit coercions and relevant abstractions, as the fol-
lowing derivation shows:

Γ � x : σ σ � τ

Γ � (τ)x : τ �(τ)x� ≡ x

Γ � λrx:σ.(τ)x : σ →r τ Γ � Δ : σ

Γ � (λrx:σ.(τ)x)Δ : τ
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Dependent Types/Logical Frameworks. Our aim is to build a small logical frame-
work à la Edinburgh Logical Framework [HHP93], featuring dependent types and
proof-functional logical connectives. We conjecture that, in addition to the usual
machinery dealing with dependent types and a suitable upgrade of the essence
function, the following typing rules can be good candidates for a proof-functional
LF extension:

Γ, x:σ � Δ : τ �Δ� ≡ x

Γ � λrx:σ.Δ : Πrx:σ.τ
(ΠrI)

Γ � Δ1 : σ Γ � Δ2 : τ �Δ1� ≡ �Δ2�
Γ � 〈Δ1 ,Δ2〉 : σ ∩ τ

(∩I)

Γ � Δ1 : Πy:σ.ρ[inτ
1 y/x] �Δ1� ≡ �Δ2�

Γ � Δ2 : Πy:τ.ρ[inσ
2 y/x] Γ � Δ3 : σ ∪ τ

Γ � [Δ1 ,Δ2]Δ3 : ρ[Δ3/x]
(∪E)

Studying the behavior of proof-functional connectives would be beneficial to
existing interactive theorem provers such as Coq or Isabelle, and dependently
typed programming languages such as Agda, Beluga, Epigram, or Idris.

Prototype Implementation. We are currently implementing a small kernel for a
logical framework featuring union and intersection types, as the Λ∩∪

t� calculus
and the proof-functional logic L∩∪

� does. The actual type system also features
an experimental implementation of dependent-types à la LF following the above
type rules, and of a Read-Eval-Print-Loop (REPL). We will put our future efforts
to integrate our algorithm A to the type checker engine. We conjecture that our
subtyping algorithm could be rewritten nondeterministically for an alternating
Turing machine in polynomial time: this would mean that this problem is in
PSPACE. This could be coherent with the fact that inclusion problem for regular
tree languages is PSPACE-complete [Sei90]. The aim of the prototype is to check
the expressiveness of the proof-functional nature of the logical engine in the sense
that when the user must prove e.g. a strong conjunction formula σ1∩σ2 obtaining
(mostly interactively) a witness Δ1 for σ1, the prototype can “squeeze” the proof-
functional essence M of Δ1 to accelerate, and in some case automatize, the
construction of a witness Δ2 proof for the formula σ2 having the same essence
M of Δ1. Existing proof assistants could get some benefit if extended with a
proof-functional logic. We are also started an encoding of the proof-functional
operators of intersection and union in Coq. The actual state of the prototype
can be retrieved at https://github.com/cstolze/Bull.

Acknowledgment. We are grateful to Ugo de’Liguoro, Daniel Dougherty, and the
anonymous referees for their useful comments and suggestions.
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Abstract. Abbott et al.’s containers are a “syntax” for a wide class of
set functors in terms of shapes and positions. Containers whose “deno-
tation” carries a comonad structure can be characterized as directed
containers, or containers where a shape and a position in it determine
another shape, intuitively a subshape of this shape rooted by this posi-
tion. In this paper, we develop similar explicit characterizations for con-
tainer functors with a monad structure and container functors with a lax
monoidal functor structure as well as some variations. We argue that this
type of characterizations make a tool, e.g., for enumerating the monad
structures or lax monoidal functors that some set functor admits. Such
explorations are of interest, e.g., in the semantics of effectful functional
programming languages.

1 Introduction

Abbott et al.’s containers [1], a notational variant of polynomials, are a “syntax”
for a wide class of set functors. They specify set functors in terms of shapes and
positions. The idea is that an element of F X should be given by a choice of a
shape and an element of X for each of the positions in this shape; e.g., an element
of ListX is given by a natural number (the length of the list) and a matching
number of elements of X (the contents of the list). Many constructions of set
functors can be carried out on the level of containers, for example the product,
coproduct of functors, composition and Day convolution of functors etc. One
strength of containers is their usefulness for enumerating functors with specific
structure or properties or with particular properties. It should be pointed out
from the outset that containers are equivalent to simple polynomials in the sense
of Gambino, Hyland and Kock [8–10,13], except that in works on polynomials
one is often mainly interested in Cartesian polynomial morphisms whereas in
works on containers general container morphisms are focussed on. The normal
functors of Girard [11] are more constrained: a shape can only have finitely many
positions.

Ahman et al. [3,4] sought to find a characterization of those containers whose
interpretation carries a comonad structure in terms of some additional structure
on the container, using that comonads are comonoids in the monoidal category of
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set functors. This additional structure, of what they called directed containers,
turned out to be very intuitive: every position in a shape determines another
shape, intuitively the subshape corresponding to this position; every shape has
a distinguished root position; and positions in a subshape can be translated
into positions in the shape. Directed containers are in fact the same as small
categories, yet directed container morphisms are not functors, but cofunctors in
the sense of Aguiar [2].

In this paper, we develop similar characterizations of container functors with
a monad structure and those with a lax monoidal structure. We use that both
monads and lax monoidal endofunctors are monoids in the category of set endo-
functors wrt. its composition resp. Day convolution monoidal structures and
that both monoidal structures are available also on the category of containers
and preserved by interpretation into set functors. The relevant specializations
of containers, which we here call mnd-containers and lmf-containers, are very
similar, whereby every mnd-container turns out to also define an lmf-container.

Our motivation for this study is from programming language semantics and
functional programming. Strong monads are a generally accepted means for
organizing effects in functional programming since Moggi’s seminal works. That
strong lax monoidal endofunctors have a similar application was noticed first
by McBride and Paterson [12] who called them applicative functors. That lax
monoidal functors are the same as monoids in the Day convolution monoidal
structure on the category of functors (under some assumptions guaranteeing
that this monoidal structure is present) was noticed in this context by Capriotti
and Kaposi [7]. It is sometimes of interest to find all monad or lax monoidal
functor structures that a particular functor admits. Containers are a good tool
for such explorations. We demonstrate this on a number of standard examples.

The paper is organized as follows. In Sect. 2, we review containers and
directed containers as an explicit characterization of those containers whose
interpretations carries a comonad structure. In Sect. 3, we analyze containers
whose interpretation is a monad. In Sect. 4, we contrast this with an analysis of
containers whose interpretation is a lax monoidal functor. In Sect. 5, we consider
some specializations of monads and monoidal functors, to conclude in Sect. 6.

To describe our constructions on containers, we use type-theoretically
inspired syntax, as we need dependent function and pair types throughout. For
conciseness of presentation, we work in an informal extensional type theory,
but everything we do can be formalized in intensional type theory. “Minor”
(“implicit”) arguments of functions are indicated as subscripts in Π-types, λ-
abstractions and applications to enhance readability (cf. the standard notation
for components of natural transformations). We use pattern-matching lambda-
abstractions; is a “don’t care” pattern.

The paper is a write-up of material that was presented by the author at the
SSGEP 2015 summer school in Oxford1, but was not published until now.

1 See the slides at http://cs.ioc.ee/∼tarmo/ssgep15/.

http://cs.ioc.ee/~tarmo/ssgep15/
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2 Containers, Directed Containers

2.1 Containers

We begin by a condensed review of containers [1].
A container is given by a set S (of shapes) and a S-indexed family P of sets

(of positions in each shape).
A container morphism between two containers (S, P ) and (S′, P ′) is given by

operations t : S → S′ (the shape map) and q : Πs:S . P ′ (t s) → P s (the position
map). Note that while the shape map goes in the forward direction, the position
map for a given shape goes in the backward direction.

The identity container morphism on (S, P ) is (idS , λs. idP s). The composition
of container morphisms (t, q) : (S, P ) → (S′, P ′) and (t′, q′) : (S′, P ′) → (S′′, P ′′)
is (t′ ◦t, λs. qs ◦q′

t s). Containers and container morphisms form a category Cont.
A container (S, P ) interprets into a set functor [[S, P ]]c = F where F X =

Σs : S. P s → X, F f = λ(s, v). (s, f ◦ v).
A container morphism (t, q) between containers (S, P ) and (S′, P ′) interprets

into a natural transformation [[t, q]]c = τ between [[S, P ]]c and [[S′, P ′]]c where
τ (s, v) = (t s, v ◦ qs).

Interpretation [[−]]c is a fully-faithful functor from Cont to [Set,Set].
For example, the list functor can be represented by the container (S, P ) where

S = N, because the shape of a list is a number—its length, and P s = [0..s),
as a position in a list of length s is a number between 0 and s, with the latter
excluded. We have [[S, P ]]c X = Σs : N. [0..s) → X ∼= ListX, reflecting that
to give a list amounts to choosing a length together with the corresponding
number of elements. The list reversal function is represented by the container
endomorphism (t, q) on (S, P ) where t s = s, because reversing a list yields an
equally long list, and qs p = s − p, as the element at position p in the reversed
list is the element at position s − p in the given list. But the list self-append
function is represented by (t, q) where t s = s + s and qs p = p mod s.

There is an identity container defined by Idc = (1, λ∗. 1). Containers can
be composed, composition is defined by (S, P ) ·c (S′, P ′) = (Σs : S. P s →
S′, λ(s, v). Σp : P s. P ′ (v p)). Identity and composition of containers provide a
monoidal category structure on Cont.

Interpretation [[−]]c is a monoidal functor from (Cont, Idc, ·c) to the strict
monoidal category ([Set,Set], Id, ·). Indeed, IdX = X ∼= Σ∗ : 1. 1 → X =
[[Idc]]c X and ([[S, P ]]c · [[S′, P ′]]c)X = [[S, P ]]c ([[S′, P ′]]c X) ∼= Σs : S. P s → Σs′ :
S′. P ′ s′ → X ∼= Σ(s, v) : (Σs : S. P s → S′). (Σp : P s. P ′ (v p)) → X =
[[(S, P ) ·c (S′, P ′)]]c X.

Another monoidal category structure on Cont is symmetric. Define
Hancock’s tensor by (S, P ) �

c (S′, P ′) = (S × S′, λ(s, s′). P s × P ′ s). Now
(Cont, Idc,�c) form a symmetric monoidal category.

Interpretation [[−]]c is a symmetric monoidal functor from (Cont, Idc,�c)
to the symmetric monoidal category ([Set,Set], Id,�) where � is the Day
convolution defined by (F � G)Z =

∫ X,Y (X ×Y → Z)× (F X ×GY ). Indeed,
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[[S, P ]]c � [[S′, P ′]]c Z

=
∫ X,Y (X × Y → Z) × ((Σs : S. P s → X) × (Σs′ : S′. P ′ s′ → Y ))

∼= Σ(s, s′) : S × S′.
∫ X,Y (X × Y → Z) × ((P s → X) × (P ′ s′ → Y ))

∼= Σ(s, s′) : S × S′. P s × P ′ s′ → Z

= [[(S, P ) �
c (S, P )]]c Z

2.2 Directed Containers

Next we review directed containers as a characterization those containers whose
interpretation carries a comonad structure; we rely on [3,4].

A directed container is defined as a container (S, P ) with operations

– ↓ : Πs : S. P s → S (the subshape corresponding to a position in a shape),
– o : Πs:S . P s (the root position), and
– ⊕ : Πs:S .Πp : P s. P (s ↓ p) → P s (translation of a position in a position’s

subshape)

satisfying

– s ↓ os = s
– s ↓ (p ⊕s p′) = (s ↓ p) ↓ p′

– p ⊕s os↓p = p
– os ⊕s p = p
– (p ⊕s p′) ⊕s p′′ = p ⊕s (p′ ⊕s↓p p′′)

The data (o,⊕) resemble a monoid structure on P . However, P is not a set,
but a family of sets, and ⊕ operates across the family. Similarly, ↓ resembles a
right action of (P, o,⊕) on S. When none of P s, os, p ⊕s p′ depends on s, these
data form a proper monoid structure and a right action.

A directed container morphism between two directed containers (S, P, ↓, o,⊕)
and (S′, P ′, ↓′, o′,⊕′) is a morphism (t, q) between the underlying containers
satisfying

– t (s ↓ qs p) = t s ↓′ p
– os = qs o

′
t s

– qs p ⊕s qs↓qs p p′ = qs (p ⊕′
t s p′)

Directed containers form a category DCont whose identities and composition
are inherited from Cont.

A directed container (S, P, ↓, o,⊕) interprets into a comonad [[S, P, ↓,
o,⊕]]dc = (D, ε, δ) where

– D = [[S, P ]]c

– ε (s, v) = v os

– δ (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕s p′)))



Container Combinatorics: Monads and Lax Monoidal Functors 95

A directed container morphism (t, q) between (S, P, ↓, o,⊕) and
(S′, P ′, ↓′, o′,⊕′) interprets into a comonad morphism [[t, q]]dc = [[t, q]]c between
[[S, P, ↓, o,⊕]]dc and [[S′, P ′, ↓′, o′,⊕′]]dc.

[[−]]dc is a fully-faithful functor between DCont and Comonad(Set). More-
over, the functor [[−]]dc is the pullback of the fully-faithful functor [[−]]c : Cont →
[Set,Set] along U : Comonad(Set) → [Set,Set] and the category DCont is
isomorphic to the category of comonoids in (Cont, Idc, ·c).

DCont
∼= Comonoid(Cont, Idc, ·c)

U ��

f.f. [[−]]dc

��

Cont

��

(Cont, Idc, ·c)

[[−]]c f.f.

��

�U��

Comonad(Set)
∼= Comonoid([Set,Set], Id, ·)

U �� [Set,Set] ([Set,Set], Id, ·)

Here are some standard examples of directed containers and corresponding
comonads.

Nonempty list functor (free semigroup functor). Let D X = NEListX = μZ.X ×
(1 + Z) ∼= Σs : N. [0..s] → X. We have D X ∼= [[S, P ]]c X for S = N, P s = [0..s].

The container (S, P ) carries a directed container structure given by s ↓ p =
s − p, os = 0, p ⊕s p′ = p + p′. Note that all three operations are well-defined:
p ≤ s implies that s − p is well-defined; 0 ≤ s; and p ≤ s and p′ ≤ s − p imply
p + p′ ≤ s.

The corresponding comonad has ε (x : xs) = x (the head of xs), δ [x] = [[x]],
δ (x : xs) = (x : xs) : δ xs (the nonempty list of all nonempty suffixes of xs).

There are other directed container structures on (S, P ). One is given by
s ↓ p = s, os = 0, p ⊕s p′ = (p + p′) mod s. This directed container interprets
into the comonad defined by ε xs = hdxs, δ xs = shiftsxs (the nonempty list of
all cyclic shifts of xs).

Exponent functor. Let D X = U → X ∼= 1 × (U → X) for some set U . We have
D X ∼= [[S, P ]]c X for S = 1, P ∗ = U .

Directed container structures on [[S, P ]]c are in a bijection with monoid struc-
tures on U . Given a monoid structure (i,⊗), the corresponding directed container
structure is given by ∗ ↓ p = ∗, o∗ = i, p ⊕∗ p′ = p ⊗ p′.

The corresponding comonad has ε f = f i, δ f = λp. λp′. f (p ⊗ p′).
Via the isomorphism StrX = νZ.X × Z ∼= N → X, the special case of

(U, i,⊗) = (N, 0,+) corresponds to the familiar stream comonad defined by
D X = StrX, ε xs = hdxs (the head of xs), δ xs = xs : δ (tlxs) (the stream
of all suffixes of xs). A different special case (U, i,⊗) = (N, 1, ∗) corresponds to
a different stream comonad given by ε xs = hd (tlxs), δ xs = samplingsxs (the
stream of all samplings of xs, where by the sampling of a stream [x0, x1, x2, . . .]
at rate p we mean the stream [x0, xp, xp∗2, . . .]).
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Product functor. Let D X = V × X = V × (1 → X) for some set V . We have
that T X ∼= [[S, P ]]c X for S = V , P = 1.

Evidently there is exactly one directed container structure on (S, P ); it is
given by s ↓ ∗ = s, os = ∗, ∗ ⊕s ∗ = ∗.

The corresponding comonad has ε (v, x) = x, δ (v, x) = (v, (v, x)).

We defined directed containers as containers with specific additional struc-
ture. But they are in a bijection (up to isomorphism) with something much more
familiar—small categories. Indeed, a directed container (S, P, ↓, o,⊕) defines a
small category as follows: the set of objects is S, the set of maps between s and
s′ is Σp : P s. (s ↓ p = s′); the identities and composition are given by o and
⊕. Any small category arises from a directed container uniquely in this fashion.
The free category on a set V of objects (the discrete category with V as the
set of objects), for example, arises from the directed container for the product
comonad for V . However, directed container morphisms do not correspond to
functors, since the shape map and position map of a container morphism go
in opposite directions. A directed container morphism is reminiscent of a split
opcleavage, except that, instead of a functor, it relies on an object mapping
without an accompanying functorial action and accordingly the lift maps cannot
be required to be opCartesian. A directed container morphism is a cofunctor
(in the opposite direction) in the sense of Aguiar [2]. The category of directed
containers is equivalent to the opposite of the category of small categories and
cofunctors.

3 Containers ∩ Monads

There is no reason why the analysis of container functors with comonad structure
could not be repeated for other types of functors with structure, the most obvious
next candidate target being monads. The additional structure on containers
corresponding to monads was sketched already in the original directed containers
work [3]. Here we discuss the same characterization in detail.

We define an mnd-container to be a container (S, P ) with operations

– e : S
– • : Πs : S. (P s → S) → S
– q0 : Πs : S.Πv : P s → S. P (s • v) → P s
– q1 : Πs : S.Πv : P s → S.Πp : P (s • v). P (v (v �s p))

where we write q0 s v p as v �s p and q1 s v p as p �v s, satisfying

– s = s • (λ . e)
– e • (λ . s) = s
– (s • v) • (λp′′. w (v �s p′′) (p′′

�v s)) = s • (λp′. v p′ • w p′)
– p = (λ . e) �s p
– p �λ . s e = p
– v �s ((λp′′. w (v �s p′′) (p′′

�v s)) �s•v p) = (λp′. v p′ • w p′) �s p
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– ((λp′′. w (v �s p′′) (p′′
�v s)) �s•v p) �v s =

let u p′ ← v p′ • w p′ in w (u �s p) �v (u�sp) (p �u s)
– p �λp′′. w (v�sp′′) (p′′�vs) (s • v) =

let u p′ ← v p′ • w p′ in (p �u s) �w (u�sp) v (u �s p)

We can see that the data (e, •) are like a monoid structure on S modulo the
2nd argument of the multiplication being not an element of S, but a function
from P s to S where s is the 1st argument. Similarly, introducing the visual �, �

notation for the data q0, q1 helps us see that they are reminiscent of a biaction
(a pair of agreeing right and left actions) of this monoid-like structure on P . But
a further difference is also that P is not a set, but a S-indexed family of sets.

We also define an mnd-container morphism between (S, P, e, •,�,�) and
(S′, P ′, e′, •′,�′,�′) to be a container morphism (t, q) between (S, P ) and (S′, P ′)
such that

– t e = e′

– t (s • v) = t s •′ (t ◦ v ◦ qs)
– v �s qs•v p = qs ((t ◦ v ◦ qs) �

′
t s p)

– qs•v p �v s = qv (v�sqs•v p) (p �
′
t◦v◦qs (t s))

Mnd-containers form a category MCont whose identity and composition are
inherited from Cont.

Every mnd-container (S, P, e, •,�,�) interprets into a monad
[[S, P, e, •,�,�]]mc = (T, η, μ) where

– T = [[S, P ]]c

– η x = (e, λp. x)
– μ (s, v) = let (v0 p, v1 p) ← v p in (s • v0, λp. v1 (v0 �s p) (p �v0 s))

Every mnd-container morphism (t, q) between (S, P, e, •,�,�) and
(S′, P ′, e′, •′,�′,�′) interprets into a monad morphism [[t, q]]mc = [[t, q]]c between
[[S, P, e, •,�,�]]mc and [[S′, P ′, e′, •′,�′,�′]]mc.

[[−]]mc is a fully-faithful functor between MCont and Monad(Set). More-
over, the functor [[−]]mc is the pullback of the fully-faithful functor [[−]]c :
Cont → [Set,Set] along U : Monad(Set) → [Set,Set] and the category
MCont is isomorphic to the category of monoids in (Cont, Idc, ·c).

MCont
∼= Monoid(Cont, Idc, ·c)

U ��

f.f. [[−]]mc

��

Cont

��

(Cont, Idc, ·c)

[[−]]c f.f.

��

�U��

Monad(Set)
∼= Monoid([Set,Set], Id, ·)

U �� [Set,Set] ([Set,Set], Id, ·)

We consider as examples some containers interpreting into functors with a
monad structure used in programming language semantics or functional pro-
gramming.
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Coproduct functor. Let T X = X + E for some set E. We have that T X ∼=
[[S, P ]]c X for S = 1 + E, P (inl ∗) = 1, P (inr ) = 0.

In a hypothetical mnd-container structure on (S, P ), we cannot have e =
inr e0 for some e0 : E, since then P e = 0, but all elements of 0 → S ∼= 1 are
equal, in particular, λ . inl ∗ = λ . inr e0 : 0 → S, so the 2nd mnd-container
equation e • (λ . s) = s cannot hold for both s = inl ∗ and s = inr e0.

Therefore it must be that e = inl ∗. By the 2nd mnd-container equation then
inl ∗•v = e• (λ∗. v ∗) = v ∗ (since P (inl ∗) = 1) whereas inr e•v = inr e• (λ . e) =
inr e by the 1st mnd-container equation (since P (inr e) = 0).

To have p : P (s • v) is only possible, if s = inl ∗, v = λ∗. inl ∗. In this case,
P (s • v) = 1 and p = ∗, and we can define v �s p = ∗ and p �v s = ∗.

This choice of (e, •,�,�) satisfies all 8 equations of a mnd-container.
We see that the container (S, P ) carries exactly one mnd-container structure.

The corresponding monad structure on T is that of the exception monad, with
η x = inlx, μ (inl c) = c, μ (inr e) = inr e.

List functor (free monoid functor). Let T be the list functor: T X = ListX =
μZ. 1 + X × Z ∼= Σs : N. [0..s) → X. We have that T X ∼= [[S, P ]]c X for S = N,
P s = [0..s).

The container (S, P ) carries the following mnd-container structure:

– e = 1
– s • v =

∑
p:[0..s) v p

– v �s p = greatest p0 : [0..s) such that
∑

p′:[0..p0)
v p′ ≤ p

– p �v s = p − ∑
p′:[0..v�sp) v p′

The corresponding monad structure on T is the standard list monad with
η x = [x], μ xss = concatxss.

This is not the only mnd-container structure available on (S, P ). Another is
e = 1, s•λ . 1 = s, 1•λ0. s = s, s•v = 0 otherwise, λ . 1 �s p = p, λ0. s �1 p = 0,
p �λ . 1 s = 0, p �λ0. s 1 = p.

The corresponding monad structure on T has η x = [x], μ [[x0], . . . , [xv 0−1]] =
[x0, . . . , xv 0−1], μ [xs] = xs, μ xss = [] otherwise.

Exponent functor. Let T X = U → X for some set U and S = 1, P ∗ = U .
There is exactly one mnd-container structure on (S, P ) given by

– e = ∗
– ∗ • (λ . ∗) = ∗
– (λ . ∗) �∗ p = p
– p �λ . ∗ ∗ = p

Indeed, first note that the 1st to 3rd equations of an mnd-container are trivialized
by S = 1. Further, S = 1 and the 4th and 5th equations force the definitions of
� and � and the remaining equations hold.

The corresponding monad structure on T is given by η x = λu. x, μ f =
λu. f u u. This is the well-known reader monad.
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Product functor. Let T X = V × X for some set V and S = V , P = 1.
Any mnd-container structure on (S, P ) must be of the form

– e = i
– s • (λ∗. s′) = s ⊗ s′

– (λ∗. s′) �s ∗ = ∗
– ∗ �λ∗. s′ s = ∗
for some i : V and ⊗ : V → V → V . The 1st to 3rd equations of an mnd-
container reduce to the equations of a monoid while the remaining equations are
trivialized by P = 1. So mnd-container structures on (S, P ) are in a bijective
correspondence with monoid structures on V .

The corresponding monad structures on T have η x = (i, x), μ (p, (p′, x)) =
(p⊗p′, x). They are the writer monads for the different monoid structures on V .

Underlying functor of the state monad. Let T X = U → U × X ∼= (U → U) ×
(U → X) for some set U . We have T X ∼= [[S, P ]]c X for S = U → U and P = U .

The container (S, P ) admits the mnd-container structure defined by

– e = λp. p
– s • v = λp. v p (s p)
– v �s p = p
– p �v s = s p

The corresponding monad structure on T is that of the state monad for U ,
given by η x = λu. (u, x) and μ f = λu. let (u′, g) ← f u′ in g u′.

This mnd-container structure is not unique; as a simplest variation, one can
alternatively choose s•v = λp. v p (sn p), p �v s = sn p for some fixed n : N, with
sn denoting n-fold iteration of s.

Underlying functor of update monads. Let T X = U → V × X ∼= (U → V ) ×
(U → X) for some sets U and V . We have T X ∼= [[S, P ]]c X for S = U → V and
P = U .

If (i,⊗) is a monoid structure on V and ↓ its right action on U , then the
container (S, P ) admits the mnd-container structure defined by

– e = λ . i
– s • v = λp. s p ⊗ v p (s p)
– v �s p = p
– p �v s = p ↓ s p

The corresponding monad structure on T is that of the update monad [5] for
U , (V, i,⊗) and ↓ given by η x = λu.(i, x) and μ f = λu. let (p, g) ← f u; (p′, x) ←
g (u ↓ p) in (p ⊗ p′, x).

It should be clear that not every monad structure on T arises from some
(i,⊗) and ↓ in this manner.

The list functor example can be generalized in the following way. Let
(O,#, id, ◦) be some non-symmetric operad, i.e., let O be a set of operations,
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# : O → N a function fixing the arity of each operation and id : O and
◦ : Πo : O. (# o → O) → O an identity operation and a parallel composition
operator, with # id = 1 and # (o◦v) =

∑
i:[0,# o) #(v i), satisfying the equations

of a non-symmetric operad. We can take S = O, P o = [0..# o), e = id, • = ◦
and �, � as in the definition of the (standard) list mnd-container. This choice
of (S, P, e, •,�,�) gives an mnd-container. The list mnd-container corresponds
to a special case where there is exactly one operation for every arity, in which
situation we can w.l.o.g. take O = N, # o = o. Keeping this generalization of
the list monad example in mind, we can think of mnd-containers as a version
of non-symmetric operads where operations may also have infinite arities and,
importantly, arguments may be discarded and duplicated in composition.

Altenkirch and Pinyo [6] have proposed to think of an mnd-container
(S, P, e, •,�,�) as a “lax” (1, Σ)-type universe à la Tarski, namely, to view S
as a set of types (“codes for types”), P as an assignment of a set to each type,
e as a type 1, • as a Σ-type former, � and � as first and second projections
from the denotation of a Σ-type. The laxity is that there are no constructors
for the denotations of 1 and Σ-types, and of course the equations governing the
interaction of the constructors and the eliminators are then not enforced either.
Thus 1 need not really denote the singleton set and Σ-types need not denote
dependent products.

4 Containers ∩ Lax Monoidal Functors

We proceed to analyzing containers whose interpretation carries a lax monoidal
functor structure wrt. the (1,×) monoidal category structure on Set. We will
see that the corresponding additional structure on containers is very similar to
that for monads, but simpler.

Recall that a lax monoidal functor between monoidal categories (C, I,⊗) and
(C′, I ′,⊗′) is defined as a functor F between C and C′ with a map m0 : I ′ → FI
and a natural transformation with components mX,Y : FX ⊗′ FY → F (X ⊗ Y )
cohering with the unitors and associators of the two categories. A lax monoidal
transformation between two lax monoidal functors (F,m0,m) and (F ′,m0′,m′) is
a natural transformation τ : F → F ′ such that τI ◦m0 = m0′ and τX⊗Y ◦mX,Y =
m′

X,Y ◦ τX ⊗′ τY .
We define an lmf-container as a container (S, P ) with operations

– e : S
– • : S → S → S
– q0 : Πs : S.Πs′ : S. P (s • s′) → P s
– q1 : Πs : S.Πs′ : S. P (s • s′) → P s′

where we write q0 s s′ p as s′
�s p and q1 s s′ p as p �s′ s, satisfying

– e • s = s
– s = s • e
– (s • s′) • s′′ = s • (s′ • s′′)
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– e �s p = p
– p �s e = p
– s′

�s (s′′
�s•s′ p) = (s′ • s′′) �s p

– (s′′
�s•s′ p) �s′ s = s′′

�s′ (p �s′•s′′ s)
– p �s′′ (s • s′) = (p �s′•s′′ s) �s′′ s′

Differently from the mnd-container case, the data (S, e, •) of a lmf-container
form a proper monoid. The data (�,�) resemble a biaction of (S, e, •).

We also define an lmf-container morphism between (S, P, e, •,�,�) and
(S′, P ′, e′, •′,�′,�′) to be a container morphism (t, q) between (S, P ) and (S′, P ′)
such that

– t e = e′
– t (s • s′) = t s •′ t s′
– s′

�s qs•s′ p = qs (t s′
�

′
t s p)

– qs•s′ p �s′ s = qs′ (p �
′
t s′ t s)

Lmf-containers form a category LCont whose identity and composition are
inherited from Cont.

Every lmf-container (S, P, e, •,�,�) interprets into a lax monoidal endofunc-
tor [[S, P, e, •,�,�]]lc = (F,m0,m) on (Set, 1,×) where

– F = [[S, P ]]c
– m0 ∗ = (e, λ . ∗)
– m ((s, v), (s′, v′)) = (s • s′, λp. (v (s′

�s p), v′ (p �s′ s)))

Every lmf-container morphism (t, q) between (S, P, e, •,�,�) and
(S′, P ′, e′, •′,�′,�′) interprets into a lax monoidal transformation [[t, q]]lc = [[t, q]]c

between [[S, P, e, •,�,�]]mc and [[S′, P ′, e′, •′,�′,�′]]lc.
[[−]]lc is a fully-faithful functor between LCont and the category LMF(Set)

of lax endofunctors on (Set, 1,×). The functor [[−]]lc is the pullback of the fully-
faithful functor [[−]]c : Cont → [Set,Set] along U : LMF(Set) → [Set,Set].
The category LCont is isomorphic to the category of monoids in (Cont, Idc,�c).

LCont
∼= Monoid(Cont, Idc,�c)

U ��

f.f. [[−]]lc

��

Cont

��

(Cont, Idc,�c)

[[−]]c f.f.

��

�U��

LMF(Set)
∼= Monoid([Set,Set], Id,�)

U �� [Set,Set] ([Set,Set], Id,�)

The similarity between the additional structures on containers for monads
and lax monoidal functors may at first appear unexpected, but the reasons
become clearer, if one compares the types of the “accumulating” Kleisli exten-
sion λ(c, f). μ (T (λx. T (λy. (x, y)) (f x)) c) : T X × (X → T Y ) → T (X × Y )
and the monoidality constraint m : F X × F Y → F (X × Y ).

It is immediate from the definitions that any mnd-container (S, P, e, •,�,�)
carries an lmf-container structure (e′, •′,�′,�′) given by
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– e′ = e
– s •′ s′ = s • (λ . s′)
– s′

�
′
s p = (λ . s′) �

′
s p

– p �
′
s′ s = p �

′
λ . s′ s

This is in agreement with the theorem that any strong monad defines a strong
lax monoidal functor. Since any set functor is uniquely strong and all natural
transformations between set functors are strong, the strength assumption and
conclusion trivialize in our setting.

Another immediate observation is that, for any lmf-container structure
(e, •,�,�) on (S, P ), there is also a reverse lmf-container structure (e′, •′,�′,�′)
given by

– e′ = e
– s •′ s′ = s′ • s
– s′

�
′
s p = p �s s′

– p �
′
s′ s = s �s′ p

The corresponding statement about lax monoidal functors holds for any sym-
metric monoidal category.

Let us now revisit our example containers and see which lmf-container struc-
tures they admit.

Coproduct functor. Let T X = X+E for some set E and S = 1+E, P (inl ∗) = 1,
P (inr ) = 0.

Any lmf-container structure on (S, P ) must have e = inl ∗. Indeed, if it were
the case e = inr e0 for some e0 : E, then we would have inr e0 • inl ∗ = inl ∗ by the
1st lmf-container equation. But then q0 (inr e0) (inl ∗) : 1 → 0, which cannot be.

Similarly, for all e0 : E, s : S, it must be that inr e0 • s �= inl ∗ and s • inr e0 �=
inl ∗. Hence, by the 1st and 2nd lmf-container equations, it must be the case that
inl ∗ • s = s, inr e • inl ∗ = inr e, inr e • inr e′ = inr (e ⊗ e′). The 3rd lmf-container
equation forces that ⊗ is a semigroup structure on E. The other lmf-container
equations hold trivially. Therefore, lmf-container structures on (S, P ) are in a
bijection with semigroup structures on E.

The corresponding lax monoidal functors have m0 ∗ = inl ∗, m (inlx, inlx′) =
inl (x, x′), m (inlx, inr e) = inr e, m (inr e, inlx) = inr e, m (inr e, inr e′) = inr (e⊗e′).

The unique mnd-container structure on (S, P ) corresponds to the particular
case of the left zero semigroup, i.e., the semigroup where e ⊗ e′ = e.

List functor. Let T X = ListX and S = N, P s = [0..s).
The standard mnd-container structure on (S, P ) gives this lmf-container

structure:

– e = 1
– s • s′ = s ∗ s′

– s′
�s p = p div s′

– p �s′ s = p mod s′
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The corresponding lax monoidal functor structure on T is given by m0 ∗ = [∗],
m (xs, ys) = [(x, y) | x ← xs, y ← ys].

The other mnd-container structure we considered gives e = 1, s • 1 = s,
1 • s = s, s • s′ = 0 otherwise, 1 �s p = p, s �1 p = 0, p �1 s = 0, p �s 1 = p.

The corresponding lax monoidal functor structure on T is m0 ∗ = [∗],
m (xs, [y]) = [(x, y) | x ← xs], m ([x], ys) = [(x, y) | y ← ys], m (xs, ys) = []
otherwise.

But there are further lmf-container structures on (S, P ) that do not arise
from an mnd-container structure, for example this:

– e = 1
– s • s′ = s min s′

– s′
�s p = p

– p �s′ s = p

The corresponding lax monoidal functor structure is m0 ∗ = [∗], m (xs, ys) =
zip (xs, ys).

Exponent functor. Let T X = U → X for some set U and S = 1, P ∗ = U .
There is exactly one lmf-container structure on (S, P ) given by

– e = ∗
– ∗ • ∗ = ∗
– ∗ �∗ p = p
– p �∗ ∗ = p

and that is the lmf-container given by the unique mnd-container structure.
The corresponding lax monoidal functor structure on T is given by m0 ∗ =

λu. ∗, m (f, f ′) = λu. (f u, f ′ u).

Product functor. Let T X = V × X for some set V and S = V , P = 1.
Any lmf-container structure on (S, P ) must be of the form

– e = i
– s • s′ = s ⊗ s′

– s′
�s ∗ = ∗

– ∗ �s′ s = ∗
for (i,⊗) a monoid structure on V , so the only lmf-container structures are those
given by mnd-structures.

The corresponding lax monoidal functor structures on T are given by m0 ∗ =
(i, ∗), m ((p, x), (p′, x′)) = (p ⊗ p′, (x, x′)).

Similarly to the monad case, we can generalize the list functor example.
Now we are interested in relaxation of non-symmetric operads where parallel
composition is only defined when the given n operations composed with the given
n-ary operation are all the same, i.e., we have O a set of operations, # : O → N

a function fixing the arity of each operation and id : O and ◦ : O → O → O
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an identity operation and a parallel composition operator, with # id = 1 and
# (o ◦ o′) = # o ∗ # o′, satisfying the equations of an ordinary non-symmetric
operad. If we now choose S = O, P o = [0..# o), e = id, • = ◦ and take �, �

as in the definition of the standard list lmf-container, we get a non-symmetric
operad in this relaxed sense.

Under the lax type universe view, an lmf-container is a lax (1,×)-universe,
i.e., it is only closed under non-dependent lax Σ-types.

5 Further Specializations

There are numerous special types of monads and lax monoidal functors that can
be analyzed similarly. Here are some examples.

The lax monoidal functor interpreting an lmf-container is symmetric (i.e.,
satisfies F σX,Y ◦ mX,Y = mY,X ◦ σFX,FY ) if and only if the lmf-container is
identical to its reverse, i.e., it satisfies

– s • s′ = s′ • s,
– s′

�s p = p �s s′

In this case, the monoid (S, e, •) is commutative and each of the two action-like
operations �, � determines the other.

The monad interpreting an mnd-container is commutative (which reduces to
the corresponding lax monoidal functor being symmetric) if and only if

– s • (λ . s′) = s′ • (λ . s)
– (λ . s′) �s p = p �λ . s s′

Note that, in this case, � and � are constrained, but not to the degree of fully
determining each other.

The monad interpreting an mnd-container is Cartesian (which means that
all naturality squares of η and μ are pullbacks) if and only if

– the function λ . ∗ : P e → 1 is an isomorphism
– for any s : S and v : P s → S, the function λp. (v �s p, p �v s) : P (s • v) →

Σp : P s. P (v p) is an isomorphism.

Such mnd-containers with additional conditions are proper (1, Σ)-type universes:
1 and Σ-types denote the singleton set and dependent products.

6 Conclusion

We showed that the containers whose interpretation into a set functor carries
a monad or a lax monoidal functor structure admit explicit characterizations
similar to the directed container (or small category) characterization of those
containers whose interpretation is a comonad. It was not surprising that such
characterizations are possible, as we could build on the very same observations
that were used in the analysis of the comonad case. But the elaboration of
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the characterizations is, we believe, novel. We also believe that it provides useful
insights into the nature of monad or lax monoidal functor structures on container
functors. In particular, it provides some clues on why monads and lax monoidal
functors on Set and, more generally, in the situation of canonical strengths
enjoy analogous properties. In future work, we would like to reach a better
understanding of the connections of containers to operads.
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Abstract. We developed a technique for modeling formal systems
involving name binding in a modeling language based on hypergraph
rewriting. A hypergraph consists of graph nodes, edges with two end-
points and edges with multiple endpoints. The idea is that hypergraphs
allow us to represent terms containing bindings and that our notion of
a graph type keeps bound variables distinct throughout rewriting steps.
We previously encoded the untyped λ-calculus and the evaluation and
type checking of System F<:, but the encoding of System F<: type infer-
ence requires a unification algorithm. We studied and successfully imple-
mented a unification algorithm modulo α-equivalence for hypergraphs
representing untyped λ-terms. The unification algorithm turned out to
be similar to nominal unification despite the fact that our approach and
nominal approach to name binding are very different. However, some
basic properties of our framework are easier to establish compared to
the ones in nominal unification. We believe this indicates that hyper-
graphs provide a nice framework for encoding formal systems involving
binders and unification modulo α-equivalence.

1 Introduction

Unification solves equations over terms. For a unification problem M = N , a
unification algorithm finds a substitution δ = [X := P, Y := Q, . . .] for unknown
variables X and Y occurring in terms M and N so that applying δ to the original
problem make δ(M) and δ(N) equal. Depending on the terms occurring in the
unification problem, a unification algorithm is classified as (standard) first-order
unification and higher-order unification, where higher-order unification solves
equations over higher-order terms such as λ-terms. First-order unification is
simple in theory and efficient in implementation [7,11], whereas higher-order
unification is more complex both in theory and implementation [5].

The reason why higher-order unification is complex is that they solve equa-
tions of terms modulo α-, β- and possibly η-equivalence, denoted as =αβη.
Alpha-equivalence equates two λ-terms M and N up to the renaming of their
bound variables, denoted as M =α N ; β-equivalence equates two terms under
(λa.M)N =β M [a := N ]; and η-equivalence states that (λa.Ma) =η M where a
does not occur free in M . Although higher-order unification is required in logic
programming languages and proof assistants based on higher-order approach [9],
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Published by Springer International Publishing AG 2017. All Rights Reserved
M.R. Mousavi and J. Sgall (Eds.): TTCS 2017, LNCS 10608, pp. 106–124, 2017.
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full higher-order unification is undecidable and may not generate most general
unifiers. Higher-order pattern unification is a simple version of higher-order unifi-
cation which solves terms modulo αβ0η-equivalence [8], where β0-equivalence is a
form of β-equivalence (λx.M)N =β0 M [x := N ] where N must be a variable not
occurring free in λx.M . Most importantly, it is an efficient process with linear-
time decidability [8,18]. Higher-order pattern unification is popular in practice
because of that. For instance, the latest implementation of λProlog is actually an
implementation of a sublanguage of λProlog called Lλ, which only uses higher-
order pattern unification [10]. However, the infrastructure for implementing a
variant of the λ-calculus is not lightweight, and a restriction to β0-equivalence
asks users for good programming practice to avoid cases which do not respect
the restriction. A first-order style unification algorithm for terms involving name
binding is preferred in these respects.

One such unification algorithm is nominal unification [14], which solves equa-
tions of nominal terms. In nominal terms, names are equipped with the swapping
operation and the freshness condition [4]. The work in [2,6] shows the connection
between nominal unification and higher-order pattern unification; if two nomi-
nal terms are unifiable, then their translated higher-order pattern counterparts
are also unifiable. Alpha-equivalence is assumed for higher-order terms in the-
ory. Yet, in the higher-order approach, implementing a meta-language (a variant
of the typed λ-calculus) means that one must also consider =β0η. In nominal
unification, only =α is needed, and variable capture is allowed during the uni-
fication in the sense that a unifier may bring a name a into the scope of a as
in (λa.X)[X := a]. Nominal unification solves problems in two phases; solving
equations of terms and solving freshness constraints.

Using graphs to represent λ-terms has a long history [19,20]. In our earlier
work, we studied a hypergraph-based technique for representing terms involving
name binding [16], using HyperLMNtal [13] as a representation and implemen-
tation language. The idea was that hypergraphs could naturally express terms
containing bindings; atoms (nodes of graphs) represent constructors such as
abstraction and application; hyperlinks (edges with multiple endpoints) rep-
resent variables; and regular links (edges with two endpoints) connect con-
structors with each other. In this technique, two isomorphic (but not identical)
hypergraphs representing α-equivalent terms containing bindings have two syn-
tactically different textual representations in HyperLMNtal. For example, two
instances of the λ-term λa.aa are represented by α-equivalent but syntactically
different hypergraphs such as abs(A,(app(A,A)),L) and abs(B,(app(B,B)),R)
as shown in Fig. 1.

In Fig. 1, circles are atoms, straight lines are regular links and eight-point
stars with curved lines are hyperlinks. The arrowheads on circles indicate the first
arguments of atoms and the ordering of their arguments. These two hypergraphs,
rooted at L and R, are isomorphic, i.e., have the same shape, but are syntactically
not identical. (Later, we explain why regular links between abs and app atoms
are implicit in the above two terms.)
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Fig. 1. Two α-equivalent terms represented as hypergraphs

Our idea was first proposed in [16], where we developed the theory with
the encoding of the untyped λ-calculus. Our formalism separates bound and
free variables by Barendregt’s variable convention [1] and also requires bound
variables to be distinct from each other. A graph type called hlground (meaning
ground graphs made up of hyperlinks) keeps bound variables distinct during
the substitution. For example, λa.M and λa.N do not exist at the same time,
and if λa.M exists, a may occur in M only. Such conventions may look too
strict, but our experiences show that it brings great convenience in practice. For
example, in our recent work [17], we encoded System F<: easily in HyperLMNtal;
implementing the type checking of System F<: required the equality checking of
types containing type variable binders, which was handled by directly applying
α-equality rules in theory. As the next step, we want to implement the type
inference of System F<:, which means that we should study the unification of
terms containing name binding within our formalism.

Hypergraphs representing λ-terms are called hypergraph λ-terms. This paper
considers unification problems for equations over hypergraph λ-terms modulo
=α. Hypergraph λ-terms have nice properties; for two abstractions L=abs(A,M)
and R=abs(B,N), A does not occur in N and B does not occur in M, and A and B
are always different hyperlinks. These properties greatly simplified the reasoning
in our previous work, and we expect such simplicity in this work as well.

The outline of the paper is as follows. In Sect. 2, we briefly describe hypergraph
λ-terms and the definition of substitutions. In Sect. 3, we present the unification
algorithm and related proofs. In Sect. 4, we give some examples. In Sect. 5, we
briefly describe the implementation of the unification algorithm. In Sect. 6, we
review related work and conclude the paper.

2 Hypergraph λ-Terms

HyperLMNtal is a modeling language based on hypergraph rewriting [13] that is
intended to be a substrate language of diverse computational models, especially
those addressing concurrency, mobility and multiset rewriting. Moreover, we
have successfully encoded the λ-calculus with strong reduction in HyperLMNtal
in two different ways, one in the fine-grained approach [12] and the other in
the coarse-grained approach [16]. This paper takes the latter approach that uses
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hyperlinks to represent binders, where the representation of λ-terms is called
hypergraph λ-terms. We briefly describe HyperLMNtal and hypergraph λ-terms.

2.1 HyperLMNtal

In HyperLMNtal, hypergraphs consist of graph nodes called atoms, undirected
edges with two endpoints called regular links and edges with multiple endpoints
called hyperlinks. The simplified syntax of hypergraphs in HyperLMNtal is as
follows,

(Hypergraphs) P :: = 0 | p(A1, . . . , Am) | P, P

where link names (denoted by Ai) and atom names (denoted by p) are presup-
posed. Hypergraphs are the principal syntactic category: 0 is an empty hyper-
graph; p(A1, . . . , Am) is an atom with arity m; and P, P is parallel composition.
A hypergraph P is transformed by a rewrite rule of the form H :-G|B when a
subgraph of P matches (i.e., is isomorphic to) H and auxiliary conditions speci-
fied in G are satisfied, in which case the subgraph of P is rewritten into another
hypergraph B. The auxiliary conditions include type constraints and equality
constraints. In HyperLMNtal programs, names starting with lowercase letters
denote atoms and names starting with uppercase letters denote links. An abbre-
viation called term notation is frequently used in HyperLMNtal programs. It
allows an atom b without its final argument to occur as an argument of a when
these two arguments are interconnected by regular links. For instance, f(a,b)
represents the graph f(A,B),a(A),b(B), and C=app(A,B) represents the graph
app(A,B,C). The latter example shows that an n-ary constructor can be repre-
sented by an (n + 1)-ary HyperLMNtal atom whose final argument stands for
the root link of the constructor.

In a rewrite rule, placing a constraint new(A,a) in the guard means that A
is created as a hyperlink with an attribute a given as a natural number. A type
constraint specified in the guard describes a class of graphs with specific shapes.
For example, a graph type hlink(A) ensures that A is a hyperlink occurrence.
A graph type hlground(A, a1, . . . , an) identifies a subgraph rooted at the link
A, where a1, . . . , an are the attributes of hyperlinks which are allowed to occur
in the subgraph. The identified subgraph may be copied or removed according
to rewrite rules. Details appear in Sect. 2.2.

2.2 Hypergraph λ-Terms

We write hypergraph λ-terms by the following syntax.

(Terms) M ::= A variables
abs(A,M) abstractions
app(M,M) applications

Here, the A are hyperlinks whose attributes are determined as follows: hyperlinks
representing variables bound inside M or in a larger term containing M are given
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attribute 1 (denoted A1), while those not bound anywhere are given attribute 2
(denoted A2). Hypergraph λ-terms are straightforwardly obtained from λ-terms.
For example, the Church numeral 2

λx.λy.x(xy)

is written as
R=abs(A,abs(B,app(A,app(A,B)))).

Note that both abs and app are ternary atoms, where their third arguments,
made implicit by the term notation, are links connected to their parent atoms
or represented by the leftmost R.

The following rewrite rules shows how to work with hypergraph λ-terms in
HyperLMNtal.

N=n(2) :- new(A,1), new(B,1) | N=abs(A,abs(B,app(A,app(A,B)))).

init :- r=app(n(2),n(2)).

init.

The first rule creates a hypergraph representing the Church numeral 2. The
second rule creates an application of two Church numerals.

The idea behind the hypergraph-based approach is that it applies the prin-
ciple of Barendregt’s variable convention (bound variables should be separated
from free variables to allow easy reasoning) also to bound variables; all bound
variables should be distinct from each other upon creation and should be kept
distinct from each other during substitution. Besides keeping bound variables
distinct, one should avoid variable capture during substitution.

In a substitution (λy.M)[x := N ], replacing x with N in M will not lead
to variable capture if y is kept distinct from the variables of N . The idea
is to ensure that variables appear distinctly in M1 and M2 in an applica-
tion M1M2. Concretely, in a substitution (M1M2)[x := N ], we generate two
α-equivalent but syntactically different copies of N , say N1 and N2, to have
(M1[x := N1])(M2[x := N2]). For a hypergraph λ-term with distinct vari-
ables, applying such strategy in the substitution ensures that y /∈ fv(N) for
(λy.M)[x := N ]. To summarize, we use distinct hyperlinks with appropriate
attributes to represent distinct variables of λ-terms and don’t allow multiple
binders of the same variable.

We use sub atoms to represent substitutions; R=sub(X,N,M) represents
M [x := N ]. The definition of substitutions for hypergraph λ-terms is given in
Fig. 2, where each rule is prefixed by a rule name. The rule beta implements
β-reduction, and the other four rules implement substitutions. When the rule
var2 is applied, a subgraph matched with hlground(N,1) is removed. When
the rule app is applied, two α-equivalent but syntactically different copies of a
subgraph matched by hlground(N,1) are created. The hlink(X) checks if X is
a hyperlink.
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Fig. 2. Definition of substitutions on hypergraph λ-terms

Fig. 3. Applying a substitution on an application

The graph type hlground(N,1) identifies a subgraph rooted at N, then rewrit-
ing may copy or remove the subgraph. When copying a subgraph identified by
hlground(N,1) in a rule, it creates fresh copies of hyperlinks which have the
attribute 1 and have no occurrences outside of the subgraph, while it shares
hyperlinks which have the attribute 1 but have occurrences outside of the sub-
graph between the copies of the subgraph. It always shares hyperlinks which have
an attribute different from 1 between the copies of the subgraph. When remov-
ing a subgraph identified by hlground(N,1) in a rule, it removes the subgraph
along with all hyperlink endpoints in the subgraph.

For example, the rule app rewrites R=sub(A,abs(B,B),app(A,A)) in Fig. 3a
to R=app(sub(A,abs(K,K),A),sub(A,abs(H,H),A)) in Fig. 3b, where the con-
straint hlground(N,1) identifies a subgraph N=abs(B,B) which is copied into
abs(K,K) and abs(H,H). The rule var2 rewrites R=abs(A,sub(B,A,C)) in
Fig. 3c to R=abs(A,C) in Fig. 3d, where hlground(N,1) identifies a subgraph
N=A and then the subgraph containing one endpoint of A is removed. For more
details of hlground, readers are referred to our previous work [16].

3 Unification

We extend hypergraph λ-terms with unknown variables of unification prob-
lems, denoted by X,Y, . . ., in a standard manner. Let A,B,C,D be hyperlinks,
M,N,P be some hypergraph λ-terms, and L,R be regular links occurring as the
last arguments of the atoms representing λ-term constructors.
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The assumed equality between hypergraph λ-terms in our unification is
α-equivalence with freshness constraints. When no confusion may arise, we write
= instead of =α for the sake of simplicity. For a unification problem M = N of
two hypergraphs M and N containing unknown variables X,Y, . . ., the goal is
to find hypergraph λ-terms which replace X,Y, . . . and ensure the α-equivalence
of M and N . To reason about the equality of non-ground hypergraph λ-terms
(hypergraphs containing unknown variables), we use the concepts of swapping
↔ and freshness # from the nominal approach [4].

Lemma 1. In hypergraph λ-terms, for an abstraction L=abs(A,M), the hyper-
link A occurs in M only.

Proof. Follows from the construction of hypergraph λ-terms. ��
Henceforth, note that the last arguments of atoms representing λ-term con-

structors are implicit in terms related by = and #.

Lemma 2. For two α-equivalent hypergraph λ-terms

abs(A,M) = abs(B,N) ,

the following holds,

– A#N and B#M ,
– M = [A ↔ B]N and [A ↔ B]M = N ,

where A#N denotes that A is fresh for N (or A is not in N) and [A ↔ B]N
denotes the swapping of A and B in N .

Proof. Follows from Lemma 1 and the fact that hyperlinks representing bound
variables are distinct in hypergraph λ-terms. ��

In Lemma 2, we could use renaming M = [A/B]N and [B/A]M = N instead
of swapping, where [A/B]N means replacing B by A in N . Moving [A/B] to the
left-hand side of = requires the switching of A and B. Using swapping saves us
from such switching operation in the implementation. Another point is that it
is clear from their definitions that swapping subsumes renaming. In [A ↔ B]N ,
swapping [A ↔ B] applies to every hyperlink in N until it reaches an unknown
variable X occurring in N . We suspend swapping when it encounters an unknown
variable X until X is instantiated to a non-variable term in the future.

Definition 1. Let π be a list of swappings [A1 ↔ B1, . . . , An ↔ Bn], var(π) =
{A1, B1, . . . , An, Bn}, and π−1 = [An ↔ Bn, . . . , A1 ↔ B1]. Applying π to a
term M is written as π ·M . When M is an unknown variable X, we call π ·M a
suspension. The inductive definition of applying swappings to hypergraph λ-terms
is defined as follows, where π@π′ is a concatenation of π and π′.
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π@[A ↔ C] · B def
= π · B (A �= B,B �= C)

π@[A ↔ C] · A def
= π · C

π@[C ↔ A] · A def
= π · C

π · abs(A,M)
def
= abs(A, π · M)

π · app(M,N)
def
= app(π · M,π · N)

π · (π′ · M)
def
= π@π′ · M

[ ] · M
def
= M

We don’t apply swapping to hyperlinks representing the bound variables of
an abs (the fourth rule in Definition 1) because all bound variables are distinct
in hypergraph λ-terms, and a swapping is only created from two abstractions
using the rule =abs in Fig. 4. We use a freshness constraint # in the equality
judgment of non-ground hypergraph λ-terms, and write θ � M = N to denote
that M and N are α-equal terms under a set θ of freshness constraints called a
freshness environment. For example,

{A#X, B#X} � abs(A, X) = abs(B, X)

is a valid judgment. Likewise, we write θ � A#M to say that A#M holds
under θ. For example, A#X � A#app(X, B) is a valid judgment. With swapping
and freshness constraints, judging the equality of two non-ground hypergraph
λ-terms is simple, as shown in Fig. 4.

The soundness of most of the rules in Fig. 4 should be self-evident. Below we
give some lemmas to justify =susp and #susp. It is important to note that the
rules in Fig. 4 are assumed to be used in a goal-directed manner starting from
hypergraph λ-terms M and N . In the following lemmas, “obtained by apply-
ing rules in Fig. 4 and Definition 1” means that we use the rules in Fig. 4 in
goal-directed, backward manner and the rules in Definition 1 in the left-to-right
direction. By doing so, we come up with a set of unification rules which works
on two unifiable terms and fails for two non-unifiable terms.

When judging the equality of two non-ground hypergraph λ-terms using the
rules in Fig. 4, swappings are only generated by the rule =abs, and these swap-
pings are applied to terms by the rules in Definition 1. During such process, we
may have terms such as θ � π·M = π′ ·N and θ � A#π·M . As mentioned before,
a swapping is always created from two abstractions which have distinct bound
hyperlinks. Therefore, in a judgment, swappings enjoy the following properties:
Each swapping always has two distinct hyperlinks, and two swappings generated
by the rule =abs have no hyperlinks in common. For example, in a judgment,
there are no swappings such as [A ↔ A] and [A ↔ B,B ↔ C].

Lemma 3. If the judgment

θ � π · M = π′ · N
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Fig. 4. The equality and freshness judgments for non-ground hypergraph λ-terms

is obtained by applying rules in Fig. 4 and Definition 1, then var(π)∩var(π′) = ∅
holds.

Proof. Follows from the fact that hyperlinks of a swapping are distinct. ��
Note that the rules in Fig. 4 and Definition 1 generate non-empty swappings

only to the right-hand side of equations, so the π above is actually empty. Nev-
ertheless, we have non-empty swappings in the left-hand side in this and the
following lemmas because the claims generalize to equations generated by the
unification algorithm described later in Fig. 5.

Lemma 4. If the judgment

θ � π · abs(A,M) = π′ · abs(B,N),
is obtained by applying rules in Fig. 4 and Definition 1, then A /∈ var(π@π′) and
B /∈ var(π@π′) hold.

Proof. The same as the proof of Lemma 3. ��
The next lemma states how swappings move between two sides of = in a

judgment.

Lemma 5. θ � M = π ·N obtained by applying rules in Fig. 4 and Definition 1
holds if and only if θ � π−1 · M = N holds.

Proof. (⇒) Let π = [A1 ↔ B1, . . . , An ↔ Bn]. Because freshness constraints are
generated only from the rule =abs, we can assume that A1, . . . , An occur only in
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N , that B1, . . . , Bn occur only in M , and that θ contains {A1#M, . . . , An#M,
B1#N, . . . , Bn#N}. If N = Ai for some i, then M = Bi by assumption and
the rule =hlink, in which case π−1 · M = Ai and the lemma holds. If N is a
hyperlink not in var(π), then M and N are the same hyperlink not in var(π)
and the lemma holds obviously. If N is an unknown variable, the lemma is again
obvious from the rule =susp. The other cases are straightforward by structural
induction.
(⇐) The proof of the other direction is similar. ��

The next lemma justifies the rule #susp in Fig. 4.

Lemma 6. θ � A#π · M obtained by applying rules in Fig. 4 and Definition 1
holds if and only if θ � π−1 · A#M holds.

Proof. (⇒) By Lemma 4 and the fact that freshness constraints are created by
the rule =abs, we know that A �∈ var(π). Therefore, if θ � A#π · M , θ �
π−1 · A#M holds.
(⇐) For the same reason, A �∈ var(π−1). Therefore, if θ � π−1 · A#M holds,
θ � A#π · M holds. ��

The next lemma justifies the rule =susp in Fig. 4.

Lemma 7. θ � π · M = π′ · M obtained by applying rules in Fig. 4 and Defini-
tion 1 holds for π and π′ if and only if A#M ∈ θ for all A ∈ var(π@π′).

Proof. (⇒) By lemma 3, we know that var(π)∩var(π′) = ∅. Therefore, in order
for θ � π ·M = π′ ·M to hold, π and π′ should have no effects on M , which means
var(π@π′)∩var(M) = ∅, which is the same as A#M ∈ θ for all A ∈ var(π@π′).
(⇐) If A#M ∈ θ for all A ∈ var(π@π′), obviously, θ � π ·M = π′ ·M holds. ��
Theorem 1. The relation = defined in Fig. 4 is an equivalence relation, i.e.,

(a) θ � M = M ,
(b) θ � M = N implies θ � N = M ,
(c) θ � M = N and θ � N = P implies θ � M = P .

Proof.

(a) When M is a hyperlink A, then A = A follows from the rule =hlink. When
M is an abstraction, note that M stands for an α-equivalence class. For
example, M stands for either M = abs(A,A) or M = abs(B,B). Assume
P = P (as induction hypothesis), A#P , and that B occurs in P , then P =
[A ↔ B]@[B ↔ A] · P holds. Let N = [B ↔ A] · P , then it is clear that
B#N . Clearly, abs(B,P) = abs(A,N) holds, therefore M = M holds for
abstractions. When M is an application, the proof is again by structural
induction. The equivalence of terms containing suspension follows from the
rule =susp and Lemma 7.
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Fig. 5. Unification of hypergraph λ-terms

(b) When M and N are hyperlinks, � M = N by the rule =hlink simply implies
� N = M . When M and N are M = abs(A,N1) and N = abs(B,N2)
respectively, � M = N leads to � N1 = [A ↔ B] · N2, � A#N2 and �
B#N1 by the rule =abs. By Lemma 5 and the induction hypothesis, we have
� N2 = [A ↔ B] · N1, � A#N2 and � B#N1 which leads to abs(B,N2) =
abs(A,N1). When M and N are applications, the proof is by the rule =app
and using the induction hypothesis twice. The equivalence of terms containing
suspension follows from the rule =susp and Lemma 7.

(c) When M,N and P are hyperlinks, it holds. When M,N and P are M =
abs(A,M1), N = abs(B,M2) and P = abs(C,M3), we have � M1 = [A ↔
B] · M2, � A#M2, � B#M1 and � M2 = [B ↔ C] · M3, � B#M3, � C#M2

by =abs. By Lemma 1, we know that A#M3 and C#M1. By Lemma 5 and
the induction hypothesis, we have {A#M3, C#M1} � M1 = [A ↔ B]@[B ↔
C] ·M3, which is the same as {A#M3, C#M1} � M1 = [A ↔ C] ·M3, which
leads to � abs(A,M1) = abs(C,M3) by =abs. The proof of applications is
trivial. The equivalence of terms containing suspension follows from the rule
=susp and Lemma 7. ��
A substitution δ is a finite set of mappings from unknown variables to terms,

written as [X := M1, Y := M2, . . .] where its domain, dom(δ), is a set of distinct
unknown variables {X,Y, . . .}. Applying δ to a term M is written as δ(M) and is
defined in a standard manner. A composition of substitutions is written as δ ◦ δ′

and defined as (δ ◦ δ′)(M) = δ(δ′(M)). The ε denotes an identity substitution.
Substitution commutes with swapping ; i.e., δ(π ·M) = π · (δ(M)). For example,
applying [X := A] to [A ↔ B] · app(N,X) will result in app(N,B). For two
sets of freshness constraints θ and θ′, and substitutions δ and δ′, writing θ′ � δ(θ)
means that θ′ � A#δ(X) holds for all (A#X) ∈ θ, and θ � δ = δ′ means that
θ � δ(X) = δ′(X) for all X ∈ dom(δ) ∪ dom(δ′).
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The definitions of unification, most general unifiers and idempotent unifiers
are similar to the ones in nominal unification [14]. A unification problem P is a
finite set of equations over hypergraph λ-terms and freshness constraints. Each
equation M = N may contain unknown variables X,Y, . . . . A solution of P
is a unifier denoted as (θ, δ), consisting of a set θ of freshness constraints and
a substitution δ. A unifier (θ, δ) of a problem P equates every equation in P ,
i.e., establishes θ � δ(M) = δ(N). U(P ) denotes the set of unifiers of a problem
P . For P , a unifier (θ, δ) ∈ U(P ) is a most general unifier if for any unifier
(θ′, δ′) ∈ U(P ), there is a substitution δ′′ such that θ′ � δ′′(θ) and θ′ � δ′′◦δ = δ′.
A unifier (θ, δ) ∈ U(P ) is idempotent if θ � δ ◦ δ = δ.

The unification algorithm is described in Fig. 5, where P is a given unifica-
tion problem and δ is a substitution which is usually initialized to ε. Each rule
arbitrarily selects an equation or a freshness constraint from P and transforms
it accordingly. The rule =abs transforms an equation and creates two freshness
constraints, where all freshness constraints we need are obtained. That is why the
rule =rm simply deletes an equation without creating any freshness constraints.
The rule =var creates a substitution δ′ from an equation (if X /∈ M), applies δ′

to P and adds δ′ to δ. The rules in Fig. 5 essentially correspond to the rules in
Fig. 4 except for the rule =var. The next lemma justifies the rule =var.

Lemma 8. Substitution generated by the rule =var in Fig. 5 preserves = and #
obtained by applying rules in Fig. 4. That is,

(a) If θ′ � δ(θ) and θ � M = N hold, then θ′ � δ(M) = δ(N) holds.
(b) If θ′ � δ(θ) and θ � A#M hold, then θ′ � A# δ(M) holds.

Proof. The proof of both is by structural induction. (a) We only show the case
of abstraction. Assume M = abs(A,X), N = abs(B,Y), δ = [X := P1, Y := P2].
Then we have θ = {A#Y, B#X}, θ ⊆ θ′, A#P2, and B#P1. From θ � M = N , we
have X = [B ↔ A]Y . Using A#P2 and B#P1, and by the induction hypothesis,
P1 = [B ↔ A]P2 holds. Therefore, θ′ � δ(abs(A,X)) = δ(abs(B,Y)) holds. (b)
The proof is by structural induction. ��

Terms in the hypergraph approach and the nominal approach are first-order
terms without built-in β-reduction. To represent bound variables, the nominal
approach uses concrete names and the hypergraph approach uses hyperlinks
which are identified by names when writing hypergraph terms as text. Our uni-
fication and nominal unification both assume α-equality for terms. Therefore,
it is not surprising that our unification algorithm happens to be similar to the
nominal unification algorithm. Nevertheless, there are differences. Our algorithm
does not have a rule for handling two abstractions with the same bound variable.
Also, the rule =rm is different from the ≈?-suspension rule in nominal unifica-
tion [14]. This is because Lemma 7 is different from its counterpart in nominal
unification: the former states the freshness of every variable of π@π′ and the
latter states the freshness of the variables in the disagreement set of π and π′.
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Theorem 2. For a given unification problem P , the unification algorithm in
Fig. 5 either fails if P has no unifier or successfully produces an idempotent
most general unifier.

Proof. Given in Appendix with related lemmas. The structure of the proof in [14]
applies to our case basically, though our formalization allows the interleaving of
the = and # rules of the algorithm. ��

4 Examples of the Unification

We apply the unification algorithm in Fig. 5 to three unification problems.

Example 1. A unification problem

abs(A,abs(B,X)) = abs(C,abs(D,X))

has a solution.

{abs(A,abs(B,X)) = abs(C,abs(D,X))}, ε
{abs(B,X) = [C ↔ A] · abs(D,X), A#abs(D,X), C#abs(B,X)}, ε (=abs)

{X = [D ↔ B, C ↔ A] · X, A#X, C#X, B#[C ↔ A] ·X, D#X}, ε (=abs,#abs,#hln)

{A#X, C#X, B#X, D#X}, ε (=rm,#sus)

Success

The problem has the most general unifier ({A#X, C#X, B#X, D#X}, ε), which
says that X can be any term not containing A, B, C or D.

Example 2. A unification problem

abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))

has no solution.

{abs(A,abs(B,app(X,B))) = abs(C,abs(D,app(D,X)))}, ε
{abs(B,app(X,B)) = [C ↔ A] · abs(D,app(D,X)), (=abs)

A#abs(D,app(D,X)), C#abs(B,app(X,B))}, ε
{app(X,B) = [D ↔ B] · app(D,[C ↔ A] · X), (=abs,#abs,#app,#hln)

A#X, C#X, B# app(D,[C ↔ A] · X), D#app(X,B)}, ε
{X = B, B = [D ↔ B, C ↔ A] ·X, A#X, C#X, D#X, B#X}, ε (=app,#app,#hln,#sus)

{B = D, B#B}, [X := B] (=var,#hln)

Failure

The problem is unsolvable; it fails due to both B = D and B#B.

Example 3. A unification problem

abs(A,app(X,Y )) = abs(B,app(app(B,Y ),X))

has no solution.
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{abs(A,app(X,Y )) = abs(B,app(app(B,Y ),X))}, ε
{app(X,Y ) = [B ↔ A] · app(app(B,Y ),X), (=abs)

A#app(app(B,Y ),X), B#app(X,Y )}, ε
{X = app(A,[B ↔ A] · Y ), Y = [B ↔ A] · X, (=app,#app,#hln)

A#X, A#Y , B#X, B#Y }, ε
{Y = [B ↔ A] · app(A,[B ↔ A] · Y ), A#app(A,[B ↔ A] · Y ), (=var)

A#Y , B#app(A,[B ↔ A] · Y ), B#Y }, [X := app(A,[B ↔ A] · Y )]
{Y = app(B,[B ↔ A, B ↔ A] · Y ), A#Y , B#Y , A#Y , A#A, B#Y }, (#app,#hln,#sus)

[X := app(A,[B ↔ A] · Y )]
Failure

The problem is unsolvable; it fails due to A#A.

5 Implementation

We implemented the unification of hypergraph λ-terms in HyperLMNtal in a
straightforward manner1. There are a total of 52 rewrite rules in the implemen-
tation; 12 rewrite rules corresponding to the 9 rules in Fig. 5 (4 rules for the =var
rule), 14 rules for the occur-check, 7 rules for implementing applying swapping
to terms, 7 rewrite rules for substitution, and several auxiliary rules for list man-
agement. Interestingly, the implementation of substitution M [X := N ] turned
out to be essentially the same as that for the λ-calculus, i.e., sub(X,N,M) in
Fig. 2. The implementation solved a number of unification problems, including
the examples in this paper. HyperLMNtal brought simplicity in the sense that
the rewrite rules of the implementation are extremely close to the unification
rules discussed in this paper.

6 Related Work and Conclusion

Complexity of formalizing unification over terms containing name binding is
largely determined by the approach taken for representing such terms. There
are two prominent unification algorithms: higher-order pattern unification [8]
and nominal unification [14].

A higher-order approach implements a variant of the λ-calculus as a meta-
language, which is used to encode formal systems involving name binding [9].
The meta-language implicitly handles substitution and implicitly restricts bound
variables to be distinct. Users reason about formal systems indirectly through
the meta-language, in which terms are higher-order terms. Higher-order pattern
unification unifies equations of terms modulo =αβ0η. It finds functions to substi-
tute unknown variables, which means that variable capture never happens. The
characteristics of higher-order pattern unification are the result of letting the
meta-language handle everything implicitly. In the nominal approach, bound-
able names are equipped with swapping and freshness to ensure correct substi-
tutions [4]. Users reason on formal systems through nominal terms which are
1 Implementation is available at https://gitlab.com/alimjanyasin.

https://gitlab.com/alimjanyasin
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first-order terms. As the result, nominal unification solves equations of terms
modulo =α, because =βη is not needed for first-order terms, and allows for
variable capture in the unification while preserving α-equivalence. We believe
that having no restrictions on bound variables is the cause of somewhat com-
plex proofs in the nominal unification. One observation is that using a higher-
order meta-language implicitly ensures the distinctness of bound variables in
the higher-order approach. In the nominal approach, such restriction on bound
variables does not exist.

Our approach uses hyperlinks to represent variables, hypergraphs to repre-
sent terms and hlground followed by hypergraph copying to avoid variable cap-
ture. Unlike the nominal approach, we use fresh hyperlinks whenever needed and
hlground manages hyperlinks. In our approach, it is natural to restrict a hyper-
link to be bound only once and every abstraction is syntactically unique. Just
like nominal unification, our unification only considers α-equivalence and allows
variable capture in the unification. The key idea of our technique is that imple-
menting α-renaming (as the copying of hypergraphs identified by hlground)
leads to the simplification of overall reasoning. Urban pointed out that the proofs
of nominal unification in [14] are clunky and presented simpler proofs in [15].
Proofs in this paper are even somewhat simpler than the proofs in [15]. In our
unification algorithm, the basic properties are easy to establish; Lemmas 4, 5, 6
and 7 are intuitive and simple. In particular, we proved equivalence relation
(Theorem 1) without much efforts.

To conclude, we worked on the unification of hypergraph λ-terms and the
result shows that our approach has taken the promising strategy as indicated
by simple proofs of fundamental properties needed for the unification algorithm.
We successfully implemented the unification algorithm in HyperLMNtal. This
work suggests that our hypergraph rewriting framework provides a convenient
platform to work with formal systems involving name bindings and unification
of their terms. In the future, we plan to use this unification algorithm to encode
type inferences of formal systems involving name binding. Besides, it should
be interesting to reformalize logic programming languages such as αProlog [3]
using our hypergraph-based approach and implement them in HyperLMNtal to
see how much simplicity our approach can provide in practice.
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A Appendix

A.1 Adequacy of Equivalence

The relation = defined in Fig. 4 and the standard α-equivalence =α (based on
graph isomorphism) for ground hypergraph λ-terms are the same.
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Proposition 1 (adequacy). For ground hypergraph λ-terms M and N , the
relation M =α N holds if and only if ∅ � M = N holds in Fig. 4, and ∅ � A#M
holds if and only if A in not in the set fv(M), defined by

fv(A)
def
= {A} (A is a hyperlink),

fv(abs(A,M))
def
= fv(M)\{A},

fv(app(M,N))
def
= fv(M) ∪ fv(N).

Proof Let M and N be hyperlinks. If M =α N holds, then ∅ � M = N holds by
the rule =hlink. The other direction is similar. Let M and N be abs(A,M1)
and abs(B,N1), respectively. If M =α N , this means M1 =α N1[B := A], A is
not in N1 and B is not in M1. Therefore, ∅ � M = N holds by the rule =abs.
If ∅ � M = N , M =α N is clear from the premise of =abs. Let M and N be
M1M2 and N1N2. If M =α N , then we have M1 =α N1 and M2 =α N2. Clearly,
∅ � M = N from the rule =app. The other direction is similar.

It is easy to see that ∅ � A#M in Fig. 4 and A not being in fv(M) are
the same for ground hypergraph λ-terms. If one of them holds, so does the
other. ��

A.2 Correctness of Unification

Here, we give the details of the correctness proof of the unification algorithm in
Fig. 5.

Lemma 9. The unification algorithm always terminates.

Proof. To show that the algorithm terminates, we need to define the size of
terms |M | as follows.

|A| def= 1

|abs(A,M)| def= 1 + |M |
|app(M,N)| def= 1 + |M | + |N |

|π · X| def= 1

For a unification problem P , a measure of the size of P is a lexicographically
ordered pair of natural numbers (n,m), where n is the number of different
unknown variables in P and m is the size of all equations in P , defined as

m
def=

∑

(M=N)∈P

|M | + |N |.

The = rules in Fig. 5 decrease (n,m). The rule =var eliminates one unknown
variable, so n decreases. The rule =rm decreases m and may decrease n. Other =
rules decrease m and do not change n.
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The # rules decrease the size of freshness constraints, which is∑
(A#M)∈P |M |. Eventually, all remaining freshness constraints in a solvable

problem P will have the form A#X, for which there are no applicable rules.
For an unsolvable problem P , the algorithm terminates with P containing

terms of equations which cannot be made α-equivalent and invalid freshness
constraints: (i) A = B where A and B are different hyperlinks; (ii) M = N
where M and N start with different constructors such as abs and app; (iii) one
of M and N is a hyperlink and another is a constructor; (iv) π · X = M where
M is either abs(A,M1) or app(M2,N) with X occurring in M1, M2 and N ;
(v) having a freshness constraint such as A#A.

By these facts, we can conclude that the algorithm terminates in both success
and failure cases. ��
Lemma 10. if θ � δ(π · X) = δ(M) then θ � δ ◦ [X := π−1 · M ] = δ.

Proof. By commuting δ and π and by Theorem 1 (b), we have θ � δ(M) =
π · δ(X). By Lemma 5 and commuting again, we have θ � δ(π−1 · M) = δ(X),
which implies θ � δ ◦ [X := π−1 · M ] = δ. ��
Lemma 11. For a problem P , (θ, δ) ∈ U(δ1(P )) iff (θ, δ ◦ δ1) ∈ U(P ).

Proof. Follows from the definition of substitution composition. ��
In Fig. 5, the only rule that creates substitution is the rule =var. It is easy

to see that =var creates a substitution [X := π−1 · M ] with X �∈ dom(δ).
When applying the unification rules, the =hln, =app, =rm and all # rules

just simplifies some of equations and freshness constraints or removes some of
them, without creating anything really new. Interesting ones are the rule =abs
which creates new freshness constraints and the rule =var which creates a new
mapping. Therefore, in the following Lemmas, we focus on these two rules.

Lemma 12.

(a) If (θ, δ) ∈ U(P ) and P, δ =⇒ P ′, δ′′ ◦ δ using the rule =var creating δ′′ =
[X := π−1 · M ], then (θ, δ) ∈ U(P ′) and θ � δ ◦ δ′′ = δ.

(b) If (θ, δ) ∈ U(P ) and P, δ =⇒ P ′, δ using the rule =abs creating θ′′ =
{A#N,B#M}, then (θ, δ) ∈ U(P ′) and θ � δ(θ′′).

Proof.

(a) We can write P, δ =⇒ P ′, δ′′ ◦ δ as P, δ =⇒ δ′′(P ), δ′′ ◦ δ. By (θ, δ) ∈ U(P )
and (π · X = M) or (M = π · X) is in P , θ � δ(π · X) = δ(M) holds, which
leads to θ � δ ◦ δ′′ = δ by Lemma 10. By Lemma 11, we have (θ, δ) ∈ U(P ′)
which is the same as (θ, δ ◦ δ′′) ∈ U(P ).

(b) By the assumption, we have θ � δ(abs(A,M)) = δ(abs(B,N)) and θ′′ =
{A#N,B#M}. In order to derive the above, Fig. 4 tells that we must have
θ � A#δ(N), θ � B#δ(M) and θ � δ(M) = [A ↔ B] · δ(N), from which the
conclusions follow. ��
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Lemma 13.

(a) If (θ, δ) ∈ U(P ′) and P, δ =⇒ P ′, δ′′ ◦ δ using the rule =var creating δ′′ =
[X := π−1 · M ], then (θ, δ ◦ δ′′) ∈ U(P ).

(b) If (θ, δ) ∈ U(P ′) and P, δ =⇒ P ′, δ using the rule =abs creating θ′′ =
{A#N,B#M}, then (θ, δ) ∈ U(P ).

Proof.

(a) P, δ =⇒ P ′, δ′′ ◦δ can be written as P, δ =⇒ δ′′(P ), δ′′ ◦δ. Clearly, (θ, δ◦δ′′) ∈
U(P ) follows from Lemma 11 and the assumption (θ, δ) ∈ U(δ′′(P )).

(b) The proof is similar to the proof of second part of Lemma 12, but in the
opposite direction. ��

Theorem 2. For a given unification problem P , the unification algorithm in
Fig. 5 either fails if P has no unifier or successfully produces an idempotent
most general unifier.

Proof. For a unification problem which has no unifiers, the algorithm fails as
explained in Lemma 9. For a solvable unification problem P0, the proof proceeds
in three steps: (i) a unifier is generated, (ii) it is most general, and (iii) it is
idempotent.

First, the algorithm transforms P0 as

P0, δ0 =⇒ P1, δ1 =⇒ . . . =⇒ Pn, δn �=⇒

by substitutions δ
′
1, . . . , δ

′
n and freshness constraints θ

′
1, . . . , θ

′
m where δ0 = ε,

δ1 = δ
′
1 ◦ δ0, . . . , δn = δ

′
n ◦ δn−1, and the θ

′
i stands for freshness constraints

created by the ith application of the rule =abs. By the # rules in Fig. 5, we
know that Pn consists only of freshness constraints of the form A#X. Let us
denote Pn as θ. By Lemma 13 and (θ, ε) ∈ U(Pn), we have (θ, δ) ∈ U(P0) where
δ = δ

′
n ◦ . . . ◦ δ

′
1.

Second, for any other unifier (θ′, δ′) ∈ U(P0), by Lemma 12 we have θ′ �
δ′ ◦δ

′
1 = δ′, . . . , θ′ � δ′ ◦δ

′
n = δ′ and θ′ � δ′(θ

′
1), . . . , θ

′ � δ′(θ
′
m). From the former,

we have θ′ � δ′ ◦ δ
′
n ◦ . . . ◦ δ

′
1 = δ′, which is the same as θ′ � δ′ ◦ δ = δ′. From the

latter, we have θ′ � δ′(θ′′) where θ′′ = θ
′
1 ∪ . . . ∪ θ

′
m. From θ′ � δ′ ◦ δ = δ′ and

θ′ � δ′(θ′′), we have θ′ � (δ′ ◦ δ)(θ′′). Since we know that δ(θ′′) is transformed
into θ, we have θ′ � δ′(θ). Therefore (θ, δ) is the most general unifier.

Third, since δ′ is any unifier, we have θ � δ ◦ δ = δ. Therefore (θ, δ) is the
idempotent most general unifier. ��
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