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Abstract. Swarm intelligence algorithms are stochastic optimization
algorithms that are very successfully used for hard optimization prob-
lems. Brain storm optimization is a recent swarm intelligence algo-
rithm that has been proven successful in many applications but is still
not researched enough. Many swarm intelligence algorithm have been
recently improved by introduction of chaotic maps that better than ran-
dom sequences contributed to search quality. In this paper we propose
an improvement of the brain storm optimization algorithm by intro-
ducing chaotic maps. Two one-dimensional chaotic maps were incorpo-
rated into the original brain storm optimization algorithm. The proposed
algorithms were tested on 15 standard benchmark functions from CEC
2013 and compared to the original brain storm optimization algorithm
and particle swarm optimization. Our proposed chaos based methods
obtained better results where for this set of benchmark functions circle
maps were superior.

Keywords: Brain storm optimization algorithm · BSO · Metaheuristic
algorithms · Chaos · Global optimization problems · Swarm intelligence

1 Introduction

Numerous real life problems can be represented as optimization problems where
global optimum (minimum or maximum) of the objective function needs to be
found. In most cases these optimization problems are hard optimization prob-
lems and often highly nonlinear. Standard deterministic algorithms are inca-
pable to find the solution for such problems due to computational complexity
and numerous local optima, hence different approaches are needed. In the past
decades various stochastic optimization algorithms were proposed. One group of
such algorithms are nature inspired algorithms where the idea is to mimic some
processes from the nature.

Nature inspired algorithms can be divided into two main categories: evolu-
tionary and swarm intelligence algorithms. Evolutionary algorithms are inspired
by the biological evolution processes such as reproduction, recombination, muta-
tion and selection. One of the oldest and the most famous member of this group
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is genetic algorithm. Swarm intelligence algorithms are inspired by collective
behavior of different agents in the nature. Each individual follows simple rules
and interacts with other members of the swarm. These simple agents collectively
exhibit remarkable intelligence that is used for solving optimization problems.

Swarm intelligence algorithms are inspired by processes from nature such as
ant colonies, animal herding, food harvesting, nesting and others. By mimicking
these processes two main parts of the algorithms have to be implemented: explo-
ration and exploitation. Exploitation represents a local search around promising
solutions that were found while exploration is global search where better solu-
tions are looked for in different areas of the search space in order to prevent the
algorithm to get stacked in some local optimum.

Among the oldest swarm intelligence algorithms are particle swarm optimiza-
tion (PSO) and ant colony optimization. Consequently numerous different swarm
intelligent algorithms have been proposed such as firefly algorithm [10,18,20],
fireworks algorithm [13], krill herd algorithm [6,11], and others. Swarm intelli-
gence algorithms have been applied for solving different problems such as travel-
ing salesman problem [19], multilevel thresholding [14], support vector machine
optimization [15,16], image registration [17], etc.

Optimization algorithms are constantly being improved by different modifi-
cations and hybridization. In recent years advances in theory and applications of
chaos have been widely used in numerous fields and one of them is optimization
algorithms. Chaotic maps such as circle, Gauss/mouse, logistic, piecewise, sine,
sinusoidal and others were introduced in swarm intelligence algorithms instead of
some random parameters [4]. For example, parameters of the bat algorithm were
replaced by different chaotic maps and the results were compared to the original
bat algorithm [5]. Results have shown that some chaotic bat algorithms can out-
perform the version with random numbers. Chebyshev map was introduced into
fruit fly optimization algorithm and modified chaotic version of the algorithm
has shown superior and more reliable behavior compared to the original one in
[8]. In [7] ten different one-dimensional chaotic maps were used for improving
fireworks algorithm. The best performance was when circle maps were used.

In this paper we introduce chaos into recent brain storm optimization algo-
rithm [9] and propose chaos based BSO (CBSO). Since different chaotic maps
can lead to different behavior of the optimization algorithm, we proposed two
chaotic maps. The proposed algorithm was tested on standard benchmark func-
tions proposed in CEC 2013 and it was favorably compared to the original BSO
and the standard PSO.

The rest of the paper is organized as follows. Our proposed brain storm
optimization algorithm with chaotic maps is presented in Sect. 2. Simulation
results along with comparison with other algorithms are given in Sect. 3. At the
end the conclusion and proposition for further work is presented in Sect. 4.

2 Chaos Based Brain Storm Optimization Algorithm

Brain storm optimization algorithm (BSO) was proposed by Yuhui Shi in
2011 [9]. This algorithm has been applied to numerous problems [2,12]. During
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the last few years different improved and modified BSO versions were proposed
[1,3]. Inspiration for the algorithm was human idea generation process or brain-
storming process. Brainstorming was summarized in several steps which were
transformed into the brain storm optimization algorithm.

Brainstorming process contains step of generating initial ideas followed by
choosing more promising ideas and generating new idea based on better solutions
as well as new ones regardless of the previous ideas. It is expected that after a
several iteration some good solution will be obtained. Brain storm optimization
algorithm is presented in Algorithm 1.

In the Algorithm 1 several parameters of the BSO are mentioned. The first
one is n, the number of solutions or individuals in each generation of the ideas
and the second one is parameter m which represents the number of clusters.
Beside these two parameters, four different parameters need to be set, parameters
p5a, p6b, p6bi and p6c that determine how a new solution will be created according
to the Algorithm 1.

Algorithm 1. Pseudo-code of the BSO algorithm
1: Initialization
2: Randomly generate n potential solutions.
3: repeat
4: Cluster n solutions into m clusters.
5: Rank solutions in each cluster and set the best one as cluster center.
6: Randomly generate a value r between 0 and 1.
7: if r < p5a then
8: Randomly select a cluster center.
9: Randomly generate an individual to replace the selected cluster.
10: end if
11: repeat
12: Generate new solutions.
13: Randomly generate a value r between 0 and 1.
14: if r < p6b then
15: Randomly select a cluster with probability p6bi.
16: Randomly generate a value r1 between 0 and 1.
17: if r1 < p6bii then
18: Select the cluster center and add random values to it to generate new individual.
19: else
20: Randomly select a solution from the chosen cluster and add random value to the

solution to generate new one.
21: end if
22: else
23: Randomly select two clusters.
24: Generate random value r2 between 0 and 1
25: if r2 < p6c then
26: Two cluster centers are combined to generate new solution.
27: else
28: Two solutions from each selected cluster are randomly chosen to be combined to

generate new individual.
29: end if
30: end if
31: The newly generated solution is compared with the same solution index and the better

one is kept.
32: until n new solution is generated.
33: until Maximal iteration number is reached.
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New solutions are generated by the following equation:

xnew = xselected + ζ ∗ n(μ, σ) (1)

where xnew is a new solution in the d-dimensional space, xselected represents
solution selected to be potentially changed, n(μ, σ) is a random number gen-
erated from Gaussian distribution with mean μ and variance σ, while ζ is the
coefficient that controls the influence of the Gaussian random value. Parameter
ζ is calculated in each generation by the following expression:

ζ = logsig((0.5 ∗ maxIteration − currentIteration)/k) ∗ rand() (2)

where maxIteration and currentIteration represent maximal number of itera-
tions and the number of the current iteration, respectively. Parameter k changes
the logsig() function’s slope where logsig is a logarithmic sigmoid transfer func-
tion. Finally, rand() represents random value from uniform distribution within
[0,1]. In this paper we propose using chaotic maps instead of random values.

2.1 Chaotic Maps

Chaotic optimization algorithms are optimization algorithms that use chaotic
variables rather then random values. The characteristics of chaotic maps such as
non-repetition and ergodicity may improve search in the optimization algorithms
[21]. In this paper two different one-dimensional maps were considered: circle
map and sinusoidal map. Circle map is defined by the following equation:

xk+1 =
[
xk + b − a

2π
sin(2πxk)

]
mod 1 (3)

where for a = 0.5 and b = 0.2 the generated chaotic sequence is within (0, 1).
Sinusoidal map is defined as:

xk+1 = ax2
k sin(πxk) (4)

where for a = 2.3 and x0 = 0.7 the following simplified form can be used:

xk+1 = sin(πxk) (5)

The proposed chaotic maps were used to generate chaos sequence of numbers
that were used in Eq. 2.

3 Simulation Results

Our proposed method was implemented in Matlab R2016a and simulations were
performed on the platform with Intel R© CoreTM i7-3770K CPU at 4 GHz, 8 GB
RAM, Windows 10 Professional OS.

The proposed algorithms with chaotic maps were tested on 15 well-known
benchmark functions proposed in CEC 2013. We tested on 5 unimodal and 10
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multimodal 10-dimensional functions and the details about these functions are
presented in Table 1. Parameters for brain storm algorithm were set empirically.
Number of individuals was set to 100 and number of the clusters was 5. Prob-
abilities p5a, p6b, p6bi and p6c were set to 0.2, 0.8, 0.4 and 0.5, respectively.
Maximal number of iterations was 5000. All tests were run 30 times.

Table 1. Benchmark function details

No Function Optimal

Unimodal functions

1 Sphere function −1400

2 Rotated high conditioned elliptic function −1300

3 Rotated bent cigar function −1200

4 Rotated discus function −1100

5 Different powers function −1000

Basic multimodal functions

6 Rotated Rosenbrock’s function −900

7 Rotated Schaffers F7 function −800

8 Rotated Ackley’s function −700

9 Rotated Weierstrass function −600

10 Rotated Griewank’s function −500

11 Rastrigin’s function −400

12 Rotated Rastrigin’s function −300

13 Non-Continuous rotated Rastrigin’s function −200

14 Schwefel’s Function −100

15 Rotated Schwefel’s Function 100

We compared the original brain storm optimization algorithm with two ver-
sions when chaotic maps were introduced. In the first version we used circle
map and we named this chaotic brain storm optimization algorithm CBSO-C.
The second version had implemented sinusoidal map and it was named CBSO-S.
We also compared the results with results of standard PSO algorithm [22]. In
[22] maximal number of objective function evaluation was set to 100,000 while
in our proposed algorithm it was 50,000 since larger number of evaluations did
not improve results. For each function algorithms were executed 30 times and
median, standard deviation, the best and the worst solutions were calculated as
in [22]. The obtained results are presented in Table 2.

For benchmark function f1, the sphere, all algorithms successfully found
global minimum in all cases since standard deviation was 0. Similarly, all algo-
rithms found the global optimum for function f5 in almost all cases. The smallest
standard deviation was achieved by sinusoidal chaotic BSO. From the results pre-
sented in Table 2 it can be seen that PSO achieved the same best solutions in
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Table 2. Comparison of PSO, BSO, CBSO-C and CBSO-S

Fun. PSO BSO CBSO-C CBSO-S

f1 median −1.400E+03 −1.400E+03 −1.400E+03 −1.400E+03

std 0.000E+00 0.000E+00 0.000E+00 0.000E+00

best −1.400E+03 −1.400E+03 −1.400E+03 −1.400E+03

worst −1.400E+03 −1.400E+03 −1.400E+03 −1.400E+03

f2 median 3.504E+04 8.614E+03 3.769E+05 1.470E+04

std 7.356E+04 1.240E+04 3.054E+05 2.572E+04

best 7.597E+02 4.859E+02 1.808E+05 2.963E+03

worst 4.755E+05 2.790E+04 9.384E+05 6.751E+04

f3 median 2.670E+05 5.629E+04 1.067E+05 7.762E+04

std 1.656E+07 3.062E+05 1.514E+07 6.967E+05

best −1.200E+03 −1.200E+03 3.844E+04 5.471E+03

worst 8.251E+07 7.235E+05 3.505E+07 1.611E+06

f4 median 7.769E+03 −7.443E+02 −9.728E+02 −9.953E+02

std 4.556E+03 2.078E+02 1.406E+04 1.818E+02

best 2.454E+02 −1.097E+03 2.353E+03 −1.099E+03

worst 1.856E+04 −6.070E+02 3.874E+04 −6.570E+02

f5 median −1.000E+03 −1.000E+03 −1.000E+03 −1.000E+03

std 3.142E−05 1.574E−04 2.378E+01 4.957E−05

best −1.000E+03 −1.000E+03 −1.000E+03 −1.000E+03

worst −1.000E+03 −1.000E+03 −9.433E+02 −1.000E+03

f6 median −8.902E+02 −8.997E+02 −8.953E+02 −8.995E+02

std 4.974E+00 4.164E+00 7.499E−01 7.893E−02

best −9.000E+02 −9.000E+02 −8.954E+02 −8.996E+02

worst −8.898E+02 −8.904E+02 −8.935E+02 −8.994E+02

f7 median −7.789E+02 −7.349E+02 −7.640E+02 −7.885E+02

std 1.327E+01 2.639E+01 1.976E+01 4.589E+00

best −7.974E+02 −7.646E+02 −7.723E+02 −7.987E+02

worst −7.434E+02 −7.036E+02 −7.232E+02 −7.831E+02

f8 median −6.789E+02 −6.797E+02 −6.800E+02 −6.798E+02

std 6.722E−02 9.599E−02 1.873E−03 5.318E−02

best −6.789E+02 −6.799E+02 −6.800E+02 −6.799E+02

worst −6.796E+02 −6.797E+02 −6.800E+02 −6.797E+02

f9 median −5.952E+02 −5.911E+02 −5.959E+02 −5.923E+02

std 1.499E+00 1.114E+00 1.112E+00 7.699E−01

best −5.987E+02 −5.936E+02 −5.989E+02 −5.926E+02

worst −5.929E+02 −5.911E+02 −5.931E+02 −5.910E+02

(continued)
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Table 2. (continued)

Fun. PSO BSO CBSO-C CBSO-S

f10 median −4.997E+02 −4.999E+02 −4.999E+02 −4.999E+02

std 2.713E−01 8.620E−02 1.631E−02 1.795E−02

best −4.999E+02 −5.000E+02 −5.000E+02 −4.999E+02

worst −4.989E+02 −4.998E+02 −4.999E+02 −4.998E+02

f11 median −3.891E+02 −3.582E+02 −3.940E+02 −3.473E+02

std 5.658E+00 8.425E+00 8.899E−01 1.777E+01

best −3.970E+02 −3.682E+02 −3.970E+02 −3.781E+02

worst −3.731E+02 −3.473E+02 −3.940E+02 −3.353E+02

f12 median −2.861E+02 −2.552E+02 −2.920E+02 −2.682E+02

std 6.560E+00 2.464E+01 2.725E+00 1.054E+01

best −2.970E+02 −2.881E+02 −2.970E+02 −2.731E+02

worst −2.682E+02 −2.323E+02 −2.891E+02 −2.483E+02

f13 median −1.792E+02 −1.371E+02 −1.834E+02 −1.398E+02

std 9.822E+00 2.110E+01 5.168E+00 9.588E+00

best −1.946E+02 −1.637E+02 −1.952E+02 −1.434E+02

worst −1.523E+022 −1.134E+02 −1.802E+02 −1.201E+02

f14 median 7.338E+02 1.180E+03 3.858E+02 1.093E+03

std 1.282E+02 1.687E+02 9.365E+01 1.444E+02

best 2.228E+02 8.796E+02 1.677E+02 9.702E+02

worst 1.109E+03 1.340E+03 5.526E+02 1.303E+03

f15 median 8.743E+02 9.160E+02 4.329E+02 9.160E+02

std 2.507E+02 1.409E+02 2.329E+02 2.323E+02

best 4.372E+02 7.272E+02 3.585E+02 1.136E+03

worst 1.705E+03 1.124E+03 8.540E+02 1.346E+03

the case of benchmark functions f3, f11 and f12. In all other cases standard PSO
was outperformed by BSO or our proposed chaos based BSO.

For function f2 original BSO achieved the best results, however with a large
error. It can be said that all algorithms failed to find global optimum. Similarly
to f2, for f3 again not nearly good solutions were found by any algorithm but
BSO managed to find the closest solutions. For functions f4 and f7 the best
results were achieved when BSO with sinusoidal map was used. For f4 where
optimal solution is −1100, the best found one was −995.3 which is significantly
different, but the improvement over the original BSO is noticeable. Original BSO
had −744.3 as median in 30 runs which is worse then the results obtained by both
chaotic based BSO. Chaotic based BSO improved performance of the original
BSO for function f7, from −734.9 to 764.0 by CBSO-C and −788.5 by CBSO-S.
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For functions from f8 to f15 the best solutions were obtained by CBSO-C,
chaotic BSO with circle map. Improvements are in some cases smaller, such as
for functions f8 and f10. In the case of f8 median with the original BSO was
−679.7 while this solution is improved by CBSO-S to −679.8 and finally, CBSO-
C obtained median −680.0. Function f10 was successfully solved by all three BSO
versions, but the most robust one was CBCO-C since it had smallest standard
deviation. In all other cases chaos based brain storm optimization with circle
map improved results of original BSO significantly and also outperformed PSO.
For functions f9–f15, except for the function f10, BSO with circle map obtained
results better than the original BSO and also better than BSO with sinusoidal
map. This shows that different maps are more suitable for some functions.

4 Conclusion

In this paper chaos based brain storm optimization algorithm was proposed. Two
different one-dimensional chaotic maps were implemented into the original BSO:
circle and sinusoidal maps. Proposed algorithms were tested on 15 benchmark
functions from CEC 2013 and the results were compared to the original BSO
and standard PSO. The best results in the most cases were obtained by BSO
algorithm with circle map. In other cases the best performance was achieved by
the original BSO or BSO with sinusoidal map. BSO as well as two modifications
outperformed standard PSO in all cases. In further work different chaotic maps
can be used and compared to other chaotic optimization algorithms.
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